python_code
stringlengths
0
992k
repo_name
stringlengths
8
46
file_path
stringlengths
5
162
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _import_structure = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_nllb"] = ["NllbTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_nllb_fast"] = ["NllbTokenizerFast"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers-main
src/transformers/models/nllb/__init__.py
# coding=utf-8 # Copyright 2022 The Facebook AI Research Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: NllbTokenizer = None logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json" ), }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "facebook/nllb-large-en-ro": 1024, "facebook/nllb-200-distilled-600M": 1024, } # fmt: off FAIRSEQ_LANGUAGE_CODES = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] # fmt: on class NllbTokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" NLLB tokenizer (backed by HuggingFace's *tokenizers* library). Based on [BPE](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=BPE#models). This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. The tokenization method is `<tokens> <eos> <language code>` for source language documents, and `<language code> <tokens> <eos>` for target language documents. Examples: ```python >>> from transformers import NllbTokenizerFast >>> tokenizer = NllbTokenizerFast.from_pretrained( ... "facebook/nllb-200-distilled-600M", src_lang="eng_Latn", tgt_lang="fra_Latn" ... ) >>> example_english_phrase = " UN Chief Says There Is No Military Solution in Syria" >>> expected_translation_french = "Le chef de l'ONU affirme qu'il n'y a pas de solution militaire en Syrie." >>> inputs = tokenizer(example_english_phrase, text_target=expected_translation_french, return_tensors="pt") ``` Args: vocab_file (`str`): Path to the vocabulary file. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. tokenizer_file (`str`, *optional*): The path to a tokenizer file to use instead of the vocab file. src_lang (`str`, *optional*): The language to use as source language for translation. tgt_lang (`str`, *optional*): The language to use as target language for translation. """ vocab_files_names = VOCAB_FILES_NAMES max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP model_input_names = ["input_ids", "attention_mask"] slow_tokenizer_class = NllbTokenizer prefix_tokens: List[int] = [] suffix_tokens: List[int] = [] def __init__( self, vocab_file=None, tokenizer_file=None, bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", src_lang=None, tgt_lang=None, additional_special_tokens=None, legacy_behaviour=False, **kwargs, ): # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token self.legacy_behaviour = legacy_behaviour super().__init__( vocab_file=vocab_file, tokenizer_file=tokenizer_file, bos_token=bos_token, eos_token=eos_token, sep_token=sep_token, cls_token=cls_token, unk_token=unk_token, pad_token=pad_token, mask_token=mask_token, src_lang=src_lang, tgt_lang=tgt_lang, additional_special_tokens=additional_special_tokens, legacy_behaviour=legacy_behaviour, **kwargs, ) self.vocab_file = vocab_file self.can_save_slow_tokenizer = False if not self.vocab_file else True _additional_special_tokens = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens}) self.lang_code_to_id = { lang_code: self.convert_tokens_to_ids(lang_code) for lang_code in FAIRSEQ_LANGUAGE_CODES } self._src_lang = src_lang if src_lang is not None else "eng_Latn" self.cur_lang_code = self.convert_tokens_to_ids(self._src_lang) self.tgt_lang = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def src_lang(self) -> str: return self._src_lang @src_lang.setter def src_lang(self, new_src_lang: str) -> None: self._src_lang = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. The special tokens depend on calling set_lang. An NLLB sequence has the following format, where `X` represents the sequence: - `input_ids` (for encoder) `X [eos, src_lang_code]` - `decoder_input_ids`: (for decoder) `X [eos, tgt_lang_code]` BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a separator. Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return self.prefix_tokens + token_ids_0 + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. nllb does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] def _build_translation_inputs( self, raw_inputs, return_tensors: str, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs ): """Used by translation pipeline, to prepare inputs for the generate function""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") self.src_lang = src_lang inputs = self(raw_inputs, add_special_tokens=True, return_tensors=return_tensors, **extra_kwargs) tgt_lang_id = self.convert_tokens_to_ids(tgt_lang) inputs["forced_bos_token_id"] = tgt_lang_id return inputs def prepare_seq2seq_batch( self, src_texts: List[str], src_lang: str = "eng_Latn", tgt_texts: Optional[List[str]] = None, tgt_lang: str = "fra_Latn", **kwargs, ) -> BatchEncoding: self.src_lang = src_lang self.tgt_lang = tgt_lang return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs) def _switch_to_input_mode(self): return self.set_src_lang_special_tokens(self.src_lang) def _switch_to_target_mode(self): return self.set_tgt_lang_special_tokens(self.tgt_lang) def set_src_lang_special_tokens(self, src_lang) -> None: """Reset the special tokens to the source lang setting. - In legacy mode: No prefix and suffix=[eos, src_lang_code]. - In default mode: Prefix=[src_lang_code], suffix = [eos] """ self.cur_lang_code = self.convert_tokens_to_ids(src_lang) if self.legacy_behaviour: self.prefix_tokens = [] self.suffix_tokens = [self.eos_token_id, self.cur_lang_code] else: self.prefix_tokens = [self.cur_lang_code] self.suffix_tokens = [self.eos_token_id] prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens) suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens) self._tokenizer.post_processor = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str, pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)), ) def set_tgt_lang_special_tokens(self, lang: str) -> None: """Reset the special tokens to the target lang setting. - In legacy mode: No prefix and suffix=[eos, tgt_lang_code]. - In default mode: Prefix=[tgt_lang_code], suffix = [eos] """ self.cur_lang_code = self.convert_tokens_to_ids(lang) if self.legacy_behaviour: self.prefix_tokens = [] self.suffix_tokens = [self.eos_token_id, self.cur_lang_code] else: self.prefix_tokens = [self.cur_lang_code] self.suffix_tokens = [self.eos_token_id] prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens) suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens) self._tokenizer.post_processor = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str, pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)), ) def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory.") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): copyfile(self.vocab_file, out_vocab_file) return (out_vocab_file,)
transformers-main
src/transformers/models/nllb/tokenization_nllb_fast.py
# coding=utf-8 # Copyright 2019 Facebook AI Research and the HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch XLM-RoBERTa model.""" import math from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN, gelu from ...modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions, CausalLMOutputWithCrossAttentions, MaskedLMOutput, MultipleChoiceModelOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_xlm_roberta import XLMRobertaConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "xlm-roberta-base" _CONFIG_FOR_DOC = "XLMRobertaConfig" XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = [ "xlm-roberta-base", "xlm-roberta-large", "xlm-roberta-large-finetuned-conll02-dutch", "xlm-roberta-large-finetuned-conll02-spanish", "xlm-roberta-large-finetuned-conll03-english", "xlm-roberta-large-finetuned-conll03-german", # See all XLM-RoBERTa models at https://huggingface.co/models?filter=xlm-roberta ] # Copied from transformers.models.roberta.modeling_roberta.RobertaEmbeddings with Roberta->XLMRoberta class XLMRobertaEmbeddings(nn.Module): """ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. """ # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__ def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) self.register_buffer( "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False ) # End copy self.padding_idx = config.pad_token_id self.position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx ) def forward( self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 ): if position_ids is None: if input_ids is not None: # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length) else: position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves # issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings def create_position_ids_from_inputs_embeds(self, inputs_embeds): """ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. Args: inputs_embeds: torch.Tensor Returns: torch.Tensor """ input_shape = inputs_embeds.size()[:-1] sequence_length = input_shape[1] position_ids = torch.arange( self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device ) return position_ids.unsqueeze(0).expand(input_shape) # Copied from transformers.models.roberta.modeling_roberta.RobertaSelfAttention with Roberta->XLMRoberta class XLMRobertaSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = position_embedding_type or getattr( config, "position_embedding_type", "absolute" ) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) self.is_decoder = config.is_decoder def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) use_cache = past_key_value is not None if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": query_length, key_length = query_layer.shape[2], key_layer.shape[2] if use_cache: position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( -1, 1 ) else: position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in XLMRobertaModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs # Copied from transformers.models.roberta.modeling_roberta.RobertaSelfOutput with Roberta->XLMRoberta class XLMRobertaSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Copied from transformers.models.roberta.modeling_roberta.RobertaAttention with Roberta->XLMRoberta class XLMRobertaAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() self.self = XLMRobertaSelfAttention(config, position_embedding_type=position_embedding_type) self.output = XLMRobertaSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.roberta.modeling_roberta.RobertaIntermediate with Roberta->XLMRoberta class XLMRobertaIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.roberta.modeling_roberta.RobertaOutput with Roberta->XLMRoberta class XLMRobertaOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Copied from transformers.models.roberta.modeling_roberta.RobertaLayer with Roberta->XLMRoberta class XLMRobertaLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = XLMRobertaAttention(config) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = XLMRobertaAttention(config, position_embedding_type="absolute") self.intermediate = XLMRobertaIntermediate(config) self.output = XLMRobertaOutput(config) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" " by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output # Copied from transformers.models.roberta.modeling_roberta.RobertaEncoder with Roberta->XLMRoberta class XLMRobertaEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([XLMRobertaLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, past_key_value, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer_module), hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaPooler with Roberta->XLMRoberta class XLMRobertaPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output # Copied from transformers.models.roberta.modeling_roberta.RobertaPreTrainedModel with Roberta->XLMRoberta class XLMRobertaPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = XLMRobertaConfig base_model_prefix = "roberta" supports_gradient_checkpointing = True _no_split_modules = ["XLMRobertaEmbeddings", "XLMRobertaSelfAttention"] # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, XLMRobertaEncoder): module.gradient_checkpointing = value XLM_ROBERTA_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`XLMRobertaConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ XLM_ROBERTA_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare XLM-RoBERTa Model transformer outputting raw hidden-states without any specific head on top.", XLM_ROBERTA_START_DOCSTRING, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaModel with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA class XLMRobertaModel(XLMRobertaPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in *Attention is all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. .. _*Attention is all you need*: https://arxiv.org/abs/1706.03762 """ # Copied from transformers.models.bert.modeling_bert.BertModel.__init__ with Bert->XLMRoberta def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = XLMRobertaEmbeddings(config) self.encoder = XLMRobertaEncoder(config) self.pooler = XLMRobertaPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) # Copied from transformers.models.bert.modeling_bert.BertModel.forward def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) if token_type_ids is None: if hasattr(self.embeddings, "token_type_ids"): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) @add_start_docstrings( "XLM-RoBERTa Model with a `language modeling` head on top for CLM fine-tuning.", XLM_ROBERTA_START_DOCSTRING, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaForCausalLM with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA class XLMRobertaForCausalLM(XLMRobertaPreTrainedModel): _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"] def __init__(self, config): super().__init__(config) if not config.is_decoder: logger.warning("If you want to use `XLMRobertaLMHeadModel` as a standalone, add `is_decoder=True.`") self.roberta = XLMRobertaModel(config, add_pooling_layer=False) self.lm_head = XLMRobertaLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_head.decoder def set_output_embeddings(self, new_embeddings): self.lm_head.decoder = new_embeddings @add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, past_key_values: Tuple[Tuple[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Returns: Example: ```python >>> from transformers import AutoTokenizer, XLMRobertaForCausalLM, AutoConfig >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("roberta-base") >>> config = AutoConfig.from_pretrained("roberta-base") >>> config.is_decoder = True >>> model = XLMRobertaForCausalLM.from_pretrained("roberta-base", config=config) >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: use_cache = False outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.lm_head(sequence_output) lm_loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(prediction_scores.device) # we are doing next-token prediction; shift prediction scores and input ids by one shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() labels = labels[:, 1:].contiguous() loss_fct = CrossEntropyLoss() lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((lm_loss,) + output) if lm_loss is not None else output return CausalLMOutputWithCrossAttentions( loss=lm_loss, logits=prediction_scores, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs): input_shape = input_ids.shape # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = input_ids.new_ones(input_shape) # cut decoder_input_ids if past is used if past_key_values is not None: input_ids = input_ids[:, -1:] return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values} def _reorder_cache(self, past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) return reordered_past @add_start_docstrings( """XLM-RoBERTa Model with a `language modeling` head on top.""", XLM_ROBERTA_START_DOCSTRING, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaForMaskedLM with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA class XLMRobertaForMaskedLM(XLMRobertaPreTrainedModel): _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"] def __init__(self, config): super().__init__(config) if config.is_decoder: logger.warning( "If you want to use `XLMRobertaForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.roberta = XLMRobertaModel(config, add_pooling_layer=False) self.lm_head = XLMRobertaLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_head.decoder def set_output_embeddings(self, new_embeddings): self.lm_head.decoder = new_embeddings @add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, mask="<mask>", expected_output="' Paris'", expected_loss=0.1, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` kwargs (`Dict[str, any]`, optional, defaults to *{}*): Used to hide legacy arguments that have been deprecated. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.lm_head(sequence_output) masked_lm_loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(prediction_scores.device) loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaLMHead class XLMRobertaLMHead(nn.Module): """Roberta Head for masked language modeling.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.decoder = nn.Linear(config.hidden_size, config.vocab_size) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) self.decoder.bias = self.bias def forward(self, features, **kwargs): x = self.dense(features) x = gelu(x) x = self.layer_norm(x) # project back to size of vocabulary with bias x = self.decoder(x) return x def _tie_weights(self): # To tie those two weights if they get disconnected (on TPU or when the bias is resized) # For accelerate compatibility and to not break backward compatibility if self.decoder.bias.device.type == "meta": self.decoder.bias = self.bias else: self.bias = self.decoder.bias @add_start_docstrings( """ XLM-RoBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, XLM_ROBERTA_START_DOCSTRING, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaForSequenceClassification with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA class XLMRobertaForSequenceClassification(XLMRobertaPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.roberta = XLMRobertaModel(config, add_pooling_layer=False) self.classifier = XLMRobertaClassificationHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="cardiffnlp/twitter-roberta-base-emotion", output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output="'optimism'", expected_loss=0.08, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ XLM-RoBERTa Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, XLM_ROBERTA_START_DOCSTRING, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaForMultipleChoice with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA class XLMRobertaForMultipleChoice(XLMRobertaPreTrainedModel): def __init__(self, config): super().__init__(config) self.roberta = XLMRobertaModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward( XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None flat_inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.roberta( flat_input_ids, position_ids=flat_position_ids, token_type_ids=flat_token_type_ids, attention_mask=flat_attention_mask, head_mask=head_mask, inputs_embeds=flat_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(reshaped_logits.device) loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ XLM-RoBERTa Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, XLM_ROBERTA_START_DOCSTRING, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaForTokenClassification with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA class XLMRobertaForTokenClassification(XLMRobertaPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.roberta = XLMRobertaModel(config, add_pooling_layer=False) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="Jean-Baptiste/roberta-large-ner-english", output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output="['O', 'ORG', 'ORG', 'O', 'O', 'O', 'O', 'O', 'LOC', 'O', 'LOC', 'LOC']", expected_loss=0.01, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaClassificationHead with Roberta->XLMRoberta class XLMRobertaClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) def forward(self, features, **kwargs): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = torch.tanh(x) x = self.dropout(x) x = self.out_proj(x) return x @add_start_docstrings( """ XLM-RoBERTa Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, XLM_ROBERTA_START_DOCSTRING, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaForQuestionAnswering with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA class XLMRobertaForQuestionAnswering(XLMRobertaPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.roberta = XLMRobertaModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="deepset/roberta-base-squad2", output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, expected_output="' puppet'", expected_loss=0.86, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. Args: x: torch.Tensor x: Returns: torch.Tensor """ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. mask = input_ids.ne(padding_idx).int() incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask return incremental_indices.long() + padding_idx
transformers-main
src/transformers/models/xlm_roberta/modeling_xlm_roberta.py
# coding=utf-8 # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License """ Tokenization classes for XLM-RoBERTa model.""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlm_roberta import XLMRobertaTokenizer else: XLMRobertaTokenizer = None logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/tokenizer.json", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/tokenizer.json", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/tokenizer.json" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/tokenizer.json" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/tokenizer.json" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/tokenizer.json" ), }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "xlm-roberta-base": 512, "xlm-roberta-large": 512, "xlm-roberta-large-finetuned-conll02-dutch": 512, "xlm-roberta-large-finetuned-conll02-spanish": 512, "xlm-roberta-large-finetuned-conll03-english": 512, "xlm-roberta-large-finetuned-conll03-german": 512, } class XLMRobertaTokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" XLM-RoBERTa tokenizer (backed by HuggingFace's *tokenizers* library). Adapted from [`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on [BPE](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=BPE#models). This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. additional_special_tokens (`List[str]`, *optional*, defaults to `["<s>NOTUSED", "</s>NOTUSED"]`): Additional special tokens used by the tokenizer. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] slow_tokenizer_class = XLMRobertaTokenizer def __init__( self, vocab_file=None, tokenizer_file=None, bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", **kwargs, ): # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token super().__init__( vocab_file, tokenizer_file=tokenizer_file, bos_token=bos_token, eos_token=eos_token, sep_token=sep_token, cls_token=cls_token, unk_token=unk_token, pad_token=pad_token, mask_token=mask_token, **kwargs, ) self.vocab_file = vocab_file self.can_save_slow_tokenizer = False if not self.vocab_file else True def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An XLM-RoBERTa sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s></s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + sep + token_ids_1 + sep def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. XLM-RoBERTa does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory.") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): copyfile(self.vocab_file, out_vocab_file) return (out_vocab_file,)
transformers-main
src/transformers/models/xlm_roberta/tokenization_xlm_roberta_fast.py
# coding=utf-8 # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License """ Tokenization classes for XLM-RoBERTa model.""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) SPIECE_UNDERLINE = "▁" VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model" ), } } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "xlm-roberta-base": 512, "xlm-roberta-large": 512, "xlm-roberta-large-finetuned-conll02-dutch": 512, "xlm-roberta-large-finetuned-conll02-spanish": 512, "xlm-roberta-large-finetuned-conll03-english": 512, "xlm-roberta-large-finetuned-conll03-german": 512, } class XLMRobertaTokenizer(PreTrainedTokenizer): """ Adapted from [`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on [SentencePiece](https://github.com/google/sentencepiece). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. additional_special_tokens (`List[str]`, *optional*, defaults to `["<s>NOTUSED", "</s>NOTUSED"]`): Additional special tokens used by the tokenizer. sp_model_kwargs (`dict`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. Attributes: sp_model (`SentencePieceProcessor`): The *SentencePiece* processor that is used for every conversion (string, tokens and IDs). """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", sp_model_kwargs: Optional[Dict[str, Any]] = None, **kwargs, ) -> None: # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, sp_model_kwargs=self.sp_model_kwargs, **kwargs, ) self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(vocab_file)) self.vocab_file = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token self.fairseq_tokens_to_ids = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab self.fairseq_offset = 1 self.fairseq_tokens_to_ids["<mask>"] = len(self.sp_model) + self.fairseq_offset self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None state["sp_model_proto"] = self.sp_model.serialized_model_proto() return state def __setstate__(self, d): self.__dict__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An XLM-RoBERTa sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s></s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) + [1] return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. XLM-RoBERTa does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] @property def vocab_size(self): return len(self.sp_model) + self.fairseq_offset + 1 # Add the <mask> token def get_vocab(self): vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def _tokenize(self, text: str) -> List[str]: return self.sp_model.encode(text, out_type=str) def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] spm_id = self.sp_model.PieceToId(token) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (strings for sub-words) in a single string.""" out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip() return out_string def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) return (out_vocab_file,)
transformers-main
src/transformers/models/xlm_roberta/tokenization_xlm_roberta.py
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _import_structure = { "configuration_xlm_roberta": [ "XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMRobertaConfig", "XLMRobertaOnnxConfig", ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_xlm_roberta"] = ["XLMRobertaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_xlm_roberta_fast"] = ["XLMRobertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_xlm_roberta"] = [ "XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMRobertaForCausalLM", "XLMRobertaForMaskedLM", "XLMRobertaForMultipleChoice", "XLMRobertaForQuestionAnswering", "XLMRobertaForSequenceClassification", "XLMRobertaForTokenClassification", "XLMRobertaModel", "XLMRobertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_xlm_roberta"] = [ "TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMRobertaForCausalLM", "TFXLMRobertaForMaskedLM", "TFXLMRobertaForMultipleChoice", "TFXLMRobertaForQuestionAnswering", "TFXLMRobertaForSequenceClassification", "TFXLMRobertaForTokenClassification", "TFXLMRobertaModel", "TFXLMRobertaPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_flax_xlm_roberta"] = [ "FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxXLMRobertaForMaskedLM", "FlaxXLMRobertaForCausalLM", "FlaxXLMRobertaForMultipleChoice", "FlaxXLMRobertaForQuestionAnswering", "FlaxXLMRobertaForSequenceClassification", "FlaxXLMRobertaForTokenClassification", "FlaxXLMRobertaModel", "FlaxXLMRobertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers-main
src/transformers/models/xlm_roberta/__init__.py
# coding=utf-8 # Copyright 2019 Facebook AI Research and the HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 XLM-RoBERTa model.""" from __future__ import annotations import math import warnings from typing import Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import ( TFBaseModelOutputWithPastAndCrossAttentions, TFBaseModelOutputWithPoolingAndCrossAttentions, TFCausalLMOutputWithCrossAttentions, TFMaskedLMOutput, TFMultipleChoiceModelOutput, TFQuestionAnsweringModelOutput, TFSequenceClassifierOutput, TFTokenClassifierOutput, ) from ...modeling_tf_utils import ( TFCausalLanguageModelingLoss, TFMaskedLanguageModelingLoss, TFModelInputType, TFMultipleChoiceLoss, TFPreTrainedModel, TFQuestionAnsweringLoss, TFSequenceClassificationLoss, TFTokenClassificationLoss, get_initializer, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, ) from .configuration_xlm_roberta import XLMRobertaConfig logger = logging.get_logger(__name__) logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "xlm-roberta-base" _CONFIG_FOR_DOC = "XLMRobertaConfig" TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = [ "xlm-roberta-base", "xlm-roberta-large", "joeddav/xlm-roberta-large-xnli", "cardiffnlp/twitter-xlm-roberta-base-sentiment", # See all XLM-RoBERTa models at https://huggingface.co/models?filter=xlm-roberta ] XLM_ROBERTA_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Parameters: config ([`XLMRobertaConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ XLM_ROBERTA_INPUTS_DOCSTRING = r""" Args: input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaEmbeddings with Roberta->XLMRoberta class TFXLMRobertaEmbeddings(tf.keras.layers.Layer): """ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. """ def __init__(self, config, **kwargs): super().__init__(**kwargs) self.padding_idx = 1 self.config = config self.hidden_size = config.hidden_size self.max_position_embeddings = config.max_position_embeddings self.initializer_range = config.initializer_range self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob) def build(self, input_shape: tf.TensorShape): with tf.name_scope("word_embeddings"): self.weight = self.add_weight( name="weight", shape=[self.config.vocab_size, self.hidden_size], initializer=get_initializer(self.initializer_range), ) with tf.name_scope("token_type_embeddings"): self.token_type_embeddings = self.add_weight( name="embeddings", shape=[self.config.type_vocab_size, self.hidden_size], initializer=get_initializer(self.initializer_range), ) with tf.name_scope("position_embeddings"): self.position_embeddings = self.add_weight( name="embeddings", shape=[self.max_position_embeddings, self.hidden_size], initializer=get_initializer(self.initializer_range), ) super().build(input_shape) def create_position_ids_from_input_ids(self, input_ids, past_key_values_length=0): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. Args: input_ids: tf.Tensor Returns: tf.Tensor """ mask = tf.cast(tf.math.not_equal(input_ids, self.padding_idx), dtype=input_ids.dtype) incremental_indices = (tf.math.cumsum(mask, axis=1) + past_key_values_length) * mask return incremental_indices + self.padding_idx def call( self, input_ids=None, position_ids=None, token_type_ids=None, inputs_embeds=None, past_key_values_length=0, training=False, ): """ Applies embedding based on inputs tensor. Returns: final_embeddings (`tf.Tensor`): output embedding tensor. """ assert not (input_ids is None and inputs_embeds is None) if input_ids is not None: check_embeddings_within_bounds(input_ids, self.config.vocab_size) inputs_embeds = tf.gather(params=self.weight, indices=input_ids) input_shape = shape_list(inputs_embeds)[:-1] if token_type_ids is None: token_type_ids = tf.fill(dims=input_shape, value=0) if position_ids is None: if input_ids is not None: # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = self.create_position_ids_from_input_ids( input_ids=input_ids, past_key_values_length=past_key_values_length ) else: position_ids = tf.expand_dims( tf.range(start=self.padding_idx + 1, limit=input_shape[-1] + self.padding_idx + 1), axis=0 ) position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids) token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids) final_embeddings = inputs_embeds + position_embeds + token_type_embeds final_embeddings = self.LayerNorm(inputs=final_embeddings) final_embeddings = self.dropout(inputs=final_embeddings, training=training) return final_embeddings # Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->XLMRoberta class TFXLMRobertaPooler(tf.keras.layers.Layer): def __init__(self, config: XLMRobertaConfig, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), activation="tanh", name="dense", ) def call(self, hidden_states: tf.Tensor) -> tf.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(inputs=first_token_tensor) return pooled_output # Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfAttention with Bert->XLMRoberta class TFXLMRobertaSelfAttention(tf.keras.layers.Layer): def __init__(self, config: XLMRobertaConfig, **kwargs): super().__init__(**kwargs) if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number " f"of attention heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.sqrt_att_head_size = math.sqrt(self.attention_head_size) self.query = tf.keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" ) self.key = tf.keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key" ) self.value = tf.keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" ) self.dropout = tf.keras.layers.Dropout(rate=config.attention_probs_dropout_prob) self.is_decoder = config.is_decoder def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor: # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size)) # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size] return tf.transpose(tensor, perm=[0, 2, 1, 3]) def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor, encoder_attention_mask: tf.Tensor, past_key_value: Tuple[tf.Tensor], output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: batch_size = shape_list(hidden_states)[0] mixed_query_layer = self.query(inputs=hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(inputs=encoder_hidden_states), batch_size) value_layer = self.transpose_for_scores(self.value(inputs=encoder_hidden_states), batch_size) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size) value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size) key_layer = tf.concat([past_key_value[0], key_layer], axis=2) value_layer = tf.concat([past_key_value[1], value_layer], axis=2) else: key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size) value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size) query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) if self.is_decoder: # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. # (batch size, num_heads, seq_len_q, seq_len_k) attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype) attention_scores = tf.divide(attention_scores, dk) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in TFXLMRobertaModel call() function) attention_scores = tf.add(attention_scores, attention_mask) # Normalize the attention scores to probabilities. attention_probs = stable_softmax(logits=attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(inputs=attention_probs, training=training) # Mask heads if we want to if head_mask is not None: attention_probs = tf.multiply(attention_probs, head_mask) attention_output = tf.matmul(attention_probs, value_layer) attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3]) # (batch_size, seq_len_q, all_head_size) attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size)) outputs = (attention_output, attention_probs) if output_attentions else (attention_output,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs # Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfOutput with Bert->XLMRoberta class TFXLMRobertaSelfOutput(tf.keras.layers.Layer): def __init__(self, config: XLMRobertaConfig, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob) def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) return hidden_states # Copied from transformers.models.bert.modeling_tf_bert.TFBertAttention with Bert->XLMRoberta class TFXLMRobertaAttention(tf.keras.layers.Layer): def __init__(self, config: XLMRobertaConfig, **kwargs): super().__init__(**kwargs) self.self_attention = TFXLMRobertaSelfAttention(config, name="self") self.dense_output = TFXLMRobertaSelfOutput(config, name="output") def prune_heads(self, heads): raise NotImplementedError def call( self, input_tensor: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor, encoder_attention_mask: tf.Tensor, past_key_value: Tuple[tf.Tensor], output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: self_outputs = self.self_attention( hidden_states=input_tensor, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, training=training, ) attention_output = self.dense_output( hidden_states=self_outputs[0], input_tensor=input_tensor, training=training ) # add attentions (possibly with past_key_value) if we output them outputs = (attention_output,) + self_outputs[1:] return outputs # Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate with Bert->XLMRoberta class TFXLMRobertaIntermediate(tf.keras.layers.Layer): def __init__(self, config: XLMRobertaConfig, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_tf_bert.TFBertOutput with Bert->XLMRoberta class TFXLMRobertaOutput(tf.keras.layers.Layer): def __init__(self, config: XLMRobertaConfig, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob) def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) return hidden_states # Copied from transformers.models.bert.modeling_tf_bert.TFBertLayer with Bert->XLMRoberta class TFXLMRobertaLayer(tf.keras.layers.Layer): def __init__(self, config: XLMRobertaConfig, **kwargs): super().__init__(**kwargs) self.attention = TFXLMRobertaAttention(config, name="attention") self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = TFXLMRobertaAttention(config, name="crossattention") self.intermediate = TFXLMRobertaIntermediate(config, name="intermediate") self.bert_output = TFXLMRobertaOutput(config, name="output") def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor | None, encoder_attention_mask: tf.Tensor | None, past_key_value: Tuple[tf.Tensor] | None, output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( input_tensor=hidden_states, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=self_attn_past_key_value, output_attentions=output_attentions, training=training, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" " by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( input_tensor=attention_output, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=cross_attn_past_key_value, output_attentions=output_attentions, training=training, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value intermediate_output = self.intermediate(hidden_states=attention_output) layer_output = self.bert_output( hidden_states=intermediate_output, input_tensor=attention_output, training=training ) outputs = (layer_output,) + outputs # add attentions if we output them # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs # Copied from transformers.models.bert.modeling_tf_bert.TFBertEncoder with Bert->XLMRoberta class TFXLMRobertaEncoder(tf.keras.layers.Layer): def __init__(self, config: XLMRobertaConfig, **kwargs): super().__init__(**kwargs) self.config = config self.layer = [TFXLMRobertaLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)] def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor | None, encoder_attention_mask: tf.Tensor | None, past_key_values: Tuple[Tuple[tf.Tensor]] | None, use_cache: Optional[bool], output_attentions: bool, output_hidden_states: bool, return_dict: bool, training: bool = False, ) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]: all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) past_key_value = past_key_values[i] if past_key_values is not None else None layer_outputs = layer_module( hidden_states=hidden_states, attention_mask=attention_mask, head_mask=head_mask[i], encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, training=training, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if self.config.add_cross_attention and encoder_hidden_states is not None: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [hidden_states, all_hidden_states, all_attentions, all_cross_attentions] if v is not None ) return TFBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_attentions, cross_attentions=all_cross_attentions, ) @keras_serializable # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaMainLayer with Roberta->XLMRoberta class TFXLMRobertaMainLayer(tf.keras.layers.Layer): config_class = XLMRobertaConfig def __init__(self, config, add_pooling_layer=True, **kwargs): super().__init__(**kwargs) self.config = config self.is_decoder = config.is_decoder self.num_hidden_layers = config.num_hidden_layers self.initializer_range = config.initializer_range self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.return_dict = config.use_return_dict self.encoder = TFXLMRobertaEncoder(config, name="encoder") self.pooler = TFXLMRobertaPooler(config, name="pooler") if add_pooling_layer else None # The embeddings must be the last declaration in order to follow the weights order self.embeddings = TFXLMRobertaEmbeddings(config, name="embeddings") # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.get_input_embeddings def get_input_embeddings(self) -> tf.keras.layers.Layer: return self.embeddings # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.set_input_embeddings def set_input_embeddings(self, value: tf.Variable): self.embeddings.weight = value self.embeddings.vocab_size = shape_list(value)[0] # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer._prune_heads def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ raise NotImplementedError @unpack_inputs # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.call def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, encoder_hidden_states: np.ndarray | tf.Tensor | None = None, encoder_attention_mask: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]: if not self.config.is_decoder: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape if past_key_values is None: past_key_values_length = 0 past_key_values = [None] * len(self.encoder.layer) else: past_key_values_length = shape_list(past_key_values[0][0])[-2] if attention_mask is None: attention_mask = tf.fill(dims=(batch_size, seq_length + past_key_values_length), value=1) if token_type_ids is None: token_type_ids = tf.fill(dims=input_shape, value=0) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, training=training, ) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. attention_mask_shape = shape_list(attention_mask) mask_seq_length = seq_length + past_key_values_length # Copied from `modeling_tf_t5.py` # Provided a padding mask of dimensions [batch_size, mask_seq_length] # - if the model is a decoder, apply a causal mask in addition to the padding mask # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length] if self.is_decoder: seq_ids = tf.range(mask_seq_length) causal_mask = tf.less_equal( tf.tile(seq_ids[None, None, :], (batch_size, mask_seq_length, 1)), seq_ids[None, :, None], ) causal_mask = tf.cast(causal_mask, dtype=attention_mask.dtype) extended_attention_mask = causal_mask * attention_mask[:, None, :] attention_mask_shape = shape_list(extended_attention_mask) extended_attention_mask = tf.reshape( extended_attention_mask, (attention_mask_shape[0], 1, attention_mask_shape[1], attention_mask_shape[2]) ) if past_key_values[0] is not None: # attention_mask needs to be sliced to the shape `[batch_size, 1, from_seq_length - cached_seq_length, to_seq_length] extended_attention_mask = extended_attention_mask[:, :, -seq_length:, :] else: extended_attention_mask = tf.reshape( attention_mask, (attention_mask_shape[0], 1, 1, attention_mask_shape[1]) ) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype) one_cst = tf.constant(1.0, dtype=embedding_output.dtype) ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype) extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst) # Copied from `modeling_tf_t5.py` with -1e9 -> -10000 if self.is_decoder and encoder_attention_mask is not None: # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length] # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] encoder_attention_mask = tf.cast(encoder_attention_mask, dtype=extended_attention_mask.dtype) num_dims_encoder_attention_mask = len(shape_list(encoder_attention_mask)) if num_dims_encoder_attention_mask == 3: encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :] if num_dims_encoder_attention_mask == 2: encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow/transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = tf.math.equal(encoder_extended_attention_mask, # tf.transpose(encoder_extended_attention_mask, perm=(-1, -2))) encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -10000.0 else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.config.num_hidden_layers encoder_outputs = self.encoder( hidden_states=embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(hidden_states=sequence_output) if self.pooler is not None else None if not return_dict: return ( sequence_output, pooled_output, ) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaPreTrainedModel with Roberta->XLMRoberta class TFXLMRobertaPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = XLMRobertaConfig base_model_prefix = "roberta" @add_start_docstrings( "The bare XLM RoBERTa Model transformer outputting raw hidden-states without any specific head on top.", XLM_ROBERTA_START_DOCSTRING, ) # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaModel with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA class TFXLMRobertaModel(TFXLMRobertaPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.roberta = TFXLMRobertaMainLayer(config, name="roberta") @unpack_inputs @add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, encoder_hidden_states: np.ndarray | tf.Tensor | None = None, encoder_attention_mask: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[Tuple, TFBaseModelOutputWithPoolingAndCrossAttentions]: r""" encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`) contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*, defaults to `True`): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Set to `False` during training, `True` during generation """ outputs = self.roberta( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaLMHead with Roberta->XLMRoberta class TFXLMRobertaLMHead(tf.keras.layers.Layer): """XLMRoberta Head for masked language modeling.""" def __init__(self, config, input_embeddings, **kwargs): super().__init__(**kwargs) self.config = config self.hidden_size = config.hidden_size self.dense = tf.keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") self.act = get_tf_activation("gelu") # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = input_embeddings def build(self, input_shape): self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias") super().build(input_shape) def get_output_embeddings(self): return self.decoder def set_output_embeddings(self, value): self.decoder.weight = value self.decoder.vocab_size = shape_list(value)[0] def get_bias(self): return {"bias": self.bias} def set_bias(self, value): self.bias = value["bias"] self.config.vocab_size = shape_list(value["bias"])[0] def call(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.layer_norm(hidden_states) # project back to size of vocabulary with bias seq_length = shape_list(tensor=hidden_states)[1] hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size]) hidden_states = tf.matmul(a=hidden_states, b=self.decoder.weight, transpose_b=True) hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size]) hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias) return hidden_states @add_start_docstrings("""XLM RoBERTa Model with a `language modeling` head on top.""", XLM_ROBERTA_START_DOCSTRING) # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForMaskedLM with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA class TFXLMRobertaForMaskedLM(TFXLMRobertaPreTrainedModel, TFMaskedLanguageModelingLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head.decoder.weight"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.roberta = TFXLMRobertaMainLayer(config, add_pooling_layer=False, name="roberta") self.lm_head = TFXLMRobertaLMHead(config, self.roberta.embeddings, name="lm_head") def get_lm_head(self): return self.lm_head def get_prefix_bias_name(self): warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) return self.name + "/" + self.lm_head.name @unpack_inputs @add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC, mask="<mask>", expected_output="' Paris'", expected_loss=0.1, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` """ outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] prediction_scores = self.lm_head(sequence_output) loss = None if labels is None else self.hf_compute_loss(labels, prediction_scores) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFMaskedLMOutput( loss=loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( "XLM-RoBERTa Model with a `language modeling` head on top for CLM fine-tuning.", XLM_ROBERTA_START_DOCSTRING, ) # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForCausalLM with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA class TFXLMRobertaForCausalLM(TFXLMRobertaPreTrainedModel, TFCausalLanguageModelingLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head.decoder.weight"] def __init__(self, config: XLMRobertaConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) if not config.is_decoder: logger.warning("If you want to use `TFXLMRobertaLMHeadModel` as a standalone, add `is_decoder=True.`") self.roberta = TFXLMRobertaMainLayer(config, add_pooling_layer=False, name="roberta") self.lm_head = TFXLMRobertaLMHead(config, input_embeddings=self.roberta.embeddings, name="lm_head") def get_lm_head(self): return self.lm_head def get_prefix_bias_name(self): warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) return self.name + "/" + self.lm_head.name # Copied from transformers.models.bert.modeling_tf_bert.TFBertLMHeadModel.prepare_inputs_for_generation def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs): input_shape = input_ids.shape # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = tf.ones(input_shape) # cut decoder_input_ids if past is used if past_key_values is not None: input_ids = input_ids[:, -1:] return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values} @unpack_inputs @add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFCausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, encoder_hidden_states: np.ndarray | tf.Tensor | None = None, encoder_attention_mask: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFCausalLMOutputWithCrossAttentions, Tuple[tf.Tensor]]: r""" encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`) contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*, defaults to `True`): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Set to `False` during training, `True` during generation labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the cross entropy classification loss. Indices should be in `[0, ..., config.vocab_size - 1]`. """ outputs = self.roberta( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] logits = self.lm_head(hidden_states=sequence_output, training=training) loss = None if labels is not None: # shift labels to the left and cut last logit token shifted_logits = logits[:, :-1] labels = labels[:, 1:] loss = self.hf_compute_loss(labels=labels, logits=shifted_logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFCausalLMOutputWithCrossAttentions( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaClassificationHead with Roberta->XLMRoberta class TFXLMRobertaClassificationHead(tf.keras.layers.Layer): """Head for sentence-level classification tasks.""" def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), activation="tanh", name="dense", ) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = tf.keras.layers.Dropout(classifier_dropout) self.out_proj = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="out_proj" ) def call(self, features, training=False): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x, training=training) x = self.dense(x) x = self.dropout(x, training=training) x = self.out_proj(x) return x @add_start_docstrings( """ XLM RoBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, XLM_ROBERTA_START_DOCSTRING, ) # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForSequenceClassification with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA class TFXLMRobertaForSequenceClassification(TFXLMRobertaPreTrainedModel, TFSequenceClassificationLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.roberta = TFXLMRobertaMainLayer(config, add_pooling_layer=False, name="roberta") self.classifier = TFXLMRobertaClassificationHead(config, name="classifier") @unpack_inputs @add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="cardiffnlp/twitter-roberta-base-emotion", output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output="'optimism'", expected_loss=0.08, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] logits = self.classifier(sequence_output, training=training) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ XLM Roberta Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, XLM_ROBERTA_START_DOCSTRING, ) # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForMultipleChoice with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA class TFXLMRobertaForMultipleChoice(TFXLMRobertaPreTrainedModel, TFMultipleChoiceLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"lm_head"] _keys_to_ignore_on_load_missing = [r"dropout"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.roberta = TFXLMRobertaMainLayer(config, name="roberta") self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) self.classifier = tf.keras.layers.Dense( 1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) @unpack_inputs @add_start_docstrings_to_model_forward( XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ if input_ids is not None: num_choices = shape_list(input_ids)[1] seq_length = shape_list(input_ids)[2] else: num_choices = shape_list(inputs_embeds)[1] seq_length = shape_list(inputs_embeds)[2] flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None outputs = self.roberta( flat_input_ids, flat_attention_mask, flat_token_type_ids, flat_position_ids, head_mask, inputs_embeds, output_attentions, output_hidden_states, return_dict=return_dict, training=training, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output, training=training) logits = self.classifier(pooled_output) reshaped_logits = tf.reshape(logits, (-1, num_choices)) loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFMultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ XLM RoBERTa Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, XLM_ROBERTA_START_DOCSTRING, ) # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForTokenClassification with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA class TFXLMRobertaForTokenClassification(TFXLMRobertaPreTrainedModel, TFTokenClassificationLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head"] _keys_to_ignore_on_load_missing = [r"dropout"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.roberta = TFXLMRobertaMainLayer(config, add_pooling_layer=False, name="roberta") classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = tf.keras.layers.Dropout(classifier_dropout) self.classifier = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) @unpack_inputs @add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="ydshieh/roberta-large-ner-english", output_type=TFTokenClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output="['O', 'ORG', 'ORG', 'O', 'O', 'O', 'O', 'O', 'LOC', 'O', 'LOC', 'LOC']", expected_loss=0.01, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output, training=training) logits = self.classifier(sequence_output) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFTokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ XLM RoBERTa Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, XLM_ROBERTA_START_DOCSTRING, ) # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForQuestionAnswering with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA class TFXLMRobertaForQuestionAnswering(TFXLMRobertaPreTrainedModel, TFQuestionAnsweringLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.roberta = TFXLMRobertaMainLayer(config, add_pooling_layer=False, name="roberta") self.qa_outputs = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" ) @unpack_inputs @add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="ydshieh/roberta-base-squad2", output_type=TFQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, expected_output="' puppet'", expected_loss=0.86, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, start_positions: np.ndarray | tf.Tensor | None = None, end_positions: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]: r""" start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = tf.split(logits, 2, axis=-1) start_logits = tf.squeeze(start_logits, axis=-1) end_logits = tf.squeeze(end_logits, axis=-1) loss = None if start_positions is not None and end_positions is not None: labels = {"start_position": start_positions} labels["end_position"] = end_positions loss = self.hf_compute_loss(labels, (start_logits, end_logits)) if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFQuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers-main
src/transformers/models/xlm_roberta/modeling_tf_xlm_roberta.py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ XLM-RoBERTa configuration""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP = { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/config.json", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/config.json", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json" ), } class XLMRobertaConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`XLMRobertaModel`] or a [`TFXLMRobertaModel`]. It is used to instantiate a XLM-RoBERTa model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the XLMRoBERTa [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the XLM-RoBERTa model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`XLMRobertaModel`] or [`TFXLMRobertaModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`XLMRobertaModel`] or [`TFXLMRobertaModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. position_embedding_type (`str`, *optional*, defaults to `"absolute"`): Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). is_decoder (`bool`, *optional*, defaults to `False`): Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. classifier_dropout (`float`, *optional*): The dropout ratio for the classification head. Examples: ```python >>> from transformers import XLMRobertaConfig, XLMRobertaModel >>> # Initializing a XLM-RoBERTa xlm-roberta-base style configuration >>> configuration = XLMRobertaConfig() >>> # Initializing a model (with random weights) from the xlm-roberta-base style configuration >>> model = XLMRobertaModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "xlm-roberta" def __init__( self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=1, bos_token_id=0, eos_token_id=2, position_embedding_type="absolute", use_cache=True, classifier_dropout=None, **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.position_embedding_type = position_embedding_type self.use_cache = use_cache self.classifier_dropout = classifier_dropout # Copied from transformers.models.roberta.configuration_roberta.RobertaOnnxConfig with Roberta->XLMRoberta class XLMRobertaOnnxConfig(OnnxConfig): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} else: dynamic_axis = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
transformers-main
src/transformers/models/xlm_roberta/configuration_xlm_roberta.py
# coding=utf-8 # Copyright 2022 Facebook AI Research and the HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Flax XLM-RoBERTa model.""" from typing import Callable, Optional, Tuple import flax.linen as nn import jax import jax.numpy as jnp import numpy as np from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.linen import combine_masks, make_causal_mask from flax.linen import partitioning as nn_partitioning from flax.linen.attention import dot_product_attention_weights from flax.traverse_util import flatten_dict, unflatten_dict from jax import lax from ...modeling_flax_outputs import ( FlaxBaseModelOutputWithPastAndCrossAttentions, FlaxBaseModelOutputWithPooling, FlaxBaseModelOutputWithPoolingAndCrossAttentions, FlaxCausalLMOutputWithCrossAttentions, FlaxMaskedLMOutput, FlaxMultipleChoiceModelOutput, FlaxQuestionAnsweringModelOutput, FlaxSequenceClassifierOutput, FlaxTokenClassifierOutput, ) from ...modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring, overwrite_call_docstring from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_xlm_roberta import XLMRobertaConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "xlm-roberta-base" _CONFIG_FOR_DOC = "XLMRobertaConfig" remat = nn_partitioning.remat FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = [ "xlm-roberta-base", "xlm-roberta-large", # See all XLM-RoBERTa models at https://huggingface.co/models?filter=xlm-roberta ] # Copied from transformers.models.roberta.modeling_flax_roberta.create_position_ids_from_input_ids def create_position_ids_from_input_ids(input_ids, padding_idx): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. Args: input_ids: jnp.ndarray padding_idx: int Returns: jnp.ndarray """ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. mask = (input_ids != padding_idx).astype("i4") if mask.ndim > 2: mask = mask.reshape((-1, mask.shape[-1])) incremental_indices = jnp.cumsum(mask, axis=1).astype("i4") * mask incremental_indices = incremental_indices.reshape(input_ids.shape) else: incremental_indices = jnp.cumsum(mask, axis=1).astype("i4") * mask return incremental_indices.astype("i4") + padding_idx XLM_ROBERTA_START_DOCSTRING = r""" This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models) This model is also a Flax Linen [flax.linen.Module](https://flax.readthedocs.io/en/latest/flax.linen.html#module) subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: config ([`XLMRobertaConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. """ XLM_ROBERTA_INPUTS_DOCSTRING = r""" Args: input_ids (`numpy.ndarray` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`numpy.ndarray` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`numpy.ndarray` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`numpy.ndarray` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. head_mask (`numpy.ndarray` of shape `({0})`, `optional): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertEmbeddings with Bert->XLMRoberta class FlaxXLMRobertaEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" config: XLMRobertaConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.word_embeddings = nn.Embed( self.config.vocab_size, self.config.hidden_size, embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), dtype=self.dtype, ) self.position_embeddings = nn.Embed( self.config.max_position_embeddings, self.config.hidden_size, embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), dtype=self.dtype, ) self.token_type_embeddings = nn.Embed( self.config.type_vocab_size, self.config.hidden_size, embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), dtype=self.dtype, ) self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) def __call__(self, input_ids, token_type_ids, position_ids, attention_mask, deterministic: bool = True): # Embed inputs_embeds = self.word_embeddings(input_ids.astype("i4")) position_embeds = self.position_embeddings(position_ids.astype("i4")) token_type_embeddings = self.token_type_embeddings(token_type_ids.astype("i4")) # Sum all embeddings hidden_states = inputs_embeds + token_type_embeddings + position_embeds # Layer Norm hidden_states = self.LayerNorm(hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) return hidden_states # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertSelfAttention with Bert->XLMRoberta class FlaxXLMRobertaSelfAttention(nn.Module): config: XLMRobertaConfig causal: bool = False dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.head_dim = self.config.hidden_size // self.config.num_attention_heads if self.config.hidden_size % self.config.num_attention_heads != 0: raise ValueError( "`config.hidden_size`: {self.config.hidden_size} has to be a multiple of `config.num_attention_heads` " " : {self.config.num_attention_heads}" ) self.query = nn.Dense( self.config.hidden_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) self.key = nn.Dense( self.config.hidden_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) self.value = nn.Dense( self.config.hidden_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) if self.causal: self.causal_mask = make_causal_mask( jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool" ) def _split_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.config.num_attention_heads, self.head_dim)) def _merge_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.config.hidden_size,)) @nn.compact # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention._concatenate_to_cache def _concatenate_to_cache(self, key, value, query, attention_mask): """ This function takes projected key, value states from a single input token and concatenates the states to cached states from previous steps. This function is slighly adapted from the official Flax repository: https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 """ # detect if we're initializing by absence of existing cache data. is_initialized = self.has_variable("cache", "cached_key") cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) if is_initialized: *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape # update key, value caches with our new 1d spatial slices cur_index = cache_index.value indices = (0,) * len(batch_dims) + (cur_index, 0, 0) key = lax.dynamic_update_slice(cached_key.value, key, indices) value = lax.dynamic_update_slice(cached_value.value, value, indices) cached_key.value = key cached_value.value = value num_updated_cache_vectors = query.shape[1] cache_index.value = cache_index.value + num_updated_cache_vectors # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements. pad_mask = jnp.broadcast_to( jnp.arange(max_length) < cur_index + num_updated_cache_vectors, tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), ) attention_mask = combine_masks(pad_mask, attention_mask) return key, value, attention_mask def __call__( self, hidden_states, attention_mask, layer_head_mask, key_value_states: Optional[jnp.array] = None, init_cache: bool = False, deterministic=True, output_attentions: bool = False, ): # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None batch_size = hidden_states.shape[0] # get query proj query_states = self.query(hidden_states) # get key, value proj if is_cross_attention: # cross_attentions key_states = self.key(key_value_states) value_states = self.value(key_value_states) else: # self_attention key_states = self.key(hidden_states) value_states = self.value(hidden_states) query_states = self._split_heads(query_states) key_states = self._split_heads(key_states) value_states = self._split_heads(value_states) # handle cache prepare causal attention mask if self.causal: query_length, key_length = query_states.shape[1], key_states.shape[1] if self.has_variable("cache", "cached_key"): mask_shift = self.variables["cache"]["cache_index"] max_decoder_length = self.variables["cache"]["cached_key"].shape[1] causal_mask = lax.dynamic_slice( self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length) ) else: causal_mask = self.causal_mask[:, :, :query_length, :key_length] causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:]) # combine masks if needed if attention_mask is not None and self.causal: attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape) attention_mask = combine_masks(attention_mask, causal_mask) elif self.causal: attention_mask = causal_mask elif attention_mask is not None: attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. if self.causal and (self.has_variable("cache", "cached_key") or init_cache): key_states, value_states, attention_mask = self._concatenate_to_cache( key_states, value_states, query_states, attention_mask ) # Convert the boolean attention mask to an attention bias. if attention_mask is not None: # attention mask in the form of attention bias attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), ) else: attention_bias = None dropout_rng = None if not deterministic and self.config.attention_probs_dropout_prob > 0.0: dropout_rng = self.make_rng("dropout") attn_weights = dot_product_attention_weights( query_states, key_states, bias=attention_bias, dropout_rng=dropout_rng, dropout_rate=self.config.attention_probs_dropout_prob, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, precision=None, ) # Mask heads if we want to if layer_head_mask is not None: attn_weights = jnp.einsum("...hqk,h->...hqk", attn_weights, layer_head_mask) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,)) outputs = (attn_output, attn_weights) if output_attentions else (attn_output,) return outputs # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertSelfOutput with Bert->XLMRoberta class FlaxXLMRobertaSelfOutput(nn.Module): config: XLMRobertaConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dense = nn.Dense( self.config.hidden_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) def __call__(self, hidden_states, input_tensor, deterministic: bool = True): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertAttention with Bert->XLMRoberta class FlaxXLMRobertaAttention(nn.Module): config: XLMRobertaConfig causal: bool = False dtype: jnp.dtype = jnp.float32 def setup(self): self.self = FlaxXLMRobertaSelfAttention(self.config, causal=self.causal, dtype=self.dtype) self.output = FlaxXLMRobertaSelfOutput(self.config, dtype=self.dtype) def __call__( self, hidden_states, attention_mask, layer_head_mask, key_value_states=None, init_cache=False, deterministic=True, output_attentions: bool = False, ): # Attention mask comes in as attention_mask.shape == (*batch_sizes, kv_length) # FLAX expects: attention_mask.shape == (*batch_sizes, 1, 1, kv_length) such that it is broadcastable # with attn_weights.shape == (*batch_sizes, num_heads, q_length, kv_length) attn_outputs = self.self( hidden_states, attention_mask, layer_head_mask=layer_head_mask, key_value_states=key_value_states, init_cache=init_cache, deterministic=deterministic, output_attentions=output_attentions, ) attn_output = attn_outputs[0] hidden_states = self.output(attn_output, hidden_states, deterministic=deterministic) outputs = (hidden_states,) if output_attentions: outputs += (attn_outputs[1],) return outputs # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertIntermediate with Bert->XLMRoberta class FlaxXLMRobertaIntermediate(nn.Module): config: XLMRobertaConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dense = nn.Dense( self.config.intermediate_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) self.activation = ACT2FN[self.config.hidden_act] def __call__(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertOutput with Bert->XLMRoberta class FlaxXLMRobertaOutput(nn.Module): config: XLMRobertaConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dense = nn.Dense( self.config.hidden_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) def __call__(self, hidden_states, attention_output, deterministic: bool = True): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) hidden_states = self.LayerNorm(hidden_states + attention_output) return hidden_states # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLayer with Bert->XLMRoberta class FlaxXLMRobertaLayer(nn.Module): config: XLMRobertaConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.attention = FlaxXLMRobertaAttention(self.config, causal=self.config.is_decoder, dtype=self.dtype) self.intermediate = FlaxXLMRobertaIntermediate(self.config, dtype=self.dtype) self.output = FlaxXLMRobertaOutput(self.config, dtype=self.dtype) if self.config.add_cross_attention: self.crossattention = FlaxXLMRobertaAttention(self.config, causal=False, dtype=self.dtype) def __call__( self, hidden_states, attention_mask, layer_head_mask, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, output_attentions: bool = False, ): # Self Attention attention_outputs = self.attention( hidden_states, attention_mask, layer_head_mask=layer_head_mask, init_cache=init_cache, deterministic=deterministic, output_attentions=output_attentions, ) attention_output = attention_outputs[0] # Cross-Attention Block if encoder_hidden_states is not None: cross_attention_outputs = self.crossattention( attention_output, attention_mask=encoder_attention_mask, layer_head_mask=layer_head_mask, key_value_states=encoder_hidden_states, deterministic=deterministic, output_attentions=output_attentions, ) attention_output = cross_attention_outputs[0] hidden_states = self.intermediate(attention_output) hidden_states = self.output(hidden_states, attention_output, deterministic=deterministic) outputs = (hidden_states,) if output_attentions: outputs += (attention_outputs[1],) if encoder_hidden_states is not None: outputs += (cross_attention_outputs[1],) return outputs # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLayerCollection with Bert->XLMRoberta class FlaxXLMRobertaLayerCollection(nn.Module): config: XLMRobertaConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation gradient_checkpointing: bool = False def setup(self): if self.gradient_checkpointing: FlaxXLMRobertaCheckpointLayer = remat(FlaxXLMRobertaLayer, static_argnums=(5, 6, 7)) self.layers = [ FlaxXLMRobertaCheckpointLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_layers) ] else: self.layers = [ FlaxXLMRobertaLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_layers) ] def __call__( self, hidden_states, attention_mask, head_mask, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None # Check if head_mask has a correct number of layers specified if desired if head_mask is not None: if head_mask.shape[0] != (len(self.layers)): raise ValueError( f"The head_mask should be specified for {len(self.layers)} layers, but it is for " f" {head_mask.shape[0]}." ) for i, layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) layer_outputs = layer( hidden_states, attention_mask, head_mask[i] if head_mask is not None else None, encoder_hidden_states, encoder_attention_mask, init_cache, deterministic, output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) if output_hidden_states: all_hidden_states += (hidden_states,) outputs = (hidden_states, all_hidden_states, all_attentions, all_cross_attentions) if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions, cross_attentions=all_cross_attentions, ) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertEncoder with Bert->XLMRoberta class FlaxXLMRobertaEncoder(nn.Module): config: XLMRobertaConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation gradient_checkpointing: bool = False def setup(self): self.layer = FlaxXLMRobertaLayerCollection( self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing, ) def __call__( self, hidden_states, attention_mask, head_mask, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): return self.layer( hidden_states, attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, init_cache=init_cache, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertPooler with Bert->XLMRoberta class FlaxXLMRobertaPooler(nn.Module): config: XLMRobertaConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dense = nn.Dense( self.config.hidden_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) def __call__(self, hidden_states): cls_hidden_state = hidden_states[:, 0] cls_hidden_state = self.dense(cls_hidden_state) return nn.tanh(cls_hidden_state) # Copied from transformers.models.roberta.modeling_flax_roberta.FlaxRobertaLMHead with Roberta->XLMRoberta class FlaxXLMRobertaLMHead(nn.Module): config: XLMRobertaConfig dtype: jnp.dtype = jnp.float32 bias_init: Callable[..., np.ndarray] = jax.nn.initializers.zeros def setup(self): self.dense = nn.Dense( self.config.hidden_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) self.layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) self.decoder = nn.Dense( self.config.vocab_size, dtype=self.dtype, use_bias=False, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) self.bias = self.param("bias", self.bias_init, (self.config.vocab_size,)) def __call__(self, hidden_states, shared_embedding=None): hidden_states = self.dense(hidden_states) hidden_states = ACT2FN["gelu"](hidden_states) hidden_states = self.layer_norm(hidden_states) if shared_embedding is not None: hidden_states = self.decoder.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) else: hidden_states = self.decoder(hidden_states) bias = jnp.asarray(self.bias, self.dtype) hidden_states += bias return hidden_states # Copied from transformers.models.roberta.modeling_flax_roberta.FlaxRobertaClassificationHead with Roberta->XLMRoberta class FlaxXLMRobertaClassificationHead(nn.Module): config: XLMRobertaConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.dense = nn.Dense( self.config.hidden_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) classifier_dropout = ( self.config.classifier_dropout if self.config.classifier_dropout is not None else self.config.hidden_dropout_prob ) self.dropout = nn.Dropout(rate=classifier_dropout) self.out_proj = nn.Dense( self.config.num_labels, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) def __call__(self, hidden_states, deterministic=True): hidden_states = hidden_states[:, 0, :] # take <s> token (equiv. to [CLS]) hidden_states = self.dropout(hidden_states, deterministic=deterministic) hidden_states = self.dense(hidden_states) hidden_states = nn.tanh(hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) hidden_states = self.out_proj(hidden_states) return hidden_states # Copied from transformers.models.roberta.modeling_flax_roberta.FlaxRobertaPreTrainedModel with Roberta->XLMRoberta, roberta->xlm-roberta, ROBERTA->XLM_ROBERTA class FlaxXLMRobertaPreTrainedModel(FlaxPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = XLMRobertaConfig base_model_prefix = "xlm-roberta" module_class: nn.Module = None def __init__( self, config: XLMRobertaConfig, input_shape: Tuple = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, gradient_checkpointing: bool = False, **kwargs, ): module = self.module_class(config=config, dtype=dtype, gradient_checkpointing=gradient_checkpointing, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertPreTrainedModel.enable_gradient_checkpointing def enable_gradient_checkpointing(self): self._module = self.module_class( config=self.config, dtype=self.dtype, gradient_checkpointing=True, ) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors input_ids = jnp.zeros(input_shape, dtype="i4") token_type_ids = jnp.ones_like(input_ids) position_ids = create_position_ids_from_input_ids(input_ids, self.config.pad_token_id) attention_mask = jnp.ones_like(input_ids) head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads)) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} if self.config.add_cross_attention: encoder_hidden_states = jnp.zeros(input_shape + (self.config.hidden_size,)) encoder_attention_mask = attention_mask module_init_outputs = self.module.init( rngs, input_ids, attention_mask, token_type_ids, position_ids, head_mask, encoder_hidden_states, encoder_attention_mask, return_dict=False, ) else: module_init_outputs = self.module.init( rngs, input_ids, attention_mask, token_type_ids, position_ids, head_mask, return_dict=False ) random_params = module_init_outputs["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderPreTrainedModel.init_cache def init_cache(self, batch_size, max_length): r""" Args: batch_size (`int`): batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. max_length (`int`): maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized cache. """ # init input variables to retrieve cache input_ids = jnp.ones((batch_size, max_length), dtype="i4") attention_mask = jnp.ones_like(input_ids, dtype="i4") position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) init_variables = self.module.init( jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True ) return unfreeze(init_variables["cache"]) @add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def __call__( self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, params: dict = None, dropout_rng: jax.random.PRNGKey = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, past_key_values: dict = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict # init input tensors if not passed if token_type_ids is None: token_type_ids = jnp.zeros_like(input_ids) if position_ids is None: position_ids = create_position_ids_from_input_ids(input_ids, self.config.pad_token_id) if attention_mask is None: attention_mask = jnp.ones_like(input_ids) if head_mask is None: head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} if self.config.add_cross_attention: # if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed # down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be # changed by FlaxXLMRobertaAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False outputs = self.module.apply( inputs, jnp.array(input_ids, dtype="i4"), jnp.array(attention_mask, dtype="i4"), token_type_ids=jnp.array(token_type_ids, dtype="i4"), position_ids=jnp.array(position_ids, dtype="i4"), head_mask=jnp.array(head_mask, dtype="i4"), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, deterministic=not train, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, rngs=rngs, mutable=mutable, ) # add updated cache to model output if past_key_values is not None and return_dict: outputs, past_key_values = outputs outputs["past_key_values"] = unfreeze(past_key_values["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs, past_key_values = outputs outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:] else: outputs = self.module.apply( inputs, jnp.array(input_ids, dtype="i4"), jnp.array(attention_mask, dtype="i4"), token_type_ids=jnp.array(token_type_ids, dtype="i4"), position_ids=jnp.array(position_ids, dtype="i4"), head_mask=jnp.array(head_mask, dtype="i4"), deterministic=not train, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, rngs=rngs, ) return outputs # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertModule with Bert->XLMRoberta class FlaxXLMRobertaModule(nn.Module): config: XLMRobertaConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation add_pooling_layer: bool = True gradient_checkpointing: bool = False def setup(self): self.embeddings = FlaxXLMRobertaEmbeddings(self.config, dtype=self.dtype) self.encoder = FlaxXLMRobertaEncoder( self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing, ) self.pooler = FlaxXLMRobertaPooler(self.config, dtype=self.dtype) def __call__( self, input_ids, attention_mask, token_type_ids: Optional[jnp.ndarray] = None, position_ids: Optional[jnp.ndarray] = None, head_mask: Optional[jnp.ndarray] = None, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # make sure `token_type_ids` is correctly initialized when not passed if token_type_ids is None: token_type_ids = jnp.zeros_like(input_ids) # make sure `position_ids` is correctly initialized when not passed if position_ids is None: position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) hidden_states = self.embeddings( input_ids, token_type_ids, position_ids, attention_mask, deterministic=deterministic ) outputs = self.encoder( hidden_states, attention_mask, head_mask=head_mask, deterministic=deterministic, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, init_cache=init_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] pooled = self.pooler(hidden_states) if self.add_pooling_layer else None if not return_dict: # if pooled is None, don't return it if pooled is None: return (hidden_states,) + outputs[1:] return (hidden_states, pooled) + outputs[1:] return FlaxBaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=hidden_states, pooler_output=pooled, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) @add_start_docstrings( "The bare XLM RoBERTa Model transformer outputting raw hidden-states without any specific head on top.", XLM_ROBERTA_START_DOCSTRING, ) class FlaxXLMRobertaModel(FlaxXLMRobertaPreTrainedModel): module_class = FlaxXLMRobertaModule append_call_sample_docstring(FlaxXLMRobertaModel, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutputWithPooling, _CONFIG_FOR_DOC) # Copied from transformers.models.roberta.modeling_flax_roberta.FlaxRobertaForMaskedLMModule with Roberta->XLMRoberta class FlaxXLMRobertaForMaskedLMModule(nn.Module): config: XLMRobertaConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self): self.roberta = FlaxXLMRobertaModule( config=self.config, add_pooling_layer=False, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing, ) self.lm_head = FlaxXLMRobertaLMHead(config=self.config, dtype=self.dtype) def __call__( self, input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # Model outputs = self.roberta( input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = self.roberta.variables["params"]["embeddings"]["word_embeddings"]["embedding"] else: shared_embedding = None # Compute the prediction scores logits = self.lm_head(hidden_states, shared_embedding=shared_embedding) if not return_dict: return (logits,) + outputs[1:] return FlaxMaskedLMOutput( logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings("""XLM RoBERTa Model with a `language modeling` head on top.""", XLM_ROBERTA_START_DOCSTRING) class FlaxXLMRobertaForMaskedLM(FlaxXLMRobertaPreTrainedModel): module_class = FlaxXLMRobertaForMaskedLMModule append_call_sample_docstring( FlaxXLMRobertaForMaskedLM, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutputWithPooling, _CONFIG_FOR_DOC, mask="<mask>", ) # Copied from transformers.models.roberta.modeling_flax_roberta.FlaxRobertaForSequenceClassificationModule with Roberta->XLMRoberta class FlaxXLMRobertaForSequenceClassificationModule(nn.Module): config: XLMRobertaConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self): self.roberta = FlaxXLMRobertaModule( config=self.config, dtype=self.dtype, add_pooling_layer=False, gradient_checkpointing=self.gradient_checkpointing, ) self.classifier = FlaxXLMRobertaClassificationHead(config=self.config, dtype=self.dtype) def __call__( self, input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # Model outputs = self.roberta( input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output, deterministic=deterministic) if not return_dict: return (logits,) + outputs[1:] return FlaxSequenceClassifierOutput( logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ XLM Roberta Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, XLM_ROBERTA_START_DOCSTRING, ) class FlaxXLMRobertaForSequenceClassification(FlaxXLMRobertaPreTrainedModel): module_class = FlaxXLMRobertaForSequenceClassificationModule append_call_sample_docstring( FlaxXLMRobertaForSequenceClassification, _CHECKPOINT_FOR_DOC, FlaxSequenceClassifierOutput, _CONFIG_FOR_DOC, ) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForMultipleChoiceModule with Bert->XLMRoberta, with self.bert->self.roberta class FlaxXLMRobertaForMultipleChoiceModule(nn.Module): config: XLMRobertaConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self): self.roberta = FlaxXLMRobertaModule( config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing, ) self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) self.classifier = nn.Dense(1, dtype=self.dtype) def __call__( self, input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): num_choices = input_ids.shape[1] input_ids = input_ids.reshape(-1, input_ids.shape[-1]) if input_ids is not None else None attention_mask = attention_mask.reshape(-1, attention_mask.shape[-1]) if attention_mask is not None else None token_type_ids = token_type_ids.reshape(-1, token_type_ids.shape[-1]) if token_type_ids is not None else None position_ids = position_ids.reshape(-1, position_ids.shape[-1]) if position_ids is not None else None # Model outputs = self.roberta( input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output, deterministic=deterministic) logits = self.classifier(pooled_output) reshaped_logits = logits.reshape(-1, num_choices) if not return_dict: return (reshaped_logits,) + outputs[2:] return FlaxMultipleChoiceModelOutput( logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ XLM Roberta Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, XLM_ROBERTA_START_DOCSTRING, ) class FlaxXLMRobertaForMultipleChoice(FlaxXLMRobertaPreTrainedModel): module_class = FlaxXLMRobertaForMultipleChoiceModule overwrite_call_docstring( FlaxXLMRobertaForMultipleChoice, XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) append_call_sample_docstring( FlaxXLMRobertaForMultipleChoice, _CHECKPOINT_FOR_DOC, FlaxMultipleChoiceModelOutput, _CONFIG_FOR_DOC, ) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForTokenClassificationModule with Bert->XLMRoberta, with self.bert->self.roberta class FlaxXLMRobertaForTokenClassificationModule(nn.Module): config: XLMRobertaConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self): self.roberta = FlaxXLMRobertaModule( config=self.config, dtype=self.dtype, add_pooling_layer=False, gradient_checkpointing=self.gradient_checkpointing, ) classifier_dropout = ( self.config.classifier_dropout if self.config.classifier_dropout is not None else self.config.hidden_dropout_prob ) self.dropout = nn.Dropout(rate=classifier_dropout) self.classifier = nn.Dense(self.config.num_labels, dtype=self.dtype) def __call__( self, input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # Model outputs = self.roberta( input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] hidden_states = self.dropout(hidden_states, deterministic=deterministic) logits = self.classifier(hidden_states) if not return_dict: return (logits,) + outputs[1:] return FlaxTokenClassifierOutput( logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ XLM Roberta Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, XLM_ROBERTA_START_DOCSTRING, ) class FlaxXLMRobertaForTokenClassification(FlaxXLMRobertaPreTrainedModel): module_class = FlaxXLMRobertaForTokenClassificationModule append_call_sample_docstring( FlaxXLMRobertaForTokenClassification, _CHECKPOINT_FOR_DOC, FlaxTokenClassifierOutput, _CONFIG_FOR_DOC, ) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForQuestionAnsweringModule with Bert->XLMRoberta, with self.bert->self.roberta class FlaxXLMRobertaForQuestionAnsweringModule(nn.Module): config: XLMRobertaConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self): self.roberta = FlaxXLMRobertaModule( config=self.config, dtype=self.dtype, add_pooling_layer=False, gradient_checkpointing=self.gradient_checkpointing, ) self.qa_outputs = nn.Dense(self.config.num_labels, dtype=self.dtype) def __call__( self, input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # Model outputs = self.roberta( input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] logits = self.qa_outputs(hidden_states) start_logits, end_logits = logits.split(self.config.num_labels, axis=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) if not return_dict: return (start_logits, end_logits) + outputs[1:] return FlaxQuestionAnsweringModelOutput( start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ XLM Roberta Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, XLM_ROBERTA_START_DOCSTRING, ) class FlaxXLMRobertaForQuestionAnswering(FlaxXLMRobertaPreTrainedModel): module_class = FlaxXLMRobertaForQuestionAnsweringModule append_call_sample_docstring( FlaxXLMRobertaForQuestionAnswering, _CHECKPOINT_FOR_DOC, FlaxQuestionAnsweringModelOutput, _CONFIG_FOR_DOC, ) # Copied from transformers.models.roberta.modeling_flax_roberta.FlaxRobertaForCausalLMModule with Roberta->XLMRoberta class FlaxXLMRobertaForCausalLMModule(nn.Module): config: XLMRobertaConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self): self.roberta = FlaxXLMRobertaModule( config=self.config, add_pooling_layer=False, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing, ) self.lm_head = FlaxXLMRobertaLMHead(config=self.config, dtype=self.dtype) def __call__( self, input_ids, attention_mask, position_ids, token_type_ids: Optional[jnp.ndarray] = None, head_mask: Optional[jnp.ndarray] = None, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # Model outputs = self.roberta( input_ids, attention_mask, token_type_ids, position_ids, head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, init_cache=init_cache, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = self.roberta.variables["params"]["embeddings"]["word_embeddings"]["embedding"] else: shared_embedding = None # Compute the prediction scores logits = self.lm_head(hidden_states, shared_embedding=shared_embedding) if not return_dict: return (logits,) + outputs[1:] return FlaxCausalLMOutputWithCrossAttentions( logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) @add_start_docstrings( """ XLM Roberta Model with a language modeling head on top (a linear layer on top of the hidden-states output) e.g for autoregressive tasks. """, XLM_ROBERTA_START_DOCSTRING, ) # Copied from transformers.models.roberta.modeling_flax_roberta.FlaxRobertaForCausalLM with Roberta->XLMRoberta class FlaxXLMRobertaForCausalLM(FlaxXLMRobertaPreTrainedModel): module_class = FlaxXLMRobertaForCausalLMModule def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None): # initializing the cache batch_size, seq_length = input_ids.shape past_key_values = self.init_cache(batch_size, max_length) # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. # But since the decoder uses a causal mask, those positions are masked anyway. # Thus, we can create a single static attention_mask here, which is more efficient for compilation extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") if attention_mask is not None: position_ids = attention_mask.cumsum(axis=-1) - 1 extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0)) else: position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)) return { "past_key_values": past_key_values, "attention_mask": extended_attention_mask, "position_ids": position_ids, } def update_inputs_for_generation(self, model_outputs, model_kwargs): model_kwargs["past_key_values"] = model_outputs.past_key_values model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1 return model_kwargs append_call_sample_docstring( FlaxXLMRobertaForCausalLM, _CHECKPOINT_FOR_DOC, FlaxCausalLMOutputWithCrossAttentions, _CONFIG_FOR_DOC, )
transformers-main
src/transformers/models/xlm_roberta/modeling_flax_xlm_roberta.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ CLIPSeg model configuration""" import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP = { "CIDAS/clipseg-rd64": "https://huggingface.co/CIDAS/clipseg-rd64/resolve/main/config.json", } class CLIPSegTextConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`CLIPSegModel`]. It is used to instantiate an CLIPSeg model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the CLIPSeg [CIDAS/clipseg-rd64](https://huggingface.co/CIDAS/clipseg-rd64) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 49408): Vocabulary size of the CLIPSeg text model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`CLIPSegModel`]. hidden_size (`int`, *optional*, defaults to 512): Dimensionality of the encoder layers and the pooler layer. intermediate_size (`int`, *optional*, defaults to 2048): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 8): Number of attention heads for each attention layer in the Transformer encoder. max_position_embeddings (`int`, *optional*, defaults to 77): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. layer_norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon used by the layer normalization layers. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. initializer_factor (`float``, *optional*, defaults to 1): A factor for initializing all weight matrices (should be kept to 1, used internally for initialization testing). Example: ```python >>> from transformers import CLIPSegTextConfig, CLIPSegTextModel >>> # Initializing a CLIPSegTextConfig with CIDAS/clipseg-rd64 style configuration >>> configuration = CLIPSegTextConfig() >>> # Initializing a CLIPSegTextModel (with random weights) from the CIDAS/clipseg-rd64 style configuration >>> model = CLIPSegTextModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "clipseg_text_model" def __init__( self, vocab_size=49408, hidden_size=512, intermediate_size=2048, num_hidden_layers=12, num_attention_heads=8, max_position_embeddings=77, hidden_act="quick_gelu", layer_norm_eps=1e-5, attention_dropout=0.0, initializer_range=0.02, initializer_factor=1.0, pad_token_id=1, bos_token_id=49406, eos_token_id=49407, **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.max_position_embeddings = max_position_embeddings self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act self.initializer_range = initializer_range self.initializer_factor = initializer_factor self.attention_dropout = attention_dropout @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) # get the text config dict if we are loading from CLIPSegConfig if config_dict.get("model_type") == "clipseg": config_dict = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class CLIPSegVisionConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`CLIPSegModel`]. It is used to instantiate an CLIPSeg model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the CLIPSeg [CIDAS/clipseg-rd64](https://huggingface.co/CIDAS/clipseg-rd64) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 32): The size (resolution) of each patch. hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. layer_norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon used by the layer normalization layers. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. initializer_factor (`float``, *optional*, defaults to 1): A factor for initializing all weight matrices (should be kept to 1, used internally for initialization testing). Example: ```python >>> from transformers import CLIPSegVisionConfig, CLIPSegVisionModel >>> # Initializing a CLIPSegVisionConfig with CIDAS/clipseg-rd64 style configuration >>> configuration = CLIPSegVisionConfig() >>> # Initializing a CLIPSegVisionModel (with random weights) from the CIDAS/clipseg-rd64 style configuration >>> model = CLIPSegVisionModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "clipseg_vision_model" def __init__( self, hidden_size=768, intermediate_size=3072, num_hidden_layers=12, num_attention_heads=12, num_channels=3, image_size=224, patch_size=32, hidden_act="quick_gelu", layer_norm_eps=1e-5, attention_dropout=0.0, initializer_range=0.02, initializer_factor=1.0, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_channels = num_channels self.patch_size = patch_size self.image_size = image_size self.initializer_range = initializer_range self.initializer_factor = initializer_factor self.attention_dropout = attention_dropout self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) # get the vision config dict if we are loading from CLIPSegConfig if config_dict.get("model_type") == "clipseg": config_dict = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class CLIPSegConfig(PretrainedConfig): r""" [`CLIPSegConfig`] is the configuration class to store the configuration of a [`CLIPSegModel`]. It is used to instantiate a CLIPSeg model according to the specified arguments, defining the text model and vision model configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the CLIPSeg [CIDAS/clipseg-rd64](https://huggingface.co/CIDAS/clipseg-rd64) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: text_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`CLIPSegTextConfig`]. vision_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`CLIPSegVisionConfig`]. projection_dim (`int`, *optional*, defaults to 512): Dimensionality of text and vision projection layers. logit_scale_init_value (`float`, *optional*, defaults to 2.6592): The inital value of the *logit_scale* paramter. Default is used as per the original CLIPSeg implementation. extract_layers (`List[int]`, *optional*, defaults to [3, 6, 9]): Layers to extract when forwarding the query image through the frozen visual backbone of CLIP. reduce_dim (`int`, *optional*, defaults to 64): Dimensionality to reduce the CLIP vision embedding. decoder_num_attention_heads (`int`, *optional*, defaults to 4): Number of attention heads in the decoder of CLIPSeg. decoder_attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. decoder_hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. decoder_intermediate_size (`int`, *optional*, defaults to 2048): Dimensionality of the "intermediate" (i.e., feed-forward) layers in the Transformer decoder. conditional_layer (`int`, *optional*, defaults to 0): The layer to use of the Transformer encoder whose activations will be combined with the condition embeddings using FiLM (Feature-wise Linear Modulation). If 0, the last layer is used. use_complex_transposed_convolution (`bool`, *optional*, defaults to `False`): Whether to use a more complex transposed convolution in the decoder, enabling more fine-grained segmentation. kwargs (*optional*): Dictionary of keyword arguments. Example: ```python >>> from transformers import CLIPSegConfig, CLIPSegModel >>> # Initializing a CLIPSegConfig with CIDAS/clipseg-rd64 style configuration >>> configuration = CLIPSegConfig() >>> # Initializing a CLIPSegModel (with random weights) from the CIDAS/clipseg-rd64 style configuration >>> model = CLIPSegModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config >>> # We can also initialize a CLIPSegConfig from a CLIPSegTextConfig and a CLIPSegVisionConfig >>> # Initializing a CLIPSegText and CLIPSegVision configuration >>> config_text = CLIPSegTextConfig() >>> config_vision = CLIPSegVisionConfig() >>> config = CLIPSegConfig.from_text_vision_configs(config_text, config_vision) ```""" model_type = "clipseg" def __init__( self, text_config=None, vision_config=None, projection_dim=512, logit_scale_init_value=2.6592, extract_layers=[3, 6, 9], reduce_dim=64, decoder_num_attention_heads=4, decoder_attention_dropout=0.0, decoder_hidden_act="quick_gelu", decoder_intermediate_size=2048, conditional_layer=0, use_complex_transposed_convolution=False, **kwargs, ): # If `_config_dict` exist, we use them for the backward compatibility. # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot # of confusion!). text_config_dict = kwargs.pop("text_config_dict", None) vision_config_dict = kwargs.pop("vision_config_dict", None) super().__init__(**kwargs) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: text_config = {} # This is the complete result when using `text_config_dict`. _text_config_dict = CLIPSegTextConfig(**text_config_dict).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: message = ( f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. " f'The value `text_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: message = ( f"`text_config_dict` is provided which will be used to initialize `CLIPSegTextConfig`. The " f'value `text_config["{key}"]` will be overriden.' ) logger.warning(message) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict) if vision_config_dict is not None: if vision_config is None: vision_config = {} # This is the complete result when using `vision_config_dict`. _vision_config_dict = CLIPSegVisionConfig(**vision_config_dict).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: _vision_config_dict["id2label"] = { str(key): value for key, value in _vision_config_dict["id2label"].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: message = ( f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different " f'values. The value `vision_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: message = ( f"`vision_config_dict` is provided which will be used to initialize `CLIPSegVisionConfig`. " f'The value `vision_config["{key}"]` will be overriden.' ) logger.warning(message) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict) if text_config is None: text_config = {} logger.info("`text_config` is `None`. Initializing the `CLIPSegTextConfig` with default values.") if vision_config is None: vision_config = {} logger.info("`vision_config` is `None`. initializing the `CLIPSegVisionConfig` with default values.") self.text_config = CLIPSegTextConfig(**text_config) self.vision_config = CLIPSegVisionConfig(**vision_config) self.projection_dim = projection_dim self.logit_scale_init_value = logit_scale_init_value self.extract_layers = extract_layers self.reduce_dim = reduce_dim self.decoder_num_attention_heads = decoder_num_attention_heads self.decoder_attention_dropout = decoder_attention_dropout self.decoder_hidden_act = decoder_hidden_act self.decoder_intermediate_size = decoder_intermediate_size self.conditional_layer = conditional_layer self.initializer_factor = 1.0 self.use_complex_transposed_convolution = use_complex_transposed_convolution @classmethod def from_text_vision_configs(cls, text_config: CLIPSegTextConfig, vision_config: CLIPSegVisionConfig, **kwargs): r""" Instantiate a [`CLIPSegConfig`] (or a derived class) from clipseg text model configuration and clipseg vision model configuration. Returns: [`CLIPSegConfig`]: An instance of a configuration object """ return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
transformers-main
src/transformers/models/clipseg/configuration_clipseg.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert CLIPSeg checkpoints from the original repository. URL: https://github.com/timojl/clipseg.""" import argparse import requests import torch from PIL import Image from transformers import ( CLIPSegConfig, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPSegTextConfig, CLIPSegVisionConfig, CLIPTokenizer, ViTImageProcessor, ) def get_clipseg_config(model_name): text_config = CLIPSegTextConfig() vision_config = CLIPSegVisionConfig(patch_size=16) use_complex_transposed_convolution = True if "refined" in model_name else False reduce_dim = 16 if "rd16" in model_name else 64 config = CLIPSegConfig.from_text_vision_configs( text_config, vision_config, use_complex_transposed_convolution=use_complex_transposed_convolution, reduce_dim=reduce_dim, ) return config def rename_key(name): # update prefixes if "clip_model" in name: name = name.replace("clip_model", "clip") if "transformer" in name: if "visual" in name: name = name.replace("visual.transformer", "vision_model") else: name = name.replace("transformer", "text_model") if "resblocks" in name: name = name.replace("resblocks", "encoder.layers") if "ln_1" in name: name = name.replace("ln_1", "layer_norm1") if "ln_2" in name: name = name.replace("ln_2", "layer_norm2") if "c_fc" in name: name = name.replace("c_fc", "fc1") if "c_proj" in name: name = name.replace("c_proj", "fc2") if "attn" in name and "self" not in name: name = name.replace("attn", "self_attn") # text encoder if "token_embedding" in name: name = name.replace("token_embedding", "text_model.embeddings.token_embedding") if "positional_embedding" in name and "visual" not in name: name = name.replace("positional_embedding", "text_model.embeddings.position_embedding.weight") if "ln_final" in name: name = name.replace("ln_final", "text_model.final_layer_norm") # vision encoder if "visual.class_embedding" in name: name = name.replace("visual.class_embedding", "vision_model.embeddings.class_embedding") if "visual.conv1" in name: name = name.replace("visual.conv1", "vision_model.embeddings.patch_embedding") if "visual.positional_embedding" in name: name = name.replace("visual.positional_embedding", "vision_model.embeddings.position_embedding.weight") if "visual.ln_pre" in name: name = name.replace("visual.ln_pre", "vision_model.pre_layrnorm") if "visual.ln_post" in name: name = name.replace("visual.ln_post", "vision_model.post_layernorm") # projection layers if "visual.proj" in name: name = name.replace("visual.proj", "visual_projection.weight") if "text_projection" in name: name = name.replace("text_projection", "text_projection.weight") # decoder if "trans_conv" in name: name = name.replace("trans_conv", "transposed_convolution") if "film_mul" in name or "film_add" in name or "reduce" in name or "transposed_convolution" in name: name = "decoder." + name if "blocks" in name: name = name.replace("blocks", "decoder.layers") if "linear1" in name: name = name.replace("linear1", "mlp.fc1") if "linear2" in name: name = name.replace("linear2", "mlp.fc2") if "norm1" in name and "layer_" not in name: name = name.replace("norm1", "layer_norm1") if "norm2" in name and "layer_" not in name: name = name.replace("norm2", "layer_norm2") return name def convert_state_dict(orig_state_dict, config): for key in orig_state_dict.copy().keys(): val = orig_state_dict.pop(key) if key.startswith("clip_model") and "attn.in_proj" in key: key_split = key.split(".") if "visual" in key: layer_num = int(key_split[4]) dim = config.vision_config.hidden_size prefix = "vision_model" else: layer_num = int(key_split[3]) dim = config.text_config.hidden_size prefix = "text_model" if "weight" in key: orig_state_dict[f"clip.{prefix}.encoder.layers.{layer_num}.self_attn.q_proj.weight"] = val[:dim, :] orig_state_dict[f"clip.{prefix}.encoder.layers.{layer_num}.self_attn.k_proj.weight"] = val[ dim : dim * 2, : ] orig_state_dict[f"clip.{prefix}.encoder.layers.{layer_num}.self_attn.v_proj.weight"] = val[-dim:, :] else: orig_state_dict[f"clip.{prefix}.encoder.layers.{layer_num}.self_attn.q_proj.bias"] = val[:dim] orig_state_dict[f"clip.{prefix}.encoder.layers.{layer_num}.self_attn.k_proj.bias"] = val[dim : dim * 2] orig_state_dict[f"clip.{prefix}.encoder.layers.{layer_num}.self_attn.v_proj.bias"] = val[-dim:] elif "self_attn" in key and "out_proj" not in key: key_split = key.split(".") layer_num = int(key_split[1]) dim = config.reduce_dim if "weight" in key: orig_state_dict[f"decoder.layers.{layer_num}.self_attn.q_proj.weight"] = val[:dim, :] orig_state_dict[f"decoder.layers.{layer_num}.self_attn.k_proj.weight"] = val[dim : dim * 2, :] orig_state_dict[f"decoder.layers.{layer_num}.self_attn.v_proj.weight"] = val[-dim:, :] else: orig_state_dict[f"decoder.layers.{layer_num}.self_attn.q_proj.bias"] = val[:dim] orig_state_dict[f"decoder.layers.{layer_num}.self_attn.k_proj.bias"] = val[dim : dim * 2] orig_state_dict[f"decoder.layers.{layer_num}.self_attn.v_proj.bias"] = val[-dim:] else: new_name = rename_key(key) if "visual_projection" in new_name or "text_projection" in new_name: val = val.T orig_state_dict[new_name] = val return orig_state_dict # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) return image def convert_clipseg_checkpoint(model_name, checkpoint_path, pytorch_dump_folder_path, push_to_hub): config = get_clipseg_config(model_name) model = CLIPSegForImageSegmentation(config) model.eval() state_dict = torch.load(checkpoint_path, map_location="cpu") # remove some keys for key in state_dict.copy().keys(): if key.startswith("model"): state_dict.pop(key, None) # rename some keys state_dict = convert_state_dict(state_dict, config) missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False) if missing_keys != ["clip.text_model.embeddings.position_ids", "clip.vision_model.embeddings.position_ids"]: raise ValueError("Missing keys that are not expected: {}".format(missing_keys)) if unexpected_keys != ["decoder.reduce.weight", "decoder.reduce.bias"]: raise ValueError(f"Unexpected keys: {unexpected_keys}") image_processor = ViTImageProcessor(size=352) tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32") processor = CLIPSegProcessor(image_processor=image_processor, tokenizer=tokenizer) image = prepare_img() text = ["a glass", "something to fill", "wood", "a jar"] inputs = processor(text=text, images=[image] * len(text), padding="max_length", return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) # verify values expected_conditional = torch.tensor([0.1110, -0.1882, 0.1645]) expected_pooled_output = torch.tensor([0.2692, -0.7197, -0.1328]) if model_name == "clipseg-rd64-refined": expected_masks_slice = torch.tensor( [[-10.0407, -9.9431, -10.2646], [-9.9751, -9.7064, -9.9586], [-9.6891, -9.5645, -9.9618]] ) elif model_name == "clipseg-rd64": expected_masks_slice = torch.tensor( [[-7.2877, -7.2711, -7.2463], [-7.2652, -7.2780, -7.2520], [-7.2239, -7.2204, -7.2001]] ) elif model_name == "clipseg-rd16": expected_masks_slice = torch.tensor( [[-6.3955, -6.4055, -6.4151], [-6.3911, -6.4033, -6.4100], [-6.3474, -6.3702, -6.3762]] ) else: raise ValueError(f"Model name {model_name} not supported.") assert torch.allclose(outputs.logits[0, :3, :3], expected_masks_slice, atol=1e-3) assert torch.allclose(outputs.conditional_embeddings[0, :3], expected_conditional, atol=1e-3) assert torch.allclose(outputs.pooled_output[0, :3], expected_pooled_output, atol=1e-3) print("Looks ok!") if pytorch_dump_folder_path is not None: print(f"Saving model and processor to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) processor.save_pretrained(pytorch_dump_folder_path) if push_to_hub: print(f"Pushing model and processor for {model_name} to the hub") model.push_to_hub(f"CIDAS/{model_name}") processor.push_to_hub(f"CIDAS/{model_name}") if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="clipseg-rd64", type=str, choices=["clipseg-rd16", "clipseg-rd64", "clipseg-rd64-refined"], help=( "Name of the model. Supported models are: clipseg-rd64, clipseg-rd16 and clipseg-rd64-refined (rd meaning" " reduce dimension)" ), ) parser.add_argument( "--checkpoint_path", default="/Users/nielsrogge/Documents/CLIPSeg/clip_plus_rd64-uni.pth", type=str, help=( "Path to the original checkpoint. Note that the script assumes that the checkpoint includes both CLIP and" " the decoder weights." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) args = parser.parse_args() convert_clipseg_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
transformers-main
src/transformers/models/clipseg/convert_clipseg_original_pytorch_to_hf.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _import_structure = { "configuration_clipseg": [ "CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPSegConfig", "CLIPSegTextConfig", "CLIPSegVisionConfig", ], "processing_clipseg": ["CLIPSegProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_clipseg"] = [ "CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPSegModel", "CLIPSegPreTrainedModel", "CLIPSegTextModel", "CLIPSegVisionModel", "CLIPSegForImageSegmentation", ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers-main
src/transformers/models/clipseg/__init__.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Image/Text processor class for CLIPSeg """ import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class CLIPSegProcessor(ProcessorMixin): r""" Constructs a CLIPSeg processor which wraps a CLIPSeg image processor and a CLIP tokenizer into a single processor. [`CLIPSegProcessor`] offers all the functionalities of [`ViTImageProcessor`] and [`CLIPTokenizerFast`]. See the [`~CLIPSegProcessor.__call__`] and [`~CLIPSegProcessor.decode`] for more information. Args: image_processor ([`ViTImageProcessor`]): The image processor is a required input. tokenizer ([`CLIPTokenizerFast`]): The tokenizer is a required input. """ attributes = ["image_processor", "tokenizer"] image_processor_class = "ViTImageProcessor" tokenizer_class = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__(self, image_processor=None, tokenizer=None, **kwargs): feature_extractor = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead.", FutureWarning, ) feature_extractor = kwargs.pop("feature_extractor") image_processor = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") super().__init__(image_processor, tokenizer) def __call__(self, text=None, images=None, visual_prompt=None, return_tensors=None, **kwargs): """ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` and `kwargs` arguments to CLIPTokenizerFast's [`~CLIPTokenizerFast.__call__`] if `text` is not `None` to encode the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to ViTImageProcessor's [`~ViTImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring of the above two methods for more information. Args: text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a number of channels, H and W are image height and width. visual_prompt (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): The visual prompt image or batch of images to be prepared. Each visual prompt image can be a PIL image, NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a number of channels, H and W are image height and width. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. - `'jax'`: Return JAX `jnp.ndarray` objects. Returns: [`BatchEncoding`]: A [`BatchEncoding`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not `None`). - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. """ if text is None and visual_prompt is None and images is None: raise ValueError("You have to specify either text, visual prompt or images.") if text is not None and visual_prompt is not None: raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt.") if text is not None: encoding = self.tokenizer(text, return_tensors=return_tensors, **kwargs) if visual_prompt is not None: prompt_features = self.image_processor(visual_prompt, return_tensors=return_tensors, **kwargs) if images is not None: image_features = self.image_processor(images, return_tensors=return_tensors, **kwargs) if visual_prompt is not None and images is not None: encoding = { "pixel_values": image_features.pixel_values, "conditional_pixel_values": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: encoding["pixel_values"] = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: encoding = { "conditional_pixel_values": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors) def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property def feature_extractor_class(self): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.", FutureWarning, ) return self.image_processor_class @property def feature_extractor(self): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.", FutureWarning, ) return self.image_processor
transformers-main
src/transformers/models/clipseg/processing_clipseg.py
# coding=utf-8 # Copyright 2022 The OpenAI Team Authors and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch CLIPSeg model.""" import copy import math from dataclasses import dataclass from typing import Any, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from ...activations import ACT2FN from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling from ...modeling_utils import PreTrainedModel from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_clipseg import CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "CIDAS/clipseg-rd64-refined" CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST = [ "CIDAS/clipseg-rd64-refined", # See all CLIPSeg models at https://huggingface.co/models?filter=clipseg ] # Copied from transformers.models.bart.modeling_bart._expand_mask def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): """ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. """ bsz, src_len = mask.size() tgt_len = tgt_len if tgt_len is not None else src_len expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) inverted_mask = 1.0 - expanded_mask return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) # contrastive loss function, adapted from # https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html def contrastive_loss(logits: torch.Tensor) -> torch.Tensor: return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device)) # Copied from transformers.models.clip.modeling_clip.clip_loss with clip->clipseg def clipseg_loss(similarity: torch.Tensor) -> torch.Tensor: caption_loss = contrastive_loss(similarity) image_loss = contrastive_loss(similarity.t()) return (caption_loss + image_loss) / 2.0 @dataclass # Copied from transformers.models.clip.modeling_clip.CLIPOutput with CLIP->CLIPSeg class CLIPSegOutput(ModelOutput): """ Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): Contrastive loss for image-text similarity. logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`): The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text similarity scores. logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`): The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image similarity scores. text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`CLIPSegTextModel`]. image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the pooled output of [`CLIPSegVisionModel`]. text_model_output(`BaseModelOutputWithPooling`): The output of the [`CLIPSegTextModel`]. vision_model_output(`BaseModelOutputWithPooling`): The output of the [`CLIPSegVisionModel`]. """ loss: Optional[torch.FloatTensor] = None logits_per_image: torch.FloatTensor = None logits_per_text: torch.FloatTensor = None text_embeds: torch.FloatTensor = None image_embeds: torch.FloatTensor = None text_model_output: BaseModelOutputWithPooling = None vision_model_output: BaseModelOutputWithPooling = None def to_tuple(self) -> Tuple[Any]: return tuple( self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple() for k in self.keys() ) @dataclass class CLIPSegDecoderOutput(ModelOutput): """ Args: logits (`torch.FloatTensor` of shape `(batch_size, height, width)`): Classification scores for each pixel. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class CLIPSegImageSegmentationOutput(ModelOutput): """ Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): Contrastive loss for image-text similarity. ... vision_model_output (`BaseModelOutputWithPooling`): The output of the [`CLIPSegVisionModel`]. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None conditional_embeddings: torch.FloatTensor = None pooled_output: torch.FloatTensor = None vision_model_output: BaseModelOutputWithPooling = None decoder_output: CLIPSegDecoderOutput = None def to_tuple(self) -> Tuple[Any]: return tuple( self[k] if k not in ["vision_model_output", "decoder_output"] else getattr(self, k).to_tuple() for k in self.keys() ) class CLIPSegVisionEmbeddings(nn.Module): # Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings.__init__ with CLIP->CLIPSeg def __init__(self, config: CLIPSegVisionConfig): super().__init__() self.config = config self.embed_dim = config.hidden_size self.image_size = config.image_size self.patch_size = config.patch_size self.class_embedding = nn.Parameter(torch.randn(self.embed_dim)) self.patch_embedding = nn.Conv2d( in_channels=config.num_channels, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size, bias=False, ) self.num_patches = (self.image_size // self.patch_size) ** 2 self.num_positions = self.num_patches + 1 self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False) def interpolate_position_embeddings(self, new_size): if len(new_size) != 2: raise ValueError("new_size should consist of 2 values") num_patches_one_direction = int(self.num_patches**0.5) # we interpolate the position embeddings in 2D a = self.position_embedding.weight[1:].T.view( 1, self.config.hidden_size, num_patches_one_direction, num_patches_one_direction ) b = ( nn.functional.interpolate(a, new_size, mode="bicubic", align_corners=False) .squeeze(0) .view(self.config.hidden_size, new_size[0] * new_size[1]) .T ) result = torch.cat([self.position_embedding.weight[:1], b]) return result def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: batch_size = pixel_values.shape[0] patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid] patch_embeds = patch_embeds.flatten(2).transpose(1, 2) class_embeds = self.class_embedding.expand(batch_size, 1, -1) embeddings = torch.cat([class_embeds, patch_embeds], dim=1) if embeddings.shape[1] != self.num_positions: new_shape = int(math.sqrt(embeddings.shape[1] - 1)) embeddings = embeddings + self.interpolate_position_embeddings((new_shape, new_shape)) embeddings = embeddings.to(embeddings.dtype) else: embeddings = embeddings + self.position_embedding(self.position_ids) return embeddings # Copied from transformers.models.clip.modeling_clip.CLIPTextEmbeddings with CLIP->CLIPSeg class CLIPSegTextEmbeddings(nn.Module): def __init__(self, config: CLIPSegTextConfig): super().__init__() embed_dim = config.hidden_size self.token_embedding = nn.Embedding(config.vocab_size, embed_dim) self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) def forward( self, input_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, ) -> torch.Tensor: seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2] if position_ids is None: position_ids = self.position_ids[:, :seq_length] if inputs_embeds is None: inputs_embeds = self.token_embedding(input_ids) position_embeddings = self.position_embedding(position_ids) embeddings = inputs_embeds + position_embeddings return embeddings # Copied from transformers.models.clip.modeling_clip.CLIPAttention with CLIP->CLIPSeg class CLIPSegAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config): super().__init__() self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.scale = self.head_dim**-0.5 self.dropout = config.attention_dropout self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, causal_attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" bsz, tgt_len, embed_dim = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scale key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) # apply the causal_attention_mask first if causal_attention_mask is not None: if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" f" {causal_attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if output_attentions: # this operation is a bit akward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(bsz, tgt_len, embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped # Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->CLIPSeg class CLIPSegMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.activation_fn = ACT2FN[config.hidden_act] self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states # Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->CLIPSeg class CLIPSegEncoderLayer(nn.Module): def __init__(self, config: CLIPSegConfig): super().__init__() self.embed_dim = config.hidden_size self.self_attn = CLIPSegAttention(config) self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.mlp = CLIPSegMLP(config) self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, causal_attention_mask: torch.Tensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.FloatTensor]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. `(config.encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions, ) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class CLIPSegPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = CLIPSegConfig base_model_prefix = "clip" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" factor = self.config.initializer_factor if isinstance(module, CLIPSegTextEmbeddings): module.token_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02) module.position_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02) elif isinstance(module, CLIPSegVisionEmbeddings): factor = self.config.initializer_factor nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor) nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor) nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor) elif isinstance(module, CLIPSegAttention): factor = self.config.initializer_factor in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor out_proj_std = (module.embed_dim**-0.5) * factor nn.init.normal_(module.q_proj.weight, std=in_proj_std) nn.init.normal_(module.k_proj.weight, std=in_proj_std) nn.init.normal_(module.v_proj.weight, std=in_proj_std) nn.init.normal_(module.out_proj.weight, std=out_proj_std) elif isinstance(module, CLIPSegMLP): factor = self.config.initializer_factor in_proj_std = ( (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor ) fc_std = (2 * module.config.hidden_size) ** -0.5 * factor nn.init.normal_(module.fc1.weight, std=fc_std) nn.init.normal_(module.fc2.weight, std=in_proj_std) elif isinstance(module, CLIPSegModel): nn.init.normal_( module.text_projection.weight, std=module.text_embed_dim**-0.5 * self.config.initializer_factor, ) nn.init.normal_( module.visual_projection.weight, std=module.vision_embed_dim**-0.5 * self.config.initializer_factor, ) if isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, CLIPSegEncoder): module.gradient_checkpointing = value CLIPSEG_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`CLIPSegConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ CLIPSEG_TEXT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ CLIPSEG_VISION_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ CLIPSEG_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. return_loss (`bool`, *optional*): Whether or not to return the contrastive loss. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ # Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->CLIPSeg class CLIPSegEncoder(nn.Module): """ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a [`CLIPSegEncoderLayer`]. Args: config: CLIPSegConfig """ def __init__(self, config: CLIPSegConfig): super().__init__() self.config = config self.layers = nn.ModuleList([CLIPSegEncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, inputs_embeds, attention_mask: Optional[torch.Tensor] = None, causal_attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Causal mask for the text model. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None hidden_states = inputs_embeds for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(encoder_layer), hidden_states, attention_mask, causal_attention_mask, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, causal_attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) # Copied from transformers.models.bart.modeling_bart._make_causal_mask def _make_causal_mask( input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0 ): """ Make causal mask used for bi-directional self-attention. """ bsz, tgt_len = input_ids_shape mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device) mask_cond = torch.arange(mask.size(-1), device=device) mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) mask = mask.to(dtype) if past_key_values_length > 0: mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) class CLIPSegTextTransformer(nn.Module): # Copied from transformers.models.clip.modeling_clip.CLIPTextTransformer.__init__ with CLIP->CLIPSeg def __init__(self, config: CLIPSegTextConfig): super().__init__() self.config = config embed_dim = config.hidden_size self.embeddings = CLIPSegTextEmbeddings(config) self.encoder = CLIPSegEncoder(config) self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) # For `pooled_output` computation self.eos_token_id = config.eos_token_id @add_start_docstrings_to_model_forward(CLIPSEG_TEXT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPSegTextConfig) # Copied from transformers.models.clip.modeling_clip.CLIPTextTransformer.forward with clip->clipseg, CLIP->CLIPSeg def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is None: raise ValueError("You have to specify input_ids") input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids) # CLIPSeg's text model uses causal mask, prepare it here. # https://github.com/openai/CLIPSeg/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clipseg/model.py#L324 causal_attention_mask = _make_causal_mask(input_shape, hidden_states.dtype, device=hidden_states.device) # expand attention_mask if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _expand_mask(attention_mask, hidden_states.dtype) encoder_outputs = self.encoder( inputs_embeds=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] last_hidden_state = self.final_layer_norm(last_hidden_state) if self.eos_token_id == 2: # The `eos_token_id` was incorrect before PR #24773: Let's keep what have been done here. # A CLIPSeg model with such `eos_token_id` in the config can't work correctly with extra new tokens added # ------------------------------------------------------------ # text_embeds.shape = [batch_size, sequence_length, transformer.width] # take features from the eot embedding (eot_token is the highest number in each sequence) # casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14 pooled_output = last_hidden_state[ torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device), input_ids.to(dtype=torch.int, device=last_hidden_state.device).argmax(dim=-1), ] else: # The config gets updated `eos_token_id` from PR #24773 (so the use of exta new tokens is possible) pooled_output = last_hidden_state[ torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device), # We need to get the first position of `eos_token_id` value (`pad_token_ids` might equal to `eos_token_id`) (input_ids.to(dtype=torch.int, device=last_hidden_state.device) == self.eos_token_id) .int() .argmax(dim=-1), ] if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class CLIPSegTextModel(CLIPSegPreTrainedModel): config_class = CLIPSegTextConfig _no_split_modules = ["CLIPSegTextEmbeddings", "CLIPSegEncoderLayer"] def __init__(self, config: CLIPSegTextConfig): super().__init__(config) self.text_model = CLIPSegTextTransformer(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.text_model.embeddings.token_embedding def set_input_embeddings(self, value): self.text_model.embeddings.token_embedding = value @add_start_docstrings_to_model_forward(CLIPSEG_TEXT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPSegTextConfig) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: Examples: ```python >>> from transformers import AutoTokenizer, CLIPSegTextModel >>> tokenizer = AutoTokenizer.from_pretrained("CIDAS/clipseg-rd64-refined") >>> model = CLIPSegTextModel.from_pretrained("CIDAS/clipseg-rd64-refined") >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_state = outputs.last_hidden_state >>> pooled_output = outputs.pooler_output # pooled (EOS token) states ```""" return self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) class CLIPSegVisionTransformer(nn.Module): # Copied from transformers.models.clip.modeling_clip.CLIPVisionTransformer.__init__ with CLIP->CLIPSeg def __init__(self, config: CLIPSegVisionConfig): super().__init__() self.config = config embed_dim = config.hidden_size self.embeddings = CLIPSegVisionEmbeddings(config) self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) self.encoder = CLIPSegEncoder(config) self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) @add_start_docstrings_to_model_forward(CLIPSEG_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPSegVisionConfig) # Copied from transformers.models.clip.modeling_clip.CLIPVisionTransformer.forward def forward( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") hidden_states = self.embeddings(pixel_values) hidden_states = self.pre_layrnorm(hidden_states) encoder_outputs = self.encoder( inputs_embeds=hidden_states, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] pooled_output = last_hidden_state[:, 0, :] pooled_output = self.post_layernorm(pooled_output) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class CLIPSegVisionModel(CLIPSegPreTrainedModel): config_class = CLIPSegVisionConfig main_input_name = "pixel_values" def __init__(self, config: CLIPSegVisionConfig): super().__init__(config) self.vision_model = CLIPSegVisionTransformer(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.vision_model.embeddings.patch_embedding @add_start_docstrings_to_model_forward(CLIPSEG_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPSegVisionConfig) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, CLIPSegVisionModel >>> processor = AutoProcessor.from_pretrained("CIDAS/clipseg-rd64-refined") >>> model = CLIPSegVisionModel.from_pretrained("CIDAS/clipseg-rd64-refined") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_state = outputs.last_hidden_state >>> pooled_output = outputs.pooler_output # pooled CLS states ```""" return self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) @add_start_docstrings(CLIPSEG_START_DOCSTRING) class CLIPSegModel(CLIPSegPreTrainedModel): config_class = CLIPSegConfig def __init__(self, config: CLIPSegConfig): super().__init__(config) if not isinstance(config.text_config, CLIPSegTextConfig): raise ValueError( "config.text_config is expected to be of type CLIPSegTextConfig but is of type" f" {type(config.text_config)}." ) if not isinstance(config.vision_config, CLIPSegVisionConfig): raise ValueError( "config.vision_config is expected to be of type CLIPSegVisionConfig but is of type" f" {type(config.vision_config)}." ) text_config = config.text_config vision_config = config.vision_config self.projection_dim = config.projection_dim self.text_embed_dim = text_config.hidden_size self.vision_embed_dim = vision_config.hidden_size self.text_model = CLIPSegTextTransformer(text_config) self.vision_model = CLIPSegVisionTransformer(vision_config) self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False) self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False) self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(CLIPSEG_TEXT_INPUTS_DOCSTRING) def get_text_features( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> torch.FloatTensor: r""" Returns: text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`CLIPSegTextModel`]. Examples: ```python >>> from transformers import AutoTokenizer, CLIPSegModel >>> tokenizer = AutoTokenizer.from_pretrained("CIDAS/clipseg-rd64-refined") >>> model = CLIPSegModel.from_pretrained("CIDAS/clipseg-rd64-refined") >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") >>> text_features = model.get_text_features(**inputs) ```""" # Use CLIPSEG model's config for some fields (if specified) instead of those of vision & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = text_outputs[1] text_features = self.text_projection(pooled_output) return text_features @add_start_docstrings_to_model_forward(CLIPSEG_VISION_INPUTS_DOCSTRING) def get_image_features( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> torch.FloatTensor: r""" Returns: image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the pooled output of [`CLIPSegVisionModel`]. Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, CLIPSegModel >>> processor = AutoProcessor.from_pretrained("CIDAS/clipseg-rd64-refined") >>> model = CLIPSegModel.from_pretrained("CIDAS/clipseg-rd64-refined") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="pt") >>> image_features = model.get_image_features(**inputs) ```""" # Use CLIPSEG model's config for some fields (if specified) instead of those of vision & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = vision_outputs[1] # pooled_output image_features = self.visual_projection(pooled_output) return image_features @add_start_docstrings_to_model_forward(CLIPSEG_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CLIPSegOutput, config_class=CLIPSegConfig) def forward( self, input_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, return_loss: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CLIPSegOutput]: r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, CLIPSegModel >>> processor = AutoProcessor.from_pretrained("CIDAS/clipseg-rd64-refined") >>> model = CLIPSegModel.from_pretrained("CIDAS/clipseg-rd64-refined") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor( ... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True ... ) >>> outputs = model(**inputs) >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score >>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities ```""" # Use CLIPSEG model's config for some fields (if specified) instead of those of vision & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) image_embeds = vision_outputs[1] image_embeds = self.visual_projection(image_embeds) text_embeds = text_outputs[1] text_embeds = self.text_projection(text_embeds) # normalized features image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True) text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True) # cosine similarity as logits logit_scale = self.logit_scale.exp() logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale logits_per_image = logits_per_text.t() loss = None if return_loss: loss = clipseg_loss(logits_per_text) if not return_dict: output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs) return ((loss,) + output) if loss is not None else output return CLIPSegOutput( loss=loss, logits_per_image=logits_per_image, logits_per_text=logits_per_text, text_embeds=text_embeds, image_embeds=image_embeds, text_model_output=text_outputs, vision_model_output=vision_outputs, ) class CLIPSegDecoderLayer(nn.Module): """ CLIPSeg decoder layer, which is identical to `CLIPSegEncoderLayer`, except that normalization is applied after self-attention/MLP, rather than before. """ # Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer.__init__ with CLIP->CLIPSeg def __init__(self, config: CLIPSegConfig): super().__init__() self.embed_dim = config.hidden_size self.self_attn = CLIPSegAttention(config) self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.mlp = CLIPSegMLP(config) self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, causal_attention_mask: torch.Tensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.FloatTensor]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. `(config.encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions, ) hidden_states = residual + hidden_states hidden_states = self.layer_norm1(hidden_states) residual = hidden_states hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states hidden_states = self.layer_norm2(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class CLIPSegDecoder(CLIPSegPreTrainedModel): def __init__(self, config: CLIPSegConfig): super().__init__(config) self.conditional_layer = config.conditional_layer self.film_mul = nn.Linear(config.projection_dim, config.reduce_dim) self.film_add = nn.Linear(config.projection_dim, config.reduce_dim) if config.use_complex_transposed_convolution: transposed_kernels = (config.vision_config.patch_size // 4, config.vision_config.patch_size // 4) self.transposed_convolution = nn.Sequential( nn.Conv2d(config.reduce_dim, config.reduce_dim, kernel_size=3, padding=1), nn.ReLU(), nn.ConvTranspose2d( config.reduce_dim, config.reduce_dim // 2, kernel_size=transposed_kernels[0], stride=transposed_kernels[0], ), nn.ReLU(), nn.ConvTranspose2d( config.reduce_dim // 2, 1, kernel_size=transposed_kernels[1], stride=transposed_kernels[1] ), ) else: self.transposed_convolution = nn.ConvTranspose2d( config.reduce_dim, 1, config.vision_config.patch_size, stride=config.vision_config.patch_size ) depth = len(config.extract_layers) self.reduces = nn.ModuleList( [nn.Linear(config.vision_config.hidden_size, config.reduce_dim) for _ in range(depth)] ) decoder_config = copy.deepcopy(config.vision_config) decoder_config.hidden_size = config.reduce_dim decoder_config.num_attention_heads = config.decoder_num_attention_heads decoder_config.intermediate_size = config.decoder_intermediate_size decoder_config.hidden_act = "relu" self.layers = nn.ModuleList([CLIPSegDecoderLayer(decoder_config) for _ in range(len(config.extract_layers))]) def forward( self, hidden_states: Tuple[torch.Tensor], conditional_embeddings: torch.Tensor, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = True, ): all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None activations = hidden_states[::-1] output = None for i, (activation, layer, reduce) in enumerate(zip(activations, self.layers, self.reduces)): if output is not None: output = reduce(activation) + output else: output = reduce(activation) if i == self.conditional_layer: output = self.film_mul(conditional_embeddings) * output.permute(1, 0, 2) + self.film_add( conditional_embeddings ) output = output.permute(1, 0, 2) layer_outputs = layer( output, attention_mask=None, causal_attention_mask=None, output_attentions=output_attentions ) output = layer_outputs[0] if output_hidden_states: all_hidden_states += (output,) if output_attentions: all_attentions += (layer_outputs[1],) output = output[:, 1:, :].permute(0, 2, 1) # remove cls token and reshape to [batch_size, reduce_dim, seq_len] size = int(math.sqrt(output.shape[2])) batch_size = conditional_embeddings.shape[0] output = output.view(batch_size, output.shape[1], size, size) logits = self.transposed_convolution(output).squeeze() if not return_dict: return tuple(v for v in [logits, all_hidden_states, all_attentions] if v is not None) return CLIPSegDecoderOutput( logits=logits, hidden_states=all_hidden_states, attentions=all_attentions, ) @add_start_docstrings( """ CLIPSeg model with a Transformer-based decoder on top for zero-shot and one-shot image segmentation. """, CLIPSEG_START_DOCSTRING, ) class CLIPSegForImageSegmentation(CLIPSegPreTrainedModel): config_class = CLIPSegConfig def __init__(self, config: CLIPSegConfig): super().__init__(config) self.config = config self.clip = CLIPSegModel(config) self.extract_layers = config.extract_layers self.decoder = CLIPSegDecoder(config) # Initialize weights and apply final processing self.post_init() def get_conditional_embeddings( self, batch_size: int = None, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, conditional_pixel_values: Optional[torch.Tensor] = None, ): if input_ids is not None: # compute conditional embeddings from texts if len(input_ids) != batch_size: raise ValueError("Make sure to pass as many prompt texts as there are query images") with torch.no_grad(): conditional_embeddings = self.clip.get_text_features( input_ids, attention_mask=attention_mask, position_ids=position_ids ) elif conditional_pixel_values is not None: # compute conditional embeddings from images if len(conditional_pixel_values) != batch_size: raise ValueError("Make sure to pass as many prompt images as there are query images") with torch.no_grad(): conditional_embeddings = self.clip.get_image_features(conditional_pixel_values) else: raise ValueError( "Invalid conditional, should be either provided as `input_ids` or `conditional_pixel_values`" ) return conditional_embeddings @add_start_docstrings_to_model_forward(CLIPSEG_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CLIPSegImageSegmentationOutput, config_class=CLIPSegTextConfig) def forward( self, input_ids: Optional[torch.FloatTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, conditional_pixel_values: Optional[torch.FloatTensor] = None, conditional_embeddings: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CLIPSegOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoProcessor, CLIPSegForImageSegmentation >>> from PIL import Image >>> import requests >>> processor = AutoProcessor.from_pretrained("CIDAS/clipseg-rd64-refined") >>> model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> texts = ["a cat", "a remote", "a blanket"] >>> inputs = processor(text=texts, images=[image] * len(texts), padding=True, return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> print(logits.shape) torch.Size([3, 352, 352]) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict # step 1: forward the query images through the frozen CLIP vision encoder with torch.no_grad(): vision_outputs = self.clip.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=True, # we need the intermediate hidden states return_dict=return_dict, ) pooled_output = self.clip.visual_projection(vision_outputs[1]) hidden_states = vision_outputs.hidden_states if return_dict else vision_outputs[2] # we add +1 here as the hidden states also include the initial embeddings activations = [hidden_states[i + 1] for i in self.extract_layers] # update vision_outputs if return_dict: vision_outputs = BaseModelOutputWithPooling( last_hidden_state=vision_outputs.last_hidden_state, pooler_output=vision_outputs.pooler_output, hidden_states=vision_outputs.hidden_states if output_hidden_states else None, attentions=vision_outputs.attentions, ) else: vision_outputs = ( vision_outputs[:2] + vision_outputs[3:] if not output_hidden_states else vision_outputs ) # step 2: compute conditional embeddings, either from text, images or an own provided embedding if conditional_embeddings is None: conditional_embeddings = self.get_conditional_embeddings( batch_size=pixel_values.shape[0], input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, conditional_pixel_values=conditional_pixel_values, ) else: if conditional_embeddings.shape[0] != pixel_values.shape[0]: raise ValueError( "Make sure to pass as many conditional embeddings as there are query images in the batch" ) if conditional_embeddings.shape[1] != self.config.projection_dim: raise ValueError( "Make sure that the feature dimension of the conditional embeddings matches" " `config.projection_dim`." ) # step 3: forward both the pooled output and the activations through the lightweight decoder to predict masks decoder_outputs = self.decoder( activations, conditional_embeddings, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) logits = decoder_outputs.logits if return_dict else decoder_outputs[0] loss = None if labels is not None: # move labels to the correct device to enable PP labels = labels.to(logits.device) loss_fn = nn.BCEWithLogitsLoss() loss = loss_fn(logits, labels) if not return_dict: output = (logits, conditional_embeddings, pooled_output, vision_outputs, decoder_outputs) return ((loss,) + output) if loss is not None else output return CLIPSegImageSegmentationOutput( loss=loss, logits=logits, conditional_embeddings=conditional_embeddings, pooled_output=pooled_output, vision_model_output=vision_outputs, decoder_output=decoder_outputs, )
transformers-main
src/transformers/models/clipseg/modeling_clipseg.py
# coding=utf-8 # Copyright 2023 Google Research, Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ EfficientNet model configuration""" from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP = { "google/efficientnet-b7": "https://huggingface.co/google/efficientnet-b7/resolve/main/config.json", } class EfficientNetConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`EfficientNetModel`]. It is used to instantiate an EfficientNet model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the EfficientNet [google/efficientnet-b7](https://huggingface.co/google/efficientnet-b7) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: num_channels (`int`, *optional*, defaults to 3): The number of input channels. image_size (`int`, *optional*, defaults to 600): The input image size. width_coefficient (`float`, *optional*, defaults to 2.0): Scaling coefficient for network width at each stage. depth_coefficient (`float`, *optional*, defaults to 3.1): Scaling coefficient for network depth at each stage. depth_divisor `int`, *optional*, defaults to 8): A unit of network width. kernel_sizes (`List[int]`, *optional*, defaults to `[3, 3, 5, 3, 5, 5, 3]`): List of kernel sizes to be used in each block. in_channels (`List[int]`, *optional*, defaults to `[32, 16, 24, 40, 80, 112, 192]`): List of input channel sizes to be used in each block for convolutional layers. out_channels (`List[int]`, *optional*, defaults to `[16, 24, 40, 80, 112, 192, 320]`): List of output channel sizes to be used in each block for convolutional layers. depthwise_padding (`List[int]`, *optional*, defaults to `[]`): List of block indices with square padding. strides (`List[int]`, *optional*, defaults to `[1, 2, 2, 2, 1, 2, 1]`): List of stride sizes to be used in each block for convolutional layers. num_block_repeats (`List[int]`, *optional*, defaults to `[1, 2, 2, 3, 3, 4, 1]`): List of the number of times each block is to repeated. expand_ratios (`List[int]`, *optional*, defaults to `[1, 6, 6, 6, 6, 6, 6]`): List of scaling coefficient of each block. squeeze_expansion_ratio (`float`, *optional*, defaults to 0.25): Squeeze expansion ratio. hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in each block. If string, `"gelu"`, `"relu"`, `"selu", `"gelu_new"`, `"silu"` and `"mish"` are supported. hiddem_dim (`int`, *optional*, defaults to 1280): The hidden dimension of the layer before the classification head. pooling_type (`str` or `function`, *optional*, defaults to `"mean"`): Type of final pooling to be applied before the dense classification head. Available options are [`"mean"`, `"max"`] initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. batch_norm_eps (`float`, *optional*, defaults to 1e-3): The epsilon used by the batch normalization layers. batch_norm_momentum (`float`, *optional*, defaults to 0.99): The momentum used by the batch normalization layers. dropout_rate (`float`, *optional*, defaults to 0.5): The dropout rate to be applied before final classifier layer. drop_connect_rate (`float`, *optional*, defaults to 0.2): The drop rate for skip connections. Example: ```python >>> from transformers import EfficientNetConfig, EfficientNetModel >>> # Initializing a EfficientNet efficientnet-b7 style configuration >>> configuration = EfficientNetConfig() >>> # Initializing a model (with random weights) from the efficientnet-b7 style configuration >>> model = EfficientNetModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "efficientnet" def __init__( self, num_channels: int = 3, image_size: int = 600, width_coefficient: float = 2.0, depth_coefficient: float = 3.1, depth_divisor: int = 8, kernel_sizes: List[int] = [3, 3, 5, 3, 5, 5, 3], in_channels: List[int] = [32, 16, 24, 40, 80, 112, 192], out_channels: List[int] = [16, 24, 40, 80, 112, 192, 320], depthwise_padding: List[int] = [], strides: List[int] = [1, 2, 2, 2, 1, 2, 1], num_block_repeats: List[int] = [1, 2, 2, 3, 3, 4, 1], expand_ratios: List[int] = [1, 6, 6, 6, 6, 6, 6], squeeze_expansion_ratio: float = 0.25, hidden_act: str = "swish", hidden_dim: int = 2560, pooling_type: str = "mean", initializer_range: float = 0.02, batch_norm_eps: float = 0.001, batch_norm_momentum: float = 0.99, dropout_rate: float = 0.5, drop_connect_rate: float = 0.2, **kwargs, ): super().__init__(**kwargs) self.num_channels = num_channels self.image_size = image_size self.width_coefficient = width_coefficient self.depth_coefficient = depth_coefficient self.depth_divisor = depth_divisor self.kernel_sizes = kernel_sizes self.in_channels = in_channels self.out_channels = out_channels self.depthwise_padding = depthwise_padding self.strides = strides self.num_block_repeats = num_block_repeats self.expand_ratios = expand_ratios self.squeeze_expansion_ratio = squeeze_expansion_ratio self.hidden_act = hidden_act self.hidden_dim = hidden_dim self.pooling_type = pooling_type self.initializer_range = initializer_range self.batch_norm_eps = batch_norm_eps self.batch_norm_momentum = batch_norm_momentum self.dropout_rate = dropout_rate self.drop_connect_rate = drop_connect_rate self.num_hidden_layers = sum(num_block_repeats) * 4 class EfficientNetOnnxConfig(OnnxConfig): torch_onnx_minimum_version = version.parse("1.11") @property def inputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def atol_for_validation(self) -> float: return 1e-5
transformers-main
src/transformers/models/efficientnet/configuration_efficientnet.py
# flake8: noqa # There's no way to ignore "F401 '...' imported but unused" warnings in this # module, but to preserve other warnings. So, don't check this module at all. # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _import_structure = { "configuration_efficientnet": [ "EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientNetConfig", "EfficientNetOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["image_processing_efficientnet"] = ["EfficientNetImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_efficientnet"] = [ "EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientNetForImageClassification", "EfficientNetModel", "EfficientNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
transformers-main
src/transformers/models/efficientnet/__init__.py
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for EfficientNet.""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL logger = logging.get_logger(__name__) class EfficientNetImageProcessor(BaseImageProcessor): r""" Constructs a EfficientNet image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by `do_resize` in `preprocess`. size (`Dict[str, int]` *optional*, defaults to `{"height": 346, "width": 346}`): Size of the image after `resize`. Can be overridden by `size` in `preprocess`. resample (`PILImageResampling` filter, *optional*, defaults to `PILImageResampling.NEAREST`): Resampling filter to use if resizing the image. Can be overridden by `resample` in `preprocess`. do_center_crop (`bool`, *optional*, defaults to `False`): Whether to center crop the image. If the input size is smaller than `crop_size` along any edge, the image is padded with 0's and then center cropped. Can be overridden by `do_center_crop` in `preprocess`. crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 289, "width": 289}`): Desired output size when applying center-cropping. Can be overridden by `crop_size` in `preprocess`. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` parameter in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the `preprocess` method. rescale_offset (`bool`, *optional*, defaults to `False`): Whether to rescale the image between [-scale_range, scale_range] instead of [0, scale_range]. Can be overridden by the `rescale_factor` parameter in the `preprocess` method. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. include_top (`bool`, *optional*, defaults to `True`): Whether to rescale the image again. Should be set to True if the inputs are used for image classification. """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PIL.Image.NEAREST, do_center_crop: bool = False, crop_size: Dict[str, int] = None, rescale_factor: Union[int, float] = 1 / 255, rescale_offset: bool = False, do_rescale: bool = True, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, include_top: bool = True, **kwargs, ) -> None: super().__init__(**kwargs) size = size if size is not None else {"height": 346, "width": 346} size = get_size_dict(size) crop_size = crop_size if crop_size is not None else {"height": 289, "width": 289} crop_size = get_size_dict(crop_size, param_name="crop_size") self.do_resize = do_resize self.size = size self.resample = resample self.do_center_crop = do_center_crop self.crop_size = crop_size self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.rescale_offset = rescale_offset self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD self.include_top = include_top # Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize with PILImageResampling.BILINEAR->PILImageResampling.NEAREST def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.NEAREST, data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize an image to `(size["height"], size["width"])`. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.NEAREST`): `PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.NEAREST`. data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. Returns: `np.ndarray`: The resized image. """ size = get_size_dict(size) if "height" not in size or "width" not in size: raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}") output_size = (size["height"], size["width"]) return resize(image, size=output_size, resample=resample, data_format=data_format, **kwargs) def rescale( self, image: np.ndarray, scale: Union[int, float], offset: bool = True, data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ): """ Rescale an image by a scale factor. If `offset` is `True`, the image has its values rescaled by `scale` and then offset by 1. If `scale` is 1/127.5, the image is rescaled between [-1, 1]. image = image * scale - 1 If `offset` is `False`, and `scale` is 1/255, the image is rescaled between [0, 1]. image = image * scale Args: image (`np.ndarray`): Image to rescale. scale (`int` or `float`): Scale to apply to the image. offset (`bool`, *optional*): Whether to scale the image in both negative and positive directions. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. """ rescaled_image = rescale(image, scale=scale, data_format=data_format, **kwargs) if offset: rescaled_image = rescaled_image - 1 return rescaled_image def preprocess( self, images: ImageInput, do_resize: bool = None, size: Dict[str, int] = None, resample=None, do_center_crop: bool = None, crop_size: Dict[str, int] = None, do_rescale: bool = None, rescale_factor: float = None, rescale_offset: bool = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, include_top: bool = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: ChannelDimension = ChannelDimension.FIRST, **kwargs, ) -> PIL.Image.Image: """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the image after `resize`. resample (`PILImageResampling`, *optional*, defaults to `self.resample`): PILImageResampling filter to use if resizing the image Only has an effect if `do_resize` is set to `True`. do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`): Whether to center crop the image. crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`): Size of the image after center crop. If one edge the image is smaller than `crop_size`, it will be padded with zeros and then cropped do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image values between [0 - 1]. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. rescale_offset (`bool`, *optional*, defaults to `self.rescale_offset`): Whether to rescale the image between [-scale_range, scale_range] instead of [0, scale_range]. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation. include_top (`bool`, *optional*, defaults to `self.include_top`): Rescales the image again for image classification if set to True. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - `None`: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `ChannelDimension.LAST`: image in (height, width, num_channels) format. """ do_resize = do_resize if do_resize is not None else self.do_resize resample = resample if resample is not None else self.resample do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor rescale_offset = rescale_offset if rescale_offset is not None else self.rescale_offset do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std include_top = include_top if include_top is not None else self.include_top size = size if size is not None else self.size size = get_size_dict(size) crop_size = crop_size if crop_size is not None else self.crop_size crop_size = get_size_dict(crop_size, param_name="crop_size") images = make_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True.") if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] if do_resize: images = [self.resize(image=image, size=size, resample=resample) for image in images] if do_center_crop: images = [self.center_crop(image=image, size=crop_size) for image in images] if do_rescale: images = [self.rescale(image=image, scale=rescale_factor, offset=rescale_offset) for image in images] if do_normalize: images = [self.normalize(image=image, mean=image_mean, std=image_std) for image in images] if include_top: images = [self.normalize(image=image, mean=[0, 0, 0], std=image_std) for image in images] images = [to_channel_dimension_format(image, data_format) for image in images] data = {"pixel_values": images} return BatchFeature(data=data, tensor_type=return_tensors)
transformers-main
src/transformers/models/efficientnet/image_processing_efficientnet.py
# coding=utf-8 # Copyright 2023 Google Research, Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch EfficientNet model.""" import math from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, ) from .configuration_efficientnet import EfficientNetConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "EfficientNetConfig" # Base docstring _CHECKPOINT_FOR_DOC = "google/efficientnet-b7" _EXPECTED_OUTPUT_SHAPE = [1, 768, 7, 7] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "google/efficientnet-b7" _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST = [ "google/efficientnet-b7", # See all EfficientNet models at https://huggingface.co/models?filter=efficientnet ] EFFICIENTNET_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`EfficientNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ EFFICIENTNET_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`AutoImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ def round_filters(config: EfficientNetConfig, num_channels: int): r""" Round number of filters based on depth multiplier. """ divisor = config.depth_divisor num_channels *= config.width_coefficient new_dim = max(divisor, int(num_channels + divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than 10%. if new_dim < 0.9 * num_channels: new_dim += divisor return int(new_dim) def correct_pad(kernel_size: Union[int, Tuple], adjust: bool = True): r""" Utility function to get the tuple padding value for the depthwise convolution. Args: kernel_size (`int` or `tuple`): Kernel size of the convolution layers. adjust (`bool`, *optional*, defaults to `True`): Adjusts padding value to apply to right and bottom sides of the input. """ if isinstance(kernel_size, int): kernel_size = (kernel_size, kernel_size) correct = (kernel_size[0] // 2, kernel_size[1] // 2) if adjust: return (correct[1] - 1, correct[1], correct[0] - 1, correct[0]) else: return (correct[1], correct[1], correct[0], correct[0]) class EfficientNetEmbeddings(nn.Module): r""" A module that corresponds to the stem module of the original work. """ def __init__(self, config: EfficientNetConfig): super().__init__() self.out_dim = round_filters(config, 32) self.padding = nn.ZeroPad2d(padding=(0, 1, 0, 1)) self.convolution = nn.Conv2d( config.num_channels, self.out_dim, kernel_size=3, stride=2, padding="valid", bias=False ) self.batchnorm = nn.BatchNorm2d(self.out_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum) self.activation = ACT2FN[config.hidden_act] def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: features = self.padding(pixel_values) features = self.convolution(features) features = self.batchnorm(features) features = self.activation(features) return features class EfficientNetDepthwiseConv2d(nn.Conv2d): def __init__( self, in_channels, depth_multiplier=1, kernel_size=3, stride=1, padding=0, dilation=1, bias=True, padding_mode="zeros", ): out_channels = in_channels * depth_multiplier super().__init__( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=in_channels, bias=bias, padding_mode=padding_mode, ) class EfficientNetExpansionLayer(nn.Module): r""" This corresponds to the expansion phase of each block in the original implementation. """ def __init__(self, config: EfficientNetConfig, in_dim: int, out_dim: int, stride: int): super().__init__() self.expand_conv = nn.Conv2d( in_channels=in_dim, out_channels=out_dim, kernel_size=1, padding="same", bias=False, ) self.expand_bn = nn.BatchNorm2d(num_features=out_dim, eps=config.batch_norm_eps) self.expand_act = ACT2FN[config.hidden_act] def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor: # Expand phase hidden_states = self.expand_conv(hidden_states) hidden_states = self.expand_bn(hidden_states) hidden_states = self.expand_act(hidden_states) return hidden_states class EfficientNetDepthwiseLayer(nn.Module): r""" This corresponds to the depthwise convolution phase of each block in the original implementation. """ def __init__( self, config: EfficientNetConfig, in_dim: int, stride: int, kernel_size: int, adjust_padding: bool, ): super().__init__() self.stride = stride conv_pad = "valid" if self.stride == 2 else "same" padding = correct_pad(kernel_size, adjust=adjust_padding) self.depthwise_conv_pad = nn.ZeroPad2d(padding=padding) self.depthwise_conv = EfficientNetDepthwiseConv2d( in_dim, kernel_size=kernel_size, stride=stride, padding=conv_pad, bias=False ) self.depthwise_norm = nn.BatchNorm2d( num_features=in_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum ) self.depthwise_act = ACT2FN[config.hidden_act] def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor: # Depthwise convolution if self.stride == 2: hidden_states = self.depthwise_conv_pad(hidden_states) hidden_states = self.depthwise_conv(hidden_states) hidden_states = self.depthwise_norm(hidden_states) hidden_states = self.depthwise_act(hidden_states) return hidden_states class EfficientNetSqueezeExciteLayer(nn.Module): r""" This corresponds to the Squeeze and Excitement phase of each block in the original implementation. """ def __init__(self, config: EfficientNetConfig, in_dim: int, expand_dim: int, expand: bool = False): super().__init__() self.dim = expand_dim if expand else in_dim self.dim_se = max(1, int(in_dim * config.squeeze_expansion_ratio)) self.squeeze = nn.AdaptiveAvgPool2d(output_size=1) self.reduce = nn.Conv2d( in_channels=self.dim, out_channels=self.dim_se, kernel_size=1, padding="same", ) self.expand = nn.Conv2d( in_channels=self.dim_se, out_channels=self.dim, kernel_size=1, padding="same", ) self.act_reduce = ACT2FN[config.hidden_act] self.act_expand = nn.Sigmoid() def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor: inputs = hidden_states hidden_states = self.squeeze(hidden_states) hidden_states = self.reduce(hidden_states) hidden_states = self.act_reduce(hidden_states) hidden_states = self.expand(hidden_states) hidden_states = self.act_expand(hidden_states) hidden_states = torch.mul(inputs, hidden_states) return hidden_states class EfficientNetFinalBlockLayer(nn.Module): r""" This corresponds to the final phase of each block in the original implementation. """ def __init__( self, config: EfficientNetConfig, in_dim: int, out_dim: int, stride: int, drop_rate: float, id_skip: bool ): super().__init__() self.apply_dropout = stride == 1 and not id_skip self.project_conv = nn.Conv2d( in_channels=in_dim, out_channels=out_dim, kernel_size=1, padding="same", bias=False, ) self.project_bn = nn.BatchNorm2d( num_features=out_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum ) self.dropout = nn.Dropout(p=drop_rate) def forward(self, embeddings: torch.FloatTensor, hidden_states: torch.FloatTensor) -> torch.Tensor: hidden_states = self.project_conv(hidden_states) hidden_states = self.project_bn(hidden_states) if self.apply_dropout: hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + embeddings return hidden_states class EfficientNetBlock(nn.Module): r""" This corresponds to the expansion and depthwise convolution phase of each block in the original implementation. Args: config ([`EfficientNetConfig`]): Model configuration class. in_dim (`int`): Number of input channels. out_dim (`int`): Number of output channels. stride (`int`): Stride size to be used in convolution layers. expand_ratio (`int`): Expand ratio to set the output dimensions for the expansion and squeeze-excite layers. kernel_size (`int`): Kernel size for the depthwise convolution layer. drop_rate (`float`): Dropout rate to be used in the final phase of each block. id_skip (`bool`): Whether to apply dropout and sum the final hidden states with the input embeddings during the final phase of each block. Set to `True` for the first block of each stage. adjust_padding (`bool`): Whether to apply padding to only right and bottom side of the input kernel before the depthwise convolution operation, set to `True` for inputs with odd input sizes. """ def __init__( self, config: EfficientNetConfig, in_dim: int, out_dim: int, stride: int, expand_ratio: int, kernel_size: int, drop_rate: float, id_skip: bool, adjust_padding: bool, ): super().__init__() self.expand_ratio = expand_ratio self.expand = True if self.expand_ratio != 1 else False expand_in_dim = in_dim * expand_ratio if self.expand: self.expansion = EfficientNetExpansionLayer( config=config, in_dim=in_dim, out_dim=expand_in_dim, stride=stride ) self.depthwise_conv = EfficientNetDepthwiseLayer( config=config, in_dim=expand_in_dim if self.expand else in_dim, stride=stride, kernel_size=kernel_size, adjust_padding=adjust_padding, ) self.squeeze_excite = EfficientNetSqueezeExciteLayer( config=config, in_dim=in_dim, expand_dim=expand_in_dim, expand=self.expand ) self.projection = EfficientNetFinalBlockLayer( config=config, in_dim=expand_in_dim if self.expand else in_dim, out_dim=out_dim, stride=stride, drop_rate=drop_rate, id_skip=id_skip, ) def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor: embeddings = hidden_states # Expansion and depthwise convolution phase if self.expand_ratio != 1: hidden_states = self.expansion(hidden_states) hidden_states = self.depthwise_conv(hidden_states) # Squeeze and excite phase hidden_states = self.squeeze_excite(hidden_states) hidden_states = self.projection(embeddings, hidden_states) return hidden_states class EfficientNetEncoder(nn.Module): r""" Forward propogates the embeddings through each EfficientNet block. Args: config ([`EfficientNetConfig`]): Model configuration class. """ def __init__(self, config: EfficientNetConfig): super().__init__() self.config = config self.depth_coefficient = config.depth_coefficient def round_repeats(repeats): # Round number of block repeats based on depth multiplier. return int(math.ceil(self.depth_coefficient * repeats)) num_base_blocks = len(config.in_channels) num_blocks = sum(round_repeats(n) for n in config.num_block_repeats) curr_block_num = 0 blocks = [] for i in range(num_base_blocks): in_dim = round_filters(config, config.in_channels[i]) out_dim = round_filters(config, config.out_channels[i]) stride = config.strides[i] kernel_size = config.kernel_sizes[i] expand_ratio = config.expand_ratios[i] for j in range(round_repeats(config.num_block_repeats[i])): id_skip = True if j == 0 else False stride = 1 if j > 0 else stride in_dim = out_dim if j > 0 else in_dim adjust_padding = False if curr_block_num in config.depthwise_padding else True drop_rate = config.drop_connect_rate * curr_block_num / num_blocks block = EfficientNetBlock( config=config, in_dim=in_dim, out_dim=out_dim, stride=stride, kernel_size=kernel_size, expand_ratio=expand_ratio, drop_rate=drop_rate, id_skip=id_skip, adjust_padding=adjust_padding, ) blocks.append(block) curr_block_num += 1 self.blocks = nn.ModuleList(blocks) self.top_conv = nn.Conv2d( in_channels=out_dim, out_channels=round_filters(config, 1280), kernel_size=1, padding="same", bias=False, ) self.top_bn = nn.BatchNorm2d( num_features=config.hidden_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum ) self.top_activation = ACT2FN[config.hidden_act] def forward( self, hidden_states: torch.FloatTensor, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> BaseModelOutputWithNoAttention: all_hidden_states = (hidden_states,) if output_hidden_states else None for block in self.blocks: hidden_states = block(hidden_states) if output_hidden_states: all_hidden_states += (hidden_states,) hidden_states = self.top_conv(hidden_states) hidden_states = self.top_bn(hidden_states) hidden_states = self.top_activation(hidden_states) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) return BaseModelOutputWithNoAttention( last_hidden_state=hidden_states, hidden_states=all_hidden_states, ) class EfficientNetPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = EfficientNetConfig base_model_prefix = "efficientnet" main_input_name = "pixel_values" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, EfficientNetBlock): module.gradient_checkpointing = value @add_start_docstrings( "The bare EfficientNet model outputting raw features without any specific head on top.", EFFICIENTNET_START_DOCSTRING, ) class EfficientNetModel(EfficientNetPreTrainedModel): def __init__(self, config: EfficientNetConfig): super().__init__(config) self.config = config self.embeddings = EfficientNetEmbeddings(config) self.encoder = EfficientNetEncoder(config) # Final pooling layer if config.pooling_type == "mean": self.pooler = nn.AvgPool2d(config.hidden_dim, ceil_mode=True) elif config.pooling_type == "max": self.pooler = nn.MaxPool2d(config.hidden_dim, ceil_mode=True) else: raise ValueError(f"config.pooling must be one of ['mean', 'max'] got {config.pooling}") # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(EFFICIENTNET_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndNoAttention, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: torch.FloatTensor = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPoolingAndNoAttention]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") embedding_output = self.embeddings(pixel_values) encoder_outputs = self.encoder( embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # Apply pooling last_hidden_state = encoder_outputs[0] pooled_output = self.pooler(last_hidden_state) # Reshape (batch_size, 1280, 1 , 1) -> (batch_size, 1280) pooled_output = pooled_output.reshape(pooled_output.shape[:2]) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, ) @add_start_docstrings( """ EfficientNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """, EFFICIENTNET_START_DOCSTRING, ) class EfficientNetForImageClassification(EfficientNetPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.efficientnet = EfficientNetModel(config) # Classifier head self.dropout = nn.Dropout(p=config.dropout_rate) self.classifier = nn.Linear(config.hidden_dim, self.num_labels) if self.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(EFFICIENTNET_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=ImageClassifierOutputWithNoAttention, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: torch.FloatTensor = None, labels: Optional[torch.LongTensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.efficientnet(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict) pooled_output = outputs.pooler_output if return_dict else outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=loss, logits=logits, hidden_states=outputs.hidden_states, )
transformers-main
src/transformers/models/efficientnet/modeling_efficientnet.py
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert EfficientNet checkpoints from the original repository. URL: https://github.com/keras-team/keras/blob/v2.11.0/keras/applications/efficientnet.py""" import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) model_classes = { "b0": efficientnet.EfficientNetB0, "b1": efficientnet.EfficientNetB1, "b2": efficientnet.EfficientNetB2, "b3": efficientnet.EfficientNetB3, "b4": efficientnet.EfficientNetB4, "b5": efficientnet.EfficientNetB5, "b6": efficientnet.EfficientNetB6, "b7": efficientnet.EfficientNetB7, } CONFIG_MAP = { "b0": { "hidden_dim": 1280, "width_coef": 1.0, "depth_coef": 1.0, "image_size": 224, "dropout_rate": 0.2, "dw_padding": [], }, "b1": { "hidden_dim": 1280, "width_coef": 1.0, "depth_coef": 1.1, "image_size": 240, "dropout_rate": 0.2, "dw_padding": [16], }, "b2": { "hidden_dim": 1408, "width_coef": 1.1, "depth_coef": 1.2, "image_size": 260, "dropout_rate": 0.3, "dw_padding": [5, 8, 16], }, "b3": { "hidden_dim": 1536, "width_coef": 1.2, "depth_coef": 1.4, "image_size": 300, "dropout_rate": 0.3, "dw_padding": [5, 18], }, "b4": { "hidden_dim": 1792, "width_coef": 1.4, "depth_coef": 1.8, "image_size": 380, "dropout_rate": 0.4, "dw_padding": [6], }, "b5": { "hidden_dim": 2048, "width_coef": 1.6, "depth_coef": 2.2, "image_size": 456, "dropout_rate": 0.4, "dw_padding": [13, 27], }, "b6": { "hidden_dim": 2304, "width_coef": 1.8, "depth_coef": 2.6, "image_size": 528, "dropout_rate": 0.5, "dw_padding": [31], }, "b7": { "hidden_dim": 2560, "width_coef": 2.0, "depth_coef": 3.1, "image_size": 600, "dropout_rate": 0.5, "dw_padding": [18], }, } def get_efficientnet_config(model_name): config = EfficientNetConfig() config.hidden_dim = CONFIG_MAP[model_name]["hidden_dim"] config.width_coefficient = CONFIG_MAP[model_name]["width_coef"] config.depth_coefficient = CONFIG_MAP[model_name]["depth_coef"] config.image_size = CONFIG_MAP[model_name]["image_size"] config.dropout_rate = CONFIG_MAP[model_name]["dropout_rate"] config.depthwise_padding = CONFIG_MAP[model_name]["dw_padding"] repo_id = "huggingface/label-files" filename = "imagenet-1k-id2label.json" config.num_labels = 1000 id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} return config # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im def convert_image_processor(model_name): size = CONFIG_MAP[model_name]["image_size"] preprocessor = EfficientNetImageProcessor( size={"height": size, "width": size}, image_mean=[0.485, 0.456, 0.406], image_std=[0.47853944, 0.4732864, 0.47434163], do_center_crop=False, ) return preprocessor # here we list all keys to be renamed (original name on the left, our name on the right) def rename_keys(original_param_names): block_names = [v.split("_")[0].split("block")[1] for v in original_param_names if v.startswith("block")] block_names = sorted(set(block_names)) num_blocks = len(block_names) block_name_mapping = {b: str(i) for b, i in zip(block_names, range(num_blocks))} rename_keys = [] rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight")) rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight")) rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias")) rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean")) rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var")) for b in block_names: hf_b = block_name_mapping[b] rename_keys.append((f"block{b}_expand_conv/kernel:0", f"encoder.blocks.{hf_b}.expansion.expand_conv.weight")) rename_keys.append((f"block{b}_expand_bn/gamma:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.weight")) rename_keys.append((f"block{b}_expand_bn/beta:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.bias")) rename_keys.append( (f"block{b}_expand_bn/moving_mean:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.running_mean") ) rename_keys.append( (f"block{b}_expand_bn/moving_variance:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.running_var") ) rename_keys.append( (f"block{b}_dwconv/depthwise_kernel:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight") ) rename_keys.append((f"block{b}_bn/gamma:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight")) rename_keys.append((f"block{b}_bn/beta:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias")) rename_keys.append( (f"block{b}_bn/moving_mean:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean") ) rename_keys.append( (f"block{b}_bn/moving_variance:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var") ) rename_keys.append((f"block{b}_se_reduce/kernel:0", f"encoder.blocks.{hf_b}.squeeze_excite.reduce.weight")) rename_keys.append((f"block{b}_se_reduce/bias:0", f"encoder.blocks.{hf_b}.squeeze_excite.reduce.bias")) rename_keys.append((f"block{b}_se_expand/kernel:0", f"encoder.blocks.{hf_b}.squeeze_excite.expand.weight")) rename_keys.append((f"block{b}_se_expand/bias:0", f"encoder.blocks.{hf_b}.squeeze_excite.expand.bias")) rename_keys.append( (f"block{b}_project_conv/kernel:0", f"encoder.blocks.{hf_b}.projection.project_conv.weight") ) rename_keys.append((f"block{b}_project_bn/gamma:0", f"encoder.blocks.{hf_b}.projection.project_bn.weight")) rename_keys.append((f"block{b}_project_bn/beta:0", f"encoder.blocks.{hf_b}.projection.project_bn.bias")) rename_keys.append( (f"block{b}_project_bn/moving_mean:0", f"encoder.blocks.{hf_b}.projection.project_bn.running_mean") ) rename_keys.append( (f"block{b}_project_bn/moving_variance:0", f"encoder.blocks.{hf_b}.projection.project_bn.running_var") ) rename_keys.append(("top_conv/kernel:0", "encoder.top_conv.weight")) rename_keys.append(("top_bn/gamma:0", "encoder.top_bn.weight")) rename_keys.append(("top_bn/beta:0", "encoder.top_bn.bias")) rename_keys.append(("top_bn/moving_mean:0", "encoder.top_bn.running_mean")) rename_keys.append(("top_bn/moving_variance:0", "encoder.top_bn.running_var")) key_mapping = {} for item in rename_keys: if item[0] in original_param_names: key_mapping[item[0]] = "efficientnet." + item[1] key_mapping["predictions/kernel:0"] = "classifier.weight" key_mapping["predictions/bias:0"] = "classifier.bias" return key_mapping def replace_params(hf_params, tf_params, key_mapping): for key, value in tf_params.items(): if "normalization" in key: continue hf_key = key_mapping[key] if "_conv" in key and "kernel" in key: new_hf_value = torch.from_numpy(value).permute(3, 2, 0, 1) elif "depthwise_kernel" in key: new_hf_value = torch.from_numpy(value).permute(2, 3, 0, 1) elif "kernel" in key: new_hf_value = torch.from_numpy(np.transpose(value)) else: new_hf_value = torch.from_numpy(value) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(new_hf_value) @torch.no_grad() def convert_efficientnet_checkpoint(model_name, pytorch_dump_folder_path, save_model, push_to_hub): """ Copy/paste/tweak model's weights to our EfficientNet structure. """ # Load original model original_model = model_classes[model_name]( include_top=True, weights="imagenet", input_tensor=None, input_shape=None, pooling=None, classes=1000, classifier_activation="softmax", ) tf_params = original_model.trainable_variables tf_non_train_params = original_model.non_trainable_variables tf_params = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: tf_params[param.name] = param.numpy() tf_param_names = list(tf_params.keys()) # Load HuggingFace model config = get_efficientnet_config(model_name) hf_model = EfficientNetForImageClassification(config).eval() hf_params = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("Converting parameters...") key_mapping = rename_keys(tf_param_names) replace_params(hf_params, tf_params, key_mapping) # Initialize preprocessor and preprocess input image preprocessor = convert_image_processor(model_name) inputs = preprocessor(images=prepare_img(), return_tensors="pt") # HF model inference hf_model.eval() with torch.no_grad(): outputs = hf_model(**inputs) hf_logits = outputs.logits.detach().numpy() # Original model inference original_model.trainable = False image_size = CONFIG_MAP[model_name]["image_size"] img = prepare_img().resize((image_size, image_size), resample=PIL.Image.NEAREST) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) original_logits = original_model.predict(x) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(original_logits, hf_logits, atol=1e-3), "The predicted logits are not the same." print("Model outputs match!") if save_model: # Create folder to save model if not os.path.isdir(pytorch_dump_folder_path): os.mkdir(pytorch_dump_folder_path) # Save converted model and image processor hf_model.save_pretrained(pytorch_dump_folder_path) preprocessor.save_pretrained(pytorch_dump_folder_path) if push_to_hub: # Push model and image processor to hub print(f"Pushing converted {model_name} to the hub...") model_name = f"efficientnet-{model_name}" preprocessor.push_to_hub(model_name) hf_model.push_to_hub(model_name) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="b0", type=str, help="Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].", ) parser.add_argument( "--pytorch_dump_folder_path", default="hf_model", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--save_model", action="store_true", help="Save model to local") parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") args = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
transformers-main
src/transformers/models/efficientnet/convert_efficientnet_to_pytorch.py
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ MGP-STR model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP = { "alibaba-damo/mgp-str-base": "https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json", } class MgpstrConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of an [`MgpstrModel`]. It is used to instantiate an MGP-STR model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the MGP-STR [alibaba-damo/mgp-str-base](https://huggingface.co/alibaba-damo/mgp-str-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: image_size (`List[int]`, *optional*, defaults to `[32, 128]`): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 4): The size (resolution) of each patch. num_channels (`int`, *optional*, defaults to 3): The number of input channels. max_token_length (`int`, *optional*, defaults to 27): The max number of output tokens. num_character_labels (`int`, *optional*, defaults to 38): The number of classes for character head . num_bpe_labels (`int`, *optional*, defaults to 50257): The number of classes for bpe head . num_wordpiece_labels (`int`, *optional*, defaults to 30522): The number of classes for wordpiece head . hidden_size (`int`, *optional*, defaults to 768): The embedding dimension. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. mlp_ratio (`float`, *optional*, defaults to 4.0): The ratio of mlp hidden dim to embedding dim. qkv_bias (`bool`, *optional*, defaults to `True`): Whether to add a bias to the queries, keys and values. distilled (`bool`, *optional*, defaults to `False`): Model includes a distillation token and head as in DeiT models. layer_norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon used by the layer normalization layers. drop_rate (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings, encoder. attn_drop_rate (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. drop_path_rate (`float`, *optional*, defaults to 0.0): The stochastic depth rate. output_a3_attentions (`bool`, *optional*, defaults to `False`): Whether or not the model should returns A^3 module attentions. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. Example: ```python >>> from transformers import MgpstrConfig, MgpstrForSceneTextRecognition >>> # Initializing a Mgpstr mgp-str-base style configuration >>> configuration = MgpstrConfig() >>> # Initializing a model (with random weights) from the mgp-str-base style configuration >>> model = MgpstrForSceneTextRecognition(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "mgp-str" def __init__( self, image_size=[32, 128], patch_size=4, num_channels=3, max_token_length=27, num_character_labels=38, num_bpe_labels=50257, num_wordpiece_labels=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, mlp_ratio=4.0, qkv_bias=True, distilled=False, layer_norm_eps=1e-5, drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.0, output_a3_attentions=False, initializer_range=0.02, **kwargs, ): super().__init__(**kwargs) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.max_token_length = max_token_length self.num_character_labels = num_character_labels self.num_bpe_labels = num_bpe_labels self.num_wordpiece_labels = num_wordpiece_labels self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.mlp_ratio = mlp_ratio self.distilled = distilled self.layer_norm_eps = layer_norm_eps self.drop_rate = drop_rate self.qkv_bias = qkv_bias self.attn_drop_rate = attn_drop_rate self.drop_path_rate = drop_path_rate self.output_a3_attentions = output_a3_attentions self.initializer_range = initializer_range
transformers-main
src/transformers/models/mgp_str/configuration_mgp_str.py
# flake8: noqa # There's no way to ignore "F401 '...' imported but unused" warnings in this # module, but to preserve other warnings. So, don't check this module at all. # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _import_structure = { "configuration_mgp_str": ["MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP", "MgpstrConfig"], "processing_mgp_str": ["MgpstrProcessor"], "tokenization_mgp_str": ["MgpstrTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_mgp_str"] = [ "MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST", "MgpstrModel", "MgpstrPreTrainedModel", "MgpstrForSceneTextRecognition", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers-main
src/transformers/models/mgp_str/__init__.py
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for MGT-STR CHAR.""" import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {"mgp-str": 27} class MgpstrTokenizer(PreTrainedTokenizer): """ Construct a MGP-STR char tokenizer. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. unk_token (`str`, *optional*, defaults to `"[GO]"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (`str`, *optional*, defaults to `"[GO]"`): The beginning of sequence token. eos_token (`str`, *optional*, defaults to `"[s]"`): The end of sequence token. pad_token (`str` or `tokenizers.AddedToken`, *optional*, , defaults to `"[GO]"`): A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by attention mechanisms or loss computation. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__(self, vocab_file, unk_token="[GO]", bos_token="[GO]", eos_token="[s]", pad_token="[GO]", **kwargs): super().__init__( unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, pad_token=pad_token, **kwargs, ) with open(vocab_file, encoding="utf-8") as vocab_handle: self.vocab = json.load(vocab_handle) self.decoder = {v: k for k, v in self.vocab.items()} @property def vocab_size(self): return len(self.vocab) def get_vocab(self): return dict(self.vocab, **self.added_tokens_encoder) def _tokenize(self, text): """Tokenize a string.""" char_tokens = [] for s in text: char_tokens.extend(s) return char_tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.vocab.get(token, self.vocab.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index) def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error("Vocabulary path ({}) should be a directory".format(save_directory)) return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.vocab, indent=2, sort_keys=True, ensure_ascii=False) + "\n") return (vocab_file,)
transformers-main
src/transformers/models/mgp_str/tokenization_mgp_str.py
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Processor class for MGP-STR.""" import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class DecodeType(ExplicitEnum): CHARACTER = "char" BPE = "bpe" WORDPIECE = "wp" SUPPORTED_ANNOTATION_FORMATS = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class MgpstrProcessor(ProcessorMixin): r""" Constructs a MGP-STR processor which wraps an image processor and MGP-STR tokenizers into a single [`MgpstrProcessor`] offers all the functionalities of `ViTImageProcessor`] and [`MgpstrTokenizer`]. See the [`~MgpstrProcessor.__call__`] and [`~MgpstrProcessor.batch_decode`] for more information. Args: image_processor (`ViTImageProcessor`): An instance of `ViTImageProcessor`. The image processor is a required input. tokenizer ([`MgpstrTokenizer`]): The tokenizer is a required input. """ attributes = ["image_processor", "char_tokenizer"] image_processor_class = "ViTImageProcessor" char_tokenizer_class = "MgpstrTokenizer" def __init__(self, image_processor=None, tokenizer=None, **kwargs): feature_extractor = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead.", FutureWarning, ) feature_extractor = kwargs.pop("feature_extractor") image_processor = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") self.char_tokenizer = tokenizer self.bpe_tokenizer = AutoTokenizer.from_pretrained("gpt2") self.wp_tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") super().__init__(image_processor, tokenizer) def __call__(self, text=None, images=None, return_tensors=None, **kwargs): """ When used in normal mode, this method forwards all its arguments to ViTImageProcessor's [`~ViTImageProcessor.__call__`] and returns its output. This method also forwards the `text` and `kwargs` arguments to MgpstrTokenizer's [`~MgpstrTokenizer.__call__`] if `text` is not `None` to encode the text. Please refer to the doctsring of the above methods for more information. """ if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process.") if images is not None: inputs = self.image_processor(images, return_tensors=return_tensors, **kwargs) if text is not None: encodings = self.char_tokenizer(text, return_tensors=return_tensors, **kwargs) if text is None: return inputs elif images is None: return encodings else: inputs["labels"] = encodings["input_ids"] return inputs def batch_decode(self, sequences): """ Convert a list of lists of token ids into a list of strings by calling decode. Args: sequences (`torch.Tensor`): List of tokenized input ids. Returns: `Dict[str, any]`: Dictionary of all the outputs of the decoded results. generated_text (`List[str]`): The final results after fusion of char, bpe, and wp. scores (`List[float]`): The final scores after fusion of char, bpe, and wp. char_preds (`List[str]`): The list of character decoded sentences. bpe_preds (`List[str]`): The list of bpe decoded sentences. wp_preds (`List[str]`): The list of wp decoded sentences. This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ char_preds, bpe_preds, wp_preds = sequences batch_size = char_preds.size(0) char_strs, char_scores = self._decode_helper(char_preds, "char") bpe_strs, bpe_scores = self._decode_helper(bpe_preds, "bpe") wp_strs, wp_scores = self._decode_helper(wp_preds, "wp") final_strs = [] final_scores = [] for i in range(batch_size): scores = [char_scores[i], bpe_scores[i], wp_scores[i]] strs = [char_strs[i], bpe_strs[i], wp_strs[i]] max_score_index = scores.index(max(scores)) final_strs.append(strs[max_score_index]) final_scores.append(scores[max_score_index]) out = {} out["generated_text"] = final_strs out["scores"] = final_scores out["char_preds"] = char_strs out["bpe_preds"] = bpe_strs out["wp_preds"] = wp_strs return out def _decode_helper(self, pred_logits, format): """ Convert a list of lists of bpe token ids into a list of strings by calling bpe tokenizer. Args: pred_logits (`torch.Tensor`): List of model prediction logits. format (`Union[DecoderType, str]`): Type of model prediction. Must be one of ['char', 'bpe', 'wp']. Returns: `tuple`: dec_strs(`str`): The decode strings of model prediction. conf_scores(`List[float]`): The confidence score of model prediction. """ if format == DecodeType.CHARACTER: decoder = self.char_decode eos_token = 1 eos_str = "[s]" elif format == DecodeType.BPE: decoder = self.bpe_decode eos_token = 2 eos_str = "#" elif format == DecodeType.WORDPIECE: decoder = self.wp_decode eos_token = 102 eos_str = "[SEP]" else: raise ValueError(f"Format {format} is not supported.") dec_strs, conf_scores = [], [] batch_size = pred_logits.size(0) batch_max_length = pred_logits.size(1) _, preds_index = pred_logits.topk(1, dim=-1, largest=True, sorted=True) preds_index = preds_index.view(-1, batch_max_length)[:, 1:] preds_str = decoder(preds_index) preds_max_prob, _ = torch.nn.functional.softmax(pred_logits, dim=2).max(dim=2) preds_max_prob = preds_max_prob[:, 1:] for index in range(batch_size): pred_eos = preds_str[index].find(eos_str) pred = preds_str[index][:pred_eos] pred_index = preds_index[index].cpu().tolist() pred_eos_index = pred_index.index(eos_token) if eos_token in pred_index else -1 pred_max_prob = preds_max_prob[index][: pred_eos_index + 1] confidence_score = pred_max_prob.cumprod(dim=0)[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(pred) conf_scores.append(confidence_score) return dec_strs, conf_scores def char_decode(self, sequences): """ Convert a list of lists of char token ids into a list of strings by calling char tokenizer. Args: sequences (`torch.Tensor`): List of tokenized input ids. Returns: `List[str]`: The list of char decoded sentences. """ decode_strs = [seq.replace(" ", "") for seq in self.char_tokenizer.batch_decode(sequences)] return decode_strs def bpe_decode(self, sequences): """ Convert a list of lists of bpe token ids into a list of strings by calling bpe tokenizer. Args: sequences (`torch.Tensor`): List of tokenized input ids. Returns: `List[str]`: The list of bpe decoded sentences. """ return self.bpe_tokenizer.batch_decode(sequences) def wp_decode(self, sequences): """ Convert a list of lists of word piece token ids into a list of strings by calling word piece tokenizer. Args: sequences (`torch.Tensor`): List of tokenized input ids. Returns: `List[str]`: The list of wp decoded sentences. """ decode_strs = [seq.replace(" ", "") for seq in self.wp_tokenizer.batch_decode(sequences)] return decode_strs
transformers-main
src/transformers/models/mgp_str/processing_mgp_str.py
# coding=utf-8 # Copyright 2023 Alibaba Research and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch MGP-STR model.""" import collections.abc from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn.functional as F import torch.utils.checkpoint from torch import nn from ...modeling_outputs import BaseModelOutput from ...modeling_utils import PreTrainedModel from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_mgp_str import MgpstrConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "MgpstrConfig" _TOKENIZER_FOR_DOC = "MgpstrTokenizer" # Base docstring _CHECKPOINT_FOR_DOC = "alibaba-damo/mgp-str-base" MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST = [ "alibaba-damo/mgp-str-base", # See all MGP-STR models at https://huggingface.co/models?filter=mgp-str ] # Copied from transformers.models.beit.modeling_beit.drop_path def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return input keep_prob = 1 - drop_prob shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) random_tensor.floor_() # binarize output = input.div(keep_prob) * random_tensor return output # Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->Mgpstr class MgpstrDropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob: Optional[float] = None) -> None: super().__init__() self.drop_prob = drop_prob def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return drop_path(hidden_states, self.drop_prob, self.training) def extra_repr(self) -> str: return "p={}".format(self.drop_prob) @dataclass class MgpstrModelOutput(ModelOutput): """ Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states. Args: logits (`tuple(torch.FloatTensor)` of shape `(batch_size, config.num_character_labels)`): Tuple of `torch.FloatTensor` (one for the output of character of shape `(batch_size, config.max_token_length, config.num_character_labels)`, + one for the output of bpe of shape `(batch_size, config.max_token_length, config.num_bpe_labels)`, + one for the output of wordpiece of shape `(batch_size, config.max_token_length, config.num_wordpiece_labels)`) . Classification scores (before SoftMax) of character, bpe and wordpiece. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, config.max_token_length, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. a3_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_a3_attentions=True` is passed or when `config.output_a3_attentions=True`): Tuple of `torch.FloatTensor` (one for the attention of character, + one for the attention of bpe`, + one for the attention of wordpiece) of shape `(batch_size, config.max_token_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ logits: Tuple[torch.FloatTensor] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None a3_attentions: Optional[Tuple[torch.FloatTensor]] = None class MgpstrEmbeddings(nn.Module): """2D Image to Patch Embedding""" def __init__(self, config: MgpstrConfig): super().__init__() image_size = ( config.image_size if isinstance(config.image_size, collections.abc.Iterable) else (config.image_size, config.image_size) ) patch_size = ( config.patch_size if isinstance(config.patch_size, collections.abc.Iterable) else (config.patch_size, config.patch_size) ) self.image_size = image_size self.patch_size = patch_size self.grid_size = (image_size[0] // patch_size[0], image_size[1] // patch_size[1]) self.num_patches = self.grid_size[0] * self.grid_size[1] self.num_tokens = 2 if config.distilled else 1 self.proj = nn.Conv2d(config.num_channels, config.hidden_size, kernel_size=patch_size, stride=patch_size) self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) self.pos_embed = nn.Parameter(torch.zeros(1, self.num_patches + self.num_tokens, config.hidden_size)) self.pos_drop = nn.Dropout(p=config.drop_rate) def forward(self, pixel_values): batch_size, channel, height, width = pixel_values.shape if height != self.image_size[0] or width != self.image_size[1]: raise ValueError( f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})." ) patch_embeddings = self.proj(pixel_values) patch_embeddings = patch_embeddings.flatten(2).transpose(1, 2) # BCHW -> BNC cls_tokens = self.cls_token.expand(batch_size, -1, -1) embedding_output = torch.cat((cls_tokens, patch_embeddings), dim=1) embedding_output = embedding_output + self.pos_embed embedding_output = self.pos_drop(embedding_output) return embedding_output class MgpstrMlp(nn.Module): """MLP as used in Vision Transformer, MLP-Mixer and related networks""" def __init__(self, config: MgpstrConfig, hidden_features): super().__init__() hidden_features = hidden_features or config.hidden_size self.fc1 = nn.Linear(config.hidden_size, hidden_features) self.act = nn.GELU() self.fc2 = nn.Linear(hidden_features, config.hidden_size) self.drop = nn.Dropout(config.drop_rate) def forward(self, hidden_states): hidden_states = self.fc1(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.drop(hidden_states) hidden_states = self.fc2(hidden_states) hidden_states = self.drop(hidden_states) return hidden_states class MgpstrAttention(nn.Module): def __init__(self, config: MgpstrConfig): super().__init__() self.num_heads = config.num_attention_heads head_dim = config.hidden_size // config.num_attention_heads self.scale = head_dim**-0.5 self.qkv = nn.Linear(config.hidden_size, config.hidden_size * 3, bias=config.qkv_bias) self.attn_drop = nn.Dropout(config.attn_drop_rate) self.proj = nn.Linear(config.hidden_size, config.hidden_size) self.proj_drop = nn.Dropout(config.drop_rate) def forward(self, hidden_states): batch_size, num, channel = hidden_states.shape qkv = ( self.qkv(hidden_states) .reshape(batch_size, num, 3, self.num_heads, channel // self.num_heads) .permute(2, 0, 3, 1, 4) ) query, key, value = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) attention_probs = (query @ key.transpose(-2, -1)) * self.scale attention_probs = attention_probs.softmax(dim=-1) attention_probs = self.attn_drop(attention_probs) context_layer = (attention_probs @ value).transpose(1, 2).reshape(batch_size, num, channel) context_layer = self.proj(context_layer) context_layer = self.proj_drop(context_layer) return (context_layer, attention_probs) class MgpstrLayer(nn.Module): def __init__(self, config: MgpstrConfig, drop_path=None): super().__init__() self.norm1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.attn = MgpstrAttention(config) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = MgpstrDropPath(drop_path) if drop_path is not None else nn.Identity() self.norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) mlp_hidden_dim = int(config.hidden_size * config.mlp_ratio) self.mlp = MgpstrMlp(config, mlp_hidden_dim) def forward(self, hidden_states): self_attention_outputs = self.attn(self.norm1(hidden_states)) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1] # first residual connection hidden_states = self.drop_path(attention_output) + hidden_states # second residual connection is done here layer_output = hidden_states + self.drop_path(self.mlp(self.norm2(hidden_states))) outputs = (layer_output, outputs) return outputs class MgpstrEncoder(nn.Module): def __init__(self, config: MgpstrConfig): super().__init__() # stochastic depth decay rule dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)] self.blocks = nn.Sequential( *[MgpstrLayer(config=config, drop_path=dpr[i]) for i in range(config.num_hidden_layers)] ) def forward(self, hidden_states, output_attentions=False, output_hidden_states=False, return_dict=True): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for _, blk in enumerate(self.blocks): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = blk(hidden_states) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class MgpstrA3Module(nn.Module): def __init__(self, config: MgpstrConfig): super().__init__() self.token_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.tokenLearner = nn.Sequential( nn.Conv2d(config.hidden_size, config.hidden_size, kernel_size=(1, 1), stride=1, groups=8, bias=False), nn.Conv2d(config.hidden_size, config.max_token_length, kernel_size=(1, 1), stride=1, bias=False), ) self.feat = nn.Conv2d( config.hidden_size, config.hidden_size, kernel_size=(1, 1), stride=1, groups=8, bias=False ) self.norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states): hidden_states = self.token_norm(hidden_states) hidden_states = hidden_states.transpose(1, 2).unsqueeze(-1) selected = self.tokenLearner(hidden_states) selected = selected.flatten(2) attentions = F.softmax(selected, dim=-1) feat = self.feat(hidden_states) feat = feat.flatten(2).transpose(1, 2) feat = torch.einsum("...si,...id->...sd", attentions, feat) a3_out = self.norm(feat) return (a3_out, attentions) class MgpstrPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MgpstrConfig base_model_prefix = "mgp_str" def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: """Initialize the weights""" if isinstance(module, MgpstrEmbeddings): nn.init.trunc_normal_(module.pos_embed, mean=0.0, std=self.config.initializer_range) nn.init.trunc_normal_(module.cls_token, mean=0.0, std=self.config.initializer_range) elif isinstance(module, (nn.Linear, nn.Conv2d)): module.weight.data = nn.init.trunc_normal_(module.weight.data, mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def _set_gradient_checkpointing(self, module: MgpstrEncoder, value: bool = False) -> None: if isinstance(module, MgpstrEncoder): module.gradient_checkpointing = value MGP_STR_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MgpstrConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ MGP_STR_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare MGP-STR Model transformer outputting raw hidden-states without any specific head on top.", MGP_STR_START_DOCSTRING, ) class MgpstrModel(MgpstrPreTrainedModel): def __init__(self, config: MgpstrConfig): super().__init__(config) self.config = config self.embeddings = MgpstrEmbeddings(config) self.encoder = MgpstrEncoder(config) def get_input_embeddings(self) -> nn.Module: return self.embeddings.proj @add_start_docstrings_to_model_forward(MGP_STR_INPUTS_DOCSTRING) def forward(self, pixel_values, output_attentions=None, output_hidden_states=None, return_dict=None): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") embedding_output = self.embeddings(pixel_values) encoder_outputs = self.encoder( embedding_output, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return encoder_outputs return BaseModelOutput( last_hidden_state=encoder_outputs.last_hidden_state, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """ MGP-STR Model transformer with three classification heads on top (three A^3 modules and three linear layer on top of the transformer encoder output) for scene text recognition (STR) . """, MGP_STR_START_DOCSTRING, ) class MgpstrForSceneTextRecognition(MgpstrPreTrainedModel): config_class = MgpstrConfig main_input_name = "pixel_values" def __init__(self, config: MgpstrConfig) -> None: super().__init__(config) self.num_labels = config.num_labels self.mgp_str = MgpstrModel(config) self.char_a3_module = MgpstrA3Module(config) self.bpe_a3_module = MgpstrA3Module(config) self.wp_a3_module = MgpstrA3Module(config) self.char_head = nn.Linear(config.hidden_size, config.num_character_labels) self.bpe_head = nn.Linear(config.hidden_size, config.num_bpe_labels) self.wp_head = nn.Linear(config.hidden_size, config.num_wordpiece_labels) @add_start_docstrings_to_model_forward(MGP_STR_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=MgpstrModelOutput, config_class=MgpstrConfig) def forward( self, pixel_values, output_attentions=None, output_a3_attentions=None, output_hidden_states=None, return_dict=None, ): r""" output_a3_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of a3 modules. See `a3_attentions` under returned tensors for more detail. Returns: Example: ```python >>> from transformers import ( ... MgpstrProcessor, ... MgpstrForSceneTextRecognition, ... ) >>> import requests >>> from PIL import Image >>> # load image from the IIIT-5k dataset >>> url = "https://i.postimg.cc/ZKwLg2Gw/367-14.png" >>> image = Image.open(requests.get(url, stream=True).raw).convert("RGB") >>> processor = MgpstrProcessor.from_pretrained("alibaba-damo/mgp-str-base") >>> pixel_values = processor(images=image, return_tensors="pt").pixel_values >>> model = MgpstrForSceneTextRecognition.from_pretrained("alibaba-damo/mgp-str-base") >>> # inference >>> outputs = model(pixel_values) >>> out_strs = processor.batch_decode(outputs.logits) >>> out_strs["generated_text"] '["ticket"]' ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict mgp_outputs = self.mgp_str( pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = mgp_outputs[0] char_a3_out, char_attention = self.char_a3_module(sequence_output) bpe_a3_out, bpe_attention = self.bpe_a3_module(sequence_output) wp_a3_out, wp_attention = self.wp_a3_module(sequence_output) char_logits = self.char_head(char_a3_out) bpe_logits = self.bpe_head(bpe_a3_out) wp_logits = self.wp_head(wp_a3_out) all_a3_attentions = (char_attention, bpe_attention, wp_attention) if output_a3_attentions else None all_logits = (char_logits, bpe_logits, wp_logits) if not return_dict: outputs = (all_logits, all_a3_attentions) + mgp_outputs[1:] return tuple(output for output in outputs if output is not None) return MgpstrModelOutput( logits=all_logits, hidden_states=mgp_outputs.hidden_states, attentions=mgp_outputs.attentions, a3_attentions=all_a3_attentions, )
transformers-main
src/transformers/models/mgp_str/modeling_mgp_str.py
# coding=utf-8 # # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for MobileBERT.""" import collections import os import unicodedata from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": {"mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"} } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {"mobilebert-uncased": 512} PRETRAINED_INIT_CONFIGURATION = {} # Copied from transformers.models.bert.tokenization_bert.load_vocab def load_vocab(vocab_file): """Loads a vocabulary file into a dictionary.""" vocab = collections.OrderedDict() with open(vocab_file, "r", encoding="utf-8") as reader: tokens = reader.readlines() for index, token in enumerate(tokens): token = token.rstrip("\n") vocab[token] = index return vocab # Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize def whitespace_tokenize(text): """Runs basic whitespace cleaning and splitting on a piece of text.""" text = text.strip() if not text: return [] tokens = text.split() return tokens # Copied from transformers.models.bert.tokenization_bert.BertTokenizer with BERT->MobileBERT,Bert->MobileBert class MobileBertTokenizer(PreTrainedTokenizer): r""" Construct a MobileBERT tokenizer. Based on WordPiece. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): File containing the vocabulary. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. do_basic_tokenize (`bool`, *optional*, defaults to `True`): Whether or not to do basic tokenization before WordPiece. never_split (`Iterable`, *optional*): Collection of tokens which will never be split during tokenization. Only has an effect when `do_basic_tokenize=True` unk_token (`str`, *optional*, defaults to `"[UNK]"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"[PAD]"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original MobileBERT). """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, vocab_file, do_lower_case=True, do_basic_tokenize=True, never_split=None, unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]", tokenize_chinese_chars=True, strip_accents=None, **kwargs, ): super().__init__( do_lower_case=do_lower_case, do_basic_tokenize=do_basic_tokenize, never_split=never_split, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, **kwargs, ) if not os.path.isfile(vocab_file): raise ValueError( f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" " model use `tokenizer = MobileBertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) self.vocab = load_vocab(vocab_file) self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()]) self.do_basic_tokenize = do_basic_tokenize if do_basic_tokenize: self.basic_tokenizer = BasicTokenizer( do_lower_case=do_lower_case, never_split=never_split, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, ) self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=self.unk_token) @property def do_lower_case(self): return self.basic_tokenizer.do_lower_case @property def vocab_size(self): return len(self.vocab) def get_vocab(self): return dict(self.vocab, **self.added_tokens_encoder) def _tokenize(self, text): split_tokens = [] if self.do_basic_tokenize: for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens): # If the token is part of the never_split set if token in self.basic_tokenizer.never_split: split_tokens.append(token) else: split_tokens += self.wordpiece_tokenizer.tokenize(token) else: split_tokens = self.wordpiece_tokenizer.tokenize(text) return split_tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.vocab.get(token, self.vocab.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.ids_to_tokens.get(index, self.unk_token) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" out_string = " ".join(tokens).replace(" ##", "").strip() return out_string def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A MobileBERT sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A MobileBERT sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: index = 0 if os.path.isdir(save_directory): vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory with open(vocab_file, "w", encoding="utf-8") as writer: for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) index = token_index writer.write(token + "\n") index += 1 return (vocab_file,) # Copied from transformers.models.bert.tokenization_bert.BasicTokenizer class BasicTokenizer(object): """ Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). Args: do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. never_split (`Iterable`, *optional*): Collection of tokens which will never be split during tokenization. Only has an effect when `do_basic_tokenize=True` tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). do_split_on_punc (`bool`, *optional*, defaults to `True`): In some instances we want to skip the basic punctuation splitting so that later tokenization can capture the full context of the words, such as contractions. """ def __init__( self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None, do_split_on_punc=True, ): if never_split is None: never_split = [] self.do_lower_case = do_lower_case self.never_split = set(never_split) self.tokenize_chinese_chars = tokenize_chinese_chars self.strip_accents = strip_accents self.do_split_on_punc = do_split_on_punc def tokenize(self, text, never_split=None): """ Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer. Args: never_split (`List[str]`, *optional*) Kept for backward compatibility purposes. Now implemented directly at the base class level (see [`PreTrainedTokenizer.tokenize`]) List of token not to split. """ # union() returns a new set by concatenating the two sets. never_split = self.never_split.union(set(never_split)) if never_split else self.never_split text = self._clean_text(text) # This was added on November 1st, 2018 for the multilingual and Chinese # models. This is also applied to the English models now, but it doesn't # matter since the English models were not trained on any Chinese data # and generally don't have any Chinese data in them (there are Chinese # characters in the vocabulary because Wikipedia does have some Chinese # words in the English Wikipedia.). if self.tokenize_chinese_chars: text = self._tokenize_chinese_chars(text) # prevents treating the same character with different unicode codepoints as different characters unicode_normalized_text = unicodedata.normalize("NFC", text) orig_tokens = whitespace_tokenize(unicode_normalized_text) split_tokens = [] for token in orig_tokens: if token not in never_split: if self.do_lower_case: token = token.lower() if self.strip_accents is not False: token = self._run_strip_accents(token) elif self.strip_accents: token = self._run_strip_accents(token) split_tokens.extend(self._run_split_on_punc(token, never_split)) output_tokens = whitespace_tokenize(" ".join(split_tokens)) return output_tokens def _run_strip_accents(self, text): """Strips accents from a piece of text.""" text = unicodedata.normalize("NFD", text) output = [] for char in text: cat = unicodedata.category(char) if cat == "Mn": continue output.append(char) return "".join(output) def _run_split_on_punc(self, text, never_split=None): """Splits punctuation on a piece of text.""" if not self.do_split_on_punc or (never_split is not None and text in never_split): return [text] chars = list(text) i = 0 start_new_word = True output = [] while i < len(chars): char = chars[i] if _is_punctuation(char): output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[-1].append(char) i += 1 return ["".join(x) for x in output] def _tokenize_chinese_chars(self, text): """Adds whitespace around any CJK character.""" output = [] for char in text: cp = ord(char) if self._is_chinese_char(cp): output.append(" ") output.append(char) output.append(" ") else: output.append(char) return "".join(output) def _is_chinese_char(self, cp): """Checks whether CP is the codepoint of a CJK character.""" # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x20000 and cp <= 0x2A6DF) # or (cp >= 0x2A700 and cp <= 0x2B73F) # or (cp >= 0x2B740 and cp <= 0x2B81F) # or (cp >= 0x2B820 and cp <= 0x2CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2F800 and cp <= 0x2FA1F) # ): # return True return False def _clean_text(self, text): """Performs invalid character removal and whitespace cleanup on text.""" output = [] for char in text: cp = ord(char) if cp == 0 or cp == 0xFFFD or _is_control(char): continue if _is_whitespace(char): output.append(" ") else: output.append(char) return "".join(output) # Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer class WordpieceTokenizer(object): """Runs WordPiece tokenization.""" def __init__(self, vocab, unk_token, max_input_chars_per_word=100): self.vocab = vocab self.unk_token = unk_token self.max_input_chars_per_word = max_input_chars_per_word def tokenize(self, text): """ Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform tokenization using the given vocabulary. For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`. Args: text: A single token or whitespace separated tokens. This should have already been passed through *BasicTokenizer*. Returns: A list of wordpiece tokens. """ output_tokens = [] for token in whitespace_tokenize(text): chars = list(token) if len(chars) > self.max_input_chars_per_word: output_tokens.append(self.unk_token) continue is_bad = False start = 0 sub_tokens = [] while start < len(chars): end = len(chars) cur_substr = None while start < end: substr = "".join(chars[start:end]) if start > 0: substr = "##" + substr if substr in self.vocab: cur_substr = substr break end -= 1 if cur_substr is None: is_bad = True break sub_tokens.append(cur_substr) start = end if is_bad: output_tokens.append(self.unk_token) else: output_tokens.extend(sub_tokens) return output_tokens
transformers-main
src/transformers/models/mobilebert/tokenization_mobilebert.py
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, mobilebert_config_file, pytorch_dump_path): # Initialise PyTorch model config = MobileBertConfig.from_json_file(mobilebert_config_file) print(f"Building PyTorch model from configuration: {config}") model = MobileBertForPreTraining(config) # Load weights from tf checkpoint model = load_tf_weights_in_mobilebert(model, config, tf_checkpoint_path) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}") torch.save(model.state_dict(), pytorch_dump_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) args = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
transformers-main
src/transformers/models/mobilebert/convert_mobilebert_original_tf_checkpoint_to_pytorch.py
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _import_structure = { "configuration_mobilebert": [ "MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileBertConfig", "MobileBertOnnxConfig", ], "tokenization_mobilebert": ["MobileBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_mobilebert_fast"] = ["MobileBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_mobilebert"] = [ "MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileBertForMaskedLM", "MobileBertForMultipleChoice", "MobileBertForNextSentencePrediction", "MobileBertForPreTraining", "MobileBertForQuestionAnswering", "MobileBertForSequenceClassification", "MobileBertForTokenClassification", "MobileBertLayer", "MobileBertModel", "MobileBertPreTrainedModel", "load_tf_weights_in_mobilebert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_mobilebert"] = [ "TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileBertForMaskedLM", "TFMobileBertForMultipleChoice", "TFMobileBertForNextSentencePrediction", "TFMobileBertForPreTraining", "TFMobileBertForQuestionAnswering", "TFMobileBertForSequenceClassification", "TFMobileBertForTokenClassification", "TFMobileBertMainLayer", "TFMobileBertModel", "TFMobileBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers-main
src/transformers/models/mobilebert/__init__.py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 MobileBERT model.""" from __future__ import annotations import warnings from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import ( TFBaseModelOutput, TFBaseModelOutputWithPooling, TFMaskedLMOutput, TFMultipleChoiceModelOutput, TFNextSentencePredictorOutput, TFQuestionAnsweringModelOutput, TFSequenceClassifierOutput, TFTokenClassifierOutput, ) from ...modeling_tf_utils import ( TFMaskedLanguageModelingLoss, TFModelInputType, TFMultipleChoiceLoss, TFNextSentencePredictionLoss, TFPreTrainedModel, TFQuestionAnsweringLoss, TFSequenceClassificationLoss, TFTokenClassificationLoss, get_initializer, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_mobilebert import MobileBertConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "google/mobilebert-uncased" _CONFIG_FOR_DOC = "MobileBertConfig" # TokenClassification docstring _CHECKPOINT_FOR_TOKEN_CLASSIFICATION = "vumichien/mobilebert-finetuned-ner" _TOKEN_CLASS_EXPECTED_OUTPUT = "['I-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'I-LOC', 'O', 'I-LOC', 'I-LOC']" _TOKEN_CLASS_EXPECTED_LOSS = 0.03 # QuestionAnswering docstring _CHECKPOINT_FOR_QA = "vumichien/mobilebert-uncased-squad-v2" _QA_EXPECTED_OUTPUT = "'a nice puppet'" _QA_EXPECTED_LOSS = 3.98 _QA_TARGET_START_INDEX = 12 _QA_TARGET_END_INDEX = 13 # SequenceClassification docstring _CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "vumichien/emo-mobilebert" _SEQ_CLASS_EXPECTED_OUTPUT = "'others'" _SEQ_CLASS_EXPECTED_LOSS = "4.72" TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "google/mobilebert-uncased", # See all MobileBERT models at https://huggingface.co/models?filter=mobilebert ] # Copied from transformers.models.bert.modeling_tf_bert.TFBertPreTrainingLoss class TFMobileBertPreTrainingLoss: """ Loss function suitable for BERT-like pretraining, that is, the task of pretraining a language model by combining NSP + MLM. .. note:: Any label of -100 will be ignored (along with the corresponding logits) in the loss computation. """ def hf_compute_loss(self, labels: tf.Tensor, logits: tf.Tensor) -> tf.Tensor: loss_fn = tf.keras.losses.SparseCategoricalCrossentropy( from_logits=True, reduction=tf.keras.losses.Reduction.NONE ) # Clip negative labels to zero here to avoid NaNs and errors - those positions will get masked later anyway unmasked_lm_losses = loss_fn(y_true=tf.nn.relu(labels["labels"]), y_pred=logits[0]) # make sure only labels that are not equal to -100 # are taken into account for the loss computation lm_loss_mask = tf.cast(labels["labels"] != -100, dtype=unmasked_lm_losses.dtype) masked_lm_losses = unmasked_lm_losses * lm_loss_mask reduced_masked_lm_loss = tf.reduce_sum(masked_lm_losses) / tf.reduce_sum(lm_loss_mask) # Clip negative labels to zero here to avoid NaNs and errors - those positions will get masked later anyway unmasked_ns_loss = loss_fn(y_true=tf.nn.relu(labels["next_sentence_label"]), y_pred=logits[1]) ns_loss_mask = tf.cast(labels["next_sentence_label"] != -100, dtype=unmasked_ns_loss.dtype) masked_ns_loss = unmasked_ns_loss * ns_loss_mask reduced_masked_ns_loss = tf.reduce_sum(masked_ns_loss) / tf.reduce_sum(ns_loss_mask) return tf.reshape(reduced_masked_lm_loss + reduced_masked_ns_loss, (1,)) class TFMobileBertIntermediate(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense(config.intermediate_size, name="dense") if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act def call(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class TFLayerNorm(tf.keras.layers.LayerNormalization): def __init__(self, feat_size, *args, **kwargs): super().__init__(*args, **kwargs) class TFNoNorm(tf.keras.layers.Layer): def __init__(self, feat_size, epsilon=None, **kwargs): super().__init__(**kwargs) self.feat_size = feat_size def build(self, input_shape): self.bias = self.add_weight("bias", shape=[self.feat_size], initializer="zeros") self.weight = self.add_weight("weight", shape=[self.feat_size], initializer="ones") super().build(input_shape) def call(self, inputs: tf.Tensor): return inputs * self.weight + self.bias NORM2FN = {"layer_norm": TFLayerNorm, "no_norm": TFNoNorm} class TFMobileBertEmbeddings(tf.keras.layers.Layer): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config, **kwargs): super().__init__(**kwargs) self.trigram_input = config.trigram_input self.embedding_size = config.embedding_size self.config = config self.hidden_size = config.hidden_size self.max_position_embeddings = config.max_position_embeddings self.initializer_range = config.initializer_range self.embedding_transformation = tf.keras.layers.Dense(config.hidden_size, name="embedding_transformation") # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = NORM2FN[config.normalization_type]( config.hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm" ) self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob) def build(self, input_shape): with tf.name_scope("word_embeddings"): self.weight = self.add_weight( name="weight", shape=[self.config.vocab_size, self.embedding_size], initializer=get_initializer(initializer_range=self.initializer_range), ) with tf.name_scope("token_type_embeddings"): self.token_type_embeddings = self.add_weight( name="embeddings", shape=[self.config.type_vocab_size, self.hidden_size], initializer=get_initializer(initializer_range=self.initializer_range), ) with tf.name_scope("position_embeddings"): self.position_embeddings = self.add_weight( name="embeddings", shape=[self.max_position_embeddings, self.hidden_size], initializer=get_initializer(initializer_range=self.initializer_range), ) super().build(input_shape) def call(self, input_ids=None, position_ids=None, token_type_ids=None, inputs_embeds=None, training=False): """ Applies embedding based on inputs tensor. Returns: final_embeddings (`tf.Tensor`): output embedding tensor. """ assert not (input_ids is None and inputs_embeds is None) if input_ids is not None: check_embeddings_within_bounds(input_ids, self.config.vocab_size) inputs_embeds = tf.gather(params=self.weight, indices=input_ids) input_shape = shape_list(inputs_embeds)[:-1] if token_type_ids is None: token_type_ids = tf.fill(dims=input_shape, value=0) if self.trigram_input: # From the paper MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited # Devices (https://arxiv.org/abs/2004.02984) # # The embedding table in BERT models accounts for a substantial proportion of model size. To compress # the embedding layer, we reduce the embedding dimension to 128 in MobileBERT. # Then, we apply a 1D convolution with kernel size 3 on the raw token embedding to produce a 512 # dimensional output. inputs_embeds = tf.concat( [ tf.pad(inputs_embeds[:, 1:], ((0, 0), (0, 1), (0, 0))), inputs_embeds, tf.pad(inputs_embeds[:, :-1], ((0, 0), (1, 0), (0, 0))), ], axis=2, ) if self.trigram_input or self.embedding_size != self.hidden_size: inputs_embeds = self.embedding_transformation(inputs_embeds) if position_ids is None: position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0) position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids) token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids) final_embeddings = inputs_embeds + position_embeds + token_type_embeds final_embeddings = self.LayerNorm(inputs=final_embeddings) final_embeddings = self.dropout(inputs=final_embeddings, training=training) return final_embeddings class TFMobileBertSelfAttention(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads}" ) self.num_attention_heads = config.num_attention_heads self.output_attentions = config.output_attentions assert config.hidden_size % config.num_attention_heads == 0 self.attention_head_size = int(config.true_hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = tf.keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" ) self.key = tf.keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key" ) self.value = tf.keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" ) self.dropout = tf.keras.layers.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x, batch_size): # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] x = tf.reshape(x, (batch_size, -1, self.num_attention_heads, self.attention_head_size)) return tf.transpose(x, perm=[0, 2, 1, 3]) def call( self, query_tensor, key_tensor, value_tensor, attention_mask, head_mask, output_attentions, training=False ): batch_size = shape_list(attention_mask)[0] mixed_query_layer = self.query(query_tensor) mixed_key_layer = self.key(key_tensor) mixed_value_layer = self.value(value_tensor) query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) key_layer = self.transpose_for_scores(mixed_key_layer, batch_size) value_layer = self.transpose_for_scores(mixed_value_layer, batch_size) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = tf.matmul( query_layer, key_layer, transpose_b=True ) # (batch size, num_heads, seq_len_q, seq_len_k) dk = tf.cast(shape_list(key_layer)[-1], dtype=attention_scores.dtype) # scale attention_scores attention_scores = attention_scores / tf.math.sqrt(dk) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in TFMobileBertModel call() function) attention_mask = tf.cast(attention_mask, dtype=attention_scores.dtype) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = stable_softmax(attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs, training=training) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = tf.matmul(attention_probs, value_layer) context_layer = tf.transpose(context_layer, perm=[0, 2, 1, 3]) context_layer = tf.reshape( context_layer, (batch_size, -1, self.all_head_size) ) # (batch_size, seq_len_q, all_head_size) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs class TFMobileBertSelfOutput(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.use_bottleneck = config.use_bottleneck self.dense = tf.keras.layers.Dense( config.true_hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = NORM2FN[config.normalization_type]( config.true_hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm" ) if not self.use_bottleneck: self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) def call(self, hidden_states, residual_tensor, training=False): hidden_states = self.dense(hidden_states) if not self.use_bottleneck: hidden_states = self.dropout(hidden_states, training=training) hidden_states = self.LayerNorm(hidden_states + residual_tensor) return hidden_states class TFMobileBertAttention(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.self = TFMobileBertSelfAttention(config, name="self") self.mobilebert_output = TFMobileBertSelfOutput(config, name="output") def prune_heads(self, heads): raise NotImplementedError def call( self, query_tensor, key_tensor, value_tensor, layer_input, attention_mask, head_mask, output_attentions, training=False, ): self_outputs = self.self( query_tensor, key_tensor, value_tensor, attention_mask, head_mask, output_attentions, training=training ) attention_output = self.mobilebert_output(self_outputs[0], layer_input, training=training) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class TFOutputBottleneck(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense(config.hidden_size, name="dense") self.LayerNorm = NORM2FN[config.normalization_type]( config.hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm" ) self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) def call(self, hidden_states, residual_tensor, training=False): layer_outputs = self.dense(hidden_states) layer_outputs = self.dropout(layer_outputs, training=training) layer_outputs = self.LayerNorm(layer_outputs + residual_tensor) return layer_outputs class TFMobileBertOutput(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.use_bottleneck = config.use_bottleneck self.dense = tf.keras.layers.Dense( config.true_hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = NORM2FN[config.normalization_type]( config.true_hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm" ) if not self.use_bottleneck: self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) else: self.bottleneck = TFOutputBottleneck(config, name="bottleneck") def call(self, hidden_states, residual_tensor_1, residual_tensor_2, training=False): hidden_states = self.dense(hidden_states) if not self.use_bottleneck: hidden_states = self.dropout(hidden_states, training=training) hidden_states = self.LayerNorm(hidden_states + residual_tensor_1) else: hidden_states = self.LayerNorm(hidden_states + residual_tensor_1) hidden_states = self.bottleneck(hidden_states, residual_tensor_2) return hidden_states class TFBottleneckLayer(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense(config.intra_bottleneck_size, name="dense") self.LayerNorm = NORM2FN[config.normalization_type]( config.intra_bottleneck_size, epsilon=config.layer_norm_eps, name="LayerNorm" ) def call(self, inputs): hidden_states = self.dense(inputs) hidden_states = self.LayerNorm(hidden_states) return hidden_states class TFBottleneck(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.key_query_shared_bottleneck = config.key_query_shared_bottleneck self.use_bottleneck_attention = config.use_bottleneck_attention self.bottleneck_input = TFBottleneckLayer(config, name="input") if self.key_query_shared_bottleneck: self.attention = TFBottleneckLayer(config, name="attention") def call(self, hidden_states): # This method can return three different tuples of values. These different values make use of bottlenecks, # which are linear layers used to project the hidden states to a lower-dimensional vector, reducing memory # usage. These linear layer have weights that are learned during training. # # If `config.use_bottleneck_attention`, it will return the result of the bottleneck layer four times for the # key, query, value, and "layer input" to be used by the attention layer. # This bottleneck is used to project the hidden. This last layer input will be used as a residual tensor # in the attention self output, after the attention scores have been computed. # # If not `config.use_bottleneck_attention` and `config.key_query_shared_bottleneck`, this will return # four values, three of which have been passed through a bottleneck: the query and key, passed through the same # bottleneck, and the residual layer to be applied in the attention self output, through another bottleneck. # # Finally, in the last case, the values for the query, key and values are the hidden states without bottleneck, # and the residual layer will be this value passed through a bottleneck. bottlenecked_hidden_states = self.bottleneck_input(hidden_states) if self.use_bottleneck_attention: return (bottlenecked_hidden_states,) * 4 elif self.key_query_shared_bottleneck: shared_attention_input = self.attention(hidden_states) return (shared_attention_input, shared_attention_input, hidden_states, bottlenecked_hidden_states) else: return (hidden_states, hidden_states, hidden_states, bottlenecked_hidden_states) class TFFFNOutput(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense(config.true_hidden_size, name="dense") self.LayerNorm = NORM2FN[config.normalization_type]( config.true_hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm" ) def call(self, hidden_states, residual_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.LayerNorm(hidden_states + residual_tensor) return hidden_states class TFFFNLayer(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.intermediate = TFMobileBertIntermediate(config, name="intermediate") self.mobilebert_output = TFFFNOutput(config, name="output") def call(self, hidden_states): intermediate_output = self.intermediate(hidden_states) layer_outputs = self.mobilebert_output(intermediate_output, hidden_states) return layer_outputs class TFMobileBertLayer(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.use_bottleneck = config.use_bottleneck self.num_feedforward_networks = config.num_feedforward_networks self.attention = TFMobileBertAttention(config, name="attention") self.intermediate = TFMobileBertIntermediate(config, name="intermediate") self.mobilebert_output = TFMobileBertOutput(config, name="output") if self.use_bottleneck: self.bottleneck = TFBottleneck(config, name="bottleneck") if config.num_feedforward_networks > 1: self.ffn = [TFFFNLayer(config, name=f"ffn.{i}") for i in range(config.num_feedforward_networks - 1)] def call(self, hidden_states, attention_mask, head_mask, output_attentions, training=False): if self.use_bottleneck: query_tensor, key_tensor, value_tensor, layer_input = self.bottleneck(hidden_states) else: query_tensor, key_tensor, value_tensor, layer_input = [hidden_states] * 4 attention_outputs = self.attention( query_tensor, key_tensor, value_tensor, layer_input, attention_mask, head_mask, output_attentions, training=training, ) attention_output = attention_outputs[0] s = (attention_output,) if self.num_feedforward_networks != 1: for i, ffn_module in enumerate(self.ffn): attention_output = ffn_module(attention_output) s += (attention_output,) intermediate_output = self.intermediate(attention_output) layer_output = self.mobilebert_output(intermediate_output, attention_output, hidden_states, training=training) outputs = ( (layer_output,) + attention_outputs[1:] + ( tf.constant(0), query_tensor, key_tensor, value_tensor, layer_input, attention_output, intermediate_output, ) + s ) # add attentions if we output them return outputs class TFMobileBertEncoder(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.layer = [TFMobileBertLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)] def call( self, hidden_states, attention_mask, head_mask, output_attentions, output_hidden_states, return_dict, training=False, ): all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module( hidden_states, attention_mask, head_mask[i], output_attentions, training=training ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) class TFMobileBertPooler(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.do_activate = config.classifier_activation if self.do_activate: self.dense = tf.keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), activation="tanh", name="dense", ) def call(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] if not self.do_activate: return first_token_tensor else: pooled_output = self.dense(first_token_tensor) return pooled_output class TFMobileBertPredictionHeadTransform(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) if isinstance(config.hidden_act, str): self.transform_act_fn = get_tf_activation(config.hidden_act) else: self.transform_act_fn = config.hidden_act self.LayerNorm = NORM2FN["layer_norm"](config.hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm") def call(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class TFMobileBertLMPredictionHead(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.transform = TFMobileBertPredictionHeadTransform(config, name="transform") self.config = config def build(self, input_shape): self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias") self.dense = self.add_weight( shape=(self.config.hidden_size - self.config.embedding_size, self.config.vocab_size), initializer="zeros", trainable=True, name="dense/weight", ) self.decoder = self.add_weight( shape=(self.config.vocab_size, self.config.embedding_size), initializer="zeros", trainable=True, name="decoder/weight", ) super().build(input_shape) def get_output_embeddings(self): return self def set_output_embeddings(self, value): self.decoder = value self.config.vocab_size = shape_list(value)[0] def get_bias(self): return {"bias": self.bias} def set_bias(self, value): self.bias = value["bias"] self.config.vocab_size = shape_list(value["bias"])[0] def call(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = tf.matmul(hidden_states, tf.concat([tf.transpose(self.decoder), self.dense], axis=0)) hidden_states = hidden_states + self.bias return hidden_states class TFMobileBertMLMHead(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.predictions = TFMobileBertLMPredictionHead(config, name="predictions") def call(self, sequence_output): prediction_scores = self.predictions(sequence_output) return prediction_scores @keras_serializable class TFMobileBertMainLayer(tf.keras.layers.Layer): config_class = MobileBertConfig def __init__(self, config, add_pooling_layer=True, **kwargs): super().__init__(**kwargs) self.config = config self.num_hidden_layers = config.num_hidden_layers self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.return_dict = config.use_return_dict self.embeddings = TFMobileBertEmbeddings(config, name="embeddings") self.encoder = TFMobileBertEncoder(config, name="encoder") self.pooler = TFMobileBertPooler(config, name="pooler") if add_pooling_layer else None def get_input_embeddings(self): return self.embeddings def set_input_embeddings(self, value): self.embeddings.weight = value self.embeddings.vocab_size = shape_list(value)[0] def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ raise NotImplementedError @unpack_inputs def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, ): if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if attention_mask is None: attention_mask = tf.fill(input_shape, 1) if token_type_ids is None: token_type_ids = tf.fill(input_shape, 0) embedding_output = self.embeddings(input_ids, position_ids, token_type_ids, inputs_embeds, training=training) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. extended_attention_mask = tf.reshape(attention_mask, (input_shape[0], 1, 1, input_shape[1])) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype) one_cst = tf.constant(1.0, dtype=embedding_output.dtype) ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype) extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.num_hidden_layers encoder_outputs = self.encoder( embedding_output, extended_attention_mask, head_mask, output_attentions, output_hidden_states, return_dict, training=training, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return ( sequence_output, pooled_output, ) + encoder_outputs[1:] return TFBaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class TFMobileBertPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MobileBertConfig base_model_prefix = "mobilebert" @dataclass class TFMobileBertForPreTrainingOutput(ModelOutput): """ Output type of [`TFMobileBertForPreTraining`]. Args: prediction_logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). seq_relationship_logits (`tf.Tensor` of shape `(batch_size, 2)`): Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: tf.Tensor | None = None prediction_logits: tf.Tensor = None seq_relationship_logits: tf.Tensor = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None MOBILEBERT_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Parameters: config ([`MobileBertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ MOBILEBERT_INPUTS_DOCSTRING = r""" Args: input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare MobileBert Model transformer outputting raw hidden-states without any specific head on top.", MOBILEBERT_START_DOCSTRING, ) class TFMobileBertModel(TFMobileBertPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert") @unpack_inputs @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[Tuple, TFBaseModelOutputWithPooling]: outputs = self.mobilebert( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs @add_start_docstrings( """ MobileBert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next sentence prediction (classification)` head. """, MOBILEBERT_START_DOCSTRING, ) class TFMobileBertForPreTraining(TFMobileBertPreTrainedModel, TFMobileBertPreTrainingLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert") self.predictions = TFMobileBertMLMHead(config, name="predictions___cls") self.seq_relationship = TFMobileBertOnlyNSPHead(2, name="seq_relationship___cls") def get_lm_head(self): return self.predictions.predictions def get_prefix_bias_name(self): warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) return self.name + "/" + self.predictions.name + "/" + self.predictions.predictions.name @unpack_inputs @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFMobileBertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, next_sentence_label: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple, TFMobileBertForPreTrainingOutput]: r""" Return: Examples: ```python >>> import tensorflow as tf >>> from transformers import AutoTokenizer, TFMobileBertForPreTraining >>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased") >>> model = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased") >>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1 >>> outputs = model(input_ids) >>> prediction_scores, seq_relationship_scores = outputs[:2] ```""" outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output, pooled_output = outputs[:2] prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) total_loss = None if labels is not None and next_sentence_label is not None: d_labels = {"labels": labels} d_labels["next_sentence_label"] = next_sentence_label total_loss = self.hf_compute_loss(labels=d_labels, logits=(prediction_scores, seq_relationship_score)) if not return_dict: output = (prediction_scores, seq_relationship_score) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return TFMobileBertForPreTrainingOutput( loss=total_loss, prediction_logits=prediction_scores, seq_relationship_logits=seq_relationship_score, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings("""MobileBert Model with a `language modeling` head on top.""", MOBILEBERT_START_DOCSTRING) class TFMobileBertForMaskedLM(TFMobileBertPreTrainedModel, TFMaskedLanguageModelingLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [ r"pooler", r"seq_relationship___cls", r"cls.seq_relationship", ] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.mobilebert = TFMobileBertMainLayer(config, add_pooling_layer=False, name="mobilebert") self.predictions = TFMobileBertMLMHead(config, name="predictions___cls") def get_lm_head(self): return self.predictions.predictions def get_prefix_bias_name(self): warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) return self.name + "/" + self.mlm.name + "/" + self.mlm.predictions.name @unpack_inputs @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC, expected_output="'paris'", expected_loss=0.57, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple, TFMaskedLMOutput]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels """ outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] prediction_scores = self.predictions(sequence_output, training=training) loss = None if labels is None else self.hf_compute_loss(labels, prediction_scores) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFMaskedLMOutput( loss=loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class TFMobileBertOnlyNSPHead(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.seq_relationship = tf.keras.layers.Dense(2, name="seq_relationship") def call(self, pooled_output): seq_relationship_score = self.seq_relationship(pooled_output) return seq_relationship_score @add_start_docstrings( """MobileBert Model with a `next sentence prediction (classification)` head on top.""", MOBILEBERT_START_DOCSTRING, ) class TFMobileBertForNextSentencePrediction(TFMobileBertPreTrainedModel, TFNextSentencePredictionLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"predictions___cls", r"cls.predictions"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert") self.cls = TFMobileBertOnlyNSPHead(config, name="seq_relationship___cls") @unpack_inputs @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFNextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, next_sentence_label: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple, TFNextSentencePredictorOutput]: r""" Return: Examples: ```python >>> import tensorflow as tf >>> from transformers import AutoTokenizer, TFMobileBertForNextSentencePrediction >>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased") >>> model = TFMobileBertForNextSentencePrediction.from_pretrained("google/mobilebert-uncased") >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." >>> encoding = tokenizer(prompt, next_sentence, return_tensors="tf") >>> logits = model(encoding["input_ids"], token_type_ids=encoding["token_type_ids"])[0] ```""" outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) pooled_output = outputs[1] seq_relationship_scores = self.cls(pooled_output) next_sentence_loss = ( None if next_sentence_label is None else self.hf_compute_loss(labels=next_sentence_label, logits=seq_relationship_scores) ) if not return_dict: output = (seq_relationship_scores,) + outputs[2:] return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output return TFNextSentencePredictorOutput( loss=next_sentence_loss, logits=seq_relationship_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ MobileBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, MOBILEBERT_START_DOCSTRING, ) class TFMobileBertForSequenceClassification(TFMobileBertPreTrainedModel, TFSequenceClassificationLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [ r"predictions___cls", r"seq_relationship___cls", r"cls.predictions", r"cls.seq_relationship", ] _keys_to_ignore_on_load_missing = [r"dropout"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert") classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = tf.keras.layers.Dropout(classifier_dropout) self.classifier = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) @unpack_inputs @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION, output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_SEQ_CLASS_EXPECTED_OUTPUT, expected_loss=_SEQ_CLASS_EXPECTED_LOSS, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple, TFSequenceClassifierOutput]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output, training=training) logits = self.classifier(pooled_output) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ MobileBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, MOBILEBERT_START_DOCSTRING, ) class TFMobileBertForQuestionAnswering(TFMobileBertPreTrainedModel, TFQuestionAnsweringLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [ r"pooler", r"predictions___cls", r"seq_relationship___cls", r"cls.predictions", r"cls.seq_relationship", ] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.mobilebert = TFMobileBertMainLayer(config, add_pooling_layer=False, name="mobilebert") self.qa_outputs = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" ) @unpack_inputs @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_QA, output_type=TFQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, qa_target_start_index=_QA_TARGET_START_INDEX, qa_target_end_index=_QA_TARGET_END_INDEX, expected_output=_QA_EXPECTED_OUTPUT, expected_loss=_QA_EXPECTED_LOSS, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, start_positions: np.ndarray | tf.Tensor | None = None, end_positions: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple, TFQuestionAnsweringModelOutput]: r""" start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = tf.split(logits, 2, axis=-1) start_logits = tf.squeeze(start_logits, axis=-1) end_logits = tf.squeeze(end_logits, axis=-1) loss = None if start_positions is not None and end_positions is not None: labels = {"start_position": start_positions, "end_position": end_positions} loss = self.hf_compute_loss(labels, (start_logits, end_logits)) if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFQuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ MobileBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, MOBILEBERT_START_DOCSTRING, ) class TFMobileBertForMultipleChoice(TFMobileBertPreTrainedModel, TFMultipleChoiceLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [ r"predictions___cls", r"seq_relationship___cls", r"cls.predictions", r"cls.seq_relationship", ] _keys_to_ignore_on_load_missing = [r"dropout"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert") self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) self.classifier = tf.keras.layers.Dense( 1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) @unpack_inputs @add_start_docstrings_to_model_forward( MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple, TFMultipleChoiceModelOutput]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ if input_ids is not None: num_choices = shape_list(input_ids)[1] seq_length = shape_list(input_ids)[2] else: num_choices = shape_list(inputs_embeds)[1] seq_length = shape_list(inputs_embeds)[2] flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None flat_inputs_embeds = ( tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3])) if inputs_embeds is not None else None ) outputs = self.mobilebert( flat_input_ids, flat_attention_mask, flat_token_type_ids, flat_position_ids, head_mask, flat_inputs_embeds, output_attentions, output_hidden_states, return_dict=return_dict, training=training, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output, training=training) logits = self.classifier(pooled_output) reshaped_logits = tf.reshape(logits, (-1, num_choices)) loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFMultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ MobileBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, MOBILEBERT_START_DOCSTRING, ) class TFMobileBertForTokenClassification(TFMobileBertPreTrainedModel, TFTokenClassificationLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [ r"pooler", r"predictions___cls", r"seq_relationship___cls", r"cls.predictions", r"cls.seq_relationship", ] _keys_to_ignore_on_load_missing = [r"dropout"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.mobilebert = TFMobileBertMainLayer(config, add_pooling_layer=False, name="mobilebert") classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = tf.keras.layers.Dropout(classifier_dropout) self.classifier = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) @unpack_inputs @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_TOKEN_CLASSIFICATION, output_type=TFTokenClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_TOKEN_CLASS_EXPECTED_OUTPUT, expected_loss=_TOKEN_CLASS_EXPECTED_LOSS, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple, TFTokenClassifierOutput]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output, training=training) logits = self.classifier(sequence_output) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFTokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers-main
src/transformers/models/mobilebert/modeling_tf_mobilebert.py
# MIT License # # Copyright (c) 2020 The Google AI Language Team Authors, The HuggingFace Inc. team and github/lonePatient # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import math import os import warnings from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPooling, MaskedLMOutput, MultipleChoiceModelOutput, NextSentencePredictorOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_mobilebert import MobileBertConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "google/mobilebert-uncased" _CONFIG_FOR_DOC = "MobileBertConfig" # TokenClassification docstring _CHECKPOINT_FOR_TOKEN_CLASSIFICATION = "mrm8488/mobilebert-finetuned-ner" _TOKEN_CLASS_EXPECTED_OUTPUT = "['I-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'I-LOC', 'O', 'I-LOC', 'I-LOC']" _TOKEN_CLASS_EXPECTED_LOSS = 0.03 # QuestionAnswering docstring _CHECKPOINT_FOR_QA = "csarron/mobilebert-uncased-squad-v2" _QA_EXPECTED_OUTPUT = "'a nice puppet'" _QA_EXPECTED_LOSS = 3.98 _QA_TARGET_START_INDEX = 12 _QA_TARGET_END_INDEX = 13 # SequenceClassification docstring _CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "lordtt13/emo-mobilebert" _SEQ_CLASS_EXPECTED_OUTPUT = "'others'" _SEQ_CLASS_EXPECTED_LOSS = "4.72" MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = ["google/mobilebert-uncased"] def load_tf_weights_in_mobilebert(model, config, tf_checkpoint_path): """Load tf checkpoints in a pytorch model.""" try: import re import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise tf_path = os.path.abspath(tf_checkpoint_path) logger.info(f"Converting TensorFlow checkpoint from {tf_path}") # Load weights from TF model init_vars = tf.train.list_variables(tf_path) names = [] arrays = [] for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}") array = tf.train.load_variable(tf_path, name) names.append(name) arrays.append(array) for name, array in zip(names, arrays): name = name.replace("ffn_layer", "ffn") name = name.replace("FakeLayerNorm", "LayerNorm") name = name.replace("extra_output_weights", "dense/kernel") name = name.replace("bert", "mobilebert") name = name.split("/") # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v # which are not required for using pretrained model if any( n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] for n in name ): logger.info(f"Skipping {'/'.join(name)}") continue pointer = model for m_name in name: if re.fullmatch(r"[A-Za-z]+_\d+", m_name): scope_names = re.split(r"_(\d+)", m_name) else: scope_names = [m_name] if scope_names[0] == "kernel" or scope_names[0] == "gamma": pointer = getattr(pointer, "weight") elif scope_names[0] == "output_bias" or scope_names[0] == "beta": pointer = getattr(pointer, "bias") elif scope_names[0] == "output_weights": pointer = getattr(pointer, "weight") elif scope_names[0] == "squad": pointer = getattr(pointer, "classifier") else: try: pointer = getattr(pointer, scope_names[0]) except AttributeError: logger.info(f"Skipping {'/'.join(name)}") continue if len(scope_names) >= 2: num = int(scope_names[1]) pointer = pointer[num] if m_name[-11:] == "_embeddings": pointer = getattr(pointer, "weight") elif m_name == "kernel": array = np.transpose(array) try: assert ( pointer.shape == array.shape ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" except AssertionError as e: e.args += (pointer.shape, array.shape) raise logger.info(f"Initialize PyTorch weight {name}") pointer.data = torch.from_numpy(array) return model class NoNorm(nn.Module): def __init__(self, feat_size, eps=None): super().__init__() self.bias = nn.Parameter(torch.zeros(feat_size)) self.weight = nn.Parameter(torch.ones(feat_size)) def forward(self, input_tensor: torch.Tensor) -> torch.Tensor: return input_tensor * self.weight + self.bias NORM2FN = {"layer_norm": nn.LayerNorm, "no_norm": NoNorm} class MobileBertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.trigram_input = config.trigram_input self.embedding_size = config.embedding_size self.hidden_size = config.hidden_size self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) embed_dim_multiplier = 3 if self.trigram_input else 1 embedded_input_size = self.embedding_size * embed_dim_multiplier self.embedding_transformation = nn.Linear(embedded_input_size, config.hidden_size) self.LayerNorm = NORM2FN[config.normalization_type](config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) def forward( self, input_ids: Optional[torch.LongTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, ) -> torch.Tensor: if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, :seq_length] if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) if self.trigram_input: # From the paper MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited # Devices (https://arxiv.org/abs/2004.02984) # # The embedding table in BERT models accounts for a substantial proportion of model size. To compress # the embedding layer, we reduce the embedding dimension to 128 in MobileBERT. # Then, we apply a 1D convolution with kernel size 3 on the raw token embedding to produce a 512 # dimensional output. inputs_embeds = torch.cat( [ nn.functional.pad(inputs_embeds[:, 1:], [0, 0, 0, 1, 0, 0], value=0.0), inputs_embeds, nn.functional.pad(inputs_embeds[:, :-1], [0, 0, 1, 0, 0, 0], value=0.0), ], dim=2, ) if self.trigram_input or self.embedding_size != self.hidden_size: inputs_embeds = self.embedding_transformation(inputs_embeds) # Add positional embeddings and token type embeddings, then layer # normalize and perform dropout. position_embeddings = self.position_embeddings(position_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + position_embeddings + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class MobileBertSelfAttention(nn.Module): def __init__(self, config): super().__init__() self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.true_hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.true_hidden_size, self.all_head_size) self.key = nn.Linear(config.true_hidden_size, self.all_head_size) self.value = nn.Linear( config.true_hidden_size if config.use_bottleneck_attention else config.hidden_size, self.all_head_size ) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, query_tensor: torch.Tensor, key_tensor: torch.Tensor, value_tensor: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, ) -> Tuple[torch.Tensor]: mixed_query_layer = self.query(query_tensor) mixed_key_layer = self.key(key_tensor) mixed_value_layer = self.value(value_tensor) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs class MobileBertSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.use_bottleneck = config.use_bottleneck self.dense = nn.Linear(config.true_hidden_size, config.true_hidden_size) self.LayerNorm = NORM2FN[config.normalization_type](config.true_hidden_size, eps=config.layer_norm_eps) if not self.use_bottleneck: self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, residual_tensor: torch.Tensor) -> torch.Tensor: layer_outputs = self.dense(hidden_states) if not self.use_bottleneck: layer_outputs = self.dropout(layer_outputs) layer_outputs = self.LayerNorm(layer_outputs + residual_tensor) return layer_outputs class MobileBertAttention(nn.Module): def __init__(self, config): super().__init__() self.self = MobileBertSelfAttention(config) self.output = MobileBertSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, query_tensor: torch.Tensor, key_tensor: torch.Tensor, value_tensor: torch.Tensor, layer_input: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, ) -> Tuple[torch.Tensor]: self_outputs = self.self( query_tensor, key_tensor, value_tensor, attention_mask, head_mask, output_attentions, ) # Run a linear projection of `hidden_size` then add a residual # with `layer_input`. attention_output = self.output(self_outputs[0], layer_input) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class MobileBertIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.true_hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class OutputBottleneck(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.true_hidden_size, config.hidden_size) self.LayerNorm = NORM2FN[config.normalization_type](config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, residual_tensor: torch.Tensor) -> torch.Tensor: layer_outputs = self.dense(hidden_states) layer_outputs = self.dropout(layer_outputs) layer_outputs = self.LayerNorm(layer_outputs + residual_tensor) return layer_outputs class MobileBertOutput(nn.Module): def __init__(self, config): super().__init__() self.use_bottleneck = config.use_bottleneck self.dense = nn.Linear(config.intermediate_size, config.true_hidden_size) self.LayerNorm = NORM2FN[config.normalization_type](config.true_hidden_size) if not self.use_bottleneck: self.dropout = nn.Dropout(config.hidden_dropout_prob) else: self.bottleneck = OutputBottleneck(config) def forward( self, intermediate_states: torch.Tensor, residual_tensor_1: torch.Tensor, residual_tensor_2: torch.Tensor ) -> torch.Tensor: layer_output = self.dense(intermediate_states) if not self.use_bottleneck: layer_output = self.dropout(layer_output) layer_output = self.LayerNorm(layer_output + residual_tensor_1) else: layer_output = self.LayerNorm(layer_output + residual_tensor_1) layer_output = self.bottleneck(layer_output, residual_tensor_2) return layer_output class BottleneckLayer(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intra_bottleneck_size) self.LayerNorm = NORM2FN[config.normalization_type](config.intra_bottleneck_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: layer_input = self.dense(hidden_states) layer_input = self.LayerNorm(layer_input) return layer_input class Bottleneck(nn.Module): def __init__(self, config): super().__init__() self.key_query_shared_bottleneck = config.key_query_shared_bottleneck self.use_bottleneck_attention = config.use_bottleneck_attention self.input = BottleneckLayer(config) if self.key_query_shared_bottleneck: self.attention = BottleneckLayer(config) def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor]: # This method can return three different tuples of values. These different values make use of bottlenecks, # which are linear layers used to project the hidden states to a lower-dimensional vector, reducing memory # usage. These linear layer have weights that are learned during training. # # If `config.use_bottleneck_attention`, it will return the result of the bottleneck layer four times for the # key, query, value, and "layer input" to be used by the attention layer. # This bottleneck is used to project the hidden. This last layer input will be used as a residual tensor # in the attention self output, after the attention scores have been computed. # # If not `config.use_bottleneck_attention` and `config.key_query_shared_bottleneck`, this will return # four values, three of which have been passed through a bottleneck: the query and key, passed through the same # bottleneck, and the residual layer to be applied in the attention self output, through another bottleneck. # # Finally, in the last case, the values for the query, key and values are the hidden states without bottleneck, # and the residual layer will be this value passed through a bottleneck. bottlenecked_hidden_states = self.input(hidden_states) if self.use_bottleneck_attention: return (bottlenecked_hidden_states,) * 4 elif self.key_query_shared_bottleneck: shared_attention_input = self.attention(hidden_states) return (shared_attention_input, shared_attention_input, hidden_states, bottlenecked_hidden_states) else: return (hidden_states, hidden_states, hidden_states, bottlenecked_hidden_states) class FFNOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.true_hidden_size) self.LayerNorm = NORM2FN[config.normalization_type](config.true_hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor, residual_tensor: torch.Tensor) -> torch.Tensor: layer_outputs = self.dense(hidden_states) layer_outputs = self.LayerNorm(layer_outputs + residual_tensor) return layer_outputs class FFNLayer(nn.Module): def __init__(self, config): super().__init__() self.intermediate = MobileBertIntermediate(config) self.output = FFNOutput(config) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: intermediate_output = self.intermediate(hidden_states) layer_outputs = self.output(intermediate_output, hidden_states) return layer_outputs class MobileBertLayer(nn.Module): def __init__(self, config): super().__init__() self.use_bottleneck = config.use_bottleneck self.num_feedforward_networks = config.num_feedforward_networks self.attention = MobileBertAttention(config) self.intermediate = MobileBertIntermediate(config) self.output = MobileBertOutput(config) if self.use_bottleneck: self.bottleneck = Bottleneck(config) if config.num_feedforward_networks > 1: self.ffn = nn.ModuleList([FFNLayer(config) for _ in range(config.num_feedforward_networks - 1)]) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, ) -> Tuple[torch.Tensor]: if self.use_bottleneck: query_tensor, key_tensor, value_tensor, layer_input = self.bottleneck(hidden_states) else: query_tensor, key_tensor, value_tensor, layer_input = [hidden_states] * 4 self_attention_outputs = self.attention( query_tensor, key_tensor, value_tensor, layer_input, attention_mask, head_mask, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] s = (attention_output,) outputs = self_attention_outputs[1:] # add self attentions if we output attention weights if self.num_feedforward_networks != 1: for i, ffn_module in enumerate(self.ffn): attention_output = ffn_module(attention_output) s += (attention_output,) intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output, hidden_states) outputs = ( (layer_output,) + outputs + ( torch.tensor(1000), query_tensor, key_tensor, value_tensor, layer_input, attention_output, intermediate_output, ) + s ) return outputs class MobileBertEncoder(nn.Module): def __init__(self, config): super().__init__() self.layer = nn.ModuleList([MobileBertLayer(config) for _ in range(config.num_hidden_layers)]) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple, BaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module( hidden_states, attention_mask, head_mask[i], output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) class MobileBertPooler(nn.Module): def __init__(self, config): super().__init__() self.do_activate = config.classifier_activation if self.do_activate: self.dense = nn.Linear(config.hidden_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] if not self.do_activate: return first_token_tensor else: pooled_output = self.dense(first_token_tensor) pooled_output = torch.tanh(pooled_output) return pooled_output class MobileBertPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = NORM2FN["layer_norm"](config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class MobileBertLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = MobileBertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.dense = nn.Linear(config.vocab_size, config.hidden_size - config.embedding_size, bias=False) self.decoder = nn.Linear(config.embedding_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.transform(hidden_states) hidden_states = hidden_states.matmul(torch.cat([self.decoder.weight.t(), self.dense.weight], dim=0)) hidden_states += self.decoder.bias return hidden_states class MobileBertOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = MobileBertLMPredictionHead(config) def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: prediction_scores = self.predictions(sequence_output) return prediction_scores class MobileBertPreTrainingHeads(nn.Module): def __init__(self, config): super().__init__() self.predictions = MobileBertLMPredictionHead(config) self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, sequence_output: torch.Tensor, pooled_output: torch.Tensor) -> Tuple[torch.Tensor]: prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score class MobileBertPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MobileBertConfig pretrained_model_archive_map = MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST load_tf_weights = load_tf_weights_in_mobilebert base_model_prefix = "mobilebert" def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, (nn.LayerNorm, NoNorm)): module.bias.data.zero_() module.weight.data.fill_(1.0) @dataclass class MobileBertForPreTrainingOutput(ModelOutput): """ Output type of [`MobileBertForPreTraining`]. Args: loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss. prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`): Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None prediction_logits: torch.FloatTensor = None seq_relationship_logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None MOBILEBERT_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileBertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ MOBILEBERT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare MobileBert Model transformer outputting raw hidden-states without any specific head on top.", MOBILEBERT_START_DOCSTRING, ) class MobileBertModel(MobileBertPreTrainedModel): """ https://arxiv.org/pdf/2004.02984.pdf """ def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = MobileBertEmbeddings(config) self.encoder = MobileBertEncoder(config) self.pooler = MobileBertPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """ MobileBert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next sentence prediction (classification)` head. """, MOBILEBERT_START_DOCSTRING, ) class MobileBertForPreTraining(MobileBertPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"] def __init__(self, config): super().__init__(config) self.mobilebert = MobileBertModel(config) self.cls = MobileBertPreTrainingHeads(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddigs): self.cls.predictions.decoder = new_embeddigs def resize_token_embeddings(self, new_num_tokens: Optional[int] = None) -> nn.Embedding: # resize dense output embedings at first self.cls.predictions.dense = self._get_resized_lm_head( self.cls.predictions.dense, new_num_tokens=new_num_tokens, transposed=True ) return super().resize_token_embeddings(new_num_tokens=new_num_tokens) @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=MobileBertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, next_sentence_label: Optional[torch.LongTensor] = None, output_attentions: Optional[torch.FloatTensor] = None, output_hidden_states: Optional[torch.FloatTensor] = None, return_dict: Optional[torch.FloatTensor] = None, ) -> Union[Tuple, MobileBertForPreTrainingOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see `input_ids` docstring) Indices should be in `[0, 1]`: - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence B is a random sequence. Returns: Examples: ```python >>> from transformers import AutoTokenizer, MobileBertForPreTraining >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased") >>> model = MobileBertForPreTraining.from_pretrained("google/mobilebert-uncased") >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) >>> # Batch size 1 >>> outputs = model(input_ids) >>> prediction_logits = outputs.prediction_logits >>> seq_relationship_logits = outputs.seq_relationship_logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output, pooled_output = outputs[:2] prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) total_loss = None if labels is not None and next_sentence_label is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) total_loss = masked_lm_loss + next_sentence_loss if not return_dict: output = (prediction_scores, seq_relationship_score) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return MobileBertForPreTrainingOutput( loss=total_loss, prediction_logits=prediction_scores, seq_relationship_logits=seq_relationship_score, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings("""MobileBert Model with a `language modeling` head on top.""", MOBILEBERT_START_DOCSTRING) class MobileBertForMaskedLM(MobileBertPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"] def __init__(self, config): super().__init__(config) self.mobilebert = MobileBertModel(config, add_pooling_layer=False) self.cls = MobileBertOnlyMLMHead(config) self.config = config # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddigs): self.cls.predictions.decoder = new_embeddigs def resize_token_embeddings(self, new_num_tokens: Optional[int] = None) -> nn.Embedding: # resize dense output embedings at first self.cls.predictions.dense = self._get_resized_lm_head( self.cls.predictions.dense, new_num_tokens=new_num_tokens, transposed=True ) return super().resize_token_embeddings(new_num_tokens=new_num_tokens) @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, expected_output="'paris'", expected_loss=0.57, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class MobileBertOnlyNSPHead(nn.Module): def __init__(self, config): super().__init__() self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, pooled_output: torch.Tensor) -> torch.Tensor: seq_relationship_score = self.seq_relationship(pooled_output) return seq_relationship_score @add_start_docstrings( """MobileBert Model with a `next sentence prediction (classification)` head on top.""", MOBILEBERT_START_DOCSTRING, ) class MobileBertForNextSentencePrediction(MobileBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.mobilebert = MobileBertModel(config) self.cls = MobileBertOnlyNSPHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple, NextSentencePredictorOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see `input_ids` docstring) Indices should be in `[0, 1]`. - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence B is a random sequence. Returns: Examples: ```python >>> from transformers import AutoTokenizer, MobileBertForNextSentencePrediction >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased") >>> model = MobileBertForNextSentencePrediction.from_pretrained("google/mobilebert-uncased") >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." >>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt") >>> outputs = model(**encoding, labels=torch.LongTensor([1])) >>> loss = outputs.loss >>> logits = outputs.logits ```""" if "next_sentence_label" in kwargs: warnings.warn( "The `next_sentence_label` argument is deprecated and will be removed in a future version, use" " `labels` instead.", FutureWarning, ) labels = kwargs.pop("next_sentence_label") return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] seq_relationship_score = self.cls(pooled_output) next_sentence_loss = None if labels is not None: loss_fct = CrossEntropyLoss() next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), labels.view(-1)) if not return_dict: output = (seq_relationship_score,) + outputs[2:] return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output return NextSentencePredictorOutput( loss=next_sentence_loss, logits=seq_relationship_score, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ MobileBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, MOBILEBERT_START_DOCSTRING, ) # Copied from transformers.models.bert.modeling_bert.BertForSequenceClassification with Bert->MobileBert all-casing class MobileBertForSequenceClassification(MobileBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.mobilebert = MobileBertModel(config) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_SEQ_CLASS_EXPECTED_OUTPUT, expected_loss=_SEQ_CLASS_EXPECTED_LOSS, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ MobileBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, MOBILEBERT_START_DOCSTRING, ) # Copied from transformers.models.bert.modeling_bert.BertForQuestionAnswering with Bert->MobileBert all-casing class MobileBertForQuestionAnswering(MobileBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.mobilebert = MobileBertModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_QA, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, qa_target_start_index=_QA_TARGET_START_INDEX, qa_target_end_index=_QA_TARGET_END_INDEX, expected_output=_QA_EXPECTED_OUTPUT, expected_loss=_QA_EXPECTED_LOSS, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, start_positions: Optional[torch.Tensor] = None, end_positions: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ MobileBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, MOBILEBERT_START_DOCSTRING, ) # Copied from transformers.models.bert.modeling_bert.BertForMultipleChoice with Bert->MobileBert all-casing class MobileBertForMultipleChoice(MobileBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.mobilebert = MobileBertModel(config) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward( MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ MobileBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, MOBILEBERT_START_DOCSTRING, ) # Copied from transformers.models.bert.modeling_bert.BertForTokenClassification with Bert->MobileBert all-casing class MobileBertForTokenClassification(MobileBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.mobilebert = MobileBertModel(config, add_pooling_layer=False) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_TOKEN_CLASSIFICATION, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_TOKEN_CLASS_EXPECTED_OUTPUT, expected_loss=_TOKEN_CLASS_EXPECTED_LOSS, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers-main
src/transformers/models/mobilebert/modeling_mobilebert.py
# coding=utf-8 # # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for MobileBERT.""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": {"mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"}, "tokenizer_file": { "mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json" }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {"mobilebert-uncased": 512} PRETRAINED_INIT_CONFIGURATION = {} # Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast with BERT->MobileBERT,Bert->MobileBert class MobileBertTokenizerFast(PreTrainedTokenizerFast): r""" Construct a "fast" MobileBERT tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece. This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): File containing the vocabulary. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. unk_token (`str`, *optional*, defaults to `"[UNK]"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"[PAD]"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. clean_text (`bool`, *optional*, defaults to `True`): Whether or not to clean the text before tokenization by removing any control characters and replacing all whitespaces by the classic one. tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original MobileBERT). wordpieces_prefix (`str`, *optional*, defaults to `"##"`): The prefix for subwords. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES slow_tokenizer_class = MobileBertTokenizer def __init__( self, vocab_file=None, tokenizer_file=None, do_lower_case=True, unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]", tokenize_chinese_chars=True, strip_accents=None, **kwargs, ): super().__init__( vocab_file, tokenizer_file=tokenizer_file, do_lower_case=do_lower_case, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, **kwargs, ) normalizer_state = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("lowercase", do_lower_case) != do_lower_case or normalizer_state.get("strip_accents", strip_accents) != strip_accents or normalizer_state.get("handle_chinese_chars", tokenize_chinese_chars) != tokenize_chinese_chars ): normalizer_class = getattr(normalizers, normalizer_state.pop("type")) normalizer_state["lowercase"] = do_lower_case normalizer_state["strip_accents"] = strip_accents normalizer_state["handle_chinese_chars"] = tokenize_chinese_chars self.backend_tokenizer.normalizer = normalizer_class(**normalizer_state) self.do_lower_case = do_lower_case def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A MobileBERT sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id] if token_ids_1: output += token_ids_1 + [self.sep_token_id] return output def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A MobileBERT sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: files = self._tokenizer.model.save(save_directory, name=filename_prefix) return tuple(files)
transformers-main
src/transformers/models/mobilebert/tokenization_mobilebert_fast.py
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ MobileBERT model configuration""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = { "google/mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/config.json" } class MobileBertConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MobileBertModel`] or a [`TFMobileBertModel`]. It is used to instantiate a MobileBERT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the MobileBERT [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the MobileBERT model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`MobileBertModel`] or [`TFMobileBertModel`]. hidden_size (`int`, *optional*, defaults to 512): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 24): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 4): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 512): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"relu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`MobileBertModel`] or [`TFMobileBertModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. pad_token_id (`int`, *optional*, defaults to 0): The ID of the token in the word embedding to use as padding. embedding_size (`int`, *optional*, defaults to 128): The dimension of the word embedding vectors. trigram_input (`bool`, *optional*, defaults to `True`): Use a convolution of trigram as input. use_bottleneck (`bool`, *optional*, defaults to `True`): Whether to use bottleneck in BERT. intra_bottleneck_size (`int`, *optional*, defaults to 128): Size of bottleneck layer output. use_bottleneck_attention (`bool`, *optional*, defaults to `False`): Whether to use attention inputs from the bottleneck transformation. key_query_shared_bottleneck (`bool`, *optional*, defaults to `True`): Whether to use the same linear transformation for query&key in the bottleneck. num_feedforward_networks (`int`, *optional*, defaults to 4): Number of FFNs in a block. normalization_type (`str`, *optional*, defaults to `"no_norm"`): The normalization type in MobileBERT. classifier_dropout (`float`, *optional*): The dropout ratio for the classification head. Examples: ```python >>> from transformers import MobileBertConfig, MobileBertModel >>> # Initializing a MobileBERT configuration >>> configuration = MobileBertConfig() >>> # Initializing a model (with random weights) from the configuration above >>> model = MobileBertModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ``` Attributes: pretrained_config_archive_map (Dict[str, str]): A dictionary containing all the available pre-trained checkpoints. """ pretrained_config_archive_map = MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP model_type = "mobilebert" def __init__( self, vocab_size=30522, hidden_size=512, num_hidden_layers=24, num_attention_heads=4, intermediate_size=512, hidden_act="relu", hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, embedding_size=128, trigram_input=True, use_bottleneck=True, intra_bottleneck_size=128, use_bottleneck_attention=False, key_query_shared_bottleneck=True, num_feedforward_networks=4, normalization_type="no_norm", classifier_activation=True, classifier_dropout=None, **kwargs, ): super().__init__(pad_token_id=pad_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.embedding_size = embedding_size self.trigram_input = trigram_input self.use_bottleneck = use_bottleneck self.intra_bottleneck_size = intra_bottleneck_size self.use_bottleneck_attention = use_bottleneck_attention self.key_query_shared_bottleneck = key_query_shared_bottleneck self.num_feedforward_networks = num_feedforward_networks self.normalization_type = normalization_type self.classifier_activation = classifier_activation if self.use_bottleneck: self.true_hidden_size = intra_bottleneck_size else: self.true_hidden_size = hidden_size self.classifier_dropout = classifier_dropout # Copied from transformers.models.bert.configuration_bert.BertOnnxConfig with Bert->MobileBert class MobileBertOnnxConfig(OnnxConfig): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} else: dynamic_axis = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
transformers-main
src/transformers/models/mobilebert/configuration_mobilebert.py
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _import_structure = { "configuration_informer": [ "INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "InformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_informer"] = [ "INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "InformerForPrediction", "InformerModel", "InformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers-main
src/transformers/models/informer/__init__.py
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Informer model configuration""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = { "huggingface/informer-tourism-monthly": ( "https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json" ), # See all Informer models at https://huggingface.co/models?filter=informer } class InformerConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of an [`InformerModel`]. It is used to instantiate an Informer model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Informer [huggingface/informer-tourism-monthly](https://huggingface.co/huggingface/informer-tourism-monthly) architecture. Configuration objects inherit from [`PretrainedConfig`] can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: prediction_length (`int`): The prediction length for the decoder. In other words, the prediction horizon of the model. This value is typically dictated by the dataset and we recommend to set it appropriately. context_length (`int`, *optional*, defaults to `prediction_length`): The context length for the encoder. If `None`, the context length will be the same as the `prediction_length`. distribution_output (`string`, *optional*, defaults to `"student_t"`): The distribution emission head for the model. Could be either "student_t", "normal" or "negative_binomial". loss (`string`, *optional*, defaults to `"nll"`): The loss function for the model corresponding to the `distribution_output` head. For parametric distributions it is the negative log likelihood (nll) - which currently is the only supported one. input_size (`int`, *optional*, defaults to 1): The size of the target variable which by default is 1 for univariate targets. Would be > 1 in case of multivariate targets. scaling (`string` or `bool`, *optional* defaults to `"mean"`): Whether to scale the input targets via "mean" scaler, "std" scaler or no scaler if `None`. If `True`, the scaler is set to "mean". lags_sequence (`list[int]`, *optional*, defaults to `[1, 2, 3, 4, 5, 6, 7]`): The lags of the input time series as covariates often dictated by the frequency of the data. Default is `[1, 2, 3, 4, 5, 6, 7]` but we recommend to change it based on the dataset appropriately. num_time_features (`int`, *optional*, defaults to 0): The number of time features in the input time series. num_dynamic_real_features (`int`, *optional*, defaults to 0): The number of dynamic real valued features. num_static_categorical_features (`int`, *optional*, defaults to 0): The number of static categorical features. num_static_real_features (`int`, *optional*, defaults to 0): The number of static real valued features. cardinality (`list[int]`, *optional*): The cardinality (number of different values) for each of the static categorical features. Should be a list of integers, having the same length as `num_static_categorical_features`. Cannot be `None` if `num_static_categorical_features` is > 0. embedding_dimension (`list[int]`, *optional*): The dimension of the embedding for each of the static categorical features. Should be a list of integers, having the same length as `num_static_categorical_features`. Cannot be `None` if `num_static_categorical_features` is > 0. d_model (`int`, *optional*, defaults to 64): Dimensionality of the transformer layers. encoder_layers (`int`, *optional*, defaults to 2): Number of encoder layers. decoder_layers (`int`, *optional*, defaults to 2): Number of decoder layers. encoder_attention_heads (`int`, *optional*, defaults to 2): Number of attention heads for each attention layer in the Transformer encoder. decoder_attention_heads (`int`, *optional*, defaults to 2): Number of attention heads for each attention layer in the Transformer decoder. encoder_ffn_dim (`int`, *optional*, defaults to 32): Dimension of the "intermediate" (often named feed-forward) layer in encoder. decoder_ffn_dim (`int`, *optional*, defaults to 32): Dimension of the "intermediate" (often named feed-forward) layer in decoder. activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and decoder. If string, `"gelu"` and `"relu"` are supported. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the encoder, and decoder. encoder_layerdrop (`float`, *optional*, defaults to 0.1): The dropout probability for the attention and fully connected layers for each encoder layer. decoder_layerdrop (`float`, *optional*, defaults to 0.1): The dropout probability for the attention and fully connected layers for each decoder layer. attention_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for the attention probabilities. activation_dropout (`float`, *optional*, defaults to 0.1): The dropout probability used between the two layers of the feed-forward networks. num_parallel_samples (`int`, *optional*, defaults to 100): The number of samples to generate in parallel for each time step of inference. init_std (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated normal weight initialization distribution. use_cache (`bool`, *optional*, defaults to `True`): Whether to use the past key/values attentions (if applicable to the model) to speed up decoding. attention_type (`str`, *optional*, defaults to "prob"): Attention used in encoder. This can be set to "prob" (Informer's ProbAttention) or "full" (vanilla transformer's canonical self-attention). sampling_factor (`int`, *optional*, defaults to 5): ProbSparse sampling factor (only makes affect when `attention_type`="prob"). It is used to control the reduced query matrix (Q_reduce) input length. distil (`bool`, *optional*, defaults to `True`): Whether to use distilling in encoder. Example: ```python >>> from transformers import InformerConfig, InformerModel >>> # Initializing an Informer configuration with 12 time steps for prediction >>> configuration = InformerConfig(prediction_length=12) >>> # Randomly initializing a model (with random weights) from the configuration >>> model = InformerModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "informer" attribute_map = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self, prediction_length: Optional[int] = None, context_length: Optional[int] = None, distribution_output: str = "student_t", loss: str = "nll", input_size: int = 1, lags_sequence: List[int] = None, scaling: Optional[Union[str, bool]] = "mean", num_dynamic_real_features: int = 0, num_static_real_features: int = 0, num_static_categorical_features: int = 0, num_time_features: int = 0, cardinality: Optional[List[int]] = None, embedding_dimension: Optional[List[int]] = None, d_model: int = 64, encoder_ffn_dim: int = 32, decoder_ffn_dim: int = 32, encoder_attention_heads: int = 2, decoder_attention_heads: int = 2, encoder_layers: int = 2, decoder_layers: int = 2, is_encoder_decoder: bool = True, activation_function: str = "gelu", dropout: float = 0.05, encoder_layerdrop: float = 0.1, decoder_layerdrop: float = 0.1, attention_dropout: float = 0.1, activation_dropout: float = 0.1, num_parallel_samples: int = 100, init_std: float = 0.02, use_cache=True, # Informer arguments attention_type: str = "prob", sampling_factor: int = 5, distil: bool = True, **kwargs, ): # time series specific configuration self.prediction_length = prediction_length self.context_length = context_length or prediction_length self.distribution_output = distribution_output self.loss = loss self.input_size = input_size self.num_time_features = num_time_features self.lags_sequence = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] self.scaling = scaling self.num_dynamic_real_features = num_dynamic_real_features self.num_static_real_features = num_static_real_features self.num_static_categorical_features = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(cardinality) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) self.cardinality = cardinality else: self.cardinality = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(embedding_dimension) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) self.embedding_dimension = embedding_dimension else: self.embedding_dimension = [min(50, (cat + 1) // 2) for cat in self.cardinality] self.num_parallel_samples = num_parallel_samples # Transformer architecture configuration self.feature_size = input_size * len(self.lags_sequence) + self._number_of_features self.d_model = d_model self.encoder_attention_heads = encoder_attention_heads self.decoder_attention_heads = decoder_attention_heads self.encoder_ffn_dim = encoder_ffn_dim self.decoder_ffn_dim = decoder_ffn_dim self.encoder_layers = encoder_layers self.decoder_layers = decoder_layers self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.encoder_layerdrop = encoder_layerdrop self.decoder_layerdrop = decoder_layerdrop self.activation_function = activation_function self.init_std = init_std self.use_cache = use_cache # Informer self.attention_type = attention_type self.sampling_factor = sampling_factor self.distil = distil super().__init__(is_encoder_decoder=is_encoder_decoder, **kwargs) @property def _number_of_features(self) -> int: return ( sum(self.embedding_dimension) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
transformers-main
src/transformers/models/informer/configuration_informer.py
# coding=utf-8 # Copyright 2023 Amazon and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Informer model.""" from typing import List, Optional, Tuple, Union import numpy as np import torch from torch import nn from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions, SampleTSPredictionOutput, Seq2SeqTSModelOutput, Seq2SeqTSPredictionOutput, ) from ...modeling_utils import PreTrainedModel from ...time_series_utils import NegativeBinomialOutput, NormalOutput, StudentTOutput from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings from .configuration_informer import InformerConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "InformerConfig" INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [ "huggingface/informer-tourism-monthly", # See all Informer models at https://huggingface.co/models?filter=informer ] # Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesFeatureEmbedder with TimeSeries->Informer class InformerFeatureEmbedder(nn.Module): """ Embed a sequence of categorical features. Args: cardinalities (`list[int]`): List of cardinalities of the categorical features. embedding_dims (`list[int]`): List of embedding dimensions of the categorical features. """ def __init__(self, cardinalities: List[int], embedding_dims: List[int]) -> None: super().__init__() self.num_features = len(cardinalities) self.embedders = nn.ModuleList([nn.Embedding(c, d) for c, d in zip(cardinalities, embedding_dims)]) def forward(self, features: torch.Tensor) -> torch.Tensor: if self.num_features > 1: # we slice the last dimension, giving an array of length # self.num_features with shape (N,T) or (N) cat_feature_slices = torch.chunk(features, self.num_features, dim=-1) else: cat_feature_slices = [features] return torch.cat( [ embed(cat_feature_slice.squeeze(-1)) for embed, cat_feature_slice in zip(self.embedders, cat_feature_slices) ], dim=-1, ) # Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesStdScaler with TimeSeries->Informer class InformerStdScaler(nn.Module): """ Standardize features by calculating the mean and scaling along some given dimension `dim`, and then normalizes it by subtracting from the mean and dividing by the standard deviation. Args: dim (`int`): Dimension along which to calculate the mean and standard deviation. keepdim (`bool`, *optional*, defaults to `False`): Controls whether to retain dimension `dim` (of length 1) in the scale tensor, or suppress it. minimum_scale (`float`, *optional*, defaults to 1e-5): Default scale that is used for elements that are constantly zero along dimension `dim`. """ def __init__(self, dim: int, keepdim: bool = False, minimum_scale: float = 1e-5): super().__init__() if not dim > 0: raise ValueError("Cannot compute scale along dim = 0 (batch dimension), please provide dim > 0") self.dim = dim self.keepdim = keepdim self.minimum_scale = minimum_scale @torch.no_grad() def forward(self, data: torch.Tensor, weights: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: denominator = weights.sum(self.dim, keepdim=self.keepdim) denominator = denominator.clamp_min(1.0) loc = (data * weights).sum(self.dim, keepdim=self.keepdim) / denominator variance = (((data - loc) * weights) ** 2).sum(self.dim, keepdim=self.keepdim) / denominator scale = torch.sqrt(variance + self.minimum_scale) return (data - loc) / scale, loc, scale # Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesMeanScaler with TimeSeries->Informer class InformerMeanScaler(nn.Module): """ Computes a scaling factor as the weighted average absolute value along dimension `dim`, and scales the data accordingly. Args: dim (`int`): Dimension along which to compute the scale. keepdim (`bool`, *optional*, defaults to `False`): Controls whether to retain dimension `dim` (of length 1) in the scale tensor, or suppress it. default_scale (`float`, *optional*, defaults to `None`): Default scale that is used for elements that are constantly zero. If `None`, we use the scale of the batch. minimum_scale (`float`, *optional*, defaults to 1e-10): Default minimum possible scale that is used for any item. """ def __init__( self, dim: int = -1, keepdim: bool = True, default_scale: Optional[float] = None, minimum_scale: float = 1e-10 ): super().__init__() self.dim = dim self.keepdim = keepdim self.minimum_scale = minimum_scale self.default_scale = default_scale @torch.no_grad() def forward( self, data: torch.Tensor, observed_indicator: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: # shape: (N, [C], T=1) ts_sum = (data * observed_indicator).abs().sum(self.dim, keepdim=True) num_observed = observed_indicator.sum(self.dim, keepdim=True) scale = ts_sum / torch.clamp(num_observed, min=1) # If `default_scale` is provided, we use it, otherwise we use the scale # of the batch. if self.default_scale is None: batch_sum = ts_sum.sum(dim=0) batch_observations = torch.clamp(num_observed.sum(0), min=1) default_scale = torch.squeeze(batch_sum / batch_observations) else: default_scale = self.default_scale * torch.ones_like(scale) # apply default scale where there are no observations scale = torch.where(num_observed > 0, scale, default_scale) # ensure the scale is at least `self.minimum_scale` scale = torch.clamp(scale, min=self.minimum_scale) scaled_data = data / scale if not self.keepdim: scale = scale.squeeze(dim=self.dim) return scaled_data, torch.zeros_like(scale), scale # Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesNOPScaler with TimeSeries->Informer class InformerNOPScaler(nn.Module): """ Assigns a scaling factor equal to 1 along dimension `dim`, and therefore applies no scaling to the input data. Args: dim (`int`): Dimension along which to compute the scale. keepdim (`bool`, *optional*, defaults to `False`): Controls whether to retain dimension `dim` (of length 1) in the scale tensor, or suppress it. """ def __init__(self, dim: int, keepdim: bool = False): super().__init__() self.dim = dim self.keepdim = keepdim def forward( self, data: torch.Tensor, observed_indicator: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: scale = torch.ones_like(data, requires_grad=False).mean(dim=self.dim, keepdim=self.keepdim) loc = torch.zeros_like(data, requires_grad=False).mean(dim=self.dim, keepdim=self.keepdim) return data, loc, scale # Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.weighted_average def weighted_average(input_tensor: torch.Tensor, weights: Optional[torch.Tensor] = None, dim=None) -> torch.Tensor: """ Computes the weighted average of a given tensor across a given `dim`, masking values associated with weight zero, meaning instead of `nan * 0 = nan` you will get `0 * 0 = 0`. Args: input_tensor (`torch.FloatTensor`): Input tensor, of which the average must be computed. weights (`torch.FloatTensor`, *optional*): Weights tensor, of the same shape as `input_tensor`. dim (`int`, *optional*): The dim along which to average `input_tensor`. Returns: `torch.FloatTensor`: The tensor with values averaged along the specified `dim`. """ if weights is not None: weighted_tensor = torch.where(weights != 0, input_tensor * weights, torch.zeros_like(input_tensor)) sum_weights = torch.clamp(weights.sum(dim=dim) if dim else weights.sum(), min=1.0) return (weighted_tensor.sum(dim=dim) if dim else weighted_tensor.sum()) / sum_weights else: return input_tensor.mean(dim=dim) # Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.nll def nll(input: torch.distributions.Distribution, target: torch.Tensor) -> torch.Tensor: """ Computes the negative log likelihood loss from input distribution with respect to target. """ return -input.log_prob(target) # Copied from transformers.models.bart.modeling_bart._make_causal_mask def _make_causal_mask( input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0 ): """ Make causal mask used for bi-directional self-attention. """ bsz, tgt_len = input_ids_shape mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device) mask_cond = torch.arange(mask.size(-1), device=device) mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) mask = mask.to(dtype) if past_key_values_length > 0: mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) # Copied from transformers.models.bart.modeling_bart._expand_mask def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): """ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. """ bsz, src_len = mask.size() tgt_len = tgt_len if tgt_len is not None else src_len expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) inverted_mask = 1.0 - expanded_mask return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) # Copied from transformers.models.marian.modeling_marian.MarianSinusoidalPositionalEmbedding with Marian->Informer class InformerSinusoidalPositionalEmbedding(nn.Embedding): """This module produces sinusoidal positional embeddings of any length.""" def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None) -> None: super().__init__(num_positions, embedding_dim) self.weight = self._init_weight(self.weight) @staticmethod def _init_weight(out: nn.Parameter) -> nn.Parameter: """ Identical to the XLM create_sinusoidal_embeddings except features are not interleaved. The cos features are in the 2nd half of the vector. [dim // 2:] """ n_pos, dim = out.shape position_enc = np.array( [[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)] ) out.requires_grad = False # set early to avoid an error in pytorch-1.8+ sentinel = dim // 2 if dim % 2 == 0 else (dim // 2) + 1 out[:, 0:sentinel] = torch.FloatTensor(np.sin(position_enc[:, 0::2])) out[:, sentinel:] = torch.FloatTensor(np.cos(position_enc[:, 1::2])) out.detach_() return out @torch.no_grad() def forward(self, input_ids_shape: torch.Size, past_key_values_length: int = 0) -> torch.Tensor: """`input_ids_shape` is expected to be [bsz x seqlen].""" bsz, seq_len = input_ids_shape[:2] positions = torch.arange( past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device ) return super().forward(positions) # Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesValueEmbedding with TimeSeries->Info class InformerValueEmbedding(nn.Module): def __init__(self, feature_size, d_model): super().__init__() self.value_projection = nn.Linear(in_features=feature_size, out_features=d_model, bias=False) def forward(self, x): return self.value_projection(x) # Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->Informer class InformerAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.reshape(*proj_shape) value_states = value_states.reshape(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value class InformerProbSparseAttention(nn.Module): """Probabilistic Attention mechanism to select the "active" queries rather than the "lazy" queries and provides a sparse Transformer thus mitigating the quadratic compute and memory requirements of vanilla attention""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, sampling_factor: int = 5, bias: bool = True, ): super().__init__() self.factor = sampling_factor self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.reshape(*proj_shape) value_states = value_states.reshape(*proj_shape) key_states_time_length = key_states.size(1) # L_K log_key_states_time_length = np.ceil(np.log1p(key_states_time_length)).astype("int").item() # log_L_K query_states_time_length = query_states.size(1) # L_Q log_query_states_time_length = np.ceil(np.log1p(query_states_time_length)).astype("int").item() # log_L_Q u_part = min(self.factor * query_states_time_length * log_key_states_time_length, key_states_time_length) u = min(self.factor * log_query_states_time_length, query_states_time_length) if key_states_time_length > 0: index_sample = torch.randint(0, key_states_time_length, (u_part,)) k_sample = key_states[:, index_sample, :] else: k_sample = key_states queries_keys_sample = torch.bmm(query_states, k_sample.transpose(1, 2)) # Q_K_sampled # find the Top_k query with sparsity measurement if u > 0: sparsity_measurement = queries_keys_sample.max(dim=-1)[0] - torch.div( queries_keys_sample.sum(dim=-1), key_states_time_length ) # M top_u_sparsity_measurement = sparsity_measurement.topk(u, sorted=False)[1] # M_top # calculate q_reduce: query_states[:, top_u_sparsity_measurement] dim_for_slice = torch.arange(query_states.size(0)).unsqueeze(-1) q_reduce = query_states[dim_for_slice, top_u_sparsity_measurement] else: q_reduce = query_states top_u_sparsity_measurement = None # Use q_reduce to calculate attention weights attn_weights = torch.bmm(q_reduce, key_states.transpose(1, 2)) src_len = key_states.size(1) if attn_weights.size() != (bsz * self.num_heads, u, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, u, src_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) prob_mask = attention_mask.expand(bsz, self.num_heads, tgt_len, src_len).reshape( bsz * self.num_heads, tgt_len, src_len ) if top_u_sparsity_measurement is not None: dim_for_slice = torch.arange(prob_mask.size(0)).unsqueeze(-1) prob_mask = prob_mask[dim_for_slice, top_u_sparsity_measurement, :] attn_weights = attn_weights.view(bsz, self.num_heads, u, src_len) + prob_mask.view( bsz, self.num_heads, u, src_len ) attn_weights = attn_weights.view(bsz * self.num_heads, u, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, u, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, u, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, u, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, u, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) # calculate context for updating the attn_output, based on: # https://github.com/zhouhaoyi/Informer2020/blob/ac59c7447135473fb2aafeafe94395f884d5c7a5/models/attn.py#L74 if self.is_decoder: context = value_states.cumsum(dim=-2) else: v_mean_dim_time = value_states.mean(dim=-2) context = ( v_mean_dim_time.unsqueeze(dim=1) .expand(bsz * self.num_heads, query_states_time_length, v_mean_dim_time.size(-1)) .clone() ) if top_u_sparsity_measurement is not None: # update context: copy the attention output to the context at top_u_sparsity_measurement index dim_for_slice = torch.arange(context.size(0)).unsqueeze(-1) context[dim_for_slice, top_u_sparsity_measurement, :] = attn_output attn_output = context if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value # source: https://github.com/zhouhaoyi/Informer2020/blob/main/models/encoder.py class InformerConvLayer(nn.Module): def __init__(self, c_in): super().__init__() self.downConv = nn.Conv1d( in_channels=c_in, out_channels=c_in, kernel_size=3, padding=1, padding_mode="circular", ) self.norm = nn.BatchNorm1d(c_in) self.activation = nn.ELU() self.maxPool = nn.MaxPool1d(kernel_size=3, stride=2, padding=1) def forward(self, x): x = self.downConv(x.permute(0, 2, 1)) x = self.norm(x) x = self.activation(x) x = self.maxPool(x) x = x.transpose(1, 2) return x class InformerEncoderLayer(nn.Module): def __init__(self, config: InformerConfig): super().__init__() self.embed_dim = config.d_model if config.attention_type == "prob": self.self_attn = InformerProbSparseAttention( embed_dim=self.embed_dim, num_heads=config.encoder_attention_heads, dropout=config.attention_dropout, sampling_factor=config.sampling_factor, ) else: self.self_attn = InformerAttention( embed_dim=self.embed_dim, num_heads=config.encoder_attention_heads, dropout=config.attention_dropout, ) self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.FloatTensor, attention_mask: torch.FloatTensor, layer_head_mask: torch.FloatTensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states, attn_weights, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) if hidden_states.dtype == torch.float16 and ( torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any() ): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class InformerDecoderLayer(nn.Module): def __init__(self, config: InformerConfig): super().__init__() self.embed_dim = config.d_model if config.attention_type == "prob": self.self_attn = InformerProbSparseAttention( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, sampling_factor=config.sampling_factor, is_decoder=True, ) else: self.self_attn = InformerAttention( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, ) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.encoder_attn = InformerAttention( self.embed_dim, config.decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, ) self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, cross_attn_layer_head_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = True, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. encoder_hidden_states (`torch.FloatTensor`): cross attention input to the layer of shape `(batch, seq_len, embed_dim)` encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of size `(decoder_attention_heads,)`. past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # Fully Connected residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) if use_cache: outputs += (present_key_value,) return outputs class InformerPreTrainedModel(PreTrainedModel): config_class = InformerConfig base_model_prefix = "model" main_input_name = "past_values" supports_gradient_checkpointing = True def _init_weights(self, module): std = self.config.init_std if isinstance(module, (nn.Linear, nn.Conv1d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, (InformerDecoder, InformerEncoder)): module.gradient_checkpointing = value INFORMER_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`TimeSeriesTransformerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ INFORMER_INPUTS_DOCSTRING = r""" Args: past_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)` or `(batch_size, sequence_length, input_size)`): Past values of the time series, that serve as context in order to predict the future. The sequence size of this tensor must be larger than the `context_length` of the model, since the model will use the larger size to construct lag features, i.e. additional values from the past which are added in order to serve as "extra context". The `sequence_length` here is equal to `config.context_length` + `max(config.lags_sequence)`, which if no `lags_sequence` is configured, is equal to `config.context_length` + 7 (as by default, the largest look-back index in `config.lags_sequence` is 7). The property `_past_length` returns the actual length of the past. The `past_values` is what the Transformer encoder gets as input (with optional additional features, such as `static_categorical_features`, `static_real_features`, `past_time_features` and lags). Optionally, missing values need to be replaced with zeros and indicated via the `past_observed_mask`. For multivariate time series, the `input_size` > 1 dimension is required and corresponds to the number of variates in the time series per time step. past_time_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_features)`): Required time features, which the model internally will add to `past_values`. These could be things like "month of year", "day of the month", etc. encoded as vectors (for instance as Fourier features). These could also be so-called "age" features, which basically help the model know "at which point in life" a time-series is. Age features have small values for distant past time steps and increase monotonically the more we approach the current time step. Holiday features are also a good example of time features. These features serve as the "positional encodings" of the inputs. So contrary to a model like BERT, where the position encodings are learned from scratch internally as parameters of the model, the Time Series Transformer requires to provide additional time features. The Time Series Transformer only learns additional embeddings for `static_categorical_features`. Additional dynamic real covariates can be concatenated to this tensor, with the caveat that these features must but known at prediction time. The `num_features` here is equal to `config.`num_time_features` + `config.num_dynamic_real_features`. past_observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length)` or `(batch_size, sequence_length, input_size)`, *optional*): Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected in `[0, 1]`: - 1 for values that are **observed**, - 0 for values that are **missing** (i.e. NaNs that were replaced by zeros). static_categorical_features (`torch.LongTensor` of shape `(batch_size, number of static categorical features)`, *optional*): Optional static categorical features for which the model will learn an embedding, which it will add to the values of the time series. Static categorical features are features which have the same value for all time steps (static over time). A typical example of a static categorical feature is a time series ID. static_real_features (`torch.FloatTensor` of shape `(batch_size, number of static real features)`, *optional*): Optional static real features which the model will add to the values of the time series. Static real features are features which have the same value for all time steps (static over time). A typical example of a static real feature is promotion information. future_values (`torch.FloatTensor` of shape `(batch_size, prediction_length)` or `(batch_size, prediction_length, input_size)`, *optional*): Future values of the time series, that serve as labels for the model. The `future_values` is what the Transformer needs during training to learn to output, given the `past_values`. The sequence length here is equal to `prediction_length`. See the demo notebook and code snippets for details. Optionally, during training any missing values need to be replaced with zeros and indicated via the `future_observed_mask`. For multivariate time series, the `input_size` > 1 dimension is required and corresponds to the number of variates in the time series per time step. future_time_features (`torch.FloatTensor` of shape `(batch_size, prediction_length, num_features)`): Required time features for the prediction window, which the model internally will add to `future_values`. These could be things like "month of year", "day of the month", etc. encoded as vectors (for instance as Fourier features). These could also be so-called "age" features, which basically help the model know "at which point in life" a time-series is. Age features have small values for distant past time steps and increase monotonically the more we approach the current time step. Holiday features are also a good example of time features. These features serve as the "positional encodings" of the inputs. So contrary to a model like BERT, where the position encodings are learned from scratch internally as parameters of the model, the Time Series Transformer requires to provide additional time features. The Time Series Transformer only learns additional embeddings for `static_categorical_features`. Additional dynamic real covariates can be concatenated to this tensor, with the caveat that these features must but known at prediction time. The `num_features` here is equal to `config.`num_time_features` + `config.num_dynamic_real_features`. future_observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length)` or `(batch_size, sequence_length, input_size)`, *optional*): Boolean mask to indicate which `future_values` were observed and which were missing. Mask values selected in `[0, 1]`: - 1 for values that are **observed**, - 0 for values that are **missing** (i.e. NaNs that were replaced by zeros). This mask is used to filter out missing values for the final loss calculation. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on certain token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Mask to avoid performing attention on certain token indices. By default, a causal mask will be used, to make sure the model can only look at previous inputs in order to predict the future. head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): Tuple consists of `last_hidden_state`, `hidden_states` (*optional*) and `attentions` (*optional*) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` (*optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class InformerEncoder(InformerPreTrainedModel): """ Informer encoder consisting of *config.encoder_layers* self attention layers with distillation layers. Each attention layer is an [`InformerEncoderLayer`]. Args: config: InformerConfig """ def __init__(self, config: InformerConfig): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.encoder_layerdrop self.gradient_checkpointing = False if config.prediction_length is None: raise ValueError("The `prediction_length` config needs to be specified.") self.value_embedding = InformerValueEmbedding(feature_size=config.feature_size, d_model=config.d_model) self.embed_positions = InformerSinusoidalPositionalEmbedding( config.context_length + config.prediction_length, config.d_model ) self.layers = nn.ModuleList([InformerEncoderLayer(config) for _ in range(config.encoder_layers)]) self.layernorm_embedding = nn.LayerNorm(config.d_model) if config.distil: self.conv_layers = nn.ModuleList( [InformerConvLayer(config.d_model) for _ in range(config.encoder_layers - 1)] ) self.conv_layers.append(None) else: self.conv_layers = [None] * config.encoder_layers # Initialize weights and apply final processing self.post_init() def forward( self, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: r""" Args: attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict hidden_states = self.value_embedding(inputs_embeds) embed_pos = self.embed_positions(inputs_embeds.size()) hidden_states = self.layernorm_embedding(hidden_states + embed_pos) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) # expand attention_mask if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _expand_mask(attention_mask, inputs_embeds.dtype) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: if head_mask.size()[0] != (len(self.layers)): raise ValueError( f"The head_mask should be specified for {len(self.layers)} layers, but it is for" f" {head_mask.size()[0]}." ) for idx, (encoder_layer, conv_layer) in enumerate(zip(self.layers, self.conv_layers)): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) to_drop = False if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: # skip the layer to_drop = True if to_drop: layer_outputs = (None, None) else: if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(encoder_layer), hidden_states, attention_mask, (head_mask[idx] if head_mask is not None else None), ) if conv_layer is not None: output = torch.utils.checkpoint.checkpoint(conv_layer, layer_outputs[0]) layer_outputs = (output,) + layer_outputs[1:] else: layer_outputs = encoder_layer( hidden_states, attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), output_attentions=output_attentions, ) if conv_layer is not None: output = conv_layer(layer_outputs[0]) layer_outputs = (output,) + layer_outputs[1:] hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) # Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesTransformerDecoder with TimeSeriesTransformer->Informer,TimeSeriesTransformerConfig->InformerConfig,time-series-transformer->informer,Transformer->Informer,TimeSeries->Informer class InformerDecoder(InformerPreTrainedModel): """ Informer decoder consisting of *config.decoder_layers* layers. Each layer is a [`InformerDecoderLayer`] Args: config: InformerConfig """ def __init__(self, config: InformerConfig): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.decoder_layerdrop if config.prediction_length is None: raise ValueError("The `prediction_length` config needs to be specified.") self.value_embedding = InformerValueEmbedding(feature_size=config.feature_size, d_model=config.d_model) self.embed_positions = InformerSinusoidalPositionalEmbedding( config.context_length + config.prediction_length, config.d_model ) self.layers = nn.ModuleList([InformerDecoderLayer(config) for _ in range(config.decoder_layers)]) self.layernorm_embedding = nn.LayerNorm(config.d_model) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length): # create causal mask # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] combined_attention_mask = None if input_shape[-1] > 1: combined_attention_mask = _make_causal_mask( input_shape, inputs_embeds.dtype, device=inputs_embeds.device, past_key_values_length=past_key_values_length, ) if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to( inputs_embeds.device ) combined_attention_mask = ( expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask ) return combined_attention_mask def forward( self, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: r""" Args: attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing cross-attention on hidden heads. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict input_shape = inputs_embeds.size()[:-1] # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 attention_mask = self._prepare_decoder_attention_mask( attention_mask, input_shape, inputs_embeds, past_key_values_length ) # expand encoder attention mask if encoder_hidden_states is not None and encoder_attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _expand_mask(encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]) hidden_states = self.value_embedding(inputs_embeds) embed_pos = self.embed_positions(inputs_embeds.size(), past_key_values_length=self.config.context_length) hidden_states = self.layernorm_embedding(hidden_states + embed_pos) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None next_decoder_cache = () if use_cache else None # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): if attn_mask is not None: if attn_mask.size()[0] != (len(self.layers)): raise ValueError( f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" f" {head_mask.size()[0]}." ) for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: continue past_key_value = past_key_values[idx] if past_key_values is not None else None if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): # None for past_key_value return module(*inputs, output_attentions, use_cache) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(decoder_layer), hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, head_mask[idx] if head_mask is not None else None, cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, None, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), cross_attn_layer_head_mask=( cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None ), past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) @add_start_docstrings( "The bare Informer Model outputting raw hidden-states without any specific head on top.", INFORMER_START_DOCSTRING, ) # Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesTransformerModel with TimeSeriesTransformer->Informer,TIME_SERIES_TRANSFORMER->INFORMER,time-series-transformer->informer,TimeSeries->Informer class InformerModel(InformerPreTrainedModel): def __init__(self, config: InformerConfig): super().__init__(config) if config.scaling == "mean" or config.scaling is True: self.scaler = InformerMeanScaler(dim=1, keepdim=True) elif config.scaling == "std": self.scaler = InformerStdScaler(dim=1, keepdim=True) else: self.scaler = InformerNOPScaler(dim=1, keepdim=True) if config.num_static_categorical_features > 0: self.embedder = InformerFeatureEmbedder( cardinalities=config.cardinality, embedding_dims=config.embedding_dimension, ) # transformer encoder-decoder and mask initializer self.encoder = InformerEncoder(config) self.decoder = InformerDecoder(config) # Initialize weights and apply final processing self.post_init() @property def _past_length(self) -> int: return self.config.context_length + max(self.config.lags_sequence) def get_lagged_subsequences( self, sequence: torch.Tensor, subsequences_length: int, shift: int = 0 ) -> torch.Tensor: """ Returns lagged subsequences of a given sequence. Returns a tensor of shape (N, S, C, I), where S = subsequences_length and I = len(indices), containing lagged subsequences. Specifically, lagged[i, j, :, k] = sequence[i, -indices[k]-S+j, :]. Args: sequence: Tensor The sequence from which lagged subsequences should be extracted. Shape: (N, T, C). subsequences_length : int Length of the subsequences to be extracted. shift: int Shift the lags by this amount back. """ sequence_length = sequence.shape[1] indices = [lag - shift for lag in self.config.lags_sequence] if max(indices) + subsequences_length > sequence_length: raise ValueError( f"lags cannot go further than history length, found lag {max(indices)} " f"while history length is only {sequence_length}" ) lagged_values = [] for lag_index in indices: begin_index = -lag_index - subsequences_length end_index = -lag_index if lag_index > 0 else None lagged_values.append(sequence[:, begin_index:end_index, ...]) return torch.stack(lagged_values, dim=-1) def create_network_inputs( self, past_values: torch.Tensor, past_time_features: torch.Tensor, static_categorical_features: Optional[torch.Tensor] = None, static_real_features: Optional[torch.Tensor] = None, past_observed_mask: Optional[torch.Tensor] = None, future_values: Optional[torch.Tensor] = None, future_time_features: Optional[torch.Tensor] = None, ): # time feature time_feat = ( torch.cat( ( past_time_features[:, self._past_length - self.config.context_length :, ...], future_time_features, ), dim=1, ) if future_values is not None else past_time_features[:, self._past_length - self.config.context_length :, ...] ) # target if past_observed_mask is None: past_observed_mask = torch.ones_like(past_values) context = past_values[:, -self.config.context_length :] observed_context = past_observed_mask[:, -self.config.context_length :] _, loc, scale = self.scaler(context, observed_context) inputs = ( (torch.cat((past_values, future_values), dim=1) - loc) / scale if future_values is not None else (past_values - loc) / scale ) # static features log_abs_loc = loc.abs().log1p() if self.config.input_size == 1 else loc.squeeze(1).abs().log1p() log_scale = scale.log() if self.config.input_size == 1 else scale.squeeze(1).log() static_feat = torch.cat((log_abs_loc, log_scale), dim=1) if static_real_features is not None: static_feat = torch.cat((static_real_features, static_feat), dim=1) if static_categorical_features is not None: embedded_cat = self.embedder(static_categorical_features) static_feat = torch.cat((embedded_cat, static_feat), dim=1) expanded_static_feat = static_feat.unsqueeze(1).expand(-1, time_feat.shape[1], -1) # all features features = torch.cat((expanded_static_feat, time_feat), dim=-1) # lagged features subsequences_length = ( self.config.context_length + self.config.prediction_length if future_values is not None else self.config.context_length ) lagged_sequence = self.get_lagged_subsequences(sequence=inputs, subsequences_length=subsequences_length) lags_shape = lagged_sequence.shape reshaped_lagged_sequence = lagged_sequence.reshape(lags_shape[0], lags_shape[1], -1) if reshaped_lagged_sequence.shape[1] != time_feat.shape[1]: raise ValueError( f"input length {reshaped_lagged_sequence.shape[1]} and time feature lengths {time_feat.shape[1]} does not match" ) # transformer inputs transformer_inputs = torch.cat((reshaped_lagged_sequence, features), dim=-1) return transformer_inputs, loc, scale, static_feat def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder @add_start_docstrings_to_model_forward(INFORMER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqTSModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, past_values: torch.Tensor, past_time_features: torch.Tensor, past_observed_mask: torch.Tensor, static_categorical_features: Optional[torch.Tensor] = None, static_real_features: Optional[torch.Tensor] = None, future_values: Optional[torch.Tensor] = None, future_time_features: Optional[torch.Tensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[List[torch.FloatTensor]] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, use_cache: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Seq2SeqTSModelOutput, Tuple]: r""" Returns: Examples: ```python >>> from huggingface_hub import hf_hub_download >>> import torch >>> from transformers import InformerModel >>> file = hf_hub_download( ... repo_id="hf-internal-testing/tourism-monthly-batch", filename="train-batch.pt", repo_type="dataset" ... ) >>> batch = torch.load(file) >>> model = InformerModel.from_pretrained("huggingface/informer-tourism-monthly") >>> # during training, one provides both past and future values >>> # as well as possible additional features >>> outputs = model( ... past_values=batch["past_values"], ... past_time_features=batch["past_time_features"], ... past_observed_mask=batch["past_observed_mask"], ... static_categorical_features=batch["static_categorical_features"], ... static_real_features=batch["static_real_features"], ... future_values=batch["future_values"], ... future_time_features=batch["future_time_features"], ... ) >>> last_hidden_state = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_inputs, loc, scale, static_feat = self.create_network_inputs( past_values=past_values, past_time_features=past_time_features, past_observed_mask=past_observed_mask, static_categorical_features=static_categorical_features, static_real_features=static_real_features, future_values=future_values, future_time_features=future_time_features, ) if encoder_outputs is None: enc_input = transformer_inputs[:, : self.config.context_length, ...] encoder_outputs = self.encoder( inputs_embeds=enc_input, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) dec_input = transformer_inputs[:, self.config.context_length :, ...] decoder_outputs = self.decoder( inputs_embeds=dec_input, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return decoder_outputs + encoder_outputs + (loc, scale, static_feat) return Seq2SeqTSModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, loc=loc, scale=scale, static_features=static_feat, ) @add_start_docstrings( "The Informer Model with a distribution head on top for time-series forecasting.", INFORMER_START_DOCSTRING, ) # Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesTransformerForPrediction with TimeSeriesTransformer->Informer,TIME_SERIES_TRANSFORMER->INFORMER,time-series-transformer->informer class InformerForPrediction(InformerPreTrainedModel): def __init__(self, config: InformerConfig): super().__init__(config) self.model = InformerModel(config) if config.distribution_output == "student_t": self.distribution_output = StudentTOutput(dim=config.input_size) elif config.distribution_output == "normal": self.distribution_output = NormalOutput(dim=config.input_size) elif config.distribution_output == "negative_binomial": self.distribution_output = NegativeBinomialOutput(dim=config.input_size) else: raise ValueError(f"Unknown distribution output {config.distribution_output}") self.parameter_projection = self.distribution_output.get_parameter_projection(self.model.config.d_model) self.target_shape = self.distribution_output.event_shape if config.loss == "nll": self.loss = nll else: raise ValueError(f"Unknown loss function {config.loss}") # Initialize weights of distribution_output and apply final processing self.post_init() def output_params(self, dec_output): return self.parameter_projection(dec_output) def get_encoder(self): return self.model.get_encoder() def get_decoder(self): return self.model.get_decoder() @torch.jit.ignore def output_distribution(self, params, loc=None, scale=None, trailing_n=None) -> torch.distributions.Distribution: sliced_params = params if trailing_n is not None: sliced_params = [p[:, -trailing_n:] for p in params] return self.distribution_output.distribution(sliced_params, loc=loc, scale=scale) @add_start_docstrings_to_model_forward(INFORMER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqTSModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, past_values: torch.Tensor, past_time_features: torch.Tensor, past_observed_mask: torch.Tensor, static_categorical_features: Optional[torch.Tensor] = None, static_real_features: Optional[torch.Tensor] = None, future_values: Optional[torch.Tensor] = None, future_time_features: Optional[torch.Tensor] = None, future_observed_mask: Optional[torch.Tensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[List[torch.FloatTensor]] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, use_cache: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Seq2SeqTSModelOutput, Tuple]: r""" Returns: Examples: ```python >>> from huggingface_hub import hf_hub_download >>> import torch >>> from transformers import InformerForPrediction >>> file = hf_hub_download( ... repo_id="hf-internal-testing/tourism-monthly-batch", filename="train-batch.pt", repo_type="dataset" ... ) >>> batch = torch.load(file) >>> model = InformerForPrediction.from_pretrained("huggingface/informer-tourism-monthly") >>> # during training, one provides both past and future values >>> # as well as possible additional features >>> outputs = model( ... past_values=batch["past_values"], ... past_time_features=batch["past_time_features"], ... past_observed_mask=batch["past_observed_mask"], ... static_categorical_features=batch["static_categorical_features"], ... static_real_features=batch["static_real_features"], ... future_values=batch["future_values"], ... future_time_features=batch["future_time_features"], ... ) >>> loss = outputs.loss >>> loss.backward() >>> # during inference, one only provides past values >>> # as well as possible additional features >>> # the model autoregressively generates future values >>> outputs = model.generate( ... past_values=batch["past_values"], ... past_time_features=batch["past_time_features"], ... past_observed_mask=batch["past_observed_mask"], ... static_categorical_features=batch["static_categorical_features"], ... static_real_features=batch["static_real_features"], ... future_time_features=batch["future_time_features"], ... ) >>> mean_prediction = outputs.sequences.mean(dim=1) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if future_values is not None: use_cache = False outputs = self.model( past_values=past_values, past_time_features=past_time_features, past_observed_mask=past_observed_mask, static_categorical_features=static_categorical_features, static_real_features=static_real_features, future_values=future_values, future_time_features=future_time_features, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, encoder_outputs=encoder_outputs, past_key_values=past_key_values, output_hidden_states=output_hidden_states, output_attentions=output_attentions, use_cache=use_cache, return_dict=return_dict, ) prediction_loss = None params = None if future_values is not None: params = self.output_params(outputs[0]) # outputs.last_hidden_state # loc is 3rd last and scale is 2nd last output distribution = self.output_distribution(params, loc=outputs[-3], scale=outputs[-2]) loss = self.loss(distribution, future_values) if future_observed_mask is None: future_observed_mask = torch.ones_like(future_values) if len(self.target_shape) == 0: loss_weights = future_observed_mask else: loss_weights, _ = future_observed_mask.min(dim=-1, keepdim=False) prediction_loss = weighted_average(loss, weights=loss_weights) if not return_dict: outputs = ((params,) + outputs[1:]) if params is not None else outputs[1:] return ((prediction_loss,) + outputs) if prediction_loss is not None else outputs return Seq2SeqTSPredictionOutput( loss=prediction_loss, params=params, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, loc=outputs.loc, scale=outputs.scale, static_features=outputs.static_features, ) @torch.no_grad() def generate( self, past_values: torch.Tensor, past_time_features: torch.Tensor, future_time_features: torch.Tensor, past_observed_mask: Optional[torch.Tensor] = None, static_categorical_features: Optional[torch.Tensor] = None, static_real_features: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> SampleTSPredictionOutput: r""" Greedily generate sequences of sample predictions from a model with a probability distribution head. Parameters: past_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)` or `(batch_size, sequence_length, input_size)`): Past values of the time series, that serve as context in order to predict the future. The sequence size of this tensor must be larger than the `context_length` of the model, since the model will use the larger size to construct lag features, i.e. additional values from the past which are added in order to serve as "extra context". The `sequence_length` here is equal to `config.context_length` + `max(config.lags_sequence)`, which if no `lags_sequence` is configured, is equal to `config.context_length` + 7 (as by default, the largest look-back index in `config.lags_sequence` is 7). The property `_past_length` returns the actual length of the past. The `past_values` is what the Transformer encoder gets as input (with optional additional features, such as `static_categorical_features`, `static_real_features`, `past_time_features` and lags). Optionally, missing values need to be replaced with zeros and indicated via the `past_observed_mask`. For multivariate time series, the `input_size` > 1 dimension is required and corresponds to the number of variates in the time series per time step. past_time_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_features)`): Required time features, which the model internally will add to `past_values`. These could be things like "month of year", "day of the month", etc. encoded as vectors (for instance as Fourier features). These could also be so-called "age" features, which basically help the model know "at which point in life" a time-series is. Age features have small values for distant past time steps and increase monotonically the more we approach the current time step. Holiday features are also a good example of time features. These features serve as the "positional encodings" of the inputs. So contrary to a model like BERT, where the position encodings are learned from scratch internally as parameters of the model, the Time Series Transformer requires to provide additional time features. The Time Series Transformer only learns additional embeddings for `static_categorical_features`. Additional dynamic real covariates can be concatenated to this tensor, with the caveat that these features must but known at prediction time. The `num_features` here is equal to `config.`num_time_features` + `config.num_dynamic_real_features`. future_time_features (`torch.FloatTensor` of shape `(batch_size, prediction_length, num_features)`): Required time features for the prediction window, which the model internally will add to sampled predictions. These could be things like "month of year", "day of the month", etc. encoded as vectors (for instance as Fourier features). These could also be so-called "age" features, which basically help the model know "at which point in life" a time-series is. Age features have small values for distant past time steps and increase monotonically the more we approach the current time step. Holiday features are also a good example of time features. These features serve as the "positional encodings" of the inputs. So contrary to a model like BERT, where the position encodings are learned from scratch internally as parameters of the model, the Time Series Transformer requires to provide additional time features. The Time Series Transformer only learns additional embeddings for `static_categorical_features`. Additional dynamic real covariates can be concatenated to this tensor, with the caveat that these features must but known at prediction time. The `num_features` here is equal to `config.`num_time_features` + `config.num_dynamic_real_features`. past_observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length)` or `(batch_size, sequence_length, input_size)`, *optional*): Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected in `[0, 1]`: - 1 for values that are **observed**, - 0 for values that are **missing** (i.e. NaNs that were replaced by zeros). static_categorical_features (`torch.LongTensor` of shape `(batch_size, number of static categorical features)`, *optional*): Optional static categorical features for which the model will learn an embedding, which it will add to the values of the time series. Static categorical features are features which have the same value for all time steps (static over time). A typical example of a static categorical feature is a time series ID. static_real_features (`torch.FloatTensor` of shape `(batch_size, number of static real features)`, *optional*): Optional static real features which the model will add to the values of the time series. Static real features are features which have the same value for all time steps (static over time). A typical example of a static real feature is promotion information. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. Return: [`SampleTSPredictionOutput`] where the outputs `sequences` tensor will have shape `(batch_size, number of samples, prediction_length)` or `(batch_size, number of samples, prediction_length, input_size)` for multivariate predictions. """ outputs = self( static_categorical_features=static_categorical_features, static_real_features=static_real_features, past_time_features=past_time_features, past_values=past_values, past_observed_mask=past_observed_mask, future_time_features=future_time_features, future_values=None, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, use_cache=True, ) decoder = self.model.get_decoder() enc_last_hidden = outputs.encoder_last_hidden_state loc = outputs.loc scale = outputs.scale static_feat = outputs.static_features num_parallel_samples = self.config.num_parallel_samples repeated_loc = loc.repeat_interleave(repeats=num_parallel_samples, dim=0) repeated_scale = scale.repeat_interleave(repeats=num_parallel_samples, dim=0) repeated_past_values = ( past_values.repeat_interleave(repeats=num_parallel_samples, dim=0) - repeated_loc ) / repeated_scale expanded_static_feat = static_feat.unsqueeze(1).expand(-1, future_time_features.shape[1], -1) features = torch.cat((expanded_static_feat, future_time_features), dim=-1) repeated_features = features.repeat_interleave(repeats=num_parallel_samples, dim=0) repeated_enc_last_hidden = enc_last_hidden.repeat_interleave(repeats=num_parallel_samples, dim=0) future_samples = [] # greedy decoding for k in range(self.config.prediction_length): lagged_sequence = self.model.get_lagged_subsequences( sequence=repeated_past_values, subsequences_length=1 + k, shift=1, ) lags_shape = lagged_sequence.shape reshaped_lagged_sequence = lagged_sequence.reshape(lags_shape[0], lags_shape[1], -1) decoder_input = torch.cat((reshaped_lagged_sequence, repeated_features[:, : k + 1]), dim=-1) dec_output = decoder(inputs_embeds=decoder_input, encoder_hidden_states=repeated_enc_last_hidden) dec_last_hidden = dec_output.last_hidden_state params = self.parameter_projection(dec_last_hidden[:, -1:]) distr = self.output_distribution(params, loc=repeated_loc, scale=repeated_scale) next_sample = distr.sample() repeated_past_values = torch.cat( (repeated_past_values, (next_sample - repeated_loc) / repeated_scale), dim=1 ) future_samples.append(next_sample) concat_future_samples = torch.cat(future_samples, dim=1) return SampleTSPredictionOutput( sequences=concat_future_samples.reshape( (-1, num_parallel_samples, self.config.prediction_length) + self.target_shape, ) )
transformers-main
src/transformers/models/informer/modeling_informer.py
# coding=utf-8 # Copyright 2023 The Salesforce Team Authors and The HuggingFace Team. All rights reserved. # # Licensed under the BSD-3-clause license (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://opensource.org/licenses/BSD-3-Clause # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import math from typing import Optional, Tuple import tensorflow as tf from ...modeling_tf_outputs import ( TFBaseModelOutputWithPastAndCrossAttentions, TFBaseModelOutputWithPoolingAndCrossAttentions, TFCausalLMOutputWithCrossAttentions, ) from ...modeling_tf_utils import ( TFPreTrainedModel, get_initializer, get_tf_activation, keras_serializable, shape_list, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, invert_attention_mask, stable_softmax from ...utils import add_start_docstrings_to_model_forward, logging from .configuration_blip import BlipTextConfig logger = logging.get_logger(__name__) BLIP_TEXT_INPUTS_DOCSTRING = r""" Args: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoProcessor`]. See [`BlipProcessor.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ # Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L52 class TFBlipTextEmbeddings(tf.keras.layers.Layer): """Construct the embeddings from word and position embeddings.""" def __init__(self, config, **kwargs): super().__init__(**kwargs) self.word_embeddings = tf.keras.layers.Embedding( config.vocab_size, config.hidden_size, embeddings_initializer=get_initializer(config.initializer_range), name="word_embeddings", ) self.position_embeddings = tf.keras.layers.Embedding( config.max_position_embeddings, config.hidden_size, embeddings_initializer=get_initializer(config.initializer_range), name="position_embeddings", ) # self.LayerNorm is not snake-cased to stick with PyTorch model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob, name="dropout") self.position_ids = tf.expand_dims(tf.range(config.max_position_embeddings), 0) self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.config = config def call(self, input_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0, training=None): if input_ids is not None: input_shape = tf.shape(input_ids) else: input_shape = tf.shape(inputs_embeds)[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] if inputs_embeds is None: check_embeddings_within_bounds(input_ids, self.config.vocab_size) inputs_embeds = self.word_embeddings(input_ids) embeddings = inputs_embeds if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings, training=training) return embeddings # Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L97 class TFBlipTextSelfAttention(tf.keras.layers.Layer): def __init__(self, config, is_cross_attention, **kwargs): super().__init__(**kwargs) self.config = config if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( "The hidden size (%d) is not a multiple of the number of attention heads (%d)" % (config.hidden_size, config.num_attention_heads) ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = tf.keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" ) self.key = tf.keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key" ) self.value = tf.keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" ) self.dropout = tf.keras.layers.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = tf.keras.layers.Embedding( 2 * config.max_position_embeddings - 1, self.attention_head_size ) def transpose_for_scores(self, x): new_x_shape = tf.concat( [tf.shape(x)[:-1], tf.constant([self.num_attention_heads, self.attention_head_size], dtype=tf.int32)], axis=0, ) x = tf.reshape(x, new_x_shape) return tf.transpose(x, perm=(0, 2, 1, 3)) def call( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, training=None, ): mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = tf.concat([past_key_value[0], key_layer], axis=2) value_layer = tf.concat([past_key_value[1], value_layer], axis=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": seq_length = shape_list(hidden_states)[1] position_ids_l = tf.expand_dims(tf.range(seq_length, dtype=tf.int64, device=hidden_states.device), 1) position_ids_r = tf.expand_dims(tf.range(seq_length, dtype=tf.int64, device=hidden_states.device), 0) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = tf.cast(positional_embedding, query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = tf.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = tf.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = tf.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in BlipTextModel forward() function) attention_scores = attention_scores + tf.cast(attention_mask, attention_scores.dtype) # Normalize the attention scores to probabilities. attention_probs = stable_softmax(attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs_dropped = self.dropout(attention_probs, training=training) # Mask heads if we want to if head_mask is not None: attention_probs_dropped = attention_probs_dropped * head_mask context_layer = attention_probs_dropped @ value_layer context_layer = tf.transpose(context_layer, perm=(0, 2, 1, 3)) new_context_layer_shape = shape_list(context_layer)[:-2] + [self.all_head_size] context_layer = tf.reshape(context_layer, new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) outputs = outputs + (past_key_value,) return outputs class TFBlipTextSelfOutput(tf.keras.layers.Layer): def __init__(self, config: BlipTextConfig, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob) def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: Optional[bool] = None) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) return hidden_states # Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#242 class TFBlipTextAttention(tf.keras.layers.Layer): def __init__(self, config, is_cross_attention=False, **kwargs): super().__init__(**kwargs) self.self = TFBlipTextSelfAttention(config, is_cross_attention, name="self") # "output" is a protected attribute on TF models self.self_output = TFBlipTextSelfOutput(config, name="output") def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, encoder_hidden_states: tf.Tensor | None = None, encoder_attention_mask: tf.Tensor | None = None, past_key_value: Tuple[Tuple[tf.Tensor]] | None = None, output_attentions: Optional[bool] = False, training: Optional[bool] = None, ): self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, training=training, ) attention_output = self.self_output(self_outputs[0], hidden_states, training=training) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate with Bert->BlipText class TFBlipTextIntermediate(tf.keras.layers.Layer): def __init__(self, config: BlipTextConfig, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class TFBlipTextOutput(tf.keras.layers.Layer): def __init__(self, config: BlipTextConfig, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob) def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) return hidden_states class TFBlipTextLayer(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.config = config self.attention = TFBlipTextAttention(config, name="attention") if self.config.is_decoder: self.crossattention = TFBlipTextAttention( config, is_cross_attention=self.config.is_decoder, name="crossattention" ) self.intermediate = TFBlipTextIntermediate(config, name="intermediate") self.self_output = TFBlipTextOutput(config, name="output") def call( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, training=None, ): # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, training=training, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] if encoder_hidden_states is not None: cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, output_attentions=output_attentions, training=training, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights intermediate_output = self.intermediate(attention_output) layer_output = self.self_output(intermediate_output, attention_output, training=training) outputs = (layer_output,) + outputs outputs = outputs + (present_key_value,) return outputs # Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L386 @keras_serializable class TFBlipTextEncoder(tf.keras.layers.Layer): config_class = BlipTextConfig def __init__(self, config, name=None, **kwargs): super().__init__(name=name, **kwargs) self.config = config self.layer = [TFBlipTextLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)] @unpack_inputs def call( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=False, output_hidden_states=False, return_dict=True, training=None, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.is_decoder else None next_decoder_cache = () if use_cache else None for i in range(self.config.num_hidden_layers): layer_module = self.layer[i] if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, training=training, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return TFBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) # Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->BlipText class TFBlipTextPooler(tf.keras.layers.Layer): def __init__(self, config: BlipTextConfig, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), activation="tanh", name="dense", ) def call(self, hidden_states: tf.Tensor) -> tf.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(inputs=first_token_tensor) return pooled_output # Copied from transformers.models.bert.modeling_tf_bert.TFBertPredictionHeadTransform with Bert->BlipText class TFBlipTextPredictionHeadTransform(tf.keras.layers.Layer): def __init__(self, config: BlipTextConfig, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense", ) if isinstance(config.hidden_act, str): self.transform_act_fn = get_tf_activation(config.hidden_act) else: self.transform_act_fn = config.hidden_act self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(inputs=hidden_states) return hidden_states class TFBlipTextLMPredictionHead(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.transform = TFBlipTextPredictionHeadTransform(config, name="transform") # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = tf.keras.layers.Dense( config.vocab_size, kernel_initializer=get_initializer(config.initializer_range), name="decoder", use_bias=False, ) self.config = config def build(self, input_shape=None): self.bias = self.add_weight(name="bias", shape=(self.config.vocab_size,), initializer="zeros", trainable=True) super().build(input_shape) def call(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) + self.bias return hidden_states class TFBlipTextOnlyMLMHead(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.predictions = TFBlipTextLMPredictionHead(config, name="predictions") def call(self, sequence_output: tf.Tensor) -> tf.Tensor: prediction_scores = self.predictions(sequence_output) return prediction_scores # Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L548 class TFBlipTextPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = BlipTextConfig base_model_prefix = "bert" _keys_to_ignore_on_load_missing = [r"position_ids"] # Adapted from https://github.com/salesforce/BLIP/blob/3a29b7410476bf5f2ba0955827390eb6ea1f4f9d/models/med.py#L571 class TFBlipTextModel(TFBlipTextPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in [Attention is all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. argument and `is_decoder` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. """ def __init__(self, config, add_pooling_layer=True, name=None, **kwargs): super().__init__(config, name=name, **kwargs) self.config = config self.embeddings = TFBlipTextEmbeddings(config, name="embeddings") self.encoder = TFBlipTextEncoder(config, name="encoder") self.pooler = TFBlipTextPooler(config, name="pooler") if add_pooling_layer else None def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value @tf.function def get_extended_attention_mask( self, attention_mask: tf.Tensor, input_shape: Tuple[int], is_decoder: bool ) -> tf.Tensor: """ Makes broadcastable attention and causal masks so that future and masked tokens are ignored. Arguments: attention_mask (`tf.Tensor`): Mask with ones indicating tokens to attend to, zeros for tokens to ignore. input_shape (`Tuple[int]`): The shape of the input to the model. is_decoder (`bool`): Whether the model is used as a decoder. Returns: `tf.Tensor` The extended attention mask, with the same dtype as `attention_mask.dtype`. """ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. if not isinstance(attention_mask, tf.Tensor): attention_mask = tf.convert_to_tensor(attention_mask) # Catches NumPy inputs that haven't been cast yet if attention_mask.shape.rank == 3: extended_attention_mask = attention_mask[:, None, :, :] elif attention_mask.shape.rank == 2: # Provided a padding mask of dimensions [batch_size, seq_length] # - if the model is a decoder, apply a causal mask in addition to the padding mask # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length] if is_decoder: batch_size, seq_length = input_shape seq_ids = tf.range(seq_length, dtype=attention_mask.dtype) causal_mask = tf.broadcast_to(seq_ids, (batch_size, seq_length, seq_length)) <= seq_ids[None, :, None] # in case past_key_values are used we need to add a prefix ones mask to the causal mask if shape_list(causal_mask)[1] < shape_list(attention_mask)[1]: prefix_seq_len = tf.shape(attention_mask)[1] - tf.shape(causal_mask)[1] causal_mask = tf.concat( [ tf.ones((batch_size, seq_length, prefix_seq_len), dtype=causal_mask.dtype), causal_mask, ], axis=-1, ) extended_attention_mask = ( tf.cast(causal_mask[:, None, :, :], attention_mask.dtype) * attention_mask[:, None, None, :] ) else: extended_attention_mask = attention_mask[:, None, None, :] else: raise ValueError( "Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format( input_shape, attention_mask.shape ) ) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = tf.cast(extended_attention_mask, self.dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 return extended_attention_mask @add_start_docstrings_to_model_forward(BLIP_TEXT_INPUTS_DOCSTRING) @unpack_inputs def call( self, input_ids=None, attention_mask=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, is_decoder=False, training=None, ): r""" encoder_hidden_states (`tf.Tensor`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`tf.Tensor`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`tuple(tuple(tf.Tensor))`, *optional*): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) batch_size, seq_length = input_shape elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] batch_size, seq_length = input_shape elif encoder_embeds is not None: input_shape = shape_list(encoder_embeds)[:-1] batch_size, seq_length = input_shape else: raise ValueError("You have to specify either input_ids or inputs_embeds or encoder_embeds") # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if attention_mask is None: attention_mask = tf.ones(((batch_size, seq_length + past_key_values_length))) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: tf.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, is_decoder) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_hidden_states is not None: if type(encoder_hidden_states) == list: encoder_batch_size, encoder_sequence_length, _ = shape_list(encoder_hidden_states[0]) else: encoder_batch_size, encoder_sequence_length, _ = shape_list(encoder_hidden_states) encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if type(encoder_attention_mask) == list: encoder_extended_attention_mask = [invert_attention_mask(mask) for mask in encoder_attention_mask] elif encoder_attention_mask is None: encoder_attention_mask = tf.ones(encoder_hidden_shape) encoder_extended_attention_mask = invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) if encoder_embeds is None: embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) else: embedding_output = encoder_embeds encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) # Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L811 class TFBlipTextLMHeadModel(TFBlipTextPreTrainedModel): _keys_to_ignore_on_load_unexpected = [r"pooler"] _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"] def __init__(self, config, **kwargs): super().__init__(config, **kwargs) self.bert = TFBlipTextModel(config, add_pooling_layer=False, name="bert") self.cls = TFBlipTextOnlyMLMHead(config, name="cls") def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings @add_start_docstrings_to_model_forward(BLIP_TEXT_INPUTS_DOCSTRING) @unpack_inputs def call( self, input_ids=None, attention_mask=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, labels=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, return_logits=False, is_decoder=True, training=None, ): r""" encoder_hidden_states (`tf.Tensor`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`tf.Tensor`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. labels (`tf.Tensor`, *optional*): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]` past_key_values (`tuple(tuple(tf.Tensor))`, *optional*): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: use_cache = False outputs = self.bert( input_ids, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, is_decoder=is_decoder, training=training, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) if return_logits: return prediction_scores[:, :-1, :] lm_loss = None if labels is not None: # we are doing next-token prediction; shift prediction scores and input ids by one shifted_prediction_scores = prediction_scores[:, :-1, :] shifted_prediction_scores = tf.reshape(shifted_prediction_scores, (-1, self.config.vocab_size)) labels = labels[:, 1:] labels = tf.reshape(labels, (-1,)) # Keras won't give us label smoothing for sparse CE, so we de-sparsify things here one_hot_labels = tf.one_hot(labels, depth=self.config.vocab_size, dtype=tf.float32) loss_fct = tf.keras.losses.CategoricalCrossentropy(from_logits=True, label_smoothing=0.1, reduction="none") masked_positions = tf.cast(tf.not_equal(labels, -100), dtype=tf.float32) lm_loss = loss_fct(one_hot_labels, shifted_prediction_scores) lm_loss *= masked_positions lm_loss = tf.reduce_sum(lm_loss, axis=0) / tf.math.count_nonzero(masked_positions, dtype=tf.float32) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((lm_loss,) + output) if lm_loss is not None else output return TFCausalLMOutputWithCrossAttentions( loss=lm_loss, logits=prediction_scores, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs): input_shape = input_ids.shape # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = input_ids.new_ones(input_shape) # cut decoder_input_ids if past_key_values is used if past_key_values is not None: input_ids = input_ids[:, -1:] return { "input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values, "encoder_hidden_states": model_kwargs.get("encoder_hidden_states", None), "encoder_attention_mask": model_kwargs.get("encoder_attention_mask", None), "is_decoder": True, } def _reorder_cache(self, past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) return reordered_past
transformers-main
src/transformers/models/blip/modeling_tf_blip_text.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Processor class for Blip. """ from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class BlipProcessor(ProcessorMixin): r""" Constructs a BLIP processor which wraps a BERT tokenizer and BLIP image processor into a single processor. [`BlipProcessor`] offers all the functionalities of [`BlipImageProcessor`] and [`BertTokenizerFast`]. See the docstring of [`~BlipProcessor.__call__`] and [`~BlipProcessor.decode`] for more information. Args: image_processor (`BlipImageProcessor`): An instance of [`BlipImageProcessor`]. The image processor is a required input. tokenizer (`BertTokenizerFast`): An instance of ['BertTokenizerFast`]. The tokenizer is a required input. """ attributes = ["image_processor", "tokenizer"] image_processor_class = "BlipImageProcessor" tokenizer_class = ("BertTokenizer", "BertTokenizerFast") def __init__(self, image_processor, tokenizer): tokenizer.return_token_type_ids = False super().__init__(image_processor, tokenizer) self.current_processor = self.image_processor def __call__( self, images: ImageInput = None, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_token_type_ids: bool = False, return_length: bool = False, verbose: bool = True, return_tensors: Optional[Union[str, TensorType]] = None, **kwargs, ) -> BatchEncoding: """ This method uses [`BlipImageProcessor.__call__`] method to prepare image(s) for the model, and [`BertTokenizerFast.__call__`] to prepare text for the model. Please refer to the docstring of the above two methods for more information. """ if images is None and text is None: raise ValueError("You have to specify either images or text.") # Get only text if images is None: self.current_processor = self.tokenizer text_encoding = self.tokenizer( text=text, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_token_type_ids=return_token_type_ids, return_length=return_length, verbose=verbose, return_tensors=return_tensors, **kwargs, ) return text_encoding # add pixel_values encoding_image_processor = self.image_processor(images, return_tensors=return_tensors) if text is not None: text_encoding = self.tokenizer( text=text, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_token_type_ids=return_token_type_ids, return_length=return_length, verbose=verbose, return_tensors=return_tensors, **kwargs, ) else: text_encoding = None if text_encoding is not None: encoding_image_processor.update(text_encoding) return encoding_image_processor def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
transformers-main
src/transformers/models/blip/processing_blip.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for BLIP.""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL logger = logging.get_logger(__name__) class BlipImageProcessor(BaseImageProcessor): r""" Constructs a BLIP image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the `do_resize` parameter in the `preprocess` method. size (`dict`, *optional*, defaults to `{"height": 384, "width": 384}`): Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess` method. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): Resampling filter to use if resizing the image. Only has an effect if `do_resize` is set to `True`. Can be overridden by the `resample` parameter in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `True`): Wwhether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` parameter in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Only has an effect if `do_rescale` is set to `True`. Can be overridden by the `rescale_factor` parameter in the `preprocess` method. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` method. Can be overridden by the `do_normalize` parameter in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. Can be overridden by the `image_std` parameter in the `preprocess` method. do_convert_rgb (`bool`, *optional*, defaults to `True`): Whether to convert the image to RGB. """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PILImageResampling.BICUBIC, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_convert_rgb: bool = True, **kwargs, ) -> None: super().__init__(**kwargs) size = size if size is not None else {"height": 384, "width": 384} size = get_size_dict(size, default_to_square=True) self.do_resize = do_resize self.size = size self.resample = resample self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD self.do_convert_rgb = do_convert_rgb # Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize with PILImageResampling.BILINEAR->PILImageResampling.BICUBIC def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.BICUBIC, data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize an image to `(size["height"], size["width"])`. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): `PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BICUBIC`. data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. Returns: `np.ndarray`: The resized image. """ size = get_size_dict(size) if "height" not in size or "width" not in size: raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}") output_size = (size["height"], size["width"]) return resize(image, size=output_size, resample=resample, data_format=data_format, **kwargs) def preprocess( self, images: ImageInput, do_resize: Optional[bool] = None, size: Optional[Dict[str, int]] = None, resample: PILImageResampling = None, do_rescale: Optional[bool] = None, rescale_factor: Optional[float] = None, do_normalize: Optional[bool] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, return_tensors: Optional[Union[str, TensorType]] = None, do_convert_rgb: bool = None, data_format: ChannelDimension = ChannelDimension.FIRST, **kwargs, ) -> PIL.Image.Image: """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Controls the size of the image after `resize`. The shortest edge of the image is resized to `size["shortest_edge"]` whilst preserving the aspect ratio. If the longest edge of this resized image is > `int(size["shortest_edge"] * (1333 / 800))`, then the image is resized again to make the longest edge equal to `int(size["shortest_edge"] * (1333 / 800))`. resample (`PILImageResampling`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. Only has an effect if `do_resize` is set to `True`. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image values between [0 - 1]. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean to normalize the image by if `do_normalize` is set to `True`. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation to normalize the image by if `do_normalize` is set to `True`. do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): Whether to convert the image to RGB. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `ChannelDimension.LAST`: image in (height, width, num_channels) format. """ do_resize = do_resize if do_resize is not None else self.do_resize resample = resample if resample is not None else self.resample do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb size = size if size is not None else self.size size = get_size_dict(size, default_to_square=False) images = make_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") # PIL RGBA images are converted to RGB if do_convert_rgb: images = [convert_to_rgb(image) for image in images] # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] if do_resize: images = [self.resize(image=image, size=size, resample=resample) for image in images] if do_rescale: images = [self.rescale(image=image, scale=rescale_factor) for image in images] if do_normalize: images = [self.normalize(image=image, mean=image_mean, std=image_std) for image in images] images = [to_channel_dimension_format(image, data_format) for image in images] encoded_outputs = BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors) return encoded_outputs
transformers-main
src/transformers/models/blip/image_processing_blip.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Blip model configuration""" import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP = { "Salesforce/blip-vqa-base": "https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json", "Salesforce/blip-vqa-capfit-large": ( "https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json" ), "Salesforce/blip-image-captioning-base": ( "https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json" ), "Salesforce/blip-image-captioning-large": ( "https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json" ), "Salesforce/blip-itm-base-coco": "https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json", "Salesforce/blip-itm-large-coco": "https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json", "Salesforce/blip-itm-base-flikr": "https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json", "Salesforce/blip-itm-large-flikr": ( "https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json" ), } class BlipTextConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`BlipTextModel`]. It is used to instantiate a BLIP text model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the `BlipText` used by the [base architectures](https://huggingface.co/Salesforce/blip-vqa-base). Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the `Blip` text model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`BlipModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. encoder_hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers from the vision model. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 8): Number of attention heads for each attention layer in the Transformer encoder. max_position_embeddings (`int`, *optional*, defaults to 77): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. hidden_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. bos_token_id (`int`, *optional*, defaults to 30522): The id of the `beginning-of-sequence` token. eos_token_id (`int`, *optional*, defaults to 2): The id of the `end-of-sequence` token. pad_token_id (`int`, *optional*, defaults to 0): The id of the `padding` token. sep_token_id (`int`, *optional*, defaults to 102): The id of the `separator` token. is_decoder (`bool`, *optional*, defaults to `False`): Whether the model is used as a decoder. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Example: ```python >>> from transformers import BlipTextConfig, BlipTextModel >>> # Initializing a BlipTextConfig with Salesforce/blip-vqa-base style configuration >>> configuration = BlipTextConfig() >>> # Initializing a BlipTextModel (with random weights) from the Salesforce/blip-vqa-base style configuration >>> model = BlipTextModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "blip_text_model" def __init__( self, vocab_size=30524, hidden_size=768, encoder_hidden_size=768, intermediate_size=3072, projection_dim=768, num_hidden_layers=12, num_attention_heads=8, max_position_embeddings=512, hidden_act="gelu", layer_norm_eps=1e-12, hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, initializer_range=0.02, bos_token_id=30522, eos_token_id=2, pad_token_id=0, sep_token_id=102, is_decoder=True, use_cache=True, **kwargs, ): super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, sep_token_id=sep_token_id, **kwargs, ) self.vocab_size = vocab_size self.hidden_size = hidden_size self.encoder_hidden_size = encoder_hidden_size self.intermediate_size = intermediate_size self.projection_dim = projection_dim self.hidden_dropout_prob = hidden_dropout_prob self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.max_position_embeddings = max_position_embeddings self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act self.initializer_range = initializer_range self.attention_probs_dropout_prob = attention_probs_dropout_prob self.is_decoder = is_decoder self.use_cache = use_cache @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) # get the text config dict if we are loading from BlipConfig if config_dict.get("model_type") == "blip": config_dict = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class BlipVisionConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`BlipVisionModel`]. It is used to instantiate a BLIP vision model according to the specified arguments, defining the model architecture. Instantiating a configuration defaults will yield a similar configuration to that of the Blip-base [Salesforce/blip-vqa-base](https://huggingface.co/Salesforce/blip-vqa-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 32): The size (resolution) of each patch. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported. layer_norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon used by the layer normalization layers. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. Example: ```python >>> from transformers import BlipVisionConfig, BlipVisionModel >>> # Initializing a BlipVisionConfig with Salesforce/blip-vqa-base style configuration >>> configuration = BlipVisionConfig() >>> # Initializing a BlipVisionModel (with random weights) from the Salesforce/blip-vqa-base style configuration >>> model = BlipVisionModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "blip_vision_model" def __init__( self, hidden_size=768, intermediate_size=3072, projection_dim=512, num_hidden_layers=12, num_attention_heads=12, image_size=384, patch_size=16, hidden_act="gelu", layer_norm_eps=1e-5, attention_dropout=0.0, initializer_range=1e-10, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.projection_dim = projection_dim self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.patch_size = patch_size self.image_size = image_size self.initializer_range = initializer_range self.attention_dropout = attention_dropout self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) # get the vision config dict if we are loading from BlipConfig if config_dict.get("model_type") == "blip": config_dict = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class BlipConfig(PretrainedConfig): r""" [`BlipConfig`] is the configuration class to store the configuration of a [`BlipModel`]. It is used to instantiate a BLIP model according to the specified arguments, defining the text model and vision model configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the BLIP-base [Salesforce/blip-vqa-base](https://huggingface.co/Salesforce/blip-vqa-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: text_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`BlipTextConfig`]. vision_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`BlipVisionConfig`]. projection_dim (`int`, *optional*, defaults to 512): Dimentionality of text and vision projection layers. logit_scale_init_value (`float`, *optional*, defaults to 2.6592): The inital value of the *logit_scale* paramter. Default is used as per the original BLIP implementation. image_text_hidden_size (`int`, *optional*, defaults to 768): Dimentionality of the hidden state of the image-text fusion layer. kwargs (*optional*): Dictionary of keyword arguments. Example: ```python >>> from transformers import BlipConfig, BlipModel >>> # Initializing a BlipConfig with Salesforce/blip-vqa-base style configuration >>> configuration = BlipConfig() >>> # Initializing a BlipPModel (with random weights) from the Salesforce/blip-vqa-base style configuration >>> model = BlipModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config >>> # We can also initialize a BlipConfig from a BlipTextConfig and a BlipVisionConfig >>> # Initializing a BLIPText and BLIPVision configuration >>> config_text = BlipTextConfig() >>> config_vision = BlipVisionConfig() >>> config = BlipConfig.from_text_vision_configs(config_text, config_vision) ```""" model_type = "blip" def __init__( self, text_config=None, vision_config=None, projection_dim=512, logit_scale_init_value=2.6592, image_text_hidden_size=256, **kwargs, ): super().__init__(**kwargs) if text_config is None: text_config = {} logger.info("`text_config` is `None`. Initializing the `BlipTextConfig` with default values.") if vision_config is None: vision_config = {} logger.info("`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.") self.text_config = BlipTextConfig(**text_config) self.vision_config = BlipVisionConfig(**vision_config) self.text_config.encoder_hidden_size = self.vision_config.hidden_size self.projection_dim = projection_dim self.logit_scale_init_value = logit_scale_init_value self.initializer_factor = 1.0 self.initializer_range = 0.02 self.image_text_hidden_size = image_text_hidden_size @classmethod def from_text_vision_configs(cls, text_config: BlipTextConfig, vision_config: BlipVisionConfig, **kwargs): r""" Instantiate a [`BlipConfig`] (or a derived class) from blip text model configuration and blip vision model configuration. Returns: [`BlipConfig`]: An instance of a configuration object """ return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
transformers-main
src/transformers/models/blip/configuration_blip.py
# coding=utf-8 # Copyright 2023 The Salesforce Team Authors and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TensorFlow BLIP model.""" from __future__ import annotations import warnings from dataclasses import dataclass from typing import Any, Optional, Tuple, Union import tensorflow as tf from ...modeling_tf_outputs import TFBaseModelOutput, TFBaseModelOutputWithPooling from ...modeling_tf_utils import ( TFPreTrainedModel, get_initializer, get_tf_activation, keras_serializable, shape_list, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, stable_softmax from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_blip import BlipConfig, BlipTextConfig, BlipVisionConfig from .modeling_tf_blip_text import BLIP_TEXT_INPUTS_DOCSTRING, TFBlipTextLMHeadModel, TFBlipTextModel logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "Salesforce/blip-vqa-base" TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [ "Salesforce/blip-vqa-base", "Salesforce/blip-vqa-capfilt-large", "Salesforce/blip-image-captioning-base", "Salesforce/blip-image-captioning-large", "Salesforce/blip-itm-base-coco", "Salesforce/blip-itm-large-coco", "Salesforce/blip-itm-base-flickr", "Salesforce/blip-itm-large-flickr", # See all BLIP models at https://huggingface.co/models?filter=blip ] # Copied from transformers.models.clip.modeling_tf_clip.contrastive_loss def contrastive_loss(logits: tf.Tensor) -> tf.Tensor: return tf.math.reduce_mean( tf.keras.metrics.sparse_categorical_crossentropy( y_true=tf.range(shape_list(logits)[0]), y_pred=logits, from_logits=True ) ) # Copied from transformers.models.clip.modeling_tf_clip.clip_loss with clip->blip def blip_loss(similarity: tf.Tensor) -> tf.Tensor: caption_loss = contrastive_loss(similarity) image_loss = contrastive_loss(tf.transpose(similarity)) return (caption_loss + image_loss) / 2.0 @dataclass class TFBlipForConditionalGenerationModelOutput(ModelOutput): """ Adapted from the base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states. This class also adds the loss term from the text decoder. Args: loss (`tf.Tensor`, *optional*, returned when `labels` is provided, `tf.Tensor` of shape `(1,)`): Languge modeling loss from the text decoder. logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`, *optional*): Prediction scores of the language modeling head of the text decoder model. image_embeds (`tf.Tensor` of shape `(batch_size, output_dim)`, *optional*): The image embeddings obtained after applying the Vision Transformer model to the input image. last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.` """ loss: Tuple[tf.Tensor] | None = None logits: Tuple[tf.Tensor] | None = None image_embeds: tf.Tensor | None = None last_hidden_state: tf.Tensor = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None @property def decoder_logits(self): warnings.warn( "`decoder_logits` attribute is deprecated and will be removed in version 5 of Transformers." " Please use the `logits` attribute to retrieve the final output instead.", FutureWarning, ) return self.logits @dataclass class TFBlipTextVisionModelOutput(ModelOutput): """ Adapted from the base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states. This class also adds the loss term from the text decoder. Args: loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Languge modeling loss from the text decoder. image_embeds (`tf.Tensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): The image embeddings obtained by applying the projection layer to the pooler_output. last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: tf.Tensor | None = None image_embeds: tf.Tensor | None = None last_hidden_state: tf.Tensor = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None @dataclass class TFBlipImageTextMatchingModelOutput(ModelOutput): """ Adapted from the base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states. This class also adds the loss term from the text decoder as well as the image-text similarity scores. Args: itm_score (`tf.Tensor`): The image-text similarity scores. loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Languge modeling loss from the text decoder. image_embeds (`tf.Tensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): The image embeddings obtained by applying the projection layer to the pooler_output. last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. vision_pooler_output (`tf.Tensor` of shape `(batch_size, hidden_size)`, *optional*): Last layer hidden-state of the vision of the vision-only branch of the model. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. question_embeds (`tf.Tensor`): The question embeddings obtained by the text projection layer. """ itm_score: tf.Tensor | None = None loss: tf.Tensor | None = None image_embeds: tf.Tensor | None = None last_hidden_state: tf.Tensor = None hidden_states: Tuple[tf.Tensor] | None = None vision_pooler_output: tf.Tensor | None = None attentions: Tuple[tf.Tensor] | None = None question_embeds: Tuple[tf.Tensor] | None = None @dataclass class TFBlipOutput(ModelOutput): """ Args: loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): Contrastive loss for image-text similarity. logits_per_image:(`tf.Tensor` of shape `(image_batch_size, text_batch_size)`): The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text similarity scores. logits_per_text:(`tf.Tensor` of shape `(text_batch_size, image_batch_size)`): The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image similarity scores. text_embeds(`tf.Tensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`BlipTextModel`]. image_embeds(`tf.Tensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the pooled output of [`BlipVisionModel`]. text_model_output(`BaseModelOutputWithPooling`): The output of the [`BlipTextModel`]. vision_model_output(`BaseModelOutputWithPooling`): The output of the [`BlipVisionModel`]. """ loss: tf.Tensor | None = None logits_per_image: tf.Tensor = None logits_per_text: tf.Tensor = None text_embeds: tf.Tensor = None image_embeds: tf.Tensor = None text_model_output: TFBaseModelOutputWithPooling = None vision_model_output: TFBaseModelOutputWithPooling = None def to_tuple(self) -> Tuple[Any]: return tuple( self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple() for k in self.keys() ) class TFBlipVisionEmbeddings(tf.keras.layers.Layer): def __init__(self, config: BlipVisionConfig, **kwargs): super().__init__(**kwargs) self.config = config self.embed_dim = config.hidden_size self.image_size = config.image_size self.patch_size = config.patch_size self.patch_embedding = tf.keras.layers.Conv2D( filters=self.embed_dim, kernel_size=self.patch_size, strides=self.patch_size, kernel_initializer=get_initializer(self.config.initializer_range), data_format="channels_last", name="patch_embedding", ) self.num_patches = (self.image_size // self.patch_size) ** 2 self.num_positions = self.num_patches + 1 def build(self, input_shape): self.class_embedding = self.add_weight( shape=(1, 1, self.embed_dim), initializer=get_initializer(self.config.initializer_range), trainable=True, name="class_embedding", ) self.position_embedding = self.add_weight( shape=(1, self.num_positions, self.embed_dim), initializer=get_initializer(self.config.initializer_range), trainable=True, name="position_embedding", ) super().build(input_shape) def call(self, pixel_values: tf.Tensor) -> tf.Tensor: # Input is channels-first, we transpose. PyTorch transposes after the conv because PyTorch # likes channels-first convs. batch_size = tf.shape(pixel_values)[0] pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1)) patch_embeds = self.patch_embedding(pixel_values) patch_embeds = tf.reshape(patch_embeds, (batch_size, self.num_patches, -1)) class_embeds = tf.broadcast_to(self.class_embedding, (batch_size, 1, self.embed_dim)) embeddings = tf.concat([class_embeds, patch_embeds], axis=1) embeddings = embeddings + self.position_embedding[:, : tf.shape(embeddings)[1], :] return embeddings # Copied from transformers.models.clip.modeling_tf_clip.TFCLIPTextEmbeddings with CLIP->Blip class TFBlipTextEmbeddings(tf.keras.layers.Layer): def __init__(self, config: BlipTextConfig, **kwargs): super().__init__(**kwargs) self.embed_dim = config.hidden_size self.config = config def build(self, input_shape: tf.TensorShape = None): with tf.name_scope("token_embedding"): self.weight = self.add_weight( shape=(self.config.vocab_size, self.embed_dim), initializer=get_initializer(self.config.initializer_factor * self.config.initializer_range), trainable=True, name="weight", ) with tf.name_scope("position_embedding"): self.position_embedding = self.add_weight( shape=(self.config.max_position_embeddings, self.embed_dim), initializer=get_initializer(self.config.initializer_factor * self.config.initializer_range), trainable=True, name="embeddings", ) super().build(input_shape) def call( self, input_ids: tf.Tensor = None, position_ids: tf.Tensor = None, inputs_embeds: tf.Tensor = None, ) -> tf.Tensor: """ Applies embedding based on inputs tensor. Returns: final_embeddings (`tf.Tensor`): output embedding tensor. """ if input_ids is None and inputs_embeds is None: raise ValueError("You have to specify either input_ids or inputs_embeds") if inputs_embeds is None: check_embeddings_within_bounds(input_ids, self.config.vocab_size) inputs_embeds = tf.gather(params=self.weight, indices=input_ids) input_shape = shape_list(inputs_embeds)[:-1] if position_ids is None: position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0) position_embeds = tf.gather(params=self.position_embedding, indices=position_ids) position_embeds = tf.tile(input=position_embeds, multiples=(input_shape[0], 1, 1)) final_embeddings = inputs_embeds + position_embeds return final_embeddings class TFBlipAttention(tf.keras.layers.Layer): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config, **kwargs): super().__init__(**kwargs) self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.scale = self.head_dim**-0.5 self.dropout = tf.keras.layers.Dropout(config.attention_dropout, name="dropout") self.qkv = tf.keras.layers.Dense( 3 * self.embed_dim, kernel_initializer=get_initializer(config.initializer_range), name="qkv" ) self.projection = tf.keras.layers.Dense( self.embed_dim, kernel_initializer=get_initializer(config.initializer_range), name="projection" ) def call( self, hidden_states: tf.Tensor, head_mask: tf.Tensor | None = None, output_attentions: Optional[bool] = False, training: Optional[bool] = None, ) -> Tuple[tf.Tensor, tf.Tensor | None, Tuple[tf.Tensor] | None]: """Input shape: Batch x Time x Channel""" bsz, tgt_len, embed_dim = shape_list(hidden_states) mixed_qkv = self.qkv(hidden_states) mixed_qkv = tf.reshape(mixed_qkv, (bsz, tgt_len, 3, self.num_heads, self.head_dim)) mixed_qkv = tf.transpose(mixed_qkv, perm=(2, 0, 3, 1, 4)) query_states, key_states, value_states = mixed_qkv[0], mixed_qkv[1], mixed_qkv[2] # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = query_states @ tf.transpose(key_states, (0, 1, 3, 2)) attention_scores = attention_scores * self.scale # Normalize the attention scores to probabilities. attention_probs = stable_softmax(attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs, training=training) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = tf.transpose(attention_probs @ value_states, perm=(0, 2, 1, 3)) new_context_layer_shape = shape_list(context_layer)[:-2] + [self.embed_dim] context_layer = tf.reshape(context_layer, new_context_layer_shape) output = self.projection(context_layer) outputs = (output, attention_probs) if output_attentions else (output, None) return outputs class TFBlipMLP(tf.keras.layers.Layer): def __init__(self, config: BlipConfig, **kwargs): super().__init__(**kwargs) self.activation_fn = get_tf_activation(config.hidden_act) in_proj_std = (config.hidden_size**-0.5) * ((2 * config.num_hidden_layers) ** -0.5) fc_std = (2 * config.hidden_size) ** -0.5 self.fc1 = tf.keras.layers.Dense( units=config.intermediate_size, kernel_initializer=get_initializer(fc_std), name="fc1" ) self.fc2 = tf.keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(in_proj_std), name="fc2" ) def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.fc1(inputs=hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(inputs=hidden_states) return hidden_states class TFBlipEncoderLayer(tf.keras.layers.Layer): def __init__(self, config: BlipConfig, **kwargs): super().__init__(**kwargs) self.embed_dim = config.hidden_size self.self_attn = TFBlipAttention(config, name="self_attn") self.layer_norm1 = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm1") self.mlp = TFBlipMLP(config, name="mlp") self.layer_norm2 = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm2") def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, output_attentions: Optional[bool] = False, training: Optional[bool] = None, ) -> Tuple[tf.Tensor]: """ Args: hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`tf.Tensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. `(config.encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, head_mask=attention_mask, output_attentions=output_attentions, training=training, ) hidden_states = hidden_states + residual residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = hidden_states + residual outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class TFBlipPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = BlipConfig base_model_prefix = "blip" _keys_to_ignore_on_load_missing = [r"position_ids"] BLIP_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. Parameters: config ([`BlipConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ BLIP_VISION_INPUTS_DOCSTRING = r""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`BlipImageProcessor`]. See [`BlipImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ BLIP_INPUTS_DOCSTRING = r""" Args: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoProcessor`]. See [`BlipProcessor.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`BlipImageProcessor`]. See [`BlipImageProcessor.__call__`] for details. return_loss (`bool`, *optional*): Whether or not to return the contrastive loss. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @keras_serializable class TFBlipEncoder(tf.keras.layers.Layer): config_class = BlipConfig """ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a [`BlipEncoderLayer`]. Args: config (`BlipConfig`): The corresponding vision configuration for the `BlipEncoder`. """ def __init__(self, config: BlipConfig, **kwargs): super().__init__(**kwargs) self.config = config self.layers = [TFBlipEncoderLayer(config, name=f"layers_._{i}") for i in range(config.num_hidden_layers)] @unpack_inputs def call( self, inputs_embeds, attention_mask: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = None, ) -> Union[Tuple, TFBaseModelOutput]: r""" Args: inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): Embedded representation of the inputs. Should be float, not int tokens. attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None hidden_states = inputs_embeds for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) layer_outputs = encoder_layer( hidden_states, attention_mask, output_attentions=output_attentions, training=training, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) class TFBlipVisionModel(TFBlipPreTrainedModel): main_input_name = "pixel_values" config_class = BlipVisionConfig def __init__(self, config: BlipVisionConfig, *args, **kwargs): super().__init__(config, *args, **kwargs) self.config = config self.embeddings = TFBlipVisionEmbeddings(config, name="embeddings") self.encoder = TFBlipEncoder(config, name="encoder") self.post_layernorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="post_layernorm") def serving_output(self, output: TFBaseModelOutputWithPooling) -> TFBaseModelOutputWithPooling: hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFBaseModelOutputWithPooling( last_hidden_state=output.last_hidden_state, pooler_output=output.pooler_output, hidden_states=hs, attentions=attns, ) @unpack_inputs @add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFBaseModelOutputWithPooling, config_class=BlipVisionConfig) def call( self, pixel_values: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = None, ) -> Union[Tuple, TFBaseModelOutputWithPooling]: r""" Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") hidden_states = self.embeddings(pixel_values) encoder_outputs = self.encoder( inputs_embeds=hidden_states, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) last_hidden_state = encoder_outputs[0] last_hidden_state = self.post_layernorm(last_hidden_state) pooled_output = last_hidden_state[:, 0, :] # TF gets confused if we call the layer with inputs of different ranks, so insert a singleton dimension pooled_output = self.post_layernorm(tf.expand_dims(pooled_output, 1)) pooled_output = tf.squeeze(pooled_output, 1) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) def get_input_embeddings(self): return self.embeddings class TFBlipMainLayer(tf.keras.layers.Layer): config_class = BlipConfig def __init__(self, config: BlipConfig, *args, **kwargs): super().__init__(*args, **kwargs) if not isinstance(config.text_config, BlipTextConfig): raise ValueError( "config.text_config is expected to be of type BlipTextConfig but is of type" f" {type(config.text_config)}." ) if not isinstance(config.vision_config, BlipVisionConfig): raise ValueError( "config.vision_config is expected to be of type BlipVisionConfig but is of type" f" {type(config.vision_config)}." ) text_config = config.text_config vision_config = config.vision_config self.projection_dim = config.projection_dim self.text_embed_dim = text_config.hidden_size self.vision_embed_dim = vision_config.hidden_size self.text_model = TFBlipTextModel(text_config, name="text_model") self.vision_model = TFBlipVisionModel(vision_config, name="vision_model") self.visual_projection = tf.keras.layers.Dense( self.projection_dim, use_bias=False, kernel_initializer=get_initializer(config.initializer_range), name="visual_projection", ) self.text_projection = tf.keras.layers.Dense( self.projection_dim, use_bias=False, kernel_initializer=get_initializer(config.initializer_range), name="text_projection", ) self.config = config def build(self, input_shape=None): self.logit_scale = self.add_weight( name="logit_scale", shape=[], initializer=tf.keras.initializers.Constant(self.config.logit_scale_init_value), trainable=True, ) super().build(input_shape) @unpack_inputs def call( self, input_ids: tf.Tensor | None = None, pixel_values: tf.Tensor | None = None, attention_mask: tf.Tensor | None = None, position_ids: tf.Tensor | None = None, return_loss: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = None, ) -> Union[Tuple, TFBlipOutput]: # Use BLIP model's config for some fields (if specified) instead of those of vision & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) image_embeds = vision_outputs[1] image_embeds = self.visual_projection(image_embeds) text_embeds = text_outputs[1] text_embeds = self.text_projection(text_embeds) # normalized features image_embeds = image_embeds / tf.norm(image_embeds, ord=2, axis=-1, keepdims=True) text_embeds = text_embeds / tf.norm(text_embeds, ord=2, axis=-1, keepdims=True) # cosine similarity as logits logit_scale = tf.exp(self.logit_scale) logits_per_text = tf.matmul(text_embeds, image_embeds, transpose_b=True) * logit_scale logits_per_image = tf.transpose(logits_per_text) loss = None if return_loss: loss = blip_loss(logits_per_text) loss = tf.reshape(loss, (1,)) if not return_dict: output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs) return ((loss,) + output) if loss is not None else output return TFBlipOutput( loss=loss, logits_per_image=logits_per_image, logits_per_text=logits_per_text, text_embeds=text_embeds, image_embeds=image_embeds, text_model_output=text_outputs, vision_model_output=vision_outputs, ) class TFBlipModel(TFBlipPreTrainedModel): config_class = BlipConfig _keys_to_ignore_on_load_missing = [r"text_decoder.cls.predictions.decoder.bias"] main_input_name = "input_ids" def __init__(self, config: BlipConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.blip = TFBlipMainLayer(config, name="blip") def serving_output(self, output: TFBlipOutput) -> TFBlipOutput: return TFBlipOutput( logits_per_image=output.logits_per_image, logits_per_text=output.logits_per_text, text_embeds=output.text_embeds, image_embeds=output.image_embeds, ) @unpack_inputs @add_start_docstrings_to_model_forward(BLIP_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFBlipOutput, config_class=BlipConfig) def call( self, input_ids: tf.Tensor | None = None, pixel_values: tf.Tensor | None = None, attention_mask: tf.Tensor | None = None, position_ids: tf.Tensor | None = None, return_loss: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = None, ) -> Union[Tuple, TFBlipOutput]: r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, TFBlipModel >>> model = TFBlipModel.from_pretrained("Salesforce/blip-image-captioning-base") >>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor( ... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="tf", padding=True ... ) >>> outputs = model(**inputs) >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score >>> probs = tf.nn.softmax(logits_per_image, axis=1) # we can take the softmax to get the label probabilities ```""" outputs = self.blip( input_ids=input_ids, pixel_values=pixel_values, attention_mask=attention_mask, position_ids=position_ids, return_loss=return_loss, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs @add_start_docstrings_to_model_forward(BLIP_TEXT_INPUTS_DOCSTRING) def get_text_features( self, input_ids: tf.Tensor | None = None, attention_mask: tf.Tensor | None = None, position_ids: tf.Tensor | None = None, return_dict: Optional[bool] = None, ) -> tf.Tensor: r""" Returns: text_features (`tf.Tensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`TFBlipTextModel`]. Examples: ```python >>> from transformers import AutoProcessor, TFBlipModel >>> model = TFBlipModel.from_pretrained("Salesforce/blip-image-captioning-base") >>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base") >>> inputs = processor(text=["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="tf") >>> text_features = model.get_text_features(**inputs) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict text_outputs = self.blip.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, return_dict=return_dict, ) pooled_output = text_outputs[1] text_features = self.blip.text_projection(pooled_output) return text_features @add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING) def get_image_features( self, pixel_values: tf.Tensor | None = None, return_dict: Optional[bool] = None, ) -> tf.Tensor: r""" Returns: image_features (`tf.Tensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the pooled output of [`TFBlipVisionModel`]. Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, TFBlipModel >>> model = TFBlipModel.from_pretrained("Salesforce/blip-image-captioning-base") >>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="tf") >>> image_features = model.get_image_features(**inputs) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict vision_outputs = self.blip.vision_model(pixel_values=pixel_values, return_dict=return_dict) pooled_output = vision_outputs[1] # pooled_output image_features = self.blip.visual_projection(pooled_output) return image_features @add_start_docstrings( """ BLIP Model for image captioning. The model consists of a vision encoder and a text decoder. One can optionally pass `input_ids` to the model, which serve as a text prompt, to make the text decoder continue the prompt. Otherwise, the decoder starts generating text from the [BOS] (beginning-of-sequence) token. will start generating the caption from the text input. If no text input is provided, the decoder will start with the [BOS] token only. """, BLIP_START_DOCSTRING, ) class TFBlipForConditionalGeneration(TFBlipPreTrainedModel): config_class = BlipConfig _keys_to_ignore_on_load_missing = [r"text_decoder.cls.predictions.decoder.bias"] main_input_name = "pixel_values" def __init__(self, config: BlipConfig, *args, **kwargs): super().__init__(config, *args, **kwargs) self.vision_model = TFBlipVisionModel(config.vision_config, name="vision_model") self.text_decoder = TFBlipTextLMHeadModel(config.text_config, name="text_decoder") self.decoder_input_ids = config.text_config.bos_token_id self.decoder_pad_token_id = config.text_config.pad_token_id def get_input_embeddings(self) -> tf.keras.layers.Layer: return self.vision_model.embeddings.patch_embedding @unpack_inputs @add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFBlipForConditionalGenerationModelOutput, config_class=BlipConfig) def call( self, pixel_values: tf.Tensor, input_ids: tf.Tensor | None = None, attention_mask: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, labels: tf.Tensor | None = None, return_dict: Optional[bool] = None, training: Optional[bool] = None, ) -> Union[Tuple, TFBlipForConditionalGenerationModelOutput]: r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, TFBlipForConditionalGeneration >>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base") >>> model = TFBlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> text = "A picture of" >>> inputs = processor(images=image, text=text, return_tensors="tf") >>> outputs = model(**inputs) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) image_embeds = vision_outputs[0] outputs = self.text_decoder( input_ids=input_ids, attention_mask=attention_mask, encoder_hidden_states=image_embeds, labels=labels, return_dict=return_dict, training=training, ) if not return_dict: outputs = (outputs[0], outputs[1], image_embeds, vision_outputs[0]) + vision_outputs[2:] return tuple(output for output in outputs if output is not None) if outputs.loss is not None and outputs.loss.shape.rank == 0: outputs.loss = tf.reshape(outputs.loss, (1,)) return TFBlipForConditionalGenerationModelOutput( loss=outputs.loss, logits=outputs.logits, image_embeds=image_embeds, last_hidden_state=vision_outputs.last_hidden_state, hidden_states=vision_outputs.hidden_states, attentions=vision_outputs.attentions, ) def generate( self, pixel_values: tf.Tensor, input_ids: tf.Tensor | None = None, attention_mask: tf.Tensor | None = None, **generate_kwargs, ) -> tf.Tensor: r""" Overrides *generate* function to be able to use the model as a conditional generator Parameters: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, image_height, image_width)`: Input image to be processed input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): The sequence used as a prompt for the generation. attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, TFBlipForConditionalGeneration >>> model = TFBlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") >>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="tf") >>> outputs = model.generate(**inputs) >>> print(processor.decode(outputs[0], skip_special_tokens=True)) two cats sleeping on a couch ``` """ batch_size = pixel_values.shape[0] vision_outputs = self.vision_model(pixel_values=pixel_values) image_embeds = vision_outputs[0] image_attention_mask = tf.ones(shape_list(image_embeds)[:-1], dtype=tf.int32) if isinstance(input_ids, list): input_ids = tf.convert_to_tensor(input_ids, dtype=tf.int32) elif input_ids is None: input_ids = tf.convert_to_tensor( [[self.decoder_input_ids, self.config.text_config.eos_token_id]], dtype=tf.int32 ) input_ids = tf.tile(input_ids, (batch_size, 1)) # PyTorch: input_ids[:, 0] = self.config.text_config.bos_token_id input_ids = tf.concat( [tf.ones((batch_size, 1), dtype=tf.int32) * self.config.text_config.bos_token_id, input_ids[:, 1:]], axis=1 ) attention_mask = attention_mask[:, :-1] if attention_mask is not None else None outputs = self.text_decoder.generate( input_ids=input_ids[:, :-1], eos_token_id=self.config.text_config.sep_token_id, pad_token_id=self.config.text_config.pad_token_id, attention_mask=attention_mask, encoder_hidden_states=image_embeds, encoder_attention_mask=image_attention_mask, **generate_kwargs, ) return outputs @add_start_docstrings( """ BLIP Model for visual question answering. The model consists of a vision encoder, a text encoder as well as a text decoder. The vision encoder will encode the input image, the text encoder will encode the input question together with the encoding of the image, and the text decoder will output the answer to the question. """, BLIP_START_DOCSTRING, ) class TFBlipForQuestionAnswering(TFBlipPreTrainedModel): config_class = BlipConfig _keys_to_ignore_on_load_missing = [r"text_decoder.cls.predictions.decoder.bias"] def __init__(self, config: BlipConfig, *args, **kwargs): super().__init__(config, *args, **kwargs) self.vision_model = TFBlipVisionModel(config.vision_config, name="vision_model") self.text_encoder = TFBlipTextModel(config.text_config, name="text_encoder", add_pooling_layer=False) self.text_decoder = TFBlipTextLMHeadModel(config.text_config, name="text_decoder") self.decoder_pad_token_id = config.text_config.pad_token_id self.decoder_start_token_id = config.text_config.bos_token_id def get_input_embeddings(self) -> tf.keras.layers.Layer: return self.vision_model.embeddings.patch_embedding # Adapted from transformers.models.t5.modeling_tf_t5.TFT5PreTrainedModel._shift_right def _shift_right(self, input_ids): decoder_start_token_id = self.decoder_start_token_id pad_token_id = self.decoder_pad_token_id if decoder_start_token_id is None or pad_token_id is None: raise ValueError("decoder_start_token_id and pad_token_id must be defined!") start_tokens = tf.fill((shape_list(input_ids)[0], 1), decoder_start_token_id) start_tokens = tf.cast(start_tokens, input_ids.dtype) # Ensure compatible dtypes for concatenation shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1) # replace possible -100 values in labels by `pad_token_id` shifted_input_ids = tf.where( shifted_input_ids == -100, tf.cast(tf.fill(shape_list(shifted_input_ids), pad_token_id), shifted_input_ids.dtype), shifted_input_ids, ) # "Verify that `labels` has only positive values and -100" tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=shifted_input_ids.dtype)) return shifted_input_ids @unpack_inputs @add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFBlipTextVisionModelOutput, config_class=BlipVisionConfig) def call( self, input_ids: tf.Tensor, pixel_values: tf.Tensor | None = None, decoder_input_ids: tf.Tensor | None = None, decoder_attention_mask: tf.Tensor | None = None, attention_mask: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, labels: tf.Tensor | None = None, return_dict: Optional[bool] = None, training: Optional[bool] = None, ) -> Union[Tuple, TFBlipTextVisionModelOutput]: r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, TFBlipForQuestionAnswering >>> model = TFBlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base") >>> processor = AutoProcessor.from_pretrained("Salesforce/blip-vqa-base") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> # training >>> text = "How many cats are in the picture?" >>> label = "2" >>> inputs = processor(images=image, text=text, return_tensors="tf") >>> labels = processor(text=label, return_tensors="tf").input_ids >>> inputs["labels"] = labels >>> outputs = model(**inputs) >>> loss = outputs.loss >>> # inference >>> text = "How many cats are in the picture?" >>> inputs = processor(images=image, text=text, return_tensors="tf") >>> outputs = model.generate(**inputs) >>> print(processor.decode(outputs[0], skip_special_tokens=True)) 2 ```""" if labels is None and decoder_input_ids is None: raise ValueError( "Either `decoder_input_ids` or `labels` should be passed when calling" " `TFBlipForQuestionAnswering`. if you are training the model make sure that `labels` is passed, if you" " are using the model for inference make sure that `decoder_input_ids` is passed or call `generate`" ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) image_embeds = vision_outputs[0] image_attention_mask = tf.ones(shape_list(image_embeds)[:-1], dtype=tf.int64) question_embeds = self.text_encoder( input_ids=input_ids, attention_mask=attention_mask, encoder_hidden_states=image_embeds, encoder_attention_mask=image_attention_mask, return_dict=return_dict, training=training, ) question_embeds = question_embeds[0] if not return_dict else question_embeds.last_hidden_state if labels is not None and decoder_input_ids is None: # labels are already shifted right, see: https://github.com/huggingface/transformers/pull/23153 decoder_input_ids = labels answer_output = self.text_decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=question_embeds, encoder_attention_mask=attention_mask, labels=labels, return_dict=return_dict, training=training, ) if labels is not None: decoder_loss = tf.reduce_mean(answer_output.loss) if return_dict else tf.reduce_mean(answer_output[0]) else: decoder_loss = None if not return_dict: outputs = (decoder_loss, image_embeds, vision_outputs[0]) + vision_outputs[2:] return tuple(output for output in outputs if output is not None) return TFBlipTextVisionModelOutput( loss=decoder_loss, image_embeds=image_embeds, last_hidden_state=vision_outputs.last_hidden_state, hidden_states=vision_outputs.hidden_states, attentions=vision_outputs.attentions, ) def generate( self, input_ids: tf.Tensor, pixel_values: tf.Tensor, attention_mask: tf.Tensor | None = None, **generate_kwargs, ) -> tf.Tensor: r""" Overrides *generate* function to be able to use the model as a conditional generator Parameters: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): The sequence used as a prompt for the generation. pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, image_height, image_width)`: Input image to be processed attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`. `1` for tokens that are NOT MASKED, `0` for MASKED tokens. generate_kwargs (dict, *optional*): Additional arguments passed to the `generate` function of the decoder Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, TFBlipForQuestionAnswering >>> model = TFBlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base") >>> processor = AutoProcessor.from_pretrained("Salesforce/blip-vqa-base") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> text = "How many cats are in the picture?" >>> inputs = processor(images=image, text=text, return_tensors="tf") >>> outputs = model.generate(**inputs) >>> print(processor.decode(outputs[0], skip_special_tokens=True)) 2 ``` """ vision_outputs = self.vision_model(pixel_values=pixel_values) image_embeds = vision_outputs[0] image_attention_mask = tf.ones(shape_list(image_embeds)[:-1], dtype=tf.int32) if isinstance(input_ids, list): input_ids = tf.Tensor(input_ids) question_outputs = self.text_encoder( input_ids=input_ids, attention_mask=attention_mask, encoder_hidden_states=image_embeds, encoder_attention_mask=image_attention_mask, return_dict=False, ) question_embeds = question_outputs[0] question_attention_mask = tf.ones(shape_list(question_embeds)[:-1], dtype=tf.int32) bos_ids = tf.fill( (tf.shape(question_embeds)[0], 1), value=tf.cast(self.decoder_start_token_id, input_ids.dtype) ) outputs = self.text_decoder.generate( input_ids=bos_ids, eos_token_id=self.config.text_config.sep_token_id, pad_token_id=self.config.text_config.pad_token_id, encoder_hidden_states=question_embeds, encoder_attention_mask=question_attention_mask, **generate_kwargs, ) return outputs @add_start_docstrings( """ BLIP Model with a vision and text projector, and a classification head on top. The model is used in the context of image-text retrieval. Given an image and a text, the model returns the probability of the text being relevant to the image. """, BLIP_START_DOCSTRING, ) class TFBlipForImageTextRetrieval(TFBlipPreTrainedModel): config_class = BlipConfig def __init__(self, config: BlipConfig, *args, **kwargs): super().__init__(config, *args, **kwargs) self.vision_model = TFBlipVisionModel(config.vision_config, name="vision_model") self.text_encoder = TFBlipTextModel(config.text_config, name="text_encoder", add_pooling_layer=False) # vision projection layer self.vision_proj = tf.keras.layers.Dense( config.image_text_hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="vision_proj", ) # text projection layer self.text_proj = tf.keras.layers.Dense( config.image_text_hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="text_proj", ) # image text matching head self.itm_head = tf.keras.layers.Dense( 2, kernel_initializer=get_initializer(config.initializer_range), name="itm_head" ) self.decoder_pad_token_id = ( config.text_config.pad_token_id if not hasattr(config, "decoder_pad_token_id") else config.decoder_pad_token_id ) self.decoder_start_token_id = ( config.text_config.bos_token_id if not hasattr(config, "decoder_start_token_id") else config.decoder_start_token_id ) def get_input_embeddings(self) -> tf.keras.layers.Layer: return self.vision_model.embeddings.patch_embedding @unpack_inputs @add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFBlipImageTextMatchingModelOutput, config_class=BlipVisionConfig) def call( self, input_ids: tf.Tensor, pixel_values: tf.Tensor | None = None, use_itm_head: Optional[bool] = True, attention_mask: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = None, ) -> Union[Tuple, TFBlipImageTextMatchingModelOutput]: r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, TFBlipForImageTextRetrieval >>> model = TFBlipForImageTextRetrieval.from_pretrained("Salesforce/blip-itm-base-coco") >>> processor = AutoProcessor.from_pretrained("Salesforce/blip-itm-base-coco") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> text = "an image of a cat" >>> inputs = processor(images=image, text=text, return_tensors="tf") >>> outputs = model(**inputs) ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) image_embeds = vision_outputs[0] image_atts = tf.ones(shape_list(image_embeds)[:-1], dtype=tf.int64) # Matt: In PyTorch, only one path (itm/non-itm) is taken. However, in TensorFlow this can result in # some layers not being built! To avoid this, we always call both paths, then use an if statement to select # which output to pass to the final output. The unnecessary nodes will be pruned from the final graph, but # not before the layers have all been built correctly. itm_question_embeds = self.text_encoder( input_ids=input_ids, attention_mask=attention_mask, encoder_hidden_states=image_embeds, encoder_attention_mask=image_atts, return_dict=return_dict, training=training, ) itm_question_embeds = itm_question_embeds[0] if not return_dict else itm_question_embeds.last_hidden_state itm_output = self.itm_head(itm_question_embeds[:, 0, :]) no_itm_question_embeds = self.text_encoder( input_ids=input_ids, attention_mask=attention_mask, return_dict=return_dict, training=training, ) no_itm_question_embeds = ( no_itm_question_embeds[0] if not return_dict else no_itm_question_embeds.last_hidden_state ) image_feat, _ = tf.linalg.normalize(self.vision_proj(image_embeds[:, 0, :]), ord=2, axis=-1) text_feat, _ = tf.linalg.normalize(self.text_proj(no_itm_question_embeds[:, 0, :]), ord=2, axis=-1) no_itm_output = tf.matmul(image_feat, text_feat, transpose_b=True) if use_itm_head: output = itm_output question_embeds = itm_question_embeds else: output = no_itm_output question_embeds = no_itm_question_embeds if not return_dict: outputs = (output, vision_outputs[0]) + vision_outputs[2:] + (question_embeds,) return tuple(output for output in outputs if output is not None) return TFBlipImageTextMatchingModelOutput( itm_score=output, last_hidden_state=vision_outputs.last_hidden_state, hidden_states=vision_outputs.hidden_states, attentions=vision_outputs.attentions, question_embeds=question_embeds, )
transformers-main
src/transformers/models/blip/modeling_tf_blip.py
# coding=utf-8 # Copyright 2022 The Salesforce Team Authors and The HuggingFace Team. All rights reserved. # # Licensed under the BSD-3-clause license (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://opensource.org/licenses/BSD-3-Clause # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import Tensor, device, nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions, CausalLMOutputWithCrossAttentions, ) from ...modeling_utils import ( PreTrainedModel, apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer, ) from ...utils import logging from .configuration_blip import BlipTextConfig logger = logging.get_logger(__name__) # Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L52 class BlipTextEmbeddings(nn.Module): """Construct the embeddings from word and position embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.config = config def forward( self, input_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, past_key_values_length: int = 0, ) -> torch.Tensor: if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] if inputs_embeds is None: input_ids = input_ids.to(self.word_embeddings.weight.device) inputs_embeds = self.word_embeddings(input_ids) embeddings = inputs_embeds if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings # Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L97 class BlipTextSelfAttention(nn.Module): def __init__(self, config, is_cross_attention): super().__init__() self.config = config if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( "The hidden size (%d) is not a multiple of the number of attention heads (%d)" % (config.hidden_size, config.num_attention_heads) ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) if is_cross_attention: self.key = nn.Linear(config.encoder_hidden_size, self.all_head_size) self.value = nn.Linear(config.encoder_hidden_size, self.all_head_size) else: self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) def save_attn_gradients(self, attn_gradients): self.attn_gradients = attn_gradients def get_attn_gradients(self): return self.attn_gradients def save_attention_map(self, attention_map): self.attention_map = attention_map def get_attention_map(self): return self.attention_map def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": seq_length = hidden_states.size()[1] position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in BlipTextModel forward() function) attention_scores = attention_scores + attention_mask.to(attention_scores.device) # Normalize the attention scores to probabilities. attention_probs = nn.Softmax(dim=-1)(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs_dropped = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs_dropped = attention_probs_dropped * head_mask context_layer = torch.matmul(attention_probs_dropped, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) outputs = outputs + (past_key_value,) return outputs # Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert -> BlipText class BlipTextSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#242 class BlipTextAttention(nn.Module): def __init__(self, config, is_cross_attention=False): super().__init__() self.self = BlipTextSelfAttention(config, is_cross_attention) self.output = BlipTextSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert -> BlipText class BlipTextIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOutput with Bert -> BlipText class BlipTextOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BlipTextLayer(nn.Module): def __init__(self, config, layer_num): super().__init__() self.config = config self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = BlipTextAttention(config) self.layer_num = layer_num if self.config.is_decoder: self.crossattention = BlipTextAttention(config, is_cross_attention=self.config.is_decoder) self.intermediate = BlipTextIntermediate(config) self.output = BlipTextOutput(config) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] if encoder_hidden_states is not None: cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, output_attentions=output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output # Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L386 class BlipTextEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([BlipTextLayer(config, i) for i in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: if self.gradient_checkpointing and self.training: if use_cache: logger.warning( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.is_decoder else None next_decoder_cache = () if use_cache else None for i in range(self.config.num_hidden_layers): layer_module = self.layer[i] if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, past_key_value, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer_module), hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) # Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->BlipText class BlipTextPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output # Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->BlipText class BlipTextPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->BlipText class BlipTextLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = BlipTextPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->BlipText class BlipTextOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = BlipTextLMPredictionHead(config) def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: prediction_scores = self.predictions(sequence_output) return prediction_scores # Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L548 class BlipTextPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = BlipTextConfig base_model_prefix = "bert" def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Embedding)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() # Adapted from https://github.com/salesforce/BLIP/blob/3a29b7410476bf5f2ba0955827390eb6ea1f4f9d/models/med.py#L571 class BlipTextModel(BlipTextPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in [Attention is all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. argument and `is_decoder` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. """ def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = BlipTextEmbeddings(config) self.encoder = BlipTextEncoder(config) self.pooler = BlipTextPooler(config) if add_pooling_layer else None self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value # Copied from transformers.models.bert.modeling_bert.BertModel._prune_heads def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) def get_extended_attention_mask( self, attention_mask: Tensor, input_shape: Tuple[int], device: device, is_decoder: bool ) -> Tensor: """ Makes broadcastable attention and causal masks so that future and masked tokens are ignored. Arguments: attention_mask (`torch.Tensor`): Mask with ones indicating tokens to attend to, zeros for tokens to ignore. input_shape (`Tuple[int]`): The shape of the input to the model. device (`torch.device`): The device of the input to the model. Returns: `torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`. """ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. if attention_mask.dim() == 3: extended_attention_mask = attention_mask[:, None, :, :] elif attention_mask.dim() == 2: # Provided a padding mask of dimensions [batch_size, seq_length] # - if the model is a decoder, apply a causal mask in addition to the padding mask # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length] if is_decoder: batch_size, seq_length = input_shape seq_ids = torch.arange(seq_length, device=device) causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None] # in case past_key_values are used we need to add a prefix ones mask to the causal mask # causal and attention masks must have same type with pytorch version < 1.3 causal_mask = causal_mask.to(attention_mask.dtype) if causal_mask.shape[1] < attention_mask.shape[1]: prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1] causal_mask = torch.cat( [ torch.ones( (batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype ), causal_mask, ], axis=-1, ) extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :] else: extended_attention_mask = attention_mask[:, None, None, :] else: raise ValueError( "Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format( input_shape, attention_mask.shape ) ) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 return extended_attention_mask def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, is_decoder: Optional[bool] = False, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() batch_size, seq_length = input_shape device = input_ids.device elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] batch_size, seq_length = input_shape device = inputs_embeds.device elif encoder_embeds is not None: input_shape = encoder_embeds.size()[:-1] batch_size, seq_length = input_shape device = encoder_embeds.device else: raise ValueError("You have to specify either input_ids or inputs_embeds or encoder_embeds") # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length))).to(device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask( attention_mask, input_shape, device, is_decoder ) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_hidden_states is not None: if type(encoder_hidden_states) == list: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size() else: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if type(encoder_attention_mask) == list: encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask] elif encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) if encoder_embeds is None: embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) else: embedding_output = encoder_embeds encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) # Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L811 class BlipTextLMHeadModel(BlipTextPreTrainedModel): def __init__(self, config): super().__init__(config) self.bert = BlipTextModel(config, add_pooling_layer=False) self.cls = BlipTextOnlyMLMHead(config) def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.Tensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, return_logits: Optional[bool] = False, is_decoder: Optional[bool] = True, reduction: Optional[str] = "mean", ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. labels (`torch.LongTensor`, *optional*): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]` past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: use_cache = False outputs = self.bert( input_ids, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, is_decoder=is_decoder, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) if return_logits: return prediction_scores[:, :-1, :].contiguous() lm_loss = None if labels is not None: # we are doing next-token prediction; shift prediction scores and input ids by one shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() labels = labels[:, 1:].contiguous().to(shifted_prediction_scores.device) loss_fct = CrossEntropyLoss(reduction=reduction, label_smoothing=0.1) lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if reduction == "none": lm_loss = lm_loss.view(prediction_scores.size(0), -1).sum(1) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((lm_loss,) + output) if lm_loss is not None else output return CausalLMOutputWithCrossAttentions( loss=lm_loss, logits=prediction_scores, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs): input_shape = input_ids.shape # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = input_ids.new_ones(input_shape) # cut decoder_input_ids if past_key_values is used if past_key_values is not None: input_ids = input_ids[:, -1:] return { "input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values, "encoder_hidden_states": model_kwargs.get("encoder_hidden_states", None), "encoder_attention_mask": model_kwargs.get("encoder_attention_mask", None), "is_decoder": True, } def _reorder_cache(self, past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) return reordered_past
transformers-main
src/transformers/models/blip/modeling_blip_text.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _import_structure = { "configuration_blip": [ "BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlipConfig", "BlipTextConfig", "BlipVisionConfig", ], "processing_blip": ["BlipProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["image_processing_blip"] = ["BlipImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_blip"] = [ "BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "BlipModel", "BlipPreTrainedModel", "BlipForConditionalGeneration", "BlipForQuestionAnswering", "BlipVisionModel", "BlipTextModel", "BlipForImageTextRetrieval", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_blip"] = [ "TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFBlipModel", "TFBlipPreTrainedModel", "TFBlipForConditionalGeneration", "TFBlipForQuestionAnswering", "TFBlipVisionModel", "TFBlipTextModel", "TFBlipForImageTextRetrieval", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers-main
src/transformers/models/blip/__init__.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def load_demo_image(image_size, device): img_url = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg" raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB") transform = transforms.Compose( [ transforms.Resize((image_size, image_size), interpolation=InterpolationMode.BICUBIC), transforms.ToTensor(), transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), ] ) image = transform(raw_image).unsqueeze(0).to(device) return image def rename_key(key): if "visual_encoder" in key: key = re.sub("visual_encoder*", "vision_model.encoder", key) if "blocks" in key: key = re.sub(r"blocks", "layers", key) if "attn" in key: key = re.sub(r"attn", "self_attn", key) if "norm1" in key: key = re.sub(r"norm1", "layer_norm1", key) if "norm2" in key: key = re.sub(r"norm2", "layer_norm2", key) if "encoder.norm" in key: key = re.sub(r"encoder.norm", "post_layernorm", key) if "encoder.patch_embed.proj" in key: key = re.sub(r"encoder.patch_embed.proj", "embeddings.patch_embedding", key) if "encoder.pos_embed" in key: key = re.sub(r"encoder.pos_embed", "embeddings.position_embedding", key) if "encoder.cls_token" in key: key = re.sub(r"encoder.cls_token", "embeddings.class_embedding", key) if "self_attn" in key: key = re.sub(r"self_attn.proj", "self_attn.projection", key) return key @torch.no_grad() def convert_blip_checkpoint(pytorch_dump_folder_path, config_path=None): """ Copy/paste/tweak model's weights to transformers design. """ if config_path is not None: config = BlipConfig.from_pretrained(config_path) else: config = BlipConfig(projection_dim=512, text_config={}, vision_config={}) hf_model = BlipForConditionalGeneration(config).eval() model_url = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth" pt_model = blip_decoder(pretrained=model_url, image_size=384, vit="base") pt_model = pt_model.eval() modified_state_dict = pt_model.state_dict() for key in modified_state_dict.copy(): value = modified_state_dict.pop(key) renamed_key = rename_key(key) modified_state_dict[renamed_key] = value hf_model.load_state_dict(modified_state_dict) image_size = 384 image = load_demo_image(image_size=image_size, device="cpu") tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") input_ids = tokenizer(["a picture of"]).input_ids out = hf_model.generate(image, input_ids) assert out[0].tolist() == [30522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] out = hf_model.generate(image) assert out[0].tolist() == [30522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(pytorch_dump_folder_path) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' model_url = ( "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth" ) vqa_model = blip_vqa(pretrained=model_url, image_size=image_size, vit="base") vqa_model.eval() modified_state_dict = vqa_model.state_dict() for key in modified_state_dict.copy(): value = modified_state_dict.pop(key) renamed_key = rename_key(key) modified_state_dict[renamed_key] = value hf_vqa_model = BlipForQuestionAnswering(config) hf_vqa_model.load_state_dict(modified_state_dict) question = ["How many dogs are in this image?"] question_input_ids = tokenizer(question, return_tensors="pt").input_ids answer = hf_vqa_model.generate(question_input_ids, image) print(tokenizer.decode(answer[0])) assert tokenizer.decode(answer[0]) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + "_vqa") model_url = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth" itm_model = blip_itm(pretrained=model_url, image_size=image_size, vit="base") itm_model.eval() modified_state_dict = itm_model.state_dict() for key in modified_state_dict.copy(): value = modified_state_dict.pop(key) renamed_key = rename_key(key) modified_state_dict[renamed_key] = value hf_itm_model = BlipForImageTextRetrieval(config) question = ["A picture of a woman with a dog sitting in a beach"] question_input_ids = tokenizer( question, return_tensors="pt", padding="max_length", truncation=True, max_length=35, ).input_ids hf_itm_model.load_state_dict(modified_state_dict) hf_itm_model.eval() out_itm = hf_itm_model(question_input_ids, image, use_itm_head=True) out = hf_itm_model(question_input_ids, image, use_itm_head=False) assert out[0].item() == 0.2110687494277954 assert torch.nn.functional.softmax(out_itm[0], dim=1)[:, 1].item() == 0.45698845386505127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + "_itm") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") args = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
transformers-main
src/transformers/models/blip/convert_blip_original_pytorch_to_hf.py
# coding=utf-8 # Copyright 2022 The Salesforce Team Authors and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch BLIP model.""" import warnings from dataclasses import dataclass from typing import Any, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn.functional import normalize from ...activations import ACT2FN from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling from ...modeling_utils import PreTrainedModel from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_blip import BlipConfig, BlipTextConfig, BlipVisionConfig from .modeling_blip_text import BlipTextLMHeadModel, BlipTextModel logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "Salesforce/blip-vqa-base" BLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [ "Salesforce/blip-vqa-base", "Salesforce/blip-vqa-capfilt-large", "Salesforce/blip-image-captioning-base", "Salesforce/blip-image-captioning-large", "Salesforce/blip-itm-base-coco", "Salesforce/blip-itm-large-coco", "Salesforce/blip-itm-base-flickr", "Salesforce/blip-itm-large-flickr", # See all BLIP models at https://huggingface.co/models?filter=blip ] # Copied from transformers.models.clip.modeling_clip.contrastive_loss def contrastive_loss(logits: torch.Tensor) -> torch.Tensor: return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device)) # Copied from transformers.models.clip.modeling_clip.clip_loss with clip->blip def blip_loss(similarity: torch.Tensor) -> torch.Tensor: caption_loss = contrastive_loss(similarity) image_loss = contrastive_loss(similarity.t()) return (caption_loss + image_loss) / 2.0 @dataclass class BlipForConditionalGenerationModelOutput(ModelOutput): """ Adapted from the base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states. This class also adds the loss term from the text decoder. Args: loss (`torch.FloatTensor`, *optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): Languge modeling loss from the text decoder. logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`, *optional*): Prediction scores of the language modeling head of the text decoder model. image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*): The image embeddings obtained after applying the Vision Transformer model to the input image. last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[Tuple[torch.FloatTensor]] = None logits: Optional[Tuple[torch.FloatTensor]] = None image_embeds: Optional[torch.FloatTensor] = None last_hidden_state: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @property def decoder_logits(self): warnings.warn( "`decoder_logits` attribute is deprecated and will be removed in version 5 of Transformers." " Please use the `logits` attribute to retrieve the final output instead.", FutureWarning, ) return self.logits @dataclass class BlipTextVisionModelOutput(ModelOutput): """ Adapted from the base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states. This class also adds the loss term from the text decoder. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Languge modeling loss from the text decoder. image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): The image embeddings obtained by applying the projection layer to the pooler_output. last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None image_embeds: Optional[torch.FloatTensor] = None last_hidden_state: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class BlipImageTextMatchingModelOutput(ModelOutput): """ Adapted from the base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states. This class also adds the loss term from the text decoder as well as the image-text similarity scores. Args: itm_score (`torch.FloatTensor`): The image-text similarity scores. loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Languge modeling loss from the text decoder. image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): The image embeddings obtained by applying the projection layer to the pooler_output. last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. vision_pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*): Last layer hidden-state of the vision of the vision-only branch of the model. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. question_embeds (`torch.FloatTensor`): The question embeddings obtained by the text projection layer. """ itm_score: Optional[torch.FloatTensor] = None loss: Optional[torch.FloatTensor] = None image_embeds: Optional[torch.FloatTensor] = None last_hidden_state: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None vision_pooler_output: Optional[torch.FloatTensor] = None attentions: Optional[Tuple[torch.FloatTensor]] = None question_embeds: Optional[Tuple[torch.FloatTensor]] = None @dataclass class BlipOutput(ModelOutput): """ Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): Contrastive loss for image-text similarity. logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`): The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text similarity scores. logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`): The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image similarity scores. text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`BlipTextModel`]. image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the pooled output of [`BlipVisionModel`]. text_model_output(`BaseModelOutputWithPooling`): The output of the [`BlipTextModel`]. vision_model_output(`BaseModelOutputWithPooling`): The output of the [`BlipVisionModel`]. """ loss: Optional[torch.FloatTensor] = None logits_per_image: torch.FloatTensor = None logits_per_text: torch.FloatTensor = None text_embeds: torch.FloatTensor = None image_embeds: torch.FloatTensor = None text_model_output: BaseModelOutputWithPooling = None vision_model_output: BaseModelOutputWithPooling = None def to_tuple(self) -> Tuple[Any]: return tuple( self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple() for k in self.keys() ) class BlipVisionEmbeddings(nn.Module): def __init__(self, config: BlipVisionConfig): super().__init__() self.config = config self.embed_dim = config.hidden_size self.image_size = config.image_size self.patch_size = config.patch_size self.class_embedding = nn.Parameter(torch.randn(1, 1, self.embed_dim)) self.patch_embedding = nn.Conv2d( in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size ) self.num_patches = (self.image_size // self.patch_size) ** 2 self.num_positions = self.num_patches + 1 self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim)) def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: batch_size = pixel_values.shape[0] target_dtype = self.patch_embedding.weight.dtype patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid] patch_embeds = patch_embeds.flatten(2).transpose(1, 2) class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype) embeddings = torch.cat([class_embeds, patch_embeds], dim=1) embeddings = embeddings + self.position_embedding[:, : embeddings.size(1), :].to(target_dtype) return embeddings # Copied from transformers.models.clip.modeling_clip.CLIPTextEmbeddings with CLIP->Blip class BlipTextEmbeddings(nn.Module): def __init__(self, config: BlipTextConfig): super().__init__() embed_dim = config.hidden_size self.token_embedding = nn.Embedding(config.vocab_size, embed_dim) self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) def forward( self, input_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, ) -> torch.Tensor: seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2] if position_ids is None: position_ids = self.position_ids[:, :seq_length] if inputs_embeds is None: inputs_embeds = self.token_embedding(input_ids) position_embeddings = self.position_embedding(position_ids) embeddings = inputs_embeds + position_embeddings return embeddings class BlipAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config): super().__init__() self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.scale = self.head_dim**-0.5 self.dropout = nn.Dropout(config.attention_dropout) self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim) self.projection = nn.Linear(self.embed_dim, self.embed_dim) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" bsz, tgt_len, embed_dim = hidden_states.size() mixed_qkv = ( self.qkv(hidden_states) .reshape(bsz, tgt_len, 3, self.num_heads, embed_dim // self.num_heads) .permute(2, 0, 3, 1, 4) ) query_states, key_states, value_states = mixed_qkv[0], mixed_qkv[1], mixed_qkv[2] # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2)) attention_scores = attention_scores * self.scale # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_states).permute(0, 2, 1, 3) new_context_layer_shape = context_layer.size()[:-2] + (self.embed_dim,) context_layer = context_layer.reshape(new_context_layer_shape) output = self.projection(context_layer) outputs = (output, attention_probs) if output_attentions else (output, None) return outputs # Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Blip class BlipMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.activation_fn = ACT2FN[config.hidden_act] self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states class BlipEncoderLayer(nn.Module): def __init__(self, config: BlipConfig): super().__init__() self.embed_dim = config.hidden_size self.self_attn = BlipAttention(config) self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.mlp = BlipMLP(config) self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.FloatTensor]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. `(config.encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, head_mask=attention_mask, output_attentions=output_attentions, ) hidden_states = hidden_states + residual residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = hidden_states + residual outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class BlipPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = BlipConfig base_model_prefix = "blip" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" factor = self.config.initializer_range if isinstance(module, nn.Conv2d) or isinstance(module, nn.Embedding) or isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=factor) if hasattr(module, "bias") and module.bias is not None: module.bias.data.zero_() if isinstance(module, BlipVisionEmbeddings): if hasattr(self.config, "vision_config"): factor = self.config.vision_config.initializer_range nn.init.trunc_normal_( module.position_embedding, mean=0.0, std=factor, ) nn.init.trunc_normal_( module.class_embedding, mean=0.0, std=factor, ) elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, BlipEncoder): module.gradient_checkpointing = value BLIP_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`BlipConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ BLIP_TEXT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoProcessor`]. See [`BlipProcessor.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ BLIP_VISION_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`BlipImageProcessor`]. See [`BlipImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ BLIP_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoProcessor`]. See [`BlipProcessor.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`BlipImageProcessor`]. See [`BlipImageProcessor.__call__`] for details. return_loss (`bool`, *optional*): Whether or not to return the contrastive loss. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class BlipEncoder(nn.Module): """ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a [`BlipEncoderLayer`]. Args: config (`BlipConfig`): The corresponding vision configuration for the `BlipEncoder`. """ def __init__(self, config: BlipConfig): super().__init__() self.config = config self.layers = nn.ModuleList([BlipEncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, inputs_embeds, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Embedded representation of the inputs. Should be float, not int tokens. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None hidden_states = inputs_embeds for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(encoder_layer), hidden_states, attention_mask, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) class BlipVisionModel(BlipPreTrainedModel): main_input_name = "pixel_values" config_class = BlipVisionConfig def __init__(self, config: BlipVisionConfig): super().__init__(config) self.config = config embed_dim = config.hidden_size self.embeddings = BlipVisionEmbeddings(config) self.encoder = BlipEncoder(config) self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) self.post_init() @add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=BlipVisionConfig) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") hidden_states = self.embeddings(pixel_values) encoder_outputs = self.encoder( inputs_embeds=hidden_states, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] last_hidden_state = self.post_layernorm(last_hidden_state) pooled_output = last_hidden_state[:, 0, :] pooled_output = self.post_layernorm(pooled_output) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) def get_input_embeddings(self): return self.embeddings @add_start_docstrings(BLIP_START_DOCSTRING) class BlipModel(BlipPreTrainedModel): config_class = BlipConfig def __init__(self, config: BlipConfig): super().__init__(config) if not isinstance(config.text_config, BlipTextConfig): raise ValueError( "config.text_config is expected to be of type BlipTextConfig but is of type" f" {type(config.text_config)}." ) if not isinstance(config.vision_config, BlipVisionConfig): raise ValueError( "config.vision_config is expected to be of type BlipVisionConfig but is of type" f" {type(config.vision_config)}." ) text_config = config.text_config vision_config = config.vision_config self.projection_dim = config.projection_dim self.text_embed_dim = text_config.hidden_size self.vision_embed_dim = vision_config.hidden_size self.text_model = BlipTextModel(text_config) self.vision_model = BlipVisionModel(vision_config) self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False) self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False) self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(BLIP_TEXT_INPUTS_DOCSTRING) def get_text_features( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, return_dict: Optional[bool] = None, ) -> torch.FloatTensor: r""" Returns: text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`BlipTextModel`]. Examples: ```python >>> from transformers import AutoProcessor, BlipModel >>> model = BlipModel.from_pretrained("Salesforce/blip-image-captioning-base") >>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base") >>> inputs = processor(text=["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") >>> text_features = model.get_text_features(**inputs) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, return_dict=return_dict, ) pooled_output = text_outputs[1] text_features = self.text_projection(pooled_output) return text_features @add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING) def get_image_features( self, pixel_values: Optional[torch.FloatTensor] = None, return_dict: Optional[bool] = None, ) -> torch.FloatTensor: r""" Returns: image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the pooled output of [`BlipVisionModel`]. Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, BlipModel >>> model = BlipModel.from_pretrained("Salesforce/blip-image-captioning-base") >>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="pt") >>> image_features = model.get_image_features(**inputs) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict vision_outputs = self.vision_model(pixel_values=pixel_values, return_dict=return_dict) pooled_output = vision_outputs[1] # pooled_output image_features = self.visual_projection(pooled_output) return image_features @add_start_docstrings_to_model_forward(BLIP_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BlipOutput, config_class=BlipConfig) def forward( self, input_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, return_loss: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BlipOutput]: r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, BlipModel >>> model = BlipModel.from_pretrained("Salesforce/blip-image-captioning-base") >>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor( ... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True ... ) >>> outputs = model(**inputs) >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score >>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities ```""" # Use BLIP model's config for some fields (if specified) instead of those of vision & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) image_embeds = vision_outputs[1] image_embeds = self.visual_projection(image_embeds) text_embeds = text_outputs[1] text_embeds = self.text_projection(text_embeds) # normalized features image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True) text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True) # cosine similarity as logits logit_scale = self.logit_scale.exp() logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale logits_per_image = logits_per_text.t() loss = None if return_loss: loss = blip_loss(logits_per_text) if not return_dict: output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs) return ((loss,) + output) if loss is not None else output return BlipOutput( loss=loss, logits_per_image=logits_per_image, logits_per_text=logits_per_text, text_embeds=text_embeds, image_embeds=image_embeds, text_model_output=text_outputs, vision_model_output=vision_outputs, ) @add_start_docstrings( """ BLIP Model for image captioning. The model consists of a vision encoder and a text decoder. One can optionally pass `input_ids` to the model, which serve as a text prompt, to make the text decoder continue the prompt. Otherwise, the decoder starts generating text from the [BOS] (beginning-of-sequence) token. will start generating the caption from the text input. If no text input is provided, the decoder will start with the [BOS] token only. """, BLIP_START_DOCSTRING, ) class BlipForConditionalGeneration(BlipPreTrainedModel): config_class = BlipConfig _tied_weights_keys = ["text_decoder.cls.predictions.decoder.bias"] main_input_name = "pixel_values" def __init__(self, config: BlipConfig): super().__init__(config) self.vision_model = BlipVisionModel(config.vision_config) self.text_decoder = BlipTextLMHeadModel(config.text_config) self.decoder_input_ids = config.text_config.bos_token_id self.decoder_pad_token_id = config.text_config.pad_token_id # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.vision_model.embeddings.patch_embedding @add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BlipForConditionalGenerationModelOutput, config_class=BlipVisionConfig) def forward( self, pixel_values: torch.FloatTensor, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, labels: Optional[torch.LongTensor] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BlipForConditionalGenerationModelOutput]: r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, BlipForConditionalGeneration >>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base") >>> model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> text = "A picture of" >>> inputs = processor(images=image, text=text, return_tensors="pt") >>> outputs = model(**inputs) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) image_embeds = vision_outputs[0] outputs = self.text_decoder( input_ids=input_ids, attention_mask=attention_mask, encoder_hidden_states=image_embeds, labels=labels, return_dict=return_dict, reduction="mean", ) if not return_dict: outputs = (outputs[0], outputs[1], image_embeds, vision_outputs[0]) + vision_outputs[2:] return tuple(output for output in outputs if output is not None) return BlipForConditionalGenerationModelOutput( loss=outputs.loss, logits=outputs.logits, image_embeds=image_embeds, last_hidden_state=vision_outputs.last_hidden_state, hidden_states=vision_outputs.hidden_states, attentions=vision_outputs.attentions, ) @torch.no_grad() def generate( self, pixel_values: torch.FloatTensor, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, **generate_kwargs, ) -> torch.LongTensor: r""" Overrides *generate* function to be able to use the model as a conditional generator Parameters: pixel_values (*torch.FloatTensor* of shape *(batch_size, num_channels, image_height, image_width)*: Input image to be processed input_ids (*torch.LongTensor* of shape *(batch_size, sequence_length)*, *optional*): The sequence used as a prompt for the generation. attention_mask (*torch.LongTensor* of shape *(batch_size, sequence_length)*, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, BlipForConditionalGeneration >>> model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") >>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="pt") >>> outputs = model.generate(**inputs) >>> print(processor.decode(outputs[0], skip_special_tokens=True)) two cats sleeping on a couch ``` """ batch_size = pixel_values.shape[0] vision_outputs = self.vision_model(pixel_values=pixel_values) image_embeds = vision_outputs[0] image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image_embeds.device) if isinstance(input_ids, list): input_ids = torch.LongTensor(input_ids) elif input_ids is None: input_ids = ( torch.LongTensor([[self.decoder_input_ids, self.config.text_config.eos_token_id]]) .repeat(batch_size, 1) .to(image_embeds.device) ) input_ids[:, 0] = self.config.text_config.bos_token_id attention_mask = attention_mask[:, :-1] if attention_mask is not None else None outputs = self.text_decoder.generate( input_ids=input_ids[:, :-1], eos_token_id=self.config.text_config.sep_token_id, pad_token_id=self.config.text_config.pad_token_id, attention_mask=attention_mask, encoder_hidden_states=image_embeds, encoder_attention_mask=image_attention_mask, **generate_kwargs, ) return outputs @add_start_docstrings( """ BLIP Model for visual question answering. The model consists of a vision encoder, a text encoder as well as a text decoder. The vision encoder will encode the input image, the text encoder will encode the input question together with the encoding of the image, and the text decoder will output the answer to the question. """, BLIP_START_DOCSTRING, ) class BlipForQuestionAnswering(BlipPreTrainedModel): config_class = BlipConfig _tied_weights_keys = ["text_decoder.cls.predictions.decoder.bias"] def __init__(self, config: BlipConfig): super().__init__(config) self.vision_model = BlipVisionModel(config.vision_config) self.text_encoder = BlipTextModel(config.text_config, add_pooling_layer=False) self.text_decoder = BlipTextLMHeadModel(config.text_config) self.decoder_pad_token_id = config.text_config.pad_token_id self.decoder_start_token_id = config.text_config.bos_token_id # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.vision_model.embeddings.patch_embedding @add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BlipTextVisionModelOutput, config_class=BlipVisionConfig) def forward( self, input_ids: torch.LongTensor, pixel_values: torch.FloatTensor, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, labels: Optional[torch.LongTensor] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BlipTextVisionModelOutput]: r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, BlipForQuestionAnswering >>> model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base") >>> processor = AutoProcessor.from_pretrained("Salesforce/blip-vqa-base") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> # training >>> text = "How many cats are in the picture?" >>> label = "2" >>> inputs = processor(images=image, text=text, return_tensors="pt") >>> labels = processor(text=label, return_tensors="pt").input_ids >>> inputs["labels"] = labels >>> outputs = model(**inputs) >>> loss = outputs.loss >>> loss.backward() >>> # inference >>> text = "How many cats are in the picture?" >>> inputs = processor(images=image, text=text, return_tensors="pt") >>> outputs = model.generate(**inputs) >>> print(processor.decode(outputs[0], skip_special_tokens=True)) 2 ```""" if labels is None and decoder_input_ids is None: raise ValueError( "Either `decoder_input_ids` or `labels` should be passed when calling `forward` with" " `BlipForQuestionAnswering`. if you are training the model make sure that `labels` is passed, if you" " are using the model for inference make sure that `decoder_input_ids` is passed or call `generate`" ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) image_embeds = vision_outputs[0] image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long) question_embeds = self.text_encoder( input_ids=input_ids, attention_mask=attention_mask, encoder_hidden_states=image_embeds, encoder_attention_mask=image_attention_mask, return_dict=return_dict, ) if labels is not None and decoder_input_ids is None: # labels are already shifted right, see: https://github.com/huggingface/transformers/pull/23153 decoder_input_ids = labels question_embeds = question_embeds[0] if not return_dict else question_embeds.last_hidden_state answer_output = self.text_decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=question_embeds, encoder_attention_mask=attention_mask, labels=labels, return_dict=return_dict, reduction="mean", ) if labels is not None: decoder_loss = answer_output.loss.mean() if return_dict else answer_output[0].mean() else: decoder_loss = None if not return_dict: outputs = (decoder_loss, image_embeds, vision_outputs[0]) + vision_outputs[2:] return tuple(output for output in outputs if output is not None) return BlipTextVisionModelOutput( loss=decoder_loss, image_embeds=image_embeds, last_hidden_state=vision_outputs.last_hidden_state, hidden_states=vision_outputs.hidden_states, attentions=vision_outputs.attentions, ) @torch.no_grad() def generate( self, input_ids: torch.LongTensor, pixel_values: torch.FloatTensor, attention_mask: Optional[torch.LongTensor] = None, **generate_kwargs, ) -> torch.LongTensor: r""" Overrides *generate* function to be able to use the model as a conditional generator Parameters: input_ids (*torch.LongTensor* of shape *(batch_size, sequence_length)*): The sequence used as a prompt for the generation. pixel_values (*torch.FloatTensor* of shape *(batch_size, num_channels, image_height, image_width)*: Input image to be processed attention_mask (*torch.LongTensor* of shape *(batch_size, sequence_length)*, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`. `1` for tokens that are NOT MASKED, `0` for MASKED tokens. **generate_kwargs: Additional arguments passed to the *generate* function of the decoder Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, BlipForQuestionAnswering >>> model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base") >>> processor = AutoProcessor.from_pretrained("Salesforce/blip-vqa-base") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> text = "How many cats are in the picture?" >>> inputs = processor(images=image, text=text, return_tensors="pt") >>> outputs = model.generate(**inputs) >>> print(processor.decode(outputs[0], skip_special_tokens=True)) 2 ``` """ vision_outputs = self.vision_model(pixel_values=pixel_values) image_embeds = vision_outputs[0] image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image_embeds.device) if isinstance(input_ids, list): input_ids = torch.LongTensor(input_ids) question_outputs = self.text_encoder( input_ids=input_ids, attention_mask=attention_mask, encoder_hidden_states=image_embeds, encoder_attention_mask=image_attention_mask, return_dict=False, ) question_embeds = question_outputs[0] question_attention_mask = torch.ones(question_embeds.size()[:-1], dtype=torch.long).to(question_embeds.device) bos_ids = torch.full( (question_embeds.size(0), 1), fill_value=self.decoder_start_token_id, device=question_embeds.device ) outputs = self.text_decoder.generate( input_ids=bos_ids, eos_token_id=self.config.text_config.sep_token_id, pad_token_id=self.config.text_config.pad_token_id, encoder_hidden_states=question_embeds, encoder_attention_mask=question_attention_mask, **generate_kwargs, ) return outputs @add_start_docstrings( """ BLIP Model with a vision and text projector, and a classification head on top. The model is used in the context of image-text retrieval. Given an image and a text, the model returns the probability of the text being relevant to the image. """, BLIP_START_DOCSTRING, ) class BlipForImageTextRetrieval(BlipPreTrainedModel): config_class = BlipConfig def __init__(self, config: BlipConfig): super().__init__(config) self.vision_model = BlipVisionModel(config.vision_config) self.text_encoder = BlipTextModel(config.text_config, add_pooling_layer=False) # vision projection layer self.vision_proj = nn.Linear(config.vision_config.hidden_size, config.image_text_hidden_size) # text projection layer self.text_proj = nn.Linear(config.text_config.hidden_size, config.image_text_hidden_size) # image text matching head self.itm_head = nn.Linear(config.text_config.hidden_size, 2) self.decoder_pad_token_id = ( config.text_config.pad_token_id if not hasattr(config, "decoder_pad_token_id") else config.decoder_pad_token_id ) self.decoder_start_token_id = ( config.text_config.bos_token_id if not hasattr(config, "decoder_start_token_id") else config.decoder_start_token_id ) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.vision_model.embeddings.patch_embedding @add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BlipTextVisionModelOutput, config_class=BlipVisionConfig) def forward( self, input_ids: torch.LongTensor, pixel_values: torch.FloatTensor, use_itm_head: Optional[bool] = True, attention_mask: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BlipTextVisionModelOutput]: r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, BlipForImageTextRetrieval >>> model = BlipForImageTextRetrieval.from_pretrained("Salesforce/blip-itm-base-coco") >>> processor = AutoProcessor.from_pretrained("Salesforce/blip-itm-base-coco") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> text = "an image of a cat" >>> inputs = processor(images=image, text=text, return_tensors="pt") >>> outputs = model(**inputs) ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) image_embeds = vision_outputs[0] image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long) if use_itm_head: question_embeds = self.text_encoder( input_ids=input_ids, attention_mask=attention_mask, encoder_hidden_states=image_embeds, encoder_attention_mask=image_atts, return_dict=return_dict, ) question_embeds = question_embeds[0] if not return_dict else question_embeds.last_hidden_state output = self.itm_head(question_embeds[:, 0, :]) else: question_embeds = self.text_encoder( input_ids=input_ids, attention_mask=attention_mask, return_dict=return_dict, ) question_embeds = question_embeds[0] if not return_dict else question_embeds.last_hidden_state image_feat = normalize(self.vision_proj(image_embeds[:, 0, :]), dim=-1) text_feat = normalize(self.text_proj(question_embeds[:, 0, :]), dim=-1) output = image_feat @ text_feat.t() if not return_dict: outputs = (output, vision_outputs[0]) + vision_outputs[2:] + (question_embeds,) return tuple(output for output in outputs if output is not None) return BlipImageTextMatchingModelOutput( itm_score=output, last_hidden_state=vision_outputs.last_hidden_state, hidden_states=vision_outputs.hidden_states, attentions=vision_outputs.attentions, question_embeds=question_embeds, )
transformers-main
src/transformers/models/blip/modeling_blip.py
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _import_structure = { "configuration_rag": ["RagConfig"], "retrieval_rag": ["RagRetriever"], "tokenization_rag": ["RagTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_rag"] = [ "RagModel", "RagPreTrainedModel", "RagSequenceForGeneration", "RagTokenForGeneration", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_rag"] = [ "TFRagModel", "TFRagPreTrainedModel", "TFRagSequenceForGeneration", "TFRagTokenForGeneration", ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers-main
src/transformers/models/rag/__init__.py
# coding=utf-8 # Copyright 2020, The RAG Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """RAG model implementation.""" import copy from dataclasses import dataclass from typing import Callable, List, Optional, Tuple, Union import torch from torch import nn from ...configuration_utils import PretrainedConfig from ...generation import BeamSearchScorer, GenerationConfig, LogitsProcessorList, StoppingCriteriaList from ...modeling_outputs import ModelOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings_to_model_forward, logging, replace_return_docstrings from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "RagConfig" @dataclass class RetrievAugLMMarginOutput(ModelOutput): """ Base class for retriever augmented marginalized models outputs. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss. logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head. The score is possibly marginalized over all documents for each vocabulary token. doc_scores (`torch.FloatTensor` of shape `(batch_size, config.n_docs)`): Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and `question_encoder_last_hidden_state`. past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_heads, sequence_length, embed_size_per_head)`). Contains precomputed hidden-states (key and values in the attention blocks) of the decoder that can be used (see `past_key_values` input) to speed up sequential decoding. retrieved_doc_embeds (`torch.FloatTensor` of shape `(batch_size, config.n_docs, hidden_size)`, *optional*, returned when *output_retrieved=True*): Embedded documents retrieved by the retriever. Is used with `question_encoder_last_hidden_state` to compute the `doc_scores`. retrieved_doc_ids (`torch.LongTensor` of shape `(batch_size, config.n_docs)`, *optional*, returned when *output_retrieved=True*): The indexes of the embedded documents retrieved by the retriever. context_input_ids (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Input ids post-processed from the retrieved documents and the question encoder input_ids by the retriever. context_attention_mask (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the retriever. question_encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden states at the output of the last layer of the question encoder pooled output of the model. question_enc_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden states of the question encoder at the output of each layer plus the initial embedding outputs. question_enc_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the question encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. generator_enc_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the generator encoder of the model. generator_enc_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden states of the generator encoder at the output of each layer plus the initial embedding outputs. generator_enc_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the generator encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. generator_dec_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden states of the generator decoder at the output of each layer plus the initial embedding outputs. generator_dec_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the generator decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. generator_cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Cross-attentions weights of the generator decoder, after the attention softmax, used to compute the weighted average in the cross-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None doc_scores: torch.FloatTensor = None past_key_values: Optional[List[torch.FloatTensor]] = None retrieved_doc_embeds: Optional[torch.FloatTensor] = None retrieved_doc_ids: Optional[torch.LongTensor] = None context_input_ids: Optional[torch.LongTensor] = None context_attention_mask: Optional[torch.LongTensor] = None question_encoder_last_hidden_state: Optional[torch.FloatTensor] = None question_enc_hidden_states: Optional[Tuple[torch.FloatTensor]] = None question_enc_attentions: Optional[Tuple[torch.FloatTensor]] = None generator_enc_last_hidden_state: Optional[torch.FloatTensor] = None generator_enc_hidden_states: Optional[Tuple[torch.FloatTensor]] = None generator_enc_attentions: Optional[Tuple[torch.FloatTensor]] = None generator_dec_hidden_states: Optional[Tuple[torch.FloatTensor]] = None generator_dec_attentions: Optional[Tuple[torch.FloatTensor]] = None generator_cross_attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class RetrievAugLMOutput(ModelOutput): """ Args: logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head. The score is possibly marginalized over all documents for each vocabulary token. doc_scores (`torch.FloatTensor` of shape `(batch_size, config.n_docs)`): Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and `question_encoder_last_hidden_state`. past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_heads, sequence_length, embed_size_per_head)`). Contains precomputed hidden-states (key and values in the attention blocks) of the decoder that can be used (see `past_key_values` input) to speed up sequential decoding. retrieved_doc_embeds (`torch.FloatTensor` of shape `(batch_size, config.n_docs, hidden_size)`, *optional*, returned when *output_retrieved=True*): Embedded documents retrieved by the retriever. Is used with `question_encoder_last_hidden_state` to compute the `doc_scores`. retrieved_doc_ids (`torch.LongTensor` of shape `(batch_size, config.n_docs)`, *optional*, returned when *output_retrieved=True*): The indexes of the embedded documents retrieved by the retriever. context_input_ids (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Input ids post-processed from the retrieved documents and the question encoder input_ids by the retriever. context_attention_mask (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the retriever. question_encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden states at the output of the last layer of the question encoder pooled output of the model. question_enc_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden states of the question encoder at the output of each layer plus the initial embedding outputs. question_enc_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the question encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. generator_enc_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the generator encoder of the model. generator_enc_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden states of the generator encoder at the output of each layer plus the initial embedding outputs. generator_enc_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the generator encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. generator_dec_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden states of the generator decoder at the output of each layer plus the initial embedding outputs. generator_dec_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the generator decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. generator_cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Cross-attentions weights of the generator decoder, after the attention softmax, used to compute the weighted average in the cross-attention heads. """ logits: torch.FloatTensor = None doc_scores: torch.FloatTensor = None past_key_values: Optional[List[torch.FloatTensor]] = None retrieved_doc_embeds: Optional[torch.FloatTensor] = None retrieved_doc_ids: Optional[torch.LongTensor] = None context_input_ids: Optional[torch.LongTensor] = None context_attention_mask: Optional[torch.LongTensor] = None question_encoder_last_hidden_state: Optional[torch.FloatTensor] = None question_enc_hidden_states: Optional[Tuple[torch.FloatTensor]] = None question_enc_attentions: Optional[Tuple[torch.FloatTensor]] = None generator_enc_last_hidden_state: Optional[torch.FloatTensor] = None generator_enc_hidden_states: Optional[Tuple[torch.FloatTensor]] = None generator_enc_attentions: Optional[Tuple[torch.FloatTensor]] = None generator_dec_hidden_states: Optional[Tuple[torch.FloatTensor]] = None generator_dec_attentions: Optional[Tuple[torch.FloatTensor]] = None generator_cross_attentions: Optional[Tuple[torch.FloatTensor]] = None class RagPreTrainedModel(PreTrainedModel): r""" RAG models were released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandra Piktus et al. RAG is a retriever augmented model and encapsulate three components: a question encoder, a dataset retriever and a generator, the encoder and generator are trainable while the retriever is just an indexed dataset. """ config_class = RagConfig base_model_prefix = "rag" @classmethod def from_pretrained(cls, *args, **kwargs): # At the moment fast initialization is not supported # for composite models kwargs["_fast_init"] = False return super().from_pretrained(*args, **kwargs) @classmethod def from_pretrained_question_encoder_generator( cls, question_encoder_pretrained_model_name_or_path: str = None, generator_pretrained_model_name_or_path: str = None, retriever: RagRetriever = None, **kwargs, ) -> PreTrainedModel: r""" Instantiates an question encoder and a generator from one or two base classes of the library from pretrained model checkpoints. The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train the model, you need to first set it back in training mode with `model.train()`. Params: question_encoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`): Information necessary to initiate the question encoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`. - A path to a *directory* containing model weights saved using [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In this case, `from_tf` should be set to `True` and a configuration object should be provided as `config` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. generator_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`): Information necessary to initiate the generator. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`. - A path to a *directory* containing model weights saved using [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In this case, `from_tf` should be set to `True` and a configuration object should be provided as `config` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. model_args (remaining positional arguments, *optional*): All remaining positional arguments will be passed to the underlying model's `__init__` method. retriever ([`RagRetriever`], *optional*): The retriever to use. kwwargs (remaining dictionary of keyword arguments, *optional*): Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., `output_attentions=True`). - To update the question_encoder configuration, use the prefix *question_encoder_* for each configuration parameter. - To update the generator configuration, use the prefix *generator_* for each configuration parameter. - To update the parent model configuration, do not use a prefix for each configuration parameter. Behaves differently depending on whether a `config` is provided or automatically loaded. Example: ```python >>> from transformers import RagModel >>> # initialize a RAG from two pretrained models. >>> model = RagModel.from_pretrained_question_encoder_generator( ... "facebook/dpr-question_encoder-single-nq-base", "t5-small" ... ) >>> # saving model after fine-tuning >>> model.save_pretrained("./rag") >>> # load fine-tuned model >>> model = RagModel.from_pretrained("./rag") ```""" kwargs_question_encoder = { argument[len("question_encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("question_encoder_") } kwargs_generator = { argument[len("generator_") :]: value for argument, value in kwargs.items() if argument.startswith("generator_") } # remove question_encoder, generator kwargs from kwargs for key in kwargs_question_encoder.keys(): del kwargs["question_encoder_" + key] for key in kwargs_generator.keys(): del kwargs["generator_" + key] # Load and initialize the question_encoder and generator # The distinction between question_encoder and generator at the model level is made # by the value of the flag `is_generator` that we need to set correctly. question_encoder = kwargs_question_encoder.pop("model", None) if question_encoder is None: assert question_encoder_pretrained_model_name_or_path is not None, ( "If `model` is not defined as an argument, a `question_encoder_pretrained_model_name_or_path` has to" " be defined" ) from ..auto.modeling_auto import AutoModel if "config" not in kwargs_question_encoder: from ..auto.configuration_auto import AutoConfig question_encoder_config, kwargs_question_encoder = AutoConfig.from_pretrained( question_encoder_pretrained_model_name_or_path, **kwargs_question_encoder, return_unused_kwargs=True, ) kwargs_question_encoder["config"] = question_encoder_config question_encoder = AutoModel.from_pretrained( question_encoder_pretrained_model_name_or_path, **kwargs_question_encoder ) generator = kwargs_generator.pop("model", None) if generator is None: assert generator_pretrained_model_name_or_path is not None, ( "If `generator_model` is not defined as an argument, a `generator_pretrained_model_name_or_path` has" " to be defined" ) from ..auto.modeling_auto import AutoModelForSeq2SeqLM if "config" not in kwargs_generator: from ..auto.configuration_auto import AutoConfig generator_config, kwargs_generator = AutoConfig.from_pretrained( generator_pretrained_model_name_or_path, **kwargs_generator, return_unused_kwargs=True ) kwargs_generator["config"] = generator_config generator = AutoModelForSeq2SeqLM.from_pretrained( generator_pretrained_model_name_or_path, **kwargs_generator ) # instantiate config with corresponding kwargs config = kwargs.get("config", None) if config is None: config = RagConfig.from_question_encoder_generator_configs( question_encoder.config, generator.config, **kwargs ) return cls(question_encoder=question_encoder, generator=generator, config=config, retriever=retriever) RAG_START_DOCSTRING = r""" RAG is a seq2seq model which encapsulates two core components: a question encoder and a generator. During a forward pass, we encode the input with the question encoder and pass it to the retriever to extract relevant context documents. The documents are then prepended to the input. Such contextualized inputs is passed to the generator. The question encoder can be any *autoencoding* model, preferably [`DPRQuestionEncoder`], and the generator can be any *seq2seq* model, preferably [`BartForConditionalGeneration`]. The model can be initialized with a [`RagRetriever`] for end-to-end generation or used in combination with the outputs of a retriever in multiple steps---see examples for more details. The model is compatible any *autoencoding* model as the `question_encoder` and any *seq2seq* model with language model head as the `generator`. It has been tested with [`DPRQuestionEncoder`] as the `question_encoder` and [`BartForConditionalGeneration`] or [`T5ForConditionalGeneration`] as the `generator`. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Args: config ([`RagConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. question_encoder ([`PreTrainedModel`]): An encoder model compatible with the faiss index encapsulated by the `retriever`. generator ([`PreTrainedModel`]): A seq2seq model used as the generator in the RAG architecture. retriever ([`RagRetriever`]): A retriever class encapsulating a faiss index queried to obtain context documents for current inputs. """ RAG_FORWARD_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. [`RagConfig`], used to initialize the model, specifies which generator to use, it also specifies a compatible generator tokenizer. Use that tokenizer class to obtain the indices. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*) Tuple consists of (`generator_enc_last_hidden_state`, *optional*: `generator_enc_hidden_states`, *optional*: `generator_enc_attentions`). `generator_enc_last_hidden_state` of shape `(batch_size, n_docs * sequence_length, hidden_size)` is a sequence of hidden-states at the output of the last layer of the generator's encoder. Used by the ([`RagModel`]) model during decoding. decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Provide for generation tasks. `None` by default, construct as per instructions for the generator model you're using with your RAG instance. decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. past_key_values (`tuple(tuple(torch.FloatTensor))`): Tuple consists of two elements: `encoder_outputs` of the RAG model (see `encoder_outputs`) and `past_key_values` of the underlying generator. Can be used to speed up decoding. `past_key_values` are used in the ([`RagTokenForGeneration`]) model during decoding. doc_scores (`torch.FloatTensor` of shape `(batch_size, config.n_docs)`): Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and `question_encoder_last_hidden_state`. If the model has is not initialized with a `retriever` `doc_scores` has to be provided to the forward pass. `doc_scores` can be computed via `question_encoder_last_hidden_state` and `retrieved_doc_embeds`, see examples for more information. context_input_ids (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Input IDs post-processed from the retrieved documents and the question encoder `input_ids` by the retriever. If the model has is not initialized with a `retriever` ``context_input_ids` has to be provided to the forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`]. context_attention_mask (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the retriever. If the model has is not initialized with a `retriever` `context_attention_mask` has to be provided to the forward pass. `context_attention_mask` are returned by [`~RagRetriever.__call__`]. use_cache (`bool`, *optional*, defaults to `True`): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. output_retrieved(`bool`, *optional*): Whether or not to return the `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask`. See returned tensors for more detail. n_docs (`int`, *optional*, defaults to `config.n_docs``) Number of documents to retrieve and/or number of documents for which to generate an answer. """ @add_start_docstrings_to_model_forward(RAG_START_DOCSTRING) class RagModel(RagPreTrainedModel): def __init__( self, config: Optional[PretrainedConfig] = None, question_encoder: Optional[PreTrainedModel] = None, generator: Optional[PreTrainedModel] = None, retriever: Optional[RagRetriever] = None, # or maybe just use a `set_retriever(...)` method **kwargs, ): assert config is not None or ( question_encoder is not None and generator is not None ), "Either a configuration or an question_encoder and a generator has to be provided." if config is None: config = RagConfig.from_question_encoder_generator_configs( question_encoder.config, generator.config, **kwargs ) else: assert isinstance(config, self.config_class), f"config: {config} has to be of type {self.config_class}" super().__init__(config) if question_encoder is None: from ..auto.modeling_auto import AutoModel question_encoder = AutoModel.from_config(config.question_encoder) if generator is None: from ..auto.modeling_auto import AutoModelForSeq2SeqLM generator = AutoModelForSeq2SeqLM.from_config(config.generator) self.retriever = retriever if self.retriever is not None: assert isinstance( retriever, RagRetriever ), f"`self.retriever` is of type {type(self.retriever)}, but should be of type `RagRetriever`" self.retriever = retriever self.question_encoder = question_encoder self.generator = generator self.ctx_encoder = None self.context_encoder_training = False @add_start_docstrings_to_model_forward(RAG_FORWARD_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=RetrievAugLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, doc_scores: Optional[torch.FloatTensor] = None, context_input_ids: Optional[torch.LongTensor] = None, context_attention_mask=None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_retrieved: Optional[bool] = None, n_docs: Optional[int] = None, ) -> Union[Tuple[torch.Tensor], RetrievAugLMOutput]: r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, RagRetriever, RagModel >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("facebook/rag-token-base") >>> retriever = RagRetriever.from_pretrained( ... "facebook/rag-token-base", index_name="exact", use_dummy_dataset=True ... ) >>> # initialize with RagRetriever to do everything in one forward call >>> model = RagModel.from_pretrained("facebook/rag-token-base", retriever=retriever) >>> inputs = tokenizer("How many people live in Paris?", return_tensors="pt") >>> outputs = model(input_ids=inputs["input_ids"]) ```""" n_docs = n_docs if n_docs is not None else self.config.n_docs use_cache = use_cache if use_cache is not None else self.config.use_cache output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) output_retrieved = output_retrieved if output_retrieved is not None else self.config.output_retrieved # whether retriever has to be used has_to_retrieve = ( self.retriever is not None and (context_input_ids is None or context_attention_mask is None or doc_scores is None) and encoder_outputs is None ) # encoder_outputs are pre-computed during RAG-token generation if encoder_outputs is None: if has_to_retrieve: question_enc_outputs = self.question_encoder( input_ids, attention_mask=attention_mask, return_dict=True ) question_encoder_last_hidden_state = question_enc_outputs[0] # hidden states of question encoder retriever_outputs = self.retriever( input_ids, question_encoder_last_hidden_state.cpu().detach().to(torch.float32).numpy(), prefix=self.generator.config.prefix, n_docs=n_docs, return_tensors="pt", ) if self.context_encoder_training: ( context_input_ids, context_attention_mask, retrieved_doc_embeds, retrived_doc_input_ids, retrived_doc_attention_mask, retrieved_doc_ids, ) = ( retriever_outputs["context_input_ids"], retriever_outputs["context_attention_mask"], retriever_outputs["retrieved_doc_embeds"], retriever_outputs["tokenized_doc_ids"], retriever_outputs["tokenized_doc_attention_mask"], retriever_outputs["doc_ids"], ) context_input_ids = context_input_ids.to(input_ids) context_attention_mask = context_attention_mask.to(input_ids) retrived_doc_input_ids = retrived_doc_input_ids.to(input_ids) retrived_doc_attention_mask = retrived_doc_attention_mask.to(input_ids) retrieved_doc_embeds = self.ctx_encoder( retrived_doc_input_ids, attention_mask=retrived_doc_attention_mask, return_dict=True ).pooler_output retrieved_doc_embeds = retrieved_doc_embeds.view( -1, n_docs, question_encoder_last_hidden_state.shape[1] ) # reshaping # compute doc_scores involving ctx_encoder doc_scores = torch.bmm( question_encoder_last_hidden_state.unsqueeze(1), retrieved_doc_embeds.transpose(1, 2) ).squeeze(1) else: context_input_ids, context_attention_mask, retrieved_doc_embeds, retrieved_doc_ids = ( retriever_outputs["context_input_ids"], retriever_outputs["context_attention_mask"], retriever_outputs["retrieved_doc_embeds"], retriever_outputs["doc_ids"], ) # set to correct device retrieved_doc_embeds = retrieved_doc_embeds.to(question_encoder_last_hidden_state) context_input_ids = context_input_ids.to(input_ids) context_attention_mask = context_attention_mask.to(input_ids) # compute doc_scores doc_scores = torch.bmm( question_encoder_last_hidden_state.unsqueeze(1), retrieved_doc_embeds.transpose(1, 2) ).squeeze(1) else: assert context_input_ids is not None, ( "Make sure that `context_input_ids` are passed, if no `retriever` is set. Alternatively, you can" " set a retriever using the `set_retriever(...)` function." ) assert context_attention_mask is not None, ( "Make sure that `context_attention_mask` are passed, if no `retriever` is set. Alternatively, you" " can set a retriever using the `set_retriever(...)` function." ) assert doc_scores is not None, ( "Make sure that `doc_scores` are passed, if no `retriever` is set. Alternatively, you can set a" " retriever using the `set_retriever(...)` function." ) assert ( doc_scores is not None ), "Make sure that `doc_scores` are passed when passing `encoder_outputs` to the forward function." assert (doc_scores.shape[1] % n_docs) == 0, ( f" The first dimension of `context_input_ids` should be a multiple of `n_docs`={n_docs}, but is" f" {context_input_ids.shape[0]}." ) # Decoder input without context documents if decoder_input_ids is not None: decoder_input_ids = decoder_input_ids.repeat_interleave(n_docs, dim=0) if decoder_attention_mask is not None: decoder_attention_mask = decoder_attention_mask.repeat_interleave(n_docs, dim=0) gen_outputs = self.generator( input_ids=context_input_ids, attention_mask=context_attention_mask, encoder_outputs=encoder_outputs, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, return_dict=True, ) if not has_to_retrieve: question_encoder_last_hidden_state = None question_enc_hidden_states = None question_enc_attentions = None retrieved_doc_embeds = None retrieved_doc_ids = None else: question_enc_hidden_states = question_enc_outputs.hidden_states question_enc_attentions = question_enc_outputs.attentions if not has_to_retrieve or not output_retrieved: # don't output retrieved docs context_input_ids = (None,) context_attention_mask = None retrieved_doc_embeds = None retrieved_doc_ids = None return RetrievAugLMOutput( logits=gen_outputs.logits, doc_scores=doc_scores, past_key_values=gen_outputs.past_key_values, context_input_ids=context_input_ids, context_attention_mask=context_attention_mask, retrieved_doc_embeds=retrieved_doc_embeds, retrieved_doc_ids=retrieved_doc_ids, question_encoder_last_hidden_state=question_encoder_last_hidden_state, question_enc_hidden_states=question_enc_hidden_states, question_enc_attentions=question_enc_attentions, generator_enc_last_hidden_state=gen_outputs.encoder_last_hidden_state, generator_enc_hidden_states=gen_outputs.encoder_hidden_states, generator_enc_attentions=gen_outputs.encoder_attentions, generator_dec_hidden_states=gen_outputs.decoder_hidden_states, generator_dec_attentions=gen_outputs.decoder_attentions, generator_cross_attentions=gen_outputs.cross_attentions, ) @add_start_docstrings_to_model_forward( """ A RAG-sequence model implementation. It performs RAG-sequence specific marginalization in the forward pass. """, RAG_START_DOCSTRING, ) class RagSequenceForGeneration(RagPreTrainedModel): def __init__( self, config: Optional[PretrainedConfig] = None, question_encoder: Optional[PreTrainedModel] = None, generator: Optional[PreTrainedModel] = None, retriever: Optional[RagRetriever] = None, **kwargs, ): assert config is not None or ( question_encoder is not None and generator is not None ), "Either a configuration or an encoder and a generator has to be provided." if config is None: config = RagConfig.from_question_encoder_generator_configs( question_encoder.config, generator.config, **kwargs ) super().__init__(config) # instantiate model self.rag = RagModel(config=config, question_encoder=question_encoder, generator=generator, retriever=retriever) def set_retriever(self, retriever: RagRetriever): self.rag.retriever = retriever def set_context_encoder_for_training(self, ctx_encoder: PreTrainedModel): self.rag.context_encoder_training = True self.rag.ctx_encoder = ctx_encoder @add_start_docstrings_to_model_forward(RAG_FORWARD_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=RetrievAugLMMarginOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, context_input_ids: Optional[torch.LongTensor] = None, context_attention_mask: Optional[torch.LongTensor] = None, doc_scores: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_retrieved: Optional[bool] = None, exclude_bos_score: Optional[bool] = None, reduce_loss: Optional[bool] = None, labels: Optional[torch.LongTensor] = None, n_docs: Optional[int] = None, **kwargs, # needs kwargs for generation ) -> RetrievAugLMMarginOutput: r""" exclude_bos_score (`bool`, *optional*): Only relevant if `labels` is passed. If `True`, the score of the BOS token is disregarded when computing the loss. reduce_loss (`bool`, *optional*): Only relevant if `labels` is passed. If `True`, the NLL loss is reduced using the `torch.Tensor.sum` operation. kwargs (`Dict[str, any]`, optional, defaults to *{}*): Legacy dictionary, which is required so that model can use *generate()* function. Returns: Example: ```python >>> from transformers import AutoTokenizer, RagRetriever, RagSequenceForGeneration >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("facebook/rag-sequence-nq") >>> retriever = RagRetriever.from_pretrained( ... "facebook/rag-sequence-nq", index_name="exact", use_dummy_dataset=True ... ) >>> # initialize with RagRetriever to do everything in one forward call >>> model = RagSequenceForGeneration.from_pretrained("facebook/rag-token-nq", retriever=retriever) >>> inputs = tokenizer("How many people live in Paris?", return_tensors="pt") >>> targets = tokenizer(text_target="In Paris, there are 10 million people.", return_tensors="pt") >>> input_ids = inputs["input_ids"] >>> labels = targets["input_ids"] >>> outputs = model(input_ids=input_ids, labels=labels) >>> # or use retriever separately >>> model = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq", use_dummy_dataset=True) >>> # 1. Encode >>> question_hidden_states = model.question_encoder(input_ids)[0] >>> # 2. Retrieve >>> docs_dict = retriever(input_ids.numpy(), question_hidden_states.detach().numpy(), return_tensors="pt") >>> doc_scores = torch.bmm( ... question_hidden_states.unsqueeze(1), docs_dict["retrieved_doc_embeds"].float().transpose(1, 2) ... ).squeeze(1) >>> # 3. Forward to generator >>> outputs = model( ... context_input_ids=docs_dict["context_input_ids"], ... context_attention_mask=docs_dict["context_attention_mask"], ... doc_scores=doc_scores, ... decoder_input_ids=labels, ... ) ```""" n_docs = n_docs if n_docs is not None else self.config.n_docs exclude_bos_score = exclude_bos_score if exclude_bos_score is not None else self.config.exclude_bos_score reduce_loss = reduce_loss if reduce_loss is not None else self.config.reduce_loss if labels is not None: if decoder_input_ids is None: decoder_input_ids = labels use_cache = False outputs = self.rag( input_ids=input_ids, attention_mask=attention_mask, encoder_outputs=encoder_outputs, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, context_input_ids=context_input_ids, context_attention_mask=context_attention_mask, doc_scores=doc_scores, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, output_retrieved=output_retrieved, n_docs=n_docs, ) loss = None if labels is not None: loss = self.get_nll( outputs.logits, outputs.doc_scores, decoder_input_ids, reduce_loss=reduce_loss, epsilon=self.config.label_smoothing, exclude_bos_score=exclude_bos_score, n_docs=n_docs, ) return RetrievAugLMMarginOutput( loss=loss, logits=outputs.logits, doc_scores=outputs.doc_scores, past_key_values=outputs.past_key_values, context_input_ids=outputs.context_input_ids, context_attention_mask=outputs.context_attention_mask, retrieved_doc_embeds=outputs.retrieved_doc_embeds, retrieved_doc_ids=outputs.retrieved_doc_ids, question_encoder_last_hidden_state=outputs.question_encoder_last_hidden_state, question_enc_hidden_states=outputs.question_enc_hidden_states, question_enc_attentions=outputs.question_enc_attentions, generator_enc_last_hidden_state=outputs.generator_enc_last_hidden_state, generator_enc_hidden_states=outputs.generator_enc_hidden_states, generator_enc_attentions=outputs.generator_enc_attentions, generator_dec_hidden_states=outputs.generator_dec_hidden_states, generator_dec_attentions=outputs.generator_dec_attentions, generator_cross_attentions=outputs.generator_cross_attentions, ) @property def retriever(self): return self.rag.retriever @property def generator(self): return self.rag.generator @property def question_encoder(self): return self.rag.question_encoder @torch.no_grad() def generate( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, context_input_ids: Optional[torch.LongTensor] = None, context_attention_mask: Optional[torch.LongTensor] = None, doc_scores: Optional[torch.FloatTensor] = None, do_deduplication: Optional[bool] = None, # defaults to True num_return_sequences: Optional[int] = None, # defaults to 1 num_beams: Optional[int] = None, # defaults to 1 n_docs: Optional[int] = None, **model_kwargs, ) -> torch.LongTensor: """ Implements RAG sequence "thorough" decoding. Read the [`~generation.GenerationMixin.generate`]` documentation for more information on how to set other generate input parameters. Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): The sequence used as a prompt for the generation. If `input_ids` is not passed, then `context_input_ids` has to be provided. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) context_input_ids (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Input IDs post-processed from the retrieved documents and the question encoder input_ids by the retriever. context_attention_mask (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the retriever. If the model is not initialized with a `retriever` or `input_ids` is not given, `context_input_ids` and `context_attention_mask` have to be provided to the forward pass. They are returned by [`~RagRetriever.__call__`]. doc_scores (`torch.FloatTensor` of shape `(batch_size, config.n_docs)`): Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and `question_encoder_last_hidden_state`. If the model is not initialized with a `retriever` or `input_ids` is not given, `doc_scores` has to be provided to the forward pass. `doc_scores` are returned by [`~RagRetriever.__call__`]. do_deduplication (`bool`, *optional*): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. num_return_sequences(`int`, *optional*, defaults to 1): The number of independently computed returned sequences for each element in the batch. Note that this is not the value we pass to the `generator`'s `[`~generation.GenerationMixin.generate`]` function, where we set `num_return_sequences` to `num_beams`. num_beams (`int`, *optional*, defaults to 1): Number of beams for beam search. 1 means no beam search. n_docs (`int`, *optional*, defaults to `config.n_docs`) Number of documents to retrieve and/or number of documents for which to generate an answer. kwargs (`Dict[str, Any]`, *optional*): Additional kwargs will be passed to [`~generation.GenerationMixin.generate`]. Return: `torch.LongTensor` of shape `(batch_size * num_return_sequences, sequence_length)`: The generated sequences. The second dimension (sequence length) is either equal to `max_length` or shorter if all batches finished early due to the `eos_token_id`. """ n_docs = n_docs if n_docs is not None else self.config.n_docs do_deduplication = do_deduplication if do_deduplication is not None else self.config.do_deduplication num_doc_return_sequences = ( num_return_sequences if num_return_sequences is not None else self.config.num_return_sequences ) num_beams = num_beams if num_beams is not None else self.config.num_beams assert ( input_ids is not None or context_input_ids is not None ), " At least one of input_ids or context_input_ids must be given" if self.retriever is not None and context_input_ids is None: question_hidden_states = self.question_encoder(input_ids, attention_mask=attention_mask)[0] context_input_ids = self.retriever( input_ids, question_hidden_states.cpu().detach().to(torch.float32).numpy(), prefix=self.generator.config.prefix, n_docs=n_docs, return_tensors="pt", )["context_input_ids"] # set to correct device context_input_ids = context_input_ids.to(input_ids) hypos = [] model_kwargs["num_beams"] = num_beams model_kwargs["num_return_sequences"] = num_beams model_kwargs["attention_mask"] = None batch_size = input_ids.shape[0] if input_ids is not None else context_input_ids.shape[0] // n_docs for index in range(batch_size): # first, generate beams from documents: generator_input_ids = context_input_ids[index * n_docs : (index + 1) * n_docs] # (n_docs, max_len) output_sequences = self.generator.generate( generator_input_ids, **model_kwargs, ) # n_docs * n_beam, tgt_len if do_deduplication: # do_deduplication, max_output_len output_sequences = torch.stack(list({str(k.tolist()): k for k in output_sequences}.values())) num_candidates = output_sequences.shape[ 0 ] # after deduplication, this number can be less than n_docs*n_beam # then, run model forwards to get nll scores: if input_ids is not None: new_input_ids = input_ids[index : index + 1].repeat(num_candidates, 1) outputs = self(new_input_ids, labels=output_sequences, exclude_bos_score=True) else: # input_ids is None, need context_input_ids/mask and doc_scores assert context_attention_mask is not None, ( "Make sure that `context_attention_mask` are passed, if no `input_ids` is set. Alternatively, you" " can set a retriever using the `set_retriever(...)` function." ) assert doc_scores is not None, ( "Make sure that `doc_scores` are passed, if no `input_ids` is set. Alternatively, you can set a" " retriever using the `set_retriever(...)` function." ) individual_input_ids = generator_input_ids.repeat( num_candidates, 1 ) # (num_candidates*n_docs, max_len) individual_attention_mask = context_attention_mask[index * n_docs : (index + 1) * n_docs] individual_attention_mask = individual_attention_mask.repeat(num_candidates, 1) individual_doc_scores = doc_scores[index : (index + 1), :] # doc_scores.shape = [batch, n_docs] individual_doc_scores = individual_doc_scores.repeat(num_candidates, 1) # [num_candidates, n_docs] outputs = self( context_input_ids=individual_input_ids, context_attention_mask=individual_attention_mask, doc_scores=individual_doc_scores, labels=output_sequences, exclude_bos_score=True, ) top_cand_inds = (-outputs["loss"]).topk(num_doc_return_sequences)[1] # add hypothesis hypos.append(output_sequences[top_cand_inds]) return self._cat_and_pad(hypos, pad_token_id=self.config.generator.pad_token_id) def get_nll( self, seq_logits, doc_scores, target, reduce_loss=False, epsilon=0.0, exclude_bos_score=False, n_docs=None ): # shift tokens left target = torch.cat( [target[:, 1:], target.new(target.shape[0], 1).fill_(self.config.generator.pad_token_id)], 1 ) n_docs = n_docs if n_docs is not None else self.config.n_docs # bos_token_id is None for T5 bos_token_id = self.config.bos_token_id or self.config.generator.bos_token_id use_bos = bos_token_id is not None and target[:, 0].eq(bos_token_id).all() def _mask_pads(ll, smooth_obj): pad_mask = target.eq(self.config.generator.pad_token_id) if pad_mask.any(): ll.masked_fill_(pad_mask, 0.0) smooth_obj.masked_fill_(pad_mask, 0.0) return ll.squeeze(-1), smooth_obj.squeeze(-1) # seq_logits dim = (batch*n_docs, tgt_len , #vocabs) seq_logprobs = nn.functional.log_softmax(seq_logits, dim=-1).view( seq_logits.shape[0] // n_docs, n_docs, -1, seq_logits.size(-1) ) # batch_size x n_docs x tgt_len x #vocab_size doc_logprobs = nn.functional.log_softmax(doc_scores, dim=1).unsqueeze(-1).unsqueeze(-1) # RAG-sequence marginalization first_token_scores = seq_logprobs[:, :, :1, :] second_token_scores = seq_logprobs[:, :, 1:2, :] remainder = seq_logprobs[:, :, 2:, :] rag_logprobs = torch.cat([first_token_scores, second_token_scores + doc_logprobs, remainder], dim=2) # calculate loss target = target.unsqueeze(1).unsqueeze(-1).repeat(1, n_docs, 1, 1) assert target.dim() == rag_logprobs.dim() ll = rag_logprobs.gather(dim=-1, index=target) smooth_obj = rag_logprobs.sum(dim=-1, keepdim=True) # total sum of all (normalised) logits ll, smooth_obj = _mask_pads(ll, smooth_obj) # sum over tokens, exclude bos while scoring ll = ll[:, :, 1:].sum(2) if exclude_bos_score and use_bos else ll.sum(2) smooth_obj = smooth_obj.sum(2) ll = ll.logsumexp(1) # logsumexp over docs smooth_obj = smooth_obj.logsumexp(1) nll_loss = -ll smooth_loss = -smooth_obj if reduce_loss: nll_loss = nll_loss.sum() smooth_loss = smooth_loss.sum() eps_i = epsilon / rag_logprobs.size(-1) loss = (1.0 - epsilon) * nll_loss + eps_i * smooth_loss return loss @staticmethod def _cat_and_pad(tensors, pad_token_id): output = ( tensors[0].new(sum([t.shape[0] for t in tensors]), max([t.shape[1] for t in tensors])).fill_(pad_token_id) ) ind = 0 for t in tensors: output[ind : ind + t.shape[0], : t.shape[1]] = t ind += t.shape[0] return output @add_start_docstrings_to_model_forward( """ A RAG-token model implementation. It performs RAG-token specific marginalization in the forward pass. """, RAG_START_DOCSTRING, ) class RagTokenForGeneration(RagPreTrainedModel): def __init__( self, config: Optional[PretrainedConfig] = None, question_encoder: Optional[PreTrainedModel] = None, generator: Optional[PreTrainedModel] = None, retriever: Optional[RagRetriever] = None, **kwargs, ): assert config is not None or ( question_encoder is not None and generator is not None ), "Either a configuration or an encoder and a generator has to be provided." if config is None: config = RagConfig.from_question_encoder_generator_configs( question_encoder.config, generator.config, **kwargs ) super().__init__(config) # instantiate model self.rag = RagModel(config=config, question_encoder=question_encoder, generator=generator, retriever=retriever) def set_retriever(self, retriever: RagRetriever): self.rag.retriever = retriever def set_context_encoder_for_training(self, ctx_encoder: PreTrainedModel): self.rag.context_encoder_training = True self.rag.ctx_encoder = ctx_encoder def prepare_inputs_for_generation( self, decoder_input_ids, past_key_values=None, attention_mask=None, use_cache=None, encoder_outputs=None, doc_scores=None, n_docs=None, **kwargs, ): if past_key_values is not None: # if past is defined use only last decoder_input_ids decoder_input_ids = decoder_input_ids[:, -1:] return { "input_ids": None, "encoder_outputs": encoder_outputs, "doc_scores": doc_scores, "context_attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "past_key_values": past_key_values, "use_cache": use_cache, "do_marginalize": True, "n_docs": n_docs, } @property def retriever(self): return self.rag.retriever @property def generator(self): return self.rag.generator @property def question_encoder(self): return self.rag.question_encoder @staticmethod def _reorder_cache(past_key_values, beam_idx): """Reorders cache for generation. BART-inspired but we need to take care of the extra dimension for docs""" def _reorder_stacked(hidden_states, new_order): n_docs = hidden_states.shape[0] // new_order.shape[0] hidden_states = hidden_states.view(-1, n_docs, *hidden_states.shape[1:]) hidden_states = hidden_states.index_select(0, new_order) result = hidden_states.view(-1, *hidden_states.shape[2:]) return result reordered_past = () for layer_past in past_key_values: # get the correct batch idx from decoder layer's batch dim for cross and self-attn reordered_past += (tuple(_reorder_stacked(past_state, beam_idx) for past_state in layer_past),) return reordered_past def marginalize(self, seq_logits, doc_scores, n_docs=None): n_docs = n_docs if n_docs is not None else self.config.n_docs # RAG-token marginalization seq_logprobs = nn.functional.log_softmax(seq_logits, dim=-1).view( seq_logits.shape[0] // n_docs, n_docs, -1, seq_logits.size(-1) ) doc_logprobs = torch.log_softmax(doc_scores, dim=1) log_prob_sum = seq_logprobs + doc_logprobs.unsqueeze(-1).unsqueeze(-1) return torch.logsumexp(log_prob_sum, dim=1) @add_start_docstrings_to_model_forward(RAG_FORWARD_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=RetrievAugLMMarginOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, context_input_ids: Optional[torch.LongTensor] = None, context_attention_mask: Optional[torch.LongTensor] = None, doc_scores: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_retrieved: Optional[bool] = None, do_marginalize: Optional[bool] = None, reduce_loss: Optional[bool] = None, labels: Optional[torch.LongTensor] = None, n_docs: Optional[int] = None, **kwargs, # needs kwargs for generation ) -> RetrievAugLMMarginOutput: r""" do_marginalize (`bool`, *optional*): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*): Only relevant if `labels` is passed. If `True`, the NLL loss is reduced using the `torch.Tensor.sum` operation. kwargs (`Dict[str, any]`, optional, defaults to *{}*): Legacy dictionary, which is required so that model can use *generate()* function. Returns: Example: ```python >>> from transformers import AutoTokenizer, RagRetriever, RagTokenForGeneration >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("facebook/rag-token-nq") >>> retriever = RagRetriever.from_pretrained( ... "facebook/rag-token-nq", index_name="exact", use_dummy_dataset=True ... ) >>> # initialize with RagRetriever to do everything in one forward call >>> model = RagTokenForGeneration.from_pretrained("facebook/rag-token-nq", retriever=retriever) >>> inputs = tokenizer("How many people live in Paris?", return_tensors="pt") >>> targets = tokenizer(text_target="In Paris, there are 10 million people.", return_tensors="pt") >>> input_ids = inputs["input_ids"] >>> labels = targets["input_ids"] >>> outputs = model(input_ids=input_ids, labels=labels) >>> # or use retriever separately >>> model = RagTokenForGeneration.from_pretrained("facebook/rag-token-nq", use_dummy_dataset=True) >>> # 1. Encode >>> question_hidden_states = model.question_encoder(input_ids)[0] >>> # 2. Retrieve >>> docs_dict = retriever(input_ids.numpy(), question_hidden_states.detach().numpy(), return_tensors="pt") >>> doc_scores = torch.bmm( ... question_hidden_states.unsqueeze(1), docs_dict["retrieved_doc_embeds"].float().transpose(1, 2) ... ).squeeze(1) >>> # 3. Forward to generator >>> outputs = model( ... context_input_ids=docs_dict["context_input_ids"], ... context_attention_mask=docs_dict["context_attention_mask"], ... doc_scores=doc_scores, ... decoder_input_ids=labels, ... ) >>> # or directly generate >>> generated = model.generate( ... context_input_ids=docs_dict["context_input_ids"], ... context_attention_mask=docs_dict["context_attention_mask"], ... doc_scores=doc_scores, ... ) >>> generated_string = tokenizer.batch_decode(generated, skip_special_tokens=True) ```""" n_docs = n_docs if n_docs is not None else self.config.n_docs do_marginalize = do_marginalize if do_marginalize is not None else self.config.do_marginalize reduce_loss = reduce_loss if reduce_loss is not None else self.config.reduce_loss if labels is not None: if decoder_input_ids is None: decoder_input_ids = labels use_cache = False outputs = self.rag( input_ids=input_ids, attention_mask=attention_mask, encoder_outputs=encoder_outputs, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, context_input_ids=context_input_ids, context_attention_mask=context_attention_mask, doc_scores=doc_scores, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, output_retrieved=output_retrieved, n_docs=n_docs, ) loss = None logits = outputs.logits if labels is not None: assert decoder_input_ids is not None loss = self.get_nll( outputs.logits, outputs.doc_scores, labels, reduce_loss=reduce_loss, epsilon=self.config.label_smoothing, n_docs=n_docs, ) if do_marginalize: logits = self.marginalize(logits, outputs.doc_scores, n_docs) return RetrievAugLMMarginOutput( loss=loss, logits=logits, doc_scores=outputs.doc_scores, past_key_values=outputs.past_key_values, context_input_ids=outputs.context_input_ids, context_attention_mask=outputs.context_attention_mask, retrieved_doc_embeds=outputs.retrieved_doc_embeds, retrieved_doc_ids=outputs.retrieved_doc_ids, question_encoder_last_hidden_state=outputs.question_encoder_last_hidden_state, question_enc_hidden_states=outputs.question_enc_hidden_states, question_enc_attentions=outputs.question_enc_attentions, generator_enc_last_hidden_state=outputs.generator_enc_last_hidden_state, generator_enc_hidden_states=outputs.generator_enc_hidden_states, generator_enc_attentions=outputs.generator_enc_attentions, generator_dec_hidden_states=outputs.generator_dec_hidden_states, generator_dec_attentions=outputs.generator_dec_attentions, generator_cross_attentions=outputs.generator_cross_attentions, ) @torch.no_grad() def generate( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, context_input_ids: Optional[torch.LongTensor] = None, context_attention_mask: Optional[torch.LongTensor] = None, doc_scores: Optional[torch.FloatTensor] = None, n_docs: Optional[int] = None, generation_config: Optional[GenerationConfig] = None, prefix_allowed_tokens_fn: Callable[[int, torch.Tensor], List[int]] = None, logits_processor: Optional[LogitsProcessorList] = LogitsProcessorList(), stopping_criteria: Optional[StoppingCriteriaList] = StoppingCriteriaList(), **kwargs, ) -> torch.LongTensor: """ Implements RAG token decoding. Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): The sequence used as a prompt for the generation. If `input_ids` is not passed, then `context_input_ids` has to be provided. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) context_input_ids (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Input IDs post-processed from the retrieved documents and the question encoder `input_ids` by the retriever. If the model has is not initialized with a `retriever`, `context_input_ids` has to be provided to the forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`]. context_attention_mask (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the retriever. If the model has is not initialized with a `retriever`, `context_input_ids` has to be provided to the forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`]. doc_scores (`torch.FloatTensor` of shape `(batch_size, config.n_docs)`): Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and `question_encoder_last_hidden_state`. If the model has is not initialized with a `retriever`, `context_input_ids` has to be provided to the forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`]. n_docs (`int`, *optional*, defaults to `config.n_docs`) Number of documents to retrieve and/or number of documents for which to generate an answer. generation_config (`~generation.GenerationConfig`, *optional*): The generation configuration to be used as base parametrization for the generation call. `**kwargs` passed to generate matching the attributes of `generation_config` will override them. If `generation_config` is not provided, the default will be used, which has the following loading priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s default values, whose documentation should be checked to parameterize generation. prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`, *optional*): If provided, this function constraints the beam search to allowed tokens only at each step. If not provided no constraint is applied. This function takes 2 arguments `inputs_ids` and the batch ID `batch_id`. It has to return a list with the allowed tokens for the next generation step conditioned on the previously generated tokens `inputs_ids` and the batch ID `batch_id`. This argument is useful for constrained generation conditioned on the prefix, as described in [Autoregressive Entity Retrieval](https://arxiv.org/abs/2010.00904). logits_processor (`LogitsProcessorList`, *optional*): Custom logits processors that complement the default logits processors built from arguments and a model's config. If a logit processor is passed that is already created with the arguments or a model's config an error is thrown. stopping_criteria (`StoppingCriteriaList`, *optional*): Custom stopping criteria that complement the default stopping criteria built from arguments and a model's config. If a stopping criteria is passed that is already created with the arguments or a model's config an error is thrown. kwargs (`Dict[str, Any]`, *optional*): Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be forwarded to the `forward` function of the model. Return: `torch.LongTensor` of shape `(batch_size * num_return_sequences, sequence_length)`: The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early due to the `eos_token_id`. """ # Handle `generation_config` and kwargs that might update it if generation_config is None: generation_config = self.generation_config generation_config = copy.deepcopy(generation_config) model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs # set default parameters n_docs = n_docs if n_docs is not None else self.config.n_docs # retrieve docs if self.retriever is not None and context_input_ids is None: question_hidden_states = self.question_encoder(input_ids, attention_mask=attention_mask)[0] out = self.retriever( input_ids, question_hidden_states.cpu().detach().to(torch.float32).numpy(), prefix=self.generator.config.prefix, n_docs=n_docs, return_tensors="pt", ) context_input_ids, context_attention_mask, retrieved_doc_embeds = ( out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], ) # set to correct device retrieved_doc_embeds = retrieved_doc_embeds.to(question_hidden_states) context_input_ids = context_input_ids.to(input_ids) context_attention_mask = context_attention_mask.to(input_ids) # compute doc_scores doc_scores = torch.bmm(question_hidden_states.unsqueeze(1), retrieved_doc_embeds.transpose(1, 2)).squeeze( 1 ) assert (context_input_ids.shape[0] % n_docs) == 0, ( f" The first dimension of `context_input_ids` should be a multiple of `n_docs`={n_docs}, but is" f" {context_input_ids.shape[0]}." ) # batch_size batch_size = context_input_ids.shape[0] // n_docs encoder = self.rag.generator.get_encoder() encoder_outputs = encoder(input_ids=context_input_ids, attention_mask=context_attention_mask, return_dict=True) input_ids = torch.full( (batch_size * generation_config.num_beams, 1), generation_config.decoder_start_token_id, dtype=torch.long, device=next(self.parameters()).device, ) input_ids_seq_length = input_ids.shape[-1] last_hidden_state = encoder_outputs["last_hidden_state"] def extend_enc_output(tensor, num_beams=None): # split into `batch_size`, `num_beams`, `num_docs` tensor = tensor[None, None, :].reshape((batch_size, 1, n_docs) + tensor.shape[1:]) # repeat same last hidden states over `num_beams` dimension tensor = tensor.expand((batch_size, num_beams, n_docs) + tensor.shape[3:]) # merge `batch_size`, `num_beams`, `num_docs` dims again return tensor.reshape((batch_size * num_beams * n_docs,) + tensor.shape[3:]) # correctly extend last_hidden_state and attention mask context_attention_mask = extend_enc_output(context_attention_mask, num_beams=generation_config.num_beams) encoder_outputs["last_hidden_state"] = extend_enc_output( last_hidden_state, num_beams=generation_config.num_beams ) doc_scores = doc_scores.repeat_interleave(generation_config.num_beams, dim=0) # define start_len & additional parameters model_kwargs["doc_scores"] = doc_scores model_kwargs["encoder_outputs"] = encoder_outputs model_kwargs["attention_mask"] = context_attention_mask model_kwargs["n_docs"] = n_docs pre_processor = self._get_logits_processor( generation_config=generation_config, input_ids_seq_length=input_ids_seq_length, encoder_input_ids=context_input_ids, prefix_allowed_tokens_fn=prefix_allowed_tokens_fn, logits_processor=logits_processor, ) if generation_config.num_beams == 1: if generation_config.num_return_sequences > 1: raise ValueError( f"num_return_sequences has to be 1, but is {generation_config.num_return_sequences} when doing" " greedy search." ) return self.greedy_search( input_ids, logits_processor=pre_processor, max_length=generation_config.max_length, pad_token_id=generation_config.pad_token_id, eos_token_id=generation_config.eos_token_id, **model_kwargs, ) elif generation_config.num_beams > 1: if generation_config.num_return_sequences > generation_config.num_beams: raise ValueError("`num_return_sequences` has to be smaller or equal to `num_beams`.") beam_scorer = BeamSearchScorer( batch_size=batch_size, num_beams=generation_config.num_beams, device=self.device, length_penalty=generation_config.length_penalty, do_early_stopping=generation_config.early_stopping, num_beam_hyps_to_keep=generation_config.num_return_sequences, max_length=generation_config.max_length, ) return self.beam_search( input_ids, beam_scorer, logits_processor=pre_processor, max_length=generation_config.max_length, pad_token_id=generation_config.pad_token_id, eos_token_id=generation_config.eos_token_id, **model_kwargs, ) else: raise ValueError( f"`num_beams` has to be an integer strictly superior to 0 (≥ 1), but is {generation_config.num_beams}" ) def get_input_embeddings(self): return self.rag.generator.get_input_embeddings() def get_output_embeddings(self): return self.rag.generator.get_output_embeddings() def set_output_embeddings(self, new_embeddings): return self.rag.generator.set_output_embeddings(new_embeddings) def shift_tokens_right(self, input_ids, start_token_id=None): """Shift input ids one token to the right, and pad with start_token_id""" if start_token_id is None: start_token_id = self.config.decoder_start_token_id shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() shifted_input_ids[:, 0] = start_token_id return shifted_input_ids def get_nll(self, seq_logits, doc_scores, target, reduce_loss=False, epsilon=0.0, n_docs=None): n_docs = n_docs if n_docs is not None else self.config.n_docs # shift tokens left target = torch.cat( [target[:, 1:], target.new(target.shape[0], 1).fill_(self.config.generator.pad_token_id)], 1 ) def _mask_pads(ll, smooth_obj): pad_mask = target.eq(self.config.generator.pad_token_id) if pad_mask.any(): ll.masked_fill_(pad_mask, 0.0) smooth_obj.masked_fill_(pad_mask, 0.0) return ll.squeeze(-1), smooth_obj.squeeze(-1) rag_logprobs = self.marginalize(seq_logits, doc_scores, n_docs) target = target.unsqueeze(-1) assert target.dim() == rag_logprobs.dim() ll = rag_logprobs.gather(dim=-1, index=target) smooth_obj = rag_logprobs.sum(dim=-1, keepdim=True) # total sum of all (normalised) logits ll, smooth_obj = _mask_pads(ll, smooth_obj) ll = ll.sum(1) # sum over tokens smooth_obj = smooth_obj.sum(1) nll_loss = -ll smooth_loss = -smooth_obj if reduce_loss: nll_loss = nll_loss.sum() smooth_loss = smooth_loss.sum() eps_i = epsilon / rag_logprobs.size(-1) loss = (1.0 - epsilon) * nll_loss + eps_i * smooth_loss return loss
transformers-main
src/transformers/models/rag/modeling_rag.py
# coding=utf-8 # Copyright 2020, The RAG Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ RAG model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings RAG_CONFIG_DOC = r""" [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. """ @add_start_docstrings(RAG_CONFIG_DOC) class RagConfig(PretrainedConfig): model_type = "rag" is_composition = True def __init__( self, vocab_size=None, is_encoder_decoder=True, prefix=None, bos_token_id=None, pad_token_id=None, eos_token_id=None, decoder_start_token_id=None, title_sep=" / ", doc_sep=" // ", n_docs=5, max_combined_length=300, retrieval_vector_size=768, retrieval_batch_size=8, dataset="wiki_dpr", dataset_split="train", index_name="compressed", index_path=None, passages_path=None, use_dummy_dataset=False, reduce_loss=False, label_smoothing=0.0, do_deduplication=True, exclude_bos_score=False, do_marginalize=False, output_retrieved=False, use_cache=True, forced_eos_token_id=None, **kwargs, ): super().__init__( bos_token_id=bos_token_id, pad_token_id=pad_token_id, eos_token_id=eos_token_id, decoder_start_token_id=decoder_start_token_id, forced_eos_token_id=forced_eos_token_id, is_encoder_decoder=is_encoder_decoder, prefix=prefix, vocab_size=vocab_size, **kwargs, ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" question_encoder_config = kwargs.pop("question_encoder") question_encoder_model_type = question_encoder_config.pop("model_type") decoder_config = kwargs.pop("generator") decoder_model_type = decoder_config.pop("model_type") from ..auto.configuration_auto import AutoConfig self.question_encoder = AutoConfig.for_model(question_encoder_model_type, **question_encoder_config) self.generator = AutoConfig.for_model(decoder_model_type, **decoder_config) self.reduce_loss = reduce_loss self.label_smoothing = label_smoothing self.exclude_bos_score = exclude_bos_score self.do_marginalize = do_marginalize self.title_sep = title_sep self.doc_sep = doc_sep self.n_docs = n_docs self.max_combined_length = max_combined_length self.dataset = dataset self.dataset_split = dataset_split self.index_name = index_name self.retrieval_vector_size = retrieval_vector_size self.retrieval_batch_size = retrieval_batch_size self.passages_path = passages_path self.index_path = index_path self.use_dummy_dataset = use_dummy_dataset self.output_retrieved = output_retrieved self.do_deduplication = do_deduplication self.use_cache = use_cache if self.forced_eos_token_id is None: self.forced_eos_token_id = getattr(self.generator, "forced_eos_token_id", None) @classmethod def from_question_encoder_generator_configs( cls, question_encoder_config: PretrainedConfig, generator_config: PretrainedConfig, **kwargs ) -> PretrainedConfig: r""" Instantiate a [`EncoderDecoderConfig`] (or a derived class) from a pre-trained encoder model configuration and decoder model configuration. Returns: [`EncoderDecoderConfig`]: An instance of a configuration object """ return cls(question_encoder=question_encoder_config.to_dict(), generator=generator_config.to_dict(), **kwargs)
transformers-main
src/transformers/models/rag/configuration_rag.py
# coding=utf-8 # Copyright 2020, The RAG Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TFRAG model implementation.""" from __future__ import annotations import copy from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import tensorflow as tf from ...configuration_utils import PretrainedConfig from ...generation import TFLogitsProcessorList from ...modeling_tf_utils import ( TFCausalLanguageModelingLoss, TFModelInputType, TFPreTrainedModel, shape_list, unpack_inputs, ) from ...utils import ModelOutput, add_start_docstrings_to_model_forward, logging, replace_return_docstrings from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "RagConfig" @dataclass class TFRetrievAugLMMarginOutput(ModelOutput): """ Base class for retriever augmented marginalized models outputs. Args: loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss. logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head. The score is possibly marginalized over all documents for each vocabulary token. past_key_values (`List[tf.Tensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): List of `tf.Tensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_heads, sequence_length, embed_size_per_head)`). Contains precomputed hidden-states (key and values in the attention blocks) of the decoder that can be used (see `past_key_values` input) to speed up sequential decoding. doc_scores (`tf.Tensor` of shape `(batch_size, config.n_docs)`): Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and `question_encoder_last_hidden_state`. retrieved_doc_embeds (`tf.Tensor` of shape `(batch_size, config.n_docs, hidden_size)`, *optional*, returned when *output_retrieved=True*): Embedded documents retrieved by the retriever. Is used with `question_encoder_last_hidden_state` to compute the `doc_scores`. retrieved_doc_ids (`tf.Tensor` (int32) of shape `(batch_size, config.n_docs)`, *optional*, returned when *output_retrieved=True*): The indexes of the embedded documents retrieved by the retriever. context_input_ids (`tf.Tensor`(int32) of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Input ids post-processed from the retrieved documents and the question encoder input_ids by the retriever. context_attention_mask (`tf.Tensor` (int32) of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the retriever. question_encoder_last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden states at the output of the last layer of the question encoder pooled output of the model. question_enc_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings and one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden states of the question encoder at the output of each layer plus the initial embedding outputs. question_enc_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the question encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. generator_enc_last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the generator encoder of the model. generator_enc_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings and one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden states of the generator encoder at the output of each layer plus the initial embedding outputs. generator_enc_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the generator encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. generator_dec_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings and one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden states of the generator decoder at the output of each layer plus the initial embedding outputs. generator_dec_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the generator decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: tf.Tensor | None = None logits: tf.Tensor = None past_key_values: List[tf.Tensor] | None = None doc_scores: tf.Tensor | None = None retrieved_doc_embeds: tf.Tensor | None = None retrieved_doc_ids: tf.Tensor | None = None context_input_ids: tf.Tensor | None = None context_attention_mask: tf.Tensor | None = None question_encoder_last_hidden_state: tf.Tensor | None = None question_enc_hidden_states: Tuple[tf.Tensor] | None = None question_enc_attentions: Tuple[tf.Tensor] | None = None generator_enc_last_hidden_state: tf.Tensor | None = None generator_enc_hidden_states: Tuple[tf.Tensor] | None = None generator_enc_attentions: Tuple[tf.Tensor] | None = None generator_dec_hidden_states: Tuple[tf.Tensor] | None = None generator_dec_attentions: Tuple[tf.Tensor] | None = None @dataclass class TFRetrievAugLMOutput(ModelOutput): """ Args: logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head. The score is possibly marginalized over all documents for each vocabulary token. past_key_values (`List[tf.Tensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): List of `tf.Tensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_heads, sequence_length, embed_size_per_head)`). Contains precomputed hidden-states (key and values in the attention blocks) of the decoder that can be used (see `past_key_values` input) to speed up sequential decoding. doc_scores (`tf.Tensor` of shape `(batch_size, config.n_docs)`): Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and `question_encoder_last_hidden_state`. retrieved_doc_embeds (`tf.Tensor` of shape `(batch_size, config.n_docs, hidden_size)`, *optional*, returned when *output_retrieved=True*): Embedded documents retrieved by the retriever. Is used with `question_encoder_last_hidden_state` to compute the `doc_scores`. retrieved_doc_ids (`tf.Tensor` of shape `(batch_size, config.n_docs)`, *optional*, returned when *output_retrieved=True*): The indexes of the embedded documents retrieved by the retriever. context_input_ids (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Input ids post-processed from the retrieved documents and the question encoder input_ids by the retriever. context_attention_mask (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the retriever. question_encoder_last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden states at the output of the last layer of the question encoder pooled output of the model. question_enc_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings and one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden states of the question encoder at the output of each layer plus the initial embedding outputs. question_enc_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the question encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. generator_enc_last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the generator encoder of the model. generator_enc_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings and one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden states of the generator encoder at the output of each layer plus the initial embedding outputs. generator_enc_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the generator encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. generator_dec_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings and one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden states of the generator decoder at the output of each layer plus the initial embedding outputs. generator_dec_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the generator decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. """ logits: tf.Tensor = None past_key_values: List[tf.Tensor] | None = None doc_scores: tf.Tensor | None = None retrieved_doc_embeds: tf.Tensor | None = None retrieved_doc_ids: tf.Tensor | None = None context_input_ids: tf.Tensor | None = None context_attention_mask: tf.Tensor | None = None question_encoder_last_hidden_state: tf.Tensor | None = None question_enc_hidden_states: Tuple[tf.Tensor] | None = None question_enc_attentions: Tuple[tf.Tensor] | None = None generator_enc_last_hidden_state: tf.Tensor | None = None generator_enc_hidden_states: Tuple[tf.Tensor] | None = None generator_enc_attentions: Tuple[tf.Tensor] | None = None generator_dec_hidden_states: Tuple[tf.Tensor] | None = None generator_dec_attentions: Tuple[tf.Tensor] | None = None class TFRagPreTrainedModel(TFPreTrainedModel): r""" RAG models were released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandra Piktus et al. RAG is a retriever augmented model and encapsulate three components: a question encoder, a dataset retriever and a generator, the encoder and generator are trainable while the retriever is just an indexed dataset. """ config_class = RagConfig base_model_prefix = "rag" _keys_to_ignore_on_load_missing = [r"position_ids"] @classmethod def from_pretrained_question_encoder_generator( cls, question_encoder_pretrained_model_name_or_path: str = None, generator_pretrained_model_name_or_path: str = None, retriever: RagRetriever = None, *model_args, **kwargs, ) -> TFPreTrainedModel: r""" Instantiates an question encoder and a generator from one or two base classes of the library from pretrained model checkpoints. Params: question_encoder_pretrained_model_name_or_path (`str`, *optional*): Information necessary to initiate the question encoder. Can be either: - A string with the *shortcut name* of a pretrained model to load from cache or download, e.g., `bert-base-uncased`. - A string with the *identifier name* of a pretrained model that was user-uploaded to our S3, e.g., `dbmdz/bert-base-german-cased`. - A path to a *directory* containing model weights saved using [`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - A path or url to a *pytorch index checkpoint file* (e.g, `./pt_model/`). In this case, `question_encoder_from_pt` should be set to `True`. generator_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`): Information necessary to initiate the generator. Can be either: - A string with the *shortcut name* of a pretrained model to load from cache or download, e.g., `t5-small`. - A string with the *identifier name* of a pretrained model that was user-uploaded to our S3, e.g., `facebook/bart-base`. - A path to a *directory* containing model weights saved using [`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - A path or url to a *pytorch checkpoint file* (e.g, `./pt_model/`). In this case, `generator_from_pt` should be set to `True`. model_args (remaining positional arguments, *optional*): All remaining positional arguments will be passed to the underlying model's `__init__` method. retriever ([`RagRetriever`], *optional*): The retriever to use. kwargs (remaining dictionary of keyword arguments, *optional*): Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., `output_attentions=True`). - To update the question_encoder configuration, use the prefix *question_encoder_* for each configuration parameter. - To update the generator configuration, use the prefix *generator_* for each configuration parameter. - To update the parent model configuration, do not use a prefix for each configuration parameter. Behaves differently depending on whether a `config` is provided or automatically loaded. Example: ```python >>> from transformers import RagRetriever, TFRagModel >>> # initialize a RAG from two pretrained models. >>> model = TFRagModel.from_pretrained_question_encoder_generator( ... "facebook/dpr-question_encoder-single-nq-base", "t5-small" ... ) >>> # alternatively, initialize from pytorch pretrained models can also be done >>> model = TFRagModel.from_pretrained_question_encoder_generator( ... "facebook/dpr-question_encoder-single-nq-base", ... "facebook/bart-base", ... generator_from_pt=True, ... question_encoder_from_pt=True, ... ) >>> # saving model after fine-tuning >>> model.save_pretrained("./rag") >>> # load retriever >>> retriever = RagRetriever.from_pretrained( ... "facebook/rag-token-base", index_name="exact", use_dummy_dataset=True ... ) >>> # load fine-tuned model with retriever >>> model = TFRagModel.from_pretrained("./rag", retriever=retriever) ```""" kwargs_question_encoder = { argument[len("question_encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("question_encoder_") } kwargs_generator = { argument[len("generator_") :]: value for argument, value in kwargs.items() if argument.startswith("generator_") } # remove question_encoder, generator kwargs from kwargs for key in kwargs_question_encoder.keys(): del kwargs["question_encoder_" + key] for key in kwargs_generator.keys(): del kwargs["generator_" + key] # Load and initialize the question_encoder and generator # The distinction between question_encoder and generator at the model level is made # by the value of the flag `is_generator` that we need to set correctly. question_encoder = kwargs_question_encoder.pop("model", None) if question_encoder is None: assert question_encoder_pretrained_model_name_or_path is not None, ( "If `model` is not defined as an argument, a `question_encoder_pretrained_model_name_or_path` has to" " be defined" ) from ..auto.modeling_tf_auto import TFAutoModel if "config" not in kwargs_question_encoder: from ..auto.configuration_auto import AutoConfig question_encoder_config = AutoConfig.from_pretrained(question_encoder_pretrained_model_name_or_path) kwargs_question_encoder["config"] = question_encoder_config question_encoder = TFAutoModel.from_pretrained( question_encoder_pretrained_model_name_or_path, name="question_encoder", load_weight_prefix=cls.load_weight_prefix, *model_args, **kwargs_question_encoder, ) generator = kwargs_generator.pop("generator", None) if generator is None: assert generator_pretrained_model_name_or_path is not None, ( "If `generator_model` is not defined as an argument, a `generator_pretrained_model_name_or_path` has" " to be defined" ) from ..auto.modeling_tf_auto import TFAutoModelForSeq2SeqLM if "config" not in kwargs_generator: from ..auto.configuration_auto import AutoConfig generator_config = AutoConfig.from_pretrained(generator_pretrained_model_name_or_path) kwargs_generator["config"] = generator_config generator = TFAutoModelForSeq2SeqLM.from_pretrained( generator_pretrained_model_name_or_path, name="generator", load_weight_prefix=cls.load_weight_prefix, **kwargs_generator, ) # instantiate config with corresponding kwargs config = kwargs.get("config", None) if config is None: config = RagConfig.from_question_encoder_generator_configs( question_encoder.config, generator.config, **kwargs ) return cls(question_encoder=question_encoder, generator=generator, config=config, retriever=retriever) RAG_START_DOCSTRING = r""" RAG is a sequence-to-sequence model which encapsulates two core components: a question encoder and a generator. During a forward pass, we encode the input with the question encoder and pass it to the retriever to extract relevant context documents. The documents are then prepended to the input. Such contextualized inputs is passed to the generator. The question encoder can be any *autoencoding* model, preferably [`TFDPRQuestionEncoder`], and the generator can be any *seq2seq* model, preferably [`TFBartForConditionalGeneration`]. The model can be initialized with a [`RagRetriever`] for end-to-end generation or used in combination with the outputs of a retriever in multiple steps---see examples for more details. The model is compatible any *autoencoding* model as the `question_encoder` and any *seq2seq* model with language model head as the `generator`. It has been tested with [`TFDPRQuestionEncoder`] as the `question_encoder` and [`TFBartForConditionalGeneration`] as the `generator`. This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a Tensorflow [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. The model is in a developing state as it is now fully supports in eager-mode only, and may not be exported in SavedModel format. Args: config ([`RagConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. question_encoder ([`TFPreTrainedModel`]): An encoder model compatible with the faiss index encapsulated by the `retriever`. generator ([`TFPreTrainedModel`]): A seq2seq model used as the generator in the RAG architecture. retriever ([`RagRetriever`]): A retriever class encapsulating a faiss index queried to obtain context documents for current inputs. """ RAG_FORWARD_INPUTS_DOCSTRING = r""" Args: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. [`RagConfig`], used to initialize the model, specifies which generator to use, it also specifies a compatible generator tokenizer. Use that tokenizer class to obtain the indices. attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_outputs (`tuple(tuple(tf.Tensor)`, *optional*) Tuple consists of (`generator_enc_last_hidden_state`, *optional*: `generator_enc_hidden_states`, *optional*: `generator_enc_attentions`). `generator_enc_last_hidden_state` of shape `(batch_size, n_docs * sequence_length, hidden_size)` is a sequence of hidden-states at the output of the last layer of the generator's encoder. Used by the ([`TFRagModel`]) model during decoding. decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): Provide for generation tasks. `None` by default, construct as per instructions for the generator model you're using with your RAG instance. decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. past_key_values (`tuple(tuple(tf.Tensor))`): Tuple consists of two elements: `encoder_outputs` of the RAG model (see `encoder_outputs`) and `past_key_values` of the underlying generator. Can be used to speed up decoding. `past_key_values` are used in the ([`RagTokenForGeneration`]) model during decoding. doc_scores (`tf.Tensor` of shape `(batch_size, config.n_docs)`): Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and `question_encoder_last_hidden_state`. If the model has is not initialized with a `retriever` `doc_scores` has to be provided to the forward pass. `doc_scores` can be computed via `question_encoder_last_hidden_state` and `retrieved_doc_embeds`, see examples for more information. context_input_ids (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Input IDs post-processed from the retrieved documents and the question encoder `input_ids` by the retriever. If the model has is not initialized with a `retriever` ``context_input_ids` has to be provided to the forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`]. context_attention_mask (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the retriever. If the model has is not initialized with a `retriever` `context_attention_mask` has to be provided to the forward pass. `context_attention_mask` are returned by [`~RagRetriever.__call__`]. use_cache (`bool`, *optional*, defaults to `True`): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. output_retrieved(`bool`, *optional*): Whether or not to return the `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask`. See returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`TFRetrievAugLMOutput`] instead of a plain tuple. n_docs (`int`, *optional*, defaults to `config.n_docs``) Number of documents to retrieve and/or number of documents for which to generate an answer. """ @add_start_docstrings_to_model_forward(RAG_START_DOCSTRING) class TFRagModel(TFRagPreTrainedModel): load_weight_prefix = "tf_rag_model_1" def __init__( self, config: Optional[PretrainedConfig] = None, question_encoder: Optional[TFPreTrainedModel] = None, generator: Optional[TFPreTrainedModel] = None, retriever: Optional[RagRetriever] = None, load_weight_prefix: Optional[str] = None, **kwargs, ): assert config is not None or ( question_encoder is not None and generator is not None ), "Either a configuration or an question_encoder and a generator has to be provided." if config is None: config = RagConfig.from_question_encoder_generator_configs( question_encoder.config, generator.config, **kwargs ) else: assert isinstance(config, self.config_class), f"config: {config} has to be of type {self.config_class}" super().__init__(config, **kwargs) if question_encoder is None: from ..auto.modeling_tf_auto import TFAutoModel question_encoder = TFAutoModel.from_config(config.question_encoder, name="question_encoder") if generator is None: from ..auto.modeling_tf_auto import TFAutoModelForSeq2SeqLM load_weight_prefix = load_weight_prefix if load_weight_prefix is not None else self.load_weight_prefix generator = TFAutoModelForSeq2SeqLM.from_config( config.generator, name="generator", load_weight_prefix=load_weight_prefix + "/generator" ) self.retriever = retriever if self.retriever is not None: assert isinstance( retriever, RagRetriever ), f"`self.retriever` is of type {type(self.retriever)}, but should be of type `RagRetriever`" self.retriever = retriever self.question_encoder = question_encoder self.generator = generator def set_retriever(self, retriever: RagRetriever): self.retriever = retriever @unpack_inputs @add_start_docstrings_to_model_forward(RAG_FORWARD_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFRetrievAugLMOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, encoder_outputs: np.ndarray | tf.Tensor | None = None, decoder_input_ids: np.ndarray | tf.Tensor | None = None, decoder_attention_mask: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, doc_scores: np.ndarray | tf.Tensor | None = None, context_input_ids: np.ndarray | tf.Tensor | None = None, context_attention_mask: np.ndarray | tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_retrieved: Optional[bool] = None, n_docs: Optional[int] = None, return_dict: Optional[bool] = None, training: bool = False, **kwargs, ): r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, RagRetriever, TFRagModel >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("facebook/rag-token-base") >>> retriever = RagRetriever.from_pretrained( ... "facebook/rag-token-base", index_name="exact", use_dummy_dataset=True ... ) >>> # initialize with RagRetriever to do everything in one forward call >>> model = TFRagModel.from_pretrained("facebook/rag-token-base", retriever=retriever, from_pt=True) >>> input_dict = tokenizer.prepare_seq2seq_batch( ... "How many people live in Paris?", "In Paris, there are 10 million people.", return_tensors="tf" ... ) >>> input_ids = input_dict["input_ids"] >>> outputs = model(input_ids) ```""" assert ( "decoder_cached_states" not in kwargs ), "Please use past_key_values to cache intermediate outputs" # from modeling_tf_bart.py # aliasing to minimize code changing n_docs = n_docs if n_docs is not None else self.config.n_docs # whether retriever has to be used has_to_retrieve = ( self.retriever is not None and (context_input_ids is None or context_attention_mask is None or doc_scores is None) and encoder_outputs is None ) # encoder_outputs are pre-computed during RAG-token generation if encoder_outputs is None: if has_to_retrieve: question_enc_outputs = self.question_encoder( input_ids, attention_mask=attention_mask, return_dict=True, training=training ) # see https://github.com/huggingface/transformers/blob/main/src/transformers/models/dpr/modeling_tf_dpr.py#L91 question_encoder_last_hidden_state = question_enc_outputs[ 0 ] # hidden states of question encoder => pooler_output retriever_outputs = self.retriever( input_ids, question_encoder_last_hidden_state.numpy(), prefix=self.generator.config.prefix, n_docs=n_docs, return_tensors="tf", ) context_input_ids, context_attention_mask, retrieved_doc_embeds, retrieved_doc_ids = ( retriever_outputs["context_input_ids"], retriever_outputs["context_attention_mask"], retriever_outputs["retrieved_doc_embeds"], retriever_outputs["doc_ids"], ) context_input_ids = tf.cast(context_input_ids, tf.int32) context_attention_mask = tf.cast(context_attention_mask, tf.int32) retrieved_doc_embeds = tf.cast(retrieved_doc_embeds, tf.float32) retrieved_doc_ids = tf.cast(retrieved_doc_ids, tf.int32) # compute doc_scores doc_scores = tf.squeeze( tf.matmul( tf.expand_dims(question_encoder_last_hidden_state, axis=1), retrieved_doc_embeds, transpose_b=True, ), axis=1, ) else: assert context_input_ids is not None, ( "Make sure that `context_input_ids` are passed, if no `retriever` is set. Alternatively, you can" " set a retriever using the `set_retriever(...)` function." ) assert context_attention_mask is not None, ( "Make sure that `context_attention_mask` are passed, if no `retriever` is set. Alternatively, you" " can set a retriever using the `set_retriever(...)` function." ) assert doc_scores is not None, ( "Make sure that `doc_scores` are passed, if no `retriever` is set. Alternatively, you can set a" " retriever using the `set_retriever(...)` function." ) assert ( doc_scores is not None ), "Make sure that `doc_scores` are passed when passing `encoder_outputs` to the forward function." assert (doc_scores.shape[1] % n_docs) == 0, ( f" The first dimension of `context_input_ids` should be a multiple of `n_docs`={n_docs}, but is" f" {context_input_ids.shape[0]}." ) # Decoder input without context documents if decoder_input_ids is not None: decoder_input_ids = tf.repeat(decoder_input_ids, n_docs, axis=0) if decoder_attention_mask is not None: decoder_attention_mask = tf.repeat(decoder_attention_mask, n_docs, axis=0) gen_outputs = self.generator( context_input_ids, attention_mask=context_attention_mask, encoder_outputs=encoder_outputs, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, return_dict=True, training=training, ) if not has_to_retrieve: question_encoder_last_hidden_state = None question_enc_hidden_states = None question_enc_attentions = None retrieved_doc_embeds = None retrieved_doc_ids = None else: question_enc_hidden_states = question_enc_outputs.hidden_states question_enc_attentions = question_enc_outputs.attentions if not has_to_retrieve or not output_retrieved: # don't output retrieved docs context_input_ids = (None,) context_attention_mask = None retrieved_doc_embeds = None retrieved_doc_ids = None return TFRetrievAugLMOutput( logits=gen_outputs.logits, doc_scores=doc_scores, past_key_values=gen_outputs.past_key_values, context_input_ids=context_input_ids, context_attention_mask=context_attention_mask, retrieved_doc_embeds=retrieved_doc_embeds, retrieved_doc_ids=retrieved_doc_ids, question_encoder_last_hidden_state=question_encoder_last_hidden_state, question_enc_hidden_states=question_enc_hidden_states, question_enc_attentions=question_enc_attentions, generator_enc_last_hidden_state=gen_outputs.encoder_last_hidden_state, generator_enc_hidden_states=gen_outputs.encoder_hidden_states, generator_enc_attentions=gen_outputs.encoder_attentions, generator_dec_hidden_states=gen_outputs.decoder_hidden_states, generator_dec_attentions=gen_outputs.decoder_attentions, ) @add_start_docstrings_to_model_forward( """ A TF RAG-token model implementation. It performs RAG-token specific marginalization in the forward pass. """, RAG_START_DOCSTRING, ) class TFRagTokenForGeneration(TFRagPreTrainedModel, TFCausalLanguageModelingLoss): load_weight_prefix = "tf_rag_token_for_generation_1/rag" def __init__( self, config: Optional[PretrainedConfig] = None, question_encoder: Optional[TFPreTrainedModel] = None, generator: Optional[TFPreTrainedModel] = None, retriever: Optional[RagRetriever] = None, **kwargs, ): assert config is not None or ( question_encoder is not None and generator is not None ), "Either a configuration or an encoder and a generator has to be provided." if config is None: config = RagConfig.from_question_encoder_generator_configs( question_encoder.config, generator.config, **kwargs ) super().__init__(config) # instantiate model self.rag = TFRagModel( config=config, question_encoder=question_encoder, generator=generator, retriever=retriever, load_weight_prefix=self.load_weight_prefix, name="rag", ) def set_retriever(self, retriever: RagRetriever): self.rag.retriever = retriever # Adapted from https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_tf_bart.py def prepare_inputs_for_generation( self, decoder_input_ids, past_key_values=None, attention_mask=None, use_cache=None, encoder_outputs=None, doc_scores=None, n_docs=None, **kwargs, ): if past_key_values is not None: # if past is defined use only last decoder_input_ids decoder_input_ids = decoder_input_ids[:, -1:] return { "input_ids": None, "encoder_outputs": encoder_outputs, "doc_scores": doc_scores, "context_attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "past_key_values": past_key_values, "use_cache": use_cache, "do_marginalize": True, "n_docs": n_docs, } @property def retriever(self): return self.rag.retriever @property def generator(self): return self.rag.generator @property def question_encoder(self): return self.rag.question_encoder @staticmethod def _gather_beams(nested, beam_indices, batch_axis=0): """ RAG-specific `_gather_beams`: gathers the beam slices indexed by beam_indices into new beam array. If the nested tensor has a shape mismatch with the beam indices, then it means it is the cache. In that case, isolates and takes care of the extra dimension for ndocs. """ def gather_fn(tensor): is_rag_cache = tensor.shape[0] != beam_indices.shape[0] if is_rag_cache: n_docs = tensor.shape[0] // beam_indices.shape[0] batch_size = beam_indices.shape[0] # reshapes into (batch size, num beams, n_docs, ...), the cache format expected by RAG tensor = tf.reshape(tensor, (batch_size, -1, n_docs, *tensor.shape[2:])) gathered_tensor = tf.gather(params=tensor, indices=beam_indices, axis=1, batch_dims=1) if is_rag_cache: # reshapes back into the shape expected by beam search gathered_tensor = tf.reshape(gathered_tensor, (batch_size * n_docs, -1, *gathered_tensor.shape[3:])) return gathered_tensor return tf.nest.map_structure(gather_fn, nested) def marginalize(self, seq_logits, doc_scores, n_docs=None): n_docs = n_docs if n_docs is not None else self.config.n_docs # RAG-token marginalization seq_logprobs = tf.nn.log_softmax(seq_logits, axis=-1) seq_logprobs = tf.reshape(seq_logprobs, [seq_logits.shape[0] // n_docs, n_docs, -1, seq_logits.shape[-1]]) doc_logprobs = tf.nn.log_softmax(doc_scores, axis=1) doc_logprobs = tf.expand_dims(doc_logprobs, axis=-1) doc_logprobs = tf.expand_dims(doc_logprobs, axis=-1) # twice log_prob_sum = seq_logprobs + doc_logprobs return tf.reduce_logsumexp(log_prob_sum, axis=1) @unpack_inputs @add_start_docstrings_to_model_forward(RAG_FORWARD_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFRetrievAugLMMarginOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, decoder_input_ids: np.ndarray | tf.Tensor | None = None, decoder_attention_mask: np.ndarray | tf.Tensor | None = None, encoder_outputs: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, doc_scores: np.ndarray | tf.Tensor | None = None, context_input_ids: np.ndarray | tf.Tensor | None = None, context_attention_mask: np.ndarray | tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_retrieved: Optional[bool] = None, n_docs: Optional[int] = None, do_marginalize: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, reduce_loss: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, **kwargs, # needs kwargs for generation ): r""" do_marginalize (`bool`, *optional*): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the cross entropy classification loss according to Rag-Token model formulation See https://arxiv.org/pdf/2005.11401.pdf Section 2.1 for details about Rag-Token formulation. Indices should be in `[0, ..., config.vocab_size - 1]`. reduce_loss (`bool`, *optional*): Only relevant if `labels` is passed. If `True`, the NLL loss is reduced using the `tf.Tensor.sum` operation. kwargs (`Dict[str, any]`, optional, defaults to *{}*): Legacy dictionary, which is required so that model can use *generate()* function. Returns: Example: ```python >>> import tensorflow as tf >>> from transformers import AutoTokenizer, RagRetriever, TFRagTokenForGeneration >>> tokenizer = AutoTokenizer.from_pretrained("facebook/rag-token-nq") >>> retriever = RagRetriever.from_pretrained( ... "facebook/rag-token-nq", index_name="exact", use_dummy_dataset=True ... ) >>> # initialize with RagRetriever to do everything in one forward call >>> model = TFRagTokenForGeneration.from_pretrained("facebook/rag-token-nq", retriever=retriever, from_pt=True) >>> input_dict = tokenizer.prepare_seq2seq_batch( ... "How many people live in Paris?", "In Paris, there are 10 million people.", return_tensors="tf" ... ) >>> outputs = model(input_dict, output_retrieved=True) >>> # or use retriever separately >>> # 1. Encode >>> input_ids = input_dict["input_ids"] >>> question_hidden_states = model.question_encoder(input_ids)[0] >>> # 2. Retrieve >>> docs_dict = retriever(input_ids.numpy(), question_hidden_states.numpy(), return_tensors="tf") >>> doc_scores = tf.squeeze( ... tf.matmul( ... tf.expand_dims(question_hidden_states, axis=1), docs_dict["retrieved_doc_embeds"], transpose_b=True ... ), ... axis=1, ... ) >>> # 3. Forward to generator >>> outputs = model( ... inputs=None, ... context_input_ids=docs_dict["context_input_ids"], ... context_attention_mask=docs_dict["context_attention_mask"], ... doc_scores=doc_scores, ... decoder_input_ids=input_dict["labels"], ... ) >>> # or directly generate >>> generated = model.generate( ... context_input_ids=docs_dict["context_input_ids"], ... context_attention_mask=docs_dict["context_attention_mask"], ... doc_scores=doc_scores, ... ) >>> generated_string = tokenizer.batch_decode(generated, skip_special_tokens=True) ```""" assert ( "decoder_cached_states" not in kwargs ), "Please use past_key_values to cache intermediate outputs" # from modeling_tf_bart.py do_marginalize = do_marginalize if do_marginalize else self.config.do_marginalize reduce_loss = reduce_loss if reduce_loss else self.config.reduce_loss if labels is not None: if decoder_input_ids is None: decoder_input_ids = labels use_cache = False outputs = self.rag( input_ids, attention_mask=attention_mask, encoder_outputs=encoder_outputs, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, context_input_ids=context_input_ids, context_attention_mask=context_attention_mask, doc_scores=doc_scores, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, output_retrieved=output_retrieved, n_docs=n_docs, training=training, ) loss = None logits = outputs.logits if labels is not None: assert decoder_input_ids is not None loss = self.get_nll( outputs.logits, outputs.doc_scores, labels, reduce_loss=reduce_loss, epsilon=self.config.label_smoothing, n_docs=n_docs, ) if do_marginalize: logits = self.marginalize(logits, outputs.doc_scores, n_docs) return TFRetrievAugLMMarginOutput( loss=loss, logits=logits, past_key_values=outputs.past_key_values, doc_scores=outputs.doc_scores, context_input_ids=outputs.context_input_ids, context_attention_mask=outputs.context_attention_mask, retrieved_doc_embeds=outputs.retrieved_doc_embeds, retrieved_doc_ids=outputs.retrieved_doc_ids, question_encoder_last_hidden_state=outputs.question_encoder_last_hidden_state, question_enc_hidden_states=outputs.question_enc_hidden_states, question_enc_attentions=outputs.question_enc_attentions, generator_enc_last_hidden_state=outputs.generator_enc_last_hidden_state, generator_enc_hidden_states=outputs.generator_enc_hidden_states, generator_enc_attentions=outputs.generator_enc_attentions, generator_dec_hidden_states=outputs.generator_dec_hidden_states, generator_dec_attentions=outputs.generator_dec_attentions, ) def generate( self, input_ids: TFModelInputType | None = None, attention_mask: tf.Tensor | None = None, context_input_ids=None, context_attention_mask=None, doc_scores=None, n_docs=None, generation_config=None, logits_processor=TFLogitsProcessorList(), **kwargs, ): """ Implements TFRAG token decoding. Args: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): The sequence used as a prompt for the generation. If `input_ids` is not passed, then `context_input_ids` has to be provided. attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) context_input_ids (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Input IDs post-processed from the retrieved documents and the question encoder `input_ids` by the retriever. If the model has is not initialized with a `retriever`, `context_input_ids` has to be provided to the forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`]. context_attention_mask (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the retriever. If the model has is not initialized with a `retriever`, `context_input_ids` has to be provided to the forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`]. doc_scores (`tf.Tensor` of shape `(batch_size, config.n_docs)`): Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and `question_encoder_last_hidden_state`. If the model has is not initialized with a `retriever`, `context_input_ids` has to be provided to the forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`]. n_docs (`int`, *optional*, defaults to `config.n_docs`) Number of documents to retrieve and/or number of documents for which to generate an answer. generation_config (`~generation.GenerationConfig`, *optional*): The generation configuration to be used as base parametrization for the generation call. `**kwargs` passed to generate matching the attributes of `generation_config` will override them. If `generation_config` is not provided, the default will be used, which had the following loading priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s default values, whose documentation should be checked to parameterize generation. logits_processor (`TFLogitsProcessorList`, *optional*): Custom logits processors that complement the default logits processors built from arguments and a model's config. If a logit processor is passed that is already created with the arguments or a model's config an error is thrown. kwargs (`Dict[str, Any]`, *optional*): Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be forwarded to the `forward` function of the model. Return: `tf.Tensor` of shape `(batch_size * num_return_sequences, sequence_length)`: The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early due to the `eos_token_id`. """ # Handle `generation_config` and kwargs that might update it if generation_config is None: generation_config = self.generation_config generation_config = copy.deepcopy(generation_config) model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs # set default parameters n_docs = n_docs if n_docs is not None else self.config.n_docs # retrieve docs if self.retriever is not None and context_input_ids is None: question_hidden_states = self.question_encoder(input_ids, attention_mask=attention_mask)[0] out = self.retriever( input_ids, question_hidden_states.numpy().astype(np.float32), prefix=self.generator.config.prefix, n_docs=n_docs, return_tensors="tf", ) context_input_ids, context_attention_mask, retrieved_doc_embeds = ( out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], ) context_input_ids = tf.cast(context_input_ids, tf.int32) context_attention_mask = tf.cast(context_attention_mask, tf.int32) retrieved_doc_embeds = tf.cast(retrieved_doc_embeds, tf.float32) # compute doc_scores doc_scores = tf.matmul( tf.expand_dims(question_hidden_states, axis=1), retrieved_doc_embeds, transpose_b=True ) doc_scores = tf.squeeze(doc_scores, axis=1) assert (context_input_ids.shape[0] % n_docs) == 0, ( f" The first dimension of `context_input_ids` should be a multiple of `n_docs`={n_docs}, but is" f" {context_input_ids.shape[0]}." ) batch_size = context_input_ids.shape[0] // n_docs encoder = self.rag.generator.get_encoder() encoder_outputs = encoder( input_ids=context_input_ids, attention_mask=context_attention_mask, output_attentions=generation_config.output_attentions, output_hidden_states=generation_config.output_hidden_states, return_dict=True, ) decoder_input_ids = tf.fill( (batch_size * generation_config.num_beams, 1), tf.cast(generation_config.decoder_start_token_id, tf.int32), ) last_hidden_state = encoder_outputs["last_hidden_state"] def extend_enc_output(tensor, num_beams=None): """ Broadcast tensor with `num_beams` replica, with correct order Input: tensor of shape (batch_size*n_docs , d) Output: tensor of shape (batch_size*num_beams*n_docs , d) """ # expand batch_size & num_beam dimensions d_shape_list = tensor.shape[1:] # split n_docs dimensions new_shape = (batch_size, 1, n_docs) + d_shape_list tensor = tf.reshape(tensor, new_shape) # repeat same last hidden states over `num_beams` dimension new_shape = (batch_size, num_beams, n_docs) + d_shape_list tensor = tf.broadcast_to(tensor, new_shape) # merge `batch_size`, `num_beams`, `num_docs` dims again new_shape = (batch_size * num_beams * n_docs,) + d_shape_list return tf.reshape(tensor, new_shape) # correctly extend last_hidden_state and attention mask context_attention_mask = extend_enc_output(context_attention_mask, num_beams=generation_config.num_beams) encoder_outputs["last_hidden_state"] = extend_enc_output( last_hidden_state, num_beams=generation_config.num_beams ) doc_scores = tf.repeat(doc_scores, generation_config.num_beams, axis=0) # define start_len & additional parameters model_kwargs["doc_scores"] = doc_scores model_kwargs["encoder_outputs"] = encoder_outputs model_kwargs["attention_mask"] = context_attention_mask model_kwargs["n_docs"] = n_docs pre_processor = self._get_logits_processor( generation_config=generation_config, input_ids_seq_length=tf.shape(decoder_input_ids)[-1], logits_processor=logits_processor, ) if generation_config.num_beams == 1: return self.greedy_search( input_ids=decoder_input_ids, max_length=generation_config.max_length, pad_token_id=generation_config.pad_token_id, eos_token_id=generation_config.eos_token_id, logits_processor=pre_processor, output_attentions=generation_config.output_attentions, output_hidden_states=generation_config.output_hidden_states, output_scores=generation_config.output_scores, return_dict_in_generate=generation_config.return_dict_in_generate, **model_kwargs, ) elif generation_config.num_beams > 1: if generation_config.num_beams < generation_config.num_return_sequences: raise ValueError( "Beam search decoding cannot return more sequences than it has beams. Please set num_beams >=" f" num_return_sequences, got {generation_config.num_beams} and" f" {generation_config.num_return_sequences} (respectivelly)" ) def unflatten_beam_dim(tensor): """Unflattens the first, flat batch*beam dimension of a non-scalar array.""" shape = shape_list(tensor) return tf.reshape(tensor, [-1, generation_config.num_beams] + shape[1:]) decoder_input_ids = unflatten_beam_dim(decoder_input_ids) model_kwargs["attention_mask"] = unflatten_beam_dim(model_kwargs["attention_mask"]) model_kwargs["encoder_outputs"]["last_hidden_state"] = unflatten_beam_dim( model_kwargs["encoder_outputs"]["last_hidden_state"] ) return self.beam_search( input_ids=decoder_input_ids, max_length=generation_config.max_length, pad_token_id=generation_config.pad_token_id, eos_token_id=generation_config.eos_token_id, logits_processor=pre_processor, output_attentions=generation_config.output_attentions, output_hidden_states=generation_config.output_hidden_states, output_scores=generation_config.output_scores, return_dict_in_generate=generation_config.return_dict_in_generate, **model_kwargs, ) else: raise ValueError( f"`num_beams` has to be an integer strictly superior to 0 (≥ 1), but is {generation_config.num_beams}" ) def get_input_embeddings(self): return self.rag.generator.get_input_embeddings() def get_output_embeddings(self): return self.rag.generator.get_output_embeddings() # Adapted from tf_t5's & tf_bart's _shift_right def shift_tokens_right(self, input_ids, start_token_id=None): """Shift input ids one token to the right, and pad with start_token_id""" if start_token_id is None: start_token_id = self.generator.config.decoder_start_token_id assert start_token_id is not None, ( "self.generator.config.decoder_start_token_id has to be defined. In Rag we commonly use Bart as" " generator, see Bart docs for more information" ) pad_token_id = self.generator.config.pad_token_id assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined." start_tokens = tf.fill((shape_list(input_ids)[0], 1), tf.cast(start_token_id, input_ids.dtype)) shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1) # replace possible -100 values in labels by `pad_token_id` shifted_input_ids = tf.where( shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), tf.cast(pad_token_id, input_ids.dtype)), shifted_input_ids, ) # "Verify that `labels` has only positive values and -100" assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.cast(0, shifted_input_ids.dtype)) # Make sure the assertion op is called by wrapping the result in an identity no-op with tf.control_dependencies([assert_gte0]): shifted_input_ids = tf.identity(shifted_input_ids) return shifted_input_ids # nll stands for 'negative log likelihood' def get_nll(self, seq_logits, doc_scores, target, reduce_loss=False, epsilon=0.0, n_docs=None): n_docs = n_docs if n_docs is not None else self.config.n_docs # shift tokens left (from original Pytorch's version) target = tf.concat( [target[:, 1:], tf.fill([target.shape[0], 1], tf.cast(self.config.generator.pad_token_id, target.dtype))], axis=1, ) rag_logprobs = self.marginalize(seq_logits, doc_scores, n_docs) loss = self.hf_compute_loss(target, rag_logprobs, from_logits=True, reduce_loss=reduce_loss) return loss # Adopted modeling_tf_bart + add smooth_loss to match with pytorch version def hf_compute_loss(self, labels, y_pred, smooth_epsilon=0.0, from_logits=True, reduce_loss=False): """CrossEntropyLoss that ignores pad tokens""" # Matt: As written, this loss is not XLA-compatible, but it's doing some very weird things # and I don't feel comfortable converting it. loss_fn = tf.keras.losses.SparseCategoricalCrossentropy( from_logits=True, reduction=tf.keras.losses.Reduction.SUM, ) if from_logits is False: # convert to logits eps = 1e-9 y_pred = tf.clip_by_value(y_pred, clip_value_min=eps, clip_value_max=1 - eps) y_pred = tf.math.log(y_pred) logits = y_pred melted_labels = tf.reshape(labels, (-1,)) active_loss = tf.not_equal(melted_labels, self.config.generator.pad_token_id) reduced_logits = tf.boolean_mask(tf.reshape(logits, (-1, logits.shape[2])), active_loss) labels = tf.boolean_mask(melted_labels, active_loss) nll_loss = loss_fn(labels, reduced_logits) smooth_loss = -tf.reduce_sum(reduced_logits, axis=-1) smooth_loss = tf.reduce_sum(smooth_loss) # sum and squeeze like torch eps_i = smooth_epsilon / reduced_logits.shape[-1] loss = (1.0 - smooth_epsilon) * nll_loss + eps_i * smooth_loss return loss @add_start_docstrings_to_model_forward( """ A TF RAG-sequence model implementation. It performs RAG-sequence specific marginalization in the forward pass. """, RAG_START_DOCSTRING, ) class TFRagSequenceForGeneration(TFRagPreTrainedModel, TFCausalLanguageModelingLoss): load_weight_prefix = "tf_rag_sequence_for_generation_1/rag" def __init__( self, config: Optional[PretrainedConfig] = None, question_encoder: Optional[TFPreTrainedModel] = None, generator: Optional[TFPreTrainedModel] = None, retriever: Optional[RagRetriever] = None, **kwargs, ): assert config is not None or ( question_encoder is not None and generator is not None ), "Either a configuration or an encoder and a generator has to be provided." if config is None: config = RagConfig.from_question_encoder_generator_configs( question_encoder.config, generator.config, **kwargs ) super().__init__(config) # instantiate model self.rag = TFRagModel( config=config, question_encoder=question_encoder, generator=generator, retriever=retriever, load_weight_prefix=self.load_weight_prefix, name="rag", ) def set_retriever(self, retriever: RagRetriever): self.rag.retriever = retriever @property def retriever(self): return self.rag.retriever @property def generator(self): return self.rag.generator @property def question_encoder(self): return self.rag.question_encoder @unpack_inputs @add_start_docstrings_to_model_forward(RAG_FORWARD_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFRetrievAugLMMarginOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, decoder_input_ids: np.ndarray | tf.Tensor | None = None, decoder_attention_mask: np.ndarray | tf.Tensor | None = None, encoder_outputs: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, doc_scores: np.ndarray | tf.Tensor | None = None, context_input_ids: np.ndarray | tf.Tensor | None = None, context_attention_mask: np.ndarray | tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_retrieved: Optional[bool] = None, n_docs: Optional[int] = None, exclude_bos_score: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, reduce_loss: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, **kwargs, # needs kwargs for generation ) -> Union[Tuple[tf.Tensor], TFRetrievAugLMMarginOutput]: r""" exclude_bos_score (`bool`, *optional*): Only relevant if `labels` is passed. If `True`, the score of the BOS token is disregarded when computing the loss. labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the cross entropy classification loss according to Rag-Sequence model formulation See https://arxiv.org/pdf/2005.11401.pdf Section 2.1 for details about Rag-Sequence formulation. Indices should be in `[0, ..., config.vocab_size - 1]`. reduce_loss (`bool`, *optional*): Only relevant if `labels` is passed. If `True`, the NLL loss is reduced using the `tf.Tensor.sum` operation. kwargs (`Dict[str, any]`, optional, defaults to *{}*): Legacy dictionary, which is required so that model can use *generate()* function. Returns: Example: ```python >>> from transformers import AutoTokenizer, RagRetriever, TFRagSequenceForGeneration >>> tokenizer = AutoTokenizer.from_pretrained("facebook/rag-sequence-nq") >>> retriever = RagRetriever.from_pretrained( ... "facebook/rag-sequence-nq", index_name="exact", use_dummy_dataset=True ... ) >>> # initialize with RagRetriever to do everything in one forward call >>> model = TFRagSequenceForGeneration.from_pretrained( ... "facebook/rag-sequence-nq", retriever=retriever, from_pt=True ... ) >>> input_dict = tokenizer.prepare_seq2seq_batch( ... "How many people live in Paris?", "In Paris, there are 10 million people.", return_tensors="tf" ... ) >>> outputs = model(input_dict, output_retrieved=True) >>> # or use retriever separately >>> # 1. Encode >>> input_ids = input_dict["input_ids"] >>> question_hidden_states = model.question_encoder(input_ids)[0] >>> # 2. Retrieve >>> docs_dict = retriever(input_ids.numpy(), question_hidden_states.numpy(), return_tensors="tf") >>> doc_scores = tf.squeeze( ... tf.matmul( ... tf.expand_dims(question_hidden_states, axis=1), docs_dict["retrieved_doc_embeds"], transpose_b=True ... ), ... axis=1, ... ) >>> # 3. Forward to generator >>> outputs = model( ... inputs=None, ... context_input_ids=docs_dict["context_input_ids"], ... context_attention_mask=docs_dict["context_attention_mask"], ... doc_scores=doc_scores, ... decoder_input_ids=input_dict["labels"], ... ) >>> # or directly generate >>> generated = model.generate( ... context_input_ids=docs_dict["context_input_ids"], ... context_attention_mask=docs_dict["context_attention_mask"], ... doc_scores=doc_scores, ... ) >>> generated_string = tokenizer.batch_decode(generated, skip_special_tokens=True) ```""" assert ( "decoder_cached_states" not in kwargs ), "Please use past_key_values to cache intermediate outputs" # from modeling_tf_bart.py exclude_bos_score = exclude_bos_score if exclude_bos_score else self.config.exclude_bos_score reduce_loss = reduce_loss if reduce_loss else self.config.reduce_loss if labels is not None: if decoder_input_ids is None: decoder_input_ids = labels use_cache = False outputs = self.rag( input_ids, attention_mask=attention_mask, encoder_outputs=encoder_outputs, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, context_input_ids=context_input_ids, context_attention_mask=context_attention_mask, doc_scores=doc_scores, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, output_retrieved=output_retrieved, n_docs=n_docs, training=training, ) loss = None if labels is not None: loss = self.get_nll( outputs.logits, outputs.doc_scores, labels, reduce_loss=reduce_loss, epsilon=self.config.label_smoothing, n_docs=n_docs, ) return TFRetrievAugLMMarginOutput( loss=loss, logits=outputs.logits, doc_scores=outputs.doc_scores, past_key_values=outputs.past_key_values, context_input_ids=outputs.context_input_ids, context_attention_mask=outputs.context_attention_mask, retrieved_doc_embeds=outputs.retrieved_doc_embeds, retrieved_doc_ids=outputs.retrieved_doc_ids, question_encoder_last_hidden_state=outputs.question_encoder_last_hidden_state, question_enc_hidden_states=outputs.question_enc_hidden_states, question_enc_attentions=outputs.question_enc_attentions, generator_enc_last_hidden_state=outputs.generator_enc_last_hidden_state, generator_enc_hidden_states=outputs.generator_enc_hidden_states, generator_enc_attentions=outputs.generator_enc_attentions, generator_dec_hidden_states=outputs.generator_dec_hidden_states, generator_dec_attentions=outputs.generator_dec_attentions, ) def get_nll( self, seq_logits, doc_scores, target, reduce_loss=False, epsilon=0.0, exclude_bos_score=False, n_docs=None ): # shift tokens left target = tf.concat( [target[:, 1:], tf.fill([target.shape[0], 1], tf.cast(self.config.generator.pad_token_id, target.dtype))], axis=1, ) # bos_token_id is None for T5 bos_token_id = self.config.bos_token_id or self.config.generator.bos_token_id n_docs = n_docs if n_docs is not None else self.config.n_docs equal_bos_token_id_all = tf.reduce_all(tf.equal(target[:, 0], bos_token_id)) use_bos = bos_token_id is not None and equal_bos_token_id_all def _mask_pads(ll, smooth_obj): pad_mask = tf.equal(target, tf.cast(self.config.generator.pad_token_id, target.dtype)) if tf.reduce_any(pad_mask): ll = tf.where(pad_mask, 0.0, ll) smooth_obj = tf.where(pad_mask, 0.0, smooth_obj) return tf.squeeze(ll, axis=-1), tf.squeeze(smooth_obj, axis=-1) # seq_logits.shape = (batch*n_docs, tgt_len , vocabs) seq_logprobs = tf.nn.log_softmax(seq_logits, axis=-1) seq_logprobs = tf.reshape( seq_logprobs, (seq_logits.shape[0] // n_docs, n_docs, -1, seq_logits.shape[-1]) ) # (batch_size, n_docs, tgt_len, vocabs) doc_logprobs = tf.nn.log_softmax(doc_scores, axis=1) doc_logprobs = tf.expand_dims(doc_logprobs, axis=-1) doc_logprobs = tf.expand_dims(doc_logprobs, axis=-1) # done twice to get 4-D # RAG-sequence marginalization first_token_scores = seq_logprobs[:, :, :1, :] second_token_scores = seq_logprobs[:, :, 1:2, :] remainder = seq_logprobs[:, :, 2:, :] rag_logprobs = tf.concat([first_token_scores, second_token_scores + doc_logprobs, remainder], axis=2) # calculate loss target = tf.expand_dims(target, axis=1) # n_docs dimension target = tf.expand_dims(target, axis=-1) # logits dimension target = tf.repeat(target, n_docs, axis=1) assert len(target.shape) == len(rag_logprobs.shape) # last-axis gathering only - use 2D-reshape-trick for Torch's style nD gathering def torch_gather(param, id_tensor): # 2d-gather torch equivalent: https://stackoverflow.com/questions/52129909/tensorflow-equivalent-of-torch-gather def gather2d(target, id_tensor): idx = tf.stack([tf.range(tf.shape(id_tensor)[0], dtype=id_tensor.dtype), id_tensor[:, 0]], axis=-1) result = tf.gather_nd(target, idx) return tf.expand_dims(result, axis=-1) target = tf.reshape(param, (-1, param.shape[-1])) # reshape 2D target_shape = id_tensor.shape id_tensor = tf.reshape(id_tensor, (-1, 1)) # also 2D-index result = gather2d(target, id_tensor) return tf.reshape(result, target_shape) ll = torch_gather(rag_logprobs, id_tensor=target) smooth_obj = tf.reduce_sum(rag_logprobs, axis=-1, keepdims=True) # total sum of all (normalised) logits ll, smooth_obj = _mask_pads(ll, smooth_obj) # sum over tokens, exclude bos while scoring if exclude_bos_score and use_bos: ll = tf.reduce_sum(ll[:, :, 1:], axis=2) else: ll = tf.reduce_sum(ll, axis=2) smooth_obj = tf.reduce_sum(smooth_obj, axis=2) ll = tf.math.reduce_logsumexp(ll, axis=1) # logsumexp over docs smooth_obj = tf.math.reduce_logsumexp(smooth_obj, axis=1) nll_loss = -ll smooth_loss = -smooth_obj if reduce_loss: nll_loss = tf.reduce_sum(nll_loss) smooth_loss = tf.reduce_sum(smooth_loss) eps_i = epsilon / rag_logprobs.shape[-1] loss = (1.0 - epsilon) * nll_loss + eps_i * smooth_loss return loss def generate( self, input_ids: TFModelInputType | None = None, attention_mask: tf.Tensor | None = None, context_input_ids=None, context_attention_mask=None, doc_scores=None, do_deduplication=None, # defaults to True num_return_sequences=None, # defaults to 1 num_beams=None, # defaults to 1 n_docs=None, **model_kwargs, ): """ Implements RAG sequence "thorough" decoding. Read the [`~generation.GenerationMixin.generate`]` documentation for more information on how to set other generate input parameters Args: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): The sequence used as a prompt for the generation. If `input_ids` is not passed, then `context_input_ids` has to be provided. attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) context_input_ids (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Input IDs post-processed from the retrieved documents and the question encoder input_ids by the retriever. context_attention_mask (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the retriever. If the model has is not initialized with a `retriever` or `input_ids` is not given, `context_input_ids` and `context_attention_mask` have to be provided to the forward pass. They are returned by [`~RagRetriever.__call__`]. doc_scores (`tf.Tensor` of shape `(batch_size, config.n_docs)`): Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and `question_encoder_last_hidden_state`. If the model has is not initialized with a `retriever` or `input_ids` is not given, `doc_scores` has to be provided to the forward pass. `doc_scores` are returned by [`~RagRetriever.__call__`]. do_deduplication (`bool`, *optional*): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. num_return_sequences(`int`, *optional*, defaults to 1): The number of independently computed returned sequences for each element in the batch. Note that this is not the value we pass to the `generator`'s `[`~generation.GenerationMixin.generate`]` function, where we set `num_return_sequences` to `num_beams`. num_beams (`int`, *optional*, defaults to 1): Number of beams for beam search. 1 means no beam search. n_docs (`int`, *optional*, defaults to `config.n_docs`) Number of documents to retrieve and/or number of documents for which to generate an answer. kwargs (`Dict[str, Any]`, *optional*): Additional kwargs will be passed to [`~generation.GenerationMixin.generate`] Return: `tf.Tensor` of shape `(batch_size * num_return_sequences, sequence_length)`: The generated sequences. The second dimension (sequence length) is either equal to `max_length` or shorter if all batches finished early due to the `eos_token_id`. """ n_docs = n_docs if n_docs is not None else self.config.n_docs do_deduplication = do_deduplication if do_deduplication is not None else self.config.do_deduplication num_doc_return_sequences = ( num_return_sequences if num_return_sequences is not None else self.config.num_return_sequences ) num_beams = num_beams if num_beams is not None else self.config.num_beams assert ( input_ids is not None or context_input_ids is not None ), " At least one of input_ids or context_input_ids must be given" if self.retriever is not None and context_input_ids is None: question_hidden_states = self.question_encoder(input_ids, attention_mask=attention_mask)[0] context_input_ids = self.retriever( input_ids, question_hidden_states.numpy(), prefix=self.generator.config.prefix, n_docs=n_docs, return_tensors="tf", )["context_input_ids"] hypos = [] model_kwargs["num_beams"] = num_beams model_kwargs["num_return_sequences"] = num_beams # put here so that not confused with num_doc_return_sequences model_kwargs["attention_mask"] = None batch_size = input_ids.shape[0] if input_ids is not None else context_input_ids.shape[0] // n_docs for index in range(batch_size): # first, generate beams from documents: generator_input_ids = context_input_ids[index * n_docs : (index + 1) * n_docs] # (n_docs, max_len) output_sequences = self.generator.generate( generator_input_ids, **model_kwargs, ) # n_docs * n_beam, tgt_len if do_deduplication: # do_deduplication -- for TF, work on Eager mode only! output_sequences = tf.stack(list({str(k.numpy().tolist()): k for k in output_sequences}.values())) num_candidates = output_sequences.shape[ 0 ] # after deduplication, this number can be less than n_docs*n_beam # then, run model forwards to get nll scores: if input_ids is not None: new_input_ids = tf.tile(input_ids[index : index + 1], (num_candidates, 1)) outputs = self(new_input_ids, labels=output_sequences, exclude_bos_score=True) else: # input_ids is None, need context_input_ids/mask and doc_scores assert context_attention_mask is not None, ( "Make sure that `context_attention_mask` are passed, if no `input_ids` is set. Alternatively, you" " can set a retriever using the `set_retriever(...)` function." ) assert doc_scores is not None, ( "Make sure that `doc_scores` are passed, if no `input_ids` is set. Alternatively, you can set a" " retriever using the `set_retriever(...)` function." ) individual_input_ids = tf.tile( generator_input_ids, (num_candidates, 1) ) # (num_candidates*n_docs, max_len) individual_attention_mask = context_attention_mask[index * n_docs : (index + 1) * n_docs] individual_attention_mask = tf.tile(individual_attention_mask, (num_candidates, 1)) individual_doc_scores = doc_scores[index : (index + 1), :] # doc_scores.shape = [batch, n_docs] individual_doc_scores = tf.tile(individual_doc_scores, (num_candidates, 1)) # [num_candidates, n_docs] outputs = self( input_ids=None, context_input_ids=individual_input_ids, context_attention_mask=individual_attention_mask, doc_scores=individual_doc_scores, labels=output_sequences, exclude_bos_score=True, ) top_cand_inds = tf.math.top_k((-outputs["loss"]), k=num_doc_return_sequences)[1] # add hypothesis hypos.append(tf.gather(output_sequences, top_cand_inds)) return self._cat_and_pad(hypos, pad_token_id=self.config.generator.pad_token_id) @staticmethod def _cat_and_pad(tensors, pad_token_id): # used by generate(): tensors is a (batched) list of (candidates, len); len is varied across batch # Initialize padded tensor with shape ( all_candidates , max_candidate_length ), # where all_candidates counted from all inputs new_shape = sum([t.shape[0] for t in tensors]), max([t.shape[1] for t in tensors]) output = tf.fill(new_shape, pad_token_id) # Normal tensor doesn't support slice assignment, so we need tf.Variable output = tf.Variable(output) # Assign, and then convert back to tensor ind = 0 for t in tensors: output[ind : ind + t.shape[0], : t.shape[1]].assign(t) ind += t.shape[0] output = tf.convert_to_tensor(output) return tf.cast(output, tensors[0][0][0].dtype)
transformers-main
src/transformers/models/rag/modeling_tf_rag.py
# coding=utf-8 # Copyright 2020, The RAG Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """RAG Retriever model implementation.""" import os import pickle import time from typing import Iterable, List, Optional, Tuple import numpy as np from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import cached_file, is_datasets_available, is_faiss_available, logging, requires_backends from .configuration_rag import RagConfig from .tokenization_rag import RagTokenizer if is_datasets_available(): from datasets import Dataset, load_dataset, load_from_disk if is_faiss_available(): import faiss logger = logging.get_logger(__name__) LEGACY_INDEX_PATH = "https://storage.googleapis.com/huggingface-nlp/datasets/wiki_dpr/" class Index: """ A base class for the Indices encapsulated by the [`RagRetriever`]. """ def get_doc_dicts(self, doc_ids: np.ndarray) -> List[dict]: """ Returns a list of dictionaries, containing titles and text of the retrieved documents. Args: doc_ids (`np.ndarray` of shape `(batch_size, n_docs)`): A tensor of document indices. """ raise NotImplementedError def get_top_docs(self, question_hidden_states: np.ndarray, n_docs=5) -> Tuple[np.ndarray, np.ndarray]: """ For each query in the batch, retrieves `n_docs` documents. Args: question_hidden_states (`np.ndarray` of shape `(batch_size, vector_size)`): An array of query vectors. n_docs (`int`): The number of docs retrieved per query. Returns: `np.ndarray` of shape `(batch_size, n_docs)`: A tensor of indices of retrieved documents. `np.ndarray` of shape `(batch_size, vector_size)`: A tensor of vector representations of retrieved documents. """ raise NotImplementedError def is_initialized(self): """ Returns `True` if index is already initialized. """ raise NotImplementedError def init_index(self): """ A function responsible for loading the index into memory. Should be called only once per training run of a RAG model. E.g. if the model is trained on multiple GPUs in a distributed setup, only one of the workers will load the index. """ raise NotImplementedError class LegacyIndex(Index): """ An index which can be deserialized from the files built using https://github.com/facebookresearch/DPR. We use default faiss index parameters as specified in that repository. Args: vector_size (`int`): The dimension of indexed vectors. index_path (`str`): A path to a *directory* containing index files compatible with [`~models.rag.retrieval_rag.LegacyIndex`] """ INDEX_FILENAME = "hf_bert_base.hnswSQ8_correct_phi_128.c_index" PASSAGE_FILENAME = "psgs_w100.tsv.pkl" def __init__(self, vector_size, index_path): self.index_id_to_db_id = [] self.index_path = index_path self.passages = self._load_passages() self.vector_size = vector_size self.index = None self._index_initialized = False def _resolve_path(self, index_path, filename): is_local = os.path.isdir(index_path) try: # Load from URL or cache if already cached resolved_archive_file = cached_file(index_path, filename) except EnvironmentError: msg = ( f"Can't load '{filename}'. Make sure that:\n\n" f"- '{index_path}' is a correct remote path to a directory containing a file named {filename}\n\n" f"- or '{index_path}' is the correct path to a directory containing a file named {filename}.\n\n" ) raise EnvironmentError(msg) if is_local: logger.info(f"loading file {resolved_archive_file}") else: logger.info(f"loading file {filename} from cache at {resolved_archive_file}") return resolved_archive_file def _load_passages(self): logger.info(f"Loading passages from {self.index_path}") passages_path = self._resolve_path(self.index_path, self.PASSAGE_FILENAME) with open(passages_path, "rb") as passages_file: passages = pickle.load(passages_file) return passages def _deserialize_index(self): logger.info(f"Loading index from {self.index_path}") resolved_index_path = self._resolve_path(self.index_path, self.INDEX_FILENAME + ".index.dpr") self.index = faiss.read_index(resolved_index_path) resolved_meta_path = self._resolve_path(self.index_path, self.INDEX_FILENAME + ".index_meta.dpr") with open(resolved_meta_path, "rb") as metadata_file: self.index_id_to_db_id = pickle.load(metadata_file) assert ( len(self.index_id_to_db_id) == self.index.ntotal ), "Deserialized index_id_to_db_id should match faiss index size" def is_initialized(self): return self._index_initialized def init_index(self): index = faiss.IndexHNSWFlat(self.vector_size + 1, 512) index.hnsw.efSearch = 128 index.hnsw.efConstruction = 200 self.index = index self._deserialize_index() self._index_initialized = True def get_doc_dicts(self, doc_ids: np.array): doc_list = [] for doc_ids_i in doc_ids: ids = [str(int(doc_id)) for doc_id in doc_ids_i] docs = [self.passages[doc_id] for doc_id in ids] doc_list.append(docs) doc_dicts = [] for docs in doc_list: doc_dict = {} doc_dict["title"] = [doc[1] for doc in docs] doc_dict["text"] = [doc[0] for doc in docs] doc_dicts.append(doc_dict) return doc_dicts def get_top_docs(self, question_hidden_states: np.ndarray, n_docs=5) -> Tuple[np.ndarray, np.ndarray]: aux_dim = np.zeros(len(question_hidden_states), dtype="float32").reshape(-1, 1) query_nhsw_vectors = np.hstack((question_hidden_states, aux_dim)) _, docs_ids = self.index.search(query_nhsw_vectors, n_docs) vectors = [[self.index.reconstruct(int(doc_id))[:-1] for doc_id in doc_ids] for doc_ids in docs_ids] ids = [[int(self.index_id_to_db_id[doc_id]) for doc_id in doc_ids] for doc_ids in docs_ids] return np.array(ids), np.array(vectors) class HFIndexBase(Index): def __init__(self, vector_size, dataset, index_initialized=False): self.vector_size = vector_size self.dataset = dataset self._index_initialized = index_initialized self._check_dataset_format(with_index=index_initialized) dataset.set_format("numpy", columns=["embeddings"], output_all_columns=True, dtype="float32") def _check_dataset_format(self, with_index: bool): if not isinstance(self.dataset, Dataset): raise ValueError(f"Dataset should be a datasets.Dataset object, but got {type(self.dataset)}") if len({"title", "text", "embeddings"} - set(self.dataset.column_names)) > 0: raise ValueError( "Dataset should be a dataset with the following columns: " "title (str), text (str) and embeddings (arrays of dimension vector_size), " f"but got columns {self.dataset.column_names}" ) if with_index and "embeddings" not in self.dataset.list_indexes(): raise ValueError( "Missing faiss index in the dataset. Make sure you called `dataset.add_faiss_index` to compute it " "or `dataset.load_faiss_index` to load one from the disk." ) def init_index(self): raise NotImplementedError() def is_initialized(self): return self._index_initialized def get_doc_dicts(self, doc_ids: np.ndarray) -> List[dict]: return [self.dataset[doc_ids[i].tolist()] for i in range(doc_ids.shape[0])] def get_top_docs(self, question_hidden_states: np.ndarray, n_docs=5) -> Tuple[np.ndarray, np.ndarray]: _, ids = self.dataset.search_batch("embeddings", question_hidden_states, n_docs) docs = [self.dataset[[i for i in indices if i >= 0]] for indices in ids] vectors = [doc["embeddings"] for doc in docs] for i in range(len(vectors)): if len(vectors[i]) < n_docs: vectors[i] = np.vstack([vectors[i], np.zeros((n_docs - len(vectors[i]), self.vector_size))]) return np.array(ids), np.array(vectors) # shapes (batch_size, n_docs) and (batch_size, n_docs, d) class CanonicalHFIndex(HFIndexBase): """ A wrapper around an instance of [`~datasets.Datasets`]. If `index_path` is set to `None`, we load the pre-computed index available with the [`~datasets.arrow_dataset.Dataset`], otherwise, we load the index from the indicated path on disk. Args: vector_size (`int`): the dimension of the passages embeddings used by the index dataset_name (`str`, optional, defaults to `wiki_dpr`): A dataset identifier of the indexed dataset on HuggingFace AWS bucket (list all available datasets and ids with `datasets.list_datasets()`). dataset_split (`str`, optional, defaults to `train`) Which split of the `dataset` to load. index_name (`str`, optional, defaults to `train`) The index_name of the index associated with the `dataset`. The index loaded from `index_path` will be saved under this name. index_path (`str`, optional, defaults to `None`) The path to the serialized faiss index on disk. use_dummy_dataset (`bool`, optional, defaults to `False`): If True, use the dummy configuration of the dataset for tests. """ def __init__( self, vector_size: int, dataset_name: str = "wiki_dpr", dataset_split: str = "train", index_name: Optional[str] = None, index_path: Optional[str] = None, use_dummy_dataset=False, ): if int(index_path is None) + int(index_name is None) != 1: raise ValueError("Please provide `index_name` or `index_path`.") self.dataset_name = dataset_name self.dataset_split = dataset_split self.index_name = index_name self.index_path = index_path self.use_dummy_dataset = use_dummy_dataset logger.info(f"Loading passages from {self.dataset_name}") dataset = load_dataset( self.dataset_name, with_index=False, split=self.dataset_split, dummy=self.use_dummy_dataset ) super().__init__(vector_size, dataset, index_initialized=False) def init_index(self): if self.index_path is not None: logger.info(f"Loading index from {self.index_path}") self.dataset.load_faiss_index("embeddings", file=self.index_path) else: logger.info(f"Loading index from {self.dataset_name} with index name {self.index_name}") self.dataset = load_dataset( self.dataset_name, with_embeddings=True, with_index=True, split=self.dataset_split, index_name=self.index_name, dummy=self.use_dummy_dataset, ) self.dataset.set_format("numpy", columns=["embeddings"], output_all_columns=True) self._index_initialized = True class CustomHFIndex(HFIndexBase): """ A wrapper around an instance of [`~datasets.Datasets`]. The dataset and the index are both loaded from the indicated paths on disk. Args: vector_size (`int`): the dimension of the passages embeddings used by the index dataset_path (`str`): The path to the serialized dataset on disk. The dataset should have 3 columns: title (str), text (str) and embeddings (arrays of dimension vector_size) index_path (`str`) The path to the serialized faiss index on disk. """ def __init__(self, vector_size: int, dataset, index_path=None): super().__init__(vector_size, dataset, index_initialized=index_path is None) self.index_path = index_path @classmethod def load_from_disk(cls, vector_size, dataset_path, index_path): logger.info(f"Loading passages from {dataset_path}") if dataset_path is None or index_path is None: raise ValueError( "Please provide `dataset_path` and `index_path` after calling `dataset.save_to_disk(dataset_path)` " "and `dataset.get_index('embeddings').save(index_path)`." ) dataset = load_from_disk(dataset_path) return cls(vector_size=vector_size, dataset=dataset, index_path=index_path) def init_index(self): if not self.is_initialized(): logger.info(f"Loading index from {self.index_path}") self.dataset.load_faiss_index("embeddings", file=self.index_path) self._index_initialized = True class RagRetriever: """ Retriever used to get documents from vector queries. It retrieves the documents embeddings as well as the documents contents, and it formats them to be used with a RagModel. Args: config ([`RagConfig`]): The configuration of the RAG model this Retriever is used with. Contains parameters indicating which `Index` to build. You can load your own custom dataset with `config.index_name="custom"` or use a canonical one (default) from the datasets library with `config.index_name="wiki_dpr"` for example. question_encoder_tokenizer ([`PreTrainedTokenizer`]): The tokenizer that was used to tokenize the question. It is used to decode the question and then use the generator_tokenizer. generator_tokenizer ([`PreTrainedTokenizer`]): The tokenizer used for the generator part of the RagModel. index ([`~models.rag.retrieval_rag.Index`], optional, defaults to the one defined by the configuration): If specified, use this index instead of the one built using the configuration Examples: ```python >>> # To load the default "wiki_dpr" dataset with 21M passages from wikipedia (index name is 'compressed' or 'exact') >>> from transformers import RagRetriever >>> retriever = RagRetriever.from_pretrained( ... "facebook/dpr-ctx_encoder-single-nq-base", dataset="wiki_dpr", index_name="compressed" ... ) >>> # To load your own indexed dataset built with the datasets library. More info on how to build the indexed dataset in examples/rag/use_own_knowledge_dataset.py >>> from transformers import RagRetriever >>> dataset = ( ... ... ... ) # dataset must be a datasets.Datasets object with columns "title", "text" and "embeddings", and it must have a faiss index >>> retriever = RagRetriever.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base", indexed_dataset=dataset) >>> # To load your own indexed dataset built with the datasets library that was saved on disk. More info in examples/rag/use_own_knowledge_dataset.py >>> from transformers import RagRetriever >>> dataset_path = "path/to/my/dataset" # dataset saved via *dataset.save_to_disk(...)* >>> index_path = "path/to/my/index.faiss" # faiss index saved via *dataset.get_index("embeddings").save(...)* >>> retriever = RagRetriever.from_pretrained( ... "facebook/dpr-ctx_encoder-single-nq-base", ... index_name="custom", ... passages_path=dataset_path, ... index_path=index_path, ... ) >>> # To load the legacy index built originally for Rag's paper >>> from transformers import RagRetriever >>> retriever = RagRetriever.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base", index_name="legacy") ```""" def __init__(self, config, question_encoder_tokenizer, generator_tokenizer, index=None, init_retrieval=True): self._init_retrieval = init_retrieval requires_backends(self, ["datasets", "faiss"]) super().__init__() self.index = index or self._build_index(config) self.generator_tokenizer = generator_tokenizer self.question_encoder_tokenizer = question_encoder_tokenizer self.n_docs = config.n_docs self.batch_size = config.retrieval_batch_size self.config = config if self._init_retrieval: self.init_retrieval() self.ctx_encoder_tokenizer = None self.return_tokenized_docs = False @staticmethod def _build_index(config): if config.index_name == "legacy": return LegacyIndex( config.retrieval_vector_size, config.index_path or LEGACY_INDEX_PATH, ) elif config.index_name == "custom": return CustomHFIndex.load_from_disk( vector_size=config.retrieval_vector_size, dataset_path=config.passages_path, index_path=config.index_path, ) else: return CanonicalHFIndex( vector_size=config.retrieval_vector_size, dataset_name=config.dataset, dataset_split=config.dataset_split, index_name=config.index_name, index_path=config.index_path, use_dummy_dataset=config.use_dummy_dataset, ) @classmethod def from_pretrained(cls, retriever_name_or_path, indexed_dataset=None, **kwargs): requires_backends(cls, ["datasets", "faiss"]) config = kwargs.pop("config", None) or RagConfig.from_pretrained(retriever_name_or_path, **kwargs) rag_tokenizer = RagTokenizer.from_pretrained(retriever_name_or_path, config=config) question_encoder_tokenizer = rag_tokenizer.question_encoder generator_tokenizer = rag_tokenizer.generator if indexed_dataset is not None: config.index_name = "custom" index = CustomHFIndex(config.retrieval_vector_size, indexed_dataset) else: index = cls._build_index(config) return cls( config, question_encoder_tokenizer=question_encoder_tokenizer, generator_tokenizer=generator_tokenizer, index=index, ) def save_pretrained(self, save_directory): if isinstance(self.index, CustomHFIndex): if self.config.index_path is None: index_path = os.path.join(save_directory, "hf_dataset_index.faiss") self.index.dataset.get_index("embeddings").save(index_path) self.config.index_path = index_path if self.config.passages_path is None: passages_path = os.path.join(save_directory, "hf_dataset") # datasets don't support save_to_disk with indexes right now faiss_index = self.index.dataset._indexes.pop("embeddings") self.index.dataset.save_to_disk(passages_path) self.index.dataset._indexes["embeddings"] = faiss_index self.config.passages_path = passages_path self.config.save_pretrained(save_directory) rag_tokenizer = RagTokenizer( question_encoder=self.question_encoder_tokenizer, generator=self.generator_tokenizer, ) rag_tokenizer.save_pretrained(save_directory) def init_retrieval(self): """ Retriever initialization function. It loads the index into memory. """ logger.info("initializing retrieval") self.index.init_index() def postprocess_docs(self, docs, input_strings, prefix, n_docs, return_tensors=None): r""" Postprocessing retrieved `docs` and combining them with `input_strings`. Args: docs (`dict`): Retrieved documents. input_strings (`str`): Input strings decoded by `preprocess_query`. prefix (`str`): Prefix added at the beginning of each input, typically used with T5-based models. Return: `tuple(tensors)`: a tuple consisting of two elements: contextualized `input_ids` and a compatible `attention_mask`. """ def cat_input_and_doc(doc_title, doc_text, input_string, prefix): # TODO(Patrick): if we train more RAG models, I want to put the input first to take advantage of effortless truncation # TODO(piktus): better handling of truncation if doc_title.startswith('"'): doc_title = doc_title[1:] if doc_title.endswith('"'): doc_title = doc_title[:-1] if prefix is None: prefix = "" out = (prefix + doc_title + self.config.title_sep + doc_text + self.config.doc_sep + input_string).replace( " ", " " ) return out rag_input_strings = [ cat_input_and_doc( docs[i]["title"][j], docs[i]["text"][j], input_strings[i], prefix, ) for i in range(len(docs)) for j in range(n_docs) ] contextualized_inputs = self.generator_tokenizer.batch_encode_plus( rag_input_strings, max_length=self.config.max_combined_length, return_tensors=return_tensors, padding="max_length", truncation=True, ) return contextualized_inputs["input_ids"], contextualized_inputs["attention_mask"] def _chunk_tensor(self, t: Iterable, chunk_size: int) -> List[Iterable]: return [t[i : i + chunk_size] for i in range(0, len(t), chunk_size)] def _main_retrieve(self, question_hidden_states: np.ndarray, n_docs: int) -> Tuple[np.ndarray, np.ndarray]: question_hidden_states_batched = self._chunk_tensor(question_hidden_states, self.batch_size) ids_batched = [] vectors_batched = [] for question_hidden_states in question_hidden_states_batched: start_time = time.time() ids, vectors = self.index.get_top_docs(question_hidden_states, n_docs) logger.debug( f"index search time: {time.time() - start_time} sec, batch size {question_hidden_states.shape}" ) ids_batched.extend(ids) vectors_batched.extend(vectors) return ( np.array(ids_batched), np.array(vectors_batched), ) # shapes (batch_size, n_docs) and (batch_size, n_docs, d) def retrieve(self, question_hidden_states: np.ndarray, n_docs: int) -> Tuple[np.ndarray, List[dict]]: """ Retrieves documents for specified `question_hidden_states`. Args: question_hidden_states (`np.ndarray` of shape `(batch_size, vector_size)`): A batch of query vectors to retrieve with. n_docs (`int`): The number of docs retrieved per query. Return: `Tuple[np.ndarray, np.ndarray, List[dict]]`: A tuple with the following objects: - **retrieved_doc_embeds** (`np.ndarray` of shape `(batch_size, n_docs, dim)`) -- The retrieval embeddings of the retrieved docs per query. - **doc_ids** (`np.ndarray` of shape `(batch_size, n_docs)`) -- The ids of the documents in the index - **doc_dicts** (`List[dict]`): The `retrieved_doc_embeds` examples per query. """ doc_ids, retrieved_doc_embeds = self._main_retrieve(question_hidden_states, n_docs) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(doc_ids) def set_ctx_encoder_tokenizer(self, ctx_encoder_tokenizer: PreTrainedTokenizer): # used in end2end retriever training self.ctx_encoder_tokenizer = ctx_encoder_tokenizer self.return_tokenized_docs = True def __call__( self, question_input_ids: List[List[int]], question_hidden_states: np.ndarray, prefix=None, n_docs=None, return_tensors=None, ) -> BatchEncoding: """ Retrieves documents for specified `question_hidden_states`. Args: question_input_ids (`List[List[int]]`) batch of input ids question_hidden_states (`np.ndarray` of shape `(batch_size, vector_size)`: A batch of query vectors to retrieve with. prefix (`str`, *optional*): The prefix used by the generator's tokenizer. n_docs (`int`, *optional*): The number of docs retrieved per query. return_tensors (`str` or [`~utils.TensorType`], *optional*, defaults to "pt"): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. Returns: [`BatchEncoding`]: A [`BatchEncoding`] with the following fields: - **context_input_ids** -- List of token ids to be fed to a model. [What are input IDs?](../glossary#input-ids) - **context_attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names`). [What are attention masks?](../glossary#attention-mask) - **retrieved_doc_embeds** -- List of embeddings of the retrieved documents - **doc_ids** -- List of ids of the retrieved documents """ n_docs = n_docs if n_docs is not None else self.n_docs prefix = prefix if prefix is not None else self.config.generator.prefix retrieved_doc_embeds, doc_ids, docs = self.retrieve(question_hidden_states, n_docs) input_strings = self.question_encoder_tokenizer.batch_decode(question_input_ids, skip_special_tokens=True) context_input_ids, context_attention_mask = self.postprocess_docs( docs, input_strings, prefix, n_docs, return_tensors=return_tensors ) if self.return_tokenized_docs: retrieved_doc_text = [] retrieved_doc_title = [] for b_idx in range(len(docs)): for doc_idx in range(n_docs): retrieved_doc_text.append(docs[b_idx]["text"][doc_idx]) retrieved_doc_title.append(docs[b_idx]["title"][doc_idx]) tokenized_docs = self.ctx_encoder_tokenizer( retrieved_doc_title, retrieved_doc_text, truncation=True, padding="longest", return_tensors=return_tensors, ) return BatchEncoding( { "context_input_ids": context_input_ids, "context_attention_mask": context_attention_mask, "retrieved_doc_embeds": retrieved_doc_embeds, "doc_ids": doc_ids, "tokenized_doc_ids": tokenized_docs["input_ids"], "tokenized_doc_attention_mask": tokenized_docs["attention_mask"], }, tensor_type=return_tensors, ) else: return BatchEncoding( { "context_input_ids": context_input_ids, "context_attention_mask": context_attention_mask, "retrieved_doc_embeds": retrieved_doc_embeds, "doc_ids": doc_ids, }, tensor_type=return_tensors, )
transformers-main
src/transformers/models/rag/retrieval_rag.py
# coding=utf-8 # Copyright 2020, The RAG Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for RAG.""" import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig logger = logging.get_logger(__name__) class RagTokenizer: def __init__(self, question_encoder, generator): self.question_encoder = question_encoder self.generator = generator self.current_tokenizer = self.question_encoder def save_pretrained(self, save_directory): if os.path.isfile(save_directory): raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file") os.makedirs(save_directory, exist_ok=True) question_encoder_path = os.path.join(save_directory, "question_encoder_tokenizer") generator_path = os.path.join(save_directory, "generator_tokenizer") self.question_encoder.save_pretrained(question_encoder_path) self.generator.save_pretrained(generator_path) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer config = kwargs.pop("config", None) if config is None: config = RagConfig.from_pretrained(pretrained_model_name_or_path) question_encoder = AutoTokenizer.from_pretrained( pretrained_model_name_or_path, config=config.question_encoder, subfolder="question_encoder_tokenizer" ) generator = AutoTokenizer.from_pretrained( pretrained_model_name_or_path, config=config.generator, subfolder="generator_tokenizer" ) return cls(question_encoder=question_encoder, generator=generator) def __call__(self, *args, **kwargs): return self.current_tokenizer(*args, **kwargs) def batch_decode(self, *args, **kwargs): return self.generator.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): return self.generator.decode(*args, **kwargs) def _switch_to_input_mode(self): self.current_tokenizer = self.question_encoder def _switch_to_target_mode(self): self.current_tokenizer = self.generator def prepare_seq2seq_batch( self, src_texts: List[str], tgt_texts: Optional[List[str]] = None, max_length: Optional[int] = None, max_target_length: Optional[int] = None, padding: str = "longest", return_tensors: str = None, truncation: bool = True, **kwargs, ) -> BatchEncoding: warnings.warn( "`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the " "regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` " "context manager to prepare your targets. See the documentation of your specific tokenizer for more " "details", FutureWarning, ) if max_length is None: max_length = self.current_tokenizer.model_max_length model_inputs = self( src_texts, add_special_tokens=True, return_tensors=return_tensors, max_length=max_length, padding=padding, truncation=truncation, **kwargs, ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: max_target_length = self.current_tokenizer.model_max_length labels = self( text_target=tgt_texts, add_special_tokens=True, return_tensors=return_tensors, padding=padding, max_length=max_target_length, truncation=truncation, **kwargs, ) model_inputs["labels"] = labels["input_ids"] return model_inputs
transformers-main
src/transformers/models/rag/tokenization_rag.py
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ MobileViTV2 model configuration""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) MOBILEVITV2_PRETRAINED_CONFIG_ARCHIVE_MAP = { "apple/mobilevitv2-1.0": "https://huggingface.co/apple/mobilevitv2-1.0/resolve/main/config.json", } class MobileViTV2Config(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MobileViTV2Model`]. It is used to instantiate a MobileViTV2 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the MobileViTV2 [apple/mobilevitv2-1.0](https://huggingface.co/apple/mobilevitv2-1.0) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: num_channels (`int`, *optional*, defaults to 3): The number of input channels. image_size (`int`, *optional*, defaults to 256): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 2): The size (resolution) of each patch. expand_ratio (`float`, *optional*, defaults to 2.0): Expansion factor for the MobileNetv2 layers. hidden_act (`str` or `function`, *optional*, defaults to `"swish"`): The non-linear activation function (function or string) in the Transformer encoder and convolution layers. conv_kernel_size (`int`, *optional*, defaults to 3): The size of the convolutional kernel in the MobileViTV2 layer. output_stride (`int`, `optional`, defaults to 32): The ratio of the spatial resolution of the output to the resolution of the input image. classifier_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for attached classifiers. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon used by the layer normalization layers. aspp_out_channels (`int`, `optional`, defaults to 512): Number of output channels used in the ASPP layer for semantic segmentation. atrous_rates (`List[int]`, *optional*, defaults to `[6, 12, 18]`): Dilation (atrous) factors used in the ASPP layer for semantic segmentation. aspp_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the ASPP layer for semantic segmentation. semantic_loss_ignore_index (`int`, *optional*, defaults to 255): The index that is ignored by the loss function of the semantic segmentation model. n_attn_blocks (`List[int]`, *optional*, defaults to `[2, 4, 3]`): The number of attention blocks in each MobileViTV2Layer base_attn_unit_dims (`List[int]`, *optional*, defaults to `[128, 192, 256]`): The base multiplier for dimensions of attention blocks in each MobileViTV2Layer width_multiplier (`float`, *optional*, defaults to 1.0) The width multiplier for MobileViTV2. ffn_multiplier (`int`, *optional*, defaults to 2) The FFN multiplier for MobileViTV2. attn_dropout (`float`, *optional*, defaults to 0.0) The dropout in the attention layer. ffn_dropout (`float`, *optional*, defaults to 0.0) The dropout between FFN layers. Example: ```python >>> from transformers import MobileViTV2Config, MobileViTV2Model >>> # Initializing a mobilevitv2-small style configuration >>> configuration = MobileViTV2Config() >>> # Initializing a model from the mobilevitv2-small style configuration >>> model = MobileViTV2Model(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "mobilevitv2" def __init__( self, num_channels=3, image_size=256, patch_size=2, expand_ratio=2.0, hidden_act="swish", conv_kernel_size=3, output_stride=32, classifier_dropout_prob=0.1, initializer_range=0.02, layer_norm_eps=1e-5, aspp_out_channels=512, atrous_rates=[6, 12, 18], aspp_dropout_prob=0.1, semantic_loss_ignore_index=255, n_attn_blocks=[2, 4, 3], base_attn_unit_dims=[128, 192, 256], width_multiplier=1.0, ffn_multiplier=2, attn_dropout=0.0, ffn_dropout=0.0, **kwargs, ): super().__init__(**kwargs) self.num_channels = num_channels self.image_size = image_size self.patch_size = patch_size self.expand_ratio = expand_ratio self.hidden_act = hidden_act self.conv_kernel_size = conv_kernel_size self.output_stride = output_stride self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.n_attn_blocks = n_attn_blocks self.base_attn_unit_dims = base_attn_unit_dims self.width_multiplier = width_multiplier self.ffn_multiplier = ffn_multiplier self.ffn_dropout = ffn_dropout self.attn_dropout = attn_dropout self.classifier_dropout_prob = classifier_dropout_prob # decode head attributes for semantic segmentation self.aspp_out_channels = aspp_out_channels self.atrous_rates = atrous_rates self.aspp_dropout_prob = aspp_dropout_prob self.semantic_loss_ignore_index = semantic_loss_ignore_index class MobileViTV2OnnxConfig(OnnxConfig): torch_onnx_minimum_version = version.parse("1.11") @property def inputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict([("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"})]) @property def outputs(self) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})]) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})]) @property def atol_for_validation(self) -> float: return 1e-4
transformers-main
src/transformers/models/mobilevitv2/configuration_mobilevitv2.py
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available, ) _import_structure = { "configuration_mobilevitv2": [ "MOBILEVITV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileViTV2Config", "MobileViTV2OnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_mobilevitv2"] = [ "MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileViTV2ForImageClassification", "MobileViTV2ForSemanticSegmentation", "MobileViTV2Model", "MobileViTV2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilevitv2 import ( MOBILEVITV2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTV2Config, MobileViTV2OnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevitv2 import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTV2ForImageClassification, MobileViTV2ForSemanticSegmentation, MobileViTV2Model, MobileViTV2PreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers-main
src/transformers/models/mobilevitv2/__init__.py
# coding=utf-8 # Copyright 2023 Apple Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Original license: https://github.com/apple/ml-cvnets/blob/main/LICENSE """ PyTorch MobileViTV2 model.""" from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, SemanticSegmenterOutput, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_mobilevitv2 import MobileViTV2Config logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "MobileViTV2Config" # Base docstring _CHECKPOINT_FOR_DOC = "apple/mobilevitv2-1.0-imagenet1k-256" _EXPECTED_OUTPUT_SHAPE = [1, 512, 8, 8] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "apple/mobilevitv2-1.0-imagenet1k-256" _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST = [ "apple/mobilevitv2-1.0-imagenet1k-256" # See all MobileViTV2 models at https://huggingface.co/models?filter=mobilevitv2 ] # Copied from transformers.models.mobilevit.modeling_mobilevit.make_divisible def make_divisible(value: int, divisor: int = 8, min_value: Optional[int] = None) -> int: """ Ensure that all layers have a channel count that is divisible by `divisor`. This function is taken from the original TensorFlow repo. It can be seen here: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py """ if min_value is None: min_value = divisor new_value = max(min_value, int(value + divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than 10%. if new_value < 0.9 * value: new_value += divisor return int(new_value) def clip(value: float, min_val: float = float("-inf"), max_val: float = float("inf")) -> float: return max(min_val, min(max_val, value)) # Copied from transformers.models.mobilevit.modeling_mobilevit.MobileViTConvLayer with MobileViT->MobileViTV2 class MobileViTV2ConvLayer(nn.Module): def __init__( self, config: MobileViTV2Config, in_channels: int, out_channels: int, kernel_size: int, stride: int = 1, groups: int = 1, bias: bool = False, dilation: int = 1, use_normalization: bool = True, use_activation: Union[bool, str] = True, ) -> None: super().__init__() padding = int((kernel_size - 1) / 2) * dilation if in_channels % groups != 0: raise ValueError(f"Input channels ({in_channels}) are not divisible by {groups} groups.") if out_channels % groups != 0: raise ValueError(f"Output channels ({out_channels}) are not divisible by {groups} groups.") self.convolution = nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias, padding_mode="zeros", ) if use_normalization: self.normalization = nn.BatchNorm2d( num_features=out_channels, eps=1e-5, momentum=0.1, affine=True, track_running_stats=True, ) else: self.normalization = None if use_activation: if isinstance(use_activation, str): self.activation = ACT2FN[use_activation] elif isinstance(config.hidden_act, str): self.activation = ACT2FN[config.hidden_act] else: self.activation = config.hidden_act else: self.activation = None def forward(self, features: torch.Tensor) -> torch.Tensor: features = self.convolution(features) if self.normalization is not None: features = self.normalization(features) if self.activation is not None: features = self.activation(features) return features # Copied from transformers.models.mobilevit.modeling_mobilevit.MobileViTInvertedResidual with MobileViT->MobileViTV2 class MobileViTV2InvertedResidual(nn.Module): """ Inverted residual block (MobileNetv2): https://arxiv.org/abs/1801.04381 """ def __init__( self, config: MobileViTV2Config, in_channels: int, out_channels: int, stride: int, dilation: int = 1 ) -> None: super().__init__() expanded_channels = make_divisible(int(round(in_channels * config.expand_ratio)), 8) if stride not in [1, 2]: raise ValueError(f"Invalid stride {stride}.") self.use_residual = (stride == 1) and (in_channels == out_channels) self.expand_1x1 = MobileViTV2ConvLayer( config, in_channels=in_channels, out_channels=expanded_channels, kernel_size=1 ) self.conv_3x3 = MobileViTV2ConvLayer( config, in_channels=expanded_channels, out_channels=expanded_channels, kernel_size=3, stride=stride, groups=expanded_channels, dilation=dilation, ) self.reduce_1x1 = MobileViTV2ConvLayer( config, in_channels=expanded_channels, out_channels=out_channels, kernel_size=1, use_activation=False, ) def forward(self, features: torch.Tensor) -> torch.Tensor: residual = features features = self.expand_1x1(features) features = self.conv_3x3(features) features = self.reduce_1x1(features) return residual + features if self.use_residual else features # Copied from transformers.models.mobilevit.modeling_mobilevit.MobileViTMobileNetLayer with MobileViT->MobileViTV2 class MobileViTV2MobileNetLayer(nn.Module): def __init__( self, config: MobileViTV2Config, in_channels: int, out_channels: int, stride: int = 1, num_stages: int = 1 ) -> None: super().__init__() self.layer = nn.ModuleList() for i in range(num_stages): layer = MobileViTV2InvertedResidual( config, in_channels=in_channels, out_channels=out_channels, stride=stride if i == 0 else 1, ) self.layer.append(layer) in_channels = out_channels def forward(self, features: torch.Tensor) -> torch.Tensor: for layer_module in self.layer: features = layer_module(features) return features class MobileViTV2LinearSelfAttention(nn.Module): """ This layer applies a self-attention with linear complexity, as described in MobileViTV2 paper: https://arxiv.org/abs/2206.02680 Args: config (`MobileVitv2Config`): Model configuration object embed_dim (`int`): `input_channels` from an expected input of size :math:`(batch_size, input_channels, height, width)` """ def __init__(self, config: MobileViTV2Config, embed_dim: int) -> None: super().__init__() self.qkv_proj = MobileViTV2ConvLayer( config=config, in_channels=embed_dim, out_channels=1 + (2 * embed_dim), bias=True, kernel_size=1, use_normalization=False, use_activation=False, ) self.attn_dropout = nn.Dropout(p=config.attn_dropout) self.out_proj = MobileViTV2ConvLayer( config=config, in_channels=embed_dim, out_channels=embed_dim, bias=True, kernel_size=1, use_normalization=False, use_activation=False, ) self.embed_dim = embed_dim def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # (batch_size, embed_dim, num_pixels_in_patch, num_patches) --> (batch_size, 1+2*embed_dim, num_pixels_in_patch, num_patches) qkv = self.qkv_proj(hidden_states) # Project hidden_states into query, key and value # Query --> [batch_size, 1, num_pixels_in_patch, num_patches] # value, key --> [batch_size, embed_dim, num_pixels_in_patch, num_patches] query, key, value = torch.split(qkv, split_size_or_sections=[1, self.embed_dim, self.embed_dim], dim=1) # apply softmax along num_patches dimension context_scores = torch.nn.functional.softmax(query, dim=-1) context_scores = self.attn_dropout(context_scores) # Compute context vector # [batch_size, embed_dim, num_pixels_in_patch, num_patches] x [batch_size, 1, num_pixels_in_patch, num_patches] -> [batch_size, embed_dim, num_pixels_in_patch, num_patches] context_vector = key * context_scores # [batch_size, embed_dim, num_pixels_in_patch, num_patches] --> [batch_size, embed_dim, num_pixels_in_patch, 1] context_vector = torch.sum(context_vector, dim=-1, keepdim=True) # combine context vector with values # [batch_size, embed_dim, num_pixels_in_patch, num_patches] * [batch_size, embed_dim, num_pixels_in_patch, 1] --> [batch_size, embed_dim, num_pixels_in_patch, num_patches] out = torch.nn.functional.relu(value) * context_vector.expand_as(value) out = self.out_proj(out) return out class MobileViTV2FFN(nn.Module): def __init__( self, config: MobileViTV2Config, embed_dim: int, ffn_latent_dim: int, ffn_dropout: float = 0.0, ) -> None: super().__init__() self.conv1 = MobileViTV2ConvLayer( config=config, in_channels=embed_dim, out_channels=ffn_latent_dim, kernel_size=1, stride=1, bias=True, use_normalization=False, use_activation=True, ) self.dropout1 = nn.Dropout(ffn_dropout) self.conv2 = MobileViTV2ConvLayer( config=config, in_channels=ffn_latent_dim, out_channels=embed_dim, kernel_size=1, stride=1, bias=True, use_normalization=False, use_activation=False, ) self.dropout2 = nn.Dropout(ffn_dropout) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.conv1(hidden_states) hidden_states = self.dropout1(hidden_states) hidden_states = self.conv2(hidden_states) hidden_states = self.dropout2(hidden_states) return hidden_states class MobileViTV2TransformerLayer(nn.Module): def __init__( self, config: MobileViTV2Config, embed_dim: int, ffn_latent_dim: int, dropout: float = 0.0, ) -> None: super().__init__() self.layernorm_before = nn.GroupNorm(num_groups=1, num_channels=embed_dim, eps=config.layer_norm_eps) self.attention = MobileViTV2LinearSelfAttention(config, embed_dim) self.dropout1 = nn.Dropout(p=dropout) self.layernorm_after = nn.GroupNorm(num_groups=1, num_channels=embed_dim, eps=config.layer_norm_eps) self.ffn = MobileViTV2FFN(config, embed_dim, ffn_latent_dim, config.ffn_dropout) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: layernorm_1_out = self.layernorm_before(hidden_states) attention_output = self.attention(layernorm_1_out) hidden_states = attention_output + hidden_states layer_output = self.layernorm_after(hidden_states) layer_output = self.ffn(layer_output) layer_output = layer_output + hidden_states return layer_output class MobileViTV2Transformer(nn.Module): def __init__(self, config: MobileViTV2Config, n_layers: int, d_model: int) -> None: super().__init__() ffn_multiplier = config.ffn_multiplier ffn_dims = [ffn_multiplier * d_model] * n_layers # ensure that dims are multiple of 16 ffn_dims = [int((d // 16) * 16) for d in ffn_dims] self.layer = nn.ModuleList() for block_idx in range(n_layers): transformer_layer = MobileViTV2TransformerLayer( config, embed_dim=d_model, ffn_latent_dim=ffn_dims[block_idx] ) self.layer.append(transformer_layer) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: for layer_module in self.layer: hidden_states = layer_module(hidden_states) return hidden_states class MobileViTV2Layer(nn.Module): """ MobileViTV2 layer: https://arxiv.org/abs/2206.02680 """ def __init__( self, config: MobileViTV2Config, in_channels: int, out_channels: int, attn_unit_dim: int, n_attn_blocks: int = 2, dilation: int = 1, stride: int = 2, ) -> None: super().__init__() self.patch_width = config.patch_size self.patch_height = config.patch_size cnn_out_dim = attn_unit_dim if stride == 2: self.downsampling_layer = MobileViTV2InvertedResidual( config, in_channels=in_channels, out_channels=out_channels, stride=stride if dilation == 1 else 1, dilation=dilation // 2 if dilation > 1 else 1, ) in_channels = out_channels else: self.downsampling_layer = None # Local representations self.conv_kxk = MobileViTV2ConvLayer( config, in_channels=in_channels, out_channels=in_channels, kernel_size=config.conv_kernel_size, groups=in_channels, ) self.conv_1x1 = MobileViTV2ConvLayer( config, in_channels=in_channels, out_channels=cnn_out_dim, kernel_size=1, use_normalization=False, use_activation=False, ) # Global representations self.transformer = MobileViTV2Transformer(config, d_model=attn_unit_dim, n_layers=n_attn_blocks) # self.layernorm = MobileViTV2LayerNorm2D(attn_unit_dim, eps=config.layer_norm_eps) self.layernorm = nn.GroupNorm(num_groups=1, num_channels=attn_unit_dim, eps=config.layer_norm_eps) # Fusion self.conv_projection = MobileViTV2ConvLayer( config, in_channels=cnn_out_dim, out_channels=in_channels, kernel_size=1, use_normalization=True, use_activation=False, ) def unfolding(self, feature_map: torch.Tensor) -> Tuple[torch.Tensor, Tuple[int, int]]: batch_size, in_channels, img_height, img_width = feature_map.shape patches = nn.functional.unfold( feature_map, kernel_size=(self.patch_height, self.patch_width), stride=(self.patch_height, self.patch_width), ) patches = patches.reshape(batch_size, in_channels, self.patch_height * self.patch_width, -1) return patches, (img_height, img_width) def folding(self, patches: torch.Tensor, output_size: Tuple[int, int]) -> torch.Tensor: batch_size, in_dim, patch_size, n_patches = patches.shape patches = patches.reshape(batch_size, in_dim * patch_size, n_patches) feature_map = nn.functional.fold( patches, output_size=output_size, kernel_size=(self.patch_height, self.patch_width), stride=(self.patch_height, self.patch_width), ) return feature_map def forward(self, features: torch.Tensor) -> torch.Tensor: # reduce spatial dimensions if needed if self.downsampling_layer: features = self.downsampling_layer(features) # local representation features = self.conv_kxk(features) features = self.conv_1x1(features) # convert feature map to patches patches, output_size = self.unfolding(features) # learn global representations patches = self.transformer(patches) patches = self.layernorm(patches) # convert patches back to feature maps # [batch_size, patch_height, patch_width, input_dim] --> [batch_size, input_dim, patch_height, patch_width] features = self.folding(patches, output_size) features = self.conv_projection(features) return features class MobileViTV2Encoder(nn.Module): def __init__(self, config: MobileViTV2Config) -> None: super().__init__() self.config = config self.layer = nn.ModuleList() self.gradient_checkpointing = False # segmentation architectures like DeepLab and PSPNet modify the strides # of the classification backbones dilate_layer_4 = dilate_layer_5 = False if config.output_stride == 8: dilate_layer_4 = True dilate_layer_5 = True elif config.output_stride == 16: dilate_layer_5 = True dilation = 1 layer_0_dim = make_divisible( clip(value=32 * config.width_multiplier, min_val=16, max_val=64), divisor=8, min_value=16 ) layer_1_dim = make_divisible(64 * config.width_multiplier, divisor=16) layer_2_dim = make_divisible(128 * config.width_multiplier, divisor=8) layer_3_dim = make_divisible(256 * config.width_multiplier, divisor=8) layer_4_dim = make_divisible(384 * config.width_multiplier, divisor=8) layer_5_dim = make_divisible(512 * config.width_multiplier, divisor=8) layer_1 = MobileViTV2MobileNetLayer( config, in_channels=layer_0_dim, out_channels=layer_1_dim, stride=1, num_stages=1, ) self.layer.append(layer_1) layer_2 = MobileViTV2MobileNetLayer( config, in_channels=layer_1_dim, out_channels=layer_2_dim, stride=2, num_stages=2, ) self.layer.append(layer_2) layer_3 = MobileViTV2Layer( config, in_channels=layer_2_dim, out_channels=layer_3_dim, attn_unit_dim=make_divisible(config.base_attn_unit_dims[0] * config.width_multiplier, divisor=8), n_attn_blocks=config.n_attn_blocks[0], ) self.layer.append(layer_3) if dilate_layer_4: dilation *= 2 layer_4 = MobileViTV2Layer( config, in_channels=layer_3_dim, out_channels=layer_4_dim, attn_unit_dim=make_divisible(config.base_attn_unit_dims[1] * config.width_multiplier, divisor=8), n_attn_blocks=config.n_attn_blocks[1], dilation=dilation, ) self.layer.append(layer_4) if dilate_layer_5: dilation *= 2 layer_5 = MobileViTV2Layer( config, in_channels=layer_4_dim, out_channels=layer_5_dim, attn_unit_dim=make_divisible(config.base_attn_unit_dims[2] * config.width_multiplier, divisor=8), n_attn_blocks=config.n_attn_blocks[2], dilation=dilation, ) self.layer.append(layer_5) def forward( self, hidden_states: torch.Tensor, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[tuple, BaseModelOutputWithNoAttention]: all_hidden_states = () if output_hidden_states else None for i, layer_module in enumerate(self.layer): if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(layer_module), hidden_states, ) else: hidden_states = layer_module(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) return BaseModelOutputWithNoAttention(last_hidden_state=hidden_states, hidden_states=all_hidden_states) # Copied from transformers.models.mobilevit.modeling_mobilevit.MobileViTPreTrainedModel with MobileViT->MobileViTV2,mobilevit->mobilevitv2 class MobileViTV2PreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MobileViTV2Config base_model_prefix = "mobilevitv2" main_input_name = "pixel_values" supports_gradient_checkpointing = True def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, MobileViTV2Encoder): module.gradient_checkpointing = value MOBILEVITV2_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileViTV2Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ MOBILEVITV2_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileViTImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare MobileViTV2 model outputting raw hidden-states without any specific head on top.", MOBILEVITV2_START_DOCSTRING, ) class MobileViTV2Model(MobileViTV2PreTrainedModel): def __init__(self, config: MobileViTV2Config, expand_output: bool = True): super().__init__(config) self.config = config self.expand_output = expand_output layer_0_dim = make_divisible( clip(value=32 * config.width_multiplier, min_val=16, max_val=64), divisor=8, min_value=16 ) self.conv_stem = MobileViTV2ConvLayer( config, in_channels=config.num_channels, out_channels=layer_0_dim, kernel_size=3, stride=2, use_normalization=True, use_activation=True, ) self.encoder = MobileViTV2Encoder(config) # Initialize weights and apply final processing self.post_init() def _prune_heads(self, heads_to_prune): """Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer_index, heads in heads_to_prune.items(): mobilevitv2_layer = self.encoder.layer[layer_index] if isinstance(mobilevitv2_layer, MobileViTV2Layer): for transformer_layer in mobilevitv2_layer.transformer.layer: transformer_layer.attention.prune_heads(heads) @add_start_docstrings_to_model_forward(MOBILEVITV2_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndNoAttention, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") embedding_output = self.conv_stem(pixel_values) encoder_outputs = self.encoder( embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.expand_output: last_hidden_state = encoder_outputs[0] # global average pooling: (batch_size, channels, height, width) -> (batch_size, channels) pooled_output = torch.mean(last_hidden_state, dim=[-2, -1], keepdim=False) else: last_hidden_state = encoder_outputs[0] pooled_output = None if not return_dict: output = (last_hidden_state, pooled_output) if pooled_output is not None else (last_hidden_state,) return output + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, ) @add_start_docstrings( """ MobileViTV2 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """, MOBILEVITV2_START_DOCSTRING, ) class MobileViTV2ForImageClassification(MobileViTV2PreTrainedModel): def __init__(self, config: MobileViTV2Config) -> None: super().__init__(config) self.num_labels = config.num_labels self.mobilevitv2 = MobileViTV2Model(config) out_channels = make_divisible(512 * config.width_multiplier, divisor=8) # layer 5 output dimension # Classifier head self.classifier = ( nn.Linear(in_features=out_channels, out_features=config.num_labels) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MOBILEVITV2_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=ImageClassifierOutputWithNoAttention, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, labels: Optional[torch.Tensor] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss). If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilevitv2(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict) pooled_output = outputs.pooler_output if return_dict else outputs[1] logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=loss, logits=logits, hidden_states=outputs.hidden_states, ) # Copied from transformers.models.mobilevit.modeling_mobilevit.MobileViTASPPPooling with MobileViT->MobileViTV2 class MobileViTV2ASPPPooling(nn.Module): def __init__(self, config: MobileViTV2Config, in_channels: int, out_channels: int) -> None: super().__init__() self.global_pool = nn.AdaptiveAvgPool2d(output_size=1) self.conv_1x1 = MobileViTV2ConvLayer( config, in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, use_normalization=True, use_activation="relu", ) def forward(self, features: torch.Tensor) -> torch.Tensor: spatial_size = features.shape[-2:] features = self.global_pool(features) features = self.conv_1x1(features) features = nn.functional.interpolate(features, size=spatial_size, mode="bilinear", align_corners=False) return features class MobileViTV2ASPP(nn.Module): """ ASPP module defined in DeepLab papers: https://arxiv.org/abs/1606.00915, https://arxiv.org/abs/1706.05587 """ def __init__(self, config: MobileViTV2Config) -> None: super().__init__() encoder_out_channels = make_divisible(512 * config.width_multiplier, divisor=8) # layer 5 output dimension in_channels = encoder_out_channels out_channels = config.aspp_out_channels if len(config.atrous_rates) != 3: raise ValueError("Expected 3 values for atrous_rates") self.convs = nn.ModuleList() in_projection = MobileViTV2ConvLayer( config, in_channels=in_channels, out_channels=out_channels, kernel_size=1, use_activation="relu", ) self.convs.append(in_projection) self.convs.extend( [ MobileViTV2ConvLayer( config, in_channels=in_channels, out_channels=out_channels, kernel_size=3, dilation=rate, use_activation="relu", ) for rate in config.atrous_rates ] ) pool_layer = MobileViTV2ASPPPooling(config, in_channels, out_channels) self.convs.append(pool_layer) self.project = MobileViTV2ConvLayer( config, in_channels=5 * out_channels, out_channels=out_channels, kernel_size=1, use_activation="relu" ) self.dropout = nn.Dropout(p=config.aspp_dropout_prob) def forward(self, features: torch.Tensor) -> torch.Tensor: pyramid = [] for conv in self.convs: pyramid.append(conv(features)) pyramid = torch.cat(pyramid, dim=1) pooled_features = self.project(pyramid) pooled_features = self.dropout(pooled_features) return pooled_features # Copied from transformers.models.mobilevit.modeling_mobilevit.MobileViTDeepLabV3 with MobileViT->MobileViTV2 class MobileViTV2DeepLabV3(nn.Module): """ DeepLabv3 architecture: https://arxiv.org/abs/1706.05587 """ def __init__(self, config: MobileViTV2Config) -> None: super().__init__() self.aspp = MobileViTV2ASPP(config) self.dropout = nn.Dropout2d(config.classifier_dropout_prob) self.classifier = MobileViTV2ConvLayer( config, in_channels=config.aspp_out_channels, out_channels=config.num_labels, kernel_size=1, use_normalization=False, use_activation=False, bias=True, ) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: features = self.aspp(hidden_states[-1]) features = self.dropout(features) features = self.classifier(features) return features @add_start_docstrings( """ MobileViTV2 model with a semantic segmentation head on top, e.g. for Pascal VOC. """, MOBILEVITV2_START_DOCSTRING, ) class MobileViTV2ForSemanticSegmentation(MobileViTV2PreTrainedModel): def __init__(self, config: MobileViTV2Config) -> None: super().__init__(config) self.num_labels = config.num_labels self.mobilevitv2 = MobileViTV2Model(config, expand_output=False) self.segmentation_head = MobileViTV2DeepLabV3(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MOBILEVITV2_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, SemanticSegmenterOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> import requests >>> import torch >>> from PIL import Image >>> from transformers import AutoImageProcessor, MobileViTV2ForSemanticSegmentation >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256") >>> model = MobileViTV2ForSemanticSegmentation.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256") >>> inputs = image_processor(images=image, return_tensors="pt") >>> with torch.no_grad(): ... outputs = model(**inputs) >>> # logits are of shape (batch_size, num_labels, height, width) >>> logits = outputs.logits ```""" output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilevitv2( pixel_values, output_hidden_states=True, # we need the intermediate hidden states return_dict=return_dict, ) encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1] logits = self.segmentation_head(encoder_hidden_states) loss = None if labels is not None: if self.config.num_labels == 1: raise ValueError("The number of labels should be greater than one") else: # upsample logits to the images' original size upsampled_logits = nn.functional.interpolate( logits, size=labels.shape[-2:], mode="bilinear", align_corners=False ) loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index) loss = loss_fct(upsampled_logits, labels) if not return_dict: if output_hidden_states: output = (logits,) + outputs[1:] else: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=None, )
transformers-main
src/transformers/models/mobilevitv2/modeling_mobilevitv2.py
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert MobileViTV2 checkpoints from the ml-cvnets library.""" import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTV2Config, MobileViTV2ForImageClassification, MobileViTV2ForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) def load_orig_config_file(orig_cfg_file): print("Loading config file...") def flatten_yaml_as_dict(d, parent_key="", sep="."): items = [] for k, v in d.items(): new_key = parent_key + sep + k if parent_key else k if isinstance(v, collections.abc.MutableMapping): items.extend(flatten_yaml_as_dict(v, new_key, sep=sep).items()) else: items.append((new_key, v)) return dict(items) config = argparse.Namespace() with open(orig_cfg_file, "r") as yaml_file: try: cfg = yaml.load(yaml_file, Loader=yaml.FullLoader) flat_cfg = flatten_yaml_as_dict(cfg) for k, v in flat_cfg.items(): setattr(config, k, v) except yaml.YAMLError as exc: logger.error("Error while loading config file: {}. Error message: {}".format(orig_cfg_file, str(exc))) return config def get_mobilevitv2_config(task_name, orig_cfg_file): config = MobileViTV2Config() is_segmentation_model = False # dataset if task_name.startswith("imagenet1k_"): config.num_labels = 1000 if int(task_name.strip().split("_")[-1]) == 384: config.image_size = 384 else: config.image_size = 256 filename = "imagenet-1k-id2label.json" elif task_name.startswith("imagenet21k_to_1k_"): config.num_labels = 21000 if int(task_name.strip().split("_")[-1]) == 384: config.image_size = 384 else: config.image_size = 256 filename = "imagenet-22k-id2label.json" elif task_name.startswith("ade20k_"): config.num_labels = 151 config.image_size = 512 filename = "ade20k-id2label.json" is_segmentation_model = True elif task_name.startswith("voc_"): config.num_labels = 21 config.image_size = 512 filename = "pascal-voc-id2label.json" is_segmentation_model = True # orig_config orig_config = load_orig_config_file(orig_cfg_file) assert getattr(orig_config, "model.classification.name", -1) == "mobilevit_v2", "Invalid model" config.width_multiplier = getattr(orig_config, "model.classification.mitv2.width_multiplier", 1.0) assert ( getattr(orig_config, "model.classification.mitv2.attn_norm_layer", -1) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" config.hidden_act = getattr(orig_config, "model.classification.activation.name", "swish") # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: config.output_stride = getattr(orig_config, "model.segmentation.output_stride", 16) if "_deeplabv3" in task_name: config.atrous_rates = getattr(orig_config, "model.segmentation.deeplabv3.aspp_rates", [12, 24, 36]) config.aspp_out_channels = getattr(orig_config, "model.segmentation.deeplabv3.aspp_out_channels", 512) config.aspp_dropout_prob = getattr(orig_config, "model.segmentation.deeplabv3.aspp_dropout", 0.1) # id2label repo_id = "huggingface/label-files" id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} return config def rename_key(dct, old, new): val = dct.pop(old) dct[new] = val def create_rename_keys(state_dict, base_model=False): if base_model: model_prefix = "" else: model_prefix = "mobilevitv2." rename_keys = [] for k in state_dict.keys(): if k[:8] == "encoder.": k_new = k[8:] else: k_new = k if ".block." in k: k_new = k_new.replace(".block.", ".") if ".conv." in k: k_new = k_new.replace(".conv.", ".convolution.") if ".norm." in k: k_new = k_new.replace(".norm.", ".normalization.") if "conv_1." in k: k_new = k_new.replace("conv_1.", f"{model_prefix}conv_stem.") for i in [1, 2]: if f"layer_{i}." in k: k_new = k_new.replace(f"layer_{i}.", f"{model_prefix}encoder.layer.{i-1}.layer.") if ".exp_1x1." in k: k_new = k_new.replace(".exp_1x1.", ".expand_1x1.") if ".red_1x1." in k: k_new = k_new.replace(".red_1x1.", ".reduce_1x1.") for i in [3, 4, 5]: if f"layer_{i}.0." in k: k_new = k_new.replace(f"layer_{i}.0.", f"{model_prefix}encoder.layer.{i-1}.downsampling_layer.") if f"layer_{i}.1.local_rep.0." in k: k_new = k_new.replace(f"layer_{i}.1.local_rep.0.", f"{model_prefix}encoder.layer.{i-1}.conv_kxk.") if f"layer_{i}.1.local_rep.1." in k: k_new = k_new.replace(f"layer_{i}.1.local_rep.1.", f"{model_prefix}encoder.layer.{i-1}.conv_1x1.") for i in [3, 4, 5]: if i == 3: j_in = [0, 1] elif i == 4: j_in = [0, 1, 2, 3] elif i == 5: j_in = [0, 1, 2] for j in j_in: if f"layer_{i}.1.global_rep.{j}." in k: k_new = k_new.replace( f"layer_{i}.1.global_rep.{j}.", f"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}." ) if f"layer_{i}.1.global_rep.{j+1}." in k: k_new = k_new.replace( f"layer_{i}.1.global_rep.{j+1}.", f"{model_prefix}encoder.layer.{i-1}.layernorm." ) if f"layer_{i}.1.conv_proj." in k: k_new = k_new.replace(f"layer_{i}.1.conv_proj.", f"{model_prefix}encoder.layer.{i-1}.conv_projection.") if "pre_norm_attn.0." in k: k_new = k_new.replace("pre_norm_attn.0.", "layernorm_before.") if "pre_norm_attn.1." in k: k_new = k_new.replace("pre_norm_attn.1.", "attention.") if "pre_norm_ffn.0." in k: k_new = k_new.replace("pre_norm_ffn.0.", "layernorm_after.") if "pre_norm_ffn.1." in k: k_new = k_new.replace("pre_norm_ffn.1.", "ffn.conv1.") if "pre_norm_ffn.3." in k: k_new = k_new.replace("pre_norm_ffn.3.", "ffn.conv2.") if "classifier.1." in k: k_new = k_new.replace("classifier.1.", "classifier.") if "seg_head." in k: k_new = k_new.replace("seg_head.", "segmentation_head.") if ".aspp_layer." in k: k_new = k_new.replace(".aspp_layer.", ".") if ".aspp_pool." in k: k_new = k_new.replace(".aspp_pool.", ".") rename_keys.append((k, k_new)) return rename_keys def remove_unused_keys(state_dict): """remove unused keys (e.g.: seg_head.aux_head)""" keys_to_ignore = [] for k in state_dict.keys(): if k.startswith("seg_head.aux_head."): keys_to_ignore.append(k) for k in keys_to_ignore: state_dict.pop(k, None) # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @torch.no_grad() def convert_mobilevitv2_checkpoint(task_name, checkpoint_path, orig_config_path, pytorch_dump_folder_path): """ Copy/paste/tweak model's weights to our MobileViTV2 structure. """ config = get_mobilevitv2_config(task_name, orig_config_path) # load original state_dict checkpoint = torch.load(checkpoint_path, map_location="cpu") # load huggingface model if task_name.startswith("ade20k_") or task_name.startswith("voc_"): model = MobileViTV2ForSemanticSegmentation(config).eval() base_model = False else: model = MobileViTV2ForImageClassification(config).eval() base_model = False # remove and rename some keys of load the original model state_dict = checkpoint remove_unused_keys(state_dict) rename_keys = create_rename_keys(state_dict, base_model=base_model) for rename_key_src, rename_key_dest in rename_keys: rename_key(state_dict, rename_key_src, rename_key_dest) # load modified state_dict model.load_state_dict(state_dict) # Check outputs on an image, prepared by MobileViTImageProcessor image_processor = MobileViTImageProcessor(crop_size=config.image_size, size=config.image_size + 32) encoding = image_processor(images=prepare_img(), return_tensors="pt") outputs = model(**encoding) # verify classification model if task_name.startswith("imagenet"): logits = outputs.logits predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) if task_name.startswith("imagenet1k_256") and config.width_multiplier == 1.0: # expected_logits for base variant expected_logits = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01]) assert torch.allclose(logits[0, :3], expected_logits, atol=1e-4) Path(pytorch_dump_folder_path).mkdir(exist_ok=True) print(f"Saving model {task_name} to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) print(f"Saving image processor to {pytorch_dump_folder_path}") image_processor.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="imagenet1k_256", type=str, help=( "Name of the task for which the MobileViTV2 model you'd like to convert is trained on . " """ Classification (ImageNet-1k) - MobileViTV2 (256x256) : imagenet1k_256 - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384 - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) : imagenet21k_to_1k_256 - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on ImageNet-1k 384x384) : imagenet21k_to_1k_384 Segmentation - ADE20K Dataset : ade20k_deeplabv3 - Pascal VOC 2012 Dataset: voc_deeplabv3 """ ), choices=[ "imagenet1k_256", "imagenet1k_384", "imagenet21k_to_1k_256", "imagenet21k_to_1k_384", "ade20k_deeplabv3", "voc_deeplabv3", ], ) parser.add_argument( "--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)." ) parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.") parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) args = parser.parse_args() convert_mobilevitv2_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
transformers-main
src/transformers/models/mobilevitv2/convert_mlcvnets_to_pytorch.py
# coding=utf-8 # Copyright 2022 Salesforce authors, The EleutherAI, and HuggingFace Teams. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch CodeGen model.""" from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_codegen import CodeGenConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "Salesforce/codegen-2B-mono" _CONFIG_FOR_DOC = "CodeGenConfig" CODEGEN_PRETRAINED_MODEL_ARCHIVE_LIST = [ "Salesforce/codegen-350M-nl", "Salesforce/codegen-350M-multi", "Salesforce/codegen-350M-mono", "Salesforce/codegen-2B-nl", "Salesforce/codegen-2B-multi", "Salesforce/codegen-2B-mono", "Salesforce/codegen-6B-nl", "Salesforce/codegen-6B-multi", "Salesforce/codegen-6B-mono", "Salesforce/codegen-16B-nl", "Salesforce/codegen-16B-multi", "Salesforce/codegen-16B-mono", # See all CodeGen models at https://huggingface.co/models?filter=codegen ] # Copied from transformers.models.gptj.modeling_gptj.create_sinusoidal_positions def create_sinusoidal_positions(num_pos: int, dim: int) -> torch.Tensor: inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2) / dim)) sinusoid_inp = torch.einsum("i , j -> i j", torch.arange(num_pos, dtype=torch.float), inv_freq).float() return torch.cat((torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)), dim=1) # Copied from transformers.models.gptj.modeling_gptj.rotate_every_two def rotate_every_two(x: torch.Tensor) -> torch.Tensor: x1 = x[:, :, :, ::2] x2 = x[:, :, :, 1::2] x = torch.stack((-x2, x1), dim=-1) return x.flatten(-2) # in einsum notation: rearrange(x, '... d j -> ... (d j)') # Copied from transformers.models.gptj.modeling_gptj.apply_rotary_pos_emb def apply_rotary_pos_emb(tensor: torch.Tensor, sin: torch.Tensor, cos: torch.Tensor) -> torch.Tensor: sin = torch.repeat_interleave(sin[:, :, None, :], 2, 3) cos = torch.repeat_interleave(cos[:, :, None, :], 2, 3) return (tensor * cos) + (rotate_every_two(tensor) * sin) class CodeGenAttention(nn.Module): def __init__(self, config): super().__init__() max_positions = config.max_position_embeddings self.register_buffer( "causal_mask", torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view( 1, 1, max_positions, max_positions ), persistent=False, ) self.attn_dropout = nn.Dropout(config.attn_pdrop) self.resid_dropout = nn.Dropout(config.resid_pdrop) self.embed_dim = config.hidden_size self.num_attention_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_attention_heads if self.head_dim * self.num_attention_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_attention_heads (got `embed_dim`: {self.embed_dim} and" f" `num_attention_heads`: {self.num_attention_heads})." ) self.scale_attn = torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype()) self.qkv_proj = nn.Linear(self.embed_dim, self.embed_dim * 3, bias=False) self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False) self.rotary_dim = config.rotary_dim pos_embd_dim = self.rotary_dim or self.embed_dim self.embed_positions = create_sinusoidal_positions(max_positions, pos_embd_dim) def _split_heads(self, x, n_head, dim_head, mp_num): reshaped = x.reshape(x.shape[:-1] + (n_head // mp_num, dim_head)) reshaped = reshaped.reshape(x.shape[:-2] + (-1,) + reshaped.shape[-1:]) return reshaped def _merge_heads(self, tensor, num_attention_heads, attn_head_size): """ Merges attn_head_size dim and num_attn_heads dim into n_ctx """ if len(tensor.shape) == 5: tensor = tensor.permute(0, 1, 3, 2, 4).contiguous() elif len(tensor.shape) == 4: tensor = tensor.permute(0, 2, 1, 3).contiguous() else: raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}") new_shape = tensor.size()[:-2] + (num_attention_heads * attn_head_size,) return tensor.view(new_shape) def _attn( self, query, key, value, attention_mask=None, head_mask=None, ): # compute causal mask from causal mask buffer query_length, key_length = query.size(-2), key.size(-2) causal_mask = self.causal_mask[:, :, key_length - query_length : key_length, :key_length] # Keep the attention weights computation in fp32 to avoid overflow issues query = query.to(torch.float32) key = key.to(torch.float32) attn_weights = torch.matmul(query, key.transpose(-1, -2)) attn_weights = attn_weights / self.scale_attn mask_value = torch.finfo(attn_weights.dtype).min # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`. # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device` mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device) attn_weights = torch.where(causal_mask, attn_weights, mask_value) if attention_mask is not None: # Apply the attention mask attn_weights = attn_weights + attention_mask attn_weights = nn.Softmax(dim=-1)(attn_weights) attn_weights = attn_weights.to(value.dtype) attn_weights = self.attn_dropout(attn_weights) # Mask heads if we want to if head_mask is not None: attn_weights = attn_weights * head_mask attn_output = torch.matmul(attn_weights, value) return attn_output, attn_weights def forward( self, hidden_states: Optional[torch.FloatTensor], layer_past: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.FloatTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = False, output_attentions: Optional[bool] = False, ) -> Union[ Tuple[torch.Tensor, Tuple[torch.Tensor]], Optional[Tuple[torch.Tensor, Tuple[torch.Tensor], Tuple[torch.Tensor, ...]]], ]: qkv = self.qkv_proj(hidden_states) # TODO(enijkamp): factor out number of logical TPU-v4 cores or make forward pass agnostic mp_num = 4 qkv_split = qkv.reshape(qkv.shape[:-1] + (mp_num, -1)) local_dim = self.head_dim * self.num_attention_heads // mp_num query, value, key = torch.split(qkv_split, local_dim, dim=-1) query = self._split_heads(query, self.num_attention_heads, self.head_dim, mp_num=mp_num) key = self._split_heads(key, self.num_attention_heads, self.head_dim, mp_num=mp_num) value = self._split_heads(value, self.num_attention_heads, self.head_dim, mp_num=mp_num) value = value.permute(0, 2, 1, 3) embed_positions = self.embed_positions if embed_positions.device != position_ids.device: embed_positions = embed_positions.to(position_ids.device) self.embed_positions = embed_positions sincos = embed_positions[position_ids] sin, cos = torch.split(sincos, sincos.shape[-1] // 2, dim=-1) if self.rotary_dim is not None: k_rot = key[:, :, :, : self.rotary_dim] k_pass = key[:, :, :, self.rotary_dim :] q_rot = query[:, :, :, : self.rotary_dim] q_pass = query[:, :, :, self.rotary_dim :] k_rot = apply_rotary_pos_emb(k_rot, sin, cos) q_rot = apply_rotary_pos_emb(q_rot, sin, cos) key = torch.cat([k_rot, k_pass], dim=-1) query = torch.cat([q_rot, q_pass], dim=-1) else: key = apply_rotary_pos_emb(key, sin, cos) query = apply_rotary_pos_emb(query, sin, cos) key = key.permute(0, 2, 1, 3) query = query.permute(0, 2, 1, 3) if layer_past is not None: past_key = layer_past[0] past_value = layer_past[1] key = torch.cat((past_key, key), dim=-2) value = torch.cat((past_value, value), dim=-2) if use_cache is True: present = (key, value) else: present = None # compute self-attention: V x Softmax(QK^T) attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask) attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_dim) attn_output = self.out_proj(attn_output) attn_output = self.resid_dropout(attn_output) outputs = (attn_output, present) if output_attentions: outputs += (attn_weights,) return outputs # a, present, (attentions) # Copied from transformers.models.gptj.modeling_gptj.GPTJMLP with GPTJ->CodeGen class CodeGenMLP(nn.Module): def __init__(self, intermediate_size, config): # in MLP: intermediate_size= 4 * embed_dim super().__init__() embed_dim = config.n_embd self.fc_in = nn.Linear(embed_dim, intermediate_size) self.fc_out = nn.Linear(intermediate_size, embed_dim) self.act = ACT2FN[config.activation_function] self.dropout = nn.Dropout(config.resid_pdrop) def forward(self, hidden_states: Optional[torch.FloatTensor]) -> torch.FloatTensor: hidden_states = self.fc_in(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.fc_out(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states # Copied from transformers.models.gptj.modeling_gptj.GPTJBlock with GPTJ->CodeGen class CodeGenBlock(nn.Module): def __init__(self, config): super().__init__() inner_dim = config.n_inner if config.n_inner is not None else 4 * config.n_embd self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) self.attn = CodeGenAttention(config) self.mlp = CodeGenMLP(inner_dim, config) def forward( self, hidden_states: Optional[torch.FloatTensor], layer_past: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.FloatTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = False, output_attentions: Optional[bool] = False, ) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]: residual = hidden_states hidden_states = self.ln_1(hidden_states) attn_outputs = self.attn( hidden_states=hidden_states, layer_past=layer_past, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, use_cache=use_cache, output_attentions=output_attentions, ) attn_output = attn_outputs[0] # output_attn: a, present, (attentions) outputs = attn_outputs[1:] feed_forward_hidden_states = self.mlp(hidden_states) hidden_states = attn_output + feed_forward_hidden_states + residual if use_cache: outputs = (hidden_states,) + outputs else: outputs = (hidden_states,) + outputs[1:] return outputs # hidden_states, present, (attentions) class CodeGenPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = CodeGenConfig base_model_prefix = "transformer" supports_gradient_checkpointing = True _no_split_modules = ["CodeGenBlock"] _skip_keys_device_placement = "past_key_values" def __init__(self, *inputs, **kwargs): super().__init__(*inputs, **kwargs) def _init_weights(self, module): """Initialize the weights.""" if isinstance(module, (nn.Linear,)): # Slightly different from Mesh Transformer JAX which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, CodeGenModel): module.gradient_checkpointing = value CODEGEN_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`CodeGenConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ CODEGEN_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoProcenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_attention_heads,)` or `(n_layer, num_attention_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_dim)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert *input_ids* indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare CodeGen Model transformer outputting raw hidden-states without any specific head on top.", CODEGEN_START_DOCSTRING, ) class CodeGenModel(CodeGenPreTrainedModel): def __init__(self, config): super().__init__(config) self.embed_dim = config.n_embd self.vocab_size = config.vocab_size self.wte = nn.Embedding(config.vocab_size, self.embed_dim) self.drop = nn.Dropout(config.embd_pdrop) self.h = nn.ModuleList([CodeGenBlock(config) for _ in range(config.n_layer)]) self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) self.rotary_dim = min(config.rotary_dim, config.n_ctx // config.num_attention_heads) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.wte def set_input_embeddings(self, new_embeddings): self.wte = new_embeddings @add_start_docstrings_to_model_forward(CODEGEN_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPast, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) batch_size = input_ids.shape[0] elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] batch_size = inputs_embeds.shape[0] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if token_type_ids is not None: token_type_ids = token_type_ids.view(-1, input_shape[-1]) if position_ids is not None: position_ids = position_ids.view(-1, input_shape[-1]).long() if past_key_values is None: past_length = 0 past_key_values = tuple([None] * len(self.h)) else: past_length = past_key_values[0][0].size(-2) if position_ids is None: position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device) position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1]) # Attention mask. if attention_mask is not None: if batch_size <= 0: raise ValueError("batch_size has to be defined and > 0") attention_mask = attention_mask.view(batch_size, -1) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. attention_mask = attention_mask[:, None, None, :] # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and the dtype's smallest value for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x num_attention_heads x N x N # head_mask has shape n_layer x batch x num_attention_heads x N x N head_mask = self.get_head_mask(head_mask, self.config.n_layer) if inputs_embeds is None: inputs_embeds = self.wte(input_ids) hidden_states = inputs_embeds if token_type_ids is not None: token_type_embeds = self.wte(token_type_ids) hidden_states = hidden_states + token_type_embeds hidden_states = self.drop(hidden_states) output_shape = input_shape + (hidden_states.size(-1),) if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting " "`use_cache=False`..." ) use_cache = False presents = () if use_cache else None all_self_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): # None for past_key_value return module(*inputs, use_cache, output_attentions) return custom_forward outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, None, attention_mask, position_ids, head_mask[i], ) else: outputs = block( hidden_states=hidden_states, layer_past=layer_past, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask[i], use_cache=use_cache, output_attentions=output_attentions, ) hidden_states = outputs[0] if use_cache is True: presents = presents + (outputs[1],) if output_attentions: all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) hidden_states = self.ln_f(hidden_states) hidden_states = hidden_states.view(output_shape) # Add last hidden state if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attentions, ) @add_start_docstrings( """ The CodeGen Model transformer with a language modeling head on top. """, CODEGEN_START_DOCSTRING, ) class CodeGenForCausalLM(CodeGenPreTrainedModel): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): super().__init__(config) self.transformer = CodeGenModel(config) self.lm_head = nn.Linear(config.n_embd, config.vocab_size) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs): token_type_ids = kwargs.get("token_type_ids", None) # only last token for inputs_ids if past is defined in kwargs if past_key_values: input_ids = input_ids[:, -1].unsqueeze(-1) if token_type_ids is not None: token_type_ids = token_type_ids[:, -1].unsqueeze(-1) attention_mask = kwargs.get("attention_mask", None) position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -1].unsqueeze(-1) return { "input_ids": input_ids, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "position_ids": position_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } @add_start_docstrings_to_model_forward(CODEGEN_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] # make sure sampling in fp16 works correctly and # compute loss in fp32 to match with mesh-tf version # https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179 lm_logits = self.lm_head(hidden_states).to(torch.float32) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(lm_logits.device) # Shift so that tokens < n predict n shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) loss = loss.to(hidden_states.dtype) if not return_dict: output = (lm_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=lm_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @staticmethod def _reorder_cache( past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor ) -> Tuple[Tuple[torch.Tensor]]: """ This function is used to re-order the `past_key_values` cache if [`~PretrainedModel.beam_search`] or [`~PretrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct beam_idx at every generation step. """ return tuple( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past) for layer_past in past_key_values )
transformers-main
src/transformers/models/codegen/modeling_codegen.py
# Copyright 2022 Salesforce authors, The EleutherAI, and HuggingFace Teams. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _import_structure = { "configuration_codegen": ["CODEGEN_PRETRAINED_CONFIG_ARCHIVE_MAP", "CodeGenConfig", "CodeGenOnnxConfig"], "tokenization_codegen": ["CodeGenTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_codegen_fast"] = ["CodeGenTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_codegen"] = [ "CODEGEN_PRETRAINED_MODEL_ARCHIVE_LIST", "CodeGenForCausalLM", "CodeGenModel", "CodeGenPreTrainedModel", ] if TYPE_CHECKING: from .configuration_codegen import CODEGEN_PRETRAINED_CONFIG_ARCHIVE_MAP, CodeGenConfig, CodeGenOnnxConfig from .tokenization_codegen import CodeGenTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_codegen_fast import CodeGenTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_codegen import ( CODEGEN_PRETRAINED_MODEL_ARCHIVE_LIST, CodeGenForCausalLM, CodeGenModel, CodeGenPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers-main
src/transformers/models/codegen/__init__.py
# coding=utf-8 # Copyright 2022 Salesforce authors, The EleutherAI, and HuggingFace Teams. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ CodeGen model configuration""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging logger = logging.get_logger(__name__) CODEGEN_PRETRAINED_CONFIG_ARCHIVE_MAP = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class CodeGenConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`CodeGenModel`]. It is used to instantiate a CodeGen model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the CodeGen [Salesforce/codegen-2B-mono](https://huggingface.co/Salesforce/codegen-2B-mono) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50400): Vocabulary size of the CodeGen model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`CodeGenModel`]. n_positions (`int`, *optional*, defaults to 2048): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). n_embd (`int`, *optional*, defaults to 4096): Dimensionality of the embeddings and hidden states. n_layer (`int`, *optional*, defaults to 28): Number of hidden layers in the Transformer encoder. n_head (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. rotary_dim (`int`, *optional*, defaults to 64): Number of dimensions in the embedding that Rotary Position Embedding is applied to. n_inner (`int`, *optional*, defaults to None): Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd activation_function (`str`, *optional*, defaults to `"gelu_new"`): Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`. resid_pdrop (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. embd_pdrop (`int`, *optional*, defaults to 0.1): The dropout ratio for the embeddings. attn_pdrop (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention. layer_norm_epsilon (`float`, *optional*, defaults to 1e-5): The epsilon to use in the layer normalization layers. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Example: ```python >>> from transformers import CodeGenConfig, CodeGenModel >>> # Initializing a CodeGen 6B configuration >>> configuration = CodeGenConfig() >>> # Initializing a model (with random weights) from the configuration >>> model = CodeGenModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "codegen" attribute_map = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self, vocab_size=50400, n_positions=2048, n_ctx=2048, n_embd=4096, n_layer=28, n_head=16, rotary_dim=64, n_inner=None, activation_function="gelu_new", resid_pdrop=0.0, embd_pdrop=0.0, attn_pdrop=0.0, layer_norm_epsilon=1e-5, initializer_range=0.02, use_cache=True, bos_token_id=50256, eos_token_id=50256, tie_word_embeddings=False, **kwargs, ): self.vocab_size = vocab_size self.n_ctx = n_ctx self.n_positions = n_positions self.n_embd = n_embd self.n_layer = n_layer self.n_head = n_head self.n_inner = n_inner self.rotary_dim = rotary_dim self.activation_function = activation_function self.resid_pdrop = resid_pdrop self.embd_pdrop = embd_pdrop self.attn_pdrop = attn_pdrop self.layer_norm_epsilon = layer_norm_epsilon self.initializer_range = initializer_range self.use_cache = use_cache self.bos_token_id = bos_token_id self.eos_token_id = eos_token_id super().__init__( bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs ) # Copied from transformers.models.gpt2.configuration_gpt2.GPT2OnnxConfig class CodeGenOnnxConfig(OnnxConfigWithPast): def __init__( self, config: PretrainedConfig, task: str = "default", patching_specs: List[PatchingSpec] = None, use_past: bool = False, ): super().__init__(config, task=task, patching_specs=patching_specs, use_past=use_past) if not getattr(self._config, "pad_token_id", None): # TODO: how to do that better? self._config.pad_token_id = 0 @property def inputs(self) -> Mapping[str, Mapping[int, str]]: common_inputs = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}}) if self.use_past: self.fill_with_past_key_values_(common_inputs, direction="inputs") common_inputs["attention_mask"] = {0: "batch", 1: "past_sequence + sequence"} else: common_inputs["attention_mask"] = {0: "batch", 1: "sequence"} return common_inputs @property def num_layers(self) -> int: return self._config.n_layer @property def num_attention_heads(self) -> int: return self._config.n_head def generate_dummy_inputs( self, tokenizer: PreTrainedTokenizer, batch_size: int = -1, seq_length: int = -1, is_pair: bool = False, framework: Optional[TensorType] = None, ) -> Mapping[str, Any]: common_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs( tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework ) # We need to order the input in the way they appears in the forward() ordered_inputs = OrderedDict({"input_ids": common_inputs["input_ids"]}) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") else: import torch batch, seqlen = common_inputs["input_ids"].shape # Not using the same length for past_key_values past_key_values_length = seqlen + 2 past_shape = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) ordered_inputs["past_key_values"] = [ (torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(self.num_layers) ] ordered_inputs["attention_mask"] = common_inputs["attention_mask"] if self.use_past: mask_dtype = ordered_inputs["attention_mask"].dtype ordered_inputs["attention_mask"] = torch.cat( [ordered_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1 ) return ordered_inputs @property def default_onnx_opset(self) -> int: return 13
transformers-main
src/transformers/models/codegen/configuration_codegen.py
# coding=utf-8 # Copyright 2022 The Salesforce authors, The Open AI Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for CodeGen""" import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np import regex as re from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from ...tokenization_utils import AddedToken, PreTrainedTokenizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json", }, "merges_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "Salesforce/codegen-350M-mono": 2048, } @lru_cache() def bytes_to_unicode(): """ Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control characters the bpe code barfs on. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. """ bs = ( list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) ) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8 + n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """ Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs class CodeGenTokenizer(PreTrainedTokenizer): """ Construct a CodeGen tokenizer. Based on byte-level Byte-Pair-Encoding. This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will be encoded differently whether it is at the beginning of the sentence (without space) or not: ```python >>> from transformers import CodeGenTokenizer >>> tokenizer = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono") >>> tokenizer("Hello world")["input_ids"] [15496, 995] >>> tokenizer(" Hello world")["input_ids"] [18435, 995] ``` You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance. <Tip> When used with `is_split_into_words=True`, this tokenizer will add a space before each word (even the first one). </Tip> This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. errors (`str`, *optional*, defaults to `"replace"`): Paradigm to follow when decoding bytes to UTF-8. See [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. unk_token (`str`, *optional*, defaults to `<|endoftext|>`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (`str`, *optional*, defaults to `<|endoftext|>`): The beginning of sequence token. eos_token (`str`, *optional*, defaults to `<|endoftext|>`): The end of sequence token. add_prefix_space (`bool`, *optional*, defaults to `False`): Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. (CodeGen tokenizer detect beginning of words by the preceding space). """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, merges_file, errors="replace", unk_token="<|endoftext|>", bos_token="<|endoftext|>", eos_token="<|endoftext|>", pad_token=None, add_prefix_space=False, add_bos_token=False, **kwargs, ): bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token super().__init__( errors=errors, unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, pad_token=pad_token, add_prefix_space=add_prefix_space, add_bos_token=add_bos_token, **kwargs, ) self.add_bos_token = add_bos_token with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.decoder = {v: k for k, v in self.encoder.items()} self.errors = errors # how to handle errors in decoding self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} with open(merges_file, encoding="utf-8") as merges_handle: bpe_merges = merges_handle.read().split("\n")[1:-1] bpe_merges = [tuple(merge.split()) for merge in bpe_merges] self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) self.cache = {} self.add_prefix_space = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") @property def vocab_size(self): return len(self.encoder) def get_vocab(self): return dict(self.encoder, **self.added_tokens_encoder) def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token) pairs = get_pairs(word) if not pairs: return token while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = " ".join(word) self.cache[token] = word return word def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): if self.add_bos_token: bos_token_ids = [self.bos_token_id] else: bos_token_ids = [] output = bos_token_ids + token_ids_0 if token_ids_1 is None: return output return output + bos_token_ids + token_ids_1 def _tokenize(self, text): """Tokenize a string.""" bpe_tokens = [] for token in re.findall(self.pat, text): token = "".join( self.byte_encoder[b] for b in token.encode("utf-8") ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" ")) return bpe_tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" text = "".join(tokens) text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors) return text def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) merge_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") index = 0 with open(merge_file, "w", encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) index = token_index writer.write(" ".join(bpe_tokens) + "\n") index += 1 return vocab_file, merge_file def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space) if is_split_into_words or add_prefix_space: text = " " + text return (text, kwargs) def decode( self, token_ids: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"], skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = None, truncate_before_pattern: Optional[List[str]] = None, **kwargs, ) -> str: """ Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special tokens and clean up tokenization spaces. Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`. Args: token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`): List of tokenized input ids. Can be obtained using the `__call__` method. skip_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not to remove special tokens in the decoding. clean_up_tokenization_spaces (`bool`, *optional*): Whether or not to clean up the tokenization spaces. If `None`, will default to `self.clean_up_tokenization_spaces` (available in the `tokenizer_config`). truncate_before_pattern (`List[str]`, *optional*, defaults to `None`): A list of regular expression strings that will be used to truncate the returned string. This can be used to remove extra pieces of code (e.g. truncate if observing a comment symbol "#" at the beginning of a new line). An example pattern could be `["^#", re.escape("<|endoftext|>"), "^'''", "\n\n\n"]`. kwargs (additional keyword arguments, *optional*): Will be passed to the underlying model specific decode method. Returns: `str`: The decoded sentence. """ decoded_text = super()._decode( token_ids=token_ids, skip_special_tokens=skip_special_tokens, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs, ) if truncate_before_pattern is not None and len(truncate_before_pattern) > 0: decoded_text = self.truncate(decoded_text, truncate_before_pattern) return decoded_text def truncate(self, completion, truncate_before_pattern): def find_re(string, pattern, start_pos): m = pattern.search(string, start_pos) return m.start() if m else -1 terminals = [re.compile(pattern, re.MULTILINE) for pattern in truncate_before_pattern] prints = list(re.finditer("^print", completion, re.MULTILINE)) if len(prints) > 1: completion = completion[: prints[1].start()] defs = list(re.finditer("^def", completion, re.MULTILINE)) if len(defs) > 1: completion = completion[: defs[1].start()] start_pos = 0 terminals_pos = [ pos for pos in [find_re(completion, terminal, start_pos) for terminal in terminals] if pos != -1 ] if len(terminals_pos) > 0: return completion[: min(terminals_pos)] else: return completion
transformers-main
src/transformers/models/codegen/tokenization_codegen.py
# coding=utf-8 # Copyright 2022 The Salesforce authors, The Open AI Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for OpenAI GPT.""" import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json", }, "merges_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt", }, "tokenizer_file": { "Salesforce/codegen-350M-mono": ( "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json" ), }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "Salesforce/codegen-350M-mono": 2048, } class CodeGenTokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" CodeGen tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level Byte-Pair-Encoding. This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will be encoded differently whether it is at the beginning of the sentence (without space) or not: ```python >>> from transformers import CodeGenTokenizerFast >>> tokenizer = CodeGenTokenizerFast.from_pretrained("Salesforce/codegen-350M-mono") >>> tokenizer("Hello world")["input_ids"] [15496, 995] >>> tokenizer(" Hello world")["input_ids"] [18435, 995] ``` You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer, but since the model was not pretrained this way, it might yield a decrease in performance. <Tip> When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`. </Tip> This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. errors (`str`, *optional*, defaults to `"replace"`): Paradigm to follow when decoding bytes to UTF-8. See [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. unk_token (`str`, *optional*, defaults to `<|endoftext|>`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (`str`, *optional*, defaults to `<|endoftext|>`): The beginning of sequence token. eos_token (`str`, *optional*, defaults to `<|endoftext|>`): The end of sequence token. add_prefix_space (`bool`, *optional*, defaults to `False`): Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. (CodeGen tokenizer detect beginning of words by the preceding space). trim_offsets (`bool`, *optional*, defaults to `True`): Whether or not the post-processing step should trim offsets to avoid including whitespaces. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] slow_tokenizer_class = CodeGenTokenizer def __init__( self, vocab_file=None, merges_file=None, tokenizer_file=None, unk_token="<|endoftext|>", bos_token="<|endoftext|>", eos_token="<|endoftext|>", add_prefix_space=False, **kwargs, ): super().__init__( vocab_file, merges_file, tokenizer_file=tokenizer_file, unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, add_prefix_space=add_prefix_space, **kwargs, ) if kwargs.pop("add_bos_token", False): model_id = kwargs.pop("name_or_path", "") raise ValueError( "Currenty GPT2's fast tokenizer does NOT support adding a BOS token." "Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n" f"`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n" f"`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n" "This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005." " so that the fast tokenizer works correctly." ) pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space: pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type")) pre_tok_state["add_prefix_space"] = add_prefix_space self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state) self.add_prefix_space = add_prefix_space def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding: is_split_into_words = kwargs.get("is_split_into_words", False) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*args, **kwargs) def _encode_plus(self, *args, **kwargs) -> BatchEncoding: is_split_into_words = kwargs.get("is_split_into_words", False) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*args, **kwargs) def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: files = self._tokenizer.model.save(save_directory, name=filename_prefix) return tuple(files) def decode( self, token_ids: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"], skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = None, truncate_before_pattern: Optional[List[str]] = None, **kwargs, ) -> str: """ Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special tokens and clean up tokenization spaces. Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`. Args: token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`): List of tokenized input ids. Can be obtained using the `__call__` method. skip_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not to remove special tokens in the decoding. clean_up_tokenization_spaces (`bool`, *optional*): Whether or not to clean up the tokenization spaces. If `None`, will default to `self.clean_up_tokenization_spaces` (available in the `tokenizer_config`). truncate_before_pattern (`List[str]`, *optional*, defaults to `None`): A list of regular expression strings that will be used to truncate the returned string. This can be used to remove extra pieces of code (e.g. truncate if observing a comment symbol "#" at the beginning of a new line). An example pattern could be `["^#", re.escape("<|endoftext|>"), "^'''", "\n\n\n"]`. kwargs (additional keyword arguments, *optional*): Will be passed to the underlying model specific decode method. Returns: `str`: The decoded sentence. """ decoded_text = super().decode( token_ids=token_ids, skip_special_tokens=skip_special_tokens, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs, ) if truncate_before_pattern is not None and len(truncate_before_pattern) > 0: decoded_text = self.truncate(decoded_text, truncate_before_pattern) return decoded_text def truncate(self, completion, truncate_before_pattern): def find_re(string, pattern, start_pos): m = pattern.search(string, start_pos) return m.start() if m else -1 terminals = [re.compile(pattern, re.MULTILINE) for pattern in truncate_before_pattern] prints = list(re.finditer("^print", completion, re.MULTILINE)) if len(prints) > 1: completion = completion[: prints[1].start()] defs = list(re.finditer("^def", completion, re.MULTILINE)) if len(defs) > 1: completion = completion[: defs[1].start()] start_pos = 0 terminals_pos = [ pos for pos in [find_re(completion, terminal, start_pos) for terminal in terminals] if pos != -1 ] if len(terminals_pos) > 0: return completion[: min(terminals_pos)] else: return completion
transformers-main
src/transformers/models/codegen/tokenization_codegen_fast.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Feature extractor class for DeiT.""" import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor logger = logging.get_logger(__name__) class DeiTFeatureExtractor(DeiTImageProcessor): def __init__(self, *args, **kwargs) -> None: warnings.warn( "The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DeiTImageProcessor instead.", FutureWarning, ) super().__init__(*args, **kwargs)
transformers-main
src/transformers/models/deit/feature_extraction_deit.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert DeiT distilled checkpoints from the timm library.""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) def create_rename_keys(config, base_model=False): rename_keys = [] for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"deit.encoder.layer.{i}.layernorm_before.weight")) rename_keys.append((f"blocks.{i}.norm1.bias", f"deit.encoder.layer.{i}.layernorm_before.bias")) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"deit.encoder.layer.{i}.attention.output.dense.weight")) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"deit.encoder.layer.{i}.attention.output.dense.bias")) rename_keys.append((f"blocks.{i}.norm2.weight", f"deit.encoder.layer.{i}.layernorm_after.weight")) rename_keys.append((f"blocks.{i}.norm2.bias", f"deit.encoder.layer.{i}.layernorm_after.bias")) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"deit.encoder.layer.{i}.intermediate.dense.weight")) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"deit.encoder.layer.{i}.intermediate.dense.bias")) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"deit.encoder.layer.{i}.output.dense.weight")) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"deit.encoder.layer.{i}.output.dense.bias")) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "deit.embeddings.cls_token"), ("dist_token", "deit.embeddings.distillation_token"), ("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "deit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" rename_keys = [(pair[0], pair[1][4:]) if pair[1].startswith("deit") else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("norm.weight", "deit.layernorm.weight"), ("norm.bias", "deit.layernorm.bias"), ("head.weight", "cls_classifier.weight"), ("head.bias", "cls_classifier.bias"), ("head_dist.weight", "distillation_classifier.weight"), ("head_dist.bias", "distillation_classifier.bias"), ] ) return rename_keys # we split up the matrix of each encoder layer into queries, keys and values def read_in_q_k_v(state_dict, config, base_model=False): for i in range(config.num_hidden_layers): if base_model: prefix = "" else: prefix = "deit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) in_proj_weight = state_dict.pop(f"blocks.{i}.attn.qkv.weight") in_proj_bias = state_dict.pop(f"blocks.{i}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[ : config.hidden_size, : ] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.bias"] = in_proj_bias[: config.hidden_size] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.bias"] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[ -config.hidden_size :, : ] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.bias"] = in_proj_bias[-config.hidden_size :] def rename_key(dct, old, new): val = dct.pop(old) dct[new] = val # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @torch.no_grad() def convert_deit_checkpoint(deit_name, pytorch_dump_folder_path): """ Copy/paste/tweak model's weights to our DeiT structure. """ # define default DeiT configuration config = DeiTConfig() # all deit models have fine-tuned heads base_model = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size config.num_labels = 1000 repo_id = "huggingface/label-files" filename = "imagenet-1k-id2label.json" id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} config.patch_size = int(deit_name[-6:-4]) config.image_size = int(deit_name[-3:]) # size of the architecture if deit_name[9:].startswith("tiny"): config.hidden_size = 192 config.intermediate_size = 768 config.num_hidden_layers = 12 config.num_attention_heads = 3 elif deit_name[9:].startswith("small"): config.hidden_size = 384 config.intermediate_size = 1536 config.num_hidden_layers = 12 config.num_attention_heads = 6 if deit_name[9:].startswith("base"): pass elif deit_name[4:].startswith("large"): config.hidden_size = 1024 config.intermediate_size = 4096 config.num_hidden_layers = 24 config.num_attention_heads = 16 # load original model from timm timm_model = timm.create_model(deit_name, pretrained=True) timm_model.eval() # load state_dict of original model, remove and rename some keys state_dict = timm_model.state_dict() rename_keys = create_rename_keys(config, base_model) for src, dest in rename_keys: rename_key(state_dict, src, dest) read_in_q_k_v(state_dict, config, base_model) # load HuggingFace model model = DeiTForImageClassificationWithTeacher(config).eval() model.load_state_dict(state_dict) # Check outputs on an image, prepared by DeiTImageProcessor size = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 image_processor = DeiTImageProcessor(size=size, crop_size=config.image_size) encoding = image_processor(images=prepare_img(), return_tensors="pt") pixel_values = encoding["pixel_values"] outputs = model(pixel_values) timm_logits = timm_model(pixel_values) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(timm_logits, outputs.logits, atol=1e-3) Path(pytorch_dump_folder_path).mkdir(exist_ok=True) print(f"Saving model {deit_name} to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) print(f"Saving image processor to {pytorch_dump_folder_path}") image_processor.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--deit_name", default="vit_deit_base_distilled_patch16_224", type=str, help="Name of the DeiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) args = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
transformers-main
src/transformers/models/deit/convert_deit_timm_to_pytorch.py
# coding=utf-8 # Copyright 2021 Facebook AI Research (FAIR), Ross Wightman, The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch DeiT model.""" import collections.abc import math from dataclasses import dataclass from typing import Optional, Set, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPooling, ImageClassifierOutput, MaskedImageModelingOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_deit import DeiTConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "DeiTConfig" # Base docstring _CHECKPOINT_FOR_DOC = "facebook/deit-base-distilled-patch16-224" _EXPECTED_OUTPUT_SHAPE = [1, 198, 768] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "facebook/deit-base-distilled-patch16-224" _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" DEIT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/deit-base-distilled-patch16-224", # See all DeiT models at https://huggingface.co/models?filter=deit ] class DeiTEmbeddings(nn.Module): """ Construct the CLS token, distillation token, position and patch embeddings. Optionally, also the mask token. """ def __init__(self, config: DeiTConfig, use_mask_token: bool = False) -> None: super().__init__() self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) self.distillation_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) if use_mask_token else None self.patch_embeddings = DeiTPatchEmbeddings(config) num_patches = self.patch_embeddings.num_patches self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 2, config.hidden_size)) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, pixel_values: torch.Tensor, bool_masked_pos: Optional[torch.BoolTensor] = None) -> torch.Tensor: embeddings = self.patch_embeddings(pixel_values) batch_size, seq_length, _ = embeddings.size() if bool_masked_pos is not None: mask_tokens = self.mask_token.expand(batch_size, seq_length, -1) # replace the masked visual tokens by mask_tokens mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens) embeddings = embeddings * (1.0 - mask) + mask_tokens * mask cls_tokens = self.cls_token.expand(batch_size, -1, -1) distillation_tokens = self.distillation_token.expand(batch_size, -1, -1) embeddings = torch.cat((cls_tokens, distillation_tokens, embeddings), dim=1) embeddings = embeddings + self.position_embeddings embeddings = self.dropout(embeddings) return embeddings class DeiTPatchEmbeddings(nn.Module): """ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a Transformer. """ def __init__(self, config): super().__init__() image_size, patch_size = config.image_size, config.patch_size num_channels, hidden_size = config.num_channels, config.hidden_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.num_patches = num_patches self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: batch_size, num_channels, height, width = pixel_values.shape if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) if height != self.image_size[0] or width != self.image_size[1]: raise ValueError( f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})." ) x = self.projection(pixel_values).flatten(2).transpose(1, 2) return x # Copied from transformers.models.vit.modeling_vit.ViTSelfAttention with ViT->DeiT class DeiTSelfAttention(nn.Module): def __init__(self, config: DeiTConfig) -> None: super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " f"heads {config.num_attention_heads}." ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs # Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->DeiT class DeiTSelfOutput(nn.Module): """ The residual connection is defined in DeiTLayer instead of here (as is the case with other models), due to the layernorm applied before each block. """ def __init__(self, config: DeiTConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states # Copied from transformers.models.vit.modeling_vit.ViTAttention with ViT->DeiT class DeiTAttention(nn.Module): def __init__(self, config: DeiTConfig) -> None: super().__init__() self.attention = DeiTSelfAttention(config) self.output = DeiTSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads: Set[int]) -> None: if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads ) # Prune linear layers self.attention.query = prune_linear_layer(self.attention.query, index) self.attention.key = prune_linear_layer(self.attention.key, index) self.attention.value = prune_linear_layer(self.attention.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: self_outputs = self.attention(hidden_states, head_mask, output_attentions) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.vit.modeling_vit.ViTIntermediate with ViT->DeiT class DeiTIntermediate(nn.Module): def __init__(self, config: DeiTConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.vit.modeling_vit.ViTOutput with ViT->DeiT class DeiTOutput(nn.Module): def __init__(self, config: DeiTConfig) -> None: super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + input_tensor return hidden_states # Copied from transformers.models.vit.modeling_vit.ViTLayer with ViT->DeiT class DeiTLayer(nn.Module): """This corresponds to the Block class in the timm implementation.""" def __init__(self, config: DeiTConfig) -> None: super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = DeiTAttention(config) self.intermediate = DeiTIntermediate(config) self.output = DeiTOutput(config) self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: self_attention_outputs = self.attention( self.layernorm_before(hidden_states), # in DeiT, layernorm is applied before self-attention head_mask, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights # first residual connection hidden_states = attention_output + hidden_states # in DeiT, layernorm is also applied after self-attention layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) # second residual connection is done here layer_output = self.output(layer_output, hidden_states) outputs = (layer_output,) + outputs return outputs # Copied from transformers.models.vit.modeling_vit.ViTEncoder with ViT->DeiT class DeiTEncoder(nn.Module): def __init__(self, config: DeiTConfig) -> None: super().__init__() self.config = config self.layer = nn.ModuleList([DeiTLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[tuple, BaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer_module), hidden_states, layer_head_mask, ) else: layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class DeiTPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = DeiTConfig base_model_prefix = "deit" main_input_name = "pixel_values" supports_gradient_checkpointing = True _no_split_modules = ["DeiTLayer"] def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Upcast the input in `fp32` and cast it back to desired `dtype` to avoid # `trunc_normal_cpu` not implemented in `half` issues module.weight.data = nn.init.trunc_normal_( module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range ).to(module.weight.dtype) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def _set_gradient_checkpointing(self, module: DeiTEncoder, value: bool = False) -> None: if isinstance(module, DeiTEncoder): module.gradient_checkpointing = value DEIT_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`DeiTConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ DEIT_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`DeiTImageProcessor.__call__`] for details. head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare DeiT Model transformer outputting raw hidden-states without any specific head on top.", DEIT_START_DOCSTRING, ) class DeiTModel(DeiTPreTrainedModel): def __init__(self, config: DeiTConfig, add_pooling_layer: bool = True, use_mask_token: bool = False) -> None: super().__init__(config) self.config = config self.embeddings = DeiTEmbeddings(config, use_mask_token=use_mask_token) self.encoder = DeiTEncoder(config) self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.pooler = DeiTPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> DeiTPatchEmbeddings: return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, bool_masked_pos: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*): Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) # TODO: maybe have a cleaner way to cast the input (from `ImageProcessor` side?) expected_dtype = self.embeddings.patch_embeddings.projection.weight.dtype if pixel_values.dtype != expected_dtype: pixel_values = pixel_values.to(expected_dtype) embedding_output = self.embeddings(pixel_values, bool_masked_pos=bool_masked_pos) encoder_outputs = self.encoder( embedding_output, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,) return head_outputs + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) # Copied from transformers.models.vit.modeling_vit.ViTPooler with ViT->DeiT class DeiTPooler(nn.Module): def __init__(self, config: DeiTConfig): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output @add_start_docstrings( """DeiT Model with a decoder on top for masked image modeling, as proposed in [SimMIM](https://arxiv.org/abs/2111.09886). <Tip> Note that we provide a script to pre-train this model on custom data in our [examples directory](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-pretraining). </Tip> """, DEIT_START_DOCSTRING, ) class DeiTForMaskedImageModeling(DeiTPreTrainedModel): def __init__(self, config: DeiTConfig) -> None: super().__init__(config) self.deit = DeiTModel(config, add_pooling_layer=False, use_mask_token=True) self.decoder = nn.Sequential( nn.Conv2d( in_channels=config.hidden_size, out_channels=config.encoder_stride**2 * config.num_channels, kernel_size=1, ), nn.PixelShuffle(config.encoder_stride), ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=MaskedImageModelingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Optional[torch.Tensor] = None, bool_masked_pos: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, MaskedImageModelingOutput]: r""" bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`): Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, DeiTForMaskedImageModeling >>> import torch >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224") >>> model = DeiTForMaskedImageModeling.from_pretrained("facebook/deit-base-distilled-patch16-224") >>> num_patches = (model.config.image_size // model.config.patch_size) ** 2 >>> pixel_values = image_processor(images=image, return_tensors="pt").pixel_values >>> # create random boolean mask of shape (batch_size, num_patches) >>> bool_masked_pos = torch.randint(low=0, high=2, size=(1, num_patches)).bool() >>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos) >>> loss, reconstructed_pixel_values = outputs.loss, outputs.reconstruction >>> list(reconstructed_pixel_values.shape) [1, 3, 224, 224] ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.deit( pixel_values, bool_masked_pos=bool_masked_pos, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] # Reshape to (batch_size, num_channels, height, width) sequence_output = sequence_output[:, 1:-1] batch_size, sequence_length, num_channels = sequence_output.shape height = width = int(sequence_length**0.5) sequence_output = sequence_output.permute(0, 2, 1).reshape(batch_size, num_channels, height, width) # Reconstruct pixel values reconstructed_pixel_values = self.decoder(sequence_output) masked_im_loss = None if bool_masked_pos is not None: size = self.config.image_size // self.config.patch_size bool_masked_pos = bool_masked_pos.reshape(-1, size, size) mask = ( bool_masked_pos.repeat_interleave(self.config.patch_size, 1) .repeat_interleave(self.config.patch_size, 2) .unsqueeze(1) .contiguous() ) reconstruction_loss = nn.functional.l1_loss(pixel_values, reconstructed_pixel_values, reduction="none") masked_im_loss = (reconstruction_loss * mask).sum() / (mask.sum() + 1e-5) / self.config.num_channels if not return_dict: output = (reconstructed_pixel_values,) + outputs[1:] return ((masked_im_loss,) + output) if masked_im_loss is not None else output return MaskedImageModelingOutput( loss=masked_im_loss, reconstruction=reconstructed_pixel_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ DeiT Model transformer with an image classification head on top (a linear layer on top of the final hidden state of the [CLS] token) e.g. for ImageNet. """, DEIT_START_DOCSTRING, ) class DeiTForImageClassification(DeiTPreTrainedModel): def __init__(self, config: DeiTConfig) -> None: super().__init__(config) self.num_labels = config.num_labels self.deit = DeiTModel(config, add_pooling_layer=False) # Classifier head self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ImageClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, ImageClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, DeiTForImageClassification >>> import torch >>> from PIL import Image >>> import requests >>> torch.manual_seed(3) # doctest: +IGNORE_RESULT >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> # note: we are loading a DeiTForImageClassificationWithTeacher from the hub here, >>> # so the head will be randomly initialized, hence the predictions will be random >>> image_processor = AutoImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224") >>> model = DeiTForImageClassification.from_pretrained("facebook/deit-base-distilled-patch16-224") >>> inputs = image_processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_class_idx = logits.argmax(-1).item() >>> print("Predicted class:", model.config.id2label[predicted_class_idx]) Predicted class: magpie ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.deit( pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output[:, 0, :]) # we don't use the distillation token loss = None if labels is not None: labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @dataclass class DeiTForImageClassificationWithTeacherOutput(ModelOutput): """ Output type of [`DeiTForImageClassificationWithTeacher`]. Args: logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): Prediction scores as the average of the cls_logits and distillation logits. cls_logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): Prediction scores of the classification head (i.e. the linear layer on top of the final hidden state of the class token). distillation_logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): Prediction scores of the distillation head (i.e. the linear layer on top of the final hidden state of the distillation token). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ logits: torch.FloatTensor = None cls_logits: torch.FloatTensor = None distillation_logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @add_start_docstrings( """ DeiT Model transformer with image classification heads on top (a linear layer on top of the final hidden state of the [CLS] token and a linear layer on top of the final hidden state of the distillation token) e.g. for ImageNet. .. warning:: This model supports inference-only. Fine-tuning with distillation (i.e. with a teacher) is not yet supported. """, DEIT_START_DOCSTRING, ) class DeiTForImageClassificationWithTeacher(DeiTPreTrainedModel): def __init__(self, config: DeiTConfig) -> None: super().__init__(config) self.num_labels = config.num_labels self.deit = DeiTModel(config, add_pooling_layer=False) # Classifier heads self.cls_classifier = ( nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() ) self.distillation_classifier = ( nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=DeiTForImageClassificationWithTeacherOutput, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, DeiTForImageClassificationWithTeacherOutput]: return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.deit( pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] cls_logits = self.cls_classifier(sequence_output[:, 0, :]) distillation_logits = self.distillation_classifier(sequence_output[:, 1, :]) # during inference, return the average of both classifier predictions logits = (cls_logits + distillation_logits) / 2 if not return_dict: output = (logits, cls_logits, distillation_logits) + outputs[1:] return output return DeiTForImageClassificationWithTeacherOutput( logits=logits, cls_logits=cls_logits, distillation_logits=distillation_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers-main
src/transformers/models/deit/modeling_deit.py
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _import_structure = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["feature_extraction_deit"] = ["DeiTFeatureExtractor"] _import_structure["image_processing_deit"] = ["DeiTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_deit"] = [ "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "DeiTForImageClassification", "DeiTForImageClassificationWithTeacher", "DeiTForMaskedImageModeling", "DeiTModel", "DeiTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_deit"] = [ "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher", "TFDeiTForMaskedImageModeling", "TFDeiTModel", "TFDeiTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers-main
src/transformers/models/deit/__init__.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for DeiT.""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL logger = logging.get_logger(__name__) class DeiTImageProcessor(BaseImageProcessor): r""" Constructs a DeiT image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by `do_resize` in `preprocess`. size (`Dict[str, int]` *optional*, defaults to `{"height": 256, "width": 256}`): Size of the image after `resize`. Can be overridden by `size` in `preprocess`. resample (`PILImageResampling` filter, *optional*, defaults to `PILImageResampling.BICUBIC`): Resampling filter to use if resizing the image. Can be overridden by `resample` in `preprocess`. do_center_crop (`bool`, *optional*, defaults to `True`): Whether to center crop the image. If the input size is smaller than `crop_size` along any edge, the image is padded with 0's and then center cropped. Can be overridden by `do_center_crop` in `preprocess`. crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`): Desired output size when applying center-cropping. Can be overridden by `crop_size` in `preprocess`. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` parameter in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the `preprocess` method. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PIL.Image.BICUBIC, do_center_crop: bool = True, crop_size: Dict[str, int] = None, rescale_factor: Union[int, float] = 1 / 255, do_rescale: bool = True, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, **kwargs, ) -> None: super().__init__(**kwargs) size = size if size is not None else {"height": 256, "width": 256} size = get_size_dict(size) crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224} crop_size = get_size_dict(crop_size, param_name="crop_size") self.do_resize = do_resize self.size = size self.resample = resample self.do_center_crop = do_center_crop self.crop_size = crop_size self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD # Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize with PILImageResampling.BILINEAR->PILImageResampling.BICUBIC def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.BICUBIC, data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize an image to `(size["height"], size["width"])`. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): `PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BICUBIC`. data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. Returns: `np.ndarray`: The resized image. """ size = get_size_dict(size) if "height" not in size or "width" not in size: raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}") output_size = (size["height"], size["width"]) return resize(image, size=output_size, resample=resample, data_format=data_format, **kwargs) def preprocess( self, images: ImageInput, do_resize: bool = None, size: Dict[str, int] = None, resample=None, do_center_crop: bool = None, crop_size: Dict[str, int] = None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: ChannelDimension = ChannelDimension.FIRST, **kwargs, ) -> PIL.Image.Image: """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the image after `resize`. resample (`PILImageResampling`, *optional*, defaults to `self.resample`): PILImageResampling filter to use if resizing the image Only has an effect if `do_resize` is set to `True`. do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`): Whether to center crop the image. crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`): Size of the image after center crop. If one edge the image is smaller than `crop_size`, it will be padded with zeros and then cropped do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image values between [0 - 1]. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - `None`: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `ChannelDimension.LAST`: image in (height, width, num_channels) format. """ do_resize = do_resize if do_resize is not None else self.do_resize resample = resample if resample is not None else self.resample do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std size = size if size is not None else self.size size = get_size_dict(size) crop_size = crop_size if crop_size is not None else self.crop_size crop_size = get_size_dict(crop_size, param_name="crop_size") images = make_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True.") if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] if do_resize: images = [self.resize(image=image, size=size, resample=resample) for image in images] if do_center_crop: images = [self.center_crop(image=image, size=crop_size) for image in images] if do_rescale: images = [self.rescale(image=image, scale=rescale_factor) for image in images] if do_normalize: images = [self.normalize(image=image, mean=image_mean, std=image_std) for image in images] images = [to_channel_dimension_format(image, data_format) for image in images] data = {"pixel_values": images} return BatchFeature(data=data, tensor_type=return_tensors)
transformers-main
src/transformers/models/deit/image_processing_deit.py
# coding=utf-8 # Copyright 2022 Facebook AI Research (FAIR) and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TensorFlow DeiT model.""" from __future__ import annotations import collections.abc import math from dataclasses import dataclass from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import ( TFBaseModelOutput, TFBaseModelOutputWithPooling, TFImageClassifierOutput, TFMaskedImageModelingOutput, ) from ...modeling_tf_utils import ( TFPreTrainedModel, TFSequenceClassificationLoss, get_initializer, keras_serializable, unpack_inputs, ) from ...tf_utils import shape_list, stable_softmax from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_deit import DeiTConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "DeiTConfig" # Base docstring _CHECKPOINT_FOR_DOC = "facebook/deit-base-distilled-patch16-224" _EXPECTED_OUTPUT_SHAPE = [1, 198, 768] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "facebook/deit-base-distilled-patch16-224" _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/deit-base-distilled-patch16-224", # See all DeiT models at https://huggingface.co/models?filter=deit ] @dataclass class TFDeiTForImageClassificationWithTeacherOutput(ModelOutput): """ Output type of [`DeiTForImageClassificationWithTeacher`]. Args: logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`): Prediction scores as the average of the cls_logits and distillation logits. cls_logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`): Prediction scores of the classification head (i.e. the linear layer on top of the final hidden state of the class token). distillation_logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`): Prediction scores of the distillation head (i.e. the linear layer on top of the final hidden state of the distillation token). hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ logits: tf.Tensor = None cls_logits: tf.Tensor = None distillation_logits: tf.Tensor = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None class TFDeiTEmbeddings(tf.keras.layers.Layer): """ Construct the CLS token, distillation token, position and patch embeddings. Optionally, also the mask token. """ def __init__(self, config: DeiTConfig, use_mask_token: bool = False, **kwargs) -> None: super().__init__(**kwargs) self.config = config self.use_mask_token = use_mask_token self.patch_embeddings = TFDeiTPatchEmbeddings(config=config, name="patch_embeddings") self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob, name="dropout") def build(self, input_shape: tf.TensorShape): self.cls_token = self.add_weight( shape=(1, 1, self.config.hidden_size), initializer=tf.keras.initializers.zeros(), trainable=True, name="cls_token", ) self.distillation_token = self.add_weight( shape=(1, 1, self.config.hidden_size), initializer=tf.keras.initializers.zeros(), trainable=True, name="distillation_token", ) self.mask_token = None if self.use_mask_token: self.mask_token = self.add_weight( shape=(1, 1, self.config.hidden_size), initializer=tf.keras.initializers.zeros(), trainable=True, name="mask_token", ) num_patches = self.patch_embeddings.num_patches self.position_embeddings = self.add_weight( shape=(1, num_patches + 2, self.config.hidden_size), initializer=tf.keras.initializers.zeros(), trainable=True, name="position_embeddings", ) super().build(input_shape) def call( self, pixel_values: tf.Tensor, bool_masked_pos: tf.Tensor | None = None, training: bool = False ) -> tf.Tensor: embeddings = self.patch_embeddings(pixel_values) batch_size, seq_length, _ = shape_list(embeddings) if bool_masked_pos is not None: mask_tokens = tf.tile(self.mask_token, [batch_size, seq_length, 1]) # replace the masked visual tokens by mask_tokens mask = tf.expand_dims(bool_masked_pos, axis=-1) mask = tf.cast(mask, dtype=mask_tokens.dtype) embeddings = embeddings * (1.0 - mask) + mask_tokens * mask cls_tokens = tf.repeat(self.cls_token, repeats=batch_size, axis=0) distillation_tokens = tf.repeat(self.distillation_token, repeats=batch_size, axis=0) embeddings = tf.concat((cls_tokens, distillation_tokens, embeddings), axis=1) embeddings = embeddings + self.position_embeddings embeddings = self.dropout(embeddings, training=training) return embeddings class TFDeiTPatchEmbeddings(tf.keras.layers.Layer): """ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a Transformer. """ def __init__(self, config: DeiTConfig, **kwargs) -> None: super().__init__(**kwargs) image_size, patch_size = config.image_size, config.patch_size num_channels, hidden_size = config.num_channels, config.hidden_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.num_patches = num_patches self.projection = tf.keras.layers.Conv2D( hidden_size, kernel_size=patch_size, strides=patch_size, name="projection" ) def call(self, pixel_values: tf.Tensor) -> tf.Tensor: batch_size, height, width, num_channels = shape_list(pixel_values) if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) if tf.executing_eagerly() and (height != self.image_size[0] or width != self.image_size[1]): raise ValueError( f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})." ) x = self.projection(pixel_values) batch_size, height, width, num_channels = shape_list(x) x = tf.reshape(x, (batch_size, height * width, num_channels)) return x # Copied from transformers.models.vit.modeling_tf_vit.TFViTSelfAttention with ViT->DeiT class TFDeiTSelfAttention(tf.keras.layers.Layer): def __init__(self, config: DeiTConfig, **kwargs): super().__init__(**kwargs) if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number " f"of attention heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.sqrt_att_head_size = math.sqrt(self.attention_head_size) self.query = tf.keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" ) self.key = tf.keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key" ) self.value = tf.keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" ) self.dropout = tf.keras.layers.Dropout(rate=config.attention_probs_dropout_prob) def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor: # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size)) # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size] return tf.transpose(tensor, perm=[0, 2, 1, 3]) def call( self, hidden_states: tf.Tensor, head_mask: tf.Tensor, output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: batch_size = shape_list(hidden_states)[0] mixed_query_layer = self.query(inputs=hidden_states) mixed_key_layer = self.key(inputs=hidden_states) mixed_value_layer = self.value(inputs=hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) key_layer = self.transpose_for_scores(mixed_key_layer, batch_size) value_layer = self.transpose_for_scores(mixed_value_layer, batch_size) # Take the dot product between "query" and "key" to get the raw attention scores. # (batch size, num_heads, seq_len_q, seq_len_k) attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype) attention_scores = tf.divide(attention_scores, dk) # Normalize the attention scores to probabilities. attention_probs = stable_softmax(logits=attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(inputs=attention_probs, training=training) # Mask heads if we want to if head_mask is not None: attention_probs = tf.multiply(attention_probs, head_mask) attention_output = tf.matmul(attention_probs, value_layer) attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3]) # (batch_size, seq_len_q, all_head_size) attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size)) outputs = (attention_output, attention_probs) if output_attentions else (attention_output,) return outputs # Copied from transformers.models.vit.modeling_tf_vit.TFViTSelfOutput with ViT->DeiT class TFDeiTSelfOutput(tf.keras.layers.Layer): """ The residual connection is defined in TFDeiTLayer instead of here (as is the case with other models), due to the layernorm applied before each block. """ def __init__(self, config: DeiTConfig, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob) def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) return hidden_states # Copied from transformers.models.vit.modeling_tf_vit.TFViTAttention with ViT->DeiT class TFDeiTAttention(tf.keras.layers.Layer): def __init__(self, config: DeiTConfig, **kwargs): super().__init__(**kwargs) self.self_attention = TFDeiTSelfAttention(config, name="attention") self.dense_output = TFDeiTSelfOutput(config, name="output") def prune_heads(self, heads): raise NotImplementedError def call( self, input_tensor: tf.Tensor, head_mask: tf.Tensor, output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: self_outputs = self.self_attention( hidden_states=input_tensor, head_mask=head_mask, output_attentions=output_attentions, training=training ) attention_output = self.dense_output( hidden_states=self_outputs[0], input_tensor=input_tensor, training=training ) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.vit.modeling_tf_vit.TFViTIntermediate with ViT->DeiT class TFDeiTIntermediate(tf.keras.layers.Layer): def __init__(self, config: DeiTConfig, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.vit.modeling_tf_vit.TFViTOutput with ViT->DeiT class TFDeiTOutput(tf.keras.layers.Layer): def __init__(self, config: DeiTConfig, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob) def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = hidden_states + input_tensor return hidden_states class TFDeiTLayer(tf.keras.layers.Layer): """This corresponds to the Block class in the timm implementation.""" def __init__(self, config: DeiTConfig, **kwargs): super().__init__(**kwargs) self.attention = TFDeiTAttention(config, name="attention") self.intermediate = TFDeiTIntermediate(config, name="intermediate") self.deit_output = TFDeiTOutput(config, name="output") self.layernorm_before = tf.keras.layers.LayerNormalization( epsilon=config.layer_norm_eps, name="layernorm_before" ) self.layernorm_after = tf.keras.layers.LayerNormalization( epsilon=config.layer_norm_eps, name="layernorm_after" ) def call( self, hidden_states: tf.Tensor, head_mask: tf.Tensor, output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: attention_outputs = self.attention( # in DeiT, layernorm is applied before self-attention input_tensor=self.layernorm_before(inputs=hidden_states, training=training), head_mask=head_mask, output_attentions=output_attentions, training=training, ) attention_output = attention_outputs[0] # first residual connection hidden_states = attention_output + hidden_states # in DeiT, layernorm is also applied after self-attention layer_output = self.layernorm_after(inputs=hidden_states, training=training) intermediate_output = self.intermediate(hidden_states=layer_output, training=training) # second residual connection is done here layer_output = self.deit_output( hidden_states=intermediate_output, input_tensor=hidden_states, training=training ) outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.vit.modeling_tf_vit.TFViTEncoder with ViT->DeiT class TFDeiTEncoder(tf.keras.layers.Layer): def __init__(self, config: DeiTConfig, **kwargs): super().__init__(**kwargs) self.layer = [TFDeiTLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)] def call( self, hidden_states: tf.Tensor, head_mask: tf.Tensor, output_attentions: bool, output_hidden_states: bool, return_dict: bool, training: bool = False, ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module( hidden_states=hidden_states, head_mask=head_mask[i], output_attentions=output_attentions, training=training, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) @keras_serializable class TFDeiTMainLayer(tf.keras.layers.Layer): config_class = DeiTConfig def __init__( self, config: DeiTConfig, add_pooling_layer: bool = True, use_mask_token: bool = False, **kwargs ) -> None: super().__init__(**kwargs) self.config = config self.embeddings = TFDeiTEmbeddings(config, use_mask_token=use_mask_token, name="embeddings") self.encoder = TFDeiTEncoder(config, name="encoder") self.layernorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm") self.pooler = TFDeiTPooler(config, name="pooler") if add_pooling_layer else None def get_input_embeddings(self) -> TFDeiTPatchEmbeddings: return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ raise NotImplementedError def get_head_mask(self, head_mask): if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.config.num_hidden_layers return head_mask @unpack_inputs def call( self, pixel_values: tf.Tensor | None = None, bool_masked_pos: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor, ...]]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") # TF 2.0 image layers can't use NCHW format when running on CPU. # (batch_size, num_channels, height, width) -> (batch_size, height, width, num_channels) pixel_values = tf.transpose(pixel_values, (0, 2, 3, 1)) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask) embedding_output = self.embeddings(pixel_values, bool_masked_pos=bool_masked_pos, training=training) encoder_outputs = self.encoder( embedding_output, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output, training=training) pooled_output = self.pooler(sequence_output, training=training) if self.pooler is not None else None if not return_dict: head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,) return head_outputs + encoder_outputs[1:] return TFBaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) # Copied from transformers.models.vit.modeling_tf_vit.TFViTPreTrainedModel with ViT->DeiT all-casing class TFDeiTPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = DeiTConfig base_model_prefix = "deit" main_input_name = "pixel_values" DEIT_START_DOCSTRING = r""" This model is a TensorFlow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer). Use it as a regular TensorFlow Module and refer to the TensorFlow documentation for all matter related to general usage and behavior. Parameters: config ([`DeiTConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ DEIT_INPUTS_DOCSTRING = r""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`DeiTImageProcessor.__call__`] for details. head_mask (`tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare DeiT Model transformer outputting raw hidden-states without any specific head on top.", DEIT_START_DOCSTRING, ) class TFDeiTModel(TFDeiTPreTrainedModel): def __init__( self, config: DeiTConfig, add_pooling_layer: bool = True, use_mask_token: bool = False, **kwargs ) -> None: super().__init__(config, **kwargs) self.deit = TFDeiTMainLayer( config, add_pooling_layer=add_pooling_layer, use_mask_token=use_mask_token, name="deit" ) @unpack_inputs @add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def call( self, pixel_values: tf.Tensor | None = None, bool_masked_pos: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[Tuple, TFBaseModelOutputWithPooling]: outputs = self.deit( pixel_values=pixel_values, bool_masked_pos=bool_masked_pos, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs # Copied from transformers.models.vit.modeling_tf_vit.TFViTPooler with ViT->DeiT class TFDeiTPooler(tf.keras.layers.Layer): def __init__(self, config: DeiTConfig, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), activation="tanh", name="dense", ) def call(self, hidden_states: tf.Tensor) -> tf.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(inputs=first_token_tensor) return pooled_output class TFDeitPixelShuffle(tf.keras.layers.Layer): """TF layer implementation of torch.nn.PixelShuffle""" def __init__(self, upscale_factor: int, **kwargs) -> None: super().__init__(**kwargs) if not isinstance(upscale_factor, int) or upscale_factor < 2: raise ValueError(f"upscale_factor must be an integer value >= 2 got {upscale_factor}") self.upscale_factor = upscale_factor def call(self, x: tf.Tensor) -> tf.Tensor: hidden_states = x batch_size, _, _, num_input_channels = shape_list(hidden_states) block_size_squared = self.upscale_factor**2 output_depth = int(num_input_channels / block_size_squared) # When the number of output channels >= 2, PyTorch's PixelShuffle and # TF's depth_to_space differ in their output as the order of channels selected for combining # is a permutation of the other c.f. # https://stackoverflow.com/questions/68272502/tf-depth-to-space-not-same-as-torchs-pixelshuffle-when-output-channels-1 permutation = tf.constant( [[i + j * block_size_squared for i in range(block_size_squared) for j in range(output_depth)]] ) hidden_states = tf.gather(params=hidden_states, indices=tf.tile(permutation, [batch_size, 1]), batch_dims=-1) hidden_states = tf.nn.depth_to_space(hidden_states, block_size=self.upscale_factor, data_format="NHWC") return hidden_states class TFDeitDecoder(tf.keras.layers.Layer): def __init__(self, config: DeiTConfig, **kwargs) -> None: super().__init__(**kwargs) self.conv2d = tf.keras.layers.Conv2D( filters=config.encoder_stride**2 * config.num_channels, kernel_size=1, name="0" ) self.pixel_shuffle = TFDeitPixelShuffle(config.encoder_stride, name="1") def call(self, inputs: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = inputs hidden_states = self.conv2d(hidden_states) hidden_states = self.pixel_shuffle(hidden_states) return hidden_states @add_start_docstrings( "DeiT Model with a decoder on top for masked image modeling, as proposed in" " [SimMIM](https://arxiv.org/abs/2111.09886).", DEIT_START_DOCSTRING, ) class TFDeiTForMaskedImageModeling(TFDeiTPreTrainedModel): def __init__(self, config: DeiTConfig) -> None: super().__init__(config) self.deit = TFDeiTMainLayer(config, add_pooling_layer=False, use_mask_token=True, name="deit") self.decoder = TFDeitDecoder(config, name="decoder") @unpack_inputs @add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFMaskedImageModelingOutput, config_class=_CONFIG_FOR_DOC) def call( self, pixel_values: tf.Tensor | None = None, bool_masked_pos: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[tuple, TFMaskedImageModelingOutput]: r""" bool_masked_pos (`tf.Tensor` of type bool and shape `(batch_size, num_patches)`): Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, TFDeiTForMaskedImageModeling >>> import tensorflow as tf >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224") >>> model = TFDeiTForMaskedImageModeling.from_pretrained("facebook/deit-base-distilled-patch16-224") >>> num_patches = (model.config.image_size // model.config.patch_size) ** 2 >>> pixel_values = image_processor(images=image, return_tensors="tf").pixel_values >>> # create random boolean mask of shape (batch_size, num_patches) >>> bool_masked_pos = tf.cast(tf.random.uniform((1, num_patches), minval=0, maxval=2, dtype=tf.int32), tf.bool) >>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos) >>> loss, reconstructed_pixel_values = outputs.loss, outputs.reconstruction >>> list(reconstructed_pixel_values.shape) [1, 3, 224, 224] ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.deit( pixel_values, bool_masked_pos=bool_masked_pos, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] # Reshape to (batch_size, num_channels, height, width) sequence_output = sequence_output[:, 1:-1] batch_size, sequence_length, num_channels = shape_list(sequence_output) height = width = int(sequence_length**0.5) sequence_output = tf.reshape(sequence_output, (batch_size, height, width, num_channels)) # Reconstruct pixel values reconstructed_pixel_values = self.decoder(sequence_output, training=training) # TF 2.0 image layers can't use NCHW format when running on CPU, so intermediate layers use NHWC, # including the The decoder. We transpose to compute the loss against the pixel values # (batch_size, height, width, num_channels) -> (batch_size, num_channels, height, width) reconstructed_pixel_values = tf.transpose(reconstructed_pixel_values, (0, 3, 1, 2)) masked_im_loss = None if bool_masked_pos is not None: size = self.config.image_size // self.config.patch_size bool_masked_pos = tf.reshape(bool_masked_pos, (-1, size, size)) mask = tf.repeat(bool_masked_pos, self.config.patch_size, 1) mask = tf.repeat(mask, self.config.patch_size, 2) mask = tf.expand_dims(mask, 1) mask = tf.cast(mask, tf.float32) reconstruction_loss = tf.keras.losses.mean_absolute_error( # Swap axes as metric calculation reduces over the final dimension tf.transpose(pixel_values, (1, 2, 3, 0)), tf.transpose(reconstructed_pixel_values, (1, 2, 3, 0)), ) reconstruction_loss = tf.expand_dims(reconstruction_loss, 0) total_loss = tf.reduce_sum(reconstruction_loss * mask) num_masked_pixels = (tf.reduce_sum(mask) + 1e-5) * self.config.num_channels masked_im_loss = total_loss / num_masked_pixels masked_im_loss = tf.reshape(masked_im_loss, (1,)) if not return_dict: output = (reconstructed_pixel_values,) + outputs[1:] return ((masked_im_loss,) + output) if masked_im_loss is not None else output return TFMaskedImageModelingOutput( loss=masked_im_loss, reconstruction=reconstructed_pixel_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ DeiT Model transformer with an image classification head on top (a linear layer on top of the final hidden state of the [CLS] token) e.g. for ImageNet. """, DEIT_START_DOCSTRING, ) class TFDeiTForImageClassification(TFDeiTPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config: DeiTConfig): super().__init__(config) self.num_labels = config.num_labels self.deit = TFDeiTMainLayer(config, add_pooling_layer=False, name="deit") # Classifier head self.classifier = ( tf.keras.layers.Dense(config.num_labels, name="classifier") if config.num_labels > 0 else tf.keras.layers.Activation("linear", name="classifier") ) @unpack_inputs @add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFImageClassifierOutput, config_class=_CONFIG_FOR_DOC) def call( self, pixel_values: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, labels: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[tf.Tensor, TFImageClassifierOutput]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, TFDeiTForImageClassification >>> import tensorflow as tf >>> from PIL import Image >>> import requests >>> tf.keras.utils.set_random_seed(3) # doctest: +IGNORE_RESULT >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> # note: we are loading a TFDeiTForImageClassificationWithTeacher from the hub here, >>> # so the head will be randomly initialized, hence the predictions will be random >>> image_processor = AutoImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224") >>> model = TFDeiTForImageClassification.from_pretrained("facebook/deit-base-distilled-patch16-224") >>> inputs = image_processor(images=image, return_tensors="tf") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_class_idx = tf.math.argmax(logits, axis=-1)[0] >>> print("Predicted class:", model.config.id2label[int(predicted_class_idx)]) Predicted class: little blue heron, Egretta caerulea ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.deit( pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] logits = self.classifier(sequence_output[:, 0, :]) # we don't use the distillation token loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFImageClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ DeiT Model transformer with image classification heads on top (a linear layer on top of the final hidden state of the [CLS] token and a linear layer on top of the final hidden state of the distillation token) e.g. for ImageNet. .. warning:: This model supports inference-only. Fine-tuning with distillation (i.e. with a teacher) is not yet supported. """, DEIT_START_DOCSTRING, ) class TFDeiTForImageClassificationWithTeacher(TFDeiTPreTrainedModel): def __init__(self, config: DeiTConfig) -> None: super().__init__(config) self.num_labels = config.num_labels self.deit = TFDeiTMainLayer(config, add_pooling_layer=False, name="deit") # Classifier heads self.cls_classifier = ( tf.keras.layers.Dense(config.num_labels, name="cls_classifier") if config.num_labels > 0 else tf.keras.layers.Activation("linear", name="cls_classifier") ) self.distillation_classifier = ( tf.keras.layers.Dense(config.num_labels, name="distillation_classifier") if config.num_labels > 0 else tf.keras.layers.Activation("linear", name="distillation_classifier") ) @unpack_inputs @add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=TFDeiTForImageClassificationWithTeacherOutput, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def call( self, pixel_values: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[tuple, TFDeiTForImageClassificationWithTeacherOutput]: return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.deit( pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] cls_logits = self.cls_classifier(sequence_output[:, 0, :]) distillation_logits = self.distillation_classifier(sequence_output[:, 1, :]) # during inference, return the average of both classifier predictions logits = (cls_logits + distillation_logits) / 2 if not return_dict: output = (logits, cls_logits, distillation_logits) + outputs[1:] return output return TFDeiTForImageClassificationWithTeacherOutput( logits=logits, cls_logits=cls_logits, distillation_logits=distillation_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers-main
src/transformers/models/deit/modeling_tf_deit.py
# coding=utf-8 # Copyright 2021 Facebook AI Research (FAIR) and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ DeiT model configuration""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP = { "facebook/deit-base-distilled-patch16-224": ( "https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json" ), # See all DeiT models at https://huggingface.co/models?filter=deit } class DeiTConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`DeiTModel`]. It is used to instantiate an DeiT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the DeiT [facebook/deit-base-distilled-patch16-224](https://huggingface.co/facebook/deit-base-distilled-patch16-224) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. image_size (`int`, *optional*, defaults to `224`): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to `16`): The size (resolution) of each patch. num_channels (`int`, *optional*, defaults to `3`): The number of input channels. qkv_bias (`bool`, *optional*, defaults to `True`): Whether to add a bias to the queries, keys and values. encoder_stride (`int`, `optional`, defaults to 16): Factor to increase the spatial resolution by in the decoder head for masked image modeling. Example: ```python >>> from transformers import DeiTConfig, DeiTModel >>> # Initializing a DeiT deit-base-distilled-patch16-224 style configuration >>> configuration = DeiTConfig() >>> # Initializing a model (with random weights) from the deit-base-distilled-patch16-224 style configuration >>> model = DeiTModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "deit" def __init__( self, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, initializer_range=0.02, layer_norm_eps=1e-12, image_size=224, patch_size=16, num_channels=3, qkv_bias=True, encoder_stride=16, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.qkv_bias = qkv_bias self.encoder_stride = encoder_stride class DeiTOnnxConfig(OnnxConfig): torch_onnx_minimum_version = version.parse("1.11") @property def inputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def atol_for_validation(self) -> float: return 1e-4
transformers-main
src/transformers/models/deit/configuration_deit.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ DPT model configuration""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig logger = logging.get_logger(__name__) DPT_PRETRAINED_CONFIG_ARCHIVE_MAP = { "Intel/dpt-large": "https://huggingface.co/Intel/dpt-large/resolve/main/config.json", # See all DPT models at https://huggingface.co/models?filter=dpt } class DPTConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`DPTModel`]. It is used to instantiate an DPT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the DPT [Intel/dpt-large](https://huggingface.co/Intel/dpt-large) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. image_size (`int`, *optional*, defaults to 384): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 16): The size (resolution) of each patch. num_channels (`int`, *optional*, defaults to 3): The number of input channels. qkv_bias (`bool`, *optional*, defaults to `True`): Whether to add a bias to the queries, keys and values. backbone_out_indices (`List[int]`, *optional*, defaults to `[2, 5, 8, 11]`): Indices of the intermediate hidden states to use from backbone. readout_type (`str`, *optional*, defaults to `"project"`): The readout type to use when processing the readout token (CLS token) of the intermediate hidden states of the ViT backbone. Can be one of [`"ignore"`, `"add"`, `"project"`]. - "ignore" simply ignores the CLS token. - "add" passes the information from the CLS token to all other tokens by adding the representations. - "project" passes information to the other tokens by concatenating the readout to all other tokens before projecting the representation to the original feature dimension D using a linear layer followed by a GELU non-linearity. is_hybrid (`bool`, *optional*, defaults to `False`): Whether to use a hybrid backbone. Useful in the context of loading DPT-Hybrid models. reassemble_factors (`List[int]`, *optional*, defaults to `[4, 2, 1, 0.5]`): The up/downsampling factors of the reassemble layers. neck_hidden_sizes (`List[str]`, *optional*, defaults to [96, 192, 384, 768]): The hidden sizes to project to for the feature maps of the backbone. fusion_hidden_size (`int`, *optional*, defaults to 256): The number of channels before fusion. head_in_index (`int`, *optional*, defaults to -1): The index of the features to use in the heads. use_batch_norm_in_fusion_residual (`bool`, *optional*, defaults to `False`): Whether to use batch normalization in the pre-activate residual units of the fusion blocks. use_auxiliary_head (`bool`, *optional*, defaults to `True`): Whether to use an auxiliary head during training. auxiliary_loss_weight (`float`, *optional*, defaults to 0.4): Weight of the cross-entropy loss of the auxiliary head. semantic_loss_ignore_index (`int`, *optional*, defaults to 255): The index that is ignored by the loss function of the semantic segmentation model. semantic_classifier_dropout (`float`, *optional*, defaults to 0.1): The dropout ratio for the semantic classification head. backbone_featmap_shape (`List[int]`, *optional*, defaults to `[1, 1024, 24, 24]`): Used only for the `hybrid` embedding type. The shape of the feature maps of the backbone. neck_ignore_stages (`List[int]`, *optional*, defaults to `[0, 1]`): Used only for the `hybrid` embedding type. The stages of the readout layers to ignore. backbone_config (`Union[Dict[str, Any], PretrainedConfig]`, *optional*): Used only for the `hybrid` embedding type. The configuration of the backbone in a dictionary. Example: ```python >>> from transformers import DPTModel, DPTConfig >>> # Initializing a DPT dpt-large style configuration >>> configuration = DPTConfig() >>> # Initializing a model from the dpt-large style configuration >>> model = DPTModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "dpt" def __init__( self, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, initializer_range=0.02, layer_norm_eps=1e-12, image_size=384, patch_size=16, num_channels=3, is_hybrid=False, qkv_bias=True, backbone_out_indices=[2, 5, 8, 11], readout_type="project", reassemble_factors=[4, 2, 1, 0.5], neck_hidden_sizes=[96, 192, 384, 768], fusion_hidden_size=256, head_in_index=-1, use_batch_norm_in_fusion_residual=False, use_auxiliary_head=True, auxiliary_loss_weight=0.4, semantic_loss_ignore_index=255, semantic_classifier_dropout=0.1, backbone_featmap_shape=[1, 1024, 24, 24], neck_ignore_stages=[0, 1], backbone_config=None, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.is_hybrid = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("Initializing the config with a `BiT` backbone.") backbone_config = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, } self.backbone_config = BitConfig(**backbone_config) elif isinstance(backbone_config, dict): logger.info("Initializing the config with a `BiT` backbone.") self.backbone_config = BitConfig(**backbone_config) elif isinstance(backbone_config, PretrainedConfig): self.backbone_config = backbone_config else: raise ValueError( f"backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}." ) self.backbone_featmap_shape = backbone_featmap_shape self.neck_ignore_stages = neck_ignore_stages if readout_type != "project": raise ValueError("Readout type must be 'project' when using `DPT-hybrid` mode.") else: self.backbone_config = None self.backbone_featmap_shape = None self.neck_ignore_stages = [] self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.qkv_bias = qkv_bias self.backbone_out_indices = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("Readout_type must be one of ['ignore', 'add', 'project']") self.readout_type = readout_type self.reassemble_factors = reassemble_factors self.neck_hidden_sizes = neck_hidden_sizes self.fusion_hidden_size = fusion_hidden_size self.head_in_index = head_in_index self.use_batch_norm_in_fusion_residual = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) self.use_auxiliary_head = use_auxiliary_head self.auxiliary_loss_weight = auxiliary_loss_weight self.semantic_loss_ignore_index = semantic_loss_ignore_index self.semantic_classifier_dropout = semantic_classifier_dropout def to_dict(self): """ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. Returns: `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, """ output = copy.deepcopy(self.__dict__) if output["backbone_config"] is not None: output["backbone_config"] = self.backbone_config.to_dict() output["model_type"] = self.__class__.model_type return output
transformers-main
src/transformers/models/dpt/configuration_dpt.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Feature extractor class for DPT.""" import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor logger = logging.get_logger(__name__) class DPTFeatureExtractor(DPTImageProcessor): def __init__(self, *args, **kwargs) -> None: warnings.warn( "The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DPTImageProcessor instead.", FutureWarning, ) super().__init__(*args, **kwargs)
transformers-main
src/transformers/models/dpt/feature_extraction_dpt.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert DPT checkpoints from the original repository. URL: https://github.com/isl-org/DPT""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) def get_dpt_config(checkpoint_url): config = DPTConfig(embedding_type="hybrid") if "large" in checkpoint_url: config.hidden_size = 1024 config.intermediate_size = 4096 config.num_hidden_layers = 24 config.num_attention_heads = 16 config.backbone_out_indices = [5, 11, 17, 23] config.neck_hidden_sizes = [256, 512, 1024, 1024] expected_shape = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: config.hidden_size = 768 config.reassemble_factors = [1, 1, 1, 0.5] config.neck_hidden_sizes = [256, 512, 768, 768] config.num_labels = 150 config.patch_size = 16 expected_shape = (1, 384, 384) config.use_batch_norm_in_fusion_residual = False config.readout_type = "project" if "ade" in checkpoint_url: config.use_batch_norm_in_fusion_residual = True config.hidden_size = 768 config.reassemble_stage = [1, 1, 1, 0.5] config.num_labels = 150 config.patch_size = 16 repo_id = "huggingface/label-files" filename = "ade20k-id2label.json" id2label = json.load(open(cached_download(hf_hub_url(repo_id, filename, repo_type="dataset")), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} expected_shape = [1, 150, 480, 480] return config, expected_shape def remove_ignore_keys_(state_dict): ignore_keys = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(k, None) def rename_key(name): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): name = name.replace("pretrained.model", "dpt.encoder") if "pretrained.model" in name: name = name.replace("pretrained.model", "dpt.embeddings") if "patch_embed" in name: name = name.replace("patch_embed", "") if "pos_embed" in name: name = name.replace("pos_embed", "position_embeddings") if "attn.proj" in name: name = name.replace("attn.proj", "attention.output.dense") if "proj" in name and "project" not in name: name = name.replace("proj", "projection") if "blocks" in name: name = name.replace("blocks", "layer") if "mlp.fc1" in name: name = name.replace("mlp.fc1", "intermediate.dense") if "mlp.fc2" in name: name = name.replace("mlp.fc2", "output.dense") if "norm1" in name and "backbone" not in name: name = name.replace("norm1", "layernorm_before") if "norm2" in name and "backbone" not in name: name = name.replace("norm2", "layernorm_after") if "scratch.output_conv" in name: name = name.replace("scratch.output_conv", "head") if "scratch" in name: name = name.replace("scratch", "neck") if "layer1_rn" in name: name = name.replace("layer1_rn", "convs.0") if "layer2_rn" in name: name = name.replace("layer2_rn", "convs.1") if "layer3_rn" in name: name = name.replace("layer3_rn", "convs.2") if "layer4_rn" in name: name = name.replace("layer4_rn", "convs.3") if "refinenet" in name: layer_idx = int(name[len("neck.refinenet") : len("neck.refinenet") + 1]) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 name = name.replace(f"refinenet{layer_idx}", f"fusion_stage.layers.{abs(layer_idx-4)}") if "out_conv" in name: name = name.replace("out_conv", "projection") if "resConfUnit1" in name: name = name.replace("resConfUnit1", "residual_layer1") if "resConfUnit2" in name: name = name.replace("resConfUnit2", "residual_layer2") if "conv1" in name: name = name.replace("conv1", "convolution1") if "conv2" in name: name = name.replace("conv2", "convolution2") # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: name = name.replace("pretrained.act_postprocess1.0.project.0", "neck.reassemble_stage.readout_projects.0.0") if "pretrained.act_postprocess2.0.project.0" in name: name = name.replace("pretrained.act_postprocess2.0.project.0", "neck.reassemble_stage.readout_projects.1.0") if "pretrained.act_postprocess3.0.project.0" in name: name = name.replace("pretrained.act_postprocess3.0.project.0", "neck.reassemble_stage.readout_projects.2.0") if "pretrained.act_postprocess4.0.project.0" in name: name = name.replace("pretrained.act_postprocess4.0.project.0", "neck.reassemble_stage.readout_projects.3.0") # resize blocks if "pretrained.act_postprocess1.3" in name: name = name.replace("pretrained.act_postprocess1.3", "neck.reassemble_stage.layers.0.projection") if "pretrained.act_postprocess1.4" in name: name = name.replace("pretrained.act_postprocess1.4", "neck.reassemble_stage.layers.0.resize") if "pretrained.act_postprocess2.3" in name: name = name.replace("pretrained.act_postprocess2.3", "neck.reassemble_stage.layers.1.projection") if "pretrained.act_postprocess2.4" in name: name = name.replace("pretrained.act_postprocess2.4", "neck.reassemble_stage.layers.1.resize") if "pretrained.act_postprocess3.3" in name: name = name.replace("pretrained.act_postprocess3.3", "neck.reassemble_stage.layers.2.projection") if "pretrained.act_postprocess4.3" in name: name = name.replace("pretrained.act_postprocess4.3", "neck.reassemble_stage.layers.3.projection") if "pretrained.act_postprocess4.4" in name: name = name.replace("pretrained.act_postprocess4.4", "neck.reassemble_stage.layers.3.resize") if "pretrained" in name: name = name.replace("pretrained", "dpt") if "bn" in name: name = name.replace("bn", "batch_norm") if "head" in name: name = name.replace("head", "head.head") if "encoder.norm" in name: name = name.replace("encoder.norm", "layernorm") if "auxlayer" in name: name = name.replace("auxlayer", "auxiliary_head.head") if "backbone" in name: name = name.replace("backbone", "backbone.bit.encoder") if ".." in name: name = name.replace("..", ".") if "stem.conv" in name: name = name.replace("stem.conv", "bit.embedder.convolution") if "blocks" in name: name = name.replace("blocks", "layers") if "convolution" in name and "backbone" in name: name = name.replace("convolution", "conv") if "layer" in name and "backbone" in name: name = name.replace("layer", "layers") if "backbone.bit.encoder.bit" in name: name = name.replace("backbone.bit.encoder.bit", "backbone.bit") if "embedder.conv" in name: name = name.replace("embedder.conv", "embedder.convolution") if "backbone.bit.encoder.stem.norm" in name: name = name.replace("backbone.bit.encoder.stem.norm", "backbone.bit.embedder.norm") return name # we split up the matrix of each encoder layer into queries, keys and values def read_in_q_k_v(state_dict, config): for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) in_proj_weight = state_dict.pop(f"dpt.encoder.layer.{i}.attn.qkv.weight") in_proj_bias = state_dict.pop(f"dpt.encoder.layer.{i}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict state_dict[f"dpt.encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[: config.hidden_size, :] state_dict[f"dpt.encoder.layer.{i}.attention.attention.query.bias"] = in_proj_bias[: config.hidden_size] state_dict[f"dpt.encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] state_dict[f"dpt.encoder.layer.{i}.attention.attention.key.bias"] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] state_dict[f"dpt.encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[ -config.hidden_size :, : ] state_dict[f"dpt.encoder.layer.{i}.attention.attention.value.bias"] = in_proj_bias[-config.hidden_size :] # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @torch.no_grad() def convert_dpt_checkpoint(checkpoint_url, pytorch_dump_folder_path, push_to_hub, model_name, show_prediction): """ Copy/paste/tweak model's weights to our DPT structure. """ # define DPT configuration based on URL config, expected_shape = get_dpt_config(checkpoint_url) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") state_dict = torch.load(checkpoint_url, map_location="cpu") # remove certain keys remove_ignore_keys_(state_dict) # rename keys for key in state_dict.copy().keys(): val = state_dict.pop(key) state_dict[rename_key(key)] = val # read in qkv matrices read_in_q_k_v(state_dict, config) # load HuggingFace model model = DPTForSemanticSegmentation(config) if "ade" in checkpoint_url else DPTForDepthEstimation(config) model.load_state_dict(state_dict) model.eval() # Check outputs on an image size = 480 if "ade" in checkpoint_url else 384 image_processor = DPTImageProcessor(size=size) image = prepare_img() encoding = image_processor(image, return_tensors="pt") # forward pass outputs = model(**encoding).logits if "ade" in checkpoint_url else model(**encoding).predicted_depth if show_prediction: prediction = ( torch.nn.functional.interpolate( outputs.unsqueeze(1), size=(image.size[1], image.size[0]), mode="bicubic", align_corners=False, ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255).show() if pytorch_dump_folder_path is not None: Path(pytorch_dump_folder_path).mkdir(exist_ok=True) print(f"Saving model to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) print(f"Saving image processor to {pytorch_dump_folder_path}") image_processor.save_pretrained(pytorch_dump_folder_path) if push_to_hub: model.push_to_hub("ybelkada/dpt-hybrid-midas") image_processor.push_to_hub("ybelkada/dpt-hybrid-midas") if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) parser.add_argument( "--show_prediction", action="store_true", ) args = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
transformers-main
src/transformers/models/dpt/convert_dpt_hybrid_to_pytorch.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable _import_structure = {"configuration_dpt": ["DPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPTConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["feature_extraction_dpt"] = ["DPTFeatureExtractor"] _import_structure["image_processing_dpt"] = ["DPTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_dpt"] = [ "DPT_PRETRAINED_MODEL_ARCHIVE_LIST", "DPTForDepthEstimation", "DPTForSemanticSegmentation", "DPTModel", "DPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers-main
src/transformers/models/dpt/__init__.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for DPT.""" import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL logger = logging.get_logger(__name__) def get_resize_output_image_size( input_image: np.ndarray, output_size: Union[int, Iterable[int]], keep_aspect_ratio: bool, multiple: int ) -> Tuple[int, int]: def constraint_to_multiple_of(val, multiple, min_val=0, max_val=None): x = round(val / multiple) * multiple if max_val is not None and x > max_val: x = math.floor(val / multiple) * multiple if x < min_val: x = math.ceil(val / multiple) * multiple return x output_size = (output_size, output_size) if isinstance(output_size, int) else output_size input_height, input_width = get_image_size(input_image) output_height, output_width = output_size # determine new height and width scale_height = output_height / input_height scale_width = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width) < abs(1 - scale_height): # fit width scale_height = scale_width else: # fit height scale_width = scale_height new_height = constraint_to_multiple_of(scale_height * input_height, multiple=multiple) new_width = constraint_to_multiple_of(scale_width * input_width, multiple=multiple) return (new_height, new_width) class DPTImageProcessor(BaseImageProcessor): r""" Constructs a DPT image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions. Can be overidden by `do_resize` in `preprocess`. size (`Dict[str, int]` *optional*, defaults to `{"height": 384, "width": 384}`): Size of the image after resizing. Can be overidden by `size` in `preprocess`. keep_aspect_ratio (`bool`, *optional*, defaults to `False`): If `True`, the image is resized to the largest possible size such that the aspect ratio is preserved. Can be overidden by `keep_aspect_ratio` in `preprocess`. ensure_multiple_of (`int`, *optional*, defaults to `1`): If `do_resize` is `True`, the image is resized to a size that is a multiple of this value. Can be overidden by `ensure_multiple_of` in `preprocess`. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): Defines the resampling filter to use if resizing the image. Can be overidden by `resample` in `preprocess`. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overidden by `do_rescale` in `preprocess`. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overidden by `rescale_factor` in `preprocess`. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PILImageResampling.BILINEAR, keep_aspect_ratio: bool = False, ensure_multiple_of: int = 1, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, **kwargs, ) -> None: super().__init__(**kwargs) size = size if size is not None else {"height": 384, "width": 384} size = get_size_dict(size) self.do_resize = do_resize self.size = size self.keep_aspect_ratio = keep_aspect_ratio self.ensure_multiple_of = ensure_multiple_of self.resample = resample self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD def resize( self, image: np.ndarray, size: Dict[str, int], keep_aspect_ratio: bool = False, ensure_multiple_of: int = 1, resample: PILImageResampling = PILImageResampling.BICUBIC, data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize an image to target size `(size["height"], size["width"])`. If `keep_aspect_ratio` is `True`, the image is resized to the largest possible size such that the aspect ratio is preserved. If `ensure_multiple_of` is set, the image is resized to a size that is a multiple of this value. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Target size of the output image. keep_aspect_ratio (`bool`, *optional*, defaults to `False`): If `True`, the image is resized to the largest possible size such that the aspect ratio is preserved. ensure_multiple_of (`int`, *optional*, defaults to `1`): The image is resized to a size that is a multiple of this value. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): Defines the resampling filter to use if resizing the image. Otherwise, the image is resized to size specified in `size`. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): Resampling filter to use when resiizing the image. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. """ size = get_size_dict(size) if "height" not in size or "width" not in size: raise ValueError(f"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}") output_size = get_resize_output_image_size( image, output_size=(size["height"], size["width"]), keep_aspect_ratio=keep_aspect_ratio, multiple=ensure_multiple_of, ) return resize(image, size=output_size, resample=resample, data_format=data_format, **kwargs) def preprocess( self, images: ImageInput, do_resize: bool = None, size: int = None, keep_aspect_ratio: bool = None, ensure_multiple_of: int = None, resample: PILImageResampling = None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: ChannelDimension = ChannelDimension.FIRST, **kwargs, ) -> PIL.Image.Image: """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the image after reszing. If `keep_aspect_ratio` is `True`, the image is resized to the largest possible size such that the aspect ratio is preserved. If `ensure_multiple_of` is set, the image is resized to a size that is a multiple of this value. keep_aspect_ratio (`bool`, *optional*, defaults to `self.keep_aspect_ratio`): Whether to keep the aspect ratio of the image. If False, the image will be resized to (size, size). If True, the image will be resized to keep the aspect ratio and the size will be the maximum possible. ensure_multiple_of (`int`, *optional*, defaults to `self.ensure_multiple_of`): Ensure that the image size is a multiple of this value. resample (`int`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only has an effect if `do_resize` is set to `True`. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image values between [0 - 1]. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `ChannelDimension.LAST`: image in (height, width, num_channels) format. """ do_resize = do_resize if do_resize is not None else self.do_resize size = size if size is not None else self.size size = get_size_dict(size) keep_aspect_ratio = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio ensure_multiple_of = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of resample = resample if resample is not None else self.resample do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std images = make_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] if do_resize: images = [self.resize(image=image, size=size, resample=resample) for image in images] if do_rescale: images = [self.rescale(image=image, scale=rescale_factor) for image in images] if do_normalize: images = [self.normalize(image=image, mean=image_mean, std=image_std) for image in images] images = [to_channel_dimension_format(image, data_format) for image in images] data = {"pixel_values": images} return BatchFeature(data=data, tensor_type=return_tensors) # Copied from transformers.models.beit.image_processing_beit.BeitImageProcessor.post_process_semantic_segmentation with Beit->DPT def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple] = None): """ Converts the output of [`DPTForSemanticSegmentation`] into semantic segmentation maps. Only supports PyTorch. Args: outputs ([`DPTForSemanticSegmentation`]): Raw outputs of the model. target_sizes (`List[Tuple]` of length `batch_size`, *optional*): List of tuples corresponding to the requested final size (height, width) of each prediction. If unset, predictions will not be resized. Returns: semantic_segmentation: `List[torch.Tensor]` of length `batch_size`, where each item is a semantic segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is specified). Each entry of each `torch.Tensor` correspond to a semantic class id. """ # TODO: add support for other frameworks logits = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(logits) != len(target_sizes): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(target_sizes): target_sizes = target_sizes.numpy() semantic_segmentation = [] for idx in range(len(logits)): resized_logits = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False ) semantic_map = resized_logits[0].argmax(dim=0) semantic_segmentation.append(semantic_map) else: semantic_segmentation = logits.argmax(dim=1) semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
transformers-main
src/transformers/models/dpt/image_processing_dpt.py
# coding=utf-8 # Copyright 2022 Intel Labs, OpenMMLab and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch DPT (Dense Prediction Transformers) model. This implementation is heavily inspired by OpenMMLab's implementation, found here: https://github.com/open-mmlab/mmsegmentation/blob/master/mmseg/models/decode_heads/dpt_head.py. """ import collections.abc import math from dataclasses import dataclass from typing import List, Optional, Set, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...file_utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings, ) from ...modeling_outputs import BaseModelOutput, DepthEstimatorOutput, SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ModelOutput, logging from ..auto import AutoBackbone from .configuration_dpt import DPTConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "DPTConfig" # Base docstring _CHECKPOINT_FOR_DOC = "Intel/dpt-large" _EXPECTED_OUTPUT_SHAPE = [1, 577, 1024] DPT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "Intel/dpt-large", "Intel/dpt-hybrid-midas", # See all DPT models at https://huggingface.co/models?filter=dpt ] @dataclass class BaseModelOutputWithIntermediateActivations(ModelOutput): """ Base class for model's outputs that also contains intermediate activations that can be used at later stages. Useful in the context of Vision models.: Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. intermediate_activations (`tuple(torch.FloatTensor)`, *optional*): Intermediate activations that can be used to compute hidden states of the model at various layers. """ last_hidden_states: torch.FloatTensor = None intermediate_activations: Optional[Tuple[torch.FloatTensor]] = None @dataclass class BaseModelOutputWithPoolingAndIntermediateActivations(ModelOutput): """ Base class for model's outputs that also contains a pooling of the last hidden states as well as intermediate activations that can be used by the model at later stages. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`): Last layer hidden-state of the first token of the sequence (classification token) after further processing through the layers used for the auxiliary pretraining task. E.g. for BERT-family of models, this returns the classification token after processing through a linear layer and a tanh activation function. The linear layer weights are trained from the next sentence prediction (classification) objective during pretraining. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. intermediate_activations (`tuple(torch.FloatTensor)`, *optional*): Intermediate activations that can be used to compute hidden states of the model at various layers. """ last_hidden_state: torch.FloatTensor = None pooler_output: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None intermediate_activations: Optional[Tuple[torch.FloatTensor]] = None class DPTViTHybridEmbeddings(nn.Module): """ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a Transformer. """ def __init__(self, config, feature_size=None): super().__init__() image_size, patch_size = config.image_size, config.patch_size num_channels, hidden_size = config.num_channels, config.hidden_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.backbone = AutoBackbone.from_config(config.backbone_config) feature_dim = self.backbone.channels[-1] if len(config.backbone_config.out_features) != 3: raise ValueError( f"Expected backbone to have 3 output features, got {len(config.backbone_config.out_features)}" ) self.residual_feature_map_index = [0, 1] # Always take the output of the first and second backbone stage if feature_size is None: feat_map_shape = config.backbone_featmap_shape feature_size = feat_map_shape[-2:] feature_dim = feat_map_shape[1] else: feature_size = ( feature_size if isinstance(feature_size, collections.abc.Iterable) else (feature_size, feature_size) ) feature_dim = self.backbone.channels[-1] self.image_size = image_size self.patch_size = patch_size[0] self.num_channels = num_channels self.projection = nn.Conv2d(feature_dim, hidden_size, kernel_size=1) self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size)) def _resize_pos_embed(self, posemb, grid_size_height, grid_size_width, start_index=1): posemb_tok = posemb[:, :start_index] posemb_grid = posemb[0, start_index:] old_grid_size = int(math.sqrt(len(posemb_grid))) posemb_grid = posemb_grid.reshape(1, old_grid_size, old_grid_size, -1).permute(0, 3, 1, 2) posemb_grid = nn.functional.interpolate(posemb_grid, size=(grid_size_height, grid_size_width), mode="bilinear") posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, grid_size_height * grid_size_width, -1) posemb = torch.cat([posemb_tok, posemb_grid], dim=1) return posemb def forward( self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False, return_dict: bool = False ) -> torch.Tensor: batch_size, num_channels, height, width = pixel_values.shape if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) if not interpolate_pos_encoding: if height != self.image_size[0] or width != self.image_size[1]: raise ValueError( f"Input image size ({height}*{width}) doesn't match model" f" ({self.image_size[0]}*{self.image_size[1]})." ) position_embeddings = self._resize_pos_embed( self.position_embeddings, height // self.patch_size, width // self.patch_size ) backbone_output = self.backbone(pixel_values) features = backbone_output.feature_maps[-1] # Retrieve also the intermediate activations to use them at later stages output_hidden_states = [backbone_output.feature_maps[index] for index in self.residual_feature_map_index] embeddings = self.projection(features).flatten(2).transpose(1, 2) cls_tokens = self.cls_token.expand(batch_size, -1, -1) embeddings = torch.cat((cls_tokens, embeddings), dim=1) # add positional encoding to each token embeddings = embeddings + position_embeddings if not return_dict: return (embeddings, output_hidden_states) # Return hidden states and intermediate activations return BaseModelOutputWithIntermediateActivations( last_hidden_states=embeddings, intermediate_activations=output_hidden_states, ) class DPTViTEmbeddings(nn.Module): """ Construct the CLS token, position and patch embeddings. """ def __init__(self, config): super().__init__() self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) self.patch_embeddings = DPTViTPatchEmbeddings(config) num_patches = self.patch_embeddings.num_patches self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size)) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.config = config def _resize_pos_embed(self, posemb, grid_size_height, grid_size_width, start_index=1): posemb_tok = posemb[:, :start_index] posemb_grid = posemb[0, start_index:] old_grid_size = int(math.sqrt(len(posemb_grid))) posemb_grid = posemb_grid.reshape(1, old_grid_size, old_grid_size, -1).permute(0, 3, 1, 2) posemb_grid = nn.functional.interpolate(posemb_grid, size=(grid_size_height, grid_size_width), mode="bilinear") posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, grid_size_height * grid_size_width, -1) posemb = torch.cat([posemb_tok, posemb_grid], dim=1) return posemb def forward(self, pixel_values, return_dict=False): batch_size, num_channels, height, width = pixel_values.shape # possibly interpolate position encodings to handle varying image sizes patch_size = self.config.patch_size position_embeddings = self._resize_pos_embed( self.position_embeddings, height // patch_size, width // patch_size ) embeddings = self.patch_embeddings(pixel_values) batch_size, seq_len, _ = embeddings.size() # add the [CLS] token to the embedded patch tokens cls_tokens = self.cls_token.expand(batch_size, -1, -1) embeddings = torch.cat((cls_tokens, embeddings), dim=1) # add positional encoding to each token embeddings = embeddings + position_embeddings embeddings = self.dropout(embeddings) if not return_dict: return (embeddings,) return BaseModelOutputWithIntermediateActivations(last_hidden_states=embeddings) class DPTViTPatchEmbeddings(nn.Module): """ Image to Patch Embedding. """ def __init__(self, config): super().__init__() image_size, patch_size = config.image_size, config.patch_size num_channels, hidden_size = config.num_channels, config.hidden_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.num_patches = num_patches self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) def forward(self, pixel_values): batch_size, num_channels, height, width = pixel_values.shape if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2) return embeddings # Copied from transformers.models.vit.modeling_vit.ViTSelfAttention with ViT->DPT class DPTViTSelfAttention(nn.Module): def __init__(self, config: DPTConfig) -> None: super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " f"heads {config.num_attention_heads}." ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs # Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->DPT class DPTViTSelfOutput(nn.Module): """ The residual connection is defined in DPTLayer instead of here (as is the case with other models), due to the layernorm applied before each block. """ def __init__(self, config: DPTConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class DPTViTAttention(nn.Module): def __init__(self, config: DPTConfig) -> None: super().__init__() self.attention = DPTViTSelfAttention(config) self.output = DPTViTSelfOutput(config) self.pruned_heads = set() # Copied from transformers.models.vit.modeling_vit.ViTAttention.prune_heads def prune_heads(self, heads: Set[int]) -> None: if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads ) # Prune linear layers self.attention.query = prune_linear_layer(self.attention.query, index) self.attention.key = prune_linear_layer(self.attention.key, index) self.attention.value = prune_linear_layer(self.attention.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) # Copied from transformers.models.vit.modeling_vit.ViTAttention.forward def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: self_outputs = self.attention(hidden_states, head_mask, output_attentions) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.vit.modeling_vit.ViTIntermediate with ViT->DPT class DPTViTIntermediate(nn.Module): def __init__(self, config: DPTConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.vit.modeling_vit.ViTOutput with ViT->DPT class DPTViTOutput(nn.Module): def __init__(self, config: DPTConfig) -> None: super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + input_tensor return hidden_states # copied from transformers.models.vit.modeling_vit.ViTLayer with ViTConfig->DPTConfig, ViTAttention->DPTViTAttention, ViTIntermediate->DPTViTIntermediate, ViTOutput->DPTViTOutput class DPTViTLayer(nn.Module): """This corresponds to the Block class in the timm implementation.""" def __init__(self, config: DPTConfig) -> None: super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = DPTViTAttention(config) self.intermediate = DPTViTIntermediate(config) self.output = DPTViTOutput(config) self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: self_attention_outputs = self.attention( self.layernorm_before(hidden_states), # in ViT, layernorm is applied before self-attention head_mask, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights # first residual connection hidden_states = attention_output + hidden_states # in ViT, layernorm is also applied after self-attention layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) # second residual connection is done here layer_output = self.output(layer_output, hidden_states) outputs = (layer_output,) + outputs return outputs # copied from transformers.models.vit.modeling_vit.ViTEncoder with ViTConfig -> DPTConfig, ViTLayer->DPTViTLayer class DPTViTEncoder(nn.Module): def __init__(self, config: DPTConfig) -> None: super().__init__() self.config = config self.layer = nn.ModuleList([DPTViTLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[tuple, BaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer_module), hidden_states, layer_head_mask, ) else: layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class DPTReassembleStage(nn.Module): """ This class reassembles the hidden states of the backbone into image-like feature representations at various resolutions. This happens in 3 stages: 1. Map the N + 1 tokens to a set of N tokens, by taking into account the readout ([CLS]) token according to `config.readout_type`. 2. Project the channel dimension of the hidden states according to `config.neck_hidden_sizes`. 3. Resizing the spatial dimensions (height, width). Args: config (`[DPTConfig]`): Model configuration class defining the model architecture. """ def __init__(self, config): super().__init__() self.config = config self.layers = nn.ModuleList() if config.is_hybrid: self._init_reassemble_dpt_hybrid(config) else: self._init_reassemble_dpt(config) self.neck_ignore_stages = config.neck_ignore_stages def _init_reassemble_dpt_hybrid(self, config): r""" " For DPT-Hybrid the first 2 reassemble layers are set to `nn.Identity()`, please check the official implementation: https://github.com/isl-org/DPT/blob/f43ef9e08d70a752195028a51be5e1aff227b913/dpt/vit.py#L438 for more details. """ for i, factor in zip(range(len(config.neck_hidden_sizes)), config.reassemble_factors): if i <= 1: self.layers.append(nn.Identity()) elif i > 1: self.layers.append(DPTReassembleLayer(config, channels=config.neck_hidden_sizes[i], factor=factor)) if config.readout_type != "project": raise ValueError(f"Readout type {config.readout_type} is not supported for DPT-Hybrid.") # When using DPT-Hybrid the readout type is set to "project". The sanity check is done on the config file self.readout_projects = nn.ModuleList() for i in range(len(config.neck_hidden_sizes)): if i <= 1: self.readout_projects.append(nn.Sequential(nn.Identity())) elif i > 1: self.readout_projects.append( nn.Sequential(nn.Linear(2 * config.hidden_size, config.hidden_size), ACT2FN[config.hidden_act]) ) def _init_reassemble_dpt(self, config): for i, factor in zip(range(len(config.neck_hidden_sizes)), config.reassemble_factors): self.layers.append(DPTReassembleLayer(config, channels=config.neck_hidden_sizes[i], factor=factor)) if config.readout_type == "project": self.readout_projects = nn.ModuleList() for _ in range(len(config.neck_hidden_sizes)): self.readout_projects.append( nn.Sequential(nn.Linear(2 * config.hidden_size, config.hidden_size), ACT2FN[config.hidden_act]) ) def forward(self, hidden_states: List[torch.Tensor]) -> List[torch.Tensor]: """ Args: hidden_states (`List[torch.FloatTensor]`, each of shape `(batch_size, sequence_length + 1, hidden_size)`): List of hidden states from the backbone. """ out = [] for i, hidden_state in enumerate(hidden_states): if i not in self.neck_ignore_stages: # reshape to (B, C, H, W) hidden_state, cls_token = hidden_state[:, 1:], hidden_state[:, 0] batch_size, sequence_length, num_channels = hidden_state.shape size = int(math.sqrt(sequence_length)) hidden_state = hidden_state.reshape(batch_size, size, size, num_channels) hidden_state = hidden_state.permute(0, 3, 1, 2).contiguous() feature_shape = hidden_state.shape if self.config.readout_type == "project": # reshape to (B, H*W, C) hidden_state = hidden_state.flatten(2).permute((0, 2, 1)) readout = cls_token.unsqueeze(1).expand_as(hidden_state) # concatenate the readout token to the hidden states and project hidden_state = self.readout_projects[i](torch.cat((hidden_state, readout), -1)) # reshape back to (B, C, H, W) hidden_state = hidden_state.permute(0, 2, 1).reshape(feature_shape) elif self.config.readout_type == "add": hidden_state = hidden_state.flatten(2) + cls_token.unsqueeze(-1) hidden_state = hidden_state.reshape(feature_shape) hidden_state = self.layers[i](hidden_state) out.append(hidden_state) return out class DPTReassembleLayer(nn.Module): def __init__(self, config, channels, factor): super().__init__() # projection self.projection = nn.Conv2d(in_channels=config.hidden_size, out_channels=channels, kernel_size=1) # up/down sampling depending on factor if factor > 1: self.resize = nn.ConvTranspose2d(channels, channels, kernel_size=factor, stride=factor, padding=0) elif factor == 1: self.resize = nn.Identity() elif factor < 1: # so should downsample self.resize = nn.Conv2d(channels, channels, kernel_size=3, stride=int(1 / factor), padding=1) def forward(self, hidden_state): hidden_state = self.projection(hidden_state) hidden_state = self.resize(hidden_state) return hidden_state class DPTFeatureFusionStage(nn.Module): def __init__(self, config): super().__init__() self.layers = nn.ModuleList() for _ in range(len(config.neck_hidden_sizes)): self.layers.append(DPTFeatureFusionLayer(config)) def forward(self, hidden_states): # reversing the hidden_states, we start from the last hidden_states = hidden_states[::-1] fused_hidden_states = [] # first layer only uses the last hidden_state fused_hidden_state = self.layers[0](hidden_states[0]) fused_hidden_states.append(fused_hidden_state) # looping from the last layer to the second for hidden_state, layer in zip(hidden_states[1:], self.layers[1:]): fused_hidden_state = layer(fused_hidden_state, hidden_state) fused_hidden_states.append(fused_hidden_state) return fused_hidden_states class DPTPreActResidualLayer(nn.Module): """ ResidualConvUnit, pre-activate residual unit. Args: config (`[DPTConfig]`): Model configuration class defining the model architecture. """ def __init__(self, config): super().__init__() self.use_batch_norm = config.use_batch_norm_in_fusion_residual self.activation1 = ACT2FN["relu"] self.convolution1 = nn.Conv2d( config.fusion_hidden_size, config.fusion_hidden_size, kernel_size=3, stride=1, padding=1, bias=not self.use_batch_norm, ) self.activation2 = ACT2FN["relu"] self.convolution2 = nn.Conv2d( config.fusion_hidden_size, config.fusion_hidden_size, kernel_size=3, stride=1, padding=1, bias=not self.use_batch_norm, ) if self.use_batch_norm: self.batch_norm1 = nn.BatchNorm2d(config.fusion_hidden_size) self.batch_norm2 = nn.BatchNorm2d(config.fusion_hidden_size) def forward(self, hidden_state: torch.Tensor) -> torch.Tensor: residual = hidden_state hidden_state = self.activation1(hidden_state) hidden_state = self.convolution1(hidden_state) if self.use_batch_norm: hidden_state = self.batch_norm1(hidden_state) hidden_state = self.activation2(hidden_state) hidden_state = self.convolution2(hidden_state) if self.use_batch_norm: hidden_state = self.batch_norm2(hidden_state) return hidden_state + residual class DPTFeatureFusionLayer(nn.Module): """Feature fusion layer, merges feature maps from different stages. Args: config (`[DPTConfig]`): Model configuration class defining the model architecture. align_corners (`bool`, *optional*, defaults to `True`): The align_corner setting for bilinear upsample. """ def __init__(self, config, align_corners=True): super().__init__() self.align_corners = align_corners self.projection = nn.Conv2d(config.fusion_hidden_size, config.fusion_hidden_size, kernel_size=1, bias=True) self.residual_layer1 = DPTPreActResidualLayer(config) self.residual_layer2 = DPTPreActResidualLayer(config) def forward(self, hidden_state, residual=None): if residual is not None: if hidden_state.shape != residual.shape: residual = nn.functional.interpolate( residual, size=(hidden_state.shape[2], hidden_state.shape[3]), mode="bilinear", align_corners=False ) hidden_state = hidden_state + self.residual_layer1(residual) hidden_state = self.residual_layer2(hidden_state) hidden_state = nn.functional.interpolate( hidden_state, scale_factor=2, mode="bilinear", align_corners=self.align_corners ) hidden_state = self.projection(hidden_state) return hidden_state class DPTPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = DPTConfig base_model_prefix = "dpt" main_input_name = "pixel_values" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, DPTViTEncoder): module.gradient_checkpointing = value DPT_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ViTConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ DPT_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`DPTImageProcessor.__call__`] for details. head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare DPT Model transformer outputting raw hidden-states without any specific head on top.", DPT_START_DOCSTRING, ) class DPTModel(DPTPreTrainedModel): def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config # vit encoder if config.is_hybrid: self.embeddings = DPTViTHybridEmbeddings(config) else: self.embeddings = DPTViTEmbeddings(config) self.encoder = DPTViTEncoder(config) self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.pooler = DPTViTPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): if self.config.is_hybrid: return self.embeddings else: return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(DPT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndIntermediateActivations, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: torch.FloatTensor, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPoolingAndIntermediateActivations]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings(pixel_values, return_dict=return_dict) embedding_last_hidden_states = embedding_output[0] if not return_dict else embedding_output.last_hidden_states encoder_outputs = self.encoder( embedding_last_hidden_states, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,) return head_outputs + encoder_outputs[1:] + embedding_output[1:] return BaseModelOutputWithPoolingAndIntermediateActivations( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, intermediate_activations=embedding_output.intermediate_activations, ) # Copied from transformers.models.vit.modeling_vit.ViTPooler with ViT->DPT class DPTViTPooler(nn.Module): def __init__(self, config: DPTConfig): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class DPTNeck(nn.Module): """ DPTNeck. A neck is a module that is normally used between the backbone and the head. It takes a list of tensors as input and produces another list of tensors as output. For DPT, it includes 2 stages: * DPTReassembleStage * DPTFeatureFusionStage. Args: config (dict): config dict. """ def __init__(self, config): super().__init__() self.config = config # postprocessing self.reassemble_stage = DPTReassembleStage(config) self.convs = nn.ModuleList() for channel in config.neck_hidden_sizes: self.convs.append(nn.Conv2d(channel, config.fusion_hidden_size, kernel_size=3, padding=1, bias=False)) # fusion self.fusion_stage = DPTFeatureFusionStage(config) def forward(self, hidden_states: List[torch.Tensor]) -> List[torch.Tensor]: if not isinstance(hidden_states, list): raise ValueError("hidden_states should be a list of tensors") if len(hidden_states) != len(self.config.neck_hidden_sizes): raise ValueError("The number of hidden states should be equal to the number of neck hidden sizes.") # postprocess hidden states features = self.reassemble_stage(hidden_states) features = [self.convs[i](feature) for i, feature in enumerate(features)] # fusion blocks output = self.fusion_stage(features) return output class DPTDepthEstimationHead(nn.Module): """ Output head head consisting of 3 convolutional layers. It progressively halves the feature dimension and upsamples the predictions to the input resolution after the first convolutional layer (details can be found in the paper's supplementary material). """ def __init__(self, config): super().__init__() self.config = config features = config.fusion_hidden_size self.head = nn.Sequential( nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1), nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True), nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1), ACT2FN["relu"], nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0), ACT2FN["relu"], ) def forward(self, hidden_states: List[torch.Tensor]) -> torch.Tensor: # use last features hidden_states = hidden_states[self.config.head_in_index] predicted_depth = self.head(hidden_states) predicted_depth = predicted_depth.squeeze(dim=1) return predicted_depth @add_start_docstrings( """ DPT Model with a depth estimation head on top (consisting of 3 convolutional layers) e.g. for KITTI, NYUv2. """, DPT_START_DOCSTRING, ) class DPTForDepthEstimation(DPTPreTrainedModel): def __init__(self, config): super().__init__(config) self.dpt = DPTModel(config, add_pooling_layer=False) # Neck self.neck = DPTNeck(config) # Depth estimation head self.head = DPTDepthEstimationHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(DPT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=DepthEstimatorOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: torch.FloatTensor, head_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], DepthEstimatorOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): Ground truth depth estimation maps for computing the loss. Returns: Examples: ```python >>> from transformers import AutoImageProcessor, DPTForDepthEstimation >>> import torch >>> import numpy as np >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("Intel/dpt-large") >>> model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large") >>> # prepare image for the model >>> inputs = image_processor(images=image, return_tensors="pt") >>> with torch.no_grad(): ... outputs = model(**inputs) ... predicted_depth = outputs.predicted_depth >>> # interpolate to original size >>> prediction = torch.nn.functional.interpolate( ... predicted_depth.unsqueeze(1), ... size=image.size[::-1], ... mode="bicubic", ... align_corners=False, ... ) >>> # visualize the prediction >>> output = prediction.squeeze().cpu().numpy() >>> formatted = (output * 255 / np.max(output)).astype("uint8") >>> depth = Image.fromarray(formatted) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) outputs = self.dpt( pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=True, # we need the intermediate hidden states return_dict=return_dict, ) hidden_states = outputs.hidden_states if return_dict else outputs[1] # only keep certain features based on config.backbone_out_indices # note that the hidden_states also include the initial embeddings if not self.config.is_hybrid: hidden_states = [ feature for idx, feature in enumerate(hidden_states[1:]) if idx in self.config.backbone_out_indices ] else: backbone_hidden_states = outputs.intermediate_activations if return_dict else list(outputs[-1]) backbone_hidden_states.extend( feature for idx, feature in enumerate(hidden_states[1:]) if idx in self.config.backbone_out_indices[2:] ) hidden_states = backbone_hidden_states hidden_states = self.neck(hidden_states) predicted_depth = self.head(hidden_states) loss = None if labels is not None: raise NotImplementedError("Training is not implemented yet") if not return_dict: if output_hidden_states: output = (predicted_depth,) + outputs[1:] else: output = (predicted_depth,) + outputs[2:] return ((loss,) + output) if loss is not None else output return DepthEstimatorOutput( loss=loss, predicted_depth=predicted_depth, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=outputs.attentions, ) class DPTSemanticSegmentationHead(nn.Module): def __init__(self, config): super().__init__() self.config = config features = config.fusion_hidden_size self.head = nn.Sequential( nn.Conv2d(features, features, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(features), ACT2FN["relu"], nn.Dropout(config.semantic_classifier_dropout), nn.Conv2d(features, config.num_labels, kernel_size=1), nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True), ) def forward(self, hidden_states: List[torch.Tensor]) -> torch.Tensor: # use last features hidden_states = hidden_states[self.config.head_in_index] logits = self.head(hidden_states) return logits class DPTAuxiliaryHead(nn.Module): def __init__(self, config): super().__init__() features = config.fusion_hidden_size self.head = nn.Sequential( nn.Conv2d(features, features, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(features), ACT2FN["relu"], nn.Dropout(0.1, False), nn.Conv2d(features, config.num_labels, kernel_size=1), ) def forward(self, hidden_states): logits = self.head(hidden_states) return logits @add_start_docstrings( """ DPT Model with a semantic segmentation head on top e.g. for ADE20k, CityScapes. """, DPT_START_DOCSTRING, ) class DPTForSemanticSegmentation(DPTPreTrainedModel): def __init__(self, config): super().__init__(config) self.dpt = DPTModel(config, add_pooling_layer=False) # Neck self.neck = DPTNeck(config) # Segmentation head(s) self.head = DPTSemanticSegmentationHead(config) self.auxiliary_head = DPTAuxiliaryHead(config) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(DPT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SemanticSegmenterOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, DPTForSemanticSegmentation >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("Intel/dpt-large-ade") >>> model = DPTForSemanticSegmentation.from_pretrained("Intel/dpt-large-ade") >>> inputs = image_processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) outputs = self.dpt( pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=True, # we need the intermediate hidden states return_dict=return_dict, ) hidden_states = outputs.hidden_states if return_dict else outputs[1] # only keep certain features based on config.backbone_out_indices # note that the hidden_states also include the initial embeddings if not self.config.is_hybrid: hidden_states = [ feature for idx, feature in enumerate(hidden_states[1:]) if idx in self.config.backbone_out_indices ] else: backbone_hidden_states = outputs.intermediate_activations if return_dict else list(outputs[-1]) backbone_hidden_states.extend( feature for idx, feature in enumerate(hidden_states[1:]) if idx in self.config.backbone_out_indices[2:] ) hidden_states = backbone_hidden_states hidden_states = self.neck(hidden_states) logits = self.head(hidden_states) auxiliary_logits = None if self.auxiliary_head is not None: auxiliary_logits = self.auxiliary_head(hidden_states[-1]) loss = None if labels is not None: if self.config.num_labels == 1: raise ValueError("The number of labels should be greater than one") else: # upsample logits to the images' original size upsampled_logits = nn.functional.interpolate( logits, size=labels.shape[-2:], mode="bilinear", align_corners=False ) if auxiliary_logits is not None: upsampled_auxiliary_logits = nn.functional.interpolate( auxiliary_logits, size=labels.shape[-2:], mode="bilinear", align_corners=False ) # compute weighted loss loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index) main_loss = loss_fct(upsampled_logits, labels) auxiliary_loss = loss_fct(upsampled_auxiliary_logits, labels) loss = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: output = (logits,) + outputs[1:] else: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=outputs.attentions, )
transformers-main
src/transformers/models/dpt/modeling_dpt.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert DPT checkpoints from the original repository. URL: https://github.com/isl-org/DPT""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) def get_dpt_config(checkpoint_url): config = DPTConfig() if "large" in checkpoint_url: config.hidden_size = 1024 config.intermediate_size = 4096 config.num_hidden_layers = 24 config.num_attention_heads = 16 config.backbone_out_indices = [5, 11, 17, 23] config.neck_hidden_sizes = [256, 512, 1024, 1024] expected_shape = (1, 384, 384) if "ade" in checkpoint_url: config.use_batch_norm_in_fusion_residual = True config.num_labels = 150 repo_id = "huggingface/label-files" filename = "ade20k-id2label.json" id2label = json.load(open(cached_download(hf_hub_url(repo_id, filename, repo_type="dataset")), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} expected_shape = [1, 150, 480, 480] return config, expected_shape def remove_ignore_keys_(state_dict): ignore_keys = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(k, None) def rename_key(name): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): name = name.replace("pretrained.model", "dpt.encoder") if "pretrained.model" in name: name = name.replace("pretrained.model", "dpt.embeddings") if "patch_embed" in name: name = name.replace("patch_embed", "patch_embeddings") if "pos_embed" in name: name = name.replace("pos_embed", "position_embeddings") if "attn.proj" in name: name = name.replace("attn.proj", "attention.output.dense") if "proj" in name and "project" not in name: name = name.replace("proj", "projection") if "blocks" in name: name = name.replace("blocks", "layer") if "mlp.fc1" in name: name = name.replace("mlp.fc1", "intermediate.dense") if "mlp.fc2" in name: name = name.replace("mlp.fc2", "output.dense") if "norm1" in name: name = name.replace("norm1", "layernorm_before") if "norm2" in name: name = name.replace("norm2", "layernorm_after") if "scratch.output_conv" in name: name = name.replace("scratch.output_conv", "head") if "scratch" in name: name = name.replace("scratch", "neck") if "layer1_rn" in name: name = name.replace("layer1_rn", "convs.0") if "layer2_rn" in name: name = name.replace("layer2_rn", "convs.1") if "layer3_rn" in name: name = name.replace("layer3_rn", "convs.2") if "layer4_rn" in name: name = name.replace("layer4_rn", "convs.3") if "refinenet" in name: layer_idx = int(name[len("neck.refinenet") : len("neck.refinenet") + 1]) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 name = name.replace(f"refinenet{layer_idx}", f"fusion_stage.layers.{abs(layer_idx-4)}") if "out_conv" in name: name = name.replace("out_conv", "projection") if "resConfUnit1" in name: name = name.replace("resConfUnit1", "residual_layer1") if "resConfUnit2" in name: name = name.replace("resConfUnit2", "residual_layer2") if "conv1" in name: name = name.replace("conv1", "convolution1") if "conv2" in name: name = name.replace("conv2", "convolution2") # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: name = name.replace("pretrained.act_postprocess1.0.project.0", "neck.reassemble_stage.readout_projects.0.0") if "pretrained.act_postprocess2.0.project.0" in name: name = name.replace("pretrained.act_postprocess2.0.project.0", "neck.reassemble_stage.readout_projects.1.0") if "pretrained.act_postprocess3.0.project.0" in name: name = name.replace("pretrained.act_postprocess3.0.project.0", "neck.reassemble_stage.readout_projects.2.0") if "pretrained.act_postprocess4.0.project.0" in name: name = name.replace("pretrained.act_postprocess4.0.project.0", "neck.reassemble_stage.readout_projects.3.0") # resize blocks if "pretrained.act_postprocess1.3" in name: name = name.replace("pretrained.act_postprocess1.3", "neck.reassemble_stage.layers.0.projection") if "pretrained.act_postprocess1.4" in name: name = name.replace("pretrained.act_postprocess1.4", "neck.reassemble_stage.layers.0.resize") if "pretrained.act_postprocess2.3" in name: name = name.replace("pretrained.act_postprocess2.3", "neck.reassemble_stage.layers.1.projection") if "pretrained.act_postprocess2.4" in name: name = name.replace("pretrained.act_postprocess2.4", "neck.reassemble_stage.layers.1.resize") if "pretrained.act_postprocess3.3" in name: name = name.replace("pretrained.act_postprocess3.3", "neck.reassemble_stage.layers.2.projection") if "pretrained.act_postprocess4.3" in name: name = name.replace("pretrained.act_postprocess4.3", "neck.reassemble_stage.layers.3.projection") if "pretrained.act_postprocess4.4" in name: name = name.replace("pretrained.act_postprocess4.4", "neck.reassemble_stage.layers.3.resize") if "pretrained" in name: name = name.replace("pretrained", "dpt") if "bn" in name: name = name.replace("bn", "batch_norm") if "head" in name: name = name.replace("head", "head.head") if "encoder.norm" in name: name = name.replace("encoder.norm", "layernorm") if "auxlayer" in name: name = name.replace("auxlayer", "auxiliary_head.head") return name # we split up the matrix of each encoder layer into queries, keys and values def read_in_q_k_v(state_dict, config): for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) in_proj_weight = state_dict.pop(f"dpt.encoder.layer.{i}.attn.qkv.weight") in_proj_bias = state_dict.pop(f"dpt.encoder.layer.{i}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict state_dict[f"dpt.encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[: config.hidden_size, :] state_dict[f"dpt.encoder.layer.{i}.attention.attention.query.bias"] = in_proj_bias[: config.hidden_size] state_dict[f"dpt.encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] state_dict[f"dpt.encoder.layer.{i}.attention.attention.key.bias"] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] state_dict[f"dpt.encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[ -config.hidden_size :, : ] state_dict[f"dpt.encoder.layer.{i}.attention.attention.value.bias"] = in_proj_bias[-config.hidden_size :] # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @torch.no_grad() def convert_dpt_checkpoint(checkpoint_url, pytorch_dump_folder_path, push_to_hub, model_name): """ Copy/paste/tweak model's weights to our DPT structure. """ # define DPT configuration based on URL config, expected_shape = get_dpt_config(checkpoint_url) # load original state_dict from URL state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") # remove certain keys remove_ignore_keys_(state_dict) # rename keys for key in state_dict.copy().keys(): val = state_dict.pop(key) state_dict[rename_key(key)] = val # read in qkv matrices read_in_q_k_v(state_dict, config) # load HuggingFace model model = DPTForSemanticSegmentation(config) if "ade" in checkpoint_url else DPTForDepthEstimation(config) model.load_state_dict(state_dict) model.eval() # Check outputs on an image size = 480 if "ade" in checkpoint_url else 384 image_processor = DPTImageProcessor(size=size) image = prepare_img() encoding = image_processor(image, return_tensors="pt") # forward pass outputs = model(**encoding).logits if "ade" in checkpoint_url else model(**encoding).predicted_depth # Assert logits expected_slice = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]]) if "ade" in checkpoint_url: expected_slice = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]]) assert outputs.shape == torch.Size(expected_shape) assert ( torch.allclose(outputs[0, 0, :3, :3], expected_slice, atol=1e-4) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3], expected_slice) ) Path(pytorch_dump_folder_path).mkdir(exist_ok=True) print(f"Saving model to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) print(f"Saving image processor to {pytorch_dump_folder_path}") image_processor.save_pretrained(pytorch_dump_folder_path) if push_to_hub: print("Pushing model to hub...") model.push_to_hub( repo_path_or_name=Path(pytorch_dump_folder_path, model_name), organization="nielsr", commit_message="Add model", use_temp_dir=True, ) image_processor.push_to_hub( repo_path_or_name=Path(pytorch_dump_folder_path, model_name), organization="nielsr", commit_message="Add image processor", use_temp_dir=True, ) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) args = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
transformers-main
src/transformers/models/dpt/convert_dpt_to_pytorch.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Feature extractor class for Wav2Vec2 """ from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging logger = logging.get_logger(__name__) class Wav2Vec2FeatureExtractor(SequenceFeatureExtractor): r""" Constructs a Wav2Vec2 feature extractor. This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: feature_size (`int`, defaults to 1): The feature dimension of the extracted features. sampling_rate (`int`, defaults to 16000): The sampling rate at which the audio files should be digitalized expressed in hertz (Hz). padding_value (`float`, defaults to 0.0): The value that is used to fill the padding values. do_normalize (`bool`, *optional*, defaults to `True`): Whether or not to zero-mean unit-variance normalize the input. Normalizing can help to significantly improve the performance for some models, *e.g.*, [wav2vec2-lv60](https://huggingface.co/models?search=lv60). return_attention_mask (`bool`, *optional*, defaults to `False`): Whether or not [`~Wav2Vec2FeatureExtractor.__call__`] should return `attention_mask`. <Tip> Wav2Vec2 models that have set `config.feat_extract_norm == "group"`, such as [wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base-960h), have **not** been trained using `attention_mask`. For such models, `input_values` should simply be padded with 0 and no `attention_mask` should be passed. For Wav2Vec2 models that have set `config.feat_extract_norm == "layer"`, such as [wav2vec2-lv60](https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self), `attention_mask` should be passed for batched inference. </Tip>""" model_input_names = ["input_values", "attention_mask"] def __init__( self, feature_size=1, sampling_rate=16000, padding_value=0.0, return_attention_mask=False, do_normalize=True, **kwargs, ): super().__init__(feature_size=feature_size, sampling_rate=sampling_rate, padding_value=padding_value, **kwargs) self.return_attention_mask = return_attention_mask self.do_normalize = do_normalize @staticmethod def zero_mean_unit_var_norm( input_values: List[np.ndarray], attention_mask: List[np.ndarray], padding_value: float = 0.0 ) -> List[np.ndarray]: """ Every array in the list is normalized to have zero mean and unit variance """ if attention_mask is not None: attention_mask = np.array(attention_mask, np.int32) normed_input_values = [] for vector, length in zip(input_values, attention_mask.sum(-1)): normed_slice = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7) if length < normed_slice.shape[0]: normed_slice[length:] = padding_value normed_input_values.append(normed_slice) else: normed_input_values = [(x - x.mean()) / np.sqrt(x.var() + 1e-7) for x in input_values] return normed_input_values def __call__( self, raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], padding: Union[bool, str, PaddingStrategy] = False, max_length: Optional[int] = None, truncation: bool = False, pad_to_multiple_of: Optional[int] = None, return_attention_mask: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, sampling_rate: Optional[int] = None, **kwargs, ) -> BatchFeature: """ Main method to featurize and prepare for the model one or several sequence(s). Args: raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`): The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float values, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not stereo, i.e. single float per timestep. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). max_length (`int`, *optional*): Maximum length of the returned list and optionally padding length (see above). truncation (`bool`): Activates truncation to cut input sequences longer than *max_length* to *max_length*. pad_to_multiple_of (`int`, *optional*): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. return_attention_mask (`bool`, *optional*): Whether to return the attention mask. If left to the default, will return the attention mask according to the specific feature_extractor's default. [What are attention masks?](../glossary#attention-mask) <Tip> Wav2Vec2 models that have set `config.feat_extract_norm == "group"`, such as [wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base-960h), have **not** been trained using `attention_mask`. For such models, `input_values` should simply be padded with 0 and no `attention_mask` should be passed. For Wav2Vec2 models that have set `config.feat_extract_norm == "layer"`, such as [wav2vec2-lv60](https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self), `attention_mask` should be passed for batched inference. </Tip> return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. sampling_rate (`int`, *optional*): The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass `sampling_rate` at the forward call to prevent silent errors. padding_value (`float`, defaults to 0.0): """ if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}") is_batched = is_batched_numpy or ( isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list))) ) # always return batch if not is_batched: raw_speech = [raw_speech] # convert into correct format for padding encoded_inputs = BatchFeature({"input_values": raw_speech}) padded_inputs = self.pad( encoded_inputs, padding=padding, max_length=max_length, truncation=truncation, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, ) # convert input values to correct format input_values = padded_inputs["input_values"] if not isinstance(input_values[0], np.ndarray): padded_inputs["input_values"] = [np.asarray(array, dtype=np.float32) for array in input_values] elif ( not isinstance(input_values, np.ndarray) and isinstance(input_values[0], np.ndarray) and input_values[0].dtype is np.dtype(np.float64) ): padded_inputs["input_values"] = [array.astype(np.float32) for array in input_values] elif isinstance(input_values, np.ndarray) and input_values.dtype is np.dtype(np.float64): padded_inputs["input_values"] = input_values.astype(np.float32) # convert attention_mask to correct format attention_mask = padded_inputs.get("attention_mask") if attention_mask is not None: padded_inputs["attention_mask"] = [np.asarray(array, dtype=np.int32) for array in attention_mask] # zero-mean and unit-variance normalization if self.do_normalize: attention_mask = ( attention_mask if self._get_padding_strategies(padding, max_length=max_length) is not PaddingStrategy.DO_NOT_PAD else None ) padded_inputs["input_values"] = self.zero_mean_unit_var_norm( padded_inputs["input_values"], attention_mask=attention_mask, padding_value=self.padding_value ) if return_tensors is not None: padded_inputs = padded_inputs.convert_to_tensors(return_tensors) return padded_inputs
transformers-main
src/transformers/models/wav2vec2/feature_extraction_wav2vec2.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Speech processor class for Wav2Vec2 """ import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wav2vec2 import Wav2Vec2FeatureExtractor from .tokenization_wav2vec2 import Wav2Vec2CTCTokenizer class Wav2Vec2Processor(ProcessorMixin): r""" Constructs a Wav2Vec2 processor which wraps a Wav2Vec2 feature extractor and a Wav2Vec2 CTC tokenizer into a single processor. [`Wav2Vec2Processor`] offers all the functionalities of [`Wav2Vec2FeatureExtractor`] and [`PreTrainedTokenizer`]. See the docstring of [`~Wav2Vec2Processor.__call__`] and [`~Wav2Vec2Processor.decode`] for more information. Args: feature_extractor (`Wav2Vec2FeatureExtractor`): An instance of [`Wav2Vec2FeatureExtractor`]. The feature extractor is a required input. tokenizer ([`PreTrainedTokenizer`]): An instance of [`PreTrainedTokenizer`]. The tokenizer is a required input. """ feature_extractor_class = "Wav2Vec2FeatureExtractor" tokenizer_class = "AutoTokenizer" def __init__(self, feature_extractor, tokenizer): super().__init__(feature_extractor, tokenizer) self.current_processor = self.feature_extractor self._in_target_context_manager = False @classmethod def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): try: return super().from_pretrained(pretrained_model_name_or_path, **kwargs) except OSError: warnings.warn( f"Loading a tokenizer inside {cls.__name__} from a config that does not" " include a `tokenizer_class` attribute is deprecated and will be " "removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`" " attribute to either your `config.json` or `tokenizer_config.json` " "file to suppress this warning: ", FutureWarning, ) feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(pretrained_model_name_or_path, **kwargs) tokenizer = Wav2Vec2CTCTokenizer.from_pretrained(pretrained_model_name_or_path, **kwargs) return cls(feature_extractor=feature_extractor, tokenizer=tokenizer) def __call__(self, *args, **kwargs): """ When used in normal mode, this method forwards all its arguments to Wav2Vec2FeatureExtractor's [`~Wav2Vec2FeatureExtractor.__call__`] and returns its output. If used in the context [`~Wav2Vec2Processor.as_target_processor`] this method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.__call__`]. Please refer to the docstring of the above two methods for more information. """ # For backward compatibility if self._in_target_context_manager: return self.current_processor(*args, **kwargs) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.") audio = kwargs.pop("raw_speech") else: audio = kwargs.pop("audio", None) sampling_rate = kwargs.pop("sampling_rate", None) text = kwargs.pop("text", None) if len(args) > 0: audio = args[0] args = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process.") if audio is not None: inputs = self.feature_extractor(audio, *args, sampling_rate=sampling_rate, **kwargs) if text is not None: encodings = self.tokenizer(text, **kwargs) if text is None: return inputs elif audio is None: return encodings else: inputs["labels"] = encodings["input_ids"] return inputs def pad(self, *args, **kwargs): """ When used in normal mode, this method forwards all its arguments to Wav2Vec2FeatureExtractor's [`~Wav2Vec2FeatureExtractor.pad`] and returns its output. If used in the context [`~Wav2Vec2Processor.as_target_processor`] this method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.pad`]. Please refer to the docstring of the above two methods for more information. """ # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*args, **kwargs) input_features = kwargs.pop("input_features", None) labels = kwargs.pop("labels", None) if len(args) > 0: input_features = args[0] args = args[1:] if input_features is not None: input_features = self.feature_extractor.pad(input_features, *args, **kwargs) if labels is not None: labels = self.tokenizer.pad(labels, **kwargs) if labels is None: return input_features elif input_features is None: return labels else: input_features["labels"] = labels["input_ids"] return input_features def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @contextmanager def as_target_processor(self): """ Temporarily sets the tokenizer for processing the input. Useful for encoding the labels when fine-tuning Wav2Vec2. """ warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) self._in_target_context_manager = True self.current_processor = self.tokenizer yield self.current_processor = self.feature_extractor self._in_target_context_manager = False
transformers-main
src/transformers/models/wav2vec2/processing_wav2vec2.py
# coding=utf-8 # Copyright 2021 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TensorFlow Wav2Vec2 model.""" from __future__ import annotations import warnings from dataclasses import dataclass from typing import Any, Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import TFBaseModelOutput, TFCausalLMOutput, TFSequenceClassifierOutput from ...modeling_tf_utils import ( TFPreTrainedModel, get_initializer, keras_serializable, unpack_inputs, ) from ...tf_utils import shape_list, stable_softmax from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_wav2vec2 import Wav2Vec2Config logger = logging.get_logger(__name__) _HIDDEN_STATES_START_POSITION = 2 _CHECKPOINT_FOR_DOC = "facebook/wav2vec2-base-960h" _CONFIG_FOR_DOC = "Wav2Vec2Config" TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/wav2vec2-base-960h", "facebook/wav2vec2-large-960h", "facebook/wav2vec2-large-960h-lv60", "facebook/wav2vec2-large-960h-lv60-self", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 ] LARGE_NEGATIVE = -1e8 @dataclass class TFWav2Vec2BaseModelOutput(ModelOutput): """ Output type of [`TFWav2Vec2BaseModelOutput`], with potential hidden states and attentions. Args: last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. extract_features (`tf.Tensor` of shape `(batch_size, sequence_length, conv_dim[-1])`): Sequence of extracted feature vectors of the last convolutional layer of the model. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: tf.Tensor = None extract_features: tf.Tensor = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None def _sample_without_replacement(distribution, num_samples): """ Categorical sampling without replacement is currently not implemented. The gumbel-max trick will do for now - see https://github.com/tensorflow/tensorflow/issues/9260 for more info """ z = -tf.math.log(tf.random.uniform(shape_list(distribution), 0, 1)) _, indices = tf.nn.top_k(distribution + z, num_samples) return indices def _scatter_values_on_batch_indices(values, batch_indices, output_shape): """ Scatter function as in PyTorch with indices in format (batch_dim, indixes) """ indices_shape = shape_list(batch_indices) # broadcast batch dim to indices_shape broad_casted_batch_dims = tf.reshape( tf.broadcast_to(tf.expand_dims(tf.range(indices_shape[0]), axis=-1), indices_shape), [1, -1] ) # transform batch_indices to pair_indices pair_indices = tf.transpose(tf.concat([broad_casted_batch_dims, tf.reshape(batch_indices, [1, -1])], 0)) # scatter values to pair indices return tf.scatter_nd(pair_indices, tf.reshape(values, [-1]), output_shape) def _compute_mask_indices( shape: Tuple[int, int], mask_prob: float, mask_length: int, min_masks: int = 0, ) -> tf.Tensor: """ Computes random mask spans for a given shape Args: shape: the shape for which to compute masks. should be of size 2 where first element is batch size and 2nd is timesteps attention_mask: optional padding mask of the same size as shape, which will prevent masking padded elements mask_prob: probability for each token to be chosen as start of the span to be masked. this will be multiplied by number of timesteps divided by length of mask span to mask approximately this percentage of all elements. however due to overlaps, the actual number will be smaller (unless no_overlap is True) mask_length: size of the mask min_masks: minimum number of masked spans Adapted from [fairseq's data_utils.py](https://github.com/pytorch/fairseq/blob/e0788f7007a8473a76db573985031f3c94201e79/fairseq/data/data_utils.py#L376). """ batch_size, sequence_length = shape if mask_length < 1: raise ValueError("`mask_length` has to be bigger than 0.") tf.debugging.assert_less( mask_length, sequence_length, message=( f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length} and" f" `sequence_length`: {sequence_length}`" ), ) # compute number of masked spans in batch num_masked_spans = mask_prob * tf.cast(sequence_length, tf.float32) / mask_length + tf.random.uniform((1,)) num_masked_spans = tf.maximum(num_masked_spans, min_masks) num_masked_spans = tf.cast(num_masked_spans, tf.int32) # make sure num masked indices <= sequence_length num_masked_spans = tf.math.minimum(sequence_length // mask_length, num_masked_spans) num_masked_spans = tf.squeeze(num_masked_spans) # SpecAugment mask to fill spec_aug_mask = tf.zeros((batch_size, sequence_length), dtype=tf.int32) # uniform distribution to sample from, make sure that offset samples are < sequence_length uniform_dist = tf.ones((batch_size, sequence_length - (mask_length - 1))) # get random indices to mask spec_aug_mask_idxs = _sample_without_replacement(uniform_dist, num_masked_spans) # expand masked indices to masked spans spec_aug_mask_idxs = tf.expand_dims(spec_aug_mask_idxs, -1) spec_aug_mask_idxs = tf.tile(spec_aug_mask_idxs, (1, 1, mask_length)) spec_aug_mask_idxs = tf.reshape(spec_aug_mask_idxs, (batch_size, num_masked_spans * mask_length)) offsets = tf.range(mask_length)[tf.newaxis, tf.newaxis, :] offsets = tf.tile(offsets, (batch_size, num_masked_spans, 1)) offsets = tf.reshape(offsets, (batch_size, num_masked_spans * mask_length)) spec_aug_mask_idxs = spec_aug_mask_idxs + offsets # scatter indices to mask spec_aug_mask = _scatter_values_on_batch_indices( tf.ones_like(spec_aug_mask_idxs), spec_aug_mask_idxs, tf.shape(spec_aug_mask) ) return spec_aug_mask # Copied from transformers.models.bart.modeling_tf_bart._expand_mask def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None): """ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. """ src_len = shape_list(mask)[1] tgt_len = tgt_len if tgt_len is not None else src_len one_cst = tf.constant(1.0) mask = tf.cast(mask, dtype=one_cst.dtype) expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1)) return (one_cst - expanded_mask) * LARGE_NEGATIVE class TFWav2Vec2GroupNorm(tf.keras.layers.Layer): """ From tensorflow-addons https://www.tensorflow.org/addons/api_docs/python/tfa/layers/GroupNormalization """ def __init__( self, groups: int = 32, axis: int = -1, epsilon: float = 1e-3, center: bool = True, scale: bool = True, beta_initializer: tf.keras.initializers.Initializer = "zeros", gamma_initializer: tf.keras.initializers.Initializer = "ones", beta_regularizer: tf.keras.regularizers.Regularizer = None, gamma_regularizer: tf.keras.regularizers.Regularizer = None, beta_constraint: tf.keras.constraints.Constraint = None, gamma_constraint: tf.keras.constraints.Constraint = None, **kwargs, ): super().__init__(**kwargs) self.supports_masking = True self.groups = groups self.axis = axis self.epsilon = epsilon self.center = center self.scale = scale self.beta_initializer = tf.keras.initializers.get(beta_initializer) self.gamma_initializer = tf.keras.initializers.get(gamma_initializer) self.beta_regularizer = tf.keras.regularizers.get(beta_regularizer) self.gamma_regularizer = tf.keras.regularizers.get(gamma_regularizer) self.beta_constraint = tf.keras.constraints.get(beta_constraint) self.gamma_constraint = tf.keras.constraints.get(gamma_constraint) self._check_axis() def build(self, input_shape): self._check_if_input_shape_is_none(input_shape) self._set_number_of_groups_for_instance_norm(input_shape) self._check_size_of_dimensions(input_shape) self._create_input_spec(input_shape) self._add_gamma_weight(input_shape) self._add_beta_weight(input_shape) self.built = True super().build(input_shape) def call(self, inputs): input_shape = tf.keras.backend.int_shape(inputs) tensor_input_shape = tf.shape(inputs) reshaped_inputs, group_shape = self._reshape_into_groups(inputs, input_shape, tensor_input_shape) normalized_inputs = self._apply_normalization(reshaped_inputs, input_shape) is_instance_norm = (input_shape[self.axis] // self.groups) == 1 if not is_instance_norm: outputs = tf.reshape(normalized_inputs, tensor_input_shape) else: outputs = normalized_inputs return outputs def get_config(self): config = { "groups": self.groups, "axis": self.axis, "epsilon": self.epsilon, "center": self.center, "scale": self.scale, "beta_initializer": tf.keras.initializers.serialize(self.beta_initializer), "gamma_initializer": tf.keras.initializers.serialize(self.gamma_initializer), "beta_regularizer": tf.keras.regularizers.serialize(self.beta_regularizer), "gamma_regularizer": tf.keras.regularizers.serialize(self.gamma_regularizer), "beta_constraint": tf.keras.constraints.serialize(self.beta_constraint), "gamma_constraint": tf.keras.constraints.serialize(self.gamma_constraint), } base_config = super().get_config() return {**base_config, **config} def compute_output_shape(self, input_shape): return input_shape def _reshape_into_groups(self, inputs, input_shape, tensor_input_shape): group_shape = [tensor_input_shape[i] for i in range(len(input_shape))] is_instance_norm = (input_shape[self.axis] // self.groups) == 1 if not is_instance_norm: group_shape[self.axis] = input_shape[self.axis] // self.groups group_shape.insert(self.axis, self.groups) group_shape = tf.stack(group_shape) reshaped_inputs = tf.reshape(inputs, group_shape) return reshaped_inputs, group_shape else: return inputs, group_shape def _apply_normalization(self, reshaped_inputs, input_shape): group_shape = tf.keras.backend.int_shape(reshaped_inputs) group_reduction_axes = list(range(1, len(group_shape))) is_instance_norm = (input_shape[self.axis] // self.groups) == 1 if not is_instance_norm: axis = -2 if self.axis == -1 else self.axis - 1 else: axis = -1 if self.axis == -1 else self.axis - 1 group_reduction_axes.pop(axis) mean, variance = tf.nn.moments(reshaped_inputs, group_reduction_axes, keepdims=True) gamma, beta = self._get_reshaped_weights(input_shape) normalized_inputs = tf.nn.batch_normalization( reshaped_inputs, mean=mean, variance=variance, scale=gamma, offset=beta, variance_epsilon=self.epsilon, ) return normalized_inputs def _get_reshaped_weights(self, input_shape): broadcast_shape = self._create_broadcast_shape(input_shape) gamma = None beta = None if self.scale: gamma = tf.reshape(self.gamma, broadcast_shape) if self.center: beta = tf.reshape(self.beta, broadcast_shape) return gamma, beta def _check_if_input_shape_is_none(self, input_shape): dim = input_shape[self.axis] if dim is None: raise ValueError( "Axis " + str(self.axis) + " of input tensor should have a defined dimension but the layer received an input with shape " + str(input_shape) + "." ) def _set_number_of_groups_for_instance_norm(self, input_shape): dim = input_shape[self.axis] if self.groups == -1: self.groups = dim def _check_size_of_dimensions(self, input_shape): dim = input_shape[self.axis] if dim < self.groups: raise ValueError( "Number of groups (" + str(self.groups) + ") cannot be more than the number of channels (" + str(dim) + ")." ) if dim % self.groups != 0: raise ValueError( "Number of groups (" + str(self.groups) + ") must be a multiple of the number of channels (" + str(dim) + ")." ) def _check_axis(self): if self.axis == 0: raise ValueError( "You are trying to normalize your batch axis. Do you want to use tf.layer.batch_normalization instead" ) def _create_input_spec(self, input_shape): dim = input_shape[self.axis] self.input_spec = tf.keras.layers.InputSpec(ndim=len(input_shape), axes={self.axis: dim}) def _add_gamma_weight(self, input_shape): dim = input_shape[self.axis] shape = (dim,) if self.scale: self.gamma = self.add_weight( shape=shape, name="gamma", initializer=self.gamma_initializer, regularizer=self.gamma_regularizer, constraint=self.gamma_constraint, ) else: self.gamma = None def _add_beta_weight(self, input_shape): dim = input_shape[self.axis] shape = (dim,) if self.center: self.beta = self.add_weight( shape=shape, name="beta", initializer=self.beta_initializer, regularizer=self.beta_regularizer, constraint=self.beta_constraint, ) else: self.beta = None def _create_broadcast_shape(self, input_shape): broadcast_shape = [1] * len(input_shape) is_instance_norm = (input_shape[self.axis] // self.groups) == 1 if not is_instance_norm: broadcast_shape[self.axis] = input_shape[self.axis] // self.groups broadcast_shape.insert(self.axis, self.groups) else: broadcast_shape[self.axis] = self.groups return broadcast_shape class TFWav2Vec2WeightNormConv1D(tf.keras.layers.Conv1D): """Adapted from https://www.tensorflow.org/probability/api_docs/python/tfp/layers/weight_norm/WeightNorm""" def __init__(self, filters, kernel_size, groups, explicit_padding, **kwargs): super().__init__( filters=filters, kernel_size=kernel_size, groups=groups, padding="valid", use_bias=True, bias_initializer="he_normal", **kwargs, ) self.explicit_padding = explicit_padding self.filter_axis = 2 self.initialized = False self.kernel_norm_axes = tf.constant([0, 1]) def _init_norm(self): """Set the norm of the weight vector.""" kernel_norm = tf.sqrt(tf.reduce_sum(tf.square(self.weight_v), axis=self.kernel_norm_axes)) self.weight_g.assign(kernel_norm[:, tf.newaxis, tf.newaxis]) def _normalize_kernel(self): """Generate normalized weights.""" kernel = tf.nn.l2_normalize(self.weight_v, axis=self.kernel_norm_axes) * tf.transpose(self.weight_g) self.kernel = tf.transpose(kernel) def build(self, input_shape): if not self.built: input_shape = input_shape.as_list() # If a specific input shape is passed in, we need to modify it to account for padding # Not necessary if those portions of the shape are None if input_shape[-2] is not None: input_shape[-2] += self.explicit_padding * 2 super().build(input_shape) self.kernel = tf.Variable(tf.transpose(self.kernel), name="weight_v", trainable=True) self.weight_v = self.kernel self.weight_g = self.add_weight( name="weight_g", shape=(int(self.weight_v.shape[self.filter_axis]), 1, 1), initializer="ones", dtype=self.weight_v.dtype, trainable=True, ) self.bias = self.add_weight(name="bias", shape=(self.filters,), initializer="zeros", trainable=True) def call(self, inputs): if not self.initialized: self._init_norm() self.initialized = True self._normalize_kernel() padded_inputs = tf.pad(inputs, ((0, 0), (self.explicit_padding, self.explicit_padding), (0, 0))) output = super().call(padded_inputs) return output class TFWav2Vec2NoLayerNormConvLayer(tf.keras.layers.Layer): def __init__(self, config: Wav2Vec2Config, layer_id: int = 0, **kwargs: Any) -> None: super().__init__(**kwargs) self.in_conv_dim = config.conv_dim[layer_id] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = tf.keras.layers.Conv1D( filters=self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], strides=config.conv_stride[layer_id], use_bias=config.conv_bias, name="conv", ) self.activation = get_tf_activation(config.feat_extract_activation) def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.conv(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states class TFWav2Vec2LayerNormConvLayer(tf.keras.layers.Layer): def __init__(self, config: Wav2Vec2Config, layer_id: int = 0, **kwargs: Any) -> None: super().__init__(**kwargs) self.in_conv_dim = config.conv_dim[layer_id] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = tf.keras.layers.Conv1D( filters=self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], strides=config.conv_stride[layer_id], use_bias=config.conv_bias, name="conv", ) self.layer_norm = tf.keras.layers.LayerNormalization(name="layer_norm", epsilon=config.layer_norm_eps) self.activation = get_tf_activation(config.feat_extract_activation) def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.conv(hidden_states) hidden_states = self.layer_norm(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states class TFWav2Vec2GroupNormConvLayer(tf.keras.layers.Layer): def __init__(self, config: Wav2Vec2Config, layer_id: int = 0, **kwargs: Any) -> None: super().__init__(**kwargs) self.in_conv_dim = config.conv_dim[layer_id] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = tf.keras.layers.Conv1D( filters=self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], strides=config.conv_stride[layer_id], use_bias=config.conv_bias, name="conv", ) self.activation = get_tf_activation(config.feat_extract_activation) self.layer_norm = TFWav2Vec2GroupNorm( groups=self.out_conv_dim, epsilon=config.layer_norm_eps, name="layer_norm" ) def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.conv(hidden_states) hidden_states = self.layer_norm(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states class TFWav2Vec2PositionalConvEmbedding(tf.keras.layers.Layer): def __init__(self, config: Wav2Vec2Config, **kwargs: Any) -> None: super().__init__(**kwargs) self.conv = TFWav2Vec2WeightNormConv1D( filters=config.hidden_size, kernel_size=config.num_conv_pos_embeddings, groups=config.num_conv_pos_embedding_groups, explicit_padding=config.num_conv_pos_embeddings // 2, name="conv", ) self.padding = TFWav2Vec2SamePadLayer(config.num_conv_pos_embeddings) self.activation = get_tf_activation(config.feat_extract_activation) def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.conv(hidden_states) hidden_states = self.padding(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states class TFWav2Vec2SamePadLayer(tf.keras.layers.Layer): def __init__(self, num_conv_pos_embeddings, **kwargs): super().__init__(**kwargs) self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0 def call(self, hidden_states): if self.num_pad_remove > 0: hidden_states = hidden_states[:, : -self.num_pad_remove, :] return hidden_states class TFWav2Vec2FeatureEncoder(tf.keras.layers.Layer): def __init__(self, config: Wav2Vec2Config, **kwargs: Any) -> None: super().__init__(**kwargs) if config.feat_extract_norm == "group": conv_layers = [TFWav2Vec2GroupNormConvLayer(config, layer_id=0, name=f"conv_layers.{0}")] + [ TFWav2Vec2NoLayerNormConvLayer(config, layer_id=i + 1, name=f"conv_layers.{i+1}") for i in range(config.num_feat_extract_layers - 1) ] elif config.feat_extract_norm == "layer": conv_layers = [ TFWav2Vec2LayerNormConvLayer(config, layer_id=i, name=f"conv_layers.{i}") for i in range(config.num_feat_extract_layers) ] else: raise ValueError( f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']" ) self.conv_layers = conv_layers def call(self, input_values): hidden_states = tf.expand_dims(input_values, -1) for conv_layer in self.conv_layers: hidden_states = conv_layer(hidden_states) return hidden_states class TFWav2Vec2FeatureExtractor(TFWav2Vec2FeatureEncoder): def __init__(self, config, **kwargs): super().__init__(config, **kwargs) warnings.warn( f"The class `{self.__class__.__name__}` has been depreciated " "and will be removed in Transformers v5. " f"Use `{self.__class__.__bases__[0].__name__}` instead.", FutureWarning, ) class TFWav2Vec2FeatureProjection(tf.keras.layers.Layer): def __init__(self, config: Wav2Vec2Config, **kwargs): super().__init__(**kwargs) self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") self.projection = tf.keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), bias_initializer="zeros", name="projection", ) self.dropout = tf.keras.layers.Dropout(rate=config.feat_proj_dropout) def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor: norm_hidden_states = self.layer_norm(hidden_states) hidden_states = self.projection(norm_hidden_states) hidden_states = self.dropout(hidden_states, training=training) return hidden_states, norm_hidden_states # Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention with TFBart->TFWav2Vec2 class TFWav2Vec2Attention(tf.keras.layers.Layer): """Multi-headed attention from "Attention Is All You Need""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, **kwargs, ): super().__init__(**kwargs) self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = tf.keras.layers.Dropout(dropout) self.head_dim = embed_dim // num_heads if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.k_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj") self.q_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj") self.v_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj") self.out_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj") def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int): return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3)) def call( self, hidden_states: tf.Tensor, key_value_states: tf.Tensor | None = None, past_key_value: Tuple[Tuple[tf.Tensor]] | None = None, attention_mask: tf.Tensor | None = None, layer_head_mask: tf.Tensor | None = None, training: Optional[bool] = False, ) -> Tuple[tf.Tensor, tf.Tensor | None]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, embed_dim = shape_list(hidden_states) # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = tf.concat([past_key_value[0], key_states], axis=2) value_states = tf.concat([past_key_value[1], value_states], axis=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape) key_states = tf.reshape(key_states, proj_shape) value_states = tf.reshape(value_states, proj_shape) src_len = shape_list(key_states)[1] attn_weights = tf.matmul(query_states, key_states, transpose_b=True) tf.debugging.assert_equal( shape_list(attn_weights), [bsz * self.num_heads, tgt_len, src_len], message=( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {shape_list(attn_weights)}" ), ) if attention_mask is not None: tf.debugging.assert_equal( shape_list(attention_mask), [bsz, 1, tgt_len, src_len], message=( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" f" {shape_list(attention_mask)}" ), ) attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype) attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_weights = stable_softmax(attn_weights, axis=-1) if layer_head_mask is not None: tf.debugging.assert_equal( shape_list(layer_head_mask), [self.num_heads], message=( f"Head mask for a single layer should be of size {(self.num_heads)}, but is" f" {shape_list(layer_head_mask)}" ), ) attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape( attn_weights, (bsz, self.num_heads, tgt_len, src_len) ) attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_probs = self.dropout(attn_weights, training=training) attn_output = tf.matmul(attn_probs, value_states) tf.debugging.assert_equal( shape_list(attn_output), [bsz * self.num_heads, tgt_len, self.head_dim], message=( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {shape_list(attn_output)}" ), ) attn_output = tf.transpose( tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3) ) attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim)) attn_output = self.out_proj(attn_output) attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) return attn_output, attn_weights, past_key_value class TFWav2Vec2FeedForward(tf.keras.layers.Layer): def __init__(self, config: Wav2Vec2Config, **kwargs): super().__init__(**kwargs) self.intermediate_dropout = tf.keras.layers.Dropout(config.activation_dropout) self.intermediate_dense = tf.keras.layers.Dense( units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), bias_initializer="zeros", name="intermediate_dense", ) self.intermediate_act_fn = get_tf_activation(config.hidden_act) self.output_dense = tf.keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), bias_initializer="zeros", name="output_dense", ) self.output_dropout = tf.keras.layers.Dropout(config.hidden_dropout) def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.intermediate_dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) hidden_states = self.intermediate_dropout(hidden_states, training=training) hidden_states = self.output_dense(hidden_states) hidden_states = self.output_dropout(hidden_states, training=training) return hidden_states class TFWav2Vec2EncoderLayer(tf.keras.layers.Layer): def __init__(self, config: Wav2Vec2Config, **kwargs): super().__init__(**kwargs) self.attention = TFWav2Vec2Attention( embed_dim=config.hidden_size, num_heads=config.num_attention_heads, dropout=config.attention_dropout, is_decoder=False, name="attention", ) self.dropout = tf.keras.layers.Dropout(config.hidden_dropout) self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") self.feed_forward = TFWav2Vec2FeedForward(config, name="feed_forward") self.final_layer_norm = tf.keras.layers.LayerNormalization( epsilon=config.layer_norm_eps, name="final_layer_norm" ) def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor | None = None, output_attentions: Optional[bool] = False, training: bool = False, ) -> Tuple[tf.Tensor]: attn_residual = hidden_states hidden_states, attn_weights, _ = self.attention( hidden_states, attention_mask=attention_mask, training=training ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = attn_residual + hidden_states hidden_states = self.layer_norm(hidden_states) hidden_states = hidden_states + self.feed_forward(hidden_states) hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class TFWav2Vec2EncoderLayerStableLayerNorm(tf.keras.layers.Layer): def __init__(self, config: Wav2Vec2Config, **kwargs): super().__init__(**kwargs) self.attention = TFWav2Vec2Attention( embed_dim=config.hidden_size, num_heads=config.num_attention_heads, dropout=config.attention_dropout, is_decoder=False, name="attention", ) self.dropout = tf.keras.layers.Dropout(config.hidden_dropout) self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") self.feed_forward = TFWav2Vec2FeedForward(config, name="feed_forward") self.final_layer_norm = tf.keras.layers.LayerNormalization( epsilon=config.layer_norm_eps, name="final_layer_norm" ) def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor | None = None, output_attentions: Optional[bool] = False, training: bool = False, ) -> Tuple[tf.Tensor]: attn_residual = hidden_states hidden_states = self.layer_norm(hidden_states) hidden_states, attn_weights, _ = self.attention( hidden_states, attention_mask=attention_mask, training=training ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = attn_residual + hidden_states hidden_states = hidden_states + self.feed_forward(self.final_layer_norm(hidden_states)) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class TFWav2Vec2Encoder(tf.keras.layers.Layer): def __init__(self, config: Wav2Vec2Config, **kwargs): super().__init__(**kwargs) self.config = config self.pos_conv_embed = TFWav2Vec2PositionalConvEmbedding(config, name="pos_conv_embed") self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") self.dropout = tf.keras.layers.Dropout(config.hidden_dropout) self.layer = [TFWav2Vec2EncoderLayer(config, name=f"layers.{i}") for i in range(config.num_hidden_layers)] def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor | None = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, training: Optional[bool] = False, ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None if attention_mask is not None: hidden_states = hidden_states * tf.expand_dims(attention_mask, -1) attention_mask = _expand_mask(attention_mask) else: attention_mask = None position_embeddings = self.pos_conv_embed(hidden_states) hidden_states = hidden_states + position_embeddings hidden_states = self.layer_norm(hidden_states) hidden_states = self.dropout(hidden_states, training=training) for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = np.random.uniform(0, 1) if training and (dropout_probability < self.config.layerdrop): # skip the layer continue layer_outputs = layer_module( hidden_states=hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, training=training, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class TFWav2Vec2EncoderStableLayerNorm(tf.keras.layers.Layer): def __init__(self, config: Wav2Vec2Config, **kwargs): super().__init__(**kwargs) self.config = config self.pos_conv_embed = TFWav2Vec2PositionalConvEmbedding(config, name="pos_conv_embed") self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") self.dropout = tf.keras.layers.Dropout(config.hidden_dropout) self.layer = [ TFWav2Vec2EncoderLayerStableLayerNorm(config, name=f"layers.{i}") for i in range(config.num_hidden_layers) ] def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor | None = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, training: Optional[bool] = False, ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None if attention_mask is not None: hidden_states = hidden_states * tf.expand_dims(attention_mask, -1) attention_mask = _expand_mask(attention_mask) else: attention_mask = None position_embeddings = self.pos_conv_embed(hidden_states) hidden_states = hidden_states + position_embeddings hidden_states = self.dropout(hidden_states, training=training) for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = np.random.uniform(0, 1) if training and (dropout_probability < self.config.layerdrop): # skip the layer continue layer_outputs = layer_module( hidden_states=hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, training=training, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) @keras_serializable class TFWav2Vec2MainLayer(tf.keras.layers.Layer): config_class = Wav2Vec2Config def __init__(self, config: Wav2Vec2Config, **kwargs): super().__init__(**kwargs) self.config = config self.feature_extractor = TFWav2Vec2FeatureEncoder(config, name="feature_extractor") self.feature_projection = TFWav2Vec2FeatureProjection(config, name="feature_projection") if config.do_stable_layer_norm: self.encoder = TFWav2Vec2EncoderStableLayerNorm(config, name="encoder") else: self.encoder = TFWav2Vec2Encoder(config, name="encoder") def build(self, input_shape: tf.TensorShape): self.masked_spec_embed = self.add_weight( shape=(self.config.hidden_size,), initializer="uniform", trainable=True, name="masked_spec_embed" ) super().build(input_shape) def _get_feat_extract_output_lengths(self, input_lengths: tf.Tensor): """ Computes the output length of the convolutional layers """ def _conv_out_length(input_length, kernel_size, stride): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return (input_length - kernel_size) // stride + 1 for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride): input_lengths = _conv_out_length(input_lengths, kernel_size, stride) return input_lengths def _mask_hidden_states(self, hidden_states: tf.Tensor, mask_time_indices: tf.Tensor | None = None): """ Masks extracted features along time axis and/or along feature axis according to [SpecAugment](https://arxiv.org/abs/1904.08779). """ batch_size, sequence_length, hidden_size = shape_list(hidden_states) # `config.apply_spec_augment` can set masking to False if not getattr(self.config, "apply_spec_augment", True): return hidden_states if mask_time_indices is not None: # apply SpecAugment along time axis with given mask_time_indices hidden_states = tf.where( tf.cast(mask_time_indices[:, :, tf.newaxis], tf.bool), self.masked_spec_embed[tf.newaxis, tf.newaxis, :], hidden_states, ) elif self.config.mask_time_prob > 0: # generate indices & apply SpecAugment along time axis mask_time_indices = _compute_mask_indices( (batch_size, sequence_length), mask_prob=self.config.mask_time_prob, mask_length=self.config.mask_time_length, min_masks=2, ) hidden_states = tf.where( tf.cast(mask_time_indices[:, :, tf.newaxis], tf.bool), self.masked_spec_embed[tf.newaxis, tf.newaxis, :], hidden_states, ) # apply SpecAugment along feature axis if self.config.mask_feature_prob > 0: mask_feature_indices = _compute_mask_indices( (batch_size, hidden_size), mask_prob=self.config.mask_feature_prob, mask_length=self.config.mask_feature_length, ) hidden_states = tf.where(mask_feature_indices[:, tf.newaxis, :], hidden_states, 0) return hidden_states @unpack_inputs def call( self, input_values: tf.Tensor, attention_mask: tf.Tensor | None = None, token_type_ids: tf.Tensor | None = None, position_ids: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, **kwargs: Any, ): extract_features = self.feature_extractor(tf.cast(input_values, tf.float32), training=training) # extract_features = tf.transpose(extract_features, perm=(0, 2, 1)) if attention_mask is not None: # compute real output lengths according to convolution formula output_lengths = self._get_feat_extract_output_lengths(tf.reduce_sum(attention_mask, -1)) attention_mask = tf.sequence_mask( output_lengths, maxlen=shape_list(extract_features)[1], dtype=extract_features.dtype ) hidden_states, extract_features = self.feature_projection(extract_features, training=training) mask_time_indices = kwargs.get("mask_time_indices", None) if training: hidden_states = self._mask_hidden_states(hidden_states, mask_time_indices=mask_time_indices) encoder_outputs = self.encoder( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) hidden_states = encoder_outputs[0] if not return_dict: return (hidden_states, extract_features) + encoder_outputs[1:] return TFWav2Vec2BaseModelOutput( last_hidden_state=hidden_states, extract_features=extract_features, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class TFWav2Vec2PreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = Wav2Vec2Config base_model_prefix = "wav2vec2" main_input_name = "input_values" @property def input_signature(self): return { "input_values": tf.TensorSpec((None, None), tf.float32, name="input_values"), "attention_mask": tf.TensorSpec((None, None), tf.float32, name="attention_mask"), } @property def dummy_inputs(self): return { "input_values": tf.random.uniform(shape=(1, 500), dtype=tf.float32), "attention_mask": tf.ones(shape=(1, 500), dtype=tf.float32), } def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) logger.warning( f"\n{self.__class__.__name__} has backpropagation operations that are NOT supported on CPU. If you wish " "to train/fine-tune this model, you need a GPU or a TPU" ) def _get_feat_extract_output_lengths(self, input_lengths, add_adapter=None): """ Computes the output length of the convolutional layers """ add_adapter = self.config.add_adapter if add_adapter is None else add_adapter def _conv_out_length(input_length, kernel_size, stride): return tf.math.floordiv(input_length - kernel_size, stride) + 1 for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride): input_lengths = _conv_out_length(input_lengths, kernel_size, stride) if add_adapter: for _ in range(self.config.num_adapter_layers): input_lengths = _conv_out_length(input_lengths, 1, self.config.adapter_stride) return input_lengths def _get_feature_vector_attention_mask( self, feature_vector_length: int, attention_mask: tf.Tensor, add_adapter=None ): non_padded_lengths = tf.math.cumsum(attention_mask, axis=-1)[:, -1] output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths, add_adapter=add_adapter) output_lengths = tf.cast(output_lengths, tf.int32) batch_size = tf.shape(attention_mask)[0] # check device here attention_mask = tf.zeros( (batch_size, feature_vector_length), dtype=attention_mask.dtype, name="attention_mask" ) # these two operations makes sure that all values before the output lengths idxs are attended to ## check device attention_mask = tf.tensor_scatter_nd_update( attention_mask, indices=tf.stack([tf.range(batch_size), output_lengths - 1], axis=1), updates=tf.ones([batch_size], dtype=attention_mask.dtype), ) attention_mask = tf.reverse(attention_mask, axis=[-1]) attention_mask = tf.cumsum(attention_mask, axis=-1) attention_mask = tf.reverse(attention_mask, axis=[-1]) attention_mask = tf.cast(attention_mask, tf.bool) return attention_mask WAV_2_VEC_2_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_values` only and nothing else: `model(input_values)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_values, attention_mask])` or `model([input_values, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_values": input_values, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Args: config ([`Wav2Vec2Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ WAV_2_VEC_2_INPUTS_DOCSTRING = r""" Args: input_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` `Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`np.ndarray` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_values` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_values` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False``): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare TFWav2Vec2 Model transformer outputing raw hidden-states without any specific head on top.", WAV_2_VEC_2_START_DOCSTRING, ) class TFWav2Vec2Model(TFWav2Vec2PreTrainedModel): def __init__(self, config: Wav2Vec2Config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.config = config self.wav2vec2 = TFWav2Vec2MainLayer(config, name="wav2vec2") @add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFBaseModelOutput, config_class=_CONFIG_FOR_DOC) @unpack_inputs def call( self, input_values: tf.Tensor, attention_mask: tf.Tensor | None = None, token_type_ids: tf.Tensor | None = None, position_ids: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: """ Returns: Example: ```python >>> from transformers import AutoProcessor, TFWav2Vec2Model >>> from datasets import load_dataset >>> import soundfile as sf >>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h") >>> model = TFWav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h") >>> def map_to_array(batch): ... speech, _ = sf.read(batch["file"]) ... batch["speech"] = speech ... return batch >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> ds = ds.map(map_to_array) >>> input_values = processor(ds["speech"][0], return_tensors="tf").input_values # Batch size 1 >>> hidden_states = model(input_values).last_hidden_state ```""" output_hidden_states = output_hidden_states if output_hidden_states else self.config.output_hidden_states output_attentions = output_attentions if output_attentions else self.config.output_attentions return_dict = return_dict if return_dict else self.config.return_dict outputs = self.wav2vec2( input_values=input_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs @add_start_docstrings( """TFWav2Vec2 Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""", WAV_2_VEC_2_START_DOCSTRING, ) class TFWav2Vec2ForCTC(TFWav2Vec2PreTrainedModel): def __init__(self, config: Wav2Vec2Config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.wav2vec2 = TFWav2Vec2MainLayer(config, name="wav2vec2") self.dropout = tf.keras.layers.Dropout(config.final_dropout) self.lm_head = tf.keras.layers.Dense(config.vocab_size, name="lm_head") def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameters will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5." "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.wav2vec2.feature_extractor.trainable = False @unpack_inputs @add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFCausalLMOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_values: tf.Tensor, attention_mask: tf.Tensor | None = None, token_type_ids: tf.Tensor | None = None, position_ids: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, output_attentions: Optional[bool] = None, labels: tf.Tensor | None = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[TFCausalLMOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_values` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` Returns: Example: ```python >>> import tensorflow as tf >>> from transformers import AutoProcessor, TFWav2Vec2ForCTC >>> from datasets import load_dataset >>> import soundfile as sf >>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h") >>> model = TFWav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h") >>> def map_to_array(batch): ... speech, _ = sf.read(batch["file"]) ... batch["speech"] = speech ... return batch >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> ds = ds.map(map_to_array) >>> input_values = processor(ds["speech"][0], return_tensors="tf").input_values # Batch size 1 >>> logits = model(input_values).logits >>> predicted_ids = tf.argmax(logits, axis=-1) >>> transcription = processor.decode(predicted_ids[0]) >>> # compute loss >>> target_transcription = "A MAN SAID TO THE UNIVERSE SIR I EXIST" >>> # Pass transcription as `text` to encode labels >>> labels = processor(text=transcription, return_tensors="tf").input_ids >>> loss = model(input_values, labels=labels).loss ```""" outputs = self.wav2vec2( input_values=input_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) hidden_states = outputs[0] hidden_states = self.dropout(hidden_states, training=training) logits = self.lm_head(hidden_states) if labels is not None: if tf.reduce_max(labels) >= self.config.vocab_size: raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}") attention_mask = ( attention_mask if attention_mask is not None else tf.ones_like(input_values, dtype=tf.float32) ) input_lengths = self.wav2vec2._get_feat_extract_output_lengths(tf.reduce_sum(attention_mask, axis=-1)) # assuming that padded tokens are filled with -100 # when not being attended to labels_mask = tf.cast(labels >= 0, tf.int32) target_lengths = tf.reduce_sum(labels_mask, axis=-1) loss = tf.nn.ctc_loss( logits=logits, labels=labels, logit_length=input_lengths, label_length=target_lengths, blank_index=self.config.pad_token_id, logits_time_major=False, ) if self.config.ctc_loss_reduction == "sum": loss = tf.reduce_sum(loss) if self.config.ctc_loss_reduction == "mean": loss = tf.reduce_mean(loss) loss = tf.reshape(loss, (1,)) else: loss = None if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return TFCausalLMOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class TFWav2Vec2ForSequenceClassification(TFWav2Vec2PreTrainedModel): def __init__(self, config): super().__init__(config) self.wav2vec2 = TFWav2Vec2MainLayer(config, name="wav2vec2") self.num_layers = config.num_hidden_layers + 1 with tf.name_scope(self._name_scope()): if config.use_weighted_layer_sum: self.layer_weights = self.add_weight( shape=(self.num_layers,), initializer="ones", trainable=True, name="layer_weights" ) self.config = config self.projector = tf.keras.layers.Dense(units=config.classifier_proj_size, name="projector") self.classifier = tf.keras.layers.Dense(units=config.num_labels, activation=None, name="classifier") def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameters will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5." "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.wav2vec2.feature_extractor.trainable = False def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for layer in self.wav2vec2.layers: layer.trainable = False @unpack_inputs def call( self, input_values: tf.Tensor, attention_mask: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: tf.Tensor | None = None, training: bool = False, ): return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states outputs = self.wav2vec2( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) if self.config.use_weighted_layer_sum: hidden_states = outputs[_HIDDEN_STATES_START_POSITION] hidden_states = tf.stack(hidden_states, axis=1) norm_weights = tf.nn.softmax(self.layer_weights, axis=-1) hidden_states = tf.reduce_sum(hidden_states * tf.reshape(norm_weights, [-1, 1, 1]), axis=1) else: hidden_states = outputs[0] hidden_states = self.projector(hidden_states) if attention_mask is None: pooled_output = tf.reduce_mean(hidden_states, axis=1) else: padding_mask = self._get_feature_vector_attention_mask(shape_list(hidden_states)[1], attention_mask) padding_mask_float = tf.cast(padding_mask, hidden_states.dtype) hidden_states = tf.multiply(hidden_states, tf.expand_dims(padding_mask_float, axis=-1)) pooled_output = tf.divide( tf.reduce_sum(hidden_states, axis=1), tf.expand_dims(tf.reduce_sum(padding_mask_float, axis=1), axis=1) ) logits = self.classifier(pooled_output) loss = None if labels is not None: loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) loss = loss_fn(tf.reshape(labels, [-1]), tf.reshape(logits, [-1, self.config.num_labels])) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers-main
src/transformers/models/wav2vec2/modeling_tf_wav2vec2.py
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _import_structure = { "configuration_wav2vec2": ["WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Wav2Vec2Config"], "feature_extraction_wav2vec2": ["Wav2Vec2FeatureExtractor"], "processing_wav2vec2": ["Wav2Vec2Processor"], "tokenization_wav2vec2": ["Wav2Vec2CTCTokenizer", "Wav2Vec2Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_wav2vec2"] = [ "WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST", "Wav2Vec2ForAudioFrameClassification", "Wav2Vec2ForCTC", "Wav2Vec2ForMaskedLM", "Wav2Vec2ForPreTraining", "Wav2Vec2ForSequenceClassification", "Wav2Vec2ForXVector", "Wav2Vec2Model", "Wav2Vec2PreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_wav2vec2"] = [ "TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST", "TFWav2Vec2ForCTC", "TFWav2Vec2Model", "TFWav2Vec2PreTrainedModel", "TFWav2Vec2ForSequenceClassification", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_flax_wav2vec2"] = [ "FlaxWav2Vec2ForCTC", "FlaxWav2Vec2ForPreTraining", "FlaxWav2Vec2Model", "FlaxWav2Vec2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_wav2vec2 import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, Wav2Vec2Config from .feature_extraction_wav2vec2 import Wav2Vec2FeatureExtractor from .processing_wav2vec2 import Wav2Vec2Processor from .tokenization_wav2vec2 import Wav2Vec2CTCTokenizer, Wav2Vec2Tokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wav2vec2 import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, Wav2Vec2ForAudioFrameClassification, Wav2Vec2ForCTC, Wav2Vec2ForMaskedLM, Wav2Vec2ForPreTraining, Wav2Vec2ForSequenceClassification, Wav2Vec2ForXVector, Wav2Vec2Model, Wav2Vec2PreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wav2vec2 import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWav2Vec2ForCTC, TFWav2Vec2ForSequenceClassification, TFWav2Vec2Model, TFWav2Vec2PreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wav2vec2 import ( FlaxWav2Vec2ForCTC, FlaxWav2Vec2ForPreTraining, FlaxWav2Vec2Model, FlaxWav2Vec2PreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers-main
src/transformers/models/wav2vec2/__init__.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert Wav2Vec2 checkpoint.""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( Wav2Vec2Config, Wav2Vec2CTCTokenizer, Wav2Vec2FeatureExtractor, Wav2Vec2ForCTC, Wav2Vec2ForPreTraining, Wav2Vec2Processor, logging, ) from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2ForSequenceClassification logging.set_verbosity_info() logger = logging.get_logger(__name__) MAPPING = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } TOP_LEVEL_KEYS = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def read_txt_into_dict(filename): result = {} with open(filename, "r") as file: for line_number, line in enumerate(file): line = line.strip() if line: words = line.split() key = line_number value = words[0] result[key] = value return result def set_recursively(key, value, full_name, weight_type, hf_pointer): for attribute in key.split("."): hf_pointer = getattr(hf_pointer, attribute) hf_param_name = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(param_key): hf_param_name = PARAM_MAPPING[full_name.split(".")[-1]] weight_type = "param" if weight_type is not None and weight_type != "param": hf_shape = getattr(hf_pointer, weight_type).shape elif weight_type is not None and weight_type == "param": shape_pointer = hf_pointer for attribute in hf_param_name.split("."): shape_pointer = getattr(shape_pointer, attribute) hf_shape = shape_pointer.shape # let's reduce dimension value = value[0] else: hf_shape = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": hf_pointer.weight.data = value elif weight_type == "weight_g": hf_pointer.weight_g.data = value elif weight_type == "weight_v": hf_pointer.weight_v.data = value elif weight_type == "bias": hf_pointer.bias.data = value elif weight_type == "param": for attribute in hf_param_name.split("."): hf_pointer = getattr(hf_pointer, attribute) hf_pointer.data = value else: hf_pointer.data = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.") def rename_dict(key, value, full_name, weight_type, hf_dict): hf_param_name = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(param_key): hf_param_name = PARAM_MAPPING[full_name.split(".")[-1]] weight_type = "param" if weight_type is not None and weight_type != "param": full_key = ".".join([key, weight_type]) elif weight_type is not None and weight_type == "param": full_key = ".".join([key, hf_param_name]) else: full_key = key hf_dict[full_key] = value if "lm_head" in full_key else value[0] PARAM_MAPPING = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def load_wav2vec2_layer(name, value, hf_model=None, hf_dict=None): is_used = False for key, mapped_key in MAPPING.items(): mapped_key = "wav2vec2." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: is_used = True if "*" in mapped_key: layer_index = name.split(key)[0].split(".")[-2] mapped_key = mapped_key.replace("*", layer_index) if "weight_g" in name: weight_type = "weight_g" elif "weight_v" in name: weight_type = "weight_v" elif "bias" in name: weight_type = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj weight_type = "weight" else: weight_type = None if hf_dict is not None: rename_dict(mapped_key, value, name, weight_type, hf_dict) else: set_recursively(mapped_key, value, name, weight_type, hf_model) return is_used return is_used def recursively_load_weights(fairseq_model, hf_model, is_headless): unused_weights = [] fairseq_dict = fairseq_model.state_dict() feature_extractor = hf_model.wav2vec2.feature_extractor for name, value in fairseq_dict.items(): is_used = False if "conv_layers" in name: load_conv_layer( name, value, feature_extractor, unused_weights, hf_model.config.feat_extract_norm == "group", ) is_used = True else: is_used = load_wav2vec2_layer(name, value, hf_model) if not is_used: unused_weights.append(name) logger.warning(f"Unused weights: {unused_weights}") def load_conv_layer(full_name, value, feature_extractor, unused_weights, use_group_norm): name = full_name.split("conv_layers.")[-1] items = name.split(".") layer_id = int(items[0]) type_id = int(items[1]) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) feature_extractor.conv_layers[layer_id].conv.bias.data = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) feature_extractor.conv_layers[layer_id].conv.weight.data = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) feature_extractor.conv_layers[layer_id].layer_norm.bias.data = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) feature_extractor.conv_layers[layer_id].layer_norm.weight.data = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") else: unused_weights.append(full_name) @torch.no_grad() def convert_wav2vec2_checkpoint( checkpoint_path, pytorch_dump_folder_path, config_path=None, dict_path=None, is_finetuned=True, is_seq_class=False ): """ Copy/paste/tweak model's weights to transformers design. """ if config_path is not None: config = Wav2Vec2Config.from_pretrained(config_path) else: config = Wav2Vec2Config() if is_seq_class: id2label = read_txt_into_dict(dict_path) config.id2label = id2label hf_wav2vec = Wav2Vec2ForSequenceClassification(config) feature_extractor = Wav2Vec2FeatureExtractor( feature_size=1, sampling_rate=16000, padding_value=0, do_normalize=True, return_attention_mask=True, ) feature_extractor.save_pretrained(pytorch_dump_folder_path) elif is_finetuned: if dict_path: target_dict = Dictionary.load(dict_path) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq config.bos_token_id = target_dict.pad_index config.pad_token_id = target_dict.bos_index config.eos_token_id = target_dict.eos_index config.vocab_size = len(target_dict.symbols) vocab_path = os.path.join(pytorch_dump_folder_path, "vocab.json") if not os.path.isdir(pytorch_dump_folder_path): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(pytorch_dump_folder_path)) return os.makedirs(pytorch_dump_folder_path, exist_ok=True) vocab_dict = target_dict.indices # fairseq has the <pad> and <s> switched vocab_dict["<pad>"] = 0 vocab_dict["<s>"] = 1 with open(vocab_path, "w", encoding="utf-8") as vocab_handle: json.dump(vocab_dict, vocab_handle) tokenizer = Wav2Vec2CTCTokenizer( vocab_path, unk_token=target_dict.unk_word, pad_token=target_dict.pad_word, bos_token=target_dict.bos_word, eos_token=target_dict.eos_word, word_delimiter_token="|", do_lower_case=False, ) return_attention_mask = True if config.feat_extract_norm == "layer" else False feature_extractor = Wav2Vec2FeatureExtractor( feature_size=1, sampling_rate=16000, padding_value=0, do_normalize=True, return_attention_mask=return_attention_mask, ) processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer) processor.save_pretrained(pytorch_dump_folder_path) hf_wav2vec = Wav2Vec2ForCTC(config) else: hf_wav2vec = Wav2Vec2ForPreTraining(config) if is_finetuned or is_seq_class: model, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={"data": "/".join(dict_path.split("/")[:-1])} ) else: task_arg = argparse.Namespace(task="audio_pretraining") task = fairseq.tasks.setup_task(task_arg) model, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path], task=task) model = model[0].eval() recursively_load_weights(model, hf_wav2vec, not is_finetuned) hf_wav2vec.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) args = parser.parse_args() is_finetuned = not args.not_finetuned and not args.is_seq_class convert_wav2vec2_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
transformers-main
src/transformers/models/wav2vec2/convert_wav2vec2_original_pytorch_checkpoint_to_pytorch.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert Hubert checkpoint.""" import argparse import torch from transformers import ( Wav2Vec2Config, Wav2Vec2FeatureExtractor, Wav2Vec2ForAudioFrameClassification, Wav2Vec2ForSequenceClassification, Wav2Vec2ForXVector, logging, ) logging.set_verbosity_info() logger = logging.get_logger(__name__) def convert_classification(base_model_name, hf_config, downstream_dict): model = Wav2Vec2ForSequenceClassification.from_pretrained(base_model_name, config=hf_config) model.projector.weight.data = downstream_dict["projector.weight"] model.projector.bias.data = downstream_dict["projector.bias"] model.classifier.weight.data = downstream_dict["model.post_net.linear.weight"] model.classifier.bias.data = downstream_dict["model.post_net.linear.bias"] return model def convert_diarization(base_model_name, hf_config, downstream_dict): model = Wav2Vec2ForAudioFrameClassification.from_pretrained(base_model_name, config=hf_config) model.classifier.weight.data = downstream_dict["model.linear.weight"] model.classifier.bias.data = downstream_dict["model.linear.bias"] return model def convert_xvector(base_model_name, hf_config, downstream_dict): model = Wav2Vec2ForXVector.from_pretrained(base_model_name, config=hf_config) model.projector.weight.data = downstream_dict["connector.weight"] model.projector.bias.data = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel): model.tdnn[i].kernel.weight.data = downstream_dict[ f"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] model.tdnn[i].kernel.bias.data = downstream_dict[f"model.framelevel_feature_extractor.module.{i}.kernel.bias"] model.feature_extractor.weight.data = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] model.feature_extractor.bias.data = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] model.classifier.weight.data = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] model.classifier.bias.data = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] model.objective.weight.data = downstream_dict["objective.W"] return model @torch.no_grad() def convert_s3prl_checkpoint(base_model_name, config_path, checkpoint_path, model_dump_path): """ Copy/paste/tweak model's weights to transformers design. """ checkpoint = torch.load(checkpoint_path, map_location="cpu") downstream_dict = checkpoint["Downstream"] hf_config = Wav2Vec2Config.from_pretrained(config_path) hf_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained( base_model_name, return_attention_mask=True, do_normalize=False ) arch = hf_config.architectures[0] if arch.endswith("ForSequenceClassification"): hf_model = convert_classification(base_model_name, hf_config, downstream_dict) elif arch.endswith("ForAudioFrameClassification"): hf_model = convert_diarization(base_model_name, hf_config, downstream_dict) elif arch.endswith("ForXVector"): hf_model = convert_xvector(base_model_name, hf_config, downstream_dict) else: raise NotImplementedError(f"S3PRL weights conversion is not supported for {arch}") if hf_config.use_weighted_layer_sum: hf_model.layer_weights.data = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(model_dump_path) hf_model.save_pretrained(model_dump_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") args = parser.parse_args() convert_s3prl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
transformers-main
src/transformers/models/wav2vec2/convert_wav2vec2_original_s3prl_checkpoint_to_pytorch.py
# coding=utf-8 # Copyright 2021 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Wav2Vec2 model.""" import math import warnings from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...deepspeed import is_deepspeed_zero3_enabled from ...modeling_outputs import ( BaseModelOutput, CausalLMOutput, MaskedLMOutput, SequenceClassifierOutput, TokenClassifierOutput, Wav2Vec2BaseModelOutput, XVectorOutput, ) from ...modeling_utils import PreTrainedModel from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_file, is_safetensors_available, logging, replace_return_docstrings, ) from .configuration_wav2vec2 import Wav2Vec2Config WAV2VEC2_ADAPTER_PT_FILE = "adapter.{}.bin" WAV2VEC2_ADAPTER_SAFE_FILE = "adapter.{}.safetensors" if is_safetensors_available(): from safetensors.torch import load_file as safe_load_file logger = logging.get_logger(__name__) _HIDDEN_STATES_START_POSITION = 2 # General docstring _CONFIG_FOR_DOC = "Wav2Vec2Config" # Base docstring _CHECKPOINT_FOR_DOC = "facebook/wav2vec2-base-960h" _EXPECTED_OUTPUT_SHAPE = [1, 292, 768] # CTC docstring _CTC_EXPECTED_OUTPUT = "'MISTER QUILTER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL'" _CTC_EXPECTED_LOSS = 53.48 # Audio class docstring _SEQ_CLASS_CHECKPOINT = "superb/wav2vec2-base-superb-ks" _SEQ_CLASS_EXPECTED_OUTPUT = "'_unknown_'" _SEQ_CLASS_EXPECTED_LOSS = 6.54 # Frame class docstring _FRAME_CLASS_CHECKPOINT = "anton-l/wav2vec2-base-superb-sd" _FRAME_EXPECTED_OUTPUT = [0, 0] # Speaker Verification docstring _XVECTOR_CHECKPOINT = "anton-l/wav2vec2-base-superb-sv" _XVECTOR_EXPECTED_OUTPUT = 0.98 WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/wav2vec2-base-960h", "facebook/wav2vec2-large-960h", "facebook/wav2vec2-large-960h-lv60", "facebook/wav2vec2-large-960h-lv60-self", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 ] @dataclass class Wav2Vec2ForPreTrainingOutput(ModelOutput): """ Output type of [`Wav2Vec2ForPreTraining`], with potential hidden states and attentions. Args: loss (*optional*, returned when `sample_negative_indices` are passed, `torch.FloatTensor` of shape `(1,)`): Total loss as the sum of the contrastive loss (L_m) and the diversity loss (L_d) as stated in the [official paper](https://arxiv.org/pdf/2006.11477.pdf) . (classification) loss. projected_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`): Hidden-states of the model projected to *config.proj_codevector_dim* that can be used to predict the masked projected quantized states. projected_quantized_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`): Quantized extracted feature vectors projected to *config.proj_codevector_dim* representing the positive target vectors for contrastive loss. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. contrastive_loss (*optional*, returned when `sample_negative_indices` are passed, `torch.FloatTensor` of shape `(1,)`): The contrastive loss (L_m) as stated in the [official paper](https://arxiv.org/pdf/2006.11477.pdf) . diversity_loss (*optional*, returned when `sample_negative_indices` are passed, `torch.FloatTensor` of shape `(1,)`): The diversity loss (L_d) as stated in the [official paper](https://arxiv.org/pdf/2006.11477.pdf) . """ loss: Optional[torch.FloatTensor] = None projected_states: torch.FloatTensor = None projected_quantized_states: torch.FloatTensor = None codevector_perplexity: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None contrastive_loss: Optional[torch.FloatTensor] = None diversity_loss: Optional[torch.FloatTensor] = None def _compute_mask_indices( shape: Tuple[int, int], mask_prob: float, mask_length: int, attention_mask: Optional[torch.LongTensor] = None, min_masks: int = 0, ) -> np.ndarray: """ Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on CPU as part of the preprocessing during training. Args: shape: The shape for which to compute masks. This should be of a tuple of size 2 where the first element is the batch size and the second element is the length of the axis to span. mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of independently generated mask spans of length `mask_length` is computed by `mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the actual percentage will be smaller. mask_length: size of the mask min_masks: minimum number of masked spans attention_mask: A (right-padded) attention mask which independently shortens the feature axis of each batch dimension. """ batch_size, sequence_length = shape if mask_length < 1: raise ValueError("`mask_length` has to be bigger than 0.") if mask_length > sequence_length: raise ValueError( f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}" f" and `sequence_length`: {sequence_length}`" ) # epsilon is used for probabilistic rounding epsilon = np.random.rand(1).item() def compute_num_masked_span(input_length): """Given input length, compute how many spans should be masked""" num_masked_span = int(mask_prob * input_length / mask_length + epsilon) num_masked_span = max(num_masked_span, min_masks) # make sure num masked span <= sequence_length if num_masked_span * mask_length > sequence_length: num_masked_span = sequence_length // mask_length # make sure num_masked span is also <= input_length - (mask_length - 1) if input_length - (mask_length - 1) < num_masked_span: num_masked_span = max(input_length - (mask_length - 1), 0) return num_masked_span # compute number of masked spans in batch input_lengths = ( attention_mask.sum(-1).detach().tolist() if attention_mask is not None else [sequence_length for _ in range(batch_size)] ) # SpecAugment mask to fill spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool) spec_aug_mask_idxs = [] max_num_masked_span = compute_num_masked_span(sequence_length) if max_num_masked_span == 0: return spec_aug_mask for input_length in input_lengths: # compute num of masked spans for this input num_masked_span = compute_num_masked_span(input_length) # get random indices to mask spec_aug_mask_idx = np.random.choice( np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False ) # pick first sampled index that will serve as a dummy index to pad vector # to ensure same dimension for all batches due to probabilistic rounding # Picking first sample just pads those vectors twice. if len(spec_aug_mask_idx) == 0: # this case can only happen if `input_length` is strictly smaller then # `sequence_length` in which case the last token has to be a padding # token which we can use as a dummy mask id dummy_mask_idx = sequence_length - 1 else: dummy_mask_idx = spec_aug_mask_idx[0] spec_aug_mask_idx = np.concatenate( [spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx] ) spec_aug_mask_idxs.append(spec_aug_mask_idx) spec_aug_mask_idxs = np.array(spec_aug_mask_idxs) # expand masked indices to masked spans spec_aug_mask_idxs = np.broadcast_to( spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length) ) spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length) # add offset to the starting indexes so that indexes now create a span offsets = np.arange(mask_length)[None, None, :] offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape( batch_size, max_num_masked_span * mask_length ) spec_aug_mask_idxs = spec_aug_mask_idxs + offsets # ensure that we cannot have indices larger than sequence_length if spec_aug_mask_idxs.max() > sequence_length - 1: spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1 # scatter indices to mask np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1) return spec_aug_mask def _sample_negative_indices( features_shape: Tuple, num_negatives: int, mask_time_indices: Optional[np.ndarray] = None ): """ Sample `num_negatives` vectors from feature vectors. """ batch_size, sequence_length = features_shape # generate indices of the positive vectors themselves, repeat them `num_negatives` times sequence_length_range = np.arange(sequence_length) # get `num_negatives` random vector indices from the same utterance sampled_negative_indices = np.zeros(shape=(batch_size, sequence_length, num_negatives), dtype=np.int32) mask_time_indices = ( mask_time_indices.astype(bool) if mask_time_indices is not None else np.ones(features_shape, dtype=bool) ) for batch_idx in range(batch_size): high = mask_time_indices[batch_idx].sum() - 1 mapped_masked_indices = sequence_length_range[mask_time_indices[batch_idx]] feature_indices = np.broadcast_to(np.arange(high + 1)[:, None], (high + 1, num_negatives)) sampled_indices = np.random.randint(0, high, size=(high + 1, num_negatives)) # avoid sampling the same positive vector, but keep the distribution uniform sampled_indices[sampled_indices >= feature_indices] += 1 # remap to actual indices sampled_negative_indices[batch_idx][mask_time_indices[batch_idx]] = mapped_masked_indices[sampled_indices] # correct for batch size sampled_negative_indices[batch_idx] += batch_idx * sequence_length return sampled_negative_indices class Wav2Vec2NoLayerNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states class Wav2Vec2LayerNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = hidden_states.transpose(-2, -1) hidden_states = self.layer_norm(hidden_states) hidden_states = hidden_states.transpose(-2, -1) hidden_states = self.activation(hidden_states) return hidden_states class Wav2Vec2GroupNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.activation = ACT2FN[config.feat_extract_activation] self.layer_norm = nn.GroupNorm(num_groups=self.out_conv_dim, num_channels=self.out_conv_dim, affine=True) def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.layer_norm(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states class Wav2Vec2PositionalConvEmbedding(nn.Module): def __init__(self, config): super().__init__() self.conv = nn.Conv1d( config.hidden_size, config.hidden_size, kernel_size=config.num_conv_pos_embeddings, padding=config.num_conv_pos_embeddings // 2, groups=config.num_conv_pos_embedding_groups, ) weight_norm = nn.utils.weight_norm if hasattr(nn.utils.parametrizations, "weight_norm"): weight_norm = nn.utils.parametrizations.weight_norm if is_deepspeed_zero3_enabled(): import deepspeed with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0): self.conv = weight_norm(self.conv, name="weight", dim=2) deepspeed.zero.register_external_parameter(self, self.conv.weight_v) deepspeed.zero.register_external_parameter(self, self.conv.weight_g) else: self.conv = weight_norm(self.conv, name="weight", dim=2) self.padding = Wav2Vec2SamePadLayer(config.num_conv_pos_embeddings) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = hidden_states.transpose(1, 2) hidden_states = self.conv(hidden_states) hidden_states = self.padding(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = hidden_states.transpose(1, 2) return hidden_states class Wav2Vec2SamePadLayer(nn.Module): def __init__(self, num_conv_pos_embeddings): super().__init__() self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0 def forward(self, hidden_states): if self.num_pad_remove > 0: hidden_states = hidden_states[:, :, : -self.num_pad_remove] return hidden_states class Wav2Vec2FeatureEncoder(nn.Module): """Construct the features from raw audio waveform""" def __init__(self, config): super().__init__() if config.feat_extract_norm == "group": conv_layers = [Wav2Vec2GroupNormConvLayer(config, layer_id=0)] + [ Wav2Vec2NoLayerNormConvLayer(config, layer_id=i + 1) for i in range(config.num_feat_extract_layers - 1) ] elif config.feat_extract_norm == "layer": conv_layers = [ Wav2Vec2LayerNormConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers) ] else: raise ValueError( f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']" ) self.conv_layers = nn.ModuleList(conv_layers) self.gradient_checkpointing = False self._requires_grad = True def _freeze_parameters(self): for param in self.parameters(): param.requires_grad = False self._requires_grad = False def forward(self, input_values): hidden_states = input_values[:, None] # make sure hidden_states require grad for gradient_checkpointing if self._requires_grad and self.training: hidden_states.requires_grad = True for conv_layer in self.conv_layers: if self._requires_grad and self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(conv_layer), hidden_states, ) else: hidden_states = conv_layer(hidden_states) return hidden_states class Wav2Vec2FeatureExtractor(Wav2Vec2FeatureEncoder): def __init__(self, config): super().__init__(config) warnings.warn( f"The class `{self.__class__.__name__}` has been depreciated " "and will be removed in Transformers v5. " f"Use `{self.__class__.__bases__[0].__name__}` instead.", FutureWarning, ) class Wav2Vec2FeatureProjection(nn.Module): def __init__(self, config): super().__init__() self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.layer_norm_eps) self.projection = nn.Linear(config.conv_dim[-1], config.hidden_size) self.dropout = nn.Dropout(config.feat_proj_dropout) def forward(self, hidden_states): # non-projected hidden states are needed for quantization norm_hidden_states = self.layer_norm(hidden_states) hidden_states = self.projection(norm_hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states, norm_hidden_states # Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->Wav2Vec2 class Wav2Vec2Attention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.reshape(*proj_shape) value_states = value_states.reshape(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value class Wav2Vec2FeedForward(nn.Module): def __init__(self, config): super().__init__() self.intermediate_dropout = nn.Dropout(config.activation_dropout) self.intermediate_dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act self.output_dense = nn.Linear(config.intermediate_size, config.hidden_size) self.output_dropout = nn.Dropout(config.hidden_dropout) def forward(self, hidden_states): hidden_states = self.intermediate_dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) hidden_states = self.intermediate_dropout(hidden_states) hidden_states = self.output_dense(hidden_states) hidden_states = self.output_dropout(hidden_states) return hidden_states class Wav2Vec2EncoderLayer(nn.Module): def __init__(self, config): super().__init__() self.attention = Wav2Vec2Attention( embed_dim=config.hidden_size, num_heads=config.num_attention_heads, dropout=config.attention_dropout, is_decoder=False, ) self.dropout = nn.Dropout(config.hidden_dropout) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.feed_forward = Wav2Vec2FeedForward(config) self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states, attention_mask=None, output_attentions=False): attn_residual = hidden_states hidden_states, attn_weights, _ = self.attention( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions ) hidden_states = self.dropout(hidden_states) hidden_states = attn_residual + hidden_states hidden_states = self.layer_norm(hidden_states) hidden_states = hidden_states + self.feed_forward(hidden_states) hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class Wav2Vec2EncoderLayerStableLayerNorm(nn.Module): def __init__(self, config): super().__init__() self.attention = Wav2Vec2Attention( embed_dim=config.hidden_size, num_heads=config.num_attention_heads, dropout=config.attention_dropout, is_decoder=False, ) self.dropout = nn.Dropout(config.hidden_dropout) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.feed_forward = Wav2Vec2FeedForward(config) self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) if getattr(config, "adapter_attn_dim", None) is not None: self.adapter_layer = Wav2Vec2AttnAdapterLayer(config) else: self.adapter_layer = None def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ): attn_residual = hidden_states hidden_states = self.layer_norm(hidden_states) hidden_states, attn_weights, _ = self.attention( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions ) hidden_states = self.dropout(hidden_states) hidden_states = attn_residual + hidden_states hidden_states = hidden_states + self.feed_forward(self.final_layer_norm(hidden_states)) if self.adapter_layer is not None: hidden_states = hidden_states + self.adapter_layer(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class Wav2Vec2Encoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.pos_conv_embed = Wav2Vec2PositionalConvEmbedding(config) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout) self.layers = nn.ModuleList([Wav2Vec2EncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None if attention_mask is not None: # make sure padded tokens output 0 expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2]) hidden_states[~expand_attention_mask] = 0 # extend attention_mask attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype) attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min attention_mask = attention_mask.expand( attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1] ) position_embeddings = self.pos_conv_embed(hidden_states) hidden_states = hidden_states + position_embeddings hidden_states = self.layer_norm(hidden_states) hidden_states = self.dropout(hidden_states) deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() for layer in self.layers: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = torch.rand([]) skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False if not skip_the_layer or deepspeed_zero3_is_enabled: # under deepspeed zero3 all gpus must run in sync if self.gradient_checkpointing and self.training: # create gradient checkpointing function def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer), hidden_states, attention_mask, ) else: layer_outputs = layer( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions ) hidden_states = layer_outputs[0] if skip_the_layer: layer_outputs = (None, None) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class Wav2Vec2EncoderStableLayerNorm(nn.Module): def __init__(self, config): super().__init__() self.config = config self.pos_conv_embed = Wav2Vec2PositionalConvEmbedding(config) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout) self.layers = nn.ModuleList( [Wav2Vec2EncoderLayerStableLayerNorm(config) for _ in range(config.num_hidden_layers)] ) self.gradient_checkpointing = False def forward( self, hidden_states, attention_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None if attention_mask is not None: # make sure padded tokens are not attended to expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2]) hidden_states[~expand_attention_mask] = 0 # extend attention_mask attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype) attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min attention_mask = attention_mask.expand( attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1] ) position_embeddings = self.pos_conv_embed(hidden_states) hidden_states = hidden_states + position_embeddings hidden_states = self.dropout(hidden_states) deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() for layer in self.layers: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = torch.rand([]) skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False if not skip_the_layer or deepspeed_zero3_is_enabled: # under deepspeed zero3 all gpus must run in sync # XXX: could optimize this like synced_gpus in generate_utils but not sure if it's worth the code complication if self.gradient_checkpointing and self.training: # create gradient checkpointing function def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer), hidden_states, attention_mask, ) else: layer_outputs = layer( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions ) hidden_states = layer_outputs[0] if skip_the_layer: layer_outputs = (None, None) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class Wav2Vec2GumbelVectorQuantizer(nn.Module): """ Vector quantization using gumbel softmax. See `[CATEGORICAL REPARAMETERIZATION WITH GUMBEL-SOFTMAX](https://arxiv.org/pdf/1611.01144.pdf) for more information. """ def __init__(self, config): super().__init__() self.num_groups = config.num_codevector_groups self.num_vars = config.num_codevectors_per_group if config.codevector_dim % self.num_groups != 0: raise ValueError( f"`config.codevector_dim {config.codevector_dim} must be divisible " f"by `config.num_codevector_groups` {self.num_groups} for concatenation" ) # storage for codebook variables (codewords) self.codevectors = nn.Parameter( torch.FloatTensor(1, self.num_groups * self.num_vars, config.codevector_dim // self.num_groups) ) self.weight_proj = nn.Linear(config.conv_dim[-1], self.num_groups * self.num_vars) # can be decayed for training self.temperature = 2 @staticmethod def _compute_perplexity(probs, mask=None): if mask is not None: mask_extended = mask.flatten()[:, None, None].expand(probs.shape) probs = torch.where(mask_extended, probs, torch.zeros_like(probs)) marginal_probs = probs.sum(dim=0) / mask.sum() else: marginal_probs = probs.mean(dim=0) perplexity = torch.exp(-torch.sum(marginal_probs * torch.log(marginal_probs + 1e-7), dim=-1)).sum() return perplexity def forward(self, hidden_states, mask_time_indices=None): batch_size, sequence_length, hidden_size = hidden_states.shape # project to codevector dim hidden_states = self.weight_proj(hidden_states) hidden_states = hidden_states.view(batch_size * sequence_length * self.num_groups, -1) if self.training: # sample code vector probs via gumbel in differentiateable way codevector_probs = nn.functional.gumbel_softmax( hidden_states.float(), tau=self.temperature, hard=True ).type_as(hidden_states) # compute perplexity codevector_soft_dist = torch.softmax( hidden_states.view(batch_size * sequence_length, self.num_groups, -1).float(), dim=-1 ) perplexity = self._compute_perplexity(codevector_soft_dist, mask_time_indices) else: # take argmax in non-differentiable way # comptute hard codevector distribution (one hot) codevector_idx = hidden_states.argmax(dim=-1) codevector_probs = hidden_states.new_zeros(hidden_states.shape).scatter_( -1, codevector_idx.view(-1, 1), 1.0 ) codevector_probs = codevector_probs.view(batch_size * sequence_length, self.num_groups, -1) perplexity = self._compute_perplexity(codevector_probs, mask_time_indices) codevector_probs = codevector_probs.view(batch_size * sequence_length, -1) # use probs to retrieve codevectors codevectors_per_group = codevector_probs.unsqueeze(-1) * self.codevectors codevectors = codevectors_per_group.view(batch_size * sequence_length, self.num_groups, self.num_vars, -1) codevectors = codevectors.sum(-2).view(batch_size, sequence_length, -1) return codevectors, perplexity class Wav2Vec2Adapter(nn.Module): def __init__(self, config): super().__init__() # feature dim might need to be down-projected if config.output_hidden_size != config.hidden_size: self.proj = nn.Linear(config.hidden_size, config.output_hidden_size) self.proj_layer_norm = nn.LayerNorm(config.output_hidden_size) else: self.proj = self.proj_layer_norm = None self.layers = nn.ModuleList(Wav2Vec2AdapterLayer(config) for _ in range(config.num_adapter_layers)) self.layerdrop = config.layerdrop def forward(self, hidden_states): # down project hidden_states if necessary if self.proj is not None and self.proj_layer_norm is not None: hidden_states = self.proj(hidden_states) hidden_states = self.proj_layer_norm(hidden_states) hidden_states = hidden_states.transpose(1, 2) for layer in self.layers: layerdrop_prob = np.random.random() if not self.training or (layerdrop_prob > self.layerdrop): hidden_states = layer(hidden_states) hidden_states = hidden_states.transpose(1, 2) return hidden_states class Wav2Vec2AdapterLayer(nn.Module): def __init__(self, config): super().__init__() self.conv = nn.Conv1d( config.output_hidden_size, 2 * config.output_hidden_size, config.adapter_kernel_size, stride=config.adapter_stride, padding=1, ) def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = nn.functional.glu(hidden_states, dim=1) return hidden_states class Wav2Vec2AttnAdapterLayer(nn.Module): def __init__(self, config): """ Implements adapter modules directly with 3D tensor weight as parameters and without using ModuleList to speed up training throughput. """ super().__init__() self.input_dim = config.adapter_attn_dim self.hidden_dim = config.hidden_size self.norm = nn.LayerNorm(self.hidden_dim) self.linear_1 = nn.Linear(self.hidden_dim, self.input_dim) self.act_fn = nn.ReLU() self.linear_2 = nn.Linear(self.input_dim, self.hidden_dim) def forward(self, hidden_states: torch.FloatTensor): hidden_states = self.norm(hidden_states) hidden_states = self.linear_1(hidden_states) hidden_states = self.act_fn(hidden_states) hidden_states = self.linear_2(hidden_states) return hidden_states class Wav2Vec2PreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = Wav2Vec2Config base_model_prefix = "wav2vec2" main_input_name = "input_values" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" # Wav2Vec2ForPreTraining last 2 linear layers need standard Linear init. if isinstance(module, Wav2Vec2ForPreTraining): module.project_hid.reset_parameters() module.project_q.reset_parameters() module.project_hid._is_hf_initialized = True module.project_q._is_hf_initialized = True # gumbel softmax requires special init elif isinstance(module, Wav2Vec2GumbelVectorQuantizer): module.weight_proj.weight.data.normal_(mean=0.0, std=1) module.weight_proj.bias.data.zero_() nn.init.uniform_(module.codevectors) elif isinstance(module, Wav2Vec2PositionalConvEmbedding): nn.init.normal_( module.conv.weight, mean=0, std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)), ) nn.init.constant_(module.conv.bias, 0) elif isinstance(module, Wav2Vec2FeatureProjection): k = math.sqrt(1 / module.projection.in_features) nn.init.uniform_(module.projection.weight, a=-k, b=k) nn.init.uniform_(module.projection.bias, a=-k, b=k) elif isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, nn.Conv1d): nn.init.kaiming_normal_(module.weight) if module.bias is not None: k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0])) nn.init.uniform_(module.bias, a=-k, b=k) def _get_feat_extract_output_lengths( self, input_lengths: Union[torch.LongTensor, int], add_adapter: Optional[bool] = None ): """ Computes the output length of the convolutional layers """ add_adapter = self.config.add_adapter if add_adapter is None else add_adapter def _conv_out_length(input_length, kernel_size, stride): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1 for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride): input_lengths = _conv_out_length(input_lengths, kernel_size, stride) if add_adapter: for _ in range(self.config.num_adapter_layers): input_lengths = _conv_out_length(input_lengths, 1, self.config.adapter_stride) return input_lengths def _get_feature_vector_attention_mask( self, feature_vector_length: int, attention_mask: torch.LongTensor, add_adapter=None ): # Effectively attention_mask.sum(-1), but not inplace to be able to run # on inference mode. non_padded_lengths = attention_mask.cumsum(dim=-1)[:, -1] output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths, add_adapter=add_adapter) output_lengths = output_lengths.to(torch.long) batch_size = attention_mask.shape[0] attention_mask = torch.zeros( (batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device ) # these two operations makes sure that all values before the output lengths idxs are attended to attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1 attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() return attention_mask def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, (Wav2Vec2Encoder, Wav2Vec2EncoderStableLayerNorm, Wav2Vec2FeatureEncoder)): module.gradient_checkpointing = value def _get_adapters(self): if self.config.adapter_attn_dim is None: raise ValueError(f"{self.__class__} has no adapter layers. Make sure to define `config.adapter_attn_dim`.") adapter_weights = {} for name, module in self.named_modules(): if isinstance(module, Wav2Vec2AttnAdapterLayer): for param_name, param in module.named_parameters(): adapter_weights[".".join([name, param_name])] = param if isinstance(self, Wav2Vec2ForCTC): for name, param in self.lm_head.named_parameters(): adapter_weights[".".join(["lm_head", name])] = param return adapter_weights def init_adapter_layers(self): """ (Re-)initialize attention adapter layers and lm head for adapter-only fine-tuning """ # init attention adapters for module in self.modules(): if isinstance(module, Wav2Vec2AttnAdapterLayer): self._init_weights(module) # init lm head if isinstance(self, Wav2Vec2ForCTC): self._init_weights(self.lm_head) def load_adapter(self, target_lang: str, force_load=True, **kwargs): r""" Load a language adapter model from a pre-trained adapter model. Parameters: target_lang (`str`): Has to be a language id of an existing adapter weight. Adapter weights are stored in the format adapter.<lang>.safetensors or adapter.<lang>.bin force_load (`bool`, defaults to `True`): Whether the weights shall be loaded even if `target_lang` matches `self.target_lang`. cache_dir (`Union[str, os.PathLike]`, *optional*): Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download (`bool`, *optional*, defaults to `False`): Whether or not to delete incompletely received files. Will attempt to resume the download if such a file exists. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. local_files_only(`bool`, *optional*, defaults to `False`): Whether or not to only look at local files (i.e., do not try to download the model). token (`str` or `bool`, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. <Tip> To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>". </Tip> mirror (`str`, *optional*): Mirror source to accelerate downloads in China. If you are from China and have an accessibility problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety. Please refer to the mirror site for more information. <Tip> Activate the special ["offline-mode"](https://huggingface.co/transformers/installation.html#offline-mode) to use this method in a firewalled environment. </Tip> Examples: ```python >>> from transformers import Wav2Vec2ForCTC, AutoProcessor >>> ckpt = "facebook/mms-1b-all" >>> processor = AutoProcessor.from_pretrained(ckpt) >>> model = Wav2Vec2ForCTC.from_pretrained(ckpt, target_lang="eng") >>> # set specific language >>> processor.tokenizer.set_target_lang("spa") >>> model.load_adapter("spa") ``` """ if self.config.adapter_attn_dim is None: raise ValueError(f"Cannot load_adapter for {target_lang} if `config.adapter_attn_dim` is not defined.") if target_lang == self.target_lang and not force_load: logger.warning(f"Adapter weights are already set to {target_lang}.") return cache_dir = kwargs.pop("cache_dir", None) force_download = kwargs.pop("force_download", False) resume_download = kwargs.pop("resume_download", False) proxies = kwargs.pop("proxies", None) local_files_only = kwargs.pop("local_files_only", False) token = kwargs.pop("token", None) use_auth_token = kwargs.pop("use_auth_token", None) revision = kwargs.pop("revision", None) use_safetensors = kwargs.pop("use_safetensors", None if is_safetensors_available() else False) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning ) if token is not None: raise ValueError( "`token` and `use_auth_token` are both specified. Please set only the argument `token`." ) token = use_auth_token model_path_or_id = self.config._name_or_path state_dict = None # 1. Let's first try loading a safetensors adapter weight if use_safetensors is not False: filepath = WAV2VEC2_ADAPTER_SAFE_FILE.format(target_lang) try: weight_path = cached_file( model_path_or_id, filename=filepath, force_download=force_download, resume_download=resume_download, proxies=proxies, local_files_only=local_files_only, token=token, revision=revision, cache_dir=cache_dir, ) state_dict = safe_load_file(weight_path) except EnvironmentError: if use_safetensors: # Raise any environment error raise by `cached_file`. It will have a helpful error message adapted # to the original exception. raise except Exception: # For any other exception, we throw a generic error. if use_safetensors: raise EnvironmentError( f"Can't load the model for '{model_path_or_id}'. If you were trying to load it" " from 'https://huggingface.co/models', make sure you don't have a local directory with the" f" same name. Otherwise, make sure '{model_path_or_id}' is the correct path to a" f" directory containing a file named {filepath}." ) # 2. If this didn't work let's try loading a PyTorch adapter weight if state_dict is None: filepath = WAV2VEC2_ADAPTER_PT_FILE.format(target_lang) try: weight_path = cached_file( model_path_or_id, filename=filepath, force_download=force_download, resume_download=resume_download, proxies=proxies, local_files_only=local_files_only, token=token, revision=revision, cache_dir=cache_dir, ) state_dict = torch.load(weight_path, map_location="cpu") except EnvironmentError: # Raise any environment error raise by `cached_file`. It will have a helpful error message adapted # to the original exception. raise except Exception: # For any other exception, we throw a generic error. raise EnvironmentError( f"Can't load the model for '{model_path_or_id}'. If you were trying to load it" " from 'https://huggingface.co/models', make sure you don't have a local directory with the" f" same name. Otherwise, make sure '{model_path_or_id}' is the correct path to a" f" directory containing a file named {filepath}." ) adapter_weights = self._get_adapters() unexpected_keys = set(state_dict.keys()) - set(adapter_weights.keys()) missing_keys = set(adapter_weights.keys()) - set(state_dict.keys()) if len(unexpected_keys) > 0: raise ValueError(f"The adapter weights {weight_path} has unexpected keys: {', '.join(unexpected_keys)}.") elif len(missing_keys) > 0: raise ValueError(f"The adapter weights {weight_path} has missing keys: {', '.join(missing_keys)}.") # make sure now vocab size is correct target_vocab_size = state_dict["lm_head.weight"].shape[0] if target_vocab_size != self.config.vocab_size: self.lm_head = nn.Linear( self.config.output_hidden_size, target_vocab_size, device=self.device, dtype=self.dtype ) self.config.vocab_size = target_vocab_size # make sure that adapter weights are put in exactly the same precision and device placement and overwritten adapter weights state_dict = {k: v.to(adapter_weights[k]) for k, v in state_dict.items()} self.load_state_dict(state_dict, strict=False) # set target language corectly self.target_lang = target_lang WAV_2_VEC_2_START_DOCSTRING = r""" Wav2Vec2 was proposed in [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving etc.). This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`Wav2Vec2Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ WAV_2_VEC_2_INPUTS_DOCSTRING = r""" Args: input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`. See [`Wav2Vec2Processor.__call__`] for details. attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) <Tip warning={true}> `attention_mask` should only be passed if the corresponding processor has `config.return_attention_mask == True`. For all models whose processor has `config.return_attention_mask == False`, such as [wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base-960h), `attention_mask` should **not** be passed to avoid degraded performance when doing batched inference. For such models `input_values` should simply be padded with 0 and passed without `attention_mask`. Be aware that these models also yield slightly different results depending on whether `input_values` is padded or not. </Tip> output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Wav2Vec2 Model transformer outputting raw hidden-states without any specific head on top.", WAV_2_VEC_2_START_DOCSTRING, ) class Wav2Vec2Model(Wav2Vec2PreTrainedModel): def __init__(self, config: Wav2Vec2Config): super().__init__(config) self.config = config self.feature_extractor = Wav2Vec2FeatureEncoder(config) self.feature_projection = Wav2Vec2FeatureProjection(config) # model only needs masking vector if mask prob is > 0.0 if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0: self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_()) if config.do_stable_layer_norm: self.encoder = Wav2Vec2EncoderStableLayerNorm(config) else: self.encoder = Wav2Vec2Encoder(config) self.adapter = Wav2Vec2Adapter(config) if config.add_adapter else None # Initialize weights and apply final processing self.post_init() def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameters will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5." "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.feature_extractor._freeze_parameters() def _mask_hidden_states( self, hidden_states: torch.FloatTensor, mask_time_indices: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, ): """ Masks extracted features along time axis and/or along feature axis according to [SpecAugment](https://arxiv.org/abs/1904.08779). """ # `config.apply_spec_augment` can set masking to False if not getattr(self.config, "apply_spec_augment", True): return hidden_states # generate indices & apply SpecAugment along time axis batch_size, sequence_length, hidden_size = hidden_states.size() if mask_time_indices is not None: # apply SpecAugment along time axis with given mask_time_indices hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) elif self.config.mask_time_prob > 0 and self.training: mask_time_indices = _compute_mask_indices( (batch_size, sequence_length), mask_prob=self.config.mask_time_prob, mask_length=self.config.mask_time_length, attention_mask=attention_mask, min_masks=self.config.mask_time_min_masks, ) mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool) hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) if self.config.mask_feature_prob > 0 and self.training: # generate indices & apply SpecAugment along feature axis mask_feature_indices = _compute_mask_indices( (batch_size, hidden_size), mask_prob=self.config.mask_feature_prob, mask_length=self.config.mask_feature_length, min_masks=self.config.mask_feature_min_masks, ) mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool) mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1) hidden_states[mask_feature_indices] = 0 return hidden_states @add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=Wav2Vec2BaseModelOutput, config_class=_CONFIG_FOR_DOC, modality="audio", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, mask_time_indices: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, Wav2Vec2BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict extract_features = self.feature_extractor(input_values) extract_features = extract_features.transpose(1, 2) if attention_mask is not None: # compute reduced attention_mask corresponding to feature vectors attention_mask = self._get_feature_vector_attention_mask( extract_features.shape[1], attention_mask, add_adapter=False ) hidden_states, extract_features = self.feature_projection(extract_features) hidden_states = self._mask_hidden_states( hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask ) encoder_outputs = self.encoder( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = encoder_outputs[0] if self.adapter is not None: hidden_states = self.adapter(hidden_states) if not return_dict: return (hidden_states, extract_features) + encoder_outputs[1:] return Wav2Vec2BaseModelOutput( last_hidden_state=hidden_states, extract_features=extract_features, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings("""Wav2Vec2 Model with a quantizer and `VQ` head on top.""", WAV_2_VEC_2_START_DOCSTRING) class Wav2Vec2ForPreTraining(Wav2Vec2PreTrainedModel): def __init__(self, config: Wav2Vec2Config): super().__init__(config) self.wav2vec2 = Wav2Vec2Model(config) self.dropout_features = nn.Dropout(config.feat_quantizer_dropout) self.quantizer = Wav2Vec2GumbelVectorQuantizer(config) self.project_hid = nn.Linear(config.hidden_size, config.proj_codevector_dim) self.project_q = nn.Linear(config.codevector_dim, config.proj_codevector_dim) # Initialize weights and apply final processing self.post_init() def set_gumbel_temperature(self, temperature: int): """ Set the Gumbel softmax temperature to a given value. Only necessary for training """ self.quantizer.temperature = temperature def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameters will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5." "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.wav2vec2.feature_extractor._freeze_parameters() @staticmethod def compute_contrastive_logits( target_features: torch.FloatTensor, negative_features: torch.FloatTensor, predicted_features: torch.FloatTensor, temperature: int = 0.1, ): """ Compute logits for contrastive loss based using cosine similarity as the distance measure between `[positive_feature, negative_features]` and `[predicted_features]`. Additionally, temperature can be applied. """ target_features = torch.cat([target_features, negative_features], dim=0) logits = torch.cosine_similarity(predicted_features.float(), target_features.float(), dim=-1).type_as( target_features ) # apply temperature logits = logits / temperature return logits @add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Wav2Vec2ForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, mask_time_indices: Optional[torch.BoolTensor] = None, sampled_negative_indices: Optional[torch.BoolTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, Wav2Vec2ForPreTrainingOutput]: r""" mask_time_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices to mask extracted features for contrastive loss. When in training mode, model learns to predict masked extracted features in *config.proj_codevector_dim* space. sampled_negative_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_negatives)`, *optional*): Indices indicating which quantized target vectors are used as negative sampled vectors in contrastive loss. Required input for pre-training. Returns: Example: ```python >>> import torch >>> from transformers import AutoFeatureExtractor, Wav2Vec2ForPreTraining >>> from transformers.models.wav2vec2.modeling_wav2vec2 import _compute_mask_indices, _sample_negative_indices >>> from datasets import load_dataset >>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base") >>> model = Wav2Vec2ForPreTraining.from_pretrained("facebook/wav2vec2-base") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> input_values = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt").input_values # Batch size 1 >>> # compute masked indices >>> batch_size, raw_sequence_length = input_values.shape >>> sequence_length = model._get_feat_extract_output_lengths(raw_sequence_length).item() >>> mask_time_indices = _compute_mask_indices( ... shape=(batch_size, sequence_length), mask_prob=0.2, mask_length=2 ... ) >>> sampled_negative_indices = _sample_negative_indices( ... features_shape=(batch_size, sequence_length), ... num_negatives=model.config.num_negatives, ... mask_time_indices=mask_time_indices, ... ) >>> mask_time_indices = torch.tensor(data=mask_time_indices, device=input_values.device, dtype=torch.long) >>> sampled_negative_indices = torch.tensor( ... data=sampled_negative_indices, device=input_values.device, dtype=torch.long ... ) >>> with torch.no_grad(): ... outputs = model(input_values, mask_time_indices=mask_time_indices) >>> # compute cosine similarity between predicted (=projected_states) and target (=projected_quantized_states) >>> cosine_sim = torch.cosine_similarity(outputs.projected_states, outputs.projected_quantized_states, dim=-1) >>> # show that cosine similarity is much higher than random >>> cosine_sim[mask_time_indices.to(torch.bool)].mean() > 0.5 tensor(True) >>> # for contrastive loss training model should be put into train mode >>> model = model.train() >>> loss = model( ... input_values, mask_time_indices=mask_time_indices, sampled_negative_indices=sampled_negative_indices ... ).loss ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if mask_time_indices is not None: mask_time_indices = mask_time_indices.to(torch.bool) outputs = self.wav2vec2( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, mask_time_indices=mask_time_indices, return_dict=return_dict, ) # 1. project all transformed features (including masked) to final vq dim transformer_features = self.project_hid(outputs[0]) # 2. quantize all (unmasked) extracted features and project to final vq dim extract_features = self.dropout_features(outputs[1]) if attention_mask is not None: # compute reduced attention_mask correponding to feature vectors attention_mask = self._get_feature_vector_attention_mask( extract_features.shape[1], attention_mask, add_adapter=False ) quantized_features, codevector_perplexity = self.quantizer( extract_features, mask_time_indices=mask_time_indices ) quantized_features = self.project_q(quantized_features) loss = contrastive_loss = diversity_loss = None if sampled_negative_indices is not None: batch_size, sequence_length, hidden_size = quantized_features.shape # for training, we sample negatives # 3. sample K negatives (distractors) quantized states for contrastive loss # if attention_mask is passed, make sure that padded feature vectors cannot be sampled # sample negative quantized vectors BTC => (BxT)C negative_quantized_features = quantized_features.view(-1, hidden_size)[ sampled_negative_indices.long().view(-1) ] negative_quantized_features = negative_quantized_features.view( batch_size, sequence_length, -1, hidden_size ).permute(2, 0, 1, 3) # 4. compute logits, corresponding to `logs = sim(c_t, [q_t, \sim{q}_t]) / \kappa` # of equation (3) in https://arxiv.org/pdf/2006.11477.pdf logits = self.compute_contrastive_logits( quantized_features[None, :], negative_quantized_features, transformer_features, self.config.contrastive_logits_temperature, ) # 5. if a negative vector is identical to the positive (i.e. when codebook utilization is low), # its cosine similarity will be masked neg_is_pos = (quantized_features == negative_quantized_features).all(-1) if neg_is_pos.any(): logits[1:][neg_is_pos] = float("-inf") # 6. compute contrastive loss \mathbf{L}_m = cross_entropy(logs) = # -log(exp(sim(c_t, q_t)/\kappa) / \sum_{\sim{q}} exp(sim(c_t, \sim{q})/\kappa)) logits = logits.transpose(0, 2).reshape(-1, logits.size(0)) target = ((1 - mask_time_indices.long()) * -100).transpose(0, 1).flatten() contrastive_loss = nn.functional.cross_entropy(logits.float(), target, reduction="sum") # 7. compute diversity loss: \mathbf{L}_d num_codevectors = self.config.num_codevectors_per_group * self.config.num_codevector_groups diversity_loss = ((num_codevectors - codevector_perplexity) / num_codevectors) * mask_time_indices.sum() # 8. \mathbf{L} = \mathbf{L}_m + \alpha * \mathbf{L}_d loss = contrastive_loss + self.config.diversity_loss_weight * diversity_loss if not return_dict: if loss is not None: return (loss, transformer_features, quantized_features, codevector_perplexity) + outputs[2:] return (transformer_features, quantized_features, codevector_perplexity) + outputs[2:] return Wav2Vec2ForPreTrainingOutput( loss=loss, projected_states=transformer_features, projected_quantized_states=quantized_features, codevector_perplexity=codevector_perplexity, hidden_states=outputs.hidden_states, attentions=outputs.attentions, contrastive_loss=contrastive_loss, diversity_loss=diversity_loss, ) @add_start_docstrings("""Wav2Vec2 Model with a `language modeling` head on top.""", WAV_2_VEC_2_START_DOCSTRING) class Wav2Vec2ForMaskedLM(Wav2Vec2PreTrainedModel): def __init__(self, config): super().__init__(config) warnings.warn( "The class `Wav2Vec2ForMaskedLM` is deprecated. Please use `Wav2Vec2ForCTC` instead.", FutureWarning ) self.wav2vec2 = Wav2Vec2Model(config) self.dropout = nn.Dropout(config.final_dropout) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING) def forward( self, input_values: torch.FloatTensor, attention_mask: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, MaskedLMOutput]: return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.wav2vec2( input_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] hidden_states = self.dropout(hidden_states) logits = self.lm_head(hidden_states) if not return_dict: output = (logits,) + outputs[2:] return output return MaskedLMOutput(logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions) @add_start_docstrings( """Wav2Vec2 Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""", WAV_2_VEC_2_START_DOCSTRING, ) class Wav2Vec2ForCTC(Wav2Vec2PreTrainedModel): def __init__(self, config, target_lang: Optional[str] = None): super().__init__(config) self.wav2vec2 = Wav2Vec2Model(config) self.dropout = nn.Dropout(config.final_dropout) self.target_lang = target_lang if config.vocab_size is None: raise ValueError( f"You are trying to instantiate {self.__class__} with a configuration that " "does not define the vocabulary size of the language model head. Please " "instantiate the model as follows: `Wav2Vec2ForCTC.from_pretrained(..., vocab_size=vocab_size)`. " "or define `vocab_size` of your model's configuration." ) output_hidden_size = ( config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size ) self.lm_head = nn.Linear(output_hidden_size, config.vocab_size) # Initialize weights and apply final processing self.post_init() def tie_weights(self): """ This method overwrites [`~PreTrainedModel.tie_weights`] so that adapter weights can be correctly loaded when passing `target_lang=...` to `from_pretrained(...)`. This method is **not** supposed to be called by the user and is prone to be changed in the future. """ # Note that `tie_weights` is usually used to tie input and output embedding weights. The method is re-purposed to # correctly load adapter layers for Wav2Vec2 so that we do not have to introduce a new API to # [`PreTrainedModel`]. While slightly hacky, Wav2Vec2 never has to tie input and output embeddings, so that it is # ok to repurpose this function here. target_lang = self.target_lang if target_lang is not None and getattr(self.config, "adapter_attn_dim", None) is None: raise ValueError(f"Cannot pass `target_lang`: {target_lang} if `config.adapter_attn_dim` is not defined.") elif target_lang is None and getattr(self.config, "adapter_attn_dim", None) is not None: logger.info("By default `target_lang` is set to 'eng'.") elif target_lang is not None: self.load_adapter(target_lang, force_load=True) def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5." "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.wav2vec2.feature_extractor._freeze_parameters() def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.wav2vec2.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutput, config_class=_CONFIG_FOR_DOC, expected_output=_CTC_EXPECTED_OUTPUT, expected_loss=_CTC_EXPECTED_LOSS, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, CausalLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*): Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.wav2vec2( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] hidden_states = self.dropout(hidden_states) logits = self.lm_head(hidden_states) loss = None if labels is not None: if labels.max() >= self.config.vocab_size: raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}") # retrieve loss input_lengths from attention_mask attention_mask = ( attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long) ) input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long) # assuming that padded tokens are filled with -100 # when not being attended to labels_mask = labels >= 0 target_lengths = labels_mask.sum(-1) flattened_targets = labels.masked_select(labels_mask) # ctc_loss doesn't support fp16 log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1) with torch.backends.cudnn.flags(enabled=False): loss = nn.functional.ctc_loss( log_probs, flattened_targets, input_lengths, target_lengths, blank=self.config.pad_token_id, reduction=self.config.ctc_loss_reduction, zero_infinity=self.config.ctc_zero_infinity, ) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return CausalLMOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions ) @add_start_docstrings( """ Wav2Vec2 Model with a sequence classification head on top (a linear layer over the pooled output) for tasks like SUPERB Keyword Spotting. """, WAV_2_VEC_2_START_DOCSTRING, ) class Wav2Vec2ForSequenceClassification(Wav2Vec2PreTrainedModel): def __init__(self, config): super().__init__(config) if hasattr(config, "add_adapter") and config.add_adapter: raise ValueError( "Sequence classification does not support the use of Wav2Vec2 adapters (config.add_adapter=True)" ) self.wav2vec2 = Wav2Vec2Model(config) num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings if config.use_weighted_layer_sum: self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size) self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels) # Initialize weights and apply final processing self.post_init() def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameters will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5." "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.wav2vec2.feature_extractor._freeze_parameters() def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.wav2vec2.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_SEQ_CLASS_CHECKPOINT, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, modality="audio", expected_output=_SEQ_CLASS_EXPECTED_OUTPUT, expected_loss=_SEQ_CLASS_EXPECTED_LOSS, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states outputs = self.wav2vec2( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = outputs[_HIDDEN_STATES_START_POSITION] hidden_states = torch.stack(hidden_states, dim=1) norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) else: hidden_states = outputs[0] hidden_states = self.projector(hidden_states) if attention_mask is None: pooled_output = hidden_states.mean(dim=1) else: padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask) hidden_states[~padding_mask] = 0.0 pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1) logits = self.classifier(pooled_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Wav2Vec2 Model with a frame classification head on top for tasks like Speaker Diarization. """, WAV_2_VEC_2_START_DOCSTRING, ) class Wav2Vec2ForAudioFrameClassification(Wav2Vec2PreTrainedModel): def __init__(self, config): super().__init__(config) if hasattr(config, "add_adapter") and config.add_adapter: raise ValueError( "Audio frame classification does not support the use of Wav2Vec2 adapters (config.add_adapter=True)" ) self.wav2vec2 = Wav2Vec2Model(config) num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings if config.use_weighted_layer_sum: self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) self.classifier = nn.Linear(config.hidden_size, config.num_labels) self.num_labels = config.num_labels self.init_weights() def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5." "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.wav2vec2.feature_extractor._freeze_parameters() def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.wav2vec2.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_FRAME_CLASS_CHECKPOINT, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, modality="audio", expected_output=_FRAME_EXPECTED_OUTPUT, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states outputs = self.wav2vec2( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = outputs[_HIDDEN_STATES_START_POSITION] hidden_states = torch.stack(hidden_states, dim=1) norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) else: hidden_states = outputs[0] logits = self.classifier(hidden_states) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), torch.argmax(labels.view(-1, self.num_labels), axis=1)) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class AMSoftmaxLoss(nn.Module): def __init__(self, input_dim, num_labels, scale=30.0, margin=0.4): super(AMSoftmaxLoss, self).__init__() self.scale = scale self.margin = margin self.num_labels = num_labels self.weight = nn.Parameter(torch.randn(input_dim, num_labels), requires_grad=True) self.loss = nn.CrossEntropyLoss() def forward(self, hidden_states, labels): labels = labels.flatten() weight = nn.functional.normalize(self.weight, dim=0) hidden_states = nn.functional.normalize(hidden_states, dim=1) cos_theta = torch.mm(hidden_states, weight) psi = cos_theta - self.margin onehot = nn.functional.one_hot(labels, self.num_labels) logits = self.scale * torch.where(onehot.bool(), psi, cos_theta) loss = self.loss(logits, labels) return loss class TDNNLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.tdnn_dim[layer_id - 1] if layer_id > 0 else config.tdnn_dim[layer_id] self.out_conv_dim = config.tdnn_dim[layer_id] self.kernel_size = config.tdnn_kernel[layer_id] self.dilation = config.tdnn_dilation[layer_id] self.kernel = nn.Linear(self.in_conv_dim * self.kernel_size, self.out_conv_dim) self.activation = nn.ReLU() def forward(self, hidden_states): hidden_states = hidden_states.unsqueeze(1) hidden_states = nn.functional.unfold( hidden_states, (self.kernel_size, self.in_conv_dim), stride=(1, self.in_conv_dim), dilation=(self.dilation, 1), ) hidden_states = hidden_states.transpose(1, 2) hidden_states = self.kernel(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states @add_start_docstrings( """ Wav2Vec2 Model with an XVector feature extraction head on top for tasks like Speaker Verification. """, WAV_2_VEC_2_START_DOCSTRING, ) class Wav2Vec2ForXVector(Wav2Vec2PreTrainedModel): def __init__(self, config): super().__init__(config) self.wav2vec2 = Wav2Vec2Model(config) num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings if config.use_weighted_layer_sum: self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) self.projector = nn.Linear(config.hidden_size, config.tdnn_dim[0]) tdnn_layers = [TDNNLayer(config, i) for i in range(len(config.tdnn_dim))] self.tdnn = nn.ModuleList(tdnn_layers) self.feature_extractor = nn.Linear(config.tdnn_dim[-1] * 2, config.xvector_output_dim) self.classifier = nn.Linear(config.xvector_output_dim, config.xvector_output_dim) self.objective = AMSoftmaxLoss(config.xvector_output_dim, config.num_labels) self.init_weights() def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5." "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.wav2vec2.feature_extractor._freeze_parameters() def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.wav2vec2.parameters(): param.requires_grad = False def _get_tdnn_output_lengths(self, input_lengths: Union[torch.LongTensor, int]): """ Computes the output length of the TDNN layers """ def _conv_out_length(input_length, kernel_size, stride): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return (input_length - kernel_size) // stride + 1 for kernel_size in self.config.tdnn_kernel: input_lengths = _conv_out_length(input_lengths, kernel_size, 1) return input_lengths @add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_XVECTOR_CHECKPOINT, output_type=XVectorOutput, config_class=_CONFIG_FOR_DOC, modality="audio", expected_output=_XVECTOR_EXPECTED_OUTPUT, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, XVectorOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states outputs = self.wav2vec2( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = outputs[_HIDDEN_STATES_START_POSITION] hidden_states = torch.stack(hidden_states, dim=1) norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) else: hidden_states = outputs[0] hidden_states = self.projector(hidden_states) for tdnn_layer in self.tdnn: hidden_states = tdnn_layer(hidden_states) # Statistic Pooling if attention_mask is None: mean_features = hidden_states.mean(dim=1) std_features = hidden_states.std(dim=1) else: feat_extract_output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(dim=1)) tdnn_output_lengths = self._get_tdnn_output_lengths(feat_extract_output_lengths) mean_features = [] std_features = [] for i, length in enumerate(tdnn_output_lengths): mean_features.append(hidden_states[i, :length].mean(dim=0)) std_features.append(hidden_states[i, :length].std(dim=0)) mean_features = torch.stack(mean_features) std_features = torch.stack(std_features) statistic_pooling = torch.cat([mean_features, std_features], dim=-1) output_embeddings = self.feature_extractor(statistic_pooling) logits = self.classifier(output_embeddings) loss = None if labels is not None: loss = self.objective(logits, labels) if not return_dict: output = (logits, output_embeddings) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return XVectorOutput( loss=loss, logits=logits, embeddings=output_embeddings, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers-main
src/transformers/models/wav2vec2/modeling_wav2vec2.py
# coding=utf-8 # Copyright 2021 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Flax Wav2Vec2 model.""" from functools import partial from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp import numpy as np from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.linen.attention import dot_product_attention_weights from flax.traverse_util import flatten_dict, unflatten_dict from jax import lax from ...modeling_flax_outputs import FlaxBaseModelOutput, FlaxCausalLMOutput from ...modeling_flax_utils import ( ACT2FN, FlaxPreTrainedModel, append_replace_return_docstrings, overwrite_call_docstring, ) from ...utils import ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_wav2vec2 import Wav2Vec2Config logger = logging.get_logger(__name__) @flax.struct.dataclass class FlaxWav2Vec2BaseModelOutput(ModelOutput): """ Output type of [`FlaxWav2Vec2BaseModelOutput`], with potential hidden states and attentions. Args: last_hidden_state (`jnp.ndarray` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. extract_features (`jnp.ndarray` of shape `(batch_size, sequence_length, last_conv_dim)`): Sequence of extracted feature vectors of the last convolutional layer of the model with `last_conv_dim` being the dimension of the last convolutional layer. hidden_states (`tuple(jnp.ndarray)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `jnp.ndarray` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(jnp.ndarray)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `jnp.ndarray` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: jnp.ndarray = None extract_features: jnp.ndarray = None hidden_states: Optional[Tuple[jnp.ndarray]] = None attentions: Optional[Tuple[jnp.ndarray]] = None @flax.struct.dataclass class FlaxWav2Vec2ForPreTrainingOutput(ModelOutput): """ Output type of [`FlaxWav2Vec2ForPreTrainingOutput`], with potential hidden states and attentions. Args: loss (*optional*, returned when model is in train mode, `jnp.ndarray` of shape `(1,)`): Total loss as the sum of the contrastive loss (L_m) and the diversity loss (L_d) as stated in the [official paper](https://arxiv.org/pdf/2006.11477.pdf) . (classification) loss. projected_states (`jnp.ndarray` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`): Hidden-states of the model projected to *config.proj_codevector_dim* that can be used to predict the masked projected quantized states. projected_quantized_states (`jnp.ndarray` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`): Quantized extracted feature vectors projected to *config.proj_codevector_dim* representing the positive target vectors for contrastive loss. hidden_states (`tuple(jnp.ndarray)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `jnp.ndarray` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(jnp.ndarray)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `jnp.ndarray` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ projected_states: jnp.ndarray = None projected_quantized_states: jnp.ndarray = None codevector_perplexity: jnp.ndarray = None hidden_states: Optional[Tuple[jnp.ndarray]] = None attentions: Optional[Tuple[jnp.ndarray]] = None def _compute_mask_indices( shape: Tuple[int, int], mask_prob: float, mask_length: int, attention_mask: Optional[np.ndarray] = None, min_masks: int = 0, ) -> np.ndarray: """ Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on CPU as part of the preprocessing during training. Args: shape: the shape for which to compute masks. should be of size 2 where first element is batch size and 2nd is timesteps mask_prob: probability for each token to be chosen as start of the span to be masked. this will be multiplied by number of timesteps divided by length of mask span to mask approximately this percentage of all elements. however due to overlaps, the actual number will be smaller (unless no_overlap is True) mask_length: size of the mask min_masks: minimum number of masked spans """ batch_size, sequence_length = shape if mask_length < 1: raise ValueError("`mask_length` has to be bigger than 0.") if mask_length > sequence_length: raise ValueError( f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length} and" f" `sequence_length`: {sequence_length}`" ) # compute number of masked spans in batch num_masked_spans = int(mask_prob * sequence_length / mask_length + np.random.rand(1).item()) num_masked_spans = max(num_masked_spans, min_masks) # make sure num masked indices <= sequence_length if num_masked_spans * mask_length > sequence_length: num_masked_spans = sequence_length // mask_length # SpecAugment mask to fill spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool) # get random indices to mask spec_aug_mask_idxs = np.array( [ np.random.choice(np.arange(sequence_length - (mask_length - 1)), num_masked_spans, replace=False) for _ in range(batch_size) ] ) # expand masked indices to masked spans spec_aug_mask_idxs = np.broadcast_to(spec_aug_mask_idxs[:, :, None], (batch_size, num_masked_spans, mask_length)) spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, num_masked_spans * mask_length) offsets = np.arange(mask_length)[None, None, :] offsets = np.broadcast_to(offsets, (batch_size, num_masked_spans, mask_length)).reshape( batch_size, num_masked_spans * mask_length ) spec_aug_mask_idxs = spec_aug_mask_idxs + offsets # scatter indices to mask np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1) if attention_mask is not None: # make sure padded input ids cannot be masked spec_aug_mask = np.where(attention_mask, spec_aug_mask, False) return spec_aug_mask def _sample_negative_indices(features_shape: Tuple, num_negatives: int, attention_mask: Optional[np.ndarray] = None): """ Sample `num_negatives` vectors from feature vectors. """ batch_size, sequence_length, hidden_size = features_shape if sequence_length <= 1: raise ValueError( "`features should have `sequence_length` > 1, but are of shape " f"(batch_size, sequence_length, hidden_size) = ({batch_size, sequence_length, hidden_size})." ) # get `num_negatives` random vector indices from the same utterance sampled_negative_indices = [] for batch_idx in range(batch_size): high = attention_mask[batch_idx].sum() - 1 if attention_mask is not None else sequence_length - 1 sampled_indices_slice = np.random.randint(0, high, size=(num_negatives * sequence_length,)) sampled_negative_indices.append(sampled_indices_slice) sampled_negative_indices = np.asarray(sampled_negative_indices, dtype=np.int32) # generate indices of the positive vectors themselves, repeat them `num_negatives` times feature_indices = np.broadcast_to(np.arange(sequence_length)[:, None], (sequence_length, num_negatives)).flatten() # avoid sampling the same positive vector, but keep the distribution uniform sampled_negative_indices[sampled_negative_indices >= feature_indices] += 1 # correct for batch size for batch_idx in range(1, batch_size): sampled_negative_indices[batch_idx] += batch_idx * sequence_length return sampled_negative_indices WAV_2_VEC_2_START_DOCSTRING = r""" Wav2Vec2 was proposed in [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli. This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a Flax Linen [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: config ([`Wav2Vec2Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and `jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. **Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and [`~FlaxPreTrainedModel.to_bf16`]. """ WAV_2_VEC_2_INPUTS_DOCSTRING = r""" Args: input_values (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and conversion into a tensor of type `jnp.ndarray`. See [`Wav2Vec2Processor.__call__`] for details. attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) .. warning:: `attention_mask` should only be passed if the corresponding processor has `config.return_attention_mask == True`. For all models whose processor has `config.return_attention_mask == False`, such as [wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base-960h), `attention_mask` should **not** be passed to avoid degraded performance when doing batched inference. For such models `input_values` should simply be padded with 0 and passed without `attention_mask`. Be aware that these models also yield slightly different results depending on whether `input_values` is padded or not. mask_time_indices (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices to mask extracted features for contrastive loss. When in training mode, model learns to predict masked extracted features in *config.proj_codevector_dim* space. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class FlaxWav2Vec2LayerNormConvLayer(nn.Module): config: Wav2Vec2Config layer_id: int = 0 dtype: jnp.dtype = jnp.float32 def setup(self): self.in_conv_dim = self.config.conv_dim[self.layer_id] if self.layer_id > 0 else 1 self.out_conv_dim = self.config.conv_dim[self.layer_id] self.conv = nn.Conv( features=self.config.conv_dim[self.layer_id], kernel_size=(self.config.conv_kernel[self.layer_id],), strides=(self.config.conv_stride[self.layer_id],), use_bias=self.config.conv_bias, kernel_init=jax.nn.initializers.he_normal(), padding="VALID", dtype=self.dtype, ) self.layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) self.activation = ACT2FN[self.config.feat_extract_activation] def __call__(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.layer_norm(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states class FlaxConvWithWeightNorm(nn.Module): config: Wav2Vec2Config dtype: jnp.dtype = jnp.float32 def setup(self): self.conv = nn.Conv( features=self.config.hidden_size, kernel_size=(self.config.num_conv_pos_embeddings,), kernel_init=jax.nn.initializers.he_normal(), padding="VALID", feature_group_count=self.config.num_conv_pos_embedding_groups, dtype=self.dtype, ) weight_shape = ( self.conv.features, self.conv.features // self.conv.feature_group_count, self.conv.kernel_size[0], ) self.weight_v = self.param("weight_v", jax.nn.initializers.he_normal(), weight_shape) self.weight_g = self.param("weight_g", lambda _: jnp.linalg.norm(self.weight_v, axis=(0, 1))[None, None, :]) self.bias = self.param("bias", jax.nn.initializers.zeros, (self.conv.features,)) self.prev_padding = self.conv.kernel_size[0] // 2 def _get_normed_weights(self): weight_v_norm = jnp.linalg.norm(self.weight_v, axis=(0, 1))[None, None, :] normed_weight_v = jnp.divide(self.weight_v, weight_v_norm) normed_kernel = jnp.multiply(normed_weight_v, self.weight_g) return normed_kernel def __call__(self, hidden_states): kernel = self._get_normed_weights() hidden_states = jnp.pad(hidden_states, ((0, 0), (self.prev_padding, self.prev_padding), (0, 0))) hidden_states = self.conv.apply({"params": {"kernel": kernel.T, "bias": self.bias}}, hidden_states) return hidden_states class FlaxWav2Vec2PositionalConvEmbedding(nn.Module): config: Wav2Vec2Config dtype: jnp.dtype = jnp.float32 def setup(self): self.conv = FlaxConvWithWeightNorm(self.config, dtype=self.dtype) self.activation = ACT2FN[self.config.feat_extract_activation] self.num_pad_remove = 1 if self.config.num_conv_pos_embeddings % 2 == 0 else 0 def __call__(self, hidden_states): hidden_states = hidden_states.transpose((0, 1, 2)) hidden_states = self.conv(hidden_states) if self.num_pad_remove > 0: hidden_states = hidden_states[:, : -self.num_pad_remove, :] hidden_states = self.activation(hidden_states) hidden_states = hidden_states.transpose((0, 1, 2)) return hidden_states class FlaxConvLayersCollection(nn.Module): config: Wav2Vec2Config dtype: jnp.dtype = jnp.float32 def setup(self): if self.config.feat_extract_norm == "layer": self.layers = [ FlaxWav2Vec2LayerNormConvLayer(self.config, layer_id=i, name=str(i), dtype=self.dtype) for i in range(self.config.num_feat_extract_layers) ] elif self.config.feat_extract_norm == "group": raise NotImplementedError("At the moment only ``config.feat_extact_norm == 'layer'`` is supported") else: raise ValueError( f"`config.feat_extract_norm` is {self.config.feat_extract_norm}, but has to be one of ['group'," " 'layer']" ) def __call__(self, hidden_states): for i, conv_layer in enumerate(self.layers): hidden_states = conv_layer(hidden_states) return hidden_states class FlaxWav2Vec2FeatureEncoder(nn.Module): """Construct the features from raw audio waveform""" config: Wav2Vec2Config dtype: jnp.dtype = jnp.float32 def setup(self): self.conv_layers = FlaxConvLayersCollection(self.config, dtype=self.dtype) def __call__(self, input_values, freeze_feature_encoder=False): hidden_states = input_values[:, :, None] hidden_states = self.conv_layers(hidden_states) if freeze_feature_encoder: hidden_states = jax.lax.stop_gradient(hidden_states) return hidden_states class FlaxWav2Vec2FeatureProjection(nn.Module): config: Wav2Vec2Config dtype: jnp.dtype = jnp.float32 def setup(self): self.layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) self.projection = nn.Dense( self.config.hidden_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) self.dropout = nn.Dropout(rate=self.config.feat_proj_dropout) def __call__(self, hidden_states, deterministic=True): norm_hidden_states = self.layer_norm(hidden_states) hidden_states = self.projection(norm_hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) return hidden_states, norm_hidden_states class FlaxWav2Vec2Attention(nn.Module): config: Wav2Vec2Config embed_dim: int num_heads: int dropout: float = 0.0 bias: bool = True dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self) -> None: self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) dense = partial( nn.Dense, self.embed_dim, use_bias=self.bias, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense() self.out_proj = dense() self.dropout_layer = nn.Dropout(rate=self.dropout) def _split_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim)) def _merge_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,)) def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: """Input shape: Batch x Time x Channel""" # get query proj query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = self._split_heads(query_states) key_states = self._split_heads(key_states) value_states = self._split_heads(value_states) if attention_mask is not None: attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) # Convert the boolean attention mask to an attention bias. if attention_mask is not None: # attention mask in the form of attention bias attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), ) else: attention_bias = None dropout_rng = None if not deterministic and self.dropout > 0.0: dropout_rng = self.make_rng("dropout") attn_weights = dot_product_attention_weights( query_states, key_states, bias=attention_bias, dropout_rng=dropout_rng, dropout_rate=self.dropout, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, precision=None, ) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) attn_output = self._merge_heads(attn_output) attn_output = self.out_proj(attn_output) return attn_output, attn_weights class FlaxWav2Vec2FeedForward(nn.Module): config: Wav2Vec2Config dtype: jnp.dtype = jnp.float32 def setup(self): self.intermediate_dropout = nn.Dropout(rate=self.config.activation_dropout) self.intermediate_dense = nn.Dense( self.config.intermediate_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) if isinstance(self.config.hidden_act, str): self.intermediate_act_fn = ACT2FN[self.config.hidden_act] else: self.intermediate_act_fn = self.config.hidden_act self.output_dense = nn.Dense( self.config.hidden_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) self.output_dropout = nn.Dropout(rate=self.config.hidden_dropout) def __call__(self, hidden_states, deterministic=True): hidden_states = self.intermediate_dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) hidden_states = self.intermediate_dropout(hidden_states, deterministic=deterministic) hidden_states = self.output_dense(hidden_states) hidden_states = self.output_dropout(hidden_states, deterministic=deterministic) return hidden_states class FlaxWav2Vec2EncoderLayerStableLayerNorm(nn.Module): config: Wav2Vec2Config dtype: jnp.dtype = jnp.float32 def setup(self): self.attention = FlaxWav2Vec2Attention( config=self.config, embed_dim=self.config.hidden_size, num_heads=self.config.num_attention_heads, dropout=self.config.attention_dropout, dtype=self.dtype, ) self.dropout = nn.Dropout(rate=self.config.hidden_dropout) self.layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) self.feed_forward = FlaxWav2Vec2FeedForward(self.config, dtype=self.dtype) self.final_layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) def __call__(self, hidden_states, attention_mask=None, deterministic=True, output_attentions=False): attn_residual = hidden_states hidden_states = self.layer_norm(hidden_states) hidden_states, attn_weights = self.attention( hidden_states, attention_mask=attention_mask, deterministic=deterministic ) hidden_states = self.dropout(hidden_states, deterministic=deterministic) hidden_states = attn_residual + hidden_states hidden_states = hidden_states + self.feed_forward( self.final_layer_norm(hidden_states), deterministic=deterministic ) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class FlaxWav2Vec2EncoderLayerStableLayerNormCollection(nn.Module): config: Wav2Vec2Config dtype: jnp.dtype = jnp.float32 def setup(self): self.layers = [ FlaxWav2Vec2EncoderLayerStableLayerNorm(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_layers) ] def __call__( self, hidden_states, attention_mask=None, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for i, layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) layer_outputs = layer( hidden_states, attention_mask, deterministic=deterministic, output_attentions=output_attentions ) hidden_states = layer_outputs[0] if output_attentions: all_attentions += (layer_outputs[1],) if output_hidden_states: all_hidden_states += (hidden_states,) outputs = (hidden_states, all_hidden_states, all_attentions) if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) class FlaxWav2Vec2StableLayerNormEncoder(nn.Module): config: Wav2Vec2Config dtype: jnp.dtype = jnp.float32 def setup(self): self.pos_conv_embed = FlaxWav2Vec2PositionalConvEmbedding(self.config, dtype=self.dtype) self.layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) self.dropout = nn.Dropout(rate=self.config.hidden_dropout) self.layers = FlaxWav2Vec2EncoderLayerStableLayerNormCollection(self.config, dtype=self.dtype) def __call__( self, hidden_states, attention_mask=None, deterministic=True, output_attentions=False, output_hidden_states=False, return_dict=True, ): if attention_mask is not None: # make sure padded tokens are not attended to hidden_states = jnp.where( jnp.broadcast_to(attention_mask[:, :, None], hidden_states.shape), hidden_states, 0 ) position_embeddings = self.pos_conv_embed(hidden_states) hidden_states = hidden_states + position_embeddings hidden_states = self.dropout(hidden_states, deterministic=deterministic) outputs = self.layers( hidden_states, attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = self.layer_norm(outputs[0]) # update the last element in `hidden_states` after applying `layernorm` above hidden_states = None if output_hidden_states: hidden_states = outputs[1] hidden_states = hidden_states[:-1] + (last_hidden_state,) if not return_dict: outputs = (last_hidden_state, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:]) return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=last_hidden_state, hidden_states=hidden_states, attentions=outputs.attentions ) class FlaxWav2Vec2GumbelVectorQuantizer(nn.Module): """ Vector quantization using gumbel softmax. See [CATEGORICAL REPARAMETERIZATION WITH GUMBEL-SOFTMAX](https://arxiv.org/pdf/1611.01144.pdf) for more information. """ config: Wav2Vec2Config dtype: jnp.dtype = jnp.float32 def setup(self): self.num_groups = self.config.num_codevector_groups self.num_vars = self.config.num_codevectors_per_group if self.config.codevector_dim % self.num_groups != 0: raise ValueError( f"`config.codevector_dim {self.config.codevector_dim} must be divisible by" f" `config.num_codevector_groups` {self.num_groups} for concatenation" ) # storage for codebook variables (codewords) self.codevectors = self.param( "codevectors", jax.nn.initializers.uniform(), (1, self.num_groups * self.num_vars, self.config.codevector_dim // self.num_groups), ) self.weight_proj = nn.Dense( self.num_groups * self.num_vars, kernel_init=jax.nn.initializers.normal(1.0), dtype=self.dtype, ) @staticmethod def _compute_perplexity(probs, mask=None): if mask is not None: mask_extended = jnp.broadcast_to(mask.flatten()[:, None, None], probs.shape) probs = jnp.where(mask_extended, probs, jnp.zeros_like(probs)) marginal_probs = probs.sum(axis=0) / mask.sum() else: marginal_probs = probs.mean(axis=0) perplexity = jnp.exp(-jnp.sum(marginal_probs * jnp.log(marginal_probs + 1e-7), axis=-1)).sum() return perplexity def __call__(self, hidden_states, mask_time_indices=None, deterministic=True, temperature=1): batch_size, sequence_length, hidden_size = hidden_states.shape # project to codevector dim hidden_states = self.weight_proj(hidden_states) hidden_states = hidden_states.reshape(batch_size * sequence_length * self.num_groups, -1) if not deterministic: # sample code vector probs via gumbel in differentiateable way gumbel_rng = self.make_rng("gumbel") gumbels = jax.random.gumbel(gumbel_rng, hidden_states.shape) codevector_probs = nn.softmax((hidden_states + gumbels) / temperature) # compute perplexity codevector_soft_dist = nn.softmax( hidden_states.reshape(batch_size * sequence_length, self.num_groups, -1), axis=-1 ) perplexity = self._compute_perplexity(codevector_soft_dist, mask_time_indices) else: # take argmax in non-differentiable way # comptute hard codevector distribution (one hot) codevector_idx = hidden_states.argmax(axis=-1) codevector_probs = jax.nn.one_hot(codevector_idx, hidden_states.shape[-1]) * 1.0 codevector_probs = codevector_probs.reshape(batch_size * sequence_length, self.num_groups, -1) perplexity = self._compute_perplexity(codevector_probs, mask_time_indices) codevector_probs = codevector_probs.reshape(batch_size * sequence_length, -1) # use probs to retrieve codevectors codevectors_per_group = jnp.expand_dims(codevector_probs, axis=-1) * self.codevectors codevectors = codevectors_per_group.reshape(batch_size * sequence_length, self.num_groups, self.num_vars, -1) codevectors = codevectors.sum(-2).reshape(batch_size, sequence_length, -1) return codevectors, perplexity class FlaxWav2Vec2Adapter(nn.Module): config: Wav2Vec2Config dtype: jnp.dtype = jnp.float32 def setup(self): # hidden_states require down-projection if feature dims don't match if self.config.output_hidden_size != self.config.hidden_size: self.proj = nn.Dense( self.config.output_hidden_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) self.proj_layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) else: self.proj = self.proj_layer_norm = None self.layers = FlaxWav2Vec2AdapterLayersCollection(self.config, dtype=self.dtype) def __call__(self, hidden_states, deterministic=True): # down-project hidden_states if required if self.proj is not None and self.proj_layer_norm is not None: hidden_states = self.proj(hidden_states) hidden_states = self.proj_layer_norm(hidden_states) hidden_states = self.layers(hidden_states) return hidden_states class FlaxWav2Vec2AdapterLayer(nn.Module): config: Wav2Vec2Config dtype: jnp.dtype = jnp.float32 def setup(self): self.conv = nn.Conv( features=2 * self.config.output_hidden_size, kernel_size=(self.config.adapter_kernel_size,), strides=(self.config.adapter_stride,), padding=((1, 1),), kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) def __call__(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = nn.glu(hidden_states, axis=2) return hidden_states class FlaxWav2Vec2AdapterLayersCollection(nn.Module): config: Wav2Vec2Config dtype: jnp.dtype = jnp.float32 def setup(self): self.layers = [ FlaxWav2Vec2AdapterLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_adapter_layers) ] def __call__(self, hidden_states): for conv_layer in self.layers: hidden_states = conv_layer(hidden_states) return hidden_states class FlaxWav2Vec2PreTrainedModel(FlaxPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = Wav2Vec2Config base_model_prefix: str = "wav2vec2" main_input_name = "input_values" module_class: nn.Module = None def __init__( self, config: Wav2Vec2Config, input_shape: Tuple = (1, 1024), seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): module = self.module_class(config=config, dtype=dtype, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors input_values = jnp.zeros(input_shape, dtype="i4") attention_mask = jnp.ones_like(input_values) params_rng, dropout_rng = jax.random.split(rng, 2) rngs = {"params": params_rng, "dropout": dropout_rng} random_params = self.module.init(rngs, input_values, attention_mask, return_dict=False)["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params @add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING) def __call__( self, input_values, attention_mask=None, mask_time_indices=None, params: dict = None, dropout_rng: jax.random.PRNGKey = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, freeze_feature_encoder: bool = False, return_dict: Optional[bool] = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict batch_size, sequence_length = input_values.shape if attention_mask is None: attention_mask = jnp.ones((batch_size, sequence_length)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} return self.module.apply( inputs, jnp.array(input_values, dtype="f4"), jnp.array(attention_mask, dtype="i4"), mask_time_indices, not train, output_attentions, output_hidden_states, freeze_feature_encoder, return_dict, rngs=rngs, ) def _get_feat_extract_output_lengths( self, input_lengths: Union[jnp.ndarray, int], add_adapter: Optional[bool] = None ): return self.module._get_feat_extract_output_lengths(input_lengths, add_adapter=add_adapter) class FlaxWav2Vec2Module(nn.Module): config: Wav2Vec2Config dtype: jnp.dtype = jnp.float32 def setup(self): self.feature_extractor = FlaxWav2Vec2FeatureEncoder(self.config, dtype=self.dtype) self.feature_projection = FlaxWav2Vec2FeatureProjection(self.config, dtype=self.dtype) self.masked_spec_embed = self.param( "masked_spec_embed", jax.nn.initializers.uniform(), (self.config.hidden_size,) ) if self.config.do_stable_layer_norm: self.encoder = FlaxWav2Vec2StableLayerNormEncoder(self.config, dtype=self.dtype) else: raise NotImplementedError("``config.do_stable_layer_norm is False`` is currently not supported.") self.adapter = FlaxWav2Vec2Adapter(self.config, dtype=self.dtype) if self.config.add_adapter else None def __call__( self, input_values, attention_mask=None, mask_time_indices=None, deterministic=True, output_attentions=None, output_hidden_states=None, freeze_feature_encoder=False, return_dict=None, ): extract_features = self.feature_extractor(input_values, freeze_feature_encoder=freeze_feature_encoder) # make sure that no loss is computed on padded inputs if attention_mask is not None: # compute reduced attention_mask corresponding to feature vectors attention_mask = self._get_feature_vector_attention_mask( extract_features.shape[1], attention_mask, add_adapter=False ) hidden_states, extract_features = self.feature_projection(extract_features, deterministic=deterministic) if mask_time_indices is not None: # apply SpecAugment along time axis with given indices hidden_states = jnp.where( jnp.broadcast_to(mask_time_indices[:, :, None], hidden_states.shape), jnp.broadcast_to(self.masked_spec_embed[None, None, :], hidden_states.shape), hidden_states, ) encoder_outputs = self.encoder( hidden_states, attention_mask=attention_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = encoder_outputs[0] if self.adapter is not None: hidden_states = self.adapter(hidden_states) if not return_dict: return (hidden_states, extract_features) + encoder_outputs[1:] return FlaxWav2Vec2BaseModelOutput( last_hidden_state=hidden_states, extract_features=extract_features, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) def _get_feat_extract_output_lengths( self, input_lengths: Union[jnp.ndarray, int], add_adapter: Optional[bool] = None ): """ Computes the output length of the convolutional layers """ add_adapter = self.config.add_adapter if add_adapter is None else add_adapter def _conv_out_length(input_length, kernel_size, stride): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return (input_length - kernel_size) // stride + 1 for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride): input_lengths = _conv_out_length(input_lengths, kernel_size, stride) if add_adapter: for _ in range(self.config.num_adapter_layers): input_lengths = _conv_out_length(input_lengths, 1, self.config.adapter_stride) return input_lengths def _get_feature_vector_attention_mask( self, feature_vector_length: int, attention_mask: jnp.ndarray, add_adapter=None ): # Effectively attention_mask.sum(-1), but not inplace to be able to run # on inference mode. non_padded_lengths = attention_mask.cumsum(axis=-1)[:, -1] output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths, add_adapter=add_adapter) batch_size = attention_mask.shape[0] attention_mask = jnp.zeros((batch_size, feature_vector_length), dtype=attention_mask.dtype) # these two operations makes sure that all values # before the output lengths indices are attended to attention_mask = attention_mask.at[jnp.arange(attention_mask.shape[0]), output_lengths - 1].set(1) attention_mask = jnp.flip(jnp.flip(attention_mask, -1).cumsum(-1), -1).astype("bool") return attention_mask @add_start_docstrings( "The bare Wav2Vec2 Model transformer outputting raw hidden-states without any specific head on top.", WAV_2_VEC_2_START_DOCSTRING, ) class FlaxWav2Vec2Model(FlaxWav2Vec2PreTrainedModel): module_class = FlaxWav2Vec2Module FLAX_WAV2VEC2_MODEL_DOCSTRING = """ Returns: Example: ```python >>> from transformers import AutoProcessor, FlaxWav2Vec2Model >>> from datasets import load_dataset >>> import soundfile as sf >>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-large-lv60") >>> model = FlaxWav2Vec2Model.from_pretrained("facebook/wav2vec2-large-lv60") >>> def map_to_array(batch): ... speech, _ = sf.read(batch["file"]) ... batch["speech"] = speech ... return batch >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> ds = ds.map(map_to_array) >>> input_values = processor( ... ds["speech"][0], sampling_rate=16_000, return_tensors="np" ... ).input_values # Batch size 1 >>> hidden_states = model(input_values).last_hidden_state ``` """ overwrite_call_docstring( FlaxWav2Vec2Model, WAV_2_VEC_2_INPUTS_DOCSTRING + FLAX_WAV2VEC2_MODEL_DOCSTRING, ) append_replace_return_docstrings( FlaxWav2Vec2Model, output_type=FlaxWav2Vec2BaseModelOutput, config_class=Wav2Vec2Config ) class FlaxWav2Vec2ForCTCModule(nn.Module): config: Wav2Vec2Config dtype: jnp.dtype = jnp.float32 def setup(self): self.wav2vec2 = FlaxWav2Vec2Module(self.config, dtype=self.dtype) self.dropout = nn.Dropout(rate=self.config.final_dropout) self.lm_head = nn.Dense( self.config.vocab_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) def __call__( self, input_values, attention_mask=None, mask_time_indices=None, deterministic=True, output_attentions=None, output_hidden_states=None, freeze_feature_encoder=False, return_dict=None, ): outputs = self.wav2vec2( input_values, attention_mask=attention_mask, mask_time_indices=mask_time_indices, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, freeze_feature_encoder=freeze_feature_encoder, return_dict=return_dict, ) hidden_states = outputs[0] hidden_states = self.dropout(hidden_states, deterministic=deterministic) logits = self.lm_head(hidden_states) if not return_dict: return (logits,) + outputs[2:] return FlaxCausalLMOutput(logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions) def _get_feat_extract_output_lengths( self, input_lengths: Union[jnp.ndarray, int], add_adapter: Optional[bool] = None, ): """ Computes the output length of the convolutional layers """ add_adapter = self.config.add_adapter if add_adapter is None else add_adapter def _conv_out_length(input_length, kernel_size, stride): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return (input_length - kernel_size) // stride + 1 for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride): input_lengths = _conv_out_length(input_lengths, kernel_size, stride) if add_adapter: for _ in range(self.config.num_adapter_layers): input_lengths = _conv_out_length(input_lengths, 1, self.config.adapter_stride) return input_lengths @add_start_docstrings( "Wav2Vec2 Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).", WAV_2_VEC_2_START_DOCSTRING, ) class FlaxWav2Vec2ForCTC(FlaxWav2Vec2PreTrainedModel): module_class = FlaxWav2Vec2ForCTCModule FLAX_WAV2VEC2_FOR_CTC_DOCSTRING = """ Returns: Example: ```python >>> import jax.numpy as jnp >>> from transformers import AutoProcessor, FlaxWav2Vec2ForCTC >>> from datasets import load_dataset >>> import soundfile as sf >>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-large-960h-lv60") >>> model = FlaxWav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60") >>> def map_to_array(batch): ... speech, _ = sf.read(batch["file"]) ... batch["speech"] = speech ... return batch >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> ds = ds.map(map_to_array) >>> input_values = processor( ... ds["speech"][0], sampling_rate=16_000, return_tensors="np" ... ).input_values # Batch size 1 >>> logits = model(input_values).logits >>> predicted_ids = jnp.argmax(logits, axis=-1) >>> transcription = processor.decode(predicted_ids[0]) >>> # should give: "A MAN SAID TO THE UNIVERSE SIR I EXIST" ``` """ overwrite_call_docstring( FlaxWav2Vec2ForCTC, WAV_2_VEC_2_INPUTS_DOCSTRING + FLAX_WAV2VEC2_FOR_CTC_DOCSTRING, ) append_replace_return_docstrings(FlaxWav2Vec2ForCTC, output_type=FlaxCausalLMOutput, config_class=Wav2Vec2Config) class FlaxWav2Vec2ForPreTrainingModule(nn.Module): config: Wav2Vec2Config dtype: jnp.dtype = jnp.float32 def setup(self): self.wav2vec2 = FlaxWav2Vec2Module(self.config, dtype=self.dtype) self.dropout_features = nn.Dropout(self.config.feat_quantizer_dropout) self.quantizer = FlaxWav2Vec2GumbelVectorQuantizer(self.config, dtype=self.dtype) self.project_q = nn.Dense( self.config.proj_codevector_dim, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) self.project_hid = nn.Dense( self.config.proj_codevector_dim, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) def __call__( self, input_values, attention_mask=None, mask_time_indices=None, gumbel_temperature: int = 1, deterministic: bool = True, output_attentions=None, output_hidden_states=None, freeze_feature_encoder=False, return_dict=None, ): r""" Returns: Example: ```python ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.wav2vec2( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, mask_time_indices=mask_time_indices, deterministic=deterministic, freeze_feature_encoder=freeze_feature_encoder, return_dict=return_dict, ) # project all transformed features (including masked) to final vq dim transformer_features = self.project_hid(outputs[0]) # quantize all (unmasked) extracted features and project to final vq dim extract_features = self.dropout_features(outputs[1], deterministic=deterministic) quantized_features, codevector_perplexity = self.quantizer( extract_features, mask_time_indices, deterministic=deterministic, temperature=gumbel_temperature ) quantized_features = self.project_q(quantized_features) if not return_dict: return (transformer_features, quantized_features, codevector_perplexity) + outputs[2:] return FlaxWav2Vec2ForPreTrainingOutput( projected_states=transformer_features, projected_quantized_states=quantized_features, codevector_perplexity=codevector_perplexity, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def _get_feat_extract_output_lengths( self, input_lengths: Union[jnp.ndarray, int], add_adapter: Optional[bool] = None ): """ Computes the output length of the convolutional layers """ add_adapter = self.config.add_adapter if add_adapter is None else add_adapter def _conv_out_length(input_length, kernel_size, stride): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return (input_length - kernel_size) // stride + 1 for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride): input_lengths = _conv_out_length(input_lengths, kernel_size, stride) if add_adapter: for _ in range(self.config.num_adapter_layers): input_lengths = _conv_out_length(input_lengths, 1, self.config.adapter_stride) return input_lengths @add_start_docstrings("""Wav2Vec2 Model with a quantizer and `VQ` head on top.""", WAV_2_VEC_2_START_DOCSTRING) class FlaxWav2Vec2ForPreTraining(FlaxWav2Vec2PreTrainedModel): module_class = FlaxWav2Vec2ForPreTrainingModule @add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING) # overwrite since has `gumbel_temperature` input def __call__( self, input_values, attention_mask=None, mask_time_indices=None, gumbel_temperature: int = 1, params: dict = None, dropout_rng: jax.random.PRNGKey = None, gumbel_rng: jax.random.PRNGKey = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, freeze_feature_encoder: bool = False, return_dict: Optional[bool] = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict batch_size, sequence_length = input_values.shape if attention_mask is None: attention_mask = jnp.ones((batch_size, sequence_length)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng if gumbel_rng is not None: rngs["gumbel"] = gumbel_rng inputs = {"params": params or self.params} return self.module.apply( inputs, jnp.array(input_values, dtype="f4"), jnp.array(attention_mask, dtype="i4"), mask_time_indices, gumbel_temperature, not train, output_attentions, output_hidden_states, freeze_feature_encoder, return_dict, rngs=rngs, ) FLAX_WAV2VEC2_FOR_PRETRAINING_DOCSTRING = """ Returns: Example: ```python >>> import optax >>> import numpy as np >>> import jax.numpy as jnp >>> from transformers import AutoFeatureExtractor, FlaxWav2Vec2ForPreTraining >>> from transformers.models.wav2vec2.modeling_flax_wav2vec2 import _compute_mask_indices >>> from datasets import load_dataset >>> import soundfile as sf >>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-large-lv60") >>> model = FlaxWav2Vec2ForPreTraining.from_pretrained("facebook/wav2vec2-large-lv60") >>> def map_to_array(batch): ... speech, _ = sf.read(batch["file"]) ... batch["speech"] = speech ... return batch >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> ds = ds.map(map_to_array) >>> input_values = feature_extractor(ds["speech"][0], return_tensors="np").input_values # Batch size 1 >>> # compute masked indices >>> batch_size, raw_sequence_length = input_values.shape >>> sequence_length = model._get_feat_extract_output_lengths(raw_sequence_length) >>> mask_time_indices = _compute_mask_indices((batch_size, sequence_length), mask_prob=0.2, mask_length=2) >>> outputs = model(input_values, mask_time_indices=mask_time_indices) >>> # compute cosine similarity between predicted (=projected_states) and target (=projected_quantized_states) >>> cosine_sim = optax.cosine_similarity(outputs.projected_states, outputs.projected_quantized_states) >>> # show that cosine similarity is much higher than random >>> assert np.asarray(cosine_sim)[mask_time_indices].mean() > 0.5 ``` """ overwrite_call_docstring( FlaxWav2Vec2ForPreTraining, WAV_2_VEC_2_INPUTS_DOCSTRING + FLAX_WAV2VEC2_FOR_PRETRAINING_DOCSTRING, ) append_replace_return_docstrings( FlaxWav2Vec2ForPreTraining, output_type=FlaxWav2Vec2ForPreTrainingOutput, config_class=Wav2Vec2Config )
transformers-main
src/transformers/models/wav2vec2/modeling_flax_wav2vec2.py
# coding=utf-8 # Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Wav2Vec2 model configuration""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP = { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class Wav2Vec2Config(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Wav2Vec2Model`]. It is used to instantiate an Wav2Vec2 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Wav2Vec2 [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32): Vocabulary size of the Wav2Vec2 model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`Wav2Vec2Model`] or [`TFWav2Vec2Model`]. Vocabulary size of the model. Defines the different tokens that can be represented by the *inputs_ids* passed to the forward method of [`Wav2Vec2Model`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. final_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for the final projection layer of [`Wav2Vec2ForCTC`]. layerdrop (`float`, *optional*, defaults to 0.1): The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. feat_extract_norm (`str`, *optional*, defaults to `"group"`): The norm to be applied to 1D convolutional layers in feature encoder. One of `"group"` for group normalization of only the first 1D convolutional layer or `"layer"` for layer normalization of all 1D convolutional layers. feat_proj_dropout (`float`, *optional*, defaults to 0.0): The dropout probability for output of the feature encoder. feat_extract_activation (`str, `optional`, defaults to `"gelu"`): The non-linear activation function (function or string) in the 1D convolutional layers of the feature extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. feat_quantizer_dropout (`float`, *optional*, defaults to 0.0): The dropout probabilitiy for quantized feature encoder states. conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)`): A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers. conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)`): A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length of *conv_stride* defines the number of convolutional layers and has to match the length of *conv_dim*. conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 3, 3)`): A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The length of *conv_kernel* defines the number of convolutional layers and has to match the length of *conv_dim*. conv_bias (`bool`, *optional*, defaults to `False`): Whether the 1D convolutional layers have a bias. num_conv_pos_embeddings (`int`, *optional*, defaults to 128): Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional embeddings layer. num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16): Number of groups of 1D convolutional positional embeddings layer. do_stable_layer_norm (`bool`, *optional*, defaults to `False`): Whether to apply *stable* layer norm architecture of the Transformer encoder. `do_stable_layer_norm is True` corresponds to applying layer norm before the attention layer, whereas `do_stable_layer_norm is False` corresponds to applying layer norm after the attention layer. apply_spec_augment (`bool`, *optional*, defaults to `True`): Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see [SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition](https://arxiv.org/abs/1904.08779). mask_time_prob (`float`, *optional*, defaults to 0.05): Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking procecure generates ''mask_time_prob*len(time_axis)/mask_time_length'' independent masks over the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector span to be masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`. mask_time_length (`int`, *optional*, defaults to 10): Length of vector span along the time axis. mask_time_min_masks (`int`, *optional*, defaults to 2),: The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step, irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length < mask_time_min_masks'' mask_feature_prob (`float`, *optional*, defaults to 0.0): Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The masking procecure generates ''mask_feature_prob*len(feature_axis)/mask_time_length'' independent masks over the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`. mask_feature_length (`int`, *optional*, defaults to 10): Length of vector span along the feature axis. mask_feature_min_masks (`int`, *optional*, defaults to 0),: The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time step, irrespectively of `mask_feature_prob`. Only relevant if ''mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks'' num_codevectors_per_group (`int`, *optional*, defaults to 320): Number of entries in each quantization codebook (group). num_codevector_groups (`int`, *optional*, defaults to 2): Number of codevector groups for product codevector quantization. contrastive_logits_temperature (`float`, *optional*, defaults to 0.1): The temperature *kappa* in the contrastive loss. feat_quantizer_dropout (`float`, *optional*, defaults to 0.0): The dropout probabilitiy for the output of the feature encoder that's used by the quantizer. num_negatives (`int`, *optional*, defaults to 100): Number of negative samples for the contrastive loss. codevector_dim (`int`, *optional*, defaults to 256): Dimensionality of the quantized feature vectors. proj_codevector_dim (`int`, *optional*, defaults to 256): Dimensionality of the final projection of both the quantized and the transformer features. diversity_loss_weight (`int`, *optional*, defaults to 0.1): The weight of the codebook diversity loss component. ctc_loss_reduction (`str`, *optional*, defaults to `"sum"`): Specifies the reduction to apply to the output of `torch.nn.CTCLoss`. Only relevant when training an instance of [`Wav2Vec2ForCTC`]. ctc_zero_infinity (`bool`, *optional*, defaults to `False`): Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance of [`Wav2Vec2ForCTC`]. use_weighted_layer_sum (`bool`, *optional*, defaults to `False`): Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an instance of [`Wav2Vec2ForSequenceClassification`]. classifier_proj_size (`int`, *optional*, defaults to 256): Dimensionality of the projection before token mean-pooling for classification. tdnn_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 1500)`): A tuple of integers defining the number of output channels of each 1D convolutional layer in the *TDNN* module of the *XVector* model. The length of *tdnn_dim* defines the number of *TDNN* layers. tdnn_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 3, 3, 1, 1)`): A tuple of integers defining the kernel size of each 1D convolutional layer in the *TDNN* module of the *XVector* model. The length of *tdnn_kernel* has to match the length of *tdnn_dim*. tdnn_dilation (`Tuple[int]` or `List[int]`, *optional*, defaults to `(1, 2, 3, 1, 1)`): A tuple of integers defining the dilation factor of each 1D convolutional layer in *TDNN* module of the *XVector* model. The length of *tdnn_dilation* has to match the length of *tdnn_dim*. xvector_output_dim (`int`, *optional*, defaults to 512): Dimensionality of the *XVector* embedding vectors. add_adapter (`bool`, *optional*, defaults to `False`): Whether a convolutional network should be stacked on top of the Wav2Vec2 Encoder. Can be very useful for warm-starting Wav2Vec2 for SpeechEncoderDecoder models. adapter_kernel_size (`int`, *optional*, defaults to 3): Kernel size of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`. adapter_stride (`int`, *optional*, defaults to 2): Stride of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`. num_adapter_layers (`int`, *optional*, defaults to 3): Number of convolutional layers that should be used in the adapter network. Only relevant if `add_adapter is True`. adapter_attn_dim (`int`, *optional*): Dimension of the attention adapter weights to be used in each attention block. An example of a model using attention adapters is [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all). output_hidden_size (`int`, *optional*): Dimensionality of the encoder output layer. If not defined, this defaults to *hidden-size*. Only relevant if `add_adapter is True`. Example: ```python >>> from transformers import Wav2Vec2Config, Wav2Vec2Model >>> # Initializing a Wav2Vec2 facebook/wav2vec2-base-960h style configuration >>> configuration = Wav2Vec2Config() >>> # Initializing a model (with random weights) from the facebook/wav2vec2-base-960h style configuration >>> model = Wav2Vec2Model(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "wav2vec2" def __init__( self, vocab_size=32, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout=0.1, activation_dropout=0.1, attention_dropout=0.1, feat_proj_dropout=0.0, feat_quantizer_dropout=0.0, final_dropout=0.1, layerdrop=0.1, initializer_range=0.02, layer_norm_eps=1e-5, feat_extract_norm="group", feat_extract_activation="gelu", conv_dim=(512, 512, 512, 512, 512, 512, 512), conv_stride=(5, 2, 2, 2, 2, 2, 2), conv_kernel=(10, 3, 3, 3, 3, 2, 2), conv_bias=False, num_conv_pos_embeddings=128, num_conv_pos_embedding_groups=16, do_stable_layer_norm=False, apply_spec_augment=True, mask_time_prob=0.05, mask_time_length=10, mask_time_min_masks=2, mask_feature_prob=0.0, mask_feature_length=10, mask_feature_min_masks=0, num_codevectors_per_group=320, num_codevector_groups=2, contrastive_logits_temperature=0.1, num_negatives=100, codevector_dim=256, proj_codevector_dim=256, diversity_loss_weight=0.1, ctc_loss_reduction="sum", ctc_zero_infinity=False, use_weighted_layer_sum=False, classifier_proj_size=256, tdnn_dim=(512, 512, 512, 512, 1500), tdnn_kernel=(5, 3, 3, 1, 1), tdnn_dilation=(1, 2, 3, 1, 1), xvector_output_dim=512, pad_token_id=0, bos_token_id=1, eos_token_id=2, add_adapter=False, adapter_kernel_size=3, adapter_stride=2, num_adapter_layers=3, output_hidden_size=None, adapter_attn_dim=None, **kwargs, ): super().__init__(**kwargs, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id) self.hidden_size = hidden_size self.feat_extract_norm = feat_extract_norm self.feat_extract_activation = feat_extract_activation self.conv_dim = list(conv_dim) self.conv_stride = list(conv_stride) self.conv_kernel = list(conv_kernel) self.conv_bias = conv_bias self.num_conv_pos_embeddings = num_conv_pos_embeddings self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups self.num_feat_extract_layers = len(self.conv_dim) self.num_hidden_layers = num_hidden_layers self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.num_attention_heads = num_attention_heads self.hidden_dropout = hidden_dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.feat_proj_dropout = feat_proj_dropout self.final_dropout = final_dropout self.layerdrop = layerdrop self.layer_norm_eps = layer_norm_eps self.initializer_range = initializer_range self.vocab_size = vocab_size self.do_stable_layer_norm = do_stable_layer_norm self.use_weighted_layer_sum = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`," f" `len(config.conv_kernel) = {len(self.conv_kernel)}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 self.apply_spec_augment = apply_spec_augment self.mask_time_prob = mask_time_prob self.mask_time_length = mask_time_length self.mask_time_min_masks = mask_time_min_masks self.mask_feature_prob = mask_feature_prob self.mask_feature_length = mask_feature_length self.mask_feature_min_masks = mask_feature_min_masks # parameters for pretraining with codevector quantized representations self.num_codevectors_per_group = num_codevectors_per_group self.num_codevector_groups = num_codevector_groups self.contrastive_logits_temperature = contrastive_logits_temperature self.feat_quantizer_dropout = feat_quantizer_dropout self.num_negatives = num_negatives self.codevector_dim = codevector_dim self.proj_codevector_dim = proj_codevector_dim self.diversity_loss_weight = diversity_loss_weight # ctc loss self.ctc_loss_reduction = ctc_loss_reduction self.ctc_zero_infinity = ctc_zero_infinity # adapter self.add_adapter = add_adapter self.adapter_kernel_size = adapter_kernel_size self.adapter_stride = adapter_stride self.num_adapter_layers = num_adapter_layers self.output_hidden_size = output_hidden_size or hidden_size self.adapter_attn_dim = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. self.classifier_proj_size = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. self.tdnn_dim = list(tdnn_dim) self.tdnn_kernel = list(tdnn_kernel) self.tdnn_dilation = list(tdnn_dilation) self.xvector_output_dim = xvector_output_dim @property def inputs_to_logits_ratio(self): return functools.reduce(operator.mul, self.conv_stride, 1)
transformers-main
src/transformers/models/wav2vec2/configuration_wav2vec2.py
# coding=utf-8 # Copyright 2021 The Facebook Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization class for Wav2Vec2.""" import json import os import sys import warnings from dataclasses import dataclass from itertools import groupby from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union import numpy as np from ...tokenization_utils import PreTrainedTokenizer, _insert_one_token_to_ordered_list from ...tokenization_utils_base import AddedToken, BatchEncoding from ...utils import ( ModelOutput, PaddingStrategy, TensorType, add_end_docstrings, is_flax_available, is_tf_available, is_torch_available, logging, to_py_obj, ) logger = logging.get_logger(__name__) if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf if is_flax_available(): import jax.numpy as jnp # noqa: F401 VOCAB_FILES_NAMES = { "vocab_file": "vocab.json", "tokenizer_config_file": "tokenizer_config.json", } PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/vocab.json", }, "tokenizer_config_file": { "facebook/wav2vec2-base-960h": ( "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/tokenizer_config.json" ), }, } # Wav2Vec2 has no max input length PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {"facebook/wav2vec2-base-960h": sys.maxsize} WAV2VEC2_KWARGS_DOCSTRING = r""" padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. pad_to_multiple_of (`int`, *optional*): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta). return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. verbose (`bool`, *optional*, defaults to `True`): Whether or not to print more information and warnings. """ ListOfDict = List[Dict[str, Union[int, str]]] @dataclass class Wav2Vec2CTCTokenizerOutput(ModelOutput): """ Output type of [` Wav2Vec2CTCTokenizer`], with transcription. Args: text (list of `str` or `str`): Decoded logits in text from. Usually the speech transcription. char_offsets (list of `List[Dict[str, Union[int, str]]]` or `List[Dict[str, Union[int, str]]]`): Offsets of the decoded characters. In combination with sampling rate and model downsampling rate char offsets can be used to compute time stamps for each charater. Total logit score of the beam associated with produced text. word_offsets (list of `List[Dict[str, Union[int, str]]]` or `List[Dict[str, Union[int, str]]]`): Offsets of the decoded words. In combination with sampling rate and model downsampling rate word offsets can be used to compute time stamps for each word. """ text: Union[List[str], str] char_offsets: Union[List[ListOfDict], ListOfDict] = None word_offsets: Union[List[ListOfDict], ListOfDict] = None class Wav2Vec2CTCTokenizer(PreTrainedTokenizer): """ Constructs a Wav2Vec2CTC tokenizer. This tokenizer inherits from [`PreTrainedTokenizer`] which contains some of the main methods. Users should refer to the superclass for more information regarding such methods. Args: vocab_file (`str`): File containing the vocabulary. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sentence token. eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sentence token. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. word_delimiter_token (`str`, *optional*, defaults to `"|"`): The token used for defining the end of a word. do_lower_case (`bool`, *optional*, defaults to `False`): Whether or not to accept lowercase input and lowercase the output when decoding. target_lang (`str`, *optional*): A target language the tokenizer should set by default. `target_lang` has to be defined for multi-lingual, nested vocabulary such as [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all). **kwargs Additional keyword arguments passed along to [`PreTrainedTokenizer`] """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, bos_token="<s>", eos_token="</s>", unk_token="<unk>", pad_token="<pad>", word_delimiter_token="|", replace_word_delimiter_char=" ", do_lower_case=False, target_lang=None, **kwargs, ): super().__init__( unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, pad_token=pad_token, do_lower_case=do_lower_case, word_delimiter_token=word_delimiter_token, replace_word_delimiter_char=replace_word_delimiter_char, target_lang=target_lang, **kwargs, ) self._word_delimiter_token = word_delimiter_token self.do_lower_case = do_lower_case self.replace_word_delimiter_char = replace_word_delimiter_char self.target_lang = target_lang with open(vocab_file, encoding="utf-8") as vocab_handle: self.vocab = json.load(vocab_handle) # if target lang is defined vocab must be a nested dict # with each target lang being one vocabulary if target_lang is not None: self.encoder = self.vocab[target_lang] else: self.encoder = self.vocab self.decoder = {v: k for k, v in self.encoder.items()} # make sure that tokens made of several # characters are not split at tokenization for token in self.encoder.keys(): if len(token) > 1: self.unique_no_split_tokens.append(token) self._create_trie(self.unique_no_split_tokens) def set_target_lang(self, target_lang: str): """ Set the target language of a nested multi-lingual dictionary """ if self.vocab == self.encoder: raise ValueError(f"{self.vocab} is not a multi-lingual, nested tokenizer. Cannot set target language.") if target_lang not in self.vocab: raise ValueError(f"{target_lang} does not exist. Choose one of {', '.join(self.vocab.keys())}.") self.target_lang = target_lang self.init_kwargs["target_lang"] = target_lang self.encoder = self.vocab[target_lang] self.decoder = {v: k for k, v in self.encoder.items()} # make sure that tokens made of several # characters are not split at tokenization for token in self.encoder.keys(): if len(token) > 1: self.unique_no_split_tokens.append(token) @property def word_delimiter_token(self) -> str: """ `str`: Word delimiter token. Log an error if used while not having been set. """ if self._word_delimiter_token is None and self.verbose: logger.error("Using word_delimiter_token, but it is not set yet.") return None return str(self._word_delimiter_token) @property def word_delimiter_token_id(self) -> Optional[int]: """ `Optional[int]`: Id of the word_delimiter_token in the vocabulary. Returns `None` if the token has not been set. """ if self._word_delimiter_token is None: return None return self.convert_tokens_to_ids(self.word_delimiter_token) @word_delimiter_token.setter def word_delimiter_token(self, value): self._word_delimiter_token = value @word_delimiter_token_id.setter def word_delimiter_token_id(self, value): self._word_delimiter_token = self.convert_tokens_to_ids(value) @property def vocab_size(self) -> int: return len(self.decoder) def get_vocab(self) -> Dict: return dict(self.vocab, **self.added_tokens_encoder) def _tokenize(self, text, **kwargs): """ Converts a string in a sequence of tokens (string), using the tokenizer. """ if self.do_lower_case: text = text.upper() return list(text.replace(" ", self.word_delimiter_token)) def _convert_token_to_id(self, token: str) -> int: """Converts a token (str) in an index (integer) using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index: int) -> str: """Converts an index (integer) in a token (str) using the vocab.""" result = self.decoder.get(index, self.unk_token) return result def convert_tokens_to_string( self, tokens: List[str], group_tokens: bool = True, spaces_between_special_tokens: bool = False, output_char_offsets: bool = False, output_word_offsets: bool = False, ) -> Dict[str, Union[str, float]]: """ Converts a connectionist-temporal-classification (CTC) output tokens into a single string. """ if len(tokens) == 0: return {"text": "", "char_offsets": [], "word_offsets": []} # group same tokens into non-repeating tokens in CTC style decoding if group_tokens: chars, char_repetitions = zip(*((token, len(list(group_iter))) for token, group_iter in groupby(tokens))) else: chars = tokens char_repetitions = len(tokens) * [1] # filter self.pad_token which is used as CTC-blank token processed_chars = list(filter(lambda char: char != self.pad_token, chars)) # replace delimiter token processed_chars = [ self.replace_word_delimiter_char if char == self.word_delimiter_token else char for char in processed_chars ] # retrieve offsets char_offsets = word_offsets = None if output_char_offsets or output_word_offsets: char_offsets = self._compute_offsets(char_repetitions, chars, self.pad_token) if len(char_offsets) != len(processed_chars): raise ValueError( f"`char_offsets`: {char_offsets} and `processed_tokens`: {processed_chars}" " have to be of the same length, but are: " f"`len(offsets)`: {len(char_offsets)} and `len(processed_tokens)`:" f" {len(processed_chars)}" ) # set tokens to correct processed token for i, char in enumerate(processed_chars): char_offsets[i]["char"] = char # retrieve word offsets from character offsets word_offsets = None if output_word_offsets: word_offsets = self._get_word_offsets(char_offsets, self.replace_word_delimiter_char) # don't output chars if not set to True if not output_char_offsets: char_offsets = None # join to string join_char = " " if spaces_between_special_tokens else "" string = join_char.join(processed_chars).strip() if self.do_lower_case: string = string.lower() return {"text": string, "char_offsets": char_offsets, "word_offsets": word_offsets} @staticmethod def _compute_offsets( char_repetitions: List[int], chars: List[str], ctc_token: int ) -> List[Dict[str, Union[str, int]]]: end_indices = np.asarray(char_repetitions).cumsum() start_indices = np.concatenate(([0], end_indices[:-1])) offsets = [ {"char": t, "start_offset": s, "end_offset": e} for t, s, e in zip(chars, start_indices, end_indices) ] # filter out CTC token offsets = list(filter(lambda offsets: offsets["char"] != ctc_token, offsets)) return offsets @staticmethod def _get_word_offsets( offsets: Dict[str, Union[str, float]], word_delimiter_char: str = " " ) -> Dict[str, Union[str, float]]: word_offsets = [] last_state = "SPACE" word = "" start_offset = 0 end_offset = 0 for i, offset in enumerate(offsets): char = offset["char"] state = "SPACE" if char == word_delimiter_char else "WORD" if state == last_state: # If we are in the same state as before, we simply repeat what we've done before end_offset = offset["end_offset"] word += char else: # Switching state if state == "SPACE": # Finishing a word word_offsets.append({"word": word, "start_offset": start_offset, "end_offset": end_offset}) else: # Starting a new word start_offset = offset["start_offset"] end_offset = offset["end_offset"] word = char last_state = state if last_state == "WORD": word_offsets.append({"word": word, "start_offset": start_offset, "end_offset": end_offset}) return word_offsets def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): if is_split_into_words: text = " " + text return (text, kwargs) def _decode( self, token_ids: List[int], skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = None, group_tokens: bool = True, spaces_between_special_tokens: bool = False, output_word_offsets: Optional[bool] = False, output_char_offsets: Optional[bool] = False, ) -> str: """ special _decode function is needed for Wav2Vec2Tokenizer because added tokens should be treated exactly the same as tokens of the base vocabulary and therefore the function `convert_tokens_to_string` has to be called on the whole token list and not individually on added tokens """ filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens) result = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue result.append(token) string_output = self.convert_tokens_to_string( result, group_tokens=group_tokens, spaces_between_special_tokens=spaces_between_special_tokens, output_word_offsets=output_word_offsets, output_char_offsets=output_char_offsets, ) text = string_output["text"] clean_up_tokenization_spaces = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: text = self.clean_up_tokenization(text) if output_word_offsets or output_char_offsets: return Wav2Vec2CTCTokenizerOutput( text=text, char_offsets=string_output["char_offsets"], word_offsets=string_output["word_offsets"], ) else: return text # overwritten from `tokenization_utils_base.py` because tokenizer can output # `ModelOutput` which should not be a list for batched output and # because we need docs for `output_char_offsets` here def batch_decode( self, sequences: Union[List[int], List[List[int]], "np.ndarray", "torch.Tensor", "tf.Tensor"], skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = None, output_char_offsets: bool = False, output_word_offsets: bool = False, **kwargs, ) -> List[str]: """ Convert a list of lists of token ids into a list of strings by calling decode. Args: sequences (`Union[List[int], List[List[int]], np.ndarray, torch.Tensor, tf.Tensor]`): List of tokenized input ids. Can be obtained using the `__call__` method. skip_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not to remove special tokens in the decoding. clean_up_tokenization_spaces (`bool`, *optional*): Whether or not to clean up the tokenization spaces. output_char_offsets (`bool`, *optional*, defaults to `False`): Whether or not to output character offsets. Character offsets can be used in combination with the sampling rate and model downsampling rate to compute the time-stamps of transcribed characters. <Tip> Please take a look at the Example of [`~Wav2Vec2CTCTokenizer.decode`] to better understand how to make use of `output_char_offsets`. [`~Wav2Vec2CTCTokenizer.batch_decode`] works the same way with batched output. </Tip> output_word_offsets (`bool`, *optional*, defaults to `False`): Whether or not to output word offsets. Word offsets can be used in combination with the sampling rate and model downsampling rate to compute the time-stamps of transcribed words. <Tip> Please take a look at the Example of [`~Wav2Vec2CTCTokenizer.decode`] to better understand how to make use of `output_word_offsets`. [`~Wav2Vec2CTCTokenizer.batch_decode`] works the same way with batched output. </Tip> kwargs (additional keyword arguments, *optional*): Will be passed to the underlying model specific decode method. Returns: `List[str]` or [`~models.wav2vec2.tokenization_wav2vec2.Wav2Vec2CTCTokenizerOutput`]: The list of decoded sentences. Will be a [`~models.wav2vec2.tokenization_wav2vec2.Wav2Vec2CTCTokenizerOutput`] when `output_char_offsets == True` or `output_word_offsets == True`. """ batch_decoded = [ self.decode( seq, skip_special_tokens=skip_special_tokens, clean_up_tokenization_spaces=clean_up_tokenization_spaces, output_char_offsets=output_char_offsets, output_word_offsets=output_word_offsets, **kwargs, ) for seq in sequences ] if output_char_offsets or output_word_offsets: # transform list of dicts to dict of lists return Wav2Vec2CTCTokenizerOutput({k: [d[k] for d in batch_decoded] for k in batch_decoded[0]}) return batch_decoded # overwritten from `tokenization_utils_base.py` because we need docs for `output_char_offsets` # and `output_word_offsets` here def decode( self, token_ids: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"], skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = None, output_char_offsets: bool = False, output_word_offsets: bool = False, **kwargs, ) -> str: """ Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special tokens and clean up tokenization spaces. Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`. Args: token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`): List of tokenized input ids. Can be obtained using the `__call__` method. skip_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not to remove special tokens in the decoding. clean_up_tokenization_spaces (`bool`, *optional*): Whether or not to clean up the tokenization spaces. output_char_offsets (`bool`, *optional*, defaults to `False`): Whether or not to output character offsets. Character offsets can be used in combination with the sampling rate and model downsampling rate to compute the time-stamps of transcribed characters. <Tip> Please take a look at the example below to better understand how to make use of `output_char_offsets`. </Tip> output_word_offsets (`bool`, *optional*, defaults to `False`): Whether or not to output word offsets. Word offsets can be used in combination with the sampling rate and model downsampling rate to compute the time-stamps of transcribed words. <Tip> Please take a look at the example below to better understand how to make use of `output_word_offsets`. </Tip> kwargs (additional keyword arguments, *optional*): Will be passed to the underlying model specific decode method. Returns: `str` or [`~models.wav2vec2.tokenization_wav2vec2.Wav2Vec2CTCTokenizerOutput`]: The list of decoded sentences. Will be a [`~models.wav2vec2.tokenization_wav2vec2.Wav2Vec2CTCTokenizerOutput`] when `output_char_offsets == True` or `output_word_offsets == True`. Example: ```python >>> # Let's see how to retrieve time steps for a model >>> from transformers import AutoTokenizer, AutoFeatureExtractor, AutoModelForCTC >>> from datasets import load_dataset >>> import datasets >>> import torch >>> # import model, feature extractor, tokenizer >>> model = AutoModelForCTC.from_pretrained("facebook/wav2vec2-base-960h") >>> tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h") >>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h") >>> # load first sample of English common_voice >>> dataset = load_dataset("common_voice", "en", split="train", streaming=True) >>> dataset = dataset.cast_column("audio", datasets.Audio(sampling_rate=16_000)) >>> dataset_iter = iter(dataset) >>> sample = next(dataset_iter) >>> # forward sample through model to get greedily predicted transcription ids >>> input_values = feature_extractor(sample["audio"]["array"], return_tensors="pt").input_values >>> logits = model(input_values).logits[0] >>> pred_ids = torch.argmax(logits, axis=-1) >>> # retrieve word stamps (analogous commands for `output_char_offsets`) >>> outputs = tokenizer.decode(pred_ids, output_word_offsets=True) >>> # compute `time_offset` in seconds as product of downsampling ratio and sampling_rate >>> time_offset = model.config.inputs_to_logits_ratio / feature_extractor.sampling_rate >>> word_offsets = [ ... { ... "word": d["word"], ... "start_time": round(d["start_offset"] * time_offset, 2), ... "end_time": round(d["end_offset"] * time_offset, 2), ... } ... for d in outputs.word_offsets ... ] >>> # compare word offsets with audio `common_voice_en_100038.mp3` online on the dataset viewer: >>> # https://huggingface.co/datasets/common_voice/viewer/en/train >>> word_offsets[:3] [{'word': 'WHY', 'start_time': 1.42, 'end_time': 1.54}, {'word': 'DOES', 'start_time': 1.64, 'end_time': 1.9}, {'word': 'MILISANDRA', 'start_time': 2.26, 'end_time': 2.9}] ```""" # Convert inputs to python lists token_ids = to_py_obj(token_ids) return self._decode( token_ids=token_ids, skip_special_tokens=skip_special_tokens, clean_up_tokenization_spaces=clean_up_tokenization_spaces, output_char_offsets=output_char_offsets, output_word_offsets=output_word_offsets, **kwargs, ) def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.vocab, indent=2, sort_keys=True, ensure_ascii=False) + "\n") return (vocab_file,) def _add_tokens(self, new_tokens: Union[List[str], List[AddedToken]], special_tokens: bool = False) -> int: """ Add a list of new tokens to the tokenizer class. If the new tokens are not in the vocabulary, they are added to it with indices starting from length of the current vocabulary. Args: new_tokens (`List[str]`or `List[tokenizers.AddedToken]`): Token(s) to add in vocabulary. A token is only added if it's not already in the vocabulary (tested by checking if the tokenizer assign the index of the `unk_token` to them). special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the tokens should be added as special tokens. Returns: `int`: The number of tokens actually added to the vocabulary. Example: ```python # Let's see how to increase the vocabulary of Bert model and tokenizer tokenizer = Wav2Vec2CTCTokenizer.from_pretrained("facebook/wav2vec2-base-960h") model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h") num_added_toks = tokenizer.add_tokens(["new_tok1", "my_new-tok2"]) print("We have added", num_added_toks, "tokens") # Note: resize_token_embeddings expects to receive the full size of the new vocabulary, i.e. the length of the tokenizer. model.resize_token_embeddings(len(tokenizer)) ```""" new_tokens = [str(tok) for tok in new_tokens] tokens_to_add = [] for token in new_tokens: assert isinstance(token, str) if not special_tokens and hasattr(self, "do_lower_case") and self.do_lower_case: token = token.lower() if ( token != self.unk_token and self.convert_tokens_to_ids(token) == self.convert_tokens_to_ids(self.unk_token) and token not in tokens_to_add ): tokens_to_add.append(token) if self.verbose: logger.info(f"Adding {token} to the vocabulary") added_tok_encoder = {tok: len(self) + i for i, tok in enumerate(tokens_to_add)} added_tok_decoder = {v: k for k, v in added_tok_encoder.items()} self.added_tokens_encoder.update(added_tok_encoder) self.added_tokens_decoder.update(added_tok_decoder) # Make sure we don't split on any special tokens (even they were already in the vocab before) for token in tokens_to_add: if len(token) > 1: self._additional_special_tokens.append(AddedToken(token)) _insert_one_token_to_ordered_list(self.unique_no_split_tokens, token) self._create_trie(self.unique_no_split_tokens) return len(tokens_to_add) class Wav2Vec2Tokenizer(PreTrainedTokenizer): """ Constructs a Wav2Vec2 tokenizer. This tokenizer inherits from [`PreTrainedTokenizer`] which contains some of the main methods. Users should refer to the superclass for more information regarding such methods. Args: vocab_file (`str`): File containing the vocabulary. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sentence token. eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sentence token. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. word_delimiter_token (`str`, *optional*, defaults to `"|"`): The token used for defining the end of a word. do_lower_case (`bool`, *optional*, defaults to `False`): Whether or not to lowercase the output when decoding. do_normalize (`bool`, *optional*, defaults to `False`): Whether or not to zero-mean unit-variance normalize the input. Normalizing can help to significantly improve the performance for some models, *e.g.*, [wav2vec2-lv60](https://huggingface.co/models?search=lv60). return_attention_mask (`bool`, *optional*, defaults to `False`): Whether or not [`~Wav2Vec2Tokenizer.__call__`] should return `attention_mask`. <Tip> Wav2Vec2 models that have set `config.feat_extract_norm == "group"`, such as [wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base-960h), have **not** been trained using `attention_mask`. For such models, `input_values` should simply be padded with 0 and no `attention_mask` should be passed. For Wav2Vec2 models that have set `config.feat_extract_norm == "layer"`, such as [wav2vec2-lv60](https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self), `attention_mask` should be passed for batched inference. </Tip> **kwargs Additional keyword arguments passed along to [`PreTrainedTokenizer`] """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = { "vocab_file": { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/vocab.json" }, "tokenizer_config_file": { "facebook/wav2vec2-base-960h": ( "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/tokenizer.json" ), }, } model_input_names = ["input_values", "attention_mask"] def __init__( self, vocab_file, bos_token="<s>", eos_token="</s>", unk_token="<unk>", pad_token="<pad>", word_delimiter_token="|", do_lower_case=False, do_normalize=False, return_attention_mask=False, **kwargs, ): super().__init__( unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, pad_token=pad_token, do_lower_case=do_lower_case, do_normalize=do_normalize, return_attention_mask=return_attention_mask, word_delimiter_token=word_delimiter_token, **kwargs, ) warnings.warn( "The class `Wav2Vec2Tokenizer` is deprecated and will be removed in version 5 of Transformers. Please use" " `Wav2Vec2Processor` or `Wav2Vec2CTCTokenizer` instead.", FutureWarning, ) self._word_delimiter_token = word_delimiter_token self.do_lower_case = do_lower_case self.return_attention_mask = return_attention_mask self.do_normalize = do_normalize with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.decoder = {v: k for k, v in self.encoder.items()} @property def word_delimiter_token(self) -> str: """ `str`: Padding token. Log an error if used while not having been set. """ if self._word_delimiter_token is None and self.verbose: logger.error("Using word_delimiter_token, but it is not set yet.") return None return str(self._word_delimiter_token) @property def word_delimiter_token_id(self) -> Optional[int]: """ `Optional[int]`: Id of the word_delimiter_token in the vocabulary. Returns `None` if the token has not been set. """ if self._word_delimiter_token is None: return None return self.convert_tokens_to_ids(self.word_delimiter_token) @word_delimiter_token.setter def word_delimiter_token(self, value): self._word_delimiter_token = value @word_delimiter_token_id.setter def word_delimiter_token_id(self, value): self._word_delimiter_token = self.convert_tokens_to_ids(value) @add_end_docstrings(WAV2VEC2_KWARGS_DOCSTRING) def __call__( self, raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], padding: Union[bool, str, PaddingStrategy] = False, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of sequences. Args: raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`): The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float values, a list of numpy array or a list of list of float values. Must be mono channel audio, not stereo, i.e. single float per timestep. """ is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}") is_batched = is_batched_numpy or ( isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list))) ) # make sure input is in list format if is_batched and not isinstance(raw_speech[0], np.ndarray): raw_speech = [np.asarray(speech) for speech in raw_speech] elif not is_batched and not isinstance(raw_speech, np.ndarray): raw_speech = np.asarray(raw_speech) # always return batch if not is_batched: raw_speech = [raw_speech] # zero-mean and unit-variance normalization if self.do_normalize: raw_speech = [(x - np.mean(x)) / np.sqrt(np.var(x) + 1e-5) for x in raw_speech] # convert into correct format for padding encoded_inputs = BatchEncoding({"input_values": raw_speech}) padded_inputs = self.pad( encoded_inputs, padding=padding, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=self.return_attention_mask, return_tensors=return_tensors, verbose=verbose, ) return padded_inputs @property def vocab_size(self) -> int: return len(self.decoder) def get_vocab(self) -> Dict: return dict(self.encoder, **self.added_tokens_encoder) def _convert_token_to_id(self, token: str) -> int: """Converts a token (str) in an index (integer) using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index: int) -> str: """Converts an index (integer) in a token (str) using the vocab.""" result = self.decoder.get(index, self.unk_token) return result def convert_tokens_to_string(self, tokens: List[str]) -> str: """ Converts a connectionist-temporal-classification (CTC) output tokens into a single string. """ # group same tokens into non-repeating tokens in CTC style decoding grouped_tokens = [token_group[0] for token_group in groupby(tokens)] # filter self.pad_token which is used as CTC-blank token filtered_tokens = list(filter(lambda token: token != self.pad_token, grouped_tokens)) # replace delimiter token string = "".join([" " if token == self.word_delimiter_token else token for token in filtered_tokens]).strip() if self.do_lower_case: string = string.lower() return string def _decode( self, token_ids: List[int], skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = None, **kwargs, ) -> str: """ special _decode function is needed for Wav2Vec2Tokenizer because added tokens should be treated exactly the same as tokens of the base vocabulary and therefore the function `convert_tokens_to_string` has to be called on the whole token list and not individually on added tokens """ filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens) result = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue result.append(token) text = self.convert_tokens_to_string(result) clean_up_tokenization_spaces = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: clean_text = self.clean_up_tokenization(text) return clean_text else: return text def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") return (vocab_file,)
transformers-main
src/transformers/models/wav2vec2/tokenization_wav2vec2.py
# coding=utf-8 # Copyright 2021, Google and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Flax PEGASUS model.""" import math import random from functools import partial from typing import Callable, Optional, Tuple import flax.linen as nn import jax import jax.numpy as jnp import numpy as np from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.linen import combine_masks, make_causal_mask from flax.linen.attention import dot_product_attention_weights from flax.traverse_util import flatten_dict, unflatten_dict from jax import lax from jax.random import PRNGKey from ...modeling_flax_outputs import ( FlaxBaseModelOutput, FlaxBaseModelOutputWithPastAndCrossAttentions, FlaxCausalLMOutputWithCrossAttentions, FlaxSeq2SeqLMOutput, FlaxSeq2SeqModelOutput, ) from ...modeling_flax_utils import ( ACT2FN, FlaxPreTrainedModel, add_start_docstrings_to_model_forward, append_call_sample_docstring, append_replace_return_docstrings, overwrite_call_docstring, ) from ...utils import add_start_docstrings, logging, replace_return_docstrings from .configuration_pegasus import PegasusConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "google/pegasus-large" _CONFIG_FOR_DOC = "PegasusConfig" PEGASUS_START_DOCSTRING = r""" This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a Flax Linen [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: config ([`PegasusConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and `jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. **Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and [`~FlaxPreTrainedModel.to_bf16`]. """ PEGASUS_INPUTS_DOCSTRING = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ PEGASUS_ENCODE_INPUTS_DOCSTRING = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ PEGASUS_DECODE_INPUTS_DOCSTRING = r""" Args: decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) encoder_outputs (`tuple(tuple(jnp.ndarray)`): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`): Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ # Copied from transformers.models.bart.modeling_flax_bart.shift_tokens_right def shift_tokens_right(input_ids: jnp.array, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray: """ Shift input ids one token to the right. """ shifted_input_ids = jnp.zeros_like(input_ids) shifted_input_ids = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1]) shifted_input_ids = shifted_input_ids.at[:, 0].set(decoder_start_token_id) shifted_input_ids = jnp.where(shifted_input_ids == -100, pad_token_id, shifted_input_ids) return shifted_input_ids # Copied from transformers.models.marian.modeling_flax_marian.create_sinusoidal_positions def create_sinusoidal_positions(n_pos, dim): position_enc = np.array([[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)]) sentinel = dim // 2 + dim % 2 out = np.zeros_like(position_enc) out[:, 0:sentinel] = np.sin(position_enc[:, 0::2]) out[:, sentinel:] = np.cos(position_enc[:, 1::2]) return jnp.array(out) # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention with Bart->Pegasus class FlaxPegasusAttention(nn.Module): config: PegasusConfig embed_dim: int num_heads: int dropout: float = 0.0 causal: bool = False bias: bool = True dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self) -> None: self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {self.num_heads})." ) dense = partial( nn.Dense, self.embed_dim, use_bias=self.bias, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense() self.out_proj = dense() self.dropout_layer = nn.Dropout(rate=self.dropout) if self.causal: self.causal_mask = make_causal_mask( jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool" ) def _split_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim)) def _merge_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,)) @nn.compact def _concatenate_to_cache(self, key, value, query, attention_mask): """ This function takes projected key, value states from a single input token and concatenates the states to cached states from previous steps. This function is slighly adapted from the official Flax repository: https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 """ # detect if we're initializing by absence of existing cache data. is_initialized = self.has_variable("cache", "cached_key") cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) if is_initialized: *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape # update key, value caches with our new 1d spatial slices cur_index = cache_index.value indices = (0,) * len(batch_dims) + (cur_index, 0, 0) key = lax.dynamic_update_slice(cached_key.value, key, indices) value = lax.dynamic_update_slice(cached_value.value, value, indices) cached_key.value = key cached_value.value = value num_updated_cache_vectors = query.shape[1] cache_index.value = cache_index.value + num_updated_cache_vectors # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements. pad_mask = jnp.broadcast_to( jnp.arange(max_length) < cur_index + num_updated_cache_vectors, tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), ) attention_mask = combine_masks(pad_mask, attention_mask) return key, value, attention_mask def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None batch_size = hidden_states.shape[0] # get query proj query_states = self.q_proj(hidden_states) # get key, value proj if is_cross_attention: # cross_attentions key_states = self.k_proj(key_value_states) value_states = self.v_proj(key_value_states) else: # self_attention key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = self._split_heads(query_states) key_states = self._split_heads(key_states) value_states = self._split_heads(value_states) # handle cache prepare causal attention mask if self.causal: query_length, key_length = query_states.shape[1], key_states.shape[1] if self.has_variable("cache", "cached_key"): mask_shift = self.variables["cache"]["cache_index"] max_decoder_length = self.variables["cache"]["cached_key"].shape[1] causal_mask = lax.dynamic_slice( self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length) ) else: causal_mask = self.causal_mask[:, :, :query_length, :key_length] causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:]) # combine masks if needed if attention_mask is not None and self.causal: attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape) attention_mask = combine_masks(attention_mask, causal_mask) elif self.causal: attention_mask = causal_mask elif attention_mask is not None: attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. if self.causal and (self.has_variable("cache", "cached_key") or init_cache): key_states, value_states, attention_mask = self._concatenate_to_cache( key_states, value_states, query_states, attention_mask ) # Convert the boolean attention mask to an attention bias. if attention_mask is not None: # attention mask in the form of attention bias attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), ) else: attention_bias = None dropout_rng = None if not deterministic and self.dropout > 0.0: dropout_rng = self.make_rng("dropout") attn_weights = dot_product_attention_weights( query_states, key_states, bias=attention_bias, dropout_rng=dropout_rng, dropout_rate=self.dropout, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, precision=None, ) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) attn_output = self._merge_heads(attn_output) attn_output = self.out_proj(attn_output) return attn_output, attn_weights # Copied from transformers.models.mbart.modeling_flax_mbart.FlaxMBartEncoderLayer with MBart->Pegasus class FlaxPegasusEncoderLayer(nn.Module): config: PegasusConfig dtype: jnp.dtype = jnp.float32 def setup(self) -> None: self.embed_dim = self.config.d_model self.self_attn = FlaxPegasusAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.encoder_attention_heads, dropout=self.config.attention_dropout, dtype=self.dtype, ) self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.dropout_layer = nn.Dropout(rate=self.config.dropout) self.activation_fn = ACT2FN[self.config.activation_function] self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) self.fc1 = nn.Dense( self.config.encoder_ffn_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.fc2 = nn.Dense( self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) ) self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, attn_weights = self.self_attn(hidden_states=hidden_states, attention_mask=attention_mask) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartEncoderLayerCollection with Bart->Pegasus class FlaxPegasusEncoderLayerCollection(nn.Module): config: PegasusConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.layers = [ FlaxPegasusEncoderLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.encoder_layers) ] self.layerdrop = self.config.encoder_layerdrop def __call__( self, hidden_states, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for encoder_layer in self.layers: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if not deterministic and (dropout_probability < self.layerdrop): # skip the layer layer_outputs = (None, None) else: layer_outputs = encoder_layer( hidden_states, attention_mask, output_attentions, deterministic, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states += (hidden_states,) outputs = (hidden_states, all_hidden_states, all_attentions) if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) # Copied from transformers.models.mbart.modeling_flax_mbart.FlaxMBartDecoderLayer with MBart->Pegasus class FlaxPegasusDecoderLayer(nn.Module): config: PegasusConfig dtype: jnp.dtype = jnp.float32 def setup(self) -> None: self.embed_dim = self.config.d_model self.self_attn = FlaxPegasusAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.decoder_attention_heads, dropout=self.config.attention_dropout, causal=True, dtype=self.dtype, ) self.dropout_layer = nn.Dropout(rate=self.config.dropout) self.activation_fn = ACT2FN[self.config.activation_function] self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.encoder_attn = FlaxPegasusAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.decoder_attention_heads, dropout=self.config.attention_dropout, dtype=self.dtype, ) self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.fc1 = nn.Dense( self.config.decoder_ffn_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.fc2 = nn.Dense( self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) ) self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, init_cache=init_cache ) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states # Cross-Attention Block cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) hidden_states, cross_attn_weights = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, ) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) return outputs # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderLayerCollection with Bart->Pegasus class FlaxPegasusDecoderLayerCollection(nn.Module): config: PegasusConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.layers = [ FlaxPegasusDecoderLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.decoder_layers) ] self.layerdrop = self.config.decoder_layerdrop def __call__( self, hidden_states, attention_mask, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None for decoder_layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if not deterministic and (dropout_probability < self.layerdrop): layer_outputs = (None, None, None) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, init_cache=init_cache, output_attentions=output_attentions, deterministic=deterministic, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) outputs = [hidden_states, all_hidden_states, all_self_attns, all_cross_attentions] if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) class FlaxPegasusEncoder(nn.Module): config: PegasusConfig embed_tokens: nn.Embed dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dropout_layer = nn.Dropout(rate=self.config.dropout) embed_dim = self.config.d_model self.padding_idx = self.config.pad_token_id self.max_source_positions = self.config.max_position_embeddings self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0 self.embed_positions = create_sinusoidal_positions(self.config.max_position_embeddings, embed_dim) self.layers = FlaxPegasusEncoderLayerCollection(self.config, self.dtype) self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, input_ids, attention_mask, position_ids, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): input_shape = input_ids.shape input_ids = input_ids.reshape(-1, input_shape[-1]) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale # embed positions embed_pos = jnp.take(self.embed_positions, position_ids, axis=0) # explictly cast the positions here, since self.embed_positions are not registered as parameters embed_pos = embed_pos.astype(inputs_embeds.dtype) hidden_states = inputs_embeds + embed_pos hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) outputs = self.layers( hidden_states, attention_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = outputs[0] last_hidden_state = self.layer_norm(last_hidden_state) # update the last element in `hidden_states` after applying `layernorm` above hidden_states = None if output_hidden_states: hidden_states = outputs[1] hidden_states = hidden_states[:-1] + (last_hidden_state,) if not return_dict: outputs = (last_hidden_state, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:]) return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=last_hidden_state, hidden_states=hidden_states, attentions=outputs.attentions, ) class FlaxPegasusDecoder(nn.Module): config: PegasusConfig embed_tokens: nn.Embed dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dropout_layer = nn.Dropout(rate=self.config.dropout) embed_dim = self.config.d_model self.padding_idx = self.config.pad_token_id self.max_target_positions = self.config.max_position_embeddings self.embed_scale = math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0 self.embed_positions = create_sinusoidal_positions(self.config.max_position_embeddings, embed_dim) self.layers = FlaxPegasusDecoderLayerCollection(self.config, self.dtype) self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, input_ids, attention_mask, position_ids, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): input_shape = input_ids.shape input_ids = input_ids.reshape(-1, input_shape[-1]) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale # embed positions positions = jnp.take(self.embed_positions, position_ids, axis=0) # explictly cast the positions here, since self.embed_positions are not registered as parameters positions = positions.astype(inputs_embeds.dtype) hidden_states = inputs_embeds + positions hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) outputs = self.layers( hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = outputs[0] last_hidden_state = self.layer_norm(last_hidden_state) # update the last element in `hidden_states` after applying `layernorm` above hidden_states = None if output_hidden_states: hidden_states = outputs[1] hidden_states = hidden_states[:-1] + (last_hidden_state,) if not return_dict: outputs = (last_hidden_state, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:]) return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=last_hidden_state, hidden_states=hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartModule with Bart->Pegasus class FlaxPegasusModule(nn.Module): config: PegasusConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.shared = nn.Embed( self.config.vocab_size, self.config.d_model, embedding_init=jax.nn.initializers.normal(self.config.init_std), dtype=self.dtype, ) self.encoder = FlaxPegasusEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared) self.decoder = FlaxPegasusDecoder(self.config, dtype=self.dtype, embed_tokens=self.shared) def _get_encoder_module(self): return self.encoder def _get_decoder_module(self): return self.decoder def __call__( self, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, position_ids, decoder_position_ids, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, position_ids=decoder_position_ids, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) if not return_dict: return decoder_outputs + encoder_outputs return FlaxSeq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) class FlaxPegasusPreTrainedModel(FlaxPreTrainedModel): config_class = PegasusConfig base_model_prefix: str = "model" module_class: nn.Module = None def __init__( self, config: PegasusConfig, input_shape: Tuple[int] = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): module = self.module_class(config=config, dtype=dtype, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors input_ids = jnp.zeros(input_shape, dtype="i4") attention_mask = jnp.ones_like(input_ids) decoder_input_ids = input_ids decoder_attention_mask = jnp.ones_like(input_ids) batch_size, sequence_length = input_ids.shape position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) decoder_position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} random_params = self.module.init( rngs, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, position_ids, decoder_position_ids, )["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params def init_cache(self, batch_size, max_length, encoder_outputs): r""" Args: batch_size (`int`): batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. max_length (`int`): maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized cache. encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`): `encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. """ # init input variables to retrieve cache decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4") decoder_attention_mask = jnp.ones_like(decoder_input_ids) decoder_position_ids = jnp.broadcast_to( jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]), decoder_input_ids.shape ) def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() return decoder_module( decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs, ) init_variables = self.module.init( jax.random.PRNGKey(0), decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, encoder_hidden_states=encoder_outputs[0], init_cache=True, method=_decoder_forward, # we only need to call the decoder to init the cache ) return unfreeze(init_variables["cache"]) @add_start_docstrings(PEGASUS_ENCODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=PegasusConfig) def encode( self, input_ids: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, position_ids: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, FlaxPegasusForConditionalGeneration >>> model = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-large") >>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-large") >>> text = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, max_length=1024, return_tensors="np") >>> encoder_outputs = model.encode(**inputs) ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict if attention_mask is None: attention_mask = jnp.ones_like(input_ids) if position_ids is None: batch_size, sequence_length = input_ids.shape position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng def _encoder_forward(module, input_ids, attention_mask, position_ids, **kwargs): encode_module = module._get_encoder_module() return encode_module(input_ids, attention_mask, position_ids, **kwargs) return self.module.apply( {"params": params or self.params}, input_ids=jnp.array(input_ids, dtype="i4"), attention_mask=jnp.array(attention_mask, dtype="i4"), position_ids=jnp.array(position_ids, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, method=_encoder_forward, ) @add_start_docstrings(PEGASUS_DECODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxBaseModelOutputWithPastAndCrossAttentions, config_class=PegasusConfig) def decode( self, decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> import jax.numpy as jnp >>> from transformers import AutoTokenizer, FlaxPegasusForConditionalGeneration >>> model = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-large") >>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-large") >>> text = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, max_length=1024, return_tensors="np") >>> encoder_outputs = model.encode(**inputs) >>> decoder_start_token_id = model.config.decoder_start_token_id >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id >>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> last_decoder_hidden_states = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict encoder_hidden_states = encoder_outputs[0] if encoder_attention_mask is None: batch_size, sequence_length = encoder_hidden_states.shape[:2] encoder_attention_mask = jnp.ones((batch_size, sequence_length)) batch_size, sequence_length = decoder_input_ids.shape if decoder_attention_mask is None: decoder_attention_mask = jnp.ones((batch_size, sequence_length)) if decoder_position_ids is None: if past_key_values is not None: raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.") decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that # it can be changed by FlaxPegasusAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() return decoder_module( decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs, ) outputs = self.module.apply( inputs, decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, mutable=mutable, method=_decoder_forward, ) # add updated cache to model output if past_key_values is not None and return_dict: outputs, past = outputs outputs["past_key_values"] = unfreeze(past["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs, past = outputs outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] return outputs @add_start_docstrings_to_model_forward(PEGASUS_INPUTS_DOCSTRING) def __call__( self, input_ids: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, decoder_input_ids: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, position_ids: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict # prepare encoder inputs if attention_mask is None: attention_mask = jnp.ones_like(input_ids) if position_ids is None: batch_size, sequence_length = input_ids.shape position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) # prepare decoder inputs if decoder_input_ids is None: decoder_input_ids = shift_tokens_right( input_ids, self.config.pad_token_id, decoder_start_token_id=self.config.decoder_start_token_id ) if decoder_attention_mask is None: decoder_attention_mask = jnp.ones_like(decoder_input_ids) if decoder_position_ids is None: batch_size, sequence_length = decoder_input_ids.shape decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) # Handle any PRNG if needed rngs = {"dropout": dropout_rng} if dropout_rng is not None else {} return self.module.apply( {"params": params or self.params}, input_ids=jnp.array(input_ids, dtype="i4"), attention_mask=jnp.array(attention_mask, dtype="i4"), position_ids=jnp.array(position_ids, dtype="i4"), decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, ) @add_start_docstrings( "The bare Pegasus Model transformer outputting raw hidden-states without any specific head on top.", PEGASUS_START_DOCSTRING, ) class FlaxPegasusModel(FlaxPegasusPreTrainedModel): config: PegasusConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation module_class = FlaxPegasusModule append_call_sample_docstring(FlaxPegasusModel, _CHECKPOINT_FOR_DOC, FlaxSeq2SeqModelOutput, _CONFIG_FOR_DOC) # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartForConditionalGenerationModule with Bart->Pegasus class FlaxPegasusForConditionalGenerationModule(nn.Module): config: PegasusConfig dtype: jnp.dtype = jnp.float32 bias_init: Callable[..., jnp.ndarray] = jax.nn.initializers.zeros def setup(self): self.model = FlaxPegasusModule(config=self.config, dtype=self.dtype) self.lm_head = nn.Dense( self.model.shared.num_embeddings, use_bias=False, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.final_logits_bias = self.param("final_logits_bias", self.bias_init, (1, self.model.shared.num_embeddings)) def _get_encoder_module(self): return self.model.encoder def _get_decoder_module(self): return self.model.decoder def __call__( self, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, position_ids, decoder_position_ids, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, position_ids=position_ids, decoder_position_ids=decoder_position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = self.model.variables["params"]["shared"]["embedding"] lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) else: lm_logits = self.lm_head(hidden_states) lm_logits += jax.lax.stop_gradient(self.final_logits_bias.astype(self.dtype)) if not return_dict: output = (lm_logits,) + outputs[1:] return output return FlaxSeq2SeqLMOutput( logits=lm_logits, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) @add_start_docstrings( "The PEGASUS Model with a language modeling head. Can be used for summarization.", PEGASUS_START_DOCSTRING ) class FlaxPegasusForConditionalGeneration(FlaxPegasusPreTrainedModel): module_class = FlaxPegasusForConditionalGenerationModule dtype: jnp.dtype = jnp.float32 @add_start_docstrings(PEGASUS_DECODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=PegasusConfig) def decode( self, decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, deterministic: bool = True, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> import jax.numpy as jnp >>> from transformers import AutoTokenizer, FlaxPegasusForConditionalGeneration >>> model = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-large") >>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-large") >>> text = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, max_length=1024, return_tensors="np") >>> encoder_outputs = model.encode(**inputs) >>> decoder_start_token_id = model.config.decoder_start_token_id >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id >>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> logits = outputs.logits ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict encoder_hidden_states = encoder_outputs[0] if encoder_attention_mask is None: batch_size, sequence_length = encoder_hidden_states.shape[:2] encoder_attention_mask = jnp.ones((batch_size, sequence_length)) batch_size, sequence_length = decoder_input_ids.shape if decoder_attention_mask is None: decoder_attention_mask = jnp.ones((batch_size, sequence_length)) if decoder_position_ids is None: if past_key_values is not None: raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.") decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that # it can be changed by FlaxPegasusAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() outputs = decoder_module( decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = module.model.variables["params"]["shared"]["embedding"] lm_logits = module.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) else: lm_logits = module.lm_head(hidden_states) lm_logits += module.final_logits_bias.astype(self.dtype) return lm_logits, outputs outputs = self.module.apply( inputs, decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, rngs=rngs, mutable=mutable, method=_decoder_forward, ) if past_key_values is None: lm_logits, decoder_outputs = outputs else: (lm_logits, decoder_outputs), past = outputs if return_dict: outputs = FlaxCausalLMOutputWithCrossAttentions( logits=lm_logits, hidden_states=decoder_outputs.hidden_states, attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, ) else: outputs = (lm_logits,) + decoder_outputs[1:] # add updated cache to model output if past_key_values is not None and return_dict: outputs["past_key_values"] = unfreeze(past["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] return outputs def prepare_inputs_for_generation( self, decoder_input_ids, max_length, attention_mask: Optional[jax.Array] = None, decoder_attention_mask: Optional[jax.Array] = None, encoder_outputs=None, **kwargs, ): # initializing the cache batch_size, seq_length = decoder_input_ids.shape past_key_values = self.init_cache(batch_size, max_length, encoder_outputs) # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. # But since the decoder uses a causal mask, those positions are masked anyways. # Thus we can create a single static attention_mask here, which is more efficient for compilation extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") if decoder_attention_mask is not None: position_ids = decoder_attention_mask.cumsum(axis=-1) - 1 extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, decoder_attention_mask, (0, 0)) else: position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)) return { "past_key_values": past_key_values, "encoder_outputs": encoder_outputs, "encoder_attention_mask": attention_mask, "decoder_attention_mask": extended_attention_mask, "decoder_position_ids": position_ids, } def update_inputs_for_generation(self, model_outputs, model_kwargs): model_kwargs["past_key_values"] = model_outputs.past_key_values model_kwargs["decoder_position_ids"] = model_kwargs["decoder_position_ids"][:, -1:] + 1 return model_kwargs FLAX_PEGASUS_CONDITIONAL_GENERATION_DOCSTRING = """ Returns: Summarization example: ```pyton >>> from transformers import AutoTokenizer, FlaxPegasusForConditionalGeneration >>> model = FlaxPegasusForConditionalGeneration.from_pretrained('google/pegasus-large') >>> tokenizer = AutoTokenizer.from_pretrained('google/pegasus-large') >>> ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors='np') >>> # Generate Summary >>> summary_ids = model.generate(inputs['input_ids']).sequences >>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)) ``` Mask filling example: ```python >>> from transformers import AutoTokenizer, FlaxPegasusForConditionalGeneration >>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-large") >>> TXT = "My friends are <mask> but they eat too many carbs." >>> model = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-large") >>> input_ids = tokenizer([TXT], return_tensors="np")["input_ids"] >>> logits = model(input_ids).logits >>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item() >>> probs = jax.nn.softmax(logits[0, masked_index], axis=0) >>> values, predictions = jax.lax.top_k(probs) >>> tokenizer.decode(predictions).split() ``` """ overwrite_call_docstring( FlaxPegasusForConditionalGeneration, PEGASUS_INPUTS_DOCSTRING + FLAX_PEGASUS_CONDITIONAL_GENERATION_DOCSTRING ) append_replace_return_docstrings( FlaxPegasusForConditionalGeneration, output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC )
transformers-main
src/transformers/models/pegasus/modeling_flax_pegasus.py
# coding=utf-8 # Copyright 2020 Google and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params PATTERNS = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def rename_state_dict_key(k): for pegasus_name, hf_name in PATTERNS: k = k.replace(pegasus_name, hf_name) return k # See appendix C of paper for all hyperparams def convert_pegasus(tf_weights: dict, cfg_updates: dict) -> PegasusForConditionalGeneration: cfg_kwargs = DEFAULTS.copy() cfg_kwargs.update(cfg_updates) cfg = PegasusConfig(**cfg_kwargs) torch_model = PegasusForConditionalGeneration(cfg) sd = torch_model.model.state_dict() mapping = {} for k, v in tf_weights.items(): new_k = rename_state_dict_key(k) if new_k not in sd: raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})") if "dense" in k or "proj" in new_k: v = v.T mapping[new_k] = torch.tensor(v, dtype=sd[new_k].dtype) assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}" # make sure embedding.padding_idx is respected mapping["shared.weight"][cfg.pad_token_id] = torch.zeros_like(mapping["shared.weight"][cfg.pad_token_id + 1]) mapping["encoder.embed_tokens.weight"] = mapping["shared.weight"] mapping["decoder.embed_tokens.weight"] = mapping["shared.weight"] empty_biases = {k: torch.zeros_like(v) for k, v in sd.items() if k.endswith("bias") and k not in mapping} mapping.update(**empty_biases) missing, extra = torch_model.model.load_state_dict(mapping, strict=False) unexpected_missing = [ k for k in missing if k not in ["encoder.embed_positions.weight", "decoder.embed_positions.weight"] ] assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}" assert extra == [], f"no matches found for the following tf keys {extra}" return torch_model def get_tf_weights_as_numpy(path="./ckpt/aeslc/model.ckpt-32000") -> Dict: init_vars = tf.train.list_variables(path) tf_weights = {} ignore_name = ["Adafactor", "global_step"] for name, shape in tqdm(init_vars, desc="converting tf checkpoint to dict"): skip_key = any(pat in name for pat in ignore_name) if skip_key: continue array = tf.train.load_variable(path, name) tf_weights[name] = array return tf_weights def convert_pegasus_ckpt_to_pytorch(ckpt_path: str, save_dir: str): # save tokenizer first dataset = Path(ckpt_path).parent.name desired_max_model_length = task_specific_params[f"summarization_{dataset}"]["max_position_embeddings"] tok = PegasusTokenizer.from_pretrained("sshleifer/pegasus", model_max_length=desired_max_model_length) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(save_dir) # convert model tf_weights = get_tf_weights_as_numpy(ckpt_path) cfg_updates = task_specific_params[f"summarization_{dataset}"] if dataset == "large": cfg_updates["task_specific_params"] = task_specific_params torch_model = convert_pegasus(tf_weights, cfg_updates) torch_model.save_pretrained(save_dir) sd = torch_model.state_dict() sd.pop("model.decoder.embed_positions.weight") sd.pop("model.encoder.embed_positions.weight") torch.save(sd, Path(save_dir) / "pytorch_model.bin") if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") args = parser.parse_args() if args.save_dir is None: dataset = Path(args.tf_ckpt_path).parent.name args.save_dir = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
transformers-main
src/transformers/models/pegasus/convert_pegasus_tf_to_pytorch.py
# coding=utf-8 # Copyright 2020 Google and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tokenization class for model PEGASUS.""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: PegasusTokenizer = None logger = logging.get_logger(__name__) SPIECE_UNDERLINE = "▁" VOCAB_FILES_NAMES = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"}, "tokenizer_file": { "google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json" }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "google/pegasus-xsum": 512, } class PegasusTokenizerFast(PreTrainedTokenizerFast): r""" Construct a "fast" PEGASUS tokenizer (backed by HuggingFace's *tokenizers* library). Based on [Unigram](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=unigram#models). This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that contains the vocabulary necessary to instantiate a tokenizer. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. mask_token (`str`, *optional*, defaults to `"<mask_2>"`): The token used for masking single token values. This is the token used when training this model with masked language modeling (MLM). This is the token that the PEGASUS encoder will try to predict during pretraining. It corresponds to *[MASK2]* in [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/pdf/1912.08777.pdf). mask_token_sent (`str`, *optional*, defaults to `"<mask_1>"`): The token used for masking whole target sentences. This is the token used when training this model with gap sentences generation (GSG). This is the sentence that the PEGASUS decoder will try to predict during pretraining. It corresponds to *[MASK1]* in [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/pdf/1912.08777.pdf). additional_special_tokens (`List[str]`, *optional*): Additional special tokens used by the tokenizer. If no additional_special_tokens are provided <mask_2> and <unk_2, ..., unk_102> are used as additional special tokens corresponding to the [original PEGASUS tokenizer](https://github.com/google-research/pegasus/blob/939830367bcf411193d2b5eca2f2f90f3f9260ca/pegasus/ops/pretrain_parsing_ops.cc#L66) that uses the tokens 2 - 104 only for pretraining """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES slow_tokenizer_class = PegasusTokenizer model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file=None, tokenizer_file=None, pad_token="<pad>", eos_token="</s>", unk_token="<unk>", mask_token="<mask_2>", mask_token_sent="<mask_1>", additional_special_tokens=None, offset=103, # entries 2 - 104 are only used for pretraining **kwargs, ): self.offset = offset if additional_special_tokens is not None: if not isinstance(additional_special_tokens, list): raise TypeError( f"additional_special_tokens should be of type {type(list)}, but is" f" {type(additional_special_tokens)}" ) additional_special_tokens_extended = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"<unk_{i}>" for i in range(len(additional_special_tokens_extended), self.offset - 1) ] if len(set(additional_special_tokens_extended)) != len(additional_special_tokens_extended): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}." ) additional_special_tokens = additional_special_tokens_extended else: additional_special_tokens = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"<unk_{i}>" for i in range(2, self.offset)] super().__init__( vocab_file, tokenizer_file=tokenizer_file, pad_token=pad_token, eos_token=eos_token, unk_token=unk_token, mask_token=mask_token, mask_token_sent=mask_token_sent, offset=offset, additional_special_tokens=additional_special_tokens, **kwargs, ) self.vocab_file = vocab_file self.can_save_slow_tokenizer = False if not self.vocab_file else True def _special_token_mask(self, seq): all_special_ids = set(self.all_special_ids) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens) + 3)): raise ValueError( "There should be 3 special tokens: mask_token, pad_token, and eos_token +" f" {len(self.additional_special_tokens)} additional_special_tokens, but got {all_special_ids}" ) return [1 if x in all_special_ids else 0 for x in seq] def get_special_tokens_mask( self, token_ids_0: List, token_ids_1: Optional[List] = None, already_has_special_tokens: bool = False ) -> List[int]: """Get list where entries are [1] if a token is [eos] or [pad] else 0.""" if already_has_special_tokens: return self._special_token_mask(token_ids_0) elif token_ids_1 is None: return self._special_token_mask(token_ids_0) + [1] else: return self._special_token_mask(token_ids_0 + token_ids_1) + [1] def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]: """ Build model inputs from a sequence by adding eos to the end. no bos token is added to the front. - single sequence: `X </s>` - pair of sequences: `A B </s>` (not intended use) Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return token_ids_0 + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_0 + token_ids_1 + [self.eos_token_id] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): copyfile(self.vocab_file, out_vocab_file) return (out_vocab_file,)
transformers-main
src/transformers/models/pegasus/tokenization_pegasus_fast.py
# coding=utf-8 # Copyright 2021, Google and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PEGASUS model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP = { "google/pegasus-large": "https://huggingface.co/google/pegasus-large/resolve/main/config.json", # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class PegasusConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`PegasusModel`]. It is used to instantiate an PEGASUS model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the PEGASUS [google/pegasus-large](https://huggingface.co/google/pegasus-large) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50265): Vocabulary size of the PEGASUS model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`PegasusModel`] or [`TFPegasusModel`]. d_model (`int`, *optional*, defaults to 1024): Dimensionality of the layers and the pooler layer. encoder_layers (`int`, *optional*, defaults to 12): Number of encoder layers. decoder_layers (`int`, *optional*, defaults to 12): Number of decoder layers. encoder_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. decoder_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer decoder. decoder_ffn_dim (`int`, *optional*, defaults to 4096): Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. encoder_ffn_dim (`int`, *optional*, defaults to 4096): Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. activation_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for activations inside the fully connected layer. max_position_embeddings (`int`, *optional*, defaults to 1024): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). init_std (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. encoder_layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. decoder_layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. scale_embedding (`bool`, *optional*, defaults to `False`): Scale embeddings by diving by sqrt(d_model). use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models) forced_eos_token_id (`int`, *optional*, defaults to 1): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. Example: ```python >>> from transformers import PegasusConfig, PegasusModel >>> # Initializing a PEGASUS google/pegasus-large style configuration >>> configuration = PegasusConfig() >>> # Initializing a model (with random weights) from the google/pegasus-large style configuration >>> model = PegasusModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "pegasus" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self, vocab_size=50265, max_position_embeddings=1024, encoder_layers=12, encoder_ffn_dim=4096, encoder_attention_heads=16, decoder_layers=12, decoder_ffn_dim=4096, decoder_attention_heads=16, encoder_layerdrop=0.0, decoder_layerdrop=0.0, use_cache=True, is_encoder_decoder=True, activation_function="gelu", d_model=1024, dropout=0.1, attention_dropout=0.0, activation_dropout=0.0, init_std=0.02, decoder_start_token_id=0, scale_embedding=False, pad_token_id=0, eos_token_id=1, forced_eos_token_id=1, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.d_model = d_model self.encoder_ffn_dim = encoder_ffn_dim self.encoder_layers = encoder_layers self.encoder_attention_heads = encoder_attention_heads self.decoder_ffn_dim = decoder_ffn_dim self.decoder_layers = decoder_layers self.decoder_attention_heads = decoder_attention_heads self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.activation_function = activation_function self.init_std = init_std self.encoder_layerdrop = encoder_layerdrop self.decoder_layerdrop = decoder_layerdrop self.use_cache = use_cache self.num_hidden_layers = encoder_layers self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=pad_token_id, eos_token_id=eos_token_id, is_encoder_decoder=is_encoder_decoder, decoder_start_token_id=decoder_start_token_id, forced_eos_token_id=forced_eos_token_id, **kwargs, ) @property def num_attention_heads(self) -> int: return self.encoder_attention_heads @property def hidden_size(self) -> int: return self.d_model
transformers-main
src/transformers/models/pegasus/configuration_pegasus.py
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _import_structure = {"configuration_pegasus": ["PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP", "PegasusConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_pegasus"] = ["PegasusTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_pegasus_fast"] = ["PegasusTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_pegasus"] = [ "PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST", "PegasusForCausalLM", "PegasusForConditionalGeneration", "PegasusModel", "PegasusPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_pegasus"] = [ "TFPegasusForConditionalGeneration", "TFPegasusModel", "TFPegasusPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_flax_pegasus"] = [ "FlaxPegasusForConditionalGeneration", "FlaxPegasusModel", "FlaxPegasusPreTrainedModel", ] if TYPE_CHECKING: from .configuration_pegasus import PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_pegasus import PegasusTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_pegasus_fast import PegasusTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus import ( PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusForCausalLM, PegasusForConditionalGeneration, PegasusModel, PegasusPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_pegasus import TFPegasusForConditionalGeneration, TFPegasusModel, TFPegasusPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_pegasus import ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, FlaxPegasusPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers-main
src/transformers/models/pegasus/__init__.py
# coding=utf-8 # Copyright 2020 Google and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SPIECE_UNDERLINE = "▁" VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"} } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "google/pegasus-xsum": 512, } logger = logging.get_logger(__name__) class PegasusTokenizer(PreTrainedTokenizer): r""" Construct a PEGASUS tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that contains the vocabulary necessary to instantiate a tokenizer. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. mask_token (`str`, *optional*, defaults to `"<mask_2>"`): The token used for masking single token values. This is the token used when training this model with masked language modeling (MLM). This is the token that the PEGASUS encoder will try to predict during pretraining. It corresponds to *[MASK2]* in [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/pdf/1912.08777.pdf). mask_token_sent (`str`, *optional*, defaults to `"<mask_1>"`): The token used for masking whole target sentences. This is the token used when training this model with gap sentences generation (GSG). This is the sentence that the PEGASUS decoder will try to predict during pretraining. It corresponds to *[MASK1]* in [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/pdf/1912.08777.pdf). additional_special_tokens (`List[str]`, *optional*): Additional special tokens used by the tokenizer. If no additional_special_tokens are provided <mask_2> and <unk_2, ..., unk_102> are used as additional special tokens corresponding to the [original PEGASUS tokenizer](https://github.com/google-research/pegasus/blob/939830367bcf411193d2b5eca2f2f90f3f9260ca/pegasus/ops/pretrain_parsing_ops.cc#L66) that uses the tokens 2 - 104 only for pretraining sp_model_kwargs (`dict`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. """ vocab_files_names = VOCAB_FILES_NAMES vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, pad_token="<pad>", eos_token="</s>", unk_token="<unk>", mask_token="<mask_2>", mask_token_sent="<mask_1>", additional_special_tokens=None, offset=103, # entries 2 - 104 are only used for pretraining sp_model_kwargs: Optional[Dict[str, Any]] = None, **kwargs, ) -> None: self.offset = offset if additional_special_tokens is not None: if not isinstance(additional_special_tokens, list): raise TypeError( f"additional_special_tokens should be of type {type(list)}, but is" f" {type(additional_special_tokens)}" ) additional_special_tokens_extended = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"<unk_{i}>" for i in range(len(additional_special_tokens_extended), self.offset - 1) ] if len(set(additional_special_tokens_extended)) != len(additional_special_tokens_extended): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}." ) additional_special_tokens = additional_special_tokens_extended else: additional_special_tokens = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"<unk_{i}>" for i in range(2, self.offset)] self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=eos_token, unk_token=unk_token, mask_token=mask_token, pad_token=pad_token, mask_token_sent=mask_token_sent, offset=offset, additional_special_tokens=additional_special_tokens, sp_model_kwargs=self.sp_model_kwargs, **kwargs, ) self.mask_token_sent = mask_token_sent self.vocab_file = vocab_file self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(vocab_file) # add special tokens to encoder dict self.encoder: Dict[int, str] = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1, self.offset - 1)}) self.decoder: Dict[str, int] = {v: k for k, v in self.encoder.items()} @property def vocab_size(self) -> int: return len(self.sp_model) + self.offset def get_vocab(self) -> Dict[str, int]: vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None return state def __setstate__(self, d): self.__dict__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def _tokenize(self, text: str) -> List[str]: """Take as input a string and return a list of strings (tokens) for words/sub-words""" return self.sp_model.encode(text, out_type=str) def _convert_token_to_id(self, token: str) -> int: """Converts a token (str) to an id using the vocab.""" if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] sp_id = self.sp_model.piece_to_id(token) return sp_id + self.offset def _convert_id_to_token(self, index: int) -> str: """Converts an index (integer) to a token (str) using the vocab.""" if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: token = self.sp_model.IdToPiece(index - self.offset) return token def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" current_sub_tokens = [] out_string = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(current_sub_tokens) + token current_sub_tokens = [] else: current_sub_tokens.append(token) out_string += self.sp_model.decode(current_sub_tokens) return out_string.strip() def num_special_tokens_to_add(self, pair=False): """Just EOS""" return 1 def _special_token_mask(self, seq): all_special_ids = set(self.all_special_ids) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def get_special_tokens_mask( self, token_ids_0: List, token_ids_1: Optional[List] = None, already_has_special_tokens: bool = False ) -> List[int]: """Get list where entries are [1] if a token is [eos] or [pad] else 0.""" if already_has_special_tokens: return self._special_token_mask(token_ids_0) elif token_ids_1 is None: return self._special_token_mask(token_ids_0) + [1] else: return self._special_token_mask(token_ids_0 + token_ids_1) + [1] def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]: """ Build model inputs from a sequence or a pair of sequences for sequence classification tasks by concatenating and adding special tokens. A PEGASUS sequence has the following format, where `X` represents the sequence: - single sequence: `X </s>` - pair of sequences: `A B </s>` (not intended use) BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a separator. Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return token_ids_0 + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_0 + token_ids_1 + [self.eos_token_id] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) return (out_vocab_file,)
transformers-main
src/transformers/models/pegasus/tokenization_pegasus.py
# coding=utf-8 # Copyright 2021, Google Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 Pegasus model.""" from __future__ import annotations import random from typing import Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import ( TFBaseModelOutput, TFBaseModelOutputWithPastAndCrossAttentions, TFSeq2SeqLMOutput, TFSeq2SeqModelOutput, ) # Public API from ...modeling_tf_utils import ( TFCausalLanguageModelingLoss, TFModelInputType, TFPreTrainedModel, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import ( ContextManagers, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_pegasus import PegasusConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "google/pegasus-large" _CONFIG_FOR_DOC = "PegasusConfig" LARGE_NEGATIVE = -1e8 # Copied from transformers.models.bart.modeling_tf_bart.shift_tokens_right def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int): pad_token_id = tf.cast(pad_token_id, input_ids.dtype) decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype) start_tokens = tf.fill( (shape_list(input_ids)[0], 1), tf.convert_to_tensor(decoder_start_token_id, input_ids.dtype) ) shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1) # replace possible -100 values in labels by `pad_token_id` shifted_input_ids = tf.where( shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), tf.convert_to_tensor(pad_token_id, input_ids.dtype)), shifted_input_ids, ) # "Verify that `labels` has only positive values and -100" assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype)) # Make sure the assertion op is called by wrapping the result in an identity no-op with tf.control_dependencies([assert_gte0]): shifted_input_ids = tf.identity(shifted_input_ids) return shifted_input_ids # Copied from transformers.models.bart.modeling_tf_bart._make_causal_mask def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0): """ Make causal mask used for bi-directional self-attention. """ bsz = input_ids_shape[0] tgt_len = input_ids_shape[1] mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE mask_cond = tf.range(shape_list(mask)[-1]) mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask) if past_key_values_length > 0: mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1) return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1)) # Copied from transformers.models.bart.modeling_tf_bart._expand_mask def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None): """ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. """ src_len = shape_list(mask)[1] tgt_len = tgt_len if tgt_len is not None else src_len one_cst = tf.constant(1.0) mask = tf.cast(mask, dtype=one_cst.dtype) expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1)) return (one_cst - expanded_mask) * LARGE_NEGATIVE # Copied from transformers.models.marian.modeling_tf_marian.TFMarianSinusoidalPositionalEmbedding with Marian->Pegasus class TFPegasusSinusoidalPositionalEmbedding(tf.keras.layers.Layer): """This module produces sinusoidal positional embeddings of any length.""" def __init__(self, num_positions: int, embedding_dim: int, **kwargs): super().__init__(**kwargs) if embedding_dim % 2 != 0: raise NotImplementedError(f"odd embedding_dim {embedding_dim} not supported") self.embedding_dim = embedding_dim self.num_positions = num_positions def build(self, input_shape: tf.TensorShape): """ Build shared token embedding layer Shared weights logic adapted from https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24 """ weight = self._init_weight(self.num_positions, self.embedding_dim) self.weight = self.add_weight( name="embeddings", shape=[self.num_positions, self.embedding_dim], ) weight = tf.cast(weight, dtype=self.weight.dtype) self.weight.assign(weight) super().build(input_shape) @staticmethod def _init_weight(n_pos: int, dim: int): """ Identical to the XLM create_sinusoidal_embeddings except features are not interleaved. The cos features are in the 2nd half of the vector. [dim // 2:] """ position_enc = np.array( [[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)] ) table = np.zeros_like(position_enc) # index 0 is all zero table[:, 0 : dim // 2] = np.sin(position_enc[:, 0::2]) table[:, dim // 2 :] = np.cos(position_enc[:, 1::2]) # convert to tensor table = tf.convert_to_tensor(table) tf.stop_gradient(table) return table def call( self, input_shape: tf.TensorShape, past_key_values_length: int = 0, position_ids: tf.Tensor | None = None ): """Input is expected to be of size [bsz x seqlen].""" if position_ids is None: seq_len = input_shape[1] position_ids = tf.range(past_key_values_length, seq_len + past_key_values_length, delta=1, name="range") return tf.gather(self.weight, position_ids) # Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention with Bart->Pegasus class TFPegasusAttention(tf.keras.layers.Layer): """Multi-headed attention from "Attention Is All You Need""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, **kwargs, ): super().__init__(**kwargs) self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = tf.keras.layers.Dropout(dropout) self.head_dim = embed_dim // num_heads if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.k_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj") self.q_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj") self.v_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj") self.out_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj") def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int): return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3)) def call( self, hidden_states: tf.Tensor, key_value_states: tf.Tensor | None = None, past_key_value: Tuple[Tuple[tf.Tensor]] | None = None, attention_mask: tf.Tensor | None = None, layer_head_mask: tf.Tensor | None = None, training: Optional[bool] = False, ) -> Tuple[tf.Tensor, tf.Tensor | None]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, embed_dim = shape_list(hidden_states) # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = tf.concat([past_key_value[0], key_states], axis=2) value_states = tf.concat([past_key_value[1], value_states], axis=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape) key_states = tf.reshape(key_states, proj_shape) value_states = tf.reshape(value_states, proj_shape) src_len = shape_list(key_states)[1] attn_weights = tf.matmul(query_states, key_states, transpose_b=True) tf.debugging.assert_equal( shape_list(attn_weights), [bsz * self.num_heads, tgt_len, src_len], message=( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {shape_list(attn_weights)}" ), ) if attention_mask is not None: tf.debugging.assert_equal( shape_list(attention_mask), [bsz, 1, tgt_len, src_len], message=( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" f" {shape_list(attention_mask)}" ), ) attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype) attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_weights = stable_softmax(attn_weights, axis=-1) if layer_head_mask is not None: tf.debugging.assert_equal( shape_list(layer_head_mask), [self.num_heads], message=( f"Head mask for a single layer should be of size {(self.num_heads)}, but is" f" {shape_list(layer_head_mask)}" ), ) attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape( attn_weights, (bsz, self.num_heads, tgt_len, src_len) ) attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_probs = self.dropout(attn_weights, training=training) attn_output = tf.matmul(attn_probs, value_states) tf.debugging.assert_equal( shape_list(attn_output), [bsz * self.num_heads, tgt_len, self.head_dim], message=( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {shape_list(attn_output)}" ), ) attn_output = tf.transpose( tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3) ) attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim)) attn_output = self.out_proj(attn_output) attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) return attn_output, attn_weights, past_key_value # Copied from transformers.models.mbart.modeling_tf_mbart.TFMBartEncoderLayer with MBart->Pegasus class TFPegasusEncoderLayer(tf.keras.layers.Layer): def __init__(self, config: PegasusConfig, **kwargs): super().__init__(**kwargs) self.embed_dim = config.d_model self.self_attn = TFPegasusAttention( self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, name="self_attn" ) self.self_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") self.dropout = tf.keras.layers.Dropout(config.dropout) self.activation_fn = get_tf_activation(config.activation_function) self.activation_dropout = tf.keras.layers.Dropout(config.activation_dropout) self.fc1 = tf.keras.layers.Dense(config.encoder_ffn_dim, name="fc1") self.fc2 = tf.keras.layers.Dense(self.embed_dim, name="fc2") self.final_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, layer_head_mask: tf.Tensor, training: Optional[bool] = False, ): """ Args: hidden_states (`tf.Tensor`): input to the layer of shape *(batch, seq_len, embed_dim)* attention_mask (`tf.Tensor`): attention mask of size *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size *(encoder_attention_heads,)* """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, self_attn_weights, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask ) tf.debugging.assert_equal( shape_list(hidden_states), shape_list(residual), message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}", ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout(hidden_states, training=training) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states return hidden_states, self_attn_weights # Copied from transformers.models.mbart.modeling_tf_mbart.TFMBartDecoderLayer with MBart->Pegasus class TFPegasusDecoderLayer(tf.keras.layers.Layer): def __init__(self, config: PegasusConfig, **kwargs): super().__init__(**kwargs) self.embed_dim = config.d_model self.self_attn = TFPegasusAttention( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, name="self_attn", is_decoder=True, ) self.dropout = tf.keras.layers.Dropout(config.dropout) self.activation_fn = get_tf_activation(config.activation_function) self.activation_dropout = tf.keras.layers.Dropout(config.activation_dropout) self.self_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") self.encoder_attn = TFPegasusAttention( self.embed_dim, config.decoder_attention_heads, dropout=config.attention_dropout, name="encoder_attn", is_decoder=True, ) self.encoder_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm") self.fc1 = tf.keras.layers.Dense(config.decoder_ffn_dim, name="fc1") self.fc2 = tf.keras.layers.Dense(self.embed_dim, name="fc2") self.final_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor | None = None, encoder_hidden_states: tf.Tensor | None = None, encoder_attention_mask: tf.Tensor | None = None, layer_head_mask: tf.Tensor | None = None, cross_attn_layer_head_mask: tf.Tensor | None = None, past_key_value: Tuple[tf.Tensor] | None = None, training: Optional[bool] = False, ) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]: """ Args: hidden_states (`tf.Tensor`): input to the layer of shape *(batch, seq_len, embed_dim)* attention_mask (`tf.Tensor`): attention mask of size *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. encoder_hidden_states (`tf.Tensor`): cross attention input to the layer of shape *(batch, seq_len, embed_dim)* encoder_attention_mask (`tf.Tensor`): encoder attention mask of size *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size *(decoder_attention_heads,)* cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module. *(decoder_attention_heads,)* past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # Fully Connected residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout(hidden_states, training=training) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states return ( hidden_states, self_attn_weights, cross_attn_weights, present_key_value, ) class TFPegasusPreTrainedModel(TFPreTrainedModel): config_class = PegasusConfig base_model_prefix = "model" PEGASUS_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Args: config ([`PegasusConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ PEGASUS_GENERATION_EXAMPLE = r""" Summarization example: ```python >>> from transformers import AutoTokenizer, TFPegasusForConditionalGeneration >>> model = TFPegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum") >>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-xsum") >>> ARTICLE_TO_SUMMARIZE = ( ... "PG&E stated it scheduled the blackouts in response to forecasts for high winds " ... "amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were " ... "scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow." ... ) >>> inputs = tokenizer(ARTICLE_TO_SUMMARIZE, max_length=1024, return_tensors="tf") >>> # Generate Summary >>> summary_ids = model.generate(input_ids) >>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)) ``` """ PEGASUS_INPUTS_DOCSTRING = r""" Args: input_ids (`tf.Tensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) Pegasus uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). decoder_attention_mask (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): will be made by default and ignore pad tokens. It is not recommended to set this for most use cases. decoder_position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. decoder_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. encoder_outputs (`tf.FloatTensor`, *optional*): hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. of shape `(batch_size, sequence_length, hidden_size)` is a sequence of past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`) contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*, defaults to `True`): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Set to `False` during training, `True` during generation output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @keras_serializable class TFPegasusEncoder(tf.keras.layers.Layer): config_class = PegasusConfig """ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`TFPegasusEncoderLayer`]. Args: config: PegasusConfig """ def __init__(self, config: PegasusConfig, embed_tokens: Optional[tf.keras.layers.Embedding] = None, **kwargs): super().__init__(**kwargs) self.config = config self.dropout = tf.keras.layers.Dropout(config.dropout) self.layerdrop = config.encoder_layerdrop self.padding_idx = config.pad_token_id self.max_source_positions = config.max_position_embeddings self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0 self.embed_tokens = embed_tokens self.embed_positions = TFPegasusSinusoidalPositionalEmbedding( config.max_position_embeddings, config.d_model, name="embed_positions", ) self.layers = [TFPegasusEncoderLayer(config, name=f"layers.{i}") for i in range(config.encoder_layers)] self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm") def get_embed_tokens(self): return self.embed_tokens def set_embed_tokens(self, embed_tokens): self.embed_tokens = embed_tokens @unpack_inputs def call( self, input_ids: tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, attention_mask: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ): """ Args: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, `optional): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if inputs_embeds is None: # if `self.embed_tokens.load_weight_prefix` is set, runs the embedding operation with the correct name # scope, so that its weights are registered with the desired name for loading/storing. When `tf.name_scope` # is used with a name ending in `/`, that name replaces the current name scope. # (embeddings with tf.name_scope: self.embed_tokens.load_weight_prefix/self.embed_tokens.name/embeddings:0) context = [] if hasattr(self.embed_tokens, "load_weight_prefix"): context.append(tf.name_scope(self.embed_tokens.load_weight_prefix + "/")) with ContextManagers(context): check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale embed_pos = self.embed_positions(input_shape) hidden_states = inputs_embeds + embed_pos hidden_states = self.dropout(hidden_states, training=training) # check attention mask and invert if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _expand_mask(attention_mask) else: attention_mask = None encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: tf.debugging.assert_equal( shape_list(head_mask)[0], len(self.layers), message=( f"The head_mask should be specified for {len(self.layers)} layers, but it is for" f" {shape_list(head_mask)[0]}." ), ) # encoder layers for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if training and (dropout_probability < self.layerdrop): # skip the layer continue hidden_states, attn = encoder_layer( hidden_states, attention_mask, head_mask[idx] if head_mask is not None else None, ) if output_attentions: all_attentions += (attn,) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) @keras_serializable class TFPegasusDecoder(tf.keras.layers.Layer): config_class = PegasusConfig """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TFPegasusDecoderLayer`] Args: config: PegasusConfig embed_tokens: output embedding """ def __init__(self, config: PegasusConfig, embed_tokens: Optional[tf.keras.layers.Embedding] = None, **kwargs): super().__init__(**kwargs) self.config = config self.padding_idx = config.pad_token_id self.embed_tokens = embed_tokens self.layerdrop = config.decoder_layerdrop self.embed_positions = TFPegasusSinusoidalPositionalEmbedding( config.max_position_embeddings, config.d_model, name="embed_positions", ) self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0 self.layers = [TFPegasusDecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)] self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm") self.dropout = tf.keras.layers.Dropout(config.dropout) def get_embed_tokens(self): return self.embed_tokens def set_embed_tokens(self, embed_tokens): self.embed_tokens = embed_tokens @unpack_inputs def call( self, input_ids: tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, attention_mask: tf.Tensor | None = None, position_ids: tf.Tensor | None = None, encoder_hidden_states: tf.Tensor | None = None, encoder_attention_mask: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, cross_attn_head_mask: tf.Tensor | None = None, past_key_values: Tuple[Tuple[tf.Tensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ): r""" Args: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`tf.Tensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") past_key_values_length = shape_list(past_key_values[0][0])[2] if past_key_values is not None else 0 # embed positions if position_ids is None: positions = self.embed_positions(input_shape, past_key_values_length) else: positions = self.embed_positions(input_shape, position_ids=position_ids) if inputs_embeds is None: # if `self.embed_tokens.load_weight_prefix` is set, runs the embedding operation with the correct name # scope, so that its weights are registered with the desired name for loading/storing. When `tf.name_scope` # is used with a name ending in `/`, that name replaces the current name scope. # (embeddings with tf.name_scope: self.embed_tokens.load_weight_prefix/self.embed_tokens.name/embeddings:0) context = [] if hasattr(self.embed_tokens, "load_weight_prefix"): context.append(tf.name_scope(self.embed_tokens.load_weight_prefix + "/")) with ContextManagers(context): check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale hidden_states = inputs_embeds # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] if input_shape[-1] > 1: combined_attention_mask = _make_causal_mask(input_shape, past_key_values_length=past_key_values_length) else: combined_attention_mask = _expand_mask( tf.ones((input_shape[0], input_shape[1] + past_key_values_length)), tgt_len=input_shape[-1] ) if attention_mask is not None: combined_attention_mask = combined_attention_mask + _expand_mask(attention_mask, tgt_len=input_shape[-1]) if encoder_hidden_states is not None and encoder_attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _expand_mask(encoder_attention_mask, tgt_len=input_shape[-1]) hidden_states = self.dropout(hidden_states + positions, training=training) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attns = () if (output_attentions and encoder_hidden_states is not None) else None present_key_values = () if use_cache else None # check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]: if attn_mask is not None: tf.debugging.assert_equal( shape_list(attn_mask)[0], len(self.layers), message=( f"The {attn_mask_name} should be specified for {len(self.layers)} layers, but it is for" f" {shape_list(attn_mask)[0]}." ), ) for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) dropout_probability = random.uniform(0, 1) if training and (dropout_probability < self.layerdrop): continue past_key_value = past_key_values[idx] if past_key_values is not None else None hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer( hidden_states, attention_mask=combined_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, layer_head_mask=head_mask[idx] if head_mask is not None else None, cross_attn_layer_head_mask=cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, past_key_value=past_key_value, ) if use_cache: present_key_values += (present_key_value,) if output_attentions: all_self_attns += (layer_self_attn,) if encoder_hidden_states is not None: all_cross_attns += (layer_cross_attn,) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: all_hidden_states += (hidden_states,) if not return_dict: return hidden_states, present_key_values, all_hidden_states, all_self_attns, all_cross_attns else: return TFBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=present_key_values, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attns, ) @keras_serializable class TFPegasusMainLayer(tf.keras.layers.Layer): config_class = PegasusConfig def __init__(self, config: PegasusConfig, **kwargs): super().__init__(**kwargs) self.config = config self.shared = tf.keras.layers.Embedding( input_dim=config.vocab_size, output_dim=config.d_model, embeddings_initializer=tf.keras.initializers.TruncatedNormal(stddev=self.config.init_std), name="model.shared", ) # Additional attribute to specify the expected name scope of the layer (for loading/storing weights) self.shared.load_weight_prefix = "model.shared" self.encoder = TFPegasusEncoder(config, self.shared, name="encoder") self.decoder = TFPegasusDecoder(config, self.shared, name="decoder") def get_input_embeddings(self): return self.shared def set_input_embeddings(self, new_embeddings): self.shared = new_embeddings self.encoder.embed_tokens = self.shared self.decoder.embed_tokens = self.shared @unpack_inputs def call( self, input_ids: tf.Tensor | None = None, attention_mask: tf.Tensor | None = None, decoder_input_ids: tf.Tensor | None = None, decoder_attention_mask: tf.Tensor | None = None, decoder_position_ids: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, decoder_head_mask: tf.Tensor | None = None, cross_attn_head_mask: tf.Tensor | None = None, encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None, past_key_values: Tuple[Tuple[tf.Tensor]] = None, inputs_embeds: tf.Tensor | None = None, decoder_inputs_embeds: tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, **kwargs, ): if decoder_input_ids is None and decoder_inputs_embeds is None: use_cache = False output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) if encoder_outputs is None: encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) # If the user passed a tuple for encoder_outputs, we wrap it in a TFBaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, TFBaseModelOutput): encoder_outputs = TFBaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) # If the user passed a TFBaseModelOutput for encoder_outputs, we wrap it in a tuple when return_dict=False elif not return_dict and not isinstance(encoder_outputs, tuple): encoder_outputs = encoder_outputs.to_tuple() decoder_outputs = self.decoder( decoder_input_ids, attention_mask=decoder_attention_mask, position_ids=decoder_position_ids, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) if not return_dict: return decoder_outputs + encoder_outputs return TFSeq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) @add_start_docstrings( "The bare PEGASUS Model outputting raw hidden-states without any specific head on top.", PEGASUS_START_DOCSTRING, ) class TFPegasusModel(TFPegasusPreTrainedModel): def __init__(self, config: PegasusConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.model = TFPegasusMainLayer(config, name="model") def get_encoder(self): return self.model.encoder def get_decoder(self): return self.model.decoder @unpack_inputs @add_start_docstrings_to_model_forward(PEGASUS_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFSeq2SeqModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, decoder_input_ids: np.ndarray | tf.Tensor | None = None, decoder_attention_mask: np.ndarray | tf.Tensor | None = None, decoder_position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, decoder_head_mask: np.ndarray | tf.Tensor | None = None, cross_attn_head_mask: np.ndarray | tf.Tensor | None = None, encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, **kwargs, ) -> Union[TFSeq2SeqModelOutput, Tuple[tf.Tensor]]: outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, encoder_outputs=encoder_outputs, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs # Copied from transformers.models.bart.modeling_tf_bart.TFBartModel.serving_output def serving_output(self, output): pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None return TFSeq2SeqModelOutput( last_hidden_state=output.last_hidden_state, past_key_values=pkv, decoder_hidden_states=dec_hs, decoder_attentions=dec_attns, cross_attentions=cross_attns, encoder_last_hidden_state=output.encoder_last_hidden_state, encoder_hidden_states=enc_hs, encoder_attentions=enc_attns, ) # Copied from transformers.models.bart.modeling_tf_bart.BiasLayer class BiasLayer(tf.keras.layers.Layer): """ Bias as a layer. It is used for serialization purposes: `tf.keras.Model.save_weights` stores on a per-layer basis, so all weights have to be registered in a layer. """ def __init__(self, shape, initializer, trainable, name, **kwargs): super().__init__(name=name, **kwargs) # Note: the name of this variable will NOT be scoped when serialized, i.e. it will not be in the format of # "outer_layer/inner_layer/.../name:0". Instead, it will be "name:0". For further details, see: # https://github.com/huggingface/transformers/pull/18833#issuecomment-1233090214 self.bias = self.add_weight(name=name, shape=shape, initializer=initializer, trainable=trainable) def call(self, x): return x + self.bias @add_start_docstrings( "The PEGASUS Model with a language modeling head. Can be used for summarization.", PEGASUS_START_DOCSTRING, ) class TFPegasusForConditionalGeneration(TFPegasusPreTrainedModel, TFCausalLanguageModelingLoss): _keys_to_ignore_on_load_unexpected = [ r"model.encoder.embed_tokens.weight", r"model.decoder.embed_tokens.weight", ] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.model = TFPegasusMainLayer(config, name="model") self.use_cache = config.use_cache # final_bias_logits is registered as a buffer in pytorch, so not trainable for the sake of consistency. self.bias_layer = BiasLayer( name="final_logits_bias", shape=[1, config.vocab_size], initializer="zeros", trainable=False ) def get_decoder(self): return self.model.decoder def get_encoder(self): return self.model.encoder def get_output_embeddings(self): return self.get_input_embeddings() def set_output_embeddings(self, value): self.set_input_embeddings(value) def get_bias(self): return {"final_logits_bias": self.bias_layer.bias} def set_bias(self, value): # Replaces the existing layers containing bias for correct (de)serialization. vocab_size = value["final_logits_bias"].shape[-1] self.bias_layer = BiasLayer( name="final_logits_bias", shape=[1, vocab_size], initializer="zeros", trainable=False ) self.bias_layer.bias.assign(value["final_logits_bias"]) @unpack_inputs @add_start_docstrings_to_model_forward(PEGASUS_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) @add_end_docstrings(PEGASUS_GENERATION_EXAMPLE) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, decoder_input_ids: np.ndarray | tf.Tensor | None = None, decoder_attention_mask: np.ndarray | tf.Tensor | None = None, decoder_position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, decoder_head_mask: np.ndarray | tf.Tensor | None = None, cross_attn_head_mask: np.ndarray | tf.Tensor | None = None, encoder_outputs: Optional[TFBaseModelOutput] = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> Union[TFSeq2SeqLMOutput, Tuple[tf.Tensor]]: """ labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: """ if labels is not None: labels = tf.where( labels == self.config.pad_token_id, tf.cast(tf.fill(shape_list(labels), -100), labels.dtype), labels, ) use_cache = False if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) outputs = self.model( input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, encoder_outputs=encoder_outputs, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) lm_logits = tf.matmul(outputs[0], self.model.shared.weights, transpose_b=True) lm_logits = self.bias_layer(lm_logits) masked_lm_loss = None if labels is None else self.hf_compute_loss(labels, lm_logits) if not return_dict: output = (lm_logits,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return TFSeq2SeqLMOutput( loss=masked_lm_loss, logits=lm_logits, past_key_values=outputs.past_key_values, # index 1 of d outputs decoder_hidden_states=outputs.decoder_hidden_states, # index 2 of d outputs decoder_attentions=outputs.decoder_attentions, # index 3 of d outputs cross_attentions=outputs.cross_attentions, # index 4 of d outputs encoder_last_hidden_state=outputs.encoder_last_hidden_state, # index 0 of encoder outputs encoder_hidden_states=outputs.encoder_hidden_states, # 1 of e out encoder_attentions=outputs.encoder_attentions, # 2 of e out ) # Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.serving_output def serving_output(self, output): pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None return TFSeq2SeqLMOutput( logits=output.logits, past_key_values=pkv, decoder_hidden_states=dec_hs, decoder_attentions=dec_attns, cross_attentions=cross_attns, encoder_last_hidden_state=output.encoder_last_hidden_state, encoder_hidden_states=enc_hs, encoder_attentions=enc_attns, ) # Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.prepare_inputs_for_generation def prepare_inputs_for_generation( self, decoder_input_ids, past_key_values=None, attention_mask=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, use_cache=None, encoder_outputs=None, **kwargs, ): # cut decoder_input_ids if past_key_values is used if past_key_values is not None: decoder_input_ids = decoder_input_ids[:, -1:] if decoder_attention_mask is not None: # xla decoder_position_ids = tf.math.cumsum(decoder_attention_mask, axis=-1, exclusive=True)[:, -1:] elif past_key_values is not None: # no xla + past_key_values decoder_position_ids = past_key_values[0][0].shape[2] else: # no xla + no past_key_values decoder_position_ids = tf.range(decoder_input_ids.shape[1]) return { "input_ids": None, # encoder_outputs is defined. input_ids not needed "encoder_outputs": encoder_outputs, "past_key_values": past_key_values, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "decoder_position_ids": decoder_position_ids, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, "use_cache": use_cache, # change this to avoid caching (presumably for debugging) } def prepare_decoder_input_ids_from_labels(self, labels: tf.Tensor): return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)
transformers-main
src/transformers/models/pegasus/modeling_tf_pegasus.py
# coding=utf-8 # Copyright 2021, Google and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch PEGASUS model.""" import copy import math from typing import List, Optional, Tuple, Union import numpy as np import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions, CausalLMOutputWithCrossAttentions, Seq2SeqLMOutput, Seq2SeqModelOutput, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_pegasus import PegasusConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "google/pegasus-large" _CONFIG_FOR_DOC = "PegasusConfig" PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST = [ "google/pegasus-large", # See all PEGASUS models at https://huggingface.co/models?filter=pegasus ] # Copied from transformers.models.bart.modeling_bart.shift_tokens_right def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): """ Shift input ids one token to the right. """ shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() shifted_input_ids[:, 0] = decoder_start_token_id if pad_token_id is None: raise ValueError("self.model.config.pad_token_id has to be defined.") # replace possible -100 values in labels by `pad_token_id` shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) return shifted_input_ids # Copied from transformers.models.bart.modeling_bart._make_causal_mask def _make_causal_mask( input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0 ): """ Make causal mask used for bi-directional self-attention. """ bsz, tgt_len = input_ids_shape mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device) mask_cond = torch.arange(mask.size(-1), device=device) mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) mask = mask.to(dtype) if past_key_values_length > 0: mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) # Copied from transformers.models.bart.modeling_bart._expand_mask def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): """ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. """ bsz, src_len = mask.size() tgt_len = tgt_len if tgt_len is not None else src_len expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) inverted_mask = 1.0 - expanded_mask return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) # Copied from transformers.models.marian.modeling_marian.MarianSinusoidalPositionalEmbedding with Marian->Pegasus class PegasusSinusoidalPositionalEmbedding(nn.Embedding): """This module produces sinusoidal positional embeddings of any length.""" def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None) -> None: super().__init__(num_positions, embedding_dim) self.weight = self._init_weight(self.weight) @staticmethod def _init_weight(out: nn.Parameter) -> nn.Parameter: """ Identical to the XLM create_sinusoidal_embeddings except features are not interleaved. The cos features are in the 2nd half of the vector. [dim // 2:] """ n_pos, dim = out.shape position_enc = np.array( [[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)] ) out.requires_grad = False # set early to avoid an error in pytorch-1.8+ sentinel = dim // 2 if dim % 2 == 0 else (dim // 2) + 1 out[:, 0:sentinel] = torch.FloatTensor(np.sin(position_enc[:, 0::2])) out[:, sentinel:] = torch.FloatTensor(np.cos(position_enc[:, 1::2])) out.detach_() return out @torch.no_grad() def forward(self, input_ids_shape: torch.Size, past_key_values_length: int = 0) -> torch.Tensor: """`input_ids_shape` is expected to be [bsz x seqlen].""" bsz, seq_len = input_ids_shape[:2] positions = torch.arange( past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device ) return super().forward(positions) # Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->Pegasus class PegasusAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.reshape(*proj_shape) value_states = value_states.reshape(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value # Copied from transformers.models.mbart.modeling_mbart.MBartEncoderLayer with MBart->Pegasus class PegasusEncoderLayer(nn.Module): def __init__(self, config: PegasusConfig): super().__init__() self.embed_dim = config.d_model self.self_attn = PegasusAttention( embed_dim=self.embed_dim, num_heads=config.encoder_attention_heads, dropout=config.attention_dropout, ) self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, layer_head_mask: torch.Tensor, output_attentions: bool = False, ) -> torch.Tensor: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, attn_weights, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states if hidden_states.dtype == torch.float16 and ( torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any() ): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs # Copied from transformers.models.mbart.modeling_mbart.MBartDecoderLayer with MBart->Pegasus class PegasusDecoderLayer(nn.Module): def __init__(self, config: PegasusConfig): super().__init__() self.embed_dim = config.d_model self.self_attn = PegasusAttention( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, ) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.encoder_attn = PegasusAttention( self.embed_dim, config.decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, ) self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, cross_attn_layer_head_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = True, ) -> torch.Tensor: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. encoder_hidden_states (`torch.FloatTensor`): cross attention input to the layer of shape `(batch, seq_len, embed_dim)` encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of size `(decoder_attention_heads,)`. past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # Fully Connected residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) if use_cache: outputs += (present_key_value,) return outputs class PegasusPreTrainedModel(PreTrainedModel): config_class = PegasusConfig base_model_prefix = "model" supports_gradient_checkpointing = True def _init_weights(self, module): std = self.config.init_std if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, PegasusSinusoidalPositionalEmbedding): pass elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, (PegasusDecoder, PegasusEncoder)): module.gradient_checkpointing = value PEGASUS_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`PegasusConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ PEGASUS_GENERATION_EXAMPLE = r""" Summarization example: ```python >>> from transformers import AutoTokenizer, PegasusForConditionalGeneration >>> model = PegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum") >>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-xsum") >>> ARTICLE_TO_SUMMARIZE = ( ... "PG&E stated it scheduled the blackouts in response to forecasts for high winds " ... "amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were " ... "scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow." ... ) >>> inputs = tokenizer(ARTICLE_TO_SUMMARIZE, max_length=1024, return_tensors="pt") >>> # Generate Summary >>> summary_ids = model.generate(inputs["input_ids"]) >>> tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "California's largest electricity provider has turned off power to hundreds of thousands of customers." ``` """ PEGASUS_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) Pegasus uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be input (see `past_key_values`). This is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value of `inputs_embeds`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class PegasusEncoder(PegasusPreTrainedModel): """ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`PegasusEncoderLayer`]. Args: config: PegasusConfig embed_tokens (nn.Embedding): output embedding """ def __init__(self, config: PegasusConfig, embed_tokens: Optional[nn.Embedding] = None): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.encoder_layerdrop embed_dim = config.d_model self.padding_idx = config.pad_token_id self.max_source_positions = config.max_position_embeddings self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 if embed_tokens is not None: self.embed_tokens = embed_tokens else: self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx) self.embed_positions = PegasusSinusoidalPositionalEmbedding( config.max_position_embeddings, embed_dim, self.padding_idx, ) self.layers = nn.ModuleList([PegasusEncoderLayer(config) for _ in range(config.encoder_layers)]) self.layer_norm = nn.LayerNorm(config.d_model) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def resize_position_embeddings(self, new_num_position_embeddings: int): """ Resizes position embeddings matrix of the model if `new_num_position_embeddings != config.max_position_embeddings`. Arguments: new_num_position_embeddings (`int`): The number of new position embeddings. If position embeddings are learned, increasing the size will add newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will add correct vectors at the end following the position encoding algorithm, whereas reducing the size will remove vectors from the end. """ logger.info(f"Setting `config.max_position_embeddings={new_num_position_embeddings}`...") self.config.max_position_embeddings = new_num_position_embeddings self.embed_positions = PegasusSinusoidalPositionalEmbedding( self.config.max_position_embeddings, self.config.d_model, self.padding_idx, ) self.embed_positions.to(self.device) def get_position_embeddings(self) -> nn.Embedding: """ Returns the position embeddings matrix """ return self.embed_positions def forward( self, input_ids=None, attention_mask=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale embed_pos = self.embed_positions(input_shape) hidden_states = inputs_embeds + embed_pos hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) # expand attention_mask if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _expand_mask(attention_mask, inputs_embeds.dtype) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: if head_mask.size()[0] != len(self.layers): raise ValueError( f"The head_mask should be specified for {len(self.layers)} layers, but it is for" f" {head_mask.size()[0]}." ) for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) to_drop = False if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: # skip the layer to_drop = True if to_drop: layer_outputs = (None, None) else: if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(encoder_layer), hidden_states, attention_mask, (head_mask[idx] if head_mask is not None else None), ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) class PegasusDecoder(PegasusPreTrainedModel): """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`PegasusDecoderLayer`] Args: config: PegasusConfig embed_tokens (nn.Embedding): output embedding """ def __init__(self, config: PegasusConfig, embed_tokens: Optional[nn.Embedding] = None): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.decoder_layerdrop self.padding_idx = config.pad_token_id self.max_target_positions = config.max_position_embeddings self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 if embed_tokens is not None: self.embed_tokens = embed_tokens else: self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx) self.embed_positions = PegasusSinusoidalPositionalEmbedding( config.max_position_embeddings, config.d_model, self.padding_idx, ) self.layers = nn.ModuleList([PegasusDecoderLayer(config) for _ in range(config.decoder_layers)]) self.layer_norm = nn.LayerNorm(config.d_model) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length): # create causal mask # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] combined_attention_mask = None if input_shape[-1] > 1: combined_attention_mask = _make_causal_mask( input_shape, inputs_embeds.dtype, device=inputs_embeds.device, past_key_values_length=past_key_values_length, ) if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to( inputs_embeds.device ) combined_attention_mask = ( expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask ) return combined_attention_mask def resize_position_embeddings(self, new_num_position_embeddings: int): """ Resizes position embeddings matrix of the model if `new_num_position_embeddings != config.max_position_embeddings`. Arguments: new_num_position_embeddings (`int`): The number of new position embeddings. If position embeddings are learned, increasing the size will add newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will add correct vectors at the end following the position encoding algorithm, whereas reducing the size will remove vectors from the end. """ logger.info(f"Setting `config.max_position_embeddings={new_num_position_embeddings}`...") self.config.max_position_embeddings = new_num_position_embeddings self.embed_positions = PegasusSinusoidalPositionalEmbedding( self.config.max_position_embeddings, self.config.d_model, self.padding_idx, ) self.embed_positions.to(self.device) def get_position_embeddings(self) -> nn.Embedding: """ Returns the position embeddings matrix """ return self.embed_positions def forward( self, input_ids=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, head_mask=None, cross_attn_head_mask=None, past_key_values=None, inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules in decoder to avoid performing cross-attention on hidden heads. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale attention_mask = self._prepare_decoder_attention_mask( attention_mask, input_shape, inputs_embeds, past_key_values_length ) # expand encoder attention mask if encoder_hidden_states is not None and encoder_attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _expand_mask(encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]) # embed positions positions = self.embed_positions(input_shape, past_key_values_length) hidden_states = inputs_embeds + positions hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None next_decoder_cache = () if use_cache else None # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): if attn_mask is not None: if attn_mask.size()[0] != len(self.layers): raise ValueError( f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" f" {head_mask.size()[0]}." ) for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: continue past_key_value = past_key_values[idx] if past_key_values is not None else None if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): # None for past_key_value return module(*inputs, output_attentions, use_cache) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(decoder_layer), hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, head_mask[idx] if head_mask is not None else None, cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, None, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), cross_attn_layer_head_mask=( cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None ), past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) hidden_states = self.layer_norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) @add_start_docstrings( "The bare PEGASUS Model outputting raw hidden-states without any specific head on top.", PEGASUS_START_DOCSTRING, ) class PegasusModel(PegasusPreTrainedModel): _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] def __init__(self, config: PegasusConfig): super().__init__(config) padding_idx, vocab_size = config.pad_token_id, config.vocab_size self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx) self.encoder = PegasusEncoder(config, self.shared) self.decoder = PegasusDecoder(config, self.shared) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.shared def set_input_embeddings(self, value): self.shared = value self.encoder.embed_tokens = self.shared self.decoder.embed_tokens = self.shared def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder def resize_position_embeddings(self, new_num_position_embeddings: int): """ Resizes position embeddings matrix of the model if `new_num_position_embeddings != config.max_position_embeddings`. Arguments: new_num_position_embeddings (`int`): The number of new position embeddings. If position embeddings are learned, increasing the size will add newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will add correct vectors at the end following the position encoding algorithm, whereas reducing the size will remove vectors from the end. """ self.config.max_position_embeddings = new_num_position_embeddings self.encoder.resize_position_embeddings(new_num_position_embeddings) self.decoder.resize_position_embeddings(new_num_position_embeddings) def get_position_embeddings(self) -> Tuple[nn.Embedding]: """ Returns the position embeddings matrix """ return (self.encoder.get_position_embeddings(), self.decoder.get_position_embeddings()) @add_start_docstrings_to_model_forward(PEGASUS_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.Tensor] = None, decoder_attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None, past_key_values: Optional[Tuple[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.Tensor] = None, decoder_inputs_embeds: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, Seq2SeqModelOutput]: r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, PegasusModel >>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-large") >>> model = PegasusModel.from_pretrained("google/pegasus-large") >>> inputs = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="pt") >>> decoder_inputs = tokenizer("Studies show that", return_tensors="pt") >>> outputs = model(input_ids=inputs.input_ids, decoder_input_ids=decoder_inputs.input_ids) >>> last_hidden_states = outputs.last_hidden_state >>> list(last_hidden_states.shape) [1, 4, 1024] ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return decoder_outputs + encoder_outputs return Seq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) @add_start_docstrings( "The PEGASUS Model with a language modeling head. Can be used for summarization.", PEGASUS_START_DOCSTRING ) class PegasusForConditionalGeneration(PegasusPreTrainedModel): base_model_prefix = "model" _keys_to_ignore_on_load_missing = ["final_logits_bias"] _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"] def __init__(self, config: PegasusConfig): super().__init__(config) self.model = PegasusModel(config) self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings))) self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False) # Initialize weights and apply final processing self.post_init() def get_encoder(self): return self.model.get_encoder() def get_decoder(self): return self.model.get_decoder() def resize_token_embeddings(self, new_num_tokens: int) -> nn.Embedding: new_embeddings = super().resize_token_embeddings(new_num_tokens) self._resize_final_logits_bias(new_num_tokens) return new_embeddings def _resize_final_logits_bias(self, new_num_tokens: int) -> None: old_num_tokens = self.final_logits_bias.shape[-1] if new_num_tokens <= old_num_tokens: new_bias = self.final_logits_bias[:, :new_num_tokens] else: extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device) new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1) self.register_buffer("final_logits_bias", new_bias) def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def resize_position_embeddings(self, new_num_position_embeddings: int): """ Resizes position embeddings matrix of the model if `new_num_position_embeddings != config.max_position_embeddings`. Arguments: new_num_position_embeddings (`int`): The number of new position embeddings. If position embeddings are learned, increasing the size will add newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will add correct vectors at the end following the position encoding algorithm, whereas reducing the size will remove vectors from the end. """ self.config.max_position_embeddings = new_num_position_embeddings self.model.encoder.resize_position_embeddings(new_num_position_embeddings) self.model.decoder.resize_position_embeddings(new_num_position_embeddings) def get_position_embeddings(self) -> Tuple[nn.Embedding]: """ Returns the position embeddings matrix """ return (self.model.encoder.get_position_embeddings(), self.model.decoder.get_position_embeddings()) @add_start_docstrings_to_model_forward(PEGASUS_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) @add_end_docstrings(PEGASUS_GENERATION_EXAMPLE) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.Tensor] = None, decoder_attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None, past_key_values: Optional[Tuple[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.Tensor] = None, decoder_inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, Seq2SeqLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: if use_cache: logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.") use_cache = False if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) outputs = self.model( input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, encoder_outputs=encoder_outputs, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (lm_logits,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return Seq2SeqLMOutput( loss=masked_lm_loss, logits=lm_logits, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) def prepare_inputs_for_generation( self, decoder_input_ids, past_key_values=None, attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, use_cache=None, encoder_outputs=None, **kwargs, ): # cut decoder_input_ids if past is used if past_key_values is not None: decoder_input_ids = decoder_input_ids[:, -1:] return { "input_ids": None, # encoder_outputs is defined. input_ids not needed "encoder_outputs": encoder_outputs, "past_key_values": past_key_values, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, "use_cache": use_cache, # change this to avoid caching (presumably for debugging) } def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id) @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: # cached cross_attention states don't have to be reordered -> they are always the same reordered_past += ( tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:], ) return reordered_past # Copied from transformers.models.bart.modeling_bart.BartDecoderWrapper with Bart->Pegasus class PegasusDecoderWrapper(PegasusPreTrainedModel): """ This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is used in combination with the [`EncoderDecoderModel`] framework. """ def __init__(self, config): super().__init__(config) self.decoder = PegasusDecoder(config) def forward(self, *args, **kwargs): return self.decoder(*args, **kwargs) class PegasusForCausalLM(PegasusPreTrainedModel): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): config = copy.deepcopy(config) config.is_decoder = True config.is_encoder_decoder = False super().__init__(config) self.model = PegasusDecoderWrapper(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.decoder.embed_tokens def set_input_embeddings(self, value): self.model.decoder.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model.decoder = decoder def get_decoder(self): return self.model.decoder def get_position_embeddings(self) -> nn.Embedding: """ Returns the position embeddings matrix """ return self.model.decoder.get_position_embeddings() def resize_position_embeddings(self, new_num_position_embeddings: int): """ Resizes position embeddings matrix of the model if `new_num_position_embeddings != config.max_position_embeddings`. Arguments: new_num_position_embeddings (`int`): The number of new position embeddings. If position embeddings are learned, increasing the size will add newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will add correct vectors at the end following the position encoding algorithm, whereas reducing the size will remove vectors from the end. """ self.config.max_position_embeddings = new_num_position_embeddings self.model.decoder.resize_position_embeddings(new_num_position_embeddings) @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) # Copied from transformers.models.bart.modeling_bart.BartForCausalLM.forward with Bart->Pegasus, facebook/bart-base->google/pegasus-large def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional tensors are only required when the model is used as a decoder in a Sequence to Sequence model. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. Returns: Example: ```python >>> from transformers import AutoTokenizer, PegasusForCausalLM >>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-large") >>> model = PegasusForCausalLM.from_pretrained("google/pegasus-large", add_cross_attention=False) >>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder." >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> expected_shape = [1, inputs.input_ids.shape[-1], model.config.vocab_size] >>> list(logits.shape) == expected_shape True ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model.decoder( input_ids=input_ids, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, head_mask=head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) logits = self.lm_head(outputs[0]) loss = None if labels is not None: labels = labels.to(logits.device) loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithCrossAttentions( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, **kwargs ): # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = input_ids.new_ones(input_ids.shape) if past_key_values: input_ids = input_ids[:, -1:] # first step, decoder_cached_states are empty return { "input_ids": input_ids, # encoder_outputs is defined. input_ids not needed "attention_mask": attention_mask, "past_key_values": past_key_values, "use_cache": use_cache, } @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) return reordered_past
transformers-main
src/transformers/models/pegasus/modeling_pegasus.py
# coding=utf-8 # Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch BART model.""" import copy import math import warnings from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions, CausalLMOutputWithCrossAttentions, Seq2SeqLMOutput, Seq2SeqModelOutput, Seq2SeqQuestionAnsweringModelOutput, Seq2SeqSequenceClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_bart import BartConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "facebook/bart-base" _CONFIG_FOR_DOC = "BartConfig" # Base model docstring _EXPECTED_OUTPUT_SHAPE = [1, 8, 768] # SequenceClassification docstring _CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "valhalla/bart-large-sst2" _SEQ_CLASS_EXPECTED_LOSS = 0.0 _SEQ_CLASS_EXPECTED_OUTPUT = "'POSITIVE'" # QuestionAsnwering docstring _CHECKPOINT_FOR_QA = "valhalla/bart-large-finetuned-squadv1" _QA_EXPECTED_LOSS = 0.59 _QA_EXPECTED_OUTPUT = "' nice puppet'" BART_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/bart-large", # see all BART models at https://huggingface.co/models?filter=bart ] def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): """ Shift input ids one token to the right. """ shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() shifted_input_ids[:, 0] = decoder_start_token_id if pad_token_id is None: raise ValueError("self.model.config.pad_token_id has to be defined.") # replace possible -100 values in labels by `pad_token_id` shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) return shifted_input_ids def _make_causal_mask( input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0 ): """ Make causal mask used for bi-directional self-attention. """ bsz, tgt_len = input_ids_shape mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device) mask_cond = torch.arange(mask.size(-1), device=device) mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) mask = mask.to(dtype) if past_key_values_length > 0: mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): """ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. """ bsz, src_len = mask.size() tgt_len = tgt_len if tgt_len is not None else src_len expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) inverted_mask = 1.0 - expanded_mask return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) class BartLearnedPositionalEmbedding(nn.Embedding): """ This module learns positional embeddings up to a fixed maximum size. """ def __init__(self, num_embeddings: int, embedding_dim: int): # Bart is set up so that if padding_idx is specified then offset the embedding ids by 2 # and adjust num_embeddings appropriately. Other models don't have this hack self.offset = 2 super().__init__(num_embeddings + self.offset, embedding_dim) def forward(self, input_ids: torch.Tensor, past_key_values_length: int = 0): """`input_ids' shape is expected to be [bsz x seqlen].""" bsz, seq_len = input_ids.shape[:2] positions = torch.arange( past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device ).expand(bsz, -1) return super().forward(positions + self.offset) class BartAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.reshape(*proj_shape) value_states = value_states.reshape(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value class BartEncoderLayer(nn.Module): def __init__(self, config: BartConfig): super().__init__() self.embed_dim = config.d_model self.self_attn = BartAttention( embed_dim=self.embed_dim, num_heads=config.encoder_attention_heads, dropout=config.attention_dropout, ) self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.FloatTensor, attention_mask: torch.FloatTensor, layer_head_mask: torch.FloatTensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states, attn_weights, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) if hidden_states.dtype == torch.float16 and ( torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any() ): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class BartDecoderLayer(nn.Module): def __init__(self, config: BartConfig): super().__init__() self.embed_dim = config.d_model self.self_attn = BartAttention( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, ) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.encoder_attn = BartAttention( self.embed_dim, config.decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, ) self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, cross_attn_layer_head_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = True, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. encoder_hidden_states (`torch.FloatTensor`): cross attention input to the layer of shape `(batch, seq_len, embed_dim)` encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of size `(decoder_attention_heads,)`. past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # Fully Connected residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) if use_cache: outputs += (present_key_value,) return outputs class BartClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__( self, input_dim: int, inner_dim: int, num_classes: int, pooler_dropout: float, ): super().__init__() self.dense = nn.Linear(input_dim, inner_dim) self.dropout = nn.Dropout(p=pooler_dropout) self.out_proj = nn.Linear(inner_dim, num_classes) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dropout(hidden_states) hidden_states = self.dense(hidden_states) hidden_states = torch.tanh(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.out_proj(hidden_states) return hidden_states class BartPreTrainedModel(PreTrainedModel): config_class = BartConfig base_model_prefix = "model" supports_gradient_checkpointing = True _keys_to_ignore_on_load_unexpected = ["encoder.version", "decoder.version"] _no_split_modules = [r"BartEncoderLayer", r"BartDecoderLayer"] _skip_keys_device_placement = "past_key_values" def _init_weights(self, module): std = self.config.init_std if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, (BartDecoder, BartEncoder)): module.gradient_checkpointing = value @property def dummy_inputs(self): pad_token = self.config.pad_token_id input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device) dummy_inputs = { "attention_mask": input_ids.ne(pad_token), "input_ids": input_ids, } return dummy_inputs class PretrainedBartModel(BartPreTrainedModel): def __init_subclass__(self): warnings.warn( "The class `PretrainedBartModel` has been depreciated, please use `BartPreTrainedModel` instead.", FutureWarning, ) class BartPretrainedModel(BartPreTrainedModel): def __init_subclass__(self): warnings.warn( "The class `PretrainedBartModel` has been depreciated, please use `BartPreTrainedModel` instead.", FutureWarning, ) BART_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`BartConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ BART_GENERATION_EXAMPLE = r""" Summarization example: ```python >>> from transformers import AutoTokenizer, BartForConditionalGeneration >>> model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn") >>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn") >>> ARTICLE_TO_SUMMARIZE = ( ... "PG&E stated it scheduled the blackouts in response to forecasts for high winds " ... "amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were " ... "scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow." ... ) >>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors="pt") >>> # Generate Summary >>> summary_ids = model.generate(inputs["input_ids"], num_beams=2, min_length=0, max_length=20) >>> tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] 'PG&E scheduled the blackouts in response to forecasts for high winds amid dry conditions' ``` Mask filling example: ```python >>> from transformers import AutoTokenizer, BartForConditionalGeneration >>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-base") >>> model = BartForConditionalGeneration.from_pretrained("facebook/bart-base") >>> TXT = "My friends are <mask> but they eat too many carbs." >>> input_ids = tokenizer([TXT], return_tensors="pt")["input_ids"] >>> logits = model(input_ids).logits >>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item() >>> probs = logits[0, masked_index].softmax(dim=0) >>> values, predictions = probs.topk(5) >>> tokenizer.decode(predictions).split() ['not', 'good', 'healthy', 'great', 'very'] ``` """ BART_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) Bart uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). For translation and summarization training, `decoder_input_ids` should be provided. If no `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right for denoising pre-training following the paper. decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. If you want to change padding behavior, you should read [`modeling_bart._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be input (see `past_key_values`). This is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value of `inputs_embeds`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class BartEncoder(BartPreTrainedModel): """ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`BartEncoderLayer`]. Args: config: BartConfig embed_tokens (nn.Embedding): output embedding """ def __init__(self, config: BartConfig, embed_tokens: Optional[nn.Embedding] = None): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.encoder_layerdrop embed_dim = config.d_model self.padding_idx = config.pad_token_id self.max_source_positions = config.max_position_embeddings self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx) if embed_tokens is not None: self.embed_tokens.weight = embed_tokens.weight self.embed_positions = BartLearnedPositionalEmbedding( config.max_position_embeddings, embed_dim, ) self.layers = nn.ModuleList([BartEncoderLayer(config) for _ in range(config.encoder_layers)]) self.layernorm_embedding = nn.LayerNorm(embed_dim) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input = input_ids input_ids = input_ids.view(-1, input_ids.shape[-1]) elif inputs_embeds is not None: input = inputs_embeds[:, :, -1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale embed_pos = self.embed_positions(input) embed_pos = embed_pos.to(inputs_embeds.device) hidden_states = inputs_embeds + embed_pos hidden_states = self.layernorm_embedding(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) # expand attention_mask if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _expand_mask(attention_mask, inputs_embeds.dtype) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: if head_mask.size()[0] != (len(self.layers)): raise ValueError( f"The head_mask should be specified for {len(self.layers)} layers, but it is for" f" {head_mask.size()[0]}." ) for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) to_drop = False if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: # skip the layer to_drop = True if to_drop: layer_outputs = (None, None) else: if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(encoder_layer), hidden_states, attention_mask, (head_mask[idx] if head_mask is not None else None), ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) class BartDecoder(BartPreTrainedModel): """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`BartDecoderLayer`] Args: config: BartConfig embed_tokens (nn.Embedding): output embedding """ def __init__(self, config: BartConfig, embed_tokens: Optional[nn.Embedding] = None): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.decoder_layerdrop self.padding_idx = config.pad_token_id self.max_target_positions = config.max_position_embeddings self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx) if embed_tokens is not None: self.embed_tokens.weight = embed_tokens.weight self.embed_positions = BartLearnedPositionalEmbedding( config.max_position_embeddings, config.d_model, ) self.layers = nn.ModuleList([BartDecoderLayer(config) for _ in range(config.decoder_layers)]) self.layernorm_embedding = nn.LayerNorm(config.d_model) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length): # create causal mask # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] combined_attention_mask = None if input_shape[-1] > 1: combined_attention_mask = _make_causal_mask( input_shape, inputs_embeds.dtype, device=inputs_embeds.device, past_key_values_length=past_key_values_length, ) if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to( inputs_embeds.device ) combined_attention_mask = ( expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask ) return combined_attention_mask def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing cross-attention on hidden heads. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: input = input_ids input_shape = input.shape input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] input = inputs_embeds[:, :, -1] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if inputs_embeds is None: inputs_embeds = self.embed_tokens(input) * self.embed_scale attention_mask = self._prepare_decoder_attention_mask( attention_mask, input_shape, inputs_embeds, past_key_values_length ) # expand encoder attention mask if encoder_hidden_states is not None and encoder_attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _expand_mask(encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]) # embed positions positions = self.embed_positions(input, past_key_values_length) positions = positions.to(inputs_embeds.device) hidden_states = inputs_embeds + positions hidden_states = self.layernorm_embedding(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None next_decoder_cache = () if use_cache else None # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): if attn_mask is not None: if attn_mask.size()[0] != (len(self.layers)): raise ValueError( f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" f" {head_mask.size()[0]}." ) for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: continue past_key_value = past_key_values[idx] if past_key_values is not None else None if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): # None for past_key_value return module(*inputs, output_attentions, use_cache) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(decoder_layer), hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, head_mask[idx] if head_mask is not None else None, cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, None, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), cross_attn_layer_head_mask=( cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None ), past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) @add_start_docstrings( "The bare BART Model outputting raw hidden-states without any specific head on top.", BART_START_DOCSTRING, ) class BartModel(BartPreTrainedModel): _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] def __init__(self, config: BartConfig): super().__init__(config) padding_idx, vocab_size = config.pad_token_id, config.vocab_size self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx) self.encoder = BartEncoder(config, self.shared) self.decoder = BartDecoder(config, self.shared) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.shared def set_input_embeddings(self, value): self.shared = value self.encoder.embed_tokens = self.shared self.decoder.embed_tokens = self.shared def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder @add_start_docstrings_to_model_forward(BART_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC, expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[List[torch.FloatTensor]] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, Seq2SeqModelOutput]: # different to other models, Bart automatically creates decoder_input_ids from # input_ids if no decoder_input_ids are provided if decoder_input_ids is None and decoder_inputs_embeds is None: if input_ids is None: raise ValueError( "If no `decoder_input_ids` or `decoder_inputs_embeds` are " "passed, `input_ids` cannot be `None`. Please pass either " "`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`." ) decoder_input_ids = shift_tokens_right( input_ids, self.config.pad_token_id, self.config.decoder_start_token_id ) output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return decoder_outputs + encoder_outputs return Seq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) @add_start_docstrings( "The BART Model with a language modeling head. Can be used for summarization.", BART_START_DOCSTRING ) class BartForConditionalGeneration(BartPreTrainedModel): base_model_prefix = "model" _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"] _keys_to_ignore_on_load_missing = ["final_logits_bias"] def __init__(self, config: BartConfig): super().__init__(config) self.model = BartModel(config) self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings))) self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False) # Initialize weights and apply final processing self.post_init() def get_encoder(self): return self.model.get_encoder() def get_decoder(self): return self.model.get_decoder() def resize_token_embeddings(self, new_num_tokens: int) -> nn.Embedding: new_embeddings = super().resize_token_embeddings(new_num_tokens) self._resize_final_logits_bias(new_num_tokens) return new_embeddings def _resize_final_logits_bias(self, new_num_tokens: int) -> None: old_num_tokens = self.final_logits_bias.shape[-1] if new_num_tokens <= old_num_tokens: new_bias = self.final_logits_bias[:, :new_num_tokens] else: extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device) new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1) self.register_buffer("final_logits_bias", new_bias) def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings @add_start_docstrings_to_model_forward(BART_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) @add_end_docstrings(BART_GENERATION_EXAMPLE) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[List[torch.FloatTensor]] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, Seq2SeqLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: if use_cache: logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.") use_cache = False if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) outputs = self.model( input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, encoder_outputs=encoder_outputs, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) lm_logits = self.lm_head(outputs[0]) lm_logits = lm_logits + self.final_logits_bias.to(lm_logits.device) masked_lm_loss = None if labels is not None: labels = labels.to(lm_logits.device) loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (lm_logits,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return Seq2SeqLMOutput( loss=masked_lm_loss, logits=lm_logits, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) def prepare_inputs_for_generation( self, decoder_input_ids, past_key_values=None, attention_mask=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, use_cache=None, encoder_outputs=None, **kwargs, ): # cut decoder_input_ids if past_key_values is used if past_key_values is not None: decoder_input_ids = decoder_input_ids[:, -1:] return { "input_ids": None, # encoder_outputs is defined. input_ids not needed "encoder_outputs": encoder_outputs, "past_key_values": past_key_values, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, "use_cache": use_cache, # change this to avoid caching (presumably for debugging) } def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id) @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: # cached cross_attention states don't have to be reordered -> they are always the same reordered_past += ( tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:], ) return reordered_past @add_start_docstrings( """ Bart model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, BART_START_DOCSTRING, ) class BartForSequenceClassification(BartPreTrainedModel): _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] def __init__(self, config: BartConfig, **kwargs): super().__init__(config, **kwargs) self.model = BartModel(config) self.classification_head = BartClassificationHead( config.d_model, config.d_model, config.num_labels, config.classifier_dropout, ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(BART_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION, output_type=Seq2SeqSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_SEQ_CLASS_EXPECTED_OUTPUT, expected_loss=_SEQ_CLASS_EXPECTED_LOSS, ) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, Seq2SeqSequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: use_cache = False if input_ids is None and inputs_embeds is not None: raise NotImplementedError( f"Passing input embeddings is currently not supported for {self.__class__.__name__}" ) outputs = self.model( input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, encoder_outputs=encoder_outputs, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] # last hidden state eos_mask = input_ids.eq(self.config.eos_token_id).to(hidden_states.device) if len(torch.unique_consecutive(eos_mask.sum(1))) > 1: raise ValueError("All examples must have the same number of <eos> tokens.") sentence_representation = hidden_states[eos_mask, :].view(hidden_states.size(0), -1, hidden_states.size(-1))[ :, -1, : ] logits = self.classification_head(sentence_representation) loss = None if labels is not None: labels = labels.to(logits.device) if self.config.problem_type is None: if self.config.num_labels == 1: self.config.problem_type = "regression" elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.config.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return Seq2SeqSequenceClassifierOutput( loss=loss, logits=logits, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) @add_start_docstrings( """ BART Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`). """, BART_START_DOCSTRING, ) class BartForQuestionAnswering(BartPreTrainedModel): _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] def __init__(self, config): super().__init__(config) config.num_labels = 2 self.num_labels = config.num_labels self.model = BartModel(config) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(BART_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_QA, output_type=Seq2SeqQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, expected_loss=_QA_EXPECTED_LOSS, expected_output=_QA_EXPECTED_OUTPUT, ) def forward( self, input_ids: torch.Tensor = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[List[torch.FloatTensor]] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, Seq2SeqQuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if start_positions is not None and end_positions is not None: use_cache = False outputs = self.model( input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, encoder_outputs=encoder_outputs, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = ( start_logits, end_logits, ) + outputs[1:] return ((total_loss,) + output) if total_loss is not None else output return Seq2SeqQuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) class BartDecoderWrapper(BartPreTrainedModel): """ This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is used in combination with the [`EncoderDecoderModel`] framework. """ def __init__(self, config): super().__init__(config) self.decoder = BartDecoder(config) def forward(self, *args, **kwargs): return self.decoder(*args, **kwargs) @add_start_docstrings( """ BART decoder with with a language modeling head on top (linear layer with weights tied to the input embeddings). """, BART_START_DOCSTRING, ) class BartForCausalLM(BartPreTrainedModel): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): config = copy.deepcopy(config) config.is_decoder = True config.is_encoder_decoder = False super().__init__(config) self.model = BartDecoderWrapper(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.decoder.embed_tokens def set_input_embeddings(self, value): self.model.decoder.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model.decoder = decoder def get_decoder(self): return self.model.decoder @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional tensors are only required when the model is used as a decoder in a Sequence to Sequence model. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. Returns: Example: ```python >>> from transformers import AutoTokenizer, BartForCausalLM >>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-base") >>> model = BartForCausalLM.from_pretrained("facebook/bart-base", add_cross_attention=False) >>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder." >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> expected_shape = [1, inputs.input_ids.shape[-1], model.config.vocab_size] >>> list(logits.shape) == expected_shape True ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model.decoder( input_ids=input_ids, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, head_mask=head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) logits = self.lm_head(outputs[0]) loss = None if labels is not None: labels = labels.to(logits.device) loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithCrossAttentions( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, **kwargs ): # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = input_ids.new_ones(input_ids.shape) if past_key_values: input_ids = input_ids[:, -1:] # first step, decoder_cached_states are empty return { "input_ids": input_ids, # encoder_outputs is defined. input_ids not needed "attention_mask": attention_mask, "past_key_values": past_key_values, "use_cache": use_cache, } @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) return reordered_past
transformers-main
src/transformers/models/bart/modeling_bart.py
# coding=utf-8 # Copyright 2020 The Facebook AI Research Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } @lru_cache() def bytes_to_unicode(): """ Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control characters the bpe code barfs on. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. """ bs = ( list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) ) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8 + n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """ Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs class BartTokenizer(PreTrainedTokenizer): """ Constructs a BART tokenizer, which is smilar to the ROBERTa tokenizer, using byte-level Byte-Pair-Encoding. This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will be encoded differently whether it is at the beginning of the sentence (without space) or not: ```python >>> from transformers import BartTokenizer >>> tokenizer = BartTokenizer.from_pretrained("facebook/bart-base") >>> tokenizer("Hello world")["input_ids"] [0, 31414, 232, 2] >>> tokenizer(" Hello world")["input_ids"] [0, 20920, 232, 2] ``` You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance. <Tip> When used with `is_split_into_words=True`, this tokenizer will add a space before each word (even the first one). </Tip> This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. errors (`str`, *optional*, defaults to `"replace"`): Paradigm to follow when decoding bytes to UTF-8. See [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. add_prefix_space (`bool`, *optional*, defaults to `False`): Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. (BART tokenizer detect beginning of words by the preceding space). """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, merges_file, errors="replace", bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", add_prefix_space=False, **kwargs, ): bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token super().__init__( errors=errors, bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, add_prefix_space=add_prefix_space, **kwargs, ) with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.decoder = {v: k for k, v in self.encoder.items()} self.errors = errors # how to handle errors in decoding self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} with open(merges_file, encoding="utf-8") as merges_handle: bpe_merges = merges_handle.read().split("\n")[1:-1] bpe_merges = [tuple(merge.split()) for merge in bpe_merges] self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) self.cache = {} self.add_prefix_space = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") @property def vocab_size(self): return len(self.encoder) def get_vocab(self): return dict(self.encoder, **self.added_tokens_encoder) def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token) pairs = get_pairs(word) if not pairs: return token while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = " ".join(word) self.cache[token] = word return word def _tokenize(self, text): """Tokenize a string.""" bpe_tokens = [] for token in re.findall(self.pat, text): token = "".join( self.byte_encoder[b] for b in token.encode("utf-8") ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" ")) return bpe_tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" text = "".join(tokens) text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors) return text def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) merge_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") index = 0 with open(merge_file, "w", encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) index = token_index writer.write(" ".join(bpe_tokens) + "\n") index += 1 return vocab_file, merge_file def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BART sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s></s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) + [1] return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. BART does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()): text = " " + text return (text, kwargs)
transformers-main
src/transformers/models/bart/tokenization_bart.py
# coding=utf-8 # Copyright 2020 The Facebook AI Research Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } class BartTokenizerFast(PreTrainedTokenizerFast): r""" Construct a "fast" BART tokenizer (backed by HuggingFace's *tokenizers* library), derived from the GPT-2 tokenizer, using byte-level Byte-Pair-Encoding. This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will be encoded differently whether it is at the beginning of the sentence (without space) or not: ```python >>> from transformers import BartTokenizerFast >>> tokenizer = BartTokenizerFast.from_pretrained("facebook/bart-base") >>> tokenizer("Hello world")["input_ids"] [0, 31414, 232, 2] >>> tokenizer(" Hello world")["input_ids"] [0, 20920, 232, 2] ``` You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance. <Tip> When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`. </Tip> This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. errors (`str`, *optional*, defaults to `"replace"`): Paradigm to follow when decoding bytes to UTF-8. See [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. add_prefix_space (`bool`, *optional*, defaults to `False`): Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. (BART tokenizer detect beginning of words by the preceding space). trim_offsets (`bool`, *optional*, defaults to `True`): Whether the post processing step should trim offsets to avoid including whitespaces. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] slow_tokenizer_class = BartTokenizer def __init__( self, vocab_file=None, merges_file=None, tokenizer_file=None, errors="replace", bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", add_prefix_space=False, trim_offsets=True, **kwargs, ): super().__init__( vocab_file, merges_file, tokenizer_file=tokenizer_file, errors=errors, bos_token=bos_token, eos_token=eos_token, sep_token=sep_token, cls_token=cls_token, unk_token=unk_token, pad_token=pad_token, mask_token=mask_token, add_prefix_space=add_prefix_space, trim_offsets=trim_offsets, **kwargs, ) pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space: pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type")) pre_tok_state["add_prefix_space"] = add_prefix_space self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state) self.add_prefix_space = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` tokenizer_component = "post_processor" tokenizer_component_instance = getattr(self.backend_tokenizer, tokenizer_component, None) if tokenizer_component_instance: state = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: state["sep"] = tuple(state["sep"]) if "cls" in state: state["cls"] = tuple(state["cls"]) changes_to_apply = False if state.get("add_prefix_space", add_prefix_space) != add_prefix_space: state["add_prefix_space"] = add_prefix_space changes_to_apply = True if state.get("trim_offsets", trim_offsets) != trim_offsets: state["trim_offsets"] = trim_offsets changes_to_apply = True if changes_to_apply: component_class = getattr(processors, state.pop("type")) new_value = component_class(**state) setattr(self.backend_tokenizer, tokenizer_component, new_value) @property def mask_token(self) -> str: """ `str`: Mask token, to use when training a model with masked-language modeling. Log an error if used while not having been set. BART tokenizer has a special mask token to be usable in the fill-mask pipeline. The mask token will greedily comprise the space before the *<mask>*. """ if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet.") return None return str(self._mask_token) @mask_token.setter def mask_token(self, value): """ Overriding the default behavior of the mask token to have it eat the space before it. This is needed to preserve backward compatibility with all the previously used models based on Bart. """ # Mask token behave like a normal word, i.e. include the space before it # So we set lstrip to True value = AddedToken(value, lstrip=True, rstrip=False) if isinstance(value, str) else value self._mask_token = value def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding: is_split_into_words = kwargs.get("is_split_into_words", False) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*args, **kwargs) def _encode_plus(self, *args, **kwargs) -> BatchEncoding: is_split_into_words = kwargs.get("is_split_into_words", False) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*args, **kwargs) def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: files = self._tokenizer.model.save(save_directory, name=filename_prefix) return tuple(files) def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): output = [self.bos_token_id] + token_ids_0 + [self.eos_token_id] if token_ids_1 is None: return output return output + [self.eos_token_id] + token_ids_1 + [self.eos_token_id] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. BART does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
transformers-main
src/transformers/models/bart/tokenization_bart_fast.py
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _import_structure = { "configuration_bart": ["BART_PRETRAINED_CONFIG_ARCHIVE_MAP", "BartConfig", "BartOnnxConfig"], "tokenization_bart": ["BartTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_bart_fast"] = ["BartTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_bart"] = [ "BART_PRETRAINED_MODEL_ARCHIVE_LIST", "BartForCausalLM", "BartForConditionalGeneration", "BartForQuestionAnswering", "BartForSequenceClassification", "BartModel", "BartPreTrainedModel", "BartPretrainedModel", "PretrainedBartModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_bart"] = [ "TFBartForConditionalGeneration", "TFBartForSequenceClassification", "TFBartModel", "TFBartPretrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_flax_bart"] = [ "FlaxBartDecoderPreTrainedModel", "FlaxBartForCausalLM", "FlaxBartForConditionalGeneration", "FlaxBartForQuestionAnswering", "FlaxBartForSequenceClassification", "FlaxBartModel", "FlaxBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_bart import BART_PRETRAINED_CONFIG_ARCHIVE_MAP, BartConfig, BartOnnxConfig from .tokenization_bart import BartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bart_fast import BartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bart import ( BART_PRETRAINED_MODEL_ARCHIVE_LIST, BartForCausalLM, BartForConditionalGeneration, BartForQuestionAnswering, BartForSequenceClassification, BartModel, BartPreTrainedModel, BartPretrainedModel, PretrainedBartModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bart import ( TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBartModel, TFBartPretrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bart import ( FlaxBartDecoderPreTrainedModel, FlaxBartForCausalLM, FlaxBartForConditionalGeneration, FlaxBartForQuestionAnswering, FlaxBartForSequenceClassification, FlaxBartModel, FlaxBartPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers-main
src/transformers/models/bart/__init__.py
# coding=utf-8 # Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ BART model configuration""" import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeq2SeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging logger = logging.get_logger(__name__) BART_PRETRAINED_CONFIG_ARCHIVE_MAP = { "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/config.json", # See all BART models at https://huggingface.co/models?filter=bart } class BartConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`BartModel`]. It is used to instantiate a BART model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the BART [facebook/bart-large](https://huggingface.co/facebook/bart-large) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50265): Vocabulary size of the BART model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`BartModel`] or [`TFBartModel`]. d_model (`int`, *optional*, defaults to 1024): Dimensionality of the layers and the pooler layer. encoder_layers (`int`, *optional*, defaults to 12): Number of encoder layers. decoder_layers (`int`, *optional*, defaults to 12): Number of decoder layers. encoder_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. decoder_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer decoder. decoder_ffn_dim (`int`, *optional*, defaults to 4096): Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. encoder_ffn_dim (`int`, *optional*, defaults to 4096): Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. activation_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for activations inside the fully connected layer. classifier_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for classifier. max_position_embeddings (`int`, *optional*, defaults to 1024): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). init_std (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. encoder_layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. decoder_layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. scale_embedding (`bool`, *optional*, defaults to `False`): Scale embeddings by diving by sqrt(d_model). use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). num_labels (`int`, *optional*, defaults to 3): The number of labels to use in [`BartForSequenceClassification`]. forced_eos_token_id (`int`, *optional*, defaults to 2): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. Example: ```python >>> from transformers import BartConfig, BartModel >>> # Initializing a BART facebook/bart-large style configuration >>> configuration = BartConfig() >>> # Initializing a model (with random weights) from the facebook/bart-large style configuration >>> model = BartModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "bart" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self, vocab_size=50265, max_position_embeddings=1024, encoder_layers=12, encoder_ffn_dim=4096, encoder_attention_heads=16, decoder_layers=12, decoder_ffn_dim=4096, decoder_attention_heads=16, encoder_layerdrop=0.0, decoder_layerdrop=0.0, activation_function="gelu", d_model=1024, dropout=0.1, attention_dropout=0.0, activation_dropout=0.0, init_std=0.02, classifier_dropout=0.0, scale_embedding=False, use_cache=True, num_labels=3, pad_token_id=1, bos_token_id=0, eos_token_id=2, is_encoder_decoder=True, decoder_start_token_id=2, forced_eos_token_id=2, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.d_model = d_model self.encoder_ffn_dim = encoder_ffn_dim self.encoder_layers = encoder_layers self.encoder_attention_heads = encoder_attention_heads self.decoder_ffn_dim = decoder_ffn_dim self.decoder_layers = decoder_layers self.decoder_attention_heads = decoder_attention_heads self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.activation_function = activation_function self.init_std = init_std self.encoder_layerdrop = encoder_layerdrop self.decoder_layerdrop = decoder_layerdrop self.classifier_dropout = classifier_dropout self.use_cache = use_cache self.num_hidden_layers = encoder_layers self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=num_labels, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, is_encoder_decoder=is_encoder_decoder, decoder_start_token_id=decoder_start_token_id, forced_eos_token_id=forced_eos_token_id, **kwargs, ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated", False): self.forced_bos_token_id = self.bos_token_id warnings.warn( f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. " "The config can simply be saved and uploaded again to be fixed." ) class BartOnnxConfig(OnnxSeq2SeqConfigWithPast): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: common_inputs = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: common_inputs["decoder_input_ids"] = {0: "batch"} common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"} else: common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"} common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(common_inputs, direction="inputs") elif self.task == "causal-lm": # TODO: figure this case out. common_inputs = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: num_encoder_layers, _ = self.num_layers for i in range(num_encoder_layers): common_inputs[f"past_key_values.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"} common_inputs[f"past_key_values.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"} else: common_inputs = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def outputs(self) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: common_outputs = super().outputs else: common_outputs = super(OnnxConfigWithPast, self).outputs if self.use_past: num_encoder_layers, _ = self.num_layers for i in range(num_encoder_layers): common_outputs[f"present.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"} common_outputs[f"present.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def _generate_dummy_inputs_for_default_and_seq2seq_lm( self, tokenizer: PreTrainedTokenizer, batch_size: int = -1, seq_length: int = -1, is_pair: bool = False, framework: Optional[TensorType] = None, ) -> Mapping[str, Any]: encoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( tokenizer, batch_size, seq_length, is_pair, framework ) # Generate decoder inputs decoder_seq_length = seq_length if not self.use_past else 1 decoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( tokenizer, batch_size, decoder_seq_length, is_pair, framework ) decoder_inputs = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} common_inputs = dict(**encoder_inputs, **decoder_inputs) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") else: import torch batch, encoder_seq_length = common_inputs["input_ids"].shape decoder_seq_length = common_inputs["decoder_input_ids"].shape[1] num_encoder_attention_heads, num_decoder_attention_heads = self.num_attention_heads encoder_shape = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) decoder_past_length = decoder_seq_length + 3 decoder_shape = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) common_inputs["decoder_attention_mask"] = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(batch, decoder_past_length)], dim=1 ) common_inputs["past_key_values"] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered num_encoder_layers, num_decoder_layers = self.num_layers min_num_layers = min(num_encoder_layers, num_decoder_layers) max_num_layers = max(num_encoder_layers, num_decoder_layers) - min_num_layers remaining_side_name = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(min_num_layers): common_inputs["past_key_values"].append( ( torch.zeros(decoder_shape), torch.zeros(decoder_shape), torch.zeros(encoder_shape), torch.zeros(encoder_shape), ) ) # TODO: test this. shape = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(min_num_layers, max_num_layers): common_inputs["past_key_values"].append((torch.zeros(shape), torch.zeros(shape))) return common_inputs def _generate_dummy_inputs_for_causal_lm( self, tokenizer: PreTrainedTokenizer, batch_size: int = -1, seq_length: int = -1, is_pair: bool = False, framework: Optional[TensorType] = None, ) -> Mapping[str, Any]: common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( tokenizer, batch_size, seq_length, is_pair, framework ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") else: import torch batch, seqlen = common_inputs["input_ids"].shape # Not using the same length for past_key_values past_key_values_length = seqlen + 2 num_encoder_layers, _ = self.num_layers num_encoder_attention_heads, _ = self.num_attention_heads past_shape = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) mask_dtype = common_inputs["attention_mask"].dtype common_inputs["attention_mask"] = torch.cat( [common_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1 ) common_inputs["past_key_values"] = [ (torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(num_encoder_layers) ] return common_inputs def _generate_dummy_inputs_for_sequence_classification_and_question_answering( self, tokenizer: PreTrainedTokenizer, batch_size: int = -1, seq_length: int = -1, is_pair: bool = False, framework: Optional[TensorType] = None, ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX batch_size = compute_effective_axis_dimension( batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX token_to_add = tokenizer.num_special_tokens_to_add(is_pair) seq_length = compute_effective_axis_dimension( seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add ) # Generate dummy inputs according to compute batch and sequence dummy_input = [" ".join([tokenizer.unk_token]) * seq_length] * batch_size common_inputs = dict(tokenizer(dummy_input, return_tensors=framework)) return common_inputs def generate_dummy_inputs( self, tokenizer: PreTrainedTokenizer, batch_size: int = -1, seq_length: int = -1, is_pair: bool = False, framework: Optional[TensorType] = None, ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: common_inputs = self._generate_dummy_inputs_for_default_and_seq2seq_lm( tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework ) elif self.task == "causal-lm": common_inputs = self._generate_dummy_inputs_for_causal_lm( tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework ) else: common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework ) return common_inputs def _flatten_past_key_values_(self, flattened_output, name, idx, t): if self.task in ["default", "seq2seq-lm"]: flattened_output = super()._flatten_past_key_values_(flattened_output, name, idx, t) else: flattened_output = super(OnnxSeq2SeqConfigWithPast, self)._flatten_past_key_values_( flattened_output, name, idx, t )
transformers-main
src/transformers/models/bart/configuration_bart.py
# coding=utf-8 # Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 Bart model.""" from __future__ import annotations import random from typing import Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import ( TFBaseModelOutput, TFBaseModelOutputWithPastAndCrossAttentions, TFSeq2SeqLMOutput, TFSeq2SeqModelOutput, TFSeq2SeqSequenceClassifierOutput, ) # Public API from ...modeling_tf_utils import ( TFCausalLanguageModelingLoss, TFModelInputType, TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import ( ContextManagers, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_bart import BartConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "facebook/bart-large" _CONFIG_FOR_DOC = "BartConfig" LARGE_NEGATIVE = -1e8 def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int): pad_token_id = tf.cast(pad_token_id, input_ids.dtype) decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype) start_tokens = tf.fill( (shape_list(input_ids)[0], 1), tf.convert_to_tensor(decoder_start_token_id, input_ids.dtype) ) shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1) # replace possible -100 values in labels by `pad_token_id` shifted_input_ids = tf.where( shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), tf.convert_to_tensor(pad_token_id, input_ids.dtype)), shifted_input_ids, ) # "Verify that `labels` has only positive values and -100" assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype)) # Make sure the assertion op is called by wrapping the result in an identity no-op with tf.control_dependencies([assert_gte0]): shifted_input_ids = tf.identity(shifted_input_ids) return shifted_input_ids def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0): """ Make causal mask used for bi-directional self-attention. """ bsz = input_ids_shape[0] tgt_len = input_ids_shape[1] mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE mask_cond = tf.range(shape_list(mask)[-1]) mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask) if past_key_values_length > 0: mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1) return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1)) def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None): """ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. """ src_len = shape_list(mask)[1] tgt_len = tgt_len if tgt_len is not None else src_len one_cst = tf.constant(1.0) mask = tf.cast(mask, dtype=one_cst.dtype) expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1)) return (one_cst - expanded_mask) * LARGE_NEGATIVE class TFBartLearnedPositionalEmbedding(tf.keras.layers.Embedding): """ This module learns positional embeddings up to a fixed maximum size. """ def __init__(self, num_embeddings: int, embedding_dim: int, **kwargs): # Bart is set up so that if padding_idx is specified then offset the embedding ids by 2 # and adjust num_embeddings appropriately. Other models don't have this hack self.offset = 2 super().__init__(num_embeddings + self.offset, embedding_dim, **kwargs) def call( self, input_shape: Optional[tf.TensorShape] = None, past_key_values_length: int = 0, position_ids: tf.Tensor | None = None, ): """Input is expected to be of size [bsz x seqlen].""" if position_ids is None: seq_len = input_shape[1] position_ids = tf.range(seq_len, delta=1, name="range") position_ids += past_key_values_length offset_dtype = position_ids.dtype if isinstance(position_ids, tf.Tensor) else tf.int32 return super().call(position_ids + tf.constant(self.offset, dtype=offset_dtype)) class TFBartAttention(tf.keras.layers.Layer): """Multi-headed attention from "Attention Is All You Need""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, **kwargs, ): super().__init__(**kwargs) self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = tf.keras.layers.Dropout(dropout) self.head_dim = embed_dim // num_heads if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.k_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj") self.q_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj") self.v_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj") self.out_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj") def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int): return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3)) def call( self, hidden_states: tf.Tensor, key_value_states: tf.Tensor | None = None, past_key_value: Tuple[Tuple[tf.Tensor]] | None = None, attention_mask: tf.Tensor | None = None, layer_head_mask: tf.Tensor | None = None, training: Optional[bool] = False, ) -> Tuple[tf.Tensor, tf.Tensor | None]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, embed_dim = shape_list(hidden_states) # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = tf.concat([past_key_value[0], key_states], axis=2) value_states = tf.concat([past_key_value[1], value_states], axis=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape) key_states = tf.reshape(key_states, proj_shape) value_states = tf.reshape(value_states, proj_shape) src_len = shape_list(key_states)[1] attn_weights = tf.matmul(query_states, key_states, transpose_b=True) tf.debugging.assert_equal( shape_list(attn_weights), [bsz * self.num_heads, tgt_len, src_len], message=( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {shape_list(attn_weights)}" ), ) if attention_mask is not None: tf.debugging.assert_equal( shape_list(attention_mask), [bsz, 1, tgt_len, src_len], message=( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" f" {shape_list(attention_mask)}" ), ) attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype) attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_weights = stable_softmax(attn_weights, axis=-1) if layer_head_mask is not None: tf.debugging.assert_equal( shape_list(layer_head_mask), [self.num_heads], message=( f"Head mask for a single layer should be of size {(self.num_heads)}, but is" f" {shape_list(layer_head_mask)}" ), ) attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape( attn_weights, (bsz, self.num_heads, tgt_len, src_len) ) attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_probs = self.dropout(attn_weights, training=training) attn_output = tf.matmul(attn_probs, value_states) tf.debugging.assert_equal( shape_list(attn_output), [bsz * self.num_heads, tgt_len, self.head_dim], message=( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {shape_list(attn_output)}" ), ) attn_output = tf.transpose( tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3) ) attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim)) attn_output = self.out_proj(attn_output) attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) return attn_output, attn_weights, past_key_value class TFBartEncoderLayer(tf.keras.layers.Layer): def __init__(self, config: BartConfig, **kwargs): super().__init__(**kwargs) self.embed_dim = config.d_model self.self_attn = TFBartAttention( self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, name="self_attn" ) self.self_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") self.dropout = tf.keras.layers.Dropout(config.dropout) self.activation_fn = get_tf_activation(config.activation_function) self.activation_dropout = tf.keras.layers.Dropout(config.activation_dropout) self.fc1 = tf.keras.layers.Dense(config.encoder_ffn_dim, name="fc1") self.fc2 = tf.keras.layers.Dense(self.embed_dim, name="fc2") self.final_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") def call( self, hidden_states: tf.Tensor, attention_mask: np.ndarray | tf.Tensor | None, layer_head_mask: tf.Tensor | None, training: Optional[bool] = False, ) -> tf.Tensor: """ Args: hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`tf.Tensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)` """ residual = hidden_states hidden_states, self_attn_weights, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask ) tf.debugging.assert_equal( shape_list(hidden_states), shape_list(residual), message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}", ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout(hidden_states, training=training) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) return hidden_states, self_attn_weights class TFBartDecoderLayer(tf.keras.layers.Layer): def __init__(self, config: BartConfig, **kwargs): super().__init__(**kwargs) self.embed_dim = config.d_model self.self_attn = TFBartAttention( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, name="self_attn", is_decoder=True, ) self.dropout = tf.keras.layers.Dropout(config.dropout) self.activation_fn = get_tf_activation(config.activation_function) self.activation_dropout = tf.keras.layers.Dropout(config.activation_dropout) self.self_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") self.encoder_attn = TFBartAttention( self.embed_dim, config.decoder_attention_heads, dropout=config.attention_dropout, name="encoder_attn", is_decoder=True, ) self.encoder_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm") self.fc1 = tf.keras.layers.Dense(config.decoder_ffn_dim, name="fc1") self.fc2 = tf.keras.layers.Dense(self.embed_dim, name="fc2") self.final_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") def call( self, hidden_states: tf.Tensor, attention_mask: np.ndarray | tf.Tensor | None = None, encoder_hidden_states: np.ndarray | tf.Tensor | None = None, encoder_attention_mask: np.ndarray | tf.Tensor | None = None, layer_head_mask: tf.Tensor | None = None, cross_attn_layer_head_mask: tf.Tensor | None = None, past_key_value: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, training: Optional[bool] = False, ) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]: """ Args: hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`tf.Tensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. encoder_hidden_states (`tf.Tensor`): cross attention input to the layer of shape `(batch, seq_len, embed_dim)` encoder_attention_mask (`tf.Tensor`): encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size `(decoder_attention_heads,)` cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module. `(decoder_attention_heads,)` past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states """ residual = hidden_states # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # Fully Connected residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout(hidden_states, training=training) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) return ( hidden_states, self_attn_weights, cross_attn_weights, present_key_value, ) class TFBartClassificationHead(tf.keras.layers.Layer): """Head for sentence-level classification tasks.""" def __init__(self, inner_dim: int, num_classes: int, pooler_dropout: float, name: str, **kwargs): super().__init__(name=name, **kwargs) self.dense = tf.keras.layers.Dense(inner_dim, name="dense") self.dropout = tf.keras.layers.Dropout(pooler_dropout) self.out_proj = tf.keras.layers.Dense(num_classes, name="out_proj") def call(self, inputs): hidden_states = self.dropout(inputs) hidden_states = self.dense(hidden_states) hidden_states = tf.keras.activations.tanh(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.out_proj(hidden_states) return hidden_states class TFBartPretrainedModel(TFPreTrainedModel): config_class = BartConfig base_model_prefix = "model" @property def dummy_inputs(self): dummy_inputs = super().dummy_inputs # Dummy inputs should not contain the default val of 1 # as this is the padding token and some assertions check it dummy_inputs["input_ids"] = dummy_inputs["input_ids"] * 2 if "decoder_input_ids" in dummy_inputs: dummy_inputs["decoder_input_ids"] = dummy_inputs["decoder_input_ids"] * 2 return dummy_inputs BART_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Args: config ([`BartConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ BART_GENERATION_EXAMPLE = r""" Summarization example: ```python >>> from transformers import AutoTokenizer, TFBartForConditionalGeneration >>> model = TFBartForConditionalGeneration.from_pretrained("facebook/bart-large") >>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large") >>> ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors="tf") >>> # Generate Summary >>> summary_ids = model.generate(inputs["input_ids"], num_beams=4, max_length=5) >>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)) ``` Mask filling example: ```python >>> from transformers import AutoTokenizer, TFBartForConditionalGeneration >>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large") >>> TXT = "My friends are <mask> but they eat too many carbs." >>> model = TFBartForConditionalGeneration.from_pretrained("facebook/bart-large") >>> input_ids = tokenizer([TXT], return_tensors="tf")["input_ids"] >>> logits = model(input_ids).logits >>> probs = tf.nn.softmax(logits[0]) >>> # probs[5] is associated with the mask token ``` """ BART_INPUTS_DOCSTRING = r""" Args: input_ids (`tf.Tensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) Bart uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). For translation and summarization training, `decoder_input_ids` should be provided. If no `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right for denoising pre-training following the paper. decoder_attention_mask (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): will be made by default and ignore pad tokens. It is not recommended to set this for most use cases. decoder_position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. decoder_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. encoder_outputs (`tf.FloatTensor`, *optional*): hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. of shape `(batch_size, sequence_length, hidden_size)` is a sequence of past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`) contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*, defaults to `True`): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Set to `False` during training, `True` during generation output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @keras_serializable class TFBartEncoder(tf.keras.layers.Layer): config_class = BartConfig """ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`TFBartEncoderLayer`]. Args: config: BartConfig """ def __init__(self, config: BartConfig, embed_tokens: Optional[tf.keras.layers.Embedding] = None, **kwargs): super().__init__(**kwargs) self.config = config self.dropout = tf.keras.layers.Dropout(config.dropout) self.layerdrop = config.encoder_layerdrop self.padding_idx = config.pad_token_id self.max_source_positions = config.max_position_embeddings self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0 self.embed_tokens = embed_tokens self.embed_positions = TFBartLearnedPositionalEmbedding( config.max_position_embeddings, config.d_model, name="embed_positions", ) self.layers = [TFBartEncoderLayer(config, name=f"layers.{i}") for i in range(config.encoder_layers)] self.layernorm_embedding = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding") @unpack_inputs def call( self, input_ids: TFModelInputType | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: """ Args: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, `optional): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if inputs_embeds is None: # if `self.embed_tokens.load_weight_prefix` is set, runs the embedding operation with the correct name # scope, so that its weights are registered with the desired name for loading/storing. When `tf.name_scope` # is used with a name ending in `/`, that name replaces the current name scope. # (embeddings with tf.name_scope: self.embed_tokens.load_weight_prefix/self.embed_tokens.name/embeddings:0) context = [] if hasattr(self.embed_tokens, "load_weight_prefix"): context.append(tf.name_scope(self.embed_tokens.load_weight_prefix + "/")) with ContextManagers(context): check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale embed_pos = self.embed_positions(input_shape) hidden_states = inputs_embeds + embed_pos hidden_states = self.layernorm_embedding(hidden_states) hidden_states = self.dropout(hidden_states, training=training) # check attention mask and invert if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _expand_mask(attention_mask) else: attention_mask = None encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: tf.debugging.assert_equal( shape_list(head_mask)[0], len(self.layers), message=( f"The head_mask should be specified for {len(self.layers)} layers, but it is for" f" {shape_list(head_mask)[0]}." ), ) # encoder layers for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if training and (dropout_probability < self.layerdrop): # skip the layer continue hidden_states, attn = encoder_layer( hidden_states, attention_mask, head_mask[idx] if head_mask is not None else None, ) if output_attentions: all_attentions += (attn,) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) @keras_serializable class TFBartDecoder(tf.keras.layers.Layer): config_class = BartConfig """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TFBartDecoderLayer`] Args: config: BartConfig embed_tokens: output embedding """ def __init__(self, config: BartConfig, embed_tokens: Optional[tf.keras.layers.Embedding] = None, **kwargs): super().__init__(**kwargs) self.config = config self.padding_idx = config.pad_token_id self.embed_tokens = embed_tokens self.layerdrop = config.decoder_layerdrop self.embed_positions = TFBartLearnedPositionalEmbedding( config.max_position_embeddings, config.d_model, name="embed_positions", ) self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0 self.layers = [TFBartDecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)] self.layernorm_embedding = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding") self.dropout = tf.keras.layers.Dropout(config.dropout) @unpack_inputs def call( self, input_ids: TFModelInputType | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, encoder_hidden_states: np.ndarray | tf.Tensor | None = None, encoder_attention_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, cross_attn_head_mask: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]: r""" Args: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`tf.Tensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") past_key_values_length = shape_list(past_key_values[0][0])[2] if past_key_values is not None else 0 # embed positions if position_ids is None: positions = self.embed_positions(input_shape, past_key_values_length) else: positions = self.embed_positions(input_shape, position_ids=position_ids) if inputs_embeds is None: # if `self.embed_tokens.load_weight_prefix` is set, runs the embedding operation with the correct name # scope, so that its weights are registered with the desired name for loading/storing. When `tf.name_scope` # is used with a name ending in `/`, that name replaces the current name scope. # (embeddings with tf.name_scope: self.embed_tokens.load_weight_prefix/self.embed_tokens.name/embeddings:0) context = [] if hasattr(self.embed_tokens, "load_weight_prefix"): context.append(tf.name_scope(self.embed_tokens.load_weight_prefix + "/")) with ContextManagers(context): check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale hidden_states = inputs_embeds # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] if input_shape[-1] > 1: combined_attention_mask = _make_causal_mask(input_shape, past_key_values_length=past_key_values_length) else: combined_attention_mask = _expand_mask( tf.ones((input_shape[0], input_shape[1] + past_key_values_length)), tgt_len=input_shape[-1] ) if attention_mask is not None: combined_attention_mask = combined_attention_mask + _expand_mask(attention_mask, tgt_len=input_shape[-1]) if encoder_hidden_states is not None and encoder_attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _expand_mask(encoder_attention_mask, tgt_len=input_shape[-1]) hidden_states = self.layernorm_embedding(hidden_states + positions) hidden_states = self.dropout(hidden_states, training=training) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attns = () if (output_attentions and encoder_hidden_states is not None) else None present_key_values = () if use_cache else None # check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]: if attn_mask is not None: tf.debugging.assert_equal( shape_list(attn_mask)[0], len(self.layers), message=( f"The {attn_mask_name} should be specified for {len(self.layers)} layers, but it is for" f" {shape_list(attn_mask)[0]}." ), ) for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) dropout_probability = random.uniform(0, 1) if training and (dropout_probability < self.layerdrop): continue past_key_value = past_key_values[idx] if past_key_values is not None else None hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer( hidden_states, attention_mask=combined_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, layer_head_mask=head_mask[idx] if head_mask is not None else None, cross_attn_layer_head_mask=cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, past_key_value=past_key_value, ) if use_cache: present_key_values += (present_key_value,) if output_attentions: all_self_attns += (layer_self_attn,) if encoder_hidden_states is not None: all_cross_attns += (layer_cross_attn,) if output_hidden_states: all_hidden_states += (hidden_states,) if not return_dict: return hidden_states, present_key_values, all_hidden_states, all_self_attns, all_cross_attns else: return TFBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=present_key_values, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attns, ) @keras_serializable class TFBartMainLayer(tf.keras.layers.Layer): config_class = BartConfig def __init__(self, config: BartConfig, load_weight_prefix=None, **kwargs): super().__init__(**kwargs) self.config = config self.shared = tf.keras.layers.Embedding( input_dim=config.vocab_size, output_dim=config.d_model, embeddings_initializer=tf.keras.initializers.TruncatedNormal(stddev=self.config.init_std), name="model.shared", ) # Additional attribute to specify the expected name scope of the layer (for loading/storing weights) self.shared.load_weight_prefix = "model.shared" if load_weight_prefix is None else load_weight_prefix self.encoder = TFBartEncoder(config, self.shared, name="encoder") self.decoder = TFBartDecoder(config, self.shared, name="decoder") def get_input_embeddings(self): return self.shared def set_input_embeddings(self, new_embeddings): self.shared = new_embeddings self.encoder.embed_tokens = self.shared self.decoder.embed_tokens = self.shared @unpack_inputs def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, decoder_input_ids: np.ndarray | tf.Tensor | None = None, decoder_attention_mask: np.ndarray | tf.Tensor | None = None, decoder_position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, decoder_head_mask: np.ndarray | tf.Tensor | None = None, cross_attn_head_mask: np.ndarray | tf.Tensor | None = None, encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, **kwargs, ) -> Union[TFSeq2SeqModelOutput, Tuple[tf.Tensor]]: # different to other models, Bart automatically creates decoder_input_ids from # input_ids if no decoder_input_ids are provided if decoder_input_ids is None and decoder_inputs_embeds is None: if input_ids is None: raise ValueError( "If no `decoder_input_ids` or `decoder_inputs_embeds` are " "passed, `input_ids` cannot be `None`. Please pass either " "`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`." ) decoder_input_ids = shift_tokens_right( input_ids, self.config.pad_token_id, self.config.decoder_start_token_id ) if encoder_outputs is None: encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) # If the user passed a tuple for encoder_outputs, we wrap it in a TFBaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, TFBaseModelOutput): encoder_outputs = TFBaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) # If the user passed a TFBaseModelOutput for encoder_outputs, we wrap it in a tuple when return_dict=False elif not return_dict and not isinstance(encoder_outputs, tuple): encoder_outputs = encoder_outputs.to_tuple() decoder_outputs = self.decoder( decoder_input_ids, attention_mask=decoder_attention_mask, position_ids=decoder_position_ids, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) if not return_dict: return decoder_outputs + encoder_outputs return TFSeq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) @add_start_docstrings( "The bare BART Model outputting raw hidden-states without any specific head on top.", BART_START_DOCSTRING, ) class TFBartModel(TFBartPretrainedModel): _requires_load_weight_prefix = True def __init__(self, config: BartConfig, load_weight_prefix=None, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.model = TFBartMainLayer(config, load_weight_prefix=load_weight_prefix, name="model") def get_encoder(self): return self.model.encoder def get_decoder(self): return self.model.decoder @add_start_docstrings_to_model_forward(BART_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFSeq2SeqModelOutput, config_class=_CONFIG_FOR_DOC, ) @unpack_inputs def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, decoder_input_ids: np.ndarray | tf.Tensor | None = None, decoder_attention_mask: np.ndarray | tf.Tensor | None = None, decoder_position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, decoder_head_mask: np.ndarray | tf.Tensor | None = None, cross_attn_head_mask: np.ndarray | tf.Tensor | None = None, encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, **kwargs, ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, encoder_outputs=encoder_outputs, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def serving_output(self, output): pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None return TFSeq2SeqModelOutput( last_hidden_state=output.last_hidden_state, past_key_values=pkv, decoder_hidden_states=dec_hs, decoder_attentions=dec_attns, cross_attentions=cross_attns, encoder_last_hidden_state=output.encoder_last_hidden_state, encoder_hidden_states=enc_hs, encoder_attentions=enc_attns, ) class BiasLayer(tf.keras.layers.Layer): """ Bias as a layer. It is used for serialization purposes: `tf.keras.Model.save_weights` stores on a per-layer basis, so all weights have to be registered in a layer. """ def __init__(self, shape, initializer, trainable, name, **kwargs): super().__init__(name=name, **kwargs) # Note: the name of this variable will NOT be scoped when serialized, i.e. it will not be in the format of # "outer_layer/inner_layer/.../name:0". Instead, it will be "name:0". For further details, see: # https://github.com/huggingface/transformers/pull/18833#issuecomment-1233090214 self.bias = self.add_weight(name=name, shape=shape, initializer=initializer, trainable=trainable) def call(self, x): return x + self.bias @add_start_docstrings( "The BART Model with a language modeling head. Can be used for summarization.", BART_START_DOCSTRING, ) class TFBartForConditionalGeneration(TFBartPretrainedModel, TFCausalLanguageModelingLoss): _keys_to_ignore_on_load_missing = [r"final_logits_bias"] _requires_load_weight_prefix = True def __init__(self, config, load_weight_prefix=None, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.model = TFBartMainLayer(config, load_weight_prefix=load_weight_prefix, name="model") self.use_cache = config.use_cache # final_bias_logits is registered as a buffer in pytorch, so not trainable for the sake of consistency. self.bias_layer = BiasLayer( name="final_logits_bias", shape=[1, config.vocab_size], initializer="zeros", trainable=False ) def get_decoder(self): return self.model.decoder def get_encoder(self): return self.model.encoder def get_output_embeddings(self): return self.get_input_embeddings() def set_output_embeddings(self, value): self.set_input_embeddings(value) def get_bias(self): return {"final_logits_bias": self.bias_layer.bias} def set_bias(self, value): # Replaces the existing layers containing bias for correct (de)serialization. vocab_size = value["final_logits_bias"].shape[-1] self.bias_layer = BiasLayer( name="final_logits_bias", shape=[1, vocab_size], initializer="zeros", trainable=False ) self.bias_layer.bias.assign(value["final_logits_bias"]) @add_start_docstrings_to_model_forward(BART_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) @add_end_docstrings(BART_GENERATION_EXAMPLE) @unpack_inputs def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, decoder_input_ids: np.ndarray | tf.Tensor | None = None, decoder_attention_mask: np.ndarray | tf.Tensor | None = None, decoder_position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, decoder_head_mask: np.ndarray | tf.Tensor | None = None, cross_attn_head_mask: np.ndarray | tf.Tensor | None = None, encoder_outputs: Optional[TFBaseModelOutput] = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFSeq2SeqLMOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: """ if labels is not None: labels = tf.where( labels == self.config.pad_token_id, tf.cast(tf.fill(shape_list(labels), -100), labels.dtype), labels, ) use_cache = False if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) outputs = self.model( input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, encoder_outputs=encoder_outputs, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) lm_logits = tf.matmul(outputs[0], self.model.shared.weights, transpose_b=True) lm_logits = self.bias_layer(lm_logits) masked_lm_loss = None if labels is None else self.hf_compute_loss(labels, lm_logits) if not return_dict: output = (lm_logits,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return TFSeq2SeqLMOutput( loss=masked_lm_loss, logits=lm_logits, past_key_values=outputs.past_key_values, # index 1 of d outputs decoder_hidden_states=outputs.decoder_hidden_states, # index 2 of d outputs decoder_attentions=outputs.decoder_attentions, # index 3 of d outputs cross_attentions=outputs.cross_attentions, # index 4 of d outputs encoder_last_hidden_state=outputs.encoder_last_hidden_state, # index 0 of encoder outputs encoder_hidden_states=outputs.encoder_hidden_states, # 1 of e out encoder_attentions=outputs.encoder_attentions, # 2 of e out ) def serving_output(self, output): pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None return TFSeq2SeqLMOutput( logits=output.logits, past_key_values=pkv, decoder_hidden_states=dec_hs, decoder_attentions=dec_attns, cross_attentions=cross_attns, encoder_last_hidden_state=output.encoder_last_hidden_state, encoder_hidden_states=enc_hs, encoder_attentions=enc_attns, ) def prepare_inputs_for_generation( self, decoder_input_ids, past_key_values=None, attention_mask=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, use_cache=None, encoder_outputs=None, **kwargs, ): # cut decoder_input_ids if past_key_values is used if past_key_values is not None: decoder_input_ids = decoder_input_ids[:, -1:] if decoder_attention_mask is not None: # xla decoder_position_ids = tf.math.cumsum(decoder_attention_mask, axis=-1, exclusive=True)[:, -1:] elif past_key_values is not None: # no xla + past_key_values decoder_position_ids = past_key_values[0][0].shape[2] else: # no xla + no past_key_values decoder_position_ids = tf.range(decoder_input_ids.shape[1]) return { "input_ids": None, # encoder_outputs is defined. input_ids not needed "encoder_outputs": encoder_outputs, "past_key_values": past_key_values, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "decoder_position_ids": decoder_position_ids, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, "use_cache": use_cache, # change this to avoid caching (presumably for debugging) } def prepare_decoder_input_ids_from_labels(self, labels: tf.Tensor): return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id) @add_start_docstrings( """ Bart model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, BART_START_DOCSTRING, ) class TFBartForSequenceClassification(TFBartPretrainedModel, TFSequenceClassificationLoss): def __init__(self, config: BartConfig, load_weight_prefix=None, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.model = TFBartMainLayer(config, load_weight_prefix=load_weight_prefix, name="model") self.classification_head = TFBartClassificationHead( config.d_model, config.num_labels, config.classifier_dropout, name="classification_head" ) @add_start_docstrings_to_model_forward(BART_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFSeq2SeqSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) @unpack_inputs def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, decoder_input_ids: np.ndarray | tf.Tensor | None = None, decoder_attention_mask: np.ndarray | tf.Tensor | None = None, decoder_position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, decoder_head_mask: np.ndarray | tf.Tensor | None = None, cross_attn_head_mask: np.ndarray | tf.Tensor | None = None, encoder_outputs: Optional[TFBaseModelOutput] = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFSeq2SeqSequenceClassifierOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: use_cache = False if input_ids is None and inputs_embeds is not None: raise NotImplementedError( f"Passing input embeddings is currently not supported for {self.__class__.__name__}" ) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, encoder_outputs=encoder_outputs, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) last_hidden_state = outputs[0] eos_mask = tf.equal(input_ids, self.config.eos_token_id) # out the rows with False where present. Then verify all the final # entries are True self_masked = tf.reshape(tf.boolean_mask(eos_mask, eos_mask), (tf.shape(input_ids)[0], -1)) tf.Assert(tf.reduce_all(self_masked[:, -1]), ["All examples must have the same number of <eos> tokens."]) masked = tf.reshape( tf.boolean_mask(last_hidden_state, eos_mask), (tf.shape(input_ids)[0], tf.shape(self_masked)[1], tf.shape(last_hidden_state)[-1]), ) sentence_representation = masked[:, -1, :] logits = self.classification_head(sentence_representation) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFSeq2SeqSequenceClassifierOutput( loss=loss, logits=logits, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) def serving_output(self, output): logits = tf.convert_to_tensor(output.logits) pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None return TFSeq2SeqSequenceClassifierOutput( logits=logits, past_key_values=pkv, decoder_hidden_states=dec_hs, decoder_attentions=dec_attns, cross_attentions=cross_attns, encoder_last_hidden_state=output.encoder_last_hidden_state, encoder_hidden_states=enc_hs, encoder_attentions=enc_attns, )
transformers-main
src/transformers/models/bart/modeling_tf_bart.py
# coding=utf-8 # Copyright 2021 The Fairseq Authors and The Google Flax Team Authors And The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Flax Bart model.""" import math import random from functools import partial from typing import Callable, Optional, Tuple import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.linen import combine_masks, make_causal_mask from flax.linen.attention import dot_product_attention_weights from flax.traverse_util import flatten_dict, unflatten_dict from jax import lax from jax.random import PRNGKey from ...modeling_flax_outputs import ( FlaxBaseModelOutput, FlaxBaseModelOutputWithPastAndCrossAttentions, FlaxCausalLMOutputWithCrossAttentions, FlaxSeq2SeqLMOutput, FlaxSeq2SeqModelOutput, FlaxSeq2SeqQuestionAnsweringModelOutput, FlaxSeq2SeqSequenceClassifierOutput, ) from ...modeling_flax_utils import ( ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring, append_replace_return_docstrings, overwrite_call_docstring, ) from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings from .configuration_bart import BartConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "facebook/bart-base" _CONFIG_FOR_DOC = "BartConfig" BART_START_DOCSTRING = r""" This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a Flax Linen [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: config ([`BartConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and `jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. **Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and [`~FlaxPreTrainedModel.to_bf16`]. """ BART_INPUTS_DOCSTRING = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) For translation and summarization training, `decoder_input_ids` should be provided. If no `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right for denoising pre-training following the paper. decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ BART_ENCODE_INPUTS_DOCSTRING = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ BART_DECODE_INPUTS_DOCSTRING = r""" Args: decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) For translation and summarization training, `decoder_input_ids` should be provided. If no `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right for denoising pre-training following the paper. encoder_outputs (`tuple(tuple(jnp.ndarray)`): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`): Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ def shift_tokens_right(input_ids: jnp.array, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray: """ Shift input ids one token to the right. """ shifted_input_ids = jnp.zeros_like(input_ids) shifted_input_ids = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1]) shifted_input_ids = shifted_input_ids.at[:, 0].set(decoder_start_token_id) shifted_input_ids = jnp.where(shifted_input_ids == -100, pad_token_id, shifted_input_ids) return shifted_input_ids class FlaxBartAttention(nn.Module): config: BartConfig embed_dim: int num_heads: int dropout: float = 0.0 causal: bool = False bias: bool = True dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self) -> None: self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {self.num_heads})." ) dense = partial( nn.Dense, self.embed_dim, use_bias=self.bias, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense() self.out_proj = dense() self.dropout_layer = nn.Dropout(rate=self.dropout) if self.causal: self.causal_mask = make_causal_mask( jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool" ) def _split_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim)) def _merge_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,)) @nn.compact def _concatenate_to_cache(self, key, value, query, attention_mask): """ This function takes projected key, value states from a single input token and concatenates the states to cached states from previous steps. This function is slighly adapted from the official Flax repository: https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 """ # detect if we're initializing by absence of existing cache data. is_initialized = self.has_variable("cache", "cached_key") cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) if is_initialized: *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape # update key, value caches with our new 1d spatial slices cur_index = cache_index.value indices = (0,) * len(batch_dims) + (cur_index, 0, 0) key = lax.dynamic_update_slice(cached_key.value, key, indices) value = lax.dynamic_update_slice(cached_value.value, value, indices) cached_key.value = key cached_value.value = value num_updated_cache_vectors = query.shape[1] cache_index.value = cache_index.value + num_updated_cache_vectors # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements. pad_mask = jnp.broadcast_to( jnp.arange(max_length) < cur_index + num_updated_cache_vectors, tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), ) attention_mask = combine_masks(pad_mask, attention_mask) return key, value, attention_mask def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None batch_size = hidden_states.shape[0] # get query proj query_states = self.q_proj(hidden_states) # get key, value proj if is_cross_attention: # cross_attentions key_states = self.k_proj(key_value_states) value_states = self.v_proj(key_value_states) else: # self_attention key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = self._split_heads(query_states) key_states = self._split_heads(key_states) value_states = self._split_heads(value_states) # handle cache prepare causal attention mask if self.causal: query_length, key_length = query_states.shape[1], key_states.shape[1] if self.has_variable("cache", "cached_key"): mask_shift = self.variables["cache"]["cache_index"] max_decoder_length = self.variables["cache"]["cached_key"].shape[1] causal_mask = lax.dynamic_slice( self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length) ) else: causal_mask = self.causal_mask[:, :, :query_length, :key_length] causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:]) # combine masks if needed if attention_mask is not None and self.causal: attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape) attention_mask = combine_masks(attention_mask, causal_mask) elif self.causal: attention_mask = causal_mask elif attention_mask is not None: attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. if self.causal and (self.has_variable("cache", "cached_key") or init_cache): key_states, value_states, attention_mask = self._concatenate_to_cache( key_states, value_states, query_states, attention_mask ) # Convert the boolean attention mask to an attention bias. if attention_mask is not None: # attention mask in the form of attention bias attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), ) else: attention_bias = None dropout_rng = None if not deterministic and self.dropout > 0.0: dropout_rng = self.make_rng("dropout") attn_weights = dot_product_attention_weights( query_states, key_states, bias=attention_bias, dropout_rng=dropout_rng, dropout_rate=self.dropout, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, precision=None, ) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) attn_output = self._merge_heads(attn_output) attn_output = self.out_proj(attn_output) return attn_output, attn_weights class FlaxBartEncoderLayer(nn.Module): config: BartConfig dtype: jnp.dtype = jnp.float32 def setup(self) -> None: self.embed_dim = self.config.d_model self.self_attn = FlaxBartAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.encoder_attention_heads, dropout=self.config.attention_dropout, dtype=self.dtype, ) self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.dropout_layer = nn.Dropout(rate=self.config.dropout) self.activation_fn = ACT2FN[self.config.activation_function] self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) self.fc1 = nn.Dense( self.config.encoder_ffn_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.fc2 = nn.Dense( self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) ) self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: residual = hidden_states hidden_states, attn_weights = self.self_attn(hidden_states=hidden_states, attention_mask=attention_mask) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class FlaxBartEncoderLayerCollection(nn.Module): config: BartConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.layers = [ FlaxBartEncoderLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.encoder_layers) ] self.layerdrop = self.config.encoder_layerdrop def __call__( self, hidden_states, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for encoder_layer in self.layers: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if not deterministic and (dropout_probability < self.layerdrop): # skip the layer layer_outputs = (None, None) else: layer_outputs = encoder_layer( hidden_states, attention_mask, output_attentions, deterministic, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states += (hidden_states,) outputs = (hidden_states, all_hidden_states, all_attentions) if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) class FlaxBartDecoderLayer(nn.Module): config: BartConfig dtype: jnp.dtype = jnp.float32 def setup(self) -> None: self.embed_dim = self.config.d_model self.self_attn = FlaxBartAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.decoder_attention_heads, dropout=self.config.attention_dropout, causal=True, dtype=self.dtype, ) self.dropout_layer = nn.Dropout(rate=self.config.dropout) self.activation_fn = ACT2FN[self.config.activation_function] self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.encoder_attn = FlaxBartAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.decoder_attention_heads, dropout=self.config.attention_dropout, dtype=self.dtype, ) self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.fc1 = nn.Dense( self.config.decoder_ffn_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.fc2 = nn.Dense( self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) ) self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: residual = hidden_states # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, init_cache=init_cache ) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Cross-Attention Block cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states, cross_attn_weights = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, ) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # Fully Connected residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) return outputs class FlaxBartDecoderLayerCollection(nn.Module): config: BartConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.layers = [ FlaxBartDecoderLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.decoder_layers) ] self.layerdrop = self.config.decoder_layerdrop def __call__( self, hidden_states, attention_mask, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None for decoder_layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if not deterministic and (dropout_probability < self.layerdrop): layer_outputs = (None, None, None) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, init_cache=init_cache, output_attentions=output_attentions, deterministic=deterministic, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) outputs = [hidden_states, all_hidden_states, all_self_attns, all_cross_attentions] if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) class FlaxBartClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" config: BartConfig inner_dim: int num_classes: int pooler_dropout: float dtype: jnp.dtype = jnp.float32 def setup(self): self.dense = nn.Dense( self.inner_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) ) self.dropout = nn.Dropout(rate=self.pooler_dropout) self.out_proj = nn.Dense( self.num_classes, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) def __call__(self, hidden_states: jnp.ndarray, deterministic: bool): hidden_states = self.dropout(hidden_states, deterministic=deterministic) hidden_states = self.dense(hidden_states) hidden_states = jnp.tanh(hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) hidden_states = self.out_proj(hidden_states) return hidden_states class FlaxBartEncoder(nn.Module): config: BartConfig embed_tokens: nn.Embed dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dropout_layer = nn.Dropout(rate=self.config.dropout) embed_dim = self.config.d_model self.padding_idx = self.config.pad_token_id self.max_source_positions = self.config.max_position_embeddings self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0 # Bart is set up so that if padding_idx is specified then offset the embedding ids by 2 # and adjust num_embeddings appropriately. Other models don't have this hack self.offset = 2 self.embed_positions = nn.Embed( self.config.max_position_embeddings + self.offset, embed_dim, embedding_init=jax.nn.initializers.normal(self.config.init_std), dtype=self.dtype, ) self.layers = FlaxBartEncoderLayerCollection(self.config, self.dtype) self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, input_ids, attention_mask, position_ids, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): input_shape = input_ids.shape input_ids = input_ids.reshape(-1, input_shape[-1]) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale embed_pos = self.embed_positions(position_ids + self.offset) hidden_states = inputs_embeds + embed_pos hidden_states = self.layernorm_embedding(hidden_states) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) outputs = self.layers( hidden_states, attention_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return outputs return FlaxBaseModelOutput( last_hidden_state=outputs.last_hidden_state, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class FlaxBartDecoder(nn.Module): config: BartConfig embed_tokens: nn.Embed dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dropout_layer = nn.Dropout(rate=self.config.dropout) embed_dim = self.config.d_model self.padding_idx = self.config.pad_token_id self.max_target_positions = self.config.max_position_embeddings self.embed_scale = math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0 # Bart is set up so that if padding_idx is specified then offset the embedding ids by 2 # and adjust num_embeddings appropriately. Other models don't have this hack self.offset = 2 self.embed_positions = nn.Embed( self.config.max_position_embeddings + self.offset, embed_dim, embedding_init=jax.nn.initializers.normal(self.config.init_std), dtype=self.dtype, ) self.layers = FlaxBartDecoderLayerCollection(self.config, self.dtype) self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, input_ids, attention_mask, position_ids, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): input_shape = input_ids.shape input_ids = input_ids.reshape(-1, input_shape[-1]) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale # embed positions positions = self.embed_positions(position_ids + self.offset) hidden_states = inputs_embeds + positions hidden_states = self.layernorm_embedding(hidden_states) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) outputs = self.layers( hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return outputs return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=outputs.last_hidden_state, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) class FlaxBartModule(nn.Module): config: BartConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.shared = nn.Embed( self.config.vocab_size, self.config.d_model, embedding_init=jax.nn.initializers.normal(self.config.init_std), dtype=self.dtype, ) self.encoder = FlaxBartEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared) self.decoder = FlaxBartDecoder(self.config, dtype=self.dtype, embed_tokens=self.shared) def _get_encoder_module(self): return self.encoder def _get_decoder_module(self): return self.decoder def __call__( self, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, position_ids, decoder_position_ids, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, position_ids=decoder_position_ids, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) if not return_dict: return decoder_outputs + encoder_outputs return FlaxSeq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) class FlaxBartPreTrainedModel(FlaxPreTrainedModel): config_class = BartConfig base_model_prefix: str = "model" module_class: nn.Module = None def __init__( self, config: BartConfig, input_shape: Tuple[int] = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): module = self.module_class(config=config, dtype=dtype, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors input_ids = jnp.zeros(input_shape, dtype="i4") # make sure initialization pass will work for FlaxBartForSequenceClassificationModule input_ids = input_ids.at[(..., -1)].set(self.config.eos_token_id) attention_mask = jnp.ones_like(input_ids) decoder_input_ids = input_ids decoder_attention_mask = jnp.ones_like(input_ids) batch_size, sequence_length = input_ids.shape position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) decoder_position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} random_params = self.module.init( rngs, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, position_ids, decoder_position_ids, )["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params def init_cache(self, batch_size, max_length, encoder_outputs): r""" Args: batch_size (`int`): batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. max_length (`int`): maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized cache. encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`): `encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. """ # init input variables to retrieve cache decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4") decoder_attention_mask = jnp.ones_like(decoder_input_ids) decoder_position_ids = jnp.broadcast_to( jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]), decoder_input_ids.shape ) def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() return decoder_module( decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs, ) init_variables = self.module.init( jax.random.PRNGKey(0), decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, encoder_hidden_states=encoder_outputs[0], init_cache=True, method=_decoder_forward, # we only need to call the decoder to init the cache ) return unfreeze(init_variables["cache"]) @add_start_docstrings(BART_ENCODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=BartConfig) def encode( self, input_ids: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, position_ids: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, FlaxBartForConditionalGeneration >>> model = FlaxBartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn") >>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn") >>> text = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, max_length=1024, return_tensors="jax") >>> encoder_outputs = model.encode(**inputs) ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict if attention_mask is None: attention_mask = jnp.ones_like(input_ids) if position_ids is None: batch_size, sequence_length = input_ids.shape position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng def _encoder_forward(module, input_ids, attention_mask, position_ids, **kwargs): encode_module = module._get_encoder_module() return encode_module(input_ids, attention_mask, position_ids, **kwargs) return self.module.apply( {"params": params or self.params}, input_ids=jnp.array(input_ids, dtype="i4"), attention_mask=jnp.array(attention_mask, dtype="i4"), position_ids=jnp.array(position_ids, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, method=_encoder_forward, ) @add_start_docstrings(BART_DECODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxBaseModelOutputWithPastAndCrossAttentions, config_class=BartConfig) def decode( self, decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> import jax.numpy as jnp >>> from transformers import AutoTokenizer, FlaxBartForConditionalGeneration >>> model = FlaxBartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn") >>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn") >>> text = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, max_length=1024, return_tensors="jax") >>> encoder_outputs = model.encode(**inputs) >>> decoder_start_token_id = model.config.decoder_start_token_id >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id >>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> last_decoder_hidden_states = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict encoder_hidden_states = encoder_outputs[0] if encoder_attention_mask is None: batch_size, sequence_length = encoder_hidden_states.shape[:2] encoder_attention_mask = jnp.ones((batch_size, sequence_length)) batch_size, sequence_length = decoder_input_ids.shape if decoder_attention_mask is None: decoder_attention_mask = jnp.ones((batch_size, sequence_length)) if decoder_position_ids is None: if past_key_values is not None: raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.") decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that # it can be changed by FlaxBartAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() return decoder_module( decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs, ) outputs = self.module.apply( inputs, decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, mutable=mutable, method=_decoder_forward, ) # add updated cache to model output if past_key_values is not None and return_dict: outputs, past = outputs outputs["past_key_values"] = unfreeze(past["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs, past = outputs outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] return outputs @add_start_docstrings_to_model_forward(BART_INPUTS_DOCSTRING) def __call__( self, input_ids: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, decoder_input_ids: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, position_ids: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict # prepare encoder inputs if attention_mask is None: attention_mask = jnp.ones_like(input_ids) if position_ids is None: batch_size, sequence_length = input_ids.shape position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) # prepare decoder inputs if decoder_input_ids is None: decoder_input_ids = shift_tokens_right( input_ids, self.config.pad_token_id, decoder_start_token_id=self.config.decoder_start_token_id ) if decoder_attention_mask is None: decoder_attention_mask = jnp.ones_like(decoder_input_ids) if decoder_position_ids is None: batch_size, sequence_length = decoder_input_ids.shape decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) # Handle any PRNG if needed rngs = {"dropout": dropout_rng} if dropout_rng is not None else {} return self.module.apply( {"params": params or self.params}, input_ids=jnp.array(input_ids, dtype="i4"), attention_mask=jnp.array(attention_mask, dtype="i4"), position_ids=jnp.array(position_ids, dtype="i4"), decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, ) @add_start_docstrings( "The bare Bart Model transformer outputting raw hidden-states without any specific head on top.", BART_START_DOCSTRING, ) class FlaxBartModel(FlaxBartPreTrainedModel): config: BartConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation module_class = FlaxBartModule append_call_sample_docstring(FlaxBartModel, _CHECKPOINT_FOR_DOC, FlaxSeq2SeqModelOutput, _CONFIG_FOR_DOC) class FlaxBartForConditionalGenerationModule(nn.Module): config: BartConfig dtype: jnp.dtype = jnp.float32 bias_init: Callable[..., jnp.ndarray] = jax.nn.initializers.zeros def setup(self): self.model = FlaxBartModule(config=self.config, dtype=self.dtype) self.lm_head = nn.Dense( self.model.shared.num_embeddings, use_bias=False, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.final_logits_bias = self.param("final_logits_bias", self.bias_init, (1, self.model.shared.num_embeddings)) def _get_encoder_module(self): return self.model.encoder def _get_decoder_module(self): return self.model.decoder def __call__( self, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, position_ids, decoder_position_ids, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, position_ids=position_ids, decoder_position_ids=decoder_position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = self.model.variables["params"]["shared"]["embedding"] lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) else: lm_logits = self.lm_head(hidden_states) lm_logits += jax.lax.stop_gradient(self.final_logits_bias.astype(self.dtype)) if not return_dict: output = (lm_logits,) + outputs[1:] return output return FlaxSeq2SeqLMOutput( logits=lm_logits, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) @add_start_docstrings( "The BART Model with a language modeling head. Can be used for summarization.", BART_START_DOCSTRING ) class FlaxBartForConditionalGeneration(FlaxBartPreTrainedModel): module_class = FlaxBartForConditionalGenerationModule dtype: jnp.dtype = jnp.float32 @add_start_docstrings(BART_DECODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=BartConfig) def decode( self, decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> import jax.numpy as jnp >>> from transformers import AutoTokenizer, FlaxBartForConditionalGeneration >>> model = FlaxBartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn") >>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn") >>> text = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, max_length=1024, return_tensors="jax") >>> encoder_outputs = model.encode(**inputs) >>> decoder_start_token_id = model.config.decoder_start_token_id >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id >>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> logits = outputs.logits ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict encoder_hidden_states = encoder_outputs[0] if encoder_attention_mask is None: batch_size, sequence_length = encoder_hidden_states.shape[:2] encoder_attention_mask = jnp.ones((batch_size, sequence_length)) batch_size, sequence_length = decoder_input_ids.shape if decoder_attention_mask is None: decoder_attention_mask = jnp.ones((batch_size, sequence_length)) if decoder_position_ids is None: if past_key_values is not None: raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.") decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that # it can be changed by FlaxBartAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() outputs = decoder_module( decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = module.model.variables["params"]["shared"]["embedding"] lm_logits = module.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) else: lm_logits = module.lm_head(hidden_states) lm_logits += module.final_logits_bias.astype(self.dtype) return lm_logits, outputs outputs = self.module.apply( inputs, decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, mutable=mutable, method=_decoder_forward, ) if past_key_values is None: lm_logits, decoder_outputs = outputs else: (lm_logits, decoder_outputs), past = outputs if return_dict: outputs = FlaxCausalLMOutputWithCrossAttentions( logits=lm_logits, hidden_states=decoder_outputs.hidden_states, attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, ) else: outputs = (lm_logits,) + decoder_outputs[1:] # add updated cache to model output if past_key_values is not None and return_dict: outputs["past_key_values"] = unfreeze(past["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] return outputs def prepare_inputs_for_generation( self, decoder_input_ids, max_length, attention_mask: Optional[jax.Array] = None, decoder_attention_mask: Optional[jax.Array] = None, encoder_outputs=None, **kwargs, ): # initializing the cache batch_size, seq_length = decoder_input_ids.shape past_key_values = self.init_cache(batch_size, max_length, encoder_outputs) # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. # But since the decoder uses a causal mask, those positions are masked anyways. # Thus we can create a single static attention_mask here, which is more efficient for compilation extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") if decoder_attention_mask is not None: position_ids = decoder_attention_mask.cumsum(axis=-1) - 1 extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, decoder_attention_mask, (0, 0)) else: position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)) return { "past_key_values": past_key_values, "encoder_outputs": encoder_outputs, "encoder_attention_mask": attention_mask, "decoder_attention_mask": extended_attention_mask, "decoder_position_ids": position_ids, } def update_inputs_for_generation(self, model_outputs, model_kwargs): model_kwargs["past_key_values"] = model_outputs.past_key_values model_kwargs["decoder_position_ids"] = model_kwargs["decoder_position_ids"][:, -1:] + 1 return model_kwargs FLAX_BART_CONDITIONAL_GENERATION_DOCSTRING = """ Returns: Summarization example: ```python >>> from transformers import AutoTokenizer, FlaxBartForConditionalGeneration >>> model = FlaxBartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn") >>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn") >>> ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors="np") >>> # Generate Summary >>> summary_ids = model.generate(inputs["input_ids"]).sequences >>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)) ``` Mask filling example: ```python >>> import jax >>> from transformers import AutoTokenizer, FlaxBartForConditionalGeneration >>> model = FlaxBartForConditionalGeneration.from_pretrained("facebook/bart-large") >>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large") >>> TXT = "My friends are <mask> but they eat too many carbs." >>> input_ids = tokenizer([TXT], return_tensors="jax")["input_ids"] >>> logits = model(input_ids).logits >>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero()[0].item() >>> probs = jax.nn.softmax(logits[0, masked_index], axis=0) >>> values, predictions = jax.lax.top_k(probs, k=1) >>> tokenizer.decode(predictions).split() ``` """ overwrite_call_docstring( FlaxBartForConditionalGeneration, BART_INPUTS_DOCSTRING + FLAX_BART_CONDITIONAL_GENERATION_DOCSTRING ) append_replace_return_docstrings( FlaxBartForConditionalGeneration, output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC ) class FlaxBartForSequenceClassificationModule(nn.Module): config: BartConfig dtype: jnp.dtype = jnp.float32 num_labels: Optional[int] = None def setup(self): self.model = FlaxBartModule(config=self.config, dtype=self.dtype) self.classification_head = FlaxBartClassificationHead( config=self.config, inner_dim=self.config.d_model, num_classes=self.num_labels if self.num_labels is not None else self.config.num_labels, pooler_dropout=self.config.classifier_dropout, ) def _get_encoder_module(self): return self.model.encoder def _get_decoder_module(self): return self.model.decoder def __call__( self, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, position_ids, decoder_position_ids, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, position_ids=position_ids, decoder_position_ids=decoder_position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) hidden_states = outputs[0] # last hidden state eos_mask = jnp.where(input_ids == self.config.eos_token_id, 1, 0) # The first condition is necessary to overcome jax._src.errors.ConcretizationTypeError during JIT compilation if type(eos_mask) != jax.interpreters.partial_eval.DynamicJaxprTracer: if len(jnp.unique(eos_mask.sum(1))) > 1: raise ValueError("All examples must have the same number of <eos> tokens.") if any(eos_mask.sum(1) == 0): raise ValueError("There are missing <eos> tokens in input_ids") # Ensure to keep 1 only for the last <eos> token for each example eos_mask_noised = eos_mask + jnp.arange(eos_mask.shape[1]) * 1e-6 eos_mask = jnp.where(eos_mask_noised == eos_mask_noised.max(1).reshape(-1, 1), 1, 0) sentence_representation = jnp.einsum("ijk, ij -> ijk", hidden_states, eos_mask).sum(1) logits = self.classification_head(sentence_representation, deterministic=deterministic) if not return_dict: output = (logits,) + outputs[1:] return output return FlaxSeq2SeqSequenceClassifierOutput( logits=logits, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) @add_start_docstrings( """ Bart model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, BART_START_DOCSTRING, ) class FlaxBartForSequenceClassification(FlaxBartPreTrainedModel): module_class = FlaxBartForSequenceClassificationModule dtype = jnp.float32 append_call_sample_docstring( FlaxBartForSequenceClassification, _CHECKPOINT_FOR_DOC, FlaxSeq2SeqSequenceClassifierOutput, _CONFIG_FOR_DOC, ) class FlaxBartForQuestionAnsweringModule(nn.Module): config: BartConfig dtype: jnp.dtype = jnp.float32 num_labels = 2 def setup(self): self.model = FlaxBartModule(config=self.config, dtype=self.dtype) self.qa_outputs = nn.Dense( self.num_labels, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) ) def _get_encoder_module(self): return self.model.encoder def _get_decoder_module(self): return self.model.decoder def __call__( self, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, position_ids, decoder_position_ids, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, position_ids=position_ids, decoder_position_ids=decoder_position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = jnp.split(logits, logits.shape[-1], axis=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) if not return_dict: output = (start_logits, end_logits) + outputs[1:] return output return FlaxSeq2SeqQuestionAnsweringModelOutput( start_logits=start_logits, end_logits=end_logits, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) @add_start_docstrings( """ BART Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`). """, BART_START_DOCSTRING, ) class FlaxBartForQuestionAnswering(FlaxBartPreTrainedModel): module_class = FlaxBartForQuestionAnsweringModule dtype = jnp.float32 append_call_sample_docstring( FlaxBartForQuestionAnswering, _CHECKPOINT_FOR_DOC, FlaxSeq2SeqQuestionAnsweringModelOutput, _CONFIG_FOR_DOC, ) class FlaxBartDecoderPreTrainedModel(FlaxPreTrainedModel): config_class = BartConfig base_model_prefix: str = "model" module_class: nn.Module = None def __init__( self, config: BartConfig, input_shape: Tuple[int] = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): config.is_decoder = True config.is_encoder_decoder = False module = self.module_class(config=config, dtype=dtype, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors input_ids = jnp.zeros(input_shape, dtype="i4") attention_mask = jnp.ones_like(input_ids) batch_size, sequence_length = input_ids.shape position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} encoder_hidden_states = jnp.zeros(input_shape + (self.config.d_model,)) encoder_attention_mask = attention_mask module_init_outputs = self.module.init( rngs, input_ids, attention_mask, position_ids, encoder_hidden_states, encoder_attention_mask, return_dict=False, ) return module_init_outputs["params"] def init_cache(self, batch_size, max_length): r""" Args: batch_size (`int`): batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. max_length (`int`): maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized cache. """ # init input variables to retrieve cache input_ids = jnp.ones((batch_size, max_length), dtype="i4") attention_mask = jnp.ones_like(input_ids, dtype="i4") position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) init_variables = self.module.init( jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True ) return unfreeze(init_variables["cache"]) @add_start_docstrings_to_model_forward(BART_DECODE_INPUTS_DOCSTRING) def __call__( self, input_ids: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, position_ids: Optional[jnp.ndarray] = None, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, past_key_values: dict = None, dropout_rng: PRNGKey = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict if encoder_hidden_states is not None and encoder_attention_mask is None: batch_size, sequence_length = encoder_hidden_states.shape[:2] encoder_attention_mask = jnp.ones((batch_size, sequence_length)) # prepare decoder inputs if attention_mask is None: attention_mask = jnp.ones_like(input_ids) if position_ids is None: batch_size, sequence_length = input_ids.shape position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) # Handle any PRNG if needed rngs = {"dropout": dropout_rng} if dropout_rng is not None else {} inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed # down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be # changed by FlaxBartAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False outputs = self.module.apply( inputs, input_ids=jnp.array(input_ids, dtype="i4"), attention_mask=jnp.array(attention_mask, dtype="i4"), position_ids=jnp.array(position_ids, dtype="i4"), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, mutable=mutable, ) # add updated cache to model output if past_key_values is not None and return_dict: outputs, past_key_values = outputs outputs["past_key_values"] = unfreeze(past_key_values["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs, past_key_values = outputs outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:] return outputs class FlaxBartDecoderWrapper(nn.Module): """ This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is used in combination with the [`EncoderDecoderModel`] framework. """ config: BartConfig dtype: jnp.dtype = jnp.float32 def setup(self): embed_dim = self.config.d_model embed_tokens = nn.Embed( self.config.vocab_size, embed_dim, embedding_init=jax.nn.initializers.normal(self.config.init_std), dtype=self.dtype, ) self.decoder = FlaxBartDecoder(config=self.config, embed_tokens=embed_tokens, dtype=self.dtype) def __call__(self, *args, **kwargs): return self.decoder(*args, **kwargs) class FlaxBartForCausalLMModule(nn.Module): config: BartConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.model = FlaxBartDecoderWrapper(config=self.config, dtype=self.dtype) self.lm_head = nn.Dense( self.config.vocab_size, use_bias=False, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) def __call__( self, input_ids, attention_mask, position_ids, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): outputs = self.model( input_ids, attention_mask, position_ids, encoder_hidden_states, encoder_attention_mask, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = self.model.variables["params"]["decoder"]["embed_tokens"]["embedding"] lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) else: lm_logits = self.lm_head(hidden_states) if not return_dict: return (lm_logits,) + outputs[1:] return FlaxCausalLMOutputWithCrossAttentions( logits=lm_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) @add_start_docstrings( """ Bart Decoder Model with a language modeling head on top (linear layer with weights tied to the input embeddings) e.g for autoregressive tasks. """, BART_START_DOCSTRING, ) class FlaxBartForCausalLM(FlaxBartDecoderPreTrainedModel): module_class = FlaxBartForCausalLMModule def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None): # initializing the cache batch_size, seq_length = input_ids.shape past_key_values = self.init_cache(batch_size, max_length) # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. # But since the decoder uses a causal mask, those positions are masked anyway. # Thus, we can create a single static attention_mask here, which is more efficient for compilation extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") if attention_mask is not None: position_ids = attention_mask.cumsum(axis=-1) - 1 extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0)) else: position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)) return { "past_key_values": past_key_values, "attention_mask": extended_attention_mask, "position_ids": position_ids, } def update_inputs_for_generation(self, model_outputs, model_kwargs): model_kwargs["past_key_values"] = model_outputs.past_key_values model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1 return model_kwargs append_call_sample_docstring( FlaxBartForCausalLM, _CHECKPOINT_FOR_DOC, FlaxCausalLMOutputWithCrossAttentions, _CONFIG_FOR_DOC, )
transformers-main
src/transformers/models/bart/modeling_flax_bart.py
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert BART checkpoint.""" import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging FAIRSEQ_MODELS = ["bart.large", "bart.large.mnli", "bart.large.cnn", "bart_xsum/model.pt"] extra_arch = {"bart.large": BartModel, "bart.large.mnli": BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse("0.9.0"): raise Exception("requires fairseq >= 0.9.0") logging.set_verbosity_info() logger = logging.get_logger(__name__) SAMPLE_TEXT = " Hello world! cécé herlolip" mnli_rename_keys = [ ("model.classification_heads.mnli.dense.weight", "classification_head.dense.weight"), ("model.classification_heads.mnli.dense.bias", "classification_head.dense.bias"), ("model.classification_heads.mnli.out_proj.weight", "classification_head.out_proj.weight"), ("model.classification_heads.mnli.out_proj.bias", "classification_head.out_proj.bias"), ] def remove_ignore_keys_(state_dict): ignore_keys = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", ] for k in ignore_keys: state_dict.pop(k, None) def rename_key(dct, old, new): val = dct.pop(old) dct[new] = val def load_xsum_checkpoint(checkpoint_path): """Checkpoint path should end in model.pt""" sd = torch.load(checkpoint_path, map_location="cpu") hub_interface = torch.hub.load("pytorch/fairseq", "bart.large.cnn").eval() hub_interface.model.load_state_dict(sd["model"]) return hub_interface def make_linear_from_emb(emb): vocab_size, emb_size = emb.weight.shape lin_layer = nn.Linear(vocab_size, emb_size, bias=False) lin_layer.weight.data = emb.weight.data return lin_layer @torch.no_grad() def convert_bart_checkpoint(checkpoint_path, pytorch_dump_folder_path, hf_checkpoint_name=None): """ Copy/paste/tweak model's weights to our BERT structure. """ if not os.path.exists(checkpoint_path): bart = torch.hub.load("pytorch/fairseq", checkpoint_path).eval() else: bart = load_xsum_checkpoint(checkpoint_path) bart.model.upgrade_state_dict(bart.model.state_dict()) if hf_checkpoint_name is None: hf_checkpoint_name = checkpoint_path.replace(".", "-") config = BartConfig.from_pretrained(hf_checkpoint_name) tokens = bart.encode(SAMPLE_TEXT).unsqueeze(0) tokens2 = BartTokenizer.from_pretrained(hf_checkpoint_name).encode(SAMPLE_TEXT, return_tensors="pt").unsqueeze(0) if not torch.eq(tokens, tokens2).all(): raise ValueError( f"converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokens2}" ) if checkpoint_path == "bart.large.mnli": state_dict = bart.state_dict() remove_ignore_keys_(state_dict) state_dict["model.shared.weight"] = state_dict["model.decoder.embed_tokens.weight"] for src, dest in mnli_rename_keys: rename_key(state_dict, src, dest) model = BartForSequenceClassification(config).eval() model.load_state_dict(state_dict) fairseq_output = bart.predict("mnli", tokens, return_logits=True) new_model_outputs = model(tokens)[0] # logits else: # no classification heads to worry about state_dict = bart.model.state_dict() remove_ignore_keys_(state_dict) state_dict["shared.weight"] = state_dict["decoder.embed_tokens.weight"] fairseq_output = bart.extract_features(tokens) if hf_checkpoint_name == "facebook/bart-large": model = BartModel(config).eval() model.load_state_dict(state_dict) new_model_outputs = model(tokens).model[0] else: model = BartForConditionalGeneration(config).eval() # an existing summarization ckpt model.model.load_state_dict(state_dict) if hasattr(model, "lm_head"): model.lm_head = make_linear_from_emb(model.model.shared) new_model_outputs = model.model(tokens)[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( f"`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}" ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("Some values in `fairseq_output` are different from `new_model_outputs`") Path(pytorch_dump_folder_path).mkdir(exist_ok=True) model.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "fairseq_path", type=str, help="bart.large, bart.large.cnn or a path to a model.pt on local filesystem." ) parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--hf_config", default=None, type=str, help="Which huggingface architecture to use: bart-large-xsum" ) args = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
transformers-main
src/transformers/models/bart/convert_bart_original_pytorch_checkpoint_to_pytorch.py
# coding=utf-8 # Copyright 2022 University of Wisconsin-Madison and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch YOSO model.""" import math from pathlib import Path from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutputWithCrossAttentions, MaskedLMOutput, MultipleChoiceModelOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_yoso import YosoConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "uw-madison/yoso-4096" _CONFIG_FOR_DOC = "YosoConfig" YOSO_PRETRAINED_MODEL_ARCHIVE_LIST = [ "uw-madison/yoso-4096", # See all YOSO models at https://huggingface.co/models?filter=yoso ] def load_cuda_kernels(): global lsh_cumulation try: from torch.utils.cpp_extension import load def append_root(files): src_folder = Path(__file__).resolve().parent.parent.parent / "kernels" / "yoso" return [src_folder / file for file in files] src_files = append_root( ["fast_lsh_cumulation_torch.cpp", "fast_lsh_cumulation.cu", "fast_lsh_cumulation_cuda.cu"] ) load("fast_lsh_cumulation", src_files, verbose=True) import fast_lsh_cumulation as lsh_cumulation return True except Exception: lsh_cumulation = None return False def to_contiguous(input_tensors): if isinstance(input_tensors, list): out = [] for tensor in input_tensors: if not tensor.is_contiguous(): tensor = tensor.contiguous() out.append(tensor) return out else: if not input_tensors.is_contiguous(): input_tensors = input_tensors.contiguous() return input_tensors def normalize(input_tensors): if type(input_tensors) is list: out = [] for tensor in input_tensors: out.append(nn.functional.normalize(tensor, p=2, dim=-1)) return out else: return nn.functional.normalize(input_tensors, p=2, dim=-1) def hashing(query, key, num_hash, hash_len): if len(query.size()) != 3: raise ValueError("Query has incorrect size.") if len(key.size()) != 3: raise ValueError("Key has incorrect size.") rmat = torch.randn(query.size(0), query.size(2), num_hash * hash_len, device=query.device) raise_pow = 2 ** torch.arange(hash_len, device=query.device) query_projection = torch.matmul(query, rmat).reshape(query.size(0), query.size(1), num_hash, hash_len) key_projection = torch.matmul(key, rmat).reshape(key.size(0), key.size(1), num_hash, hash_len) query_binary = (query_projection > 0).int() key_binary = (key_projection > 0).int() query_hash = torch.sum(query_binary * raise_pow, dim=-1) query_hash = torch.sum(key_binary * raise_pow, dim=-1) return query_hash.int(), query_hash.int() class YosoCumulation(torch.autograd.Function): @staticmethod def forward(ctx, query_mask, key_mask, query, key, value, config): hash_code_len = config["hash_code_len"] expectation = (1 - torch.acos(torch.matmul(query, key.transpose(-1, -2))) / math.pi) ** hash_code_len expectation = expectation * query_mask[:, :, None] * key_mask[:, None, :] cumulation_value = torch.matmul(expectation, value) ctx.save_for_backward(query_mask, key_mask, expectation, query, key, value) ctx.config = config return cumulation_value @staticmethod def backward(ctx, grad): grad = to_contiguous(grad) query_mask, key_mask, expectation, query, key, value = ctx.saved_tensors config = ctx.config hash_code_len = config["hash_code_len"] weighted_exp = torch.matmul(grad, value.transpose(-1, -2)) * expectation grad_query = torch.matmul(weighted_exp, (hash_code_len / 2) * key) grad_key = torch.matmul(weighted_exp.transpose(-1, -2), (hash_code_len / 2) * query) grad_value = torch.matmul(expectation.transpose(-1, -2), grad) return None, None, grad_query, grad_key, grad_value, None class YosoLSHCumulation(torch.autograd.Function): @staticmethod def forward(ctx, query_mask, key_mask, query, key, value, config): if query_mask.size(0) != key_mask.size(0): raise ValueError("Query mask and Key mask differ in sizes in dimension 0") if query_mask.size(0) != query.size(0): raise ValueError("Query mask and Query differ in sizes in dimension 0") if query_mask.size(0) != key.size(0): raise ValueError("Query mask and Key differ in sizes in dimension 0") if query_mask.size(0) != value.size(0): raise ValueError("Query mask and Value mask differ in sizes in dimension 0") if key.size(1) != value.size(1): raise ValueError("Key and Value differ in sizes in dimension 1") if query.size(2) != key.size(2): raise ValueError("Query and Key differ in sizes in dimension 2") query_mask, key_mask, query, key, value = to_contiguous([query_mask, key_mask, query, key, value]) use_cuda = query_mask.is_cuda num_hash = config["num_hash"] hash_code_len = config["hash_code_len"] hashtable_capacity = int(2**hash_code_len) if config["use_fast_hash"]: query_hash_code, key_hash_code = lsh_cumulation.fast_hash( query_mask, query, key_mask, key, num_hash, hash_code_len, use_cuda, 1 ) else: query_hash_code, key_hash_code = hashing(query, key, num_hash, hash_code_len) cumulation_value = lsh_cumulation.lsh_cumulation( query_mask, query_hash_code, key_mask, key_hash_code, value, hashtable_capacity, use_cuda, 1 ) ctx.save_for_backward(query_mask, key_mask, query_hash_code, key_hash_code, query, key, value) ctx.config = config return cumulation_value @staticmethod def backward(ctx, grad): grad = to_contiguous(grad) query_mask, key_mask, query_hash_code, key_hash_code, query, key, value = ctx.saved_tensors config = ctx.config use_cuda = grad.is_cuda hash_code_len = config["hash_code_len"] hashtable_capacity = int(2**hash_code_len) if config["lsh_backward"]: grad_value = lsh_cumulation.lsh_cumulation( key_mask, key_hash_code, query_mask, query_hash_code, grad, hashtable_capacity, use_cuda, 1 ) grad_query = lsh_cumulation.lsh_weighted_cumulation( query_mask, query_hash_code, grad, key_mask, key_hash_code, value, (hash_code_len / 2) * key, hashtable_capacity, use_cuda, 4, ) grad_key = lsh_cumulation.lsh_weighted_cumulation( key_mask, key_hash_code, value, query_mask, query_hash_code, grad, (hash_code_len / 2) * query, hashtable_capacity, use_cuda, 4, ) else: expectation = (1 - torch.acos(torch.matmul(query, key.transpose(-1, -2))) / math.pi) ** hash_code_len expectation = expectation * query_mask[:, :, None] * key_mask[:, None, :] weighted_exp = torch.matmul(grad, value.transpose(-1, -2)) * expectation grad_query = torch.matmul(weighted_exp, (hash_code_len / 2) * key) grad_key = torch.matmul(weighted_exp.transpose(-1, -2), (hash_code_len / 2) * query) grad_value = torch.matmul(expectation.transpose(-1, -2), grad) return None, None, grad_query, grad_key, grad_value, None # Copied from transformers.models.nystromformer.modeling_nystromformer.NystromformerEmbeddings class YosoEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings + 2, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)) + 2, persistent=False ) self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.register_buffer( "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long, device=self.position_ids.device), persistent=False, ) def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, :seq_length] # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves # issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class YosoSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = ( position_embedding_type if position_embedding_type is not None else config.position_embedding_type ) self.use_expectation = config.use_expectation self.hash_code_len = config.hash_code_len self.use_conv = config.conv_window is not None self.use_fast_hash = config.use_fast_hash self.num_hash = config.num_hash self.lsh_backward = config.lsh_backward self.lsh_config = { "hash_code_len": self.hash_code_len, "use_fast_hash": self.use_fast_hash, "num_hash": self.num_hash, "lsh_backward": self.lsh_backward, } if config.conv_window is not None: self.conv = nn.Conv2d( in_channels=config.num_attention_heads, out_channels=config.num_attention_heads, kernel_size=(config.conv_window, 1), padding=(config.conv_window // 2, 0), bias=False, groups=config.num_attention_heads, ) def transpose_for_scores(self, layer): new_layer_shape = layer.size()[:-1] + (self.num_attention_heads, self.attention_head_size) layer = layer.view(*new_layer_shape) return layer.permute(0, 2, 1, 3) def forward(self, hidden_states, attention_mask=None, output_attentions=False): mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) if self.use_conv: conv_value_layer = self.conv(value_layer * attention_mask[:, None, :, None]) batch_size, num_heads, seq_len, head_dim = query_layer.size() query_layer = query_layer.reshape(batch_size * num_heads, seq_len, head_dim) key_layer = key_layer.reshape(batch_size * num_heads, seq_len, head_dim) value_layer = value_layer.reshape(batch_size * num_heads, seq_len, head_dim) # revert changes made by get_extended_attention_mask attention_mask = 1.0 + attention_mask / 10000.0 attention_mask = ( attention_mask.squeeze().repeat(1, num_heads, 1).reshape(batch_size * num_heads, seq_len).int() ) # The CUDA kernels are most efficient with inputs whose size is a multiple of a GPU's warp size (32). Inputs # smaller than this are padded with zeros. gpu_warp_size = 32 if (not self.use_expectation) and head_dim < gpu_warp_size: pad_size = batch_size * num_heads, seq_len, gpu_warp_size - head_dim query_layer = torch.cat( [ query_layer, torch.zeros(pad_size, device=query_layer.device), ], dim=-1, ) key_layer = torch.cat( [ key_layer, torch.zeros(pad_size, device=key_layer.device), ], dim=-1, ) value_layer = torch.cat( [ value_layer, torch.zeros(pad_size, device=value_layer.device), ], dim=-1, ) if self.use_expectation or self.training: query_layer, key_layer = normalize([query_layer, key_layer]) if self.use_expectation: context_layer = YosoCumulation.apply( attention_mask, attention_mask, query_layer, key_layer, value_layer, self.lsh_config ) else: context_layer = YosoLSHCumulation.apply( attention_mask, attention_mask, query_layer, key_layer, value_layer, self.lsh_config ) if (not self.use_expectation) and head_dim < gpu_warp_size: context_layer = context_layer[:, :, :head_dim] context_layer = normalize(context_layer) context_layer = context_layer.reshape(batch_size, num_heads, seq_len, head_dim) if self.use_conv: context_layer += conv_value_layer context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, context_layer) if output_attentions else (context_layer,) return outputs # Copied from transformers.models.bert.modeling_bert.BertSelfOutput class YosoSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class YosoAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() self.self = YosoSelfAttention(config, position_embedding_type=position_embedding_type) self.output = YosoSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward(self, hidden_states, attention_mask=None, output_attentions=False): self_outputs = self.self(hidden_states, attention_mask, output_attentions) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.bert.modeling_bert.BertIntermediate class YosoIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOutput class YosoOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class YosoLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = YosoAttention(config) self.add_cross_attention = config.add_cross_attention self.intermediate = YosoIntermediate(config) self.output = YosoOutput(config) def forward(self, hidden_states, attention_mask=None, output_attentions=False): self_attention_outputs = self.attention(hidden_states, attention_mask, output_attentions=output_attentions) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output class YosoEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([YosoLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer_module), hidden_states, attention_mask, ) else: layer_outputs = layer_module(hidden_states, attention_mask, output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutputWithCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) # Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform class YosoPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->Yoso class YosoLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = YosoPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->Yoso class YosoOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = YosoLMPredictionHead(config) def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: prediction_scores = self.predictions(sequence_output) return prediction_scores class YosoPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = YosoConfig base_model_prefix = "yoso" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, YosoEncoder): module.gradient_checkpointing = value YOSO_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`YosoConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ YOSO_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert *input_ids* indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare YOSO Model transformer outputting raw hidden-states without any specific head on top.", YOSO_START_DOCSTRING, ) class YosoModel(YosoPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.embeddings = YosoEmbeddings(config) self.encoder = YosoEncoder(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithCrossAttentions]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length)), device=device) if token_type_ids is None: if hasattr(self.embeddings, "token_type_ids"): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] if not return_dict: return (sequence_output,) + encoder_outputs[1:] return BaseModelOutputWithCrossAttentions( last_hidden_state=sequence_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) @add_start_docstrings("""YOSO Model with a `language modeling` head on top.""", YOSO_START_DOCSTRING) class YosoForMaskedLM(YosoPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"] def __init__(self, config): super().__init__(config) self.yoso = YosoModel(config) self.cls = YosoOnlyMLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings @add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.yoso( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class YosoClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) self.config = config def forward(self, features, **kwargs): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = ACT2FN[self.config.hidden_act](x) x = self.dropout(x) x = self.out_proj(x) return x @add_start_docstrings( """YOSO Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks.""", YOSO_START_DOCSTRING, ) class YosoForSequenceClassification(YosoPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.yoso = YosoModel(config) self.classifier = YosoClassificationHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.yoso( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """YOSO Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks.""", YOSO_START_DOCSTRING, ) class YosoForMultipleChoice(YosoPreTrainedModel): def __init__(self, config): super().__init__(config) self.yoso = YosoModel(config) self.pre_classifier = nn.Linear(config.hidden_size, config.hidden_size) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.yoso( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_state = outputs[0] # (bs * num_choices, seq_len, dim) pooled_output = hidden_state[:, 0] # (bs * num_choices, dim) pooled_output = self.pre_classifier(pooled_output) # (bs * num_choices, dim) pooled_output = nn.ReLU()(pooled_output) # (bs * num_choices, dim) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """YOSO Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.""", YOSO_START_DOCSTRING, ) class YosoForTokenClassification(YosoPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.yoso = YosoModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.yoso( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() # Only keep active parts of the loss if attention_mask is not None: active_loss = attention_mask.view(-1) == 1 active_logits = logits.view(-1, self.num_labels) active_labels = torch.where( active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels) ) loss = loss_fct(active_logits, active_labels) else: loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """YOSO Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).""", YOSO_START_DOCSTRING, ) class YosoForQuestionAnswering(YosoPreTrainedModel): def __init__(self, config): super().__init__(config) config.num_labels = 2 self.num_labels = config.num_labels self.yoso = YosoModel(config) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, start_positions: Optional[torch.Tensor] = None, end_positions: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.yoso( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[1:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers-main
src/transformers/models/yoso/modeling_yoso.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _import_structure = {"configuration_yoso": ["YOSO_PRETRAINED_CONFIG_ARCHIVE_MAP", "YosoConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_yoso"] = [ "YOSO_PRETRAINED_MODEL_ARCHIVE_LIST", "YosoForMaskedLM", "YosoForMultipleChoice", "YosoForQuestionAnswering", "YosoForSequenceClassification", "YosoForTokenClassification", "YosoLayer", "YosoModel", "YosoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_yoso import YOSO_PRETRAINED_CONFIG_ARCHIVE_MAP, YosoConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yoso import ( YOSO_PRETRAINED_MODEL_ARCHIVE_LIST, YosoForMaskedLM, YosoForMultipleChoice, YosoForQuestionAnswering, YosoForSequenceClassification, YosoForTokenClassification, YosoLayer, YosoModel, YosoPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
transformers-main
src/transformers/models/yoso/__init__.py