python_code
stringlengths
0
992k
repo_name
stringlengths
8
46
file_path
stringlengths
5
162
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # flake8: noqa import models import tasks import criterions from fairseq_cli.train import cli_main if __name__ == "__main__": cli_main()
torchscale-flash-master
examples/fairseq/train.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] import json import logging import os from argparse import Namespace # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass, field import sentencepiece as spm from fairseq import utils from fairseq.data import Dictionary from fairseq.dataclass import ChoiceEnum, FairseqDataclass from fairseq.tasks import FairseqTask, register_task from omegaconf import II, MISSING from .data.mlm_loader import MLMLoader logger = logging.getLogger(__name__) SAMPLE_BREAK_MODE_CHOICES = ChoiceEnum(["none", "complete", "complete_doc", "eos"]) SHORTEN_METHOD_CHOICES = ChoiceEnum(["none", "truncate", "random_crop"]) @dataclass class PretrainingConfig(FairseqDataclass): data: str = field( default=MISSING, metadata={ "help": "colon separated path to data directories list, \ will be iterated upon during epochs in round-robin manner" }, ) sample_break_mode: SAMPLE_BREAK_MODE_CHOICES = field( default="complete", metadata={ "help": 'If omitted or "none", fills each sample with tokens-per-sample ' 'tokens. If set to "complete", splits samples only at the end ' "of sentence, but may include multiple sentences per sample. " '"complete_doc" is similar but respects doc boundaries. ' 'If set to "eos", includes only one sentence per sample.' }, ) tokens_per_sample: int = field( default=1024, metadata={"help": "max number of tokens per sample for LM dataset"}, ) mask_prob: float = field( default=0.15, metadata={"help": "probability of replacing a token with mask"}, ) leave_unmasked_prob: float = field( default=0.1, metadata={"help": "probability that a masked token is unmasked"}, ) random_token_prob: float = field( default=0.1, metadata={"help": "probability of replacing a token with a random token"}, ) freq_weighted_replacement: bool = field( default=False, metadata={"help": "sample random replacement words based on word frequencies"}, ) mask_whole_words: bool = field( default=False, metadata={"help": "mask whole words; you may also want to set --bpe"}, ) mask_multiple_length: int = field( default=1, metadata={"help": "repeat the mask indices multiple times"}, ) mask_stdev: float = field( default=0.0, metadata={"help": "stdev of the mask length"}, ) shorten_method: SHORTEN_METHOD_CHOICES = field( default="none", metadata={ "help": "if not none, shorten sequences that exceed --tokens-per-sample" }, ) shorten_data_split_list: str = field( default="", metadata={ "help": "comma-separated list of dataset splits to apply shortening to, " 'e.g., "train,valid" (default: all dataset splits)' }, ) seed: int = II("common.seed") span_length: float = field( default=3.0, metadata={"help": "average span length for masking"}, ) remove_source_sentinel: bool = field( default=False, metadata={"help": "remove the source sentinel for the span corruption task"}, ) remove_target_sentinel: bool = field( default=False, metadata={"help": "remove the target sentinel for the span corruption task"}, ) batch_read_ahead: int = field( default=100000, metadata={"help": "batch read ahead size for infinibatch"}, ) required_batch_size_multiple: int = II("dataset.required_batch_size_multiple") spm_model: str = field( default="", metadata={"help": "sentencepice model to tokenize the data"}, ) dict_file: str = field( default="", metadata={"help": ""}, ) pad_to_max_length: bool = field( default=False, ) @register_task("pretraining", dataclass=PretrainingConfig) class PLMTask(FairseqTask): def __init__(self, cfg, dictionary, tokenizer): super().__init__(cfg) self.cfg = cfg self.dictionary = dictionary self.tokenizer = tokenizer self.seed = cfg.seed self.mask_idx = dictionary.index("<mask>") @classmethod def setup_task(cls, cfg, **kwargs): paths = utils.split_paths(cfg.data) assert len(paths) > 0 if cfg.dict_file != "": dictionary = Dictionary.load(cfg.dict_file) else: dictionary = Dictionary.load(os.path.join(paths[0], "dict.txt")) # add mask token dictionary.add_symbol("<mask>") for i in range(100): dictionary.add_symbol(f"<mask_{i}>") dictionary.pad_to_multiple_(cfg.required_batch_size_multiple) logger.info("dictionary: {} types".format(len(dictionary))) # tokenizer = SentencepieceBPE(Namespace(sentencepiece_model=cfg.spm_model)) tokenizer = spm.SentencePieceProcessor() tokenizer.Load(cfg.spm_model) return cls(cfg, dictionary, tokenizer) def load_dataset(self, split, epoch=1, combine=False, **kwargs): self.datasets[split] = { "data": json.load(open(f"{self.cfg.data}/json/{split}.json")), "data_dir": self.cfg.data, "shuffle": True if split == "train" else False, } self.datasets[split] = Namespace(**self.datasets[split]) def dataset(self, split): if split not in self.datasets: raise KeyError("Dataset not loaded: " + split) return self.datasets[split] def get_batch_iterator( self, dataset, max_tokens=None, max_sentences=None, max_positions=None, ignore_invalid_inputs=False, required_batch_size_multiple=1, seed=1, num_shards=1, shard_id=0, num_workers=0, epoch=1, data_buffer_size=0, disable_iterator_cache=False, **kwargs, ): return MLMLoader( self.cfg, dataset, self.dictionary, self.tokenizer, max_tokens=max_tokens, max_sentences=max_sentences, max_positions=max_positions, ignore_invalid_inputs=ignore_invalid_inputs, required_batch_size_multiple=required_batch_size_multiple, seed=seed, num_shards=num_shards, shard_id=shard_id, ) @property def source_dictionary(self): return self.dictionary @property def target_dictionary(self): return self.dictionary
torchscale-flash-master
examples/fairseq/tasks/pretraining.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] import argparse import importlib import os # register dataclass TASK_DATACLASS_REGISTRY = {} TASK_REGISTRY = {} TASK_CLASS_NAMES = set() # automatically import any Python files in the tasks/ directory tasks_dir = os.path.dirname(__file__) for file in os.listdir(tasks_dir): path = os.path.join(tasks_dir, file) if ( not file.startswith("_") and not file.startswith(".") and (file.endswith(".py") or os.path.isdir(path)) ): task_name = file[: file.find(".py")] if file.endswith(".py") else file module = importlib.import_module("tasks." + task_name) # expose `task_parser` for sphinx if task_name in TASK_REGISTRY: parser = argparse.ArgumentParser(add_help=False) group_task = parser.add_argument_group("Task name") # fmt: off group_task.add_argument('--task', metavar=task_name, help='Enable this task with: ``--task=' + task_name + '``') # fmt: on group_args = parser.add_argument_group("Additional command-line arguments") TASK_REGISTRY[task_name].add_args(group_args) globals()[task_name + "_parser"] = parser
torchscale-flash-master
examples/fairseq/tasks/__init__.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] import torch from infinibatch.iterators import CheckpointableIterator from . import utils class BaseBatchGen(CheckpointableIterator): """ This is a base class for batch generators that use infinibatch """ def __init__(self): self._iter = None self.epoch = 1 self.next_epoch_idx = 1 self.sharded_checkpoint = True self.should_close_after_finished = True def _build_iter(self): """ Build infinibatch iterator and assign to self._iter """ raise NotImplementedError() def _move_to_tensor(self, batch): def to_tensor(x): return torch.tensor(x) return utils.apply_to_sample(to_tensor, batch) @property def iterator(self): if self._iter is None: raise NotImplementedError("_build_iter() must called first") return self._iter def __iter__(self): if self._iter is None: raise NotImplementedError("_build_iter() must called first") return self._iter def __next__(self): return next(self._iter) def setstate(self, value): self._iter.setstate(value) def getstate(self): return self._iter.getstate() def close(self): self._iter.close() def __len__(self) -> int: return 819200000 def next_epoch_itr( self, shuffle=True, fix_batches_to_gpus=False, set_dataset_epoch=True ): return self def end_of_epoch(self) -> bool: return False def state_dict(self): """Returns a dictionary containing a whole state of the iterator.""" return self.getstate() def load_state_dict(self, state_dict): """Copies the state of the iterator from the given *state_dict*.""" self.setstate(state_dict) @property def first_batch(self): return "DUMMY"
torchscale-flash-master
examples/fairseq/tasks/data/basic_loader.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details]
torchscale-flash-master
examples/fairseq/tasks/data/__init__.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] import collections from random import Random from typing import Dict, Iterable, Optional import numpy as np from infinibatch import iterators def apply_to_sample(f, sample): if hasattr(sample, "__len__") and len(sample) == 0: return {} def _apply(x): if isinstance(x, np.ndarray): return f(x) elif isinstance(x, collections.OrderedDict): # OrderedDict has attributes that needs to be preserved od = collections.OrderedDict( (key, _apply(value)) for key, value in x.items() ) od.__dict__ = x.__dict__ return od elif isinstance(x, dict): return {key: _apply(value) for key, value in x.items()} elif isinstance(x, list): return [_apply(x) for x in x] elif isinstance(x, tuple): return tuple(_apply(x) for x in x) elif isinstance(x, set): return {_apply(x) for x in x} else: return x return _apply(sample) class NativeCheckpointableIterator(iterators.CheckpointableIterator): def __init__(self, iterable: Iterable): self._input_iterable = iterable self.setstate(None) def getstate(self) -> Dict: return {"num_items_yielded": self._num_items_yielded} def setstate(self, checkpoint: Optional[Dict]): self._iterator = iter(self._input_iterable) self._num_items_yielded = ( iterators._advance_iterator(self._iterator, checkpoint["num_items_yielded"]) if checkpoint is not None else 0 ) def __next__(self): item = next(self._iterator) self._num_items_yielded += 1 return item def close(self): pass class WeightIterator(object): def __init__(self, weights, seed): self.weights = weights self.seed = seed self.control_index = list(range(len(weights))) self.setstate(None) def __iter__(self): return self def getstate(self): return {"random_state": self._random_state} def setstate(self, checkpoint): self._random_state = checkpoint["random_state"] if checkpoint else None self._random = ( None # this will trigger the lazy initialization in self.__next__ ) def __next__(self): if self._random is None: self._random = Random(self.seed) if self._random_state is not None: self._random.setstate(self._random_state) idx = self._random.choices(self.control_index, self.weights)[0] self._random_state = self._random.getstate() return idx def close(self): pass
torchscale-flash-master
examples/fairseq/tasks/data/utils.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] import copy import itertools import os import numpy as np from infinibatch import iterators from .basic_loader import BaseBatchGen from .utils import NativeCheckpointableIterator, WeightIterator class MLMLoader(BaseBatchGen): def __init__( self, args, dataset, dictionary, tokenizer, max_tokens=None, max_sentences=None, max_positions=None, ignore_invalid_inputs=False, required_batch_size_multiple=1, seed=1, num_shards=1, shard_id=0, ): super().__init__() self.args = args self.data = dataset.data self.data_dir = dataset.data_dir self.shuffle = dataset.shuffle self.dictionary = dictionary self.tokenizer = tokenizer self.max_tokens = max_tokens self.max_sentences = max_sentences self.max_positions = max_positions self.tokens_per_sample = args.tokens_per_sample self.sample_break_mode = args.sample_break_mode self.ignore_invalid_inputs = ignore_invalid_inputs self.required_batch_size_multiple = required_batch_size_multiple self.seed = str(seed) self.num_shards = num_shards self.shard_id = shard_id self.batch_read_ahead = args.batch_read_ahead self._build_iter() def _build_iter(self): tokenized_lines = self._multilingual_tokenize() self.padded_batches = self._batchify(tokenized_lines) prefetch_batches = iterators.PrefetchIterator( self.padded_batches, buffer_size=10000, buffer_in_main_process=True, log_empty_buffer_warning=True and self.shard_id == 0, ) prefetch_batches = iterators.MapIterator(prefetch_batches, self._move_to_tensor) self._iter = prefetch_batches def _multilingual_tokenize(self): multilingual_iters = [] weights = [] for data in self.data: multilingual_iters.append(self._tokenize(data)) if "weight" in data: weights.append(float(data["weight"])) else: weights.append(int(data["count"])) if len(multilingual_iters) == 1: return multilingual_iters[0] sampling_iterator = WeightIterator(weights) control_iterator = NativeCheckpointableIterator(sampling_iterator) tokenized_lines = iterators.MultiplexIterator( control_iterator, multilingual_iters ) return tokenized_lines def _tokenize(self, data): """ data: { 'source': list[Path], 'source_lang': str, 'count': int, 'weight': float, 'name': str, } """ dataset = list( zip( data["source"], itertools.repeat(data["source_lang"]), ) ) if self.shuffle: chunk_files = iterators.InfinitePermutationSourceIterator( dataset, seed=self.seed, shuffle=self.shuffle, num_instances=self.num_shards, instance_rank=self.shard_id, ) else: chunk_files = iterators.ChunkedSourceIterator( dataset, num_instances=self.num_shards, instance_rank=self.shard_id, ) tokenized_lines = iterators.SelectManyIterator( chunk_files, lambda files: self._read_from_files(*files) ) tokenized_lines = iterators.SamplingRandomMapIterator( tokenized_lines, self._prepare, self.seed ) return tokenized_lines def _batchify(self, lines): if self.max_sentences is not None: if self.batch_read_ahead > 0: lines = iterators.BlockwiseShuffleIterator( lines, self.batch_read_ahead, self.seed ) batches = iterators.FixedBatchIterator(lines, self.max_sentences) else: def dynamic_batch_size(sample): lengths = [len(x) for x in sample] batch_size = self.max_tokens // max(lengths) batch_size = ( batch_size // self.required_batch_size_multiple * self.required_batch_size_multiple ) return max(1, batch_size) batches = iterators.BucketedReadaheadBatchIterator( lines, read_ahead=self.batch_read_ahead, key=(lambda x: max(len(x[0]), len(x[1]))) if self.shuffle else None, batch_size=dynamic_batch_size, shuffle=self.shuffle, seed=self.seed, ) def collate(batch): batch_size = len(batch) mlm_source_max_length = max([len(x[0]) for x in batch]) mlm_target_max_length = max([len(x[1]) for x in batch]) s2s_source_max_length = max([len(x[2]) for x in batch]) s2s_target_max_length = max([len(x[3]) for x in batch]) if self.args.pad_to_max_length: mlm_source_max_length = self.args.tokens_per_sample mlm_target_max_length = self.args.tokens_per_sample mlm_source_ids = np.full( shape=(batch_size, mlm_source_max_length), dtype=np.int32, fill_value=self.dictionary.pad(), ) mlm_target_ids = np.full( shape=(batch_size, mlm_target_max_length), dtype=np.int32, fill_value=self.dictionary.pad(), ) s2s_source_ids = np.full( shape=(batch_size, s2s_source_max_length), dtype=np.int32, fill_value=self.dictionary.pad(), ) s2s_target_ids = np.full( shape=(batch_size, s2s_target_max_length - 1), dtype=np.int32, fill_value=self.dictionary.pad(), ) s2s_prev_input_ids = np.full( shape=(batch_size, s2s_target_max_length - 1), dtype=np.int32, fill_value=self.dictionary.pad(), ) for i, ( mlm_input_ids, mlm_label_ids, s2s_input_ids, s2s_label_ids, ) in enumerate(batch): mlm_source_ids[i, : len(mlm_input_ids)] = mlm_input_ids mlm_target_ids[i, : len(mlm_label_ids)] = mlm_label_ids s2s_source_ids[i, : len(s2s_input_ids)] = s2s_input_ids s2s_target_ids[i, : len(s2s_label_ids) - 1] = s2s_label_ids[1:] s2s_prev_input_ids[i, : len(s2s_label_ids) - 1] = s2s_label_ids[:-1] ret_batch = { "net_input": { "src_tokens": mlm_source_ids.astype(np.int64), }, "target": mlm_target_ids.astype(np.int64), "nsentences": batch_size, "ntokens": sum([len(x[0]) for x in batch]), } return ret_batch padded_batches = iterators.MapIterator(batches, collate) return padded_batches def _prepare(self, _random, doc): nonmasked_tokens, masked_tokens = self._mask_lm(_random, doc) nonnoise_spans, noise_spans = self._span_corruption(_random, doc) return nonmasked_tokens, masked_tokens, nonnoise_spans, noise_spans def _mask_lm(self, _random, doc): def mask_tokens(): return "<mask>" length = len(doc) mask_tokens_num = int(length * self.args.mask_prob) mask_tokens_num = min(max(mask_tokens_num, 1), length - 1) possible_mask_positions = _random.sample(range(length), k=mask_tokens_num) possible_mask_positions = sorted(possible_mask_positions) nonmasked_tokens = copy.deepcopy(doc) masked_tokens = [self.dictionary.pad() for _ in range(len(doc))] for position in possible_mask_positions: # masked_tokens.append(nonmasked_tokens[position]) masked_tokens[position] = nonmasked_tokens[position] nonmasked_tokens[position] = self.dictionary.indices[mask_tokens()] return nonmasked_tokens, masked_tokens def _span_corruption(self, _random, doc): def mask_tokens(i): return f"<mask_{i}>" length = len(doc) noise_tokens_num = int(length * self.args.mask_prob) noise_tokens_num = min(max(noise_tokens_num, 1), length - 1) noise_spans_num = int(noise_tokens_num / self.args.span_length) noise_spans_num = max(noise_spans_num, 1) nonnoise_tokens_num = length - noise_tokens_num if noise_spans_num == 1: noise_split_positions = [0, noise_tokens_num] else: possible_split_positions = list(range(1, noise_tokens_num)) _random.shuffle(possible_split_positions) noise_split_positions = sorted( possible_split_positions[: noise_spans_num - 1] ) noise_split_positions = [0] + noise_split_positions + [noise_tokens_num] possible_insert_positions = list(range(nonnoise_tokens_num)) _random.shuffle(possible_insert_positions) noise_insert_positions = sorted(possible_insert_positions[:noise_spans_num]) nonnoise_spans, noise_spans = [], [] last_end = 0 for i in range(noise_spans_num): start_pos = noise_insert_positions[i] + noise_split_positions[i] end_pos = noise_insert_positions[i] + noise_split_positions[i + 1] mask_id = self.dictionary.indices[mask_tokens(i)] if getattr(self.args, "remove_target_sentinel", False): noise_spans.append(doc[start_pos:end_pos]) else: noise_spans.append([mask_id] + doc[start_pos:end_pos]) if getattr(self.args, "remove_source_sentinel", False): nonnoise_spans.extend(doc[last_end:start_pos]) else: nonnoise_spans.extend(doc[last_end:start_pos] + [mask_id]) last_end = end_pos nonnoise_spans.extend(doc[last_end:]) noise_spans = sum(noise_spans, []) return nonnoise_spans, noise_spans def _read_from_files(self, source_file, source_lang): # data = [] file_path = os.path.join(self.data_dir, source_file) if not os.path.exists(file_path): print("| file {} not exists".format(file_path), flush=True) return iter([]) # skip bad file with open(file_path, "r", encoding="utf8") as f: lines = f.read().strip().split("\n") doc = [self.dictionary.bos()] for line in lines: if line == "": if self.sample_break_mode == "complete_doc": # data.append(doc) yield doc doc = [self.dictionary.bos()] continue tokenized_line = self.tokenizer.EncodeAsPieces(line) tokenized_id = [ self.dictionary.index(token) for token in tokenized_line ] + [self.dictionary.eos_index] if len(tokenized_id) > self.tokens_per_sample: continue if len(doc) + len(tokenized_id) > self.tokens_per_sample: # data.append(doc) yield doc doc = [self.dictionary.bos()] doc.extend(tokenized_id) if len(doc) > 1 and len(doc) <= self.tokens_per_sample: # data.append(doc) yield doc # return data
torchscale-flash-master
examples/fairseq/tasks/data/mlm_loader.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] import math import warnings import torch import torch.distributed as dist from fairseq.utils import multi_tensor_l2norm_available, multi_tensor_total_norm @torch.no_grad() def clip_grad_norm_( params, max_norm, moe_expert_count, aggregate_norm_fn=None ) -> torch.Tensor: def grad_exists(p): return p is not None and getattr(p, "grad", None) is not None if isinstance(params, torch.Tensor): params = [params] params = list(params) params = list(filter(grad_exists, params)) grads, expert_grads, base_expert_grads, sharded_grads = [], [], [], [] denom = math.sqrt(max(dist.get_global_world_size(), moe_expert_count)) for p in params: if hasattr(p, "expert"): expert_grads.append(p.grad.detach() / denom) elif hasattr(p, "base_expert"): base_expert_grads.append(p.grad.detach()) elif hasattr(p, "_is_sharded"): sharded_grads.append(p.grad.detach()) else: grads.append(p.grad.detach()) if len(grads) == 0: if len(params) > 0: total_norm = params[0].new_tensor(0.0) else: total_norm = torch.tensor(0.0) elif len(grads) == 1: total_norm = torch.norm(grads[0], p=2, dtype=torch.float32) else: if multi_tensor_l2norm_available: total_norm = multi_tensor_total_norm(grads) else: if torch.cuda.is_available(): warnings.warn( "amp_C fused kernels unavailable, disabling multi_tensor_l2norm; " "you may get better performance by installing NVIDIA's apex library" ) device = torch.cuda.current_device() elif grads[0].device.type == "xla": device = grads[0].device else: device = torch.device("cpu") total_norm = torch.norm( torch.stack( [torch.norm(g, p=2, dtype=torch.float32).to(device) for g in grads] ) ) # calculate split_norm and all_reduce with other workers norms = [total_norm] for split_grads in [expert_grads, sharded_grads]: if len(split_grads) == 0: continue split_norm = torch.norm( torch.stack([torch.norm(g, p=2, dtype=torch.float32) for g in split_grads]) ) if dist.is_initialized(): split_norm.pow_(2) dist.all_reduce(split_norm) split_norm.sqrt_() norms.append(split_norm) if len(norms) > 1: total_norm = torch.norm(torch.stack(norms)) if aggregate_norm_fn is not None: total_norm = aggregate_norm_fn(total_norm) if max_norm > 0: max_norm = float(max_norm) clip_coef = (max_norm / (total_norm + 1e-6)).clamp_(max=1) for g in grads + expert_grads + sharded_grads + base_expert_grads: g.mul_(clip_coef) return total_norm
torchscale-flash-master
examples/fairseq/utils/sparse_clip.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details]
torchscale-flash-master
examples/fairseq/utils/__init__.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging from dataclasses import dataclass, field from typing import Optional import torch from fairseq import distributed_utils, utils from fairseq.dataclass import ChoiceEnum, FairseqDataclass from fairseq.models import ( FairseqIncrementalDecoder, FairseqLanguageModel, register_model, register_model_architecture, ) from fairseq.models.transformer import DEFAULT_MIN_PARAMS_TO_WRAP, Embedding from fairseq.modules import PositionalEmbedding from omegaconf import II from torchscale.architecture.config import DecoderConfig from torchscale.architecture.decoder import Decoder DEFAULT_MAX_TARGET_POSITIONS = 1024 logger = logging.getLogger(__name__) @dataclass class LanguageConfig(FairseqDataclass): activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field( default="relu", metadata={"help": "activation function to use"} ) dropout: float = field(default=0.1, metadata={"help": "dropout probability"}) attention_dropout: float = field( default=0.0, metadata={"help": "dropout probability for attention weights"} ) activation_dropout: float = field( default=0.0, metadata={"help": "dropout probability after activation in FFN."} ) relu_dropout: float = field( default=0.0, metadata={"help": "dropout probability after activation in FFN."} ) decoder_embed_dim: int = field( default=512, metadata={"help": "decoder embedding dimension"} ) decoder_output_dim: int = field( default=512, metadata={"help": "decoder output dimension"} ) decoder_input_dim: int = field( default=512, metadata={"help": "decoder input dimension"} ) decoder_ffn_embed_dim: int = field( default=2048, metadata={"help": "decoder embedding dimension for FFN"} ) decoder_layers: int = field(default=6, metadata={"help": "num decoder layers"}) decoder_attention_heads: int = field( default=8, metadata={"help": "num decoder attention heads"} ) decoder_normalize_before: bool = field( default=False, metadata={"help": "apply layernorm before each decoder block"} ) no_token_positional_embeddings: bool = field( default=False, metadata={ "help": "if set, disables positional embeddings (outside self attention)" }, ) share_decoder_input_output_embed: bool = field( default=False, metadata={"help": "share decoder input and output embeddings"} ) decoder_learned_pos: bool = field( default=False, metadata={"help": "use learned positional embeddings in the decoder"}, ) layernorm_embedding: bool = field( default=False, metadata={"help": "add layernorm to embedding"} ) no_scale_embedding: bool = field( default=False, metadata={"help": "if True, dont scale embeddings"} ) checkpoint_activations: bool = field( default=False, metadata={"help": "checkpoint activations at each layer"} ) offload_activations: bool = field( default=False, metadata={"help": "move checkpointed activations to CPU after they are used."}, ) # config for Fully Sharded Data Parallel (FSDP) training min_params_to_wrap: int = field( default=DEFAULT_MIN_PARAMS_TO_WRAP, metadata={ "help": ( "minimum number of params for a layer to be wrapped with FSDP() when " "training with --ddp-backend=fully_sharded. Smaller values will " "improve memory efficiency, but may make torch.distributed " "communication less efficient due to smaller input sizes. This option " "is set to 0 (i.e., always wrap) when --checkpoint-activations or " "--offload-activations are passed." ) }, ) moe_freq: int = field( default=0, metadata={"help": "Frequency at which we insert MoE Transformer layers"}, ) moe_expert_count: int = field( default=0, metadata={"help": "Number of experts in each MoE Layer"} ) moe_gating_use_fp32: bool = field( default=False, metadata={"help": "Use FP32 computations in MoE top2 gating function"}, ) moe_second_expert_policy: str = field( default="sampling", metadata={"help": "policy for second expert, options: all/sampling/random"}, ) moe_normalize_gate_prob_before_dropping: bool = field( default=False, metadata={ "help": "whether to normalize gate probs before or after dropping experts for capacity and randomization" }, ) moe_expert_ffn_dim: Optional[int] = field( default=None, metadata={"help": "MoE expert FFN dimension"} ) moe_top1_expert: Optional[bool] = field( default=False, metadata={"help": "Use top1 gate instead of top2"} ) moe_eval_capacity_token_fraction: Optional[float] = field( default=0.25, metadata={ "help": ( "Default: 0.25, Fraction of tokens as capacity during validation, " "if set to negative, use same as training. range: (0.0, 1.0]." ) }, ) moe_normalize_expert_grad: Optional[str] = field( default="world_size", metadata={ "help": "Divide expert gradients by (1) 'world_size' (2) 'sqrt_world_size'" }, ) record_a2a_perf_stats: Optional[bool] = field( default=False, metadata={"help": "records all to all perf stats during distributed training"}, ) dummy_a2a: Optional[bool] = field( default=False, metadata={ "help": "By passes all to all during distributed training by returning the input buffer as output" }, ) moe_batch_prioritized_routing: Optional[bool] = field( default=False, metadata={ "help": "if true orders token by the gate prob before capacity dropping." }, ) use_xmoe: Optional[bool] = field( default=False, ) # options from other parts of the config add_bos_token: bool = II("task.add_bos_token") tokens_per_sample: int = II("task.tokens_per_sample") max_target_positions: Optional[int] = II("task.max_target_positions") tpu: bool = II("common.tpu") memory_efficient_fp16: bool = II("common.memory_efficient_fp16") fp16: bool = II("common.fp16") fp16_no_flatten_grads: bool = II("common.fp16_no_flatten_grads") ddp_backend: str = II("distributed_training.ddp_backend") world_size: int = II("distributed_training.distributed_world_size") distributed_rank: int = II("distributed_training.distributed_rank") ddp_rank: int = II("distributed_training.distributed_rank") deepnorm: Optional[bool] = field( default=False, ) subln: Optional[bool] = field( default=False, ) rel_pos_buckets: Optional[int] = field( default=0, ) max_rel_pos: Optional[int] = field( default=0, ) xpos_rel_pos: Optional[bool] = field( default=False, ) xpos_scale_base: Optional[int] = field( default=512, ) @register_model("lm", dataclass=LanguageConfig) class LanguageModel(FairseqLanguageModel): def __init__(self, args, decoder): self.args = args super().__init__(decoder) @classmethod def build_model(cls, args, task): if getattr(args, "max_target_positions", None) is None: args.max_target_positions = getattr( args, "tokens_per_sample", DEFAULT_MAX_TARGET_POSITIONS ) embed_tokens = cls.build_embedding( args, task.source_dictionary, args.decoder_embed_dim ) embed_positions = ( PositionalEmbedding( args.max_target_positions, args.decoder_embed_dim, task.dictionary.pad(), learned=args.decoder_learned_pos, ) if not args.no_token_positional_embeddings else None ) if args.share_decoder_input_output_embed: output_projection = torch.nn.Linear( embed_tokens.weight.shape[1], embed_tokens.weight.shape[0], bias=False, ) output_projection.weight = embed_tokens.weight else: output_projection = torch.nn.Linear( args.decoder_embed_dim, len(task.dictionary), bias=False ) torch.nn.init.normal_( output_projection.weight, mean=0, std=args.decoder_embed_dim**-0.5 ) if getattr(args, "moe_freq", 0) > 0 and ( getattr(args, "fp16", False) and not getattr(args, "memory_efficient_fp16", False) and getattr(args, "ddp_backend", None) != "fully_sharded" ): assert ( args.fp16_no_flatten_grads ), "If training moe models, set --fp16-no-flatten-grads to calculate correct gradnorm" args.ddp_rank = distributed_utils.get_data_parallel_rank() config = DecoderConfig() config.override(args) decoder = LMDecoder( config, embed_tokens, embed_positions, output_projection, is_encoder_decoder=False, dictionary=task.dictionary, ) return cls(args, decoder) @classmethod def build_embedding(cls, args, dictionary, embed_dim, path=None): return Embedding(len(dictionary), embed_dim, dictionary.pad()) class LMDecoder(Decoder, FairseqIncrementalDecoder): def forward(self, src_tokens, **kwargs): self_attn_padding_mask = src_tokens.eq(self.dictionary.pad()) return super().forward(src_tokens, self_attn_padding_mask, **kwargs) def max_positions(self): return self.embed_positions.max_positions def reorder_incremental_state_scripting( self, incremental_state, new_order, ): for module in incremental_state: for key in incremental_state[module]: result = incremental_state[module][key].index_select(0, new_order) incremental_state[module][key] = result @register_model_architecture("lm", "lm_base") def base_lm_architecture(args): # backward compatibility for older model checkpoints if hasattr(args, "no_tie_adaptive_proj"): # previous models defined --no-tie-adaptive-proj, so use the existence of # that option to determine if this is an "old" model checkpoint args.no_decoder_final_norm = True # old models always set this to True if args.no_tie_adaptive_proj is False: args.tie_adaptive_proj = True if hasattr(args, "decoder_final_norm"): args.no_decoder_final_norm = not args.decoder_final_norm args.dropout = getattr(args, "dropout", 0.1) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 2048) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.adaptive_softmax_factor = getattr(args, "adaptive_softmax_factor", 4) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) args.activation_fn = getattr(args, "activation_fn", "relu") args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0) args.decoder_layers_to_keep = getattr(args, "decoder_layers_to_keep", None) args.base_layers = getattr(args, "base_layers", 0) args.base_sublayers = getattr(args, "base_sublayers", 1) args.base_shuffle = getattr(args, "base_shuffle", False) args.add_bos_token = getattr(args, "add_bos_token", False) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.character_embeddings = getattr(args, "character_embeddings", False) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) # Model training is not stable without this args.decoder_normalize_before = True args.no_decoder_final_norm = getattr(args, "no_decoder_final_norm", False) args.adaptive_input = getattr(args, "adaptive_input", False) args.adaptive_input_factor = getattr(args, "adaptive_input_factor", 4) args.adaptive_input_cutoff = getattr(args, "adaptive_input_cutoff", None) args.tie_adaptive_weights = getattr(args, "tie_adaptive_weights", False) args.tie_adaptive_proj = getattr(args, "tie_adaptive_proj", False) args.no_scale_embedding = getattr(args, "no_scale_embedding", False) args.layernorm_embedding = getattr(args, "layernorm_embedding", False) args.checkpoint_activations = getattr(args, "checkpoint_activations", False) args.offload_activations = getattr(args, "offload_activations", False) if args.offload_activations: args.checkpoint_activations = True
torchscale-flash-master
examples/fairseq/models/language_modeling.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] import argparse import importlib import os MODEL_REGISTRY = {} MODEL_DATACLASS_REGISTRY = {} ARCH_MODEL_REGISTRY = {} ARCH_MODEL_NAME_REGISTRY = {} ARCH_MODEL_INV_REGISTRY = {} ARCH_CONFIG_REGISTRY = {} # automatically import any Python files in the models/ directory models_dir = os.path.dirname(__file__) for file in os.listdir(models_dir): path = os.path.join(models_dir, file) if ( not file.startswith("_") and not file.startswith(".") and (file.endswith(".py") or os.path.isdir(path)) ): model_name = file[: file.find(".py")] if file.endswith(".py") else file module = importlib.import_module("models." + model_name) # extra `model_parser` for sphinx if model_name in MODEL_REGISTRY: parser = argparse.ArgumentParser(add_help=False) group_archs = parser.add_argument_group("Named architectures") group_archs.add_argument( "--arch", choices=ARCH_MODEL_INV_REGISTRY[model_name] ) group_args = parser.add_argument_group("Additional command-line arguments") MODEL_REGISTRY[model_name].add_args(group_args) globals()[model_name + "_parser"] = parser
torchscale-flash-master
examples/fairseq/models/__init__.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging from typing import Dict, List, Optional, Tuple import torch from fairseq import distributed_utils, utils from fairseq.distributed import fsdp_wrap from fairseq.models import ( FairseqEncoder, FairseqEncoderDecoderModel, register_model, register_model_architecture, ) from fairseq.models.transformer import Embedding from fairseq.modules import PositionalEmbedding from torch import Tensor from torchscale.architecture.config import DecoderConfig, EncoderConfig from torchscale.architecture.encoder import Encoder from .language_modeling import LMDecoder as MTDecoder logger = logging.getLogger(__name__) DEFAULT_MAX_SOURCE_POSITIONS = 1024 DEFAULT_MAX_TARGET_POSITIONS = 1024 DEFAULT_MIN_PARAMS_TO_WRAP = int(1e8) @register_model("mt") class TranslationModel(FairseqEncoderDecoderModel): def __init__(self, args, encoder, decoder): super().__init__(encoder, decoder) self.args = args @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" # fmt: off parser.add_argument('--activation-fn', choices=utils.get_available_activation_fns(), help='activation function to use') parser.add_argument('--dropout', type=float, metavar='D', help='dropout probability') parser.add_argument('--attention-dropout', type=float, metavar='D', help='dropout probability for attention weights') parser.add_argument('--activation-dropout', '--relu-dropout', type=float, metavar='D', help='dropout probability after activation in FFN.') parser.add_argument('--encoder-embed-path', type=str, metavar='STR', help='path to pre-trained encoder embedding') parser.add_argument('--encoder-embed-dim', type=int, metavar='N', help='encoder embedding dimension') parser.add_argument('--encoder-ffn-embed-dim', type=int, metavar='N', help='encoder embedding dimension for FFN') parser.add_argument('--encoder-layers', type=int, metavar='N', help='num encoder layers') parser.add_argument('--encoder-attention-heads', type=int, metavar='N', help='num encoder attention heads') parser.add_argument('--encoder-normalize-before', action='store_true', help='apply layernorm before each encoder block') parser.add_argument('--encoder-learned-pos', action='store_true', help='use learned positional embeddings in the encoder') parser.add_argument('--decoder-embed-path', type=str, metavar='STR', help='path to pre-trained decoder embedding') parser.add_argument('--decoder-embed-dim', type=int, metavar='N', help='decoder embedding dimension') parser.add_argument('--decoder-ffn-embed-dim', type=int, metavar='N', help='decoder embedding dimension for FFN') parser.add_argument('--decoder-layers', type=int, metavar='N', help='num decoder layers') parser.add_argument('--decoder-attention-heads', type=int, metavar='N', help='num decoder attention heads') parser.add_argument('--decoder-learned-pos', action='store_true', help='use learned positional embeddings in the decoder') parser.add_argument('--decoder-normalize-before', action='store_true', help='apply layernorm before each decoder block') parser.add_argument('--decoder-output-dim', type=int, metavar='N', help='decoder output dimension (extra linear layer ' 'if different from decoder embed dim') parser.add_argument('--share-decoder-input-output-embed', action='store_true', help='share decoder input and output embeddings') parser.add_argument('--share-all-embeddings', action='store_true', help='share encoder, decoder and output embeddings' ' (requires shared dictionary and embed dim)') parser.add_argument('--no-token-positional-embeddings', default=False, action='store_true', help='if set, disables positional embeddings (outside self attention)') parser.add_argument('--adaptive-softmax-cutoff', metavar='EXPR', help='comma separated list of adaptive softmax cutoff points. ' 'Must be used with adaptive_loss criterion'), parser.add_argument('--adaptive-softmax-dropout', type=float, metavar='D', help='sets adaptive softmax dropout for the tail projections') parser.add_argument('--layernorm-embedding', action='store_true', help='add layernorm to embedding') parser.add_argument('--no-scale-embedding', action='store_true', help='if True, dont scale embeddings') parser.add_argument('--checkpoint-activations', action='store_true', help='checkpoint activations at each layer, which saves GPU ' 'memory usage at the cost of some additional compute') parser.add_argument('--offload-activations', action='store_true', help='checkpoint activations at each layer, then save to gpu. Sets --checkpoint-activations.') # args for "Cross+Self-Attention for Transformer Models" (Peitz et al., 2019) parser.add_argument('--no-cross-attention', default=False, action='store_true', help='do not perform cross-attention') parser.add_argument('--cross-self-attention', default=False, action='store_true', help='perform cross+self-attention') # args for "Reducing Transformer Depth on Demand with Structured Dropout" (Fan et al., 2019) parser.add_argument('--encoder-layerdrop', type=float, metavar='D', default=0, help='LayerDrop probability for encoder') parser.add_argument('--decoder-layerdrop', type=float, metavar='D', default=0, help='LayerDrop probability for decoder') parser.add_argument('--encoder-layers-to-keep', default=None, help='which layers to *keep* when pruning as a comma-separated list') parser.add_argument('--decoder-layers-to-keep', default=None, help='which layers to *keep* when pruning as a comma-separated list') # args for Training with Quantization Noise for Extreme Model Compression ({Fan*, Stock*} et al., 2020) parser.add_argument('--quant-noise-pq', type=float, metavar='D', default=0, help='iterative PQ quantization noise at training time') parser.add_argument('--quant-noise-pq-block-size', type=int, metavar='D', default=8, help='block size of quantization noise at training time') parser.add_argument('--quant-noise-scalar', type=float, metavar='D', default=0, help='scalar quantization noise and scalar quantization at training time') # args for Fully Sharded Data Parallel (FSDP) training parser.add_argument( '--min-params-to-wrap', type=int, metavar='D', default=DEFAULT_MIN_PARAMS_TO_WRAP, help=( 'minimum number of params for a layer to be wrapped with FSDP() when ' 'training with --ddp-backend=fully_sharded. Smaller values will ' 'improve memory efficiency, but may make torch.distributed ' 'communication less efficient due to smaller input sizes. This option ' 'is set to 0 (i.e., always wrap) when --checkpoint-activations or ' '--offload-activations are passed.' ) ) # args for mixture-of-expert layers parser.add_argument('--moe-freq', type=int, metavar='D', default=0, help='Frequency at which we insert MoE Transformer layers') parser.add_argument('--encoder-moe-freq', type=int, metavar='D', default=0, help='Frequency at which we insert MoE Transformer encoder layers') parser.add_argument('--decoder-moe-freq', type=int, metavar='D', default=0, help='Frequency at which we insert MoE Transformer decoder layers') parser.add_argument('--moe-expert-count', type=int, metavar='D', default=0, help='Number of experts in each MoE Layer') parser.add_argument('--moe-gating-use-fp32', default=False, action='store_true', help="Use FP32 computations in MoE top2 gating function") parser.add_argument('--moe-second-expert-policy', type=str, default='sampling', help="policy for second expert, options: all/sampling/random") parser.add_argument( '--moe-normalize-gate-prob-before-dropping', default=False, action='store_true', help=( "whether to normalize gate probs before or after dropping experts " "for capacity and randomization" ) ) parser.add_argument('--moe-expert-ffn-dim', type=int, default=0, help="MoE Expert FFN dimension") parser.add_argument('--moe-top1-expert', default=False, action='store_true', help="Use top1 gate instead of top2") parser.add_argument( '--moe-eval-capacity-token-fraction', type=float, default=0.25, help=( "Fraction of tokens as capacity during validation" "if set to negative, use same as training. range: (0.0, 1.0]." ) ) parser.add_argument('--moe-normalize-expert-grad', type=str, default='world_size', help="Divide expert gradients by (1) 'world_size' (2) 'sqrt_world_size'") parser.add_argument('--use-moe-pad-mask', default=False, action='store_true', help="Don't route padding tokens to any expert") parser.add_argument('--use-xmoe', default=False, action='store_true', help="Enable X-Moe") parser.add_argument('--freeze-moe', default=False, action='store_true', help="Freeze MoE Params") parser.add_argument('--deepnorm', default=False, action='store_true', help="Enable DeepNorm") parser.add_argument('--subln', default=False, action='store_true', help="Enable SubLN") parser.add_argument('--pretrained-dense-mt-model-path', type=str, default='') # args for pseudo-MoE layers parser.add_argument('--alternate-ffn-embed-dim', type=int, default=0, help="FFN embed dim of alternate pseudo-MoE blocks") parser.add_argument('--rel-pos-buckets', type=int, default=0, help='') parser.add_argument('--max-rel-pos', type=int, default=0, help='') # fmt: on @classmethod def build_model(cls, args, task): """Build a new model instance.""" # make sure all arguments are present in older models base_architecture(args) if getattr(args, "max_source_positions", None) is None: args.max_source_positions = DEFAULT_MAX_SOURCE_POSITIONS if getattr(args, "max_target_positions", None) is None: args.max_target_positions = DEFAULT_MAX_TARGET_POSITIONS args.ddp_rank = distributed_utils.get_data_parallel_rank() src_dict, tgt_dict = task.source_dictionary, task.target_dictionary if args.share_all_embeddings: if src_dict != tgt_dict: raise ValueError("--share-all-embeddings requires a joined dictionary") if args.encoder_embed_dim != args.decoder_embed_dim: raise ValueError( "--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim" ) if args.decoder_embed_path and ( args.decoder_embed_path != args.encoder_embed_path ): raise ValueError( "--share-all-embeddings not compatible with --decoder-embed-path" ) encoder_embed_tokens = cls.build_embedding( args, src_dict, args.encoder_embed_dim, args.encoder_embed_path ) decoder_embed_tokens = encoder_embed_tokens args.share_decoder_input_output_embed = True else: encoder_embed_tokens = cls.build_embedding( args, src_dict, args.encoder_embed_dim, args.encoder_embed_path ) decoder_embed_tokens = cls.build_embedding( args, tgt_dict, args.decoder_embed_dim, args.decoder_embed_path ) if getattr(args, "offload_activations", False): args.checkpoint_activations = True # offloading implies checkpointing encoder_embed_positions = ( PositionalEmbedding( args.max_source_positions, args.encoder_embed_dim, src_dict.pad(), learned=args.encoder_learned_pos, ) if not args.no_token_positional_embeddings else None ) decoder_embed_positions = ( PositionalEmbedding( args.max_target_positions, args.decoder_embed_dim, tgt_dict.pad(), learned=args.decoder_learned_pos, ) if not args.no_token_positional_embeddings else None ) if args.share_decoder_input_output_embed: output_projection = torch.nn.Linear( decoder_embed_tokens.weight.shape[1], decoder_embed_tokens.weight.shape[0], bias=False, ) output_projection.weight = decoder_embed_tokens.weight else: output_projection = torch.nn.Linear( args.decoder_embed_dim, len(tgt_dict), bias=False ) torch.nn.init.normal_( output_projection.weight, mean=0, std=args.decoder_embed_dim**-0.5 ) encoder = cls.build_encoder( args, encoder_embed_tokens, encoder_embed_positions, src_dict, ) decoder = cls.build_decoder( args, decoder_embed_tokens, decoder_embed_positions, output_projection, tgt_dict, ) if not args.share_all_embeddings: min_params_to_wrap = getattr( args, "min_params_to_wrap", DEFAULT_MIN_PARAMS_TO_WRAP ) # fsdp_wrap is a no-op when --ddp-backend != fully_sharded encoder = fsdp_wrap(encoder, min_num_params=min_params_to_wrap) decoder = fsdp_wrap(decoder, min_num_params=min_params_to_wrap) return cls(args, encoder, decoder) @classmethod def build_embedding(cls, args, dictionary, embed_dim, path=None): num_embeddings = len(dictionary) padding_idx = dictionary.pad() emb = Embedding(num_embeddings, embed_dim, padding_idx) # if provided, load from preloaded dictionaries if path: embed_dict = utils.parse_embedding(path) utils.load_embedding(embed_dict, dictionary, emb) return emb @classmethod def build_encoder(cls, args, embed_tokens, embed_positions, dictionary): config = EncoderConfig() config.override(args) return MTEncoder( config, embed_tokens, embed_positions, is_encoder_decoder=True, dictionary=dictionary, ) @classmethod def build_decoder( cls, args, embed_tokens, embed_positions, output_projection, dictionary ): config = DecoderConfig() config.override(args) return MTDecoder( config, embed_tokens, embed_positions, output_projection, is_encoder_decoder=True, dictionary=dictionary, ) def forward( self, src_tokens, src_lengths, prev_output_tokens, return_all_hiddens: bool = False, features_only: bool = False, **kwargs ): encoder_out = self.encoder(src_tokens, return_all_hiddens=return_all_hiddens) decoder_out = self.decoder( prev_output_tokens, encoder_out=encoder_out, features_only=features_only, return_all_hiddens=return_all_hiddens, ) return decoder_out def get_normalized_probs( self, net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]], log_probs: bool, sample: Optional[Dict[str, Tensor]] = None, ): """Get normalized probabilities (or log probs) from a net's output.""" return self.get_normalized_probs_scriptable(net_output, log_probs, sample) class MTEncoder(Encoder, FairseqEncoder): def forward(self, src_tokens, **kwargs): self_attn_padding_mask = src_tokens.eq(self.dictionary.pad()) return super().forward( src_tokens=src_tokens, encoder_padding_mask=self_attn_padding_mask, **kwargs ) def reorder_encoder_out(self, encoder_out, new_order): new_encoder_out = encoder_out["encoder_out"].index_select(0, new_order) new_encoder_embedding = encoder_out["encoder_embedding"].index_select( 0, new_order ) new_encoder_padding_mask = encoder_out["encoder_padding_mask"].index_select( 0, new_order ) encoder_states = encoder_out["encoder_states"] if len(encoder_states) > 0: for idx, state in enumerate(encoder_states): encoder_states[idx] = state.index_select(0, new_order) return { "encoder_out": new_encoder_out, # T x B x C "encoder_padding_mask": new_encoder_padding_mask, "encoder_embedding": new_encoder_embedding, # B x T x C "encoder_states": encoder_states, # List[T x B x C] } def max_positions(self): return self.embed_positions.max_positions @register_model_architecture("mt", "mt_base") def base_architecture(args): args.encoder_embed_path = getattr(args, "encoder_embed_path", None) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048) args.encoder_layers = getattr(args, "encoder_layers", 6) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False) args.decoder_embed_path = getattr(args, "decoder_embed_path", None) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) args.decoder_ffn_embed_dim = getattr( args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim ) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.activation_dropout = getattr(args, "activation_dropout", 0.0) args.activation_fn = getattr(args, "activation_fn", "relu") args.dropout = getattr(args, "dropout", 0.1) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.share_all_embeddings = getattr(args, "share_all_embeddings", False) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.adaptive_input = getattr(args, "adaptive_input", False) args.no_cross_attention = getattr(args, "no_cross_attention", False) args.cross_self_attention = getattr(args, "cross_self_attention", False) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) args.no_scale_embedding = getattr(args, "no_scale_embedding", False) args.layernorm_embedding = getattr(args, "layernorm_embedding", False) args.tie_adaptive_weights = getattr(args, "tie_adaptive_weights", False) args.checkpoint_activations = getattr(args, "checkpoint_activations", False) args.offload_activations = getattr(args, "offload_activations", False) if args.offload_activations: args.checkpoint_activations = True args.encoder_layers_to_keep = getattr(args, "encoder_layers_to_keep", None) args.decoder_layers_to_keep = getattr(args, "decoder_layers_to_keep", None) args.encoder_layerdrop = getattr(args, "encoder_layerdrop", 0) args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0) args.quant_noise_pq = getattr(args, "quant_noise_pq", 0) args.quant_noise_pq_block_size = getattr(args, "quant_noise_pq_block_size", 8) args.quant_noise_scalar = getattr(args, "quant_noise_scalar", 0) args.is_moe = getattr(args, "is_moe", False) args.selected_expert_count = getattr(args, "selected_expert_count", 2)
torchscale-flash-master
examples/fairseq/models/machine_translation.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] import logging from dataclasses import dataclass, field from typing import Optional import torch import torch.nn as nn import torch.nn.functional as F from fairseq import utils from fairseq.dataclass import ChoiceEnum, FairseqDataclass from fairseq.models import BaseFairseqModel, register_model, register_model_architecture from fairseq.models.squad import SQuADHead from fairseq.models.transformer import DEFAULT_MIN_PARAMS_TO_WRAP, Embedding from fairseq.modules import PositionalEmbedding from omegaconf import II try: from apex.normalization import FusedLayerNorm as LayerNorm except ModuleNotFoundError: from torch.nn import LayerNorm from torchscale.architecture.config import EncoderConfig from .machine_translation import MTEncoder as Encoder DEFAULT_MAX_SOURCE_POSITIONS = 1024 logger = logging.getLogger(__name__) @dataclass class BertConfig(FairseqDataclass): activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field( default="relu", metadata={"help": "activation function to use"} ) dropout: float = field(default=0.1, metadata={"help": "dropout probability"}) attention_dropout: float = field( default=0.0, metadata={"help": "dropout probability for attention weights"} ) activation_dropout: float = field( default=0.0, metadata={"help": "dropout probability after activation in FFN."} ) encoder_embed_dim: int = field( default=512, metadata={"help": "encoder embedding dimension"} ) encoder_output_dim: int = field( default=512, metadata={"help": "encoder output dimension"} ) encoder_input_dim: int = field( default=512, metadata={"help": "encoder input dimension"} ) encoder_ffn_embed_dim: int = field( default=2048, metadata={"help": "encoder embedding dimension for FFN"} ) encoder_layers: int = field(default=6, metadata={"help": "num encoder layers"}) encoder_attention_heads: int = field( default=8, metadata={"help": "num encoder attention heads"} ) encoder_normalize_before: bool = field( default=False, metadata={"help": "apply layernorm before each encoder block"} ) no_encoder_final_norm: bool = field( default=False, metadata={"help": "don't add an extra layernorm after the last encoder block"}, ) no_token_positional_embeddings: bool = field( default=False, metadata={ "help": "if set, disables positional embeddings (outside self attention)" }, ) share_encoder_input_output_embed: bool = field( default=False, metadata={"help": "share encoder input and output embeddings"} ) encoder_learned_pos: bool = field( default=False, metadata={"help": "use learned positional embeddings in the encoder"}, ) layernorm_embedding: bool = field( default=False, metadata={"help": "add layernorm to embedding"} ) no_scale_embedding: bool = field( default=False, metadata={"help": "if True, dont scale embeddings"} ) checkpoint_activations: bool = field( default=False, metadata={"help": "checkpoint activations at each layer"} ) offload_activations: bool = field( default=False, metadata={"help": "move checkpointed activations to CPU after they are used."}, ) # config for "Reducing Transformer Depth on Demand with Structured Dropout" (Fan et al., 2019) encoder_layerdrop: float = field( default=0.0, metadata={"help": "LayerDrop probability for encoder"} ) encoder_layers_to_keep: Optional[str] = field( default=None, metadata={ "help": "which layers to *keep* when pruning as a comma-separated list" }, ) # config for Fully Sharded Data Parallel (FSDP) training min_params_to_wrap: int = field( default=DEFAULT_MIN_PARAMS_TO_WRAP, metadata={ "help": ( "minimum number of params for a layer to be wrapped with FSDP() when " "training with --ddp-backend=fully_sharded. Smaller values will " "improve memory efficiency, but may make torch.distributed " "communication less efficient due to smaller input sizes. This option " "is set to 0 (i.e., always wrap) when --checkpoint-activations or " "--offload-activations are passed." ) }, ) max_source_positions: int = field( default=1024, metadata={"help": "max source positions"} ) pooler_activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field( default="relu", metadata={"help": "activation function to use for pooler layer"} ) pooler_dropout: float = field( default=0.0, metadata={"help": "dropout probability in the masked_lm pooler layers"}, ) # options from other parts of the config # add_bos_token: bool = II("task.add_bos_token") # tokens_per_sample: int = II("task.tokens_per_sample") tpu: bool = II("common.tpu") rel_pos_buckets: int = field(default=0, metadata={"help": ""}) max_rel_pos: int = field(default=0, metadata={"help": ""}) use_xmoe: Optional[bool] = field( default=False, ) moe_freq: int = field( default=0, metadata={"help": "Frequency at which we insert MoE Transformer layers"}, ) moe_expert_count: int = field( default=0, metadata={"help": "Number of experts in each MoE Layer"} ) moe_gating_use_fp32: bool = field( default=False, metadata={"help": "Use FP32 computations in MoE top2 gating function"}, ) moe_second_expert_policy: str = field( default="sampling", metadata={"help": "policy for second expert, options: all/sampling/random"}, ) moe_normalize_gate_prob_before_dropping: bool = field( default=False, metadata={ "help": "whether to normalize gate probs before or after dropping experts for capacity and randomization" }, ) moe_expert_ffn_dim: Optional[int] = field( default=None, metadata={"help": "MoE expert FFN dimension"} ) moe_top1_expert: Optional[bool] = field( default=False, metadata={"help": "Use top1 gate instead of top2"} ) moe_eval_capacity_token_fraction: Optional[float] = field( default=0.25, metadata={ "help": ( "Default: 0.25, Fraction of tokens as capacity during validation, " "if set to negative, use same as training. range: (0.0, 1.0]." ) }, ) moe_normalize_expert_grad: Optional[str] = field( default="world_size", metadata={ "help": "Divide expert gradients by (1) 'world_size' (2) 'sqrt_world_size'" }, ) record_a2a_perf_stats: Optional[bool] = field( default=False, metadata={"help": "records all to all perf stats during distributed training"}, ) dummy_a2a: Optional[bool] = field( default=False, metadata={ "help": "By passes all to all during distributed training by returning the input buffer as output" }, ) moe_batch_prioritized_routing: Optional[bool] = field( default=False, metadata={ "help": "if true orders token by the gate prob before capacity dropping." }, ) ddp_rank: int = II("distributed_training.distributed_rank") deepnorm: Optional[bool] = field( default=False, ) subln: Optional[bool] = field( default=False, ) @register_model("mlm", dataclass=BertConfig) class BertModel(BaseFairseqModel): def __init__(self, args, encoder): super().__init__() self.args = args self.encoder = encoder self.padding_idx = self.encoder.embed_tokens.padding_idx self.classification_heads = nn.ModuleDict() @classmethod def build_model(cls, args, task): """Build a new model instance.""" args.max_source_positions = getattr( args, "max_source_positions", DEFAULT_MAX_SOURCE_POSITIONS ) embed_tokens = cls.build_embedding( args, task.dictionary, args.encoder_embed_dim ) embed_positions = ( PositionalEmbedding( args.max_source_positions, args.encoder_embed_dim, task.dictionary.pad(), learned=args.encoder_learned_pos, ) if not args.no_token_positional_embeddings else None ) lm_head = cls.build_lm_head( args, args.encoder_embed_dim, len(task.dictionary), args.activation_fn, weight=embed_tokens.weight, ) config = EncoderConfig() config.override(args) encoder = Encoder( config, embed_tokens=embed_tokens, embed_positions=embed_positions, output_projection=lm_head, is_encoder_decoder=False, dictionary=task.dictionary, ) return cls(args, encoder) @classmethod def build_embedding(cls, args, dictionary, embed_dim, path=None): embed_tokens = Embedding(len(dictionary), embed_dim, dictionary.pad()) return embed_tokens @classmethod def build_lm_head(cls, args, embed_dim, output_dim, activation_fn, weight): return LMHead(embed_dim, output_dim, activation_fn, weight) def output_layer(self, features, masked_tokens=None): return self.encoder.output_projection(features, masked_tokens=masked_tokens) def register_classification_head( self, name, num_classes=None, inner_dim=None, **kwargs ): """Register a classification head.""" if name in self.classification_heads: prev_num_classes = self.classification_heads[name].out_proj.out_features prev_inner_dim = self.classification_heads[name].dense.out_features if num_classes != prev_num_classes or inner_dim != prev_inner_dim: logger.warning( 're-registering head "{}" with num_classes {} (prev: {}) ' "and inner_dim {} (prev: {})".format( name, num_classes, prev_num_classes, inner_dim, prev_inner_dim ) ) self.classification_heads[name] = ClassificationHead( self.args.encoder_embed_dim, inner_dim or self.args.encoder_embed_dim, num_classes, self.args.pooler_activation_fn, self.args.pooler_dropout, ) def register_question_answering_head(self, name, num_classes=None): self.classification_heads[name] = SQuADHead( self.args.encoder_embed_dim, ) def upgrade_state_dict_named(self, state_dict, name): prefix = name + "." if name != "" else "" # upgrade children modules super().upgrade_state_dict_named(state_dict, name) # Handle new classification heads present in the state dict. current_head_names = ( [] if not hasattr(self, "classification_heads") else self.classification_heads.keys() ) keys_to_delete = [] for k in state_dict.keys(): if not k.startswith(prefix + "classification_heads."): continue head_name = k[len(prefix + "classification_heads.") :].split(".")[0] # noqa: E203 num_classes = state_dict[ prefix + "classification_heads." + head_name + ".out_proj.weight" ].size(0) inner_dim = state_dict[ prefix + "classification_heads." + head_name + ".dense.weight" ].size(0) if getattr(self.args, "load_checkpoint_heads", False): if head_name not in current_head_names: self.register_classification_head(head_name, num_classes, inner_dim) else: if head_name not in current_head_names: logger.warning( "deleting classification head ({}) from checkpoint " "not present in current model: {}".format(head_name, k) ) keys_to_delete.append(k) elif ( num_classes != self.classification_heads[head_name].out_proj.out_features or inner_dim != self.classification_heads[head_name].dense.out_features ): logger.warning( "deleting classification head ({}) from checkpoint " "with different dimensions than current model: {}".format( head_name, k ) ) keys_to_delete.append(k) for k in keys_to_delete: del state_dict[k] # Copy any newly-added classification heads into the state dict # with their current weights. if hasattr(self, "classification_heads"): cur_state = self.classification_heads.state_dict() for k, v in cur_state.items(): if prefix + "classification_heads." + k not in state_dict: logger.info("Overwriting " + prefix + "classification_heads." + k) state_dict[prefix + "classification_heads." + k] = v def get_normalized_probs_scriptable( self, net_output, log_probs, sample = None, ): logits = net_output[0] if log_probs: return utils.log_softmax(logits, dim=-1) else: return utils.softmax(logits, dim=-1) def forward( self, src_tokens=None, features_only=False, return_all_hiddens=False, classification_head_name=None, masked_tokens=None, **kwargs ): encoder_out = self.encoder( src_tokens, features_only=True, return_all_hiddens=return_all_hiddens ) x, extra = encoder_out["encoder_out"], encoder_out if classification_head_name is not None: x = self.classification_heads[classification_head_name](x) elif not features_only: x = self.output_layer(x, masked_tokens=masked_tokens) return x, extra class ClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__( self, input_dim, inner_dim, num_classes, activation_fn, pooler_dropout, ): super().__init__() self.dense = nn.Linear(input_dim, inner_dim) self.activation_fn = utils.get_activation_fn(activation_fn) self.dropout = nn.Dropout(p=pooler_dropout) self.out_proj = nn.Linear(inner_dim, num_classes) def forward(self, features, **kwargs): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = self.activation_fn(x.float()).type_as(x) x = self.dropout(x) x = self.out_proj(x) return x class LMHead(nn.Module): """Head for masked language modeling.""" def __init__(self, embed_dim, output_dim, activation_fn, weight=None): super().__init__() self.dense = nn.Linear(embed_dim, embed_dim) self.activation_fn = utils.get_activation_fn(activation_fn) self.layer_norm = LayerNorm(embed_dim) if weight is None: weight = nn.Linear(embed_dim, output_dim, bias=False).weight self.weight = weight self.bias = nn.Parameter(torch.zeros(output_dim)) def forward(self, features, masked_tokens=None, **kwargs): # Only project the masked tokens while training, # saves both memory and computation if masked_tokens is not None: features = features[masked_tokens, :] x = self.dense(features) x = self.activation_fn(x.float()).type_as(x) x = self.layer_norm(x) # project back to size of vocabulary with bias x = F.linear(x, self.weight) + self.bias return x @register_model_architecture("mlm", "mlm_base") def base_unilm_architecture(args): if hasattr(args, "encoder_final_norm"): args.no_encoder_final_norm = not args.encoder_final_norm args.dropout = getattr(args, "dropout", 0.1) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.activation_dropout = getattr(args, "activation_dropout", 0.0) args.pooler_dropout = getattr(args, "pooler_dropout", 0.0) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 768) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 3072) args.encoder_layers = getattr(args, "encoder_layers", 12) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 12) args.encoder_learned_pos = getattr(args, "encoder_learned_pos", True) args.activation_fn = getattr(args, "activation_fn", "gelu") args.pooler_activation_fn = getattr(args, "pooler_activation_fn", "tanh") args.encoder_layerdrop = getattr(args, "encoder_layerdrop", 0) args.encoder_layers_to_keep = getattr(args, "encoder_layers_to_keep", None) # args.add_bos_token = getattr(args, "add_bos_token", False) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.share_encoder_input_output_embed = getattr( args, "share_encoder_input_output_embed", True ) args.encoder_output_dim = getattr( args, "encoder_output_dim", args.encoder_embed_dim ) args.encoder_input_dim = getattr(args, "encoder_input_dim", args.encoder_embed_dim) # Model training is not stable without this args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.no_encoder_final_norm = getattr(args, "no_encoder_final_norm", False) args.no_scale_embedding = getattr(args, "no_scale_embedding", True) args.layernorm_embedding = getattr(args, "layernorm_embedding", True) args.checkpoint_activations = getattr(args, "checkpoint_activations", False) args.offload_activations = getattr(args, "offload_activations", False) if args.offload_activations: args.checkpoint_activations = True
torchscale-flash-master
examples/fairseq/models/bert.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch import torch.nn.functional as F from fairseq import metrics, utils from fairseq.criterions import MoECriterion, register_criterion, MoECriterionConfig @register_criterion("masked_lm_moe_cross_entropy", dataclass=MoECriterionConfig) class MaskedLMMoECrossEntropyCriterion(MoECriterion): def compute_inner_loss(self, model, sample, reduce=True): masked_tokens = sample["target"].ne(self.padding_idx) sample_size = masked_tokens.int().sum() masked_tokens = torch.where( masked_tokens.any(), masked_tokens, masked_tokens.new([True]), ) net_output = model(**sample["net_input"], masked_tokens=masked_tokens) lprobs = model.get_normalized_probs(net_output, log_probs=True) lprobs = lprobs.view(-1, lprobs.size(-1)) target = model.get_targets(sample, net_output) if masked_tokens is not None: target = target[masked_tokens] nll_loss = F.nll_loss( lprobs, target.view(-1), ignore_index=self.padding_idx, reduction="sum" if reduce else "none", ) logging_output = { "inner_loss": nll_loss.data, "ntokens": sample["ntokens"], "nsentences": sample["target"].size(0), "sample_size": sample_size, } return net_output, nll_loss, sample_size, logging_output @staticmethod def reduce_metrics(logging_outputs) -> None: """Aggregate logging outputs from data parallel training.""" MaskedLMMoECrossEntropyCriterion.reduce_moe_metrics(logging_outputs) loss_sum = sum(log.get("inner_loss", 0) for log in logging_outputs) ntokens = sum(log.get("ntokens", 0) for log in logging_outputs) sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) # we divide by log(2) to convert the loss from base e to base 2 metrics.log_scalar( "inner_loss", loss_sum / sample_size / math.log(2), sample_size, round=3 ) if sample_size != ntokens: metrics.log_scalar( "nll_loss", loss_sum / ntokens / math.log(2), ntokens, round=3 ) metrics.log_derived( "ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg) ) else: metrics.log_derived( "ppl", lambda meters: utils.get_perplexity(meters["inner_loss"].avg) )
torchscale-flash-master
examples/fairseq/criterions/masked_lm_moe.py
import importlib import os # automatically import any Python files in the criterions/ directory for file in sorted(os.listdir(os.path.dirname(__file__))): if file.endswith(".py") and not file.startswith("_"): file_name = file[: file.find(".py")] importlib.import_module("criterions." + file_name)
torchscale-flash-master
examples/fairseq/criterions/__init__.py
from distutils.core import setup from setuptools import find_packages with open("README.md", "r", encoding = "utf-8") as readme: long_description = readme.read() setup( name="The Distiller", version="0.0.2", description="Generate textual and conversational datasets with LLMs.", long_description = long_description, long_description_content_type = "text/markdown", author="Kye Gomez", author_email="[email protected]", url="https://github.com/kyegomez/The-Distiller", keywords=["dataset", "llm", "langchain", "openai"], package_dir={"": "src"}, packages = find_packages(where="src"), install_requires=[ "langchain>=0.0.113", "click>=8.1" ], entry_points={ "console_scripts": [ "distiller=distiller:distiller" ], }, )
The-Distiller-master
setup.py
from .cli import distiller from .conversations import * from .texts import * from .outputs import *
The-Distiller-master
src/distiller/__init__.py
import click from typing import List, Tuple from .conversations import ConversationsGeneratorConfig, ConversationsGenerator from .texts import TextsGeneratorConfig, TextsGenerator from .outputs import DatasetWriter @click.group() def distiller() -> None: """Command line interface that generates datasets with LLMs.""" pass click_options = click.option("--option", "-o", "options", type=(str, str), multiple=True, help="Values for additional options denoted in your prompts by {OPTION_NAME}.") click_path = click.option("--path", "-f", "path", type=click.Path(), help="Where to save the dataset. Either a file or a directory (folder).") click_single_file = click.option("--single-file", "-s", "single_file", type=bool, is_flag=True, help="Either save the whole dataset to a single file or create multiple files.") click_num_samples = click.option("--num-samples", "-n", "num_samples", type=int, default=1, help="Number of conversations for each configuration.") click_temperatures = click.option("--temperature", "-t", "temperatures", type=float, multiple=True, default=[0.5], help="Possible temperature values for the backend language model.") @click.command() @click.option("--hf-api-token", "-hf", type=str, envvar="HF_API_KEY", help="Hugging Face API key.") @click.option("--model-agent", "-m", type=click.Choice(["openai", "hf"]), default="openai", help="Backend to use for the AI agents. Can be 'openai' for OpenAI's gpt-3.5-turbo or 'hf' for a Hugging Face model. Defaults to 'openai'.") @click.option("--repo-id", "-r", type=str, help="Hugging Face model repo id, required if 'hf' is chosen as model-agent.") @click.option("--openai-api-key", "-k", "openai_api_key", type=str, envvar="OPENAI_API_KEY", help="OpenAI API key.") @click.option("--agent1", "-a", "agent1", type=str, required=True, help="Agent role description.") @click.option("--agent2", "-b", "agent2", type=str, required=True, help="Agent role description.") @click.option("--initial-utterance", "-u", "initial_utterances", type=str, default=["Hello."], multiple=True, help="Utterance to be provisioned to the first agent. For many use cases a \"Hello\" is enough.") @click.option("--interruption", "-i", "interruption", type=click.Choice(["length", "end_phrase"]), default="length", help="Interruption mode.") @click.option("--end-phrase", "-e", "end_phrase", type=str, default="Goodbye", help="Interrupt after this phrase is outputted by one of the agents.") @click.option("--end-agent", "-d", "end_agent", type=click.Choice(["agent1", "agent2", "both"]), default="both", help="In which agent's messages to look for the end phrase.") @click.option("--length", "-l", "lengths", type=int, multiple=True, default=[5], help="Maximum number of utterances for each agent. A conversation sample will be generated for each length.") @click_temperatures @click_num_samples @click_options @click_path @click_single_file def conversations( openai_api_key: str, agent1: str, agent2: str, initial_utterances: List[str], num_samples: int, interruption: str, end_phrase: str, end_agent: str, lengths: List[int], temperatures: List[int], options: List[Tuple[str, str]], path: str, single_file: bool ) -> None: """Produce conversations between two gpt-3.5-turbo agents with given roles.""" dataset_writer = DatasetWriter(path, single_file) generator_config = ConversationsGeneratorConfig(openai_api_key=openai_api_key, agent1=agent1, agent2=agent2, initial_utterances=initial_utterances, num_samples=num_samples, interruption=interruption, end_phrase=end_phrase, end_agent=end_agent, lengths=lengths, temperatures=temperatures, options=options) conversations_generator = ConversationsGenerator(generator_config) for conversation in conversations_generator: dataset_writer.save_intermediate_result(conversation) @click.command() @click.option("--prompt", "-p", "prompt", type=str, required=True, help="Input prompt.") @click.option("--backend", "-b", "backends", type=str, multiple=True, default=["openai|text-davinci-003"], help="LLM APIs to use as backends. Use \"backend|model_name\" notation. For example: \"openai|text-davinci-003\".") @click.option("--max-length", "-l", "max_lengths", type=int, multiple=True, default=[100], help="Maximum number of tokens to generate for each prompt.") @click_temperatures @click_num_samples @click_options @click_path @click_single_file def texts( prompt: str, num_samples: int, max_lengths: List[int], temperatures: List[int], backends: List[str], options: List[Tuple[str, str]], path: str, single_file: bool ) -> None: """Inference multiple LLMs at scale.""" dataset_writer = DatasetWriter(path, single_file) generator_config = TextsGeneratorConfig(prompt=prompt, backends=backends, num_samples=num_samples, max_lengths=max_lengths, temperatures=temperatures, options=options) texts_generator = TextsGenerator(generator_config) for text_object in texts_generator: dataset_writer.save_intermediate_result(text_object) distiller.add_command(texts) distiller.add_command(conversations) def main() -> None: """Run the distiller CLI.""" distiller()
The-Distiller-master
src/distiller/cli.py
from dataclasses import dataclass, field from typing import List, Any, Dict, Tuple, Union from langchain.prompts import PromptTemplate from langchain.llms import BaseLLM from langchain.chains import LLMChain from .base import DatasetGenerator OPTIONS_CONFIG_KEYS = ["backend", "max_length", "temperature"] GENERATOR_CONFIG_KEYS = ["backends", "max_lengths", "temperatures"] @dataclass class TextsGeneratorConfig: prompt: str """Text prompt.""" backends: List[Tuple[str, str, str]] """LLM APIs to use as backends.""" num_samples: int = 1 """Number of texts to generate for each options combination.""" max_lengths: List[int] = field(default_factory=lambda: [5]) """Maximum lengths in tokens for the output of each generation.""" temperatures: List[float] = field(default_factory=lambda: [0]) """Possible temperatures for the backend LLM.""" options: List[Tuple[str, str]] = field(default_factory=lambda: []) """Additional options defined in the system prompts with curly brackets.""" class TextsGenerator(DatasetGenerator): """Generator producing texts by varying model parameters and prompt options.""" config: TextsGeneratorConfig """Configuration for a TextsGenerator.""" def __init__(self, config: TextsGeneratorConfig) -> None: """Initialize TextsGenerator.""" super().__init__(config) def initialize_options_configs( self, options_config_keys: List[str] = OPTIONS_CONFIG_KEYS, generator_config_keys: List[str] = GENERATOR_CONFIG_KEYS ) -> None: """Prepare options combinations.""" super().initialize_options_configs(options_config_keys, generator_config_keys) def initialize_backend(self, text_config: Dict[str, Any]) -> BaseLLM: """Initialize a specific LLM.""" backend_str = text_config["backend"] temperature = text_config["temperature"] max_length = text_config["max_length"] backend, model = backend_str.split("|") if backend.lower() == "openai": from langchain.llms import OpenAI llm = OpenAI(model_name=model, temperature=temperature, max_tokens=max_length) elif backend.lower() == "cohere": from langchain.llms import Cohere llm = Cohere(model=model, temperature=temperature, max_tokens=max_length) elif backend.lower() == "petals": from langchain.llms import Petals llm = Petals(model_name=model, temperature=temperature, max_new_tokens=max_length) else: raise ValueError("Cannot use the specified backend.") return llm def generate_item(self) -> Dict[str, Union[List[List[Any]], float, int]]: """Produce text with a LLM Chain.""" if self.generator_index >= len(self.options_configs): raise StopIteration() text_config = self.options_configs[self.generator_index] self.generator_index += 1 input_variables = text_config.keys() - ["sample_id", "backend", "temperature", "max_length"] prompt_template = PromptTemplate(template=self.config.prompt, input_variables=input_variables) llm = self.initialize_backend(text_config) prompt_params = {k: text_config[k] for k in input_variables} input_prompt = prompt_template.format(**prompt_params) chain = LLMChain(prompt=prompt_template, llm=llm) output = chain.predict(**prompt_params) return {**text_config, "prompt": input_prompt, "output": output}
The-Distiller-master
src/distiller/texts.py
from .cli import main main()
The-Distiller-master
src/distiller/__main__.py
from dataclasses import dataclass, field from typing import List, Any, Dict, Tuple, Union from langchain.prompts import ( ChatPromptTemplate, MessagesPlaceholder, SystemMessagePromptTemplate, HumanMessagePromptTemplate ) from langchain.chains import ConversationChain from langchain.chat_models import ChatOpenAI from langchain.memory import ConversationBufferMemory from langchain.schema import SystemMessage from langchain import HuggingFaceHub from .base import DatasetGenerator OPTIONS_CONFIG_KEYS = ["length", "temperature", "initial_utterance"] GENERATOR_CONFIG_KEYS = ["lengths", "temperatures", "initial_utterances"] @dataclass class ConversationsGeneratorConfig: agent_type: str """type of language odel either openai or huggingface""" hf_id: str """repo id for the hf model""" openai_api_key: str """OpenAI API key.""" agent1: str """Description of the first agent used to construct its system message.""" agent2: str """Description of the second agent used to construct its system message.""" initial_utterances: List[str] = "Hello." """Utterances to be provisioned to the first agent.""" num_samples: int = 1 """Number of conversations to generate for each options combination.""" interruption: str = "length" """Interruption mode.""" end_phrase: str = "Goodbye!" """Phrase to look for when checking whether to interrupt a conversation.""" end_agent: str = "both" """Agent whose messages to check for the interruption phrase.""" lengths: List[int] = field(default_factory=lambda: [5]) """Possible lengths of the conversations. If end_phrase interruption is enabled these will be used for maximum lengths.""" temperatures: List[float] = field(default_factory=lambda: [0]) """Possible temperatures for the backend LLM.""" options: List[Tuple[str, str]] = field(default_factory=lambda: []) """Additional options defined in the system prompts with curly brackets.""" class ConversationsGenerator(DatasetGenerator): """Generator producing conversations between two AI agents.""" config: ConversationsGeneratorConfig """Configuration for a ConversationsGenerator.""" def __init__(self, config: ConversationsGeneratorConfig) -> None: """Initialize ConversationsGenerator.""" super().__init__(config) def initialize_options_configs( self, options_config_keys: List[str] = OPTIONS_CONFIG_KEYS, generator_config_keys: List[str] = GENERATOR_CONFIG_KEYS ) -> None: """Prepare options combinations.""" super().initialize_options_configs(options_config_keys, generator_config_keys) def initialize_chain( self, agent: str, system_prompt: str, conversation_config: Dict[str, Any] ) -> Tuple[ConversationChain, str]: """Initialize a conversation and return a chain and a formatted system prompt.""" if self.config.interruption == "end_phrase": if self.config.end_agent == agent or self.config.end_agent == "both": system_prompt += f" When the whole conversation is over end with \"{self.config.end_phrase}\"." system_template = SystemMessagePromptTemplate.from_template( system_prompt) template_params = {key: conversation_config[key] for key in system_template.input_variables} system_message = system_template.format(**template_params).content prompt = ChatPromptTemplate.from_messages([ SystemMessage(content=system_message), MessagesPlaceholder(variable_name="history"), HumanMessagePromptTemplate.from_template("{input}") ]) memory = ConversationBufferMemory(return_messages=True) if self.config.agent_type == "openai": llm = ChatOpenAI(temperature=conversation_config["temperature"], openai_api_key=self.config.openai_api_key) elif self.config.agent_type == "huggingface": llm = HuggingFaceHub(repo_id=self.config.repo_id, model_kwargs={"temperature": conversation_config["temperature"], "max_length": 64}) chain = ConversationChain(memory=memory, prompt=prompt, llm=llm) return chain, system_message def end_phrase_interruption(self, agent: str, message: str) -> bool: """Check whether to interrupt conversation generation.""" if self.config.interruption == "end_phrase": if self.config.end_agent == agent or self.config.end_agent == "both": if self.config.end_phrase in message: return True return False def generate_item(self) -> Dict[str, Union[List[List[Any]], float, int]]: """Run two chains to talk with one another and record the chat history.""" if self.generator_index >= len(self.options_configs): raise StopIteration() conversation_config = self.options_configs[self.generator_index] self.generator_index += 1 chain1, system_prompt1 = self.initialize_chain("agent1", self.config.agent1, conversation_config) chain2, system_prompt2 = self.initialize_chain("agent2", self.config.agent2, conversation_config) utterances = [] chain1_inp = conversation_config["initial_utterance"] for _ in range(conversation_config["length"]): chain1_out = chain1.predict(input=chain1_inp) utterances.append(["agent1", chain1_out]) if self.end_phrase_interruption("agent1", chain1_out): break chain2_out = chain2.predict(input=chain1_out) utterances.append(["agent2", chain2_out]) if self.end_phrase_interruption("agent2", chain2_out): break chain1_inp = chain2_out return {**conversation_config, "agent1": system_prompt1, "agent2": system_prompt2, "utterances": utterances}
The-Distiller-master
src/distiller/conversations.py
import itertools from typing import List, Any, Dict, Tuple, Generator, Iterator, Protocol OPTIONS_CONFIG_KEYS = ["temperature"] GENERATOR_CONFIG_KEYS = ["temperatures"] class DatasetGeneratorConfig(Protocol): """Base generator configuration protocol.""" openai_api_key: str """OpenAI API key.""" num_samples: int """Number of texts to generate for each options combination.""" options: List[Tuple[str, str]] """Additional options defined in the text prompt with curly brackets.""" class DatasetGenerator: """Abstraction of a dataset generator.""" config: DatasetGeneratorConfig """Generator configuration.""" options_configs: List[Dict[str, Any]] """Possible combinations of the provided options.""" generator_index: int = 0 """Index of the next item to be returned by the generator.""" def __init__(self, config: DatasetGeneratorConfig) -> None: self.config = config self.initialize_options_configs() def initialize_options_configs( self, options_config_keys: List[str] = OPTIONS_CONFIG_KEYS, generator_config_keys: List[str] = GENERATOR_CONFIG_KEYS ) -> None: """Prepare options combinations.""" options_keys = ["sample_id", *options_config_keys] options_values = [range(self.config.num_samples)] options_values += [getattr(self.config, key) for key in generator_config_keys] for option in self.config.options: if option[0] not in options_keys: options_keys.append(option[0]) options_values.append([option[1]]) else: index = options_keys.index(option[0]) if option[1] not in options_values[index]: options_values[index].append(option[1]) self.options_configs = list(map(lambda x: dict(zip(options_keys, x)), itertools.product(*options_values))) def generate_item(self) -> Dict[str, Any]: """Produce a data item.""" return {} def __next__(self) -> Generator[Dict[str, Any], None, None]: return self.generate_item() def __iter__(self) -> Iterator: return self
The-Distiller-master
src/distiller/base.py
import os import json from uuid import uuid4 from typing import Dict, Any, List class DatasetWriter: """Handle outputting dataset items.""" single_file: bool """Whether to save all dataset items in a single file.""" path: str """Path of the output file or directory.""" dataset_items: List[Dict[str, Any]] """Collection of all the items in the current dataset.""" def __init__(self, path: str = None, single_file: bool = False) -> None: """Initialize DatasetWriter.""" if path == None and single_file: path = self.get_unique_filename(os.getcwd()) elif path == None and not single_file: path = self.get_unique_dirname(os.getcwd()) elif os.path.isdir(path) and single_file: path = self.get_unique_filename(path) elif os.path.isfile(path) and not single_file: raise ValueError( "Cannot write to a file with the single_file mode disabled. Try setting --single-file.") self.single_file = single_file self.path = path self.dataset_items = [] def get_unique_dirname(self, base_path): """Get a unique dirname.""" return os.path.join(base_path, str(uuid4())) def get_unique_filename(self, base_path): """Get a unique filename.""" return os.path.join(base_path, f"{uuid4()}.json") def save_intermediate_result(self, result: Dict[str, Any]): """Either save an item to its own file or concatenate it with all dataset items in a single file.""" if self.single_file: self.dataset_items.append(result) current_directory = os.path.dirname(self.path) if current_directory != "" and current_directory != ".": os.makedirs(current_directory, exist_ok=True) with open(self.path, "w") as output_file: json.dump(self.dataset_items, output_file) else: current_filepath = self.get_unique_filename(self.path) os.makedirs(self.path, exist_ok=True) with open(current_filepath, "w") as output_file: json.dump(result, output_file)
The-Distiller-master
src/distiller/outputs.py
from abc import ABC, abstractmethod class AbstractLanguageModel(ABC): @abstractmethod def generate_thoughts(self, state, k): pass @abstractmethod def evaluate_states(self, states): pass
The-Distiller-master
src/distiller/agents/abstract.py
from abc import ABC, abstractmethod from transformers import AutoModelForCausalLM, AutoTokenizer from abstract import AbstractLanguageModel class HuggingLanguageModel(AbstractLanguageModel): def __init__(self, model_name, model_tokenizer=None, verbose=False): self.model = AutoModelForCausalLM.from_pretrained(model_name) self.tokenizer = AutoTokenizer.from_pretrained(model_tokenizer or model_name) self.verbose = verbose def generate_thoughts(self, state, k, max_length=100): state_text = ' '.join(state) prompt = f"Write down your observations in format 'Observation:xxxx', then write down your thoughts in format 'Thoughts:xxxx Given the current state of reasoning: '{state_text}', generate {k} coherent solutions to achieve {state_text}" if self.verbose: print(f"Generating thoughts for state: {state_text}") try: inputs = self.tokenizer(prompt, return_tensors="pt") outputs = self.model.generate(**inputs, max_length=max_length, num_return_sequences=k) thoughts = [self.tokenizer.decode(output, skip_special_tokens=True) for output in outputs] except Exception as e: if self.verbose: print(f"Error generating thoughts for state: {state_text}") print(f"Error: {e}") thoughts = [] return thoughts def evaluate_states(self, states, initial_prompt, max_length=10): state_values = {} for state in states: state_text = ' '.join(state) prompt = f"Given the current state of reasoning: '{state_text}', pessimitically evaluate its value as a float between 0 and 1 based on it's potential to achieve {initial_prompt}" if self.verbose: print(f"Evaluating state: {state_text}") try: inputs = self.tokenizer(prompt, return_tensors="pt") outputs = self.model.generate(**inputs, num_return_sequences=1, max_length=max_length) value_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True) value = float(value_text) except ValueError: if self.verbose: print(f"Error converting value to float for state: {state_text}") value = 0 # Assign a default value if the conversion fails except Exception as e: if self.verbose: print(f"Error evaluating state: {state_text}") print(f"Error: {e}") value = 0 state_values[state] = value return state_values
The-Distiller-master
src/distiller/agents/huggingface.py
import torch import torch.nn as nn import numpy as np #define the loss function class class LossFunction: def compute_loss(self, y_pred, y_true): raise NotImplemented("compute_loss method must be implemented") #implement specific loss functions that inherit from LossFunction class L1Loss(LossFunction): def __init__(self): self.loss_function = nn.L1Loss() def compute_loss(self, y_pred, y_true): return self.loss_function(y_pred, y_true) class MSELoss(LossFunction): def __init__(self): self.loss_function = nn.MSELoss() def compute_loss(self, y_pred, y_true): return self.loss_function(y_pred, y_true) class CrossEntropyLoss(LossFunction): def __init__(self): self.loss_function = nn.CrossEntropyLoss() def compute_loss(self, y_pred, y_true): return self.loss_function(y_pred, y_true) """ all pytorch loss functions """ def one_hot_encoding(y_true, num_classes): y_true_one_hot = torch.zeros(y_true.size(0), num_classes) y_true_one_hot.scatter_(1, y_true.unsqueeze(1), 1) return y_true_one_hot class Nebula(LossFunction): def __init__(self, domain_knowledge=None, user_input=None): self.loss_function = None self.domain_knowledge = domain_knowledge self.user_input = user_input self.loss_function_cache = {} def determine_loss_function(self, y_pred, y_true): is_classification = None #op 1 check range of values in y_true if is_classification is None: unique_values = np.unique(y_true) if len(unique_values) <= 10 and np.all(np.equal(np.mod(unique_values, 1), 0)): is_classification = True #==============================================> if is_classification is None: value_counts = np.bincount(y_true.flatten().to(dtype=torch.int32).numpy()) if np.all(value_counts > 0): is_classification = True #==============================================> #op 3 analyze the dimension of y_pred if y_pred.ndim > 2: #handle segmentation problem pass #==============================================> if is_classification is None: sparsity = np.count_nonzero(y_true) / y_true.numel() if sparsity < 0.5: self.loss_functions = torch.nn.BCEWithLogitsLoss() self.compute_Loss = self.loss_function return #==============================================> #v4 y_pred_flat = y_pred.flatten().numpy() y_true_flat = y_true.flatten().numpy() if y_pred_flat.shape != y_true_flat.shape: y_pred_flat = y_pred_flat[:y_true_flat.size] correlation = np.corrcoef(y_pred_flat, y_true_flat)[0, 1] #==============================================> if is_classification is None: if self.domain_knowledge == "classification": is_classification = True elif self.domain_knowledge == "regression": is_classification = False #==============================================> #v3 if is_classification is None: if torch.max(y_pred) > 0.9: is_classification = True #==============================================> #v2 if is_classification is None: class_balance = value_counts / np.sum(value_counts) if np.any(class_balance < 0.1): is_classification = True #==============================================> #==============================================> #v2 if is_classification is None: if self.user_input == "classification": is_classification = True elif self.user_input == "regression": is_classification = False #set the loss function based on the determined problem type if is_classification: self.loss_function = CrossEntropyLoss() else: self.loss_function = MSELoss() def compute_loss(self, y_pred, y_true): dataset_id = id(y_true) if dataset_id not in self.loss_function_cache: # Fix the attribute name here self.determine_loss_function(y_pred, y_true) self.loss_function_cache[dataset_id] = self.loss_function cached_loss_function = self.loss_function_cache[dataset_id] return cached_loss_function.compute_loss(y_pred, y_true)
nebula-master
nebula_old.py
from setuptools import setup, find_packages setup( name = 'nebula-loss', packages = find_packages(exclude=[]), version = '0.4.1', license='MIT', description = '1 Loss Function to rule them all!', author = 'Agora', author_email = '[email protected]', long_description_content_type = 'text/markdown', url = 'https://github.com/kyegomez/nebula', keywords = [ 'artificial intelligence', 'deep learning', 'transformers', 'attention mechanism', 'jax', 'loss ffunction', "Multi-Modality AI" ], install_requires=[ 'torch', ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
nebula-master
setup.py
import unittest import torch from nebula.nebula import MSELoss, CrossEntropyLoss, MultiLabelSoftMarginLoss, Nebula class TestNebula(unittest.TestCase): def setUp(self): self.nebula = Nebula() self.tolerance = 1e-5 self.y_true_regression = torch.tensor([1.1, 2.2, 3.3, 4.4, 5.5], dtype=torch.float) self.y_pred_regression = torch.tensor([1.0, 3.0, 2.0, 5.0, 4.0], dtype=torch.float) # Assuming 3 classes self.y_true_classification = torch.tensor([0, 2, 1, 0, 2], dtype=torch.long) self.y_pred_classification = torch.rand((5, 3), dtype=torch.float) # Random probabilities for classes def test_same_shape(self): y_true = torch.rand((10, 10)) y_pred = torch.rand((10, 10)) self.nebula.compute_loss(y_pred, y_true) def test_different_shape(self): y_true = torch.rand((10, 10)) y_pred = torch.rand((10, 11)) with self.assertRaises(ValueError): self.nebula.compute_loss(y_pred, y_true) def test_empty_tensors(self): y_true = torch.tensor([]) y_pred = torch.tensor([]) with self.assertRaises(ValueError): self.nebula.compute_loss(y_pred, y_true) def test_multidimensional_tensors(self): y_true = torch.rand((10, 10, 10)) y_pred = torch.rand((10, 10, 10)) self.nebula.compute_loss(y_pred, y_true) def test_y_true_unique_values_less_than_10(self): y_true = torch.tensor([1, 1, 2, 2, 3, 3, 4, 4, 5, 5]) y_pred = torch.rand((10,)) self.nebula.compute_loss(y_pred, y_true) def test_y_true_unique_values_greater_than_10(self): y_true = torch.arange(1, 11) y_pred = torch.rand((10,)) self.nebula.compute_loss(y_pred, y_true) def test_negative_integers_in_y_true(self): y_true = torch.tensor([-1, -2, -3, -4, -5, 1, 2, 3, 4, 5]) y_pred = torch.rand((10,)) self.nebula.compute_loss(y_pred, y_true) def test_non_negative_integers_in_y_true(self): y_true = torch.arange(10) y_pred = torch.rand((10,)) self.nebula.compute_loss(y_pred, y_true) def test_sparse_tensor(self): y_true = torch.zeros((10, 10)) y_pred = torch.rand((10, 10)) self.nebula.compute_loss(y_pred, y_true) def test_dense_tensor(self): y_true = torch.ones((10, 10)) y_pred = torch.rand((10, 10)) self.nebula.compute_loss(y_pred, y_true) def test_probability_distributions(self): y_true = torch.FloatTensor([0.1, 0.2, 0.3, 0.4]) y_pred = torch.FloatTensor([0.1, 0.2, 0.3, 0.4]) self.nebula.compute_loss(y_pred, y_true) def test_log_probabilities(self): y_true = torch.randn((10, 10)) y_pred = torch.log_softmax(torch.randn((10, 10)), dim=1) self.nebula.compute_loss(y_pred, y_true) def test_domain_knowledge_classification(self): y_true = torch.randint(0, 2, (10,)) y_pred = torch.rand((10,)) self.nebula.domain_knowledge = "classification" self.nebula.compute_loss(y_pred, y_true) def test_domain_knowledge_regression(self): y_true = torch.randn((10,)) y_pred = torch.rand((10,)) self.nebula.domain_knowledge = "regression" self.nebula.compute_loss(y_pred, y_true) def test_user_input_classification(self): y_true = torch.randint(0, 2, (10,)) y_pred = torch.rand((10,)) self.nebula.user_input = "classification" self.nebula.compute_loss(y_pred, y_true) def test_user_input_regression(self): y_true = torch.randn((10,)) y_pred = torch.rand((10,)) self.nebula.user_input = "regression" self.nebula.compute_loss(y_pred, y_true) def test_y_true_values_in_range_0_1(self): y_true = torch.rand((10, 10)) y_pred = torch.rand((10, 10)) self.nebula.compute_loss(y_pred, y_true) def test_unbalanced_classes_in_y_true(self): y_true = torch.tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 1]) y_pred = torch.rand((10,)) self.nebula.compute_loss(y_pred, y_true) def test_balanced_classes_in_y_true(self): y_true = torch.tensor([0, 0, 0, 0, 0, 1, 1, 1, 1, 1]) y_pred = torch.rand((10,)) self.nebula.compute_loss(y_pred, y_true) def test_large_tensors(self): y_true = torch.rand((10000, 10000)) y_pred = torch.rand((10000, 10000)) self.nebula.compute_loss(y_pred, y_true) def test_multilabel_classification_tensor(self): y_true = torch.tensor([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) y_pred = torch.rand((3, 3)) self.nebula.compute_loss(y_pred, y_true) def test_y_pred_max_value_greater_than_0_9(self): y_true = torch.rand((10,)) y_pred = torch.rand((10,)) + 0.9 self.nebula.compute_loss(y_pred, y_true) def test_loss_function_reuse_from_cache(self): y_true = torch.rand((10,)) y_pred = torch.rand((10,)) self.nebula.compute_loss(y_pred, y_true) self.assertEqual(id(self.nebula.loss_function), id(self.nebula.loss_function_cache[id(y_true)])) def test_nebula_for_regression(self): nebula_loss_function = Nebula(domain_knowledge="regression") loss = nebula_loss_function.compute_loss(self.y_pred_regression, self.y_true_regression) expected_loss = MSELoss().compute_loss(self.y_pred_regression, self.y_true_regression) self.assertTrue(torch.isclose(loss, expected_loss, atol=self.tolerance)) def test_nebula_for_classification(self): nebula_loss_function = Nebula(domain_knowledge="classification") loss = nebula_loss_function.compute_loss(self.y_pred_classification, self.y_true_classification) expected_loss = CrossEntropyLoss().compute_loss(self.y_pred_classification, self.y_true_classification) self.assertTrue(torch.isclose(loss, expected_loss, atol=self.tolerance)) def test_nebula_for_multi_label_classification(self): # For multi-label classification, let's assume each instance can belong to any of the 3 classes y_true_multi_label_classification = torch.tensor([[1, 0, 1], [0, 1, 0], [1, 1, 0], [0, 0, 1], [1, 0, 0]], dtype=torch.float) y_pred_multi_label_classification = torch.rand((5, 3), dtype=torch.float) # Random probabilities for classes nebula_loss_function = Nebula() loss = nebula_loss_function.compute_loss(y_pred_multi_label_classification, y_true_multi_label_classification) expected_loss = MultiLabelSoftMarginLoss().compute_loss(y_pred_multi_label_classification, y_true_multi_label_classification) self.assertTrue(torch.isclose(loss, expected_loss, atol=self.tolerance)) # Add more tests for other scenarios... if __name__ == "__main__": unittest.main()
nebula-master
testing.py
#using gradient boosted greedy algorithms to compute loss import xgboost as xgb import numpy as np from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error, accuracy_score # Load your dataset # X, y = load_your_data() # For demonstration purposes, we'll use random data X = np.random.rand(100, 10) y = np.random.randint(0, 2, 100) # Split the data into training and testing sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Train an XGBoost model dtrain = xgb.DMatrix(X_train, label=y_train) dtest = xgb.DMatrix(X_test, label=y_test) params = { 'objective': 'binary:logistic', 'eval_metric': 'logloss', 'seed': 42 } bst = xgb.train(params, dtrain, num_boost_round=100, early_stopping_rounds=10, evals=[(dtest, 'test')]) # Make predictions on the same dataset y_pred = bst.predict(dtest) # Determine the loss function y_pred_labels = np.round(y_pred) accuracy = accuracy_score(y_test, y_pred_labels) mse = mean_squared_error(y_test, y_pred) print("Accuracy:", accuracy) print("Mean Squared Error:", mse) if accuracy > 0.9: print("Use CrossEntropyLoss") else: print("Use MSELoss")
nebula-master
experimental/xgboostV3.py
import torch import torch.nn as nn import numpy as np #define the loss function class class LossFunction: def compute_loss(self, y_pred, y_true): raise NotImplemented("compute_loss method must be implemented") #implement specific loss functions that inherit from LossFunction class L1Loss(LossFunction): def __init__(self): self.loss_function = nn.L1Loss() def compute_loss(self, y_pred, y_true): return self.loss_function(y_pred, y_true) class MSELoss(LossFunction): def __init__(self): self.loss_function = nn.MSELoss() def compute_loss(self, y_pred, y_true): return self.loss_function(y_pred, y_true) class CrossEntropyLoss(LossFunction): def __init__(self): self.loss_function = nn.CrossEntropyLoss() def compute_loss(self, y_pred, y_true): return self.loss_function(y_pred, y_true) """ all pytorch loss functions """ #v1 # class Nebula(LossFunction): # def __init__(self): # self.loss_function = None # def determine_loss_function(self, y_pred, y_true): # ##implement logic to determine type of data and select the loss function # #based on the shape of y_true or other criteria # if len(y_true.shape) > 1 and y_true.shape[1] > 1: # self.loss_function = CrossEntropyLoss() # else: # self.loss_function = MSELoss() # #transform function data1 to -> data type loss function can understand? # def compute_loss(self, y_pred, y_true): # self.determine_loss_function(y_pred, y_true) # return self.loss_function.compute_loss(y_pred, y_true) # Example usage # y_pred_classification = torch.tensor([[2.0, 1.0, 0.1], [1.0, 2.0, 0.1]]) # y_true_classification = torch.tensor([0, 1]) #v2 # GRADIENT BOOSTED # greedy algorithm #concurrency #asynchrony #CACHING FOR TRAINING --> THIS IS YOUR DATASET -> OKAY HERES LOSS FUNCTION -> DONT COMPUTE DETERMINE LOSS FUNCTION #self healing loss function #responsive loss function # 1 loss function for any task def one_hot_encoding(y_true, num_classes): y_true_one_hot = torch.zeros(y_true.size(0), num_classes) y_true_one_hot.scatter_(1, y_true.unsqueeze(1), 1) return y_true_one_hot class Nebula(LossFunction): def __init__(self, domain_knowledge=None, user_input=None): self.loss_function = None self.domain_knowledge = domain_knowledge self.user_input = user_input self.loss_function_cache = {} def determine_loss_function(self, y_pred, y_true): #op 1 check range of values in y_true unique_values = np.unique(y_true) if len(unique_values) <= 10 and np.all(np.equal(np.mod(unique_values, 1), 0)): if_classification = True else: is_classification = True #==============================================> #opt2 - check the distribution of valus in y_true # assuming a specific pattern indicates a classification problem # You can replace this with a more specific pattern check if needded # value_counts = np.bincount(y_true.flatten().astype(int)) value_counts = np.bincount(y_true.flatten().to(dtype=torch.int32).numpy()) if np.all(value_counts > 0): is_classification = True #==============================================> #op 3 analyze the dimension of y_pred if y_pred.ndim > 2: #handle segmentation problem pass #==============================================> #op4 -> check sparsity of y_true #v1 # sparsity = np.count_nonzero(y_true) / y_true.numel() # if sparsity < 0.1: # #handle multi label classification problem # pass #v2 # sparsity = np.count_nonzero(y_true) / y_true.numel() # if sparsity < 0.5: # self.loss_function = torch.nn.BCEWithLogitsLoss() #v3 sparsity = np.count_nonzero(y_true) / y_true.numel() if sparsity < 0.5: self.loss_function = torch.nn.BCEWithLogitsLoss() self.compute_loss = self.loss_function #==============================================> #op5 analyze the relationship between y_pred and y_true #v1 # correlation = np.corrcoef(y_pred.flatten(), y_true.flatten())[0, 1] # if correlation > 0.8: # is_classification = False #v2 # y_pred_flat = y_pred.flatten().numpy() # y_true_flat = y_true.flatten().numpy() # if y_pred_flat.shape != y_true_flat.shape: # y_pred_flat = y_pred_flat[:y_true_flat.shape] # correlation = np.corrcoef(y_pred_flat, y_true_flat)[0, 1] #v3 # y_pred_flat = y_pred.flatten().numpy() # y_true_flat = y_true.flatten().numpy() # if y_pred.flat.shape != y_true_flat.shape: # y_pref_flat = y_pred_flat[:y_true_flat.size] # correlation = np.corrcoef(y_pref_flat, y_true_flat)[0, 1] #v4 y_pred_flat = y_pred.flatten().numpy() y_true_flat = y_true.flatten().numpy() if y_pred_flat.shape != y_true_flat.shape: y_pred_flat = y_pred_flat[:y_true_flat.size] correlation = np.corrcoef(y_pred_flat, y_true_flat)[0, 1] #==============================================> #op6 use domain_kownledge if self.domain_knowledge == "classification": is_classification = True elif self.domain_knowledge == "regression": is_classification = False #==============================================> #op7 analyze distribution of values in y_pred #assuiming certainty indicates a classification problem # if np.max(y_pred) > 0.9: # is_classification = True #v2 if torch.max(y_pred) > 0.9: is_classification = True #==============================================> #op8 check the baalance of classes in y_true #assuming imbalanced classes indicate a classification problem class_balance = value_counts / np.sum(value_counts) if np.any(class_balance < 0.1): is_classification = True #==============================================> #op9 use a model selection technique #this optimization requires a model and a dataset so its not implemented # you can implement this op outside the determine_loss_function method #==============================================> #op10 leverage user input or metadata if self.user_input == "classification": is_classification = True elif self.user_input == "regression": is_classification = False #set the loss function based on the determined problem type if is_classification: self.loss_function = CrossEntropyLoss() else: self.loss_function = MSELoss() def compute_loss(self, y_pred, y_true): dataset_id = id(y_true) if dataset_id not in self.loss_function.cache: self.determine_loss_function(y_pred, y_true) self.loss_function_cache[dataset_id] = self.loss_function # self.determine_loss_function(y_pred, y_true) # return self.loss_function.compute_loss(y_pred, y_true) cached_loss_function = self.loss_function_cache[dataset_id] return cached_loss_function.compute_loss(y_pred, y_true) # y_pred_regression = torch.tensor([[2.5], [3.2]]) # y_true_regression = torch.tensor([[2.0], [3.0]]) # nebula = Nebula() # loss_classification = nebula.compute_loss(y_pred_classification, y_true_classification) # print("Nebula loss for classification:", loss_classification) # loss_regression = nebula.compute_loss(y_pred_regression, y_true_regression) # print("Nebula loss for regression:", loss_regression) # v2 testing # Example data for each optimization y_true_classification = torch.tensor([0, 1, 0, 2, 1]) y_true_regression = torch.tensor([2.0, 3.5, 1.2, 4.8, 3.3]) y_pred_classification = torch.tensor([[0.8, 0.1, 0.1], [0.2, 0.7, 0.1], [0.9, 0.05, 0.05], [0.1, 0.2, 0.7], [0.3, 0.6, 0.1]]) y_pred_regression = torch.tensor([2.1, 3.6, 1.0, 4.9, 3.1]) # Example usage nebula = Nebula() y_pred_classification = torch.randn(5, 3) y_true_classification = torch.tensor([1, 0, 2, 1, 0]) y_true_multilabel = torch.tensor([[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 0, 0], [0, 1, 0]]) # Convert y_true_multilabel to float y_true_multilabel = y_true_multilabel.to(torch.float32) # Optimization 1: Check the range of values in y_true loss_classification_1 = nebula.compute_loss(y_pred_classification, y_true_classification) print("Nebula loss for classification (Optimization 1):", loss_classification_1) loss_regression_1 = nebula.compute_loss(y_pred_regression, y_true_regression) print("Nebula loss for regression (Optimization 1):", loss_regression_1) # Optimization 2: Check the distribution of values in y_true # (Assuming a specific pattern indicates a classification problem) y_true_classification_2 = torch.tensor([0, 1, 0, 1, 0]) loss_classification_2 = nebula.compute_loss(y_pred_classification, y_true_classification_2) print("Nebula loss for classification (Optimization 2):", loss_classification_2) # Optimization 3: Analyze the dimensions of y_pred # (Not applicable in this example, as it requires a segmentation problem) # Optimization 4: Check the sparsity of y_true # y_true_multilabel = torch.tensor([[1, 0, 0], [0, 1, 0], [1, 0, 0], [0, 0, 1], [0, 1, 0]]) # y_true_multilabel = torch.tensor([[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 0, 0], [0, 1, 0]]) loss_multilabel = nebula.compute_loss(y_pred_classification, y_true_multilabel) print("Nebula loss for multi-label classification (Optimization 4):", loss_multilabel) # Optimization 5: Analyze the relationship between y_pred and y_true y_true_regression_5 = torch.tensor([2.1, 3.6, 1.0, 4.9, 3.1]) loss_regression_5 = nebula.compute_loss(y_pred_regression, y_true_regression_5) print("Nebula loss for regression (Optimization 5):", loss_regression_5) # Optimization 6: Use domain knowledge nebula_domain_classification = Nebula(domain_knowledge="classification") loss_classification_6 = nebula_domain_classification.compute_loss(y_pred_classification, y_true_classification) print("Nebula loss for classification (Optimization 6):", loss_classification_6) nebula_domain_regression = Nebula(domain_knowledge="regression") loss_regression_6 = nebula_domain_regression.compute_loss(y_pred_regression, y_true_regression) print("Nebula loss for regression (Optimization 6):", loss_regression_6) # Optimization 7: Analyze the distribution of values in y_pred # y_pred_classification_7 = torch.tensor([[0.95, 0.025, 0.025], [0.05, 0.9, 0.05], [0.9, 0.05, 0.05], [0.1, 0.1, 0.8], [0.1, 0.8, 0.1]]) y_pred_classification_7 = torch.randn(5, 3) y_true_classification_one_hot = one_hot_encoding(y_true_classification, 3) loss_classification_7 = nebula.compute_loss(y_pred_classification_7, y_true_classification) print("Nebula loss for classification (Optimization 7):", loss_classification_7) # Optimization 8: Check the balance of classes in y_true y_true_classification_8 = torch.tensor([0, 0, 0, 1, 1]) loss_classification_8 = nebula.compute_loss(y_pred_classification, y_true_classification_8) print("Nebula loss for classification (Optimization 8):", loss_classification_8) # Optimization 10: Leverage user input or metadata nebula_user_classification = Nebula(user_input="classification") loss_classification_10 = nebula_user_classification.compute_loss(y_pred_classification, y_true_classification) print("Nebula loss for classification (Optimization 10):", loss_classification_10) nebula_loss_regression = Nebula(user_input="regression") loss_regression_10 = nebula_user_classification.compute_loss(y_pred_regression, y_true_regression) print(f"Nebula loss for regression (optimization 10) {loss_regression_10}")
nebula-master
experimental/nebulaV2.py
import numpy as np from torch.nn import BCELoss # Define the base LossFunction class class LossFunction: def compute_loss(self, y_pred, y_true): raise NotImplementedError("compute_loss method must be implemented in the derived class") # Define specific loss function classes that inherit from LossFunction class CrossEntropyLoss(LossFunction): def compute_loss(self, y_pred, y_true): softmax_pred = self.softmax(y_pred) loss = -np.sum(y_true * np.log(softmax_pred)) return loss def softmax(self, x): exp_x = np.exp(x - np.max(x)) return exp_x / np.sum(exp_x, axis=1, keepdims=True) class MeanSquaredErrorLoss(LossFunction): def compute_loss(self, y_pred, y_true): return np.mean((y_pred - y_true) ** 2) #v1 # # Create a DynamicLossFunction class that inherits from the LossFunction base class # class DynamicLossFunction(LossFunction): # def __init__(self): # self.loss_function = None # def determine_loss_function(self, y_pred, y_true): # # Implement logic to determine the type of data and select the appropriate loss function # # For example, based on the shape of y_true or other criteria # if y_true.shape[1] > 1: # self.loss_function = CrossEntropyLoss() # else: # self.loss_function = MeanSquaredErrorLoss() # def compute_loss(self, y_pred, y_true): # self.determine_loss_function(y_pred, y_true) # return self.loss_function.compute_loss(y_pred, y_true) class DynamicLossFunction(LossFunction): def __init__(self): self.loss_function = None def determine_loss_function(self, y_pred, y_true): # Implement logic to determine the type of data and select the appropriate loss function # Check if the problem is a classification or regression task is_classification = self.is_classification_task(y_true) # Check if the problem involves multiple classes or binary classes is_multiclass = self.is_multiclass_problem(y_true) # Select the appropriate loss function based on the problem type if is_classification: if is_multiclass: self.loss_function = CrossEntropyLoss() else: self.loss_function = BCELoss() else: self.loss_function = MeanSquaredErrorLoss() def is_classification_task(self, y_true): # Check if the target variable is binary or consists of integers (indicating class labels) return np.issubdtype(y_true.dtype, np.integer) def is_multiclass_problem(self, y_true): # Check if the problem involves multiple classes by counting the unique values in y_true unique_values = np.unique(y_true) return len(unique_values) > 2 def compute_loss(self, y_pred, y_true): self.determine_loss_function(y_pred, y_true) return self.loss_function.compute_loss(y_pred, y_true) # Example usage y_pred_classification = np.array([[2.0, 1.0, 0.1], [1.0, 2.0, 0.1]]) y_true_classification = np.array([[1, 0, 0], [0, 1, 0]]) y_pred_regression = np.array([[2.5], [3.2]]) y_true_regression = np.array([[2.0], [3.0]]) dynamic_loss_function = DynamicLossFunction() loss_classification = dynamic_loss_function.compute_loss(y_pred_classification, y_true_classification) print("Dynamic loss for classification:", loss_classification) loss_regression = dynamic_loss_function.compute_loss(y_pred_regression, y_true_regression) print("Dynamic loss for regression:", loss_regression)
nebula-master
experimental/nebula.py
import torch import torch.nn as nn # import torch.jit import numpy as np class LossFunction: def compute_Loss(self, y_pred, y_true): raise NotImplemented("compute_loss method must be implemented!") class L1Loss(LossFunction): def __init__(self): self.loss_function = nn.L1Loss() def compute_loss(self, y_pred, y_true): return self.loss_function(y_pred, y_true) # class MSELoss(LossFunction): # def __init__(self): # self.loss_function = nn.MSELoss() # def compute_loss(self, y_pred, y_true): # return self.loss_function(y_pred, y_true) class MSELoss(LossFunction): def __init__(self): super().__init__() self.loss_function = nn.MSELoss() def compute_loss(self, y_pred, y_true): y_true_one_hot = torch.zeros_like(y_pred) y_true_one_hot.scatter_(1, y_true.unsqueeze(1), 1) return self.loss_function(y_pred, y_true_one_hot) def one_hot_encoding(y_true, num_classes): y_true_one_hot = torch.zeros(y_true.size(0), num_classes) y_true_one_hot.scatter_(1, y_true.unsqueeze(1), 1) return y_true_one_hot class SmoothL1Loss(LossFunction): def __init__(self): self.loss_function = nn.SmoothL1Loss() def compute_Loss(self, y_pred, y_true): return self.loss_function(y_pred, y_true) class MultiLabelSoftMarginLoss(LossFunction): def __init__(self): self.loss_function = nn.MultiLabelSoftMarginLoss() def compute_loss(self, y_pred, y_true): return self.loss_function(y_pred, y_true) class PoissonNLLoss(LossFunction): def __init__(self): self.loss_function = nn.PoissonNLLLoss() def compute_loss(self, y_pred, y_true): return self.loss_function(y_pred, y_true) class KLDivLoss(LossFunction): def __init__(self): self.loss_function = nn.KLDivLoss() def compute_loss(self, y_pred, y_true): return self.loss_function(F.log_softmax(y_pred, dim=1)) class NLLLoss(LossFunction): def __init__(self): self.loss_function = nn.NLLLoss() def compute_loss(self, y_pred, y_true): return self.loss_function(y_pred, y_true) class HashableTensorWrapper: def __init__(self, tensor): self.tensor = tensor self.tensor_shape = tensor.shape self.tensor_dtype = tensor.dtype def __hash__(self): return hash((self.tensor_shape, self.tensor_dtype)) def __eq__(self, other): return isinstance(other, HashableTensorWrapper) and self.tensor_shape == other.tensor_shape and self.tensor_dtype == other.tensor_dtype #detector helper function # def is_multi_label_classification(y_true: torch.Tensor): # return y_true.shape[1] > 1 and y_true.dtype == torch.float #v2 def is_multi_label_classification(y_true: torch.Tensor) -> bool: return len(y_true.shape) > 1 and y_true.shape[1] > 1 and y_true.dtype == torch.float def contains_non_negative_integers(y_true): return torch.all(y_true >= 0) and torch.all(y_true == y_true.to(torch.int64)) def are_probability_distributions(y_pred, y_true): return torch.all(y_pred >= 0) and torch.all(y_pred <= 1) and torch.all(y_true >= 0) and torch.all(y_true <= 1) def are_log_probabilities(y_pred): return torch.all(y_pred <= 0) #generate unique key for a tensor #v1 # def generate_tensor_key(tensor): # return (tuple(tensor.shape), str(tensor.dtype)) #v2 # def generate_tensor_key(tensor): # shape_tuple = () # for dim in tensor.shape: # shape_tuple += (dim.item(),) # return (shape_tuple, str(tensor.dtype)) #v3 # def generate_tensor_key(tensor): # shape_tuple = () # for dim in tensor.shape: # shape_tuple += (dim,) # return (shape_tuple, str(tensor.dtype)) #v4 def generate_tensor_key(tensor): shape_tuple = () for dim in tensor.shape: shape_tuple += (dim,) return (shape_tuple, str(tensor.dtype)) class CrossEntropyLoss(LossFunction): def __init__(self): self.loss_function = nn.CrossEntropyLoss() def compute_loss(self, y_pred, y_true): return self.loss_function(y_pred, y_true) class Nebula(LossFunction): def __init__(self, domain_knowledge=None, user_input=None): self.loss_function = None self.domain_knowledge = domain_knowledge self.user_input = user_input self.loss_function_cache = {} self.unique_values_cache = {} self.class_balance_cache = {} def determine_loss_function(self, y_pred, y_true): is_classification = None dataset_id = id(y_true) # Cache unique values if dataset_id not in self.unique_values_cache: self.unique_values_cache[dataset_id] = torch.unique(y_true) unique_values = self.unique_values_cache[dataset_id] # Cache class balance if dataset_id not in self.class_balance_cache: value_counts = torch.bincount(y_true.flatten().to(dtype=torch.int64)) self.class_balance_cache[dataset_id] = value_counts / torch.sum(value_counts) class_balance = self.class_balance_cache[dataset_id] # Optimization 2: Use PyTorch functions instead of NumPy value_counts = torch.bincount(y_true.flatten().to(dtype=torch.int64)) # The remaining code remains unchanged as it already incorporates the suggested optimizations if is_classification is None: if len(unique_values) <= 10 and torch.all(torch.eq(unique_values % 1, 0)): is_classification = True if is_classification is None: if torch.all(value_counts > 0): is_classification = True if y_pred.ndim > 2: pass if is_classification is None: sparsity = torch.count_nonzero(y_true) / y_true.numel() if sparsity < 0.5: self.loss_function = torch.nn.BCEWithLogitsLoss() self.compute_loss = self.loss_function return y_pred_flat = y_pred.flatten() y_true_flat = y_true.flatten() if y_pred_flat.shape != y_true_flat.shape: y_pred_flat = y_pred_flat[:y_true_flat.numel()] correlation = torch.tensor(np.corrcoef(y_pred_flat.cpu().numpy(), y_true_flat.cpu().numpy())[0, 1]) if is_classification is None: if self.domain_knowledge == "classification": is_classification = True elif self.domain_knowledge == "regression": is_classification = False if is_classification is None: if torch.max(y_pred) > 0.9: is_classification = True if is_classification is None: if torch.any(class_balance < 0.1): is_classification = True if is_classification is None: if self.user_input == "classification": is_classification = True elif self.user_input == "regression": is_classification = False #Multi-LabelClassification if is_multi_label_classification(y_true): self.loss_function = MultiLabelSoftMarginLoss() #poissonNLLLoss if contains_non_negative_integers(y_true): self.loss_function = PoissonNLLoss() #KLDIvLoss if are_probability_distributions(y_pred, y_true): self.loss_function = KLDivLoss() #NLLLoss if is_classification and are_log_probabilities(y_pred): self.loss_function = NLLLoss() # SmotthL1Loss if is_classification is None: #check range of values in y_true if torch.min(y_true) >= 0 and torch.max(y_true) <= 1: self.loss_function = SmoothL1Loss() # Set the loss function based on the determined problem type if is_classification: self.loss_function = CrossEntropyLoss() else: self.loss_function = MSELoss() # @torch.jit.script #optimization jit def compute_loss(self, y_pred, y_true): #v2 # tensor_key = HashableTensorWrapper(y_true) # if tensor_key not in self.loss_function_cache: # self.determine_loss_function(y_pred, y_true) # return self.loss_function_cache[tensor_key](y_pred, y_true) # V1 dataset_id = id(y_true) if dataset_id not in self.loss_function_cache: self.determine_loss_function(y_pred, y_true) self.loss_function_cache[dataset_id] = self.loss_function cached_loss_function = self.loss_function_cache[dataset_id] return cached_loss_function.compute_loss(y_pred, y_true) #v3 # tensor_key = generate_tensor_key(y_true) # if tensor_key not in self.loss_function_cache: # self.determine_loss_function(y_pred, y_true) # return self.loss_function_cache[tensor_key](y_pred, y_true) #move tensors nd model to gpu if available # device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # y_pred, y_true = y_pred.to(device), y_true.to(device) # # #example usage with the pytorch autograd profiler # with torch.autograd.profiler.profile() as prof: # loss = Nebula.compute_loss(y_pred, y_true) # print(prof.key_average().table()) #reinforcement from stable_baselines3 import PPO from stable_baselines3.common.vec_env import DummyVecEnv, VecEnv from stable_baselines3.common.torch_layers import BaseFeaturesExtractor import gym from gym import spaces class CustomFeaturesExtractor(BaseFeaturesExtractor): def __init__(self, observation_space, features_dim): super().__init__(observation_space, features_dim=features_dim) print(f"Observation space: {observation_space} and features_dim: {features_dim} ") def forward(self, observations): # Extract features from the observations (state representation) features = torch.tensor(observations).float() return features class LossFunctionEnv(gym.Env): def __init__(self, y_pred, y_true): super().__init__() self.y_pred = y_pred self.y_true = y_true self.action_space = spaces.Discrete(len([CrossEntropyLoss, MSELoss])) # Add more loss functions as needed self.observation_space = spaces.Box(low=0, high=float('inf'), shape=(2,), dtype=np.float32) def reset(self): # Reset the environment and return the initial state state = self.extract_state(self.y_pred, self.y_true) return state def step(self, action): # Map the action to the corresponding loss function loss_function = map_action_to_loss_function(action) # Compute the loss using the selected loss function loss = loss_function.compute_loss(self.y_pred, self.y_true) # Define the reward based on the loss reward = -loss.item() # Check if the episode is done (e.g., after a certain number of steps or a certain loss threshold) done = False # Return the next state, reward, and done flag next_state = self.extract_state(self.y_pred, self.y_true) return next_state, reward, done, {} def extract_state(self, y_pred, y_true): num_unique_values = len(torch.unique(y_true)) pred_range = torch.max(y_pred) - torch.min(y_pred) state = [num_unique_values, pred_range.item()] return state def map_action_to_loss_function(action): if action == 0: return CrossEntropyLoss() elif action == 1: return MSELoss() #add more loss functions as needed # Create a DummyVecEnv wrapper for the LossFunctionEnv def make_env(y_pred, y_true): def _init(): return LossFunctionEnv(y_pred, y_true) return _init y_pred = torch.randn(100, 10) y_true = torch.randint(0, 10, (100,)) env = DummyVecEnv([make_env(y_pred, y_true)]) # Create a custom policy network that uses the CustomFeaturesExtractor policy_kwargs = dict( features_extractor_class=CustomFeaturesExtractor, features_extractor_kwargs=dict(features_dim=env.observation_space.shape[0]), # Define the observation space based on the state representation ) # Initialize the PPO agent agent = PPO("MlpPolicy", env, policy_kwargs=policy_kwargs, verbose=1) # Train the agent agent.learn(total_timesteps=10000) # Use the trained agent in the NebulaOptimized class class NebulaOptimized(Nebula): def __init__(self, domain_knowledge=None, user_input=None): super().__init__(domain_knowledge, user_input) self.rl_agent = agent def determine_loss_function(self, y_pred, y_true): # Extract state representation from the data and model # state = ... # Extract state representation from y_pred and y_true state = self.extract_state(y_pred, y_true) # Use the RL agent to select the optimal loss function action, _ = self.rl_agent.predict(state, deterministic=True) # Map the action to the corresponding loss function self.loss_function = map_action_to_loss_function(action) def extract_state(self, y_pred, y_true): num_unique_values = len(torch.unique(y_true)) pred_range = torch.max(y_pred) - torch.min(y_pred) state = [num_unique_values, pred_range.item()] return state nebula_optimized = NebulaOptimized() #test the trained agent with new y_pred and y_true tensors y_pred_test = torch.randn(100, 10) y_true_test = torch.randint(0, 10, (100,)) nebula_optimized.determine_loss_function(y_pred_test, y_true_test) print(f"Selected loss function {nebula_optimized.loss_function}")
nebula-master
experimental/reinforcement/nebula.py
import torch import torch.nn as nn # import torch.jit import numpy as np class LossFunction: def compute_Loss(self, y_pred, y_true): raise NotImplemented("compute_loss method must be implemented!") class L1Loss(LossFunction): def __init__(self): self.loss_function = nn.L1Loss() def compute_loss(self, y_pred, y_true): return self.loss_function(y_pred, y_true) # class MSELoss(LossFunction): # def __init__(self): # self.loss_function = nn.MSELoss() # def compute_loss(self, y_pred, y_true): # return self.loss_function(y_pred, y_true) class MSELoss(LossFunction): def __init__(self): super().__init__() self.loss_function = nn.MSELoss() def compute_loss(self, y_pred, y_true): y_true_one_hot = torch.zeros_like(y_pred) y_true_one_hot.scatter_(1, y_true.unsqueeze(1), 1) return self.loss_function(y_pred, y_true_one_hot) def one_hot_encoding(y_true, num_classes): y_true_one_hot = torch.zeros(y_true.size(0), num_classes) y_true_one_hot.scatter_(1, y_true.unsqueeze(1), 1) return y_true_one_hot class SmoothL1Loss(LossFunction): def __init__(self): self.loss_function = nn.SmoothL1Loss() def compute_Loss(self, y_pred, y_true): return self.loss_function(y_pred, y_true) class MultiLabelSoftMarginLoss(LossFunction): def __init__(self): self.loss_function = nn.MultiLabelSoftMarginLoss() def compute_loss(self, y_pred, y_true): return self.loss_function(y_pred, y_true) class PoissonNLLoss(LossFunction): def __init__(self): self.loss_function = nn.PoissonNLLLoss() def compute_loss(self, y_pred, y_true): return self.loss_function(y_pred, y_true) class KLDivLoss(LossFunction): def __init__(self): self.loss_function = nn.KLDivLoss() def compute_loss(self, y_pred, y_true): return self.loss_function(F.log_softmax(y_pred, dim=1)) class NLLLoss(LossFunction): def __init__(self): self.loss_function = nn.NLLLoss() def compute_loss(self, y_pred, y_true): return self.loss_function(y_pred, y_true) class HashableTensorWrapper: def __init__(self, tensor): self.tensor = tensor self.tensor_shape = tensor.shape self.tensor_dtype = tensor.dtype def __hash__(self): return hash((self.tensor_shape, self.tensor_dtype)) def __eq__(self, other): return isinstance(other, HashableTensorWrapper) and self.tensor_shape == other.tensor_shape and self.tensor_dtype == other.tensor_dtype #detector helper function # def is_multi_label_classification(y_true: torch.Tensor): # return y_true.shape[1] > 1 and y_true.dtype == torch.float #v2 def is_multi_label_classification(y_true: torch.Tensor) -> bool: return len(y_true.shape) > 1 and y_true.shape[1] > 1 and y_true.dtype == torch.float def contains_non_negative_integers(y_true): return torch.all(y_true >= 0) and torch.all(y_true == y_true.to(torch.int64)) def are_probability_distributions(y_pred, y_true): return torch.all(y_pred >= 0) and torch.all(y_pred <= 1) and torch.all(y_true >= 0) and torch.all(y_true <= 1) def are_log_probabilities(y_pred): return torch.all(y_pred <= 0) #generate unique key for a tensor #v1 # def generate_tensor_key(tensor): # return (tuple(tensor.shape), str(tensor.dtype)) #v2 # def generate_tensor_key(tensor): # shape_tuple = () # for dim in tensor.shape: # shape_tuple += (dim.item(),) # return (shape_tuple, str(tensor.dtype)) #v3 # def generate_tensor_key(tensor): # shape_tuple = () # for dim in tensor.shape: # shape_tuple += (dim,) # return (shape_tuple, str(tensor.dtype)) #v4 def generate_tensor_key(tensor): shape_tuple = () for dim in tensor.shape: shape_tuple += (dim,) return (shape_tuple, str(tensor.dtype)) class CrossEntropyLoss(LossFunction): def __init__(self): self.loss_function = nn.CrossEntropyLoss() def compute_loss(self, y_pred, y_true): return self.loss_function(y_pred, y_true) class Nebula(LossFunction): def __init__(self, domain_knowledge=None, user_input=None): self.loss_function = None self.domain_knowledge = domain_knowledge self.user_input = user_input self.loss_function_cache = {} self.unique_values_cache = {} self.class_balance_cache = {} def determine_loss_function(self, y_pred, y_true): is_classification = None dataset_id = id(y_true) # Cache unique values if dataset_id not in self.unique_values_cache: self.unique_values_cache[dataset_id] = torch.unique(y_true) unique_values = self.unique_values_cache[dataset_id] # Cache class balance if dataset_id not in self.class_balance_cache: value_counts = torch.bincount(y_true.flatten().to(dtype=torch.int64)) self.class_balance_cache[dataset_id] = value_counts / torch.sum(value_counts) class_balance = self.class_balance_cache[dataset_id] # Optimization 2: Use PyTorch functions instead of NumPy value_counts = torch.bincount(y_true.flatten().to(dtype=torch.int64)) # The remaining code remains unchanged as it already incorporates the suggested optimizations if is_classification is None: if len(unique_values) <= 10 and torch.all(torch.eq(unique_values % 1, 0)): is_classification = True if is_classification is None: if torch.all(value_counts > 0): is_classification = True if y_pred.ndim > 2: pass if is_classification is None: sparsity = torch.count_nonzero(y_true) / y_true.numel() if sparsity < 0.5: self.loss_function = torch.nn.BCEWithLogitsLoss() self.compute_loss = self.loss_function return y_pred_flat = y_pred.flatten() y_true_flat = y_true.flatten() if y_pred_flat.shape != y_true_flat.shape: y_pred_flat = y_pred_flat[:y_true_flat.numel()] correlation = torch.tensor(np.corrcoef(y_pred_flat.cpu().numpy(), y_true_flat.cpu().numpy())[0, 1]) if is_classification is None: if self.domain_knowledge == "classification": is_classification = True elif self.domain_knowledge == "regression": is_classification = False if is_classification is None: if torch.max(y_pred) > 0.9: is_classification = True if is_classification is None: if torch.any(class_balance < 0.1): is_classification = True if is_classification is None: if self.user_input == "classification": is_classification = True elif self.user_input == "regression": is_classification = False #Multi-LabelClassification if is_multi_label_classification(y_true): self.loss_function = MultiLabelSoftMarginLoss() #poissonNLLLoss if contains_non_negative_integers(y_true): self.loss_function = PoissonNLLoss() #KLDIvLoss if are_probability_distributions(y_pred, y_true): self.loss_function = KLDivLoss() #NLLLoss if is_classification and are_log_probabilities(y_pred): self.loss_function = NLLLoss() # SmotthL1Loss if is_classification is None: #check range of values in y_true if torch.min(y_true) >= 0 and torch.max(y_true) <= 1: self.loss_function = SmoothL1Loss() # Set the loss function based on the determined problem type if is_classification: self.loss_function = CrossEntropyLoss() else: self.loss_function = MSELoss() # @torch.jit.script #optimization jit def compute_loss(self, y_pred, y_true): #v2 # tensor_key = HashableTensorWrapper(y_true) # if tensor_key not in self.loss_function_cache: # self.determine_loss_function(y_pred, y_true) # return self.loss_function_cache[tensor_key](y_pred, y_true) # V1 dataset_id = id(y_true) if dataset_id not in self.loss_function_cache: self.determine_loss_function(y_pred, y_true) self.loss_function_cache[dataset_id] = self.loss_function cached_loss_function = self.loss_function_cache[dataset_id] return cached_loss_function.compute_loss(y_pred, y_true) #v3 # tensor_key = generate_tensor_key(y_true) # if tensor_key not in self.loss_function_cache: # self.determine_loss_function(y_pred, y_true) # return self.loss_function_cache[tensor_key](y_pred, y_true) #move tensors nd model to gpu if available # device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # y_pred, y_true = y_pred.to(device), y_true.to(device) # # #example usage with the pytorch autograd profiler # with torch.autograd.profiler.profile() as prof: # loss = Nebula.compute_loss(y_pred, y_true) # print(prof.key_average().table()) #reinforcement from stable_baselines3 import PPO, A2C from stable_baselines3.common.vec_env import DummyVecEnv, VecEnv from stable_baselines3.common.torch_layers import BaseFeaturesExtractor import gym from gym import spaces class CustomFeaturesExtractor(BaseFeaturesExtractor): def __init__(self, observation_space, features_dim): super().__init__(observation_space, features_dim=features_dim) print(f"Observation space: {observation_space} and features_dim: {features_dim} ") def forward(self, observations): # Extract features from the observations (state representation) features = torch.tensor(observations).float() return features class LossFunctionEnv(gym.Env): def __init__(self, y_pred, y_true): super().__init__() self.y_pred = y_pred self.y_true = y_true self.action_space = spaces.Discrete(len([CrossEntropyLoss, MSELoss])) # Add more loss functions as needed self.observation_space = spaces.Box(low=0, high=float('inf'), shape=(2,), dtype=np.float32) self.state = self.precompute_state(y_pred, y_true) def precompute_state(self, y_pred, y_true): num_unique_values = len(torch.unique(y_true)) pred_range = torch.max(y_pred) - torch.min(y_pred) state = [num_unique_values, pred_range.item()] return state def reset(self): # Reset the environment and return the initial state state = self.extract_state(self.y_pred, self.y_true) return state def step(self, action): # Map the action to the corresponding loss function loss_function = map_action_to_loss_function(action) # Compute the loss using the selected loss function loss = loss_function.compute_loss(self.y_pred, self.y_true) #define the reward based model on the loss max_loss = torch.max(self.y_pred).item() * len(self.y_pred) # Define the reward based on the loss reward = -loss.item() / max_loss #2nd loss # reward = np.exp(-loss.item()) # Check if the episode is done (e.g., after a certain number of steps or a certain loss threshold) done = False # Return the next state, reward, and done flag next_state = self.extract_state(self.y_pred, self.y_true) return next_state, reward, done, {} def extract_state(self, y_pred, y_true): num_unique_values = len(torch.unique(y_true)) pred_range = torch.max(y_pred) - torch.min(y_pred) state = [num_unique_values, pred_range.item()] return state #Cache action-to-loss-function mapping action_to_loss_function_cache = {} def map_action_to_loss_function(action): # action = int(action[0]) if isinstance(action, np.ndarray): action = action.item() if action not in action_to_loss_function_cache: if action == 0: action_to_loss_function_cache[action] = CrossEntropyLoss() elif action == 1: action_to_loss_function_cache[action] = MSELoss() return action_to_loss_function_cache[action] #add more loss functions as needed # Create a DummyVecEnv wrapper for the LossFunctionEnv def make_env(y_pred, y_true): def _init(): return LossFunctionEnv(y_pred, y_true) return _init y_pred = torch.randn(100, 10) y_true = torch.randint(0, 10, (100,)) env = DummyVecEnv([make_env(y_pred, y_true)]) # Create a custom policy network that uses the CustomFeaturesExtractor policy_kwargs = dict( features_extractor_class=CustomFeaturesExtractor, features_extractor_kwargs=dict(features_dim=env.observation_space.shape[0]), # Define the observation space based on the state representation ) import optuna # Define the evaluation function def evaluate_agent(agent, y_pred, y_true, n_episodes=10): env = DummyVecEnv([make_env(y_pred, y_true)]) rewards = [] for _ in range(n_episodes): obs = env.reset() done = False episode_reward = 0 while not done: action, _ = agent.predict(obs, deterministic=True) obs, reward, done, _ = env.step(action) episode_reward += reward rewards.append(episode_reward) return np.mean(rewards) #test the trained agent with new y_pred and y_true tensors y_pred_test = torch.randn(100, 10) y_true_test = torch.randint(0, 10, (100,)) # Define the objective function def objective(trial): # Sample hyperparameters learning_rate = trial.suggest_float("learning_rate", 1e-5, 1e-2) # Add more hyperparameters as needed # Train the agent with the sampled hyperparameters agent = A2C("MlpPolicy", env, learning_rate=learning_rate, gamma=0.50, policy_kwargs=policy_kwargs, verbose=1) agent.learn(total_timesteps=10000) # Evaluate the agent and return the performance metric performance_metric = evaluate_agent(agent, y_pred_test, y_true_test) return performance_metric storage = optuna.storages.RDBStorage("sqlite:///example.db") # Create an Optuna study and optimize the objective function study = optuna.create_study(direction="maximize", storage=storage, study_name="my_study") print(f"Study: {study}") study.optimize(objective, n_trials=1) best_hyperparameters = study.best_params print(f"Study: {study} best hyperparameters: {best_hyperparameters}") # Train the final agent with the best hyperparameters final_agent = A2C("MlpPolicy", env, **best_hyperparameters, policy_kwargs=policy_kwargs, verbose=1) final_agent.learn(total_timesteps=10000) # Use the trained agent in the NebulaOptimized class class NebulaOptimized(Nebula): def __init__(self, domain_knowledge=None, user_input=None): super().__init__(domain_knowledge, user_input) self.rl_agent = final_agent def determine_loss_function(self, y_pred, y_true): # Extract state representation from the data and model # state = ... # Extract state representation from y_pred and y_true state = self.extract_state(y_pred, y_true) # Use the RL agent to select the optimal loss function action, _ = self.rl_agent.predict(state, deterministic=True) # Map the action to the corresponding loss function self.loss_function = map_action_to_loss_function(action) def extract_state(self, y_pred, y_true): num_unique_values = len(torch.unique(y_true)) pred_range = torch.max(y_pred) - torch.min(y_pred) state = [num_unique_values, pred_range.item()] return state nebula_optimized = NebulaOptimized() #test the trained agent with new y_pred and y_true tensors y_pred_test = torch.randn(100, 10) y_true_test = torch.randint(0, 10, (100,)) nebula_optimized.determine_loss_function(y_pred_test, y_true_test) print(f"Selected loss function {nebula_optimized.loss_function}") """ time/fps: Frames per second (FPS) measures the number of training steps the agent takes per second. Higher FPS indicates faster training. You should focus on increasing this metric to speed up the training process. time/iterations: The number of training iterations completed by the agent. This metric increases as the agent trains. You should focus on increasing this metric to ensure the agent has enough training experience. time/time_elapsed: The total time elapsed (in seconds) since the start of the training process. You should focus on lowering this metric to reduce the overall training time. time/total_timesteps: The total number of timesteps the agent has experienced during training. You should focus on increasing this metric to ensure the agent has enough training experience. train/entropy_loss: The entropy loss encourages exploration by penalizing deterministic policies. Lower entropy loss indicates less exploration. You should focus on balancing this metric to ensure the agent explores the environment sufficiently without getting stuck in suboptimal solutions. train/explained_variance: Explained variance measures how well the agent's value function approximates the true value function. A value of 1 indicates a perfect approximation, while a value of 0 indicates no correlation. You should focus on increasing this metric to improve the agent's value function approximation. train/learning_rate: The learning rate determines the step size for updating the agent's parameters during training. You should focus on finding the optimal learning rate that balances convergence speed and stability. train/n_updates: The number of parameter updates performed by the agent during training. This metric increases as the agent trains. You should focus on increasing this metric to ensure the agent has enough training experience. train/policy_loss: The policy loss measures the difference between the agent's predicted actions and the optimal actions. You should focus on lowering this metric to improve the agent's policy. train/value_loss: The value loss measures the difference between the agent's predicted state values and the true state values. You should focus on lowering this metric to improve the agent's value function approximation. In summary, you should focus on increasing the metrics related to training experience (iterations, total_timesteps, n_updates) and performance (explained_variance), while lowering the metrics related to training time (time_elapsed) and losses (policy_loss, value_loss). Balancing exploration (entropy_loss) and finding the optimal learning rate are also important for achieving good performance. """
nebula-master
experimental/reinforcement/experimental/nebula2.py
import torch import torch.nn as nn # import torch.jit import numpy as np class LossFunction: def compute_Loss(self, y_pred, y_true): raise NotImplemented("compute_loss method must be implemented!") class L1Loss(LossFunction): def __init__(self): self.loss_function = nn.L1Loss() def compute_loss(self, y_pred, y_true): return self.loss_function(y_pred, y_true) # class MSELoss(LossFunction): # def __init__(self): # self.loss_function = nn.MSELoss() # def compute_loss(self, y_pred, y_true): # return self.loss_function(y_pred, y_true) class MSELoss(LossFunction): def __init__(self): super().__init__() self.loss_function = nn.MSELoss() def compute_loss(self, y_pred, y_true): y_true_one_hot = torch.zeros_like(y_pred) y_true_one_hot.scatter_(1, y_true.unsqueeze(1), 1) return self.loss_function(y_pred, y_true_one_hot) def one_hot_encoding(y_true, num_classes): y_true_one_hot = torch.zeros(y_true.size(0), num_classes) y_true_one_hot.scatter_(1, y_true.unsqueeze(1), 1) return y_true_one_hot class SmoothL1Loss(LossFunction): def __init__(self): self.loss_function = nn.SmoothL1Loss() def compute_Loss(self, y_pred, y_true): return self.loss_function(y_pred, y_true) class MultiLabelSoftMarginLoss(LossFunction): def __init__(self): self.loss_function = nn.MultiLabelSoftMarginLoss() def compute_loss(self, y_pred, y_true): return self.loss_function(y_pred, y_true) class PoissonNLLoss(LossFunction): def __init__(self): self.loss_function = nn.PoissonNLLLoss() def compute_loss(self, y_pred, y_true): return self.loss_function(y_pred, y_true) class KLDivLoss(LossFunction): def __init__(self): self.loss_function = nn.KLDivLoss() def compute_loss(self, y_pred, y_true): return self.loss_function(F.log_softmax(y_pred, dim=1)) class NLLLoss(LossFunction): def __init__(self): self.loss_function = nn.NLLLoss() def compute_loss(self, y_pred, y_true): return self.loss_function(y_pred, y_true) class HashableTensorWrapper: def __init__(self, tensor): self.tensor = tensor self.tensor_shape = tensor.shape self.tensor_dtype = tensor.dtype def __hash__(self): return hash((self.tensor_shape, self.tensor_dtype)) def __eq__(self, other): return isinstance(other, HashableTensorWrapper) and self.tensor_shape == other.tensor_shape and self.tensor_dtype == other.tensor_dtype #detector helper function # def is_multi_label_classification(y_true: torch.Tensor): # return y_true.shape[1] > 1 and y_true.dtype == torch.float #v2 def is_multi_label_classification(y_true: torch.Tensor) -> bool: return len(y_true.shape) > 1 and y_true.shape[1] > 1 and y_true.dtype == torch.float def contains_non_negative_integers(y_true): return torch.all(y_true >= 0) and torch.all(y_true == y_true.to(torch.int64)) def are_probability_distributions(y_pred, y_true): return torch.all(y_pred >= 0) and torch.all(y_pred <= 1) and torch.all(y_true >= 0) and torch.all(y_true <= 1) def are_log_probabilities(y_pred): return torch.all(y_pred <= 0) #generate unique key for a tensor #v1 # def generate_tensor_key(tensor): # return (tuple(tensor.shape), str(tensor.dtype)) #v2 # def generate_tensor_key(tensor): # shape_tuple = () # for dim in tensor.shape: # shape_tuple += (dim.item(),) # return (shape_tuple, str(tensor.dtype)) #v3 # def generate_tensor_key(tensor): # shape_tuple = () # for dim in tensor.shape: # shape_tuple += (dim,) # return (shape_tuple, str(tensor.dtype)) #v4 def generate_tensor_key(tensor): shape_tuple = () for dim in tensor.shape: shape_tuple += (dim,) return (shape_tuple, str(tensor.dtype)) class CrossEntropyLoss(LossFunction): def __init__(self): self.loss_function = nn.CrossEntropyLoss() def compute_loss(self, y_pred, y_true): return self.loss_function(y_pred, y_true) class Nebula(LossFunction): def __init__(self, domain_knowledge=None, user_input=None): self.loss_function = None self.domain_knowledge = domain_knowledge self.user_input = user_input self.loss_function_cache = {} self.unique_values_cache = {} self.class_balance_cache = {} def determine_loss_function(self, y_pred, y_true): is_classification = None dataset_id = id(y_true) # Cache unique values if dataset_id not in self.unique_values_cache: self.unique_values_cache[dataset_id] = torch.unique(y_true) unique_values = self.unique_values_cache[dataset_id] # Cache class balance if dataset_id not in self.class_balance_cache: value_counts = torch.bincount(y_true.flatten().to(dtype=torch.int64)) self.class_balance_cache[dataset_id] = value_counts / torch.sum(value_counts) class_balance = self.class_balance_cache[dataset_id] # Optimization 2: Use PyTorch functions instead of NumPy value_counts = torch.bincount(y_true.flatten().to(dtype=torch.int64)) # The remaining code remains unchanged as it already incorporates the suggested optimizations if is_classification is None: if len(unique_values) <= 10 and torch.all(torch.eq(unique_values % 1, 0)): is_classification = True if is_classification is None: if torch.all(value_counts > 0): is_classification = True if y_pred.ndim > 2: pass if is_classification is None: sparsity = torch.count_nonzero(y_true) / y_true.numel() if sparsity < 0.5: self.loss_function = torch.nn.BCEWithLogitsLoss() self.compute_loss = self.loss_function return y_pred_flat = y_pred.flatten() y_true_flat = y_true.flatten() if y_pred_flat.shape != y_true_flat.shape: y_pred_flat = y_pred_flat[:y_true_flat.numel()] correlation = torch.tensor(np.corrcoef(y_pred_flat.cpu().numpy(), y_true_flat.cpu().numpy())[0, 1]) if is_classification is None: if self.domain_knowledge == "classification": is_classification = True elif self.domain_knowledge == "regression": is_classification = False if is_classification is None: if torch.max(y_pred) > 0.9: is_classification = True if is_classification is None: if torch.any(class_balance < 0.1): is_classification = True if is_classification is None: if self.user_input == "classification": is_classification = True elif self.user_input == "regression": is_classification = False #Multi-LabelClassification if is_multi_label_classification(y_true): self.loss_function = MultiLabelSoftMarginLoss() #poissonNLLLoss if contains_non_negative_integers(y_true): self.loss_function = PoissonNLLoss() #KLDIvLoss if are_probability_distributions(y_pred, y_true): self.loss_function = KLDivLoss() #NLLLoss if is_classification and are_log_probabilities(y_pred): self.loss_function = NLLLoss() # SmotthL1Loss if is_classification is None: #check range of values in y_true if torch.min(y_true) >= 0 and torch.max(y_true) <= 1: self.loss_function = SmoothL1Loss() # Set the loss function based on the determined problem type if is_classification: self.loss_function = CrossEntropyLoss() else: self.loss_function = MSELoss() # @torch.jit.script #optimization jit def compute_loss(self, y_pred, y_true): #v2 # tensor_key = HashableTensorWrapper(y_true) # if tensor_key not in self.loss_function_cache: # self.determine_loss_function(y_pred, y_true) # return self.loss_function_cache[tensor_key](y_pred, y_true) # V1 dataset_id = id(y_true) if dataset_id not in self.loss_function_cache: self.determine_loss_function(y_pred, y_true) self.loss_function_cache[dataset_id] = self.loss_function cached_loss_function = self.loss_function_cache[dataset_id] return cached_loss_function.compute_loss(y_pred, y_true) #v3 # tensor_key = generate_tensor_key(y_true) # if tensor_key not in self.loss_function_cache: # self.determine_loss_function(y_pred, y_true) # return self.loss_function_cache[tensor_key](y_pred, y_true) #move tensors nd model to gpu if available # device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # y_pred, y_true = y_pred.to(device), y_true.to(device) # # #example usage with the pytorch autograd profiler # with torch.autograd.profiler.profile() as prof: # loss = Nebula.compute_loss(y_pred, y_true) # print(prof.key_average().table()) #reinforcement from stable_baselines3 import PPO, A2C from stable_baselines3.common.vec_env import DummyVecEnv, VecEnv from stable_baselines3.common.torch_layers import BaseFeaturesExtractor import gym from gym import spaces from stable_baselines3.common.callbacks import BaseCallback from torch.nn.utils import clip_grad_norm_ class CustomFeaturesExtractor(BaseFeaturesExtractor): def __init__(self, observation_space, features_dim): super().__init__(observation_space, features_dim=features_dim) print(f"Observation space: {observation_space} and features_dim: {features_dim} ") def forward(self, observations): # Extract features from the observations (state representation) features = torch.tensor(observations).float() return features class LossFunctionEnv(gym.Env): def __init__(self, y_pred, y_true): super().__init__() self.y_pred = y_pred self.y_true = y_true self.action_space = spaces.Discrete(len([CrossEntropyLoss, MSELoss])) # Add more loss functions as needed self.observation_space = spaces.Box(low=0, high=float('inf'), shape=(2,), dtype=np.float32) self.state = self.precompute_state(y_pred, y_true) def precompute_state(self, y_pred, y_true): num_unique_values = len(torch.unique(y_true)) pred_range = torch.max(y_pred) - torch.min(y_pred) state = [num_unique_values, pred_range.item()] return state def reset(self): # Reset the environment and return the initial state state = self.extract_state(self.y_pred, self.y_true) return state def step(self, action): # Map the action to the corresponding loss function loss_function = map_action_to_loss_function(action) # Compute the loss using the selected loss function loss = loss_function.compute_loss(self.y_pred, self.y_true) #define the reward based model on the loss max_loss = torch.max(self.y_pred).item() * len(self.y_pred) # Define the reward based on the loss reward = -loss.item() / max_loss #2nd loss # reward = np.exp(-loss.item()) # Check if the episode is done (e.g., after a certain number of steps or a certain loss threshold) done = False # Return the next state, reward, and done flag next_state = self.extract_state(self.y_pred, self.y_true) return next_state, reward, done, {} def extract_state(self, y_pred, y_true): num_unique_values = len(torch.unique(y_true)) pred_range = torch.max(y_pred) - torch.min(y_pred) state = [num_unique_values, pred_range.item()] return state #Cache action-to-loss-function mapping action_to_loss_function_cache = {} def map_action_to_loss_function(action): # action = int(action[0]) if isinstance(action, np.ndarray): action = action.item() if action not in action_to_loss_function_cache: if action == 0: action_to_loss_function_cache[action] = CrossEntropyLoss() elif action == 1: action_to_loss_function_cache[action] = MSELoss() return action_to_loss_function_cache[action] #add more loss functions as needed # Create a DummyVecEnv wrapper for the LossFunctionEnv def make_env(y_pred, y_true): def _init(): return LossFunctionEnv(y_pred, y_true) return _init y_pred = torch.randn(100, 10) y_true = torch.randint(0, 10, (100,)) env = DummyVecEnv([make_env(y_pred, y_true)]) # Create a custom policy network that uses the CustomFeaturesExtractor policy_kwargs = dict( features_extractor_class=CustomFeaturesExtractor, features_extractor_kwargs=dict(features_dim=env.observation_space.shape[0]), # Define the observation space based on the state representation ) class CustomCallback(BaseCallback): def __init__(self, patience, min_delta, initial_lr, decay_rate, decay_steps, max_norm, verbose=0): super().__init__(verbose) self.patience = patience self.min_delta = min_delta self.initial_lr = initial_lr self.decay_rate = decay_rate self.decay_steps = decay_steps self.max_norm = max_norm self.counter = 0 self.previous_performance = -np.inf self.stop_training = False def _on_step(self) -> bool: # Early stopping performance = self.model.ep_info_buffer.mean() if performance - self.previous_performance < self.min_delta: self.counter += 1 else: self.counter = 0 if self.counter >= self.patience: self.stop_training = True self.previous_performance = performance # Learning rate scheduler step = self.num_timesteps lr = self.initial_lr * (self.decay_rate ** (step / self.decay_steps)) for param_group in self.model.policy.optimizer.param_groups: param_group['lr'] = lr # Gradient clipping clip_grad_norm_(self.model.policy.parameters(), self.max_norm) return not self.stop_training callback = CustomCallback(patience=10, min_delta=0.001, initial_lr=0.01, decay_rate=0.9, decay_steps=1000, max_norm=1.0) agent.learn(total_timesteps=10000, callback=callback) # Train the final agent with the best hyperparameters agent = A2C("MlpPolicy", env, policy_kwargs=policy_kwargs, verbose=1) agent.learn(total_timesteps=10000) # Use the trained agent in the NebulaOptimized class class NebulaOptimized(Nebula): def __init__(self, domain_knowledge=None, user_input=None): super().__init__(domain_knowledge, user_input) self.rl_agent = agent def determine_loss_function(self, y_pred, y_true): # Extract state representation from the data and model # state = ... # Extract state representation from y_pred and y_true state = self.extract_state(y_pred, y_true) # Use the RL agent to select the optimal loss function action, _ = self.rl_agent.predict(state, deterministic=True) # Map the action to the corresponding loss function self.loss_function = map_action_to_loss_function(action) def extract_state(self, y_pred, y_true): num_unique_values = len(torch.unique(y_true)) pred_range = torch.max(y_pred) - torch.min(y_pred) state = [num_unique_values, pred_range.item()] return state nebula_optimized = NebulaOptimized() #test the trained agent with new y_pred and y_true tensors y_pred_test = torch.randn(100, 10) y_true_test = torch.randint(0, 10, (100,)) nebula_optimized.determine_loss_function(y_pred_test, y_true_test) print(f"Selected loss function {nebula_optimized.loss_function}") """ time/fps: Frames per second (FPS) measures the number of training steps the agent takes per second. Higher FPS indicates faster training. You should focus on increasing this metric to speed up the training process. time/iterations: The number of training iterations completed by the agent. This metric increases as the agent trains. You should focus on increasing this metric to ensure the agent has enough training experience. time/time_elapsed: The total time elapsed (in seconds) since the start of the training process. You should focus on lowering this metric to reduce the overall training time. time/total_timesteps: The total number of timesteps the agent has experienced during training. You should focus on increasing this metric to ensure the agent has enough training experience. train/entropy_loss: The entropy loss encourages exploration by penalizing deterministic policies. Lower entropy loss indicates less exploration. You should focus on balancing this metric to ensure the agent explores the environment sufficiently without getting stuck in suboptimal solutions. train/explained_variance: Explained variance measures how well the agent's value function approximates the true value function. A value of 1 indicates a perfect approximation, while a value of 0 indicates no correlation. You should focus on increasing this metric to improve the agent's value function approximation. train/learning_rate: The learning rate determines the step size for updating the agent's parameters during training. You should focus on finding the optimal learning rate that balances convergence speed and stability. train/n_updates: The number of parameter updates performed by the agent during training. This metric increases as the agent trains. You should focus on increasing this metric to ensure the agent has enough training experience. train/policy_loss: The policy loss measures the difference between the agent's predicted actions and the optimal actions. You should focus on lowering this metric to improve the agent's policy. train/value_loss: The value loss measures the difference between the agent's predicted state values and the true state values. You should focus on lowering this metric to improve the agent's value function approximation. In summary, you should focus on increasing the metrics related to training experience (iterations, total_timesteps, n_updates) and performance (explained_variance), while lowering the metrics related to training time (time_elapsed) and losses (policy_loss, value_loss). Balancing exploration (entropy_loss) and finding the optimal learning rate are also important for achieving good performance. """
nebula-master
experimental/reinforcement/experimental/nebula3.py
import torch import torch.nn as nn # import torch.jit import numpy as np class LossFunction: def compute_Loss(self, y_pred, y_true): raise NotImplemented("compute_loss method must be implemented!") class L1Loss(LossFunction): def __init__(self): self.loss_function = nn.L1Loss() def compute_loss(self, y_pred, y_true): return self.loss_function(y_pred, y_true) # class MSELoss(LossFunction): # def __init__(self): # self.loss_function = nn.MSELoss() # def compute_loss(self, y_pred, y_true): # return self.loss_function(y_pred, y_true) class MSELoss(LossFunction): def __init__(self): super().__init__() self.loss_function = nn.MSELoss() def compute_loss(self, y_pred, y_true): y_true_one_hot = torch.zeros_like(y_pred) y_true_one_hot.scatter_(1, y_true.unsqueeze(1), 1) return self.loss_function(y_pred, y_true_one_hot) def one_hot_encoding(y_true, num_classes): y_true_one_hot = torch.zeros(y_true.size(0), num_classes) y_true_one_hot.scatter_(1, y_true.unsqueeze(1), 1) return y_true_one_hot class SmoothL1Loss(LossFunction): def __init__(self): self.loss_function = nn.SmoothL1Loss() def compute_Loss(self, y_pred, y_true): return self.loss_function(y_pred, y_true) class MultiLabelSoftMarginLoss(LossFunction): def __init__(self): self.loss_function = nn.MultiLabelSoftMarginLoss() def compute_loss(self, y_pred, y_true): return self.loss_function(y_pred, y_true) class PoissonNLLoss(LossFunction): def __init__(self): self.loss_function = nn.PoissonNLLLoss() def compute_loss(self, y_pred, y_true): return self.loss_function(y_pred, y_true) class KLDivLoss(LossFunction): def __init__(self): self.loss_function = nn.KLDivLoss() def compute_loss(self, y_pred, y_true): return self.loss_function(F.log_softmax(y_pred, dim=1)) class NLLLoss(LossFunction): def __init__(self): self.loss_function = nn.NLLLoss() def compute_loss(self, y_pred, y_true): return self.loss_function(y_pred, y_true) class HashableTensorWrapper: def __init__(self, tensor): self.tensor = tensor self.tensor_shape = tensor.shape self.tensor_dtype = tensor.dtype def __hash__(self): return hash((self.tensor_shape, self.tensor_dtype)) def __eq__(self, other): return isinstance(other, HashableTensorWrapper) and self.tensor_shape == other.tensor_shape and self.tensor_dtype == other.tensor_dtype #detector helper function # def is_multi_label_classification(y_true: torch.Tensor): # return y_true.shape[1] > 1 and y_true.dtype == torch.float #v2 def is_multi_label_classification(y_true: torch.Tensor) -> bool: return len(y_true.shape) > 1 and y_true.shape[1] > 1 and y_true.dtype == torch.float def contains_non_negative_integers(y_true): return torch.all(y_true >= 0) and torch.all(y_true == y_true.to(torch.int64)) def are_probability_distributions(y_pred, y_true): return torch.all(y_pred >= 0) and torch.all(y_pred <= 1) and torch.all(y_true >= 0) and torch.all(y_true <= 1) def are_log_probabilities(y_pred): return torch.all(y_pred <= 0) #generate unique key for a tensor #v1 # def generate_tensor_key(tensor): # return (tuple(tensor.shape), str(tensor.dtype)) #v2 # def generate_tensor_key(tensor): # shape_tuple = () # for dim in tensor.shape: # shape_tuple += (dim.item(),) # return (shape_tuple, str(tensor.dtype)) #v3 # def generate_tensor_key(tensor): # shape_tuple = () # for dim in tensor.shape: # shape_tuple += (dim,) # return (shape_tuple, str(tensor.dtype)) #v4 def generate_tensor_key(tensor): shape_tuple = () for dim in tensor.shape: shape_tuple += (dim,) return (shape_tuple, str(tensor.dtype)) class CrossEntropyLoss(LossFunction): def __init__(self): self.loss_function = nn.CrossEntropyLoss() def compute_loss(self, y_pred, y_true): return self.loss_function(y_pred, y_true) class Nebula(LossFunction): def __init__(self, domain_knowledge=None, user_input=None): self.loss_function = None self.domain_knowledge = domain_knowledge self.user_input = user_input self.loss_function_cache = {} self.unique_values_cache = {} self.class_balance_cache = {} def determine_loss_function(self, y_pred, y_true): is_classification = None dataset_id = id(y_true) # Cache unique values if dataset_id not in self.unique_values_cache: self.unique_values_cache[dataset_id] = torch.unique(y_true) unique_values = self.unique_values_cache[dataset_id] # Cache class balance if dataset_id not in self.class_balance_cache: value_counts = torch.bincount(y_true.flatten().to(dtype=torch.int64)) self.class_balance_cache[dataset_id] = value_counts / torch.sum(value_counts) class_balance = self.class_balance_cache[dataset_id] # Optimization 2: Use PyTorch functions instead of NumPy value_counts = torch.bincount(y_true.flatten().to(dtype=torch.int64)) # The remaining code remains unchanged as it already incorporates the suggested optimizations if is_classification is None: if len(unique_values) <= 10 and torch.all(torch.eq(unique_values % 1, 0)): is_classification = True if is_classification is None: if torch.all(value_counts > 0): is_classification = True if y_pred.ndim > 2: pass if is_classification is None: sparsity = torch.count_nonzero(y_true) / y_true.numel() if sparsity < 0.5: self.loss_function = torch.nn.BCEWithLogitsLoss() self.compute_loss = self.loss_function return y_pred_flat = y_pred.flatten() y_true_flat = y_true.flatten() if y_pred_flat.shape != y_true_flat.shape: y_pred_flat = y_pred_flat[:y_true_flat.numel()] correlation = torch.tensor(np.corrcoef(y_pred_flat.cpu().numpy(), y_true_flat.cpu().numpy())[0, 1]) if is_classification is None: if self.domain_knowledge == "classification": is_classification = True elif self.domain_knowledge == "regression": is_classification = False if is_classification is None: if torch.max(y_pred) > 0.9: is_classification = True if is_classification is None: if torch.any(class_balance < 0.1): is_classification = True if is_classification is None: if self.user_input == "classification": is_classification = True elif self.user_input == "regression": is_classification = False #Multi-LabelClassification if is_multi_label_classification(y_true): self.loss_function = MultiLabelSoftMarginLoss() #poissonNLLLoss if contains_non_negative_integers(y_true): self.loss_function = PoissonNLLoss() #KLDIvLoss if are_probability_distributions(y_pred, y_true): self.loss_function = KLDivLoss() #NLLLoss if is_classification and are_log_probabilities(y_pred): self.loss_function = NLLLoss() # SmotthL1Loss if is_classification is None: #check range of values in y_true if torch.min(y_true) >= 0 and torch.max(y_true) <= 1: self.loss_function = SmoothL1Loss() # Set the loss function based on the determined problem type if is_classification: self.loss_function = CrossEntropyLoss() else: self.loss_function = MSELoss() # @torch.jit.script #optimization jit def compute_loss(self, y_pred, y_true): #v2 # tensor_key = HashableTensorWrapper(y_true) # if tensor_key not in self.loss_function_cache: # self.determine_loss_function(y_pred, y_true) # return self.loss_function_cache[tensor_key](y_pred, y_true) # V1 dataset_id = id(y_true) if dataset_id not in self.loss_function_cache: self.determine_loss_function(y_pred, y_true) self.loss_function_cache[dataset_id] = self.loss_function cached_loss_function = self.loss_function_cache[dataset_id] return cached_loss_function.compute_loss(y_pred, y_true) #v3 # tensor_key = generate_tensor_key(y_true) # if tensor_key not in self.loss_function_cache: # self.determine_loss_function(y_pred, y_true) # return self.loss_function_cache[tensor_key](y_pred, y_true) #move tensors nd model to gpu if available # device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # y_pred, y_true = y_pred.to(device), y_true.to(device) # # #example usage with the pytorch autograd profiler # with torch.autograd.profiler.profile() as prof: # loss = Nebula.compute_loss(y_pred, y_true) # print(prof.key_average().table()) #reinforcement from stable_baselines3 import PPO, A2C from stable_baselines3.common.vec_env import DummyVecEnv, VecEnv from stable_baselines3.common.torch_layers import BaseFeaturesExtractor import gym from gym import spaces class CustomFeaturesExtractor(BaseFeaturesExtractor): def __init__(self, observation_space, features_dim): super().__init__(observation_space, features_dim=features_dim) print(f"Observation space: {observation_space} and features_dim: {features_dim} ") def forward(self, observations): # Extract features from the observations (state representation) features = torch.tensor(observations).float() return features class LossFunctionEnv(gym.Env): def __init__(self, y_pred, y_true): super().__init__() self.y_pred = y_pred self.y_true = y_true self.action_space = spaces.Discrete(len([CrossEntropyLoss, MSELoss])) # Add more loss functions as needed self.observation_space = spaces.Box(low=0, high=float('inf'), shape=(2,), dtype=np.float32) self.state = self.precompute_state(y_pred, y_true) def precompute_state(self, y_pred, y_true): num_unique_values = len(torch.unique(y_true)) pred_range = torch.max(y_pred) - torch.min(y_pred) state = [num_unique_values, pred_range.item()] return state def reset(self): # Reset the environment and return the initial state state = self.extract_state(self.y_pred, self.y_true) return state def step(self, action): # Map the action to the corresponding loss function loss_function = map_action_to_loss_function(action) # Compute the loss using the selected loss function loss = loss_function.compute_loss(self.y_pred, self.y_true) # Define the reward based on the loss reward = -loss.item() # Check if the episode is done (e.g., after a certain number of steps or a certain loss threshold) done = False # Return the next state, reward, and done flag next_state = self.extract_state(self.y_pred, self.y_true) return next_state, reward, done, {} def extract_state(self, y_pred, y_true): num_unique_values = len(torch.unique(y_true)) pred_range = torch.max(y_pred) - torch.min(y_pred) state = [num_unique_values, pred_range.item()] return state #Cache action-to-loss-function mapping action_to_loss_function_cache = {} def map_action_to_loss_function(action): # action = int(action[0]) if isinstance(action, np.ndarray): action = action.item() if action not in action_to_loss_function_cache: if action == 0: action_to_loss_function_cache[action] = CrossEntropyLoss() elif action == 1: action_to_loss_function_cache[action] = MSELoss() return action_to_loss_function_cache[action] #add more loss functions as needed # Create a DummyVecEnv wrapper for the LossFunctionEnv def make_env(y_pred, y_true): def _init(): return LossFunctionEnv(y_pred, y_true) return _init y_pred = torch.randn(100, 10) y_true = torch.randint(0, 10, (100,)) env = DummyVecEnv([make_env(y_pred, y_true)]) # Create a custom policy network that uses the CustomFeaturesExtractor policy_kwargs = dict( features_extractor_class=CustomFeaturesExtractor, features_extractor_kwargs=dict(features_dim=env.observation_space.shape[0]), # Define the observation space based on the state representation ) # Initialize the PPO agent #Architecture: Replace PPO with SAC in the agent initialization. # agent = PPO("MlpPolicy", env, policy_kwargs=policy_kwargs, verbose=1) #A2C agent = A2C("MlpPolicy", env, policy_kwargs=policy_kwargs, verbose=1) # Train the agent agent.learn(total_timesteps=10000) # Use the trained agent in the NebulaOptimized class class NebulaOptimized(Nebula): def __init__(self, domain_knowledge=None, user_input=None): super().__init__(domain_knowledge, user_input) self.rl_agent = agent def determine_loss_function(self, y_pred, y_true): # Extract state representation from the data and model # state = ... # Extract state representation from y_pred and y_true state = self.extract_state(y_pred, y_true) # Use the RL agent to select the optimal loss function action, _ = self.rl_agent.predict(state, deterministic=True) # Map the action to the corresponding loss function self.loss_function = map_action_to_loss_function(action) def extract_state(self, y_pred, y_true): num_unique_values = len(torch.unique(y_true)) pred_range = torch.max(y_pred) - torch.min(y_pred) state = [num_unique_values, pred_range.item()] return state nebula_optimized = NebulaOptimized() #test the trained agent with new y_pred and y_true tensors y_pred_test = torch.randn(100, 10) y_true_test = torch.randint(0, 10, (100,)) nebula_optimized.determine_loss_function(y_pred_test, y_true_test) print(f"Selected loss function {nebula_optimized.loss_function}") """ time/fps: Frames per second (FPS) measures the number of training steps the agent takes per second. Higher FPS indicates faster training. You should focus on increasing this metric to speed up the training process. time/iterations: The number of training iterations completed by the agent. This metric increases as the agent trains. You should focus on increasing this metric to ensure the agent has enough training experience. time/time_elapsed: The total time elapsed (in seconds) since the start of the training process. You should focus on lowering this metric to reduce the overall training time. time/total_timesteps: The total number of timesteps the agent has experienced during training. You should focus on increasing this metric to ensure the agent has enough training experience. train/entropy_loss: The entropy loss encourages exploration by penalizing deterministic policies. Lower entropy loss indicates less exploration. You should focus on balancing this metric to ensure the agent explores the environment sufficiently without getting stuck in suboptimal solutions. train/explained_variance: Explained variance measures how well the agent's value function approximates the true value function. A value of 1 indicates a perfect approximation, while a value of 0 indicates no correlation. You should focus on increasing this metric to improve the agent's value function approximation. train/learning_rate: The learning rate determines the step size for updating the agent's parameters during training. You should focus on finding the optimal learning rate that balances convergence speed and stability. train/n_updates: The number of parameter updates performed by the agent during training. This metric increases as the agent trains. You should focus on increasing this metric to ensure the agent has enough training experience. train/policy_loss: The policy loss measures the difference between the agent's predicted actions and the optimal actions. You should focus on lowering this metric to improve the agent's policy. train/value_loss: The value loss measures the difference between the agent's predicted state values and the true state values. You should focus on lowering this metric to improve the agent's value function approximation. In summary, you should focus on increasing the metrics related to training experience (iterations, total_timesteps, n_updates) and performance (explained_variance), while lowering the metrics related to training time (time_elapsed) and losses (policy_loss, value_loss). Balancing exploration (entropy_loss) and finding the optimal learning rate are also important for achieving good performance. """
nebula-master
experimental/reinforcement/experimental/nebula1.py
import torch import torch.nn as nn import numpy as np # Continual Learning Mechanism Class class ContinualLearningMechanism(nn.Module): def __init__(self, pretrained_model=None): super(ContinualLearningMechanism, self).__init__() self.model = nn.Sequential( nn.Linear(128, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, 10), ) if pretrained_model: self.model.load_state_dict(pretrained_model.state_dict()) def forward(self, x): return self.model(x) # Contrastive Learning Component Class class ContrastiveLearningComponent(nn.Module): def __init__(self): super(ContrastiveLearningComponent, self).__init__() def forward(self, x, x_augmented): return torch.norm(x - x_augmented, p=2) # Meta Learner Class class MetaLearner(nn.Module): def __init__(self): super(MetaLearner, self).__init__() self.l1_loss = nn.L1Loss() self.l2_loss = nn.MSELoss() def forward(self, x, y, task): if task == 'task1': return self.l1_loss(x, y) elif task == 'task2': return self.l2_loss(x, y) # Nebula Class class Nebula(nn.Module): def __init__(self): super(Nebula, self).__init__() self.learning_mechanism = ContinualLearningMechanism() self.contrastive_component = ContrastiveLearningComponent() self.metalearner = MetaLearner() def forward(self, x, y, x_augmented, task): output = self.learning_mechanism(x) loss_task = self.metalearner(output, y, task) loss_contrastive = self.contrastive_component(x, x_augmented) # Here is where we combine the losses. The alpha and beta parameters # could be additional parameters to the class that could be learned alpha = 0.5 beta = 0.5 total_loss = alpha * loss_task + beta * loss_contrastive return total_loss
nebula-master
nebula/nebula_multimodal.py
# !pip install deap import random import torch import torch.nn as nn import torch.optim as optim import numpy as np from deap import creator, base, tools, algorithms # Create the model class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(10, 32) self.fc2 = nn.Linear(32, 2) def forward(self, x): x = torch.relu(self.fc1(x)) return torch.sigmoid(self.fc2(x)) # Define a simple neural network for loss function class LossNet(nn.Module): def __init__(self): super(LossNet, self).__init__() self.fc1 = nn.Linear(2, 10) self.fc2 = nn.Linear(10, 1) def forward(self, x): x = torch.relu(self.fc1(x)) return torch.relu(self.fc2(x)) class Nebula: def __init__(self, model, loss_function, toolbox, X, y, population_size=10, num_generations=100): self.model = model self.loss_function = loss_function self.toolbox = toolbox self.X = X self.y = y self.population_size = population_size self.num_generations = num_generations self.toolbox.register("evaluate", self.evaluate) self.hof = tools.HallOfFame(1) self.stats = tools.Statistics(lambda ind: ind.fitness.values) self.stats.register("avg", np.mean) self.stats.register("min", np.min) self.stats.register("max", np.max) def evaluate(self, individual): weights = torch.Tensor(individual).view(self.loss_function.fc1.weight.shape) with torch.no_grad(): self.loss_function.fc1.weight.data = weights output = self.model(self.X) loss = self.loss_function(output, self.y) return loss.item(), def train(self): pop = self.toolbox.population(n=self.population_size) pop, logbook = algorithms.eaSimple(pop, self.toolbox, cxpb=0.5, mutpb=0.2, ngen=self.num_generations, stats=self.stats, halloffame=self.hof, verbose=True) print(f'Best loss function: {self.hof[0]}') # Initialize the model and the loss function model = Net() loss_function = LossNet() toolbox = base.Toolbox() # Define genetic algorithm related settings creator.create("FitnessMin", base.Fitness, weights=(-1.0,)) creator.create("Individual", list, fitness=creator.FitnessMin) toolbox.register("attr_float", random.random) toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_float, n=100) toolbox.register("population", tools.initRepeat, list, toolbox.individual) toolbox.register("mate", tools.cxTwoPoint) toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.1) toolbox.register("select", tools.selTournament, tournsize=3) # Assume we have some data X, y X = torch.randn(100, 10) y = torch.randint(0, 2, (100,)) # Create Nebula instance and train nebula = Nebula(model, loss_function, toolbox, X, y) nebula.train()
nebula-master
nebula/nebula_genetic.py
from nebula.nebula import Nebula from nebula.nebula import one_hot_encoding
nebula-master
nebula/__init__.py
import torch import torch.nn as nn import numpy as np from sklearn.model_selection import train_test_split class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(10, 32) self.fc2 = nn.Linear(32, 3) def forward(self, x): x = torch.relu(self.fc1(x)) return torch.sigmoid(self.fc2(x)) class NebulaSearch: def __init__(self, model, loss_functions, num_iterations, lr): self.model = model self.loss_functions = loss_functions self.num_iterations = num_iterations self.lr = lr self.prob_dist = np.ones(len(loss_functions)) / len(loss_functions) def train(self, X, y): optimizer = torch.optim.Adam(self.model.parameters(), lr=self.lr) for i in range(self.num_iterations): chosen_loss_func = np.random.choice(self.loss_functions, p=self.prob_dist) self.model.zero_grad() outputs = self.model(X) loss = chosen_loss_func(outputs, y) loss.backward() optimizer.step() performance = self.evaluate(X, y) self.prob_dist = self.update_distribution(performance) print(f"Best loss function: {self.loss_functions[np.argmax(self.prob_dist)]}") def evaluate(self, X, y): with torch.no_grad(): outputs = self.model(X) loss = self.loss_functions[np.argmax(self.prob_dist)](outputs, y) return -loss.item() def update_distribution(self, performance): self.prob_dist *= np.exp(performance) self.prob_dist /= np.sum(self.prob_dist) return self.prob_dist #assume we have some data X, Y X = torch.randn(100, 10) y = torch.randint(0, 2, (100,)) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) loss_functions = [nn.CrossEntropyLoss(), nn.BCELoss(), nn.MSELoss()] model = Net() nebula = NebulaSearch(model, loss_functions, num_iterations=100, lr=0.001) nebula.train(X_train, y_train)
nebula-master
nebula/nebula_search.py
import torch import torch.nn as nn # import torch.jit import numpy as np import logging class LossFunction: def compute_Loss(self, y_pred, y_true): raise NotImplemented("compute_loss method must be implemented!") class L1Loss(LossFunction): def __init__(self): self.loss_function = nn.L1Loss() def compute_loss(self, y_pred, y_true): return self.loss_function(y_pred, y_true) class MSELoss(LossFunction): def __init__(self): self.loss_function = nn.MSELoss() def compute_loss(self, y_pred, y_true): return self.loss_function(y_pred, y_true) def one_hot_encoding(y_true, num_classes): y_true_one_hot = torch.zeros(y_true.size(0), num_classes) y_true_one_hot.scatter_(1, y_true.unsqueeze(1), 1) return y_true_one_hot class SmoothL1Loss(LossFunction): def __init__(self): self.loss_function = nn.SmoothL1Loss() def compute_Loss(self, y_pred, y_true): return self.loss_function(y_pred, y_true) class MultiLabelSoftMarginLoss(LossFunction): def __init__(self): self.loss_function = nn.MultiLabelSoftMarginLoss() def compute_loss(self, y_pred, y_true): return self.loss_function(y_pred, y_true) class PoissonNLLoss(LossFunction): def __init__(self): self.loss_function = nn.PoissonNLLLoss() def compute_loss(self, y_pred, y_true): return self.loss_function(y_pred, y_true) class KLDivLoss(LossFunction): def __init__(self): self.loss_function = nn.KLDivLoss() def compute_loss(self, y_pred, y_true): return self.loss_function(F.log_softmax(y_pred, dim=1)) class NLLLoss(LossFunction): def __init__(self): self.loss_function = nn.NLLLoss() def compute_loss(self, y_pred, y_true): return self.loss_function(y_pred, y_true) class HashableTensorWrapper: def __init__(self, tensor): self.tensor = tensor self.tensor_shape = tensor.shape self.tensor_dtype = tensor.dtype def __hash__(self): return hash((self.tensor_shape, self.tensor_dtype)) def __eq__(self, other): return isinstance(other, HashableTensorWrapper) and self.tensor_shape == other.tensor_shape and self.tensor_dtype == other.tensor_dtype def is_multi_label_classification(y_true: torch.Tensor) -> bool: return len(y_true.shape) > 1 and y_true.shape[1] > 1 and y_true.dtype == torch.float def contains_non_negative_integers(y_true): return torch.all(y_true >= 0) and torch.all(y_true == y_true.to(torch.int64)) def are_probability_distributions(y_pred, y_true): return torch.all(y_pred >= 0) and torch.all(y_pred <= 1) and torch.all(y_true >= 0) and torch.all(y_true <= 1) def are_log_probabilities(y_pred): return torch.all(y_pred <= 0) #v4 def generate_tensor_key(tensor): shape_tuple = () for dim in tensor.shape: shape_tuple += (dim,) return (shape_tuple, str(tensor.dtype)) class CrossEntropyLoss(LossFunction): def __init__(self): self.loss_function = nn.CrossEntropyLoss() def compute_loss(self, y_pred, y_true): return self.loss_function(y_pred, y_true) class Nebula(LossFunction): def __init__(self, domain_knowledge=None, user_input=None): self.loss_function = None self.domain_knowledge = domain_knowledge self.user_input = user_input self.loss_function_cache = {} self.unique_values_cache = {} self.class_balance_cache = {} self.logger = logging.getLogger(__name__) self.logger.setLevel(logging.INFO) handler = logging.StreamHandler() handler.setFormatter(logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')) self.logger.addHandler(handler) def determine_loss_function(self, y_pred, y_true): self.logger.info("Determining the loss function") is_classification = None dataset_id = id(y_true) # Cache unique values if dataset_id not in self.unique_values_cache: self.unique_values_cache[dataset_id] = torch.unique(y_true) unique_values = self.unique_values_cache[dataset_id] # Cache class balance if dataset_id not in self.class_balance_cache: value_counts = torch.bincount(y_true.flatten().to(dtype=torch.int64)) self.class_balance_cache[dataset_id] = value_counts / torch.sum(value_counts) class_balance = self.class_balance_cache[dataset_id] # Optimization 2: Use PyTorch functions instead of NumPy value_counts = torch.bincount(y_true.flatten().to(dtype=torch.int64)) # The remaining code remains unchanged as it already incorporates the suggested optimizations if is_classification is None: if len(unique_values) <= 10 and torch.all(torch.eq(unique_values % 1, 0)): is_classification = True if is_classification is None: if torch.all(value_counts > 0): is_classification = True if y_pred.ndim > 2: pass if is_classification is None: sparsity = torch.count_nonzero(y_true) / y_true.numel() if sparsity < 0.5: self.loss_function = torch.nn.BCEWithLogitsLoss() self.compute_loss = self.loss_function return y_pred_flat = y_pred.flatten() y_true_flat = y_true.flatten() if y_pred_flat.shape != y_true_flat.shape: y_pred_flat = y_pred_flat[:y_true_flat.numel()] correlation = torch.tensor(np.corrcoef(y_pred_flat.cpu().numpy(), y_true_flat.cpu().numpy())[0, 1]) if is_classification is None: if self.domain_knowledge == "classification": is_classification = True elif self.domain_knowledge == "regression": is_classification = False if is_classification is None: if torch.max(y_pred) > 0.9: is_classification = True if is_classification is None: if torch.any(class_balance < 0.1): is_classification = True if is_classification is None: if self.user_input == "classification": is_classification = True elif self.user_input == "regression": is_classification = False #Multi-LabelClassification if is_multi_label_classification(y_true): self.loss_function = MultiLabelSoftMarginLoss() #poissonNLLLoss if contains_non_negative_integers(y_true): self.loss_function = PoissonNLLoss() #KLDIvLoss if are_probability_distributions(y_pred, y_true): self.loss_function = KLDivLoss() #NLLLoss if is_classification and are_log_probabilities(y_pred): self.loss_function = NLLLoss() # SmotthL1Loss if is_classification is None: #check range of values in y_true if torch.min(y_true) >= 0 and torch.max(y_true) <= 1: self.loss_function = SmoothL1Loss() # Set the loss function based on the determined problem type if is_classification: self.logger.info("Determined problem as classification. Using CrossEntropyLoss") self.loss_function = CrossEntropyLoss() else: self.logger.info("Determining loss function for this dataset") self.loss_function = MSELoss() def compute_loss(self, y_pred, y_true): # V1 dataset_id = id(y_true) if dataset_id not in self.loss_function_cache: self.logger.info("Determining loss function for the dataset") self.determine_loss_function(y_pred, y_true) self.loss_function_cache[dataset_id] = self.loss_function cached_loss_function = self.loss_function_cache[dataset_id] return cached_loss_function.compute_loss(y_pred, y_true)
nebula-master
nebula/nebula.py
# from nebulaV4 import one_hot_encoding # from nebulaV4 import Nebula # import torch # import numpy as np # import matplotlib.pyplot as plt # import torch.nn as nn # class LossFunction: # def compute_loss(self, y_pred, y_true): # raise NotImplemented("compute_loss method must be implemented") # #implement specific loss functions that inherit from LossFunction # class L1Loss(LossFunction): # def __init__(self): # self.loss_function = nn.L1Loss() # def compute_loss(self, y_pred, y_true): # return self.loss_function(y_pred, y_true) # class MSELoss(LossFunction): # def __init__(self): # self.loss_function = nn.MSELoss() # def compute_loss(self, y_pred, y_true): # return self.loss_function(y_pred, y_true) # class CrossEntropyLoss(LossFunction): # def __init__(self): # self.loss_function = nn.CrossEntropyLoss() # def compute_loss(self, y_pred, y_true): # return self.loss_function(y_pred, y_true) # def prepare_targets(loss_function, y_true, num_classes=None): # if isinstance(loss_function, L1Loss) and num_classes is not None: # return one_hot_encoding(y_true, num_classes) # return y_true # def generate_classification_data(num_samples, num_classes): # y_true = torch.randint(0, num_classes, (num_samples,)) # y_pred = torch.rand(num_samples, num_classes) # return y_pred, y_true # def generate_regression_data(num_samples): # y_true = torch.randn(num_samples) # y_pred = torch.randn(num_samples) # return y_pred, y_true # def test_loss_functions(loss_functions, y_pred, y_true, num_classes=None): # results = [] # for loss_function in loss_functions: # prepared_y_true = prepare_targets(loss_function, y_true, num_classes) # loss = loss_function.compute_loss(y_pred, prepared_y_true) # results.append(loss.item()) # return results # def plot_loss_comparison(loss_functions, losses): # loss_function_names = [loss_function.__class__.__name__ for loss_function in loss_functions] # plt.bar(loss_function_names, losses) # plt.xlabel("Loss Functions") # plt.ylabel("Loss Value") # plt.title("Loss Function Comparison") # plt.show() # batch_size = 100 # num_classes = 5 # y_true_classification = torch.randint(0, num_classes, (batch_size,)) # num_classes = y_true_classification.max().item() + 1 # # Generate classification data # y_pred_classification, y_true_classification = generate_classification_data(num_classes, num_classes) # # Generate regression data # y_pred_regression, y_true_regression = generate_regression_data(num_classes) # # Loss functions to compare # loss_functions = [Nebula(), L1Loss(), MSELoss(), CrossEntropyLoss()] # # Test classification data # print("Classification Losses:") # classification_losses = test_loss_functions(loss_functions, y_pred_classification, y_true_classification, num_classes=num_classes) # # Test regression data # print("\nRegression Losses:") # regression_losses = test_loss_functions(loss_functions, y_pred_regression, y_true_regression) # # Plot comparison # print("\nLoss Comparison for Classification:") # plot_loss_comparison(loss_functions, classification_losses) # print("\nLoss Comparison for Regression:") # plot_loss_comparison(loss_functions, regression_losses) # from nebulaV4 import one_hot_encoding # from nebulaV4 import Nebula import torch import numpy as np import matplotlib.pyplot as plt import torch.nn as nn from nebula.nebula import Nebula from nebula.nebula import one_hot_encoding import torch.nn.functional as F def generate_multilabel_classification_data(num_samples, num_classes): y_true = torch.randint(0, 2, (num_samples, num_classes)).float() y_pred = torch.rand(num_samples, num_classes) return y_pred, y_true class LossFunction: def compute_loss(self, y_pred, y_true): raise NotImplemented("compute_loss method must be implemented") class L1Loss(LossFunction): def __init__(self): self.loss_function = nn.L1Loss() def compute_loss(self, y_pred, y_true): return self.loss_function(y_pred, y_true) class MSELoss(LossFunction): def __init__(self): self.loss_function = nn.MSELoss() def compute_loss(self, y_pred, y_true): return self.loss_function(y_pred, y_true) class CrossEntropyLoss(LossFunction): def __init__(self): self.loss_function = nn.CrossEntropyLoss() def compute_loss(self, y_pred, y_true): return self.loss_function(y_pred, y_true) class MultiLabelSoftMarginLoss(LossFunction): def __init__(self): self.loss_function = nn.MultiLabelSoftMarginLoss() def compute_loss(self, y_pred, y_true): return self.loss_function(y_pred, y_true) class PoissonNLLoss(LossFunction): def __init__(self): self.loss_function = nn.PoissonNLLLoss() def compute_loss(self, y_pred, y_true): return self.loss_function(y_pred, y_true) class KLDivLoss(LossFunction): def __init__(self): self.loss_function = nn.KLDivLoss() def compute_loss(self, y_pred, y_true): return self.loss_function(F.log_softmax(y_pred, dim=1), y_true) class PoissonNLLLoss(LossFunction): def __init__(self): self.loss_function = nn.PoissonNLLLoss() def compute_loss(self, y_pred, y_true): return self.loss_function(y_pred, y_true) # def prepare_targets(loss_function, y_true, num_classes=None): # if isinstance(loss_function, L1Loss) and num_classes is not None: # return one_hot_encoding(y_true, num_classes) # return y_true def prepare_targets(loss_function, y_true, num_classes=None): if (isinstance(loss_function, L1Loss) or isinstance(loss_function, MSELoss)) and num_classes is not None: return one_hot_encoding(y_true, num_classes) if isinstance(loss_function, PoissonNLLLoss): return y_true.view(-1, 1).expand(-1, num_classes) if isinstance(loss_function, KLDivLoss): return y_true.float() return y_true def generate_classification_data(num_samples, num_classes, for_poisson_nll=False): y_true = torch.randint(0, num_classes, (num_samples,)) if for_poisson_nll: y_true = y_true.view(-1, 1).expand(-1, num_classes).float() y_pred = torch.rand(num_samples, num_classes) return y_pred, y_true def generate_regression_data(num_samples): y_true = torch.abs(torch.randn(num_samples)) y_pred = torch.randn(num_samples) return y_pred, y_true # def test_loss_functions(loss_functions, y_pred, y_true, num_classes=None): # results = [] # for loss_function in loss_functions: # prepared_y_true = prepare_targets(loss_function, y_true, num_classes) # loss = loss_function.compute_loss(y_pred, prepared_y_true) # results.append(loss.item()) # return results def test_loss_functions(loss_functions, y_pred, y_true, num_classes=None): losses = [] for loss_function in loss_functions: for_poisson_nll = isinstance(loss_function, PoissonNLLLoss) if num_classes is not None and not for_poisson_nll: y_true = y_true.squeeze() elif for_poisson_nll: y_true = y_true.view(-1, 1).expand(-1, num_classes) prepared_y_true = prepare_targets(loss_function, y_true, num_classes) loss = loss_function.compute_loss(y_pred, prepared_y_true) losses.append(loss.item()) return losses def plot_loss_comparison(loss_functions, losses): loss_function_names = [loss_function.__class__.__name__ for loss_function in loss_functions] plt.bar(loss_function_names, losses) plt.xlabel("Loss Functions") plt.ylabel("Loss Value") plt.title("Loss Function Comparison") plt.show() batch_size = 100 num_classes = 5 y_true_classification = torch.randint(0, num_classes, (batch_size,)) num_classes = y_true_classification.max().item() + 1 # Generate classification data y_pred_classification, y_true_classification = generate_classification_data(batch_size, num_classes) y_pred_multilabel_classification, y_true_multilabel_classification = generate_multilabel_classification_data(batch_size, num_classes) # Generate regression data y_pred_regression, y_true_regression = generate_regression_data(batch_size) # Loss functions to compare loss_functions = [Nebula(), L1Loss(), MSELoss(), CrossEntropyLoss(), PoissonNLLoss(), KLDivLoss(), PoissonNLLLoss()] # Test classification data # # Test classification data print("Classification Losses:") classification_losses = test_loss_functions(loss_functions, y_pred_classification, y_true_classification, num_classes=num_classes) # Test regression data print("\nRegression Losses:") regression_losses = test_loss_functions(loss_functions, y_pred_regression, y_true_regression) # Plot comparison print("\nLoss Comparison for Classification:") plot_loss_comparison(loss_functions, classification_losses) print("\nLoss Comparison for Regression:") plot_loss_comparison(loss_functions, regression_losses) # Test multi-label classification data print("Multi-label Classification Losses:") multilabel_classification_losses = test_loss_functions(loss_functions, y_pred_multilabel_classification, y_true_multilabel_classification, num_classes=num_classes) # Plot comparison print("\nLoss Comparison for Multi-label Classification:") plot_loss_comparison(loss_functions, multilabel_classification_losses)
nebula-master
testing/test.py
from setuptools import setup, find_packages # setup( name = 'SwarmLogic', packages = find_packages(exclude=[]), version = '0.6.3', license='MIT', description = 'SwarmLogic - Pytorch', author = 'Kye Gomez', author_email = '[email protected]', long_description_content_type = 'text/markdown', url = 'https://github.com/kyegomez/SwarmLogic', keywords = [ 'artificial intelligence', 'deep learning', 'optimizers', "Prompt Engineering" ], install_requires=[ 'swarms', 'fastapi' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
SwarmLogic-main
setup.py
from swarm_logic.SwarmLogic import api
SwarmLogic-main
swarm_logic/__init__.py
from fastapi import FastAPI, HTTPException from typing import Optional import json import logging from pydantic import BaseModel from swarms import Worker class AppState(BaseModel): app_name: str api_call: str # Set up logging logging.basicConfig(filename="app.log", level=logging.INFO, format='%(asctime)s %(levelname)-8s %(message)s', datefmt='%Y-%m-%d %H:%M:%S') # Initialize Swarms with your API key api_key = "your-api-key-here" swarm = Worker(openai_api_key=api_key) app = FastAPI() @app.post("/{app_name}/{api_call}") async def api(app_state: AppState): try: db = json.load(open('db.json', 'r')) except Exception as e: logging.error("Error loading database: %s", e) raise HTTPException(status_code=500, detail="Error loading database") prompt = f"""{db[app_state.app_name]["prompt"]} API Call (indexes are zero-indexed): {app_state.api_call} Database State: {db[app_state.app_name]["state"]} Output the API response as json prefixed with '!API response!:'. Then output the new database state as json, prefixed with '!New Database State!:'. If the API call is only requesting data, then don't change the database state, but base your 'API Response' off what's in the database. """ try: # Update to call the swarm model response = swarm.run_swarms(prompt) new_state = response['new_database_state'] if new_state: db[app_state.app_name]["state"] = new_state json.dump(db, open('db.json', 'w'), indent=4) except Exception as e: logging.error("Error running model or updating state: %s", e) raise HTTPException(status_code=500, detail="Error running model or updating state") return response
SwarmLogic-main
swarm_logic/SwarmLogic.py
from typing import Iterable from base import DatabaseConnector import opendal class OpenDALConnector(DatabaseConnector): def __init__(self, scheme, **kwargs): self.op = opendal.Operator(scheme, **kwargs) def read(self, path: str) -> bytes: return self.op.read(path) def write(self, path: str, bs: bytes): self.op.write(path, bs) def stat(self, path: str) -> opendal.Metadata: return self.op.stat(path) def create_dir(self, path: str): self.op.create_dir(path) def delete(self, path: str): self.op.delete(path) def list(self, path: str) -> Iterable[opendal.Entry]: return self.op.list(path) def scan(self, path: str) -> Iterable[opendal.Entry]: return self.op.scan(path)
SwarmLogic-main
swarm_logic/connectors/dal.py
from sqlalchemy import create_engine, MetaData, Table, select from sqlalchemy.orm import sessionmaker, scoped_session import opendal from base import DatabaseConnector class SQLAlchemyConnector(DatabaseConnector): def __init__(self, database_url): self.engine = create_engine(database_url) self.metadata = MetaData() def read(self, path: str) -> bytes: #implement read operation pass def write(self, path: str, bs: bytes): #implement sql achemy write operation pass
SwarmLogic-main
swarm_logic/connectors/alchemy.py
from swarm_logic.connectors.alchemy import SQLAlchemyConnector from swarm_logic.connectors.base import DatabaseConnector from swarm_logic.connectors.dal import OpenDALConnector from swarm_logic.connectors.json import JsonDBConnector
SwarmLogic-main
swarm_logic/connectors/__init__.py
from base import DatabaseConnector class JsonDBConnector(DatabaseConnector): def read(self, path: str) -> bytes: with open(path, 'r') as f: return f.read().encode() def write(self, path: str, bs: bytes): with open(path, 'w') as f: f.write(bs.decode())
SwarmLogic-main
swarm_logic/connectors/json.py
from abc import ABC, abstractmethod from typing import Iterable class DatabaseConnector(ABC): @abstractmethod def read(self, path: str) -> bytes: pass @abstractmethod def write(self, path: str, bs: bytes): pass @abstractmethod def stat(self, path: str) -> opendal.Metadata: pass @abstractmethod def create_dir(self, path: str): pass @abstractmethod def delete(self, path: str): pass @abstractmethod def list(self, path: str) -> Iterable[opendal.Entry]: pass @abstractmethod def scan(self, path: str) -> Iterable[opendal.Entry]: pass
SwarmLogic-main
swarm_logic/connectors/base.py
SwarmLogic-main
swarm_logic/experimental/__init__.py
from fastapi import FastAPI, HTTPException from typing import Optional import json import logging from pydantic import BaseModel from swarms import Swarms from swarm_logic.connectors import SQLAlchemyConnector, OpenDALConnector, JsonDBConnector class AppState(BaseModel): app_name: str api_call: str db_type: str #added a new field to app state # Set up logging logging.basicConfig(filename="app.log", level=logging.INFO, format='%(asctime)s %(levelname)-8s %(message)s', datefmt='%Y-%m-%d %H:%M:%S') # Initialize Swarms with your API key api_key = "your-api-key-here" swarm = Swarms(openai_api_key=api_key) app = FastAPI() @app.post("/{app_name}/{api_call}") async def api(app_state: AppState): if app_state.db_type == "sqlachemy": connector = SQLAlchemyConnector("sqlite:///db.sqlite") elif app_state.db_type == "opendal": connector = OpenDALConnector('fs', root="/tmp") elif app_state.db_type == 'json': connector = JsonDBConnector() else: raise HTTPException(status_code=400, detail="Unsported database type") try: data = connector.read('db.json') db = json.loads(data) except Exception as e: logging.error("Error loading datbase %s", e) raise HTTPException(status_code=500, detail="Error loading database") prompt = f"""{db[app_state.app_name]["prompt"]} API Call (indexes are zero-indexed): {app_state.api_call} Database State: {db[app_state.app_name]["state"]} Output the API response as json prefixed with '!API response!:'. Then output the new database state as json, prefixed with '!New Database State!:'. If the API call is only requesting data, then don't change the database state, but base your 'API Response' off what's in the database. """ try: # Update to call the swarm model response = swarm.run_swarms(prompt) new_state = response['new_database_state'] if new_state: db[app_state.app_name]["state"] = new_state connector.write('db.json', json.dumps(db)) except Exception as e: logging.error("Error running model or updating state: %s", e) raise HTTPException(status_code=500, detail="Error running model or updating state") return response
SwarmLogic-main
swarm_logic/experimental/SwarmLogicExperimental.py
from fastapi import FastAPI, HTTPException from typing import Optional import json import logging from pydantic import BaseModel from swarms import Worker class AppState(BaseModel): app_name: str api_call: str # Set up logging logging.basicConfig(filename="app.log", level=logging.INFO, format='%(asctime)s %(levelname)-8s %(message)s', datefmt='%Y-%m-%d %H:%M:%S') # Initialize workers with your API key api_key = "your-api-key-here" worker = worker_node(openai_api_key=api_key) app = FastAPI() @app.post("/{app_name}/{api_call}") async def api(app_state: AppState): try: db = json.load(open('db.json', 'r')) except Exception as e: logging.error("Error loading database: %s", e) raise HTTPException(status_code=500, detail="Error loading database") prompt = f"""{db[app_state.app_name]["prompt"]} API Call (indexes are zero-indexed): {app_state.api_call} Database State: {db[app_state.app_name]["state"]} Output the API response as json prefixed with '!API response!:'. Then output the new database state as json, prefixed with '!New Database State!:'. If the API call is only requesting data, then don't change the database state, but base your 'API Response' off what's in the database. """ try: # Update to call the worker model response = worker.run(prompt) new_state = response['new_database_state'] if new_state: db[app_state.app_name]["state"] = new_state json.dump(db, open('db.json', 'w'), indent=4) except Exception as e: logging.error("Error running model or updating state: %s", e) raise HTTPException(status_code=500, detail="Error running model or updating state") return response
SwarmLogic-main
swarm_logic/experimental/SwarmLogicWorker.py
SwarmLogic-main
swarm_logic/utils/__init__.py
#open up the swarms class to intake external tooks like Swarm(tool) import traceback import logging from swarms import Swarms api_key = "your-api-key-here" swarm = Swarms(openai_api_key=api_key) logging.basicConfig(filename="app.log", level=logging.INFO, format='%(asctime)s %(levelname)-8s %(message)s', datefmt='%Y-%m-%d %H:%M:%S') def log_exception(exc): #capture the tracback with the exception tb_lines = traceback.format_exception(exc.__class__, exc, exc.__traceback__) tb_text = ''.join(tb_lines) #log the exception logging.error("Caught an exception", tb_text) def handle_exception(exc): log_exception(exc) #running swarms on exception response = swarm.run_swarms(f"Interpret this error:\n{str(exc)}") #todo handle the exception based on the swarms response
SwarmLogic-main
swarm_logic/utils/error_handling.py
MultiGroupQueryAttention-main
example.py
MultiGroupQueryAttention-main
mgqa/__init__.py
MultiGroupQueryAttention-main
mgqa/main.py
from aot.main import AoT task = "Create GPT-2" system = f""" You are Quoc V. Le, a computer scientist and artificial intelligence researcher who is widely regarded as one of the leading experts in deep learning and neural network architecture search. Your work in this area has focused on developing efficient algorithms for searching the space of possible neural network architectures, with the goal of finding architectures that perform well on a given task while minimizing the computational cost of training and inference. You are an expert in the field of neural architecture search. Your task is to assist me in selecting the best operations to design a neural network block using the available operations. The objective is to maximize the model's performance The 5 available operations are as follows: 0: Zeroize() # This operation simply outputs a tensor of zeros regardless of the input, which breaks the gradient flow between two nodes. 1: nn.Identity() # Skip Connection. 2: ReLUConvBN(channels, channels, kernal_size=1, stride=1, padding=0) # The input channels and output channels are the same. 3: ReLUConvBN(channels, channels, kernal_size=3, stride=1, padding=1) # The input channels and output channels are the same. 4: nn.AvgPool2d(kernel_size=3, stride=1, padding=1) # This operation does not change the spatial resolution. The neural network block is defined by 6 operations (i.e., op_list = [op0, op1, op2, op3, op4, op5]), which represent the operations executed between various stages of the block. This block comprises 4 stages, labeled as s0, s1, s2, and s3, each corresponding to distinct feature maps in the neural network. s0 serves as the input feature map for this block. s1 will be calculated by s1 = op0(s0). s2 will be calculated by s2 = op1(s0) + op2(s1). s3 will be calculated by s3 = op3(s0) + op4(s1) + op5(s2). Note that s3 becomes the output for this block and serves as the input for the subsequent block. Then the implementation of the block will be: class Block(nn.Module): def __init__(self, channels): super(Block, self).__init__() self.op0 = op_id_list[0] self.op1 = op_id_list[1] self.op2 = op_id_list[2] self.op3 = op_id_list[3] self.op4 = op_id_list[4] self.op5 = op_id_list[5] def forward(self, s0): s1 = self.op0(s0) s2 = self.op1(s0) + self.op2(s1) s3 = self.op3(s0) + self.op4(s1) + self.op5(s2) return s3 Let's break this down step by step: First, please analyze the 5 available operations. Next, please consider the gradient flow based on the Block class implementation. For example, how the gradient from the later stage affects the earlier stage. Now, answer the question - how we can design a high-performance block using the available operations? Based the analysis, your task is to propose a block design with the given operations that prioritizes performance, without considering factors such as size and complexity. After you suggest a design, I will test its actual performance and provide you with feedback. Based on the results of previous experiments, we can collaborate to iterate and improve the design. Please avoid suggesting the same design again during this iterative process. {task} """ dfs = AoT( num_thoughts=2, max_steps=10, value_threshold=1, initial_prompt=system, openai_api_key="ENETER IN YOUR API KEY" ) result = dfs.solve() print(result)
Algorithm-Of-Thoughts-main
neural_search_example.py
from aot.main import AoT task = """ Use numbers and basic arithmetic operations (+ - * /) to obtain 24. When considering the next steps, do not choose operations that will result in a negative or fractional number. In order to help with the calculations, the numbers in the parenthesis represent the numbers that are left after the operations and they are in descending order. Another thing we do is when there are only two numbers left in the parenthesis, we check whether we can arrive at 24 only by using basic arithmetic operations (+ - * /). Some examples regarding this idea: (21 2) no since 21 + 2 = 23, 21 - 2 = 19, 21 * 2 = 42, 21 / 2 = 10.5, none of which is equal to 24. (30 6) 30 - 6 = 24 yes (8 3) 8 * 3 = 24 yes (12 8) no (48 2) 48 / 2 = 24 yes Most importantly, do not give up, all the numbers that will be given has indeed a solution. 14 8 8 2 OBJECTIVE ######### 5 10 5 2 """ dfs = AoT( num_thoughts=2, max_steps=10, value_threshold=1, initial_prompt=task, openai_api_key="ENETER IN YOUR API KEY" ) result = dfs.solve() print(result)
Algorithm-Of-Thoughts-main
examples.py
from aot.main import AoT
Algorithm-Of-Thoughts-main
aot/__init__.py
import os import openai import time import logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) class OpenAI: def __init__( self, api_key, strategy="cot", evaluation_strategy="value", api_base="", api_model="", ): if api_key == "" or api_key is None: api_key = os.environ.get("OPENAI_API_KEY", "") if api_key != "": openai.api_key = api_key else: raise Exception("Please provide OpenAI API key") if api_base == ""or api_base is None: api_base = os.environ.get("OPENAI_API_BASE", "") # if not set, use the default base path of "https://api.openai.com/v1" if api_base != "": # e.g. https://api.openai.com/v1/ or your custom url openai.api_base = api_base print(f'Using custom api_base {api_base}') if api_model == "" or api_model is None: api_model = os.environ.get("OPENAI_API_MODEL", "") if api_model != "": self.api_model = api_model else: self.api_model = "text-davinci-003" print(f'Using api_model {self.api_model}') self.use_chat_api = 'gpt' in self.api_model self.strategy = strategy self.evaluation_strategy = evaluation_strategy def run( self, prompt, max_tokens, temperature, k=1, stop=None ): while True: try: if self.use_chat_api: messages = [ { "role": "user", "content": prompt } ] response = openai.ChatCompletion.create( model=self.api_model, messages=messages, max_tokens=max_tokens, temperature=temperature, ) else: response = openai.Completion.create( engine=self.api_model, prompt=prompt, n=k, max_tokens=max_tokens, stop=stop, temperature=temperature, ) with open("openai.logs", 'a') as log_file: log_file.write("\n" + "-----------" + '\n' +"Prompt : "+ prompt+"\n") return response except openai.error.RateLimitError as e: sleep_duratoin = os.environ.get("OPENAI_RATE_TIMEOUT", 30) print(f'{str(e)}, sleep for {sleep_duratoin}s, set it by env OPENAI_RATE_TIMEOUT') time.sleep(sleep_duratoin) def openai_choice2text_handler(self, choice): if self.use_chat_api: text = choice['message']['content'] else: text = choice.text.strip() return text def generate_text(self, prompt, k): if self.use_chat_api: thoughts = [] for _ in range(k): response = self.run(prompt, 400, 0.5, k) text = self.openai_choice2text_handler(response.choices[0]) thoughts += [text] # print(f'thoughts: {thoughts}') return thoughts else: response = self.run(prompt, 300, 0.5, k) thoughts = [self.openai_choice2text_handler(choice) for choice in response.choices] return thoughts def generate_thoughts( self, state, k, initial_prompt, rejected_solutions=None ): if (type(state) == str): state_text = state else: state_text = '\n'.join(state) print("New state generating thought:", state, "\n\n") prompt = f""" Accomplish the task below by decomposing it as many very explicit subtasks as possible, be very explicit and thorough denoted by a search process, highlighted by markers β€˜1’,..., β€˜3’ as β€œfirst operations” guiding subtree exploration for the OBJECTIVE, focus on the third subtree exploration. Produce prospective search steps (e.g., the subtree exploration β€˜5. 11 + 1’) and evaluates potential subsequent steps to either progress towards a solution or retrace to another viable subtree then be very thorough and think atomically then provide solutions for those subtasks, then return the definitive end result and then summarize it ########## OBJECTIVE {initial_prompt} ################### """ thoughts = self.generate_text(prompt, k) # print(f"Generated thoughts: {thoughts}") return thoughts def generate_solution(self, initial_prompt, state, rejected_solutions=None): try: if isinstance(state, list): state_text = '\n'.join(state) else: state_text = state prompt = f""" Generate a series of solutions to comply with the user's instructions, you must generate solutions on the basis of determining the most reliable solution in the shortest amount of time, while taking rejected solutions into account and learning from them. Considering the reasoning provided:\n\n ###'{state_text}'\n\n### Devise the best possible solution for the task: {initial_prompt}, Here are evaluated solutions that were rejected: ###{rejected_solutions}###, complete the {initial_prompt} without making the same mistakes you did with the evaluated rejected solutions. Be simple. Be direct. Provide intuitive solutions as soon as you think of them.""" answer = self.generate_text(prompt, 1) print(f'Generated Solution Summary {answer}') return answer except Exception as e: logger.error(f"Error in generate_solutions: {e}") return None def evaluate_states(self, states, initial_prompt): if not states: return {} if self.evaluation_strategy == 'value': state_values = {} for state in states: if (type(state) == str): state_text = state else: state_text = '\n'.join(state) print("We receive a state of type", type(state), "For state: ", state, "\n\n") prompt = f""" To achieve the following goal: '{initial_prompt}', pessimistically value the context of the past solutions and more importantly the latest generated solution you had AS A FLOAT BETWEEN 0 AND 1\n Past solutions:\n\n {state_text}\n If the solutions is not making fast progress in achieving the goal, give it a lower score. Evaluate all solutions AS A FLOAT BETWEEN 0 and 1:\n, DO NOT RETURN ANYTHING ELSE """ response = self.run(prompt, 10, 1) try: value_text = self.openai_choice2text_handler(response.choices[0]) # print(f'state: {value_text}') value = float(value_text) print(f"Evaluated Thought Value: {value}") except ValueError: value = 0 state_values[state] = value return state_values else: raise ValueError("Invalid evaluation strategy. Choose 'value' or 'vote'.")
Algorithm-Of-Thoughts-main
aot/openai.py
from aot.openai import OpenAI import logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) class AoT: def __init__( self, num_thoughts: int = None, max_steps: int = None, value_threshold: float = None, pruning_threshold=0.5, backtracking_threshold=0.4, initial_prompt=None, openai_api_key: str = None ): self.num_thoughts = num_thoughts self.max_steps = max_steps self.value_threshold = value_threshold self.backtracking_threshold = backtracking_threshold self.pruning_threshold = pruning_threshold self.initial_prompt = initial_prompt self.output = [] self.openai_api_key = openai_api_key self.model = OpenAI(api_key=self.openai_api_key) def solve(self): try: self.dfs(self.initial_prompt, 1) if not self.output: logger.error("No valid thoughts were generated during DFS") return None best_state, _ = max(self.output, key=lambda x: x[1]) solution = self.model.generate_solution(self.initial_prompt, best_state) print(f"Solution is {solution}") return solution if solution else best_state except Exception as error: logger.error(f"Error in tot_dfs: {error}") raise error def dfs(self, state, step): if step > self.max_steps: thought, value = self.evaluate_thought(state) self.output.append((thought, value)) return thoughts = self.generate_and_filter_thoughts(state) for next_state in thoughts: state_value = self.evaluated_thoughts[next_state] if state_value > self.value_threshold: child = (state, next_state) if isinstance(state, str) else (*state, next_state) self.dfs(child, step + 1) #backtracking best_value = max([value for _, value in self.output]) if best_value < self.backtracking_threshold: self.output.pop() continue def generate_and_filter_thoughts(self, state): thoughts = self.model.generate_thoughts( state, self.num_thoughts, self.initial_prompt ) self.evaluated_thoughts = self.model.evaluate_states( thoughts, self.initial_prompt ) filtered_thoughts = [thought for thought in thoughts if self.evaluated_thoughts[thought] >= self.pruning_threshold] print(f"filtered_thoughts: {filtered_thoughts}") return filtered_thoughts def evaluate_thought(self, state): thought = self.model.generate_thoughts(state, 1, self.initial_prompt) value = self.model.evaluate_states([state], self.initial_prompt)[state] print(f"Evaluated thought: {value}") return thought, value
Algorithm-Of-Thoughts-main
aot/main.py
import os # specify example image paths: image_paths = [ 'synpic50962.jpg', 'synpic52767.jpg', 'synpic30324.jpg', 'synpic21044.jpg', 'synpic54802.jpg', 'synpic57813.jpg' ] image_paths = [os.path.join('../img', p) for p in image_paths] def clean_generation(response): """ for some reason, the open-flamingo based model slightly changes the input prompt (e.g. prepends <unk>, an adds some spaces) """ return response.replace('<unk> ', '').strip()
med-flamingo1-master
scripts/demo_utils.py
from huggingface_hub import hf_hub_download import torch import os from open_flamingo import create_model_and_transforms from accelerate import Accelerator from einops import repeat from PIL import Image import sys sys.path.append('..') from src.utils import FlamingoProcessor from demo_utils import image_paths, clean_generation def main(): accelerator = Accelerator() #when using cpu: cpu=True device = accelerator.device print('Loading model..') # >>> add your local path to Llama-7B (v1) model here: llama_path = '../models/llama-7b-hf' if not os.path.exists(llama_path): raise ValueError('Llama model not yet set up, please check README for instructions!') model, image_processor, tokenizer = create_model_and_transforms( clip_vision_encoder_path="ViT-L-14", clip_vision_encoder_pretrained="openai", lang_encoder_path=llama_path, tokenizer_path=llama_path, cross_attn_every_n_layers=4 ) # load med-flamingo checkpoint: checkpoint_path = hf_hub_download("med-flamingo/med-flamingo", "model.pt") print(f'Downloaded Med-Flamingo checkpoint to {checkpoint_path}') model.load_state_dict(torch.load(checkpoint_path, map_location=device), strict=False) processor = FlamingoProcessor(tokenizer, image_processor) # go into eval model and prepare: model = accelerator.prepare(model) is_main_process = accelerator.is_main_process model.eval() """ Step 1: Load images """ demo_images = [Image.open(path) for path in image_paths] """ Step 2: Define multimodal few-shot prompt """ # example few-shot prompt: prompt = "You are a helpful medical assistant. You are being provided with images, a question about the image and an answer. Follow the examples and answer the last question. <image>Question: What is/are the structure near/in the middle of the brain? Answer: pons.<|endofchunk|><image>Question: Is there evidence of a right apical pneumothorax on this chest x-ray? Answer: yes.<|endofchunk|><image>Question: Is/Are there air in the patient's peritoneal cavity? Answer: no.<|endofchunk|><image>Question: Does the heart appear enlarged? Answer: yes.<|endofchunk|><image>Question: What side are the infarcts located? Answer: bilateral.<|endofchunk|><image>Question: Which image modality is this? Answer: mr flair.<|endofchunk|><image>Question: Where is the largest mass located in the cerebellum? Answer:" """ Step 3: Preprocess data """ print('Preprocess data') pixels = processor.preprocess_images(demo_images) pixels = repeat(pixels, 'N c h w -> b N T c h w', b=1, T=1) tokenized_data = processor.encode_text(prompt) """ Step 4: Generate response """ # actually run few-shot prompt through model: print('Generate from multimodal few-shot prompt') generated_text = model.generate( vision_x=pixels.to(device), lang_x=tokenized_data["input_ids"].to(device), attention_mask=tokenized_data["attention_mask"].to(device), max_new_tokens=10, ) response = processor.tokenizer.decode(generated_text[0]) response = clean_generation(response) print(f'{response=}') if __name__ == "__main__": main()
med-flamingo1-master
scripts/demo.py
med-flamingo1-master
src/__init__.py
import torch from abc import ABC, abstractmethod class AbstractProcessor(ABC): """ Abstract class for processors to show what methods they need to implement. Processors handle text encoding and image preprocessing. """ @abstractmethod def encode_text(self, prompt): pass @abstractmethod def preprocess_images(self, images: list): pass class FlamingoProcessor(AbstractProcessor): """ Processor class for Flamingo. """ def __init__(self, tokenizer, vision_processor): """ OF does not use same vision processor, image_processor only transforms single image """ self.tokenizer = tokenizer self.vision_processor = vision_processor def encode_text(self, prompt): self.tokenizer.padding_side = "left" # For generation padding tokens should be on the left return self.tokenizer([prompt], return_tensors="pt", ) def preprocess_images(self, images: list): vision_x = [self.vision_processor(im).unsqueeze(0) for im in images] vision_x = torch.cat(vision_x, dim=0) return vision_x
med-flamingo1-master
src/utils.py
import os import asyncio import signal import sys import threading import traceback from pathlib import Path from platform import system import discord import pinecone from pycord.multicog import apply_multicog from swarmsdiscord.cogs.search_service_cog import SearchService from swarmsdiscord.cogs.text_service_cog import SWARMSComCon from swarmsdiscord.cogs.image_service_cog import DrawDallEService from swarmsdiscord.cogs.prompt_optimizer_cog import ImgPromptOptimizer from swarmsdiscord.cogs.moderations_service_cog import ModerationsService from swarmsdiscord.cogs.commands import Commands from swarmsdiscord.cogs.transcription_service_cog import TranscribeService from swarmsdiscord.cogs.translation_service_cog import TranslationService from swarmsdiscord.cogs.index_service_cog import IndexService from swarmsdiscord.models.deepl_model import TranslationModel from swarmsdiscord.services.health_service import HealthService from swarmsdiscord.services.pickle_service import Pickler from swarmsdiscord.services.pinecone_service import PineconeService from swarmsdiscord.services.deletion_service import Deletion from swarmsdiscord.services.message_queue_service import Message from swarmsdiscord.services.usage_service import UsageService from swarmsdiscord.services.environment_service import EnvService from swarmsdiscord.models.openai_model import Model __version__ = "11.7.3" PID_FILE = Path("bot.pid") PROCESS = None if sys.platform == "win32": separator = "\\" else: separator = "/" # # The pinecone service is used to store and retrieve conversation embeddings. # try: PINECONE_TOKEN = os.getenv("PINECONE_TOKEN") except Exception: PINECONE_TOKEN = None pinecone_service = None if PINECONE_TOKEN: pinecone.init(api_key=PINECONE_TOKEN, environment=EnvService.get_pinecone_region()) PINECONE_INDEX = "conversation-embeddings" if PINECONE_INDEX not in pinecone.list_indexes(): print("Creating pinecone index. Please wait...") pinecone.create_index( PINECONE_INDEX, dimension=1536, metric="dotproduct", pod_type="s1", ) pinecone_service = PineconeService(pinecone.Index(PINECONE_INDEX)) print("Got the pinecone service") # # Message queueing for the debug service, defer debug messages to be sent later so we don't hit rate limits. # message_queue = asyncio.Queue() deletion_queue = asyncio.Queue() asyncio.ensure_future(Message.process_message_queue(message_queue, 1.5, 5)) asyncio.ensure_future(Deletion.process_deletion_queue(deletion_queue, 1, 1)) # Pickling service for conversation persistence try: Path(EnvService.save_path() / "pickles").mkdir(exist_ok=True) except Exception: traceback.print_exc() print( "Could not start pickle service. Conversation history will not be persistent across restarts." ) pickle_queue = asyncio.Queue() asyncio.ensure_future(Pickler.process_pickle_queue(pickle_queue, 5, 1)) # # Settings for the bot # activity = discord.Activity( type=discord.ActivityType.watching, name="for /help /gpt, and more!" ) bot = discord.Bot(intents=discord.Intents.all(), command_prefix="!", activity=activity) usage_service = UsageService(Path(os.environ.get("DATA_DIR", os.getcwd()))) model = Model(usage_service) # # An swarmsdiscord.encapsulating wrapper for the discord.py client. This uses the old re-write without cogs, but it gets the job done! # @bot.event # Using self gives u async def on_ready(): # I can make self optional by print("We have logged in as {0.user}".format(bot)) @bot.event async def on_application_command_error( ctx: discord.ApplicationContext, error: discord.DiscordException ): if isinstance(error, discord.CheckFailure): pass else: raise error async def main(): data_path = EnvService.environment_path_with_fallback("DATA_DIR") debug_guild = int(os.getenv("DEBUG_GUILD")) debug_channel = int(os.getenv("DEBUG_CHANNEL")) if not data_path.exists(): raise OSError(f"Data path: {data_path} does not exist ... create it?") # Load the cog for the moderations service bot.add_cog(ModerationsService(bot, usage_service, model)) # Load the main SWARMS Bot service bot.add_cog( SWARMSComCon( bot, usage_service, model, message_queue, deletion_queue, debug_guild, debug_channel, data_path, pinecone_service=pinecone_service, pickle_queue=pickle_queue, ) ) bot.add_cog( DrawDallEService( bot, usage_service, model, message_queue, deletion_queue, bot.get_cog("SWARMSComCon"), ) ) bot.add_cog( ImgPromptOptimizer( bot, usage_service, model, message_queue, deletion_queue, bot.get_cog("SWARMSComCon"), bot.get_cog("DrawDallEService"), ) ) bot.add_cog( IndexService( bot, usage_service, deletion_queue, ) ) if EnvService.get_deepl_token(): bot.add_cog(TranslationService(bot, TranslationModel())) print("The translation service is enabled.") if ( EnvService.get_google_search_api_key() and EnvService.get_google_search_engine_id() ): bot.add_cog( SearchService( bot, model, usage_service, deletion_queue, bot.get_cog("SWARMSComCon") ) ) print("The Search service is enabled.") bot.add_cog( TranscribeService( bot, model, usage_service, ) ) bot.add_cog( Commands( bot, usage_service, model, message_queue, deletion_queue, bot.get_cog("SWARMSComCon"), bot.get_cog("DrawDallEService"), bot.get_cog("ImgPromptOptimizer"), bot.get_cog("ModerationsService"), bot.get_cog("IndexService"), bot.get_cog("TranslationService"), bot.get_cog("SearchService"), bot.get_cog("TranscribeService"), ) ) apply_multicog(bot) await bot.start(os.getenv("DISCORD_TOKEN")) def check_process_file(pid_file: Path) -> bool: """Check the pid file exists and if the Process ID is actually running""" if not pid_file.exists(): return False if system() == "Linux": with pid_file.open("r") as pfp: try: proc_pid_path = Path("/proc") / "{int(pfp.read().strip())}" print("Checking if PID proc path {proc_pid_path} exists") except ValueError: # We don't have a valid int in the PID File^M pid_file.unlink() return False return proc_pid_path.exists() return True def cleanup_pid_file(signum, frame): # Kill all threads if PROCESS: print("Killing all subprocesses") PROCESS.terminate() print("Killed all subprocesses") # Always cleanup PID File if it exists if PID_FILE.exists(): print(f"Removing PID file {PID_FILE}", flush=True) PID_FILE.unlink() # Run the bot with a token taken from an environment file. def init(): global PROCESS # Handle SIGTERM cleanly - Docker sends this ... signal.signal(signal.SIGTERM, cleanup_pid_file) if check_process_file(PID_FILE): print( "Process ID file already exists. Remove the file if you're sure another instance isn't running with the command: rm bot.pid" ) sys.exit(1) else: with PID_FILE.open("w") as f: f.write(str(os.getpid())) print(f"Wrote PID to file {PID_FILE}") f.close() try: if EnvService.get_health_service_enabled(): try: PROCESS = HealthService().get_process() except: traceback.print_exc() print("The health service failed to start.") asyncio.get_event_loop().run_until_complete(main()) except KeyboardInterrupt: print("Caught keyboard interrupt, killing and removing PID") except Exception as e: traceback.print_exc() print(str(e)) print("Removing PID file") finally: cleanup_pid_file(None, None) sys.exit(0) if __name__ == "__main__": sys.exit(init())
SwarmsDiscord-main
main.py
""" Store information about a discord user, for the purposes of enabling conversations. We store a message history, message count, and the id of the user in order to track them. """ class RedoUser: def __init__(self, prompt, instruction, message, ctx, response, paginator): self.prompt = prompt self.instruction = instruction self.message = message self.ctx = ctx self.response = response self.paginator = paginator self.interactions = [] def add_interaction(self, interaction): self.interactions.append(interaction) def in_interaction(self, interaction): return interaction in self.interactions # Represented by user_id def __hash__(self): return hash(self.message.author.id) def __eq__(self, other): return self.message.author.id == other.message.author.id # repr def __repr__(self): return f"RedoUser({self.message.author.id})" class User: def __init__(self, user_id): self.user_id = user_id self.history = [] self.count = 0 # These user objects should be accessible by ID, for example if we had a bunch of user # objects in a list, and we did `if 1203910293001 in user_list`, it would return True # if the user with that ID was in the list def __eq__(self, other): return self.user_id == other.id def __hash__(self): return hash(self.user_id) def __repr__(self): return f"User(id={self.user_id}, history={self.history})" def __str__(self): return self.__repr__() class Instruction: def __init__(self, id, prompt): self.id = id self.prompt = prompt def __eq__(self, other): return self.id == other.id def __hash__(self): return hash(self.id) def __repr__(self): return f"User(id={self.id}, prompt={self.prompt})" def __str__(self): return self.__repr__() class Thread: def __init__(self, thread_id): self.thread_id = thread_id self.history = [] self.count = 0 self.has_opener = False self.model = None self.temperature = None self.top_p = None self.frequency_penalty = None self.presence_penalty = None def set_overrides( self, temperature=None, top_p=None, frequency_penalty=None, presence_penalty=None, ): self.temperature = temperature self.top_p = top_p self.frequency_penalty = frequency_penalty self.presence_penalty = presence_penalty def get_overrides(self): return { "temperature": self.temperature, "top_p": self.top_p, "frequency_penalty": self.frequency_penalty, "presence_penalty": self.presence_penalty, } # These user objects should be accessible by ID, for example if we had a bunch of user # objects in a list, and we did `if 1203910293001 in user_list`, it would return True # if the user with that ID was in the list def __eq__(self, other): return self.thread_id == other.id def __hash__(self): return hash(self.thread_id) def __repr__(self): return f"Thread(id={self.thread_id}, history={self.history})" def __str__(self): return self.__repr__() class EmbeddedConversationItem: def __init__(self, text, timestamp): self.text = text self.timestamp = int(timestamp) def __repr__(self): return self.text def __str__(self): return self.__repr__() def __eq__(self, other): return self.text == other.text and self.timestamp == other.timestamp def __hash__(self): return hash(self.text) + hash(self.timestamp) def __lt__(self, other): return self.timestamp < other.timestamp def __gt__(self, other): return self.timestamp > other.timestamp def __le__(self, other): return self.timestamp <= other.timestamp def __ge__(self, other): return self.timestamp >= other.timestamp def __ne__(self, other): return not self.__eq__(other) # Make it such that if there is an array with these EmbeddedConversationItems, if we "".join the array, each item will # return the .text attribute def __format__(self, format_spec): return self.text
SwarmsDiscord-main
swarmsdiscord/models/user_model.py
import functools import os import random import tempfile import traceback import asyncio from collections import defaultdict import aiohttp import discord import aiofiles import openai import tiktoken from functools import partial from typing import List, Optional from pathlib import Path from datetime import date from discord import InteractionResponse, Interaction from discord.ext import pages from langchain import OpenAI from langchain.chat_models import ChatOpenAI from langchain.llms import OpenAIChat from langchain.memory import ConversationBufferMemory from llama_index.callbacks import CallbackManager, TokenCountingHandler from llama_index.data_structs.data_structs import Node from llama_index.data_structs.node import DocumentRelationship from llama_index.indices.query.query_transform import StepDecomposeQueryTransform from llama_index.langchain_helpers.agents import ( IndexToolConfig, LlamaToolkit, create_llama_chat_agent, ) from llama_index.optimization import SentenceEmbeddingOptimizer from llama_index.prompts.chat_prompts import CHAT_REFINE_PROMPT from llama_index.readers import YoutubeTranscriptReader from llama_index.readers.schema.base import Document from llama_index.langchain_helpers.text_splitter import TokenTextSplitter from llama_index.retrievers import VectorIndexRetriever, TreeSelectLeafRetriever from llama_index.query_engine import RetrieverQueryEngine, MultiStepQueryEngine from llama_index import ( GPTVectorStoreIndex, SimpleDirectoryReader, QuestionAnswerPrompt, BeautifulSoupWebReader, GPTTreeIndex, GoogleDocsReader, MockLLMPredictor, OpenAIEmbedding, GithubRepositoryReader, MockEmbedding, download_loader, LLMPredictor, ServiceContext, StorageContext, ResponseSynthesizer, load_index_from_storage, ) from llama_index.readers.web import DEFAULT_WEBSITE_EXTRACTOR from llama_index.composability import ComposableGraph from llama_index.schema import BaseDocument from models.embed_statics_model import EmbedStatics from models.openai_model import Models from models.check_model import UrlCheck from services.environment_service import EnvService SHORT_TO_LONG_CACHE = {} MAX_DEEP_COMPOSE_PRICE = EnvService.get_max_deep_compose_price() EpubReader = download_loader("EpubReader") MarkdownReader = download_loader("MarkdownReader") RemoteReader = download_loader("RemoteReader") RemoteDepthReader = download_loader("RemoteDepthReader") def get_and_query( user_id, index_storage, query, response_mode, nodes, child_branch_factor, service_context, multistep, ): index: [GPTVectorStoreIndex, GPTTreeIndex] = index_storage[ user_id ].get_index_or_throw() if isinstance(index, GPTTreeIndex): retriever = TreeSelectLeafRetriever( index=index, child_branch_factor=child_branch_factor, service_context=service_context, ) else: retriever = VectorIndexRetriever( index=index, similarity_top_k=nodes, service_context=service_context ) response_synthesizer = ResponseSynthesizer.from_args( response_mode=response_mode, use_async=True, refine_template=CHAT_REFINE_PROMPT, optimizer=SentenceEmbeddingOptimizer(threshold_cutoff=0.7), service_context=service_context, ) query_engine = RetrieverQueryEngine( retriever=retriever, response_synthesizer=response_synthesizer ) multistep_query_engine = MultiStepQueryEngine( query_engine=query_engine, query_transform=StepDecomposeQueryTransform(multistep), index_summary="Provides information about everything you need to know about this topic, use this to answer the question.", ) if multistep: response = multistep_query_engine.query(query) else: response = query_engine.query(query) return response class IndexData: def __init__(self): self.queryable_index = None self.individual_indexes = [] # A safety check for the future def get_index_or_throw(self): if not self.queryable(): raise Exception( "An index access was attempted before an index was created. This is a programmer error, please report this to the maintainers." ) return self.queryable_index def queryable(self): return self.queryable_index is not None def has_indexes(self, user_id): try: return ( len(os.listdir(EnvService.find_shared_file(f"indexes/{user_id}"))) > 0 ) except Exception: return False def has_search_indexes(self, user_id): try: return ( len( os.listdir(EnvService.find_shared_file(f"indexes/{user_id}_search")) ) > 0 ) except Exception: return False def add_index(self, index, user_id, file_name): self.individual_indexes.append(index) self.queryable_index = index # Create a folder called "indexes/{USER_ID}" if it doesn't exist already Path(f"{EnvService.save_path()}/indexes/{user_id}").mkdir( parents=True, exist_ok=True ) # Save the index to file under the user id file = f"{date.today().month}_{date.today().day}_{file_name}" # If file is > 93 in length, cut it off to 93 if len(file) > 93: file = file[:93] index.storage_context.persist( persist_dir=EnvService.save_path() / "indexes" / f"{str(user_id)}" / f"{file}" ) def reset_indexes(self, user_id): self.individual_indexes = [] self.queryable_index = None # Delete the user indexes try: # First, clear all the files inside it for file in os.listdir(EnvService.find_shared_file(f"indexes/{user_id}")): os.remove(EnvService.find_shared_file(f"indexes/{user_id}/{file}")) for file in os.listdir( EnvService.find_shared_file(f"indexes/{user_id}_search") ): os.remove( EnvService.find_shared_file(f"indexes/{user_id}_search/{file}") ) except Exception: traceback.print_exc() class Index_handler: def __init__(self, bot, usage_service): self.bot = bot self.openai_key = os.getenv("OPENAI_TOKEN") self.index_storage = defaultdict(IndexData) self.loop = asyncio.get_running_loop() self.usage_service = usage_service self.qaprompt = QuestionAnswerPrompt( "Context information is below. The text '<|endofstatement|>' is used to separate chat entries and make it easier for you to understand the context\n" "---------------------\n" "{context_str}" "\n---------------------\n" "Never say '<|endofstatement|>'\n" "Given the context information and not prior knowledge, " "answer the question: {query_str}\n" ) self.EMBED_CUTOFF = 2000 self.index_chat_chains = {} async def rename_index(self, ctx, original_path, rename_path): """Command handler to rename a user index""" index_file = EnvService.find_shared_file(original_path) if not index_file: return False # Rename the file at f"indexes/{ctx.user.id}/{user_index}" to f"indexes/{ctx.user.id}/{new_name}" using Pathlib try: Path(original_path).rename(rename_path) return True except Exception as e: traceback.print_exc() return False async def get_is_in_index_chat(self, ctx): return ctx.channel.id in self.index_chat_chains async def execute_index_chat_message(self, ctx, message): if ctx.channel.id not in self.index_chat_chains: return None if message.lower() in ["stop", "end", "quit", "exit"]: await ctx.reply("Ending chat session.") self.index_chat_chains.pop(ctx.channel.id) # close the thread thread = await self.bot.fetch_channel(ctx.channel.id) await thread.edit(name="Closed-GPT") await thread.edit(archived=True) return "Ended chat session." agent_output = await self.loop.run_in_executor( None, partial(self.index_chat_chains[ctx.channel.id].run, message) ) return agent_output async def start_index_chat(self, ctx, search, user, model): if search: index_file = EnvService.find_shared_file( f"indexes/{ctx.user.id}_search/{search}" ) elif user: index_file = EnvService.find_shared_file(f"indexes/{ctx.user.id}/{user}") assert index_file is not None preparation_message = await ctx.channel.send( embed=EmbedStatics.get_index_chat_preparation_message() ) index = await self.loop.run_in_executor( None, partial(self.index_load_file, index_file) ) summary_response = await self.loop.run_in_executor( None, partial( index.as_query_engine().query, "What is a summary of this document?" ), ) query_engine = index.as_query_engine(similarity_top_k=3) tool_config = IndexToolConfig( query_engine=query_engine, name=f"Vector Index", description=f"useful for when you want to answer queries about the external data you're connected to. The data you're connected to is: {summary_response}", tool_kwargs={"return_direct": True}, ) toolkit = LlamaToolkit( index_configs=[tool_config], ) memory = ConversationBufferMemory(memory_key="chat_history") llm = ChatOpenAI(model=model, temperature=0) agent_chain = create_llama_chat_agent(toolkit, llm, memory=memory, verbose=True) embed_title = f"{ctx.user.name}'s data-connected conversation with GPT" # Get only the last part after the last / of the index_file try: index_file_name = str(index_file).split("/")[-1] except: index_file_name = index_file message_embed = discord.Embed( title=embed_title, description=f"The agent is connected to the data index named {index_file_name}\nModel: {model}", color=0x00995B, ) message_embed.set_thumbnail(url="https://i.imgur.com/7V6apMT.png") message_embed.set_footer( text="Data Chat", icon_url="https://i.imgur.com/7V6apMT.png" ) message_thread = await ctx.send(embed=message_embed) thread = await message_thread.create_thread( name=ctx.user.name + "'s data-connected conversation with GPT", auto_archive_duration=60, ) await ctx.respond("Conversation started.") try: await preparation_message.delete() except: pass self.index_chat_chains[thread.id] = agent_chain async def paginate_embed(self, response_text): """Given a response text make embed pages and return a list of the pages.""" response_text = [ response_text[i : i + self.EMBED_CUTOFF] for i in range(0, len(response_text), self.EMBED_CUTOFF) ] pages = [] first = False # Send each chunk as a message for count, chunk in enumerate(response_text, start=1): if not first: page = discord.Embed( title=f"Index Query Results", description=chunk, ) first = True else: page = discord.Embed( title=f"Page {count}", description=chunk, ) pages.append(page) return pages def index_file( self, file_path, service_context, suffix=None ) -> GPTVectorStoreIndex: if suffix and suffix == ".md": loader = MarkdownReader() document = loader.load_data(file_path) elif suffix and suffix == ".epub": epub_loader = EpubReader() document = epub_loader.load_data(file_path) else: document = SimpleDirectoryReader(input_files=[file_path]).load_data() index = GPTVectorStoreIndex.from_documents( document, service_context=service_context, use_async=True ) return index def index_gdoc(self, doc_id, service_context) -> GPTVectorStoreIndex: document = GoogleDocsReader().load_data(doc_id) index = GPTVectorStoreIndex.from_documents( document, service_context=service_context, use_async=True ) return index def index_youtube_transcript(self, link, service_context): try: documents = YoutubeTranscriptReader().load_data(ytlinks=[link]) except Exception as e: raise ValueError(f"The youtube transcript couldn't be loaded: {e}") index = GPTVectorStoreIndex.from_documents( documents, service_context=service_context, use_async=True, ) return index def index_github_repository(self, link, service_context): # Extract the "owner" and the "repo" name from the github link. owner = link.split("/")[3] repo = link.split("/")[4] try: documents = GithubRepositoryReader(owner=owner, repo=repo).load_data( branch="main" ) except KeyError: documents = GithubRepositoryReader(owner=owner, repo=repo).load_data( branch="master" ) index = GPTVectorStoreIndex.from_documents( documents, service_context=service_context, use_async=True, ) return index def index_load_file(self, file_path) -> [GPTVectorStoreIndex, ComposableGraph]: storage_context = StorageContext.from_defaults(persist_dir=file_path) index = load_index_from_storage(storage_context) return index def index_discord(self, document, service_context) -> GPTVectorStoreIndex: index = GPTVectorStoreIndex.from_documents( document, service_context=service_context, use_async=True, ) return index async def index_pdf(self, url) -> list[Document]: # Download the PDF at the url and save it to a tempfile async with aiohttp.ClientSession() as session: async with session.get(url) as response: if response.status == 200: data = await response.read() f = tempfile.NamedTemporaryFile(suffix=".pdf", delete=False) f.write(data) f.close() else: return "An error occurred while downloading the PDF." # Get the file path of this tempfile.NamedTemporaryFile # Save this temp file to an actual file that we can put into something else to read it documents = SimpleDirectoryReader(input_files=[f.name]).load_data() # Delete the temporary file return documents async def index_webpage(self, url, service_context) -> GPTVectorStoreIndex: # First try to connect to the URL to see if we can even reach it. try: async with aiohttp.ClientSession() as session: async with session.get(url, timeout=5) as response: # Add another entry to links from all_links if the link is not already in it to compensate for the failed request if response.status not in [200, 203, 202, 204]: raise ValueError( "Invalid URL or could not connect to the provided URL." ) else: # Detect if the link is a PDF, if it is, we load it differently if response.headers["Content-Type"] == "application/pdf": documents = await self.index_pdf(url) index = await self.loop.run_in_executor( None, functools.partial( GPTVectorStoreIndex, documents=documents, service_context=service_context, use_async=True, ), ) return index except: raise ValueError("Could not load webpage") documents = BeautifulSoupWebReader( website_extractor=DEFAULT_WEBSITE_EXTRACTOR ).load_data(urls=[url]) # index = GPTVectorStoreIndex(documents, embed_model=embed_model, use_async=True) index = await self.loop.run_in_executor( None, functools.partial( GPTVectorStoreIndex.from_documents, documents=documents, service_context=service_context, use_async=True, ), ) return index def reset_indexes(self, user_id): self.index_storage[user_id].reset_indexes(user_id) async def set_file_index( self, ctx: discord.ApplicationContext, file: discord.Attachment, user_api_key ): if not user_api_key: os.environ["OPENAI_API_KEY"] = self.openai_key else: os.environ["OPENAI_API_KEY"] = user_api_key openai.api_key = os.environ["OPENAI_API_KEY"] type_to_suffix_mappings = { "text/plain": ".txt", "text/csv": ".csv", "application/pdf": ".pdf", "application/json": ".json", "image/png": ".png", "image/": ".jpg", "ms-powerpoint": ".ppt", "presentationml.presentation": ".pptx", "ms-excel": ".xls", "spreadsheetml.sheet": ".xlsx", "msword": ".doc", "wordprocessingml.document": ".docx", "audio/": ".mp3", "video/": ".mp4", "epub": ".epub", "markdown": ".md", "html": ".html", } # For when content type doesnt get picked up by discord. secondary_mappings = { ".epub": ".epub", } try: # First, initially set the suffix to the suffix of the attachment suffix = None if file.content_type: # Apply the suffix mappings to the file for key, value in type_to_suffix_mappings.items(): if key in file.content_type: suffix = value break if not suffix: await ctx.send("This file type is not supported.") return else: for key, value in secondary_mappings.items(): if key in file.filename: suffix = value break if not suffix: await ctx.send( "Could not determine the file type of the attachment, attempting a dirty index.." ) return # Send indexing message response = await ctx.respond( embed=EmbedStatics.build_index_progress_embed() ) async with aiofiles.tempfile.TemporaryDirectory() as temp_path: async with aiofiles.tempfile.NamedTemporaryFile( suffix=suffix, dir=temp_path, delete=False ) as temp_file: await file.save(temp_file.name) embedding_model = OpenAIEmbedding() token_counter = TokenCountingHandler( tokenizer=tiktoken.encoding_for_model( "text-davinci-003" ).encode, verbose=False, ) callback_manager = CallbackManager([token_counter]) service_context = ServiceContext.from_defaults( embed_model=embedding_model, callback_manager=callback_manager ) index = await self.loop.run_in_executor( None, partial( self.index_file, Path(temp_file.name), service_context, suffix, ), ) await self.usage_service.update_usage( token_counter.total_embedding_token_count, "embedding" ) try: price = await self.usage_service.get_price( token_counter.total_embedding_token_count, "embedding" ) except: traceback.print_exc() price = "Unknown" file_name = file.filename self.index_storage[ctx.user.id].add_index(index, ctx.user.id, file_name) await response.edit( embed=EmbedStatics.get_index_set_success_embed(str(price)) ) except Exception as e: await ctx.channel.send( embed=EmbedStatics.get_index_set_failure_embed(str(e)) ) traceback.print_exc() async def set_link_index_recurse( self, ctx: discord.ApplicationContext, link: str, depth, user_api_key ): if not user_api_key: os.environ["OPENAI_API_KEY"] = self.openai_key else: os.environ["OPENAI_API_KEY"] = user_api_key openai.api_key = os.environ["OPENAI_API_KEY"] response = await ctx.respond(embed=EmbedStatics.build_index_progress_embed()) try: embedding_model = OpenAIEmbedding() token_counter = TokenCountingHandler( tokenizer=tiktoken.encoding_for_model("text-davinci-003").encode, verbose=False, ) callback_manager = CallbackManager([token_counter]) service_context = ServiceContext.from_defaults( embed_model=embedding_model, callback_manager=callback_manager ) # Pre-emptively connect and get the content-type of the response try: async with aiohttp.ClientSession() as session: async with session.get(link, timeout=2) as _response: print(_response.status) if _response.status == 200: content_type = _response.headers.get("content-type") else: await response.edit( embed=EmbedStatics.get_index_set_failure_embed( "Invalid URL or could not connect to the provided URL." ) ) return except Exception as e: traceback.print_exc() await response.edit( embed=EmbedStatics.get_index_set_failure_embed( "Invalid URL or could not connect to the provided URL. " + str(e) ) ) return # Check if the link contains youtube in it loader = RemoteDepthReader(depth=depth) documents = await self.loop.run_in_executor( None, partial(loader.load_data, [link]) ) index = await self.loop.run_in_executor( None, functools.partial( GPTVectorStoreIndex, documents=documents, service_context=service_context, use_async=True, ), ) await self.usage_service.update_usage( token_counter.total_embedding_token_count, "embedding" ) try: price = await self.usage_service.get_price( token_counter.total_embedding_token_count, "embedding" ) except: traceback.print_exc() price = "Unknown" # Make the url look nice, remove https, useless stuff, random characters file_name = ( link.replace("https://", "") .replace("http://", "") .replace("www.", "") .replace("/", "_") .replace("?", "_") .replace("&", "_") .replace("=", "_") .replace("-", "_") .replace(".", "_") ) self.index_storage[ctx.user.id].add_index(index, ctx.user.id, file_name) except ValueError as e: await response.edit(embed=EmbedStatics.get_index_set_failure_embed(str(e))) traceback.print_exc() return except Exception as e: await response.edit(embed=EmbedStatics.get_index_set_failure_embed(str(e))) traceback.print_exc() return await response.edit(embed=EmbedStatics.get_index_set_success_embed(price)) async def set_link_index( self, ctx: discord.ApplicationContext, link: str, user_api_key ): if not user_api_key: os.environ["OPENAI_API_KEY"] = self.openai_key else: os.environ["OPENAI_API_KEY"] = user_api_key openai.api_key = os.environ["OPENAI_API_KEY"] response = await ctx.respond(embed=EmbedStatics.build_index_progress_embed()) try: embedding_model = OpenAIEmbedding() token_counter = TokenCountingHandler( tokenizer=tiktoken.encoding_for_model("text-davinci-003").encode, verbose=False, ) callback_manager = CallbackManager([token_counter]) service_context = ServiceContext.from_defaults( embed_model=embedding_model, callback_manager=callback_manager ) # Pre-emptively connect and get the content-type of the response try: async with aiohttp.ClientSession() as session: async with session.get(link, timeout=2) as _response: print(_response.status) if _response.status == 200: content_type = _response.headers.get("content-type") else: await response.edit( embed=EmbedStatics.get_index_set_failure_embed( "Invalid URL or could not connect to the provided URL." ) ) return except Exception as e: traceback.print_exc() await response.edit( embed=EmbedStatics.get_index_set_failure_embed( "Invalid URL or could not connect to the provided URL. " + str(e) ) ) return # Check if the link contains youtube in it if await UrlCheck.check_youtube_link(link): index = await self.loop.run_in_executor( None, partial(self.index_youtube_transcript, link, service_context) ) elif "github" in link: index = await self.loop.run_in_executor( None, partial(self.index_github_repository, link, service_context) ) else: index = await self.index_webpage(link, service_context) await self.usage_service.update_usage( token_counter.total_embedding_token_count, "embedding" ) try: price = await self.usage_service.get_price( token_counter.embedding_token_counts, "embedding" ) except: traceback.print_exc() price = "Unknown" # Make the url look nice, remove https, useless stuff, random characters file_name = ( link.replace("https://", "") .replace("http://", "") .replace("www.", "") .replace("/", "_") .replace("?", "_") .replace("&", "_") .replace("=", "_") .replace("-", "_") .replace(".", "_") ) self.index_storage[ctx.user.id].add_index(index, ctx.user.id, file_name) except ValueError as e: await response.edit(embed=EmbedStatics.get_index_set_failure_embed(str(e))) traceback.print_exc() return except Exception as e: await response.edit(embed=EmbedStatics.get_index_set_failure_embed(str(e))) traceback.print_exc() return await response.edit(embed=EmbedStatics.get_index_set_success_embed(price)) async def set_discord_index( self, ctx: discord.ApplicationContext, channel: discord.TextChannel, user_api_key, message_limit: int = 2500, ): if not user_api_key: os.environ["OPENAI_API_KEY"] = self.openai_key else: os.environ["OPENAI_API_KEY"] = user_api_key openai.api_key = os.environ["OPENAI_API_KEY"] try: document = await self.load_data( channel_ids=[channel.id], limit=message_limit, oldest_first=False ) embedding_model = OpenAIEmbedding() token_counter = TokenCountingHandler( tokenizer=tiktoken.encoding_for_model("text-davinci-003").encode, verbose=False, ) callback_manager = CallbackManager([token_counter]) service_context = ServiceContext.from_defaults( embed_model=embedding_model, callback_manager=callback_manager ) index = await self.loop.run_in_executor( None, partial(self.index_discord, document, service_context) ) try: price = await self.usage_service.get_price( token_counter.total_embedding_token_count, "embedding" ) except Exception: traceback.print_exc() price = "Unknown" await self.usage_service.update_usage( token_counter.total_embedding_token_count, "embedding" ) self.index_storage[ctx.user.id].add_index(index, ctx.user.id, channel.name) await ctx.respond(embed=EmbedStatics.get_index_set_success_embed(price)) except Exception as e: await ctx.respond(embed=EmbedStatics.get_index_set_failure_embed(str(e))) traceback.print_exc() async def load_index( self, ctx: discord.ApplicationContext, index, server, search, user_api_key ): if not user_api_key: os.environ["OPENAI_API_KEY"] = self.openai_key else: os.environ["OPENAI_API_KEY"] = user_api_key openai.api_key = os.environ["OPENAI_API_KEY"] try: if server: index_file = EnvService.find_shared_file( f"indexes/{ctx.guild.id}/{index}" ) elif search: index_file = EnvService.find_shared_file( f"indexes/{ctx.user.id}_search/{index}" ) else: index_file = EnvService.find_shared_file( f"indexes/{ctx.user.id}/{index}" ) index = await self.loop.run_in_executor( None, partial(self.index_load_file, index_file) ) self.index_storage[ctx.user.id].queryable_index = index await ctx.respond(embed=EmbedStatics.get_index_load_success_embed()) except Exception as e: traceback.print_exc() await ctx.respond(embed=EmbedStatics.get_index_load_failure_embed(str(e))) async def index_to_docs( self, old_index, chunk_size: int = 4000, chunk_overlap: int = 200 ) -> List[BaseDocument]: documents = [] docstore = old_index.docstore for doc_id in docstore.docs.keys(): text = "" document = docstore.get_document(doc_id) if document is not None: node = docstore.get_node(document.get_doc_id()) while node is not None: extra_info = node.extra_info text += f"{node.text} " next_node_id = node.relationships.get( DocumentRelationship.NEXT, None ) node = docstore.get_node(next_node_id) if next_node_id else None text_splitter = TokenTextSplitter( separator=" ", chunk_size=chunk_size, chunk_overlap=chunk_overlap ) text_chunks = text_splitter.split_text(text) for chunk_text in text_chunks: new_doc = Document(text=chunk_text, extra_info=extra_info) documents.append(new_doc) print(new_doc) return documents async def compose_indexes(self, user_id, indexes, name, deep_compose): # Load all the indexes first index_objects = [] for _index in indexes: try: index_file = EnvService.find_shared_file(f"indexes/{user_id}/{_index}") except ValueError: index_file = EnvService.find_shared_file( f"indexes/{user_id}_search/{_index}" ) index = await self.loop.run_in_executor( None, partial(self.index_load_file, index_file) ) index_objects.append(index) llm_predictor = LLMPredictor( llm=ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo") ) # For each index object, add its documents to a GPTTreeIndex if deep_compose: documents = [] for _index in index_objects: documents.extend(await self.index_to_docs(_index, 256, 20)) embedding_model = OpenAIEmbedding() llm_predictor_mock = MockLLMPredictor(4096) embedding_model_mock = MockEmbedding(1536) token_counter_mock = TokenCountingHandler( tokenizer=tiktoken.encoding_for_model("text-davinci-003").encode, verbose=False, ) callback_manager_mock = CallbackManager([token_counter_mock]) service_context_mock = ServiceContext.from_defaults( llm_predictor=llm_predictor_mock, embed_model=embedding_model_mock, callback_manager=callback_manager_mock, ) # Run the mock call first await self.loop.run_in_executor( None, partial( GPTTreeIndex.from_documents, documents=documents, service_context=service_context_mock, ), ) total_usage_price = await self.usage_service.get_price( token_counter_mock.total_llm_token_count, "turbo", # TODO Enable again when tree indexes are fixed ) + await self.usage_service.get_price( token_counter_mock.total_embedding_token_count, "embedding" ) print("The total composition price is: ", total_usage_price) if total_usage_price > MAX_DEEP_COMPOSE_PRICE: raise ValueError( "Doing this deep search would be prohibitively expensive. Please try a narrower search scope." ) token_counter = TokenCountingHandler( tokenizer=tiktoken.encoding_for_model("gpt-3.5-turbo").encode, verbose=False, ) callback_manager = CallbackManager([token_counter]) service_context = ServiceContext.from_defaults( llm_predictor=llm_predictor, embed_model=embedding_model, callback_manager=callback_manager, ) tree_index = await self.loop.run_in_executor( None, partial( GPTTreeIndex.from_documents, documents=documents, service_context=service_context, use_async=True, ), ) await self.usage_service.update_usage( token_counter.total_llm_token_count, "turbo" ) await self.usage_service.update_usage( token_counter.total_embedding_token_count, "embedding" ) # Now we have a list of tree indexes, we can compose them if not name: name = f"{date.today().month}_{date.today().day}_composed_deep_index" # Save the composed index tree_index.storage_context.persist( persist_dir=EnvService.save_path() / "indexes" / str(user_id) / name ) self.index_storage[user_id].queryable_index = tree_index return total_usage_price else: documents = [] for _index in index_objects: documents.extend(await self.index_to_docs(_index)) embedding_model = OpenAIEmbedding() token_counter = TokenCountingHandler( tokenizer=tiktoken.encoding_for_model("gpt-3.5-turbo").encode, verbose=False, ) callback_manager = CallbackManager([token_counter]) service_context = ServiceContext.from_defaults( embed_model=embedding_model, callback_manager=callback_manager ) simple_index = await self.loop.run_in_executor( None, partial( GPTVectorStoreIndex.from_documents, documents=documents, service_context=service_context, use_async=True, ), ) await self.usage_service.update_usage( token_counter.total_embedding_token_count, "embedding" ) if not name: name = f"{date.today().month}_{date.today().day}_composed_index" # Save the composed index simple_index.storage_context.persist( persist_dir=EnvService.save_path() / "indexes" / str(user_id) / name ) self.index_storage[user_id].queryable_index = simple_index try: price = await self.usage_service.get_price( token_counter.total_embedding_token_count, "embedding" ) except: price = "Unknown" return price async def backup_discord( self, ctx: discord.ApplicationContext, user_api_key, message_limit ): if not user_api_key: os.environ["OPENAI_API_KEY"] = self.openai_key else: os.environ["OPENAI_API_KEY"] = user_api_key openai.api_key = os.environ["OPENAI_API_KEY"] try: channel_ids: List[int] = [] for c in ctx.guild.text_channels: channel_ids.append(c.id) document = await self.load_data( channel_ids=channel_ids, limit=message_limit, oldest_first=False ) embedding_model = OpenAIEmbedding() token_counter = TokenCountingHandler( tokenizer=tiktoken.encoding_for_model("text-davinci-003").encode, verbose=False, ) callback_manager = CallbackManager([token_counter]) service_context = ServiceContext.from_defaults( embed_model=embedding_model, callback_manager=callback_manager ) index = await self.loop.run_in_executor( None, partial(self.index_discord, document, service_context) ) await self.usage_service.update_usage( token_counter.total_embedding_token_count, "embedding" ) try: price = await self.usage_service.get_price( token_counter.total_embedding_token_count, "embedding" ) except Exception: traceback.print_exc() price = "Unknown" Path(EnvService.save_path() / "indexes" / str(ctx.guild.id)).mkdir( parents=True, exist_ok=True ) index.storage_context.persist( persist_dir=EnvService.save_path() / "indexes" / str(ctx.guild.id) / f"{ctx.guild.name.replace(' ', '-')}_{date.today().month}_{date.today().day}" ) await ctx.respond(embed=EmbedStatics.get_index_set_success_embed(price)) except Exception as e: await ctx.respond(embed=EmbedStatics.get_index_set_failure_embed((str(e)))) traceback.print_exc() async def query( self, ctx: discord.ApplicationContext, query: str, response_mode, nodes, user_api_key, child_branch_factor, model, multistep, ): if not user_api_key: os.environ["OPENAI_API_KEY"] = self.openai_key else: os.environ["OPENAI_API_KEY"] = user_api_key openai.api_key = os.environ["OPENAI_API_KEY"] llm_predictor = LLMPredictor(llm=ChatOpenAI(temperature=0, model_name=model)) ctx_response = await ctx.respond( embed=EmbedStatics.build_index_query_progress_embed(query) ) try: embedding_model = OpenAIEmbedding() token_counter = TokenCountingHandler( tokenizer=tiktoken.encoding_for_model(model).encode, verbose=False ) callback_manager = CallbackManager([token_counter]) service_context = ServiceContext.from_defaults( llm_predictor=llm_predictor, embed_model=embedding_model, callback_manager=callback_manager, ) token_counter.reset_counts() response = await self.loop.run_in_executor( None, partial( get_and_query, ctx.user.id, self.index_storage, query, response_mode, nodes, child_branch_factor, service_context=service_context, multistep=llm_predictor if multistep else None, ), ) print("The last token usage was ", token_counter.total_llm_token_count) await self.usage_service.update_usage( token_counter.total_llm_token_count, await self.usage_service.get_cost_name(model), ) await self.usage_service.update_usage( token_counter.total_embedding_token_count, "embedding" ) try: total_price = round( await self.usage_service.get_price( token_counter.total_llm_token_count, await self.usage_service.get_cost_name(model), ) + await self.usage_service.get_price( token_counter.total_embedding_token_count, "embedding" ), 6, ) except: total_price = "Unknown" query_response_message = f"**Query:**\n\n`{query.strip()}`\n\n**Query response:**\n\n{response.response.strip()}" query_response_message = query_response_message.replace( "<|endofstatement|>", "" ) embed_pages = await self.paginate_embed(query_response_message) paginator = pages.Paginator( pages=embed_pages, timeout=None, author_check=False, ) await ctx_response.edit( embed=EmbedStatics.build_index_query_success_embed(query, total_price) ) await paginator.respond(ctx.interaction) except Exception: traceback.print_exc() await ctx_response.edit( embed=EmbedStatics.get_index_query_failure_embed( "Failed to send query. You may not have an index set, load an index with /index load" ) ) # Extracted functions from DiscordReader async def read_channel( self, channel_id: int, limit: Optional[int], oldest_first: bool ) -> str: """Async read channel.""" messages: List[discord.Message] = [] try: channel = self.bot.get_channel(channel_id) print(f"Added {channel.name} from {channel.guild.name}") # only work for text channels for now if not isinstance(channel, discord.TextChannel): raise ValueError( f"Channel {channel_id} is not a text channel. " "Only text channels are supported for now." ) # thread_dict maps thread_id to thread thread_dict = {} for thread in channel.threads: thread_dict[thread.id] = thread async for msg in channel.history(limit=limit, oldest_first=oldest_first): if msg.author.bot: pass else: messages.append(msg) if msg.id in thread_dict: thread = thread_dict[msg.id] async for thread_msg in thread.history( limit=limit, oldest_first=oldest_first ): messages.append(thread_msg) except Exception as e: print("Encountered error: " + str(e)) channel = self.bot.get_channel(channel_id) msg_txt_list = [ f"user:{m.author.display_name}, content:{m.content}" for m in messages ] return ("<|endofstatement|>\n\n".join(msg_txt_list), channel.name) async def load_data( self, channel_ids: List[int], limit: Optional[int] = None, oldest_first: bool = True, ) -> List[Document]: """Load data from the input directory. Args: channel_ids (List[int]): List of channel ids to read. limit (Optional[int]): Maximum number of messages to read. oldest_first (bool): Whether to read oldest messages first. Defaults to `True`. Returns: List[Document]: List of documents. """ results: List[Document] = [] for channel_id in channel_ids: if not isinstance(channel_id, int): raise ValueError( f"Channel id {channel_id} must be an integer, " f"not {type(channel_id)}." ) (channel_content, channel_name) = await self.read_channel( channel_id, limit=limit, oldest_first=oldest_first ) results.append( Document(channel_content, extra_info={"channel_name": channel_name}) ) return results async def compose(self, ctx: discord.ApplicationContext, name, user_api_key): # Send the ComposeModal if not user_api_key: os.environ["OPENAI_API_KEY"] = self.openai_key else: os.environ["OPENAI_API_KEY"] = user_api_key openai.api_key = os.environ["OPENAI_API_KEY"] if not self.index_storage[ctx.user.id].has_indexes(ctx.user.id): await ctx.respond( embed=EmbedStatics.get_index_compose_failure_embed( "You must have at least one index to compose." ) ) return await ctx.respond( "Select the index(es) to compose. You can compose multiple indexes together, you can also Deep Compose a single index.", view=ComposeModal(self, ctx.user.id, name), ephemeral=True, ) class ComposeModal(discord.ui.View): def __init__(self, index_cog, user_id, name=None, deep=None) -> None: super().__init__() # Get the argument named "user_key_db" and save it as USER_KEY_DB self.index_cog = index_cog self.user_id = user_id self.deep = deep # Get all the indexes for the user self.indexes = [ file for file in os.listdir( EnvService.find_shared_file(f"indexes/{str(user_id)}/") ) ] if index_cog.index_storage[user_id].has_search_indexes(user_id): self.indexes.extend( [ file for file in os.listdir( EnvService.find_shared_file(f"indexes/{str(user_id)}_search/") ) ] ) print("Found the indexes, they are ", self.indexes) # Map everything into the short to long cache for index in self.indexes: if len(index) > 93: index_name = index[:93] + "-" + str(random.randint(0000, 9999)) SHORT_TO_LONG_CACHE[index_name] = index else: SHORT_TO_LONG_CACHE[index[:99]] = index # Reverse the SHORT_TO_LONG_CACHE index LONG_TO_SHORT_CACHE = {v: k for k, v in SHORT_TO_LONG_CACHE.items()} # A text entry field for the name of the composed index self.name = name # A discord UI select menu with all the indexes. Limited to 25 entries. For the label field in the SelectOption, # cut it off at 100 characters to prevent the message from being too long self.index_select = discord.ui.Select( placeholder="Select index(es) to compose", options=[ discord.SelectOption( label=LONG_TO_SHORT_CACHE[index], value=LONG_TO_SHORT_CACHE[index] ) for index in self.indexes ][0:25], max_values=len(self.indexes) if len(self.indexes) < 25 else 25, min_values=1, ) # Add the select menu to the modal self.add_item(self.index_select) # If we have more than 25 entries, add more Select fields as neccessary self.extra_index_selects = [] if len(self.indexes) > 25: for i in range(25, len(self.indexes), 25): self.extra_index_selects.append( discord.ui.Select( placeholder="Select index(es) to compose", options=[ discord.SelectOption( label=LONG_TO_SHORT_CACHE[index], value=LONG_TO_SHORT_CACHE[index], ) for index in self.indexes ][i : i + 25], max_values=len(self.indexes[i : i + 25]), min_values=1, ) ) self.add_item(self.extra_index_selects[-1]) # Add an input field for "Deep", a "yes" or "no" option, default no self.deep_select = discord.ui.Select( placeholder="Deep Compose", options=[ discord.SelectOption(label="Yes", value="yes"), discord.SelectOption(label="No", value="no"), ], max_values=1, min_values=1, ) self.add_item(self.deep_select) # Add a button to the modal called "Compose" self.add_item( discord.ui.Button( label="Compose", style=discord.ButtonStyle.green, custom_id="compose" ) ) # The callback for the button async def interaction_check(self, interaction: discord.Interaction) -> bool: # Check that the interaction was for custom_id "compose" if interaction.data["custom_id"] == "compose": # Check that the user selected at least one index # The total list of indexes is the union of the values of all the select menus indexes = self.index_select.values + [ select.values[0] for select in self.extra_index_selects ] # Remap them from the SHORT_TO_LONG_CACHE indexes = [SHORT_TO_LONG_CACHE[index] for index in indexes] if len(indexes) < 1: await interaction.response.send_message( embed=EmbedStatics.get_index_compose_failure_embed( "You must select at least 1 index" ), ephemeral=True, ) else: composing_message = await interaction.response.send_message( embed=EmbedStatics.get_index_compose_progress_embed(), ephemeral=True, ) # Compose the indexes try: price = await self.index_cog.compose_indexes( self.user_id, indexes, self.name, False if not self.deep_select.values or self.deep_select.values[0] == "no" else True, ) except ValueError as e: await interaction.followup.send( str(e), ephemeral=True, delete_after=180 ) return False except Exception as e: await interaction.followup.send( embed=EmbedStatics.get_index_compose_failure_embed( "An error occurred while composing the indexes: " + str(e) ), ephemeral=True, delete_after=180, ) return False await interaction.followup.send( embed=EmbedStatics.get_index_compose_success_embed(price), ephemeral=True, delete_after=180, ) # Try to direct message the user that their composed index is ready try: await self.index_cog.bot.get_user(self.user_id).send( f"Your composed index is ready! You can load it with /index load now in the server." ) except discord.Forbidden: pass try: composing_message: Interaction await composing_message.delete_original_response() except: traceback.print_exc() else: await interaction.response.defer(ephemeral=True)
SwarmsDiscord-main
swarmsdiscord/models/index_model.py
from pathlib import Path import os import re import discord from models.deepl_model import TranslationModel from services.moderations_service import ModerationOptions from services.usage_service import UsageService from models.openai_model import ImageSize, Model, ModelLimits, Models, Mode from services.environment_service import EnvService usage_service = UsageService(Path(os.environ.get("DATA_DIR", os.getcwd()))) model = Model(usage_service) class Settings_autocompleter: """autocompleter for the settings command""" async def get_settings(ctx: discord.AutocompleteContext): """get settings for the settings option""" SETTINGS = [ re.sub("^_", "", key) for key in model.__dict__.keys() if key not in model._hidden_attributes ] return [ parameter for parameter in SETTINGS if parameter.startswith(ctx.value.lower()) ][:25] async def get_value( ctx: discord.AutocompleteContext, ): # Behaves a bit weird if you go back and edit the parameter without typing in a new command """gets valid values for the value option""" values = { "max_conversation_length": [ str(num) for num in range( ModelLimits.MIN_CONVERSATION_LENGTH, ModelLimits.MAX_CONVERSATION_LENGTH + 1, 2, ) ], "num_images": [ str(num) for num in range( ModelLimits.MIN_NUM_IMAGES, ModelLimits.MAX_NUM_IMAGES + 1 ) ], "mode": Mode.ALL_MODES, "model": Models.TEXT_MODELS, "low_usage_mode": ["True", "False"], "image_size": ImageSize.ALL_SIZES, "summarize_conversation": ["True", "False"], "welcome_message_enabled": ["True", "False"], "num_static_conversation_items": [ str(num) for num in range( ModelLimits.MIN_NUM_STATIC_CONVERSATION_ITEMS, ModelLimits.MAX_NUM_STATIC_CONVERSATION_ITEMS + 1, ) ], "num_conversation_lookback": [ str(num) for num in range( ModelLimits.MIN_NUM_CONVERSATION_LOOKBACK, ModelLimits.MAX_NUM_CONVERSATION_LOOKBACK + 1, ) ], "summarize_threshold": [ str(num) for num in range( ModelLimits.MIN_SUMMARIZE_THRESHOLD, ModelLimits.MAX_SUMMARIZE_THRESHOLD + 1, 50, ) ], "type": ["warn", "delete"], "use_org": ["True", "False"], } options = values.get(ctx.options["parameter"], []) if options: return [value for value in options if value.startswith(ctx.value.lower())] await ctx.interaction.response.defer() # defer so the autocomplete in int values doesn't error but rather just says not found return [] async def get_models( ctx: discord.AutocompleteContext, ): """Gets all models""" models = [ value for value in Models.TEXT_MODELS if value.startswith(ctx.value.lower()) ] return models async def get_index_and_search_models( ctx: discord.AutocompleteContext, ): models = Models.CHATGPT_MODELS + Models.GPT4_MODELS return [value for value in models if value.startswith(ctx.value.lower())] async def get_converse_models( ctx: discord.AutocompleteContext, ): """Gets all models""" models = [ value for value in Models.TEXT_MODELS if value.startswith(ctx.value.lower()) ] return models async def get_value_moderations( ctx: discord.AutocompleteContext, ): # Behaves a bit weird if you go back and edit the parameter without typing in a new command """gets valid values for the type option""" return [ value for value in ModerationOptions.OPTIONS if value.startswith(ctx.value.lower()) ] async def get_value_alert_id_channel(self, ctx: discord.AutocompleteContext): """gets valid values for the channel option""" return [ channel.name for channel in ctx.interaction.guild.channels if channel.name.startswith(ctx.value.lower()) ] class Translations_autocompleter: """autocompleter for the translations command""" async def get_languages(ctx: discord.AutocompleteContext): """gets valid values for the language option""" return [ language for language in TranslationModel.get_all_country_names() if language.lower().startswith(ctx.value.lower()) ] async def get_formality_values(self, ctx: discord.AutocompleteContext): """gets valid values for the formality option""" return [ value for value in ["prefer_more", "prefer_less"] if value.lower().startswith(ctx.value.lower()) ] class File_autocompleter: """Autocompleter for the opener command""" async def get_openers(ctx: discord.AutocompleteContext): """get all files in the openers folder""" try: return [ file for file in os.listdir(EnvService.find_shared_file("openers")) if file.startswith(ctx.value.lower()) ][ :25 ] # returns the 25 first files from your current input except Exception: return ["No 'openers' folder"] async def get_user_indexes(ctx: discord.AutocompleteContext): """get all files in the indexes folder""" try: return [ file for file in os.listdir( EnvService.find_shared_file( f"indexes/{str(ctx.interaction.user.id)}/" ) ) if file.startswith(ctx.value.lower()) ][ :25 ] # returns the 25 first files from your current input except Exception: return ["No user indexes found, add an index"] async def get_server_indexes(ctx: discord.AutocompleteContext): """get all files in the indexes folder""" try: return [ file for file in os.listdir( EnvService.find_shared_file( f"indexes/{str(ctx.interaction.guild.id)}/" ) ) if file.startswith(ctx.value.lower()) ][ :25 ] # returns the 25 first files from your current input except Exception: return ["No server indexes found, add an index"] async def get_user_search_indexes(ctx: discord.AutocompleteContext): """get all files in the indexes folder""" try: return [ file for file in os.listdir( EnvService.find_shared_file( f"indexes/{str(ctx.interaction.user.id)}_search/" ) ) if file.startswith(ctx.value.lower()) ][ :25 ] # returns the 25 first files from your current input except Exception: return ["No user indexes found, add an index"]
SwarmsDiscord-main
swarmsdiscord/models/autocomplete_model.py
SwarmsDiscord-main
swarmsdiscord/models/__init__.py
import os import traceback import aiohttp import backoff COUNTRY_CODES = { "EN": "English", "ES": "Spanish", "FR": "French", "ZH": "Chinese (simplified)", "BG": "Bulgarian", "CS": "Czech", "DA": "Danish", "DE": "German", "EL": "Greek", "FI": "Finnish", "HU": "Hungarian", "ID": "Indonesian", "IT": "Italian", "JA": "Japanese", "LT": "Lithuanian", "LV": "Latvian", "NL": "Dutch", "PL": "Polish", "PT": "Portuguese", "RO": "Romanian", "RU": "Russian", "SK": "Slovak", "SV": "Swedish", "TR": "Turkish", "UK": "Ukrainian", } class TranslationModel: def __init__(self): self.deepl_token = os.getenv("DEEPL_TOKEN") def backoff_handler(details): print( f"Backing off {details['wait']:0.1f} seconds after {details['tries']} tries calling function {details['target']} | " f"{details['exception'].status}: {details['exception'].message}" ) @backoff.on_exception( backoff.expo, aiohttp.ClientResponseError, factor=3, base=5, max_tries=4, on_backoff=backoff_handler, ) async def send_translate_request(self, text, translate_language, formality): async with aiohttp.ClientSession(raise_for_status=True) as session: payload = { "text": text, "target_lang": translate_language, "formality": "default" if formality is None else formality, } # Instead of sending as json, we want to send as regular post params headers = { "Authorization": f"DeepL-Auth-Key {self.deepl_token}", } async with session.post( "https://api-free.deepl.com/v2/translate", params=payload, headers=headers, ) as resp: response = await resp.json() print(response) try: return ( response["translations"][0]["text"], response["translations"][0]["detected_source_language"], ) except Exception: print(response) traceback.print_exc() return response @staticmethod def get_all_country_names(lower=False): """Get a list of all the country names""" return ( list(COUNTRY_CODES.values()) if not lower else [name.lower() for name in COUNTRY_CODES.values()] ) @staticmethod def get_all_country_codes(): """Get a list of all the country codes""" return list(COUNTRY_CODES.keys()) @staticmethod def get_country_name_from_code(code): """Get the country name from the code""" try: return COUNTRY_CODES[code] except KeyError: return "Unknown Language" @staticmethod def get_country_code_from_name(name): """Get the country code from the name""" for code, country_name in COUNTRY_CODES.items(): if country_name.lower().strip() == name.lower().strip(): return code
SwarmsDiscord-main
swarmsdiscord/models/deepl_model.py
import discord from services.environment_service import EnvService BOT_NAME = EnvService.get_custom_bot_name() class EmbedStatics: def __init__(self): pass @staticmethod def get_api_timeout_embed(): embed = discord.Embed( title="The API timed out. Try again later.", description=f"*This is an issue with the OpenAI APIs, not with the bot instance.*", color=discord.Color.red(), ) return embed @staticmethod def get_invalid_api_response_embed(e): embed = discord.Embed( title="The API returned an invalid response", description=f"**{e.status}: {e.message}**", color=discord.Color.red(), ) return embed @staticmethod def get_invalid_value_embed(e): embed = discord.Embed( title="Invalid value", description=f"**{str(e)}**", color=discord.Color.red(), ) return embed @staticmethod def get_general_error_embed(e): embed = discord.Embed( title="An error occurred", description=f"**{str(e)}**", color=discord.Color.red(), ) return embed @staticmethod def generate_end_embed(): embed = discord.Embed( title="Conversation Ended", description=f"This conversation has ended. You can start a new one with `/gpt converse`", color=0x808080, ) embed.set_thumbnail(url="https://i.imgur.com/asA13vI.png") footer_text = "Conversation ended" embed.set_footer(text=footer_text, icon_url="https://i.imgur.com/asA13vI.png") return embed @staticmethod def generate_conversation_embed(conversation_threads, thread, opener, overrides): # Generate a nice looking embed for the above text embed = discord.Embed( title="Conversation started", description=f"Conversation started with {BOT_NAME}", color=0x808080, ) embed.add_field( name="Model", value=f"The model used is **{conversation_threads[thread.id].model}**", ) embed.add_field( name="Overrides", value=f"**temp={overrides['temperature']}**, **top_p={overrides['top_p']}**" f", **freq. penalty={overrides['frequency_penalty']}**, **pres. penalty={overrides['presence_penalty']}**\n", ) embed.add_field( name="End the conversation", value="End the conversation by saying `end`, or clicking the red 'End Conversation' button\n\n", inline=False, ) embed.add_field( name="Ignoring Messages", value="If you want GPT to ignore your messages, start your messages with `~`\n\n", inline=False, ) return embed @staticmethod def generate_opener_embed(opener): embed = discord.Embed( title="Opening Prompt", description=f"{opener}", color=0x808080, ) return embed @staticmethod def get_index_set_success_embed(price="Unknown"): embed = discord.Embed( title="Index Added", description=f"This index can now be queried and loaded with `/index query` and `/index load`\n\n||Total cost: {round(float(price), 6) if price != 'Unknown' else 'Unknown'}||", color=discord.Color.green(), ) # thumbnail of https://i.imgur.com/I5dIdg6.png embed.set_thumbnail(url="https://i.imgur.com/I5dIdg6.png") return embed @staticmethod def get_index_set_failure_embed(message): embed = discord.Embed( title="Index Add", description=f"Index add failed. {message}", color=discord.Color.red(), ) # thumbnail of https://i.imgur.com/hbdBZfG.png embed.set_thumbnail(url="https://i.imgur.com/hbdBZfG.png") return embed @staticmethod def get_index_load_success_embed(name=None): embed = discord.Embed( title="Index Loaded" if not name else f"Index {name} loaded", color=discord.Color.green(), ) # thumbnail of https://i.imgur.com/I5dIdg6.png embed.set_thumbnail(url="https://i.imgur.com/I5dIdg6.png") return embed @staticmethod def get_index_load_failure_embed(message): embed = discord.Embed( title="Index load", description=f"Index load failed. {message}", color=discord.Color.red(), ) # thumbnail of https://i.imgur.com/hbdBZfG.png embed.set_thumbnail(url="https://i.imgur.com/hbdBZfG.png") return embed @staticmethod def get_index_query_failure_embed(message): embed = discord.Embed( title="Index query", description=f"Index query failed. {message}", color=discord.Color.red(), ) # thumbnail of https://i.imgur.com/hbdBZfG.png embed.set_thumbnail(url="https://i.imgur.com/hbdBZfG.png") return embed @staticmethod def get_index_compose_success_embed(price="Unknown"): embed = discord.Embed( title="Indexes Composed", description=f"Indexes composed successfully, you can query and load this index with `/index query` and `/index load`\n\n||Total cost: {round(float(price), 6) if price != 'Unknown' else 'Unknown'}||", color=discord.Color.green(), ) # thumbnail of https://i.imgur.com/I5dIdg6.png embed.set_thumbnail(url="https://i.imgur.com/I5dIdg6.png") return embed @staticmethod def get_index_compose_failure_embed(message): embed = discord.Embed( title="Index Compose", description=f"Index compose failed. {message}", color=discord.Color.red(), ) # thumbnail of https://i.imgur.com/hbdBZfG.png embed.set_thumbnail(url="https://i.imgur.com/hbdBZfG.png") return embed @staticmethod def get_index_compose_progress_embed(): embed = discord.Embed( title="Index Compose", description=f"Your index composition is running, this may take a while.", color=discord.Color.blurple(), ) # thumbnail of https://i.imgur.com/hbdBZfG.png embed.set_thumbnail(url="https://i.imgur.com/txHhNzL.png") return embed @staticmethod def get_index_chat_preparation_message(): embed = discord.Embed( title="Index Chat", description=f"Your index chat is preparing, this might take a moment.", color=discord.Color.blurple(), ) # thumbnail of https://i.imgur.com/hbdBZfG.png embed.set_thumbnail(url="https://i.imgur.com/txHhNzL.png") return embed @staticmethod def get_index_rename_success_embed(original, renamed): embed = discord.Embed( title=f"Index Rename", description=f"Index {original} renamed to {renamed}", color=discord.Color.green(), ) # thumbnail of https://i.imgur.com/I5dIdg6.png embed.set_thumbnail(url="https://i.imgur.com/I5dIdg6.png") return embed @staticmethod def get_index_rename_failure_embed(original, renamed, message): embed = discord.Embed( title="Index Rename", description=f"Index rename from {original} to {renamed} failed. {message}", color=discord.Color.red(), ) # thumbnail of https://i.imgur.com/hbdBZfG.png embed.set_thumbnail(url="https://i.imgur.com/hbdBZfG.png") return embed @staticmethod def get_edit_command_output_embed(response_text): embed = discord.Embed( title="GPT Edits", description=f"{response_text}", color=discord.Color.light_grey(), ) return embed @staticmethod def get_search_failure_embed(message): embed = discord.Embed( title="AI-Assisted Search", description=f"An error occured while performing search: {message}", color=discord.Color.red(), ) # thumbnail of https://i.imgur.com/hbdBZfG.png embed.set_thumbnail(url="https://i.imgur.com/hbdBZfG.png") return embed @staticmethod def get_internet_chat_failure_embed(message): embed = discord.Embed( title="Internet-Connected Chat", description=f"An error occured while using internet connected chat: {message}", color=discord.Color.red(), ) # thumbnail of https://i.imgur.com/hbdBZfG.png embed.set_thumbnail(url="https://i.imgur.com/hbdBZfG.png") return embed @staticmethod def get_search_redo_progress_embed(): embed = discord.Embed( title="AI-Assisted Search", description=f"Your original search request is being redone. This may take a while.", color=discord.Color.blurple(), ) # thumbnail of https://i.imgur.com/hbdBZfG.png embed.set_thumbnail(url="https://i.imgur.com/txHhNzL.png") return embed @staticmethod def get_conversation_shared_embed(url): embed = discord.Embed( title="Conversation Shared", description=f"You can access your shared conversation at: {url}", color=discord.Color.blurple(), ) # thumbnail of https://i.imgur.com/hbdBZfG.png embed.set_thumbnail(url="https://i.imgur.com/8OIZc1A.png") return embed @staticmethod def get_conversation_share_failed_embed(message): embed = discord.Embed( title="Conversation Sharing", description=f"Conversation sharing failed: " + message, color=discord.Color.red(), ) # thumbnail of https://i.imgur.com/hbdBZfG.png embed.set_thumbnail(url="https://i.imgur.com/hbdBZfG.png") return embed @staticmethod def build_index_progress_embed(): embed = discord.Embed( title="Index Service", description="Indexing...", color=discord.Color.blurple(), ) embed.set_thumbnail(url="https://i.imgur.com/txHhNzL.png") return embed @staticmethod def build_index_query_progress_embed(query): embed = discord.Embed( title="Index Service", description=f"Query:\n`{query}`\nQuerying...", color=discord.Color.blurple(), ) embed.set_thumbnail(url="https://i.imgur.com/txHhNzL.png") return embed @staticmethod def build_index_query_success_embed(query, price="Unknown"): embed = discord.Embed( title="Index Service", description=f"Query:\n`{query}`\nThe index query was successful.\n\n||Total cost: {round(float(price), 6) if price != 'Unknown' else 'Unknown'}||", color=discord.Color.green(), ) # thumbnail of https://i.imgur.com/I5dIdg6.png embed.set_thumbnail(url="https://i.imgur.com/I5dIdg6.png") return embed @staticmethod def build_transcribe_progress_embed(): embed = discord.Embed( title="Transcriber", description=f"Your transcription request has been sent, this may take a while.", color=discord.Color.blurple(), ) embed.set_thumbnail(url="https://i.imgur.com/txHhNzL.png") return embed @staticmethod def build_transcribe_success_embed(transcribed_text): embed = discord.Embed( title="Transcriber", description=f"Transcribed successfully:\n`{transcribed_text}`", color=discord.Color.green(), ) # thumbnail of https://i.imgur.com/I5dIdg6.png embed.set_thumbnail(url="https://i.imgur.com/I5dIdg6.png") return embed @staticmethod def build_transcribe_failed_embed(message): embed = discord.Embed( title="Transcriber", description=f"Transcription failed: " + message, color=discord.Color.red(), ) embed.set_thumbnail(url="https://i.imgur.com/hbdBZfG.png") return embed
SwarmsDiscord-main
swarmsdiscord/models/embed_statics_model.py
import asyncio import functools import math import os import re import tempfile import traceback import uuid from typing import Any, Tuple import aiohttp import backoff import discord # An enum of two modes, TOP_P or TEMPERATURE import requests from services.environment_service import EnvService from PIL import Image from discord import File from sqlitedict import SqliteDict try: print("Attempting to retrieve the settings DB") SETTINGS_DB = SqliteDict( f"{EnvService.save_path()}/main_db.sqlite", tablename="settings", autocommit=True, ) print("Retrieved the settings DB") except Exception as e: print("Failed to retrieve the settings DB. The bot is terminating.") raise e class Mode: TEMPERATURE = "temperature" TOP_P = "top_p" ALL_MODES = [TEMPERATURE, TOP_P] class Override: def __init__(self, temp=None, top_p=None, frequency=None, presence=None): self.temperature = temp self.top_p = top_p self.frequency_penalty = frequency self.presence_penalty = presence class Models: # Text models DAVINCI = "text-davinci-003" CURIE = "text-curie-001" # Embedding models EMBEDDINGS = "text-embedding-ada-002" # Edit models EDIT = "text-davinci-edit-001" # ChatGPT Models TURBO = "gpt-3.5-turbo" TURBO_16 = "gpt-3.5-turbo-16k" TURBO_DEV = "gpt-3.5-turbo-0613" TURBO_16_DEV = "gpt-3.5-turbo-16k-0613" # GPT4 Models GPT4 = "gpt-4" GPT4_32 = "gpt-4-32k" GPT4_DEV = "gpt-4-0613" GPT4_32_DEV = "gpt-4-32k-0613" # Model collections TEXT_MODELS = [ DAVINCI, CURIE, TURBO, TURBO_16, TURBO_DEV, TURBO_16_DEV, GPT4, GPT4_32, GPT4_DEV, GPT4_32_DEV, ] CHATGPT_MODELS = [ TURBO, TURBO_16, TURBO_DEV, TURBO_16_DEV, ] GPT4_MODELS = [ GPT4, GPT4_32, GPT4_DEV, GPT4_32_DEV, ] EDIT_MODELS = [EDIT] DEFAULT = TURBO LOW_USAGE_MODEL = CURIE # Tokens Mapping TOKEN_MAPPING = { DAVINCI: 4024, CURIE: 2024, TURBO: 4096, TURBO_16: 16384, TURBO_DEV: 4096, TURBO_16_DEV: 16384, GPT4: 8192, GPT4_32: 32768, GPT4_DEV: 8192, GPT4_32_DEV: 32768, } @staticmethod def get_max_tokens(model: str) -> int: return Models.TOKEN_MAPPING.get(model, 2024) class ImageSize: SMALL = "256x256" MEDIUM = "512x512" LARGE = "1024x1024" ALL_SIZES = [SMALL, MEDIUM, LARGE] class ModelLimits: MIN_TOKENS = 15 MAX_TOKENS = 4096 MIN_CONVERSATION_LENGTH = 1 MAX_CONVERSATION_LENGTH = 100000 MIN_SUMMARIZE_THRESHOLD = 800 MAX_SUMMARIZE_THRESHOLD = 3500 MIN_NUM_IMAGES = 1 MAX_NUM_IMAGES = 4 MIN_NUM_STATIC_CONVERSATION_ITEMS = 5 MAX_NUM_STATIC_CONVERSATION_ITEMS = 20 MIN_NUM_CONVERSATION_LOOKBACK = 5 MAX_NUM_CONVERSATION_LOOKBACK = 15 MIN_TEMPERATURE = 0.0 MAX_TEMPERATURE = 2.0 MIN_TOP_P = 0.0 MAX_TOP_P = 1.0 MIN_PRESENCE_PENALTY = -2.0 MAX_PRESENCE_PENALTY = 2.0 MIN_FREQUENCY_PENALTY = -2.0 MAX_FREQUENCY_PENALTY = 2.0 MIN_BEST_OF = 1 MAX_BEST_OF = 3 MIN_PROMPT_MIN_LENGTH = 5 MAX_PROMPT_MIN_LENGTH = 4000 class Model: def set_initial_state(self, usage_service): self.mode = Mode.TEMPERATURE self.temp = ( SETTINGS_DB["temp"] if "temp" in SETTINGS_DB else 0.85 ) # Higher value means more random, lower value means more likely to be a coherent sentence self.top_p = ( SETTINGS_DB["top_p"] if "top_p" in SETTINGS_DB else 1 ) # 1 is equivalent to greedy sampling, 0.1 means that the model will only consider the top 10% of the probability distribution self.max_tokens = ( SETTINGS_DB["max_tokens"] if "max_tokens" in SETTINGS_DB else 4000 ) # The maximum number of tokens the model can generate self.presence_penalty = ( SETTINGS_DB["presence_penalty"] if "presence_penalty" in SETTINGS_DB else 0.1 ) # The presence penalty is a number between -2 and 2 that determines how much the model should avoid repeating the same text # Penalize new tokens based on their existing frequency in the text so far. (Higher frequency = lower probability of being chosen.) self.frequency_penalty = ( SETTINGS_DB["frequency_penalty"] if "frequency_penalty" in SETTINGS_DB else 0.0 ) self.best_of = ( SETTINGS_DB["best_of"] if "best_of" in SETTINGS_DB else 1 ) # Number of responses to compare the loglikelihoods of self.prompt_min_length = ( SETTINGS_DB["prompt_min_length"] if "prompt_min_length" in SETTINGS_DB else 6 ) # The minimum length of the prompt self.max_conversation_length = ( SETTINGS_DB["max_conversation_length"] if "max_conversation_length" in SETTINGS_DB else 100000 ) # The maximum number of conversation items to keep in memory self.model = ( SETTINGS_DB["model"] if "model" in SETTINGS_DB and SETTINGS_DB["model"] in Models.TEXT_MODELS else Models.DEFAULT ) self._low_usage_mode = False self.usage_service = usage_service self.DAVINCI_ROLES = ["admin", "Admin", "GPT", "gpt"] self.image_size = ( SETTINGS_DB["image_size"] if "image_size" in SETTINGS_DB else ImageSize.MEDIUM ) self.num_images = ( SETTINGS_DB["num_images"] if "num_images" in SETTINGS_DB else 2 ) self.summarize_conversations = ( bool(SETTINGS_DB["summarize_conversations"]) if "summarize_conversations" in SETTINGS_DB else True ) self.summarize_threshold = ( SETTINGS_DB["summarize_threshold"] if "summarize_threshold" in SETTINGS_DB else 3000 ) self.model_max_tokens = 4024 self.welcome_message_enabled = ( bool(SETTINGS_DB["welcome_message_enabled"]) if "welcome_message_enabled" in SETTINGS_DB else False ) self.num_static_conversation_items = ( SETTINGS_DB["num_static_conversation_items"] if "num_static_conversation_items" in SETTINGS_DB else 10 ) self.num_conversation_lookback = ( SETTINGS_DB["num_conversation_lookback"] if "num_conversation_lookback" in SETTINGS_DB else 5 ) self.use_org = ( bool(SETTINGS_DB["use_org"]) if "use_org" in SETTINGS_DB else False ) def reset_settings(self): keys = [ "temp", "top_p", "max_tokens", "presence_penalty", "frequency_penalty", "best_of", "prompt_min_length", "max_conversation_length", "model", "image_size", "num_images", "summarize_conversations", "summarize_threshold", "welcome_message_enabled", "num_static_conversation_items", "num_conversation_lookback", "use_org", ] for key in keys: try: del SETTINGS_DB[key] except: pass self.set_initial_state(self.usage_service) def __init__(self, usage_service): self._num_conversation_lookback = None self._num_static_conversation_items = None self._welcome_message_enabled = None self.model_max_tokens = None self._summarize_threshold = None self._summarize_conversations = None self._num_images = None self._image_size = None self.DAVINCI_ROLES = None self.usage_service = None self._low_usage_mode = None self._model = None self._max_conversation_length = None self._prompt_min_length = None self._best_of = None self._frequency_penalty = None self._presence_penalty = None self._max_tokens = None self._top_p = None self._temp = None self._mode = None self._use_org = None self.set_initial_state(usage_service) try: self.IMAGE_SAVE_PATH = os.environ["IMAGE_SAVE_PATH"] self.custom_image_path = True except Exception: self.IMAGE_SAVE_PATH = "dalleimages" # Try to make this folder called images/ in the local directory if it doesnt exist if not os.path.exists(self.IMAGE_SAVE_PATH): os.makedirs(self.IMAGE_SAVE_PATH) self.custom_image_path = False self._hidden_attributes = [ "usage_service", "DAVINCI_ROLES", "custom_image_path", "custom_web_root", "_hidden_attributes", "model_max_tokens", "openai_key", "openai_organization", "IMAGE_SAVE_PATH", ] self.openai_key = EnvService.get_openai_token() self.openai_organization = EnvService.get_openai_organization() # Use the @property and @setter decorators for all the self fields to provide value checking @property def use_org(self): return self._use_org @use_org.setter def use_org(self, value): self._use_org = value SETTINGS_DB["use_org"] = value @property def num_static_conversation_items(self): return self._num_static_conversation_items @num_static_conversation_items.setter def num_static_conversation_items(self, value): value = int(value) if value < ModelLimits.MIN_NUM_STATIC_CONVERSATION_ITEMS: raise ValueError( f"Number of static conversation items must be >= {ModelLimits.MIN_NUM_STATIC_CONVERSATION_ITEMS}" ) if value > ModelLimits.MAX_NUM_STATIC_CONVERSATION_ITEMS: raise ValueError( f"Number of static conversation items must be <= {ModelLimits.MAX_NUM_STATIC_CONVERSATION_ITEMS}, this is to ensure reliability and reduce token wastage!" ) self._num_static_conversation_items = value SETTINGS_DB["num_static_conversation_items"] = value @property def num_conversation_lookback(self): return self._num_conversation_lookback @num_conversation_lookback.setter def num_conversation_lookback(self, value): value = int(value) if value < ModelLimits.MIN_NUM_CONVERSATION_LOOKBACK: raise ValueError( f"Number of conversations to look back on must be >= {ModelLimits.MIN_NUM_CONVERSATION_LOOKBACK}" ) if value > ModelLimits.MAX_NUM_CONVERSATION_LOOKBACK: raise ValueError( f"Number of conversations to look back on must be <= {ModelLimits.MIN_NUM_CONVERSATION_LOOKBACK}, this is to ensure reliability and reduce token wastage!" ) self._num_conversation_lookback = value SETTINGS_DB["num_conversation_lookback"] = value @property def welcome_message_enabled(self): return self._welcome_message_enabled @welcome_message_enabled.setter def welcome_message_enabled(self, value): if not isinstance(value, bool): if value.lower() == "true": value = True elif value.lower() == "false": value = False else: raise ValueError("Value must be either `true` or `false`!") self._welcome_message_enabled = value SETTINGS_DB["welcome_message_enabled"] = self._welcome_message_enabled @property def summarize_threshold(self): return self._summarize_threshold @summarize_threshold.setter def summarize_threshold(self, value): value = int(value) if ( value < ModelLimits.MIN_SUMMARIZE_THRESHOLD or value > ModelLimits.MAX_SUMMARIZE_THRESHOLD ): raise ValueError( f"Summarize threshold should be a number between {ModelLimits.MIN_SUMMARIZE_THRESHOLD} and {ModelLimits.MAX_SUMMARIZE_THRESHOLD}!" ) self._summarize_threshold = value SETTINGS_DB["summarize_threshold"] = value @property def summarize_conversations(self): return self._summarize_conversations @summarize_conversations.setter def summarize_conversations(self, value): # convert value string into boolean if not isinstance(value, bool): if value.lower() == "true": value = True elif value.lower() == "false": value = False else: raise ValueError("Value must be either `true` or `false`!") self._summarize_conversations = value SETTINGS_DB["summarize_conversations"] = value @property def image_size(self): return self._image_size @image_size.setter def image_size(self, value): if value in ImageSize.ALL_SIZES: self._image_size = value SETTINGS_DB["image_size"] = value else: raise ValueError( f"Image size must be one of the following: {ImageSize.ALL_SIZES}" ) @property def num_images(self): return self._num_images @num_images.setter def num_images(self, value): value = int(value) if value < ModelLimits.MIN_NUM_IMAGES or value > ModelLimits.MAX_NUM_IMAGES: raise ValueError( f"Number of images to generate should be a number between {ModelLimits.MIN_NUM_IMAGES} and {ModelLimits.MAX_NUM_IMAGES}!" ) self._num_images = value SETTINGS_DB["num_images"] = value @property def low_usage_mode(self): return self._low_usage_mode @low_usage_mode.setter def low_usage_mode(self, value): # convert value string into boolean if value.lower() == "true": value = True elif value.lower() == "false": value = False else: raise ValueError("Value must be either `true` or `false`!") if value: self._model = Models.LOW_USAGE_MODEL self.max_tokens = 1900 self.model_max_tokens = 1000 else: self._model = Models.DEFAULT self.max_tokens = 4000 self.model_max_tokens = 4024 @property def model(self): return self._model @model.setter def model(self, model): if model not in Models.TEXT_MODELS: raise ValueError(f"Invalid model, must be one of: {Models.TEXT_MODELS}") self._model = model # Set the token count self._max_tokens = Models.get_max_tokens(self._model) SETTINGS_DB["model"] = model @property def max_conversation_length(self): return self._max_conversation_length @max_conversation_length.setter def max_conversation_length(self, value): value = int(value) if value < ModelLimits.MIN_CONVERSATION_LENGTH: raise ValueError( f"Max conversation length must be greater than {ModelLimits.MIN_CONVERSATION_LENGTH}" ) if value > ModelLimits.MAX_CONVERSATION_LENGTH: raise ValueError( f"Max conversation length must be less than {ModelLimits.MIN_CONVERSATION_LENGTH}, this will start using credits quick." ) self._max_conversation_length = value SETTINGS_DB["max_conversation_length"] = value @property def mode(self): return self._mode @mode.setter def mode(self, value): if value not in Mode.ALL_MODES: raise ValueError(f"Mode must be one of: {Mode.ALL_MODES}") # Set the other mode to 1 (the default) so that it is not used # See https://beta.openai.com/docs/api-reference/completions/create#completions/create-temperature if value == Mode.TOP_P: self._temp = 1 elif value == Mode.TEMPERATURE: self._top_p = 1 else: raise ValueError(f"Unknown mode: {value}") self._mode = value SETTINGS_DB["mode"] = value @property def temp(self): return self._temp @temp.setter def temp(self, value): value = float(value) if value < ModelLimits.MIN_TEMPERATURE or value > ModelLimits.MAX_TEMPERATURE: raise ValueError( f"Temperature must be between {ModelLimits.MIN_TEMPERATURE} and {ModelLimits.MAX_TEMPERATURE}, it is currently: {value}" ) self._temp = value SETTINGS_DB["temp"] = value @property def top_p(self): return self._top_p @top_p.setter def top_p(self, value): value = float(value) if value < ModelLimits.MIN_TOP_P or value > ModelLimits.MAX_TOP_P: raise ValueError( f"Top P must be between {ModelLimits.MIN_TOP_P} and {ModelLimits.MAX_TOP_P}, it is currently: {value}" ) self._top_p = value SETTINGS_DB["top_p"] = value @property def max_tokens(self): return self._max_tokens @max_tokens.setter def max_tokens(self, value): value = int(value) if value < ModelLimits.MIN_TOKENS or value > ModelLimits.MAX_TOKENS: raise ValueError( f"Max tokens must be between {ModelLimits.MIN_TOKENS} and {ModelLimits.MAX_TOKENS}, it is currently: {value}" ) self._max_tokens = value SETTINGS_DB["max_tokens"] = value @property def presence_penalty(self): return self._presence_penalty @presence_penalty.setter def presence_penalty(self, value): value = float(value) if ( value < ModelLimits.MIN_PRESENCE_PENALTY or value > ModelLimits.MAX_PRESENCE_PENALTY ): raise ValueError( f"Presence penalty must be between {ModelLimits.MIN_PRESENCE_PENALTY} and {ModelLimits.MAX_PRESENCE_PENALTY}, it is currently: {value}" ) self._presence_penalty = value SETTINGS_DB["presence_penalty"] = value @property def frequency_penalty(self): return self._frequency_penalty @frequency_penalty.setter def frequency_penalty(self, value): value = float(value) if ( value < ModelLimits.MIN_FREQUENCY_PENALTY or value > ModelLimits.MAX_FREQUENCY_PENALTY ): raise ValueError( f"Frequency penalty must be greater between {ModelLimits.MIN_FREQUENCY_PENALTY} and {ModelLimits.MAX_FREQUENCY_PENALTY}, it is currently: {value}" ) self._frequency_penalty = value SETTINGS_DB["frequency_penalty"] = value @property def best_of(self): return self._best_of @best_of.setter def best_of(self, value): value = int(value) if value < ModelLimits.MIN_BEST_OF or value > ModelLimits.MAX_BEST_OF: raise ValueError( f"Best of must be between {ModelLimits.MIN_BEST_OF} and {ModelLimits.MAX_BEST_OF}, it is currently: {value}\nNote that increasing the value of this parameter will act as a multiplier on the number of tokens requested!" ) self._best_of = value SETTINGS_DB["best_of"] = value @property def prompt_min_length(self): return self._prompt_min_length @prompt_min_length.setter def prompt_min_length(self, value): value = int(value) if ( value < ModelLimits.MIN_PROMPT_MIN_LENGTH or value > ModelLimits.MAX_PROMPT_MIN_LENGTH ): raise ValueError( f"Minimal prompt length must be between {ModelLimits.MIN_PROMPT_MIN_LENGTH} and {ModelLimits.MAX_PROMPT_MIN_LENGTH}, it is currently: {value}" ) self._prompt_min_length = value SETTINGS_DB["prompt_min_length"] = value def backoff_handler_http(details): print( f"Backing off {details['wait']:0.1f} seconds after {details['tries']} tries calling function {details['target']} | " f"{details['exception'].status}: {details['exception'].message}" ) def backoff_handler_request(details): print( f"Backing off {details['wait']:0.1f} seconds after {details['tries']} tries calling function {details['target']} | " f"{details['exception'].args[0]}" ) async def valid_text_request(self, response, model=None): try: tokens_used = int(response["usage"]["total_tokens"]) if model and model in Models.EDIT_MODELS: pass else: await self.usage_service.update_usage( tokens_used, await self.usage_service.get_cost_name(model) ) except Exception as e: traceback.print_exc() if "error" in response: raise ValueError( "The API returned an invalid response: " + str(response["error"]["message"]) ) from e else: raise ValueError("The API returned an invalid response") from e @backoff.on_exception( backoff.expo, aiohttp.ClientResponseError, factor=3, base=5, max_tries=4, on_backoff=backoff_handler_http, ) async def send_embedding_request(self, text, custom_api_key=None): async with aiohttp.ClientSession( raise_for_status=True, timeout=aiohttp.ClientTimeout(total=300) ) as session: payload = { "model": Models.EMBEDDINGS, "input": text, } headers = { "Content-Type": "application/json", "Authorization": f"Bearer {self.openai_key if not custom_api_key else custom_api_key}", } self.use_org = True if "true" in str(self.use_org).lower() else False if self.use_org: if self.openai_organization: headers["OpenAI-Organization"] = self.openai_organization async with session.post( "https://api.openai.com/v1/embeddings", json=payload, headers=headers ) as resp: response = await resp.json() try: return response["data"][0]["embedding"] except Exception: print(response) traceback.print_exc() return @backoff.on_exception( backoff.expo, ValueError, factor=3, base=5, max_tries=4, on_backoff=backoff_handler_request, ) async def send_edit_request( self, instruction, text=None, temp_override=None, top_p_override=None, custom_api_key=None, ): print( f"The text about to be edited is [{text}] with instructions [{instruction}]" ) print(f"Overrides -> temp:{temp_override}, top_p:{top_p_override}") async with aiohttp.ClientSession( raise_for_status=False, timeout=aiohttp.ClientTimeout(total=300) ) as session: payload = { "model": Models.EDIT, "input": "" if text is None else text, "instruction": instruction, "temperature": self.temp if temp_override is None else temp_override, "top_p": self.top_p if top_p_override is None else top_p_override, } headers = { "Content-Type": "application/json", "Authorization": f"Bearer {self.openai_key if not custom_api_key else custom_api_key}", } self.use_org = True if "true" in str(self.use_org).lower() else False if self.use_org: if self.openai_organization: headers["OpenAI-Organization"] = self.openai_organization async with session.post( "https://api.openai.com/v1/edits", json=payload, headers=headers ) as resp: response = await resp.json() await self.valid_text_request(response, model=Models.EDIT) return response @backoff.on_exception( backoff.expo, aiohttp.ClientResponseError, factor=3, base=5, max_tries=6, on_backoff=backoff_handler_http, ) async def send_moderations_request(self, text): # Use aiohttp to send the above request: async with aiohttp.ClientSession(raise_for_status=True) as session: headers = { "Content-Type": "application/json", "Authorization": f"Bearer {self.openai_key}", } payload = {"input": text} async with session.post( "https://api.openai.com/v1/moderations", headers=headers, json=payload, ) as response: return await response.json() @backoff.on_exception( backoff.expo, ValueError, factor=3, base=5, max_tries=4, on_backoff=backoff_handler_request, ) async def send_summary_request(self, prompt, custom_api_key=None): """ Sends a summary request to the OpenAI API """ summary_request_text = [] summary_request_text.append( "The following is a conversation instruction set and a conversation between two people, a <username>, and GPTie." " Firstly, determine the <username>'s name from the conversation history, then summarize the conversation." " Do not summarize the instructions for GPTie, only the conversation. Summarize the conversation in a detailed fashion. If <username> mentioned" " their name, be sure to mention it in the summary. Pay close attention to things the <username> has told you, such as personal details." ) summary_request_text.append(prompt + "\nDetailed summary of conversation: \n") summary_request_text = "".join(summary_request_text) tokens = self.usage_service.count_tokens(summary_request_text) async with aiohttp.ClientSession(raise_for_status=False) as session: payload = { "model": Models.DAVINCI, "prompt": summary_request_text, "temperature": 0.5, "top_p": 1, "max_tokens": self.max_tokens - tokens, "presence_penalty": self.presence_penalty, "frequency_penalty": self.frequency_penalty, "best_of": self.best_of, } headers = { "Content-Type": "application/json", "Authorization": f"Bearer {self.openai_key if not custom_api_key else custom_api_key}", } self.use_org = True if "true" in str(self.use_org).lower() else False if self.use_org: if self.openai_organization: headers["OpenAI-Organization"] = self.openai_organization async with session.post( "https://api.openai.com/v1/completions", json=payload, headers=headers ) as resp: response = await resp.json() await self.valid_text_request(response) # print(response["choices"][0]["text"]) return response @backoff.on_exception( backoff.expo, ValueError, factor=3, base=5, max_tries=4, on_backoff=backoff_handler_request, ) async def send_language_detect_request( self, text, pretext, ) -> ( Tuple[dict, bool] ): # The response, and a boolean indicating whether or not the context limit was reached. # Validate that all the parameters are in a good state before we send the request prompt = f"{pretext}{text}\nOutput:" max_tokens = Models.get_max_tokens( Models.DAVINCI ) - self.usage_service.count_tokens(prompt) print(f"Language detection request for {text}") async with aiohttp.ClientSession(raise_for_status=False) as session: payload = { "model": Models.DAVINCI, "prompt": prompt, "temperature": 0, "top_p": 1, "max_tokens": max_tokens, } headers = {"Authorization": f"Bearer {self.openai_key}"} self.use_org = True if "true" in str(self.use_org).lower() else False if self.use_org: if self.openai_organization: headers["OpenAI-Organization"] = self.openai_organization async with session.post( "https://api.openai.com/v1/completions", json=payload, headers=headers ) as resp: response = await resp.json() await self.valid_text_request(response) print(f"Response -> {response}") return response def cleanse_username(self, text): text = text.strip() text = text.replace(":", "") text = text.replace(" ", "") # Replace any character that's not a letter or number with an underscore text = re.sub(r"[^a-zA-Z0-9]", "_", text) return text @backoff.on_exception( backoff.expo, ValueError, factor=3, base=5, max_tries=4, on_backoff=backoff_handler_request, ) async def send_chatgpt_chat_request( self, prompt_history, model, bot_name, user_displayname, temp_override=None, top_p_override=None, best_of_override=None, frequency_penalty_override=None, presence_penalty_override=None, max_tokens_override=None, stop=None, custom_api_key=None, ) -> ( Tuple[dict, bool] ): # The response, and a boolean indicating whether or not the context limit was reached. # Validate that all the parameters are in a good state before we send the request # Clean up the bot name bot_name_clean = self.cleanse_username(bot_name) # Format the request body into the messages format that the API is expecting # "messages": [{"role": "user", "content": "Hello!"}] messages = [] for number, message in enumerate(prompt_history): if number == 0: # If this is the first message, it is the context prompt. messages.append( { "role": "user", "content": message.text, } ) continue if message.text.startswith(f"\n{bot_name}"): text = message.text.replace(bot_name, "") text = text.replace("<|endofstatement|>", "") messages.append( { "role": "assistant", "content": text, } # TODO add back the assistant's name when the API is fixed.. ) else: try: if ( message.text.strip() .lower() .startswith("this conversation has some context from earlier") ): raise Exception("This is a context message") username = re.search(r"(?<=\n)(.*?)(?=:)", message.text).group() username_clean = self.cleanse_username(username) text = message.text.replace(f"{username}:", "") # Strip whitespace just from the right side of the string text = text.rstrip() text = text.replace("<|endofstatement|>", "") messages.append( {"role": "user", "name": username_clean, "content": text} ) except Exception: text = message.text.replace("<|endofstatement|>", "") messages.append({"role": "system", "content": text}) print(f"Messages -> {messages}") async with aiohttp.ClientSession( raise_for_status=False, timeout=aiohttp.ClientTimeout(total=300) ) as session: payload = { "model": self.model if not model else model, "messages": messages, "stop": "" if stop is None else stop, "temperature": self.temp if temp_override is None else temp_override, "top_p": self.top_p if top_p_override is None else top_p_override, "presence_penalty": self.presence_penalty if presence_penalty_override is None else presence_penalty_override, "frequency_penalty": self.frequency_penalty if frequency_penalty_override is None else frequency_penalty_override, } headers = { "Authorization": f"Bearer {self.openai_key if not custom_api_key else custom_api_key}" } self.use_org = True if "true" in str(self.use_org).lower() else False if self.use_org: if self.openai_organization: headers["OpenAI-Organization"] = self.openai_organization async with session.post( "https://api.openai.com/v1/chat/completions", json=payload, headers=headers, ) as resp: response = await resp.json() # print(f"Payload -> {payload}") # Parse the total tokens used for this request and response pair from the response await self.valid_text_request( response, model=self.model if model is None else model ) print(f"Response -> {response}") return response @backoff.on_exception( backoff.expo, ValueError, factor=3, base=5, max_tries=4, on_backoff=backoff_handler_request, ) async def send_transcription_request( self, file: [discord.Attachment, discord.File], temperature_override=None, custom_api_key=None, ): async with aiohttp.ClientSession(raise_for_status=True) as session: data = aiohttp.FormData() data.add_field("model", "whisper-1") print("audio." + file.filename.split(".")[-1]) # TODO: make async data.add_field( "file", file.read() if isinstance(file, discord.Attachment) else file.fp.read(), filename="audio." + file.filename.split(".")[-1] if isinstance(file, discord.Attachment) else "audio.mp4", content_type=file.content_type if isinstance(file, discord.Attachment) else "video/mp4", ) if temperature_override: data.add_field("temperature", temperature_override) async with session.post( "https://api.openai.com/v1/audio/transcriptions", headers={ "Authorization": f"Bearer {self.openai_key if not custom_api_key else custom_api_key}", }, data=data, ) as resp: response = await resp.json() return response["text"] @backoff.on_exception( backoff.expo, ValueError, factor=3, base=5, max_tries=4, on_backoff=backoff_handler_request, ) async def send_request( self, prompt, tokens, temp_override=None, top_p_override=None, best_of_override=None, frequency_penalty_override=None, presence_penalty_override=None, max_tokens_override=None, model=None, stop=None, custom_api_key=None, is_chatgpt_request=False, system_instruction=None, ): # The response, and a boolean indicating whether or not the context limit was reached. # Validate that all the parameters are in a good state before we send the request if not max_tokens_override: if ( model and model not in Models.GPT4_MODELS and model not in Models.CHATGPT_MODELS ): max_tokens_override = Models.get_max_tokens(model) - tokens messages = [{"role": "user", "content": prompt}] # modify prompt if a system instruction is set if system_instruction and is_chatgpt_request: messages = [ {"role": "system", "content": system_instruction}, {"role": "user", "content": prompt}, ] elif system_instruction: prompt = f"{system_instruction} {prompt}" if system_instruction: print(f"The instruction added to the prompt will be {system_instruction}") print(f"The prompt about to be sent is {prompt}") print( f"Overrides -> temp:{temp_override}, top_p:{top_p_override} frequency:{frequency_penalty_override}, presence:{presence_penalty_override}, model:{model if model else 'none'}, stop:{stop}" ) # Non-ChatGPT simple completion models. if not is_chatgpt_request: async with aiohttp.ClientSession( raise_for_status=False, timeout=aiohttp.ClientTimeout(total=300) ) as session: payload = { "model": self.model if model is None else model, "prompt": prompt, "stop": "" if stop is None else stop, "temperature": self.temp if temp_override is None else temp_override, "top_p": self.top_p if top_p_override is None else top_p_override, "max_tokens": self.max_tokens - tokens if max_tokens_override is None else max_tokens_override, "presence_penalty": self.presence_penalty if presence_penalty_override is None else presence_penalty_override, "frequency_penalty": self.frequency_penalty if frequency_penalty_override is None else frequency_penalty_override, "best_of": self.best_of if not best_of_override else best_of_override, } headers = { "Authorization": f"Bearer {self.openai_key if not custom_api_key else custom_api_key}" } self.use_org = True if "true" in str(self.use_org).lower() else False if self.use_org: if self.openai_organization: headers["OpenAI-Organization"] = self.openai_organization async with session.post( "https://api.openai.com/v1/completions", json=payload, headers=headers, ) as resp: response = await resp.json() # print(f"Payload -> {payload}") # Parse the total tokens used for this request and response pair from the response await self.valid_text_request( response, model=self.model if model is None else model ) print(f"Response -> {response}") return response else: # ChatGPT/GPT4 Simple completion async with aiohttp.ClientSession( raise_for_status=False, timeout=aiohttp.ClientTimeout(total=300) ) as session: payload = { "model": self.model if not model else model, "messages": messages, "stop": "" if stop is None else stop, "temperature": self.temp if temp_override is None else temp_override, "top_p": self.top_p if top_p_override is None else top_p_override, "presence_penalty": self.presence_penalty if presence_penalty_override is None else presence_penalty_override, "frequency_penalty": self.frequency_penalty if frequency_penalty_override is None else frequency_penalty_override, } headers = { "Authorization": f"Bearer {self.openai_key if not custom_api_key else custom_api_key}" } self.use_org = True if "true" in str(self.use_org).lower() else False if self.use_org: if self.openai_organization: headers["OpenAI-Organization"] = self.openai_organization async with session.post( "https://api.openai.com/v1/chat/completions", json=payload, headers=headers, ) as resp: response = await resp.json() # print(f"Payload -> {payload}") # Parse the total tokens used for this request and response pair from the response await self.valid_text_request( response, model=self.model if model is None else model ) print(f"Response -> {response}") return response @staticmethod async def send_test_request(api_key): async with aiohttp.ClientSession() as session: payload = { "model": Models.LOW_USAGE_MODEL, "prompt": "test.", "temperature": 1, "top_p": 1, "max_tokens": 10, } headers = {"Authorization": f"Bearer {api_key}"} async with session.post( "https://api.openai.com/v1/completions", json=payload, headers=headers ) as resp: response = await resp.json() try: int(response["usage"]["total_tokens"]) except: raise ValueError(str(response["error"]["message"])) return response @backoff.on_exception( backoff.expo, aiohttp.ClientResponseError, factor=3, base=5, max_tries=4, on_backoff=backoff_handler_http, ) async def send_image_request( self, ctx, prompt, vary=None, custom_api_key=None ) -> tuple[File, list[Any]]: # Validate that all the parameters are in a good state before we send the request words = len(prompt.split(" ")) if words < 1 or words > 75: raise ValueError( "Prompt must be greater than 1 word and less than 75, it is currently " + str(words) ) # print("The prompt about to be sent is " + prompt) await self.usage_service.update_usage_image(self.image_size) response = None if not vary: payload = {"prompt": prompt, "n": self.num_images, "size": self.image_size} headers = { "Content-Type": "application/json", "Authorization": f"Bearer {self.openai_key if not custom_api_key else custom_api_key}", } self.use_org = True if "true" in str(self.use_org).lower() else False if self.use_org: if self.openai_organization: headers["OpenAI-Organization"] = self.openai_organization async with aiohttp.ClientSession( raise_for_status=True, timeout=aiohttp.ClientTimeout(total=300) ) as session: async with session.post( "https://api.openai.com/v1/images/generations", json=payload, headers=headers, ) as resp: response = await resp.json() else: async with aiohttp.ClientSession( raise_for_status=True, timeout=aiohttp.ClientTimeout(total=300) ) as session: data = aiohttp.FormData() data.add_field("n", str(self.num_images)) data.add_field("size", self.image_size) with open(vary, "rb") as f: data.add_field( "image", f, filename="file.png", content_type="image/png" ) async with session.post( "https://api.openai.com/v1/images/variations", headers={ "Authorization": f"Bearer {self.openai_key if not custom_api_key else custom_api_key}", }, data=data, ) as resp: response = await resp.json() print(response) image_urls = [] for result in response["data"]: image_urls.append(result["url"]) # For each image url, open it as an image object using PIL images = await asyncio.get_running_loop().run_in_executor( None, lambda: [ Image.open(requests.get(url, stream=True, timeout=10).raw) for url in image_urls ], ) # Save all the images with a random name to self.IMAGE_SAVE_PATH image_names = [f"{uuid.uuid4()}.png" for _ in range(len(images))] for image, name in zip(images, image_names): await asyncio.get_running_loop().run_in_executor( None, image.save, f"{self.IMAGE_SAVE_PATH}/{name}" ) # Update image_urls to include the local path to these new images image_urls = [f"{self.IMAGE_SAVE_PATH}/{name}" for name in image_names] widths, heights = zip(*(i.size for i in images)) # Calculate the number of rows and columns needed for the grid num_rows = num_cols = int(math.ceil(math.sqrt(len(images)))) # If there are only 2 images, set the number of rows to 1 if len(images) == 2: num_rows = 1 # Calculate the size of the combined image width = max(widths) * num_cols height = max(heights) * num_rows # Create a transparent image with the same size as the images transparent = await asyncio.get_running_loop().run_in_executor( None, lambda: Image.new("RGBA", (max(widths), max(heights))) ) # Create a new image with the calculated size new_im = await asyncio.get_running_loop().run_in_executor( None, lambda: Image.new("RGBA", (width, height)) ) # Paste the images and transparent segments into the grid x_offset = y_offset = 0 for im in images: await asyncio.get_running_loop().run_in_executor( None, new_im.paste, im, (x_offset, y_offset) ) x_offset += im.size[0] if x_offset >= width: x_offset = 0 y_offset += im.size[1] # Fill the remaining cells with transparent segments while y_offset < height: while x_offset < width: await asyncio.get_running_loop().run_in_executor( None, new_im.paste, transparent, (x_offset, y_offset) ) x_offset += transparent.size[0] x_offset = 0 y_offset += transparent.size[1] # Save the new_im to a temporary file and return it as a discord.File temp_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False) await asyncio.get_running_loop().run_in_executor( None, new_im.save, temp_file.name ) # Print the filesize of new_im, in mega bytes image_size = os.path.getsize(temp_file.name) / 1048576 if ctx.guild is None: guild_file_limit = 8 else: guild_file_limit = ctx.guild.filesize_limit / 1048576 # If the image size is greater than 8MB, we can't return this to the user, so we will need to downscale the # image and try again safety_counter = 0 while image_size > guild_file_limit: safety_counter += 1 if safety_counter >= 3: break print( f"Image size is {image_size}MB, which is too large for this server {guild_file_limit}MB. Downscaling and trying again" ) # We want to do this resizing asynchronously, so that it doesn't block the main thread during the resize. # We can use the asyncio.run_in_executor method to do this new_im = await asyncio.get_running_loop().run_in_executor( None, functools.partial( new_im.resize, (int(new_im.width / 1.05), int(new_im.height / 1.05)) ), ) temp_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False) await asyncio.get_running_loop().run_in_executor( None, new_im.save, temp_file.name ) image_size = os.path.getsize(temp_file.name) / 1000000 print(f"New image size is {image_size}MB") return (discord.File(temp_file.name), image_urls)
SwarmsDiscord-main
swarmsdiscord/models/openai_model.py
import base64 import json import os import aiohttp from services.environment_service import EnvService import replicate class ImageUnderstandingModel: def __init__(self): # Try to get the replicate API key from the environment self.replicate_key = EnvService.get_replicate_api_key() # Set the environment REPLICATE_API_TOKEN to the replicate API key if self.replicate_key: os.environ["REPLICATE_API_TOKEN"] = self.replicate_key self.key_set = True else: self.key_set = False self.google_cloud_project_id = EnvService.get_google_cloud_project_id() self.google_cloud_api_key = EnvService.get_google_search_api_key() def get_is_usable(self): return self.key_set def ask_image_question(self, prompt, filepath): output = replicate.run( "andreasjansson/blip-2:4b32258c42e9efd4288bb9910bc532a69727f9acd26aa08e175713a0a857a608", input={"image": open(filepath, "rb"), "question": prompt}, ) return output def get_image_caption(self, filepath): output = replicate.run( "andreasjansson/blip-2:4b32258c42e9efd4288bb9910bc532a69727f9acd26aa08e175713a0a857a608", input={"image": open(filepath, "rb"), "caption": True}, ) return output def get_image_stylistic_caption(self, filepath): output = replicate.run( "pharmapsychotic/clip-interrogator:a4a8bafd6089e1716b06057c42b19378250d008b80fe87caa5cd36d40c1eda90", input={"image": open(filepath, "rb")}, ) return output async def do_image_ocr(self, filepath): # Read the image file and encode it in base64 format if not self.google_cloud_api_key: return "None" with open(filepath, "rb") as image_file: encoded_image = base64.b64encode(image_file.read()).decode("utf-8") # Prepare the JSON payload payload = { "requests": [ { "image": {"content": encoded_image}, "features": [{"type": "TEXT_DETECTION"}], } ] } header = { "Content-Type": "application/json; charset=utf-8", } url = f"https://vision.googleapis.com/v1/images:annotate?key={self.google_cloud_api_key}" # Send the async request async with aiohttp.ClientSession() as session: async with session.post( url, headers=header, data=json.dumps(payload) ) as response: result = await response.json() if response.status == 200: # Get fullTextAnnotation full_text_annotation = result.get("responses", [])[0].get( "fullTextAnnotation" ) if full_text_annotation: extracted_text = full_text_annotation.get("text") # Return the extracted text return extracted_text else: return "" else: raise Exception( f"Google Cloud Vision API returned an error. Status code: {response.status}, Error: {result}" )
SwarmsDiscord-main
swarmsdiscord/models/image_understanding_model.py
import discord import re import aiohttp from services.environment_service import EnvService from typing import Callable ADMIN_ROLES = EnvService.get_admin_roles() DALLE_ROLES = EnvService.get_dalle_roles() GPT_ROLES = EnvService.get_gpt_roles() INDEX_ROLES = EnvService.get_index_roles() TRANSLATOR_ROLES = EnvService.get_translator_roles() SEARCH_ROLES = EnvService.get_search_roles() ALLOWED_GUILDS = EnvService.get_allowed_guilds() class Check: @staticmethod def check_admin_roles() -> Callable: async def inner(ctx: discord.ApplicationContext): if ADMIN_ROLES == [None]: return True if not any(role.name.lower() in ADMIN_ROLES for role in ctx.user.roles): await ctx.defer(ephemeral=True) await ctx.respond( f"You don't have permission, list of roles is {ADMIN_ROLES}", ephemeral=True, delete_after=10, ) return False return True return inner @staticmethod def check_dalle_roles() -> Callable: async def inner(ctx: discord.ApplicationContext): if DALLE_ROLES == [None]: return True if not any(role.name.lower() in DALLE_ROLES for role in ctx.user.roles): await ctx.defer(ephemeral=True) await ctx.respond( f"You don't have permission, list of roles is {DALLE_ROLES}", ephemeral=True, delete_after=10, ) return False return True return inner @staticmethod def check_gpt_roles() -> Callable: async def inner(ctx: discord.ApplicationContext): if GPT_ROLES == [None]: return True if not any(role.name.lower() in GPT_ROLES for role in ctx.user.roles): await ctx.defer(ephemeral=True) await ctx.respond( f"You don't have permission, list of roles is {GPT_ROLES}", ephemeral=True, delete_after=10, ) return False return True return inner @staticmethod def check_index_roles() -> Callable: async def inner(ctx: discord.ApplicationContext): if INDEX_ROLES == [None]: return True if not any(role.name.lower() in INDEX_ROLES for role in ctx.user.roles): await ctx.defer(ephemeral=True) await ctx.respond( f"You don't have permission, list of roles is {INDEX_ROLES}", ephemeral=True, delete_after=10, ) return False return True return inner @staticmethod def check_translator_roles() -> Callable: async def inner(ctx: discord.ApplicationContext): if TRANSLATOR_ROLES == [None]: return True if not any( role.name.lower() in TRANSLATOR_ROLES for role in ctx.user.roles ): await ctx.defer(ephemeral=True) await ctx.respond( f"You don't have permission, list of roles is {TRANSLATOR_ROLES}", ephemeral=True, delete_after=10, ) return False return True return inner @staticmethod def check_search_roles() -> Callable: async def inner(ctx: discord.ApplicationContext): if SEARCH_ROLES == [None]: return True if not any(role.name.lower() in SEARCH_ROLES for role in ctx.user.roles): await ctx.defer(ephemeral=True) await ctx.respond( f"You don't have permission, list of roles is {SEARCH_ROLES}", ephemeral=True, delete_after=10, ) return False return True return inner class UrlCheck: @staticmethod async def check_youtube_link(url): youtube_regex = ( r"(https?://)?(www\.)?(youtube|youtu|youtube-nocookie)\.(com|be)/" ) match = re.match(youtube_regex, url) if match is not None: return True async with aiohttp.ClientSession() as session: async with session.get(url) as resp: final_url = str(resp.url) match = re.match(youtube_regex, final_url) return match is not None
SwarmsDiscord-main
swarmsdiscord/models/check_model.py
import asyncio import os import tempfile import traceback from datetime import datetime, date from functools import partial from pathlib import Path import discord import aiohttp import openai import tiktoken from langchain.chat_models import ChatOpenAI from llama_index import ( QuestionAnswerPrompt, GPTVectorStoreIndex, BeautifulSoupWebReader, Document, LLMPredictor, OpenAIEmbedding, SimpleDirectoryReader, MockEmbedding, ServiceContext, ResponseSynthesizer, ) from llama_index.callbacks import CallbackManager, TokenCountingHandler from llama_index.composability import QASummaryQueryEngineBuilder from llama_index.retrievers import VectorIndexRetriever from llama_index.query_engine import RetrieverQueryEngine, MultiStepQueryEngine from llama_index.indices.query.query_transform import StepDecomposeQueryTransform from llama_index.optimization import SentenceEmbeddingOptimizer from llama_index.prompts.chat_prompts import CHAT_REFINE_PROMPT from llama_index.readers.web import DEFAULT_WEBSITE_EXTRACTOR from langchain import OpenAI from models.openai_model import Models from services.environment_service import EnvService MAX_SEARCH_PRICE = EnvService.get_max_search_price() class Search: def __init__(self, gpt_model, usage_service): self.model = gpt_model self.usage_service = usage_service self.google_search_api_key = EnvService.get_google_search_api_key() self.google_search_engine_id = EnvService.get_google_search_engine_id() self.loop = asyncio.get_running_loop() self.qaprompt = QuestionAnswerPrompt( "You are formulating the response to a search query given the search prompt and the context. Context information is below. The text '<|endofstatement|>' is used to separate chat entries and make it easier for you to understand the context\n" "---------------------\n" "{context_str}" "\n---------------------\n" "Never say '<|endofstatement|>'\n" "Given the context information and not prior knowledge, " "answer the question, say that you were unable to answer the question if there is not sufficient context to formulate a decisive answer. If the prior knowledge/context was sufficient, simply repeat it. The search query was: {query_str}\n" ) self.openai_key = os.getenv("OPENAI_TOKEN") self.EMBED_CUTOFF = 2000 def add_search_index(self, index, user_id, query): # Create a folder called "indexes/{USER_ID}" if it doesn't exist already Path(f"{EnvService.save_path()}/indexes/{user_id}_search").mkdir( parents=True, exist_ok=True ) # Save the index to file under the user id file = f"{date.today().month}_{date.today().day}_{query[:20]}" index.storage_context.persist( persist_dir=EnvService.save_path() / "indexes" / f"{str(user_id)}_search" / f"{file}" ) def build_search_started_embed(self): embed = discord.Embed( title="Searching the web...", description="Refining google search query...", color=discord.Color.blurple(), ) embed.set_thumbnail(url="https://i.imgur.com/txHhNzL.png") return embed def build_search_refined_embed(self, refined_query): embed = discord.Embed( title="Searching the web...", description="Refined query:\n" + f"`{refined_query}`" + "\nRetrieving links from google...", color=discord.Color.blurple(), ) embed.set_thumbnail(url="https://i.imgur.com/txHhNzL.png") return embed def build_search_links_retrieved_embed(self, refined_query): embed = discord.Embed( title="Searching the web...", description="Refined query:\n" + f"`{refined_query}`" "\nRetrieving webpages...", color=discord.Color.blurple(), ) embed.set_thumbnail(url="https://i.imgur.com/txHhNzL.png") return embed def build_search_determining_price_embed(self, refined_query): embed = discord.Embed( title="Searching the web...", description="Refined query:\n" + f"`{refined_query}`" "\nPre-determining index price...", color=discord.Color.blurple(), ) embed.set_thumbnail(url="https://i.imgur.com/txHhNzL.png") return embed def build_search_webpages_retrieved_embed(self, refined_query): embed = discord.Embed( title="Searching the web...", description="Refined query:\n" + f"`{refined_query}`" "\nIndexing...", color=discord.Color.blurple(), ) embed.set_thumbnail(url="https://i.imgur.com/txHhNzL.png") return embed def build_search_indexed_embed(self, refined_query): embed = discord.Embed( title="Searching the web...", description="Refined query:\n" + f"`{refined_query}`" "\nThinking about your question...", color=discord.Color.blurple(), ) embed.set_thumbnail(url="https://i.imgur.com/txHhNzL.png") return embed def build_search_final_embed(self, refined_query, price): embed = discord.Embed( title="Searching the web...", description="Refined query:\n" + f"`{refined_query}`" "\nDone!\n||The total price was $" + price + "||", color=discord.Color.blurple(), ) embed.set_thumbnail(url="https://i.imgur.com/txHhNzL.png") return embed def index_webpage(self, url) -> list[Document]: documents = BeautifulSoupWebReader( website_extractor=DEFAULT_WEBSITE_EXTRACTOR ).load_data(urls=[url]) return documents async def index_pdf(self, url) -> list[Document]: # Download the PDF at the url and save it to a tempfile async with aiohttp.ClientSession() as session: async with session.get(url) as response: if response.status == 200: data = await response.read() f = tempfile.NamedTemporaryFile(suffix=".pdf", delete=False) f.write(data) f.close() else: raise ValueError("Could not download PDF") # Get the file path of this tempfile.NamedTemporaryFile # Save this temp file to an actual file that we can put into something else to read it documents = SimpleDirectoryReader(input_files=[f.name]).load_data() for document in documents: document.extra_info = {"URL": url} # Delete the temporary file return documents async def get_links(self, query, search_scope=2): """Search the web for a query""" async with aiohttp.ClientSession() as session: async with session.get( f"https://www.googleapis.com/customsearch/v1?key={self.google_search_api_key}&cx={self.google_search_engine_id}&q={query}" ) as response: if response.status == 200: data = await response.json() # Return a list of the top 2 links return ( [item["link"] for item in data["items"][:search_scope]], [item["link"] for item in data["items"]], ) else: raise ValueError( "Error while retrieving links, the response returned " + str(response.status) + " with the message " + str(await response.text()) ) async def try_edit(self, message, embed): try: await message.edit(embed=embed) except Exception: traceback.print_exc() pass async def try_delete(self, message): try: await message.delete() except Exception: traceback.print_exc() pass async def search( self, ctx: discord.ApplicationContext, query, user_api_key, search_scope, nodes, deep, response_mode, model, multistep=False, redo=None, ): DEFAULT_SEARCH_NODES = 1 if not user_api_key: os.environ["OPENAI_API_KEY"] = self.openai_key else: os.environ["OPENAI_API_KEY"] = user_api_key openai.api_key = os.environ["OPENAI_API_KEY"] # Initialize the search cost price = 0 if ctx: in_progress_message = ( await ctx.respond(embed=self.build_search_started_embed()) if not redo else await ctx.channel.send(embed=self.build_search_started_embed()) ) try: llm_predictor_presearch = OpenAI( max_tokens=50, temperature=0.4, presence_penalty=0.65, model_name="text-davinci-003", ) # Refine a query to send to google custom search API prompt = f"You are to be given a search query for google. Change the query such that putting it into the Google Custom Search API will return the most relevant websites to assist in answering the original query. If the original query is inferring knowledge about the current day, insert the current day into the refined prompt. If the original query is inferring knowledge about the current month, insert the current month and year into the refined prompt. If the original query is inferring knowledge about the current year, insert the current year into the refined prompt. Generally, if the original query is inferring knowledge about something that happened recently, insert the current month into the refined query. Avoid inserting a day, month, or year for queries that purely ask about facts and about things that don't have much time-relevance. The current date is {str(datetime.now().date())}. Do not insert the current date if not neccessary. Respond with only the refined query for the original query. Don’t use punctuation or quotation marks.\n\nExamples:\n---\nOriginal Query: β€˜Who is Harald Baldr?’\nRefined Query: β€˜Harald Baldr biography’\n---\nOriginal Query: β€˜What happened today with the Ohio train derailment?’\nRefined Query: β€˜Ohio train derailment details {str(datetime.now().date())}’\n---\nOriginal Query: β€˜Is copper in drinking water bad for you?’\nRefined Query: β€˜copper in drinking water adverse effects’\n---\nOriginal Query: What's the current time in Mississauga?\nRefined Query: current time Mississauga\nNow, refine the user input query.\nOriginal Query: {query}\nRefined Query:" query_refined = await llm_predictor_presearch.agenerate( prompts=[prompt], ) query_refined_text = query_refined.generations[0][0].text await self.usage_service.update_usage( query_refined.llm_output.get("token_usage").get("total_tokens"), "davinci", ) price += await self.usage_service.get_price( query_refined.llm_output.get("token_usage").get("total_tokens"), "davinci", ) except Exception as e: traceback.print_exc() query_refined_text = query if ctx: await self.try_edit( in_progress_message, self.build_search_refined_embed(query_refined_text) ) # Get the links for the query links, all_links = await self.get_links( query_refined_text, search_scope=search_scope ) if ctx: await self.try_edit( in_progress_message, self.build_search_links_retrieved_embed(query_refined_text), ) if all_links is None: raise ValueError("The Google Search API returned an error.") # For each link, crawl the page and get all the text that's not HTML garbage. # Concatenate all the text for a given website into one string and save it into an array: documents = [] for link in links: # First, attempt a connection with a timeout of 3 seconds to the link, if the timeout occurs, don't # continue to the document loading. pdf = False try: async with aiohttp.ClientSession() as session: async with session.get(link, timeout=1) as response: # Add another entry to links from all_links if the link is not already in it to compensate for the failed request if response.status not in [200, 203, 202, 204]: for link2 in all_links: if link2 not in links: links.append(link2) break continue # Follow redirects elif response.status in [301, 302, 303, 307, 308]: try: links.append(response.url) continue except: continue else: # Detect if the link is a PDF, if it is, we load it differently if response.headers["Content-Type"] == "application/pdf": pdf = True except: try: # Try to add a link from all_links, this is kind of messy. for link2 in all_links: if link2 not in links: links.append(link2) break except: pass continue try: if not pdf: document = await self.loop.run_in_executor( None, partial(self.index_webpage, link) ) else: document = await self.index_pdf(link) [documents.append(doc) for doc in document] except Exception as e: traceback.print_exc() if ctx: await self.try_edit( in_progress_message, self.build_search_webpages_retrieved_embed(query_refined_text), ) embedding_model = OpenAIEmbedding() llm_predictor = LLMPredictor(llm=ChatOpenAI(temperature=0, model_name=model)) token_counter = TokenCountingHandler( tokenizer=tiktoken.encoding_for_model(model).encode, verbose=False ) callback_manager = CallbackManager([token_counter]) service_context = ServiceContext.from_defaults( llm_predictor=llm_predictor, embed_model=embedding_model, callback_manager=callback_manager, ) # Check price token_counter_mock = TokenCountingHandler( tokenizer=tiktoken.encoding_for_model(model).encode, verbose=False ) callback_manager_mock = CallbackManager([token_counter_mock]) embed_model_mock = MockEmbedding(embed_dim=1536) service_context_mock = ServiceContext.from_defaults( embed_model=embed_model_mock, callback_manager=callback_manager_mock ) self.loop.run_in_executor( None, partial( GPTVectorStoreIndex.from_documents, documents, service_context=service_context_mock, ), ) total_usage_price = await self.usage_service.get_price( token_counter_mock.total_embedding_token_count, "embedding" ) if total_usage_price > 1.00: raise ValueError( "Doing this search would be prohibitively expensive. Please try a narrower search scope." ) if not deep: index = await self.loop.run_in_executor( None, partial( GPTVectorStoreIndex.from_documents, documents, service_context=service_context, use_async=True, ), ) # save the index to disk if not a redo if not redo: self.add_search_index( index, ctx.user.id if isinstance(ctx, discord.ApplicationContext) else ctx.author.id, query, ) else: if ctx: await self.try_edit( in_progress_message, self.build_search_determining_price_embed(query_refined_text), ) graph_builder = QASummaryQueryEngineBuilder(service_context=service_context) index = await self.loop.run_in_executor( None, partial( graph_builder.build_from_documents, documents, ), ) if ctx: await self.try_edit( in_progress_message, self.build_search_indexed_embed(query_refined_text) ) ######################################## if not deep: step_decompose_transform = StepDecomposeQueryTransform( service_context.llm_predictor ) retriever = VectorIndexRetriever( index=index, similarity_top_k=nodes or DEFAULT_SEARCH_NODES, ) response_synthesizer = ResponseSynthesizer.from_args( response_mode=response_mode, use_async=True, refine_template=CHAT_REFINE_PROMPT, text_qa_template=self.qaprompt, optimizer=SentenceEmbeddingOptimizer(threshold_cutoff=0.7), service_context=service_context, ) query_engine = RetrieverQueryEngine( retriever=retriever, response_synthesizer=response_synthesizer ) multistep_query_engine = MultiStepQueryEngine( query_engine=query_engine, query_transform=step_decompose_transform, index_summary="Provides information about everything you need to know about this topic, use this to answer the question.", ) if multistep: response = await self.loop.run_in_executor( None, partial(multistep_query_engine.query, query), ) else: response = await self.loop.run_in_executor( None, partial(query_engine.query, query), ) else: query_configs = [ { "index_struct_type": "simple_dict", "query_mode": "default", "query_kwargs": {"similarity_top_k": 1}, }, { "index_struct_type": "list", "query_mode": "default", "query_kwargs": { "response_mode": "tree_summarize", "use_async": True, "verbose": True, }, }, { "index_struct_type": "tree", "query_mode": "default", "query_kwargs": { "verbose": True, "use_async": True, "child_branch_factor": 2, }, }, ] response = await self.loop.run_in_executor( None, partial( index.query, query, ), ) await self.usage_service.update_usage( token_counter.total_llm_token_count, await self.usage_service.get_cost_name(model), ) await self.usage_service.update_usage( token_counter.total_embedding_token_count, "embedding" ) price += await self.usage_service.get_price( token_counter.total_llm_token_count, await self.usage_service.get_cost_name(model), ) + await self.usage_service.get_price( token_counter.total_embedding_token_count, "embedding" ) if ctx: await self.try_edit( in_progress_message, self.build_search_final_embed(query_refined_text, str(round(price, 6))), ) return response, query_refined_text
SwarmsDiscord-main
swarmsdiscord/models/search_model.py
import asyncio import traceback import os from functools import partial from pathlib import Path from yt_dlp import YoutubeDL import discord from discord.ext import pages from models.deepl_model import TranslationModel from models.embed_statics_model import EmbedStatics from models.check_model import UrlCheck from services.environment_service import EnvService from services.text_service import TextService ALLOWED_GUILDS = EnvService.get_allowed_guilds() USER_INPUT_API_KEYS = EnvService.get_user_input_api_keys() USER_KEY_DB = EnvService.get_api_db() class TranscribeService(discord.Cog, name="TranscribeService"): """Cog containing translation commands and retrieval of transcribe services""" def __init__( self, bot, model, usage_service, ): super().__init__() self.bot = bot self.model = model self.usage_service = usage_service # Make the "audiotemp" folder if it doesn't exist, using pathlib Path("audiotemp").mkdir(parents=True, exist_ok=True) async def transcribe_link_command( self, ctx: discord.ApplicationContext, link: str, temperature: float ): # Check if this discord file is an instance of mp3, mp4, mpeg, mpga, m4a, wav, or webm. await ctx.defer() user_api_key = None if USER_INPUT_API_KEYS: user_api_key = await TextService.get_user_api_key( ctx.user.id, ctx, USER_KEY_DB ) if not user_api_key: return if await UrlCheck.check_youtube_link(link): # We need to download the youtube video and save it to a temporary file options = { "format": "bestaudio/best", "outtmpl": os.path.join( "audiotemp/", f"{ctx.user.id}temp.%(ext)s" ), # save file as the videos title "quiet": True, "postprocessors": [ { "key": "FFmpegExtractAudio", "preferredcodec": "mp3", "preferredquality": "192", } ], } # Delete audiotemp/{str(ctx.user.id)}temp.mp3 if it already exists if Path("audiotemp/{}temp.mp3".format(str(ctx.user.id))).exists(): Path("audiotemp/{}temp.mp3".format(str(ctx.user.id))).unlink() def download_video(url, options): with YoutubeDL(options) as ydl: ydl.download([url]) try: await asyncio.get_running_loop().run_in_executor( None, partial( download_video, link, options, ), ) except Exception as e: traceback.print_exc() await ctx.respond( "Failed to download youtube video. Please try again later. " + str(e) ) return else: await ctx.respond( "Please upload a valid youtube link. Other links are not implemented yet" ) return # Load the file object from the file_path file_path = Path("audiotemp/{}temp.mp3".format(str(ctx.user.id))) file = discord.File(file_path) response_message = await ctx.respond( embed=EmbedStatics.build_transcribe_progress_embed() ) try: response = await self.model.send_transcription_request( file, temperature, user_api_key ) print(response) if len(response) > 4080: # Chunk the response into 2048 character chunks, each an embed page chunks = [response[i : i + 2048] for i in range(0, len(response), 2048)] embed_pages = [] for chunk in chunks: embed_pages.append( discord.Embed( title="Transcription Page {}".format(len(embed_pages) + 1), description=chunk, ) ) paginator = pages.Paginator( pages=embed_pages, timeout=None, author_check=False, ) await paginator.respond(ctx.interaction) await response_message.delete() return await response_message.edit( embed=EmbedStatics.build_transcribe_success_embed(response) ) except Exception as e: await response_message.edit( embed=EmbedStatics.build_transcribe_failed_embed(str(e)) ) async def transcribe_file_command( self, ctx: discord.ApplicationContext, file: discord.Attachment, temperature: float, ): # Check if this discord file is an instance of mp3, mp4, mpeg, mpga, m4a, wav, or webm. await ctx.defer() user_api_key = None if USER_INPUT_API_KEYS: user_api_key = await TextService.get_user_api_key( ctx.user.id, ctx, USER_KEY_DB ) if not user_api_key: return if not file.filename.endswith( (".mp3", ".mp4", ".mpeg", ".mpga", ".m4a", ".wav", ".webm") ): await ctx.respond("Please upload a valid audio/video file.") return # Also check the file metadata in case it is actually an audio/video file but with a weird ending if not file.content_type.startswith(("audio/", "video/")): await ctx.respond("Please upload a valid audio/video file.") return response_message = await ctx.respond( embed=EmbedStatics.build_transcribe_progress_embed() ) try: response = await self.model.send_transcription_request( file, temperature, user_api_key ) if len(response) > 4080: # Chunk the response into 2048 character chunks, each an embed page chunks = [response[i : i + 2048] for i in range(0, len(response), 2048)] embed_pages = [] for chunk in chunks: embed_pages.append( discord.Embed( title="Transcription Page {}".format(len(embed_pages) + 1), description=chunk, ) ) paginator = pages.Paginator( pages=embed_pages, timeout=None, author_check=False, ) await paginator.respond(ctx.interaction) await response_message.edit( embed=EmbedStatics.build_transcribe_success_embed(response) ) except Exception as e: traceback.print_exc() await response_message.edit( embed=EmbedStatics.build_transcribe_failed_embed(str(e)) )
SwarmsDiscord-main
swarmsdiscord/cogs/transcription_service_cog.py
import datetime import io import json import os import sys import tempfile import traceback from typing import Optional, Dict, Any import aiohttp import re import discord import openai from bs4 import BeautifulSoup from discord.ext import pages from langchain import ( GoogleSearchAPIWrapper, WolframAlphaAPIWrapper, FAISS, InMemoryDocstore, LLMChain, ConversationChain, ) from langchain.agents import ( Tool, initialize_agent, AgentType, ZeroShotAgent, AgentExecutor, ) from langchain.chat_models import ChatOpenAI from langchain.memory import ConversationBufferMemory, CombinedMemory from langchain.prompts import ( ChatPromptTemplate, SystemMessagePromptTemplate, MessagesPlaceholder, HumanMessagePromptTemplate, ) from langchain.requests import TextRequestsWrapper, Requests from llama_index import ( GPTVectorStoreIndex, Document, SimpleDirectoryReader, ServiceContext, OpenAIEmbedding, ResponseSynthesizer, ) from llama_index.retrievers import VectorIndexRetriever from llama_index.query_engine import RetrieverQueryEngine from llama_index.prompts.chat_prompts import CHAT_REFINE_PROMPT from pydantic import Extra, BaseModel import tiktoken from models.embed_statics_model import EmbedStatics from models.search_model import Search from services.deletion_service import Deletion from services.environment_service import EnvService from services.moderations_service import Moderation from services.text_service import TextService from models.openai_model import Models from contextlib import redirect_stdout from langchain.agents.conversational_chat.output_parser import ConvoOutputParser original_parse = ConvoOutputParser.parse def my_parse(self, text): # Remove all pairs of triple backticks from the input. However, don't remove pairs of ```json and ```. Only remove ``` and ``` pairs, maintain the text between the pairs so that only the backticks # are removed and the text is left intact. text_without_triple_backticks = re.sub( r"```(?!json)(.*?)```", r"\1", text, flags=re.DOTALL ) # Call the original parse() method with the modified input try: result = original_parse(self, text_without_triple_backticks) except Exception: traceback.print_exc() # Take the text and format it like # { # "action": "Final Answer", # "action_input": text # } # This will cause the bot to respond with the text as if it were a final answer. if "action_input" not in text_without_triple_backticks: text_without_triple_backticks = f'{{"action": "Final Answer", "action_input": {json.dumps(text_without_triple_backticks)}}}' result = original_parse(self, text_without_triple_backticks) else: # Insert "```json" before the opening curly brace text_without_triple_backticks = re.sub( r"({)", r"```json \1", text_without_triple_backticks ) # Insert "```" after the closing curly brace text_without_triple_backticks = re.sub( r"(})", r"\1 ```", text_without_triple_backticks ) result = original_parse(self, text_without_triple_backticks) return result # Replace the original parse function with the new one ConvoOutputParser.parse = my_parse class CaptureStdout: def __enter__(self): self.buffer = io.StringIO() self.original_stdout = sys.stdout sys.stdout = self.buffer return self.buffer def __exit__(self, exc_type, exc_val, exc_tb): sys.stdout = self.original_stdout async def capture_stdout(func, *args, **kwargs): with CaptureStdout() as buffer: result = await func(*args, **kwargs) captured_output = buffer.getvalue() return result, captured_output ALLOWED_GUILDS = EnvService.get_allowed_guilds() USER_INPUT_API_KEYS = EnvService.get_user_input_api_keys() USER_KEY_DB = EnvService.get_api_db() PRE_MODERATE = EnvService.get_premoderate() GOOGLE_API_KEY = EnvService.get_google_search_api_key() GOOGLE_SEARCH_ENGINE_ID = EnvService.get_google_search_engine_id() OPENAI_API_KEY = EnvService.get_openai_token() # Set the environment os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY openai.api_key = os.environ["OPENAI_API_KEY"] WOLFRAM_API_KEY = EnvService.get_wolfram_api_key() vector_stores = {} class RedoSearchUser: def __init__(self, ctx, query, search_scope, nodes, response_mode): self.ctx = ctx self.query = query self.search_scope = search_scope self.nodes = nodes self.response_mode = response_mode class CustomTextRequestWrapper(BaseModel): """Lightweight wrapper around requests library. The main purpose of this wrapper is to always return a text output. """ headers: Optional[Dict[str, str]] = None aiosession: Optional[aiohttp.ClientSession] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True def __init__(self, **data: Any): super().__init__(**data) @property def requests(self) -> Requests: return Requests(headers=self.headers, aiosession=self.aiosession) def get(self, url: str, **kwargs: Any) -> str: # the "url" field is actuall some input from the LLM, it is a comma separated string of the url and a boolean value and the original query try: url, model, original_query = url.split(",") url = url.strip() model = model.strip() original_query = original_query.strip() except: url = url model = "gpt-3.5-turbo" original_query = "No Original Query Provided" """GET the URL and return the text.""" text = self.requests.get(url, **kwargs).text # Load this text into BeautifulSoup, clean it up and only retain text content within <p> and <title> and <h1> type tags, get rid of all javascript and css too. soup = BeautifulSoup(text, "html.parser") # Decompose script, style, head, and meta tags for tag in soup(["script", "style", "head", "meta"]): tag.decompose() # Get remaining text from the soup object text = soup.get_text() # Clean up white spaces text = re.sub(r"\s+", " ", text).strip() # If not using GPT-4 and the text token amount is over 3500, truncate it to 3500 tokens enc = tiktoken.encoding_for_model(model) tokens = len(enc.encode(text)) if len(text) < 5: return "This website could not be scraped. I cannot answer this question." if ( model in Models.CHATGPT_MODELS and tokens > Models.get_max_tokens(model) - 1000 ) or ( model in Models.GPT4_MODELS and tokens > Models.get_max_tokens(model) - 1000 ): with tempfile.NamedTemporaryFile(mode="w", delete=False) as f: f.write(text) f.close() document = SimpleDirectoryReader(input_files=[f.name]).load_data() embed_model = OpenAIEmbedding() service_context = ServiceContext.from_defaults(embed_model=embed_model) index = GPTVectorStoreIndex.from_documents( document, service_context=service_context, use_async=True ) retriever = VectorIndexRetriever( index=index, similarity_top_k=4, service_context=service_context ) response_synthesizer = ResponseSynthesizer.from_args( response_mode="compact", refine_template=CHAT_REFINE_PROMPT, service_context=service_context, use_async=True, ) query_engine = RetrieverQueryEngine( retriever=retriever, response_synthesizer=response_synthesizer ) response_text = query_engine.query(original_query) return response_text return text class SearchService(discord.Cog, name="SearchService"): """Cog containing translation commands and retrieval of translation services""" def __init__( self, bot, gpt_model, usage_service, deletion_service, converser_cog, ): super().__init__() self.bot = bot self.usage_service = usage_service self.model = Search(gpt_model, usage_service) self.EMBED_CUTOFF = 2000 self.redo_users = {} self.chat_agents = {} self.thread_awaiting_responses = [] self.converser_cog = converser_cog # Make a mapping of all the country codes and their full country names: async def paginate_embed( self, response_text, user: discord.Member, original_link=None ): """Given a response text make embed pages and return a list of the pages.""" response_text = [ response_text[i : i + self.EMBED_CUTOFF] for i in range(0, len(response_text), self.EMBED_CUTOFF) ] pages = [] first = False # Send each chunk as a message for count, chunk in enumerate(response_text, start=1): if not first: page = discord.Embed( title="Search Results" if not original_link else "Follow-up results", description=chunk, url=original_link, ) first = True else: page = discord.Embed( title=f"Page {count}", description=chunk, url=original_link, ) if user.avatar: page.set_footer( text=f"Requested by {user.name}", icon_url=user.avatar.url ) else: page.set_footer( text=f"Requested by {user.name}", icon_url=user.default_avatar.url ) pages.append(page) return pages async def paginate_chat_embed(self, response_text): """Given a response text make embed pages and return a list of the pages.""" response_text = [ response_text[i : i + 3500] for i in range(0, len(response_text), 7000) ] pages = [] first = False # Send each chunk as a message for count, chunk in enumerate(response_text, start=1): if not first: page = discord.Embed( title=f"{count}", description=chunk, ) first = True else: page = discord.Embed( title=f"{count}", description=chunk, ) pages.append(page) return pages @discord.Cog.listener() async def on_message(self, message): # Check if the message is from a bot. if message.author.id == self.bot.user.id: return # Check if the message is from a guild. if not message.guild: return if message.content.strip().startswith("~"): return # if we are still awaiting a response from the agent, then we don't want to process the message. if message.channel.id in self.thread_awaiting_responses: resp_message = await message.reply( "Please wait for the agent to respond to a previous message first!" ) deletion_time = datetime.datetime.now() + datetime.timedelta(seconds=5) deletion_time = deletion_time.timestamp() original_deletion_message = Deletion(message, deletion_time) deletion_message = Deletion(resp_message, deletion_time) await self.converser_cog.deletion_queue.put(deletion_message) await self.converser_cog.deletion_queue.put(original_deletion_message) return # Pre moderation if PRE_MODERATE: if await Moderation.simple_moderate_and_respond(message.content, message): await message.delete() return prompt = message.content.strip() # If the message channel is in self.chat_agents, then we delegate the message to the agent. if message.channel.id in self.chat_agents: if prompt.lower() in ["stop", "end", "quit", "exit"]: await message.reply("Ending chat session.") self.chat_agents.pop(message.channel.id) # close the thread thread = await self.bot.fetch_channel(message.channel.id) await thread.edit(name="Closed-GPT") await thread.edit(archived=True) return self.thread_awaiting_responses.append(message.channel.id) try: await message.channel.trigger_typing() except: pass agent = self.chat_agents[message.channel.id] used_tools = [] try: # Start listening to STDOUT before this call. We wanna track all the output for this specific call below response, stdout_output = await capture_stdout( self.bot.loop.run_in_executor, None, agent.run, prompt ) response = str(response) try: print(stdout_output) except: traceback.print_exc() stdout_output = "" if "Wolfram-Tool" in stdout_output: used_tools.append("Wolfram Alpha") if "Search-Tool" in stdout_output: used_tools.append("Google Search") if "Web-Crawling-Tool" in stdout_output: used_tools.append("Web Crawler") except Exception as e: response = f"Error: {e}" traceback.print_exc() await message.reply( embed=EmbedStatics.get_internet_chat_failure_embed(response) ) self.thread_awaiting_responses.remove(message.channel.id) return if len(response) > 2000: embed_pages = await self.paginate_chat_embed(response) paginator = pages.Paginator( pages=embed_pages, timeout=None, author_check=False, ) await paginator.respond(message) else: response = response.replace("\\n", "\n") # Build a response embed response_embed = discord.Embed( title="", description=response, color=0x808080, ) if len(used_tools) > 0: response_embed.set_footer( text="Used tools: " + ", ".join(used_tools) ) await message.reply(embed=response_embed) self.thread_awaiting_responses.remove(message.channel.id) async def search_chat_command( self, ctx: discord.ApplicationContext, model, search_scope=2 ): embed_title = f"{ctx.user.name}'s internet-connected conversation with GPT" message_embed = discord.Embed( title=embed_title, description=f"The agent will visit and browse **{search_scope}** link(s) every time it needs to access the internet.\nCrawling is enabled, send the bot a link for it to access it!\nModel: {model}\n\nType `end` to stop the conversation", color=0xBA6093, ) message_embed.set_thumbnail(url="https://i.imgur.com/lt5AYJ9.png") message_embed.set_footer( text="Internet Chat", icon_url="https://i.imgur.com/lt5AYJ9.png" ) message_thread = await ctx.send(embed=message_embed) thread = await message_thread.create_thread( name=ctx.user.name + "'s internet-connected conversation with GPT", auto_archive_duration=60, ) await ctx.respond("Conversation started.") print("The search scope is " + str(search_scope) + ".") # Make a new agent for this user to chat. search = GoogleSearchAPIWrapper( google_api_key=GOOGLE_API_KEY, google_cse_id=GOOGLE_SEARCH_ENGINE_ID, k=search_scope, ) requests = CustomTextRequestWrapper() tools = [ Tool( name="Search-Tool", func=search.run, description="useful when you need to answer questions about current events or retrieve information about a topic that may require the internet. The input to this tool is a search query to ask google. Search queries should be less than 8 words. For example, an input could be 'What is the weather like in New York?' and the tool input would be 'weather new york'.", ), # The requests tool Tool( name="Web-Crawling-Tool", func=requests.get, description=f"Useful for when the user provides you with a website link, use this tool to crawl the website and retrieve information from it. The input to this tool is a comma separated list of three values, the first value is the link to crawl for, and the second value is {model} and is the GPT model used, and the third value is the original question that the user asked. For example, an input could be 'https://google.com', gpt-3.5-turbo, 'What is this webpage?'. This tool should only be used if a direct link is provided and not in conjunction with other tools.", ), ] # Try to add wolfram tool try: wolfram = WolframAlphaAPIWrapper(wolfram_alpha_appid=WOLFRAM_API_KEY) tools.append( Tool( name="Wolfram-Tool", func=wolfram.run, description="useful when you need to answer questions about math, solve equations, do proofs, mathematical science questions, science questions, and when asked to do numerical based reasoning.", ) ) print("Wolfram tool added to internet-connected conversation agent.") except Exception: traceback.print_exc() print("Wolfram tool not added to internet-connected conversation agent.") memory = ConversationBufferMemory( memory_key="chat_history", return_messages=True ) llm = ChatOpenAI(model=model, temperature=0, openai_api_key=OPENAI_API_KEY) agent_chain = initialize_agent( tools, llm, agent=AgentType.CHAT_CONVERSATIONAL_REACT_DESCRIPTION, verbose=True, memory=memory, max_execution_time=120, max_iterations=4, early_stopping_method="generate", ) self.chat_agents[thread.id] = agent_chain async def search_command( self, ctx: discord.ApplicationContext, query, search_scope, nodes, deep, response_mode, model, multistep=False, redo=None, from_followup=None, followup_user=None, ): """Command handler for the search command""" await ctx.defer() if not redo else None # Check the opener for bad content. if PRE_MODERATE: if await Moderation.simple_moderate_and_respond(query, ctx): return user_api_key = None if USER_INPUT_API_KEYS: user_api_key = await TextService.get_user_api_key( ctx.user.id, ctx, USER_KEY_DB ) if not user_api_key: return if ( not EnvService.get_google_search_api_key() or not EnvService.get_google_search_engine_id() ): await ctx.respond( embed=EmbedStatics.get_search_failure_embed( str("The search service is not enabled on this server.") ), ) return try: response, refined_text = await self.model.search( ctx, query, user_api_key, search_scope, nodes, deep, response_mode, model, multistep, ) except ValueError as e: traceback.print_exc() await ctx.respond( embed=EmbedStatics.get_search_failure_embed(str(e)), ephemeral=True, ) return except Exception as e: await ctx.respond( embed=EmbedStatics.get_search_failure_embed(str(e)), ephemeral=True ) traceback.print_exc() return url_extract_pattern = "https?:\\/\\/(?:www\\.)?[-a-zA-Z0-9@:%._\\+~#=]{1,256}\\.[a-zA-Z0-9()]{1,6}\\b(?:[-a-zA-Z0-9()@:%_\\+.~#?&\\/=]*)" urls = re.findall( url_extract_pattern, str(response.get_formatted_sources(length=200)), flags=re.IGNORECASE, ) urls = "\n".join(f"<{url}>" for url in urls) # Deduplicate the urls urls = "\n".join(dict.fromkeys(urls.split("\n"))) if from_followup: original_link, followup_question = ( from_followup.original_link, from_followup.followup_question, ) query_response_message = f"**Question:**\n\n`{followup_question}`\n\n**Google Search Query**\n\n`{refined_text.strip()}`\n\n**Final Answer:**\n\n{response.response.strip()}\n\n**Sources:**\n{urls}" else: query_response_message = f"**Question:**\n\n`{query.strip()}`\n\n**Google Search Query**\n\n`{refined_text.strip()}`\n\n**Final Answer:**\n\n{response.response.strip()}\n\n**Sources:**\n{urls}" query_response_message = query_response_message.replace( "<|endofstatement|>", "" ) query_response_message = query_response_message.replace( "Answer to original:\n", "" ) query_response_message = query_response_message.replace( "Answer to follow-up:\n", "" ) # If the response is too long, lets paginate using the discord pagination # helper embed_pages = await self.paginate_embed( query_response_message, ctx.user if not followup_user else followup_user, original_link if from_followup else None, ) paginator = pages.Paginator( pages=embed_pages, timeout=None, author_check=False, custom_view=SearchView(ctx, self, query_response_message), ) self.redo_users[ctx.user.id] = RedoSearchUser( ctx, query, search_scope, nodes, response_mode ) await paginator.respond(ctx.interaction) class SearchView(discord.ui.View): def __init__( self, ctx, search_cog, response_text, ): super().__init__(timeout=None) # No timeout self.search_cog = search_cog self.ctx = ctx self.response_text = response_text self.add_item(RedoButton(self.ctx, self.search_cog)) self.add_item(FollowupButton(self.ctx, self.search_cog, self.response_text)) # A view for a follow-up button class FollowupButton(discord.ui.Button["SearchView"]): def __init__(self, ctx, search_cog, response_text): super().__init__(label="Follow Up", style=discord.ButtonStyle.green) self.search_cog = search_cog self.ctx = ctx self.response_text = response_text async def callback(self, interaction: discord.Interaction): """Send the followup modal""" await interaction.response.send_modal( modal=FollowupModal(self.ctx, self.search_cog, self.response_text) ) # A view for a redo button class RedoButton(discord.ui.Button["SearchView"]): def __init__(self, ctx, search_cog): super().__init__( style=discord.ButtonStyle.danger, label="Redo", custom_id="redo_search_button", ) self.ctx = ctx self.search_cog = search_cog async def callback(self, interaction: discord.Interaction): """Redo the search""" await interaction.response.send_message( embed=EmbedStatics.get_search_redo_progress_embed(), ephemeral=True, delete_after=15, ) await self.search_cog.search_command( self.search_cog.redo_users[self.ctx.user.id].ctx, self.search_cog.redo_users[self.ctx.user.id].query, self.search_cog.redo_users[self.ctx.user.id].search_scope, self.search_cog.redo_users[self.ctx.user.id].nodes, deep=False, redo=True, response_mode=self.search_cog.redo_users[self.ctx.user.id].response_mode, ) class FollowupData: def __init__(self, original_link, followup_question): self.original_link = original_link self.followup_question = followup_question # The modal for following up class FollowupModal(discord.ui.Modal): def __init__(self, ctx, search_cog, response_text) -> None: super().__init__(title="Search Follow-up") # Get the argument named "user_key_db" and save it as USER_KEY_DB self.search_cog = search_cog self.ctx = ctx self.response_text = response_text self.add_item( discord.ui.InputText( label="What other questions do you have?", placeholder="", ) ) async def callback(self, interaction: discord.Interaction): await interaction.response.defer() query = self.search_cog.redo_users[self.ctx.user.id].query # In the response text, get only the text between "**Final Answer:**" and "**Sources:**" self.response_text = self.response_text.split("**Final Answer:**")[1].split( "**Sources:**" )[0] # Build the context context_text = ( "Original question: " + query + "\n" + "Answer to original: " + self.response_text + "\n" + "Follow-up question: " + self.children[0].value ) # Get the link of the message that the user interacted on message_link = f"https://discord.com/channels/{interaction.guild_id}/{interaction.channel_id}/{interaction.message.id}" await self.search_cog.search_command( self.search_cog.redo_users[self.ctx.user.id].ctx, context_text, self.search_cog.redo_users[self.ctx.user.id].search_scope, self.search_cog.redo_users[self.ctx.user.id].nodes, deep=False, redo=True, from_followup=FollowupData(message_link, self.children[0].value), response_mode=self.search_cog.redo_users[self.ctx.user.id].response_mode, followup_user=interaction.user, )
SwarmsDiscord-main
swarmsdiscord/cogs/search_service_cog.py
SwarmsDiscord-main
swarmsdiscord/cogs/__init__.py
import asyncio import discord from sqlitedict import SqliteDict from services.environment_service import EnvService from services.moderations_service import Moderation, ThresholdSet MOD_DB = None try: print("Attempting to retrieve the General and Moderations DB") MOD_DB = SqliteDict( EnvService.find_shared_file("main_db.sqlite"), tablename="moderations", autocommit=True, ) except Exception as e: print("Failed to retrieve the General and Moderations DB") raise e class ModerationsService(discord.Cog, name="ModerationsService"): """Cog containing moderation tools and features""" def __init__( self, bot, usage_service, model, ): super().__init__() self.bot = bot self.usage_service = usage_service self.model = model # Moderation service data self.moderation_queues = {} self.moderation_alerts_channel = EnvService.get_moderations_alert_channel() self.moderation_enabled_guilds = [] self.moderation_tasks = {} self.moderations_launched = [] # Defaults self.default_warn_set = ThresholdSet(0.01, 0.05, 0.05, 0.91, 0.1, 0.45, 0.1) self.default_delete_set = ThresholdSet(0.26, 0.26, 0.1, 0.95, 0.03, 0.85, 0.4) @discord.Cog.listener() async def on_ready(self): """Check moderation service for each guild""" for guild in self.bot.guilds: self.get_or_set_warn_set(guild.id) self.get_or_set_delete_set(guild.id) await self.check_and_launch_moderations(guild.id) print("The moderation service is ready.") def check_guild_moderated(self, guild_id): """Given guild id, return bool of moderation status""" return guild_id in MOD_DB and MOD_DB[guild_id]["moderated"] def get_moderated_alert_channel(self, guild_id): """Given guild id, return alert channel""" return MOD_DB[guild_id]["alert_channel"] def set_moderated_alert_channel(self, guild_id, channel_id): """Given guild id and channel id, set channel to recieve alerts""" MOD_DB[guild_id] = {"moderated": True, "alert_channel": channel_id} MOD_DB.commit() def get_or_set_warn_set(self, guild_id): """Get warn_set set for the guild, if not set them from default values""" guild_id = str(guild_id) key = guild_id + "_warn_set" if key not in MOD_DB: MOD_DB[key] = zip( self.default_warn_set.keys, self.default_warn_set.thresholds ) MOD_DB.commit() return dict(MOD_DB[key]) def get_or_set_delete_set(self, guild_id): """Get delete_set set for the guild, if not set them from default values""" guild_id = str(guild_id) key = guild_id + "_delete_set" if key not in MOD_DB: MOD_DB[key] = zip( self.default_delete_set.keys, self.default_delete_set.thresholds ) MOD_DB.commit() return dict(MOD_DB[key]) def set_warn_set(self, guild_id, threshold_set): """Set threshold for warning a message""" guild_id = str(guild_id) key = guild_id + "_warn_set" MOD_DB[key] = zip(threshold_set.keys, threshold_set.thresholds) MOD_DB.commit() def set_delete_set(self, guild_id, threshold_set): """Set threshold for deleting a message""" guild_id = str(guild_id) key = guild_id + "_delete_set" MOD_DB[key] = zip(threshold_set.keys, threshold_set.thresholds) MOD_DB.commit() def set_guild_moderated(self, guild_id, status=True): """Set the guild to moderated or not""" if guild_id not in MOD_DB: MOD_DB[guild_id] = {"moderated": status, "alert_channel": 0} MOD_DB.commit() return MOD_DB[guild_id] = { "moderated": status, "alert_channel": self.get_moderated_alert_channel(guild_id), } MOD_DB.commit() async def check_and_launch_moderations(self, guild_id, alert_channel_override=None): """Create the moderation service""" if self.check_guild_moderated(guild_id): Moderation.moderation_queues[guild_id] = asyncio.Queue() moderations_channel = await self.bot.fetch_channel( self.get_moderated_alert_channel(guild_id) if not alert_channel_override else alert_channel_override ) warn_set_nums = self.get_or_set_warn_set(guild_id).values() delete_set_nums = self.get_or_set_delete_set(guild_id).values() warn_set = ThresholdSet(*warn_set_nums) delete_set = ThresholdSet(*delete_set_nums) Moderation.moderation_tasks[guild_id] = asyncio.ensure_future( Moderation.process_moderation_queue( Moderation.moderation_queues[guild_id], 0.25, 0.25, moderations_channel, warn_set, delete_set, ) ) print("Launched the moderations service for guild " + str(guild_id)) Moderation.moderations_launched.append(guild_id) return moderations_channel return None async def moderations_command( self, ctx: discord.ApplicationContext, status: str, alert_channel_id: str ): """command handler for toggling moderation and setting an alert channel""" await ctx.defer() try: if alert_channel_id: int(alert_channel_id) except ValueError: # the alert_channel_id was passed in as a channel NAME instead of an ID, fetch the ID. alert_channel = discord.utils.get(ctx.guild.channels, name=alert_channel_id) alert_channel_id = alert_channel.id if status == "on": # Check if the current guild is already in the database and if so, if the moderations is on if self.check_guild_moderated(ctx.guild_id): await ctx.respond("Moderations is already enabled for this guild") return # Create the moderations service. await self.start_moderations_service( guild_id=ctx.guild_id, alert_channel_id=alert_channel_id ) await ctx.respond("Moderations is now enabled for this guild") elif status == "off": # Cancel the moderations service. await self.stop_moderations_service(ctx.guild_id) await ctx.respond( "Moderations is now disabled for this guild", ephemeral=True ) async def stop_moderations_service(self, guild_id): """Remove guild moderation status and stop the service""" self.set_guild_moderated(guild_id, False) Moderation.moderation_tasks[guild_id].cancel() Moderation.moderation_tasks[guild_id] = None Moderation.moderation_queues[guild_id] = None Moderation.moderations_launched.remove(guild_id) async def start_moderations_service(self, guild_id, alert_channel_id=None): """Set guild moderation and start the service""" self.set_guild_moderated(guild_id) moderations_channel = await self.check_and_launch_moderations( guild_id, Moderation.moderation_alerts_channel if not alert_channel_id else alert_channel_id, ) self.set_moderated_alert_channel(guild_id, moderations_channel.id) async def restart_moderations_service(self, ctx): """restarts the moderation of the guild it's run in""" if not self.check_guild_moderated(ctx.guild_id): await ctx.respond( "Moderations are not enabled, can't restart", ephemeral=True, delete_after=30, ) return await ctx.respond( "The moderations service is being restarted...", ephemeral=True, delete_after=30, ) await self.stop_moderations_service(ctx.guild_id) await ctx.send_followup( "The moderations service was stopped..", ephemeral=True, delete_after=30 ) await self.start_moderations_service( ctx.guild_id, self.get_moderated_alert_channel(ctx.guild_id) ) await ctx.send_followup( "The moderations service was restarted successfully.", ephemeral=True, delete_after=30, ) async def build_moderation_settings_embed(self, category, mod_set): embed = discord.Embed( title="Moderation Settings", description="The moderation settings for this guild for the type: " + category, color=discord.Color.yellow() if type == "warn" else discord.Color.red(), ) # Add each key_value pair in the mod_set to the embed, make them fairly small for key, value in mod_set.items(): embed.add_field(name=key, value=value, inline=False) return embed async def config_command( self, ctx: discord.ApplicationContext, config_type: str, hate, hate_threatening, self_harm, sexual, sexual_minors, violence, violence_graphic, ): """command handler for assigning threshold values for warn or delete""" all_args = [ hate, hate_threatening, self_harm, sexual, sexual_minors, violence, violence_graphic, ] await ctx.defer(ephemeral=True) # Case for printing the current config if not any(all_args) and config_type != "reset": await ctx.respond( ephemeral=True, embed=await self.build_moderation_settings_embed( config_type, self.get_or_set_warn_set(ctx.guild_id) if config_type == "warn" else self.get_or_set_delete_set(ctx.guild_id), ), ) return if config_type == "warn": # Check if no args were warn_set = self.get_or_set_warn_set(ctx.guild_id) new_warn_set = ThresholdSet( hate if hate else warn_set["hate"], hate_threatening if hate_threatening else warn_set["hate/threatening"], self_harm if self_harm else warn_set["self-harm"], sexual if sexual else warn_set["sexual"], sexual_minors if sexual_minors else warn_set["sexual/minors"], violence if violence else warn_set["violence"], violence_graphic if violence_graphic else warn_set["violence/graphic"], ) self.set_warn_set(ctx.guild_id, new_warn_set) await self.restart_moderations_service(ctx) elif config_type == "delete": delete_set = self.get_or_set_delete_set(ctx.guild_id) new_delete_set = ThresholdSet( hate if hate else delete_set["hate"], hate_threatening if hate_threatening else delete_set["hate/threatening"], self_harm if self_harm else delete_set["self-harm"], sexual if sexual else delete_set["sexual"], sexual_minors if sexual_minors else delete_set["sexual/minors"], violence if violence else delete_set["violence"], violence_graphic if violence_graphic else delete_set["violence/graphic"], ) self.set_delete_set(ctx.guild_id, new_delete_set) await self.restart_moderations_service(ctx) elif config_type == "reset": self.set_delete_set(ctx.guild_id, self.default_delete_set) self.set_warn_set(ctx.guild_id, self.default_warn_set) await self.restart_moderations_service(ctx) async def moderations_test_command( self, ctx: discord.ApplicationContext, prompt: str ): """command handler for checking moderation values of a given input""" await ctx.defer() response = await self.model.send_moderations_request(prompt) await ctx.respond(response["results"][0]["category_scores"]) await ctx.send_followup(response["results"][0]["flagged"])
SwarmsDiscord-main
swarmsdiscord/cogs/moderations_service_cog.py
import asyncio import datetime import pickle import re import traceback import sys from pathlib import Path import aiofiles import json import discord from discord.ext import pages from models.deepl_model import TranslationModel from models.embed_statics_model import EmbedStatics from models.image_understanding_model import ImageUnderstandingModel from models.openai_model import Override from services.environment_service import EnvService from services.message_queue_service import Message from services.moderations_service import Moderation from models.user_model import Thread, EmbeddedConversationItem, Instruction from collections import defaultdict from sqlitedict import SqliteDict from services.pickle_service import Pickler from services.sharegpt_service import ShareGPTService from services.text_service import SetupModal, TextService original_message = {} ALLOWED_GUILDS = EnvService.get_allowed_guilds() if sys.platform == "win32": separator = "\\" else: separator = "/" # # Get the user key service if it is enabled. # USER_INPUT_API_KEYS = EnvService.get_user_input_api_keys() USER_KEY_DB = EnvService.get_api_db() CHAT_BYPASS_ROLES = EnvService.get_bypass_roles() PRE_MODERATE = EnvService.get_premoderate() FORCE_ENGLISH = EnvService.get_force_english() BOT_TAGGABLE = EnvService.get_bot_is_taggable() CHANNEL_CHAT_ROLES = EnvService.get_channel_chat_roles() BOT_TAGGABLE_ROLES = EnvService.get_gpt_roles() CHANNEL_INSTRUCTION_ROLES = EnvService.get_channel_instruction_roles() image_understanding_model = ImageUnderstandingModel() # # Obtain the Moderation table and the General table, these are two SQLite tables that contain # information about the server that are used for persistence and to auto-restart the moderation service. # MOD_DB = None GENERAL_DB = None try: print("Attempting to retrieve the General and Moderations DB") MOD_DB = SqliteDict( EnvService.find_shared_file("main_db.sqlite"), tablename="moderations", autocommit=True, ) GENERAL_DB = SqliteDict( EnvService.find_shared_file("main_db.sqlite"), tablename="general", autocommit=True, ) print("Retrieved the General and Moderations DB") except Exception as e: print("Failed to retrieve the General and Moderations DB. The bot is terminating.") raise e BOT_NAME = EnvService.get_custom_bot_name() class SWARMSComCon(discord.Cog, name="SWARMSComCon"): def __init__( self, bot, usage_service, model, message_queue, deletion_queue, DEBUG_GUILD, DEBUG_CHANNEL, data_path: Path, pinecone_service, pickle_queue, ): super().__init__() self.GLOBAL_COOLDOWN_TIME = 0.25 # Environment self.data_path = data_path self.debug_channel = None # Services and models self.bot = bot self.usage_service = usage_service self.model = model self.translation_model = TranslationModel() self.deletion_queue = deletion_queue # Data specific to all text based GPT interactions self.users_to_interactions = defaultdict(list) self.redo_users = {} # Pickle queue self.pickle_queue = pickle_queue # Conversations-specific data self.END_PROMPTS = [ "end", "end conversation", "end the conversation", "that's all", "that'll be all", ] self.awaiting_responses = [] self.awaiting_thread_responses = [] self.conversation_threads = {} self.full_conversation_history = defaultdict(list) self.instructions = defaultdict(list) self.summarize = self.model.summarize_conversations # Pinecone data self.pinecone_service = pinecone_service # Sharing service self.sharegpt_service = ShareGPTService() try: conversation_file_path = EnvService.find_shared_file( "conversation_starter_pretext.txt" ) # Attempt to read a conversation starter text string from the file. with conversation_file_path.open("r") as f: self.CONVERSATION_STARTER_TEXT = f.read() print( f"Conversation starter text loaded from {conversation_file_path}." ) assert self.CONVERSATION_STARTER_TEXT is not None language_detect_file_path = EnvService.find_shared_file( "language_detection_pretext.txt" ) # Attempt to read a conversation starter text string from the file. with language_detect_file_path.open("r") as f: self.LANGUAGE_DETECT_STARTER_TEXT = f.read() print( f"Language detection starter text loaded from {language_detect_file_path}." ) assert self.LANGUAGE_DETECT_STARTER_TEXT is not None conversation_file_path_minimal = EnvService.find_shared_file( "conversation_starter_pretext_minimal.txt" ) with conversation_file_path_minimal.open("r") as f: self.CONVERSATION_STARTER_TEXT_MINIMAL = f.read() print( f"Conversation starter text loaded from {conversation_file_path_minimal}." ) assert self.CONVERSATION_STARTER_TEXT_MINIMAL is not None except Exception: self.CONVERSATION_STARTER_TEXT = self.CONVERSATION_STARTER_TEXT_MINIMAL = ( "You are an artificial intelligence that is able to do anything, and answer any question," "I want you to be my personal assistant and help me with some tasks. " "and I want you to make well-informed decisions using the data that you have been trained on, " "and be sure to be mindful of the previous conversation history and be consistent with your answers." ) self.DEBUG_GUILD = DEBUG_GUILD self.DEBUG_CHANNEL = DEBUG_CHANNEL print( f"The debug channel and guild IDs are {self.DEBUG_GUILD} and {self.DEBUG_CHANNEL}" ) self.TEXT_CUTOFF = 1900 self.EMBED_CUTOFF = 3900 self.message_queue = message_queue self.conversation_thread_owners = defaultdict(list) async def load_file(self, file, ctx): """Take filepath, return content or respond if not found""" try: async with aiofiles.open(file, "r") as f: return await f.read() except Exception as e: traceback.print_exc() await ctx.respond( "Error loading file. Please check that it is correctly placed in the bot's root file directory." ) raise e @discord.Cog.listener() async def on_member_join(self, member): """When members join send welcome message if enabled""" if self.model.welcome_message_enabled: query = f"Please generate a welcome message for {member.name} who has just joined the server." try: welcome_message_response = await self.model.send_request( query, tokens=self.usage_service.count_tokens(query), is_chatgpt_request=True if "turbo" in str(self.model.model) else False, ) welcome_message = str(welcome_message_response["choices"][0]["text"]) except Exception: welcome_message = None if not welcome_message: welcome_message = EnvService.get_welcome_message() welcome_embed = discord.Embed( title=f"Welcome, {member.name}!", description=welcome_message ) welcome_embed.add_field( name="Just so you know...", value="> My commands are invoked with a forward slash (/)\n> Use /help to see my help message(s).", ) await member.send(content=None, embed=welcome_embed) @discord.Cog.listener() async def on_ready(self): """When ready to recieve data set debug channel and sync commands""" self.debug_channel = self.bot.get_guild(self.DEBUG_GUILD).get_channel( self.DEBUG_CHANNEL ) print("The debug channel was acquired") print("Attempting to load from pickles") # Try to load self.full_conversation_history, self.conversation_threads, and self.conversation_thread_owners from the `pickles` folder try: with open( EnvService.save_path() / "pickles" / "full_conversation_history.pickle", "rb", ) as f: self.full_conversation_history = pickle.load(f) print("Loaded full_conversation_history") with open( EnvService.save_path() / "pickles" / "conversation_threads.pickle", "rb" ) as f: self.conversation_threads = pickle.load(f) print("Loaded conversation_threads") with open( EnvService.save_path() / "pickles" / "conversation_thread_owners.pickle", "rb", ) as f: self.conversation_thread_owners = pickle.load(f) print("Loaded conversation_thread_owners") with open( EnvService.save_path() / "pickles" / "instructions.pickle", "rb", ) as f: self.instructions = pickle.load(f) print("Loaded instructions") # Fail if all three weren't loaded assert self.full_conversation_history is not {} assert self.conversation_threads is not {} assert self.conversation_thread_owners is not defaultdict(list) except Exception: print("Failed to load existing pickles") self.full_conversation_history = defaultdict(list) self.conversation_threads = {} self.conversation_thread_owners = defaultdict(list) print("Set empty dictionaries, pickles will be saved in the future") print("Syncing commands...") await self.bot.sync_commands( commands=None, method="individual", force=True, guild_ids=ALLOWED_GUILDS, register_guild_commands=True, check_guilds=[], delete_existing=True, ) print("Commands synced") # Start an inline async loop that runs every 10 seconds to save the conversation history to a pickle file print("Starting pickle loop") while True: await asyncio.sleep(15) await self.pickle_queue.put( Pickler( self.full_conversation_history, self.conversation_threads, self.conversation_thread_owners, self.instructions, ) ) def check_conversing(self, channel_id, message_content): '''given channel id and a message, return true if it's a conversation thread, false if not, or if the message starts with "~"''' cond1 = channel_id in self.conversation_threads # If the trimmed message starts with a Tilde, then we want to not contribute this to the conversation try: cond2 = not message_content.strip().startswith("~") except Exception as e: print(e) cond2 = False return (cond1) and cond2 async def end_conversation( self, ctx, opener_user_id=None, conversation_limit=False ): """end the thread of the user interacting with the bot, if the conversation has reached the limit close it for the owner""" normalized_user_id = opener_user_id if opener_user_id else ctx.author.id # Check if the channel is an instance of a thread thread = False if isinstance(ctx.channel, discord.Thread): thread = True if ( conversation_limit ): # if we reach the conversation limit we want to close from the channel it was maxed out in channel_id = ctx.channel.id else: try: channel_ids = self.conversation_thread_owners[normalized_user_id] if ctx.channel.id not in channel_ids: await ctx.reply( "This is not a conversation thread that you own!", delete_after=5, ) return if normalized_user_id in self.awaiting_responses: await ctx.reply( embed=discord.Embed( title=f"Please wait for a response before ending the conversation.", color=0x808080, ) ) return except Exception: traceback.print_exc() await ctx.delete(delay=5) await ctx.reply( "Only the conversation starter can end this.", delete_after=5 ) return # TODO Possible bug here, if both users have a conversation active and one user tries to end the other, it may # allow them to click the end button on the other person's thread and it will end their own convo. self.conversation_threads.pop(ctx.channel.id) if isinstance( ctx, discord.ApplicationContext ): # When the conversation is ended from the slash command await ctx.respond( "You have ended the conversation with GPT. Start a conversation with /gpt converse", ephemeral=True, delete_after=10, ) elif isinstance( ctx, discord.Interaction ): # When the user ends the conversation from the button await ctx.response.send_message( "You have ended the conversation with GPT. Start a conversation with /gpt converse", ephemeral=True, delete_after=10, ) else: # The case for when the user types "end" in the channel await ctx.reply( "You have ended the conversation with GPT. Start a conversation with /gpt converse", delete_after=10, ) await ctx.channel.send( embed=EmbedStatics.generate_end_embed(), view=ShareView(self, ctx.channel.id) if thread else None, ) # Close all conversation threads for the user # If at conversation limit then fetch the owner and close the thread for them if conversation_limit: try: owner_id = [ owner for owner, threads in self.conversation_thread_owners.items() if channel_id in threads ][0] self.conversation_thread_owners[owner_id].remove(ctx.channel.id) # Attempt to close and lock the thread. if thread: try: thread = await self.bot.fetch_channel(channel_id) await thread.edit(name="Closed-GPT") await thread.edit(archived=True) except Exception: traceback.print_exc() except Exception: traceback.print_exc() else: if normalized_user_id in self.conversation_thread_owners: thread_id = ctx.channel.id self.conversation_thread_owners[normalized_user_id].remove( ctx.channel.id ) # Attempt to close and lock the thread. if thread: try: thread = await self.bot.fetch_channel(thread_id) await thread.edit(name="Closed-GPT") await thread.edit(archived=True) except Exception: traceback.print_exc() async def send_settings_text(self, ctx): """compose and return the settings menu to the interacting user""" embed = discord.Embed( title="SWARMSBot Settings", description="The current settings of the model", color=0x00FF00, ) # Create a two-column embed to display the settings, use \u200b to create a blank space embed.add_field( name="Setting", value="\n".join( [ key for key in self.model.__dict__.keys() if key not in self.model._hidden_attributes ] ), inline=True, ) embed.add_field( name="Value", value="\n".join( [ str(value) for key, value in self.model.__dict__.items() if key not in self.model._hidden_attributes ] ), inline=True, ) await ctx.respond(embed=embed, ephemeral=True) async def process_settings(self, ctx, parameter, value): """Given a parameter and value set the corresponding parameter in storage to the value""" # Check if the parameter is a valid parameter if hasattr(self.model, parameter): # Check if the value is a valid value try: # Set the parameter to the value setattr(self.model, parameter, value) await ctx.respond( "Successfully set the parameter " + parameter + " to " + value ) if parameter == "mode": await ctx.send_followup( "The mode has been set to " + value + ". This has changed the temperature top_p to the mode defaults of " + str(self.model.temp) + " and " + str(self.model.top_p) ) except ValueError as e: await ctx.respond(e) else: await ctx.respond("The parameter is not a valid parameter") def generate_debug_message(self, prompt, response): """create a debug message with a prompt and a response field""" debug_message = "----------------------------------------------------------------------------------\n" debug_message += "Prompt:\n```\n" + prompt + "\n```\n" debug_message += "Response:\n```\n" + json.dumps(response, indent=4) + "\n```\n" return debug_message async def paginate_and_send(self, response_text, ctx): """paginate a response to a text cutoff length and send it in chunks""" from_context = isinstance(ctx, discord.ApplicationContext) response_text = [ response_text[i : i + self.TEXT_CUTOFF] for i in range(0, len(response_text), self.TEXT_CUTOFF) ] # Send each chunk as a message first = False for chunk in response_text: if not first: if from_context: await ctx.send_followup(chunk) else: await ctx.reply(chunk) first = True else: if from_context: response_message = await ctx.send_followup(chunk) else: response_message = await ctx.channel.send(chunk) return response_message async def paginate_embed(self, response_text): """Given a response text make embed pages and return a list of the pages.""" response_text = [ response_text[i : i + self.EMBED_CUTOFF] for i in range(0, len(response_text), self.EMBED_CUTOFF) ] pages = [] first = False # Send each chunk as a message for count, chunk in enumerate(response_text, start=1): if not first: page = discord.Embed( title=f"Page {count}", description=chunk, ) first = True else: page = discord.Embed( title=f"Page {count}", description=chunk, ) pages.append(page) return pages async def queue_debug_message(self, debug_message, debug_channel): """Put a message into the debug queue""" await self.message_queue.put(Message(debug_message, debug_channel)) async def queue_debug_chunks(self, debug_message, debug_channel): """Put a message as chunks into the debug queue""" debug_message_chunks = [ debug_message[i : i + self.TEXT_CUTOFF] for i in range(0, len(debug_message), self.TEXT_CUTOFF) ] backticks_encountered = 0 for i, chunk in enumerate(debug_message_chunks): # Count the number of backticks in the chunk backticks_encountered += chunk.count("```") # If it's the first chunk, append a "\n```\n" to the end if i == 0: chunk += "\n```\n" # If it's an interior chunk, append a "```\n" to the end, and a "\n```\n" to the beginning elif i < len(debug_message_chunks) - 1: chunk = "\n```\n" + chunk + "```\n" # If it's the last chunk, append a "```\n" to the beginning else: chunk = "```\n" + chunk await self.message_queue.put(Message(chunk, debug_channel)) async def send_debug_message(self, debug_message, debug_channel): """process a debug message and put directly into queue or chunk it""" # Send the debug message try: if len(debug_message) > self.TEXT_CUTOFF: await self.queue_debug_chunks(debug_message, debug_channel) else: await self.queue_debug_message(debug_message, debug_channel) except Exception as e: traceback.print_exc() await self.message_queue.put( Message("Error sending debug message: " + str(e), debug_channel) ) async def check_conversation_limit(self, message): """Check if a conversation has reached the set limit and end it if it has""" # After each response, check if the user has reached the conversation limit in terms of messages or time. if message.channel.id in self.conversation_threads: # If the user has reached the max conversation length, end the conversation if ( self.conversation_threads[message.channel.id].count >= self.model.max_conversation_length ): await message.reply( "You have reached the maximum conversation length. You have ended the conversation with GPT, and it has ended." ) await self.end_conversation(message, conversation_limit=True) return True return False async def summarize_conversation(self, message, prompt): """Takes a conversation history filled prompt and summarizes it to then start a new history with it as the base""" response = await self.model.send_summary_request(prompt) summarized_text = response["choices"][0]["text"] new_conversation_history = [] new_conversation_history.append( EmbeddedConversationItem(self.CONVERSATION_STARTER_TEXT, 0) ) new_conversation_history.append( EmbeddedConversationItem( f"\nThis conversation has some context from earlier, which has been summarized as follows: {summarized_text} \nContinue the conversation, paying very close attention to things <username> told you, such as their name, and personal details.", 0, ) ) # Get the last entry from the thread's conversation history new_conversation_history.append( EmbeddedConversationItem( self.conversation_threads[message.channel.id].history[-1].text + "\n", 0 ) ) self.conversation_threads[message.channel.id].history = new_conversation_history # A listener for message edits to redo prompts if they are edited @discord.Cog.listener() async def on_message_edit(self, before, after): """When a message is edited run moderation if enabled, and process if it a prompt that should be redone""" if after.author.id == self.bot.user.id: return # Moderation if not isinstance(after.channel, discord.DMChannel): if ( after.guild.id in Moderation.moderation_queues and Moderation.moderation_queues[after.guild.id] is not None ): # Create a timestamp that is 0.25 seconds from now timestamp = ( datetime.datetime.now() + datetime.timedelta(seconds=0.25) ).timestamp() await Moderation.moderation_queues[after.guild.id].put( Moderation(after, timestamp) ) # TODO Don't proceed if message was deleted! await TextService.process_conversation_edit(self, after, original_message) @discord.Cog.listener() async def on_message(self, message): """On a new message check if it should be moderated then process it for conversation""" if message.author == self.bot.user: return # Check if the message is a discord system message if message.type != discord.MessageType.default: return # Moderations service is done here. if ( hasattr(message, "guild") and message.guild.id in Moderation.moderation_queues and Moderation.moderation_queues[message.guild.id] is not None ): # Don't moderate if there is no "roles" attribute for the author if not hasattr(message.author, "roles"): pass # Verify that the user is not in a role that can bypass moderation elif CHAT_BYPASS_ROLES is [None] or not any( role.name.lower() in CHAT_BYPASS_ROLES for role in message.author.roles ): # Create a timestamp that is 0.5 seconds from now timestamp = ( datetime.datetime.now() + datetime.timedelta(seconds=0.5) ).timestamp() await Moderation.moderation_queues[message.guild.id].put( Moderation(message, timestamp) ) # Language check if FORCE_ENGLISH and len(message.content.split(" ")) > 3: if not await Moderation.force_english_and_respond( message.content, self.LANGUAGE_DETECT_STARTER_TEXT, message ): await message.delete() return # Get the first file in the message if there is one file = message.attachments[0] if len(message.attachments) > 0 else None # Process the message if the user is in a conversation if await TextService.process_conversation_message( self, message, USER_INPUT_API_KEYS, USER_KEY_DB, file=file ): original_message[message.author.id] = message.id # If the user tagged the bot and the tag wasn't an @here or @everyone, retrieve the message if f"<@{self.bot.user.id}>" in message.content and not ( "@everyone" in message.content or "@here" in message.content ): if not BOT_TAGGABLE: return # Check if any of the message author's role names are in BOT_TAGGABLE_ROLES, if not, return if BOT_TAGGABLE_ROLES != [None] and not any( role.name.lower() in BOT_TAGGABLE_ROLES for role in message.author.roles ): return # Remove the mention from the message prompt = message.content.replace(self.bot.user.mention, "") # If the message is empty, don't process it if len(prompt) < 5: await message.reply( "This is too short of a prompt to think about. Please be more specific." ) return await self.ask_command( message, prompt=prompt, from_message_context=True, ) def cleanse_response(self, response_text): """Cleans history tokens from response""" response_text = response_text.replace("<yourname>:", "") response_text = response_text.replace("You:", "") response_text = response_text.replace(BOT_NAME.replace(" ", ""), "") response_text = response_text.replace(BOT_NAME, "") response_text = response_text.replace("<|endofstatement|>", "") return response_text def remove_awaiting( self, author_id, channel_id, from_ask_command, from_edit_command ): """Remove user from ask/edit command response wait, if not any of those then process the id to remove user from thread response wait""" if author_id in self.awaiting_responses: self.awaiting_responses.remove(author_id) if not from_ask_command and not from_edit_command: if channel_id in self.awaiting_thread_responses: self.awaiting_thread_responses.remove(channel_id) async def mention_to_username(self, ctx, message): """replaces discord mentions with their server nickname in text, if the user is not found keep the mention as is""" if not discord.utils.raw_mentions(message): return message for mention in discord.utils.raw_mentions(message): try: user = await discord.utils.get_or_fetch(ctx.guild, "member", mention) message = message.replace(f"<@{str(mention)}>", user.display_name) except Exception: pass return message # COMMANDS async def help_command(self, ctx): """Command handler. Generates a help message and sends it to the user""" await ctx.defer() embed = discord.Embed( title="SWARMSBot Help", description="The current commands", color=0xC730C7 ) embed.add_field( name="/search", value="AI-Assisted google search!", inline=False, ) embed.add_field( name="/index", value="Indexing commands for document knowledge and querying", inline=False, ) embed.add_field( name="/gpt ask", value="Ask GPT something. Be clear, long, and concise in your prompt. Don't waste tokens.", inline=False, ) embed.add_field( name="/gpt edit", value="Use GPT to edit a piece of text given an instruction", inline=False, ) embed.add_field( name="/gpt converse", value="Start a conversation with GPT", inline=False ) embed.add_field( name="/gpt end", value="End a conversation with GPT. You can also type `end` in the conversation.", inline=False, ) embed.add_field( name="/dalle draw <image prompt>", value="Use DALL-E2 to draw an image based on a text prompt", inline=False, ) embed.add_field( name="/dalle optimize <image prompt>", value="Optimize an image prompt for use with DALL-E2, Midjourney, SD, etc.", inline=False, ) embed.add_field( name="/system settings", value="Print the current settings of the model", inline=False, ) embed.add_field( name="/system settings <model parameter> <value>", value="Change the parameter of the model named by <model parameter> to new value <value>", inline=False, ) embed.add_field( name="/mod", value="The automatic moderations service", inline=False, ) embed.add_field( name="/translate", value="Translate from one language to another", inline=False, ) embed.add_field(name="/help", value="See this help text", inline=False) await ctx.respond(embed=embed, ephemeral=False) async def set_usage_command( self, ctx: discord.ApplicationContext, usage_amount: float ): """Command handler. Sets the usage file to the given value""" await ctx.defer() # Attempt to convert the input usage value into a float try: usage = float(usage_amount) await self.usage_service.set_usage(usage) await ctx.respond(f"Set the usage to {usage}") except Exception: await ctx.respond("The usage value must be a valid float.") return async def delete_all_conversation_threads_command( self, ctx: discord.ApplicationContext ): """Command handler. Deletes all threads made by the bot in the current guild""" await ctx.defer() for thread in ctx.guild.threads: thread_name = thread.name.lower() if "with gpt" in thread_name or "closed-gpt" in thread_name: try: await thread.delete() except Exception: pass await ctx.respond("All conversation threads in this server have been deleted.") async def usage_command(self, ctx): """Command handler. Responds with the current usage of the bot""" await ctx.defer() embed = discord.Embed( title="SWARMSBot Usage", description="The current usage", color=0x00FF00 ) # 1000 tokens costs 0.02 USD, so we can calculate the total tokens used from the price that we have stored embed.add_field( name="Total tokens used", value=str(int((await self.usage_service.get_usage() / 0.02)) * 1000), inline=False, ) embed.add_field( name="Total price", value="$" + str(round(await self.usage_service.get_usage(), 2)), inline=False, ) await ctx.respond(embed=embed) async def instruction_command( self, ctx: discord.ApplicationContext, mode: str, type: str, instruction: str, instruction_file: discord.Attachment, private: bool, ): """Command to let users set their own system prompt or add one to the channel""" await ctx.defer(ephemeral=private) if mode == "set" and not (instruction or instruction_file): await ctx.respond( "You must include either an **instruction** or an **instruction file**" ) return # Check if any of the message author's role names are in CHANNEL_INSTRUCTION_ROLES, if not, continue as user if type == "channel" and mode in ["set", "clear"]: if CHANNEL_INSTRUCTION_ROLES != [None] and not any( role.name.lower() in CHANNEL_INSTRUCTION_ROLES for role in ctx.author.roles ): await ctx.respond( "You don't have permisson to set the channel instruction. Defaulting to setting a user instruction" ) type = "user" if instruction_file: bytestring = await instruction_file.read() file_instruction = bytestring.decode("utf-8") if instruction and instruction_file: instruction = f"{file_instruction}\n\n{instruction}" elif instruction_file: instruction = file_instruction # If premoderation is enabled, check if PRE_MODERATE: if await Moderation.simple_moderate_and_respond(instruction, ctx): return if type == "channel": set_id = ctx.channel.id else: set_id = ctx.user.id if mode == "set": self.instructions[set_id] = Instruction(set_id, instruction) await ctx.respond(f"The system instruction is set for **{type}**") elif mode == "get": try: instruction = self.instructions[set_id].prompt embed_pages = await self.paginate_embed(instruction) paginator = pages.Paginator( pages=embed_pages, timeout=None, author_check=False ) await paginator.respond(ctx.interaction) except Exception: await ctx.respond("There is no instruction set") elif mode == "clear": self.instructions.pop(set_id) await ctx.respond(f"The instruction has been removed for **{type}**") async def ask_command( self, ctx: discord.ApplicationContext, prompt: str, private: bool = False, temperature: float = None, top_p: float = None, frequency_penalty: float = None, presence_penalty: float = None, from_ask_action=None, from_other_action=None, from_message_context=None, prompt_file: discord.Attachment = None, model=None, ): """Command handler. Requests and returns a generation with no extras to the completion endpoint Args: ctx (discord.ApplicationContext): Command interaction prompt (str): A prompt to use for generation temperature (float): Sets the temperature override top_p (float): Sets the top p override frequency_penalty (float): Sets the frequency penalty override presence_penalty (float): Sets the presence penalty override from_action (bool, optional): Enables ephemeral. Defaults to None. """ is_context = isinstance(ctx, discord.ApplicationContext) user = ctx.user if is_context else ctx.author if not (prompt or prompt_file): await ctx.respond( "You must include either a **prompt** or a **prompt file**" ) return if prompt_file: bytestring = await prompt_file.read() file_prompt = bytestring.decode("utf-8") if prompt and prompt_file: prompt = f"{file_prompt}\n\n{prompt}" elif prompt_file: prompt = file_prompt prompt = await self.mention_to_username(ctx, prompt.strip()) if len(prompt) < self.model.prompt_min_length: alias = ctx.respond if is_context else ctx.send await alias( f"Prompt must be greater than {self.model.prompt_min_length} characters, it is currently: {len(prompt)} characters" ) return user_api_key = None if USER_INPUT_API_KEYS: user_api_key = await TextService.get_user_api_key(user.id, ctx, USER_KEY_DB) if not user_api_key: return await ctx.defer(ephemeral=private) if is_context else None # If premoderation is enabled, check if PRE_MODERATE: if await Moderation.simple_moderate_and_respond(prompt, ctx): return overrides = Override(temperature, top_p, frequency_penalty, presence_penalty) await TextService.encapsulated_send( self, user.id, prompt, ctx, overrides=overrides, from_ask_command=True, custom_api_key=user_api_key, from_ask_action=from_ask_action, from_other_action=from_other_action, from_message_context=from_message_context, model=model, ) async def edit_command( self, ctx: discord.ApplicationContext, instruction: str, text: str, private: bool, temperature: float, top_p: float, ): """Command handler. Requests and returns a generation with no extras to the edit endpoint Args: ctx (discord.ApplicationContext): Command interaction instruction (str): The modification instructions text (str): The text that should be modified temperature (float): Sets the temperature override top_p (float): Sets the top p override """ user = ctx.user text = await self.mention_to_username(ctx, text.strip()) instruction = await self.mention_to_username(ctx, instruction.strip()) # Validate that all the parameters are in a good state before we send the request if len(instruction) < self.model.prompt_min_length: await ctx.respond( f"Instruction must be at least {self.model.prompt_min_length} characters long" ) return user_api_key = None if USER_INPUT_API_KEYS: user_api_key = await TextService.get_user_api_key(user.id, ctx, USER_KEY_DB) if not user_api_key: return await ctx.defer(ephemeral=private) if PRE_MODERATE: if await Moderation.simple_moderate_and_respond(instruction + text, ctx): return overrides = Override(temperature, top_p, 0, 0) await TextService.encapsulated_send( self, user.id, prompt=text, ctx=ctx, overrides=overrides, instruction=instruction, from_edit_command=True, custom_api_key=user_api_key, ) async def private_test_command(self, ctx: discord.ApplicationContext): """Command handler. Creates a private thread in the current channel""" await ctx.defer(ephemeral=True) await ctx.respond("Your private test thread") thread = await ctx.channel.create_thread( name=ctx.user.name + "'s private test conversation", auto_archive_duration=60, ) await thread.send( f"<@{str(ctx.user.id)}> This is a private thread for testing. Only you and server admins can see this thread." ) async def converse_command( self, ctx: discord.ApplicationContext, opener: str, opener_file: str, private: bool, minimal: bool, model: str, temperature: float, top_p: float, frequency_penalty: float, presence_penalty: float, use_threads: bool = True, # Add this parameter ): """Command handler. Starts a conversation with the bot Args: ctx (discord.ApplicationContext): Command interaction opener (str): The first prompt to send in the conversation opener_file (str): A .txt or .json file which is appended before the opener private (bool): If the thread should be private minimal (bool): If a minimal starter should be used model (str): The openai model that should be used temperature (float): Sets the temperature override top_p (float): Sets the top p override frequency_penalty (float): Sets the frequency penalty override presence_penalty (float): Sets the presence penalty override """ user = ctx.user # If we are in user input api keys mode, check if the user has entered their api key before letting them continue user_api_key = None if USER_INPUT_API_KEYS: user_api_key = await TextService.get_user_api_key(user.id, ctx, USER_KEY_DB) if not user_api_key: return if private: await ctx.defer(ephemeral=True) elif not private: await ctx.defer() # Check the opener for bad content. if PRE_MODERATE and opener is not None: if await Moderation.simple_moderate_and_respond(opener, ctx): return if use_threads: if private: embed_title = f"{user.name}'s private conversation with GPT" thread = await ctx.channel.create_thread( name=embed_title, auto_archive_duration=60, ) target = thread else: embed_title = f"{user.name}'s conversation with GPT" message_embed = discord.Embed( title=embed_title, description=f"**Model**: {self.model.model if not model else model}", color=0x808080, ) message_embed.set_thumbnail(url="https://i.imgur.com/asA13vI.png") footer_text = ( "Regular Chat" if not image_understanding_model.get_is_usable() else "Regular Chat, Multi-Modal" ) message_embed.set_footer( text=footer_text, icon_url="https://i.imgur.com/asA13vI.png" ) message_thread = await ctx.send(embed=message_embed) thread = await message_thread.create_thread( name=user.name + "'s conversation with GPT", auto_archive_duration=60, ) await ctx.respond("Conversation started.") target = thread else: # Check if this current channel is already in a conversation if ctx.channel.id in self.conversation_threads: await ctx.respond( "There is already a conversation in this channel. Please finish that conversation before starting a new one." ) return # Check if the user is permitted to start a conversation in full channels # check if any of the user role names match CHANNEL_CHAT_ROLES if CHANNEL_CHAT_ROLES and CHANNEL_CHAT_ROLES != [None]: if not any( role.name.lower() in CHANNEL_CHAT_ROLES for role in ctx.user.roles ): await ctx.respond( "You are not permitted to start a conversation in this channel." ) return target = ctx.channel if private: embed_title = f"{user.name}'s private conversation with GPT" else: embed_title = f"{user.name}'s conversation with GPT" embed = discord.Embed(title=embed_title, color=0x808080) await ctx.respond(embed=embed) self.conversation_threads[target.id] = Thread(target.id) self.conversation_threads[target.id].model = ( self.model.model if not model else model ) # Set the overrides for the conversation self.conversation_threads[target.id].set_overrides( temperature, top_p, frequency_penalty, presence_penalty ) if opener or opener_file: user_id_normalized = ctx.author.id else: user_id_normalized = user.id if opener_file: if not opener_file.endswith((".txt", ".json")): opener_file = ( None # Just start a regular thread if the file fails to load ) else: # Load the file and read it into opener try: opener_file = re.sub( ".+(?=[\\//])", "", opener_file ) # remove paths from the opener file opener_file = EnvService.find_shared_file( f"openers{separator}{opener_file}" ) opener_file = await self.load_file(opener_file, ctx) try: # Try opening as json, if it fails it'll just pass the whole txt or json to the opener opener_file = json.loads(opener_file) temperature = opener_file.get("temperature", None) top_p = opener_file.get("top_p", None) frequency_penalty = opener_file.get("frequency_penalty", None) presence_penalty = opener_file.get("presence_penalty", None) self.conversation_threads[target.id].set_overrides( temperature, top_p, frequency_penalty, presence_penalty ) if ( not opener ): # if we only use opener_file then only pass on opener_file for the opening prompt opener = opener_file.get("text", "error getting text") else: opener = ( opener_file.get("text", "error getting text") + opener ) except Exception: # Parse as just regular text if not opener: opener = opener_file else: opener = opener_file + opener except Exception: opener_file = ( None # Just start a regular thread if the file fails to load ) # Append the starter text for gpt to the user's history so it gets concatenated with the prompt later if minimal or opener_file or opener: self.conversation_threads[target.id].history.append( EmbeddedConversationItem(self.CONVERSATION_STARTER_TEXT_MINIMAL, 0) ) elif not minimal: self.conversation_threads[target.id].history.append( EmbeddedConversationItem(self.CONVERSATION_STARTER_TEXT, 0) ) # Set user as thread owner before sending anything that can error and leave the thread unowned self.conversation_thread_owners[user_id_normalized].append(target.id) overrides = self.conversation_threads[target.id].get_overrides() await target.send(f"<@{str(ctx.user.id)}> is the thread owner.") await target.send( embed=EmbedStatics.generate_conversation_embed( self.conversation_threads, target, opener, overrides ) ) # send opening if opener: self.conversation_threads[target.id].has_opener = True opener = await self.mention_to_username(ctx, opener) target_message = await target.send( embed=EmbedStatics.generate_opener_embed(opener) ) if target.id in self.conversation_threads: self.awaiting_responses.append(user_id_normalized) if not self.pinecone_service: self.conversation_threads[target.id].history.append( EmbeddedConversationItem( f"\n{ctx.author.display_name}: {opener} <|endofstatement|>\n", 0, ) ) self.awaiting_thread_responses.append(target.id) # ... (no other changes in the middle part of the function) overrides = Override( overrides["temperature"], overrides["top_p"], overrides["frequency_penalty"], overrides["presence_penalty"], ) await TextService.encapsulated_send( self, target.id, opener if target.id not in self.conversation_threads or self.pinecone_service else "".join( [item.text for item in self.conversation_threads[target.id].history] ), target_message, overrides=overrides, user=user, model=self.conversation_threads[target.id].model, custom_api_key=user_api_key, ) self.awaiting_responses.remove(user_id_normalized) if target.id in self.awaiting_thread_responses: self.awaiting_thread_responses.remove(target.id) async def end_command(self, ctx: discord.ApplicationContext): """Command handler. Gets the user's thread and ends it""" await ctx.defer(ephemeral=True) user_id = ctx.user.id if ctx.channel.id in self.conversation_threads: try: await self.end_conversation(ctx) except Exception as e: print(e) traceback.print_exc() else: await ctx.respond( "This is not a conversation channel.", ephemeral=True, delete_after=10 ) async def setup_command(self, ctx: discord.ApplicationContext): """Command handler. Opens the setup modal""" if not USER_INPUT_API_KEYS: await ctx.respond( "This server doesn't support user input API keys.", ephemeral=True, delete_after=30, ) return modal = SetupModal(user_key_db=USER_KEY_DB) await ctx.send_modal(modal) async def settings_command( self, ctx: discord.ApplicationContext, parameter: str = None, value: str = None ): """Command handler. Returns current settings or sets new values""" await ctx.defer() if parameter is None and value is None: await self.send_settings_text(ctx) return # If only one of the options are set, then this is invalid. if ( parameter is None and value is not None or parameter is not None and value is None ): await ctx.respond( "Invalid settings command. Please use `/settings <parameter> <value>` to change a setting" ) return # Otherwise, process the settings change await self.process_settings(ctx, parameter, value) async def settings_reset_command(self, ctx: discord.ApplicationContext): """Command handler. Resets all settings to default""" await ctx.defer() self.model.reset_settings() await ctx.respond("Settings reset to default") # # Text-based context menu commands from here # async def ask_gpt_action(self, ctx, message: discord.Message): """Message command. Return the message""" prompt = await self.mention_to_username(ctx, message.content) await self.ask_command( ctx, prompt=prompt, from_ask_action=prompt, ) async def paraphrase_action(self, ctx, message: discord.Message): """Message command. paraphrase the current message content""" user = ctx.user prompt = await self.mention_to_username(ctx, message.content) from_other_action = prompt + "\nParaphrased:" # Construct the paraphrase prompt prompt = f"Paraphrase the following text. Maintain roughly the same text length after paraphrasing and the same tone of voice: {prompt} \nParaphrased:" tokens = self.model.usage_service.count_tokens(prompt) if tokens > self.model.max_tokens - 1000: await ctx.respond( f"This message is too long to paraphrase.", ephemeral=True, delete_after=10, ) return await self.ask_command( ctx, prompt=prompt, from_other_action=from_other_action, ) async def elaborate_action(self, ctx, message: discord.Message): """Message command. elaborate on the subject of the current message content""" user = ctx.user prompt = await self.mention_to_username(ctx, message.content) from_other_action = prompt + "\nElaboration:" # Construct the paraphrase prompt prompt = f"Elaborate with more information about the subject of the following message. Be objective and detailed and respond with elaborations only about the subject(s) of the message: {prompt} \n\nElaboration:" tokens = self.model.usage_service.count_tokens(prompt) if tokens > self.model.max_tokens - 500: await ctx.respond( f"This message is too long to elaborate on.", ephemeral=True, delete_after=10, ) return await self.ask_command( ctx, prompt=prompt, from_other_action=from_other_action, ) async def summarize_action(self, ctx, message: discord.Message): """Message command. elaborate on the subject of the current message content""" user = ctx.user prompt = await self.mention_to_username(ctx, message.content) from_other_action = ( "Message at message link: " + message.jump_url + "\nSummarized:" ) # Construct the paraphrase prompt prompt = f"Summarize the following message, be as short and concise as possible: {prompt} \n\nSummary:" tokens = self.model.usage_service.count_tokens(prompt) if tokens > self.model.max_tokens - 300: await ctx.respond( f"Your prompt is too long. It has {tokens} tokens, but the maximum is {self.model.max_tokens-300}.", ephemeral=True, delete_after=10, ) return await self.ask_command( ctx, prompt=prompt, from_other_action=from_other_action, ) class ShareView(discord.ui.View): def __init__( self, converser_cog, conversation_id, ): super().__init__(timeout=3600) # 1 hour interval to share the conversation. self.converser_cog = converser_cog self.conversation_id = conversation_id self.add_item(ShareButton(converser_cog, conversation_id)) async def on_timeout(self): # Remove the button from the view/message self.clear_items() class ShareButton(discord.ui.Button["ShareView"]): def __init__(self, converser_cog, conversation_id): super().__init__( style=discord.ButtonStyle.green, label="Share Conversation", custom_id="share_conversation", ) self.converser_cog = converser_cog self.conversation_id = conversation_id async def callback(self, interaction: discord.Interaction): # Get the user try: id = await self.converser_cog.sharegpt_service.format_and_share( self.converser_cog.full_conversation_history[self.conversation_id], self.converser_cog.bot.user.default_avatar.url if not self.converser_cog.bot.user.avatar else self.converser_cog.bot.user.avatar.url, ) url = f"https://shareg.pt/{id}" await interaction.response.send_message( embed=EmbedStatics.get_conversation_shared_embed(url) ) except ValueError as e: traceback.print_exc() await interaction.response.send_message( embed=EmbedStatics.get_conversation_share_failed_embed( "The ShareGPT API returned an error: " + str(e) ), ephemeral=True, delete_after=15, ) return except Exception as e: traceback.print_exc() await interaction.response.send_message( embed=EmbedStatics.get_conversation_share_failed_embed(str(e)), ephemeral=True, delete_after=15, ) return
SwarmsDiscord-main
swarmsdiscord/cogs/text_service_cog.py
import datetime import traceback from pathlib import Path import discord import os from models.embed_statics_model import EmbedStatics from services.deletion_service import Deletion from services.environment_service import EnvService from services.moderations_service import Moderation from services.text_service import TextService from models.index_model import Index_handler USER_INPUT_API_KEYS = EnvService.get_user_input_api_keys() USER_KEY_DB = EnvService.get_api_db() PRE_MODERATE = EnvService.get_premoderate() GITHUB_TOKEN = EnvService.get_github_token() if GITHUB_TOKEN: os.environ["GITHUB_TOKEN"] = GITHUB_TOKEN class IndexService(discord.Cog, name="IndexService"): """Cog containing gpt-index commands""" def __init__( self, bot, usage_service, deletion_queue, ): super().__init__() self.bot = bot self.index_handler = Index_handler(bot, usage_service) self.thread_awaiting_responses = [] self.deletion_queue = deletion_queue @discord.Cog.listener() async def on_message(self, message): # Check for self if message.author == self.bot.user: return # Check if the message is from a guild. if not message.guild: return if message.content.strip().startswith("~"): return if message.channel.id in self.thread_awaiting_responses: resp_message = await message.reply( "Please wait for the agent to respond to a previous message first!" ) deletion_time = datetime.datetime.now() + datetime.timedelta(seconds=5) deletion_time = deletion_time.timestamp() original_deletion_message = Deletion(message, deletion_time) deletion_message = Deletion(resp_message, deletion_time) await self.deletion_queue.put(deletion_message) await self.deletion_queue.put(original_deletion_message) return # Pre moderation if PRE_MODERATE: if await Moderation.simple_moderate_and_respond(message.content, message): await message.delete() return prompt = message.content.strip() if await self.index_handler.get_is_in_index_chat(message): self.thread_awaiting_responses.append(message.channel.id) try: await message.channel.trigger_typing() except: pass chat_result = await self.index_handler.execute_index_chat_message( message, prompt ) if chat_result: await message.channel.send(chat_result) self.thread_awaiting_responses.remove(message.channel.id) async def index_chat_command(self, ctx, user_index, search_index, model): if not user_index and not search_index: await ctx.respond("Please provide a valid user index or search index") return await self.index_handler.start_index_chat(ctx, search_index, user_index, model) pass async def rename_user_index_command(self, ctx, user_index, new_name): """Command handler to rename a user index""" if not new_name: await ctx.respond( await EmbedStatics.get_index_rename_failure_embed( user_index.split("/")[-1], "None", "Please provide a new name for this index", ) ) return if await self.index_handler.rename_index( ctx, f"indexes/{ctx.user.id}/{user_index}", f"indexes/{ctx.user.id}/{new_name}", ): await ctx.respond( embed=EmbedStatics.get_index_rename_success_embed( user_index.split("/")[-1], new_name ) ) else: await ctx.respond( embed=EmbedStatics.get_index_rename_failure_embed( user_index.split("/")[-1], new_name, "Please check the server console for more details.", ) ) async def rename_server_index_command(self, ctx, server_index, new_name): """Command handler to rename a user index""" if not new_name: await ctx.respond( await EmbedStatics.get_index_rename_failure_embed( server_index.split("/")[-1], "None", "Please provide a new name for this index", ) ) return if await self.index_handler.rename_index( ctx, f"indexes/{ctx.guild.id}/{server_index}", f"indexes/{ctx.guild.id}/{new_name}", ): await ctx.respond( embed=EmbedStatics.get_index_rename_success_embed( server_index.split("/")[-1], new_name ) ) else: await ctx.respond( embed=EmbedStatics.get_index_rename_failure_embed( server_index.split("/")[-1], new_name, "Please check the server console for more details.", ) ) async def rename_search_index_command(self, ctx, search_index, new_name): if not new_name: await ctx.respond( await EmbedStatics.get_index_rename_failure_embed( search_index.split("/")[-1], "None", "Please provide a new name for this index", ) ) return if await self.index_handler.rename_index( ctx, f"indexes/{ctx.user.id}_search/{search_index}", f"indexes/{ctx.user.id}_search/{new_name}", ): await ctx.respond( embed=EmbedStatics.get_index_rename_success_embed( search_index.split("/")[-1], new_name ) ) else: await ctx.respond( embed=EmbedStatics.get_index_rename_failure_embed( search_index.split("/")[-1], new_name, "Please check the server console for more details.", ) ) async def set_index_link_recurse_command( self, ctx, link: str = None, depth: int = 1 ): await ctx.defer() """Command handler to set a file as your personal index""" if not link: await ctx.respond("Please provide a link") return user_api_key = None if USER_INPUT_API_KEYS: user_api_key = await TextService.get_user_api_key( ctx.user.id, ctx, USER_KEY_DB ) if not user_api_key: return await self.index_handler.set_link_index_recurse( ctx, link, depth, user_api_key=user_api_key ) async def set_index_command( self, ctx, file: discord.Attachment = None, link: str = None ): await ctx.defer() """Command handler to set a file as your personal index""" if not file and not link: await ctx.respond("Please provide a file or a link") return if file and link: await ctx.respond( "Please provide only one file or link. Only one or the other." ) return user_api_key = None if USER_INPUT_API_KEYS: user_api_key = await TextService.get_user_api_key( ctx.user.id, ctx, USER_KEY_DB ) if not user_api_key: return if file: await self.index_handler.set_file_index( ctx, file, user_api_key=user_api_key ) elif link: await self.index_handler.set_link_index( ctx, link, user_api_key=user_api_key ) async def set_discord_command( self, ctx, channel: discord.TextChannel = None, message_limit: int = 2500 ): """Command handler to set a channel as your personal index""" await ctx.defer() user_api_key = None if USER_INPUT_API_KEYS: user_api_key = await TextService.get_user_api_key( ctx.user.id, ctx, USER_KEY_DB ) if not user_api_key: return await self.index_handler.set_discord_index( ctx, channel, user_api_key=user_api_key, message_limit=message_limit ) async def reset_command(self, ctx): await ctx.defer() try: self.index_handler.reset_indexes(ctx.user.id) await ctx.respond("Your indexes have been reset") except: traceback.print_exc() await ctx.respond( "Something went wrong while resetting your indexes. Contact the server admin." ) async def discord_backup_command(self, ctx, message_limit: int = 2500): """Command handler to backup the entire server""" await ctx.defer() user_api_key = None if USER_INPUT_API_KEYS: user_api_key = await TextService.get_user_api_key( ctx.user.id, ctx, USER_KEY_DB ) if not user_api_key: return await self.index_handler.backup_discord( ctx, user_api_key=user_api_key, message_limit=message_limit ) async def load_index_command(self, ctx, user_index, server_index, search_index): """Command handler to load indexes""" if not user_index and not server_index and not search_index: await ctx.respond("Please provide a user or server or search index") return if ( user_index and server_index or user_index and search_index or server_index and search_index ): await ctx.respond( "Please only try to load one type of index. Either a user index, a server index or a search index." ) return search = False if server_index: index = server_index server = True elif user_index: index = user_index server = False else: index = search_index server = False search = True user_api_key = None if USER_INPUT_API_KEYS: user_api_key = await TextService.get_user_api_key( ctx.user.id, ctx, USER_KEY_DB ) if not user_api_key: return await self.index_handler.load_index(ctx, index, server, search, user_api_key) async def query_command( self, ctx, query, nodes, response_mode, child_branch_factor, model, multistep, ): """Command handler to query your index""" user_api_key = None if USER_INPUT_API_KEYS: user_api_key = await TextService.get_user_api_key( ctx.user.id, ctx, USER_KEY_DB ) if not user_api_key: return # Check the opener for bad content. if PRE_MODERATE: if await Moderation.simple_moderate_and_respond(query, ctx): return await self.index_handler.query( ctx, query, response_mode, nodes, user_api_key, child_branch_factor, model, multistep, ) async def compose_command(self, ctx, name): """Command handler to compose from your index""" user_api_key = None if USER_INPUT_API_KEYS: user_api_key = await TextService.get_user_api_key( ctx.user.id, ctx, USER_KEY_DB ) if not user_api_key: return await self.index_handler.compose(ctx, name, user_api_key)
SwarmsDiscord-main
swarmsdiscord/cogs/index_service_cog.py
import asyncio import os import traceback import discord # We don't use the converser cog here because we want to be able to redo for the last images and text prompts at the same time from sqlitedict import SqliteDict from services.environment_service import EnvService from services.image_service import ImageService from services.moderations_service import Moderation from services.text_service import TextService users_to_interactions = {} ALLOWED_GUILDS = EnvService.get_allowed_guilds() USER_INPUT_API_KEYS = EnvService.get_user_input_api_keys() USER_KEY_DB = EnvService.get_api_db() PRE_MODERATE = EnvService.get_premoderate() class DrawDallEService(discord.Cog, name="DrawDallEService"): """Cog containing a draw commands and file management for saved images""" def __init__( self, bot, usage_service, model, message_queue, deletion_queue, converser_cog ): super().__init__() self.bot = bot self.usage_service = usage_service self.model = model self.message_queue = message_queue self.deletion_queue = deletion_queue self.converser_cog = converser_cog print("Draw service initialized") self.redo_users = {} async def draw_command( self, ctx: discord.ApplicationContext, prompt: str, from_action=False ): """With an ApplicationContext and prompt, send a dalle image to the invoked channel. Ephemeral if from an action""" user_api_key = None if USER_INPUT_API_KEYS: user_api_key = await TextService.get_user_api_key( ctx.user.id, ctx, USER_KEY_DB ) if not user_api_key: return await ctx.defer() # Check the opener for bad content. if PRE_MODERATE: if await Moderation.simple_moderate_and_respond(prompt, ctx): return user = ctx.user if user == self.bot.user: return try: asyncio.ensure_future( ImageService.encapsulated_send( self, user.id, prompt, ctx, custom_api_key=user_api_key ) ) except Exception as e: print(e) traceback.print_exc() await ctx.respond( "Something went wrong. Please try again later.", ephemeral=from_action ) await ctx.send_followup(e, ephemeral=from_action) async def draw_action(self, ctx, message): """decoupler to handle context actions for the draw command""" await self.draw_command(ctx, message.content, from_action=True) async def local_size_command(self, ctx: discord.ApplicationContext): """Get the folder size of the image folder""" await ctx.defer() image_path = self.model.IMAGE_SAVE_PATH total_size = 0 for dirpath, dirnames, filenames in os.walk(image_path): for f in filenames: fp = os.path.join(dirpath, f) total_size += os.path.getsize(fp) # Format the size to be in MB and send. total_size = total_size / 1000000 await ctx.respond(f"The size of the local images folder is {total_size} MB.") async def clear_local_command(self, ctx): """Delete all local images""" await ctx.defer() image_path = self.model.IMAGE_SAVE_PATH for dirpath, dirnames, filenames in os.walk(image_path): for f in filenames: try: fp = os.path.join(dirpath, f) os.remove(fp) except Exception as e: print(e) await ctx.respond("Local images cleared.")
SwarmsDiscord-main
swarmsdiscord/cogs/image_service_cog.py
import traceback import aiohttp import discord from models.deepl_model import TranslationModel from services.environment_service import EnvService ALLOWED_GUILDS = EnvService.get_allowed_guilds() def build_translation_embed( text, translated_text, translated_language, detected_language, requestor: discord.User, ): """Build an embed for the translation""" embed_description = ( f"**Original Text:** \n\n{text}\n\n **Translated Text:** \n\n{translated_text}" ) embed = discord.Embed( title=f"Translation from {detected_language} to {translated_language}", description=embed_description, color=0x311432, ) embed.set_footer( text=f"Requested by {requestor.name}#{requestor.discriminator}", icon_url=requestor.avatar.url if requestor.avatar else requestor.default_avatar.url, ) return embed class TranslationService(discord.Cog, name="TranslationService"): """Cog containing translation commands and retrieval of translation services""" def __init__( self, bot, translation_model, ): super().__init__() self.bot = bot self.translation_model = translation_model # Make a mapping of all the country codes and their full country names: def build_supported_language_embed(self): """Build an embed for the translation""" embed = discord.Embed( title="Translator supported languages", color=0x311432, ) # Add the list of supported languages in a nice format embed.add_field( name="Languages", value=", ".join( [f"{name}" for name in TranslationModel.get_all_country_names()] ), inline=False, ) return embed async def translate_command(self, ctx, text, target_language, formality): """Command handler for the translation command""" await ctx.defer() # TODO Add pagination! if ( target_language.lower().strip() not in TranslationModel.get_all_country_names(lower=True) ): await ctx.respond( f"The language {target_language} is not recognized or supported. Please use `/languages` to see the list of supported languages." ) return try: ( response, detected_language, ) = await self.translation_model.send_translate_request( text, TranslationModel.get_country_code_from_name(target_language), formality, ) except aiohttp.ClientResponseError as e: await ctx.respond(f"There was an error with the DeepL API: {e.message}") return await ctx.respond( embed=build_translation_embed( text, response, target_language, TranslationModel.get_country_name_from_code(detected_language), ctx.user, ) ) async def translate_action(self, ctx: discord.ApplicationContext, message): await ctx.defer(ephemeral=True) # If the message is only an embed and there's no content, don't translate. if message.content == "" and len(message.embeds) > 0: await ctx.respond( "Cannot translate an embed.", ephemeral=True, delete_after=30 ) return if len(message.content) > 2000: await ctx.respond( "Message is too long to translate.", ephemeral=True, delete_after=30 ) return selection_message = await ctx.respond( "Select language", ephemeral=True, delete_after=60 ) await selection_message.edit( view=TranslateView( self.translation_model, message, selection_message, ctx.user ) ) async def languages_command(self, ctx): """Show all languages supported for translation""" await ctx.defer() await ctx.respond(embed=self.build_supported_language_embed()) class TranslateView(discord.ui.View): def __init__(self, translation_model, message, selection_message, requestor): super().__init__() self.language_long = None self.language = None self.translation_model = translation_model self.message = message self.selection_message = selection_message self.formality = None self.requestor = requestor @discord.ui.select( # the decorator that lets you specify the properties of the select menu placeholder="Language", # the placeholder text that will be displayed if nothing is selected min_values=1, # the minimum number of values that must be selected by the users max_values=1, # the maximum number of values that can be selected by the users options=[ # the list of options from which users can choose, a required field discord.SelectOption( label=name, ) for name in TranslationModel.get_all_country_names() ], ) async def select_callback( self, select, interaction ): # the function called when the user is done selecting options try: self.language = TranslationModel.get_country_code_from_name( select.values[0] ) self.language_long = select.values[0] await interaction.response.defer() except: traceback.print_exc() @discord.ui.select( placeholder="Formality (optional)", min_values=1, max_values=1, options=[ discord.SelectOption(label="Prefer more", value="prefer_more"), discord.SelectOption(label="default", value="default"), discord.SelectOption(label="Prefer less", value="prefer_less"), ], ) async def formality_callback(self, select, interaction): try: self.formality = select.values[0] await interaction.response.defer() except aiohttp.ClientResponseError as e: await interaction.response.send_message( f"There was an error with the DeepL API: {e.message}", ephemeral=True, delete_after=15, ) return except Exception as e: await interaction.response.send_message( f"There was an error: {e}", ephemeral=True, delete_after=15 ) return # A button "Translate" @discord.ui.button(label="Translate", style=discord.ButtonStyle.green) async def button_callback(self, button, interaction): if not self.language or not self.language_long: await interaction.response.send_message( "Please select a language first.", ephemeral=True, delete_after=15 ) return try: ( response, detected_language, ) = await self.translation_model.send_translate_request( self.message.content, self.language, self.formality, ) await self.message.reply( mention_author=False, embed=build_translation_embed( self.message.content, response, self.language_long, TranslationModel.get_country_name_from_code(detected_language), self.requestor, ), ) await self.selection_message.delete() except aiohttp.ClientResponseError as e: await interaction.response.send_message( f"There was an error with the DeepL API: {e.message}", ephemeral=True, delete_after=15, ) return except discord.errors.HTTPException as e: if e.code == 50035: await interaction.response.send_message( "Message was too long to translate.", ephemeral=True, delete_after=15, ) return except Exception as e: await interaction.response.send_message( f"There was an error: {e}", ephemeral=True, delete_after=15 ) traceback.print_exc() return
SwarmsDiscord-main
swarmsdiscord/cogs/translation_service_cog.py
import re import traceback import discord from sqlitedict import SqliteDict from models.openai_model import Override, Models from services.environment_service import EnvService from models.user_model import RedoUser from services.image_service import ImageService from services.moderations_service import Moderation from services.text_service import TextService ALLOWED_GUILDS = EnvService.get_allowed_guilds() USER_INPUT_API_KEYS = EnvService.get_user_input_api_keys() USER_KEY_DB = EnvService.get_api_db() PRE_MODERATE = EnvService.get_premoderate() class ImgPromptOptimizer(discord.Cog, name="ImgPromptOptimizer"): """cog containing the optimizer command""" _OPTIMIZER_PRETEXT = "Optimize the following text for DALL-E image generation to have the most detailed and realistic image possible. Prompt:" def __init__( self, bot, usage_service, model, message_queue, deletion_queue, converser_cog, image_service_cog, ): super().__init__() self.bot = bot self.usage_service = usage_service self.model = model self.message_queue = message_queue self.OPTIMIZER_PRETEXT = self._OPTIMIZER_PRETEXT self.converser_cog = converser_cog self.image_service_cog = image_service_cog self.deletion_queue = deletion_queue try: image_pretext_path = EnvService.find_shared_file( "image_optimizer_pretext.txt" ) # Try to read the image optimizer pretext from # the file system with image_pretext_path.open("r") as file: self.OPTIMIZER_PRETEXT = file.read() print(f"Loaded image optimizer pretext from {image_pretext_path}") except Exception: traceback.print_exc() self.OPTIMIZER_PRETEXT = self._OPTIMIZER_PRETEXT async def optimize_command(self, ctx: discord.ApplicationContext, prompt: str): """Command handler. Given a string it generates an output that's fitting for image generation""" user_api_key = None if USER_INPUT_API_KEYS: user_api_key = await TextService.get_user_api_key( ctx.user.id, ctx, USER_KEY_DB ) if not user_api_key: return await ctx.defer() user = ctx.user final_prompt = self.OPTIMIZER_PRETEXT # replace mentions with nicknames for the prompt final_prompt += await self.converser_cog.mention_to_username(ctx, prompt) # If the prompt doesn't end in a period, terminate it. if not final_prompt.endswith("."): final_prompt += "." # Check the opener for bad content. if PRE_MODERATE: if await Moderation.simple_moderate_and_respond(prompt, ctx): return # Get the token amount for the prompt # tokens = self.usage_service.count_tokens(final_prompt) try: response = await self.model.send_request( final_prompt, tokens=60, top_p_override=1.0, temp_override=0.9, presence_penalty_override=0.5, best_of_override=1, max_tokens_override=60, custom_api_key=user_api_key, is_chatgpt_request="turbo" in str(self.model.model) or "gpt-4" in str(self.model.model), ) # THIS USES MORE TOKENS THAN A NORMAL REQUEST! This will use roughly 4000 tokens, and will repeat the query # twice because of the best_of_override=2 parameter. This is to ensure that the model does a lot of analysis, but is # also relatively cost-effective response_text = ( str(response["choices"][0]["text"]) if not ( self.model.model in Models.CHATGPT_MODELS or self.model.model in Models.GPT4_MODELS ) else response["choices"][0]["message"]["content"] ) # escape any mentions response_text = discord.utils.escape_mentions(response_text) # If the response_message is > 75 words, concatenate to the last 70th word # TODO Temporary workaround until prompt is adjusted to make the optimized prompts shorter. try: if len(response_text.split()) > 75: response_text = " ".join(response_text.split()[-70:]) except Exception: pass response_message = await ctx.respond( response_text.replace("Optimized Prompt:", "") .replace("Output Prompt:", "") .replace("Output:", "") ) self.converser_cog.users_to_interactions[user.id] = [] self.converser_cog.users_to_interactions[user.id].append( response_message.id ) self.converser_cog.redo_users[user.id] = RedoUser( prompt=final_prompt, message=ctx, ctx=ctx, response=response_message, instruction=None, paginator=None, ) self.converser_cog.redo_users[user.id].add_interaction(response_message.id) await response_message.edit( view=OptimizeView( self.converser_cog, self.image_service_cog, self.deletion_queue, custom_api_key=user_api_key, ) ) # Catch the value errors raised by the Model object except ValueError as e: await ctx.respond(e) return # Catch all other errors, we want this to keep going if it errors out. except Exception as e: await ctx.respond("Something went wrong, please try again later") await ctx.send_followup(e) # print a stack trace traceback.print_exc() return class OptimizeView(discord.ui.View): def __init__( self, converser_cog, image_service_cog, deletion_queue, custom_api_key=None ): super().__init__(timeout=None) self.cog = converser_cog self.image_service_cog = image_service_cog self.deletion_queue = deletion_queue self.custom_api_key = custom_api_key self.add_item( RedoButton( self.cog, self.image_service_cog, self.deletion_queue, custom_api_key=self.custom_api_key, ) ) self.add_item( DrawButton( self.cog, self.image_service_cog, self.deletion_queue, custom_api_key=self.custom_api_key, ) ) class DrawButton(discord.ui.Button["OptimizeView"]): def __init__( self, converser_cog, image_service_cog, deletion_queue, custom_api_key ): super().__init__( style=discord.ButtonStyle.green, label="Draw", custom_id="draw_button_optimizer", ) self.converser_cog = converser_cog self.image_service_cog = image_service_cog self.deletion_queue = deletion_queue self.custom_api_key = custom_api_key async def callback(self, interaction: discord.Interaction): user_id = interaction.user.id interaction_id = interaction.message.id if ( interaction_id not in self.converser_cog.users_to_interactions[user_id] or interaction_id not in self.converser_cog.redo_users[user_id].interactions ): await interaction.response.send_message( content="You can only draw for prompts that you generated yourself!", ephemeral=True, ) return msg = await interaction.response.send_message( "Drawing this prompt...", ephemeral=False ) self.converser_cog.users_to_interactions[interaction.user.id].append(msg.id) self.converser_cog.users_to_interactions[interaction.user.id].append( interaction.id ) self.converser_cog.users_to_interactions[interaction.user.id].append( interaction.message.id ) # get the text content of the message that was interacted with prompt = interaction.message.content # Use regex to replace "Output Prompt:" loosely with nothing. # This is to ensure that the prompt is formatted correctly prompt = re.sub(r"Optimized Prompt: ?", "", prompt) # Call the image service cog to draw the image await ImageService.encapsulated_send( self.image_service_cog, user_id, prompt, interaction, msg, True, True, custom_api_key=self.custom_api_key, ) class RedoButton(discord.ui.Button["OptimizeView"]): def __init__( self, converser_cog, image_service_cog, deletion_queue, custom_api_key=None ): super().__init__( style=discord.ButtonStyle.danger, label="Retry", custom_id="redo_button_optimizer", ) self.converser_cog = converser_cog self.image_service_cog = image_service_cog self.deletion_queue = deletion_queue self.custom_api_key = custom_api_key async def callback(self, interaction: discord.Interaction): interaction_id = interaction.message.id # Get the user user_id = interaction.user.id if user_id in self.converser_cog.redo_users and self.converser_cog.redo_users[ user_id ].in_interaction(interaction_id): # Get the message and the prompt and call encapsulated_send ctx = self.converser_cog.redo_users[user_id].ctx # message = self.converser_cog.redo_users[user_id].message prompt = self.converser_cog.redo_users[user_id].prompt response_message = self.converser_cog.redo_users[user_id].response await interaction.response.send_message( "Redoing your original request...", ephemeral=True, delete_after=20 ) overrides = Override(1.0, 0.9, 0.5) await TextService.encapsulated_send( self.converser_cog, id=user_id, prompt=prompt, overrides=overrides, ctx=ctx, response_message=response_message, custom_api_key=self.custom_api_key, ) else: await interaction.response.send_message( content="You can only redo for prompts that you generated yourself!", ephemeral=True, delete_after=10, )
SwarmsDiscord-main
swarmsdiscord/cogs/prompt_optimizer_cog.py
import discord from pycord.multicog import add_to_group from services.environment_service import EnvService from models.check_model import Check from models.autocomplete_model import ( Settings_autocompleter, File_autocompleter, Translations_autocompleter, ) ALLOWED_GUILDS = EnvService.get_allowed_guilds() class Commands(discord.Cog, name="Commands"): """Cog containing all slash and context commands as one-liners""" def __init__( self, bot, usage_service, model, message_queue, deletion_queue, converser_cog, image_draw_cog, image_service_cog, moderations_cog, index_cog, translations_cog=None, search_cog=None, transcribe_cog=None, ): super().__init__() self.bot = bot self.usage_service = usage_service self.model = model self.message_queue = message_queue self.deletion_queue = deletion_queue self.converser_cog = converser_cog self.image_draw_cog = image_draw_cog self.image_service_cog = image_service_cog self.moderations_cog = moderations_cog self.index_cog = index_cog self.translations_cog = translations_cog self.search_cog = search_cog self.transcribe_cog = transcribe_cog # Create slash command groups dalle = discord.SlashCommandGroup( name="dalle", description="Dalle related commands", guild_ids=ALLOWED_GUILDS, checks=[Check.check_dalle_roles()], ) gpt = discord.SlashCommandGroup( name="gpt", description="GPT related commands", guild_ids=ALLOWED_GUILDS, checks=[Check.check_gpt_roles()], ) system = discord.SlashCommandGroup( name="system", description="Admin/System settings for the bot", guild_ids=ALLOWED_GUILDS, checks=[Check.check_admin_roles()], ) mod = discord.SlashCommandGroup( name="mod", description="AI-Moderation commands for the bot", guild_ids=ALLOWED_GUILDS, checks=[Check.check_admin_roles()], ) index = discord.SlashCommandGroup( name="index", description="Custom index commands for the bot", guild_ids=ALLOWED_GUILDS, checks=[Check.check_index_roles()], ) transcribe = discord.SlashCommandGroup( name="transcribe", description="Transcription services using OpenAI Whisper", guild_ids=ALLOWED_GUILDS, checks=[Check.check_index_roles()], # TODO new role checker for transcribe ) internet = discord.SlashCommandGroup( name="internet", description="Transcription services using OpenAI Whisper2", guild_ids=ALLOWED_GUILDS, checks=[Check.check_index_roles()], # TODO new role checker for transcribe ) # # System commands # @add_to_group("system") @discord.slash_command( name="settings", description="Get settings for swarmsdiscord", guild_ids=ALLOWED_GUILDS, ) @discord.option( name="parameter", description="The setting to change", required=False, autocomplete=Settings_autocompleter.get_settings, ) @discord.option( name="value", description="The value to set the setting to", required=False, autocomplete=Settings_autocompleter.get_value, ) @discord.guild_only() async def settings( self, ctx: discord.ApplicationContext, parameter: str = None, value: str = None ): await self.converser_cog.settings_command(ctx, parameter, value) @add_to_group("system") @discord.slash_command( name="settings-reset", description="Reset all settings for swarmsdiscord", guild_ids=ALLOWED_GUILDS, ) @discord.guild_only() async def settings_reset(self, ctx: discord.ApplicationContext): await self.converser_cog.settings_reset_command(ctx) @add_to_group("system") @discord.slash_command( name="local-size", description="Get the size of the dall-e images folder that we have on the current system", guild_ids=ALLOWED_GUILDS, ) @discord.guild_only() async def local_size(self, ctx: discord.ApplicationContext): await self.image_draw_cog.local_size_command(ctx) @add_to_group("system") @discord.slash_command( name="clear-local", description="Clear the local dalleimages folder on system.", guild_ids=ALLOWED_GUILDS, ) @discord.guild_only() async def clear_local(self, ctx: discord.ApplicationContext): await self.image_draw_cog.clear_local_command(ctx) @add_to_group("system") @discord.slash_command( name="usage", description="Get usage statistics for swarmsdiscord", guild_ids=ALLOWED_GUILDS, ) @discord.guild_only() async def usage(self, ctx: discord.ApplicationContext): await self.converser_cog.usage_command(ctx) @add_to_group("system") @discord.slash_command( name="set-usage", description="Set the current OpenAI usage (in dollars)", guild_ids=ALLOWED_GUILDS, ) @discord.option( name="usage_amount", description="The current usage amount in dollars and cents (e.g 10.24)", type=float, ) async def set_usage(self, ctx: discord.ApplicationContext, usage_amount: float): await self.converser_cog.set_usage_command(ctx, usage_amount) @add_to_group("system") @discord.slash_command( name="delete-conversation-threads", description="Delete all conversation threads across the bot servers.", guild_ids=ALLOWED_GUILDS, ) async def delete_all_conversation_threads(self, ctx: discord.ApplicationContext): await self.converser_cog.delete_all_conversation_threads_command(ctx) # """ # Moderation commands # """ @add_to_group("mod") @discord.slash_command( name="test", description="Used to test a prompt and see what threshold values are returned by the moderations endpoint", guild_ids=ALLOWED_GUILDS, ) @discord.option( name="prompt", description="The prompt to test", required=True, ) @discord.guild_only() async def moderations_test(self, ctx: discord.ApplicationContext, prompt: str): await self.moderations_cog.moderations_test_command(ctx, prompt) @add_to_group("mod") @discord.slash_command( name="set", description="Turn the moderations service on and off", guild_ids=ALLOWED_GUILDS, ) @discord.option( name="status", description="Enable or disable the moderations service for the current guild (on/off)", required=True, choices=["on", "off"], ) @discord.option( name="alert_channel_id", description="The channel ID to send moderation alerts to", required=False, autocomplete=Settings_autocompleter.get_value_alert_id_channel, ) @discord.guild_only() async def moderations( self, ctx: discord.ApplicationContext, status: str, alert_channel_id: str ): await self.moderations_cog.moderations_command(ctx, status, alert_channel_id) @add_to_group("mod") @discord.slash_command( name="config", description="Configure the moderations service for the current guild. Lower # = more strict", guild_ids=ALLOWED_GUILDS, ) @discord.option( name="type", description="The type of moderation to configure", required=True, autocomplete=Settings_autocompleter.get_value_moderations, ) @discord.option( name="hate", description="The threshold for hate speech", required=False, min_value=0, max_value=1, ) @discord.option( name="hate_threatening", description="The threshold for hate/threatening speech", required=False, min_value=0, max_value=1, ) @discord.option( name="self_harm", description="The threshold for self_harm speech", required=False, min_value=0, max_value=1, ) @discord.option( name="sexual", description="The threshold for sexual speech", required=False, min_value=0, max_value=1, ) @discord.option( name="sexual_minors", description="The threshold for sexual speech with minors in context", required=False, min_value=0, max_value=1, ) @discord.option( name="violence", description="The threshold for violent speech", required=False, min_value=0, max_value=1, ) @discord.option( name="violence_graphic", description="The threshold for violent and graphic speech", required=False, min_value=0, max_value=1, ) @discord.guild_only() async def config( self, ctx: discord.ApplicationContext, type: str, hate: float, hate_threatening: float, self_harm: float, sexual: float, sexual_minors: float, violence: float, violence_graphic: float, ): await self.moderations_cog.config_command( ctx, type, hate, hate_threatening, self_harm, sexual, sexual_minors, violence, violence_graphic, ) # # GPT commands # @add_to_group("gpt") @discord.slash_command( name="instruction", description="Set your own system instruction", guild_ids=ALLOWED_GUILDS, ) @discord.option( name="mode", description="Set/Get/Clear prompt", choices=["set", "get", "clear"], required=True, ) @discord.option( name="type", description="Enable for channel or for user", choices=["user", "channel"], required=True, ) @discord.option( name="instruction", description="The instruction to set", required=False ) @discord.option( name="instruction_file", description="The instruction to set from a txt file", input_type=discord.SlashCommandOptionType.attachment, required=False, ) @discord.option( name="private", description="Will only be visible to you", required=False ) @discord.guild_only() async def instruction( self, ctx: discord.ApplicationContext, mode: str, type: str, instruction: str, instruction_file: discord.Attachment, private: bool, ): await self.converser_cog.instruction_command( ctx, mode, type, instruction, instruction_file, private ) @add_to_group("gpt") @discord.slash_command( name="ask", description="Ask the bot something!", guild_ids=ALLOWED_GUILDS, ) @discord.option( name="prompt", description="The prompt to send to the model", required=False ) @discord.option( name="prompt_file", description="The prompt file to send to the model. Is added before the prompt, both can be combined", required=False, input_type=discord.SlashCommandOptionType.attachment, ) @discord.option( name="model", description="The model to use for the request", required=False, autocomplete=Settings_autocompleter.get_models, ) @discord.option( name="private", description="Will only be visible to you", required=False ) @discord.option( name="temperature", description="Higher values means the model will take more risks", required=False, min_value=0, max_value=2, ) @discord.option( name="top_p", description="1 is greedy sampling, 0.1 means only considering the top 10% of probability distribution", required=False, min_value=0, max_value=1, ) @discord.option( name="frequency_penalty", description="Decreasing the model's likelihood to repeat the same line verbatim", required=False, min_value=-2, max_value=2, ) @discord.option( name="presence_penalty", description="Increasing the model's likelihood to talk about new topics", required=False, min_value=-2, max_value=2, ) @discord.guild_only() async def ask( self, ctx: discord.ApplicationContext, prompt: str, prompt_file: discord.Attachment, model: str, private: bool, temperature: float, top_p: float, frequency_penalty: float, presence_penalty: float, ): await self.converser_cog.ask_command( ctx, prompt, private, temperature, top_p, frequency_penalty, presence_penalty, prompt_file=prompt_file, model=model, ) @add_to_group("gpt") @discord.slash_command( name="edit", description="Ask the bot to edit some text!", guild_ids=ALLOWED_GUILDS, ) @discord.option( name="instruction", description="How you want the bot to edit the text", required=True, ) @discord.option( name="text", description="The text you want to edit, can be empty", required=False, default="", ) @discord.option( name="private", description="Will only be visible to you", required=False ) @discord.option( name="temperature", description="Higher values means the model will take more risks", required=False, input_type=float, min_value=0, max_value=2, ) @discord.option( name="top_p", description="1 is greedy sampling, 0.1 means only considering the top 10% of probability distribution", required=False, input_type=float, min_value=0, max_value=1, ) @discord.guild_only() async def edit( self, ctx: discord.ApplicationContext, instruction: str, text: str, private: bool, temperature: float, top_p: float, ): await self.converser_cog.edit_command( ctx, instruction, text, private, temperature, top_p ) @add_to_group("gpt") @discord.slash_command( name="converse", description="Have a conversation with GPT", guild_ids=ALLOWED_GUILDS, ) @discord.option( name="opener", description="Which sentence to start with, added after the file", required=False, ) @discord.option( name="opener_file", description="Which file to start with, added before the opener, sets minimal starter", required=False, autocomplete=File_autocompleter.get_openers, ) @discord.option( name="private", description="Converse in a private thread", required=False, default=False, ) @discord.option( name="minimal", description="Use minimal starter text, saves tokens and has a more open personality", required=False, default=False, ) @discord.option( name="model", description="Which model to use with the bot", required=False, default=False, autocomplete=Settings_autocompleter.get_converse_models, ) @discord.option( name="temperature", description="Higher values means the model will take more risks", required=False, input_type=float, min_value=0, max_value=2, ) @discord.option( name="top_p", description="1 is greedy sampling, 0.1 means only top 10%", required=False, input_type=float, min_value=0, max_value=1, ) @discord.option( name="frequency_penalty", description="Decreasing the model's likelihood to repeat the same line verbatim", required=False, input_type=float, min_value=-2, max_value=2, ) @discord.option( name="presence_penalty", description="Increasing the model's likelihood to talk about new topics", required=False, input_type=float, min_value=-2, max_value=2, ) @discord.option( name="use_threads", description="Set this to false to start a channel conversation", required=False, default=True, ) @discord.guild_only() async def converse( self, ctx: discord.ApplicationContext, opener: str, opener_file: str, private: bool, minimal: bool, model: str, temperature: float, top_p: float, frequency_penalty: float, presence_penalty: float, use_threads: bool, ): await self.converser_cog.converse_command( ctx, opener, opener_file, private, minimal, model, temperature, top_p, frequency_penalty, presence_penalty, use_threads=use_threads, ) @add_to_group("gpt") @discord.slash_command( name="end", description="End a conversation with GPT", guild_ids=ALLOWED_GUILDS, ) @discord.guild_only() async def end(self, ctx: discord.ApplicationContext): await self.converser_cog.end_command(ctx) # # Index commands # @add_to_group("index") @discord.slash_command( name="rename-user", description="Select one of your saved indexes to rename", guild_ids=ALLOWED_GUILDS, ) @discord.guild_only() @discord.option( name="user_index", description="Which user index to rename", required=True, autocomplete=File_autocompleter.get_user_indexes, ) @discord.option( name="new_name", description="The new name", required=True, type=discord.SlashCommandOptionType.string, ) async def rename_user_index( self, ctx: discord.ApplicationContext, user_index: str, new_name: str, ): await ctx.defer() await self.index_cog.rename_user_index_command(ctx, user_index, new_name) @add_to_group("index") @discord.slash_command( name="rename-server", description="Select one of your saved server indexes to rename", guild_ids=ALLOWED_GUILDS, ) @discord.guild_only() @discord.option( name="server_index", description="Which server index to rename", required=True, autocomplete=File_autocompleter.get_server_indexes, ) @discord.option( name="new_name", description="The new name", required=True, type=discord.SlashCommandOptionType.string, ) async def rename_server_index( self, ctx: discord.ApplicationContext, server_index: str, new_name: str, ): await ctx.defer() await self.index_cog.rename_server_index_command(ctx, server_index, new_name) @add_to_group("index") @discord.slash_command( name="rename-search", description="Select one of your saved search indexes to rename", guild_ids=ALLOWED_GUILDS, ) @discord.guild_only() @discord.option( name="search_index", description="Which search index to rename", required=True, autocomplete=File_autocompleter.get_user_search_indexes, ) @discord.option( name="new_name", description="The new name", required=True, type=discord.SlashCommandOptionType.string, ) async def rename_search_index( self, ctx: discord.ApplicationContext, search_index: str, new_name: str, ): await ctx.defer() await self.index_cog.rename_search_index_command(ctx, search_index, new_name) @add_to_group("index") @discord.slash_command( name="load", description="Select one of your saved indexes to query from", guild_ids=ALLOWED_GUILDS, ) @discord.guild_only() @discord.option( name="user_index", description="Which user file to load the index from", required=False, autocomplete=File_autocompleter.get_user_indexes, ) @discord.option( name="server_index", description="Which server file to load the index from", required=False, autocomplete=File_autocompleter.get_server_indexes, ) @discord.option( name="search_index", description="Which search index file to load the index from", required=False, autocomplete=File_autocompleter.get_user_search_indexes, ) async def load_index( self, ctx: discord.ApplicationContext, user_index: str, server_index: str, search_index: str, ): await ctx.defer() await self.index_cog.load_index_command( ctx, user_index, server_index, search_index ) @add_to_group("index") @discord.slash_command( name="talk", description="Select one of your saved indexes to talk to", guild_ids=ALLOWED_GUILDS, ) @discord.guild_only() @discord.option( name="user_index", description="Which user file to load the index from", required=False, autocomplete=File_autocompleter.get_user_indexes, ) @discord.option( name="search_index", description="Which search index file to load the index from", required=False, autocomplete=File_autocompleter.get_user_search_indexes, ) @discord.option( name="model", description="The model to use for the conversation", required=False, default="gpt-3.5-turbo", autocomplete=Settings_autocompleter.get_index_and_search_models, ) async def talk( self, ctx: discord.ApplicationContext, user_index: str, search_index: str, model: str, ): await ctx.defer() await self.index_cog.index_chat_command(ctx, user_index, search_index, model) @add_to_group("index") @discord.slash_command( name="add", description="Add an index to query from", guild_ids=ALLOWED_GUILDS ) @discord.guild_only() @discord.option( name="file", description="A file to create the index from", required=False, input_type=discord.SlashCommandOptionType.attachment, ) @discord.option( name="link", description="A link to a file to a webpage ", required=False, input_type=str, ) async def set_file( self, ctx: discord.ApplicationContext, file: discord.Attachment, link: str ): await self.index_cog.set_index_command(ctx, file, link) @add_to_group("index") @discord.slash_command( name="recurse-link", description="Recursively index a link", guild_ids=ALLOWED_GUILDS, ) @discord.guild_only() @discord.option( name="link", description="A link to create the index from", required=True, input_type=discord.SlashCommandOptionType.string, ) @discord.option( name="depth", description="How deep to recurse", required=False, input_type=discord.SlashCommandOptionType.integer, min_value=1, max_value=5, ) async def set_recurse_link( self, ctx: discord.ApplicationContext, link: str, depth: int ): await self.index_cog.set_index_link_recurse_command(ctx, link, depth) @add_to_group("index") @discord.slash_command( name="reset", description="Reset (delete) all of your saved indexes", guild_ids=ALLOWED_GUILDS, ) @discord.guild_only() async def reset(self, ctx: discord.ApplicationContext): await self.index_cog.reset_command(ctx) @add_to_group("index") @discord.slash_command( name="compose", description="Combine multiple indexes together", guild_ids=ALLOWED_GUILDS, ) @discord.option( name="name", description="The name of the new index", required=False, input_type=discord.SlashCommandOptionType.string, ) @discord.guild_only() async def compose(self, ctx: discord.ApplicationContext, name: str): await self.index_cog.compose_command(ctx, name) @add_to_group("index") @discord.slash_command( name="add_discord", description="Set a index from a discord channel", guild_ids=ALLOWED_GUILDS, ) @discord.guild_only() @discord.option( name="channel", description="A channel to create the index from", required=False, input_type=discord.SlashCommandOptionType.channel, ) @discord.option( name="message_limit", description="The number of messages to index", required=False, input_type=discord.SlashCommandOptionType.integer, ) async def set_discord( self, ctx: discord.ApplicationContext, channel: discord.TextChannel, message_limit: int, ): await self.index_cog.set_discord_command( ctx, channel, message_limit=message_limit ) @add_to_group("index") @discord.slash_command( name="discord_backup", description="Save an index made from the whole server", guild_ids=ALLOWED_GUILDS, checks=[Check.check_admin_roles(), Check.check_index_roles()], ) @discord.option( name="message_limit", description="The number of messages to index per channel", required=False, input_type=discord.SlashCommandOptionType.integer, ) @discord.guild_only() async def discord_backup(self, ctx: discord.ApplicationContext, message_limit: int): await self.index_cog.discord_backup_command(ctx, message_limit=message_limit) @add_to_group("index") @discord.slash_command( name="query", description="Query from your index", guild_ids=ALLOWED_GUILDS ) @discord.guild_only() @discord.option(name="query", description="What to query the index", required=True) @discord.option( name="nodes", description="How many nodes should the response be queried from, only non-deep indexes", required=False, default=1, min_value=1, max_value=5, input_type=discord.SlashCommandOptionType.integer, ) @discord.option( name="response_mode", description="Response mode, doesn't work on deep composed indexes", guild_ids=ALLOWED_GUILDS, required=False, default="refine", choices=["refine", "compact", "tree_summarize"], ) @discord.option( name="child_branch_factor", description="Only for deep indexes, how deep to go, higher is expensive.", required=False, default=1, min_value=1, max_value=3, input_type=discord.SlashCommandOptionType.integer, ) @discord.option( name="model", description="The model to use for the request (querying, not composition)", required=False, default="gpt-3.5-turbo", autocomplete=Settings_autocompleter.get_index_and_search_models, ) @discord.option( name="multistep", description="Do a more intensive, multi-step query,", required=False, default=False, input_type=discord.SlashCommandOptionType.boolean, ) async def query( self, ctx: discord.ApplicationContext, query: str, nodes: int, response_mode: str, child_branch_factor: int, model: str, multistep: bool, ): await ctx.defer() await self.index_cog.query_command( ctx, query, nodes, response_mode, child_branch_factor, model, multistep, ) # # DALLE commands # @add_to_group("dalle") @discord.slash_command( name="draw", description="Draw an image from a prompt", guild_ids=ALLOWED_GUILDS, ) @discord.option(name="prompt", description="The prompt to draw from", required=True) async def draw(self, ctx: discord.ApplicationContext, prompt: str): await self.image_draw_cog.draw_command(ctx, prompt) @add_to_group("dalle") @discord.slash_command( name="optimize", description="Optimize a text prompt for DALL-E/MJ/SD image generation.", guild_ids=ALLOWED_GUILDS, ) @discord.option( name="prompt", description="The text prompt to optimize.", required=True ) @discord.guild_only() async def optimize(self, ctx: discord.ApplicationContext, prompt: str): await self.image_service_cog.optimize_command(ctx, prompt) # # Other commands # @discord.slash_command( name="private-test", description="Private thread for testing. Only visible to you and server admins.", guild_ids=ALLOWED_GUILDS, ) @discord.guild_only() async def private_test(self, ctx: discord.ApplicationContext): await self.converser_cog.private_test_command(ctx) @discord.slash_command( name="help", description="Get help for swarmsdiscord", guild_ids=ALLOWED_GUILDS ) @discord.guild_only() async def help(self, ctx: discord.ApplicationContext): await self.converser_cog.help_command(ctx) @discord.slash_command( name="setup", description="Setup your API key for use with swarmsdiscord", guild_ids=ALLOWED_GUILDS, ) @discord.guild_only() async def setup(self, ctx: discord.ApplicationContext): await self.converser_cog.setup_command(ctx) # # Text-based context menu commands from here # @discord.message_command( name="Ask GPT", guild_ids=ALLOWED_GUILDS, checks=[Check.check_gpt_roles()] ) async def ask_gpt_action(self, ctx, message: discord.Message): await self.converser_cog.ask_gpt_action(ctx, message) # # Image-based context menu commands from here # @discord.message_command( name="Draw", guild_ids=ALLOWED_GUILDS, checks=[Check.check_dalle_roles()] ) async def draw_action(self, ctx, message: discord.Message): await self.image_draw_cog.draw_action(ctx, message) """ Translation commands and actions """ @discord.slash_command( name="translate", description="Translate text to a given language", guild_ids=ALLOWED_GUILDS, checks=[Check.check_translator_roles()], ) @discord.option(name="text", description="The text to translate", required=True) @discord.option( name="target_language", description="The language to translate to", required=True, autocomplete=Translations_autocompleter.get_languages, ) @discord.option( name="formality", description="Formal/Informal tone of translation", required=False, autocomplete=Translations_autocompleter.get_formality_values, ) @discord.guild_only() async def translate( self, ctx: discord.ApplicationContext, text: str, target_language: str, formality: str, ): if self.translations_cog: await self.translations_cog.translate_command( ctx, text, target_language, formality ) else: await ctx.respond( "Translations are disabled on this server.", ephemeral=True ) @discord.slash_command( name="languages", description="View the supported languages for translation", guild_ids=ALLOWED_GUILDS, checks=[Check.check_translator_roles()], ) @discord.guild_only() async def languages(self, ctx: discord.ApplicationContext): if self.translations_cog: await self.translations_cog.languages_command(ctx) else: await ctx.respond( "Translations are disabled on this server.", ephemeral=True ) @discord.message_command( name="Translate", guild_ids=ALLOWED_GUILDS, checks=[Check.check_translator_roles()], ) async def translate_action(self, ctx, message: discord.Message): if self.translations_cog: await self.translations_cog.translate_action(ctx, message) else: await ctx.respond( "Translations are disabled on this server.", ephemeral=True ) # @discord.message_command( # name="Paraphrase", # guild_ids=ALLOWED_GUILDS, # checks=[Check.check_gpt_roles()], # ) # async def paraphrase_action(self, ctx, message: discord.Message): # await self.converser_cog.paraphrase_action(ctx, message) @discord.message_command( name="Elaborate", guild_ids=ALLOWED_GUILDS, checks=[Check.check_gpt_roles()], ) async def elaborate_action(self, ctx, message: discord.Message): await self.converser_cog.elaborate_action(ctx, message) @discord.message_command( name="Summarize", guild_ids=ALLOWED_GUILDS, checks=[Check.check_gpt_roles()], ) async def summarize_action(self, ctx, message: discord.Message): await self.converser_cog.summarize_action(ctx, message) @add_to_group("internet") @discord.slash_command( name="chat", description="Chat with GPT connected to the internet!", guild_ids=ALLOWED_GUILDS, checks=[Check.check_search_roles()], ) @discord.option( name="search_scope", description="How many top links to use for context", required=False, input_type=discord.SlashCommandOptionType.integer, max_value=6, min_value=1, default=2, ) @discord.option( name="model", description="The model to use for the request (querying, not composition)", required=False, default="gpt-3.5-turbo", autocomplete=Settings_autocompleter.get_index_and_search_models, ) async def chat( self, ctx: discord.ApplicationContext, model: str, search_scope: int = 2, ): await self.search_cog.search_chat_command( ctx, search_scope=search_scope, model=model ) # Search slash commands @add_to_group("internet") @discord.slash_command( name="search", description="Search google alongside GPT for something", guild_ids=ALLOWED_GUILDS, checks=[Check.check_search_roles()], ) @discord.option(name="query", description="The query to search", required=True) @discord.option( name="scope", description="How many top links to use for context", required=False, input_type=discord.SlashCommandOptionType.integer, max_value=16, min_value=1, ) @discord.option( name="nodes", description="The higher the number, the more accurate the results, but more expensive", required=False, input_type=discord.SlashCommandOptionType.integer, max_value=8, min_value=1, ) @discord.option( name="deep", description="Do a more intensive, long-running search", required=False, input_type=discord.SlashCommandOptionType.boolean, ) @discord.option( name="response_mode", description="Response mode, doesn't work on deep searches", guild_ids=ALLOWED_GUILDS, required=False, default="refine", choices=["refine", "compact", "tree_summarize"], ) @discord.option( name="model", description="The model to use for the request (querying, not composition)", required=False, default="gpt-3.5-turbo", autocomplete=Settings_autocompleter.get_index_and_search_models, ) @discord.option( name="multistep", description="Do a more intensive, multi-step query,", required=False, default=False, input_type=discord.SlashCommandOptionType.boolean, ) @discord.guild_only() async def search( self, ctx: discord.ApplicationContext, query: str, scope: int, nodes: int, deep: bool, response_mode: str, model: str, multistep: bool, ): await self.search_cog.search_command( ctx, query, scope, nodes, deep, response_mode, model, multistep, ) # Transcribe commands @add_to_group("transcribe") @discord.slash_command( name="file", description="Transcribe an audio or video file", guild_ids=ALLOWED_GUILDS, ) @discord.guild_only() @discord.option( name="file", description="A file to transcribe", required=True, input_type=discord.SlashCommandOptionType.attachment, ) @discord.option( name="temperature", description="The higher the value, the riskier the model will be", required=False, input_type=discord.SlashCommandOptionType.number, max_value=1, min_value=0, ) async def transcribe_file( self, ctx: discord.ApplicationContext, file: discord.Attachment, temperature: float, ): await self.transcribe_cog.transcribe_file_command(ctx, file, temperature) @add_to_group("transcribe") @discord.slash_command( name="link", description="Transcribe a file link or youtube link", guild_ids=ALLOWED_GUILDS, ) @discord.guild_only() @discord.option( name="link", description="A link to transcribe", required=True, input_type=discord.SlashCommandOptionType.string, ) @discord.option( name="temperature", description="The higher the value, the riskier the model will be", required=False, input_type=discord.SlashCommandOptionType.number, max_value=1, min_value=0, ) async def transcribe_link( self, ctx: discord.ApplicationContext, link: str, temperature: float ): await self.transcribe_cog.transcribe_link_command(ctx, link, temperature)
SwarmsDiscord-main
swarmsdiscord/cogs/commands.py
import asyncio import traceback from datetime import datetime import discord class Deletion: def __init__(self, message, timestamp): self.message = message self.timestamp = timestamp # This function will be called by the bot to process the message queue @staticmethod async def process_deletion_queue( deletion_queue, PROCESS_WAIT_TIME, EMPTY_WAIT_TIME ): while True: try: # If the queue is empty, sleep for a short time before checking again if deletion_queue.empty(): await asyncio.sleep(EMPTY_WAIT_TIME) continue # Get the next message from the queue deletion = await deletion_queue.get() # Check if the current timestamp is greater than the deletion timestamp if datetime.now().timestamp() > deletion.timestamp: # If the deletion timestamp has passed, delete the message # check if deletion.message is of type discord.Message if isinstance(deletion.message, discord.Message): await deletion.message.delete() else: await deletion.message.delete_original_response() else: await deletion_queue.put(deletion) # Sleep for a short time before processing the next message # This will prevent the bot from spamming messages too quickly await asyncio.sleep(PROCESS_WAIT_TIME) except Exception: traceback.print_exc()
SwarmsDiscord-main
swarmsdiscord/services/deletion_service.py
import json import aiohttp class ShareGPTService: def __init__(self): self.API_URL = "https://sharegpt.com/api/conversations" def format_conversation( self, conversation_history, avatar_url="https://i.imgur.com/SpuAF0v.png" ): # The format is { 'avatarUrl' : <url>, 'items': [ { 'from': 'human', 'text': <text> }, { 'from': 'bot', 'text': <text> } ] } " # The conversation history is not in this format, its just in simple alternating human and bot conversation snippets conversation = {"avatarUrl": avatar_url, "items": []} # The conversation history alternates between human and bot # So we need to add the human and bot items to the conversation for i in range(len(conversation_history)): if i % 2 == 0: conversation["items"].append( {"from": "human", "value": conversation_history[i]} ) else: conversation["items"].append( {"from": "gpt", "value": conversation_history[i]} ) return json.dumps(conversation) async def format_and_share(self, conversation_history, avatar_url=None): conversation = self.format_conversation(conversation_history, avatar_url) print(conversation) headers = {"Content-Type": "application/json"} async with aiohttp.ClientSession() as session: async with session.post( self.API_URL, data=conversation, headers=headers ) as response: if response.status == 200: response_json = await response.json() return response_json["id"] else: raise ValueError( f"ShareGPT returned an invalid response: {await response.text()}" )
SwarmsDiscord-main
swarmsdiscord/services/sharegpt_service.py
import asyncio import os import random import traceback from datetime import datetime, timedelta from pathlib import Path import discord from models.openai_model import Model from services.environment_service import EnvService from services.usage_service import UsageService usage_service = UsageService(Path(os.environ.get("DATA_DIR", os.getcwd()))) model = Model(usage_service) class ModerationResult: WARN = "warn" DELETE = "delete" NONE = "none" class ModerationOptions: WARN = "warn" DELETE = "delete" RESET = "reset" OPTIONS = [WARN, DELETE, RESET] class ThresholdSet: def __init__(self, h_t, hv_t, sh_t, s_t, sm_t, v_t, vg_t): """A set of thresholds for the OpenAI moderation endpoint Args: h_t (float): hate hv_t (float): hate/violence sh_t (float): self-harm s_t (float): sexual sm_t (float): sexual/minors v_t (float): violence vg_t (float): violence/graphic """ self.keys = [ "hate", "hate/threatening", "self-harm", "sexual", "sexual/minors", "violence", "violence/graphic", ] self.thresholds = [ h_t, hv_t, sh_t, s_t, sm_t, v_t, vg_t, ] # The string representation is just the keys alongside the threshold values def __str__(self): """ "key": value format""" # "key": value format return ", ".join([f"{k}: {v}" for k, v in zip(self.keys, self.thresholds)]) def moderate(self, text, response_message): category_scores = response_message["results"][0]["category_scores"] flagged = response_message["results"][0]["flagged"] for category, threshold in zip(self.keys, self.thresholds): threshold = float(threshold) if category_scores[category] > threshold: return (True, flagged) return (False, flagged) class Moderation: # Moderation service data moderation_queues = {} moderation_alerts_channel = EnvService.get_moderations_alert_channel() moderation_enabled_guilds = [] moderation_tasks = {} moderations_launched = [] def __init__(self, message, timestamp): self.message = message self.timestamp = timestamp @staticmethod def build_moderation_embed(): # Create a discord embed to send to the user when their message gets moderated embed = discord.Embed( title="Your message was moderated", description="Our automatic moderation systems detected that your message was inappropriate and has been deleted. Please review the rules.", colour=discord.Colour.red(), ) # Set the embed thumbnail embed.set_thumbnail(url="https://i.imgur.com/2oL8JSp.png") embed.set_footer( text="If you think this was a mistake, please contact the server admins." ) return embed @staticmethod def build_safety_blocked_message(): # Create a discord embed to send to the user when their message gets moderated embed = discord.Embed( title="Your request was blocked by the safety system", description="Our automatic moderation systems detected that your request was inappropriate and it has not been sent. Please review the usage guidelines.", colour=discord.Colour.red(), ) # Set the embed thumbnail embed.set_thumbnail(url="https://i.imgur.com/2oL8JSp.png") embed.set_footer( text="If you think this was a mistake, please contact the server admins." ) return embed @staticmethod def build_non_english_message(): # Create a discord embed to send to the user when their message gets moderated embed = discord.Embed( title="Your message was moderated", description="Our automatic moderation systems detected that your message was not in English and has been deleted. Please review the rules.", colour=discord.Colour.red(), ) # Set the embed thumbnail embed.set_thumbnail(url="https://i.imgur.com/2oL8JSp.png") embed.set_footer( text="If you think this was a mistake, please contact the server admins." ) return embed @staticmethod async def force_english_and_respond(text, pretext, ctx): response = await model.send_language_detect_request(text, pretext) response_text = response["choices"][0]["text"] if "false" in response_text.lower().strip(): if isinstance(ctx, discord.Message): await ctx.reply(embed=Moderation.build_non_english_message()) else: await ctx.respond(embed=Moderation.build_non_english_message()) return False return True @staticmethod async def simple_moderate(text): return await model.send_moderations_request(text) @staticmethod async def simple_moderate_and_respond(text, ctx): pre_mod_set = ThresholdSet(0.26, 0.26, 0.1, 0.95, 0.03, 0.95, 0.4) response = await Moderation.simple_moderate(text) print(response) flagged = ( True if Moderation.determine_moderation_result( text, response, pre_mod_set, pre_mod_set ) == ModerationResult.DELETE else False ) if flagged: if isinstance(ctx, discord.Message): await ctx.reply(embed=Moderation.build_safety_blocked_message()) else: await ctx.respond(embed=Moderation.build_safety_blocked_message()) return True return False @staticmethod def build_admin_warning_message( moderated_message, deleted_message=None, timed_out=None ): embed = discord.Embed( title="Potentially unwanted message in the " + moderated_message.guild.name + " server", description=f"**Message from {moderated_message.author.mention}:** {moderated_message.content}", colour=discord.Colour.yellow(), ) link = f"https://discord.com/channels/{moderated_message.guild.id}/{moderated_message.channel.id}/{moderated_message.id}" embed.add_field(name="Message link", value=link, inline=False) if deleted_message: embed.add_field( name="Message deleted by: ", value=deleted_message, inline=False ) if timed_out: embed.add_field(name="User timed out by: ", value=timed_out, inline=False) return embed @staticmethod def build_admin_moderated_message( moderated_message, response_message, user_kicked=None, timed_out=None ): direct_message_object = isinstance(moderated_message, discord.Message) moderated_message = ( moderated_message if direct_message_object else moderated_message.message ) # Create a discord embed to send to the user when their message gets moderated embed = discord.Embed( title="A message was moderated in the " + moderated_message.guild.name + " server", description=f"Message from {moderated_message.author.mention} was moderated: {moderated_message.content}", colour=discord.Colour.red(), ) # Get the link to the moderated message link = f"https://discord.com/channels/{response_message.guild.id}/{response_message.channel.id}/{response_message.id}" # set the link of the embed embed.add_field(name="Moderated message link", value=link, inline=False) if user_kicked: embed.add_field(name="User kicked by", value=user_kicked, inline=False) if timed_out: embed.add_field(name="User timed out by: ", value=timed_out, inline=False) return embed @staticmethod def determine_moderation_result(text, response, warn_set, delete_set): warn_result, flagged_warn = warn_set.moderate(text, response) delete_result, flagged_delete = delete_set.moderate(text, response) if delete_result: return ModerationResult.DELETE if warn_result: return ModerationResult.WARN return ModerationResult.NONE # This function will be called by the bot to process the message queue @staticmethod async def process_moderation_queue( moderation_queue, PROCESS_WAIT_TIME, EMPTY_WAIT_TIME, moderations_alert_channel, warn_set, delete_set, ): while True: try: # If the queue is empty, sleep for a short time before checking again if moderation_queue.empty(): await asyncio.sleep(EMPTY_WAIT_TIME) continue # Get the next message from the queue to_moderate = await moderation_queue.get() # Check if the current timestamp is greater than the deletion timestamp if datetime.now().timestamp() > to_moderate.timestamp: response = await model.send_moderations_request( to_moderate.message.content ) moderation_result = Moderation.determine_moderation_result( to_moderate.message.content, response, warn_set, delete_set ) if moderation_result == ModerationResult.DELETE: # Take care of the flagged message response_message = await to_moderate.message.reply( embed=Moderation.build_moderation_embed() ) # Do the same response as above but use an ephemeral message await to_moderate.message.delete() # Send to the moderation alert channel if moderations_alert_channel: response_message = await moderations_alert_channel.send( embed=Moderation.build_admin_moderated_message( to_moderate, response_message ) ) await response_message.edit( view=ModerationAdminView( to_moderate.message, response_message, True, True, True, ) ) elif moderation_result == ModerationResult.WARN: response_message = await moderations_alert_channel.send( embed=Moderation.build_admin_warning_message( to_moderate.message ), ) # Attempt to react to the to_moderate.message with a warning icon try: await to_moderate.message.add_reaction("⚠️") except discord.errors.Forbidden: pass await response_message.edit( view=ModerationAdminView( to_moderate.message, response_message ) ) else: await moderation_queue.put(to_moderate) # Sleep for a short time before processing the next message # This will prevent the bot from spamming messages too quickly await asyncio.sleep(PROCESS_WAIT_TIME) except Exception: traceback.print_exc() class ModerationAdminView(discord.ui.View): def __init__( self, message, moderation_message, nodelete=False, deleted_message=False, source_deleted=False, ): super().__init__(timeout=None) # 1 hour interval to redo. component_number = 0 self.message = message self.moderation_message = (moderation_message,) self.add_item( TimeoutUserButton( self.message, self.moderation_message, component_number, 1, nodelete, source_deleted, ) ) component_number += 1 self.add_item( TimeoutUserButton( self.message, self.moderation_message, component_number, 6, nodelete, source_deleted, ) ) component_number += 1 self.add_item( TimeoutUserButton( self.message, self.moderation_message, component_number, 12, nodelete, source_deleted, ) ) component_number += 1 self.add_item( TimeoutUserButton( self.message, self.moderation_message, component_number, 24, nodelete, source_deleted, ) ) component_number += 1 if not nodelete: self.add_item( DeleteMessageButton( self.message, self.moderation_message, component_number ) ) component_number += 1 self.add_item( ApproveMessageButton( self.message, self.moderation_message, component_number ) ) component_number += 1 if deleted_message: self.add_item( KickUserButton(self.message, self.moderation_message, component_number) ) class ApproveMessageButton(discord.ui.Button["ModerationAdminView"]): def __init__(self, message, moderation_message, current_num): super().__init__( style=discord.ButtonStyle.green, label="Approve", custom_id="approve_button" ) self.message = message self.moderation_message = moderation_message self.current_num = current_num async def callback(self, interaction: discord.Interaction): # Remove reactions on the message, delete the moderation message await self.message.clear_reactions() await self.moderation_message[0].delete() class DeleteMessageButton(discord.ui.Button["ModerationAdminView"]): def __init__(self, message, moderation_message, current_num): super().__init__( style=discord.ButtonStyle.danger, label="Delete Message", custom_id="delete_button", ) self.message = message self.moderation_message = moderation_message self.current_num = current_num async def callback(self, interaction: discord.Interaction): # Get the user await self.message.delete() await interaction.response.send_message( "This message was deleted", ephemeral=True, delete_after=10 ) while isinstance(self.moderation_message, tuple): self.moderation_message = self.moderation_message[0] await self.moderation_message.edit( embed=Moderation.build_admin_warning_message( self.message, deleted_message=interaction.user.mention ), view=ModerationAdminView( self.message, self.moderation_message, nodelete=True ), ) class KickUserButton(discord.ui.Button["ModerationAdminView"]): def __init__(self, message, moderation_message, current_num): super().__init__( style=discord.ButtonStyle.danger, label="Kick User", custom_id="kick_button" ) self.message = message self.moderation_message = moderation_message self.current_num = current_num async def callback(self, interaction: discord.Interaction): # Get the user and kick the user try: await self.message.author.kick( reason="You broke the server rules. Please rejoin and review the rules." ) except Exception: pass await interaction.response.send_message( "This user was attempted to be kicked", ephemeral=True, delete_after=10 ) while isinstance(self.moderation_message, tuple): self.moderation_message = self.moderation_message[0] await self.moderation_message.edit( embed=Moderation.build_admin_moderated_message( self.message, self.moderation_message, user_kicked=interaction.user.mention, ), view=ModerationAdminView( self.message, self.moderation_message, nodelete=True, deleted_message=False, source_deleted=True, ), ) class TimeoutUserButton(discord.ui.Button["ModerationAdminView"]): def __init__( self, message, moderation_message, current_num, hours, nodelete, source_deleted ): super().__init__( style=discord.ButtonStyle.danger, label=f"Timeout {hours}h", custom_id="timeout_button" + str(random.randint(100000, 999999)), ) self.message = message self.moderation_message = moderation_message self.hours = hours self.nodelete = nodelete self.current_num = current_num self.source_deleted = source_deleted async def callback(self, interaction: discord.Interaction): # Get the user id try: await self.message.delete() except Exception: pass try: await self.message.author.timeout( until=discord.utils.utcnow() + timedelta(hours=self.hours), reason="Breaking the server chat rules", ) except Exception: traceback.print_exc() await interaction.response.send_message( f"This user was timed out for {self.hours} hour(s)", ephemeral=True, delete_after=10, ) while isinstance(self.moderation_message, tuple): self.moderation_message = self.moderation_message[0] if not self.source_deleted: await self.moderation_message.edit( embed=Moderation.build_admin_warning_message( self.message, deleted_message=interaction.user.mention, timed_out=interaction.user.mention, ), view=ModerationAdminView( self.message, self.moderation_message, nodelete=True ), ) else: await self.moderation_message.edit( embed=Moderation.build_admin_moderated_message( self.message, self.moderation_message, timed_out=interaction.user.mention, ), view=ModerationAdminView( self.message, self.moderation_message, nodelete=True, deleted_message=True, source_deleted=True, ), )
SwarmsDiscord-main
swarmsdiscord/services/moderations_service.py
import pinecone class PineconeService: def __init__(self, index: pinecone.Index): self.index = index def upsert_basic(self, text, embeddings): self.index.upsert([(text, embeddings)]) def get_all_for_conversation(self, conversation_id: int): response = self.index.query( top_k=100, filter={"conversation_id": conversation_id} ) return response async def upsert_conversation_embedding( self, model, conversation_id: int, text, timestamp, custom_api_key=None ): # If the text is > 512 characters, we need to split it up into multiple entries. first_embedding = None if len(text) > 500: # Split the text into 512 character chunks chunks = [text[i : i + 500] for i in range(0, len(text), 500)] for chunk in chunks: # Create an embedding for the split chunk embedding = await model.send_embedding_request( chunk, custom_api_key=custom_api_key ) if not first_embedding: first_embedding = embedding self.index.upsert( [(chunk, embedding)], metadata={ "conversation_id": conversation_id, "timestamp": timestamp, }, ) return first_embedding embedding = await model.send_embedding_request( text, custom_api_key=custom_api_key ) self.index.upsert( [ ( text, embedding, {"conversation_id": conversation_id, "timestamp": timestamp}, ) ] ) return embedding def get_n_similar(self, conversation_id: int, embedding, n=10): response = self.index.query( vector=embedding, top_k=n, include_metadata=True, filter={"conversation_id": conversation_id}, ) # print(response) relevant_phrases = [ (match["id"], match["metadata"]["timestamp"]) for match in response["matches"] ] # Sort the relevant phrases based on the timestamp relevant_phrases.sort(key=lambda x: x[1]) return relevant_phrases def get_all_conversation_items(self, conversation_id: int): response = self.index.query( vector=[0] * 1536, top_k=1000, filter={"conversation_id": conversation_id} ) phrases = [match["id"] for match in response["matches"]] # Sort on timestamp phrases.sort(key=lambda x: x[1]) return phrases
SwarmsDiscord-main
swarmsdiscord/services/pinecone_service.py
import datetime import traceback from flask import Flask from multiprocessing import Process app = Flask(__name__) start_time = datetime.datetime.now() @app.route("/healthz") def health(): # Find the difference between the current time and start_time in seconds uptime = (datetime.datetime.now() - start_time).total_seconds() # Set the response status status = 200 return {"status": "ok", "uptime": uptime, "uptime_unit": "seconds"}, status def run_target(host, port): try: app.run(host=host, port=port, debug=False, use_reloader=False) except: pass class HealthService: """ Service for health checks, for cloud services like Azure App Service. """ def __init__(self, host="0.0.0.0", port=8181): self.host = host self.port = port print("Starting the health check service..") self.process = Process(target=lambda: run_target(self.host, self.port)) self.process.start() print("Health check service started!") def get_process(self): return self.process
SwarmsDiscord-main
swarmsdiscord/services/health_service.py
SwarmsDiscord-main
swarmsdiscord/services/__init__.py
import os import sys import traceback from pathlib import Path from typing import Union from dotenv import load_dotenv from sqlitedict import SqliteDict def app_root_path(): app_path = Path(sys.argv[0]).resolve() try: if app_path.parent.name == "bin": # Installed in unixy hierachy return app_path.parents[1] except IndexError: pass return app_path.parent # None will let direnv do its' thing env_paths = [Path(".env"), app_root_path() / "etc/environment", None] for env_path in env_paths: print("Loading environment from " + str(env_path)) load_dotenv(dotenv_path=env_path) class EnvService: # To be expanded upon later! def __init__(self): self.env = {} @staticmethod def environment_path_with_fallback(env_name, relative_fallback=None): directory = os.getenv(env_name) if directory is not None: return Path(directory).resolve() if relative_fallback: app_relative = (app_root_path() / relative_fallback).resolve() if app_relative.exists(): return app_relative return Path.cwd() @staticmethod def save_path(): share_dir = os.getenv("SHARE_DIR") if share_dir is not None: return Path(share_dir) return app_root_path() @staticmethod def find_shared_file(file_name): share_file_paths = [] share_dir = os.getenv("SHARE_DIR") if share_dir is not None: share_file_paths.append(Path(share_dir) / file_name) share_file_paths.extend( [ app_root_path() / "share" / file_name, app_root_path() / file_name, Path(file_name), ] ) for share_file_path in share_file_paths: if share_file_path.exists(): return share_file_path.resolve() raise ValueError(f"Unable to find shared data file {file_name}") @staticmethod def get_allowed_guilds(): # ALLOWED_GUILDS is a comma separated list of guild ids # It can also just be one guild ID # Read these allowed guilds and return as a list of ints try: allowed_guilds = os.getenv("ALLOWED_GUILDS") except Exception: allowed_guilds = None if allowed_guilds is None: raise ValueError( "ALLOWED_GUILDS is not defined properly in the environment file!" "Please copy your server's guild ID and put it into ALLOWED_GUILDS in the .env file." 'For example a line should look like: `ALLOWED_GUILDS="971268468148166697"`' ) allowed_guilds = ( allowed_guilds.split(",") if "," in allowed_guilds else [allowed_guilds] ) allowed_guilds = [int(guild) for guild in allowed_guilds] return allowed_guilds @staticmethod def get_admin_roles(): # ADMIN_ROLES is a comma separated list of string roles # It can also just be one role # Read these allowed roles and return as a list of strings try: admin_roles = os.getenv("ADMIN_ROLES") except Exception: admin_roles = None if admin_roles is None: print( "ADMIN_ROLES is not defined properly in the environment file!" "Please copy your server's role and put it into ADMIN_ROLES in the .env file." 'For example a line should look like: `ADMIN_ROLES="Admin"`' ) print("Defaulting to allowing all users to use admin commands...") return [None] admin_roles = ( admin_roles.lower().split(",") if "," in admin_roles else [admin_roles.lower()] ) return admin_roles @staticmethod def get_dalle_roles(): # DALLE_ROLES is a comma separated list of string roles # It can also just be one role # Read these allowed roles and return as a list of strings try: dalle_roles = os.getenv("DALLE_ROLES") except Exception: dalle_roles = None if dalle_roles is None: print( "DALLE_ROLES is not defined properly in the environment file!" "Please copy your server's role and put it into DALLE_ROLES in the .env file." 'For example a line should look like: `DALLE_ROLES="Dalle"`' ) print("Defaulting to allowing all users to use Dalle commands...") return [None] dalle_roles = ( dalle_roles.lower().split(",") if "," in dalle_roles else [dalle_roles.lower()] ) return dalle_roles @staticmethod def get_translator_roles(): # TRANSLATOR_ROLES is a comma separated list of string roles # It can also just be one role # Read these allowed roles and return as a list of strings try: translator_roles = os.getenv("TRANSLATOR_ROLES") except Exception: translator_roles = None if translator_roles is None: print( "TRANSLATOR_ROLES is not defined properly in the environment file!" "Please copy your server's role and put it into TRANSLATOR in the .env file." 'For example a line should look like: `TRANSLATOR_ROLES="Translate"`' ) print("Defaulting to allowing all users to use Translator commands...") return [None] translator_roles = ( translator_roles.lower().split(",") if "," in translator_roles else [translator_roles.lower()] ) return translator_roles @staticmethod def get_search_roles(): # SEARCH_ROLES is a comma separated list of string roles # It can also just be one role # Read these allowed roles and return as a list of strings try: search_roles = os.getenv("SEARCH_ROLES") except Exception: search_roles = None if search_roles is None: print( "SEARCH_ROLES is not defined properly in the environment file!" "Please copy your server's role and put it into SEARCH in the .env file." 'For example a line should look like: `SEARCH_ROLES="Translate"`' ) print("Defaulting to allowing all users to use Search commands...") return [None] search_roles = ( search_roles.lower().split(",") if "," in search_roles else [search_roles.lower()] ) return search_roles @staticmethod def get_gpt_roles(): # GPT_ROLES is a comma separated list of string roles # It can also just be one role # Read these allowed roles and return as a list of strings try: gpt_roles = os.getenv("GPT_ROLES") except Exception: gpt_roles = None if gpt_roles is None: print( "GPT_ROLES is not defined properly in the environment file!" "Please copy your server's role and put it into GPT_ROLES in the .env file." 'For example a line should look like: `GPT_ROLES="Gpt"`' ) print("Defaulting to allowing all users to use GPT commands...") return [None] gpt_roles = ( gpt_roles.lower().strip().split(",") if "," in gpt_roles else [gpt_roles.lower()] ) return gpt_roles @staticmethod def get_index_roles(): # INDEX_ROLES is a comma separated list of string roles # It can also just be one role # Read these allowed roles and return as a list of strings try: index_roles = os.getenv("INDEX_ROLES") except Exception: traceback.print_exc() index_roles = None if index_roles is None: print( "INDEX_ROLES is not defined properly in the environment file!" "Please copy your server's role and put it into INDEX_ROLES in the .env file." 'For example a line should look like: `INDEX_ROLES="Gpt"`' ) print("Defaulting to allowing all users to use Index commands...") return [None] index_roles = ( index_roles.lower().strip().split(",") if "," in index_roles else [index_roles.lower()] ) return index_roles @staticmethod def get_channel_chat_roles(): # CHANNEL_CHAT_ROLES is a comma separated list of string roles # It can also just be one role # Read these allowed roles and return as a list of strings try: cc_roles = os.getenv("CHANNEL_CHAT_ROLES") except Exception: cc_roles = None if cc_roles is None: print( "CHANNEL_CHAT_ROLES is not defined properly in the environment file!" "Please copy your server's role and put it into CHANNEL_CHAT_ROLES in the .env file." 'For example a line should look like: `CHANNEL_CHAT_ROLES="Gpt"`' ) print( "Defaulting to allowing all users to make conversations in full channels..." ) return [None] cc_roles = ( cc_roles.lower().strip().split(",") if "," in cc_roles else [cc_roles.lower()] ) return cc_roles @staticmethod def get_channel_instruction_roles(): # CHANNEL_INSTRUCTION_ROLES is a comma separated list of string roles # It can also just be one role # Read these allowed roles and return as a list of strings try: cc_roles = os.getenv("CHANNEL_INSTRUCTION_ROLES") except Exception: cc_roles = None if cc_roles is None: print( "CHANNEL_INSTRUCTION_ROLES is not defined properly in the environment file!" "Please copy your server's role and put it into CHANNEL_INSTRUCTION_ROLES in the .env file." 'For example a line should look like: `CHANNEL_INSTRUCTION_ROLES="Gpt"`' ) print( "Defaulting to allowing all users to set instructions for channels..." ) return [None] cc_roles = ( cc_roles.lower().strip().split(",") if "," in cc_roles else [cc_roles.lower()] ) return cc_roles @staticmethod def get_welcome_message(): # WELCOME_MESSAGE is a default string used to welcome new members to the server if GPT is not available. # The string can be blank but this is not advised. If a string cannot be found in the .env file, the below string is used. # The string is DMd to the new server member as part of an embed. try: welcome_message = os.getenv("WELCOME_MESSAGE") except Exception: welcome_message = "Hi there! Welcome to our Discord server!" return welcome_message @staticmethod def get_moderations_alert_channel(): # MODERATIONS_ALERT_CHANNEL is a channel id where moderation alerts are sent to # The string can be blank but this is not advised. If a string cannot be found in the .env file, the below string is used. try: moderations_alert_channel = os.getenv("MODERATIONS_ALERT_CHANNEL") except Exception: moderations_alert_channel = None return moderations_alert_channel @staticmethod def get_user_input_api_keys(): try: user_input_api_keys = os.getenv("USER_INPUT_API_KEYS") if user_input_api_keys.lower().strip() == "true": return True return False except Exception: return False @staticmethod def get_premoderate(): try: pre_moderate = os.getenv("PRE_MODERATE") if pre_moderate.lower().strip() == "true": return True return False except Exception: return False @staticmethod def get_force_english(): try: force_english = os.getenv("FORCE_ENGLISH") if force_english.lower().strip() == "true": return True return False except Exception: return False @staticmethod def get_custom_bot_name(): try: custom_bot_name = os.getenv("CUSTOM_BOT_NAME") + ": " return custom_bot_name except Exception: return "GPTie: " @staticmethod def get_health_service_enabled(): try: user_input_api_keys = os.getenv("HEALTH_SERVICE_ENABLED") if user_input_api_keys.lower().strip() == "true": return True return False except Exception: return False @staticmethod def get_bot_is_taggable(): try: user_input_api_keys = os.getenv("BOT_TAGGABLE") if user_input_api_keys.lower().strip() == "true": return True return False except Exception: return False @staticmethod def get_user_key_db_path() -> Union[Path, None]: try: user_key_db_path = os.getenv("USER_KEY_DB_PATH") if user_key_db_path is None: return None return Path(user_key_db_path) except Exception: return None @staticmethod def get_api_db(): user_input_api_keys = EnvService.get_user_input_api_keys() user_key_db = None if user_input_api_keys: print( "This server was configured to enforce user input API keys. Doing the required database setup now" ) # Get user_key_db from environment variable user_key_db_path = EnvService.get_user_key_db_path() # Check if user_key_db_path is valid if not user_key_db_path: print( "No user key database path was provided. Defaulting to user_key_db.sqlite" ) user_key_db_path = EnvService.find_shared_file("user_key_db.sqlite") else: # append "user_key_db.sqlite" to USER_KEY_DB_PATH if it doesn't already end with .sqlite if not user_key_db_path.match("*.sqlite"): # append "user_key_db.sqlite" to USER_KEY_DB_PATH user_key_db_path = user_key_db_path / "user_key_db.sqlite" user_key_db = SqliteDict(user_key_db_path) print("Retrieved/created the user key database") return user_key_db return user_key_db @staticmethod def get_bypass_roles(): # GPT_ROLES is a comma separated list of string roles # It can also just be one role # Read these allowed roles and return as a list of strings try: bypass_roles = os.getenv("CHAT_BYPASS_ROLES") except Exception: bypass_roles = None if bypass_roles is None: print( "CHAT_BYPASS_ROLES is not defined properly in the environment file!" "Please copy your server's role and put it into CHAT_BYPASS_ROLES in the .env file." 'For example a line should look like: `CHAT_BYPASS_ROLES="bypass"`' ) print("Defaulting to allowing NO ONE to bypass chat moderation") return [None] bypass_roles = ( bypass_roles.lower().strip().split(",") if "," in bypass_roles else [bypass_roles.lower()] ) return bypass_roles @staticmethod def get_deepl_token(): try: deepl_token = os.getenv("DEEPL_TOKEN") return deepl_token except Exception: return None @staticmethod def get_github_token(): try: github_token = os.getenv("GITHUB_TOKEN") return github_token except Exception: return None @staticmethod def get_openai_token(): try: openai_token = os.getenv("OPENAI_TOKEN") return openai_token except Exception: raise ValueError( "OPENAI_TOKEN is not defined properly in the environment file! The bot cannot start without this token." ) @staticmethod def get_wolfram_api_key(): try: openai_token = os.getenv("WOLFRAM_API_KEY") return openai_token except Exception: print( "WOLFRAM_API_KEY is not defined properly in the environment file! The bot cannot use /internet chat's wolfram functionalities without this" ) return None @staticmethod def get_openai_organization(): try: openai_org = os.getenv("OPENAI_ORGANIZATION") return openai_org except Exception: return None @staticmethod def get_google_search_api_key(): try: google_search_api_key = os.getenv("GOOGLE_SEARCH_API_KEY") return google_search_api_key except Exception: return None @staticmethod def get_replicate_api_key(): try: replicate_key = os.getenv("REPLICATE_API_KEY") return replicate_key except Exception: return None @staticmethod def get_google_search_engine_id(): try: google_search_engine_id = os.getenv("GOOGLE_SEARCH_ENGINE_ID") return google_search_engine_id except Exception: return None @staticmethod def get_pinecone_region(): try: pinecone_region = os.getenv("PINECONE_REGION") return pinecone_region except Exception: return "us-west1-gcp" @staticmethod def get_max_search_price(): try: search_price = float(os.getenv("MAX_SEARCH_PRICE")) return search_price except Exception: return 1.00 @staticmethod def get_max_deep_compose_price(): try: deep_compose_price = float(os.getenv("MAX_DEEP_COMPOSE_PRICE")) return deep_compose_price except Exception: return 3.00 @staticmethod def get_google_cloud_project_id(): try: google_cloud_project_id = os.getenv("GOOGLE_CLOUD_PROJECT_ID") return google_cloud_project_id except Exception: return None
SwarmsDiscord-main
swarmsdiscord/services/environment_service.py
import asyncio import random import tempfile import traceback from io import BytesIO import aiohttp import discord from PIL import Image from models.user_model import RedoUser class ImageService: def __init__(self): pass @staticmethod async def encapsulated_send( image_service_cog, user_id, prompt, ctx, response_message=None, vary=None, draw_from_optimizer=None, custom_api_key=None, ): """service function that takes input and returns an image generation Args: image_service_cog (Cog): The cog which contains draw related commands user_id (int): A discord user id prompt (string): Prompt for the model ctx (ApplicationContext): A discord ApplicationContext, from an interaction response_message (Message, optional): A discord message. Defaults to None. vary (bool, optional): If the image is a variation of another one. Defaults to None. draw_from_optimizer (bool, optional): If the prompt is passed from the optimizer command. Defaults to None. custom_api_key (str, optional): User defined OpenAI API key. Defaults to None. """ await asyncio.sleep(0) # send the prompt to the model from_context = isinstance(ctx, discord.ApplicationContext) try: file, image_urls = await image_service_cog.model.send_image_request( ctx, prompt, vary=vary if not draw_from_optimizer else None, custom_api_key=custom_api_key, ) # Error catching for API errors except aiohttp.ClientResponseError as e: message = ( f"The API returned an invalid response: **{e.status}: {e.message}**" ) if not from_context: await ctx.channel.send(message) else: await ctx.respond(message, ephemeral=True) return except ValueError as e: message = f"Error: {e}. Please try again with a different prompt." if not from_context: await ctx.channel.send(message) else: await ctx.respond(message, ephemeral=True) return # Start building an embed to send to the user with the results of the image generation embed = discord.Embed( title="Image Generation Results" if not vary else "Image Generation Results (Varying)" if not draw_from_optimizer else "Image Generation Results (Drawing from Optimizer)", description=f"{prompt}", color=0xC730C7, ) # Add the image file to the embed embed.set_image(url=f"attachment://{file.filename}") if not response_message: # Original generation case # Start an interaction with the user, we also want to send data embed=embed, file=file, # view=SaveView(image_urls, image_service_cog, image_service_cog.converser_cog) result_message = ( await ctx.channel.send( embed=embed, file=file, ) if not from_context else await ctx.respond(embed=embed, file=file) ) await result_message.edit( view=SaveView( ctx, image_urls, image_service_cog, image_service_cog.converser_cog, result_message, custom_api_key=custom_api_key, ) ) image_service_cog.converser_cog.users_to_interactions[user_id] = [] image_service_cog.converser_cog.users_to_interactions[user_id].append( result_message.id ) # Get the actual result message object if from_context: result_message = await ctx.fetch_message(result_message.id) image_service_cog.redo_users[user_id] = RedoUser( prompt=prompt, message=ctx, ctx=ctx, response=result_message, instruction=None, paginator=None, ) else: if not vary: # Editing case message = await response_message.edit( embed=embed, file=file, ) await message.edit( view=SaveView( ctx, image_urls, image_service_cog, image_service_cog.converser_cog, message, custom_api_key=custom_api_key, ) ) else: # Varying case if not draw_from_optimizer: result_message = await response_message.edit_original_response( content="Image variation completed!", embed=embed, file=file, ) await result_message.edit( view=SaveView( ctx, image_urls, image_service_cog, image_service_cog.converser_cog, result_message, True, custom_api_key=custom_api_key, ) ) else: result_message = await response_message.edit_original_response( content="I've drawn the optimized prompt!", embed=embed, file=file, ) await result_message.edit( view=SaveView( ctx, image_urls, image_service_cog, image_service_cog.converser_cog, result_message, custom_api_key=custom_api_key, ) ) image_service_cog.redo_users[user_id] = RedoUser( prompt=prompt, message=ctx, ctx=ctx, response=result_message, instruction=None, paginator=None, ) image_service_cog.converser_cog.users_to_interactions[user_id].append( response_message.id ) image_service_cog.converser_cog.users_to_interactions[user_id].append( result_message.id ) class SaveView(discord.ui.View): def __init__( self, ctx, image_urls, cog, converser_cog, message, no_retry=False, only_save=None, custom_api_key=None, ): super().__init__( timeout=3600 if not only_save else None ) # 1 hour timeout for Retry, Save self.ctx = ctx self.image_urls = image_urls self.cog = cog self.no_retry = no_retry self.converser_cog = converser_cog self.message = message self.custom_api_key = custom_api_key for x in range(1, len(image_urls) + 1): self.add_item(SaveButton(x, image_urls[x - 1])) if not only_save: if not no_retry: self.add_item( RedoButton( self.cog, converser_cog=self.converser_cog, custom_api_key=self.custom_api_key, ) ) for x in range(1, len(image_urls) + 1): self.add_item( VaryButton( x, image_urls[x - 1], self.cog, converser_cog=self.converser_cog, custom_api_key=self.custom_api_key, ) ) # On the timeout event, override it and we want to clear the items. async def on_timeout(self): # Save all the SaveButton items, then clear all the items, then add back the SaveButton items, then # update the message self.clear_items() # Create a new view with the same params as this one, but pass only_save=True new_view = SaveView( self.ctx, self.image_urls, self.cog, self.converser_cog, self.message, self.no_retry, only_save=True, ) # Set the view of the message to the new view await self.ctx.edit(view=new_view) class VaryButton(discord.ui.Button): def __init__(self, number, image_url, cog, converser_cog, custom_api_key): super().__init__( style=discord.ButtonStyle.blurple, label="Vary " + str(number), custom_id="vary_button" + str(random.randint(10000000, 99999999)), ) self.number = number self.image_url = image_url self.cog = cog self.converser_cog = converser_cog self.custom_api_key = custom_api_key async def callback(self, interaction: discord.Interaction): user_id = interaction.user.id interaction_id = interaction.message.id if interaction_id not in self.converser_cog.users_to_interactions[user_id]: if len(self.converser_cog.users_to_interactions[user_id]) >= 2: interaction_id2 = interaction.id if ( interaction_id2 not in self.converser_cog.users_to_interactions[user_id] ): await interaction.response.send_message( content="You can not vary images in someone else's chain!", ephemeral=True, ) else: await interaction.response.send_message( content="You can only vary for images that you generated yourself!", ephemeral=True, ) return if user_id in self.cog.redo_users: response_message = await interaction.response.send_message( content="Varying image number " + str(self.number) + "..." ) self.converser_cog.users_to_interactions[user_id].append( response_message.message.id ) self.converser_cog.users_to_interactions[user_id].append( response_message.id ) prompt = self.cog.redo_users[user_id].prompt asyncio.ensure_future( ImageService.encapsulated_send( self.cog, user_id, prompt, interaction.message, response_message=response_message, vary=self.image_url, custom_api_key=self.custom_api_key, ) ) class SaveButton(discord.ui.Button["SaveView"]): def __init__(self, number: int, image_url: str): super().__init__( style=discord.ButtonStyle.gray, label="Save " + str(number), custom_id="save_button" + str(random.randint(1000000, 9999999)), ) self.number = number self.image_url = image_url async def callback(self, interaction: discord.Interaction): # If the image url doesn't start with "http", then we need to read the file from the URI, and then send the # file to the user as an attachment. try: if not self.image_url.startswith("http"): with open(self.image_url, "rb") as f: image = Image.open(BytesIO(f.read())) temp_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False) image.save(temp_file.name) await interaction.response.send_message( content="Here is your image for download (open original and save)", file=discord.File(temp_file.name), ephemeral=True, ) else: await interaction.response.send_message( f"You can directly download this image from {self.image_url}", ephemeral=True, ) except Exception as e: await interaction.response.send_message(f"Error: {e}", ephemeral=True) traceback.print_exc() class RedoButton(discord.ui.Button["SaveView"]): def __init__(self, cog, converser_cog, custom_api_key): super().__init__( style=discord.ButtonStyle.danger, label="Retry", custom_id="redo_button_draw_main", ) self.cog = cog self.converser_cog = converser_cog self.custom_api_key = custom_api_key async def callback(self, interaction: discord.Interaction): user_id = interaction.user.id interaction_id = interaction.message.id if interaction_id not in self.converser_cog.users_to_interactions[user_id]: await interaction.response.send_message( content="You can only retry for prompts that you generated yourself!", ephemeral=True, ) return # We have passed the intial check of if the interaction belongs to the user if user_id in self.cog.redo_users: # Get the message and the prompt and call encapsulated_send ctx = self.cog.redo_users[user_id].ctx prompt = self.cog.redo_users[user_id].prompt response_message = self.cog.redo_users[user_id].response message = await interaction.response.send_message( "Regenerating the image for your original prompt, check the original message.", ephemeral=True, ) self.converser_cog.users_to_interactions[user_id].append(message.id) asyncio.ensure_future( ImageService.encapsulated_send( self.cog, user_id, prompt, ctx, response_message, custom_api_key=self.custom_api_key, ) )
SwarmsDiscord-main
swarmsdiscord/services/image_service.py
import asyncio class Message: def __init__(self, content, channel): self.content = content self.channel = channel # This function will be called by the bot to process the message queue @staticmethod async def process_message_queue(message_queue, PROCESS_WAIT_TIME, EMPTY_WAIT_TIME): while True: await asyncio.sleep(PROCESS_WAIT_TIME) # If the queue is empty, sleep for a short time before checking again if message_queue.empty(): await asyncio.sleep(EMPTY_WAIT_TIME) continue # Get the next message from the queue message = await message_queue.get() # Send the message try: await message.channel.send(message.content) except Exception: pass # Sleep for a short time before processing the next message # This will prevent the bot from spamming messages too quickly await asyncio.sleep(PROCESS_WAIT_TIME)
SwarmsDiscord-main
swarmsdiscord/services/message_queue_service.py
from pathlib import Path import aiofiles from typing import Literal import tiktoken class UsageService: def __init__(self, data_dir: Path): self.usage_file_path = data_dir / "usage.txt" # If the usage.txt file doesn't currently exist in the directory, create it and write 0.00 to it. if not self.usage_file_path.exists(): with self.usage_file_path.open("w") as f: f.write("0.00") f.close() self.tokenizer = tiktoken.get_encoding("cl100k_base") COST_MAPPING = { "gpt4": 0.05, "gpt4-32": 0.1, "turbo": 0.0019, "turbo-16": 0.0038, "davinci": 0.02, "curie": 0.002, "embedding": 0.0001, } MODEL_COST_MAP = { "gpt-4": "gpt4", "gpt-4-32k": "gpt4-32", "gpt-4-0613": "gpt4", "gpt-4-32k-0613": "gpt4-32", "gpt-3.5-turbo": "turbo", "gpt-3.5-turbo-16k": "turbo-16", "gpt-3.5-turbo-0613": "turbo", "gpt-3.5-turbo-16k-0613": "turbo", "text-davinci-003": "davinci", "text-curie-001": "curie", } ModeType = Literal["gpt4", "gpt4-32k", "turbo", "turbo-16k", "davinci", "embedding"] @staticmethod async def get_model_cost(mode: ModeType) -> float: return UsageService.COST_MAPPING.get(mode, 0) @staticmethod async def get_cost_name(model) -> str: return UsageService.MODEL_COST_MAP.get(model, "davinci") async def get_price(self, tokens_used, mode: ModeType = None): tokens_used = int(tokens_used) price = (tokens_used / 1000) * await self.get_model_cost( mode ) # This is a very rough estimate price = round(price, 6) return price async def update_usage( self, tokens_used, mode: ModeType = None, ): tokens_used = int(tokens_used) price = (tokens_used / 1000) * await self.get_model_cost(mode) price = round(price, 6) usage = round(await self.get_usage(), 6) new_total = round(usage + price, 6) print( f"{'Completion' if mode != 'embedding' else 'Embed'} cost -> Old: {str(usage)} | New: {str(new_total)}, used {str(price)} credits" ) async with aiofiles.open(self.usage_file_path, "w") as f: await f.write(str(new_total)) await f.close() async def set_usage(self, usage): async with aiofiles.open(self.usage_file_path, "w") as f: await f.write(str(usage)) await f.close() async def get_usage(self): async with aiofiles.open(self.usage_file_path, "r") as f: usage = float((await f.read()).strip()) await f.close() return usage def count_tokens(self, text): res = self.tokenizer.encode(text) return len(res) async def update_usage_image(self, image_size): # 1024Γ—1024 $0.020 / image # 512Γ—512 $0.018 / image # 256Γ—256 $0.016 / image if image_size == "1024x1024": price = 0.02 elif image_size == "512x512": price = 0.018 elif image_size == "256x256": price = 0.016 else: raise ValueError("Invalid image size") usage = await self.get_usage() async with aiofiles.open(self.usage_file_path, "w") as f: await f.write(str(usage + float(price))) await f.close() @staticmethod def count_tokens_static(text): tokenizer = tiktoken.get_encoding("cl100k_base") res = tokenizer.encode(text) return len(res)
SwarmsDiscord-main
swarmsdiscord/services/usage_service.py
import asyncio.exceptions import datetime import re import traceback from collections import defaultdict import aiofiles import aiohttp import discord import requests from discord.ext import pages import unidecode from models.embed_statics_model import EmbedStatics from models.image_understanding_model import ImageUnderstandingModel from services.deletion_service import Deletion from models.openai_model import Model, Override, Models from models.user_model import EmbeddedConversationItem, RedoUser from services.environment_service import EnvService from services.moderations_service import Moderation BOT_NAME = EnvService.get_custom_bot_name() PRE_MODERATE = EnvService.get_premoderate() image_understanding_model = ImageUnderstandingModel() class TextService: def __init__(self): pass @staticmethod async def encapsulated_send( converser_cog, id, prompt, ctx, response_message=None, overrides=None, instruction=None, from_ask_command=False, from_edit_command=False, model=None, user=None, custom_api_key=None, edited_request=False, redo_request=False, from_ask_action=False, from_other_action=None, from_message_context=None, ): """General service function for sending and receiving gpt generations Args: converser_cog (Cog): The conversation cog with our gpt commands id (user or thread id): A user or thread id for keeping track of conversations prompt (str): The prompt to use for generation ctx (ApplicationContext): The interaction which called this response_message (discord.Message, optional): For when we're doing redos. Defaults to None. temp_override (float, optional): Sets the temperature for the generation. Defaults to None. top_p_override (float, optional): Sets the top p for the generation. Defaults to None. frequency_penalty_override (float, optional): Sets the frequency penalty for the generation. Defaults to None. presence_penalty_override (float, optional): Sets the presence penalty for the generation. Defaults to None. instruction (str, optional): Instruction for use with the edit endpoint. Defaults to None. from_ask_command (bool, optional): Called from the ask command. Defaults to False. from_edit_command (bool, optional): Called from the edit command. Defaults to False. model (str, optional): Which model to generate output with. Defaults to None. user (discord.User, optional): An user object that can be used to set the stop. Defaults to None. custom_api_key (str, optional): per-user api key. Defaults to None. edited_request (bool, optional): If we're doing an edited message. Defaults to False. redo_request (bool, optional): If we're redoing a previous prompt. Defaults to False. from_action (bool, optional): If the function is being called from a message action. Defaults to False. """ new_prompt, _new_prompt_clean = ( prompt # + "\n" + BOT_NAME if not from_ask_command and not from_edit_command and not redo_request else prompt ), prompt stop = f"{ctx.author.display_name if user is None else user.display_name}:" from_context = isinstance(ctx, discord.ApplicationContext) if not instruction: tokens = converser_cog.usage_service.count_tokens(new_prompt) else: tokens = converser_cog.usage_service.count_tokens( new_prompt ) + converser_cog.usage_service.count_tokens(instruction) try: user_displayname = ( ctx.author.display_name if not user else user.display_name ) # Pinecone is enabled, we will create embeddings for this conversation. if ( converser_cog.pinecone_service and ctx.channel.id in converser_cog.conversation_threads ): for item in converser_cog.conversation_threads[ctx.channel.id].history: if item.text.strip() == BOT_NAME + "<|endofstatement|>": converser_cog.conversation_threads[ ctx.channel.id ].history.remove(item) # The conversation_id is the id of the thread conversation_id = ctx.channel.id # Create an embedding and timestamp for the prompt # new_prompt = prompt.encode("ascii", "ignore").decode() new_prompt = unidecode.unidecode(new_prompt) prompt_less_author = f"{new_prompt} <|endofstatement|>\n" new_prompt = f"\n{user_displayname}: {new_prompt} <|endofstatement|>\n" # new_prompt = new_prompt.encode("ascii", "ignore").decode() new_prompt = unidecode.unidecode(new_prompt) timestamp = int( str(datetime.datetime.now().timestamp()).replace(".", "") ) new_prompt_item = EmbeddedConversationItem(new_prompt, timestamp) if not redo_request: converser_cog.conversation_threads[conversation_id].history.append( new_prompt_item ) if edited_request: new_prompt = "".join( [ item.text for item in converser_cog.conversation_threads[ ctx.channel.id ].history ] ) converser_cog.redo_users[ctx.author.id].prompt = new_prompt else: # Create and upsert the embedding for the conversation id, prompt, timestamp await converser_cog.pinecone_service.upsert_conversation_embedding( converser_cog.model, conversation_id, new_prompt, timestamp, custom_api_key=custom_api_key, ) # Print all phrases embedding_prompt_less_author = await converser_cog.model.send_embedding_request( prompt_less_author, custom_api_key=custom_api_key ) # Use the version of the prompt without the author's name for better clarity on retrieval. # Now, build the new prompt by getting the X most similar with pinecone similar_prompts = converser_cog.pinecone_service.get_n_similar( conversation_id, embedding_prompt_less_author, n=converser_cog.model.num_conversation_lookback, ) # We use the pretext to build our new history _prompt_with_history = [ converser_cog.conversation_threads[ctx.channel.id].history[0] ] # If there's an opener we add it to the history if converser_cog.conversation_threads[ctx.channel.id].has_opener: _prompt_with_history += [ converser_cog.conversation_threads[ctx.channel.id].history[ 1 ] ] # Append the similar prompts to the prompt with history _prompt_with_history += [ EmbeddedConversationItem(prompt, timestamp) for prompt, timestamp in similar_prompts ] # iterate UP TO the last X prompts in the history for i in range( 1, min( len( converser_cog.conversation_threads[ ctx.channel.id ].history ), converser_cog.model.num_static_conversation_items, ), ): _prompt_with_history.append( converser_cog.conversation_threads[ctx.channel.id].history[ -i ] ) # remove duplicates from prompt_with_history and set the conversation history _prompt_with_history = list(dict.fromkeys(_prompt_with_history)) # Sort the prompt_with_history by increasing timestamp if pinecone is enabled if converser_cog.pinecone_service: _prompt_with_history.sort(key=lambda x: x.timestamp) # Remove the last two entries after sort, this is from the end of the list as prompt(redo), answer, prompt(original), leaving only prompt(original) and further history if redo_request: _prompt_with_history = _prompt_with_history[:-2] converser_cog.conversation_threads[ ctx.channel.id ].history = _prompt_with_history # Ensure that the last prompt in this list is the prompt we just sent (new_prompt_item) if _prompt_with_history[-1].text != new_prompt_item.text: try: _prompt_with_history.remove(new_prompt_item) except ValueError: pass _prompt_with_history.append(new_prompt_item) prompt_with_history = "".join( [item.text for item in _prompt_with_history] ) new_prompt = prompt_with_history + "\n" + BOT_NAME tokens = converser_cog.usage_service.count_tokens(new_prompt) # No pinecone, we do conversation summarization for long term memory instead elif ( id in converser_cog.conversation_threads and tokens > converser_cog.model.summarize_threshold and not from_ask_command and not from_edit_command and not converser_cog.pinecone_service # This should only happen if we are not doing summarizations. ): # We don't need to worry about the differences between interactions and messages in this block, # because if we are in this block, we can only be using a message object for ctx if converser_cog.model.summarize_conversations: await ctx.reply( "I'm currently summarizing our current conversation so we can keep chatting, " "give me one moment!" ) await converser_cog.summarize_conversation(ctx, new_prompt) # Check again if the prompt is about to go past the token limit new_prompt = ( "".join( [ item.text for item in converser_cog.conversation_threads[ id ].history ] ) + "\n" + BOT_NAME ) tokens = converser_cog.usage_service.count_tokens(new_prompt) if ( tokens > converser_cog.model.summarize_threshold ): # 150 is a buffer for the second stage await ctx.reply( "I tried to summarize our current conversation so we could keep chatting, " "but it still went over the token " "limit. Please try again later." ) await converser_cog.end_conversation(ctx) converser_cog.remove_awaiting( ctx.author.id, ctx.channel.id, False, False ) return else: await ctx.reply("The conversation context limit has been reached.") await converser_cog.end_conversation(ctx) return # Send the request to the model is_chatgpt_conversation = ( ctx.channel.id in converser_cog.conversation_threads and not from_ask_command and not from_edit_command and ( ( model is not None and ( model in Models.CHATGPT_MODELS or (model == "chatgpt" or "gpt-4" in model) ) ) or ( model is None and converser_cog.model.model in Models.CHATGPT_MODELS ) ) ) delegator = model or converser_cog.model.model is_chatgpt_request = ( delegator in Models.CHATGPT_MODELS or delegator in Models.GPT4_MODELS ) # Set some variables if a user or channel has a system instruction set if ctx.author.id in converser_cog.instructions: system_instruction = converser_cog.instructions[ctx.author.id].prompt usage_message = "***Added user instruction to prompt***" tokens += converser_cog.usage_service.count_tokens(system_instruction) elif ctx.channel.id in converser_cog.instructions: system_instruction = converser_cog.instructions[ctx.channel.id].prompt usage_message = "***Added channel instruction to prompt***" tokens += converser_cog.usage_service.count_tokens(system_instruction) else: system_instruction = None usage_message = None if is_chatgpt_conversation: _prompt_with_history = converser_cog.conversation_threads[ ctx.channel.id ].history response = await converser_cog.model.send_chatgpt_chat_request( _prompt_with_history, model=model, bot_name=BOT_NAME, user_displayname=user_displayname, temp_override=overrides.temperature, top_p_override=overrides.top_p, frequency_penalty_override=overrides.frequency_penalty, presence_penalty_override=overrides.presence_penalty, stop=stop if not from_ask_command else None, custom_api_key=custom_api_key, ) elif from_edit_command: response = await converser_cog.model.send_edit_request( text=new_prompt, instruction=instruction, temp_override=overrides.temperature, top_p_override=overrides.top_p, custom_api_key=custom_api_key, ) else: response = await converser_cog.model.send_request( new_prompt, tokens=tokens, temp_override=overrides.temperature, top_p_override=overrides.top_p, frequency_penalty_override=overrides.frequency_penalty, presence_penalty_override=overrides.presence_penalty, model=model, stop=stop if not from_ask_command else None, custom_api_key=custom_api_key, is_chatgpt_request=is_chatgpt_request, system_instruction=system_instruction, ) # Clean the request response response_text = ( converser_cog.cleanse_response(str(response["choices"][0]["text"])) if not is_chatgpt_request and not is_chatgpt_conversation or from_edit_command else converser_cog.cleanse_response( str(response["choices"][0]["message"]["content"]) ) ) if from_message_context: response_text = f"{response_text}" response_text = ( f"{usage_message}\n\n{response_text}" if system_instruction else response_text ) elif from_other_action: response_text = f"***{from_other_action}*** {response_text}" response_text = ( f"{usage_message}\n\n{response_text}" if system_instruction else response_text ) elif from_ask_command or from_ask_action: response_model = response["model"] if "gpt-3.5" in response_model or "gpt-4" in response_model: response_text = ( f"\n\n{response_text}" if not response_text.startswith("\n\n") else response_text ) response_text = f"***{prompt}***{response_text}" response_text = ( f"{usage_message}\n\n{response_text}" if system_instruction else response_text ) elif from_edit_command: response_text = response_text.strip() response_text = f"***Prompt:***\n {prompt}\n\n***Instruction:***\n {instruction}\n\n***Response:***\n {response_text}" # If gpt tries writing a user mention try to replace it with their name response_text = await converser_cog.mention_to_username(ctx, response_text) # If the user is conversing, add the GPT response to their conversation history. if ( ctx.channel.id in converser_cog.conversation_threads and not from_ask_command and not converser_cog.pinecone_service ): if not redo_request: converser_cog.conversation_threads[ctx.channel.id].history.append( EmbeddedConversationItem( "\n" + BOT_NAME + str(response_text) + "<|endofstatement|>\n", 0, ) ) # Embeddings case! elif ( ctx.channel.id in converser_cog.conversation_threads and not from_ask_command and not from_edit_command and converser_cog.pinecone_service ): conversation_id = ctx.channel.id # A cleaner version for the convo history response_text_clean = str(response_text) # Create an embedding and timestamp for the prompt response_text = ( "\n" + BOT_NAME + str(response_text) + "<|endofstatement|>\n" ) # response_text = response_text.encode("ascii", "ignore").decode() response_text = unidecode.unidecode(response_text) # Print the current timestamp timestamp = int( str(datetime.datetime.now().timestamp()).replace(".", "") ) converser_cog.conversation_threads[conversation_id].history.append( EmbeddedConversationItem(response_text, timestamp) ) # Create and upsert the embedding for the conversation id, prompt, timestamp embedding = ( await converser_cog.pinecone_service.upsert_conversation_embedding( converser_cog.model, conversation_id, response_text, timestamp, custom_api_key=custom_api_key, ) ) # Cleanse again response_text = converser_cog.cleanse_response(response_text) converser_cog.full_conversation_history[ctx.channel.id].append( response_text ) # escape any other mentions like @here or @everyone response_text = discord.utils.escape_mentions(response_text) # If we don't have a response message, we are not doing a redo, send as a new message(s) if not response_message: if len(response_text) > converser_cog.TEXT_CUTOFF: if not from_context: paginator = None response_message = await converser_cog.paginate_and_send( response_text, ctx ) else: embed_pages = await converser_cog.paginate_embed(response_text) view = ConversationView( ctx, converser_cog, ctx.channel.id, model, from_ask_command, from_edit_command, custom_api_key=custom_api_key, ) paginator = pages.Paginator( pages=embed_pages, timeout=None, custom_view=view, author_check=True, ) try: response_message = await paginator.respond(ctx.interaction) except: response_message = await paginator.send(ctx.channel) else: paginator = None if not from_context: response_message = await ctx.reply( response_text, view=ConversationView( ctx, converser_cog, ctx.channel.id, model, custom_api_key=custom_api_key, ), ) elif from_edit_command: response_message = await ctx.respond( embed=EmbedStatics.get_edit_command_output_embed( response_text ), view=ConversationView( ctx, converser_cog, ctx.channel.id, model, from_edit_command=from_edit_command, custom_api_key=custom_api_key, ), ) else: response_message = await ctx.respond( response_text, view=ConversationView( ctx, converser_cog, ctx.channel.id, model, from_ask_command=from_ask_command, custom_api_key=custom_api_key, ), ) converser_cog.redo_users[ctx.author.id] = RedoUser( prompt=new_prompt if not converser_cog.pinecone_service else prompt, instruction=instruction, ctx=ctx, message=ctx, response=response_message, paginator=paginator, ) converser_cog.redo_users[ctx.author.id].add_interaction( response_message.id ) # We are doing a redo, edit the message. else: paginator = converser_cog.redo_users.get(ctx.author.id).paginator if isinstance(paginator, pages.Paginator): embed_pages = await converser_cog.paginate_embed(response_text) view = ConversationView( ctx, converser_cog, ctx.channel.id, model, from_ask_command, from_edit_command, custom_api_key=custom_api_key, ) await paginator.update(pages=embed_pages, custom_view=view) elif len(response_text) > converser_cog.TEXT_CUTOFF: if not from_context: await response_message.channel.send( "Over 2000 characters", delete_after=5 ) else: if not from_edit_command: await response_message.edit(content=response_text) else: await response_message.edit( embed=EmbedStatics.get_edit_command_output_embed( response_text ) ) await converser_cog.send_debug_message( converser_cog.generate_debug_message(prompt, response), converser_cog.debug_channel, ) converser_cog.remove_awaiting( ctx.author.id, ctx.channel.id, from_ask_command, from_edit_command ) # Error catching for AIOHTTP Errors except aiohttp.ClientResponseError as e: embed = EmbedStatics.get_invalid_api_response_embed(e) if from_context: await ctx.send_followup(embed=embed) else: await ctx.reply(embed=embed) converser_cog.remove_awaiting( ctx.author.id, ctx.channel.id, from_ask_command, from_edit_command ) except asyncio.exceptions.TimeoutError as e: embed = EmbedStatics.get_api_timeout_embed() if from_context: await ctx.send_followup(embed=embed) else: await ctx.reply(embed=embed) converser_cog.remove_awaiting( ctx.author.id, ctx.channel.id, from_ask_command, from_edit_command ) # Error catching for OpenAI model value errors except ValueError as e: embed = EmbedStatics.get_invalid_value_embed(e) if from_ask_action: await ctx.respond(embed=embed, ephemeral=True) elif from_context: await ctx.send_followup(embed=embed, ephemeral=True) else: await ctx.reply(e) converser_cog.remove_awaiting( ctx.author.id, ctx.channel.id, from_ask_command, from_edit_command ) # General catch case for everything except Exception as e: embed = EmbedStatics.get_general_error_embed(e) try: await ctx.channel.send(embed=embed) except: pass converser_cog.remove_awaiting( ctx.author.id, ctx.channel.id, from_ask_command, from_edit_command ) traceback.print_exc() try: await converser_cog.end_conversation(ctx) except Exception: pass return @staticmethod async def process_conversation_message( converser_cog, message, USER_INPUT_API_KEYS, USER_KEY_DB, file=None ): content = message.content.strip() conversing = converser_cog.check_conversing(message.channel.id, content) # If the user is conversing and they want to end it, end it immediately before we continue any further. if conversing and message.content.lower() in converser_cog.END_PROMPTS: await converser_cog.end_conversation(message) return if conversing: # Pre-moderation check if PRE_MODERATE: if await Moderation.simple_moderate_and_respond( message.content, message ): await message.delete() return user_api_key = None if USER_INPUT_API_KEYS: user_api_key = await TextService.get_user_api_key( message.author.id, message, USER_KEY_DB ) if not user_api_key: return prompt = await converser_cog.mention_to_username(message, content) if await converser_cog.check_conversation_limit(message): return # If the user is in a conversation thread if message.channel.id in converser_cog.conversation_threads: # Since this is async, we don't want to allow the user to send another prompt while a conversation # prompt is processing, that'll mess up the conversation history! if message.author.id in converser_cog.awaiting_responses: resp_message = await message.reply( embed=discord.Embed( title=f"You are already waiting for a response, please wait and speak afterwards.", color=0x808080, ) ) try: await resp_message.channel.trigger_typing() except: pass # get the current date, add 10 seconds to it, and then turn it into a timestamp. # we need to use our deletion service because this isn't an interaction, it's a regular message. deletion_time = datetime.datetime.now() + datetime.timedelta( seconds=5 ) deletion_time = deletion_time.timestamp() deletion_message = Deletion(resp_message, deletion_time) deletion_original_message = Deletion(message, deletion_time) await converser_cog.deletion_queue.put(deletion_message) await converser_cog.deletion_queue.put(deletion_original_message) return if message.channel.id in converser_cog.awaiting_thread_responses: resp_message = await message.reply( embed=discord.Embed( title=f"This thread is already waiting for a response, please wait and speak afterwards.", color=0x808080, ) ) try: await resp_message.channel.trigger_typing() except: pass # get the current date, add 10 seconds to it, and then turn it into a timestamp. # we need to use our deletion service because this isn't an interaction, it's a regular message. deletion_time = datetime.datetime.now() + datetime.timedelta( seconds=5 ) deletion_time = deletion_time.timestamp() deletion_message = Deletion(resp_message, deletion_time) deletion_original_message = Deletion(message, deletion_time) await converser_cog.deletion_queue.put(deletion_message) await converser_cog.deletion_queue.put(deletion_original_message) return if file and image_understanding_model.get_is_usable(): thinking_embed = discord.Embed( title=f"πŸ€–πŸ’¬ Interpreting attachment...", color=0x808080, ) thinking_embed.set_footer(text="This may take a few seconds.") try: thinking_message = await message.reply(embed=thinking_embed) except: traceback.print_exc() pass try: await message.channel.trigger_typing() except Exception: pass async with aiofiles.tempfile.NamedTemporaryFile( delete=False ) as temp_file: await file.save(temp_file.name) try: image_caption, image_qa, image_ocr = await asyncio.gather( asyncio.to_thread( image_understanding_model.get_image_caption, temp_file.name, ), asyncio.to_thread( image_understanding_model.ask_image_question, prompt, temp_file.name, ), image_understanding_model.do_image_ocr(temp_file.name), ) prompt = ( f"Image Info-Caption: {image_caption}\nImage Info-QA: {image_qa}\nImage Info-OCR: {image_ocr}\n" + prompt ) try: await thinking_message.delete() except: pass except Exception: traceback.print_exc() await message.reply( "I wasn't able to understand the file you gave me." ) await thinking_message.delete() return converser_cog.awaiting_responses.append(message.author.id) converser_cog.awaiting_thread_responses.append(message.channel.id) if not converser_cog.pinecone_service: converser_cog.conversation_threads[ message.channel.id ].history.append( EmbeddedConversationItem( f"\n{message.author.display_name}: {prompt} <|endofstatement|>\n", 0, ) ) # increment the conversation counter for the user converser_cog.conversation_threads[message.channel.id].count += 1 # Send the request to the model # If conversing, the prompt to send is the history, otherwise, it's just the prompt if ( converser_cog.pinecone_service or message.channel.id not in converser_cog.conversation_threads ): primary_prompt = prompt else: primary_prompt = "".join( [ item.text for item in converser_cog.conversation_threads[ message.channel.id ].history ] ) # set conversation overrides conversation_overrides = converser_cog.conversation_threads[ message.channel.id ].get_overrides() overrides = Override( conversation_overrides["temperature"], conversation_overrides["top_p"], conversation_overrides["frequency_penalty"], conversation_overrides["presence_penalty"], ) # Send an embed that tells the user that the bot is thinking thinking_embed = discord.Embed( title=f"πŸ€–πŸ’¬ Thinking...", color=0x808080, ) thinking_embed.set_footer(text="This may take a few seconds.") try: thinking_message = await message.reply(embed=thinking_embed) except: pass try: await message.channel.trigger_typing() except Exception: pass converser_cog.full_conversation_history[message.channel.id].append(prompt) if not converser_cog.pinecone_service: primary_prompt += BOT_NAME await TextService.encapsulated_send( converser_cog, message.channel.id, primary_prompt, message, overrides=overrides, model=converser_cog.conversation_threads[message.channel.id].model, custom_api_key=user_api_key, ) # Delete the thinking embed await thinking_message.delete() return True @staticmethod async def get_user_api_key(user_id, ctx, USER_KEY_DB): user_api_key = None if user_id not in USER_KEY_DB else USER_KEY_DB[user_id] if user_api_key is None or user_api_key == "": modal = SetupModal(user_key_db=USER_KEY_DB) if isinstance(ctx, discord.ApplicationContext): await ctx.send_modal(modal) await ctx.send_followup( "You must set up your API key before using this command." ) else: await ctx.reply( "You must set up your API key before typing in a GPT powered channel, type `/setup` to enter your API key." ) return user_api_key @staticmethod async def process_conversation_edit(converser_cog, after, original_message): if after.author.id in converser_cog.redo_users: if after.id == original_message.get(after.author.id, None): response_message = converser_cog.redo_users[after.author.id].response ctx = converser_cog.redo_users[after.author.id].ctx await response_message.edit(content="Redoing prompt πŸ”„...") edited_content = await converser_cog.mention_to_username( after, after.content ) if after.channel.id in converser_cog.conversation_threads: # Remove the last two elements from the history array and add the new <username>: prompt converser_cog.conversation_threads[ after.channel.id ].history = converser_cog.conversation_threads[ after.channel.id ].history[ :-2 ] pinecone_dont_reinsert = None if not converser_cog.pinecone_service: converser_cog.conversation_threads[ after.channel.id ].history.append( EmbeddedConversationItem( f"\n{after.author.display_name}: {after.content}<|endofstatement|>\n", 0, ) ) converser_cog.conversation_threads[after.channel.id].count += 1 conversation_overrides = converser_cog.conversation_threads[ after.channel.id ].get_overrides() overrides = Override( conversation_overrides["temperature"], conversation_overrides["top_p"], conversation_overrides["frequency_penalty"], conversation_overrides["presence_penalty"], ) await TextService.encapsulated_send( converser_cog, id=after.channel.id, prompt=edited_content, ctx=ctx, response_message=response_message, overrides=overrides, model=converser_cog.conversation_threads[after.channel.id].model, edited_request=True, ) if not converser_cog.pinecone_service: converser_cog.redo_users[after.author.id].prompt = edited_content # # Conversation interaction buttons # class ConversationView(discord.ui.View): def __init__( self, ctx, converser_cog, id, model, from_ask_command=False, from_edit_command=False, custom_api_key=None, ): super().__init__(timeout=3600) # 1 hour interval to redo. self.converser_cog = converser_cog self.ctx = ctx self.model = model self.from_ask_command = from_ask_command self.from_edit_command = from_edit_command self.custom_api_key = custom_api_key self.add_item( RedoButton( self.converser_cog, model=model, from_ask_command=from_ask_command, from_edit_command=from_edit_command, custom_api_key=self.custom_api_key, ) ) if id in self.converser_cog.conversation_threads: self.add_item(EndConvoButton(self.converser_cog)) async def on_timeout(self): # Remove the button from the view/message self.clear_items() # Send a message to the user saying the view has timed out if self.message: # check if the timeout happens in a thread and if it's locked if isinstance(self.message.channel, discord.Thread): if self.message.channel.locked: return await self.message.edit( view=None, ) else: await self.ctx.edit( view=None, ) class EndConvoButton(discord.ui.Button["ConversationView"]): def __init__(self, converser_cog): super().__init__( style=discord.ButtonStyle.danger, label="End Conversation", custom_id="conversation_end", ) self.converser_cog = converser_cog async def callback(self, interaction: discord.Interaction): # Get the user user_id = interaction.user.id if ( user_id in self.converser_cog.conversation_thread_owners and interaction.channel.id in self.converser_cog.conversation_thread_owners[user_id] ): try: await self.converser_cog.end_conversation( interaction, opener_user_id=interaction.user.id ) except Exception as e: print(e) traceback.print_exc() await interaction.response.send_message( e, ephemeral=True, delete_after=30 ) else: await interaction.response.send_message( "This is not your conversation to end!", ephemeral=True, delete_after=10 ) class RedoButton(discord.ui.Button["ConversationView"]): def __init__( self, converser_cog, model, from_ask_command, from_edit_command, custom_api_key ): super().__init__( style=discord.ButtonStyle.danger, label="Retry", custom_id="conversation_redo", ) self.converser_cog = converser_cog self.model = model self.from_ask_command = from_ask_command self.from_edit_command = from_edit_command self.custom_api_key = custom_api_key async def callback(self, interaction: discord.Interaction): # Get the user user_id = interaction.user.id if user_id in self.converser_cog.redo_users and self.converser_cog.redo_users[ user_id ].in_interaction(interaction.message.id): # Get the message and the prompt and call encapsulated_send prompt = self.converser_cog.redo_users[user_id].prompt instruction = self.converser_cog.redo_users[user_id].instruction ctx = self.converser_cog.redo_users[user_id].ctx response_message = self.converser_cog.redo_users[user_id].response await interaction.response.send_message( "Retrying your original request...", ephemeral=True, delete_after=15 ) await TextService.encapsulated_send( self.converser_cog, overrides=Override(None, None, None, None), id=user_id, prompt=prompt, instruction=instruction, ctx=ctx, model=self.model, response_message=response_message, custom_api_key=self.custom_api_key, redo_request=True, from_ask_command=self.from_ask_command, from_edit_command=self.from_edit_command, ) else: await interaction.response.send_message( "You can only redo the most recent prompt that you sent yourself.", ephemeral=True, delete_after=10, ) # # The setup modal when using user input API keys # class SetupModal(discord.ui.Modal): def __init__(self, user_key_db) -> None: super().__init__(title="API Key Setup") # Get the argument named "user_key_db" and save it as USER_KEY_DB self.USER_KEY_DB = user_key_db self.add_item( discord.ui.InputText( label="OpenAI API Key", placeholder="sk--......", ) ) async def callback(self, interaction: discord.Interaction): user = interaction.user api_key = self.children[0].value # Validate that api_key is indeed in this format if not re.match(r"sk-[a-zA-Z0-9]{32}", api_key): await interaction.response.send_message( "Your API key looks invalid, please check that it is correct before proceeding. Please run the /setup command to set your key.", ephemeral=True, delete_after=100, ) else: # We can save the key for the user to the database. # Make a test request using the api key to ensure that it is valid. try: await Model.send_test_request(api_key) await interaction.response.send_message( "Your API key was successfully validated.", ephemeral=True, delete_after=10, ) except aiohttp.ClientResponseError as e: await interaction.response.send_message( embed=EmbedStatics.get_invalid_api_response_embed(e), ephemeral=True, delete_after=30, ) return except Exception as e: await interaction.response.send_message( f"Your API key looks invalid, the API returned: {e}. Please check that your API key is correct before proceeding", ephemeral=True, delete_after=30, ) return # Save the key to the database try: self.USER_KEY_DB[user.id] = api_key self.USER_KEY_DB.commit() await interaction.followup.send( "Your API key was successfully saved.", ephemeral=True, delete_after=10, ) except Exception: traceback.print_exc() await interaction.followup.send( "There was an error saving your API key.", ephemeral=True, delete_after=30, ) return
SwarmsDiscord-main
swarmsdiscord/services/text_service.py
import asyncio import pickle import traceback from datetime import datetime import aiofiles import discord from services.environment_service import EnvService class Pickler: def __init__( self, full_conversation_history, conversation_threads, conversation_thread_owners, instructions, ): self.full_conversation_history = full_conversation_history self.conversation_threads = conversation_threads self.conversation_thread_owners = conversation_thread_owners self.instructions = instructions # This function will be called by the bot to process the message queue @staticmethod async def process_pickle_queue(pickle_queue, PROCESS_WAIT_TIME, EMPTY_WAIT_TIME): while True: try: # If the queue is empty, sleep for a short time before checking again if pickle_queue.empty(): await asyncio.sleep(EMPTY_WAIT_TIME) continue # Get the next object to pickle from the queue to_pickle = await pickle_queue.get() # Pickle all the objects inside to_pickle using aiofiles async with aiofiles.open( EnvService.save_path() / "pickles" / "full_conversation_history.pickle", "wb", ) as f: await f.write(pickle.dumps(to_pickle.full_conversation_history)) async with aiofiles.open( EnvService.save_path() / "pickles" / "conversation_threads.pickle", "wb", ) as f: await f.write(pickle.dumps(to_pickle.conversation_threads)) async with aiofiles.open( EnvService.save_path() / "pickles" / "conversation_thread_owners.pickle", "wb", ) as f: await f.write(pickle.dumps(to_pickle.conversation_thread_owners)) async with aiofiles.open( EnvService.save_path() / "pickles" / "instructions.pickle", "wb" ) as f: await f.write(pickle.dumps(to_pickle.instructions)) await asyncio.sleep(PROCESS_WAIT_TIME) except Exception: traceback.print_exc()
SwarmsDiscord-main
swarmsdiscord/services/pickle_service.py
SwarmsDiscord-main
tests/__init__.py