python_code
stringlengths 0
992k
| repo_name
stringlengths 8
46
| file_path
stringlengths 5
162
|
---|---|---|
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
from io import open
from setuptools import find_packages, setup
setup(
name="torchscale",
version="0.1.1",
author="TorchScale Team",
author_email="[email protected]",
description="Transformers at any scale",
long_description=open("README.md", "r", encoding="utf-8").read(),
long_description_content_type="text/markdown",
keywords="Transformers at any scale",
license="MIT",
url="https://github.com/msranlp/torchscale",
packages=find_packages(exclude=["*.tests", "*.tests.*", "tests.*", "tests"]),
install_requires=["apex", "torch>=1.8", "fairscale==0.4.0", "timm==0.4.12"],
python_requires=">=3.8.0",
classifiers=[
"Programming Language :: Python :: 3",
],
)
| KosmosX-API-main | kosmosX/torchscale/setup.py |
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
| KosmosX-API-main | kosmosX/torchscale/torchscale/__init__.py |
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
import torch
import torch.nn as nn
def fixed_pos_embedding(x):
seq_len, dim = x.shape
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim) / dim))
sinusoid_inp = (
torch.einsum("i , j -> i j", torch.arange(0, seq_len, dtype=torch.float), inv_freq).to(x)
)
return torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)
class SoPE(nn.Module):
def __init__(
self, head_dim, scale_base = 512
):
super().__init__()
self.head_dim = head_dim
self.scale_base = scale_base
self.register_buffer(
"scale", (torch.arange(0, head_dim, 2) + 0.4 * head_dim) / (1.4 * head_dim)
)
def forward(self, len):
# min = -(len + offset) // 2
# max = len + offset + min
# scale = self.scale ** torch.arange(min, max, 1).to(self.scale).div(self.scale_base)[:, None]
scale = self.scale ** (torch.arange(0, len, 1) - len // 2).to(self.scale).div(self.scale_base)[:, None]
sin, cos = fixed_pos_embedding(scale)
return (sin, cos, scale) | KosmosX-API-main | kosmosX/torchscale/torchscale/component/sope_relative_position.py |
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
import copy
import torch
import torch.nn as nn
def MultiwayWrapper(args, module, dim=0):
if args.multiway:
return MultiwayNetwork(module, dim=dim)
return module
def set_split_position(position):
def apply_fn(module):
if hasattr(module, "split_position"):
module.split_position = position
return apply_fn
class MultiwayNetwork(nn.Module):
def __init__(self, module, dim=0):
super().__init__()
self.dim = dim
self.A = module
self.B = copy.deepcopy(module)
self.B.reset_parameters()
self.split_position = -1
def forward(self, x, **kwargs):
if self.split_position == -1:
return self.A(x, **kwargs)
if self.split_position == 0:
return self.B(x, **kwargs)
x1, x2 = torch.split(
x,
[self.split_position, x.size(self.dim) - self.split_position],
dim=self.dim,
)
# x1, x2 = x[:self.split_position], x[self.split_position:]
y1, y2 = self.A(x1, **kwargs), self.B(x2, **kwargs)
return torch.cat([y1, y2], dim=self.dim)
| KosmosX-API-main | kosmosX/torchscale/torchscale/component/multiway_network.py |
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
import math
import torch
import torch.nn.functional as F
from apex.normalization import FusedLayerNorm as LayerNorm
from torch import nn
from .multiway_network import MultiwayWrapper
from xformers.ops import memory_efficient_attention, LowerTriangularMask, MemoryEfficientAttentionCutlassOp
def rotate_every_two(x):
x1 = x[:, :, ::2]
x2 = x[:, :, 1::2]
x = torch.stack((-x2, x1), dim=-1)
return x.flatten(-2) # in einsum notation: rearrange(x, '... d j -> ... (d j)')\
def duplicate_interleave(m):
"""
A simple version of `torch.repeat_interleave` for duplicating a matrix while interleaving the copy.
"""
dim0 = m.shape[0]
m = m.view(-1, 1) # flatten the matrix
m = m.repeat(1, 2) # repeat all elements into the 2nd dimension
m = m.view(dim0, -1) # reshape into a matrix, interleaving the copy
return m
def apply_rotary_pos_emb(x, sin, cos, scale=1):
sin, cos = map(lambda t: duplicate_interleave(t * scale), (sin, cos))
# einsum notation for lambda t: repeat(t[offset:x.shape[1]+offset,:], "n d -> () n () (d j)", j=2)
return (x * cos) + (rotate_every_two(x) * sin)
class MultiheadAttention(nn.Module):
def __init__(
self,
args,
embed_dim,
num_heads,
dropout=0.0,
self_attention=False,
encoder_decoder_attention=False,
subln=False,
):
super().__init__()
self.args = args
self.embed_dim = embed_dim
self.num_heads = num_heads
self.head_dim = embed_dim // num_heads
self.scaling = self.head_dim**-0.5
self.scale_length = args.scale_length
self.self_attention = self_attention
self.encoder_decoder_attention = encoder_decoder_attention
assert self.self_attention ^ self.encoder_decoder_attention
self.k_proj = MultiwayWrapper(args, nn.Linear(embed_dim, embed_dim, bias=True))
self.v_proj = MultiwayWrapper(args, nn.Linear(embed_dim, embed_dim, bias=True))
self.q_proj = MultiwayWrapper(args, nn.Linear(embed_dim, embed_dim, bias=True))
self.out_proj = MultiwayWrapper(
args, nn.Linear(embed_dim, embed_dim, bias=True)
)
self.inner_attn_ln = (
MultiwayWrapper(args, LayerNorm(self.embed_dim))
if subln and self.self_attention
else None
)
self.dropout_module = torch.nn.Dropout(dropout, inplace=True)
def reset_parameters(self):
nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2))
nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2))
nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2))
nn.init.xavier_uniform_(self.out_proj.weight)
nn.init.constant_(self.out_proj.bias, 0.0)
def forward(
self,
query,
key,
value,
incremental_state=None,
key_padding_mask=None,
attn_mask=None,
rel_pos=None,
sope_rel_pos=None,
):
tgt_len, bsz, embed_dim = query.size()
src_len = tgt_len
assert embed_dim == self.embed_dim, f"query dim {embed_dim} != {self.embed_dim}"
assert list(query.size()) == [tgt_len, bsz, embed_dim]
src_len, key_bsz, _ = key.size()
assert key_bsz == bsz, f"{query.size(), key.size()}"
assert value is not None
assert src_len, bsz == value.shape[:2]
q = self.q_proj(query)
k = self.k_proj(key)
v = self.v_proj(value)
q = q.view(tgt_len, bsz * self.num_heads, self.head_dim).transpose(0, 1).contiguous()
k = k.view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1).contiguous()
v = v.view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1).contiguous()
if incremental_state is not None:
if "prev_key" in incremental_state:
prev_key = incremental_state["prev_key"].view(
bsz * self.num_heads, -1, self.head_dim
)
prev_value = incremental_state["prev_value"].view(
bsz * self.num_heads, -1, self.head_dim
)
k = torch.cat([prev_key, k], dim=1)
v = torch.cat([prev_value, v], dim=1)
incremental_state["prev_key"] = k.view(
bsz, self.num_heads, -1, self.head_dim
)
incremental_state["prev_value"] = v.view(
bsz, self.num_heads, -1, self.head_dim
)
src_len = k.size(1)
if sope_rel_pos is not None:
assert rel_pos is None
sin, cos, scale = sope_rel_pos
if self.self_attention:
k = apply_rotary_pos_emb(k, sin, cos, scale = 1 / scale)
q = apply_rotary_pos_emb(q, sin[-q.shape[1]:], cos[-q.shape[1]:], scale = scale[-q.shape[1]:])
else:
k = apply_rotary_pos_emb(k, sin[:k.shape[1]], cos[:k.shape[1]], scale = 1 / scale[:k.shape[1]])
q = apply_rotary_pos_emb(q, sin[k.shape[1]:], cos[k.shape[1]:], scale = scale[k.shape[1]:])
if k.shape[1] > self.scale_length:
scale_attention = torch.maximum(torch.ones(q.shape[1]), torch.arange(k.shape[1] - q.shape[1], k.shape[1], 1).log() / math.log(self.scale_length)).to(q)
q = q * scale_attention.unsqueeze(-1)
if self.args.flash_attention and rel_pos is None and attn_mask is not None:
attn_bias = LowerTriangularMask()
attn = memory_efficient_attention(q, k, v, attn_bias, op=MemoryEfficientAttentionCutlassOp)
attn_weights = None
else:
q *= self.scaling
attn_weights = torch.bmm(q, k.transpose(1, 2))
if attn_mask is not None:
attn_weights = torch.nan_to_num(attn_weights)
attn_mask = attn_mask.unsqueeze(0)
attn_weights += attn_mask
if key_padding_mask is not None:
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.masked_fill(
key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool),
float("-inf"),
)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if rel_pos is not None:
rel_pos = rel_pos.view(attn_weights.size())
attn_weights = attn_weights + rel_pos
attn_weights = F.softmax(attn_weights, dim=-1, dtype=torch.float32).type_as(
attn_weights
)
attn_probs = self.dropout_module(attn_weights)
attn = torch.bmm(attn_probs, v)
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
if self.inner_attn_ln is not None:
attn = self.inner_attn_ln(attn)
attn = self.out_proj(attn)
if attn_weights is not None:
attn_weights = attn_weights.view(
bsz, self.num_heads, tgt_len, src_len
).transpose(1, 0)
return attn, attn_weights
| KosmosX-API-main | kosmosX/torchscale/torchscale/component/multihead_attention.py |
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
import math
import torch
import torch.nn as nn
class RelativePositionBias(nn.Module):
def __init__(
self, bidirectional=True, num_buckets=32, max_distance=128, n_heads=12
):
super().__init__()
self.bidirectional = bidirectional
self.num_buckets = num_buckets
self.max_distance = max_distance
self.n_heads = n_heads
self.relative_attention_bias = nn.Embedding(self.num_buckets, self.n_heads)
@staticmethod
def _relative_position_bucket(
relative_position, bidirectional=True, num_buckets=32, max_distance=128
):
ret = 0
n = -relative_position
if bidirectional:
num_buckets //= 2
ret += (n < 0).to(torch.long) * num_buckets
n = torch.abs(n)
else:
n = torch.max(n, torch.zeros_like(n))
max_exact = num_buckets // 2
is_small = n < max_exact
val_if_large = max_exact + (
torch.log(n.float() / max_exact)
/ math.log(max_distance / max_exact)
* (num_buckets - max_exact)
).to(torch.long)
val_if_large = torch.min(
val_if_large, torch.full_like(val_if_large, num_buckets - 1)
)
ret += torch.where(is_small, n, val_if_large)
return ret
def compute_bias(self, qlen, klen, step=None):
step = 0 if step is None else step
context_position = torch.arange(
step,
step + qlen,
dtype=torch.long,
device=self.relative_attention_bias.weight.device,
)[:, None]
memory_position = torch.arange(
klen, dtype=torch.long, device=self.relative_attention_bias.weight.device
)[None, :]
relative_position = memory_position - context_position # shape (qlen, klen)
rp_bucket = self._relative_position_bucket(
relative_position, # shape (qlen, klen)
bidirectional=self.bidirectional,
num_buckets=self.num_buckets,
)
rp_bucket = rp_bucket.to(self.relative_attention_bias.weight.device)
values = self.relative_attention_bias(
rp_bucket
) # shape (qlen, klen, num_heads)
values = values.permute([2, 0, 1]).unsqueeze(
0
) # shape (1, num_heads, qlen, klen)
return values
def forward(self, batch_size, qlen, klen, step=None):
# shape (batch * num_heads, qlen, klen)
return (
self.compute_bias(qlen, klen, step)
.repeat(batch_size, 1, 1, 1)
.view(-1, qlen, klen)
)
| KosmosX-API-main | kosmosX/torchscale/torchscale/component/relative_position_bias.py |
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
import torch
import torch.nn as nn
import torch.nn.functional as F
class VisionLanguageEmbedding(nn.Module):
def __init__(self, text_embed, vision_embed):
super().__init__()
self.text_embed = text_embed
self.vision_embed = vision_embed
def forward(self, textual_tokens, visual_tokens, **kwargs):
if textual_tokens is None:
return self.vision_embed(visual_tokens)
if visual_tokens is None:
return self.text_embed(textual_tokens)
x1 = self.vision_embed(visual_tokens)
x2 = self.text_embed(textual_tokens)
return torch.cat([x1, x2], dim=1)
class VisionEmbedding(nn.Module):
"""Image to Patch Embedding"""
def __init__(
self,
img_size=224,
patch_size=16,
in_chans=3,
embed_dim=768,
contain_mask_token=False,
prepend_cls_token=False,
):
super().__init__()
img_size = (img_size, img_size)
patch_size = (patch_size, patch_size)
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = nn.Conv2d(
in_chans, embed_dim, kernel_size=patch_size, stride=patch_size
)
if contain_mask_token:
self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
else:
self.mask_token = None
if prepend_cls_token:
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
else:
self.cls_token = None
def forward(self, x, masked_position=None, **kwargs):
B, C, H, W = x.shape
assert (
H == self.img_size[0] and W == self.img_size[1]
), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
x = self.proj(x).flatten(2).transpose(1, 2)
batch_size, seq_len, _ = x.size()
if masked_position is not None:
assert self.mask_token is not None
mask_token = self.mask_token.expand(batch_size, seq_len, -1)
w = masked_position.unsqueeze(-1).type_as(mask_token)
x = x * (1 - w) + mask_token * w
if self.cls_token is not None:
cls_tokens = self.cls_token.expand(
batch_size, -1, -1
) # stole cls_tokens impl from Phil Wang, thanks
x = torch.cat((cls_tokens, x), dim=1)
return x
class TextEmbedding(nn.Embedding):
def reset_parameters(self):
nn.init.normal_(self.weight, mean=0, std=self.embedding_dim**-0.5)
self._fill_padding_idx_with_zero()
class PositionalEmbedding(nn.Embedding):
def forward(
self,
x,
positions=None,
**kwargs,
):
if positions is None:
# being consistent with Fairseq, which starts from 2.
positions = (
torch.arange(2, x.size(1) + 2, device=x.device).long().unsqueeze(0)
)
return F.embedding(
positions,
self.weight,
self.padding_idx,
self.max_norm,
self.norm_type,
self.scale_grad_by_freq,
self.sparse,
)
| KosmosX-API-main | kosmosX/torchscale/torchscale/component/embedding.py |
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
import torch.nn as nn
from timm.models.layers import drop_path
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
def extra_repr(self):
return "p={}".format(self.drop_prob)
| KosmosX-API-main | kosmosX/torchscale/torchscale/component/droppath.py |
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
| KosmosX-API-main | kosmosX/torchscale/torchscale/component/__init__.py |
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
import torch
import torch.nn as nn
import torch.nn.functional as F
from apex.normalization import FusedLayerNorm as LayerNorm
class set_torch_seed(object):
def __init__(self, seed):
assert isinstance(seed, int)
self.rng_state = self.get_rng_state()
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
def get_rng_state(self):
state = {"torch_rng_state": torch.get_rng_state()}
if torch.cuda.is_available():
state["cuda_rng_state"] = torch.cuda.get_rng_state()
return state
def set_rng_state(self, state):
torch.set_rng_state(state["torch_rng_state"])
if torch.cuda.is_available():
torch.cuda.set_rng_state(state["cuda_rng_state"])
def __enter__(self):
return self
def __exit__(self, *exc):
self.set_rng_state(self.rng_state)
def make_experts(args, embed_dim, expert_ffn_dim):
world_size = (
1
if not torch.distributed.is_initialized()
else torch.distributed.get_world_size()
)
expert_list = []
ddp_rank = args.ddp_rank
start_seed = torch.randint(1000000, (1,)).item()
# at least as many experts than gpus
if args.moe_expert_count >= world_size:
assert (
args.moe_expert_count % world_size == 0
), f"{args.moe_expert_count}, {world_size}"
local_moe_expert_count = args.moe_expert_count // world_size
for i in range(local_moe_expert_count):
with set_torch_seed(start_seed + ddp_rank * local_moe_expert_count + i):
expert_list.append(
FeedForwardNetwork(
embed_dim,
expert_ffn_dim,
args.activation_fn,
args.dropout,
args.activation_dropout,
args.subln,
)
)
else:
assert (
world_size % args.moe_expert_count == 0
), f"{world_size}, {args.moe_expert_count}"
with set_torch_seed(start_seed + ddp_rank % args.moe_expert_count):
expert_list.append(
FeedForwardNetwork(
embed_dim,
expert_ffn_dim,
args.activation_fn,
args.dropout,
args.activation_dropout,
args.subln,
)
)
experts = nn.ModuleList(expert_list)
return experts
def get_activation_fn(activation):
if activation == "relu":
return F.relu
elif activation == "gelu":
return F.gelu
else:
raise NotImplementedError
class FeedForwardNetwork(nn.Module):
def __init__(
self,
embed_dim,
ffn_dim,
activation_fn,
dropout,
activation_dropout,
subln=False,
):
super().__init__()
self.embed_dim = embed_dim
self.activation_fn = get_activation_fn(activation=str(activation_fn))
self.activation_dropout_module = torch.nn.Dropout(
activation_dropout, inplace=True
)
self.dropout_module = torch.nn.Dropout(dropout, inplace=True)
self.fc1 = nn.Linear(self.embed_dim, ffn_dim)
self.fc2 = nn.Linear(ffn_dim, self.embed_dim)
self.ffn_layernorm = LayerNorm(ffn_dim) if subln else None
def reset_parameters(self):
self.fc1.reset_parameters()
self.fc2.reset_parameters()
if self.ffn_layernorm is not None:
self.ffn_layernorm.reset_parameters()
def forward(self, x):
x_shape = x.shape
x = x.reshape(-1, x.size(-1))
x = self.fc1(x)
x = self.activation_fn(x.float()).type_as(x)
x = self.activation_dropout_module(x)
if self.ffn_layernorm is not None:
x = self.ffn_layernorm(x)
x = self.fc2(x)
x = x.view(x_shape)
x = self.dropout_module(x)
return x
| KosmosX-API-main | kosmosX/torchscale/torchscale/component/feedforward_network.py |
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
| KosmosX-API-main | kosmosX/torchscale/torchscale/component/xmoe/__init__.py |
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.
# NOTE: This is a mirror of the code in
# https://github.com/facebookresearch/fairscale/tree/master/fairscale/nn/moe
import logging
import time
from typing import Any, Tuple, cast
import torch
import torch.distributed as dist
from torch import Tensor
from torch.nn import Module, ModuleList
try:
from fairseq.modules.moe import MOELayer
has_fairseq = True
Base = MOELayer
except ModuleNotFoundError:
Base = Module
has_fairseq = False
try:
# To enable Tutel MoE optimizations:
# python3 -m pip install --user --upgrade git+https://github.com/microsoft/[email protected]
from tutel import moe as tutel_moe
has_tutel, fused_cumsum_sub_one = True, tutel_moe.fast_cumsum_sub_one
except ModuleNotFoundError:
has_tutel, fused_cumsum_sub_one = False, lambda mask: torch.cumsum(mask, dim=0) - 1
logger = logging.getLogger(__name__)
# einsum dimensions: (g)roup, (s)equence, (e)xpert, (m)odel, (c)apacity
# See https://arxiv.org/pdf/2006.16668.pdf for details.
# Based on https://github.com/pytorch/pytorch/pull/40762
class _AllToAll(torch.autograd.Function):
@staticmethod
def forward(ctx: Any, group: dist.ProcessGroup, input: Tensor) -> Tensor: # type: ignore
ctx.group = group
input = input.contiguous()
output = torch.empty_like(input)
if torch.distributed.is_initialized():
dist.all_to_all_single(output, input, group=group)
else:
assert group is None
output = input
return output
@staticmethod
def backward(ctx: Any, *grad_output: Tensor) -> Tuple[None, Tensor]:
return (None, _AllToAll.apply(ctx.group, *grad_output))
def _find_my_group_index(grouped_ranks):
my_rank = dist.get_rank()
for i, group in enumerate(grouped_ranks):
if my_rank in group:
return i
raise RuntimeError
def get_moe_group(moe_expert_count):
if dist.is_initialized():
if not hasattr(get_moe_group, "_moe_groups"):
world_size = dist.get_world_size()
if world_size <= moe_expert_count:
assert moe_expert_count % world_size == 0
moe_groups = [[i] for i in range(world_size)]
else:
assert world_size % moe_expert_count == 0
ranks_per_group = world_size // moe_expert_count
moe_groups = [
[i + j * moe_expert_count for j in range(ranks_per_group)]
for i in range(moe_expert_count)
]
get_moe_group._moe_group_idx = moe_groups
get_moe_group._moe_groups = [dist.new_group(g) for g in moe_groups]
my_group_idx = _find_my_group_index(get_moe_group._moe_group_idx)
return get_moe_group._moe_groups[my_group_idx]
def get_all2all_group(moe_expert_count):
if dist.is_initialized():
if not hasattr(get_all2all_group, "_all2all_groups"):
world_size = dist.get_world_size()
# more experts than world size
if world_size <= moe_expert_count:
assert moe_expert_count % world_size == 0
all2all_groups = [[i for i in range(world_size)]]
# larger world than num experts
else:
assert world_size % moe_expert_count == 0
ranks_per_group = world_size // moe_expert_count
all2all_groups = [
[i * moe_expert_count + j for j in range(moe_expert_count)]
for i in range(ranks_per_group)
]
get_all2all_group._all2all_group_idx = all2all_groups
get_all2all_group._all2all_groups = [
dist.new_group(g) for g in all2all_groups
]
my_group_idx = _find_my_group_index(get_all2all_group._all2all_group_idx)
return get_all2all_group._all2all_groups[my_group_idx]
class MOELayer(Base):
"""MOELayer module which implements MixtureOfExperts as described in Gshard_.
::
gate = Top2Gate(model_dim, num_experts)
moe = MOELayer(gate, expert)
output = moe(input)
l_aux = moe.l_aux
.. Gshard_: https://arxiv.org/pdf/2006.16668.pdf
Args:
gate (torch.nn.Module):
gate network
expert (torch.nn.Module):
expert network
"""
def __init__(self, gate, experts, args):
if has_fairseq:
super(Base, self).__init__()
else:
super().__init__()
self.gate = gate
if type(experts) == ModuleList:
self.experts = cast(ModuleList, experts)
else:
self.experts = ModuleList([experts])
self.expert_group = get_moe_group(args.moe_expert_count)
self.all2all_group = get_all2all_group(args.moe_expert_count)
self.world_size = dist.get_world_size(group=self.expert_group)
self.all2all_size = dist.get_world_size(group=self.all2all_group)
for p in experts.parameters():
p.expert = True # type: ignore
self.num_local_experts = len(self.experts)
self.args = args
self.in_generation = False
self.a2a_cuda_event_intervals = []
self.a2a_cpu_time_ms = 0.0
def forward(self, *input: Tensor, input_padding_mask=None, **kwargs: Any) -> Tensor:
assert len(input) == 1, "only single input Tensor supported"
input = input[0]
assert (
len(input.shape) == 3
), "input Tensor must have dimensions: (s)equence, (t)oken, (m)odel"
if input_padding_mask is not None:
assert (
len(input_padding_mask.shape) == 2
), "input Tensor must have dimensions: (s)equence, (t)oken"
assert input_padding_mask.shape[0] == input.shape[0]
assert input_padding_mask.shape[1] == input.shape[1]
# assert input.shape[0] % len(self.experts) == 0, "num tokens must be order of number of local experts"
# Implement Algorithm 2 from GShard paper.
d_model = input.shape[2]
# Pad to expected batch size
input_shape = list(input.shape)
expected_bsz = (
getattr(self.args, "batch_size", 0)
if self.training
else getattr(self.args, "batch_size_valid", 0)
)
# This indicates that --batch-size or --max-sentences is not specified
if expected_bsz is None:
expected_bsz = 0
# Note: Padding is not necessary at generation time at present
# because all DDP workers process the same batch. Also, batch size at generation time
# can be different from that present in the checkpoint state
if (
not self.in_generation
and expected_bsz != 0
and input_shape[0] != expected_bsz
):
logger.warning(
f"padding batch with unexpected size {input_shape[0]} (expected: {expected_bsz})"
)
assert input_shape[0] < expected_bsz, f"{input_shape[0]} < {expected_bsz}"
padded_input = torch.zeros(
(expected_bsz, input_shape[1], input_shape[2]),
dtype=input.dtype,
layout=input.layout,
device=input.device,
)
padded_input[: input_shape[0], :, :] = input
input = padded_input
padded_input_padding_mask = torch.ones(
(
expected_bsz,
input_shape[1],
),
dtype=torch.bool,
device=input.device,
)
if input_padding_mask is not None:
padded_input_padding_mask[: input_shape[0], :] = input_padding_mask
else:
padded_input_padding_mask[: input_shape[0], :] = False
input_padding_mask = padded_input_padding_mask
# Reshape into S tokens by dropping sequence dimension.
reshaped_input = input.reshape(-1, d_model)
reshaped_input_shape = reshaped_input.shape
reshaped_input_padding_mask = (
input_padding_mask.reshape(-1) if input_padding_mask is not None else None
)
# Doing padding here when --max-tokens is specified and not --batch-size or --max-sentences
# Pro of --max-tokens: more flexible for MT variable sequence lengths
# Con of --max-tokens: extra all-reduce needed to figure out optimal padding without running OOM
if expected_bsz == 0:
expected_dim = reshaped_input_shape[0] * torch.ones(
(1,), dtype=torch.long, device=input.device
)
dist.all_reduce(expected_dim, group=dist.group.WORLD, op=dist.ReduceOp.MAX)
expected_dim = int(expected_dim.item())
padded_input = torch.zeros(
(expected_dim, reshaped_input_shape[1]),
dtype=input.dtype,
layout=input.layout,
device=input.device,
)
padded_input[: reshaped_input_shape[0], :] = reshaped_input
reshaped_input = padded_input
padded_input_padding_mask = torch.ones(
(expected_dim,), dtype=torch.bool, device=padded_input.device
)
if reshaped_input_padding_mask is not None:
padded_input_padding_mask[
: reshaped_input_shape[0]
] = reshaped_input_padding_mask
else:
padded_input_padding_mask[: reshaped_input_shape[0]] = False
reshaped_input_padding_mask = padded_input_padding_mask
if has_tutel:
l_aux, self.metadata, C, E, indices_, locations_, gates_ = self.gate(
reshaped_input, reshaped_input_padding_mask
)
S, M = reshaped_input.size(0), reshaped_input.size(1)
if not hasattr(self, "_tutel_dispatcher"):
self._tutel_dispatcher = tutel_moe.fast_dispatcher(
E, C, M, dispatch_dtype=reshaped_input.dtype
)
self._tutel_dispatcher.update(indices_, locations_, gates_, capacity=C)
dispatched_input = self._tutel_dispatcher.encode(reshaped_input)
else:
l_aux, combine_weights, dispatch_mask, self.metadata = self.gate(
reshaped_input, reshaped_input_padding_mask
)
dispatch_mask = dispatch_mask.to(input.dtype).permute(
1, 2, 0
) # S,E,C -> E,C,S
E, C, S = dispatch_mask.size()
M = reshaped_input.size(1)
assert reshaped_input.size() == (S, M)
# einsum("sec,sm->ecm")
dispatched_input = torch.mm(
dispatch_mask.view(E * C, S), reshaped_input
) # -> (E*C),M
if self.all2all_size > 1:
dispatched_input = self.all_to_all_wrapper(dispatched_input)
# Re-shape after all-to-all: ecm -> gecm
dispatched_input = dispatched_input.reshape(
self.all2all_size, self.num_local_experts, -1, d_model
)
chunks = dispatched_input.chunk(self.num_local_experts, dim=1)
expert_outputs = []
for chunk, expert in zip(chunks, self.experts):
expert_outputs += [expert(chunk)]
expert_output = torch.cat(expert_outputs, dim=1)
if self.all2all_size > 1:
expert_output = self.all_to_all_wrapper(expert_output)
# Re-shape back: gecm -> ecm
expert_output = expert_output.reshape(
self.all2all_size * self.num_local_experts, -1, d_model
)
if has_tutel:
combined_output = self._tutel_dispatcher.decode(
expert_output.view(E * C, M)
)
else:
# einsum("sec,ecm->sm")
combined_output = combine_weights.view(S, E * C).mm(
expert_output.view(E * C, M)
)
# Remove padding here when --max-tokens is specified and not --batch-size or --max-sentences
combined_output = combined_output[: reshaped_input_shape[0], :]
combined_output = combined_output.reshape(input.shape)
combined_output = combined_output[: input_shape[0], :, :]
self.record_all_to_all_stats()
return combined_output, l_aux
def prepare_for_inference_(self):
self.in_generation = True
def all_to_all_wrapper(self, input: Tensor):
dummy_a2a = getattr(self.args, "dummy_a2a", False)
if dummy_a2a:
input = input.contiguous()
output = input.detach().clone()
return input
# always record times, since it is not a lot of overhead
# if we do not log it we simply clear it off in record_all_to_all_stats
cuda_start = torch.cuda.Event(enable_timing=True)
cuda_end = torch.cuda.Event(enable_timing=True)
cpu_start = time.time() * 1000
cuda_start.record()
output = _AllToAll.apply(self.all2all_group, input)
cuda_end.record()
cpu_end = time.time() * 1000
self.a2a_cpu_time_ms += cpu_end - cpu_start
self.a2a_cuda_event_intervals.append((cuda_start, cuda_end))
return output
def record_all_to_all_stats(self):
# controlled via an argument as we want to minimize any impact from torch.cuda.synchronize()
record_a2a_perf_stats = getattr(self.args, "record_a2a_perf_stats", False)
if record_a2a_perf_stats:
torch.cuda.synchronize()
self.metadata["all_to_all_cpu_time_ms"] = self.a2a_cpu_time_ms
a2a_cuda_time_ms = 0.0
for ev_start, ev_end in self.a2a_cuda_event_intervals:
a2a_cuda_time_ms += ev_start.elapsed_time(ev_end)
self.metadata["all_to_all_cuda_time_ms"] = a2a_cuda_time_ms
# reset stats
self.a2a_cpu_time_ms = 0.0
self.a2a_cuda_event_intervals = []
| KosmosX-API-main | kosmosX/torchscale/torchscale/component/xmoe/moe_layer.py |
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.
# Implementation of Top2Gating described in https://arxiv.org/pdf/2006.16668.pdf
# Code is inspired by Top2GatingOnLogits from lingvo:
# https://github.com/tensorflow/lingvo/blob/21b8106c5f1d30a196c98eedc441d4fd70833b11/lingvo/core/moe_layers.py#L477
# NOTE: This is a mirror of the code in
# https://github.com/facebookresearch/fairscale/tree/master/fairscale/nn/moe
import math
from typing import Callable, Dict, Optional, Tuple
import torch
import torch.nn.functional as F
from torch import Tensor
from .moe_layer import fused_cumsum_sub_one, has_tutel
# use a fixed temperature to compute balance loss
TEMPERATURE_FOR_L_UAX = 0.07
# maximum capacity of 1 expert as a fraction of number of tokens in the batch
# Note: setting this to 1.0 causes inference to significantly slow down
EVAL_CAPACITY_TOKEN_FRACTION = 0.25
# logging
SAMPLE_FRACTION = 0.2
def top1gating(
logits: torch.Tensor,
input_mask: Optional[torch.Tensor] = None,
use_fp32=False,
capacity_factor=1.0,
eval_mode=False,
moe_eval_capacity_token_fraction=EVAL_CAPACITY_TOKEN_FRACTION,
use_xmoe=False,
gate_obj=None,
) -> Tuple[Tensor, Tensor, Tensor, Dict]:
"""Implements Top2Gating on logits."""
metadata = {}
if use_fp32:
orig_dtype = logits.dtype
logits = logits.float()
gates = F.softmax(logits, dim=1)
metadata["entropy_gating"] = entropy(probs=gates).mean().detach()
# gates has shape of SE
num_tokens = gates.shape[0]
num_experts = gates.shape[1]
if moe_eval_capacity_token_fraction > 0.0 and eval_mode:
capacity = math.ceil(moe_eval_capacity_token_fraction * num_tokens)
else:
# capacity = capacity_factor * S/E
capacity = int(capacity_factor * math.ceil(num_tokens / num_experts))
# Create a mask for 1st's expert per token
indices1_s = torch.argmax(gates, dim=1)
mask1 = one_hot(indices1_s, num_classes=num_experts, unsqueeze_indices=True)
if input_mask is not None and input_mask.any():
nonpadding = ~input_mask
mask1 = mask1 * nonpadding.unsqueeze(-1).to(mask1.dtype)
# for logging (percent of tokens routed to each expert)
expert1_hist = (
100
* torch.histc(
(indices1_s.squeeze() + 1), bins=num_experts, min=1, max=num_experts
)
/ num_tokens
)
metadata["unused_expert1_count"] = (expert1_hist == 0).sum()
expert1_hist = (
torch.sort(expert1_hist, dim=0, descending=True).values
+ torch.finfo(torch.float32).tiny
)
sample_count = max(math.ceil(num_experts * SAMPLE_FRACTION), 1)
metadata["expert1_balance_top"] = expert1_hist[:sample_count].sum()
metadata["expert1_balance_bottom"] = expert1_hist[-sample_count:].sum()
gates1_s = (gates * mask1).sum(dim=1)
# Compute locations in capacity buffer
locations1 = fused_cumsum_sub_one(mask1)
# Compute l_aux
me = torch.mean(gates, dim=0)
ce = torch.mean(mask1.to(gates.dtype), dim=0)
l_aux = torch.mean(me * ce)
l_aux = l_aux * num_experts * num_experts
if has_tutel:
locations1_s = torch.sum(locations1 * mask1, dim=1)
return (
l_aux,
metadata,
capacity,
num_experts,
[
indices1_s,
],
[
locations1_s,
],
[
gates1_s,
],
)
# Remove locations outside capacity from mask
mask1 = mask1 * torch.lt(locations1, capacity)
# Store the capacity location for each token
locations1_s = torch.sum(locations1 * mask1, dim=1)
# Calculate combine_weights and dispatch_mask
gates1 = gates1_s.unsqueeze(-1) * mask1.to(gates1_s.dtype) # einsum("s,se->se")
# locations1_sc = num_tokens * capacity
locations1_sc = one_hot(locations1_s, num_classes=capacity, unsqueeze_indices=True)
combine1_sec = torch.bmm(
# einsum("se,sc->sec")
gates1.unsqueeze(-1),
locations1_sc.to(gates1.dtype).unsqueeze(1),
)
dispatch_mask = combine1_sec.bool()
if use_fp32:
return l_aux, combine1_sec.to(orig_dtype), dispatch_mask, metadata
else:
return l_aux, combine1_sec, dispatch_mask, metadata
class Top1Gate(torch.nn.Module):
"""Gate module which implements Top2Gating as described in Gshard_.
::
gate = Top2Gate(model_dim, num_experts)
l_aux, combine_weights, dispatch_mask = gate(input)
.. Gshard_: https://arxiv.org/pdf/2006.16668.pdf
Args:
model_dim (int):
size of model embedding dimension
num_experts (ints):
number of experts in model
"""
wg: torch.nn.Linear
def __init__(
self,
model_dim: int,
num_experts: int,
use_fp32=False,
input_noise_type=None,
capacity_factor=1.0,
moe_eval_capacity_token_fraction=EVAL_CAPACITY_TOKEN_FRACTION,
use_xmoe=False,
) -> None:
# TODO: merge this to top2gate.py
#
super().__init__()
if not use_xmoe:
self.wg = torch.nn.Linear(model_dim, num_experts, bias=False)
else:
self.wg_reduction = torch.nn.Linear(model_dim, 16, bias=False)
wg = torch.empty(num_experts, 16)
torch.nn.init.orthogonal_(wg, gain=0.32)
self.register_parameter("wg", torch.nn.Parameter(wg))
self.use_xmoe = use_xmoe
self.use_fp32 = use_fp32
self.input_noise_type = input_noise_type
self.capacity_factor = capacity_factor
self.moe_eval_capacity_token_fraction = moe_eval_capacity_token_fraction
def forward(self, input, mask=None): # type: ignore
if self.use_xmoe:
input = self.wg_reduction(input)
with torch.no_grad():
wg_norm = self.wg.norm(p=2.0, dim=1, keepdim=True)
self.wg.mul_(1.5 / wg_norm)
logits = self._cosine(input, self.wg)
logits = self._make_finite(logits)
else:
logits = self.wg(input)
return top1gating(
logits,
mask,
use_fp32=self.use_fp32,
capacity_factor=self.capacity_factor,
eval_mode=not self.training,
moe_eval_capacity_token_fraction=self.moe_eval_capacity_token_fraction,
use_xmoe=self.use_xmoe,
gate_obj=self,
)
def _make_finite(self, scores):
ok = scores.isfinite()
if not ok.all():
# NaNs here can break the assignment algorithm
scores[~ok] = scores[ok].min()
return scores
def _get_gating_temperature(self, eps=1e-4):
if self.gating_t.data.item() < eps:
return eps
return self.gating_t
def _cosine(self, mat1, mat2, eps=1e-4):
assert mat1.dim() == 2
assert mat2.dim() == 2
# mat1 = F.normalize(mat1, p=2.0, dim=1, eps=eps)
mat2 = F.normalize(mat2.float(), p=2.0, dim=1, eps=eps)
return mat1.float().matmul(mat2.transpose(0, 1)).type_as(mat1)
gumbel_map: Dict[torch.device, Callable] = {}
def gumbel_rsample(shape: Tuple, device: torch.device) -> Tensor:
gumbel = gumbel_map.get(device)
if gumbel is None:
one = torch.tensor(1.0, device=device)
zero = torch.tensor(0.0, device=device)
gumbel = torch.distributions.gumbel.Gumbel(zero, one).rsample # type: ignore
gumbel_map[device] = gumbel
return gumbel(shape)
def one_hot(indices: torch.Tensor, num_classes: int, unsqueeze_indices=False) -> Tensor:
if unsqueeze_indices:
indices = indices.unsqueeze(-1)
assert indices.shape[-1] == 1, "last dimension of indices must be have size 1"
output = torch.zeros(
indices.shape[:-1] + (num_classes,), device=indices.device, dtype=indices.dtype
)
output.scatter_(len(output.shape) - 1, indices, 1)
return output
def entropy(probs):
logits = torch.distributions.utils.probs_to_logits(probs)
p_log_p = probs * logits
return -p_log_p.sum(-1)
def top2gating(
logits: torch.Tensor,
input_mask: Optional[torch.Tensor] = None,
use_fp32=False,
second_expert_policy="sampling",
normalize_gate_prob_before_dropping=False,
eval_mode=False,
moe_eval_capacity_token_fraction=0.25,
batch_prioritized_routing=False,
) -> Tuple[Tensor, Tensor, Tensor]:
"""Implements Top2Gating on logits."""
metadata = {}
if use_fp32:
orig_dtype = logits.dtype
logits = logits.float()
gates = F.softmax(logits, dim=1)
metadata["entropy_gating"] = entropy(probs=gates).mean().detach()
# gates has shape of SE
num_tokens = gates.shape[0]
num_experts = gates.shape[1]
if moe_eval_capacity_token_fraction > 0.0 and eval_mode:
capacity = math.ceil(moe_eval_capacity_token_fraction * num_tokens)
else:
# capacity = 2S/E
capacity = 2 * math.ceil(num_tokens / num_experts)
# Create a mask for 1st's expert per token
indices1_s = torch.argmax(gates, dim=1, keepdim=True)
mask1 = one_hot(indices1_s, num_experts)
if second_expert_policy == "sampling":
# Create a mask for 2nd's expert per token using Gumbel-max trick
# https://timvieira.github.io/blog/post/2014/07/31/gumbel-max-trick/
logits_w_noise = logits + gumbel_rsample(logits.shape, device=logits.device)
else:
logits_w_noise = logits
# Replace top-expert with min value
logits_except1 = logits_w_noise.masked_fill(mask1.bool(), float("-inf"))
indices2_s = torch.argmax(logits_except1, dim=1, keepdim=True)
mask2 = one_hot(indices2_s, num_experts)
gates1_s = (gates * mask1).sum(dim=1)
gates2_s = (gates * mask2).sum(dim=1)
if normalize_gate_prob_before_dropping:
# Normalize gate probabilities
denom_s = gates1_s + gates2_s
# Avoid divide-by-zero
denom_s = torch.clamp(denom_s, min=torch.finfo(denom_s.dtype).eps)
gates1_s = gates1_s / denom_s
gates2_s = gates2_s / denom_s
if second_expert_policy == "random":
sampled = (2 * gates2_s) > torch.rand_like(gates2_s)
mask2 = mask2 * sampled.repeat(num_experts, 1).transpose(1, 0)
# Compute locations in capacity buffer
if input_mask is not None and input_mask.any():
nonpadding = ~input_mask
mask1 = mask1 * nonpadding.unsqueeze(-1).to(mask1.dtype)
mask2 = mask2 * nonpadding.unsqueeze(-1).to(mask1.dtype)
if batch_prioritized_routing:
# if batch_prioritized_routing:
importance_scores = -1 * gates.max(dim=1)[0]
sorted_mask1 = mask1[importance_scores.argsort(dim=0)]
sorted_cumsum1 = fused_cumsum_sub_one(sorted_mask1) * sorted_mask1
importance_sorted_locations1 = sorted_cumsum1[
importance_scores.argsort(dim=0).argsort(dim=0)
]
sorted_mask2 = mask2[importance_scores.argsort(dim=0)]
sorted_cumsum2 = fused_cumsum_sub_one(sorted_mask2) * sorted_mask2
importance_sorted_locations2 = sorted_cumsum2[
importance_scores.argsort(dim=0).argsort(dim=0)
]
importance_sorted_locations2 += torch.sum(mask1, dim=0, keepdim=True)
locations1, locations2 = (
importance_sorted_locations1,
importance_sorted_locations2,
)
else:
locations1 = fused_cumsum_sub_one(mask1)
locations2 = fused_cumsum_sub_one(mask2)
# Update 2nd's location by accounting for locations of 1st
locations2 += torch.sum(mask1, dim=0, keepdim=True)
# Compute l_aux
me = torch.mean(gates, dim=0)
ce = torch.mean(mask1.to(gates.dtype), dim=0)
l_aux = torch.mean(me * ce)
l_aux = l_aux * num_experts * num_experts
# for logging purposes
metadata["overflow_expert1"] = (
100 * torch.sum(mask1 * torch.ge(locations1, capacity)) / torch.sum(mask1)
)
metadata["overflow_expert2"] = (
100 * torch.sum(mask2 * torch.ge(locations2, capacity)) / torch.sum(mask2)
)
# Remove locations outside capacity from mask
mask1_, mask2_ = mask1, mask2
mask1 = mask1 * torch.lt(locations1, capacity)
mask2 = mask2 * torch.lt(locations2, capacity)
# for logging (percent of tokens routed to each expert)
expert1_hist = (
100
* torch.histc(
(indices1_s.squeeze() + 1), bins=num_experts, min=1, max=num_experts
)
/ num_tokens
)
metadata["unused_expert1_count"] = (expert1_hist == 0).sum()
expert1_hist = (
torch.sort(expert1_hist, dim=0, descending=True).values
+ torch.finfo(torch.float32).tiny
)
expert2_hist = (
100
* torch.histc(
(indices2_s.squeeze() + 1), bins=num_experts, min=1, max=num_experts
)
/ num_tokens
)
metadata["unused_expert2_count"] = (expert2_hist == 0).sum()
expert2_hist = (
torch.sort(expert2_hist, dim=0, descending=True).values
+ torch.finfo(torch.float32).tiny
)
sample_count = max(math.ceil(num_experts * SAMPLE_FRACTION), 1)
metadata["expert1_balance_top"] = expert1_hist[:sample_count].sum()
metadata["expert1_balance_bottom"] = expert1_hist[-sample_count:].sum()
metadata["expert2_balance_top"] = expert2_hist[:sample_count].sum()
metadata["expert2_balance_bottom"] = expert2_hist[-sample_count:].sum()
if not normalize_gate_prob_before_dropping:
# Normalize gate probabilities
gates1_s = (gates * mask1).sum(dim=1)
gates2_s = (gates * mask2).sum(dim=1)
denom_s = gates1_s + gates2_s
# Avoid divide-by-zero
denom_s = torch.clamp(denom_s, min=torch.finfo(denom_s.dtype).eps)
gates1_s /= denom_s
gates2_s /= denom_s
if has_tutel:
locations1_s = torch.sum(locations1 * mask1_, dim=1)
locations2_s = torch.sum(locations2 * mask2_, dim=1)
return (
l_aux,
metadata,
capacity,
num_experts,
[indices1_s, indices2_s],
[locations1_s, locations2_s],
[gates1_s, gates2_s],
)
# Store the capacity location for each token
locations1_s = torch.sum(locations1 * mask1, dim=1)
locations2_s = torch.sum(locations2 * mask2, dim=1)
# Calculate combine_weights and dispatch_mask
gates1 = gates1_s.unsqueeze(-1) * mask1.to(gates1_s.dtype) # einsum("s,se->se")
gates2 = gates2_s.unsqueeze(-1) * mask2.to(gates2_s.dtype) # einsum("s,se->se")
locations1_sc = one_hot(locations1_s, num_classes=capacity, unsqueeze_indices=True)
locations2_sc = one_hot(locations2_s, num_classes=capacity, unsqueeze_indices=True)
combine1_sec = torch.bmm(
# einsum("se,sc->sec")
gates1.unsqueeze(-1),
locations1_sc.to(gates1.dtype).unsqueeze(1),
)
combine2_sec = torch.bmm(
# einsum("se,sc->sec")
gates2.unsqueeze(-1),
locations2_sc.to(gates2.dtype).unsqueeze(1),
)
combine_weights = combine1_sec + combine2_sec
dispatch_mask = combine_weights.bool()
if use_fp32:
return l_aux, combine_weights.to(orig_dtype), dispatch_mask, metadata
else:
return l_aux, combine_weights, dispatch_mask, metadata
class Top2Gate(torch.nn.Module):
"""Gate module which implements Top2Gating as described in Gshard_.
::
gate = Top2Gate(model_dim, num_experts)
l_aux, combine_weights, dispatch_mask = gate(input)
.. Gshard_: https://arxiv.org/pdf/2006.16668.pdf
Args:
model_dim (int):
size of model embedding dimension
num_experts (ints):
number of experts in model
"""
wg: torch.nn.Linear
def __init__(
self,
model_dim: int,
num_experts: int,
use_fp32=False,
second_expert_policy="sampling",
normalize_gate_prob_before_dropping=False,
moe_eval_capacity_token_fraction=0.25,
batch_prioritized_routing=False,
use_xmoe=False,
) -> None:
super().__init__()
if not use_xmoe:
self.wg = torch.nn.Linear(model_dim, num_experts, bias=False)
else:
self.wg_reduction = torch.nn.Linear(model_dim, 16, bias=False)
wg = torch.empty(num_experts, 16)
torch.nn.init.orthogonal_(wg, gain=0.32)
self.register_parameter("wg", torch.nn.Parameter(wg))
self.use_fp32 = use_fp32
self.second_expert_policy = second_expert_policy
self.normalize_gate_prob_before_dropping = normalize_gate_prob_before_dropping
self.moe_eval_capacity_token_fraction = moe_eval_capacity_token_fraction
self.batch_prioritized_routing = batch_prioritized_routing
self.use_xmoe = use_xmoe
def forward(self, input, mask=None): # type: ignore
if self.use_xmoe:
input = self.wg_reduction(input)
with torch.no_grad():
wg_norm = self.wg.norm(p=2.0, dim=1, keepdim=True)
self.wg.mul_(1.5 / wg_norm)
logits = self._cosine(input, self.wg)
logits = self._make_finite(logits)
else:
logits = self.wg(input)
return top2gating(
logits,
mask,
use_fp32=self.use_fp32,
second_expert_policy=self.second_expert_policy,
normalize_gate_prob_before_dropping=self.normalize_gate_prob_before_dropping,
eval_mode=not self.training,
moe_eval_capacity_token_fraction=self.moe_eval_capacity_token_fraction,
batch_prioritized_routing=self.batch_prioritized_routing,
)
def _cosine(self, mat1, mat2, eps=1e-4):
assert mat1.dim() == 2
assert mat2.dim() == 2
# mat1 = F.normalize(mat1, p=2.0, dim=1, eps=eps)
mat2 = F.normalize(mat2.float(), p=2.0, dim=1, eps=eps)
return mat1.float().matmul(mat2.transpose(0, 1)).type_as(mat1)
def _make_finite(self, scores):
ok = scores.isfinite()
if not ok.all():
# NaNs here can break the assignment algorithm
scores[~ok] = scores[ok].min()
return scores
| KosmosX-API-main | kosmosX/torchscale/torchscale/component/xmoe/routing.py |
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
import math
import numpy as np
import torch
import torch.nn as nn
from apex.normalization import FusedLayerNorm as LayerNorm
from fairscale.nn import checkpoint_wrapper, wrap
from torchscale.architecture.utils import init_bert_params
from torchscale.component.droppath import DropPath
from torchscale.component.feedforward_network import FeedForwardNetwork, make_experts
from torchscale.component.multihead_attention import MultiheadAttention
from torchscale.component.relative_position_bias import RelativePositionBias
from torchscale.component.xmoe.moe_layer import MOELayer
from torchscale.component.xmoe.routing import Top1Gate, Top2Gate
from torchscale.component.sope_relative_position import SoPE
class DecoderLayer(nn.Module):
def __init__(
self,
args,
depth,
is_moe_layer=False,
is_encoder_decoder=False,
):
super().__init__()
self.args = args
self.embed_dim = args.decoder_embed_dim
self.dropout_module = torch.nn.Dropout(args.dropout, inplace=True)
if args.drop_path_rate > 0:
drop_path_prob = np.linspace(0, args.drop_path_rate, args.decoder_layers)[
depth
]
self.drop_path = DropPath(drop_path_prob)
else:
self.drop_path = None
self.self_attn = self.build_self_attention(self.embed_dim, args)
self.normalize_before = args.decoder_normalize_before
self.self_attn_layer_norm = LayerNorm(self.embed_dim)
if not is_encoder_decoder:
self.encoder_attn = None
self.encoder_attn_layer_norm = None
else:
self.encoder_attn = self.build_encoder_attention(self.embed_dim, args)
self.encoder_attn_layer_norm = LayerNorm(self.embed_dim)
self.is_moe_layer = is_moe_layer
self.ffn_dim = args.decoder_ffn_embed_dim
if not self.is_moe_layer:
self.ffn = self.build_ffn(
self.embed_dim,
self.args,
)
else:
if args.moe_top1_expert:
gate = Top1Gate(
self.embed_dim,
args.moe_expert_count,
use_fp32=args.moe_gating_use_fp32,
moe_eval_capacity_token_fraction=args.moe_eval_capacity_token_fraction,
use_xmoe=args.use_xmoe,
)
else:
gate = Top2Gate(
self.embed_dim,
args.moe_expert_count,
args.moe_gating_use_fp32,
args.moe_second_expert_policy,
args.moe_normalize_gate_prob_before_dropping,
args.moe_eval_capacity_token_fraction,
use_xmoe=args.use_xmoe,
)
experts = make_experts(args, self.embed_dim, self.ffn_dim)
self.moe_layer = MOELayer(gate, experts, args)
self.final_layer_norm = LayerNorm(self.embed_dim)
if args.deepnorm:
if is_encoder_decoder:
self.alpha = math.pow(3.0 * args.decoder_layers, 0.25)
else:
self.alpha = math.pow(2.0 * args.decoder_layers, 0.25)
else:
self.alpha = 1.0
def build_ffn(self, embed_dim, args):
return FeedForwardNetwork(
embed_dim,
self.ffn_dim,
args.activation_fn,
args.dropout,
args.activation_dropout,
args.subln,
)
def build_self_attention(self, embed_dim, args):
return MultiheadAttention(
args,
embed_dim,
args.decoder_attention_heads,
dropout=args.attention_dropout,
self_attention=True,
encoder_decoder_attention=False,
subln=args.subln,
)
def build_encoder_attention(self, embed_dim, args):
return MultiheadAttention(
args,
embed_dim,
args.decoder_attention_heads,
dropout=args.attention_dropout,
self_attention=False,
encoder_decoder_attention=True,
subln=args.subln,
)
def residual_connection(self, x, residual):
return residual * self.alpha + x
def forward(
self,
x,
encoder_out=None,
encoder_padding_mask=None,
incremental_state=None,
self_attn_mask=None,
self_attn_padding_mask=None,
self_attn_rel_pos=None,
cross_attn_rel_pos=None,
self_attn_sope_rel_pos=None,
cross_attn_sope_rel_pos=None,
):
residual = x
if self.normalize_before:
x = self.self_attn_layer_norm(x)
x, attn = self.self_attn(
query=x,
key=x,
value=x,
key_padding_mask=self_attn_padding_mask,
incremental_state=incremental_state,
attn_mask=self_attn_mask,
rel_pos=self_attn_rel_pos,
sope_rel_pos=self_attn_sope_rel_pos,
)
x = self.dropout_module(x)
if self.drop_path is not None:
x = self.drop_path(x)
x = self.residual_connection(x, residual)
if not self.normalize_before:
x = self.self_attn_layer_norm(x)
if self.encoder_attn is not None and encoder_out is not None:
residual = x
if self.normalize_before:
x = self.encoder_attn_layer_norm(x)
x, attn = self.encoder_attn(
query=x,
key=encoder_out,
value=encoder_out,
key_padding_mask=encoder_padding_mask,
incremental_state=None,
rel_pos=cross_attn_rel_pos,
sope_rel_pos=cross_attn_sope_rel_pos,
)
x = self.dropout_module(x)
if self.drop_path is not None:
x = self.drop_path(x)
x = self.residual_connection(x, residual)
if not self.normalize_before:
x = self.encoder_attn_layer_norm(x)
residual = x
if self.normalize_before:
x = self.final_layer_norm(x)
if not self.is_moe_layer:
x = self.ffn(x)
l_aux = None
else:
x = x.transpose(0, 1)
x, l_aux = self.moe_layer(x)
x = x.transpose(0, 1)
if self.drop_path is not None:
x = self.drop_path(x)
x = self.residual_connection(x, residual)
if not self.normalize_before:
x = self.final_layer_norm(x)
return x, attn, None, l_aux
class Decoder(nn.Module):
def __init__(
self,
args,
embed_tokens=None,
embed_positions=None,
output_projection=None,
is_encoder_decoder=False,
**kwargs
):
super().__init__(**kwargs)
self.args = args
self.dropout_module = torch.nn.Dropout(args.dropout, inplace=True)
embed_dim = args.decoder_embed_dim
self.embed_dim = embed_dim
self.embed_scale = 1.0 if args.no_scale_embedding else math.sqrt(embed_dim)
self.embed_tokens = embed_tokens
self.embed_positions = embed_positions
if (
output_projection is None
and not args.no_output_layer
and args.vocab_size > 0
):
self.output_projection = self.build_output_projection(args)
else:
self.output_projection = output_projection
if args.layernorm_embedding:
self.layernorm_embedding = LayerNorm(embed_dim)
else:
self.layernorm_embedding = None
self.layers = nn.ModuleList([])
moe_freq = args.moe_freq
for i in range(args.decoder_layers):
is_moe_layer = moe_freq != 0 and (i + 1) % moe_freq == 0
self.layers.append(
self.build_decoder_layer(
args,
depth=i,
is_moe_layer=is_moe_layer,
is_encoder_decoder=is_encoder_decoder,
)
)
self.num_layers = len(self.layers)
if args.decoder_normalize_before:
self.layer_norm = LayerNorm(embed_dim)
else:
self.layer_norm = None
self.output_projection = output_projection
self.self_attn_relative_position = None
self.cross_attn_relative_position = None
self.self_attn_sope = None
self.cross_attn_sope = None
if args.sope_rel_pos:
assert args.rel_pos_buckets == 0 and args.max_rel_pos == 0
self.self_attn_sope = SoPE(
args.decoder_embed_dim // args.decoder_attention_heads
)
if is_encoder_decoder:
self.cross_attn_sope = SoPE(
args.decoder_embed_dim // args.decoder_attention_heads
)
if args.rel_pos_buckets > 0 and args.max_rel_pos > 0:
self.self_attn_relative_position = RelativePositionBias(
num_buckets=args.rel_pos_buckets,
max_distance=args.max_rel_pos,
n_heads=args.decoder_attention_heads,
)
if is_encoder_decoder:
self.cross_attn_relative_position = RelativePositionBias(
num_buckets=args.rel_pos_buckets,
max_distance=args.max_rel_pos,
n_heads=args.decoder_attention_heads,
)
if args.bert_init:
self.apply(init_bert_params)
if args.deepnorm:
if is_encoder_decoder:
init_scale = math.pow(12.0 * args.decoder_layers, 0.25)
else:
init_scale = math.pow(8.0 * args.decoder_layers, 0.25)
for name, p in self.named_parameters():
if (
"fc1" in name
or "fc2" in name
or "out_proj" in name
or "v_proj" in name
):
p.data.div_(init_scale)
if args.subln:
if is_encoder_decoder:
init_scale = math.sqrt(math.log(args.decoder_layers * 3))
else:
init_scale = math.sqrt(math.log(args.decoder_layers * 2))
for name, p in self.named_parameters():
if "encoder_attn" in name:
continue
if (
"fc1" in name
or "fc2" in name
or "out_proj" in name
or "v_proj" in name
):
p.data.mul_(init_scale)
def build_output_projection(
self,
args,
):
if args.share_decoder_input_output_embed:
output_projection = torch.nn.Linear(
self.embed_tokens.weight.shape[1],
self.embed_tokens.weight.shape[0],
bias=False,
)
output_projection.weight = self.embed_tokens.weight
else:
output_projection = torch.nn.Linear(
args.decoder_embed_dim, args.vocab_size, bias=False
)
torch.nn.init.normal_(
output_projection.weight, mean=0, std=args.decoder_embed_dim**-0.5
)
return output_projection
def build_decoder_layer(
self, args, depth, is_moe_layer=False, is_encoder_decoder=False
):
layer = DecoderLayer(
args,
depth,
is_moe_layer=is_moe_layer,
is_encoder_decoder=is_encoder_decoder,
)
if args.checkpoint_activations:
layer = checkpoint_wrapper(layer)
if args.fsdp:
layer = wrap(layer)
return layer
def forward_embedding(
self,
tokens,
token_embedding=None,
incremental_state=None,
):
positions = None
if self.embed_positions is not None:
positions = self.embed_positions(
tokens, incremental_state=incremental_state
)
if incremental_state is not None:
tokens = tokens[:, -1:]
if positions is not None:
positions = positions[:, -1:]
if token_embedding is None:
token_embedding = self.embed_tokens(tokens)
x = embed = self.embed_scale * token_embedding
if positions is not None:
x += positions
if self.layernorm_embedding is not None:
x = self.layernorm_embedding(x)
x = self.dropout_module(x)
return x, embed
def forward(
self,
prev_output_tokens,
self_attn_padding_mask=None,
encoder_out=None,
incremental_state=None,
features_only=False,
return_all_hiddens=False,
token_embeddings=None,
**kwargs
):
# embed tokens and positions
x, _ = self.forward_embedding(
prev_output_tokens, token_embeddings, incremental_state
)
x = x.transpose(0, 1)
# relative postion
self_attn_rel_pos_bias = None
self_attn_sope_rel_pos = None
slen = prev_output_tokens.size(1)
if self.self_attn_sope is not None:
offset = 0 if incremental_state is None else incremental_state[0]["prev_key"].shape[2]
self_attn_sope_rel_pos = self.self_attn_sope(slen, offset)
if self.self_attn_relative_position is not None:
self_attn_rel_pos_bias = self.self_attn_relative_position(
batch_size=x.size(1), qlen=slen, klen=slen
)
if incremental_state is not None:
self_attn_rel_pos_bias = self_attn_rel_pos_bias[:, -1:, :]
cross_attn_rel_pos_bias = None
cross_attn_sope_rel_pos = None
if self.cross_attn_sope is not None:
cross_attn_sope_rel_pos = self.cross_attn_sope(slen + encoder_out["encoder_out"].size(0))
if self.cross_attn_relative_position is not None:
cross_attn_rel_pos_bias = self.cross_attn_relative_position(
batch_size=x.size(1),
qlen=slen,
klen=encoder_out["encoder_out"].size(0),
)
if incremental_state is not None:
cross_attn_rel_pos_bias = cross_attn_rel_pos_bias[:, -1:, :]
# decoder layers
inner_states = [x]
if encoder_out is None:
l_aux = []
else:
l_aux = encoder_out["l_aux"] if "l_aux" in encoder_out else []
for idx, layer in enumerate(self.layers):
if incremental_state is None:
self_attn_mask = torch.triu(
torch.zeros([x.size(0), x.size(0)])
.float()
.fill_(float("-inf"))
.type_as(x),
1,
)
else:
self_attn_mask = None
if idx not in incremental_state:
incremental_state[idx] = {}
x, layer_attn, _, l_aux_i = layer(
x,
encoder_out["encoder_out"] if encoder_out is not None else None,
encoder_out["encoder_padding_mask"]
if encoder_out is not None
else None,
incremental_state[idx] if incremental_state is not None else None,
self_attn_mask=self_attn_mask,
self_attn_padding_mask=self_attn_padding_mask,
self_attn_rel_pos=self_attn_rel_pos_bias,
cross_attn_rel_pos=cross_attn_rel_pos_bias,
self_attn_sope_rel_pos=self_attn_sope_rel_pos,
cross_attn_sope_rel_pos=cross_attn_sope_rel_pos,
)
l_aux.append(l_aux_i)
inner_states.append(x)
if self.layer_norm is not None:
x = self.layer_norm(x)
x = x.transpose(0, 1)
if not features_only:
x = self.output_layer(x)
return x, {
"inner_states": inner_states,
"l_aux": l_aux,
"attn": [layer_attn.mean(dim=0)] if layer_attn is not None else None,
}
def output_layer(self, features):
return self.output_projection(features)
| KosmosX-API-main | kosmosX/torchscale/torchscale/architecture/decoder.py |
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
class EncoderConfig(object):
def __init__(self, **kwargs):
self.encoder_embed_dim = kwargs.pop("encoder_embed_dim", 768)
self.encoder_attention_heads = kwargs.pop("encoder_attention_heads", 12)
self.encoder_ffn_embed_dim = kwargs.pop("encoder_ffn_embed_dim", 3072)
self.encoder_layers = kwargs.pop("encoder_layers", 12)
self.encoder_normalize_before = kwargs.pop("encoder_normalize_before", True)
self.activation_fn = kwargs.pop("activation_fn", "gelu")
self.dropout = kwargs.pop("dropout", 0.0)
self.drop_path_rate = kwargs.pop("drop_path_rate", 0.0)
self.attention_dropout = kwargs.pop("attention_dropout", 0.0)
self.activation_dropout = kwargs.pop("activation_dropout", 0.0)
self.no_scale_embedding = kwargs.pop("no_scale_embedding", True)
self.layernorm_embedding = kwargs.pop("layernorm_embedding", False)
self.moe_freq = kwargs.pop("moe_freq", 0)
self.moe_top1_expert = kwargs.pop("moe_top1_expert", False)
self.moe_expert_count = kwargs.pop("moe_expert_count", 0)
self.moe_gating_use_fp32 = kwargs.pop("moe_gating_use_fp32", True)
self.moe_eval_capacity_token_fraction = kwargs.pop(
"moe_eval_capacity_token_fraction", 0.25
)
self.moe_second_expert_policy = kwargs.pop("moe_second_expert_policy", "random")
self.moe_normalize_gate_prob_before_dropping = kwargs.pop(
"moe_normalize_gate_prob_before_dropping", False
)
self.use_xmoe = kwargs.pop("use_xmoe", False)
self.rel_pos_buckets = kwargs.pop("rel_pos_buckets", 0)
self.max_rel_pos = kwargs.pop("max_rel_pos", 0)
self.deepnorm = kwargs.pop("deepnorm", False)
self.subln = kwargs.pop("subln", True)
self.bert_init = kwargs.pop("bert_init", False)
self.multiway = kwargs.pop("multiway", False)
self.share_encoder_input_output_embed = kwargs.pop(
"share_encoder_input_output_embed", False
)
self.max_source_positions = kwargs.pop("max_source_positions", 1024)
self.no_output_layer = kwargs.pop("no_output_layer", False)
# Text
self.vocab_size = kwargs.pop("vocab_size", -1)
# Vision
self.img_size = kwargs.pop("img_size", 224)
self.patch_size = kwargs.pop("patch_size", 16)
self.in_chans = kwargs.pop("in_chans", 3)
# Fairscale
self.checkpoint_activations = kwargs.pop("checkpoint_activations", False)
self.fsdp = kwargs.pop("fsdp", False)
self.ddp_rank = kwargs.pop("ddp_rank", 0)
self.flash_attention = kwargs.pop("flash_attention", False)
self.scale_length = kwargs.pop("scale_length", 2048)
if self.deepnorm:
self.encoder_normalize_before = False
self.subln = False
if self.subln:
self.encoder_normalize_before = True
self.deepnorm = False
if self.use_xmoe:
self.moe_normalize_gate_prob_before_dropping = True
self.moe_second_expert_policy = "random"
assert self.moe_freq > 0 and self.moe_expert_count > 0
def override(self, args):
for hp in self.__dict__.keys():
if getattr(args, hp, None) is not None:
self.__dict__[hp] = getattr(args, hp, None)
class DecoderConfig(object):
def __init__(self, **kwargs):
self.decoder_embed_dim = kwargs.pop("decoder_embed_dim", 768)
self.decoder_attention_heads = kwargs.pop("decoder_attention_heads", 12)
self.decoder_ffn_embed_dim = kwargs.pop("decoder_ffn_embed_dim", 3072)
self.decoder_layers = kwargs.pop("decoder_layers", 12)
self.decoder_normalize_before = kwargs.pop("decoder_normalize_before", True)
self.activation_fn = kwargs.pop("activation_fn", "gelu")
self.dropout = kwargs.pop("dropout", 0.0)
self.drop_path_rate = kwargs.pop("drop_path_rate", 0.0)
self.attention_dropout = kwargs.pop("attention_dropout", 0.0)
self.activation_dropout = kwargs.pop("activation_dropout", 0.0)
self.no_scale_embedding = kwargs.pop("no_scale_embedding", True)
self.layernorm_embedding = kwargs.pop("layernorm_embedding", False)
self.moe_freq = kwargs.pop("moe_freq", 0)
self.moe_top1_expert = kwargs.pop("moe_top1_expert", False)
self.moe_expert_count = kwargs.pop("moe_expert_count", 0)
self.moe_gating_use_fp32 = kwargs.pop("moe_gating_use_fp32", True)
self.moe_eval_capacity_token_fraction = kwargs.pop(
"moe_eval_capacity_token_fraction", 0.25
)
self.moe_second_expert_policy = kwargs.pop("moe_second_expert_policy", "random")
self.moe_normalize_gate_prob_before_dropping = kwargs.pop(
"moe_normalize_gate_prob_before_dropping", False
)
self.use_xmoe = kwargs.pop("use_xmoe", False)
self.rel_pos_buckets = kwargs.pop("rel_pos_buckets", 0)
self.max_rel_pos = kwargs.pop("max_rel_pos", 0)
self.deepnorm = kwargs.pop("deepnorm", False)
self.subln = kwargs.pop("subln", True)
self.bert_init = kwargs.pop("bert_init", False)
self.multiway = kwargs.pop("multiway", False)
self.share_decoder_input_output_embed = kwargs.pop(
"share_decoder_input_output_embed", False
)
self.max_target_positions = kwargs.pop("max_target_positions", 1024)
self.no_output_layer = kwargs.pop("no_output_layer", False)
# Text
self.vocab_size = kwargs.pop("vocab_size", -1)
# Fairscale
self.checkpoint_activations = kwargs.pop("checkpoint_activations", False)
self.fsdp = kwargs.pop("fsdp", False)
self.ddp_rank = kwargs.pop("ddp_rank", 0)
self.flash_attention = kwargs.pop("flash_attention", False)
self.sope_rel_pos = kwargs.pop("sope_rel_pos", False)
self.scale_length = kwargs.pop("scale_length", 2048)
if self.deepnorm:
self.decoder_normalize_before = False
self.subln = False
if self.subln:
self.decoder_normalize_before = True
self.deepnorm = False
if self.use_xmoe:
self.moe_normalize_gate_prob_before_dropping = True
self.moe_second_expert_policy = "random"
assert self.moe_freq > 0 and self.moe_expert_count > 0
def override(self, args):
for hp in self.__dict__.keys():
if getattr(args, hp, None) is not None:
self.__dict__[hp] = getattr(args, hp, None)
class EncoderDecoderConfig(object):
def __init__(self, **kwargs):
self.encoder_embed_dim = kwargs.pop("encoder_embed_dim", 768)
self.encoder_attention_heads = kwargs.pop("encoder_attention_heads", 12)
self.encoder_ffn_embed_dim = kwargs.pop("encoder_ffn_embed_dim", 3072)
self.encoder_layers = kwargs.pop("encoder_layers", 12)
self.encoder_normalize_before = kwargs.pop("encoder_normalize_before", True)
self.decoder_embed_dim = kwargs.pop("decoder_embed_dim", 768)
self.decoder_attention_heads = kwargs.pop("decoder_attention_heads", 12)
self.decoder_ffn_embed_dim = kwargs.pop("decoder_ffn_embed_dim", 3072)
self.decoder_layers = kwargs.pop("decoder_layers", 12)
self.decoder_normalize_before = kwargs.pop("decoder_normalize_before", True)
self.activation_fn = kwargs.pop("activation_fn", "gelu")
self.dropout = kwargs.pop("dropout", 0.0)
self.drop_path_rate = kwargs.pop("drop_path_rate", 0.0)
self.attention_dropout = kwargs.pop("attention_dropout", 0.0)
self.activation_dropout = kwargs.pop("activation_dropout", 0.0)
self.no_scale_embedding = kwargs.pop("no_scale_embedding", True)
self.layernorm_embedding = kwargs.pop("layernorm_embedding", False)
self.moe_freq = kwargs.pop("moe_freq", 0)
self.moe_top1_expert = kwargs.pop("moe_top1_expert", False)
self.moe_expert_count = kwargs.pop("moe_expert_count", 0)
self.moe_gating_use_fp32 = kwargs.pop("moe_gating_use_fp32", True)
self.moe_eval_capacity_token_fraction = kwargs.pop(
"moe_eval_capacity_token_fraction", 0.25
)
self.moe_second_expert_policy = kwargs.pop("moe_second_expert_policy", "random")
self.moe_normalize_gate_prob_before_dropping = kwargs.pop(
"moe_normalize_gate_prob_before_dropping", False
)
self.use_xmoe = kwargs.pop("use_xmoe", False)
self.rel_pos_buckets = kwargs.pop("rel_pos_buckets", 0)
self.max_rel_pos = kwargs.pop("max_rel_pos", 0)
self.deepnorm = kwargs.pop("deepnorm", False)
self.subln = kwargs.pop("subln", True)
self.bert_init = kwargs.pop("bert_init", False)
self.multiway = kwargs.pop("multiway", False)
self.share_all_embeddings = kwargs.pop("share_all_embeddings", False)
self.share_decoder_input_output_embed = kwargs.pop(
"share_decoder_input_output_embed", False
)
self.max_source_positions = kwargs.pop("max_source_positions", 1024)
self.max_target_positions = kwargs.pop("max_target_positions", 1024)
self.no_output_layer = kwargs.pop("no_output_layer", False)
# Text
self.vocab_size = kwargs.pop("vocab_size", -1)
# Fairscale
self.checkpoint_activations = kwargs.pop("checkpoint_activations", False)
self.fsdp = kwargs.pop("fsdp", False)
self.ddp_rank = kwargs.pop("ddp_rank", 0)
self.flash_attention = kwargs.pop("flash_attention", False)
self.sope_rel_pos = kwargs.pop("sope_rel_pos", False)
self.scale_length = kwargs.pop("scale_length", 2048)
if self.deepnorm:
self.encoder_normalize_before = False
self.decoder_normalize_before = False
self.subln = False
if self.subln:
self.encoder_normalize_before = True
self.decoder_normalize_before = True
self.deepnorm = False
if self.use_xmoe:
self.moe_normalize_gate_prob_before_dropping = True
self.moe_second_expert_policy = "random"
assert self.moe_freq > 0 and self.moe_expert_count > 0
def override(self, args):
for hp in self.__dict__.keys():
if getattr(args, hp, None) is not None:
self.__dict__[hp] = getattr(args, hp, None)
| KosmosX-API-main | kosmosX/torchscale/torchscale/architecture/config.py |
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
import torch.nn as nn
from torchscale.architecture.decoder import Decoder
from torchscale.architecture.encoder import Encoder
class EncoderDecoder(nn.Module):
def __init__(
self,
args,
encoder_embed_tokens=None,
encoder_embed_positions=None,
decoder_embed_tokens=None,
decoder_embed_positions=None,
output_projection=None,
**kwargs
):
super().__init__()
self.args = args
if args.share_all_embeddings:
args.share_decoder_input_output_embed = True
self.encoder = Encoder(
args,
encoder_embed_tokens,
encoder_embed_positions,
is_encoder_decoder=True,
**kwargs
)
if args.share_all_embeddings and decoder_embed_tokens is None:
decoder_embed_tokens = self.encoder.embed_tokens
self.decoder = Decoder(
args,
decoder_embed_tokens,
decoder_embed_positions,
output_projection,
is_encoder_decoder=True,
**kwargs
)
def forward(
self,
src_tokens,
prev_output_tokens,
return_all_hiddens=False,
features_only=False,
**kwargs
):
encoder_out = self.encoder(src_tokens, return_all_hiddens=return_all_hiddens)
decoder_out = self.decoder(
prev_output_tokens,
encoder_out=encoder_out,
features_only=features_only,
return_all_hiddens=return_all_hiddens,
)
return decoder_out
| KosmosX-API-main | kosmosX/torchscale/torchscale/architecture/encoder_decoder.py |
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
| KosmosX-API-main | kosmosX/torchscale/torchscale/architecture/__init__.py |
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
import math
import numpy as np
import torch
import torch.nn as nn
from apex.normalization import FusedLayerNorm as LayerNorm
from fairscale.nn import checkpoint_wrapper, wrap
from torchscale.architecture.utils import init_bert_params
from torchscale.component.droppath import DropPath
from torchscale.component.feedforward_network import FeedForwardNetwork, make_experts
from torchscale.component.multihead_attention import MultiheadAttention
from torchscale.component.multiway_network import MultiwayWrapper, set_split_position
from torchscale.component.relative_position_bias import RelativePositionBias
from torchscale.component.xmoe.moe_layer import MOELayer
from torchscale.component.xmoe.routing import Top1Gate, Top2Gate
class EncoderLayer(nn.Module):
def __init__(self, args, depth, is_moe_layer=False, is_encoder_decoder=False):
super().__init__()
self.args = args
self.embed_dim = args.encoder_embed_dim
self.self_attn = self.build_self_attention(self.embed_dim, args)
self.self_attn_layer_norm = MultiwayWrapper(args, LayerNorm(self.embed_dim))
self.dropout_module = torch.nn.Dropout(args.dropout, inplace=True)
if args.drop_path_rate > 0:
drop_path_prob = np.linspace(0, args.drop_path_rate, args.encoder_layers)[
depth
]
self.drop_path = DropPath(drop_path_prob)
else:
self.drop_path = None
self.normalize_before = args.encoder_normalize_before
self.is_moe_layer = is_moe_layer
self.ffn_dim = args.encoder_ffn_embed_dim
if not self.is_moe_layer:
self.ffn = MultiwayWrapper(
args,
self.build_ffn(
self.embed_dim,
self.args,
),
)
else:
assert not self.args.multiway
if args.moe_top1_expert:
gate = Top1Gate(
self.embed_dim,
args.moe_expert_count,
use_fp32=args.moe_gating_use_fp32,
moe_eval_capacity_token_fraction=args.moe_eval_capacity_token_fraction,
use_xmoe=args.use_xmoe,
)
else:
gate = Top2Gate(
self.embed_dim,
args.moe_expert_count,
args.moe_gating_use_fp32,
args.moe_second_expert_policy,
args.moe_normalize_gate_prob_before_dropping,
args.moe_eval_capacity_token_fraction,
use_xmoe=args.use_xmoe,
)
experts = make_experts(args, self.embed_dim, self.ffn_dim)
self.moe_layer = MOELayer(gate, experts, args)
self.final_layer_norm = MultiwayWrapper(args, LayerNorm(self.embed_dim))
if args.deepnorm:
if is_encoder_decoder:
self.alpha = (
math.pow(
math.pow(args.encoder_layers, 4) * args.decoder_layers, 0.0625
)
* 0.81
)
else:
self.alpha = math.pow(2.0 * args.encoder_layers, 0.25)
else:
self.alpha = 1.0
def build_ffn(self, embed_dim, args):
return FeedForwardNetwork(
embed_dim,
self.ffn_dim,
args.activation_fn,
args.dropout,
args.activation_dropout,
args.subln,
)
def build_self_attention(self, embed_dim, args):
return MultiheadAttention(
args,
embed_dim,
args.encoder_attention_heads,
dropout=args.attention_dropout,
self_attention=True,
encoder_decoder_attention=False,
subln=args.subln,
)
def residual_connection(self, x, residual):
return residual * self.alpha + x
def forward(self, x, encoder_padding_mask, attn_mask=None, rel_pos=None):
if attn_mask is not None:
attn_mask = attn_mask.masked_fill(attn_mask.to(torch.bool), -1e8)
residual = x
if self.normalize_before:
x = self.self_attn_layer_norm(x)
x, _ = self.self_attn(
query=x,
key=x,
value=x,
key_padding_mask=encoder_padding_mask,
attn_mask=attn_mask,
rel_pos=rel_pos,
)
x = self.dropout_module(x)
if self.drop_path is not None:
x = self.drop_path(x)
x = self.residual_connection(x, residual)
if not self.normalize_before:
x = self.self_attn_layer_norm(x)
residual = x
if self.normalize_before:
x = self.final_layer_norm(x)
if not self.is_moe_layer:
x = self.ffn(x)
l_aux = None
else:
x = x.transpose(0, 1)
x, l_aux = self.moe_layer(x)
x = x.transpose(0, 1)
if self.drop_path is not None:
x = self.drop_path(x)
x = self.residual_connection(x, residual)
if not self.normalize_before:
x = self.final_layer_norm(x)
return x, l_aux
class Encoder(nn.Module):
def __init__(
self,
args,
embed_tokens=None,
embed_positions=None,
output_projection=None,
is_encoder_decoder=False,
**kwargs
):
self.args = args
super().__init__(**kwargs)
self.dropout_module = torch.nn.Dropout(args.dropout, inplace=True)
embed_dim = args.encoder_embed_dim
self.embed_scale = 1.0 if args.no_scale_embedding else math.sqrt(embed_dim)
self.embed_tokens = embed_tokens
self.embed_positions = embed_positions
if (
output_projection is None
and not is_encoder_decoder
and not args.no_output_layer
and args.vocab_size > 0
):
self.output_projection = self.build_output_projection(args)
else:
self.output_projection = output_projection
if args.layernorm_embedding:
self.layernorm_embedding = MultiwayWrapper(
args, LayerNorm(embed_dim), dim=1
)
else:
self.layernorm_embedding = None
self.layers = nn.ModuleList([])
moe_freq = args.moe_freq
for i in range(args.encoder_layers):
is_moe_layer = moe_freq != 0 and (i + 1) % moe_freq == 0
self.layers.append(
self.build_encoder_layer(
args,
depth=i,
is_moe_layer=is_moe_layer,
is_encoder_decoder=is_encoder_decoder,
)
)
self.num_layers = len(self.layers)
if args.encoder_normalize_before:
self.layer_norm = MultiwayWrapper(args, LayerNorm(embed_dim))
else:
self.layer_norm = None
if args.rel_pos_buckets > 0 and args.max_rel_pos > 0:
self.relative_position = RelativePositionBias(
num_buckets=args.rel_pos_buckets,
max_distance=args.max_rel_pos,
n_heads=args.encoder_attention_heads,
)
else:
self.relative_position = None
if args.bert_init:
self.apply(init_bert_params)
if args.deepnorm:
if is_encoder_decoder:
init_scale = (
math.pow(
math.pow(args.encoder_layers, 4) * args.decoder_layers, 0.0625
)
/ 1.15
)
else:
init_scale = math.pow(8.0 * args.encoder_layers, 0.25)
for name, p in self.named_parameters():
if (
"fc1" in name
or "fc2" in name
or "out_proj" in name
or "v_proj" in name
):
p.data.div_(init_scale)
if args.subln:
if is_encoder_decoder:
init_scale = math.sqrt(
math.log(3 * args.decoder_layers)
* math.log(2 * args.encoder_layers)
/ 3
)
else:
init_scale = math.sqrt(math.log(args.encoder_layers * 2))
for name, p in self.named_parameters():
if (
"fc1" in name
or "fc2" in name
or "out_proj" in name
or "v_proj" in name
):
p.data.mul_(init_scale)
def build_output_projection(
self,
args,
):
if args.share_encoder_input_output_embed:
assert args.encoder_embedding_type == "language"
output_projection = torch.nn.Linear(
self.embed_tokens.weight.shape[1],
self.embed_tokens.weight.shape[0],
bias=False,
)
output_projection.weight = self.embed_tokens.weight
else:
output_projection = torch.nn.Linear(
args.encoder_embed_dim, args.vocab_size, bias=False
)
torch.nn.init.normal_(
output_projection.weight, mean=0, std=args.encoder_embed_dim**-0.5
)
return output_projection
def build_encoder_layer(
self, args, depth, is_moe_layer=False, is_encoder_decoder=False
):
layer = EncoderLayer(
args,
depth,
is_moe_layer=is_moe_layer,
is_encoder_decoder=is_encoder_decoder,
)
if args.checkpoint_activations:
layer = checkpoint_wrapper(layer)
if args.fsdp:
layer = wrap(layer)
return layer
def forward_embedding(
self,
src_tokens,
token_embedding=None,
):
if token_embedding is None:
token_embedding = self.embed_tokens(src_tokens)
x = embed = self.embed_scale * token_embedding
if self.embed_positions is not None:
if src_tokens is not None:
x = embed + self.embed_positions(src_tokens)
else:
x = embed + self.embed_positions(x)
if self.layernorm_embedding is not None:
x = self.layernorm_embedding(x)
x = self.dropout_module(x)
return x, embed
def forward(
self,
src_tokens,
encoder_padding_mask=None,
return_all_hiddens=False,
token_embeddings=None,
multiway_split_position=None,
features_only=False,
**kwargs
):
assert src_tokens is not None or token_embeddings is not None
if encoder_padding_mask is None:
if src_tokens is not None:
encoder_padding_mask = torch.zeros_like(
src_tokens, device=src_tokens.device
).bool()
else:
encoder_padding_mask = torch.zeros(
[token_embeddings.size(0), token_embeddings.size(1)],
device=token_embeddings.device,
).bool()
if multiway_split_position is not None:
assert self.args.multiway
self.apply(set_split_position(multiway_split_position))
x, encoder_embedding = self.forward_embedding(src_tokens, token_embeddings)
x = x * (1 - encoder_padding_mask.unsqueeze(-1).type_as(x))
x = x.transpose(0, 1)
encoder_states = []
if return_all_hiddens:
encoder_states.append(x)
rel_pos_bias = None
if self.relative_position is not None:
rel_pos_bias = self.relative_position(
batch_size=x.size(1), qlen=x.size(0), klen=x.size(0)
)
l_aux = []
for layer in self.layers:
x, l_aux_i = layer(
x, encoder_padding_mask=encoder_padding_mask, rel_pos=rel_pos_bias
)
if return_all_hiddens:
assert encoder_states is not None
encoder_states.append(x)
l_aux.append(l_aux_i)
if self.layer_norm is not None:
x = self.layer_norm(x)
if not features_only and self.output_projection is not None:
x = self.output_projection(x)
return {
"encoder_out": x,
"encoder_embedding": encoder_embedding,
"encoder_padding_mask": encoder_padding_mask,
"encoder_states": encoder_states,
"l_aux": l_aux,
}
| KosmosX-API-main | kosmosX/torchscale/torchscale/architecture/encoder.py |
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
import torch.nn as nn
from torchscale.component.multihead_attention import MultiheadAttention
from torchscale.component.multiway_network import MultiwayNetwork
def init_bert_params(module):
def normal_(data):
data.copy_(data.cpu().normal_(mean=0.0, std=0.02).to(data.device))
if isinstance(module, nn.Linear):
normal_(module.weight.data)
if module.bias is not None:
module.bias.data.zero_()
if isinstance(module, nn.Embedding):
normal_(module.weight.data)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
if isinstance(module, MultiheadAttention):
if isinstance(module.q_proj, MultiwayNetwork):
normal_(module.q_proj.A.weight.data)
normal_(module.q_proj.B.weight.data)
normal_(module.k_proj.A.weight.data)
normal_(module.k_proj.B.weight.data)
normal_(module.v_proj.A.weight.data)
normal_(module.v_proj.B.weight.data)
else:
normal_(module.q_proj.weight.data)
normal_(module.k_proj.weight.data)
normal_(module.v_proj.weight.data)
| KosmosX-API-main | kosmosX/torchscale/torchscale/architecture/utils.py |
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
import torch
import torch.nn as nn
from torchscale.architecture.encoder import Encoder
from torchscale.component.embedding import (
PositionalEmbedding,
TextEmbedding,
VisionEmbedding,
)
from torchscale.component.multiway_network import MultiwayWrapper
class BEiT3(nn.Module):
def __init__(self, args, **kwargs):
super().__init__()
self.args = args
assert args.multiway
assert args.vocab_size > 0
assert not args.share_encoder_input_output_embed
self.text_embed = TextEmbedding(args.vocab_size, args.encoder_embed_dim)
self.vision_embed = VisionEmbedding(
args.img_size,
args.patch_size,
args.in_chans,
args.encoder_embed_dim,
contain_mask_token=True,
prepend_cls_token=True,
)
embed_positions = MultiwayWrapper(
args,
PositionalEmbedding(args.max_source_positions, args.encoder_embed_dim),
dim=1,
)
self.encoder = Encoder(
args,
embed_tokens=None,
embed_positions=embed_positions,
output_projection=None,
is_encoder_decoder=False,
)
def forward(
self,
textual_tokens=None,
visual_tokens=None,
text_padding_position=None,
vision_masked_position=None,
):
assert textual_tokens is not None or visual_tokens is not None
if textual_tokens is None:
x = self.vision_embed(visual_tokens, vision_masked_position)
encoder_padding_mask = None
multiway_split_position = -1
elif visual_tokens is None:
x = self.text_embed(textual_tokens)
encoder_padding_mask = text_padding_position
multiway_split_position = 0
else:
x1 = self.vision_embed(visual_tokens, vision_masked_position)
multiway_split_position = x1.size(1)
x2 = self.text_embed(textual_tokens)
x = torch.cat([x1, x2], dim=1)
if text_padding_position is not None:
encoder_padding_mask = torch.cat(
[
torch.zeros(x1.shape[:-1]).to(x1.device).bool(),
text_padding_position,
],
dim=1,
)
else:
encoder_padding_mask = None
encoder_out = self.encoder(
src_tokens=None,
encoder_padding_mask=encoder_padding_mask,
token_embeddings=x,
multiway_split_position=multiway_split_position,
)
return encoder_out
| KosmosX-API-main | kosmosX/torchscale/torchscale/model/BEiT3.py |
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
| KosmosX-API-main | kosmosX/torchscale/torchscale/model/__init__.py |
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
| KosmosX-API-main | kosmosX/torchscale/examples/__init__.py |
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# flake8: noqa
import models
import tasks
from fairseq_cli.generate import cli_main
if __name__ == "__main__":
cli_main()
| KosmosX-API-main | kosmosX/torchscale/examples/fairseq/generate.py |
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
| KosmosX-API-main | kosmosX/torchscale/examples/fairseq/__init__.py |
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# flake8: noqa
import models
import tasks
from fairseq_cli.interactive import cli_main
if __name__ == "__main__":
cli_main()
| KosmosX-API-main | kosmosX/torchscale/examples/fairseq/interactive.py |
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# flake8: noqa
import models
import tasks
from fairseq_cli.train import cli_main
if __name__ == "__main__":
cli_main()
| KosmosX-API-main | kosmosX/torchscale/examples/fairseq/train.py |
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
import json
import logging
import os
from argparse import Namespace
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass, field
import sentencepiece as spm
from fairseq import utils
from fairseq.data import Dictionary
from fairseq.dataclass import ChoiceEnum, FairseqDataclass
from fairseq.tasks import FairseqTask, register_task
from omegaconf import II, MISSING
from .data.mlm_loader import MLMLoader
logger = logging.getLogger(__name__)
SAMPLE_BREAK_MODE_CHOICES = ChoiceEnum(["none", "complete", "complete_doc", "eos"])
SHORTEN_METHOD_CHOICES = ChoiceEnum(["none", "truncate", "random_crop"])
@dataclass
class PretrainingConfig(FairseqDataclass):
data: str = field(
default=MISSING,
metadata={
"help": "colon separated path to data directories list, \
will be iterated upon during epochs in round-robin manner"
},
)
sample_break_mode: SAMPLE_BREAK_MODE_CHOICES = field(
default="complete",
metadata={
"help": 'If omitted or "none", fills each sample with tokens-per-sample '
'tokens. If set to "complete", splits samples only at the end '
"of sentence, but may include multiple sentences per sample. "
'"complete_doc" is similar but respects doc boundaries. '
'If set to "eos", includes only one sentence per sample.'
},
)
tokens_per_sample: int = field(
default=1024,
metadata={"help": "max number of tokens per sample for LM dataset"},
)
mask_prob: float = field(
default=0.15,
metadata={"help": "probability of replacing a token with mask"},
)
leave_unmasked_prob: float = field(
default=0.1,
metadata={"help": "probability that a masked token is unmasked"},
)
random_token_prob: float = field(
default=0.1,
metadata={"help": "probability of replacing a token with a random token"},
)
freq_weighted_replacement: bool = field(
default=False,
metadata={"help": "sample random replacement words based on word frequencies"},
)
mask_whole_words: bool = field(
default=False,
metadata={"help": "mask whole words; you may also want to set --bpe"},
)
mask_multiple_length: int = field(
default=1,
metadata={"help": "repeat the mask indices multiple times"},
)
mask_stdev: float = field(
default=0.0,
metadata={"help": "stdev of the mask length"},
)
shorten_method: SHORTEN_METHOD_CHOICES = field(
default="none",
metadata={
"help": "if not none, shorten sequences that exceed --tokens-per-sample"
},
)
shorten_data_split_list: str = field(
default="",
metadata={
"help": "comma-separated list of dataset splits to apply shortening to, "
'e.g., "train,valid" (default: all dataset splits)'
},
)
seed: int = II("common.seed")
span_length: float = field(
default=3.0,
metadata={"help": "average span length for masking"},
)
remove_source_sentinel: bool = field(
default=False,
metadata={"help": "remove the source sentinel for the span corruption task"},
)
remove_target_sentinel: bool = field(
default=False,
metadata={"help": "remove the target sentinel for the span corruption task"},
)
batch_read_ahead: int = field(
default=100000,
metadata={"help": "batch read ahead size for infinibatch"},
)
required_batch_size_multiple: int = II("dataset.required_batch_size_multiple")
spm_model: str = field(
default="",
metadata={"help": "sentencepice model to tokenize the data"},
)
dict_file: str = field(
default="",
metadata={"help": ""},
)
@register_task("pretraining", dataclass=PretrainingConfig)
class PLMTask(FairseqTask):
def __init__(self, cfg, dictionary, tokenizer):
super().__init__(cfg)
self.cfg = cfg
self.dictionary = dictionary
self.tokenizer = tokenizer
self.seed = cfg.seed
self.mask_idx = dictionary.index("<mask>")
@classmethod
def setup_task(cls, cfg, **kwargs):
paths = utils.split_paths(cfg.data)
assert len(paths) > 0
if cfg.dict_file != "":
dictionary = Dictionary.load(cfg.dict_file)
else:
dictionary = Dictionary.load(os.path.join(paths[0], "dict.txt"))
# add mask token
dictionary.add_symbol("<mask>")
for i in range(100):
dictionary.add_symbol(f"<mask_{i}>")
dictionary.pad_to_multiple_(cfg.required_batch_size_multiple)
logger.info("dictionary: {} types".format(len(dictionary)))
# tokenizer = SentencepieceBPE(Namespace(sentencepiece_model=cfg.spm_model))
tokenizer = spm.SentencePieceProcessor()
tokenizer.Load(cfg.spm_model)
return cls(cfg, dictionary, tokenizer)
def load_dataset(self, split, epoch=1, combine=False, **kwargs):
self.datasets[split] = {
"data": json.load(open(f"{self.cfg.data}/json/{split}.json")),
"data_dir": self.cfg.data,
"shuffle": True if split == "train" else False,
}
self.datasets[split] = Namespace(**self.datasets[split])
def dataset(self, split):
if split not in self.datasets:
raise KeyError("Dataset not loaded: " + split)
return self.datasets[split]
def get_batch_iterator(
self,
dataset,
max_tokens=None,
max_sentences=None,
max_positions=None,
ignore_invalid_inputs=False,
required_batch_size_multiple=1,
seed=1,
num_shards=1,
shard_id=0,
num_workers=0,
epoch=1,
data_buffer_size=0,
disable_iterator_cache=False,
):
return MLMLoader(
self.cfg,
dataset,
self.dictionary,
self.tokenizer,
max_tokens=max_tokens,
max_sentences=max_sentences,
max_positions=max_positions,
ignore_invalid_inputs=ignore_invalid_inputs,
required_batch_size_multiple=required_batch_size_multiple,
seed=seed,
num_shards=num_shards,
shard_id=shard_id,
)
@property
def source_dictionary(self):
return self.dictionary
@property
def target_dictionary(self):
return self.dictionary
| KosmosX-API-main | kosmosX/torchscale/examples/fairseq/tasks/pretraining.py |
import os
import json
from argparse import Namespace
import torch
from fairseq import utils
from fairseq.data import Dictionary
from fairseq.tasks import register_task
from fairseq.tasks.language_modeling import LanguageModelingTask, LanguageModelingConfig
from fairseq.data.encoders.gpt2_bpe import GPT2BPE
from dataclasses import dataclass, field
import sentencepiece
from .data.spm_lm_loader import SpmLmLoader as LMLoader
from .data.utils import EOL_SYMBOL
DEFAULT_ENCODER_JSON = "https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/encoder.json"
DEFAULT_VOCAB_BPE = "https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/vocab.bpe"
@dataclass
class GPTLanguageModelingConfig(LanguageModelingConfig):
spm_model: str = field(
default="",
metadata={
"help": "sentencepice model to tokenize the data"
},
)
gpt2_encoder_json: str = field(
default=DEFAULT_ENCODER_JSON, metadata={"help": "path to encoder.json"}
)
gpt2_vocab_bpe: str = field(
default=DEFAULT_VOCAB_BPE, metadata={"help": "path to vocab.bpe"}
)
dict_path: str = field(
default="",
metadata={
"help": "sentencepice model to tokenize the data"
},
)
batch_read_ahead: int = field(
default=10000,
metadata={"help": "batch read ahead size for infinibatch"},
)
pad_to_max_len: bool = field(
default=False,
metadata={"help": "pad each sentence to max length"},
)
@register_task('gpt_pretraining', dataclass=GPTLanguageModelingConfig)
class GPTPretrainingTask(LanguageModelingTask):
def __init__(self, args, dictionary, tokenizer, output_dictionary=None, targets=None):
super().__init__(args, dictionary, output_dictionary=output_dictionary, targets=targets)
self.cfg = args
self.tokenizer = tokenizer
@classmethod
def setup_task(cls, cfg, **kwargs):
"""Setup the task (e.g., load dictionaries).
Args:
args (argparse.Namespace): parsed command-line arguments
"""
paths = utils.split_paths(cfg.data)
assert len(paths) > 0
if len(cfg.dict_path) > 0:
dictionary = Dictionary.load(cfg.dict_path)
else:
dictionary = Dictionary.load(os.path.join(paths[0], "dict.txt"))
dictionary.add_symbol(EOL_SYMBOL)
output_dictionary = dictionary
args = cfg
# upgrade old checkpoints
if getattr(args, "exclude_self_target", False):
args.self_target = False
targets = []
if getattr(args, "self_target", False):
targets.append("self")
if getattr(args, "future_target", False):
targets.append("future")
if getattr(args, "past_target", False):
targets.append("past")
if len(targets) == 0:
# standard language modeling
targets = ["future"]
if len(cfg.spm_model) > 0:
tokenizer = sentencepiece.SentencePieceProcessor(model_file=cfg.spm_model)
else:
tokenizer = GPT2BPE(Namespace(
gpt2_vocab_bpe=cfg.gpt2_vocab_bpe,
gpt2_encoder_json=cfg.gpt2_encoder_json))
return cls(cfg, dictionary, tokenizer, output_dictionary, targets=targets)
def load_dataset(self, split, epoch=1, combine=False, **kwargs):
if "tnlg" in self.cfg.data and split == "train":
self.datasets[split] = {
# 'data': json.load(open(f'{self.cfg.data}/json/{split}-nogithub.json')) if split == 'train' else json.load(open(f'{self.cfg.data}/json/{split}.json')),
# 'data': json.load(open(f'{self.cfg.data}/json/{split}-nogithub-noarvix-nopubmed.json')) if split == 'train' else json.load(open(f'{self.cfg.data}/json/{split}.json')),
'data': json.load(open(f'{self.cfg.data}/json/{split}-nogithub-noarvix-nopubmed-mtnlg.json')) if split == 'train' else json.load(open(f'{self.cfg.data}/json/{split}.json')),
'data_dir': self.cfg.data,
'shuffle': True if split == 'train' else False,
}
else:
self.datasets[split] = {
'data': json.load(open(f'{self.cfg.data}/json/{split}.json')),
'data_dir': self.cfg.data,
'shuffle': True if split == 'train' else False,
}
self.datasets[split] = Namespace(**self.datasets[split])
def dataset(self, split):
if split not in self.datasets:
raise KeyError("Dataset not loaded: " + split)
return self.datasets[split]
def get_batch_iterator(
self,
dataset,
max_tokens=None,
max_sentences=None,
max_positions=None,
ignore_invalid_inputs=False,
required_batch_size_multiple=1,
seed=1,
num_shards=1,
shard_id=0,
num_workers=0,
epoch=1,
data_buffer_size=0,
disable_iterator_cache=False,
skip_remainder_batch=False,
grouped_shuffling=False,
update_epoch_batch_itr=False
):
disable_prefetching = False
if not dataset.shuffle: # for valid and test
shard_id = 0
disable_prefetching = True
return LMLoader(
self.cfg,
dataset,
self.dictionary,
self.tokenizer,
max_tokens=max_tokens,
max_sentences=max_sentences,
max_positions=max_positions,
ignore_invalid_inputs=ignore_invalid_inputs,
required_batch_size_multiple=required_batch_size_multiple,
seed=seed,
epoch=epoch,
num_shards=num_shards,
shard_id=shard_id,
disable_prefetching=disable_prefetching,
)
@property
def source_dictionary(self):
return self.dictionary
@property
def target_dictionary(self):
return self.dictionary
def train_step(
self, sample, model, criterion, optimizer, update_num, ignore_grad=False
):
"""
Do forward and backward, and return the loss as computed by *criterion*
for the given *model* and *sample*.
Args:
sample (dict): the mini-batch. The format is defined by the
:class:`~fairseq.data.FairseqDataset`.
model (~fairseq.models.BaseFairseqModel): the model
criterion (~fairseq.criterions.FairseqCriterion): the criterion
optimizer (~fairseq.optim.FairseqOptimizer): the optimizer
update_num (int): the current update
ignore_grad (bool): multiply loss by 0 if this is set to True
Returns:
tuple:
- the loss
- the sample size, which is used as the denominator for the
gradient
- logging outputs to display while training
"""
model.train()
model.set_num_updates(update_num)
with torch.autograd.profiler.record_function("forward"):
loss, sample_size, logging_output = criterion(model, sample['gpt'])
if ignore_grad:
loss *= 0
with torch.autograd.profiler.record_function("backward"):
optimizer.backward(loss)
return loss, sample_size, logging_output
def valid_step(self, sample, model, criterion):
model.eval()
with torch.no_grad():
loss, sample_size, logging_output = criterion(model, sample['gpt'])
return loss, sample_size, logging_output
| KosmosX-API-main | kosmosX/torchscale/examples/fairseq/tasks/gpt_base.py |
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
import argparse
import importlib
import os
# register dataclass
TASK_DATACLASS_REGISTRY = {}
TASK_REGISTRY = {}
TASK_CLASS_NAMES = set()
# automatically import any Python files in the tasks/ directory
tasks_dir = os.path.dirname(__file__)
for file in os.listdir(tasks_dir):
path = os.path.join(tasks_dir, file)
if (
not file.startswith("_")
and not file.startswith(".")
and (file.endswith(".py") or os.path.isdir(path))
):
task_name = file[: file.find(".py")] if file.endswith(".py") else file
module = importlib.import_module("tasks." + task_name)
# expose `task_parser` for sphinx
if task_name in TASK_REGISTRY:
parser = argparse.ArgumentParser(add_help=False)
group_task = parser.add_argument_group("Task name")
# fmt: off
group_task.add_argument('--task', metavar=task_name,
help='Enable this task with: ``--task=' + task_name + '``')
# fmt: on
group_args = parser.add_argument_group("Additional command-line arguments")
TASK_REGISTRY[task_name].add_args(group_args)
globals()[task_name + "_parser"] = parser
| KosmosX-API-main | kosmosX/torchscale/examples/fairseq/tasks/__init__.py |
import os
import json
from argparse import Namespace
import torch
from fairseq import utils
from fairseq.data import Dictionary
from fairseq.tasks import register_task
from fairseq.tasks.language_modeling import LanguageModelingTask
from fairseq.data.encoders.gpt2_bpe import GPT2BPE
from dataclasses import dataclass, field
import sentencepiece
from .data.spm_lm_loader import SpmLmLoader as LMLoader
from .data.laion_loader import LaionLoader
from .data.wild_loader import WildLoader
from .data.utils import EOL_SYMBOL, BOI_SYMBOL, EOI_SYMBOL, image_code_to_token
from .data.basic_loader import ConcatLoader
from .gpt_base import GPTLanguageModelingConfig
DEFAULT_ENCODER_JSON = "https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/encoder.json"
DEFAULT_VOCAB_BPE = "https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/vocab.bpe"
IMAGE_COOEBOOK_SIZE = 8192
@dataclass
class VLGPTLanguageModelingConfig(GPTLanguageModelingConfig):
wild_data_dir: str = field(default="", metadata={"help": ""})
wild_batch_size: int = field(default=4, metadata={"help": ""})
laion_data_dir: str = field(default="", metadata={"help": ""})
laion_batch_size: int = field(default=32, metadata={"help": ""})
@register_task('vl_gpt_pretraining', dataclass=VLGPTLanguageModelingConfig)
class VLGPTPretrainingTask(LanguageModelingTask):
def __init__(self, args, dictionary, tokenizer, output_dictionary=None, targets=None):
super().__init__(args, dictionary, output_dictionary=output_dictionary, targets=targets)
self.cfg = args
self.tokenizer = tokenizer
@classmethod
def setup_task(cls, cfg, **kwargs):
"""Setup the task (e.g., load dictionaries).
Args:
args (argparse.Namespace): parsed command-line arguments
"""
paths = utils.split_paths(cfg.data)
assert len(paths) > 0
if len(cfg.dict_path) > 0:
dictionary = Dictionary.load(cfg.dict_path)
else:
dictionary = Dictionary.load(os.path.join(paths[0], "dict.txt"))
dictionary.add_symbol(EOL_SYMBOL)
dictionary.add_symbol(BOI_SYMBOL)
dictionary.add_symbol(EOI_SYMBOL)
for i in range(IMAGE_COOEBOOK_SIZE):
dictionary.add_symbol(image_code_to_token(i))
print('| dictionary: {} types'.format(len(dictionary)))
output_dictionary = dictionary
args = cfg
# upgrade old checkpoints
if getattr(args, "exclude_self_target", False):
args.self_target = False
targets = []
if getattr(args, "self_target", False):
targets.append("self")
if getattr(args, "future_target", False):
targets.append("future")
if getattr(args, "past_target", False):
targets.append("past")
if len(targets) == 0:
# standard language modeling
targets = ["future"]
if len(cfg.spm_model) > 0:
tokenizer = sentencepiece.SentencePieceProcessor(model_file=cfg.spm_model)
else:
tokenizer = GPT2BPE(Namespace(
gpt2_vocab_bpe=cfg.gpt2_vocab_bpe,
gpt2_encoder_json=cfg.gpt2_encoder_json))
return cls(cfg, dictionary, tokenizer, output_dictionary, targets=targets)
def load_dataset(self, split, epoch=1, combine=False, **kwargs):
if "tnlg" in self.cfg.data and split == "train":
self.datasets[split] = {
# 'data': json.load(open(f'{self.cfg.data}/json/{split}-nogithub.json')) if split == 'train' else json.load(open(f'{self.cfg.data}/json/{split}.json')),
# 'data': json.load(open(f'{self.cfg.data}/json/{split}-nogithub-noarvix-nopubmed.json')) if split == 'train' else json.load(open(f'{self.cfg.data}/json/{split}.json')),
'data': json.load(open(f'{self.cfg.data}/json/{split}-nogithub-noarvix-nopubmed-mtnlg.json')) if split == 'train' else json.load(open(f'{self.cfg.data}/json/{split}.json')),
'data_dir': self.cfg.data,
'shuffle': True if split == 'train' else False,
}
else:
self.datasets[split] = {
'data': json.load(open(f'{self.cfg.data}/json/{split}.json')),
'data_dir': self.cfg.data,
'shuffle': True if split == 'train' else False,
}
self.datasets[split] = Namespace(**self.datasets[split])
def dataset(self, split):
if split not in self.datasets:
raise KeyError("Dataset not loaded: " + split)
return self.datasets[split]
def get_batch_iterator(
self,
dataset,
max_tokens=None,
max_sentences=None,
max_positions=None,
ignore_invalid_inputs=False,
required_batch_size_multiple=1,
seed=1,
num_shards=1,
shard_id=0,
num_workers=0,
epoch=1,
data_buffer_size=0,
disable_iterator_cache=False,
skip_remainder_batch=False,
grouped_shuffling=False,
update_epoch_batch_itr=False
):
data_loader_list = []
disable_prefetching = False
config_split = 'train'
if not dataset.shuffle: # for valid and test
shard_id = 0
disable_prefetching = True
config_split = 'valid'
if self.cfg.wild_data_dir:
wild_dataset = Namespace(**{
'data': json.load(open(f'{self.cfg.wild_data_dir}/json/{config_split}.json')),
'data_dir': self.cfg.wild_data_dir,
'shuffle': dataset.shuffle})
wild_vl_loader = WildLoader(
self.cfg,
wild_dataset,
self.dictionary,
self.tokenizer,
max_tokens=max_tokens,
max_sentences=max_sentences,
max_positions=max_positions,
ignore_invalid_inputs=ignore_invalid_inputs,
required_batch_size_multiple=required_batch_size_multiple,
seed=seed,
epoch=epoch,
num_shards=num_shards,
shard_id=shard_id,
disable_prefetching=disable_prefetching,
data_name='wild'
)
data_loader_list.append(wild_vl_loader)
if self.cfg.laion_data_dir:
laion_dataset = Namespace(**{
'data': json.load(open(f'{self.cfg.laion_data_dir}/json/{config_split}.json')),
'data_dir': self.cfg.laion_data_dir,
'shuffle': dataset.shuffle})
lain_vl_loader = LaionLoader(
self.cfg,
laion_dataset,
self.dictionary,
self.tokenizer,
max_tokens=max_tokens,
max_sentences=self.cfg.laion_batch_size,
max_positions=max_positions,
ignore_invalid_inputs=ignore_invalid_inputs,
required_batch_size_multiple=required_batch_size_multiple,
seed=seed,
epoch=epoch,
num_shards=num_shards,
shard_id=shard_id,
disable_prefetching=disable_prefetching,
data_name='laion'
)
data_loader_list.append(lain_vl_loader)
lm_loader = LMLoader(
self.cfg,
dataset,
self.dictionary,
self.tokenizer,
max_tokens=max_tokens,
max_sentences=max_sentences,
max_positions=max_positions,
ignore_invalid_inputs=ignore_invalid_inputs,
required_batch_size_multiple=required_batch_size_multiple,
seed=seed,
epoch=epoch,
num_shards=num_shards,
shard_id=shard_id,
disable_prefetching=disable_prefetching,
)
data_loader_list.append(lm_loader)
concat_loader = ConcatLoader(data_loader_list)
return concat_loader
@property
def source_dictionary(self):
return self.dictionary
@property
def target_dictionary(self):
return self.dictionary
def train_step(
self, sample, model, criterion, optimizer, update_num, ignore_grad=False
):
"""
Do forward and backward, and return the loss as computed by *criterion*
for the given *model* and *sample*.
Args:
sample (dict): the mini-batch. The format is defined by the
:class:`~fairseq.data.FairseqDataset`.
model (~fairseq.models.BaseFairseqModel): the model
criterion (~fairseq.criterions.FairseqCriterion): the criterion
optimizer (~fairseq.optim.FairseqOptimizer): the optimizer
update_num (int): the current update
ignore_grad (bool): multiply loss by 0 if this is set to True
Returns:
tuple:
- the loss
- the sample size, which is used as the denominator for the
gradient
- logging outputs to display while training
"""
model.train()
model.set_num_updates(update_num)
agg_loss, agg_sample_size, agg_logging_output = 0., 0., {}
with torch.autograd.profiler.record_function("forward"):
loss, sample_size, logging_output = criterion(model, sample['gpt'], loss_name='gpt')
if ignore_grad:
loss *= 0
with torch.autograd.profiler.record_function("backward"):
optimizer.backward(loss)
agg_loss += loss.detach().item()
agg_sample_size += sample_size
agg_logging_output.update(logging_output)
if 'laion' in sample:
with torch.autograd.profiler.record_function("forward"):
loss, sample_size, logging_output = criterion(model, sample['laion'], loss_name='laion')
if ignore_grad:
loss *= 0
with torch.autograd.profiler.record_function("backward"):
optimizer.backward(loss)
agg_loss += loss.detach().item()
agg_sample_size += sample_size
for key, value in logging_output.items():
if key not in agg_logging_output:
agg_logging_output[key] = value
else:
agg_logging_output[key] += value
if 'wild' in sample:
with torch.autograd.profiler.record_function("forward"):
loss, sample_size, logging_output = criterion(model, sample['wild'], loss_name='wild')
if ignore_grad:
loss *= 0
with torch.autograd.profiler.record_function("backward"):
optimizer.backward(loss)
agg_loss += loss.detach().item()
agg_sample_size += sample_size
for key, value in logging_output.items():
if key not in agg_logging_output:
agg_logging_output[key] = value
else:
agg_logging_output[key] += value
return agg_loss, agg_sample_size, agg_logging_output
def valid_step(self, sample, model, criterion):
model.eval()
with torch.no_grad():
loss, sample_size, logging_output = criterion(model, sample['gpt'])
return loss, sample_size, logging_output
| KosmosX-API-main | kosmosX/torchscale/examples/fairseq/tasks/vl_gpt_base.py |
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
import torch
from infinibatch.iterators import CheckpointableIterator
from . import utils
from .utils import ConcatIterator
class BaseBatchGen(CheckpointableIterator):
"""
This is a base class for batch generators that use infinibatch
"""
def __init__(self):
self._iter = None
self.epoch = 1
self.next_epoch_idx = 1
self.sharded_checkpoint = False
self.should_close_after_finished = True
def _build_iter(self):
"""
Build infinibatch iterator and assign to self._iter
"""
raise NotImplementedError()
def _move_to_tensor(self, batch):
def to_tensor(x):
return torch.tensor(x)
return utils.apply_to_sample(to_tensor, batch)
@property
def iterator(self):
if self._iter is None:
raise NotImplementedError("_build_iter() must called first")
return self._iter
def __iter__(self):
if self._iter is None:
raise NotImplementedError("_build_iter() must called first")
return self._iter
def __next__(self):
return next(self._iter)
def setstate(self, value):
self._iter.setstate(value)
def getstate(self):
return self._iter.getstate()
def close(self):
self._iter.close()
def __len__(self) -> int:
return 819200000
def next_epoch_itr(
self, shuffle=True, fix_batches_to_gpus=False, set_dataset_epoch=True
):
return self
def end_of_epoch(self) -> bool:
return False
def state_dict(self):
"""Returns a dictionary containing a whole state of the iterator."""
return self.getstate()
def load_state_dict(self, state_dict):
"""Copies the state of the iterator from the given *state_dict*."""
self.setstate(state_dict)
@property
def first_batch(self):
return "DUMMY"
class ConcatLoader(BaseBatchGen):
def __init__(self, dataloaders):
super().__init__()
self.dataloaders = list(dataloaders)
self._build_iter()
def _build_iter(self):
"""
Build infinibatch iterator and assign to self._iter
"""
self._iter = ConcatIterator([dataloader.iterator for dataloader in self.dataloaders])
| KosmosX-API-main | kosmosX/torchscale/examples/fairseq/tasks/data/basic_loader.py |
import sys,os
sys.path.append(os.getcwd())
from typing import NamedTuple
import os
import argparse
import json
import sentencepiece as spm
# from fairseq.data.dictionary import Dictionary
# from laion_loader import LaionLoader
def image_code_to_token(code):
return "<image{}>".format(code)
def to_word(item, dictionary):
print(dictionary.string(item['net_input']['src_tokens'][0]))
print(dictionary.string(item['target'][0]))
def run():
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--data', type=str, default='/mnt/msranlp/shumma/data/16g')
parser.add_argument('--spm_path', type=str, default='/mnt/msranlp/shumma/data/16g/sentencepiece.bpe.model')
parser.add_argument('--tokens_per_sample', type=int, default=2048)
parser.add_argument('--sample_break_mode', type=str, default='')
parser.add_argument('--batch_read_ahead', type=int, default=1)
parser.add_argument('--mask_prob', type=float, default=0.15)
parser.add_argument('--span_length', type=int, default=3)
parser.add_argument('--dynamic_mask', default=True)
parser.add_argument('--max_sentences', type=int, default=1) # batch size
parser.add_argument('--max_image_num', type=int, default=5)
parser.add_argument('--image_token_length', type=int, default=64)
args = parser.parse_args()
Dataset = NamedTuple('Dataset', [('data', str), ('data_dir', str), ('shuffle', bool)])
dataset = Dataset(json.load(open(f'{args.data}/json/train.json')), args.data, True)
dictionary = Dictionary.load(os.path.join(args.data, 'dict.txt'))
dictionary.add_symbol('</line>')
dictionary.add_symbol('<image>')
dictionary.add_symbol('</image>')
for i in range(8192):
dictionary.add_symbol(image_code_to_token(i))
tokenizer = spm.SentencePieceProcessor(model_file=args.spm_path)
mlm_loader = LaionLoader(
args,
dataset,
dictionary,
tokenizer,
max_tokens=args.tokens_per_sample,
max_sentences=args.max_sentences,
max_positions=None,
ignore_invalid_inputs=False,
required_batch_size_multiple=1,
seed=1,
num_shards=1,
shard_id=0,
disable_prefetching=True,
)
num = 0
i = 0
for item in mlm_loader:
print(item)
i += 1
if i > num:
break
# for item in tqdm.tqdm(mlm_loader):
# i += 1
def cook_json():
data = []
item = {
"source": [],
"source_lang": "wild",
"weight": 1.0,
"name": "wild"
}
for i in range(7190):
item['source'].append("../nemavq2_encoder_base_decoder_centercrop_wild/partition.{:03d}.ndjson".format(i))
data.append(item)
json.dump(data, open('train.json', 'w', encoding='utf-8'), indent=2)
# def cook_json():
# data = []
# item = {
# "source": [],
# "source_lang": "laion",
# "weight": 1.0,
# "name": "laion"
# }
# for i in range(128):
# for j in range(94):
# item['source'].append("../laion2b_filtered_tsvs_v1/{:05d}/{:05d}_{:05d}.tsv".format(i, i, j))
# data.append(item)
# json.dump(data, open('train.json', 'w', encoding='utf-8'), indent=2)
if __name__ == '__main__':
# run()
cook_json()
| KosmosX-API-main | kosmosX/torchscale/examples/fairseq/tasks/data/laion_loader_test.py |
import sys,os
sys.path.append(os.getcwd())
from typing import NamedTuple
import os
import argparse
import json
import sentencepiece as spm
from fairseq.data.dictionary import Dictionary
from wild_loader import WildLoader
def image_code_to_token(code):
return "<image{}>".format(code)
def to_word(item, dictionary):
print(dictionary.string(item['net_input']['src_tokens'][0]))
print(dictionary.string(item['target'][0]))
def run():
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--data', type=str, default='/mnt/msranlp/shumma/data/16g')
parser.add_argument('--spm_path', type=str, default='/mnt/msranlp/shumma/data/16g/sentencepiece.bpe.model')
parser.add_argument('--tokens_per_sample', type=int, default=2048)
parser.add_argument('--sample_break_mode', type=str, default='')
parser.add_argument('--batch_read_ahead', type=int, default=1)
parser.add_argument('--mask_prob', type=float, default=0.15)
parser.add_argument('--span_length', type=int, default=3)
parser.add_argument('--dynamic_mask', default=True)
parser.add_argument('--max_sentences', type=int, default=1) # batch size
parser.add_argument('--max_image_num', type=int, default=5)
parser.add_argument('--image_token_length', type=int, default=64)
args = parser.parse_args()
Dataset = NamedTuple('Dataset', [('data', str), ('data_dir', str), ('shuffle', bool)])
dataset = Dataset(json.load(open(f'{args.data}/json/train.json')), args.data, True)
dictionary = Dictionary.load(os.path.join(args.data, 'dict.txt'))
dictionary.add_symbol('</line>')
dictionary.add_symbol('<image>')
dictionary.add_symbol('</image>')
for i in range(8192):
dictionary.add_symbol(image_code_to_token(i))
tokenizer = spm.SentencePieceProcessor(model_file=args.spm_path)
mlm_loader = WildLoader(
args,
dataset,
dictionary,
tokenizer,
max_tokens=args.tokens_per_sample,
max_sentences=args.max_sentences,
max_positions=None,
ignore_invalid_inputs=False,
required_batch_size_multiple=1,
seed=1,
num_shards=1,
shard_id=0,
disable_prefetching=True,
)
num = 0
i = 0
for item in mlm_loader:
print(item)
i += 1
if i > num:
break
# for item in tqdm.tqdm(mlm_loader):
# i += 1
def cook_json():
data = []
item = {
"source": [],
"source_lang": "laion",
"weight": 1.0,
"name": "laion"
}
for i in range(128):
for j in range(94):
item['source'].append("../laion2b_filtered_tsvs_v1/{:05d}/{:05d}_{:05d}.tsv".format(i, i, j))
data.append(item)
json.dump(data, open('train.json', 'w', encoding='utf-8'), indent=2)
if __name__ == '__main__':
run()
# cook_json()
| KosmosX-API-main | kosmosX/torchscale/examples/fairseq/tasks/data/wild_loader_test_2.py |
IMAGE_KEY="Images"
TEXT_KEY="Extracted"
import os, json, random, re
max_image_num = 5
tokens_per_sample = 2048
from spacy.lang.en import English
import sentencepiece as spm
nlp_sentencizer = English()
nlp_sentencizer.add_pipe("sentencizer")
spm_tokenizer = spm.SentencePieceProcessor(model_file=r"C:\Users\shaohanh\Desktop\sentencepiece.bpe.model")
def text_transform(line):
tokens = spm_tokenizer.encode(line, out_type=str)
return tokens
def clean(text):
# python re, remove html tags
clean = re.compile('<.*?>')
return re.sub(clean, '', text)
def _read_from_files(source_file):
"""
<s> <image> image token </image> sentence <image> image token </image> sentence </s>
1, sample a random subsequnece: 3 sentences + the first image ... take up to 5 images + 3 sentences
2, filter html tags <p>, <br>, <br/>
3, single image, random sample rate as 0.5
"""
file_path = os.path.join(source_file)
if not os.path.exists(file_path):
print('| file {} not exists'.format(file_path), flush=True)
return iter([]) # skip bad file
try:
with open(file_path, 'r', encoding='utf8') as f:
lines = f.read().strip().split('\n')
except:
return iter([]) # skip bad file
for doc_jsonstr in lines:
json_obj = json.loads(doc_jsonstr)
doc = ['bos']
start_idx = 0
image_num = len(json_obj[IMAGE_KEY])
if image_num == 1:
r = random.random()
if r > 0.5:
continue
for image_idx, image_item in enumerate(json_obj[IMAGE_KEY]):
if image_idx >= max_image_num:
yield doc
break
text_snippet = json_obj[TEXT_KEY][start_idx:image_item['Span'][0]-1]
text_snippet = clean(text_snippet)
if len(text_snippet) != 0:
if image_idx == 0:
# crop 3 sentences before the first image
sentences = list(nlp_sentencizer(text_snippet).sents)
text_snippet = ' '.join([str(sent) for sent in sentences[-3:]])
text_token = text_transform(text_snippet)
doc.extend(text_token)
if len(doc) >= tokens_per_sample: # drop too long sentence
# data.append(doc[:])
doc = doc[:tokens_per_sample - 2]
doc.append('eos')
yield doc
break
image_tokens = [i for i in image_item['input_ids']]
doc.append('BOI_SYMBOL')
doc.extend(image_tokens)
doc.append('EOI_SYMBOL')
start_idx = image_item['Span'][1] + 1
if image_idx == image_num - 1:
# crop 3 sentences after the last image
text_snippet = json_obj[TEXT_KEY][start_idx:]
text_snippet = clean(text_snippet)
sentences = list(nlp_sentencizer(text_snippet).sents)
text_snippet = ' '.join([str(sent) for sent in sentences[:3]])
text_token = text_transform(text_snippet)
doc.extend(text_token)
doc.append('eos')
if len(doc) < tokens_per_sample:
yield doc
break
all_length = []
image_num = []
token_length = []
j = 0
for item in _read_from_files(r"C:\Users\shaohanh\Desktop\partition.000.ndjson"):
# all_length.append(len(item))
# image_num.append(item.count('BOI_SYMBOL'))
# token_length.append(len(item) - item.count('BOI_SYMBOL') * 197)
print(item)
j += 1
if j > 10:
break
# if j % 1000 == 0:
# print(len(all_length), flush=True)
# print(j)
print('average length: ', sum(all_length) / len(all_length))
print('average image num: ', sum(image_num) / len(image_num))
print('average token length: ', sum(token_length) / len(token_length)) | KosmosX-API-main | kosmosX/torchscale/examples/fairseq/tasks/data/wild_loader_test.py |
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
| KosmosX-API-main | kosmosX/torchscale/examples/fairseq/tasks/data/__init__.py |
import json
import os
import random
import re
from infinibatch import iterators
from tasks.data.lm_loader import LMLoader
from tasks.data.utils import NativeCheckpointableIterator, WeightIterator, BOI_SYMBOL, EOI_SYMBOL, image_code_to_token
from fairseq.data.encoders.gpt2_bpe import GPT2BPE
from spacy.lang.en import English
IMAGE_KEY="Images"
TEXT_KEY="Extracted"
class WildLoader(LMLoader):
def _setup(self):
self.nlp_sentencizer = English()
self.nlp_sentencizer.add_pipe("sentencizer")
self.max_image_num = 5
def _tokenize(self):
multilingual_iters = []
weights = []
for data in self.data:
multilingual_iters.append(
self._tokenize_foreach_lang(data)
)
if 'weight' in data:
weights.append(float(data['weight']))
else:
weights.append(int(data['count']))
if len(multilingual_iters) == 1:
return multilingual_iters[0]
sampling_iterator = WeightIterator(weights, self.seed)
control_iterator = NativeCheckpointableIterator(sampling_iterator)
tokenized_lines = iterators.MultiplexIterator(control_iterator, multilingual_iters)
return tokenized_lines
def _tokenize_foreach_lang(self, data):
dataset = list(zip(data['source']))
if self.shuffle:
chunk_files = iterators.InfinitePermutationSourceIterator(
dataset,
seed=self.seed,
shuffle=self.shuffle,
num_instances=self.num_shards,
instance_rank=self.shard_id,)
else:
chunk_files = iterators.ChunkedSourceIterator(
dataset,
num_instances=self.num_shards,
instance_rank=self.shard_id,)
tokenized_lines = iterators.SelectManyIterator(chunk_files, lambda files: self._read_from_files(*files))
tokenized_lines = iterators.SamplingRandomMapIterator(tokenized_lines, self._prepare, self.seed)
return tokenized_lines
@staticmethod
def fs_encode_line(fs_dict, words, append_eos=True):
ids = []
for i, word in enumerate(words):
idx = fs_dict.index(word)
ids.append(idx)
if append_eos:
ids.append(fs_dict.eos_index)
return ids
def text_transform(self, line):
spm_tokenizer=self.tokenizer
if isinstance(spm_tokenizer, GPT2BPE):
tokens = spm_tokenizer.encode(line).split(' ')
else:
tokens = spm_tokenizer.encode(line, out_type=str)
tokenized_tokens = WildLoader.fs_encode_line(self.dictionary, tokens, append_eos=False)
return tokenized_tokens
def clean(self, text):
# python re, remove html tags
clean = re.compile('<.*?>')
return re.sub(clean, '', text)
def _read_from_files(self, source_file):
"""
<s> <image> image token </image> sentence <image> image token </image> sentence </s>
1, sample a random subsequnece: 3 sentences + the first image ... take up to 5 images + 3 sentences
2, filter html tags <p>, <br>, <br/>
3, single image, random sample rate as 0.5
"""
file_path = os.path.join(self.data_dir, source_file)
if not os.path.exists(file_path):
print('| file {} not exists'.format(file_path), flush=True)
return iter([]) # skip bad file
try:
with open(file_path, 'r', encoding='utf8') as f:
lines = f.read().strip().split('\n')
except:
return iter([]) # skip bad file
for doc_jsonstr in lines:
try:
json_obj = json.loads(doc_jsonstr)
doc = [self.dictionary.bos()]
start_idx = 0
image_num = len(json_obj[IMAGE_KEY])
if image_num == 1:
r = random.random()
if r > 0.5:
continue
for image_idx, image_item in enumerate(json_obj[IMAGE_KEY]):
if image_idx >= self.max_image_num:
if len(doc) < self.tokens_per_sample:
yield doc
break
text_snippet = json_obj[TEXT_KEY][start_idx:image_item['Span'][0]-1]
text_snippet = self.clean(text_snippet)
if len(text_snippet) != 0:
if image_idx == 0:
# crop 3 sentences before the first image
sentences = list(self.nlp_sentencizer(text_snippet).sents)
text_snippet = ' '.join([str(sent) for sent in sentences[-3:]])
text_token = self.text_transform(text_snippet)
doc.extend(text_token)
if len(doc) >= self.tokens_per_sample: # drop too long sentence
# data.append(doc[:])
doc = doc[:self.tokens_per_sample - 2]
doc.append(self.dictionary.eos())
yield doc
break
image_tokens = [image_code_to_token(i) for i in image_item['input_ids']]
image_tokens = WildLoader.fs_encode_line(self.dictionary, image_tokens, append_eos=False)
doc.append(self.dictionary.index(BOI_SYMBOL))
doc.extend(image_tokens)
doc.append(self.dictionary.index(EOI_SYMBOL))
start_idx = image_item['Span'][1] + 1
if image_idx == image_num - 1:
# crop 3 sentences after the last image
text_snippet = json_obj[TEXT_KEY][start_idx:]
text_snippet = self.clean(text_snippet)
sentences = list(self.nlp_sentencizer(text_snippet).sents)
text_snippet = ' '.join([str(sent) for sent in sentences[:3]])
text_token = self.text_transform(text_snippet)
doc.extend(text_token)
doc.append(self.dictionary.eos())
if len(doc) < self.tokens_per_sample:
yield doc
break
except:
continue | KosmosX-API-main | kosmosX/torchscale/examples/fairseq/tasks/data/wild_loader.py |
import os
import numpy as np
import json
from infinibatch import iterators
from .basic_loader import BaseBatchGen
from .utils import EOL_SYMBOL
from .utils import safe_getattr
class LMLoader(BaseBatchGen):
def __init__(
self,
args,
dataset,
dictionary,
tokenizer,
max_tokens=None,
max_sentences=None,
max_positions=None,
ignore_invalid_inputs=False,
required_batch_size_multiple=1,
seed=1,
epoch=1,
num_shards=1,
shard_id=0,
disable_prefetching=False,
data_name='gpt',
):
super().__init__()
self.args = args
self.data = dataset.data
self.data_dir = dataset.data_dir
self.shuffle = dataset.shuffle
self.dictionary = dictionary
self.tokenizer = tokenizer
self.max_tokens = max_tokens
self.max_sentences = max_sentences
self.max_positions = max_positions
self.tokens_per_sample = args.tokens_per_sample
self.mlm_cut_length = safe_getattr(args, "mlm_cut_length", 0)
self.mlm_tokens_proportion = safe_getattr(args, "mlm_tokens_proportion", 0)
self.pad_to_max_len = safe_getattr(args, "pad_to_max_len", False)
self.ignore_invalid_inputs = ignore_invalid_inputs
self.required_batch_size_multiple = required_batch_size_multiple
self.seed = str(seed)
self.epoch = epoch
self.num_shards = num_shards
self.shard_id = shard_id
self.batch_read_ahead = args.batch_read_ahead
self.disable_prefetching = disable_prefetching
self.data_name = data_name
self._setup()
self._build_iter()
def _setup(self):
pass
def _build_iter(self):
tokenized_lines = self._tokenize()
self.padded_batches = self._batchify(tokenized_lines)
if self.disable_prefetching:
prefetch_batches = self.padded_batches
else:
prefetch_batches = iterators.PrefetchIterator(
self.padded_batches,
buffer_size=10000,
buffer_in_main_process=True,
log_empty_buffer_warning=True and self.shard_id == 0,
)
prefetch_batches = iterators.MapIterator(
prefetch_batches, self._move_to_tensor
)
self._iter = prefetch_batches
def _tokenize(self):
'''
data:
{
'source': list[Path],
}
'''
dataset = list(zip(self.data['source']))
if self.shuffle:
chunk_files = \
iterators.InfinitePermutationSourceIterator(
dataset,
seed=self.seed,
shuffle=self.shuffle,
num_instances=self.num_shards,
instance_rank=self.shard_id,
)
else:
chunk_files = \
iterators.ChunkedSourceIterator(
dataset,
num_instances=self.num_shards,
instance_rank=self.shard_id,
)
tokenized_lines = iterators.SelectManyIterator(chunk_files, lambda files: self._read_from_files(*files))
tokenized_lines = iterators.SamplingRandomMapIterator(tokenized_lines, self._prepare, self.seed)
return tokenized_lines
def getstate(self):
state = super().getstate()
state["epoch"] = self.epoch
state["iterations_in_epoch"] = None
return state
def _batchify(self, lines):
if self.max_sentences is not None:
if self.batch_read_ahead > 0:
lines = iterators.BlockwiseShuffleIterator(lines, self.batch_read_ahead, self.seed)
batches = iterators.FixedBatchIterator(lines, self.max_sentences)
else:
# -
def dynamic_batch_size(sample):
lengths = [len(x) for x in sample]
batch_size = self.max_tokens // max(lengths) // self.required_batch_size_multiple * self.required_batch_size_multiple
return max(1, batch_size)
batches = iterators.BucketedReadaheadBatchIterator(
lines,
read_ahead=self.batch_read_ahead,
key=(lambda x: max(len(x[0]), len(x[1]))) if self.shuffle else None,
batch_size=dynamic_batch_size,
shuffle=self.shuffle,
seed=self.seed,
)
def collate(batch):
batch_size = len(batch)
mlm_batch_size = sum([len(x[2]) for x in batch])
gpt_max_length = max([len(x[0]) for x in batch])
if self.pad_to_max_len:
gpt_max_length = self.tokens_per_sample
mlm_max_length = 0
mlm_ntokens = 0
for x in batch:
for y in x[2]:
mlm_max_length = max(mlm_max_length, len(y))
mlm_ntokens += len(y)
gpt_source_ids = np.full(shape=(batch_size, gpt_max_length-1), dtype=np.int32,
fill_value=self.dictionary.pad())
gpt_target_ids = np.full(shape=(batch_size, gpt_max_length-1), dtype=np.int32,
fill_value=self.dictionary.pad())
mlm_source_ids = np.full(shape=(mlm_batch_size, mlm_max_length), dtype=np.int32,
fill_value=self.dictionary.pad())
gpt_input_mask_all = np.full(shape=(batch_size, gpt_max_length-1), dtype=np.int32, fill_value=0)
gpt_loss_mask_all = np.full(shape=(batch_size, gpt_max_length-1), dtype=np.int32, fill_value=1)
mlm_mask_all = np.full(shape=(mlm_batch_size, mlm_max_length), dtype=np.int32, fill_value=0)
mlm_index = 0
for i, (gpt_ids, gpt_input_mask, mlm_ids_list, mlm_mask_list, gpt_loss_mask) in enumerate(batch):
gpt_source_ids[i, :len(gpt_ids)-1] = gpt_ids[:-1]
gpt_target_ids[i, :len(gpt_ids)-1] = gpt_ids[1:]
gpt_input_mask_all[i, :len(gpt_ids)-1] = gpt_input_mask[:-1]
gpt_loss_mask_all[i, :len(gpt_ids)-1] = gpt_loss_mask[1:]
for j, (mlm_ids, mlm_mask) in enumerate(zip(mlm_ids_list, mlm_mask_list)):
mlm_source_ids[mlm_index, :len(mlm_ids)] = mlm_ids
mlm_mask_all[mlm_index, :len(mlm_mask)] = mlm_mask
mlm_index += 1
ret_batch = {
'text':{
'net_input': {
'src_tokens': gpt_source_ids.astype(np.int64),
'mlm_src_tokens': mlm_source_ids.astype(np.int64) if mlm_batch_size !=0 else None,
'gpt_input_mask': gpt_input_mask_all.astype(np.bool_),
'gpt_loss_mask': gpt_loss_mask_all.astype(np.bool_),
'mlm_mask': mlm_mask_all.astype(np.bool_) if mlm_batch_size !=0 else None
},
'target': gpt_target_ids.astype(np.int64),
'nsentences': batch_size,
'ntokens': sum([len(x[0]) for x in batch]),
'mlm_ntokens': mlm_ntokens
}
}
return ret_batch
def collate_for_gpt(batch):
batch_size = len(batch)
gpt_max_length = max([len(x[0]) for x in batch])
if self.pad_to_max_len:
gpt_max_length = self.tokens_per_sample
gpt_source_ids = np.full(shape=(batch_size, gpt_max_length-1), dtype=np.int32,
fill_value=self.dictionary.pad())
gpt_target_ids = np.full(shape=(batch_size, gpt_max_length-1), dtype=np.int32,
fill_value=self.dictionary.pad())
gpt_input_mask_all = np.full(shape=(batch_size, gpt_max_length-1), dtype=np.int32, fill_value=0)
gpt_loss_mask_all = np.full(shape=(batch_size, gpt_max_length-1), dtype=np.int32, fill_value=1)
for i, (gpt_ids, gpt_input_mask, mlm_ids_list, mlm_mask_list, gpt_loss_mask) in enumerate(batch):
gpt_source_ids[i, :len(gpt_ids)-1] = gpt_ids[:-1]
gpt_target_ids[i, :len(gpt_ids)-1] = gpt_ids[1:]
gpt_input_mask_all[i, :len(gpt_ids)-1] = gpt_input_mask[:-1]
gpt_loss_mask_all[i, :len(gpt_ids)-1] = gpt_loss_mask[1:]
ret_batch = {
self.data_name:{
'net_input': {
'src_tokens': gpt_source_ids.astype(np.int64),
},
'target': gpt_target_ids.astype(np.int64),
'nsentences': batch_size,
'ntokens': sum([len(x[0]) for x in batch]),
'mlm_ntokens': 0
}
}
return ret_batch
if self.mlm_tokens_proportion == 0:
padded_batches = iterators.MapIterator(
batches, collate_for_gpt
)
else:
padded_batches = iterators.MapIterator(
batches, collate
)
return padded_batches
def _prepare(self, _random, doc):
mlm_tokens, mlm_mask, gpt_input_mask, gpt_loss_mask = self._mlm_cut(_random, doc)
full_tokens = self._gpt(doc)
return full_tokens, gpt_input_mask, mlm_tokens, mlm_mask, gpt_loss_mask
def _mlm_cut(self, _random, doc):
eod_index = self.dictionary.indices[EOL_SYMBOL]
if self.mlm_tokens_proportion == 0:
mlm_tokens = []
mlm_mask = []
gpt_input_mask = [0] * len(doc)
gpt_loss_mask = [1] * len(doc)
return mlm_tokens, mlm_mask, gpt_input_mask, gpt_loss_mask
cut_start = np.arange(1, len(doc)-3/2*self.mlm_cut_length, self.mlm_cut_length, dtype=int)
_random.shuffle(cut_start)
mlm_tokens = []
mlm_mask = []
start_list = []
gpt_input_mask = np.zeros(len(doc), dtype=int)
gpt_loss_mask = np.ones(len(doc), dtype=int)
mlm_tokens_total_num = (len(doc)-1) * self.mlm_tokens_proportion
mlm_tokens_cur_num = 0
for start in cut_start:
eod_num = doc[start:start+self.mlm_cut_length].count(eod_index)
if eod_num >= 2:
continue
elif eod_num == 1:
eod_pos = doc[start:start+self.mlm_cut_length].index(eod_index)
if self.mlm_cut_length - eod_pos < 20:
continue
start_ind, end_ind = start+eod_pos+1, start + self.mlm_cut_length
else:
cut_pos = _random.randint(0, self.mlm_cut_length-1)
if cut_pos >= self.mlm_cut_length/2:
start_ind, end_ind = start, start + cut_pos + 1
else:
start_ind, end_ind = start + cut_pos, start + self.mlm_cut_length
assert eod_index not in doc[start_ind:end_ind]
start_list.append(start)
mlm_tokens.append([self.dictionary.bos()] + doc[start_ind:end_ind])
mlm_tokens_cur_num += end_ind - start_ind
mlm_mask.append([0] + [1]*(end_ind - start_ind))
gpt_input_mask[start_ind:end_ind] = 1
gpt_loss_mask[start_ind:end_ind-1] = 0
if mlm_tokens_cur_num > mlm_tokens_total_num:
break
ind = np.array(start_list).argsort()
start_list = np.array(start_list)[ind]
mlm_tokens = np.array(mlm_tokens, dtype=object)[ind]
mlm_mask = np.array(mlm_mask, dtype=object)[ind]
return mlm_tokens, mlm_mask, gpt_input_mask, gpt_loss_mask
def _gpt(self, doc):
return doc
def _read_from_files(self, source_file):
data = []
file_path = os.path.join(self.data_dir, source_file)
if not os.path.exists(file_path):
print('| file {} not exists'.format(file_path), flush=True)
return iter([]) # skip bad file
with open(file_path, 'r', encoding='utf8') as f:
lines = f.read().strip().split('\n')
gpt_format_text = []
for line in lines:
gpt_format_text.extend(list(filter(None, json.loads(line)["text"].split("\n"))))
gpt_format_text.append('')
tokenized_lines = [self.tokenizer.encode(line) for line in gpt_format_text]
tokenized_ids = [self.dictionary.encode_line(line, add_if_not_exist=False) for line in tokenized_lines]
doc = [self.dictionary.bos()]
for ids in tokenized_ids:
if len(ids) > self.tokens_per_sample: # drop too long sentence
continue
if len(doc) + len(ids) > self.tokens_per_sample:
if len(doc) > 5/2*self.mlm_cut_length + 1:
data.append(doc)
doc = [self.dictionary.bos()]
doc.extend(ids)
if len(doc) > 1 and len(doc) <= self.tokens_per_sample:
if len(doc) > 5/2*self.mlm_cut_length + 1:
data.append(doc)
return data | KosmosX-API-main | kosmosX/torchscale/examples/fairseq/tasks/data/lm_loader.py |
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
import collections
from random import Random
from typing import Dict, Iterable, Optional
import numpy as np
from infinibatch import iterators
EOL_SYMBOL = "</line>"
BOI_SYMBOL = "<image>"
EOI_SYMBOL = "</image>"
def apply_to_sample(f, sample):
if hasattr(sample, "__len__") and len(sample) == 0:
return {}
def _apply(x):
if isinstance(x, np.ndarray):
return f(x)
elif isinstance(x, collections.OrderedDict):
# OrderedDict has attributes that needs to be preserved
od = collections.OrderedDict(
(key, _apply(value)) for key, value in x.items()
)
od.__dict__ = x.__dict__
return od
elif isinstance(x, dict):
return {key: _apply(value) for key, value in x.items()}
elif isinstance(x, list):
return [_apply(x) for x in x]
elif isinstance(x, tuple):
return tuple(_apply(x) for x in x)
elif isinstance(x, set):
return {_apply(x) for x in x}
else:
return x
return _apply(sample)
class NativeCheckpointableIterator(iterators.CheckpointableIterator):
def __init__(self, iterable: Iterable):
self._input_iterable = iterable
self.setstate(None)
def getstate(self) -> Dict:
return {"num_items_yielded": self._num_items_yielded}
def setstate(self, checkpoint: Optional[Dict]):
self._iterator = iter(self._input_iterable)
self._num_items_yielded = (
iterators._advance_iterator(self._iterator, checkpoint["num_items_yielded"])
if checkpoint is not None
else 0
)
def __next__(self):
item = next(self._iterator)
self._num_items_yielded += 1
return item
def close(self):
pass
class WeightIterator(object):
def __init__(self, weights, seed):
self.weights = weights
self.seed = seed
self.control_index = list(range(len(weights)))
self.setstate(None)
def __iter__(self):
return self
def getstate(self):
return {"random_state": self._random_state}
def setstate(self, checkpoint):
self._random_state = checkpoint["random_state"] if checkpoint else None
self._random = (
None # this will trigger the lazy initialization in self.__next__
)
def __next__(self):
if self._random is None:
self._random = Random(self.seed)
if self._random_state is not None:
self._random.setstate(self._random_state)
idx = self._random.choices(self.control_index, self.weights)[0]
self._random_state = self._random.getstate()
return idx
def close(self):
pass
def safe_getattr(obj, k, default=None):
"""Returns obj[k] if it exists and is not None, otherwise returns default."""
from omegaconf import OmegaConf
if OmegaConf.is_config(obj):
return obj[k] if k in obj and obj[k] is not None else default
return getattr(obj, k, default)
def safe_hasattr(obj, k):
"""Returns True if the given key exists and is not None."""
return getattr(obj, k, None) is not None
def image_code_to_token(code):
return "<image{}>".format(code)
class ConcatIterator(iterators.CheckpointableIterator):
"""
Concat items from all given iterators.
"""
def __init__(self, source_iterators):
"""
Args:
source_iterators: list of iterators to zip, item by item
"""
# TODO: Use all function?
for source_iterator in source_iterators:
if not isinstance(source_iterator, iterators.CheckpointableIterator):
raise ValueError('all iterators in source_iterators have to be CheckpointableIterator')
self._source_iterators = source_iterators # type: List[CheckpointableIterator]
def getstate(self):
return {'input_states': tuple(iterator.getstate() for iterator in self._source_iterators)}
def setstate(self, checkpoint):
if checkpoint is None:
for iterator in self._source_iterators:
iterator.setstate(None)
else:
# TODO: Add check that both lists have the same length?
for iterator, state in zip(self._source_iterators, checkpoint['input_states']):
iterator.setstate(state)
def __next__(self):
res = {} # (note: can't use a generator expression, as it gets confused when a next() call raises StopIteration)
for iterator in self._source_iterators:
res.update(next(iterator))
return res
def close(self):
for it in self._source_iterators:
it.close()
| KosmosX-API-main | kosmosX/torchscale/examples/fairseq/tasks/data/utils.py |
import json
import os
import random
from infinibatch import iterators
from tasks.data.lm_loader import LMLoader
from tasks.data.utils import NativeCheckpointableIterator, WeightIterator, BOI_SYMBOL, EOI_SYMBOL, image_code_to_token
from fairseq.data.encoders.gpt2_bpe import GPT2BPE
class LaionLoader(LMLoader):
def _tokenize(self):
multilingual_iters = []
weights = []
for data in self.data:
multilingual_iters.append(
self._tokenize_foreach_lang(data)
)
if 'weight' in data:
weights.append(float(data['weight']))
else:
weights.append(int(data['count']))
if len(multilingual_iters) == 1:
return multilingual_iters[0]
sampling_iterator = WeightIterator(weights, self.seed)
control_iterator = NativeCheckpointableIterator(sampling_iterator)
tokenized_lines = iterators.MultiplexIterator(control_iterator, multilingual_iters)
return tokenized_lines
def _tokenize_foreach_lang(self, data):
dataset = list(zip(data['source']))
if self.shuffle:
chunk_files = iterators.InfinitePermutationSourceIterator(
dataset,
seed=self.seed,
shuffle=self.shuffle,
num_instances=self.num_shards,
instance_rank=self.shard_id,)
else:
chunk_files = iterators.ChunkedSourceIterator(
dataset,
num_instances=self.num_shards,
instance_rank=self.shard_id,)
tokenized_lines = iterators.SelectManyIterator(chunk_files, lambda files: self._read_from_files(*files))
tokenized_lines = iterators.SamplingRandomMapIterator(tokenized_lines, self._prepare, self.seed)
return tokenized_lines
@staticmethod
def fs_encode_line(fs_dict, words, append_eos=True):
ids = []
for i, word in enumerate(words):
idx = fs_dict.index(word)
ids.append(idx)
if append_eos:
ids.append(fs_dict.eos_index)
return ids
def _read_from_files(self, source_file):
"""
<s> <image> image token </image> sentence </s>
<s> sentence <image> image token </image> </s>
"""
file_path = os.path.join(self.data_dir, source_file)
if not os.path.exists(file_path):
print('| file {} not exists'.format(file_path), flush=True)
return iter([]) # skip bad file
try:
with open(file_path, 'r', encoding='utf8') as f:
lines = f.read().strip().split('\n')
except:
return iter([]) # skip bad file
for doc_jsonstr in lines:
try:
obj = json.loads(doc_jsonstr)
if int(obj['width']) < 200 or int(obj['height']) < 200:
continue
line = obj['caption']
spm_tokenizer=self.tokenizer
if isinstance(spm_tokenizer, GPT2BPE):
tokens = spm_tokenizer.encode(line).split(' ')
else:
tokens = spm_tokenizer.encode(line, out_type=str)
tokenized_tokens = LaionLoader.fs_encode_line(self.dictionary, tokens, append_eos=False)
image_tokens = [image_code_to_token(i) for i in obj['input_ids']]
image_tokens = LaionLoader.fs_encode_line(self.dictionary, image_tokens, append_eos=False)
r = random.random()
doc = [self.dictionary.bos()]
if r < 0.5:
doc.append(self.dictionary.index(BOI_SYMBOL))
doc.extend(image_tokens)
doc.append(self.dictionary.index(EOI_SYMBOL))
doc.extend(tokenized_tokens)
else:
doc.extend(tokenized_tokens)
doc.append(self.dictionary.index(BOI_SYMBOL))
doc.extend(image_tokens)
doc.append(self.dictionary.index(EOI_SYMBOL))
doc.append(self.dictionary.eos())
yield doc
except:
continue
| KosmosX-API-main | kosmosX/torchscale/examples/fairseq/tasks/data/laion_loader.py |
import json
import os
from infinibatch import iterators
from .lm_loader import LMLoader
from .utils import NativeCheckpointableIterator, WeightIterator, EOL_SYMBOL
from fairseq.data.encoders.gpt2_bpe import GPT2BPE
class SpmLmLoader(LMLoader):
def _tokenize(self):
multilingual_iters = []
weights = []
for data in self.data:
multilingual_iters.append(
self._tokenize_foreach_lang(data)
)
if 'weight' in data:
weights.append(float(data['weight']))
else:
weights.append(int(data['count']))
if len(multilingual_iters) == 1:
return multilingual_iters[0]
sampling_iterator = WeightIterator(weights, self.seed)
control_iterator = NativeCheckpointableIterator(sampling_iterator)
tokenized_lines = iterators.MultiplexIterator(control_iterator, multilingual_iters)
return tokenized_lines
def _tokenize_foreach_lang(self, data):
dataset = list(zip(data['source']))
if self.shuffle:
chunk_files = iterators.InfinitePermutationSourceIterator(
dataset,
seed=self.seed,
shuffle=self.shuffle,
num_instances=self.num_shards,
instance_rank=self.shard_id,)
else:
chunk_files = iterators.ChunkedSourceIterator(
dataset,
num_instances=self.num_shards,
instance_rank=self.shard_id,)
tokenized_lines = iterators.SelectManyIterator(chunk_files, lambda files: self._read_from_files(*files))
tokenized_lines = iterators.SamplingRandomMapIterator(tokenized_lines, self._prepare, self.seed)
return tokenized_lines
@staticmethod
def fs_encode_line(fs_dict, words, append_eos=True):
ids = []
for i, word in enumerate(words):
idx = fs_dict.index(word)
ids.append(idx)
if append_eos:
ids.append(fs_dict.eos_index)
return ids
@staticmethod
def _doc_jsonstr_to_ids(doc_jsonstr, spm_tokenizer=None, fs_dict=None):
assert EOL_SYMBOL in fs_dict.indices
eol_index = fs_dict.indices[EOL_SYMBOL]
tokenized_ids = []
for line in filter(None, json.loads(doc_jsonstr)["text"].split("\n")):
if isinstance(spm_tokenizer, GPT2BPE):
tokens = spm_tokenizer.encode(line).split(' ')
else:
tokens = spm_tokenizer.encode(line, out_type=str)
tokenized_tokens = SpmLmLoader.fs_encode_line(fs_dict, tokens, append_eos=False)
tokenized_tokens.append(eol_index)
tokenized_ids.append(tokenized_tokens)
if len(tokenized_ids) > 0:
last_line_ids = tokenized_ids[-1]
if last_line_ids[-1] == eol_index:
last_line_ids[-1] = fs_dict.eos_index
else:
print("[W] At SpmLmLoader._doc_jsonstr_to_ids, last line does not end with eol!")
last_line_ids.append(fs_dict.eos_index)
else:
print("[W] At SpmLmLoader._doc_jsonstr_to_ids, A null document with no lines!")
tokenized_ids = [[fs_dict.eos_index]]
return tokenized_ids
def _read_from_files(self, source_file):
data = []
file_path = os.path.join(self.data_dir, source_file)
if not os.path.exists(file_path):
print('| file {} not exists'.format(file_path), flush=True)
return iter([]) # skip bad file
try:
with open(file_path, 'r', encoding='utf8') as f:
lines = f.read().strip().split('\n')
except:
return iter([]) # skip bad file
# NOTE #### simple spm implementation ###############
tokenized_ids = []
for doc_jsonstr in lines:
ret = SpmLmLoader._doc_jsonstr_to_ids(doc_jsonstr, spm_tokenizer=self.tokenizer, fs_dict=self.dictionary)
tokenized_ids.extend(ret)
# ###################################################
doc = [self.dictionary.bos()]
for ids in tokenized_ids:
if getattr(self.args, "debug_p100", False):
if len(ids) > 256:
ids = ids[:256]
if len(ids) >= self.tokens_per_sample: # drop too long sentence
# data.append(doc[:])
ids = ids[:self.tokens_per_sample - 1]
# continue
if len(doc) + len(ids) > self.tokens_per_sample:
if len(doc) > 5/2*self.mlm_cut_length + 1:
data.append(doc)
doc = [self.dictionary.bos()]
doc.extend(ids)
if len(doc) > 1 and len(doc) <= self.tokens_per_sample:
if len(doc) > 5/2*self.mlm_cut_length + 1:
data.append(doc)
return data | KosmosX-API-main | kosmosX/torchscale/examples/fairseq/tasks/data/spm_lm_loader.py |
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
import copy
import itertools
import os
import numpy as np
from infinibatch import iterators
from .basic_loader import BaseBatchGen
from .utils import NativeCheckpointableIterator, WeightIterator
class MLMLoader(BaseBatchGen):
def __init__(
self,
args,
dataset,
dictionary,
tokenizer,
max_tokens=None,
max_sentences=None,
max_positions=None,
ignore_invalid_inputs=False,
required_batch_size_multiple=1,
seed=1,
num_shards=1,
shard_id=0,
):
super().__init__()
self.args = args
self.data = dataset.data
self.data_dir = dataset.data_dir
self.shuffle = dataset.shuffle
self.dictionary = dictionary
self.tokenizer = tokenizer
self.max_tokens = max_tokens
self.max_sentences = max_sentences
self.max_positions = max_positions
self.tokens_per_sample = args.tokens_per_sample
self.sample_break_mode = args.sample_break_mode
self.ignore_invalid_inputs = ignore_invalid_inputs
self.required_batch_size_multiple = required_batch_size_multiple
self.seed = str(seed)
self.num_shards = num_shards
self.shard_id = shard_id
self.batch_read_ahead = args.batch_read_ahead
self._build_iter()
def _build_iter(self):
tokenized_lines = self._multilingual_tokenize()
self.padded_batches = self._batchify(tokenized_lines)
prefetch_batches = iterators.PrefetchIterator(
self.padded_batches,
buffer_size=10000,
buffer_in_main_process=True,
log_empty_buffer_warning=True and self.shard_id == 0,
)
prefetch_batches = iterators.MapIterator(prefetch_batches, self._move_to_tensor)
self._iter = prefetch_batches
def _multilingual_tokenize(self):
multilingual_iters = []
weights = []
for data in self.data:
multilingual_iters.append(self._tokenize(data))
if "weight" in data:
weights.append(float(data["weight"]))
else:
weights.append(int(data["count"]))
if len(multilingual_iters) == 1:
return multilingual_iters[0]
sampling_iterator = WeightIterator(weights)
control_iterator = NativeCheckpointableIterator(sampling_iterator)
tokenized_lines = iterators.MultiplexIterator(
control_iterator, multilingual_iters
)
return tokenized_lines
def _tokenize(self, data):
"""
data:
{
'source': list[Path],
'source_lang': str,
'count': int,
'weight': float,
'name': str,
}
"""
dataset = list(
zip(
data["source"],
itertools.repeat(data["source_lang"]),
)
)
if self.shuffle:
chunk_files = iterators.InfinitePermutationSourceIterator(
dataset,
seed=self.seed,
shuffle=self.shuffle,
num_instances=self.num_shards,
instance_rank=self.shard_id,
)
else:
chunk_files = iterators.ChunkedSourceIterator(
dataset,
num_instances=self.num_shards,
instance_rank=self.shard_id,
)
tokenized_lines = iterators.SelectManyIterator(
chunk_files, lambda files: self._read_from_files(*files)
)
tokenized_lines = iterators.SamplingRandomMapIterator(
tokenized_lines, self._prepare, self.seed
)
return tokenized_lines
def _batchify(self, lines):
if self.max_sentences is not None:
if self.batch_read_ahead > 0:
lines = iterators.BlockwiseShuffleIterator(
lines, self.batch_read_ahead, self.seed
)
batches = iterators.FixedBatchIterator(lines, self.max_sentences)
else:
def dynamic_batch_size(sample):
lengths = [len(x) for x in sample]
batch_size = self.max_tokens // max(lengths)
batch_size = (
batch_size
// self.required_batch_size_multiple
* self.required_batch_size_multiple
)
return max(1, batch_size)
batches = iterators.BucketedReadaheadBatchIterator(
lines,
read_ahead=self.batch_read_ahead,
key=(lambda x: max(len(x[0]), len(x[1]))) if self.shuffle else None,
batch_size=dynamic_batch_size,
shuffle=self.shuffle,
seed=self.seed,
)
def collate(batch):
batch_size = len(batch)
mlm_source_max_length = max([len(x[0]) for x in batch])
mlm_target_max_length = max([len(x[1]) for x in batch])
s2s_source_max_length = max([len(x[2]) for x in batch])
s2s_target_max_length = max([len(x[3]) for x in batch])
mlm_source_ids = np.full(
shape=(batch_size, mlm_source_max_length),
dtype=np.int32,
fill_value=self.dictionary.pad(),
)
mlm_target_ids = np.full(
shape=(batch_size, mlm_target_max_length),
dtype=np.int32,
fill_value=self.dictionary.pad(),
)
s2s_source_ids = np.full(
shape=(batch_size, s2s_source_max_length),
dtype=np.int32,
fill_value=self.dictionary.pad(),
)
s2s_target_ids = np.full(
shape=(batch_size, s2s_target_max_length - 1),
dtype=np.int32,
fill_value=self.dictionary.pad(),
)
s2s_prev_input_ids = np.full(
shape=(batch_size, s2s_target_max_length - 1),
dtype=np.int32,
fill_value=self.dictionary.pad(),
)
for i, (
mlm_input_ids,
mlm_label_ids,
s2s_input_ids,
s2s_label_ids,
) in enumerate(batch):
mlm_source_ids[i, : len(mlm_input_ids)] = mlm_input_ids
mlm_target_ids[i, : len(mlm_label_ids)] = mlm_label_ids
s2s_source_ids[i, : len(s2s_input_ids)] = s2s_input_ids
s2s_target_ids[i, : len(s2s_label_ids) - 1] = s2s_label_ids[1:]
s2s_prev_input_ids[i, : len(s2s_label_ids) - 1] = s2s_label_ids[:-1]
ret_batch = {
"net_input": {
"src_tokens": mlm_source_ids.astype(np.int64),
},
"target": mlm_target_ids.astype(np.int64),
"nsentences": batch_size,
"ntokens": sum([len(x[0]) for x in batch]),
}
return ret_batch
padded_batches = iterators.MapIterator(batches, collate)
return padded_batches
def _prepare(self, _random, doc):
nonmasked_tokens, masked_tokens = self._mask_lm(_random, doc)
nonnoise_spans, noise_spans = self._span_corruption(_random, doc)
return nonmasked_tokens, masked_tokens, nonnoise_spans, noise_spans
def _mask_lm(self, _random, doc):
def mask_tokens():
return "<mask>"
length = len(doc)
mask_tokens_num = int(length * self.args.mask_prob)
mask_tokens_num = min(max(mask_tokens_num, 1), length - 1)
possible_mask_positions = _random.sample(range(length), k=mask_tokens_num)
possible_mask_positions = sorted(possible_mask_positions)
nonmasked_tokens = copy.deepcopy(doc)
masked_tokens = [self.dictionary.pad() for _ in range(len(doc))]
for position in possible_mask_positions:
# masked_tokens.append(nonmasked_tokens[position])
masked_tokens[position] = nonmasked_tokens[position]
nonmasked_tokens[position] = self.dictionary.indices[mask_tokens()]
return nonmasked_tokens, masked_tokens
def _span_corruption(self, _random, doc):
def mask_tokens(i):
return f"<mask_{i}>"
length = len(doc)
noise_tokens_num = int(length * self.args.mask_prob)
noise_tokens_num = min(max(noise_tokens_num, 1), length - 1)
noise_spans_num = int(noise_tokens_num / self.args.span_length)
noise_spans_num = max(noise_spans_num, 1)
nonnoise_tokens_num = length - noise_tokens_num
if noise_spans_num == 1:
noise_split_positions = [0, noise_tokens_num]
else:
possible_split_positions = list(range(1, noise_tokens_num))
_random.shuffle(possible_split_positions)
noise_split_positions = sorted(
possible_split_positions[: noise_spans_num - 1]
)
noise_split_positions = [0] + noise_split_positions + [noise_tokens_num]
possible_insert_positions = list(range(nonnoise_tokens_num))
_random.shuffle(possible_insert_positions)
noise_insert_positions = sorted(possible_insert_positions[:noise_spans_num])
nonnoise_spans, noise_spans = [], []
last_end = 0
for i in range(noise_spans_num):
start_pos = noise_insert_positions[i] + noise_split_positions[i]
end_pos = noise_insert_positions[i] + noise_split_positions[i + 1]
mask_id = self.dictionary.indices[mask_tokens(i)]
if getattr(self.args, "remove_target_sentinel", False):
noise_spans.append(doc[start_pos:end_pos])
else:
noise_spans.append([mask_id] + doc[start_pos:end_pos])
if getattr(self.args, "remove_source_sentinel", False):
nonnoise_spans.extend(doc[last_end:start_pos])
else:
nonnoise_spans.extend(doc[last_end:start_pos] + [mask_id])
last_end = end_pos
nonnoise_spans.extend(doc[last_end:])
noise_spans = sum(noise_spans, [])
return nonnoise_spans, noise_spans
def _read_from_files(self, source_file, source_lang):
# data = []
file_path = os.path.join(self.data_dir, source_file)
if not os.path.exists(file_path):
print("| file {} not exists".format(file_path), flush=True)
return iter([]) # skip bad file
with open(file_path, "r", encoding="utf8") as f:
lines = f.read().strip().split("\n")
doc = [self.dictionary.bos()]
for line in lines:
if line == "":
if self.sample_break_mode == "complete_doc":
# data.append(doc)
yield doc
doc = [self.dictionary.bos()]
continue
tokenized_line = self.tokenizer.EncodeAsPieces(line)
tokenized_id = [
self.dictionary.index(token) for token in tokenized_line
] + [self.dictionary.eos_index]
if len(tokenized_id) > self.tokens_per_sample:
continue
if len(doc) + len(tokenized_id) > self.tokens_per_sample:
# data.append(doc)
yield doc
doc = [self.dictionary.bos()]
doc.extend(tokenized_id)
if len(doc) > 1 and len(doc) <= self.tokens_per_sample:
# data.append(doc)
yield doc
# return data
| KosmosX-API-main | kosmosX/torchscale/examples/fairseq/tasks/data/mlm_loader.py |
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
import math
import warnings
import torch
import torch.distributed as dist
from fairseq.utils import multi_tensor_l2norm_available, multi_tensor_total_norm
@torch.no_grad()
def clip_grad_norm_(
params, max_norm, moe_expert_count, aggregate_norm_fn=None
) -> torch.Tensor:
def grad_exists(p):
return p is not None and getattr(p, "grad", None) is not None
if isinstance(params, torch.Tensor):
params = [params]
params = list(params)
params = list(filter(grad_exists, params))
grads, expert_grads, base_expert_grads, sharded_grads = [], [], [], []
denom = math.sqrt(max(dist.get_global_world_size(), moe_expert_count))
for p in params:
if hasattr(p, "expert"):
expert_grads.append(p.grad.detach() / denom)
elif hasattr(p, "base_expert"):
base_expert_grads.append(p.grad.detach())
elif hasattr(p, "_is_sharded"):
sharded_grads.append(p.grad.detach())
else:
grads.append(p.grad.detach())
if len(grads) == 0:
if len(params) > 0:
total_norm = params[0].new_tensor(0.0)
else:
total_norm = torch.tensor(0.0)
elif len(grads) == 1:
total_norm = torch.norm(grads[0], p=2, dtype=torch.float32)
else:
if multi_tensor_l2norm_available:
total_norm = multi_tensor_total_norm(grads)
else:
if torch.cuda.is_available():
warnings.warn(
"amp_C fused kernels unavailable, disabling multi_tensor_l2norm; "
"you may get better performance by installing NVIDIA's apex library"
)
device = torch.cuda.current_device()
elif grads[0].device.type == "xla":
device = grads[0].device
else:
device = torch.device("cpu")
total_norm = torch.norm(
torch.stack(
[torch.norm(g, p=2, dtype=torch.float32).to(device) for g in grads]
)
)
# calculate split_norm and all_reduce with other workers
norms = [total_norm]
for split_grads in [expert_grads, sharded_grads]:
if len(split_grads) == 0:
continue
split_norm = torch.norm(
torch.stack([torch.norm(g, p=2, dtype=torch.float32) for g in split_grads])
)
if dist.is_initialized():
split_norm.pow_(2)
dist.all_reduce(split_norm)
split_norm.sqrt_()
norms.append(split_norm)
if len(norms) > 1:
total_norm = torch.norm(torch.stack(norms))
if aggregate_norm_fn is not None:
total_norm = aggregate_norm_fn(total_norm)
if max_norm > 0:
max_norm = float(max_norm)
clip_coef = (max_norm / (total_norm + 1e-6)).clamp_(max=1)
for g in grads + expert_grads + sharded_grads + base_expert_grads:
g.mul_(clip_coef)
return total_norm
| KosmosX-API-main | kosmosX/torchscale/examples/fairseq/utils/sparse_clip.py |
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
| KosmosX-API-main | kosmosX/torchscale/examples/fairseq/utils/__init__.py |
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
from dataclasses import dataclass, field
from typing import Optional
import torch
from fairseq import distributed_utils, utils
from fairseq.dataclass import ChoiceEnum, FairseqDataclass
from fairseq.models import (
FairseqIncrementalDecoder,
FairseqLanguageModel,
register_model,
register_model_architecture,
)
from fairseq.models.transformer import DEFAULT_MIN_PARAMS_TO_WRAP, Embedding
from fairseq.modules import PositionalEmbedding
from omegaconf import II
from torchscale.architecture.config import DecoderConfig
from torchscale.architecture.decoder import Decoder
DEFAULT_MAX_TARGET_POSITIONS = 1024
logger = logging.getLogger(__name__)
@dataclass
class LanguageConfig(FairseqDataclass):
activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field(
default="relu", metadata={"help": "activation function to use"}
)
dropout: float = field(default=0.1, metadata={"help": "dropout probability"})
attention_dropout: float = field(
default=0.0, metadata={"help": "dropout probability for attention weights"}
)
activation_dropout: float = field(
default=0.0, metadata={"help": "dropout probability after activation in FFN."}
)
relu_dropout: float = field(
default=0.0, metadata={"help": "dropout probability after activation in FFN."}
)
decoder_embed_dim: int = field(
default=512, metadata={"help": "decoder embedding dimension"}
)
decoder_output_dim: int = field(
default=512, metadata={"help": "decoder output dimension"}
)
decoder_input_dim: int = field(
default=512, metadata={"help": "decoder input dimension"}
)
decoder_ffn_embed_dim: int = field(
default=2048, metadata={"help": "decoder embedding dimension for FFN"}
)
decoder_layers: int = field(default=6, metadata={"help": "num decoder layers"})
decoder_attention_heads: int = field(
default=8, metadata={"help": "num decoder attention heads"}
)
decoder_normalize_before: bool = field(
default=False, metadata={"help": "apply layernorm before each decoder block"}
)
no_token_positional_embeddings: bool = field(
default=False,
metadata={
"help": "if set, disables positional embeddings (outside self attention)"
},
)
share_decoder_input_output_embed: bool = field(
default=False, metadata={"help": "share decoder input and output embeddings"}
)
decoder_learned_pos: bool = field(
default=False,
metadata={"help": "use learned positional embeddings in the decoder"},
)
layernorm_embedding: bool = field(
default=False, metadata={"help": "add layernorm to embedding"}
)
no_scale_embedding: bool = field(
default=False, metadata={"help": "if True, dont scale embeddings"}
)
checkpoint_activations: bool = field(
default=False, metadata={"help": "checkpoint activations at each layer"}
)
offload_activations: bool = field(
default=False,
metadata={"help": "move checkpointed activations to CPU after they are used."},
)
# config for Fully Sharded Data Parallel (FSDP) training
min_params_to_wrap: int = field(
default=DEFAULT_MIN_PARAMS_TO_WRAP,
metadata={
"help": (
"minimum number of params for a layer to be wrapped with FSDP() when "
"training with --ddp-backend=fully_sharded. Smaller values will "
"improve memory efficiency, but may make torch.distributed "
"communication less efficient due to smaller input sizes. This option "
"is set to 0 (i.e., always wrap) when --checkpoint-activations or "
"--offload-activations are passed."
)
},
)
moe_freq: int = field(
default=0,
metadata={"help": "Frequency at which we insert MoE Transformer layers"},
)
moe_expert_count: int = field(
default=0, metadata={"help": "Number of experts in each MoE Layer"}
)
moe_gating_use_fp32: bool = field(
default=False,
metadata={"help": "Use FP32 computations in MoE top2 gating function"},
)
moe_second_expert_policy: str = field(
default="sampling",
metadata={"help": "policy for second expert, options: all/sampling/random"},
)
moe_normalize_gate_prob_before_dropping: bool = field(
default=False,
metadata={
"help": "whether to normalize gate probs before or after dropping experts for capacity and randomization"
},
)
moe_expert_ffn_dim: Optional[int] = field(
default=None, metadata={"help": "MoE expert FFN dimension"}
)
moe_top1_expert: Optional[bool] = field(
default=False, metadata={"help": "Use top1 gate instead of top2"}
)
moe_eval_capacity_token_fraction: Optional[float] = field(
default=0.25,
metadata={
"help": (
"Default: 0.25, Fraction of tokens as capacity during validation, "
"if set to negative, use same as training. range: (0.0, 1.0]."
)
},
)
moe_normalize_expert_grad: Optional[str] = field(
default="world_size",
metadata={
"help": "Divide expert gradients by (1) 'world_size' (2) 'sqrt_world_size'"
},
)
record_a2a_perf_stats: Optional[bool] = field(
default=False,
metadata={"help": "records all to all perf stats during distributed training"},
)
dummy_a2a: Optional[bool] = field(
default=False,
metadata={
"help": "By passes all to all during distributed training by returning the input buffer as output"
},
)
moe_batch_prioritized_routing: Optional[bool] = field(
default=False,
metadata={
"help": "if true orders token by the gate prob before capacity dropping."
},
)
use_xmoe: Optional[bool] = field(
default=False,
)
flash_attention: Optional[bool] = field(
default=False,
)
sope_rel_pos: Optional[bool] = field(
default=False,
metadata={"help": "use SoPE as the relative position embhedding"},
)
scale_length: Optional[int] = field(
default=2048,
)
# options from other parts of the config
add_bos_token: bool = II("task.add_bos_token")
tokens_per_sample: int = II("task.tokens_per_sample")
max_target_positions: Optional[int] = II("task.max_target_positions")
tpu: bool = II("common.tpu")
memory_efficient_fp16: bool = II("common.memory_efficient_fp16")
fp16: bool = II("common.fp16")
fp16_no_flatten_grads: bool = II("common.fp16_no_flatten_grads")
ddp_backend: str = II("distributed_training.ddp_backend")
world_size: int = II("distributed_training.distributed_world_size")
distributed_rank: int = II("distributed_training.distributed_rank")
ddp_rank: int = II("distributed_training.distributed_rank")
deepnorm: Optional[bool] = field(
default=False,
)
subln: Optional[bool] = field(
default=False,
)
rel_pos_buckets: Optional[int] = field(
default=0,
)
max_rel_pos: Optional[int] = field(
default=0,
)
@register_model("lm", dataclass=LanguageConfig)
class LanguageModel(FairseqLanguageModel):
def __init__(self, args, decoder):
self.args = args
super().__init__(decoder)
@classmethod
def build_model(cls, args, task):
if getattr(args, "max_target_positions", None) is None:
args.max_target_positions = getattr(
args, "tokens_per_sample", DEFAULT_MAX_TARGET_POSITIONS
)
embed_tokens = cls.build_embedding(
args, task.source_dictionary, args.decoder_embed_dim
)
embed_positions = (
PositionalEmbedding(
args.max_target_positions,
args.decoder_embed_dim,
task.dictionary.pad(),
learned=args.decoder_learned_pos,
)
if not args.no_token_positional_embeddings
else None
)
if args.share_decoder_input_output_embed:
output_projection = torch.nn.Linear(
embed_tokens.weight.shape[1],
embed_tokens.weight.shape[0],
bias=False,
)
output_projection.weight = embed_tokens.weight
else:
output_projection = torch.nn.Linear(
args.decoder_embed_dim, len(task.dictionary), bias=False
)
torch.nn.init.normal_(
output_projection.weight, mean=0, std=args.decoder_embed_dim**-0.5
)
if getattr(args, "moe_freq", 0) > 0 and (
getattr(args, "fp16", False)
and not getattr(args, "memory_efficient_fp16", False)
and getattr(args, "ddp_backend", None) != "fully_sharded"
):
assert (
args.fp16_no_flatten_grads
), "If training moe models, set --fp16-no-flatten-grads to calculate correct gradnorm"
args.ddp_rank = distributed_utils.get_data_parallel_rank()
config = DecoderConfig()
config.override(args)
decoder = LMDecoder(
config,
embed_tokens,
embed_positions,
output_projection,
is_encoder_decoder=False,
dictionary=task.dictionary,
)
return cls(args, decoder)
@classmethod
def build_embedding(cls, args, dictionary, embed_dim, path=None):
return Embedding(len(dictionary), embed_dim, dictionary.pad())
class LMDecoder(Decoder, FairseqIncrementalDecoder):
def forward(self, src_tokens, **kwargs):
self_attn_padding_mask = src_tokens.eq(self.dictionary.pad())
return super().forward(src_tokens, self_attn_padding_mask, **kwargs)
def max_positions(self):
return self.embed_positions.max_positions
def reorder_incremental_state_scripting(
self,
incremental_state,
new_order,
):
for module in incremental_state:
for key in incremental_state[module]:
result = incremental_state[module][key].index_select(0, new_order)
incremental_state[module][key] = result
@register_model_architecture("lm", "lm_base")
def base_lm_architecture(args):
# backward compatibility for older model checkpoints
if hasattr(args, "no_tie_adaptive_proj"):
# previous models defined --no-tie-adaptive-proj, so use the existence of
# that option to determine if this is an "old" model checkpoint
args.no_decoder_final_norm = True # old models always set this to True
if args.no_tie_adaptive_proj is False:
args.tie_adaptive_proj = True
if hasattr(args, "decoder_final_norm"):
args.no_decoder_final_norm = not args.decoder_final_norm
args.dropout = getattr(args, "dropout", 0.1)
args.attention_dropout = getattr(args, "attention_dropout", 0.0)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512)
args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 2048)
args.decoder_layers = getattr(args, "decoder_layers", 6)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8)
args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)
args.adaptive_softmax_factor = getattr(args, "adaptive_softmax_factor", 4)
args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False)
args.activation_fn = getattr(args, "activation_fn", "relu")
args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0)
args.decoder_layers_to_keep = getattr(args, "decoder_layers_to_keep", None)
args.base_layers = getattr(args, "base_layers", 0)
args.base_sublayers = getattr(args, "base_sublayers", 1)
args.base_shuffle = getattr(args, "base_shuffle", False)
args.add_bos_token = getattr(args, "add_bos_token", False)
args.no_token_positional_embeddings = getattr(
args, "no_token_positional_embeddings", False
)
args.share_decoder_input_output_embed = getattr(
args, "share_decoder_input_output_embed", False
)
args.character_embeddings = getattr(args, "character_embeddings", False)
args.decoder_output_dim = getattr(
args, "decoder_output_dim", args.decoder_embed_dim
)
args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim)
# Model training is not stable without this
args.decoder_normalize_before = True
args.no_decoder_final_norm = getattr(args, "no_decoder_final_norm", False)
args.adaptive_input = getattr(args, "adaptive_input", False)
args.adaptive_input_factor = getattr(args, "adaptive_input_factor", 4)
args.adaptive_input_cutoff = getattr(args, "adaptive_input_cutoff", None)
args.tie_adaptive_weights = getattr(args, "tie_adaptive_weights", False)
args.tie_adaptive_proj = getattr(args, "tie_adaptive_proj", False)
args.no_scale_embedding = getattr(args, "no_scale_embedding", False)
args.layernorm_embedding = getattr(args, "layernorm_embedding", False)
args.checkpoint_activations = getattr(args, "checkpoint_activations", False)
args.offload_activations = getattr(args, "offload_activations", False)
if args.offload_activations:
args.checkpoint_activations = True
| KosmosX-API-main | kosmosX/torchscale/examples/fairseq/models/language_modeling.py |
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
import argparse
import importlib
import os
MODEL_REGISTRY = {}
MODEL_DATACLASS_REGISTRY = {}
ARCH_MODEL_REGISTRY = {}
ARCH_MODEL_NAME_REGISTRY = {}
ARCH_MODEL_INV_REGISTRY = {}
ARCH_CONFIG_REGISTRY = {}
# automatically import any Python files in the models/ directory
models_dir = os.path.dirname(__file__)
for file in os.listdir(models_dir):
path = os.path.join(models_dir, file)
if (
not file.startswith("_")
and not file.startswith(".")
and (file.endswith(".py") or os.path.isdir(path))
):
model_name = file[: file.find(".py")] if file.endswith(".py") else file
module = importlib.import_module("models." + model_name)
# extra `model_parser` for sphinx
if model_name in MODEL_REGISTRY:
parser = argparse.ArgumentParser(add_help=False)
group_archs = parser.add_argument_group("Named architectures")
group_archs.add_argument(
"--arch", choices=ARCH_MODEL_INV_REGISTRY[model_name]
)
group_args = parser.add_argument_group("Additional command-line arguments")
MODEL_REGISTRY[model_name].add_args(group_args)
globals()[model_name + "_parser"] = parser
| KosmosX-API-main | kosmosX/torchscale/examples/fairseq/models/__init__.py |
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
from typing import Dict, List, Optional, Tuple
import torch
from fairseq import distributed_utils, utils
from fairseq.distributed import utils as fsdp_wrap
from fairseq.models import (
FairseqEncoder,
FairseqEncoderDecoderModel,
register_model,
register_model_architecture,
)
from fairseq.models.transformer import Embedding
from fairseq.modules import PositionalEmbedding
from torch import Tensor
from torchscale.architecture.config import DecoderConfig, EncoderConfig
from torchscale.architecture.encoder import Encoder
from .language_modeling import LMDecoder as MTDecoder
logger = logging.getLogger(__name__)
DEFAULT_MAX_SOURCE_POSITIONS = 1024
DEFAULT_MAX_TARGET_POSITIONS = 1024
DEFAULT_MIN_PARAMS_TO_WRAP = int(1e8)
@register_model("mt")
class TranslationModel(FairseqEncoderDecoderModel):
def __init__(self, args, encoder, decoder):
super().__init__(encoder, decoder)
self.args = args
@staticmethod
def add_args(parser):
"""Add model-specific arguments to the parser."""
# fmt: off
parser.add_argument('--activation-fn',
choices=utils.get_available_activation_fns(),
help='activation function to use')
parser.add_argument('--dropout', type=float, metavar='D',
help='dropout probability')
parser.add_argument('--attention-dropout', type=float, metavar='D',
help='dropout probability for attention weights')
parser.add_argument('--activation-dropout', '--relu-dropout', type=float, metavar='D',
help='dropout probability after activation in FFN.')
parser.add_argument('--encoder-embed-path', type=str, metavar='STR',
help='path to pre-trained encoder embedding')
parser.add_argument('--encoder-embed-dim', type=int, metavar='N',
help='encoder embedding dimension')
parser.add_argument('--encoder-ffn-embed-dim', type=int, metavar='N',
help='encoder embedding dimension for FFN')
parser.add_argument('--encoder-layers', type=int, metavar='N',
help='num encoder layers')
parser.add_argument('--encoder-attention-heads', type=int, metavar='N',
help='num encoder attention heads')
parser.add_argument('--encoder-normalize-before', action='store_true',
help='apply layernorm before each encoder block')
parser.add_argument('--encoder-learned-pos', action='store_true',
help='use learned positional embeddings in the encoder')
parser.add_argument('--decoder-embed-path', type=str, metavar='STR',
help='path to pre-trained decoder embedding')
parser.add_argument('--decoder-embed-dim', type=int, metavar='N',
help='decoder embedding dimension')
parser.add_argument('--decoder-ffn-embed-dim', type=int, metavar='N',
help='decoder embedding dimension for FFN')
parser.add_argument('--decoder-layers', type=int, metavar='N',
help='num decoder layers')
parser.add_argument('--decoder-attention-heads', type=int, metavar='N',
help='num decoder attention heads')
parser.add_argument('--decoder-learned-pos', action='store_true',
help='use learned positional embeddings in the decoder')
parser.add_argument('--decoder-normalize-before', action='store_true',
help='apply layernorm before each decoder block')
parser.add_argument('--decoder-output-dim', type=int, metavar='N',
help='decoder output dimension (extra linear layer '
'if different from decoder embed dim')
parser.add_argument('--share-decoder-input-output-embed', action='store_true',
help='share decoder input and output embeddings')
parser.add_argument('--share-all-embeddings', action='store_true',
help='share encoder, decoder and output embeddings'
' (requires shared dictionary and embed dim)')
parser.add_argument('--no-token-positional-embeddings', default=False, action='store_true',
help='if set, disables positional embeddings (outside self attention)')
parser.add_argument('--adaptive-softmax-cutoff', metavar='EXPR',
help='comma separated list of adaptive softmax cutoff points. '
'Must be used with adaptive_loss criterion'),
parser.add_argument('--adaptive-softmax-dropout', type=float, metavar='D',
help='sets adaptive softmax dropout for the tail projections')
parser.add_argument('--layernorm-embedding', action='store_true',
help='add layernorm to embedding')
parser.add_argument('--no-scale-embedding', action='store_true',
help='if True, dont scale embeddings')
parser.add_argument('--checkpoint-activations', action='store_true',
help='checkpoint activations at each layer, which saves GPU '
'memory usage at the cost of some additional compute')
parser.add_argument('--offload-activations', action='store_true',
help='checkpoint activations at each layer, then save to gpu. Sets --checkpoint-activations.')
# args for "Cross+Self-Attention for Transformer Models" (Peitz et al., 2019)
parser.add_argument('--no-cross-attention', default=False, action='store_true',
help='do not perform cross-attention')
parser.add_argument('--cross-self-attention', default=False, action='store_true',
help='perform cross+self-attention')
# args for "Reducing Transformer Depth on Demand with Structured Dropout" (Fan et al., 2019)
parser.add_argument('--encoder-layerdrop', type=float, metavar='D', default=0,
help='LayerDrop probability for encoder')
parser.add_argument('--decoder-layerdrop', type=float, metavar='D', default=0,
help='LayerDrop probability for decoder')
parser.add_argument('--encoder-layers-to-keep', default=None,
help='which layers to *keep* when pruning as a comma-separated list')
parser.add_argument('--decoder-layers-to-keep', default=None,
help='which layers to *keep* when pruning as a comma-separated list')
# args for Training with Quantization Noise for Extreme Model Compression ({Fan*, Stock*} et al., 2020)
parser.add_argument('--quant-noise-pq', type=float, metavar='D', default=0,
help='iterative PQ quantization noise at training time')
parser.add_argument('--quant-noise-pq-block-size', type=int, metavar='D', default=8,
help='block size of quantization noise at training time')
parser.add_argument('--quant-noise-scalar', type=float, metavar='D', default=0,
help='scalar quantization noise and scalar quantization at training time')
# args for Fully Sharded Data Parallel (FSDP) training
parser.add_argument(
'--min-params-to-wrap', type=int, metavar='D', default=DEFAULT_MIN_PARAMS_TO_WRAP,
help=(
'minimum number of params for a layer to be wrapped with FSDP() when '
'training with --ddp-backend=fully_sharded. Smaller values will '
'improve memory efficiency, but may make torch.distributed '
'communication less efficient due to smaller input sizes. This option '
'is set to 0 (i.e., always wrap) when --checkpoint-activations or '
'--offload-activations are passed.'
)
)
# args for mixture-of-expert layers
parser.add_argument('--moe-freq', type=int, metavar='D', default=0,
help='Frequency at which we insert MoE Transformer layers')
parser.add_argument('--encoder-moe-freq', type=int, metavar='D', default=0,
help='Frequency at which we insert MoE Transformer encoder layers')
parser.add_argument('--decoder-moe-freq', type=int, metavar='D', default=0,
help='Frequency at which we insert MoE Transformer decoder layers')
parser.add_argument('--moe-expert-count', type=int, metavar='D', default=0,
help='Number of experts in each MoE Layer')
parser.add_argument('--moe-gating-use-fp32', default=False, action='store_true',
help="Use FP32 computations in MoE top2 gating function")
parser.add_argument('--moe-second-expert-policy', type=str, default='sampling',
help="policy for second expert, options: all/sampling/random")
parser.add_argument(
'--moe-normalize-gate-prob-before-dropping', default=False, action='store_true',
help=(
"whether to normalize gate probs before or after dropping experts "
"for capacity and randomization"
)
)
parser.add_argument('--moe-expert-ffn-dim', type=int, default=0,
help="MoE Expert FFN dimension")
parser.add_argument('--moe-top1-expert', default=False, action='store_true',
help="Use top1 gate instead of top2")
parser.add_argument(
'--moe-eval-capacity-token-fraction', type=float, default=0.25,
help=(
"Fraction of tokens as capacity during validation"
"if set to negative, use same as training. range: (0.0, 1.0]."
)
)
parser.add_argument('--moe-normalize-expert-grad', type=str, default='world_size',
help="Divide expert gradients by (1) 'world_size' (2) 'sqrt_world_size'")
parser.add_argument('--use-moe-pad-mask', default=False, action='store_true',
help="Don't route padding tokens to any expert")
parser.add_argument('--use-xmoe', default=False, action='store_true',
help="Enable X-Moe")
parser.add_argument('--freeze-moe', default=False, action='store_true',
help="Freeze MoE Params")
parser.add_argument('--deepnorm', default=False, action='store_true',
help="Enable DeepNorm")
parser.add_argument('--subln', default=False, action='store_true',
help="Enable SubLN")
parser.add_argument('--pretrained-dense-mt-model-path', type=str, default='')
# args for pseudo-MoE layers
parser.add_argument('--alternate-ffn-embed-dim', type=int, default=0,
help="FFN embed dim of alternate pseudo-MoE blocks")
parser.add_argument('--rel-pos-buckets', type=int, default=0,
help='')
parser.add_argument('--max-rel-pos', type=int, default=0,
help='')
# fmt: on
@classmethod
def build_model(cls, args, task):
"""Build a new model instance."""
# make sure all arguments are present in older models
base_architecture(args)
if getattr(args, "max_source_positions", None) is None:
args.max_source_positions = DEFAULT_MAX_SOURCE_POSITIONS
if getattr(args, "max_target_positions", None) is None:
args.max_target_positions = DEFAULT_MAX_TARGET_POSITIONS
args.ddp_rank = distributed_utils.get_data_parallel_rank()
src_dict, tgt_dict = task.source_dictionary, task.target_dictionary
if args.share_all_embeddings:
if src_dict != tgt_dict:
raise ValueError("--share-all-embeddings requires a joined dictionary")
if args.encoder_embed_dim != args.decoder_embed_dim:
raise ValueError(
"--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim"
)
if args.decoder_embed_path and (
args.decoder_embed_path != args.encoder_embed_path
):
raise ValueError(
"--share-all-embeddings not compatible with --decoder-embed-path"
)
encoder_embed_tokens = cls.build_embedding(
args, src_dict, args.encoder_embed_dim, args.encoder_embed_path
)
decoder_embed_tokens = encoder_embed_tokens
args.share_decoder_input_output_embed = True
else:
encoder_embed_tokens = cls.build_embedding(
args, src_dict, args.encoder_embed_dim, args.encoder_embed_path
)
decoder_embed_tokens = cls.build_embedding(
args, tgt_dict, args.decoder_embed_dim, args.decoder_embed_path
)
if getattr(args, "offload_activations", False):
args.checkpoint_activations = True # offloading implies checkpointing
encoder_embed_positions = (
PositionalEmbedding(
args.max_source_positions,
args.encoder_embed_dim,
src_dict.pad(),
learned=args.encoder_learned_pos,
)
if not args.no_token_positional_embeddings
else None
)
decoder_embed_positions = (
PositionalEmbedding(
args.max_target_positions,
args.decoder_embed_dim,
tgt_dict.pad(),
learned=args.decoder_learned_pos,
)
if not args.no_token_positional_embeddings
else None
)
if args.share_decoder_input_output_embed:
output_projection = torch.nn.Linear(
decoder_embed_tokens.weight.shape[1],
decoder_embed_tokens.weight.shape[0],
bias=False,
)
output_projection.weight = decoder_embed_tokens.weight
else:
output_projection = torch.nn.Linear(
args.decoder_embed_dim, len(tgt_dict), bias=False
)
torch.nn.init.normal_(
output_projection.weight, mean=0, std=args.decoder_embed_dim**-0.5
)
encoder = cls.build_encoder(
args,
encoder_embed_tokens,
encoder_embed_positions,
src_dict,
)
decoder = cls.build_decoder(
args,
decoder_embed_tokens,
decoder_embed_positions,
output_projection,
tgt_dict,
)
if not args.share_all_embeddings:
min_params_to_wrap = getattr(
args, "min_params_to_wrap", DEFAULT_MIN_PARAMS_TO_WRAP
)
# fsdp_wrap is a no-op when --ddp-backend != fully_sharded
encoder = fsdp_wrap(encoder, min_num_params=min_params_to_wrap)
decoder = fsdp_wrap(decoder, min_num_params=min_params_to_wrap)
return cls(args, encoder, decoder)
@classmethod
def build_embedding(cls, args, dictionary, embed_dim, path=None):
num_embeddings = len(dictionary)
padding_idx = dictionary.pad()
emb = Embedding(num_embeddings, embed_dim, padding_idx)
# if provided, load from preloaded dictionaries
if path:
embed_dict = utils.parse_embedding(path)
utils.load_embedding(embed_dict, dictionary, emb)
return emb
@classmethod
def build_encoder(cls, args, embed_tokens, embed_positions, dictionary):
config = EncoderConfig()
config.override(args)
return MTEncoder(
config,
embed_tokens,
embed_positions,
is_encoder_decoder=True,
dictionary=dictionary,
)
@classmethod
def build_decoder(
cls, args, embed_tokens, embed_positions, output_projection, dictionary
):
config = DecoderConfig()
config.override(args)
return MTDecoder(
config,
embed_tokens,
embed_positions,
output_projection,
is_encoder_decoder=True,
dictionary=dictionary,
)
def forward(
self,
src_tokens,
src_lengths,
prev_output_tokens,
return_all_hiddens: bool = False,
features_only: bool = False,
**kwargs
):
encoder_out = self.encoder(src_tokens, return_all_hiddens=return_all_hiddens)
decoder_out = self.decoder(
prev_output_tokens,
encoder_out=encoder_out,
features_only=features_only,
return_all_hiddens=return_all_hiddens,
)
return decoder_out
def get_normalized_probs(
self,
net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]],
log_probs: bool,
sample: Optional[Dict[str, Tensor]] = None,
):
"""Get normalized probabilities (or log probs) from a net's output."""
return self.get_normalized_probs_scriptable(net_output, log_probs, sample)
class MTEncoder(Encoder, FairseqEncoder):
def forward(self, src_tokens, **kwargs):
self_attn_padding_mask = src_tokens.eq(self.dictionary.pad())
return super().forward(
src_tokens=src_tokens, encoder_padding_mask=self_attn_padding_mask, **kwargs
)
def reorder_encoder_out(self, encoder_out, new_order):
new_encoder_out = encoder_out["encoder_out"].index_select(1, new_order)
new_encoder_embedding = encoder_out["encoder_embedding"].index_select(
0, new_order
)
new_encoder_padding_mask = encoder_out["encoder_padding_mask"].index_select(
0, new_order
)
encoder_states = encoder_out["encoder_states"]
if len(encoder_states) > 0:
for idx, state in enumerate(encoder_states):
encoder_states[idx] = state.index_select(1, new_order)
return {
"encoder_out": new_encoder_out, # T x B x C
"encoder_padding_mask": new_encoder_padding_mask,
"encoder_embedding": new_encoder_embedding, # B x T x C
"encoder_states": encoder_states, # List[T x B x C]
}
def max_positions(self):
return self.embed_positions.max_positions
@register_model_architecture("mt", "mt_base")
def base_architecture(args):
args.encoder_embed_path = getattr(args, "encoder_embed_path", None)
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048)
args.encoder_layers = getattr(args, "encoder_layers", 6)
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8)
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False)
args.decoder_embed_path = getattr(args, "decoder_embed_path", None)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim)
args.decoder_ffn_embed_dim = getattr(
args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim
)
args.decoder_layers = getattr(args, "decoder_layers", 6)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8)
args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False)
args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False)
args.attention_dropout = getattr(args, "attention_dropout", 0.0)
args.activation_dropout = getattr(args, "activation_dropout", 0.0)
args.activation_fn = getattr(args, "activation_fn", "relu")
args.dropout = getattr(args, "dropout", 0.1)
args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)
args.share_decoder_input_output_embed = getattr(
args, "share_decoder_input_output_embed", False
)
args.share_all_embeddings = getattr(args, "share_all_embeddings", False)
args.no_token_positional_embeddings = getattr(
args, "no_token_positional_embeddings", False
)
args.adaptive_input = getattr(args, "adaptive_input", False)
args.no_cross_attention = getattr(args, "no_cross_attention", False)
args.cross_self_attention = getattr(args, "cross_self_attention", False)
args.decoder_output_dim = getattr(
args, "decoder_output_dim", args.decoder_embed_dim
)
args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim)
args.no_scale_embedding = getattr(args, "no_scale_embedding", False)
args.layernorm_embedding = getattr(args, "layernorm_embedding", False)
args.tie_adaptive_weights = getattr(args, "tie_adaptive_weights", False)
args.checkpoint_activations = getattr(args, "checkpoint_activations", False)
args.offload_activations = getattr(args, "offload_activations", False)
if args.offload_activations:
args.checkpoint_activations = True
args.encoder_layers_to_keep = getattr(args, "encoder_layers_to_keep", None)
args.decoder_layers_to_keep = getattr(args, "decoder_layers_to_keep", None)
args.encoder_layerdrop = getattr(args, "encoder_layerdrop", 0)
args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0)
args.quant_noise_pq = getattr(args, "quant_noise_pq", 0)
args.quant_noise_pq_block_size = getattr(args, "quant_noise_pq_block_size", 8)
args.quant_noise_scalar = getattr(args, "quant_noise_scalar", 0)
args.is_moe = getattr(args, "is_moe", False)
args.selected_expert_count = getattr(args, "selected_expert_count", 2)
| KosmosX-API-main | kosmosX/torchscale/examples/fairseq/models/machine_translation.py |
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
import logging
from dataclasses import dataclass, field
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from apex.normalization import FusedLayerNorm as LayerNorm
from fairseq import utils
from fairseq.dataclass import ChoiceEnum, FairseqDataclass
from fairseq.models import BaseFairseqModel, register_model, register_model_architecture
from fairseq.models.squad import SQuADHead
from fairseq.models.transformer import DEFAULT_MIN_PARAMS_TO_WRAP, Embedding
from fairseq.modules import PositionalEmbedding
from omegaconf import II
from torchscale.architecture.config import EncoderConfig
from .machine_translation import MTEncoder as Encoder
DEFAULT_MAX_SOURCE_POSITIONS = 1024
logger = logging.getLogger(__name__)
@dataclass
class BertConfig(FairseqDataclass):
activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field(
default="relu", metadata={"help": "activation function to use"}
)
dropout: float = field(default=0.1, metadata={"help": "dropout probability"})
attention_dropout: float = field(
default=0.0, metadata={"help": "dropout probability for attention weights"}
)
activation_dropout: float = field(
default=0.0, metadata={"help": "dropout probability after activation in FFN."}
)
encoder_embed_dim: int = field(
default=512, metadata={"help": "encoder embedding dimension"}
)
encoder_output_dim: int = field(
default=512, metadata={"help": "encoder output dimension"}
)
encoder_input_dim: int = field(
default=512, metadata={"help": "encoder input dimension"}
)
encoder_ffn_embed_dim: int = field(
default=2048, metadata={"help": "encoder embedding dimension for FFN"}
)
encoder_layers: int = field(default=6, metadata={"help": "num encoder layers"})
encoder_attention_heads: int = field(
default=8, metadata={"help": "num encoder attention heads"}
)
encoder_normalize_before: bool = field(
default=False, metadata={"help": "apply layernorm before each encoder block"}
)
no_encoder_final_norm: bool = field(
default=False,
metadata={"help": "don't add an extra layernorm after the last encoder block"},
)
no_token_positional_embeddings: bool = field(
default=False,
metadata={
"help": "if set, disables positional embeddings (outside self attention)"
},
)
share_encoder_input_output_embed: bool = field(
default=False, metadata={"help": "share encoder input and output embeddings"}
)
encoder_learned_pos: bool = field(
default=False,
metadata={"help": "use learned positional embeddings in the encoder"},
)
layernorm_embedding: bool = field(
default=False, metadata={"help": "add layernorm to embedding"}
)
no_scale_embedding: bool = field(
default=False, metadata={"help": "if True, dont scale embeddings"}
)
checkpoint_activations: bool = field(
default=False, metadata={"help": "checkpoint activations at each layer"}
)
offload_activations: bool = field(
default=False,
metadata={"help": "move checkpointed activations to CPU after they are used."},
)
# config for "Reducing Transformer Depth on Demand with Structured Dropout" (Fan et al., 2019)
encoder_layerdrop: float = field(
default=0.0, metadata={"help": "LayerDrop probability for encoder"}
)
encoder_layers_to_keep: Optional[str] = field(
default=None,
metadata={
"help": "which layers to *keep* when pruning as a comma-separated list"
},
)
# config for Fully Sharded Data Parallel (FSDP) training
min_params_to_wrap: int = field(
default=DEFAULT_MIN_PARAMS_TO_WRAP,
metadata={
"help": (
"minimum number of params for a layer to be wrapped with FSDP() when "
"training with --ddp-backend=fully_sharded. Smaller values will "
"improve memory efficiency, but may make torch.distributed "
"communication less efficient due to smaller input sizes. This option "
"is set to 0 (i.e., always wrap) when --checkpoint-activations or "
"--offload-activations are passed."
)
},
)
max_source_positions: int = field(
default=1024, metadata={"help": "max source positions"}
)
pooler_activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field(
default="relu", metadata={"help": "activation function to use for pooler layer"}
)
pooler_dropout: float = field(
default=0.0,
metadata={"help": "dropout probability in the masked_lm pooler layers"},
)
# options from other parts of the config
# add_bos_token: bool = II("task.add_bos_token")
# tokens_per_sample: int = II("task.tokens_per_sample")
tpu: bool = II("common.tpu")
rel_pos_buckets: int = field(default=0, metadata={"help": ""})
max_rel_pos: int = field(default=0, metadata={"help": ""})
moe_freq: int = field(
default=0,
metadata={"help": "Frequency at which we insert MoE Transformer layers"},
)
moe_expert_count: int = field(
default=0, metadata={"help": "Number of experts in each MoE Layer"}
)
moe_gating_use_fp32: bool = field(
default=False,
metadata={"help": "Use FP32 computations in MoE top2 gating function"},
)
moe_second_expert_policy: str = field(
default="sampling",
metadata={"help": "policy for second expert, options: all/sampling/random"},
)
moe_normalize_gate_prob_before_dropping: bool = field(
default=False,
metadata={
"help": "whether to normalize gate probs before or after dropping experts for capacity and randomization"
},
)
moe_expert_ffn_dim: Optional[int] = field(
default=None, metadata={"help": "MoE expert FFN dimension"}
)
moe_top1_expert: Optional[bool] = field(
default=False, metadata={"help": "Use top1 gate instead of top2"}
)
moe_eval_capacity_token_fraction: Optional[float] = field(
default=0.25,
metadata={
"help": (
"Default: 0.25, Fraction of tokens as capacity during validation, "
"if set to negative, use same as training. range: (0.0, 1.0]."
)
},
)
moe_normalize_expert_grad: Optional[str] = field(
default="world_size",
metadata={
"help": "Divide expert gradients by (1) 'world_size' (2) 'sqrt_world_size'"
},
)
record_a2a_perf_stats: Optional[bool] = field(
default=False,
metadata={"help": "records all to all perf stats during distributed training"},
)
dummy_a2a: Optional[bool] = field(
default=False,
metadata={
"help": "By passes all to all during distributed training by returning the input buffer as output"
},
)
moe_batch_prioritized_routing: Optional[bool] = field(
default=False,
metadata={
"help": "if true orders token by the gate prob before capacity dropping."
},
)
ddp_rank: int = II("distributed_training.distributed_rank")
deepnorm: Optional[bool] = field(
default=False,
)
subln: Optional[bool] = field(
default=False,
)
@register_model("mlm", dataclass=BertConfig)
class BertModel(BaseFairseqModel):
def __init__(self, args, encoder):
super().__init__()
self.args = args
self.encoder = encoder
self.padding_idx = self.encoder.embed_tokens.padding_idx
self.classification_heads = nn.ModuleDict()
@classmethod
def build_model(cls, args, task):
"""Build a new model instance."""
args.max_source_positions = getattr(
args, "max_source_positions", DEFAULT_MAX_SOURCE_POSITIONS
)
embed_tokens = cls.build_embedding(
args, task.dictionary, args.encoder_embed_dim
)
embed_positions = (
PositionalEmbedding(
args.max_source_positions,
args.encoder_embed_dim,
task.dictionary.pad(),
learned=args.encoder_learned_pos,
)
if not args.no_token_positional_embeddings
else None
)
lm_head = cls.build_lm_head(
args,
args.encoder_embed_dim,
len(task.dictionary),
args.activation_fn,
weight=embed_tokens.weight,
)
config = EncoderConfig()
config.override(args)
encoder = Encoder(
config,
embed_tokens=embed_tokens,
embed_positions=embed_positions,
output_projection=lm_head,
is_encoder_decoder=False,
dictionary=task.dictionary,
)
return cls(args, encoder)
@classmethod
def build_embedding(cls, args, dictionary, embed_dim, path=None):
embed_tokens = Embedding(len(dictionary), embed_dim, dictionary.pad())
return embed_tokens
@classmethod
def build_lm_head(cls, args, embed_dim, output_dim, activation_fn, weight):
return LMHead(embed_dim, output_dim, activation_fn, weight)
def output_layer(self, features, masked_tokens=None):
return self.encoder.output_projection(features, masked_tokens=masked_tokens)
def register_classification_head(
self, name, num_classes=None, inner_dim=None, **kwargs
):
"""Register a classification head."""
if name in self.classification_heads:
prev_num_classes = self.classification_heads[name].out_proj.out_features
prev_inner_dim = self.classification_heads[name].dense.out_features
if num_classes != prev_num_classes or inner_dim != prev_inner_dim:
logger.warning(
're-registering head "{}" with num_classes {} (prev: {}) '
"and inner_dim {} (prev: {})".format(
name, num_classes, prev_num_classes, inner_dim, prev_inner_dim
)
)
self.classification_heads[name] = ClassificationHead(
self.args.encoder_embed_dim,
inner_dim or self.args.encoder_embed_dim,
num_classes,
self.args.pooler_activation_fn,
self.args.pooler_dropout,
)
def register_question_answering_head(self, name, num_classes=None):
self.classification_heads[name] = SQuADHead(
self.args.encoder_embed_dim,
)
def upgrade_state_dict_named(self, state_dict, name):
prefix = name + "." if name != "" else ""
# upgrade children modules
super().upgrade_state_dict_named(state_dict, name)
# Handle new classification heads present in the state dict.
current_head_names = (
[]
if not hasattr(self, "classification_heads")
else self.classification_heads.keys()
)
keys_to_delete = []
for k in state_dict.keys():
if not k.startswith(prefix + "classification_heads."):
continue
head_name = k[len(prefix + "classification_heads.") :].split(".")[0] # noqa: E203
num_classes = state_dict[
prefix + "classification_heads." + head_name + ".out_proj.weight"
].size(0)
inner_dim = state_dict[
prefix + "classification_heads." + head_name + ".dense.weight"
].size(0)
if getattr(self.args, "load_checkpoint_heads", False):
if head_name not in current_head_names:
self.register_classification_head(head_name, num_classes, inner_dim)
else:
if head_name not in current_head_names:
logger.warning(
"deleting classification head ({}) from checkpoint "
"not present in current model: {}".format(head_name, k)
)
keys_to_delete.append(k)
elif (
num_classes
!= self.classification_heads[head_name].out_proj.out_features
or inner_dim
!= self.classification_heads[head_name].dense.out_features
):
logger.warning(
"deleting classification head ({}) from checkpoint "
"with different dimensions than current model: {}".format(
head_name, k
)
)
keys_to_delete.append(k)
for k in keys_to_delete:
del state_dict[k]
# Copy any newly-added classification heads into the state dict
# with their current weights.
if hasattr(self, "classification_heads"):
cur_state = self.classification_heads.state_dict()
for k, v in cur_state.items():
if prefix + "classification_heads." + k not in state_dict:
logger.info("Overwriting " + prefix + "classification_heads." + k)
state_dict[prefix + "classification_heads." + k] = v
def forward(
self,
src_tokens=None,
features_only=False,
return_all_hiddens=False,
classification_head_name=None,
masked_tokens=None,
**kwargs
):
encoder_out = self.encoder(
src_tokens, features_only=True, return_all_hiddens=return_all_hiddens
)
x, extra = encoder_out["encoder_out"], encoder_out
x = x.transpose(0, 1)
if classification_head_name is not None:
x = self.classification_heads[classification_head_name](x)
elif not features_only:
x = self.output_layer(x, masked_tokens=masked_tokens)
return x, extra
class ClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(
self,
input_dim,
inner_dim,
num_classes,
activation_fn,
pooler_dropout,
):
super().__init__()
self.dense = nn.Linear(input_dim, inner_dim)
self.activation_fn = utils.get_activation_fn(activation_fn)
self.dropout = nn.Dropout(p=pooler_dropout)
self.out_proj = nn.Linear(inner_dim, num_classes)
def forward(self, features, **kwargs):
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
x = self.dropout(x)
x = self.dense(x)
x = self.activation_fn(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
class LMHead(nn.Module):
"""Head for masked language modeling."""
def __init__(self, embed_dim, output_dim, activation_fn, weight=None):
super().__init__()
self.dense = nn.Linear(embed_dim, embed_dim)
self.activation_fn = utils.get_activation_fn(activation_fn)
self.layer_norm = LayerNorm(embed_dim)
if weight is None:
weight = nn.Linear(embed_dim, output_dim, bias=False).weight
self.weight = weight
self.bias = nn.Parameter(torch.zeros(output_dim))
def forward(self, features, masked_tokens=None, **kwargs):
# Only project the masked tokens while training,
# saves both memory and computation
if masked_tokens is not None:
features = features[masked_tokens, :]
x = self.dense(features)
x = self.activation_fn(x)
x = self.layer_norm(x)
# project back to size of vocabulary with bias
x = F.linear(x, self.weight) + self.bias
return x
@register_model_architecture("mlm", "mlm_base")
def base_unilm_architecture(args):
if hasattr(args, "encoder_final_norm"):
args.no_encoder_final_norm = not args.encoder_final_norm
args.dropout = getattr(args, "dropout", 0.1)
args.attention_dropout = getattr(args, "attention_dropout", 0.0)
args.activation_dropout = getattr(args, "activation_dropout", 0.0)
args.pooler_dropout = getattr(args, "pooler_dropout", 0.0)
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 768)
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 3072)
args.encoder_layers = getattr(args, "encoder_layers", 12)
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 12)
args.encoder_learned_pos = getattr(args, "encoder_learned_pos", True)
args.activation_fn = getattr(args, "activation_fn", "gelu")
args.pooler_activation_fn = getattr(args, "pooler_activation_fn", "tanh")
args.encoder_layerdrop = getattr(args, "encoder_layerdrop", 0)
args.encoder_layers_to_keep = getattr(args, "encoder_layers_to_keep", None)
# args.add_bos_token = getattr(args, "add_bos_token", False)
args.no_token_positional_embeddings = getattr(
args, "no_token_positional_embeddings", False
)
args.share_encoder_input_output_embed = getattr(
args, "share_encoder_input_output_embed", True
)
args.encoder_output_dim = getattr(
args, "encoder_output_dim", args.encoder_embed_dim
)
args.encoder_input_dim = getattr(args, "encoder_input_dim", args.encoder_embed_dim)
# Model training is not stable without this
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
args.no_encoder_final_norm = getattr(args, "no_encoder_final_norm", False)
args.no_scale_embedding = getattr(args, "no_scale_embedding", True)
args.layernorm_embedding = getattr(args, "layernorm_embedding", True)
args.checkpoint_activations = getattr(args, "checkpoint_activations", False)
args.offload_activations = getattr(args, "offload_activations", False)
if args.offload_activations:
args.checkpoint_activations = True
| KosmosX-API-main | kosmosX/torchscale/examples/fairseq/models/bert.py |
KosmosX-API-main | kosmosX/unilm/__init__.py |
|
import logging
import os
from dataclasses import dataclass, field
import numpy as np
import torch
from fairseq import utils
from fairseq.data import (
FairseqDataset,
AppendTokenDataset,
Dictionary,
IdDataset,
NestedDictionaryDataset,
NumelDataset,
PadDataset,
StripTokenDataset,
TokenBlockDataset,
)
from fairseq import utils
from fairseq.tasks import register_task
from fairseq.tasks.language_modeling import LanguageModelingConfig, LanguageModelingTask
from fairseq.data import Dictionary
from omegaconf import II
from fairseq import utils
from unilm.data.utils import add_location_symbols
logger = logging.getLogger(__name__)
@dataclass
class GenerationObjConfig(LanguageModelingConfig):
required_batch_size_multiple: int = II("dataset.required_batch_size_multiple")
dict_path: str = field(
default="",
metadata={
"help": "dictionary path"
},
)
image_feature_length: int = field(
default=0,
metadata={
"help": "image feature length"
},
)
input_resolution: int = field(default=224, metadata={"help": ""})
# newsetting
location_bin_size: int = field(
default=16,
metadata={
"help": "used to discrete the continuous coordinates"
},
)
locate_special_token: int = field(
default=0,
metadata={"help": "used to discrete the continuous coordinates"}
)
class RawImageDataset(FairseqDataset):
def __init__(self, labels):
super().__init__()
self.labels = labels
def __getitem__(self, index):
return self.labels[index]
def __len__(self):
return len(self.labels)
def collater(self, samples):
return torch.stack(samples)
@register_task("generation_obj", dataclass=GenerationObjConfig)
class GenerationObjTask(LanguageModelingTask):
"""
Sentence (or sentence pair) prediction (classification or regression) task.
Args:
dictionary (Dictionary): the dictionary for the input of the task
"""
@classmethod
def setup_dictionary(cls, args, **kwargs):
dictionary = None
output_dictionary = None
paths = utils.split_paths(args.data)
assert len(paths) > 0
if len(args.dict_path) > 0:
dictionary = Dictionary.load(args.dict_path)
else:
dictionary = Dictionary.load(os.path.join(paths[0], "dict.txt"))
dictionary.add_symbol("<mask>")
# location task, add patch index token as special symbols
for special_symbol in add_location_symbols(args.location_bin_size, args.locate_special_token):
dictionary.add_symbol(special_symbol)
dictionary.pad_to_multiple_(args.required_batch_size_multiple)
# pdb.set_trace()
output_dictionary = dictionary
logger.info("dictionary from {}: {} types".format(args.dict_path, len(dictionary)))
return (dictionary, output_dictionary)
def build_dataset_for_caption_inference(self, src_tokens, src_lengths, img_src_tokens, img_gpt_input_mask, **kwargs):
"""
Generate batches for inference. We prepend an eos token to src_tokens
(or bos if `--add-bos-token` is set) and we append a <pad> to target.
This is convenient both for generation with a prefix and LM scoring.
"""
dataset = StripTokenDataset(
TokenBlockDataset(
src_tokens,
src_lengths,
block_size=None, # ignored for "eos" break mode
pad=self.source_dictionary.pad(),
eos=self.source_dictionary.eos(),
break_mode="eos",
),
# remove eos from (end of) target sequence
self.source_dictionary.eos(),
)
img_gpt_input_mask = StripTokenDataset(
TokenBlockDataset(
img_gpt_input_mask,
src_lengths,
block_size=None, # ignored for "eos" break mode
pad=self.source_dictionary.pad(),
eos=self.source_dictionary.eos(),
break_mode="eos",
),
# remove eos from (end of) target sequence
self.source_dictionary.eos(),
)
src_dataset = dataset
tgt_dataset = AppendTokenDataset(dataset, token=self.source_dictionary.pad())
return NestedDictionaryDataset(
{
"id": IdDataset(),
"net_input": {
"src_tokens": PadDataset(
src_dataset,
pad_idx=self.source_dictionary.pad(),
left_pad=False,
),
'img_src_tokens': RawImageDataset(
img_src_tokens,
),
'img_gpt_input_mask': PadDataset(
img_gpt_input_mask,
pad_idx=0,
left_pad=False,
),
"src_lengths": NumelDataset(src_dataset, reduce=False),
},
"target": PadDataset(
tgt_dataset, pad_idx=self.source_dictionary.pad(), left_pad=False
),
},
sizes=[np.array(src_lengths)],
)
def build_dataset_for_speech_inference(self, src_tokens, src_lengths, aud_src_tokens, aud_gpt_input_mask, audio_masks, **kwargs):
"""
Generate batches for inference. We prepend an eos token to src_tokens
(or bos if `--add-bos-token` is set) and we append a <pad> to target.
This is convenient both for generation with a prefix and LM scoring.
"""
dataset = StripTokenDataset(
TokenBlockDataset(
src_tokens,
src_lengths,
block_size=None, # ignored for "eos" break mode
pad=self.source_dictionary.pad(),
eos=self.source_dictionary.eos(),
break_mode="eos",
),
# remove eos from (end of) target sequence
self.source_dictionary.eos(),
)
aud_gpt_input_mask = StripTokenDataset(
TokenBlockDataset(
aud_gpt_input_mask,
src_lengths,
block_size=None, # ignored for "eos" break mode
pad=self.source_dictionary.pad(),
eos=self.source_dictionary.eos(),
break_mode="eos",
),
# remove eos from (end of) target sequence
self.source_dictionary.eos(),
)
src_dataset = dataset
tgt_dataset = AppendTokenDataset(dataset, token=self.source_dictionary.pad())
return NestedDictionaryDataset(
{
"id": IdDataset(),
"net_input": {
"src_tokens": PadDataset(
src_dataset,
pad_idx=self.source_dictionary.pad(),
left_pad=False,
),
'aud_src_tokens': RawImageDataset(
aud_src_tokens,
),
'aud_gpt_input_mask': PadDataset(
aud_gpt_input_mask,
pad_idx=0,
left_pad=False,
),
'aud_masks': RawImageDataset(
audio_masks,
),
"src_lengths": NumelDataset(src_dataset, reduce=False),
},
"target": PadDataset(
tgt_dataset, pad_idx=self.source_dictionary.pad(), left_pad=False
),
},
sizes=[np.array(src_lengths)],
)
def inference_step(
self, generator, models, sample, prefix_tokens=None, constraints=None
):
with torch.no_grad():
# Generation will always be conditioned on bos_token
if getattr(self.args, "add_bos_token", False):
bos_token = self.source_dictionary.bos()
else:
bos_token = self.source_dictionary.eos()
if constraints is not None:
raise NotImplementedError(
"Constrained decoding with the language_modeling task is not supported"
)
# SequenceGenerator doesn't use src_tokens directly, we need to
# pass the `prefix_tokens` argument instead
if prefix_tokens is None and sample["net_input"]["src_tokens"].nelement():
prefix_tokens = sample["net_input"]["src_tokens"]
# if prefix_tokens[:, 0].eq(bos_token).all():
# prefix_tokens = prefix_tokens[:, 1:]
return generator.generate(
models, sample, prefix_tokens=prefix_tokens, bos_token=bos_token
) | KosmosX-API-main | kosmosX/unilm/tasks/generation_obj.py |
import os
from fairseq.tasks import import_tasks
tasks_dir = os.path.dirname(__file__)
import_tasks(tasks_dir, "unilm.tasks")
| KosmosX-API-main | kosmosX/unilm/tasks/__init__.py |
from dataclasses import dataclass, field
import logging
import copy
import torch
import torch.nn as nn
import torch.nn.functional as F
from fairseq import checkpoint_utils
from fairseq import utils
from fairseq.utils import safe_getattr
from fairseq.models import (
BaseFairseqModel,
register_model,
register_model_architecture,
)
from fairseq.models.roberta import (
roberta_large_architecture,
roberta_base_architecture,
RobertaModel,
)
from fairseq.models.transformer_lm import (
base_gpt3_architecture,
)
from unilm.models.connector import build_connector
from unilm.models.gpt import GPTmodel, GPTModelConfig
logger = logging.getLogger(__name__)
def slice_tokens_for_mlm(A, indx, num_elem=2):
all_indx = indx[:,None] + torch.arange(num_elem)
return A[torch.arange(all_indx.shape[0])[:,None], all_indx]
@dataclass
class UniGPTModelConfig(GPTModelConfig):
text_encoder: str = field(
default="none",
metadata={
"help": "enable text encoder, options: none, roberta, electra"
},
)
image_encoder: str = field(
default="none",
metadata={
"help": "enable image encoder, options: none, clip, beit"
},
)
audio_encoder: str = field(
default="none",
metadata={
"help": "enable audio encoder, options: none, "
},
)
# parameters for MLM
connector: str = field(
default='complex',
metadata={
"help": "connector: none, complex, simple, xconnector"
},
)
latent_query_num: int = field(
default=64,
metadata={
"help": "number of latent query tokens"
},
)
remain_tokens: int = field(
default=300,
metadata={
"help": "at least k tokens to produce gpt loss"
},
)
mlm_model_path: str = field(
default="",
metadata={"help": "mlm checkpoint path"},
)
mlm_dict: str = field(
default="",
metadata={"help": "mlm dict path"},
)
mlm_tokens_per_sample: int = field(
default=512,
metadata={"help": "mlm max length"},
)
freeze_gpt: bool = field(
default=False,
metadata={
"help": "freeze gpt parameters"
},
)
# parameters for visual
visual_model_name: str = field(
default="ViT-B-16",
metadata={"help": "model_name for open_clip"},)
visual_pretrained: str = field(
default="laion400m_e32",
metadata={"help": "model_name for visual_pretrained"},)
visual_output_dim: int = field(
default=768,
metadata={"help": "output dimension for visual_pretrained"},)
visual_output_dim_str: str = field(
default='768',
metadata={"help": "output dimension for visual_pretrained"},)
no_freeze_layer: str = field(
default='',
metadata={
"help": "freeze last layer of visual_pretrained"
},)
# parameters for speech
speech_model_path: str = field(
default="",
metadata={"help": "speech checkpoint path"},
)
audio_output_dim: int = field(
default=768,
metadata={"help": "output dimension for audio_pretrained"},)
# parameters for fine-tuning
ft_type: int = field(
default=3,
metadata={
"help": "fine-tuning type: \
1: gpt only \
2: roberta only \
3: roberta + gpt \
4: roberta + gpt(freeze) \
5: roberta(freeze) + gpt "
},
)
pooler_dropout: float = field(
default=0.1,
metadata={"help": "mlm max length"},
)
pretrained_ckpt_path: str = field(
default="",
metadata={"help": "model checkpoint path"},
)
@register_model("unigptmodel", dataclass=UniGPTModelConfig)
class UniGPTmodel(BaseFairseqModel):
def __init__(self, args, gpt_model,
text_model=None, img_model=None, aud_model=None,
text_connector=None, img_connector=None, aud_connector=None,
bos=0, eos=2):
"""
text_model: bidirectional text model, such as roberta, bert, electra
img_model: image model, such as ViT, CLIP, BEIT
aud_model: audio model, such as HuBERT, wavLM
"""
super().__init__()
self.args = args
self.gpt_model = gpt_model
self.text_model = text_model
self.text_connector = text_connector
self.img_model = img_model
self.img_connector = img_connector
self.aud_model = aud_model
self.aud_connector = aud_connector
self.bos = bos
self.eos = eos
self.classification_heads = nn.ModuleDict()
self.ft_type = args.ft_type
if args.freeze_gpt:
for p in self.gpt_model.parameters():
p.requires_grad = False
@classmethod
def build_model(cls, args, task):
if hasattr(task, "all_dict"):
task.dictionary = task.all_dict
gpt_model = GPTmodel.build_model(args, task)
logger.info("gpt args is".format())
text_model, text_connector = cls.load_text_model(args, task)
img_model, img_connector = cls.load_image_model(args, task)
aud_model, aud_connector = cls.load_audio_model(args, task)
model = cls(args, gpt_model,
text_model=text_model, text_connector=text_connector,
img_model=img_model, img_connector=img_connector,
aud_model=aud_model, aud_connector=aud_connector,
bos=task.dictionary.bos_index,
eos=task.dictionary.eos_index)
if args.pretrained_ckpt_path != "":
state = checkpoint_utils.load_checkpoint_to_cpu(args.pretrained_ckpt_path)
model.load_state_dict(state["model"], strict=True, args=args)
# freeze text model
if model.text_model is not None:
for p in model.text_model.parameters():
p.requires_grad = False
# freeze image model
if model.img_model is not None:
for p_name, p in model.img_model.named_parameters():
if args.no_freeze_layer:
no_freeze_layers = args.no_freeze_layer.split(',')
for no_freeze_layer in no_freeze_layers:
if no_freeze_layer in p_name:
print("no_freeze_layer: {}".format(p_name))
p.requires_grad = True
break
p.requires_grad = False
# freeze audio model
if model.aud_model is not None:
for p in model.aud_model.parameters():
p.requires_grad = False
return model
def forward(self, src_tokens,
mlm_src_tokens=None, gpt_input_mask=None,
img_src_tokens=None, img_gpt_input_mask=None,
aud_src_tokens=None, aud_gpt_input_mask=None,
gpt_loss_mask=None, mlm_mask=None, classification_head_name=None, **kwargs):
if classification_head_name is None:
# pre-training
if mlm_src_tokens is not None:
# mlm
mlm_output, _ = self.text_model(mlm_src_tokens, features_only=True)
mlm_output = mlm_output[mlm_mask]
if self.text_connector is not None:
# linear projection layer
mlm_output = self.text_connector(mlm_output)
else:
mlm_output = None
if img_src_tokens is not None:
img_output = self.get_image_representation(img_src_tokens)
else:
img_output = None
if aud_src_tokens is not None:
aud_output = self.get_audio_representation(aud_src_tokens, kwargs['aud_mask'])
else:
aud_output = None
# pdb.set_trace()
# gpt
x, extra = self.gpt_model(src_tokens,
mlm_features=mlm_output, gpt_input_mask=gpt_input_mask,
img_features=img_output, img_gpt_input_mask=img_gpt_input_mask,
aud_features=aud_output, aud_gpt_input_mask=aud_gpt_input_mask,
**kwargs)
# loss mask
extra["loss_mask"] = gpt_loss_mask
return x, extra
# fine-tuning
raise NotImplementedError
def get_image_representation(self, img_src_tokens):
# image
img_output = self.img_model(img_src_tokens)
src_len = img_output.size(0)
img_output = img_output.transpose(0, 1) # T x B x C -> B x T x C
img_output = img_output.reshape(-1, img_output.size(-1))
if self.img_connector is not None:
img_output = self.img_connector(img_output, src_len=src_len)
return img_output
def get_audio_representation(self, aud_src_tokens, aud_mask):
raise NotImplementedError
def register_classification_head(self, name, num_classes=None, inner_dim=None, **kwargs):
"""Register a classification head."""
if name in self.classification_heads:
prev_num_classes = self.classification_heads[name].out_proj.out_features
prev_inner_dim = self.classification_heads[name].dense.out_features
if num_classes != prev_num_classes or inner_dim != prev_inner_dim:
logger.warning(
're-registering head "{}" with num_classes {} (prev: {}) '
'and inner_dim {} (prev: {})'.format(
name, num_classes, prev_num_classes, inner_dim, prev_inner_dim
)
)
self.classification_heads[name] = ClassificationHead(
self.args.encoder_embed_dim,
inner_dim or self.args.encoder_embed_dim,
num_classes,
self.args.pooler_activation_fn,
self.args.pooler_dropout,
self.args.ft_type
)
def get_normalized_probs(self, net_output, log_probs, sample=None):
"""Get normalized probabilities (or log probs) from a net's output."""
logits = net_output[0].float()
if log_probs:
return F.log_softmax(logits, dim=-1)
else:
return F.softmax(logits, dim=-1)
@property
def supported_targets(self):
return {"future"}
def upgrade_state_dict_named(self, state_dict, name):
prefix = name + '.' if name != '' else ''
# upgrade children modules
super().upgrade_state_dict_named(state_dict, name)
# Handle new classification heads present in the state dict.
current_head_names = (
[] if not hasattr(self, 'classification_heads')
else self.classification_heads.keys()
)
keys_to_delete = []
for k in state_dict.keys():
if not k.startswith(prefix + 'classification_heads.'):
continue
head_name = k[len(prefix + 'classification_heads.'):].split('.')[0]
num_classes = state_dict[prefix + 'classification_heads.' + head_name + '.out_proj.weight'].size(0)
inner_dim = state_dict[prefix + 'classification_heads.' + head_name + '.dense.weight'].size(0)
if getattr(self.args, 'load_checkpoint_heads', False):
if head_name not in current_head_names:
self.register_classification_head(head_name, num_classes, inner_dim)
else:
if head_name not in current_head_names:
logger.warning(
'deleting classification head ({}) from checkpoint '
'not present in current model: {}'.format(head_name, k)
)
keys_to_delete.append(k)
elif (
num_classes != self.classification_heads[head_name].out_proj.out_features
or inner_dim != self.classification_heads[head_name].dense.out_features
):
logger.warning(
'deleting classification head ({}) from checkpoint '
'with different dimensions than current model: {}'.format(head_name, k)
)
keys_to_delete.append(k)
for k in keys_to_delete:
del state_dict[k]
# Copy any newly-added classification heads into the state dict
# with their current weights.
if hasattr(self, 'classification_heads'):
cur_state = self.classification_heads.state_dict()
for k, v in cur_state.items():
if prefix + 'classification_heads.' + k not in state_dict:
logger.info('Overwriting ' + prefix + 'classification_heads.' + k)
state_dict[prefix + 'classification_heads.' + k] = v
@classmethod
def load_text_model(cls, args, task):
"""Load a roberta model from the fairseq library."""
if args.text_encoder == "none":
return None, None
mlm_args = copy.deepcopy(args)
mlm_task = task
logger.info("Roberta dictionary: {} types".format(len(mlm_task.dictionary)))
mlm_args.layernorm_embedding = True
mlm_args.no_scale_embedding = True
mlm_args.dropout = 0.1
mlm_args.attention_dropout = 0.1
mlm_args.tokens_per_sample = mlm_args.mlm_tokens_per_sample
mlm_model = RobertaModel.build_model(mlm_args, mlm_task)
logger.info("mlm args is {}".format(mlm_args))
if args.mlm_model_path != "":
state = checkpoint_utils.load_checkpoint_to_cpu(args.mlm_model_path)
mlm_model.load_state_dict(state["model"], strict=True, args=mlm_args)
connector = build_connector(args, args.encoder_embed_dim, args.decoder_embed_dim)
return mlm_model, connector
@classmethod
def load_image_model(cls, args, task):
def build_backbone_clip(args, visual_model_name, visual_pretrained):
from unilm.models.vl.clip import create_model
force_quick_gelu = False
if 'ViT-L' in visual_model_name:
force_quick_gelu = True
model = create_model(visual_model_name,
pretrained=visual_pretrained,
force_quick_gelu=force_quick_gelu)
return model
if args.image_encoder == "none":
return None, None
if args.image_encoder == "clip":
model = build_backbone_clip(args, args.visual_model_name, args.visual_pretrained)
connector = build_connector(args, args.visual_output_dim, args.decoder_embed_dim)
return model, connector
raise NotImplementedError("Unknown model name {}".format(args.image_encoder))
@classmethod
def load_audio_model(cls, args, task):
return None, None
class ClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(
self,
input_dim,
inner_dim,
num_classes,
activation_fn,
pooler_dropout,
ft_type
):
super().__init__()
self.dense = nn.Linear(input_dim, inner_dim)
self.activation_fn = utils.get_activation_fn(activation_fn)
self.dropout = nn.Dropout(p=pooler_dropout)
self.out_proj = nn.Linear(inner_dim, num_classes)
self.ft_type = ft_type
def forward(self, features, **kwargs):
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
x = self.dropout(x)
x = self.dense(x)
x = self.activation_fn(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
@register_model_architecture("unigptmodel", "unigptmodel_small")
def gptmodel_small(args):
# 125M params
args.decoder_layers = safe_getattr(args, "decoder_layers", 12)
args.decoder_embed_dim = safe_getattr(args, "decoder_embed_dim", 768)
args.decoder_attention_heads = safe_getattr(args, "decoder_attention_heads", 12)
args.decoder_learned_pos = safe_getattr(args, "decoder_learned_pos", False)
base_gpt3_architecture(args)
roberta_base_architecture(args)
@register_model_architecture("unigptmodel", "unigptmodel_medium")
def gptmodel_medium(args):
# 355M params
args.decoder_layers = safe_getattr(args, "decoder_layers", 24)
args.decoder_embed_dim = safe_getattr(args, "decoder_embed_dim", 1024)
args.decoder_attention_heads = safe_getattr(args, "decoder_attention_heads", 16)
args.decoder_learned_pos = safe_getattr(args, "decoder_learned_pos", False)
args.pooler_dropout = safe_getattr(args, "pooler_dropout", 0.1)
base_gpt3_architecture(args)
roberta_base_architecture(args)
@register_model_architecture("unigptmodel", "unigptmodel_large")
def gptmodel_large(args):
# 1.3B params
args.decoder_layers = safe_getattr(args, "decoder_layers", 24)
args.decoder_embed_dim = safe_getattr(args, "decoder_embed_dim", 1536)
args.decoder_attention_heads = safe_getattr(args, "decoder_attention_heads", 16)
args.decoder_learned_pos = safe_getattr(args, "decoder_learned_pos", False)
args.dropout = safe_getattr(args, "dropout", 0.1)
args.attention_dropout = safe_getattr(args, "attention_dropout", 0.1)
base_gpt3_architecture(args)
roberta_large_architecture(args)
@register_model_architecture("unigptmodel", "unigptmodel_xl")
def gptmodel_xl(args):
# 1.3B params
args.decoder_layers = safe_getattr(args, "decoder_layers", 24)
args.decoder_embed_dim = safe_getattr(args, "decoder_embed_dim", 2048)
args.decoder_attention_heads = safe_getattr(args, "decoder_attention_heads", 32)
args.decoder_learned_pos = safe_getattr(args, "decoder_learned_pos", False)
args.dropout = safe_getattr(args, "dropout", 0.1)
args.attention_dropout = safe_getattr(args, "attention_dropout", 0.1)
base_gpt3_architecture(args)
roberta_large_architecture(args)
@register_model_architecture("unigptmodel", "unigptmodel_2b")
def gptmodel_2B(args):
# 1.3B params
args.decoder_layers = safe_getattr(args, "decoder_layers", 36)
args.decoder_embed_dim = safe_getattr(args, "decoder_embed_dim", 2048)
args.decoder_attention_heads = safe_getattr(args, "decoder_attention_heads", 32)
args.decoder_learned_pos = safe_getattr(args, "decoder_learned_pos", False)
args.dropout = safe_getattr(args, "dropout", 0.1)
args.attention_dropout = safe_getattr(args, "attention_dropout", 0.1)
base_gpt3_architecture(args)
roberta_large_architecture(args)
@register_model_architecture("unigptmodel", "unigptmodel_6b")
def gptmodel_6B(args):
# 1.3B params
args.decoder_layers = safe_getattr(args, "decoder_layers", 40)
args.decoder_embed_dim = safe_getattr(args, "decoder_embed_dim", 3584)
args.decoder_attention_heads = safe_getattr(args, "decoder_attention_heads", 28)
args.decoder_learned_pos = safe_getattr(args, "decoder_learned_pos", False)
args.dropout = safe_getattr(args, "dropout", 0.1)
args.attention_dropout = safe_getattr(args, "attention_dropout", 0.1)
base_gpt3_architecture(args)
roberta_large_architecture(args)
| KosmosX-API-main | kosmosX/unilm/models/unigpt.py |
import os
from fairseq.models import import_models
models_dir = os.path.dirname(__file__)
import_models(models_dir, "unilm.models") | KosmosX-API-main | kosmosX/unilm/models/__init__.py |
import torch
import torch.nn as nn
from fairseq.modules import MultiheadAttention
from fairseq import utils
def build_connector(args, input_dim, output_dim):
if isinstance(args, str):
connector_name = args
else:
connector_name = args.text_connector if hasattr(args, "text_connector") else args.connector
if connector_name == "none":
connector = None
elif connector_name == "complex":
connector = ComplexConnector(input_dim,
output_dim,
args.activation_fn)
elif connector_name == "simple":
connector = SimpleConnector(input_dim, output_dim)
elif connector_name == "xconnector":
connector = XConnector(input_dim, output_dim, args)
else:
raise ValueError("Invalid text connector type: {}".format(connector_name))
return connector
class SimpleConnector(nn.Module):
"""Connector model of GPT and MLM."""
def __init__(self, input_dim, output_dim):
super().__init__()
self.dense = nn.Linear(input_dim, output_dim)
def forward(self, features, **kwargs):
x = self.dense(features)
return x
class ComplexConnector(nn.Module):
"""Connector model of GPT and MLM."""
def __init__(self, input_dim, output_dim, activation_fn):
super().__init__()
self.dense = nn.Linear(input_dim, input_dim)
self.activation_fn = utils.get_activation_fn(activation_fn)
self.predict = nn.Linear(input_dim, output_dim)
def forward(self, features, **kwargs):
x = self.dense(features)
x = self.activation_fn(x)
x = self.predict(x)
return x
class XConnector(nn.Module):
"""Connector model of GPT and MLM."""
def __init__(self, input_dim, output_dim, args,):
super().__init__()
self.dense = nn.Linear(input_dim, output_dim)
self.latent_query = torch.nn.Parameter(torch.randn(args.latent_query_num, output_dim))
self.x_attn = MultiheadAttention(
output_dim,
args.decoder_attention_heads,
kdim=output_dim,
vdim=output_dim,
dropout=args.attention_dropout,
encoder_decoder_attention=True,
)
def forward(self, features, **kwargs):
x = self.dense(features)
# x = attention_i(q=latent_query, kv=concat([x, latent_query]))
# shape of x is [batch_size * seq_len, output_dim] -> [seq_len, batch_size, output_dim]
x = x.view(-1, kwargs['src_len'], x.size(-1)).transpose(0, 1)
bsz = x.size(1)
latent_query = self.latent_query.unsqueeze(1).expand(-1, bsz, -1)
x, _ = self.x_attn(latent_query, torch.cat([x, latent_query]), torch.cat([x, latent_query]))
return x.transpose(0, 1).contiguous().view(-1, x.size(-1)) # [batch_size * seq_len, output_dim]
| KosmosX-API-main | kosmosX/unilm/models/connector.py |
from dataclasses import dataclass, field
from typing import Optional
from torch import Tensor
import torch
from fairseq import distributed_utils
from fairseq.utils import safe_getattr
from fairseq.models import (
register_model,
register_model_architecture,
)
from fairseq.models.transformer_lm import (
TransformerLanguageModelConfig,
TransformerLanguageModel,
base_gpt3_architecture,
)
from fairseq.models import (
FairseqIncrementalDecoder,
register_model,
register_model_architecture,
)
from fairseq.models.transformer import Embedding
from fairseq.modules import PositionalEmbedding
from omegaconf import II
from torchscale.architecture.config import DecoderConfig
from torchscale.architecture.decoder import Decoder
from torchscale.architecture.config import DecoderConfig
from torchscale.architecture.decoder import Decoder
DEFAULT_MAX_TARGET_POSITIONS = 1024
@dataclass
class GPTModelConfig(TransformerLanguageModelConfig):
scale_final_logits: bool = field(
default=False,
metadata={
"help": "scale final logits by sqrt(d)"
},
)
gpt_model_path: str = field(
default="",
metadata={"help": "gpt checkpoint path"},
)
rescale_init: bool = field(
default=False,
metadata={
"help": "whether to use rescale initialization"
},
)
deepnet: bool = field(
default=False,
metadata={
"help": "enable deepnet in decoder"
},
)
last_ln_scale: bool = field(
default=False,
metadata={
"help": "enable last_ln_scale in decoder"
},
)
# options from other parts of the config
add_bos_token: bool = II("task.add_bos_token")
tokens_per_sample: int = II("task.tokens_per_sample")
max_target_positions: Optional[int] = II("task.max_target_positions")
tpu: bool = II("common.tpu")
memory_efficient_fp16: bool = II("common.memory_efficient_fp16")
fp16: bool = II("common.fp16")
fp16_no_flatten_grads: bool = II("common.fp16_no_flatten_grads")
ddp_backend: str = II("distributed_training.ddp_backend")
world_size: int = II("distributed_training.distributed_world_size")
distributed_rank: int = II("distributed_training.distributed_rank")
ddp_rank: int = II("distributed_training.distributed_rank")
deepnorm: Optional[bool] = field(
default=False,
)
subln: Optional[bool] = field(
default=False,
)
rel_pos_buckets: Optional[int] = field(
default=0,
)
max_rel_pos: Optional[int] = field(
default=0,
)
flash_attention: bool = field(
default=False,
)
sope_rel_pos: Optional[bool] = field(
default=False,
metadata={"help": "use SoPE as the relative position embhedding"},
)
scale_length: Optional[int] = field(
default=2048,
)
@register_model("gptmodel", dataclass=GPTModelConfig)
class GPTmodel(TransformerLanguageModel):
@classmethod
def build_model(cls, args, task):
model = TransformerLanguageModel.build_model(args, task)
if getattr(args, "max_target_positions", None) is None:
args.max_target_positions = getattr(
args, "tokens_per_sample", DEFAULT_MAX_TARGET_POSITIONS
)
embed_tokens = cls.build_embedding(
args, task.source_dictionary, args.decoder_embed_dim
)
embed_positions = (
PositionalEmbedding(
args.max_target_positions,
args.decoder_embed_dim,
task.dictionary.pad(),
learned=args.decoder_learned_pos,
)
if not args.no_token_positional_embeddings
else None
)
if args.share_decoder_input_output_embed:
output_projection = torch.nn.Linear(
embed_tokens.weight.shape[1],
embed_tokens.weight.shape[0],
bias=False,
)
output_projection.weight = embed_tokens.weight
else:
output_projection = torch.nn.Linear(
args.decoder_embed_dim, len(task.dictionary), bias=False
)
torch.nn.init.normal_(
output_projection.weight, mean=0, std=args.decoder_embed_dim**-0.5
)
if getattr(args, "moe_freq", 0) > 0 and (
getattr(args, "fp16", False)
and not getattr(args, "memory_efficient_fp16", False)
and getattr(args, "ddp_backend", None) != "fully_sharded"
):
assert (
args.fp16_no_flatten_grads
), "If training moe models, set --fp16-no-flatten-grads to calculate correct gradnorm"
args.ddp_rank = distributed_utils.get_data_parallel_rank()
config = DecoderConfig()
config.override(args)
decoder = LMDecoder(
config,
embed_tokens,
embed_positions,
output_projection,
is_encoder_decoder=False,
dictionary=task.dictionary,
)
model.decoder = decoder
if args.gpt_model_path != "":
assert NotImplementedError
# state = checkpoint_utils.load_checkpoint_to_cpu(args.gpt_model_path)
# model.load_state_dict(state["model"], strict=True, args=args)
return model
@classmethod
def build_embedding(cls, args, dictionary, embed_dim, path=None):
return Embedding(len(dictionary), embed_dim, dictionary.pad())
class LMDecoder(Decoder, FairseqIncrementalDecoder):
def forward(self, src_tokens, **kwargs):
self_attn_padding_mask = src_tokens.eq(self.dictionary.pad())
return super().forward(src_tokens, self_attn_padding_mask, **kwargs)
def max_positions(self):
return self.embed_positions.max_positions
def reorder_incremental_state_scripting(
self,
incremental_state,
new_order,
):
for module in incremental_state:
for key in incremental_state[module]:
result = incremental_state[module][key].index_select(0, new_order)
incremental_state[module][key] = result
def forward_embedding(
self,
tokens,
token_embedding=None,
incremental_state=None,
first_step: bool = False,
mlm_features: Optional[Tensor] = None,
gpt_input_mask: Optional[Tensor] = None,
img_features: Optional[Tensor] = None,
img_gpt_input_mask: Optional[Tensor] = None,
aud_features: Optional[Tensor] = None,
aud_gpt_input_mask: Optional[Tensor] = None,
):
positions = None
if self.embed_positions is not None:
positions = self.embed_positions(
tokens, incremental_state=incremental_state
)
if incremental_state is not None and not first_step:
tokens = tokens[:, -1:]
if positions is not None:
positions = positions[:, -1:]
if token_embedding is None:
token_embedding = self.embed_tokens(tokens)
gpt_embed_output = token_embedding
if mlm_features is not None:
gpt_embed_output[gpt_input_mask] = mlm_features
if img_features is not None:
gpt_embed_output[img_gpt_input_mask] = img_features
if aud_features is not None:
gpt_embed_output[aud_gpt_input_mask] = aud_features
x = embed = self.embed_scale * gpt_embed_output
if positions is not None:
x += positions
if self.layernorm_embedding is not None:
x = self.layernorm_embedding(x)
x = self.dropout_module(x)
return x, embed
def forward(
self,
prev_output_tokens,
self_attn_padding_mask=None,
encoder_out=None,
incremental_state=None,
features_only=False,
return_all_hiddens=False,
token_embeddings=None,
first_step=False,
**kwargs
):
# embed tokens and positions
x, _ = self.forward_embedding(
prev_output_tokens, token_embeddings, incremental_state, first_step=first_step, **kwargs
)
x = x.transpose(0, 1)
# relative position
self_attn_rel_pos_bias = None
slen = prev_output_tokens.size(1)
if self.self_attn_relative_position is not None:
self_attn_rel_pos_bias = self.self_attn_relative_position(
batch_size=x.size(1), qlen=slen, klen=slen
)
if incremental_state is not None:
self_attn_rel_pos_bias = self_attn_rel_pos_bias[:, -1:, :]
cross_attn_rel_pos_bias = None
if self.cross_attn_relative_position is not None:
cross_attn_rel_pos_bias = self.cross_attn_relative_position(
batch_size=x.size(1),
qlen=slen,
klen=encoder_out["encoder_out"].size(0),
)
if incremental_state is not None:
cross_attn_rel_pos_bias = cross_attn_rel_pos_bias[:, -1:, :]
self_attn_sope_rel_pos = None
# slen = prev_output_tokens.size(1)
# if self.self_attn_sope is not None:
# # offset = 0 if (incremental_state is None or first_step) else incremental_state[0]["prev_key"].shape[2]
# # self_attn_sope_rel_pos = self.self_attn_sope(slen, offset)
# rel_pos_len = slen if (incremental_state is None or first_step) else (incremental_state[0]["prev_key"].shape[2] + 1)
# self_attn_sope_rel_pos = self.self_attn_sope(rel_pos_len)
cross_attn_sope_rel_pos = None
if self.cross_attn_sope is not None:
cross_attn_sope_rel_pos = self.cross_attn_sope(slen + encoder_out["encoder_out"].size(0))
# decoder layers
inner_states = [x]
if encoder_out is None:
l_aux = []
else:
l_aux = encoder_out["l_aux"] if "l_aux" in encoder_out else []
for idx, layer in enumerate(self.layers):
if incremental_state is None or first_step:
self_attn_mask = torch.triu(
torch.zeros([x.size(0), x.size(0)])
.float()
.fill_(float("-inf"))
.type_as(x),
1,
)
if first_step and incremental_state is not None:
if idx not in incremental_state:
incremental_state[idx] = {}
else:
self_attn_mask = None
if idx not in incremental_state:
incremental_state[idx] = {}
x, layer_attn, _, l_aux_i = layer(
x,
encoder_out["encoder_out"] if encoder_out is not None else None,
encoder_out["encoder_padding_mask"]
if encoder_out is not None
else None,
incremental_state[idx] if incremental_state is not None else None,
self_attn_mask=self_attn_mask,
self_attn_padding_mask=self_attn_padding_mask,
self_attn_rel_pos=self_attn_rel_pos_bias,
cross_attn_rel_pos=cross_attn_rel_pos_bias,
self_attn_sope_rel_pos=self_attn_sope_rel_pos,
cross_attn_sope_rel_pos=cross_attn_sope_rel_pos,
)
l_aux.append(l_aux_i)
inner_states.append(x)
if self.layer_norm is not None:
x = self.layer_norm(x)
x = x.transpose(0, 1)
if not features_only:
x = self.output_layer(x)
return x, {
"inner_states": inner_states,
"l_aux": l_aux,
"attn": None,
}
@register_model_architecture("gptmodel", "gptmodel_small")
def gptmodel_small(args):
# 125M params
args.decoder_layers = safe_getattr(args, "decoder_layers", 12)
args.decoder_embed_dim = safe_getattr(args, "decoder_embed_dim", 768)
args.decoder_attention_heads = safe_getattr(args, "decoder_attention_heads", 12)
args.decoder_learned_pos = safe_getattr(args, "decoder_learned_pos", False)
base_gpt3_architecture(args)
@register_model_architecture("gptmodel", "gptmodel_medium")
def gptmodel_medium(args):
# 350M params
args.decoder_layers = safe_getattr(args, "decoder_layers", 24)
args.decoder_embed_dim = safe_getattr(args, "decoder_embed_dim", 1024)
args.decoder_attention_heads = safe_getattr(args, "decoder_attention_heads", 16)
args.decoder_learned_pos = safe_getattr(args, "decoder_learned_pos", False)
base_gpt3_architecture(args)
| KosmosX-API-main | kosmosX/unilm/models/gpt.py |
KosmosX-API-main | kosmosX/unilm/models/vl/__init__.py |
|
# TODO load openai model | KosmosX-API-main | kosmosX/unilm/models/vl/openai.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
from typing import Dict, List, Optional
import sys
import torch
import torch.nn as nn
from fairseq import search
from fairseq.models import FairseqIncrementalDecoder
from torch import Tensor
from fairseq.ngram_repeat_block import NGramRepeatBlock
class SequenceGenerator(nn.Module):
def __init__(
self,
models,
tgt_dict,
beam_size=1,
max_len_a=0,
max_len_b=200,
max_len=0,
min_len=1,
normalize_scores=True,
len_penalty=1.0,
unk_penalty=0.0,
temperature=1.0,
match_source_len=False,
no_repeat_ngram_size=0,
search_strategy=None,
eos=None,
symbols_to_strip_from_output=None,
lm_model=None,
lm_weight=1.0,
):
"""Generates translations of a given source sentence.
Args:
models (List[~fairseq.models.FairseqModel]): ensemble of models,
currently support fairseq.models.TransformerModel for scripting
beam_size (int, optional): beam width (default: 1)
max_len_a/b (int, optional): generate sequences of maximum length
ax + b, where x is the source length
max_len (int, optional): the maximum length of the generated output
(not including end-of-sentence)
min_len (int, optional): the minimum length of the generated output
(not including end-of-sentence)
normalize_scores (bool, optional): normalize scores by the length
of the output (default: True)
len_penalty (float, optional): length penalty, where <1.0 favors
shorter, >1.0 favors longer sentences (default: 1.0)
unk_penalty (float, optional): unknown word penalty, where <0
produces more unks, >0 produces fewer (default: 0.0)
temperature (float, optional): temperature, where values
>1.0 produce more uniform samples and values <1.0 produce
sharper samples (default: 1.0)
match_source_len (bool, optional): outputs should match the source
length (default: False)
"""
super().__init__()
if isinstance(models, EnsembleModel):
self.model = models
else:
self.model = EnsembleModel(models)
self.tgt_dict = tgt_dict
self.pad = tgt_dict.pad()
self.unk = tgt_dict.unk()
self.eos = tgt_dict.eos() if eos is None else eos
self.symbols_to_strip_from_output = (
symbols_to_strip_from_output.union({self.eos})
if symbols_to_strip_from_output is not None
else {self.eos}
)
self.vocab_size = len(tgt_dict)
self.beam_size = beam_size
# the max beam size is the dictionary size - 1, since we never select pad
self.beam_size = min(beam_size, self.vocab_size - 1)
self.max_len_a = max_len_a
self.max_len_b = max_len_b
self.min_len = min_len
self.max_len = max_len or self.model.max_decoder_positions()
self.normalize_scores = normalize_scores
self.len_penalty = len_penalty
self.unk_penalty = unk_penalty
self.temperature = temperature
self.match_source_len = match_source_len
if no_repeat_ngram_size > 0:
self.repeat_ngram_blocker = NGramRepeatBlock(no_repeat_ngram_size)
else:
self.repeat_ngram_blocker = None
assert temperature > 0, "--temperature must be greater than 0"
self.search = (
search.BeamSearch(tgt_dict) if search_strategy is None else search_strategy
)
# We only need to set src_lengths in LengthConstrainedBeamSearch.
# As a module attribute, setting it would break in multithread
# settings when the model is shared.
self.should_set_src_lengths = (
hasattr(self.search, "needs_src_lengths") and self.search.needs_src_lengths
)
self.model.eval()
self.lm_model = lm_model
self.lm_weight = lm_weight
if self.lm_model is not None:
self.lm_model.eval()
def cuda(self):
self.model.cuda()
return self
@torch.no_grad()
def forward(
self,
sample: Dict[str, Dict[str, Tensor]],
prefix_tokens: Optional[Tensor] = None,
bos_token: Optional[int] = None,
):
"""Generate a batch of translations.
Args:
sample (dict): batch
prefix_tokens (torch.LongTensor, optional): force decoder to begin
with these tokens
bos_token (int, optional): beginning of sentence token
(default: self.eos)
"""
return self._generate(sample, prefix_tokens, bos_token=bos_token)
# TODO(myleott): unused, deprecate after pytorch-translate migration
# def generate_batched_itr(self, data_itr, beam_size=None, cuda=False, timer=None):
# """Iterate over a batched dataset and yield individual translations.
# Args:
# cuda (bool, optional): use GPU for generation
# timer (StopwatchMeter, optional): time generations
# """
# for sample in data_itr:
# s = utils.move_to_cuda(sample) if cuda else sample
# if "net_input" not in s:
# continue
# input = s["net_input"]
# # model.forward normally channels prev_output_tokens into the decoder
# # separately, but SequenceGenerator directly calls model.encoder
# encoder_input = {
# k: v for k, v in input.items() if k != "prev_output_tokens"
# }
# if timer is not None:
# timer.start()
# with torch.no_grad():
# hypos = self.generate(encoder_input)
# if timer is not None:
# timer.stop(sum(len(h[0]["tokens"]) for h in hypos))
# for i, id in enumerate(s["id"].data):
# # remove padding
# src = utils.strip_pad(input["src_tokens"].data[i, :], self.pad)
# ref = (
# utils.strip_pad(s["target"].data[i, :], self.pad)
# if s["target"] is not None
# else None
# )
# yield id, src, ref, hypos[i]
@torch.no_grad()
def generate(
self, models, sample: Dict[str, Dict[str, Tensor]], **kwargs
) -> List[List[Dict[str, Tensor]]]:
"""Generate translations. Match the api of other fairseq generators.
Args:
models (List[~fairseq.models.FairseqModel]): ensemble of models
sample (dict): batch
prefix_tokens (torch.LongTensor, optional): force decoder to begin
with these tokens
constraints (torch.LongTensor, optional): force decoder to include
the list of constraints
bos_token (int, optional): beginning of sentence token
(default: self.eos)
"""
return self._generate(sample, **kwargs)
def _generate(
self,
sample: Dict[str, Dict[str, Tensor]],
prefix_tokens: Optional[Tensor] = None,
constraints: Optional[Tensor] = None,
bos_token: Optional[int] = None,
):
incremental_states = torch.jit.annotate(
List[Dict[str, Dict[str, Optional[Tensor]]]],
[
torch.jit.annotate(Dict[str, Dict[str, Optional[Tensor]]], {})
for i in range(self.model.models_size)
],
)
net_input = sample["net_input"]
if "src_tokens" in net_input:
raise NotImplementedError
elif "image" in net_input:
image = net_input["image"]
src_lengths = [0]
else:
raise Exception(
"expected src_tokens or source in net input. input keys: "
+ str(net_input.keys())
)
# bsz: total number of sentences in beam
# Note that src_tokens may have more than 2 dimensions (i.e. audio features)
bsz = image.size(0)
beam_size = self.beam_size
if constraints is not None and not self.search.supports_constraints:
raise NotImplementedError(
"Target-side constraints were provided, but search method doesn't support them"
)
# Initialize constraints, when active
self.search.init_constraints(constraints, beam_size)
max_len = self.max_len
assert (
self.min_len <= max_len
), "min_len cannot be larger than max_len, please adjust these!"
# compute the encoder output for each beam
with torch.autograd.profiler.record_function("EnsembleModel: forward_encoder"):
encoder_outs = self.model.forward_encoder(net_input)
# placeholder of indices for bsz * beam_size to hold tokens and accumulative scores
new_order = torch.arange(bsz).view(-1, 1).repeat(1, beam_size).view(-1)
new_order = new_order.to(image.device).long()
encoder_outs = self.model.reorder_encoder_out(encoder_outs, new_order)
# ensure encoder_outs is a List.
assert encoder_outs is not None
# initialize buffers
scores = (
torch.zeros(bsz * beam_size, max_len + 1).to(image).float()
) # +1 for eos; pad is never chosen for scoring
tokens = (
torch.zeros(bsz * beam_size, max_len + 2)
.to(image)
.long()
.fill_(self.pad)
) # +2 for eos and pad
tokens[:, 0] = self.eos if bos_token is None else bos_token
attn: Optional[Tensor] = None
# A list that indicates candidates that should be ignored.
# For example, suppose we're sampling and have already finalized 2/5
# samples. Then cands_to_ignore would mark 2 positions as being ignored,
# so that we only finalize the remaining 3 samples.
cands_to_ignore = (
torch.zeros(bsz, beam_size).to(image).eq(-1)
) # forward and backward-compatible False mask
# list of completed sentences
finalized = torch.jit.annotate(
List[List[Dict[str, Tensor]]],
[torch.jit.annotate(List[Dict[str, Tensor]], []) for i in range(bsz)],
) # contains lists of dictionaries of infomation about the hypothesis being finalized at each step
# a boolean array indicating if the sentence at the index is finished or not
finished = [False for i in range(bsz)]
num_remaining_sent = bsz # number of sentences remaining
# number of candidate hypos per step
cand_size = 2 * beam_size # 2 x beam size in case half are EOS
# offset arrays for converting between different indexing schemes
bbsz_offsets = (
(torch.arange(0, bsz) * beam_size)
.unsqueeze(1)
.type_as(tokens)
.to(image.device)
)
cand_offsets = torch.arange(0, cand_size).type_as(tokens).to(image.device)
reorder_state: Optional[Tensor] = None
batch_idxs: Optional[Tensor] = None
original_batch_idxs: Optional[Tensor] = None
if "id" in sample and isinstance(sample["id"], Tensor):
original_batch_idxs = sample["id"]
else:
original_batch_idxs = torch.arange(0, bsz).type_as(tokens)
for step in range(max_len + 1): # one extra step for EOS marker
# reorder decoder internal states based on the prev choice of beams
if reorder_state is not None:
if batch_idxs is not None:
# update beam indices to take into account removed sentences
corr = batch_idxs - torch.arange(batch_idxs.numel()).type_as(
batch_idxs
)
reorder_state.view(-1, beam_size).add_(
corr.unsqueeze(-1) * beam_size
)
original_batch_idxs = original_batch_idxs[batch_idxs]
self.model.reorder_incremental_state(incremental_states, reorder_state)
encoder_outs = self.model.reorder_encoder_out(
encoder_outs, reorder_state
)
with torch.autograd.profiler.record_function(
"EnsembleModel: forward_decoder"
):
lprobs, avg_attn_scores = self.model.forward_decoder(
tokens[:, : step + 1],
encoder_outs,
incremental_states,
self.temperature,
)
if self.lm_model is not None:
lm_out = self.lm_model(tokens[:, : step + 1])
probs = self.lm_model.get_normalized_probs(
lm_out, log_probs=True, sample=None
)
probs = probs[:, -1, :] * self.lm_weight
lprobs += probs
lprobs[lprobs != lprobs] = torch.tensor(-math.inf).to(lprobs)
lprobs[:, self.pad] = -math.inf # never select pad
lprobs[:, self.unk] -= self.unk_penalty # apply unk penalty
# handle max length constraint
if step >= max_len:
lprobs[:, : self.eos] = -math.inf
lprobs[:, self.eos + 1 :] = -math.inf
# handle prefix tokens (possibly with different lengths)
if (
prefix_tokens is not None
and step < prefix_tokens.size(1)
and step < max_len
):
lprobs, tokens, scores = self._prefix_tokens(
step, lprobs, scores, tokens, prefix_tokens, beam_size
)
elif step < self.min_len:
# minimum length constraint (does not apply if using prefix_tokens)
lprobs[:, self.eos] = -math.inf
# Record attention scores, only support avg_attn_scores is a Tensor
if avg_attn_scores is not None:
if attn is None:
attn = torch.empty(
bsz * beam_size, avg_attn_scores.size(1), max_len + 2
).to(scores)
attn[:, :, step + 1].copy_(avg_attn_scores)
scores = scores.type_as(lprobs)
eos_bbsz_idx = torch.empty(0).to(
tokens
) # indices of hypothesis ending with eos (finished sentences)
eos_scores = torch.empty(0).to(
scores
) # scores of hypothesis ending with eos (finished sentences)
if self.should_set_src_lengths:
pass
# self.search.set_src_lengths(src_lengths)
if self.repeat_ngram_blocker is not None:
lprobs = self.repeat_ngram_blocker(tokens, lprobs, bsz, beam_size, step)
# Shape: (batch, cand_size)
cand_scores, cand_indices, cand_beams = self.search.step(
step,
lprobs.view(bsz, -1, self.vocab_size),
scores.view(bsz, beam_size, -1)[:, :, :step],
tokens[:, : step + 1],
original_batch_idxs,
)
# cand_bbsz_idx contains beam indices for the top candidate
# hypotheses, with a range of values: [0, bsz*beam_size),
# and dimensions: [bsz, cand_size]
cand_bbsz_idx = cand_beams.add(bbsz_offsets)
# finalize hypotheses that end in eos
# Shape of eos_mask: (batch size, beam size)
eos_mask = cand_indices.eq(self.eos) & cand_scores.ne(-math.inf)
eos_mask[:, :beam_size][cands_to_ignore] = torch.tensor(0).to(eos_mask)
# only consider eos when it's among the top beam_size indices
# Now we know what beam item(s) to finish
# Shape: 1d list of absolute-numbered
eos_bbsz_idx = torch.masked_select(
cand_bbsz_idx[:, :beam_size], mask=eos_mask[:, :beam_size]
)
finalized_sents: List[int] = []
if eos_bbsz_idx.numel() > 0:
eos_scores = torch.masked_select(
cand_scores[:, :beam_size], mask=eos_mask[:, :beam_size]
)
finalized_sents = self.finalize_hypos(
step,
eos_bbsz_idx,
eos_scores,
tokens,
scores,
finalized,
finished,
beam_size,
attn,
src_lengths,
max_len,
)
num_remaining_sent -= len(finalized_sents)
assert num_remaining_sent >= 0
if num_remaining_sent == 0:
break
if self.search.stop_on_max_len and step >= max_len:
break
assert step < max_len, f"{step} < {max_len}"
# Remove finalized sentences (ones for which {beam_size}
# finished hypotheses have been generated) from the batch.
if len(finalized_sents) > 0:
new_bsz = bsz - len(finalized_sents)
# construct batch_idxs which holds indices of batches to keep for the next pass
batch_mask = torch.ones(
bsz, dtype=torch.bool, device=cand_indices.device
)
batch_mask[finalized_sents] = False
# TODO replace `nonzero(as_tuple=False)` after TorchScript supports it
batch_idxs = torch.arange(
bsz, device=cand_indices.device
).masked_select(batch_mask)
# Choose the subset of the hypothesized constraints that will continue
self.search.prune_sentences(batch_idxs)
eos_mask = eos_mask[batch_idxs]
cand_beams = cand_beams[batch_idxs]
bbsz_offsets.resize_(new_bsz, 1)
cand_bbsz_idx = cand_beams.add(bbsz_offsets)
cand_scores = cand_scores[batch_idxs]
cand_indices = cand_indices[batch_idxs]
if prefix_tokens is not None:
prefix_tokens = prefix_tokens[batch_idxs]
src_lengths = src_lengths[batch_idxs]
cands_to_ignore = cands_to_ignore[batch_idxs]
scores = scores.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1)
tokens = tokens.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1)
if attn is not None:
attn = attn.view(bsz, -1)[batch_idxs].view(
new_bsz * beam_size, attn.size(1), -1
)
bsz = new_bsz
else:
batch_idxs = None
# Set active_mask so that values > cand_size indicate eos hypos
# and values < cand_size indicate candidate active hypos.
# After, the min values per row are the top candidate active hypos
# Rewrite the operator since the element wise or is not supported in torchscript.
eos_mask[:, :beam_size] = ~((~cands_to_ignore) & (~eos_mask[:, :beam_size]))
active_mask = torch.add(
eos_mask.type_as(cand_offsets) * cand_size,
cand_offsets[: eos_mask.size(1)],
)
# get the top beam_size active hypotheses, which are just
# the hypos with the smallest values in active_mask.
# {active_hypos} indicates which {beam_size} hypotheses
# from the list of {2 * beam_size} candidates were
# selected. Shapes: (batch size, beam size)
new_cands_to_ignore, active_hypos = torch.topk(
active_mask, k=beam_size, dim=1, largest=False
)
# update cands_to_ignore to ignore any finalized hypos.
cands_to_ignore = new_cands_to_ignore.ge(cand_size)[:, :beam_size]
# Make sure there is at least one active item for each sentence in the batch.
assert (~cands_to_ignore).any(dim=1).all()
# update cands_to_ignore to ignore any finalized hypos
# {active_bbsz_idx} denotes which beam number is continued for each new hypothesis (a beam
# can be selected more than once).
active_bbsz_idx = torch.gather(cand_bbsz_idx, dim=1, index=active_hypos)
active_scores = torch.gather(cand_scores, dim=1, index=active_hypos)
active_bbsz_idx = active_bbsz_idx.view(-1)
active_scores = active_scores.view(-1)
# copy tokens and scores for active hypotheses
# Set the tokens for each beam (can select the same row more than once)
tokens[:, : step + 1] = torch.index_select(
tokens[:, : step + 1], dim=0, index=active_bbsz_idx
)
# Select the next token for each of them
tokens.view(bsz, beam_size, -1)[:, :, step + 1] = torch.gather(
cand_indices, dim=1, index=active_hypos
)
if step > 0:
scores[:, :step] = torch.index_select(
scores[:, :step], dim=0, index=active_bbsz_idx
)
scores.view(bsz, beam_size, -1)[:, :, step] = torch.gather(
cand_scores, dim=1, index=active_hypos
)
# Update constraints based on which candidates were selected for the next beam
self.search.update_constraints(active_hypos)
# copy attention for active hypotheses
if attn is not None:
attn[:, :, : step + 2] = torch.index_select(
attn[:, :, : step + 2], dim=0, index=active_bbsz_idx
)
# reorder incremental state in decoder
reorder_state = active_bbsz_idx
# sort by score descending
for sent in range(len(finalized)):
scores = torch.tensor(
[float(elem["score"].item()) for elem in finalized[sent]]
)
_, sorted_scores_indices = torch.sort(scores, descending=True)
finalized[sent] = [finalized[sent][ssi] for ssi in sorted_scores_indices]
finalized[sent] = torch.jit.annotate(
List[Dict[str, Tensor]], finalized[sent]
)
return finalized
def _prefix_tokens(
self, step: int, lprobs, scores, tokens, prefix_tokens, beam_size: int
):
"""Handle prefix tokens"""
prefix_toks = prefix_tokens[:, step].unsqueeze(-1).repeat(1, beam_size).view(-1)
prefix_lprobs = lprobs.gather(-1, prefix_toks.unsqueeze(-1))
prefix_mask = prefix_toks.ne(self.pad)
lprobs[prefix_mask] = torch.tensor(-math.inf).to(lprobs)
lprobs[prefix_mask] = lprobs[prefix_mask].scatter(
-1, prefix_toks[prefix_mask].unsqueeze(-1), prefix_lprobs[prefix_mask]
)
# if prefix includes eos, then we should make sure tokens and
# scores are the same across all beams
eos_mask = prefix_toks.eq(self.eos)
if eos_mask.any():
# validate that the first beam matches the prefix
first_beam = tokens[eos_mask].view(-1, beam_size, tokens.size(-1))[
:, 0, 1 : step + 1
]
eos_mask_batch_dim = eos_mask.view(-1, beam_size)[:, 0]
target_prefix = prefix_tokens[eos_mask_batch_dim][:, :step]
assert (first_beam == target_prefix).all()
# copy tokens, scores and lprobs from the first beam to all beams
tokens = self.replicate_first_beam(tokens, eos_mask_batch_dim, beam_size)
scores = self.replicate_first_beam(scores, eos_mask_batch_dim, beam_size)
lprobs = self.replicate_first_beam(lprobs, eos_mask_batch_dim, beam_size)
return lprobs, tokens, scores
def replicate_first_beam(self, tensor, mask, beam_size: int):
tensor = tensor.view(-1, beam_size, tensor.size(-1))
tensor[mask] = tensor[mask][:, :1, :]
return tensor.view(-1, tensor.size(-1))
def finalize_hypos(
self,
step: int,
bbsz_idx,
eos_scores,
tokens,
scores,
finalized: List[List[Dict[str, Tensor]]],
finished: List[bool],
beam_size: int,
attn: Optional[Tensor],
src_lengths,
max_len: int,
):
"""Finalize hypothesis, store finalized information in `finalized`, and change `finished` accordingly.
A sentence is finalized when {beam_size} finished items have been collected for it.
Returns number of sentences (not beam items) being finalized.
These will be removed from the batch and not processed further.
Args:
bbsz_idx (Tensor):
"""
assert bbsz_idx.numel() == eos_scores.numel()
# clone relevant token and attention tensors.
# tokens is (batch * beam, max_len). So the index_select
# gets the newly EOS rows, then selects cols 1..{step + 2}
tokens_clone = tokens.index_select(0, bbsz_idx)[
:, 1 : step + 2
] # skip the first index, which is EOS
tokens_clone[:, step] = self.eos
attn_clone = (
attn.index_select(0, bbsz_idx)[:, :, 1 : step + 2]
if attn is not None
else None
)
# compute scores per token position
pos_scores = scores.index_select(0, bbsz_idx)[:, : step + 1]
pos_scores[:, step] = eos_scores
# convert from cumulative to per-position scores
pos_scores[:, 1:] = pos_scores[:, 1:] - pos_scores[:, :-1]
# normalize sentence-level scores
if self.normalize_scores:
eos_scores /= (step + 1) ** self.len_penalty
# cum_unfin records which sentences in the batch are finished.
# It helps match indexing between (a) the original sentences
# in the batch and (b) the current, possibly-reduced set of
# sentences.
cum_unfin: List[int] = []
prev = 0
for f in finished:
if f:
prev += 1
else:
cum_unfin.append(prev)
cum_fin_tensor = torch.tensor(cum_unfin, dtype=torch.int).to(bbsz_idx)
unfin_idx = bbsz_idx // beam_size
sent = unfin_idx + torch.index_select(cum_fin_tensor, 0, unfin_idx)
# Create a set of "{sent}{unfin_idx}", where
# "unfin_idx" is the index in the current (possibly reduced)
# list of sentences, and "sent" is the index in the original,
# unreduced batch
# For every finished beam item
# sentence index in the current (possibly reduced) batch
seen = (sent << 32) + unfin_idx
unique_seen: List[int] = torch.unique(seen).tolist()
if self.match_source_len:
condition = step > torch.index_select(src_lengths, 0, unfin_idx)
eos_scores = torch.where(condition, torch.tensor(-math.inf), eos_scores)
sent_list: List[int] = sent.tolist()
for i in range(bbsz_idx.size()[0]):
# An input sentence (among those in a batch) is finished when
# beam_size hypotheses have been collected for it
if len(finalized[sent_list[i]]) < beam_size:
if attn_clone is not None:
# remove padding tokens from attn scores
hypo_attn = attn_clone[i]
else:
hypo_attn = torch.empty(0)
finalized[sent_list[i]].append(
{
"tokens": tokens_clone[i],
"score": eos_scores[i],
"attention": hypo_attn, # src_len x tgt_len
"alignment": torch.empty(0),
"positional_scores": pos_scores[i],
}
)
newly_finished: List[int] = []
for unique_s in unique_seen:
# check termination conditions for this sentence
unique_sent: int = unique_s >> 32
unique_unfin_idx: int = unique_s - (unique_sent << 32)
if not finished[unique_sent] and self.is_finished(
step, unique_unfin_idx, max_len, len(finalized[unique_sent]), beam_size
):
finished[unique_sent] = True
newly_finished.append(unique_unfin_idx)
return newly_finished
def is_finished(
self,
step: int,
unfin_idx: int,
max_len: int,
finalized_sent_len: int,
beam_size: int,
):
"""
Check whether decoding for a sentence is finished, which
occurs when the list of finalized sentences has reached the
beam size, or when we reach the maximum length.
"""
assert finalized_sent_len <= beam_size
if finalized_sent_len == beam_size or step == max_len:
return True
return False
class EnsembleModel(nn.Module):
"""A wrapper around an ensemble of models."""
def __init__(self, models):
super().__init__()
self.models_size = len(models)
# method '__len__' is not supported in ModuleList for torch script
self.single_model = models[0]
self.models = nn.ModuleList(models)
self.has_incremental: bool = False
if all(
hasattr(m, "decoder") and isinstance(m.decoder, FairseqIncrementalDecoder)
for m in models
):
self.has_incremental = True
def forward(self):
pass
def has_encoder(self):
return hasattr(self.single_model, "encoder")
def has_incremental_states(self):
return self.has_incremental
def max_decoder_positions(self):
return min(
[
m.max_decoder_positions()
for m in self.models
if hasattr(m, "max_decoder_positions")
]
+ [sys.maxsize]
)
@torch.jit.export
def forward_encoder(self, net_input: Dict[str, Tensor]):
if not self.has_encoder():
return None
return [model.encoder.forward_torchscript(net_input) for model in self.models]
@torch.jit.export
def forward_decoder(
self,
tokens,
encoder_outs: List[Dict[str, List[Tensor]]],
incremental_states: List[Dict[str, Dict[str, Optional[Tensor]]]],
temperature: float = 1.0,
):
log_probs = []
avg_attn: Optional[Tensor] = None
encoder_out: Optional[Dict[str, List[Tensor]]] = None
for i, model in enumerate(self.models):
if self.has_encoder():
encoder_out = encoder_outs[i]
# decode each model
if self.has_incremental_states():
decoder_out = model.decoder.forward(
tokens,
encoder_out=encoder_out,
incremental_state=incremental_states[i],
)
else:
if hasattr(model, "decoder"):
decoder_out = model.decoder.forward(tokens, encoder_out=encoder_out)
else:
decoder_out = model.forward(tokens)
attn: Optional[Tensor] = None
decoder_len = len(decoder_out)
if decoder_len > 1 and decoder_out[1] is not None:
if isinstance(decoder_out[1], Tensor):
attn = decoder_out[1]
else:
attn_holder = decoder_out[1]["attn"]
if isinstance(attn_holder, Tensor):
attn = attn_holder
elif attn_holder is not None:
attn = attn_holder[0]
if attn is not None:
attn = attn[:, -1, :]
decoder_out_tuple = (
decoder_out[0][:, -1:, :].div_(temperature),
None if decoder_len <= 1 else decoder_out[1],
)
probs = model.get_normalized_probs(
decoder_out_tuple, log_probs=True, sample=None
)
probs = probs[:, -1, :]
if self.models_size == 1:
return probs, attn
log_probs.append(probs)
if attn is not None:
if avg_attn is None:
avg_attn = attn
else:
avg_attn.add_(attn)
avg_probs = torch.logsumexp(torch.stack(log_probs, dim=0), dim=0) - math.log(
self.models_size
)
if avg_attn is not None:
avg_attn.div_(self.models_size)
return avg_probs, avg_attn
@torch.jit.export
def reorder_encoder_out(
self, encoder_outs: Optional[List[Dict[str, List[Tensor]]]], new_order
):
"""
Reorder encoder output according to *new_order*.
Args:
encoder_out: output from the ``forward()`` method
new_order (LongTensor): desired order
Returns:
*encoder_out* rearranged according to *new_order*
"""
new_outs: List[Dict[str, List[Tensor]]] = []
if not self.has_encoder():
return new_outs
for i, model in enumerate(self.models):
assert encoder_outs is not None
new_outs.append(
model.encoder.reorder_encoder_out(encoder_outs[i], new_order)
)
return new_outs
@torch.jit.export
def reorder_incremental_state(
self,
incremental_states: List[Dict[str, Dict[str, Optional[Tensor]]]],
new_order,
):
if not self.has_incremental_states():
return
for i, model in enumerate(self.models):
model.decoder.reorder_incremental_state_scripting(
incremental_states[i], new_order
)
| KosmosX-API-main | kosmosX/unilm/models/vl/vlm_generator.py |
import logging
import os
import torch
from copy import deepcopy
from typing import Callable
from torch import nn
from torch.nn import functional as F
from open_clip.model import CLIPVisionCfg, QuickGELU, TimmModel, ModifiedResNet, to_2tuple, LayerNorm, Transformer
from open_clip.factory import _MODEL_CONFIGS, list_models, get_pretrained_url, download_pretrained, load_state_dict
logger = logging.getLogger(__name__)
class VisualTransformer4Seq2Seq(nn.Module):
def __init__(
self, image_size: int, patch_size: int, width: int, layers: int, heads: int, mlp_ratio: float, output_dim: int, act_layer: Callable = nn.GELU):
super().__init__()
self.image_size = to_2tuple(image_size)
self.patch_size = to_2tuple(patch_size)
self.grid_size = (self.image_size[0] // self.patch_size[0], self.image_size[1] // self.patch_size[1])
self.output_dim = output_dim
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
scale = width ** -0.5
self.class_embedding = nn.Parameter(scale * torch.randn(width))
self.positional_embedding = nn.Parameter(scale * torch.randn(self.grid_size[0] * self.grid_size[1] + 1, width))
self.ln_pre = LayerNorm(width)
self.transformer = Transformer(width, layers, heads, mlp_ratio, act_layer=act_layer)
self.ln_post = LayerNorm(width)
# self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
def lock(self, unlocked_groups=0, freeze_bn_stats=False):
assert unlocked_groups == 0, 'partial locking not currently supported for this model'
for param in self.parameters():
param.requires_grad = False
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
self.transformer.grad_checkpointing = enable
def forward(self, x: torch.Tensor):
x = self.conv1(x) # shape = [*, width, grid, grid]
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
x = torch.cat(
[self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
x = x + self.positional_embedding.to(x.dtype)
x = self.ln_pre(x)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
# NOTE encoder output is T, B, C for seq2seq
# x = x.permute(1, 0, 2) # LND -> NLD
# x = self.ln_post(x[:, 0, :])
x = self.ln_post(x) # [*, grid ** 2 + 1, width]
# if self.proj is not None:
# x = x @ self.proj
return x
class ClipVisualOnly(nn.Module):
# text_cfg for compatibility with original CLIP
def __init__(self, embed_dim, vision_cfg, text_cfg, quick_gelu=False):
super().__init__()
if isinstance(vision_cfg, dict):
vision_cfg = CLIPVisionCfg(**vision_cfg)
# OpenAI models are pretrained w/ QuickGELU but native nn.GELU is both faster and more
# memory efficient in recent PyTorch releases (>= 1.10).
# NOTE: timm models always use native GELU regardless of quick_gelu flag.
act_layer = QuickGELU if quick_gelu else nn.GELU
if vision_cfg.timm_model_name:
raise NotImplementedError
self.visual = TimmModel(
vision_cfg.timm_model_name,
pretrained=vision_cfg.timm_model_pretrained,
pool=vision_cfg.timm_pool,
proj=vision_cfg.timm_proj,
embed_dim=embed_dim,
image_size=vision_cfg.image_size)
act_layer = nn.GELU # so that text transformer doesn't use QuickGELU w/ timm models
elif isinstance(vision_cfg.layers, (tuple, list)):
raise NotImplementedError
vision_heads = vision_cfg.width * 32 // vision_cfg.head_width
self.visual = ModifiedResNet(
layers=vision_cfg.layers,
output_dim=embed_dim,
heads=vision_heads,
image_size=vision_cfg.image_size,
width=vision_cfg.width)
else:
vision_heads = vision_cfg.width // vision_cfg.head_width
self.visual = VisualTransformer4Seq2Seq(
image_size=vision_cfg.image_size,
patch_size=vision_cfg.patch_size,
width=vision_cfg.width,
layers=vision_cfg.layers,
heads=vision_heads,
mlp_ratio=vision_cfg.mlp_ratio,
output_dim=embed_dim,
act_layer=act_layer,)
self.init_parameters()
def init_parameters(self):
if hasattr(self.visual, 'init_parameters'):
self.visual.init_parameters()
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
self.visual.set_grad_checkpointing(enable)
def encode_image(self, image):
return self.visual(image)
def forward(self, image):
image_features = self.encode_image(image)
image_features = F.normalize(image_features, dim=-1)
return image_features
def load_checkpoint4vision_only(model, checkpoint_path, strict=True):
state_dict = load_state_dict(checkpoint_path)
incompatible_keys = model.load_state_dict(state_dict, strict=strict)
return incompatible_keys
def create_model(
model_name: str,
pretrained: str = '',
jit: bool = False,
force_quick_gelu: bool = False,
pretrained_image: bool = False,):
model_name = model_name.replace('/', '-') # for callers using old naming with / in ViT names
if pretrained and pretrained.lower() == 'openai':
raise NotImplementedError
else:
if model_name in _MODEL_CONFIGS:
logger.info(f'Loading {model_name} model config.')
model_cfg = deepcopy(_MODEL_CONFIGS[model_name])
else:
logging.error(f'Model config for {model_name} not found; available models {list_models()}.')
raise RuntimeError(f'Model config for {model_name} not found.')
if force_quick_gelu:
# override for use of QuickGELU on non-OpenAI transformer models
model_cfg["quick_gelu"] = True
if pretrained_image:
if 'timm_model_name' in model_cfg.get('vision_cfg', {}):
# pretrained weight loading for timm models set via vision_cfg
model_cfg['vision_cfg']['timm_model_pretrained'] = True
else:
assert False, 'pretrained image towers currently only supported for timm models'
model = ClipVisualOnly(**model_cfg)
if not pretrained:
# reload attn weights into ts attn
dim = model.visual.transformer.resblocks[0].attn.in_proj_weight.shape[0] // 3
for resblock in model.visual.transformer.resblocks:
resblock.ts_attn.q_proj.weight = nn.Parameter(resblock.attn.in_proj_weight[:dim].clone())
resblock.ts_attn.q_proj.bias = nn.Parameter(resblock.attn.in_proj_bias[:dim].clone())
resblock.ts_attn.k_proj.weight = nn.Parameter(resblock.attn.in_proj_weight[dim:2*dim].clone())
resblock.ts_attn.k_proj.bias = nn.Parameter(resblock.attn.in_proj_bias[dim:2*dim].clone())
resblock.ts_attn.v_proj.weight = nn.Parameter(resblock.attn.in_proj_weight[2*dim:].clone())
resblock.ts_attn.v_proj.bias = nn.Parameter(resblock.attn.in_proj_bias[2*dim:].clone())
resblock.ts_attn.out_proj.weight = nn.Parameter(resblock.attn.out_proj.weight.clone())
resblock.ts_attn.out_proj.bias = nn.Parameter(resblock.attn.out_proj.bias.clone())
resblock.attn = None
if pretrained:
logger.info(f'Loading {model_name} checkpoint from: {pretrained}')
checkpoint_path = ''
url = get_pretrained_url(model_name, pretrained)
if url:
checkpoint_path = download_pretrained(url)
elif os.path.exists(pretrained):
checkpoint_path = pretrained
if checkpoint_path:
logging.info(f'Loading pretrained {model_name} weights ({pretrained}).')
# NOTE TODO remove, strict=True is only for debug
load_checkpoint4vision_only(model, checkpoint_path, strict=False)
# reload attn weights into ts attn
dim = model.visual.transformer.resblocks[0].attn.in_proj_weight.shape[0] // 3
for resblock in model.visual.transformer.resblocks:
resblock.ts_attn.q_proj.weight = nn.Parameter(resblock.attn.in_proj_weight[:dim].clone())
resblock.ts_attn.q_proj.bias = nn.Parameter(resblock.attn.in_proj_bias[:dim].clone())
resblock.ts_attn.k_proj.weight = nn.Parameter(resblock.attn.in_proj_weight[dim:2*dim].clone())
resblock.ts_attn.k_proj.bias = nn.Parameter(resblock.attn.in_proj_bias[dim:2*dim].clone())
resblock.ts_attn.v_proj.weight = nn.Parameter(resblock.attn.in_proj_weight[2*dim:].clone())
resblock.ts_attn.v_proj.bias = nn.Parameter(resblock.attn.in_proj_bias[2*dim:].clone())
resblock.ts_attn.out_proj.weight = nn.Parameter(resblock.attn.out_proj.weight.clone())
resblock.ts_attn.out_proj.bias = nn.Parameter(resblock.attn.out_proj.bias.clone())
resblock.attn = None
else:
logging.warning(f'Pretrained weights ({pretrained}) not found for model {model_name}.')
raise RuntimeError(f'Pretrained weights ({pretrained}) not found for model {model_name}.')
if jit: model = torch.jit.script(model)
return model | KosmosX-API-main | kosmosX/unilm/models/vl/clip.py |
KosmosX-API-main | kosmosX/unilm/data/__init__.py |
|
import numpy as np
from random import Random
from typing import Dict, Iterable, Optional
import collections
from infinibatch import iterators
EOD_SYMBOL = "</doc>"
BOI_SYMBOL = "<image>"
EOI_SYMBOL = "</image>"
EOC_SYMBOL = "</chunk>"
EOL_SYMBOL = "</line>"
GRD_SYMBOL="<grounding>"
BOP_SYMBOL="<phrase>"
EOP_SYMBOL="</phrase>"
BOO_SYMBOL="<object>"
EOO_SYMBOL="</object>"
DOM_SYMBOL="</delimiter_of_multi_objects/>"
SPECIAL_SYMBOLS = [EOD_SYMBOL, BOI_SYMBOL, EOI_SYMBOL, EOC_SYMBOL, EOL_SYMBOL]
def add_location_symbols(quantized_size, locate_special_token=0):
custom_sp_symbols = []
for symbol in SPECIAL_SYMBOLS:
custom_sp_symbols.append(symbol)
for symbol in [BOP_SYMBOL, EOP_SYMBOL, BOO_SYMBOL, EOO_SYMBOL, DOM_SYMBOL]:
custom_sp_symbols.append(symbol)
if locate_special_token > 0:
custom_sp_symbols.append(GRD_SYMBOL)
for i in range(quantized_size ** 2):
token_name = f"<patch_index_{str(i).zfill(4)}>"
custom_sp_symbols.append(token_name)
return custom_sp_symbols
def apply_to_sample(f, sample):
if hasattr(sample, "__len__") and len(sample) == 0:
return {}
def _apply(x):
if isinstance(x, np.ndarray):
return f(x)
elif isinstance(x, collections.OrderedDict):
# OrderedDict has attributes that needs to be preserved
od = collections.OrderedDict((key, _apply(value)) for key, value in x.items())
od.__dict__ = x.__dict__
return od
elif isinstance(x, dict):
return {key: _apply(value) for key, value in x.items()}
elif isinstance(x, list):
return [_apply(x) for x in x]
elif isinstance(x, tuple):
return tuple(_apply(x) for x in x)
elif isinstance(x, set):
return {_apply(x) for x in x}
else:
return x
return _apply(sample)
class NativeCheckpointableIterator(iterators.CheckpointableIterator):
def __init__(self, iterable: Iterable):
self._input_iterable = iterable
self.setstate(None)
def getstate(self) -> Dict:
return {'num_items_yielded': self._num_items_yielded}
def setstate(self, checkpoint: Optional[Dict]):
self._iterator = iter(self._input_iterable)
self._num_items_yielded = iterators._advance_iterator(self._iterator, checkpoint['num_items_yielded']) if checkpoint is not None else 0
def __next__(self):
item = next(self._iterator)
self._num_items_yielded += 1
return item
def close(self):
pass
class WeightIterator(object):
def __init__(self, weights, seed):
self.weights = weights
self.seed = seed
self.control_index = list(range(len(weights)))
self.setstate(None)
def __iter__(self):
return self
def getstate(self):
return {"random_state": self._random_state}
def setstate(self, checkpoint):
self._random_state = checkpoint["random_state"] if checkpoint else None
self._random = None # this will trigger the lazy initialization in self.__next__
def __next__(self):
if self._random is None:
self._random = Random(self.seed)
if self._random_state is not None:
self._random.setstate(self._random_state)
idx = self._random.choices(self.control_index, self.weights)[0]
self._random_state = self._random.getstate()
return idx
def close(self):
pass
class ConcatIterator(iterators.CheckpointableIterator):
"""
Concat items from all given iterators.
"""
def __init__(self, source_iterators):
"""
Args:
source_iterators: list of iterators to zip, item by item
"""
# TODO: Use all function?
for source_iterator in source_iterators:
if not isinstance(source_iterator, iterators.CheckpointableIterator):
raise ValueError('all iterators in source_iterators have to be CheckpointableIterator')
self._source_iterators = source_iterators # type: List[CheckpointableIterator]
def getstate(self):
return {'input_states': tuple(iterator.getstate() for iterator in self._source_iterators)}
def setstate(self, checkpoint):
if checkpoint is None:
for iterator in self._source_iterators:
iterator.setstate(None)
else:
# TODO: Add check that both lists have the same length?
for iterator, state in zip(self._source_iterators, checkpoint['input_states']):
iterator.setstate(state)
def __next__(self):
res = {} # (note: can't use a generator expression, as it gets confused when a next() call raises StopIteration)
for iterator in self._source_iterators:
res.update(next(iterator))
return res
def close(self):
for it in self._source_iterators:
it.close()
class MixIterator(iterators.CheckpointableIterator):
"""
Concat items from all given iterators.
"""
def __init__(self, source_iterators, weights):
"""
Args:
source_iterators: list of iterators to zip, item by item
"""
# TODO: Use all function?
for source_iterator in source_iterators:
if not isinstance(source_iterator, iterators.CheckpointableIterator):
raise ValueError('all iterators in source_iterators have to be CheckpointableIterator')
self._source_iterators = source_iterators # type: List[CheckpointableIterator]
assert len(weights) == len(source_iterators)
self.weights = weights
self.population = list(range(len(source_iterators)))
def getstate(self):
return {'input_states': tuple(iterator.getstate() for iterator in self._source_iterators)}
def setstate(self, checkpoint):
if checkpoint is None:
for iterator in self._source_iterators:
iterator.setstate(None)
else:
# TODO: Add check that both lists have the same length?
for iterator, state in zip(self._source_iterators, checkpoint['input_states']):
iterator.setstate(state)
def __next__(self):
_random = Random()
res = {} # (note: can't use a generator expression, as it gets confused when a next() call raises StopIteration)
idx = _random.choices(self.population, self.weights)[0]
res.update(next(self._source_iterators[idx]))
return res
def close(self):
for it in self._source_iterators:
it.close()
| KosmosX-API-main | kosmosX/unilm/data/utils.py |
from dataclasses import dataclass, field
import math
from omegaconf import II
import torch.nn.functional as F
from fairseq import metrics, utils
from fairseq.criterions import FairseqCriterion, register_criterion
from fairseq.dataclass import FairseqDataclass
LOSS_NAMES = ["gpt", "image_wild", "image_laion"]
@dataclass
class UniGPTLossConfig(FairseqDataclass):
ignore_eos: bool = field(
default=False,
metadata={"help": "ignore mlm output at eos token."},
)
sentence_avg: bool = II("optimization.sentence_avg")
@register_criterion(
"unigpt", dataclass=UniGPTLossConfig
)
class UniGPTLoss(FairseqCriterion):
def __init__(self, cfg, task):
super().__init__(task)
self.cfg = cfg
def forward(self, model, sample, reduce=True, loss_name="gpt"):
"""Compute the loss for the given sample.
Returns a tuple with three elements:
1) the loss
2) the sample size, which is used as the denominator for the gradient
3) logging outputs to display while training
"""
net_output = model(**sample["net_input"])
loss, _ = self.compute_loss(model, net_output, sample, reduce=reduce)
sample_size = (sample["target"][sample["net_input"]['gpt_loss_mask']] != self.padding_idx).sum().int()
logging_output = {
"loss": loss.data,
"ntokens": sample["ntokens"],
"nsentences": sample["target"].size(0),
"sample_size": sample_size,
}
# for loss_name_item in LOSS_NAMES:
# logging_output[loss_name_item] = 0.01
# logging_output[loss_name_item + "sample_size"] = 1
logging_output[loss_name] = loss.data
logging_output[loss_name + "sample_size"] = sample["ntokens"]
return loss, sample_size, logging_output
def compute_loss(self, model, net_output, sample, reduce=True):
if hasattr(model, "gpt_model"):
lprobs = model.gpt_model.get_normalized_probs(net_output, log_probs=True)
else:
lprobs = model.get_normalized_probs(net_output, log_probs=True)
loss_mask = sample["net_input"]['gpt_loss_mask']
lprobs = lprobs[loss_mask]
target = model.get_targets(sample, net_output)[loss_mask].view(-1)
loss = F.nll_loss(
lprobs,
target,
ignore_index=self.padding_idx,
reduction="sum" if reduce else "none",
)
return loss, loss
@staticmethod
def reduce_metrics(logging_outputs) -> None:
"""Aggregate logging outputs from data parallel training."""
loss_sum = sum(log.get("loss", 0) for log in logging_outputs)
ntokens = sum(log.get("ntokens", 0) for log in logging_outputs)
sample_size = sum(log.get("sample_size", 0) for log in logging_outputs)
loss_items = []
# log individual losses
for loss_name in LOSS_NAMES:
loss_sum = sum(log.get(loss_name, 0) for log in logging_outputs)
single_sample_size = sum(log.get(loss_name + "sample_size", 0) for log in logging_outputs)
if loss_sum != 0:
metrics.log_scalar(
loss_name, loss_sum / single_sample_size / math.log(2), single_sample_size, round=3
)
metrics.log_scalar(
loss_name + "_sample_size", single_sample_size, round=3
)
loss_items.append(loss_sum / single_sample_size / math.log(2))
else:
metrics.log_scalar(
loss_name + "_sample_size", 0, round=3
)
metrics.log_scalar(
"loss", sum(loss_items) / len(loss_items), sample_size, round=3
)
if sample_size != ntokens:
metrics.log_scalar(
"nll_loss", loss_sum / ntokens / math.log(2), ntokens, round=3
)
metrics.log_derived(
"ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg)
)
else:
metrics.log_derived(
"ppl", lambda meters: utils.get_perplexity(meters["loss"].avg)
)
@staticmethod
def logging_outputs_can_be_summed() -> bool:
"""
Whether the logging outputs returned by `forward` can be summed
across workers prior to calling `reduce_metrics`. Setting this
to True will improves distributed training speed.
"""
return True
| KosmosX-API-main | kosmosX/unilm/criterions/unigpt.py |
import importlib
import os
# automatically import any Python files in the criterions/ directory
for file in sorted(os.listdir(os.path.dirname(__file__))):
if file.endswith(".py") and not file.startswith("_"):
file_name = file[: file.find(".py")]
importlib.import_module("unilm.criterions." + file_name) | KosmosX-API-main | kosmosX/unilm/criterions/__init__.py |
from setuptools import setup, find_packages
import site
site.ENABLE_USER_SITE = True
setup(
name='infinibatch',
version='0.1.0',
url='https://github.com/microsoft/infinibatch',
author='Frank Seide',
author_email='[email protected]',
description='Infinibatch is a library of checkpointable iterators for randomized data loading of massive data sets in deep neural network training.',
packages=find_packages()
)
| KosmosX-API-main | kosmosX/infinibatch/setup.py |
import copy
import itertools
import multiprocessing
from random import Random
import unittest
import torch
from infinibatch.iterators import *
if __name__ == "__main__":
unittest.main()
class TestBase(unittest.TestCase):
def setUp(self):
self.lengths = [1, 2, 3, 42, 57]
self.world_sizes = [1, 2, 3, 4, 5, 11, 16, 64, 73]
self.seed = 42
def assertMultisetEqual(self, a, b):
def list_to_dict(l):
d = {}
for item in l:
d[item] = d.get(item, 0) + 1
return d
self.assertEqual(list_to_dict(a), list_to_dict(b))
class TestFiniteIteratorMixin:
"""
Mixin to be used in combination with TestBase
to test basic function of finite CheckpointableIterators
"""
def test_basic(self):
for case_name, expected_result, it in self.test_cases:
with self.subTest(case_name):
result = list(it)
self.assertEqual(result, expected_result)
class TestFiniteIteratorCheckpointingMixin:
"""
Mixin to be used in combination with TestBase
to test checkpointing functionality of finite CheckpointableIterators
"""
def test_checkpointing_reset(self):
for case_name, _, it in self.test_cases:
with self.subTest(case_name):
expected_result = list(it) # extract data
it.setstate(None) # reset to start
result = list(it)
self.assertEqual(result, expected_result)
# TODO: Can this be rewritten in terms of _test_checkpointing_from_pos?
def test_checkpointing_from_start(self):
for case_name, _, it in self.test_cases:
with self.subTest(case_name):
checkpoint = it.getstate()
expected_result = list(it) # extract data
it.setstate(checkpoint) # reset to start
result = list(it)
self.assertEqual(result, expected_result)
def _test_checkpointing_from_pos(self, it, pos):
for _ in range(pos): # go to pos
next(it)
checkpoint = it.getstate() # take checkpoint
expected_result = list(it) # extract data
it.setstate(checkpoint) # reset to checkpoint
result = list(it)
self.assertEqual(result, expected_result)
def test_checkpointing_from_one(self):
for case_name, _, it in self.test_cases:
with self.subTest(case_name):
pos = 1
self._test_checkpointing_from_pos(it, pos)
def test_checkpointing_from_quarter(self):
for case_name, _, it in self.test_cases:
with self.subTest(case_name):
expected_result = list(it)
it.setstate(None)
pos = len(expected_result) // 4
self._test_checkpointing_from_pos(it, pos)
def test_checkpointing_from_third(self):
for case_name, _, it in self.test_cases:
with self.subTest(case_name):
expected_result = list(it)
it.setstate(None)
pos = len(expected_result) // 3
self._test_checkpointing_from_pos(it, pos)
def test_checkpointing_from_half(self):
for case_name, _, it in self.test_cases:
with self.subTest(case_name):
expected_result = list(it)
it.setstate(None)
pos = len(expected_result) // 2
self._test_checkpointing_from_pos(it, pos)
def test_checkpointing_before_end(self):
for case_name, _, it in self.test_cases:
with self.subTest(case_name):
expected_result = list(it)
it.setstate(None)
pos = len(expected_result) - 1
self._test_checkpointing_from_pos(it, pos)
def test_checkpointing_at_end(self):
for case_name, _, it in self.test_cases:
with self.subTest(case_name):
list(it) # exhaust iterator
self.assertRaises(StopIteration, it.__next__)
checkpoint = it.getstate() # take checkpoint
it.setstate(None) # reset to beginning
it.setstate(checkpoint) # reset to checkpoint
self.assertRaises(StopIteration, it.__next__)
def test_checkpointing_complex(self):
for case_name, _, it in self.test_cases:
with self.subTest(case_name):
expected_result = list(it)
# get a bunch of checkpoints at different positions
it.setstate(None)
positions = [
0,
len(expected_result) // 7,
len(expected_result) // 6,
len(expected_result) // 5,
len(expected_result) // 4,
len(expected_result) // 3,
len(expected_result) // 2,
]
checkpoints = []
for i in range(len(positions)):
offset = positions[i] - positions[i - 1] if i > 0 else positions[0]
for _ in range(offset):
next(it)
checkpoints.append(it.getstate())
# check that iterator returns correct result at all checkpoints
for pos, checkpoint in zip(positions, checkpoints):
it.setstate(checkpoint)
self.assertEqual(list(it), expected_result[pos:])
# check that iterator returns correct result at all checkpoints in reverse order
tuples = list(zip(positions, checkpoints))
tuples.reverse()
for pos, checkpoint in tuples:
it.setstate(checkpoint)
self.assertEqual(list(it), expected_result[pos:])
# check that iterator returns correct result at all checkpoints
# while resetting between any two checkpoints
for pos, checkpoint in zip(positions, checkpoints):
it.setstate(None)
it.setstate(checkpoint)
self.assertEqual(list(it), expected_result[pos:])
# and as the grand finale: reset and check again
it.setstate(None)
result = list(it)
self.assertEqual(result, expected_result)
class TestInfinitePermutationSourceIterator(TestBase):
def setUp(self):
super().setUp()
self.repeats = [1, 2, 3]
def test_no_shuffle(self):
for n, k, num_instances in itertools.product(self.lengths, self.repeats, self.world_sizes):
data = list(range(n))
for instance_rank in range(num_instances):
with self.subTest(f"n={n}, k={k}, num_instances={num_instances}, instance_rank={instance_rank}"):
it = InfinitePermutationSourceIterator(
copy.deepcopy(data), shuffle=False, num_instances=num_instances, instance_rank=instance_rank
)
repeated_data = []
while len(repeated_data) < k * n * num_instances:
repeated_data.extend(data)
expected_result = []
pos = instance_rank
while len(expected_result) < k * n:
expected_result.append(repeated_data[pos])
pos += num_instances
result = [next(it) for _ in range(k * n)]
self.assertEqual(result, expected_result)
def test_shuffle(self):
for n, k, num_instances in itertools.product(self.lengths, self.repeats, self.world_sizes):
data = list(range(n))
for instance_rank in range(num_instances):
with self.subTest(f"n={n}, k={k}, num_instances={num_instances}, instance_rank={instance_rank}"):
it = InfinitePermutationSourceIterator(
copy.deepcopy(data),
seed=self.seed,
shuffle=True,
num_instances=num_instances,
instance_rank=instance_rank,
)
random = Random(self.seed)
repeated_data = []
while len(repeated_data) < k * n * num_instances:
shuffled_data = copy.deepcopy(data)
random.shuffle(shuffled_data)
repeated_data.extend(shuffled_data)
expected_result = []
pos = instance_rank
while len(expected_result) < k * n:
expected_result.append(repeated_data[pos])
pos += num_instances
result = [next(it) for _ in range(k * n)]
self.assertEqual(result, expected_result)
def test_single_instance_no_shuffle(self):
# this test is technically included in test_no_shuffle
# but the calculation of the expected result is less error prone
for n, k in itertools.product(self.lengths, self.repeats):
with self.subTest(f"n={n}, k={k}"):
data = list(range(n))
expected_result = data * k
it = InfinitePermutationSourceIterator(copy.deepcopy(data), shuffle=False)
result = [next(it) for _ in range(k * n)]
self.assertEqual(result, expected_result)
def test_single_instance_shuffle(self):
# this test is technically included in test_shuffle
# but the calculation of the expected result is less error prone
for n, k in itertools.product(self.lengths, self.repeats):
with self.subTest(f"n={n}, k={k}"):
data = list(range(n))
expected_result = data * k
it = InfinitePermutationSourceIterator(copy.deepcopy(data), seed=self.seed, shuffle=True)
result = [next(it) for _ in range(k * n)]
self.assertMultisetEqual(result, expected_result)
def test_checkpointing_reset_no_shuffle(self):
for n, k, num_instances in itertools.product(self.lengths, self.repeats, self.world_sizes):
data = list(range(n))
for instance_rank in range(num_instances):
with self.subTest(f"n={n}, k={k}, num_instances={num_instances}, instance_rank={instance_rank}"):
it = InfinitePermutationSourceIterator(
copy.deepcopy(data), shuffle=False, num_instances=num_instances, instance_rank=instance_rank
)
expected_result = [next(it) for _ in range(k * n)] # extract data
it.setstate(None) # reset to start
result = [next(it) for _ in range(k * n)]
self.assertEqual(result, expected_result)
def test_checkpointing_reset_shuffle(self):
for n, k, num_instances in itertools.product(self.lengths, self.repeats, self.world_sizes):
data = list(range(n))
for instance_rank in range(num_instances):
with self.subTest(f"n={n}, k={k}, num_instances={num_instances}, instance_rank={instance_rank}"):
it = InfinitePermutationSourceIterator(
copy.deepcopy(data),
seed=self.seed,
shuffle=True,
num_instances=num_instances,
instance_rank=instance_rank,
)
expected_result = [next(it) for _ in range(k * n)] # extract data
it.setstate(None) # reset to start
result = [next(it) for _ in range(k * n)]
self.assertEqual(result, expected_result)
def test_checkpointing_from_start_no_shuffle(self):
for n, k, num_instances in itertools.product(self.lengths, self.repeats, self.world_sizes):
data = list(range(n))
for instance_rank in range(num_instances):
with self.subTest(f"n={n}, k={k}, num_instances={num_instances}, instance_rank={instance_rank}"):
it = InfinitePermutationSourceIterator(
copy.deepcopy(data), shuffle=False, num_instances=num_instances, instance_rank=instance_rank
)
checkpoint = it.getstate()
expected_result = [next(it) for _ in range(k * n)] # extract data
it.setstate(checkpoint) # reset to start
result = [next(it) for _ in range(k * n)]
self.assertEqual(result, expected_result)
def test_checkpointing_from_start_shuffle(self):
for n, k, num_instances in itertools.product(self.lengths, self.repeats, self.world_sizes):
data = list(range(n))
for instance_rank in range(num_instances):
with self.subTest(f"n={n}, k={k}, num_instances={num_instances}, instance_rank={instance_rank}"):
it = InfinitePermutationSourceIterator(
copy.deepcopy(data),
seed=self.seed,
shuffle=True,
num_instances=num_instances,
instance_rank=instance_rank,
)
checkpoint = it.getstate()
expected_result = [next(it) for _ in range(k * n)] # extract data
it.setstate(checkpoint) # reset to start
result = [next(it) for _ in range(k * n)]
self.assertEqual(result, expected_result)
def test_checkpointing_from_middle_no_shuffle(self):
for n, k, num_instances in itertools.product(self.lengths, self.repeats, self.world_sizes):
data = list(range(n))
for instance_rank in range(num_instances):
with self.subTest(f"n={n}, k={k}, num_instances={num_instances}, instance_rank={instance_rank}"):
it = InfinitePermutationSourceIterator(
copy.deepcopy(data), shuffle=False, num_instances=num_instances, instance_rank=instance_rank
)
checkpoint_pos = k * n // 3
for _ in range(checkpoint_pos): # go to checkpoint_pos
next(it)
checkpoint = it.getstate() # take checkpoint
expected_result = [next(it) for _ in range(k * n)] # extract data
for _ in range(checkpoint_pos): # move forward some more
next(it)
it.setstate(checkpoint) # reset to checkpoint
result = [next(it) for _ in range(k * n)] # get data again
self.assertEqual(result, expected_result)
def test_checkpointing_from_middle_shuffle(self):
for n, k, num_instances in itertools.product(self.lengths, self.repeats, self.world_sizes):
data = list(range(n))
for instance_rank in range(num_instances):
with self.subTest(f"n={n}, k={k}, num_instances={num_instances}, instance_rank={instance_rank}"):
it = InfinitePermutationSourceIterator(
copy.deepcopy(data),
seed=self.seed,
shuffle=True,
num_instances=num_instances,
instance_rank=instance_rank,
)
checkpoint_pos = k * n // 3
for _ in range(checkpoint_pos): # go to checkpoint_pos
next(it)
checkpoint = it.getstate() # take checkpoint
expected_result = [next(it) for _ in range(k * n)] # extract data
for _ in range(checkpoint_pos): # move forward some more
next(it)
it.setstate(checkpoint) # reset to checkpoint
result = [next(it) for _ in range(k * n)] # get data again
self.assertEqual(result, expected_result)
def test_checkpointing_at_boundary_no_shuffle(self):
for n, k, num_instances in itertools.product(self.lengths, self.repeats, self.world_sizes):
data = list(range(n))
for instance_rank in range(num_instances):
with self.subTest(f"n={n}, k={k}, num_instances={num_instances}, instance_rank={instance_rank}"):
it = InfinitePermutationSourceIterator(
copy.deepcopy(data), shuffle=False, num_instances=num_instances, instance_rank=instance_rank
)
checkpoint_pos = k * n
for _ in range(checkpoint_pos): # go to checkpoint_pos
next(it)
checkpoint = it.getstate() # take checkpoint
expected_result = [next(it) for _ in range(k * n)] # extract data
for _ in range(checkpoint_pos): # move forward some more
next(it)
it.setstate(checkpoint) # reset to checkpoint
result = [next(it) for _ in range(k * n)] # get data again
self.assertEqual(result, expected_result)
def test_checkpointing_at_boundary_shuffle(self):
for n, k, num_instances in itertools.product(self.lengths, self.repeats, self.world_sizes):
data = list(range(n))
for instance_rank in range(num_instances):
with self.subTest(f"n={n}, k={k}, num_instances={num_instances}, instance_rank={instance_rank}"):
it = InfinitePermutationSourceIterator(
copy.deepcopy(data),
seed=self.seed,
shuffle=True,
num_instances=num_instances,
instance_rank=instance_rank,
)
checkpoint_pos = k * n
for _ in range(checkpoint_pos): # go to checkpoint_pos
next(it)
checkpoint = it.getstate() # take checkpoint
expected_result = [next(it) for _ in range(k * n)] # extract data
for _ in range(checkpoint_pos): # move forward some more
next(it)
it.setstate(checkpoint) # reset to checkpoint
result = [next(it) for _ in range(k * n)] # get data again
self.assertEqual(result, expected_result)
def test_empty_source(self):
def f():
return InfinitePermutationSourceIterator([])
self.assertRaises(ValueError, f)
def test_rank_too_large(self):
def f():
return InfinitePermutationSourceIterator([1], num_instances=2, instance_rank=2)
self.assertRaises(ValueError, f)
class TestChunkedSourceIterator(TestBase, TestFiniteIteratorMixin, TestFiniteIteratorCheckpointingMixin):
def setUp(self):
super().setUp()
self.test_cases = []
for n in self.lengths:
data = list(range(n))
it = ChunkedSourceIterator(copy.deepcopy(data))
self.test_cases.append(("n={}".format(n), data, it))
def test_multiple_instances(self):
for n, num_instances in itertools.product(self.lengths, self.world_sizes):
with self.subTest("n={}, num_instances={}".format(n, num_instances)):
data = list(range(n))
result = []
sizes = []
for instance_rank in range(num_instances):
it = ChunkedSourceIterator(
copy.deepcopy(data), num_instances=num_instances, instance_rank=instance_rank
)
output = list(it)
result.extend(output)
sizes.append(len(output))
self.assertEqual(data, result)
self.assertTrue(max(sizes) - min(sizes) <= 1) # make sure data is split as evenly as possible
def test_rank_too_large(self):
def create_iterator():
ChunkedSourceIterator([1], num_instances=2, instance_rank=2)
self.assertRaises(ValueError, create_iterator)
class TestSamplingRandomMapIterator(TestBase, TestFiniteIteratorMixin, TestFiniteIteratorCheckpointingMixin):
@staticmethod
def transform(random, item):
return item + random.random()
def setUp(self):
super().setUp()
self.test_cases = []
for n in self.lengths:
data = list(range(n))
random = Random()
random.seed(self.seed)
expected_result = [n + random.random() for n in data]
it = SamplingRandomMapIterator(NativeCheckpointableIterator(data), transform=self.transform, seed=self.seed)
self.test_cases.append(("n={}".format(n), expected_result, it))
class TestMapIterator(TestBase, TestFiniteIteratorMixin, TestFiniteIteratorCheckpointingMixin):
@staticmethod
def transform(item):
return 2 * item
def setUp(self):
super().setUp()
self.test_cases = []
for n in self.lengths:
data = list(range(n))
expected_result = [self.transform(item) for item in data]
it = MapIterator(NativeCheckpointableIterator(data), self.transform)
self.test_cases.append(("n={}".format(n), expected_result, it))
class TestZipIterator(TestBase, TestFiniteIteratorMixin, TestFiniteIteratorCheckpointingMixin):
def setUp(self):
super().setUp()
self.test_cases = []
# pairs
for n in self.lengths:
data1 = list(range(n))
data2 = [item * item for item in data1]
expected_result = list(zip(data1, data2))
it = ZipIterator(NativeCheckpointableIterator(data1), NativeCheckpointableIterator(data2))
self.test_cases.append(("n={}, pairs".format(n), expected_result, it))
# triples
for n in self.lengths:
data1 = list(range(n))
data2 = [item * item for item in data1]
data3 = [item * item for item in data2]
expected_result = list(zip(data1, data2, data3))
it = ZipIterator(
NativeCheckpointableIterator(data1),
NativeCheckpointableIterator(data2),
NativeCheckpointableIterator(data3),
)
self.test_cases.append(("n={}, triples".format(n), expected_result, it))
# different lengths
for n in self.lengths:
if n > 3: # smaller n give us an empty iterator, which causes issues
data1 = list(range(n))
data2 = [item * item for item in data1]
data2 = data2[:-3]
expected_result = list(zip(data1, data2))
it = ZipIterator(NativeCheckpointableIterator(data1), NativeCheckpointableIterator(data2))
self.test_cases.append(("n={}, different lengths".format(n), expected_result, it))
class TestPrefetchIterator(TestBase, TestFiniteIteratorMixin, TestFiniteIteratorCheckpointingMixin):
def setUp(self):
super().setUp()
self.test_cases = []
for n in self.lengths:
for buffer_size in self.lengths:
data = list(range(n))
it = PrefetchIterator(NativeCheckpointableIterator(data), buffer_size)
self.test_cases.append(("n={}, buffer_size={}".format(n, buffer_size), data, it))
def test_zero_buffer_size(self):
def f():
return PrefetchIterator(NativeCheckpointableIterator([0]), buffer_size=0)
self.assertRaises(ValueError, f)
def test_torch_tensors(self):
for n in self.lengths:
for buffer_size in self.lengths:
with self.subTest("n={}, buffer_size={}".format(n, buffer_size)):
data = [torch.Tensor([float(i)]) for i in range(n)]
it = PrefetchIterator(NativeCheckpointableIterator(copy.deepcopy(data)), buffer_size)
result = list(it)
self.assertEqual(result, data)
class TestPrefetchIteratorExperimental(TestBase, TestFiniteIteratorMixin, TestFiniteIteratorCheckpointingMixin):
def setUp(self):
super().setUp()
self.test_cases = []
for n in self.lengths:
for buffer_size in self.lengths:
data = list(range(n))
it = PrefetchIterator(NativeCheckpointableIterator(data), buffer_size, buffer_in_main_process=True)
self.test_cases.append(("n={}, buffer_size={}".format(n, buffer_size), data, it))
def test_zero_buffer_size(self):
def f():
return PrefetchIterator(NativeCheckpointableIterator([0]), buffer_size=0, buffer_in_main_process=True)
self.assertRaises(ValueError, f)
def test_closing(self):
if multiprocessing.get_start_method() != "fork":
return # dummy iterator used, skip test
it = PrefetchIterator(NativeCheckpointableIterator([0]), buffer_size=42, buffer_in_main_process=True)
it.close()
def f():
return it.__next__()
self.assertRaises(RuntimeError, f)
def f():
return it.setstate(None)
self.assertRaises(RuntimeError, f)
def test_nested(self):
for n in self.lengths:
for buffer_size in self.lengths:
for depth in [2, 3, 4, 5]:
with self.subTest("n={}, buffer_size={}, depth={}".format(n, buffer_size, depth)):
data = [torch.Tensor([float(i)]) for i in range(n)]
it = NativeCheckpointableIterator(copy.deepcopy(data))
for _ in range(depth):
it = PrefetchIterator(it, buffer_size, buffer_in_main_process=True)
result = list(it)
self.assertEqual(result, data)
it.close()
def test_torch_tensors(self):
for n in self.lengths:
for buffer_size in self.lengths:
with self.subTest("n={}, buffer_size={}".format(n, buffer_size)):
data = [torch.Tensor([float(i)]) for i in range(n)]
it = PrefetchIterator(
NativeCheckpointableIterator(copy.deepcopy(data)), buffer_size, buffer_in_main_process=True
)
result = list(it)
self.assertEqual(result, data)
it.close()
def tearDown(self):
if hasattr(self, "test_cases"):
for _, _, it in self.test_cases:
it.close()
class TestMultiplexIterator(TestBase, TestFiniteIteratorMixin, TestFiniteIteratorCheckpointingMixin):
# TODO: Add test cases for behavior when source iterators end but item is retrieved
def setUp(self):
super().setUp()
random = Random()
random.seed(42)
self.test_cases = []
# two source iterators
for n in self.lengths:
indices = [random.randrange(0, 2) for _ in range(n)]
data = [[2 * i + 0 for i in range(n)], [2 * i + 1 for i in range(n)]]
data_copy = copy.deepcopy(data)
expected_result = [data_copy[i].pop(0) for i in indices]
it = MultiplexIterator(
NativeCheckpointableIterator(indices), [NativeCheckpointableIterator(d) for d in data]
)
self.test_cases.append(("n={}, two source iterators".format(n), expected_result, it))
# three source iterators
for n in self.lengths:
indices = [random.randrange(0, 3) for _ in range(n)]
data = [[3 * i + 0 for i in range(n)], [3 * i + 1 for i in range(n)], [3 * i + 2 for i in range(n)]]
data_copy = copy.deepcopy(data)
expected_result = [data_copy[i].pop(0) for i in indices]
it = MultiplexIterator(
NativeCheckpointableIterator(indices), [NativeCheckpointableIterator(d) for d in data]
)
self.test_cases.append(("n={}, three source iterators".format(n), expected_result, it))
class TestNativeCheckpointableIterator(TestBase, TestFiniteIteratorMixin, TestFiniteIteratorCheckpointingMixin):
def setUp(self):
super().setUp()
self.test_cases = []
for n in self.lengths:
data = list(range(n))
expected_result = copy.deepcopy(data)
it = NativeCheckpointableIterator(data)
self.test_cases.append(("n={}".format(n), expected_result, it))
def test_empty(self):
it = NativeCheckpointableIterator([])
self.assertRaises(StopIteration, it.__next__)
def test_iterator_exception(self):
self.assertRaises(ValueError, NativeCheckpointableIterator, iter(range(10)))
class TestFixedBatchIterator(TestBase, TestFiniteIteratorMixin, TestFiniteIteratorCheckpointingMixin):
def setUp(self):
super().setUp()
self.test_cases = []
for n in self.lengths:
for batch_size in self.lengths:
data = list(range(n))
data_copy = copy.deepcopy(data)
expected_result = []
while data_copy:
expected_result.append(data_copy[:batch_size])
data_copy = data_copy[batch_size:]
it = FixedBatchIterator(NativeCheckpointableIterator(data), batch_size=batch_size)
self.test_cases.append(("n={}, batch_size={}".format(n, batch_size), expected_result, it))
def test_invalid_batch_size(self):
def f():
return FixedBatchIterator(NativeCheckpointableIterator([0]), batch_size=0)
self.assertRaises(ValueError, f)
class TestRecurrentIterator(TestBase, TestFiniteIteratorMixin, TestFiniteIteratorCheckpointingMixin):
@staticmethod
def step_function(prev_state, item):
output = prev_state + item
return output, output
def setUp(self):
super().setUp()
self.test_cases = []
for n in self.lengths:
data = list(range(n))
expected_result = [data[0]]
for i in data[1:]:
expected_result.append(self.step_function(expected_result[-1], i)[1])
it = RecurrentIterator(NativeCheckpointableIterator(data), self.step_function, initial_state=0)
self.test_cases.append(("n={}".format(n), expected_result, it))
class TestSelectManyIterator(TestBase, TestFiniteIteratorMixin, TestFiniteIteratorCheckpointingMixin):
@staticmethod
def custom_selector(l):
return [l[0]]
def setUp(self):
super().setUp()
self.test_cases = []
# default selector
for n in self.lengths:
for list_length in [1, 4, 9]:
data = list(range(n))
expected_result = copy.deepcopy(data)
lists = []
while data:
lists.append(data[:list_length])
data = data[list_length:]
it = SelectManyIterator(NativeCheckpointableIterator(lists))
self.test_cases.append(
("n={}, list_length={}, default selector".format(n, list_length), expected_result, it)
)
# custom selector
for n in self.lengths:
for list_length in [4, 9]:
data = list(range(n))
expected_result = [item for i, item in enumerate(data) if (i % list_length) == 0]
lists = []
while data:
lists.append(data[:list_length])
data = data[list_length:]
it = SelectManyIterator(NativeCheckpointableIterator(lists), collection_selector=self.custom_selector)
self.test_cases.append(
("n={}, list_length={}, custom selector".format(n, list_length), expected_result, it)
)
class TestBlockwiseShuffleIterator(TestBase, TestFiniteIteratorCheckpointingMixin):
def setUp(self):
super().setUp()
self.test_cases = []
for n in self.lengths:
for block_size in self.lengths:
data = list(range(n))
it = BlockwiseShuffleIterator(NativeCheckpointableIterator(copy.deepcopy(data)), block_size, self.seed)
self.test_cases.append(("n={}, block_size={}".format(n, block_size), data, it))
def test_basic(self):
for case_name, expected_result, it in self.test_cases:
with self.subTest(case_name):
result = list(it)
self.assertMultisetEqual(result, expected_result)
class TestWindowedIterator(TestBase, TestFiniteIteratorMixin, TestFiniteIteratorCheckpointingMixin):
def setUp(self):
super().setUp()
self.test_cases = []
for n in self.lengths:
for window_size in self.lengths:
if n < window_size:
continue
data = list(range(n))
it = WindowedIterator(NativeCheckpointableIterator(copy.deepcopy(data)), window_size)
expected_result = []
for i in range(len(data)):
if i + window_size > len(data):
break
expected_result.append(tuple(data[i : i + window_size]))
self.test_cases.append(("n={}, window_size={}".format(n, window_size), expected_result, it))
class TestSourceIterator(TestBase):
# TODO: Do we need more tests for this?
def test_exception(self):
self.assertRaises(ValueError, create_source_iterator, [1], train=False, shuffle=True)
class TestBucketedReadaheadBatchIterator(TestBase, TestFiniteIteratorCheckpointingMixin):
dynamic_batch_size = 15
@staticmethod
def key_fn(item):
return len(item)
@staticmethod
def batch_size_fn(item):
return TestBucketedReadaheadBatchIterator.dynamic_batch_size // len(item)
@staticmethod
def boundary_key_fn(item):
return len(item) < 5
@staticmethod
def setup_data(n):
data = []
for i in range(n):
data.append(tuple(range(i % 10 + 1)))
return data
def setUp(self):
super().setUp()
self.batch_sizes = [1, 2, 3, 9]
self.test_cases = []
# fixed batch size, not shuffled, no boundary key
for n, read_ahead in itertools.product(self.lengths, self.lengths):
for batch_size in self.batch_sizes:
data = self.setup_data(n)
it = BucketedReadaheadBatchIterator(
NativeCheckpointableIterator(copy.deepcopy(data)),
read_ahead=read_ahead,
key=self.key_fn,
batch_size=batch_size,
shuffle=False,
)
self.test_cases.append(
(
"n={}, read_ahead={}, batch_size={}, boundary_key=None, shuffled=False".format(
n, read_ahead, batch_size
),
data,
it,
)
)
# fixed batch size, shuffled, no boundary key
for n, read_ahead in itertools.product(self.lengths, self.lengths):
for batch_size in self.batch_sizes:
data = self.setup_data(n)
it = BucketedReadaheadBatchIterator(
NativeCheckpointableIterator(copy.deepcopy(data)),
read_ahead=read_ahead,
key=self.key_fn,
batch_size=batch_size,
shuffle=True,
seed=self.seed,
)
self.test_cases.append(
(
"n={}, read_ahead={}, batch_size={}, boundary_key=None, shuffled=True".format(
n, read_ahead, batch_size
),
data,
it,
)
)
# dynamic batch size, not shuffled, no boundary key
for n, read_ahead in itertools.product(self.lengths, self.lengths):
data = self.setup_data(n)
it = BucketedReadaheadBatchIterator(
NativeCheckpointableIterator(copy.deepcopy(data)),
read_ahead=read_ahead,
key=self.key_fn,
batch_size=self.batch_size_fn,
shuffle=False,
)
self.test_cases.append(
(
"n={}, read_ahead={}, batch_size=dynamic, boundary_key=None, shuffled=False".format(n, read_ahead),
data,
it,
)
)
# dynamic batch size, shuffled, no boundary key
for n, read_ahead in itertools.product(self.lengths, self.lengths):
data = self.setup_data(n)
it = BucketedReadaheadBatchIterator(
NativeCheckpointableIterator(copy.deepcopy(data)),
read_ahead=read_ahead,
key=self.key_fn,
batch_size=self.batch_size_fn,
shuffle=True,
seed=self.seed,
)
self.test_cases.append(
(
"n={}, read_ahead={}, batch_size=dynamic, boundary_key=None, shuffled=True".format(n, read_ahead),
data,
it,
)
)
# fixed batch size, not shuffled, boundary key
for n, read_ahead in itertools.product(self.lengths, self.lengths):
for batch_size in self.batch_sizes:
data = self.setup_data(n)
it = BucketedReadaheadBatchIterator(
NativeCheckpointableIterator(copy.deepcopy(data)),
read_ahead=read_ahead,
key=self.key_fn,
batch_size=batch_size,
boundary_key=self.boundary_key_fn,
shuffle=False,
)
self.test_cases.append(
(
"n={}, read_ahead={}, batch_size={}, boundary_key=len(item)<5, shuffled=False".format(
n, read_ahead, batch_size
),
data,
it,
)
)
# fixed batch size, shuffled, boundary key
for n, read_ahead in itertools.product(self.lengths, self.lengths):
for batch_size in self.batch_sizes:
data = self.setup_data(n)
it = BucketedReadaheadBatchIterator(
NativeCheckpointableIterator(copy.deepcopy(data)),
read_ahead=read_ahead,
key=self.key_fn,
batch_size=batch_size,
boundary_key=self.boundary_key_fn,
shuffle=True,
seed=self.seed,
)
self.test_cases.append(
(
"n={}, read_ahead={}, batch_size={}, boundary_key=len(item)<5, shuffled=True".format(
n, read_ahead, batch_size
),
data,
it,
)
)
# dynamic batch size, not shuffled, boundary key
for n, read_ahead in itertools.product(self.lengths, self.lengths):
data = self.setup_data(n)
it = BucketedReadaheadBatchIterator(
NativeCheckpointableIterator(copy.deepcopy(data)),
read_ahead=read_ahead,
key=self.key_fn,
batch_size=self.batch_size_fn,
boundary_key=self.boundary_key_fn,
shuffle=False,
seed=self.seed,
)
self.test_cases.append(
(
"n={}, read_ahead={}, batch_size=dynamic, boundary_key=len(item)<5, shuffled=False".format(
n, read_ahead
),
data,
it,
)
)
# dynamic batch size, shuffled, boundary key
for n, read_ahead in itertools.product(self.lengths, self.lengths):
data = self.setup_data(n)
it = BucketedReadaheadBatchIterator(
NativeCheckpointableIterator(copy.deepcopy(data)),
read_ahead=read_ahead,
key=self.key_fn,
batch_size=self.batch_size_fn,
boundary_key=self.boundary_key_fn,
shuffle=True,
seed=self.seed,
)
self.test_cases.append(
(
"n={}, read_ahead={}, batch_size=dynamic, boundary_key=len(item)<5, shuffled=True".format(
n, read_ahead
),
data,
it,
)
)
def test_basic(self):
for case_name, expected_result, it in self.test_cases:
with self.subTest(case_name):
result = list(it)
flattened_result = [item for batch in result for item in batch]
self.assertMultisetEqual(flattened_result, expected_result)
def test_max_len(self):
for case_name, expected_result, it in self.test_cases:
if "batch_size=dynamic" in case_name:
with self.subTest(case_name):
result = list(it)
for batch in result:
length = sum((len(item) for item in batch))
self.assertTrue(length <= TestBucketedReadaheadBatchIterator.dynamic_batch_size)
def test_boundary_key(self):
for case_name, expected_result, it in self.test_cases:
if "boundary_key=len(item)<5" in case_name:
with self.subTest(case_name):
result = list(it)
for batch in result:
boundary_keys = [self.boundary_key_fn(item) for item in batch]
self.assertTrue(all(boundary_keys) or not any(boundary_keys))
| KosmosX-API-main | kosmosX/infinibatch/test/test_iterators.py |
import gzip
import itertools
from random import Random
import os
import shutil
import tempfile
from typing import Iterator
import unittest
import gc
from infinibatch.datasets import chunked_dataset_iterator
class TestBase(unittest.TestCase):
def setUp(self):
self.test_data = [
["item number one", "item number two", "item number three", "item number four"],
["item number five"],
[
"item number six",
"item number seven",
"item number eight",
"item number nine",
"item number ten",
"item number eleven",
],
["item number twelve", "item number thirteen", "item number fourteen",],
]
self.flattened_test_data = []
for chunk in self.test_data:
for item in chunk:
self.flattened_test_data.append(item)
self.data_dir = tempfile.mkdtemp()
self.chunk_file_paths = []
for chunk_id, chunk in enumerate(self.test_data):
file_name = os.path.join(self.data_dir, "chunk_" + str(chunk_id).zfill(10) + ".gz")
self.chunk_file_paths.append(file_name)
file_content = "\n".join(chunk)
with gzip.open(file_name, "wt", encoding="utf-8") as f:
f.write(file_content)
@staticmethod
def read_chunk(textfile_path: str) -> Iterator[str]: # read_chunk_fn for chunked_dataset_iterator
with gzip.open(textfile_path, "rt", encoding="utf-8") as f:
return iter(f.read().splitlines())
def tearDown(self):
gc.collect() # this will get the pre-fetch terminated in some tests, which otherwise may still want to read these files
shutil.rmtree(self.data_dir)
def assertMultisetEqual(self, a, b):
self.assertEqual(len(a), len(b))
self.assertSetEqual(set(a), set(b))
class Test_chunked_dataset_iterator(TestBase):
def test_no_shuffle(self):
items = list(
itertools.islice(
chunked_dataset_iterator(self.chunk_file_paths, self.read_chunk, shuffle=False, buffer_size=1000),
len(self.flattened_test_data),
)
)
self.assertListEqual(items, self.flattened_test_data)
def test_other_files_present(self):
with open(os.path.join(self.data_dir, "i_do_not_belong_here.txt"), "w") as f:
f.write("really ...")
items = list(
itertools.islice(
chunked_dataset_iterator(self.chunk_file_paths, self.read_chunk, shuffle=False, buffer_size=1000),
len(self.flattened_test_data),
)
)
self.assertListEqual(items, self.flattened_test_data)
def test_transform(self):
def transform(s):
return s + "!"
modified_test_data = [transform(s) for s in self.flattened_test_data]
items = list(
itertools.islice(
chunked_dataset_iterator(
self.chunk_file_paths, self.read_chunk, shuffle=False, buffer_size=1000, transform=transform
),
len(self.flattened_test_data),
)
)
self.assertListEqual(items, modified_test_data)
def test_two_instances(self):
dataset0 = chunked_dataset_iterator(
self.chunk_file_paths, self.read_chunk, shuffle=False, buffer_size=1000, num_instances=2, instance_rank=0
)
dataset1 = chunked_dataset_iterator(
self.chunk_file_paths, self.read_chunk, shuffle=False, buffer_size=1000, num_instances=2, instance_rank=1
)
items0 = list(itertools.islice(dataset0, len(self.test_data[0]) + len(self.test_data[2])))
items1 = list(itertools.islice(dataset1, len(self.test_data[1]) + len(self.test_data[3])))
self.assertMultisetEqual(set(items0 + items1), self.flattened_test_data)
def test_checkpointing(self):
random = Random(1)
for use_windowed in (True, False):
for i in range(2):
first_length = random.randrange(11, 21)
extra_length = random.randrange(11, 21)
dataset = chunked_dataset_iterator(
self.chunk_file_paths,
self.read_chunk,
shuffle=(i % 2 == 0),
buffer_size=1000,
seed=i,
num_instances=2,
instance_rank=0,
use_windowed=use_windowed,
)
for _ in range(first_length):
next(dataset)
checkpoint = dataset.getstate()
items1 = list(itertools.islice(dataset, extra_length))
dataset.setstate(checkpoint)
items2 = list(itertools.islice(dataset, extra_length))
self.assertListEqual(items1, items2)
if __name__ == "__main__":
unittest.main()
| KosmosX-API-main | kosmosX/infinibatch/test/test_datasets.py |
"""
This file causes the doctests to be included as part of unit tests.
To make sure the doctests of a specific module are included,
please replicate the `addTests` call for the iterators module below.
"""
import doctest
import infinibatch.iterators
def load_tests(loader, tests, ignore):
tests.addTests(doctest.DocTestSuite(infinibatch.iterators))
return tests | KosmosX-API-main | kosmosX/infinibatch/test/test_doctests.py |
from .iterators import create_source_iterator, CheckpointableIterator, SelectManyIterator, PrefetchIterator, BufferedShuffleIterator, BlockwiseShuffleIterator, MapIterator
from typing import List, Iterator, Callable, Any, Optional
"""
This module contains common datasets, which are implemented as convenience functions that compose underlying Infinibatch iterators.
"""
def bump_seed(seed: Optional[int], step = 1):
"""
Helper to bump a random seed if not None.
"""
return None if seed is None else seed + 1
def chunked_dataset_iterator(chunk_refs: List, read_chunk_fn: Callable[[Any], Iterator], buffer_size: int,
train: bool=True,
seed: Optional[int]=None, shuffle: bool=True, use_windowed: bool=False,
transform: Callable[[Any],Any]=None,
prefetch: bool=False,
num_instances: int=1, instance_rank: int=0) -> CheckpointableIterator:
"""
Dataset reading data from gzipped chunks.
If train=True, this chunks are strided assigned to instances in strides and the data is infinitely repeated in permutations.
Otherwise, the chunks are split among the instances in consecutive blocks and the data is not repeated.
This way, when using this dataset for inference on multiple GPUs, to order the outputs in a way that corresponds
to the original order of the data items in the dataset, one simply has to collect the lists of outputs from each GPU
and then concatenate these lists in order of increasing rank.
When using MPI, this can be achieved by a gather-operation to get a list of lists of outputs, one list per GPU,
followed by flattening the lists back into a single list.
Args:
chunk_refs: references (such as path names) to chunk files
read_chunk_fn: function(chunk_ref) -> Iterator to read a chunk's content into an iterator over its items, e.g. read a file and split into text lines
train: see above
shuffle: if true, the data is shuffled. If train is False then shuffle must be False as well.
buffer_size: size of the buffer in number of samples / data items used for shuffling (default: 2**20)
transform: transform to be applied to each data item (transform(Any) -> Any)
prefetch: if True, insert a prefetch iterator with buffer_size
seed: random seed (or None)
num_instances: number of instances of this dataset. Meant for use with multi-process data loading, e.g., in distributed training.
instance_rank: rank of this instance of the dataset. Meant for use with multi-process data loading, e.g., in distributed training.
use_windowed: temporary option to switch back to the WindowedShuffleIterator (default False). Will go away once shown that we don't need it anymore.
"""
if not train and shuffle:
raise ValueError('shuffling is not supported when train=False')
# set up the chunk reader
chunks = create_source_iterator(chunk_refs, train=train, seed=seed, shuffle=shuffle, num_instances=num_instances, instance_rank=instance_rank)
# set up the item reader
samples = SelectManyIterator(source_iterator=chunks, collection_selector=read_chunk_fn) # type: CheckpointableIterator
# wrap the I/O operation in a prefetch iterator
if prefetch:
samples = PrefetchIterator(samples, buffer_size)
# set up the item randomizer
if shuffle:
if use_windowed:
samples = BufferedShuffleIterator(samples, buffer_size, bump_seed(seed, 1))
else:
samples = BlockwiseShuffleIterator(samples, buffer_size, bump_seed(seed, 1))
# apply transform, if given
if transform is not None:
samples = MapIterator(samples, transform)
# this is what we are serving out
return samples
| KosmosX-API-main | kosmosX/infinibatch/infinibatch/datasets.py |
"""
Infinibatch is a library of checkpointable iterators for randomized data loading of massive data sets in deep neural network training.
## Features
* support for corpora much larger than fit into RAM
* hierarchical block+sentence-level randomization over the whole corpus, different randomization in each epoch
* only load the data that is needed
* very fast start-up time (does not need to read full corpus)
* only requires the most basic of data preparation (e.g. no indexing)
* for multi-GPU, only load what the respective GPU needs
* 100% accurate check-pointing, restore from checkpoint should not read all data up to the checkpoint
* support automatic bucketed batching with dynamic batch sizes
* pre-fetching thread
* composable, as to support for complex batching, e.g. negative samples from multiple documents
## Getting Started
Infinibatch requires Python 3.5 and has no dependencies.
There is presently no pip package.
To install it, see README.md
## Tutorial
This little tutorial walks you through the steps of preparing your data and consuming them from Python code as batches.
### Infinibatch Basics: Iterators and Checkpointing
Infinibatch provides [Python iterators](https://docs.python.org/3.5/glossary.html#term-iterator)
to read your data.
An iterator represents a stream of data that can be retrieved item by item, e.g. via a
`for` loop or repeatedly calling `next()` on it.
Infinibatch is agnostic to the data type of the items, which is determined by a user-supplied file-read function.
In NLP applications, items would typically be tuples of text. In other applications,
they can be images or an audio file with a textual annotation.
Infinibatch makes it easy to read your data in randomized order, and supports checkpointing, which allows you to restart training exactly where you left off.
Randomization is done _on the fly_, which means that it is not necessary to read the entire data set into memory
to be shuffled. Infinibatch implements a hierarchical shuffling algorithm
that only holds a subset of the data in RAM at any point in time.
Infinibatch iterators are _checkpointable_.
Checkpointing lets you retrieve the current position (the "checkpoint") in the data stream at any time, so that
later, you can "rewind" to that same position.
The sad reality is that long-running trainings occasionally crash.
To be able to continue a crashed training as if it had not crashed,
save your Infinibatch iterator's checkpoint to disk whenever you save an intermediate model during training.
To restart a crashed training, reset the iterator to the saved checkpoint.
The data reader will now yield the exact same data-item sequence it would have yielded without the crash.
### Data Preparation
Infinibatch has one requirement on your data organization:
To use your data with Infinibatch, it must be split into a large number of small chunks.
A chunk is the smallest unit of data that is loaded from disk into RAM. Infinibatch holds a random subset of chunks in memory
that it randomly draws samples from.
Below we want to show how such a split can be created. An easy way to split your data into chunks is with the Linux `split` command.
In this tutorial, our "corpus" consists of 6 lines of text, where each line is one data item.
To create that corpus, please run this command in a bash shell. It creates a 6-line text file named `corpus.txt`:
```bash
echo \\
'Lorem ipsum dolor sit amet,
consectetur adipiscing elit,
sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
The quick brown fox jumps over the lazy dog.' \\
> corpus.txt
```
Now let us split it into 3 chunks of 2 lines each. Each chunk is stored as a zipped text file.
We will create them inside a new subdirectory called `corpus_chunks`:
```bash
mkdir corpus_chunks
split --lines 2 --numeric-suffixes \\
--filter 'gzip > corpus_chunks/$FILE.txt.gz' \\
corpus.txt corpus.
```
This will have created three files: `corpus_chunks/corpus.00.txt.gz`, `corpus_chunks/corpus.01.txt.gz`, and `corpus_chunks/corpus.02.txt.gz`.
To verify whether the data has been split as expected, you can use this command:
```bash
zcat corpus_chunks/corpus.*.txt.gz
```
Hint: For large corpora, we recommend replacing `gzip` by `pigz` (`apt-get install pigz`), which runs notably faster via multi-threading.
### Reading Items in Random Order With Infinibatch
We will first show the easiest way to read data with Infinibatch, using the helper function `chunked_dataset_iterator``()`.
This function will create an Infinibatch iterator that yields the content of your data in random order.
Please the following program:
```python
import gzip, glob
from infinibatch import datasets as ds
ds = ds.chunked_dataset_iterator(
chunk_refs = glob.glob('corpus_chunks/corpus.*.txt.gz'),
read_chunk_fn = lambda path: iter(gzip.decompress(open(path, "rb") \\
.read()).decode(encoding='utf-8') \\
.splitlines()),
buffer_size = 6, seed = 1)
for i in range(10):
print(next(ds))
```
You should get output that contains the 6 example lines in randomized order:
```text
Lorem ipsum dolor sit amet,
consectetur adipiscing elit,
Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
The quick brown fox jumps over the lazy dog.
sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
consectetur adipiscing elit,
Lorem ipsum dolor sit amet,
The quick brown fox jumps over the lazy dog.
sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
```
Note: The `buffer_size` parameter determines how many sentences are read into memory at any given time,
to draw randomized items from. In real settings with corpora of hundreds of millions of text lines,
the `buffer_size` parameter should be set in the millions.
RAM usage and startup time will be proportional to the buffer size
(but much lower than having to load the entire corpus into RAM).
### Reading Items of Different Lengths in Batches
For deep learning, we want to group multiple items into batches.
For NLP tasks, items are often lines of text of varying length.
Infinibatch implements an algorithm that randomizes the input sequence and groups it into
batches of approximately the same length (aka _bucketing_).
Infinibatch's `BucketedReadaheadBatchIterator` performs this task.
It implements an algorithm modeled after the [Marian toolkit](https://github.com/marian-nmt/marian)
that preloads a large number of randomized items (typically millions; in this example: 6),
sorts them and groups them into batches of similar length, and then yields
them, in turn, in randomized order.
Here is an example. Note that the `BucketedReadaheadBatchIterator` accepts
the previous randomized sentence sequence iterator (`ds`) as the source of items to randomize over.
This is an example how one forms pipelines of iterators with Infinibatch
(a concept familiar from Python's own `itertools`).
Once an iterator is passed to another as its source, consider it owned by that other iterator,
it must no longer be accessed by the calling code.
```python
import gzip, glob
from infinibatch import datasets as ds
from infinibatch import iterators as it
ds = ds.chunked_dataset_iterator(
chunk_refs = glob.glob('corpus_chunks/corpus.*.txt.gz'),
read_chunk_fn = lambda path: iter(gzip.decompress(open(path, "rb") \\
.read()).decode(encoding='utf-8') \\
.splitlines()),
buffer_size = 6, seed = 1)
bs = it.BucketedReadaheadBatchIterator(
source_iterator = ds, # note: this is the iterator from above
read_ahead = 6,
key = lambda line: len(line),
batch_size = 2,
seed = 1)
for i in range(25):
print(next(bs))
```
This code should output something like this:
```python
['sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.',
'The quick brown fox jumps over the lazy dog.']
['consectetur adipiscing elit,', 'Lorem ipsum dolor sit amet,']
['Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.',
'Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.']
```
followed by different permutations of the same tuples.
As you can see, the sentences are in random order and grouped in batches of 2 of approximately the same length.
You may notice that there is no variation in how the items get grouped into batches--that
is an artifact of this example, and generally not the case in real use when the data size is much larger
than the batch size.
In NLP, sentence length often varies considerably. As a result, using batches of a fixed number of lines,
as in the example above, will waste GPU RAM and cores.
This is because the number of lines is limited by the longest possible sequence; batches of shorter lines
would leave GPU cycles on the table.
Ideally, one would use batches that have as many lines as fit into GPU RAM,
given the number of tokens of the longest line in the batch.
To support variable batch sizes, Infinibatch allows to pass a function as the `batch_size` parameter.
That function will be given the longest item of a batch and should estimate how many items of at most this length can fit.
In our example, we assume that batches can hold at most 150 tokens.
Please change the above code as follows:
```python
batch_size = lambda longest_line: 150 // len(longest_line),
```
The output looks like this:
```
['consectetur adipiscing elit,', 'Lorem ipsum dolor sit amet,']
['Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.']
['sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.',
'The quick brown fox jumps over the lazy dog.']
['Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.']
```
That shorter sentences got grouped, while longer did not because they would exceed the total of 150 characters.
### Reading Batches Into Numpy Arrays
Lastly, we will need to feed batches into our favorite deep-learning tool.
We will show how to convert the batches of text lines into padded `numpy` arrays.
In a typical NLP application, text items would be tokenized, and then each token
would be represented by an index into a unit vocabulary.
For simplicity, in this example each character is its own token,
and each token's numeric unit index is just its ASCII code.
These sequences are then padded to equal length with -1, and converted into a `numpy` array.
Please rerun the previous example, but first insert the following code before the final `for` loop.
This example uses an Infinibatch `MapIterator`, which applies a user-supplied function or
lambda to each item:
```python
import numpy as np
def collate(lines_batch):
# tokenize all lines in the batch and map to unit ids
ids_batch = [[ord(c) for c in line] for line in lines_batch]
# create a padded numpy array as wide as the longest line,
# where shorter sequences are padded with -1
width = max(len(ids) for ids in ids_batch)
return np.array([ids + [-1] * (width-len(ids)) for ids in ids_batch])
bs = it.MapIterator(
source_iterator = bs,
transform = collate)
```
This will output batches like this. Note that in batches with multiple sentences,
some entries are padded with `-1`.
```python
[[ 99 111 110 115 101 99 116 101 116 117 114 32 97 100 105 112 105 115
99 105 110 103 32 101 108 105 116 44]
[ 76 111 114 101 109 32 105 112 115 117 109 32 100 111 108 111 114 32
115 105 116 32 97 109 101 116 44 -1]]
[[ 85 116 32 101 110 105 109 32 97 100 32 109 105 110 105 109 32 118
101 110 105 97 109 44 32 113 117 105 115 32 110 111 115 116 114 117
100 32 101 120 101 114 99 105 116 97 116 105 111 110 32 117 108 108
97 109 99 111 32 108 97 98 111 114 105 115 32 110 105 115 105 32
117 116 32 97 108 105 113 117 105 112 32 101 120 32 101 97 32 99
111 109 109 111 100 111 32 99 111 110 115 101 113 117 97 116 46]]
[[115 101 100 32 100 111 32 101 105 117 115 109 111 100 32 116 101 109
112 111 114 32 105 110 99 105 100 105 100 117 110 116 32 117 116 32
108 97 98 111 114 101 32 101 116 32 100 111 108 111 114 101 32 109
97 103 110 97 32 97 108 105 113 117 97 46]
[ 84 104 101 32 113 117 105 99 107 32 98 114 111 119 110 32 102 111
120 32 106 117 109 112 115 32 111 118 101 114 32 116 104 101 32 108
97 122 121 32 100 111 103 46 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1]]
[[ 68 117 105 115 32 97 117 116 101 32 105 114 117 114 101 32 100 111
108 111 114 32 105 110 32 114 101 112 114 101 104 101 110 100 101 114
105 116 32 105 110 32 118 111 108 117 112 116 97 116 101 32 118 101
108 105 116 32 101 115 115 101 32 99 105 108 108 117 109 32 100 111
108 111 114 101 32 101 117 32 102 117 103 105 97 116 32 110 117 108
108 97 32 112 97 114 105 97 116 117 114 46]]
```
## Where To Go From Here
The above tutorial showed you the use of the most common iterator type, as created by the
convenience function `chunked_dataset_iterator()`.
Not all real-life scenarios are covered by this function. For example, multi-task learning
scenarios require more complex combinations of data. To create those, you will need
to compose the necessary data reader from the underlying building blocks.
This is described at the documentation of the module `iterators`.
"""
from .iterators import *
| KosmosX-API-main | kosmosX/infinibatch/infinibatch/__init__.py |
"""
## Overview
This part of the documentation covers the __advanced usage__ of Infinibatch by assembling __custom data loading pipelines__.
Before you continue, please go through the tutorial on the top-level of the documentation of the `infinibatch` module.
Two of the main features of Infinibatch are __lazy evaluation__ through the use of __iterators__
and built-in support for __checkpointing__.
In this section, we give an introduction to these features and the basic usage of the Infinibatch iterator library.
### Iterators
As a Python programmer, you are probably familiar with the concept of iterators.
According to the [Python documentation](https://docs.python.org/3.5/glossary.html#term-iterator),
an iterator is an object representing a stream of data,
and repeated calls to the iterator's `__next__()` method (or passing it to the built-in function `next()`)
return successive items in the stream.
It is important not to confuse an [iterator](https://docs.python.org/3.5/glossary.html#term-iterator)
with an [iterable](https://docs.python.org/3.5/glossary.html#term-iterable).
For more information on this subject, please follow the links above.
The Python standard library contains a module of iterators called `itertools`
that bears some resembles to Infinibatch.
Infinibatch differs from `itertools` in two ways:
1. Infinibatch provides iterators specifically for the purpose of creating __randomized batches of data for machine learning__.
2. All iterators in Infinibatch support __checkpointing__ (see the following section).
Infinibatch iterators are not directly compatible with itertools due to the checkpointing requirement.
Infinibatch enables you to build complex data loaders by combining iterators from this module into a pipeline.
To give you a high-level idea of how this is works, we provide a very simple example.
Note that this example is completely artificial and does not solve any useful task.
Its only purpose is to demonstrate the behavior of a pipeline of iterators.
We provide a more realistic example in a later section.
First, we create a small test data set.
>>> dataset = list(range(6)) # 0, 1, 2, 3, 4, 5
We can turn this data set into an Infinibatch iterator by wrapping it in a `NativeCheckpointableIterator`.
>>> it = NativeCheckpointableIterator(dataset) # 0, 1, 2, 3, 4, 5
We can then transform the data items using a `MapIterator`,
which applies a given function to each individual data item.
For example, we can multiply each data item by 2.
>>> it = MapIterator(it, lambda n: 2 * n) # 0, 2, 4, 6, 8, 10
We can restructure the data set by batching together pairs of data items into lists using a `FixedBatchIterator`.
>>> it = FixedBatchIterator(it, batch_size=2) # [0, 2], [4, 6], [8, 10]
Using another `MapIterator`, we can reduce each of these lists to its second element.
>>> it = MapIterator(it, lambda l: l[1]) # 2, 6, 10
Finally, we can use the resulting iterator `it` just like any standard Python iterator.
```py
>>> for item in it:
... print(item)
2
6
10
```
By using iterators, Infinibatch operates in a __lazy__ fashion:
It generally doesn't apply operations to an entire data set at once,
but rather operates on individual data items on-the-fly as they are consumed.
When used correctly, this allows Infinibatch to have a low start-up time and low memory overhead.
For more detail on this, please consult the section on performance considerations below.
### Checkpointing
The main features that sets Infinibatch iterators apart from standard Python iterators is that they support __checkpointing__.
A checkpoint encapsulates the internal state of an entire pipeline of iterators at a specific point while iterating through a data set.
Once you retrieve a checkpoint, you can later use it to reset the pipeline of iterators to the exact state it was in
when the checkpoint was created.
Checkpoints can easily be serialized and stored to disk using [Pythons `pickle` module](https://docs.python.org/3.5/library/pickle.html).
Infinibatch's checkpointing feature is particularly useful when you're training large deep neural network models over days or weeks,
and you want to make sure that, in case your training is interrupted for any reason, __you can pick up your training exactly where you left off__.
The checkpointing interface consists of two functions `getstate` and `setstate` that are defined in `CheckpointableIterator`,
the common base class of all iterators in this module.
As the names suggest `getstate` returns a checkpoint object that represents the state of a pipeline at the time the function is called,
and 'setstate' receives a checkpoint object to reset the state of a pipeline.
`setstate` also accepts `None`, which resets a pipeline to the __beginning__ of the iteration,
i.e. the state of the pipeline immediately after its construction.
It is important to realize that __a checkpoint represents the state of a complete pipeline of iterators__.
If you have a pipeline consisting of a sequence of iterators, you only have to call `getstate` on the __last__ iterator in the sequence
to capture the state of the entire pipeline.
Internally, this is achieved by recursive calls that traverse the entire data loading pipeline to collect the state of every iterator in it.
Similarly, when you want to reset a pipeline to a previous state, you only have to call `setstate` on the __last__ iterator in the pipeline.
To demonstrate this, we recreate the pipeline from the previous section.
>>> dataset = list(range(6)) # 0, 1, 2, 3, 4, 5
>>> it = NativeCheckpointableIterator(dataset) # 0, 1, 2, 3, 4, 5
>>> it = MapIterator(it, lambda n: 2 * n) # 0, 2, 4, 6, 8, 10
>>> it = FixedBatchIterator(it, batch_size=2) # [0, 2], [4, 6], [8, 10]
>>> it = MapIterator(it, lambda l: l[1]) # 2, 6, 10
Since `it` behaves just like a standard Python iterator, we can call `next` to retrieve its first element.
>>> next(it)
2
We can now call `getstate` on `it` (which is the last `MapIterator` in the pipeline)
to get a checkpoint of the internal state of the entire data loading pipeline.
>>> checkpoint = it.getstate()
Note that the checkpoint represents the internal state of the pipeline after the data item `2` has been retrieved.
Using the checkpoint, we can always return to this __exact__ point in the data set.
To show this, let's exhaust the iterator by casting it to a list.
>>> list(it)
[6, 10]
Since the iterator is now exhausted, calling `next` raises a `StopIteration` exception.
```
>>> next(it)
Traceback (most recent call last):
...
StopIteration
```
We can now reset the pipeline to the checkpoint using `setstate`.
>>> it.setstate(checkpoint)
This recovers the state of the pipeline after the data item `2` has been retrieved.
Thereby, we expect the next element to be `6`.
>>> next(it)
6
## Types of Iterators
This section provides a brief overview of the different types of iterators in Infinibatch.
### Classes and Factory Functions
Most iterators in this module are implemented as classes that inherit from the abstract base class `CheckpointableIterator`.
However, some iterators (such as the `BlockwiseShuffleIterator`) are simple combinations of other iterators.
These iterators are implemented as __factory functions__ that construct a pipeline of iterators
and return the last iterator in the pipeline.
For consistency with class-based iterators,
we name these factory function using CamelCase instead of the more pythonic use_of_underscores.
.. todo::
We currently also have one factory function that actually looks like one: `create_source_iterator`.
Provide a comment on this describing why that is.
### Source Iterators
There are three iterators that are intended to go at the __beginning__ of a data loading pipeline:
- `InfinitePermutationSourceIterator`:
This iterator accepts a list, shuffles it, and yields its elements.
It repeats this infinitely, shuffling the list after each pass.
Thereby, __this iterator is infinte and cannot be exhausted__.
This iterator is meant to be used as the first iterator in a training scenario
and supports splitting the data for multi-GPU training.
- `ChunkedSourceIterator`:
This iterator accepts a list and yields its elements.
It is meant to be used as the first iterator in an inference or validation scenario
and supports splitting the data for mult-GPU inference.
- `NativeCheckpointableIterator`:
This iterator wraps a Python iterable and makes it checkpointable.
It is mainly intended for demonstration and debugging purposes.
### Shuffling
.. todo:: Describe `BufferedShuffleIterator` and `BlockwiseShuffleIterator`.
### Batching, SelectMany, and Windowing
.. todo:: Describe `FixedBatchIterator`, `SelectManyIterator`, and `WindowedIterator`.
### Mapping
.. todo:: Describe `MapIterator`, `ParallelMapIterator`, `RecurrentIterator`, and `SamplingRandomMapIterator`.
### Other Iterators
.. todo:: Describe `ZipIterator`, `PrefetchIterator`, and `BucketedReadaheadBatchIterator`.
## Complete Example
.. todo::
Give a more realistic example following, in broad strokes, the ChunkedDataset including:
- use gzip chunks
- training pipeline example
- inference pipeline example
- pipeline that can do both
- etc.
## Performance Considerations
.. todo::
Describe what parameters influence performance measures such as memory usage and start-up time.
"""
from abc import abstractmethod
import collections
import copy
from itertools import islice
import logging
import multiprocessing
import os
import queue
from random import Random
import threading
from typing import Any, Callable, Dict, Iterable, Iterator, List, Optional, Tuple, Union, cast
logger = logging.getLogger(__name__)
# TODO for next release:
# - benchmark the accuracy when using BlockwiseShuffleIterator vs. the BufferedShuffleIterator
# - change all convenience functions back to true classes, using a wrapper class
# TODO later:
# - make iterator pipeline work for streaming data
def _advance_iterator(iterator: Iterator, n: int):
""" Little helper to advance an iterator by n items """
for i in range(n):
try:
next(iterator)
except StopIteration:
raise RuntimeError('Trying to advance iterator by {} but iterator raised StopIteration exception on call to next with index {}.'.format(n, i))
return n
class CheckpointableIterator(collections.abc.Iterator):
"""
Abstract base class that defines the interface for checkpointing.
The interface (getstate, setstate) is inspired by Python's random package.
"""
def __iter__(self) -> 'CheckpointableIterator':
return self
@abstractmethod
def getstate(self) -> Dict:
"""
Get checkpoint of current state of iterator
In a pipeline of iterators, this function __recursively__ calls itself on the preceeding iterator
and includes the gathered information in the returned checkpoint.
Thereby, to obtain a checkpoint of the state of an entire pipeline of iterators
you only have to call this function on the __last__ iterator in the pipeline.
A checkpoint is represented as a `dict`,
but the caller should treat a checkpoint as an opaque object
and not make any assumptions about the existence or meaning of the `dict` entries.
"""
pass
@abstractmethod
def setstate(self, checkpoint: Optional[Dict]):
"""
Set state of iterator to given checkpoint
In a pipeline of iterators, this function __recursively__ calls itself on the preceeding iterator.
Thereby, to set the state of an entire pipeline of iterators to a given checkpoint
you only have to call this function on the __last__ iterator in the pipeline.
Args:
checkpoint: Checkpoint that should be used to reset the state of the iterator (or pipeline).
If this is __None__, the state of the iterator (or pipeline) is reset to the initial
state immediately after construction.
"""
pass
def __getstate__(self) -> Dict: # implementation of pickle Protocol
return self.getstate()
def __setstate__(self, checkpoint: Optional[Dict]):
self.setstate(checkpoint)
@abstractmethod
def __next__(self):
pass
@abstractmethod
def close(self):
"""
Close all PrefetchIterators in this pipeline
PrefetchIterators have internal resources that need to be properly managed by calling close() manually.
Failure to do so can lead to dangling processes and threads, or the PrefetchIterator hanging on finalization.
Note that it is not correct to rely on the garbage collector to destroy PrefetchIterators
as CPython does not assure that the finalizer (__del__) of a PrefetchIterator will be called.
This function, which is implemented for every CheckpointableIterator, recursively traverses all preceeding
iterators and closes all PrefetchIterators in the pipeline.
For pipelines that do not contain PrefetchIterators this function has no effect.
"""
pass
class NativeCheckpointableIterator(CheckpointableIterator):
"""
Simple wrapper class that turns a Python Iterable into a CheckpointableIterator
When calling setstate on this class, it simply replays the iterator all the way to the checkpoint one element at a time,
which makes it generally inefficient.
Warning: This class cannot be used with Iterators (as opposed to Iterables), which have an `__iter__` function that simply returns self, but does not reset.
"""
def __init__(self, iterable: Iterable):
# check whether iterable is iterable or iterator:
# if the variable iterable contains an iterator, the function __iter__ returns self
# if the variable iterable is an actual iterator, it should not return self
if iter(iterable) is iterable:
raise ValueError('It looks like you are passing an iterator instead of an iterable. This is not supported and can cause undefined behavior when used with checkpointing.')
self._input_iterable = iterable
self.setstate(None)
def getstate(self) -> Dict:
return {'num_items_yielded': self._num_items_yielded}
def setstate(self, checkpoint: Optional[Dict]):
self._iterator = iter(self._input_iterable)
self._num_items_yielded = _advance_iterator(self._iterator, checkpoint['num_items_yielded']) if checkpoint is not None else 0
def __next__(self):
item = next(self._iterator) # call this before increasing _num_items_yielded to correctly handle the case when a StopIteration exception is thrown
self._num_items_yielded += 1
return item
def close(self):
pass
def create_source_iterator(source_items: List, train: bool=True, seed: Optional[int]=None, shuffle: bool=True, num_instances: int=1, instance_rank: int=0) -> CheckpointableIterator:
if not train and shuffle:
raise ValueError('shuffling is not supported when train=False')
if train:
return InfinitePermutationSourceIterator(source_items, seed=seed, shuffle=shuffle, num_instances=num_instances, instance_rank=instance_rank)
else:
return ChunkedSourceIterator(source_items, num_instances=num_instances, instance_rank=instance_rank)
def ChunkedSourceIterator(source_items: List, num_instances: int=1, instance_rank: int=0) -> CheckpointableIterator:
"""
Cuts source list into chunks, one per instance, and serves out items in chunk corresponding to instance_rank
This is a source iterator:
It is meant to be used at the beginning of a data loading pipeline.
As such, it takes a list as its source and not a CheckpointableIterator.
Args:
source_items: input list, must not be empty and must be small enough to fit into RAM entirely, ownership of the list and the data goes to the iterator, do not modify it!
num_instances: number of instances of this iterator. Meant for use with multi-process data loading, e.g., in distributed training.
instance_rank: rank of this instance of the iterator. Meant for use with multi-process data loading, e.g., in distributed training.
"""
if instance_rank >= num_instances:
raise ValueError("invalid instance_rank")
# we split the data into num_instances consecutive parts
# that differ by at most 1 in size
num_items_per_rank = len(source_items) // num_instances
ranks_with_additional_item = len(source_items) - num_instances * num_items_per_rank
def boundary(rank):
return rank * num_items_per_rank + min(rank, ranks_with_additional_item)
items = source_items[boundary(instance_rank):boundary(instance_rank + 1)]
return NativeCheckpointableIterator(items)
class InfinitePermutationSourceIterator(CheckpointableIterator):
"""
Infinitely generates permutations of the items in the given list.
This is a source iterator:
It is meant to be used at the beginning of a data loading pipeline.
As such, it takes a list as its source and not a CheckpointableIterator.
The given list is loaded completely into RAM.
For example, this is used for randomizing the pathnames of data blocks read by ChunkedReadlinesIterator.
"""
def __init__(
self,
source_items: List,
seed: int = 0,
shuffle: bool = True,
num_instances: int = 1,
instance_rank: int = 0,
):
"""
Args:
source_items: input list, must not be empty, must be small enough to fit into RAM entirely, and must support deepcopies
seed: random seed used for shuffling
shuffle: set False to bypass the shuffling. Then this is just a checkpointed version of itertools.cycle(). (Default: True)
num_instances: number of instances of this iterator. Meant for use with multi-process data loading, e.g., in distributed training.
instance_rank: rank of this instance of the iterator. Meant for use with multi-process data loading, e.g., in distributed training.
"""
if not source_items:
raise ValueError("source must not be empty")
if instance_rank >= num_instances:
raise ValueError("invalid instance_rank")
self._source_items = copy.deepcopy(source_items)
self._shuffle = shuffle
self._seed = seed
self._num_instances = num_instances
self._instance_rank = instance_rank
self.setstate(None)
def getstate(self) -> Dict:
return {"random_state": self._random_state, "index": self._index}
def setstate(self, checkpoint: Optional[Dict]):
self._random_state = checkpoint["random_state"] if checkpoint else None
self._index = checkpoint["index"] if checkpoint else self._instance_rank
self._random = None # this will trigger the lazy initialization in self.__next__
def __next__(self):
if self._random is None:
# lazy initialization
self._random = Random(self._seed)
if self._random_state is not None:
self._random.setstate(self._random_state)
if self._shuffle:
self._reshuffle() # create initial permutation
self._reshuffle_as_necessary() # reshuffle as often as necesary to bring self._index into range
else:
self._index = self._index % len(self._source_items)
assert 0 <= self._index and self._index < len(self._source_items)
if self._shuffle:
result = self._shuffled_items[self._index]
self._index += self._num_instances
self._reshuffle_as_necessary() # reshuffle as often as necesary to bring self._index into range
else:
result = self._source_items[self._index]
self._index = (self._index + self._num_instances) % len(self._source_items)
assert 0 <= self._index and self._index < len(self._source_items)
return result
def close(self):
pass
def _reshuffle_as_necessary(self):
while self._index >= len(self._source_items):
# The new index is out of range, so we need to reshuffle.
# Since len(self._source_items) can be smaller than self._num_instances,
# we might have to reshuffle multiple times to "skip through" permutations of self._source_items.
# Even though there might be intermediate permutations that are not actually used,
# we have to generate all of them to make sure we get the right RNG state
# to guarantee correctness when using multiple instances.
self._reshuffle()
self._index -= len(self._source_items)
def _reshuffle(self):
self._random_state = self._random.getstate()
self._shuffled_items = copy.deepcopy(self._source_items)
self._random.shuffle(self._shuffled_items)
class MultiplexIterator(CheckpointableIterator):
"""
Multiplexes multiple input iterators.
A control iterator is expected to yield a sequence of indices into an array of input iterators.
The next item is selected from the input iterator whose index was read from the control iterator
"""
def __init__(self, control_iterator: CheckpointableIterator, source_iterators: List[CheckpointableIterator]):
if any(not isinstance(it, CheckpointableIterator) for it in [control_iterator] + source_iterators):
raise ValueError('control_iterator and source_iterators have to be CheckpointableIterators')
self._control_iterator = control_iterator # type: CheckpointableIterator
self._source_iterators = list(source_iterators) # type: List[CheckpointableIterator]
self.setstate(None)
def getstate(self) -> Dict:
return {'control_iterator_state': self._control_iterator.getstate(),
'source_iterator_states': [source_iterator.getstate() for source_iterator in self._source_iterators]}
def setstate(self, checkpoint: Optional[Dict]):
self._control_iterator.setstate(checkpoint['control_iterator_state'] if checkpoint else None)
for i, source_iterator in enumerate(self._source_iterators):
source_iterator.setstate(checkpoint['source_iterator_states'][i] if checkpoint else None)
def _generate():
for index in self._control_iterator:
item = next(self._source_iterators[index])
yield item
self._iterator = _generate()
def __next__(self):
return next(self._iterator)
def close(self):
self._control_iterator.close()
for it in self._source_iterators:
it.close()
class SelectManyIterator(CheckpointableIterator):
"""
Projects each element of a source sequence to a sequence and flattens the resulting sequences into one sequence.
"""
def __init__(self, source_iterator: CheckpointableIterator, collection_selector: Optional[Callable[[Any], Iterator]]=None):
"""
Args:
source_iterator: iterator over the items to pass to collection_selector()
collection_selector: user callback that maps an item into an Iterable, whose items will be yielded.
The returned Iterator is used only once. Hence, it is also allowed to
return self-iterables, such as iterators and generator expressions.
If None is given, no callback is applied.
"""
if not isinstance(source_iterator, CheckpointableIterator):
raise ValueError('source_iterator has to be a CheckpointableIterator')
self._source_iterator = source_iterator # type: CheckpointableIterator
self._collection_selector = collection_selector # type: Optional[Callable[[Any], Iterator]]
self.setstate(None)
def getstate(self) -> Dict:
return {'source_state': self._source_state,
'flattened_items_yielded': self._flattened_items_yielded}
def setstate(self, checkpoint: Optional[Dict]):
self._source_state = checkpoint['source_state'] if checkpoint else None
self._flattened_items_yielded = checkpoint['flattened_items_yielded'] if checkpoint else 0
self._source_iterator.setstate(self._source_state)
def _generate():
skip_to_checkpoint = self._flattened_items_yielded
# main loop over source source_items
for source_item in self._source_iterator:
if self._collection_selector is not None:
data = iter(self._collection_selector(source_item))
else:
data = iter(source_item)
self._flattened_items_yielded = 0
if skip_to_checkpoint:
#print("Skipping to index", skip_to_checkpoint, file=sys.stderr)
self._flattened_items_yielded += _advance_iterator(data, skip_to_checkpoint)
skip_to_checkpoint = 0
# main loop over lines
for item in data:
self._flattened_items_yielded += 1
yield item
self._source_state = self._source_iterator.getstate()
self._iterator = _generate()
def __next__(self):
return next(self._iterator)
def close(self):
self._source_iterator.close()
class BufferedShuffleIterator(CheckpointableIterator):
"""
Shuffles given iterable using a limited buffer.
"""
def __init__(self, source_iterator: CheckpointableIterator, buffer_size: int, seed: int=0):
"""
Args:
source_iterator: checkpointable iterator or restartable iterable over input items to shuffle
buffer_size: size of the buffer in number of items used for shuffling
seed: random seed used for shuffling (or None)
"""
if not isinstance(source_iterator, CheckpointableIterator):
raise ValueError('source_iterator has to be a CheckpointableIterator')
self._source_iterator = source_iterator
self._buffer_size = buffer_size
self._seed = seed
self.setstate(None)
def getstate(self) -> Dict:
return {'source_state': self._source_iterator.getstate(),
'buffer': copy.deepcopy(self._buffer), # create deepcopy so that iterator cannot modify checkpoint after it was taken
'random_state': self._random.getstate()}
def setstate(self, checkpoint: Optional[Dict]):
if checkpoint:
self._source_iterator.setstate(checkpoint['source_state'])
self._buffer = copy.deepcopy(checkpoint['buffer']) # create deepcopy so that iterator cannot modify checkpoint
self._random.setstate(checkpoint['random_state'])
# @TODO: Can we add a comment how the flush part is handled?
else:
self._source_iterator.setstate(None)
self._buffer = [None for _ in range(self._buffer_size)]
self._random = Random(self._seed) # type: Random
self._iterator = self._generate()
def _generate(self) -> Iterator:
# shuffle data with a buffer:
# this is similar to what the Fisher-Yates shuffle does,
# but modified to run with a constant-size buffer
# see https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle
# this was inspired by an algorithm implemented in Kaldi
# see https://kaldi-asr.org/doc/nnet-shuffle-egs_8cc.html
for item in self._source_iterator:
index = self._random.randrange(0, len(self._buffer))
result = None
if self._buffer[index] is not None:
result = self._buffer[index]
self._buffer[index] = item
# only yield value once buffer is updated to allow for correct checkpointing!
if result is not None:
yield result
# flush buffer
while self._buffer:
item = self._buffer.pop()
if item is not None:
yield item
def __next__(self):
return next(self._iterator)
def close(self):
self._source_iterator.close()
class MapIterator(CheckpointableIterator):
"""
Applies given tranform to each data item
"""
def __init__(self, source_iterator: CheckpointableIterator, transform: Callable[[str],Any]):
"""
Args:
source_iterator: checkpointable iterator
transform: function to be applied to each data item
"""
if not isinstance(source_iterator, CheckpointableIterator):
raise ValueError('source_iterator has to be a CheckpointableIterator')
self._source_iterator = source_iterator
self._transform = transform
def getstate(self) -> Dict:
return self._source_iterator.getstate()
def setstate(self, checkpoint: Optional[Dict]):
self._source_iterator.setstate(checkpoint)
def __next__(self):
return self._transform(next(self._source_iterator))
def close(self):
self._source_iterator.close()
def ParallelMapIterator(source_iterator: CheckpointableIterator, transform: Callable[[str],Any], num_processes: int, num_items_per_process: int) -> CheckpointableIterator:
"""
Applies given transform to each data item
Behaves the same as MapIterator, but applies transform in parallel using multiple processes in a parallel map operation.
Warning:
The transform function has to be pickleable because it is sent across process boundaries.
To achieve this, transform should be a top-level function.
Args:
source_iterator: checkpointable iterator
transform: function to be applied to each data item, has to be pickleable, see above
num_processes: number of processes to use for parallel map
num_items_per_process: number of data items each process operates on
"""
# divide stream of data items into batches
batched_samples = FixedBatchIterator(source_iterator, num_processes * num_items_per_process)
# create process pool and capture it in closure that performs parallel map
p = multiprocessing.Pool(num_processes)
def parallel_map_transform(buffer):
return p.map(transform, buffer)
# apply transform in parallel to data items in a batch
batched_transformed_samples = MapIterator(batched_samples, parallel_map_transform)
# unpack batches to go back to stream of (now transformed) data items
transformed_samples = SelectManyIterator(batched_transformed_samples)
return transformed_samples
class ZipIterator(CheckpointableIterator):
"""
Zips items from all given iterators, like the Python standard function zip().
Like Python's build-in zip(), the iteration stops when the shortest input iterable is exhausted.
"""
def __init__(self, *source_iterators: CheckpointableIterator):
"""
Args:
source_iterators: list of iterators to zip, item by item
"""
# TODO: Use all function?
for source_iterator in source_iterators:
if not isinstance(source_iterator, CheckpointableIterator):
raise ValueError('all iterators in source_iterators have to be CheckpointableIterator')
self._source_iterators = list(source_iterators) # type: List[CheckpointableIterator]
def getstate(self) -> Dict:
return {'input_states': tuple(iterator.getstate() for iterator in self._source_iterators)}
def setstate(self, checkpoint: Optional[Dict]):
if checkpoint is None:
for iterator in self._source_iterators:
iterator.setstate(None)
else:
# TODO: Add check that both lists have the same length?
for iterator, state in zip(self._source_iterators, checkpoint['input_states']):
iterator.setstate(state)
def __next__(self):
res = [] # (note: can't use a generator expression, as it gets confused when a next() call raises StopIteration)
for iterator in self._source_iterators:
res.append(next(iterator))
return tuple(res)
def close(self):
for it in self._source_iterators:
it.close()
# @TODO: The yield makes a (shallow) copy of the window, which has complexity O(width * length). In some cases,
# we don't actually need to consume all items in the window. Hence, to make this faster, we should use
# double-buffering and return a slice view (which we'd have to write).
class WindowedIterator(CheckpointableIterator):
"""
Yields 'width' consecutive items in a sliding window.
E.g. [1, 2, 3, 4, 5, 6] with width = 3 will yield
[(1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6)]
"""
def __init__(self, source_iterator: CheckpointableIterator, width: int):
"""
Args:
source_iterator: checkpointable input iterators
"""
if not isinstance(source_iterator, CheckpointableIterator):
raise ValueError('source_iterator has to be a CheckpointableIterator')
self._source_iterator = source_iterator # type: CheckpointableIterator
self._width = width # type: int
self.setstate(None)
def getstate(self) -> Dict:
return {'source_state': self._source_state, # state for first item in FIFO
'item_index': self._item_index} # index of next item to serve
def setstate(self, checkpoint: Optional[Dict]):
self._source_state = checkpoint['source_state'] if checkpoint else None
self._item_index = checkpoint['item_index'] if checkpoint else 0
self._source_iterator.setstate(self._source_state)
self._iterator = self._generate()
def _fifo_slice(self, i): # returns a window into the FIFO beginning at i
# @TODO: for efficiency, make this a slice view
return tuple(self._fifo[i:i + self._width])
def _generate(self) -> Iterator:
self._source_state = self._source_iterator.getstate()
self._fifo = list(islice(self._source_iterator, self._width))
# we do this in overlapping blocks of length 2*width, for easier checkpointing and potential efficiency
while len(self._fifo) == self._width:
# we got 'width' items; append another 'width' (or less if at end)
next_input_state = self._source_iterator.getstate()
self._fifo.extend(islice(self._source_iterator, self._width))
# now serve all positions in first half (last = width - 1). If at end, then limit accordingly.
last = min(self._width - 1, len(self._fifo) - self._width)
while self._item_index <= last:
window = self._fifo_slice(self._item_index)
self._item_index += 1
yield window
# drop all we just served; if < width left, we have hit the end
self._fifo = self._fifo[last + 1:] # Note: This must be a new list, since the old might still be in a slice view.
self._source_state = next_input_state # this reflects now the first element in the FIFO
self._item_index = 0
def __next__(self):
return next(self._iterator)
def close(self):
self._source_iterator.close()
# @TODO: research on whether this operation has a well-known name
class FixedBatchIterator(CheckpointableIterator):
"""
Batches N consecutive items into a single item that is a list of these items.
E.g. [1, 2, 3 4, 5, 6, 7, 8] with batch_size = 3 will yield
[[1, 2, 3], [4, 5, 6], [7, 8]]
"""
def __init__(self, source_iterator: CheckpointableIterator, batch_size: int):
"""
Args:
source_iterator: checkpointable input iterators
batch_size: number of items per batch
"""
if not isinstance(source_iterator, CheckpointableIterator):
raise ValueError('source_iterator has to be a CheckpointableIterator')
if batch_size <= 0:
raise ValueError('batch_size has to be positive')
self._source_iterator = source_iterator # type: CheckpointableIterator
self._batch_size = batch_size # type: int
self.setstate(None)
def getstate(self) -> Dict:
return {'source_state': self._source_iterator.getstate()} # state for first item in next batch
def setstate(self, checkpoint: Optional[Dict]):
self._source_state = checkpoint['source_state'] if checkpoint else None
self._source_iterator.setstate(self._source_state)
self._iterator = self._generate()
def _generate(self) -> Iterator:
while True:
batch = list(islice(self._source_iterator, self._batch_size))
if not batch:
break
yield batch
def __next__(self):
return next(self._iterator)
def close(self):
self._source_iterator.close()
class RandomIterator(CheckpointableIterator):
"""
Iterator to generate uniformly distributed random numbers in the interval [0,1).
Very similar to Random.random(), except that random numbers are
obtained via next().
"""
def __init__(self, seed: int=0):
"""
Args:
seed: Random seed.
"""
self._seed = seed
self._random = Random(self._seed) # type: Random
def getstate(self) -> Dict:
return {'random_state': self._random.getstate()}
def setstate(self, checkpoint: Optional[Dict]):
if checkpoint is None:
self._random.seed(self._seed)
else:
self._random.setstate(checkpoint['random_state'])
def __next__(self):
return self._random.random()
def close(self):
pass
class RecurrentIterator(CheckpointableIterator):
"""
Iterates statefully over a step function. The step function accepts a state and a new item,
and returns a new state and an output item, which is yielded.
"""
def __init__(self, source_iterator: CheckpointableIterator, step_function: Callable[[Any,Any], Tuple[Any,Any]], initial_state: Any = None):
"""
Args:
source_iterator: checkpointable iterator to recur over
step_function: user-supplied function with signature step_function(state, item) -> (new_state, output)
initial_state: initial state to be passed to the step_function upon first invocation
"""
if not isinstance(source_iterator, CheckpointableIterator):
raise ValueError('source_iterator has to be a CheckpointableIterator')
self._source_iterator = source_iterator # type: CheckpointableIterator
self._step_function = step_function # type: Callable[[Any,Any], Tuple[Any,Any]]
# take deepcopy of initial state so that user cannot change initial state after iterator is created
self._initial_state = copy.deepcopy(initial_state) # type: Any
self.setstate(None)
def getstate(self):
# return deepcopy of recurrent state so that user cannot change recurrent state within a checkpoint after it was taken
# by modifying the recurrent_state in place during the step_function
return {'recurrent_state': copy.deepcopy(self._recurrent_state),
'source_state': self._source_iterator.getstate()}
def setstate(self, checkpoint):
# take deepcopy of recurrent_state from checkpoint and initial state so that user cannot modify the checkpoint / the initial state
# by modifying the recurrent_state in place during the step_function
self._recurrent_state = copy.deepcopy(checkpoint['recurrent_state']) if checkpoint else copy.deepcopy(self._initial_state)
self._source_iterator.setstate(checkpoint['source_state'] if checkpoint else None)
def _generate():
for item in self._source_iterator:
# with all the deepcopies above, in-place modification of recurrent_state within the step_function is now ok
self._recurrent_state, output = self._step_function(self._recurrent_state, item)
yield output
self._iterator = _generate()
def __next__(self):
return next(self._iterator)
def close(self):
self._source_iterator.close()
def SamplingRandomMapIterator(source_iterator: CheckpointableIterator, transform: Callable[[Random,Any],Any], seed: int=0):
"""
An iterator that calls a transform function on each item, while also passing a checkpointed
random generator.
Args:
source_iterator: checkpointable iterator to recur over
step_function: user-supplied function with signature step_function(random, item) -> result_item
seed: random seed
"""
_random = Random(seed)
def _step_function(state, item):
_random.setstate(state)
output = transform(_random, item)
return _random.getstate(), output
return RecurrentIterator(source_iterator, _step_function, initial_state=_random.getstate())
def BlockwiseShuffleIterator(source_iterator: CheckpointableIterator, block_size: int, seed: int=0):
"""
Shuffles a sequence of items by grouping consecutive items in blocks of fixed size, shuffling
each block, and yielding the shuffled items of all blocks as a flat sequence.
E.g. [1, 2, 3, 4, 5, 6, 7, 8] with block_size = 3 may yield [3, 1, 2, 4, 6, 5, 8, 7].
Args:
source_iterator: checkpointable iterator or restartable iterable over input items to shuffle
block_size: size of the buffer in number of items used for shuffling
seed: random seed used for shuffling (or None)
"""
# This is implemented as a pipeline:
# - group N consecutive items together
# - shuffle them
# - flatten the result
blocks = FixedBatchIterator(source_iterator, batch_size=block_size)
def shuffle_block_fn(random: Random, block: List):
random.shuffle(block)
return block
shuffled_blocks = SamplingRandomMapIterator(blocks, transform=shuffle_block_fn, seed=seed)
samples = SelectManyIterator(shuffled_blocks, collection_selector=lambda shuffled_block: iter(shuffled_block))
return samples
def PrefetchIterator(source_iterator: CheckpointableIterator, buffer_size: int, buffer_in_main_process:bool=False, log_empty_buffer_warning: bool=False):
"""
An iterator prefetching data into a buffer on a seperate process.
Args:
source_iterator: checkpointable iterator to recur over
buffer_size: number of items to prefetch; this is the maximum number of items held in the prefetch queue
buffer_in_main_process: use experimental version of PrefetchBuffer that has buffer in main process instead of prefetch process
log_empty_buffer_warning: log warning message if prefetch buffer is empty, only supported if buffer_in_main_process=True
"""
if not isinstance(source_iterator, CheckpointableIterator):
raise ValueError('source_iterator has to be a CheckpointableIterator')
if buffer_size <= 0:
raise ValueError('buffer_size must be positive')
if multiprocessing.get_start_method() != 'fork':
print('WARNING: \
PrefetchIterator is only supported on operating system that use fork to create new processes.\
This excludes Windows.\
A dummy iterator is inserted instead of a PrefetchIterator.\
This also means that checkpoints of this iterator pipeline cannot be ported to a system that uses fork.')
return source_iterator
else:
if buffer_in_main_process:
return _ForkPrefetchIteratorExperimental(source_iterator, buffer_size, log_empty_buffer_warning)
else:
return _ForkPrefetchIterator(source_iterator, buffer_size)
class _ForkPrefetchIterator(CheckpointableIterator):
"""
Actual internal implementation of the prefetch iterator for systems that support creating processes through fork.
Args:
source_iterator: checkpointable iterator to recur over
buffer_size: number of items to prefetch; this is the maximum number of items held in the prefetch queue
"""
def __init__(self, source_iterator: CheckpointableIterator, buffer_size: int):
self._source_iterator = source_iterator # type:CheckpointableIterator
self._buffer_size = buffer_size # type: int
self._prefetch_process = None # type: Optional[multiprocessing.Process]
self.setstate(None)
def getstate(self) -> Dict:
return {'source_state': self._source_state,
'item_offset' : self._item_offset }
def setstate(self, checkpoint: Optional[Dict]):
self._terminate_and_join_prefetch_process() # kill current process if any
self._source_state = checkpoint['source_state'] if checkpoint is not None else None
self._item_offset = checkpoint['item_offset' ] if checkpoint is not None else 0
self._source_iterator.setstate(self._source_state)
self._queue = multiprocessing.Queue(maxsize=self._buffer_size)
_prefetch_process = multiprocessing.Process(target=self._prefetch_process_fn,
args=(self._source_iterator,
self._item_offset, # @TODO: why pass all these parameters? They are forked anyways. Seems a left-over from thread days.
self._buffer_size,
self._queue))
_prefetch_process.start() # this invokes fork()
self._prefetch_process = _prefetch_process
# make sure that in case of an unexpected shutdown, we still get rid of any active child process
import atexit
atexit.register(_ForkPrefetchIterator._join_process, self._prefetch_process)
@staticmethod
def _prefetch_process_fn(source, item_offset, buffer_size, queue): # behavior of the prefetching process, only to be called from that process!
_advance_iterator(source, item_offset) # skip to checkpoint
while True:
try:
item = next(source)
except StopIteration:
queue.put(StopIteration())
# It seems Python Queue has a bug: if we return here, then the StopIteration message is never sent to the receiver.
# So we just dead-loop, assuming that the process will be killed anyways when the consuming side destructs the prefetcher.
import time
while True:
time.sleep(1000)
return # we never actually get here
if item_offset == buffer_size - 1: # for efficiency, we send a new source state only at the END of each window of length _buffer_size
source_state = source.getstate() # this is the state for retrieving the NEXT element, i.e. the first element of the next buffer
item_offset = 0
else:
source_state = None
item_offset += 1
msg = (item, source_state)
queue.put(msg)
def __next__(self):
if self._queue is None: # iterator has already been exhausted
raise StopIteration()
msg = self._queue.get()
if isinstance(msg, StopIteration):
self._queue = None
raise StopIteration()
item, prefetch_source_state = msg # for efficiency, the prefetch_source_state is only transmitted at the end of each window of length _buffer_size
if prefetch_source_state is not None:
assert self._item_offset == self._buffer_size - 1 # we expect a new source state at then END of each window of length _buffer_size
self._source_state = prefetch_source_state
self._item_offset = 0
else:
self._item_offset = self._item_offset + 1
assert self._item_offset < self._buffer_size
return item # for debugging, its useful to return msg instead of item
def __del__(self): # note: this is often not called. If you really need it, gc.collect() will do the trick.
self._terminate_and_join_prefetch_process()
def _terminate_and_join_prefetch_process(self): # terminate the pre-fetch process if one is running
if hasattr(self, "_prefetch_process") and self._prefetch_process:
_ForkPrefetchIterator._join_process(self._prefetch_process)
self._prefetch_process = None
@staticmethod
def _join_process(p): # called from setstate(), __del__(), and atexit handler
# We create prefetching processes with UNIX fork.
# That means that we might end up with inactive copies
# of prefetchers in the memory of prefetching processes.
# These inactive copies can never create their
# own prefetching processes, even if setstate is called.
# All prefetching processes are exclusively created by
# the main process, even if there are nested PrefetchIterators.
# Hence, the main process should be the only one to terminate
# and join prefetching processes.
# The if-statement below guarantees that, even if __del__ is called
# on a copy of a PrefetchIterator in another process
if p._parent_pid != os.getpid():
return
if p.exitcode is not None: # already joined: p.pid is invalid
return
# Note that we must terminate here instead of cleanly shutting down
# the prefetching process, e.g. using synchronization primitives.
# This is deliberate (and unfortunate).
# The prefetching process might spend an arbitrary amount of time
# in the preceeding iterators before it checks for potential termination messages.
# This would hold up the entire pipeline due to the join below.
# Hence, we terminate the process immediately.
# In some cases, the process function already ran its course. In that case,
# the terminate() call will have no effect.
p.terminate()
p.join()
def close(self):
# this functionality is currently not implemented for this iterator
self._source_iterator.close()
class _ForkPrefetchIteratorExperimental(CheckpointableIterator):
"""
Actual internal implementation of the prefetch iterator for systems that support creating processes through fork.
WARNING:
PrefetchIterators have internal resources that need to be properly managed by calling close() manually.
Failure to do so can lead to dangling processes and threads, or the PrefetchIterator hanging on finalization.
Note that it is not correct to rely on the garbage collector to destroy the PrefetchIterator
as CPython does not assure that the finalizer (__del__) of the PrefetchIterator will be called.
The close() function is implemented for every CheckpointableIterator.
It recursively traverses all preceeding iterators in the pipeline and closes all PrefetchIterators.
Args:
source_iterator: checkpointable iterator to recur over
buffer_size: number of items to prefetch; this is the maximum number of items held in the prefetch queue
log_empty_buffer_warning: log warning message if prefetch buffer is empty
"""
# HOW THIS ITERATOR WORKS, AND WHY:
#
# This iterator offloads the work of evaluating all preceeding iterators
# into a separate prefetch process and tries to maintain a buffer
# of buffer_size many items in order to hide any latency spikes in the evaluation
# of the preceeding iterators.
#
# The prefetch process (self._prefetch_process) generates items and puts them
# into an inter-process queue (self._inter_process_queue of type multiprocessing.Queue).
# The sole purpose of this queue is to act as a means for inter-process communication.
# Its purpose is NOT to act as the above-mentioned buffer.
# Accordingly, the size of this queue is restricted to 1.
#
# The actual buffer is realized as a local, thread-safe queue (queue.Queue) that lives
# in the main process (self._local_queue). We create a thread (self._queue_fetcher_thread)
# within the main process that is responsible for fetching items from the
# inter-process queue and storing them in the local queue. We then obtain an item from the
# local queue whenever __next__ is called within the main thread of the main process.
#
# You might wonder why we jump through all of these hoops instead of just using
# a multiprocessing.Queue with the desired buffer_size to act as both a means for
# inter-process communication and as a buffer to smooth out latency at the same time.
# In fact, this iterator used to be implemented that way.
# However, we observed severe issues with that implementation.
#
# Specifically, with multiprocessing.Queue the buffer lives in the prefetch process
# and a queue feeding thread is responsible for moving items from the buffer onto a pipe
# (see https://docs.python.org/3.6/library/multiprocessing.html#multiprocessing.Queue)
# The main thread in the prefetch process, which is responsible for generating items,
# competes with the queue feeder thread for CPU cycles, and because of CPython's
# global interpreter lock only one of these two processes can run at any given time.
#
# We observed situations in which the main thread is so busy generating new items
# that the queue feeder thread does not get enough CPU time to keep the pipe filled.
# This starvation of the queue feeder thread led to severe hangs (up to a minute)
# in calls to multiprocessing.Queue.get in the main process, even though the buffer had
# hundreds of items stored in it.
#
# This problem gets even worse when PyTorch tensors are sent over the queue. PyTorch registers
# custom reducers to the ForkingPickler used to pickle tensors before sending them over a pipe
# (see https://github.com/pytorch/pytorch/blob/master/torch/multiprocessing/reductions.py).
# As a consequence, the actual tensor data is not sent via the queue, but shared via shared
# memory. This process involves spawning yet another thread in the prefetch process and opening
# sockets to transmit file descriptors
# (see https://pytorch.org/docs/stable/multiprocessing.html#file-descriptor-file-descriptor).
# So in this case, there is yet another thread competing for the global interpreter lock.
#
# By restricting the size of the inter-process queue to 1 we avoid or at least lessen
# the starvation issues in the prefetch process caused by multiple threads fighting
# for the global interpreter lock. Any remaining hangs or delays in the prefetch process
# are hidden by having the buffer in the main process instead of the prefetch process.
#
# We suspect the hanging issues described above to be manifestations of the "Convoy effect":
# https://bugs.python.org/issue7946
# http://www.dabeaz.com/python/GIL.pdf
# https://in.pycon.org/2011/static/files/talks/41/Python-threads_v1.0.pdf
def __init__(
self, source_iterator: CheckpointableIterator, buffer_size: int, log_empty_buffer_warning: bool = False
):
self._source_iterator = source_iterator # type: CheckpointableIterator
self._buffer_size = buffer_size # type: int
self._log_empty_buffer_warning = log_empty_buffer_warning
self._is_closed = False
self.setstate(None)
def getstate(self) -> Dict:
return {"source_state": self._source_state, "item_offset": self._item_offset}
def setstate(self, checkpoint: Optional[Dict]):
if self._is_closed:
raise RuntimeError("PrefetchIterator has already been closed.")
# terminate the prefetch process and queue fetcher thread if they are running
self._shutdown()
# set state according to checkpoint
self._source_state = checkpoint["source_state"] if checkpoint is not None else None
self._item_offset = checkpoint["item_offset"] if checkpoint is not None else 0
self._source_iterator.setstate(self._source_state)
# In the given checkpoint, the source iterator might already be exhausted.
# We will figure that out once we try to get the first item.
# For now, we have to reset this variable.
self._is_exhausted = False
def __next__(self):
if self._is_closed:
raise RuntimeError("PrefetchIterator has already been closed.")
if not hasattr(self, "_prefetch_process") or self._prefetch_process is None:
# prefetcher process has not yet been started
self._startup()
if self._is_exhausted:
raise StopIteration()
if self._log_empty_buffer_warning:
if self._local_queue.empty():
logger.warning("trying to fetch item, but prefetch buffer is empty")
# This get-operation cannot deadlock:
# Under the assumption that the prefetch process and the queue fetcher thread work correctly,
# this operation can only deadlock if at the time of this call the source iterator is
# exhausted, the local queue is empty, and there are no items in transit to the local queue.
# In that case, a StopIteration was the last item ever put on the local queue.
# That stop iteration would have caused self._is_exhausted to be set to True,
# which means the following line would never have been reached, a contradiction.
msg = self._local_queue.get()
if isinstance(msg, StopIteration):
self._is_exhausted = True
# The source iterator is exhausted.
# At this point, the queue fetcher thread should already have terminated.
# The prefetch process will only terminate once we signal it via _prefetch_process_should_terminate.
# This is because we have to make sure no more items are taken from the inter_process_queue
# before we shut down the prefetch process as explained in _startup().
# We would like to terminate the prefetch process, but we cannot use _shutdown() here
# because that would set self._prefetch_process = None,
# which would mean we would call _startup() on the next call of __next__.
# Instead, manually make sure the queue fetcher thread has actually terminated so that
# no more elements are taken from the inter_process_queue
# and then signal the prefetch process to terminate.
self._queue_fetcher_thread.join()
self._prefetch_process_should_terminate.set()
raise StopIteration()
# for efficiency, the prefetch_source_state is only transmitted at the end of each window of length _buffer_size
item, prefetch_source_state = msg
if prefetch_source_state is not None:
# we expect a new source state at then END of each window of length _buffer_size
assert self._item_offset == self._buffer_size - 1
self._source_state = prefetch_source_state
self._item_offset = 0
else:
self._item_offset = self._item_offset + 1
assert self._item_offset < self._buffer_size
return item # for debugging, its useful to return msg instead of item
def close(self):
"""
Close all PrefetchIterators in this pipeline
PrefetchIterators have internal resources that need to be properly managed by calling close() manually.
Failure to do so can lead to dangling processes and threads, or the PrefetchIterator hanging on finalization.
Note that it is not correct to rely on the garbage collector to destroy PrefetchIterators
as CPython does not assure that the finalizer (__del__) of a PrefetchIterator will be called.
This function, which is implemented for every CheckpointableIterator, recursively traverses all preceeding
iterators and closes all PrefetchIterators in the pipeline.
For pipelines that do not contain PrefetchIterators this function has no effect.
"""
if not self._is_closed:
self._is_closed = True
self._shutdown()
self._source_iterator.close()
def _startup(self):
# set up prefetch process and associated queue
self._inter_process_queue = multiprocessing.Queue(maxsize=1)
# Because of the way PyTorch transfers tensors through shared memory (see comment at top of this class)
# we have to keep the prefetch process alive until we are sure that
# no more items are taken from the inter-process queue.
# This event is used to communicate to the prefetch process that it is safe to terminate.
self._prefetch_process_should_terminate = multiprocessing.Event()
_prefetch_process = multiprocessing.Process(
target=self._prefetch_process_fn,
args=(
self._source_iterator,
self._item_offset,
self._buffer_size,
self._inter_process_queue,
self._prefetch_process_should_terminate,
),
)
_prefetch_process.start() # this invokes fork()
# set self._prefetch_process after fork so that variable never exists for within prefetch process
self._prefetch_process = _prefetch_process
# set up queue fetcher thread
self._local_queue = queue.Queue(maxsize=self._buffer_size)
self._queue_fetcher_thread_should_terminate = threading.Event()
self._queue_fetcher_thread = threading.Thread(target=self._queue_fetcher_thread_fn, daemon=True)
self._queue_fetcher_thread.start()
def _shutdown(self):
# Only shut down if this is the parent process and the prefetcher is running.
# The variable self._prefetch_process can only exist in the parent process.
# The variable exists and is not None only if the prefetcher is running.
if hasattr(self, "_prefetch_process") and self._prefetch_process is not None:
# if self._prefetch_process is not None, neither should self._queue_fetcher_thread
assert self._queue_fetcher_thread is not None
# sanity check that this is actually the parent of the prefetch process
assert self._prefetch_process._parent_pid == os.getpid()
# shut down queue fetcher thread
self._queue_fetcher_thread_should_terminate.set()
self._queue_fetcher_thread.join()
self._queue_fetcher_thread = None
# shut down prefetch process
self._prefetch_process_should_terminate.set()
self._prefetch_process.join()
self._prefetch_process = None
@staticmethod
def _prefetch_process_fn(
source_iterator, item_offset, buffer_size, inter_process_queue, should_terminate_event
): # behavior of the prefetching process, only to be called from that process!
_advance_iterator(source_iterator, item_offset) # skip to checkpoint
while True:
try:
item = next(source_iterator)
except StopIteration:
_ForkPrefetchIteratorExperimental._try_put(inter_process_queue, StopIteration(), should_terminate_event)
# Because of the way PyTorch transfers tensors through shared memory (see comment at top of this class)
# we have to keep the prefetch process alive until we are sure that
# no more items are taken from the inter-process queue.
# This event is used to communicate to the prefetch process that it is safe to terminate.
should_terminate_event.wait()
break
if item_offset == buffer_size - 1:
# for efficiency, we send a new source state only at the END of each window of length _buffer_size
# this is the state for retrieving the NEXT element, i.e. the first element of the next buffer
source_state = source_iterator.getstate()
item_offset = 0
else:
source_state = None
item_offset += 1
msg = (item, source_state)
should_terminate = _ForkPrefetchIteratorExperimental._try_put(
inter_process_queue, msg, should_terminate_event
)
if should_terminate:
break
source_iterator.close()
def _queue_fetcher_thread_fn(self):
while True:
# This get-operation cannot deadlock:
# For his operation to deadlock, the queue must be empty and the prefetch process must never put
# another item on the queue. Under the assumption that the prefetch process works correctly,
# this can only happen in two ways. First, the prefetch process could exhaust its source iterator
# and put a StopIteration on the queue. In this case, this thread will receive the StopIteration
# and terminate, which means the operation does not deadlock. Second, the prefetch process could
# terminate because the corresponding signal is set as part of a _shutdown(). However, we terminate
# and join this thread before we set the terminate signal for the prefetch process,
# so this case cannot happen.
msg = self._inter_process_queue.get()
should_terminate = _ForkPrefetchIteratorExperimental._try_put(
self._local_queue, msg, self._queue_fetcher_thread_should_terminate
)
if should_terminate:
return
if isinstance(msg, StopIteration):
return
@staticmethod
def _try_put(q, msg, should_terminate_event, timeout=0.001):
"""
Repeatedly try to put message on queue until success or should_terminate_event is set.
If success, return False.
If should_terminate_event is set, return True.
"""
while not should_terminate_event.is_set():
try:
q.put(msg, timeout=timeout)
return False
except queue.Full:
pass
return True
def __del__(self):
if hasattr(self, "_prefetch_process") and not self._is_closed:
logger.warning(
f"unclosed PrefetchIterator {self!r}: not closing a PrefetchIterator may lead to dangling processes and hangs on finalization"
)
self._shutdown()
class BucketedReadaheadBatchIterator(CheckpointableIterator):
"""
Iterates over items from a checkpointable iterator and groups items of similar length into batches.
The algorithm reads a head a certain number of lines (e.g. 10 million), sorts them by
length, and them groups them into batches from start to end. The sort is stable, such
that prior randomization is not undone (except for the length grouping). The batch size
is dynamic, and determined by a user-provided callback.
This is based on Marian NMT's BatchGenerator.
"""
def __init__(self, source_iterator: CheckpointableIterator, read_ahead: int, key: Callable[[Any], Any], batch_size: Union[int,Callable[[Any], int]], boundary_key: Callable[[Any], Any]=None, shuffle: bool=True, seed: int=0):
"""
Args:
source_iterator: The data set that is read from. Typically this is an infinite source.
read_ahead: Number of items to fetch ahead for grouping purposes.
key: User-provided callback to define how data is sorted for purpose of batching.
batch_size: Batch size in number of items. Either an integer or a callback to determine batch size for a given first batch item.
boundary_key: This optional callback, which maps an item to a key, allows to impose an additional restriction on the way batches are formed. Specifically, the iterator starts a new batch whenever the key changes. Thereby, it guarantees that all items in a batch have the same key. Keys are not allowed to be None.
shuffle: Pass False to not randomize the batches. (default: True)
seed: Random seed for batch shuffling.
"""
if not isinstance(source_iterator, CheckpointableIterator):
raise ValueError('source_iterator has to be a CheckpointableIterator')
# keep arguments
self._key = key # type: Callable[[Any], Any]
self._batch_size = batch_size # type: Union[int,Callable[[Any], int]]
self._boundary_key = boundary_key # type: Callable[[Any], Any]
self._read_ahead = read_ahead # type: int
# initialize state
self._seed = seed
self._random = None # type: Optional[Random]
if shuffle:
self._random = Random(self._seed)
self._source_iterator = cast(CheckpointableIterator, iter(source_iterator)) # type: CheckpointableIterator
self.setstate(None)
def getstate(self):
return {'source_state': self._source_state,
'random_state': self._random_state,
'num_served': self._num_batches_yielded}
def setstate(self, checkpoint: Optional[Dict]):
self._source_state = checkpoint['source_state'] if checkpoint else None # type: Dict # state of input before reading the current set of batches
self._random_state = checkpoint['random_state'] if checkpoint else None # type: Any # state of random generator at _source_state
self._num_batches_yielded = checkpoint['num_served'] if checkpoint else 0 # type: int # number of batches served from the current set of batches
# checkpointing: restore to start of current set of batches
self._source_iterator.setstate(self._source_state)
if self._random:
if self._random_state:
self._random.setstate(self._random_state)
else:
self._random.seed(self._seed)
self._source_exhausted = False # type: bool # set to True once we hit StopIteration on source
def _generate():
skip_to_checkpoint = self._num_batches_yielded
source_exhausted = False
while not source_exhausted:
# prefetch the readahead buffer
self._source_state = self._source_iterator.getstate()
self._random_state = self._random.getstate() if self._random else None
items = list(islice(self._source_iterator, self._read_ahead))
source_exhausted = (len(items) < self._read_ahead)
# create batches
batches = self._create_batches(items)
# shuffle the batches
if self._random:
self._random.shuffle(batches)
# on first loop iteration, restore iterator inside batches from checkpoint
batches = iter(batches)
self._num_batches_yielded = _advance_iterator(batches, skip_to_checkpoint)
skip_to_checkpoint = 0
# main loop over batches in current read-ahead section
for batch in batches:
self._num_batches_yielded += 1
yield batch
self._iterator = _generate() # type: Iterator # iterator into current set of batches
def _create_batches(self, items: List[Any]) -> List[List[Any]]: # helper to form batches from a list of items
# sort by length, longest first
if self._key:
items.sort(key=self._key, reverse=True) # note: sort() is stable, so we won't undo any randomization besides the bucketing
# group into batches
cur_batch = None # type: Optional[List[Any]]
prev_val = None
batches = [] # type: List[Any]
for item in items:
if self._boundary_key and self._boundary_key(item) != prev_val:
if cur_batch:
batches.append(cur_batch)
cur_batch = None
prev_val = None
if not cur_batch:
batch_size = self._batch_size if isinstance(self._batch_size, int) else \
self._batch_size(item)
cur_batch = []
cur_batch.append(item)
if self._boundary_key:
prev_val = self._boundary_key(item)
assert prev_val is not None
if len(cur_batch) >= batch_size: # this batch is full
batches.append(cur_batch)
cur_batch = None
prev_val = None
if cur_batch:
batches.append(cur_batch)
return batches
def __next__(self):
return next(self._iterator)
def close(self):
self._source_iterator.close() | KosmosX-API-main | kosmosX/infinibatch/infinibatch/iterators.py |
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import subprocess
import sys
from setuptools import Extension, find_packages, setup
if sys.version_info < (3, 6):
sys.exit("Sorry, Python >= 3.6 is required for fairseq.")
def write_version_py():
with open(os.path.join("fairseq", "version.txt")) as f:
version = f.read().strip()
# append latest commit hash to version string
try:
sha = (
subprocess.check_output(["git", "rev-parse", "HEAD"])
.decode("ascii")
.strip()
)
version += "+" + sha[:7]
except Exception:
pass
# write version info to fairseq/version.py
with open(os.path.join("fairseq", "version.py"), "w") as f:
f.write('__version__ = "{}"\n'.format(version))
return version
version = write_version_py()
with open("README.md") as f:
readme = f.read()
if sys.platform == "darwin":
extra_compile_args = ["-stdlib=libc++", "-O3"]
else:
extra_compile_args = ["-std=c++11", "-O3"]
class NumpyExtension(Extension):
"""Source: https://stackoverflow.com/a/54128391"""
def __init__(self, *args, **kwargs):
self.__include_dirs = []
super().__init__(*args, **kwargs)
@property
def include_dirs(self):
import numpy
return self.__include_dirs + [numpy.get_include()]
@include_dirs.setter
def include_dirs(self, dirs):
self.__include_dirs = dirs
extensions = [
Extension(
"fairseq.libbleu",
sources=[
"fairseq/clib/libbleu/libbleu.cpp",
"fairseq/clib/libbleu/module.cpp",
],
extra_compile_args=extra_compile_args,
),
NumpyExtension(
"fairseq.data.data_utils_fast",
sources=["fairseq/data/data_utils_fast.pyx"],
language="c++",
extra_compile_args=extra_compile_args,
),
NumpyExtension(
"fairseq.data.token_block_utils_fast",
sources=["fairseq/data/token_block_utils_fast.pyx"],
language="c++",
extra_compile_args=extra_compile_args,
),
]
cmdclass = {}
try:
# torch is not available when generating docs
from torch.utils import cpp_extension
extensions.extend(
[
cpp_extension.CppExtension(
"fairseq.libbase",
sources=[
"fairseq/clib/libbase/balanced_assignment.cpp",
],
)
]
)
extensions.extend(
[
cpp_extension.CppExtension(
"fairseq.libnat",
sources=[
"fairseq/clib/libnat/edit_dist.cpp",
],
),
cpp_extension.CppExtension(
"alignment_train_cpu_binding",
sources=[
"examples/operators/alignment_train_cpu.cpp",
],
),
]
)
if "CUDA_HOME" in os.environ:
extensions.extend(
[
cpp_extension.CppExtension(
"fairseq.libnat_cuda",
sources=[
"fairseq/clib/libnat_cuda/edit_dist.cu",
"fairseq/clib/libnat_cuda/binding.cpp",
],
),
cpp_extension.CppExtension(
"fairseq.ngram_repeat_block_cuda",
sources=[
"fairseq/clib/cuda/ngram_repeat_block_cuda.cpp",
"fairseq/clib/cuda/ngram_repeat_block_cuda_kernel.cu",
],
),
cpp_extension.CppExtension(
"alignment_train_cuda_binding",
sources=[
"examples/operators/alignment_train_kernel.cu",
"examples/operators/alignment_train_cuda.cpp",
],
),
]
)
cmdclass["build_ext"] = cpp_extension.BuildExtension
except ImportError:
pass
if "READTHEDOCS" in os.environ:
# don't build extensions when generating docs
extensions = []
if "build_ext" in cmdclass:
del cmdclass["build_ext"]
# use CPU build of PyTorch
dependency_links = [
"https://download.pytorch.org/whl/cpu/torch-1.7.0%2Bcpu-cp36-cp36m-linux_x86_64.whl"
]
else:
dependency_links = []
if "clean" in sys.argv[1:]:
# Source: https://bit.ly/2NLVsgE
print("deleting Cython files...")
import subprocess
subprocess.run(
["rm -f fairseq/*.so fairseq/**/*.so fairseq/*.pyd fairseq/**/*.pyd"],
shell=True,
)
extra_packages = []
if os.path.exists(os.path.join("fairseq", "model_parallel", "megatron", "mpu")):
extra_packages.append("fairseq.model_parallel.megatron.mpu")
def do_setup(package_data):
setup(
name="fairseq",
version=version,
description="Facebook AI Research Sequence-to-Sequence Toolkit",
url="https://github.com/pytorch/fairseq",
classifiers=[
"Intended Audience :: Science/Research",
"License :: OSI Approved :: MIT License",
"Programming Language :: Python :: 3.6",
"Programming Language :: Python :: 3.7",
"Programming Language :: Python :: 3.8",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
],
long_description=readme,
long_description_content_type="text/markdown",
setup_requires=[
"cython",
'numpy<1.20.0; python_version<"3.7"',
'numpy; python_version>="3.7"',
"setuptools>=18.0",
],
install_requires=[
"cffi",
"cython",
'dataclasses; python_version<"3.7"',
"hydra-core>=1.0.7,<1.1",
"omegaconf<2.1",
'numpy<1.20.0; python_version<"3.7"',
'numpy; python_version>="3.7"',
"regex",
"sacrebleu>=1.4.12",
"torch",
"tqdm",
"bitarray",
# "torchaudio>=0.8.0",
],
dependency_links=dependency_links,
packages=find_packages(
exclude=[
"examples",
"examples.*",
"scripts",
"scripts.*",
"tests",
"tests.*",
]
)
+ extra_packages,
package_data=package_data,
ext_modules=extensions,
test_suite="tests",
entry_points={
"console_scripts": [
"fairseq-eval-lm = fairseq_cli.eval_lm:cli_main",
"fairseq-generate = fairseq_cli.generate:cli_main",
"fairseq-hydra-train = fairseq_cli.hydra_train:cli_main",
"fairseq-interactive = fairseq_cli.interactive:cli_main",
"fairseq-preprocess = fairseq_cli.preprocess:cli_main",
"fairseq-score = fairseq_cli.score:cli_main",
"fairseq-train = fairseq_cli.train:cli_main",
"fairseq-validate = fairseq_cli.validate:cli_main",
],
},
cmdclass=cmdclass,
zip_safe=False,
)
def get_files(path, relative_to="fairseq"):
all_files = []
for root, _dirs, files in os.walk(path, followlinks=True):
root = os.path.relpath(root, relative_to)
for file in files:
if file.endswith(".pyc"):
continue
all_files.append(os.path.join(root, file))
return all_files
if __name__ == "__main__":
try:
# symlink examples into fairseq package so package_data accepts them
fairseq_examples = os.path.join("fairseq", "examples")
if "build_ext" not in sys.argv[1:] and not os.path.exists(fairseq_examples):
os.symlink(os.path.join("..", "examples"), fairseq_examples)
package_data = {
"fairseq": (
get_files(fairseq_examples)
+ get_files(os.path.join("fairseq", "config"))
)
}
do_setup(package_data)
finally:
if "build_ext" not in sys.argv[1:] and os.path.islink(fairseq_examples):
os.unlink(fairseq_examples)
| KosmosX-API-main | kosmosX/fairseq/setup.py |
#!/usr/bin/env python3 -u
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
Legacy entry point. Use fairseq_cli/train.py or fairseq-train instead.
"""
from fairseq_cli.train import cli_main
if __name__ == "__main__":
cli_main()
| KosmosX-API-main | kosmosX/fairseq/train.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""isort:skip_file"""
import functools
import importlib
dependencies = [
"dataclasses",
"hydra",
"numpy",
"omegaconf",
"regex",
"requests",
"torch",
]
# Check for required dependencies and raise a RuntimeError if any are missing.
missing_deps = []
for dep in dependencies:
try:
importlib.import_module(dep)
except ImportError:
# Hack: the hydra package is provided under the "hydra-core" name in
# pypi. We don't want the user mistakenly calling `pip install hydra`
# since that will install an unrelated package.
if dep == "hydra":
dep = "hydra-core"
missing_deps.append(dep)
if len(missing_deps) > 0:
raise RuntimeError("Missing dependencies: {}".format(", ".join(missing_deps)))
# only do fairseq imports after checking for dependencies
from fairseq.hub_utils import ( # noqa; noqa
BPEHubInterface as bpe,
TokenizerHubInterface as tokenizer,
)
from fairseq.models import MODEL_REGISTRY # noqa
# torch.hub doesn't build Cython components, so if they are not found then try
# to build them here
try:
import fairseq.data.token_block_utils_fast # noqa
except ImportError:
try:
import cython # noqa
import os
from setuptools import sandbox
sandbox.run_setup(
os.path.join(os.path.dirname(__file__), "setup.py"),
["build_ext", "--inplace"],
)
except ImportError:
print(
"Unable to build Cython components. Please make sure Cython is "
"installed if the torch.hub model you are loading depends on it."
)
# automatically expose models defined in FairseqModel::hub_models
for _model_type, _cls in MODEL_REGISTRY.items():
for model_name in _cls.hub_models().keys():
globals()[model_name] = functools.partial(
_cls.from_pretrained,
model_name,
)
| KosmosX-API-main | kosmosX/fairseq/hubconf.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
from pathlib import Path
from typing import Callable, List, Optional, Union
import torch
from fairseq import utils
from fairseq.data.indexed_dataset import get_available_dataset_impl
from fairseq.dataclass.configs import (
CheckpointConfig,
CommonConfig,
CommonEvalConfig,
DatasetConfig,
DistributedTrainingConfig,
EvalLMConfig,
GenerationConfig,
InteractiveConfig,
OptimizationConfig,
EMAConfig,
)
from fairseq.dataclass.utils import gen_parser_from_dataclass
# this import is for backward compatibility
from fairseq.utils import csv_str_list, eval_bool, eval_str_dict, eval_str_list # noqa
def get_preprocessing_parser(default_task="translation"):
parser = get_parser("Preprocessing", default_task)
add_preprocess_args(parser)
return parser
def get_training_parser(default_task="translation"):
parser = get_parser("Trainer", default_task)
add_dataset_args(parser, train=True)
add_distributed_training_args(parser)
add_model_args(parser)
add_optimization_args(parser)
add_checkpoint_args(parser)
add_ema_args(parser)
add_deepspeed_args(parser)
return parser
def get_generation_parser(interactive=False, default_task="translation"):
parser = get_parser("Generation", default_task)
add_dataset_args(parser, gen=True)
add_distributed_training_args(parser, default_world_size=1)
add_generation_args(parser)
add_checkpoint_args(parser)
if interactive:
add_interactive_args(parser)
return parser
def get_speech_generation_parser(default_task="text_to_speech"):
parser = get_parser("Speech Generation", default_task)
add_dataset_args(parser, gen=True)
add_distributed_training_args(parser, default_world_size=1)
add_speech_generation_args(parser)
return parser
def get_interactive_generation_parser(default_task="translation"):
return get_generation_parser(interactive=True, default_task=default_task)
def get_eval_lm_parser(default_task="language_modeling"):
parser = get_parser("Evaluate Language Model", default_task)
add_dataset_args(parser, gen=True)
add_distributed_training_args(parser, default_world_size=1)
add_eval_lm_args(parser)
return parser
def get_validation_parser(default_task=None):
parser = get_parser("Validation", default_task)
add_dataset_args(parser, train=True)
add_distributed_training_args(parser, default_world_size=1)
group = parser.add_argument_group("Evaluation")
gen_parser_from_dataclass(group, CommonEvalConfig())
return parser
def parse_args_and_arch(
parser: argparse.ArgumentParser,
input_args: List[str] = None,
parse_known: bool = False,
suppress_defaults: bool = False,
modify_parser: Optional[Callable[[argparse.ArgumentParser], None]] = None,
):
"""
Args:
parser (ArgumentParser): the parser
input_args (List[str]): strings to parse, defaults to sys.argv
parse_known (bool): only parse known arguments, similar to
`ArgumentParser.parse_known_args`
suppress_defaults (bool): parse while ignoring all default values
modify_parser (Optional[Callable[[ArgumentParser], None]]):
function to modify the parser, e.g., to set default values
"""
if suppress_defaults:
# Parse args without any default values. This requires us to parse
# twice, once to identify all the necessary task/model args, and a second
# time with all defaults set to None.
args = parse_args_and_arch(
parser,
input_args=input_args,
parse_known=parse_known,
suppress_defaults=False,
)
suppressed_parser = argparse.ArgumentParser(add_help=False, parents=[parser])
suppressed_parser.set_defaults(**{k: None for k, v in vars(args).items()})
args = suppressed_parser.parse_args(input_args)
return argparse.Namespace(
**{k: v for k, v in vars(args).items() if v is not None}
)
from fairseq.models import ARCH_MODEL_REGISTRY, ARCH_CONFIG_REGISTRY, MODEL_REGISTRY
# Before creating the true parser, we need to import optional user module
# in order to eagerly import custom tasks, optimizers, architectures, etc.
usr_parser = argparse.ArgumentParser(add_help=False, allow_abbrev=False)
usr_parser.add_argument("--user-dir", default=None)
usr_args, _ = usr_parser.parse_known_args(input_args)
utils.import_user_module(usr_args)
if modify_parser is not None:
modify_parser(parser)
# The parser doesn't know about model/criterion/optimizer-specific args, so
# we parse twice. First we parse the model/criterion/optimizer, then we
# parse a second time after adding the *-specific arguments.
# If input_args is given, we will parse those args instead of sys.argv.
args, _ = parser.parse_known_args(input_args)
# Add model-specific args to parser.
if hasattr(args, "arch"):
model_specific_group = parser.add_argument_group(
"Model-specific configuration",
# Only include attributes which are explicitly given as command-line
# arguments or which have default values.
argument_default=argparse.SUPPRESS,
)
if args.arch in ARCH_MODEL_REGISTRY:
ARCH_MODEL_REGISTRY[args.arch].add_args(model_specific_group)
elif args.arch in MODEL_REGISTRY:
MODEL_REGISTRY[args.arch].add_args(model_specific_group)
else:
raise RuntimeError()
if hasattr(args, "task"):
from fairseq.tasks import TASK_REGISTRY
TASK_REGISTRY[args.task].add_args(parser)
if getattr(args, "use_bmuf", False):
# hack to support extra args for block distributed data parallelism
from fairseq.optim.bmuf import FairseqBMUF
FairseqBMUF.add_args(parser)
# Add *-specific args to parser.
from fairseq.registry import REGISTRIES
for registry_name, REGISTRY in REGISTRIES.items():
choice = getattr(args, registry_name, None)
if choice is not None:
cls = REGISTRY["registry"][choice]
if hasattr(cls, "add_args"):
cls.add_args(parser)
elif hasattr(cls, "__dataclass"):
gen_parser_from_dataclass(parser, cls.__dataclass())
# Modify the parser a second time, since defaults may have been reset
if modify_parser is not None:
modify_parser(parser)
# Parse a second time.
if parse_known:
args, extra = parser.parse_known_args(input_args)
else:
args = parser.parse_args(input_args)
extra = None
# Post-process args.
if (
hasattr(args, "batch_size_valid") and args.batch_size_valid is None
) or not hasattr(args, "batch_size_valid"):
args.batch_size_valid = args.batch_size
if hasattr(args, "max_tokens_valid") and args.max_tokens_valid is None:
args.max_tokens_valid = args.max_tokens
if getattr(args, "memory_efficient_fp16", False):
args.fp16 = True
if getattr(args, "memory_efficient_bf16", False):
args.bf16 = True
args.tpu = getattr(args, "tpu", False)
args.bf16 = getattr(args, "bf16", False)
if args.bf16:
args.tpu = True
if args.tpu and args.fp16:
raise ValueError("Cannot combine --fp16 and --tpu, use --bf16 on TPUs")
if getattr(args, "seed", None) is None:
args.seed = 1 # default seed for training
args.no_seed_provided = True
else:
args.no_seed_provided = False
if getattr(args, "update_epoch_batch_itr", None) is None:
if hasattr(args, "grouped_shuffling"):
args.update_epoch_batch_itr = args.grouped_shuffling
else:
args.grouped_shuffling = False
args.update_epoch_batch_itr = False
# Apply architecture configuration.
if hasattr(args, "arch") and args.arch in ARCH_CONFIG_REGISTRY:
ARCH_CONFIG_REGISTRY[args.arch](args)
if parse_known:
return args, extra
else:
return args
def get_parser(desc, default_task="translation"):
# Before creating the true parser, we need to import optional user module
# in order to eagerly import custom tasks, optimizers, architectures, etc.
usr_parser = argparse.ArgumentParser(add_help=False, allow_abbrev=False)
usr_parser.add_argument("--user-dir", default=None)
usr_args, _ = usr_parser.parse_known_args()
utils.import_user_module(usr_args)
parser = argparse.ArgumentParser(allow_abbrev=False)
gen_parser_from_dataclass(parser, CommonConfig())
from fairseq.registry import REGISTRIES
for registry_name, REGISTRY in REGISTRIES.items():
parser.add_argument(
"--" + registry_name.replace("_", "-"),
default=REGISTRY["default"],
choices=REGISTRY["registry"].keys(),
)
# Task definitions can be found under fairseq/tasks/
from fairseq.tasks import TASK_REGISTRY
parser.add_argument(
"--task",
metavar="TASK",
default=default_task,
choices=TASK_REGISTRY.keys(),
help="task",
)
# fmt: on
return parser
def add_preprocess_args(parser):
group = parser.add_argument_group("Preprocessing")
# fmt: off
group.add_argument("-s", "--source-lang", default=None, metavar="SRC",
help="source language")
group.add_argument("-t", "--target-lang", default=None, metavar="TARGET",
help="target language")
group.add_argument("--trainpref", metavar="FP", default=None,
help="train file prefix (also used to build dictionaries)")
group.add_argument("--validpref", metavar="FP", default=None,
help="comma separated, valid file prefixes "
"(words missing from train set are replaced with <unk>)")
group.add_argument("--testpref", metavar="FP", default=None,
help="comma separated, test file prefixes "
"(words missing from train set are replaced with <unk>)")
group.add_argument("--align-suffix", metavar="FP", default=None,
help="alignment file suffix")
group.add_argument("--destdir", metavar="DIR", default="data-bin",
help="destination dir")
group.add_argument("--thresholdtgt", metavar="N", default=0, type=int,
help="map words appearing less than threshold times to unknown")
group.add_argument("--thresholdsrc", metavar="N", default=0, type=int,
help="map words appearing less than threshold times to unknown")
group.add_argument("--tgtdict", metavar="FP",
help="reuse given target dictionary")
group.add_argument("--srcdict", metavar="FP",
help="reuse given source dictionary")
group.add_argument("--nwordstgt", metavar="N", default=-1, type=int,
help="number of target words to retain")
group.add_argument("--nwordssrc", metavar="N", default=-1, type=int,
help="number of source words to retain")
group.add_argument("--alignfile", metavar="ALIGN", default=None,
help="an alignment file (optional)")
parser.add_argument('--dataset-impl', metavar='FORMAT', default='mmap',
choices=get_available_dataset_impl(),
help='output dataset implementation')
group.add_argument("--joined-dictionary", action="store_true",
help="Generate joined dictionary")
group.add_argument("--only-source", action="store_true",
help="Only process the source language")
group.add_argument("--padding-factor", metavar="N", default=8, type=int,
help="Pad dictionary size to be multiple of N")
group.add_argument("--workers", metavar="N", default=1, type=int,
help="number of parallel workers")
group.add_argument("--dict-only", action='store_true',
help="if true, only builds a dictionary and then exits")
# fmt: on
return parser
def add_dataset_args(parser, train=False, gen=False):
group = parser.add_argument_group("dataset_data_loading")
gen_parser_from_dataclass(group, DatasetConfig())
# fmt: on
return group
def add_distributed_training_args(parser, default_world_size=None):
group = parser.add_argument_group("distributed_training")
if default_world_size is None:
default_world_size = max(1, torch.cuda.device_count())
gen_parser_from_dataclass(
group, DistributedTrainingConfig(distributed_world_size=default_world_size)
)
return group
def add_optimization_args(parser):
group = parser.add_argument_group("optimization")
# fmt: off
gen_parser_from_dataclass(group, OptimizationConfig())
# fmt: on
return group
def add_checkpoint_args(parser):
group = parser.add_argument_group("checkpoint")
# fmt: off
gen_parser_from_dataclass(group, CheckpointConfig())
# fmt: on
return group
def add_common_eval_args(group):
gen_parser_from_dataclass(group, CommonEvalConfig())
def add_eval_lm_args(parser):
group = parser.add_argument_group("LM Evaluation")
add_common_eval_args(group)
gen_parser_from_dataclass(group, EvalLMConfig())
def add_generation_args(parser):
group = parser.add_argument_group("Generation")
add_common_eval_args(group)
gen_parser_from_dataclass(group, GenerationConfig())
return group
def add_speech_generation_args(parser):
group = parser.add_argument_group("Speech Generation")
add_common_eval_args(group) # NOTE: remove_bpe is not needed
# fmt: off
group.add_argument('--eos_prob_threshold', default=0.5, type=float,
help='terminate when eos probability exceeds this')
# fmt: on
return group
def add_interactive_args(parser):
group = parser.add_argument_group("Interactive")
gen_parser_from_dataclass(group, InteractiveConfig())
def add_model_args(parser):
group = parser.add_argument_group("Model configuration")
# fmt: off
# Model definitions can be found under fairseq/models/
#
# The model architecture can be specified in several ways.
# In increasing order of priority:
# 1) model defaults (lowest priority)
# 2) --arch argument
# 3) --encoder/decoder-* arguments (highest priority)
from fairseq.models import ARCH_MODEL_REGISTRY
group.add_argument('--arch', '-a', metavar='ARCH',
choices=ARCH_MODEL_REGISTRY.keys(),
help='model architecture')
# fmt: on
return group
def get_args(
data: Union[str, Path],
task: str = "translation",
arch: str = "transformer",
**overrides
):
parser = get_training_parser(task)
args = parse_args_and_arch(parser, [str(data), "--task", task, "--arch", arch])
for k, v in overrides.items():
setattr(args, k, v)
return args
def add_ema_args(parser):
group = parser.add_argument_group("EMA configuration")
gen_parser_from_dataclass(group, EMAConfig())
def add_deepspeed_args(parser):
pass
# group = parser.add_argument_group("DeepSpeed")
# group.add_argument('--deepspeed', nargs='?', const=True, default=False,
# help="Enable DeepSpeed with auto-generated config with flag and " \
# "no argument, or pass an argument to a ds_config json to use.")
# group.add_argument("--zero", default=0, type=int, help="enable a specific ZeRO stage")
# group.add_argument('--exit-interval', type=int, default=None,
# help='Exit the program after the iteration is divisible '
# 'by this value.')
| KosmosX-API-main | kosmosX/fairseq/fairseq/options.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from collections import namedtuple
import numpy as np
import torch
from fairseq import utils
DecoderOut = namedtuple(
"IterativeRefinementDecoderOut",
["output_tokens", "output_scores", "attn", "step", "max_step", "history"],
)
class IterativeRefinementGenerator(object):
def __init__(
self,
tgt_dict,
models=None,
eos_penalty=0.0,
max_iter=10,
max_ratio=2,
beam_size=1,
decoding_format=None,
retain_dropout=False,
adaptive=True,
retain_history=False,
reranking=False,
):
"""
Generates translations based on iterative refinement.
Args:
tgt_dict: target dictionary
eos_penalty: if > 0.0, it penalized early-stopping in decoding
max_iter: maximum number of refinement iterations
max_ratio: generate sequences of maximum length ax, where x is the source length
decoding_format: decoding mode in {'unigram', 'ensemble', 'vote', 'dp', 'bs'}
retain_dropout: retaining dropout in the inference
adaptive: decoding with early stop
"""
self.bos = tgt_dict.bos()
self.pad = tgt_dict.pad()
self.unk = tgt_dict.unk()
self.eos = tgt_dict.eos()
self.vocab_size = len(tgt_dict)
self.eos_penalty = eos_penalty
self.max_iter = max_iter
self.max_ratio = max_ratio
self.beam_size = beam_size
self.reranking = reranking
self.decoding_format = decoding_format
self.retain_dropout = retain_dropout
self.retain_history = retain_history
self.adaptive = adaptive
self.models = models
def generate_batched_itr(
self,
data_itr,
maxlen_a=None,
maxlen_b=None,
cuda=False,
timer=None,
prefix_size=0,
):
"""Iterate over a batched dataset and yield individual translations.
Args:
maxlen_a/b: generate sequences of maximum length ax + b,
where x is the source sentence length.
cuda: use GPU for generation
timer: StopwatchMeter for timing generations.
"""
for sample in data_itr:
if "net_input" not in sample:
continue
if timer is not None:
timer.start()
with torch.no_grad():
hypos = self.generate(
self.models,
sample,
prefix_tokens=sample["target"][:, :prefix_size]
if prefix_size > 0
else None,
)
if timer is not None:
timer.stop(sample["ntokens"])
for i, id in enumerate(sample["id"]):
# remove padding
src = utils.strip_pad(sample["net_input"]["src_tokens"][i, :], self.pad)
ref = utils.strip_pad(sample["target"][i, :], self.pad)
yield id, src, ref, hypos[i]
@torch.no_grad()
def generate(self, models, sample, prefix_tokens=None, constraints=None):
if constraints is not None:
raise NotImplementedError(
"Constrained decoding with the IterativeRefinementGenerator is not supported"
)
# TODO: iterative refinement generator does not support ensemble for now.
if not self.retain_dropout:
for model in models:
model.eval()
model, reranker = models[0], None
if self.reranking:
assert len(models) > 1, "Assuming the last checkpoint is the reranker"
assert (
self.beam_size > 1
), "Reranking requires multiple translation for each example"
reranker = models[-1]
models = models[:-1]
if len(models) > 1 and hasattr(model, "enable_ensemble"):
assert model.allow_ensemble, "{} does not support ensembling".format(
model.__class__.__name__
)
model.enable_ensemble(models)
# TODO: better encoder inputs?
src_tokens = sample["net_input"]["src_tokens"]
src_lengths = sample["net_input"]["src_lengths"]
bsz, src_len = src_tokens.size()
# initialize
encoder_out = model.forward_encoder([src_tokens, src_lengths])
prev_decoder_out = model.initialize_output_tokens(encoder_out, src_tokens)
if self.beam_size > 1:
assert (
model.allow_length_beam
), "{} does not support decoding with length beam.".format(
model.__class__.__name__
)
# regenerate data based on length-beam
length_beam_order = (
utils.new_arange(src_tokens, self.beam_size, bsz).t().reshape(-1)
)
encoder_out = model.encoder.reorder_encoder_out(
encoder_out, length_beam_order
)
prev_decoder_out = model.regenerate_length_beam(
prev_decoder_out, self.beam_size
)
bsz = bsz * self.beam_size
sent_idxs = torch.arange(bsz)
prev_output_tokens = prev_decoder_out.output_tokens.clone()
if self.retain_history:
prev_decoder_out = prev_decoder_out._replace(history=[prev_output_tokens])
finalized = [[] for _ in range(bsz)]
def is_a_loop(x, y, s, a):
b, l_x, l_y = x.size(0), x.size(1), y.size(1)
if l_x > l_y:
y = torch.cat([y, x.new_zeros(b, l_x - l_y).fill_(self.pad)], 1)
s = torch.cat([s, s.new_zeros(b, l_x - l_y)], 1)
if a is not None:
a = torch.cat([a, a.new_zeros(b, l_x - l_y, a.size(2))], 1)
elif l_x < l_y:
x = torch.cat([x, y.new_zeros(b, l_y - l_x).fill_(self.pad)], 1)
return (x == y).all(1), y, s, a
def finalized_hypos(step, prev_out_token, prev_out_score, prev_out_attn):
cutoff = prev_out_token.ne(self.pad)
tokens = prev_out_token[cutoff]
if prev_out_score is None:
scores, score = None, None
else:
scores = prev_out_score[cutoff]
score = scores.mean()
if prev_out_attn is None:
hypo_attn, alignment = None, None
else:
hypo_attn = prev_out_attn[cutoff]
alignment = hypo_attn.max(dim=1)[1]
return {
"steps": step,
"tokens": tokens,
"positional_scores": scores,
"score": score,
"hypo_attn": hypo_attn,
"alignment": alignment,
}
for step in range(self.max_iter + 1):
decoder_options = {
"eos_penalty": self.eos_penalty,
"max_ratio": self.max_ratio,
"decoding_format": self.decoding_format,
}
prev_decoder_out = prev_decoder_out._replace(
step=step,
max_step=self.max_iter + 1,
)
decoder_out = model.forward_decoder(
prev_decoder_out, encoder_out, **decoder_options
)
if self.adaptive:
# terminate if there is a loop
terminated, out_tokens, out_scores, out_attn = is_a_loop(
prev_output_tokens,
decoder_out.output_tokens,
decoder_out.output_scores,
decoder_out.attn,
)
decoder_out = decoder_out._replace(
output_tokens=out_tokens,
output_scores=out_scores,
attn=out_attn,
)
else:
terminated = decoder_out.output_tokens.new_zeros(
decoder_out.output_tokens.size(0)
).bool()
if step == self.max_iter: # reach last iteration, terminate
terminated.fill_(1)
# collect finalized sentences
finalized_idxs = sent_idxs[terminated]
finalized_tokens = decoder_out.output_tokens[terminated]
finalized_scores = decoder_out.output_scores[terminated]
finalized_attn = (
None
if (decoder_out.attn is None or decoder_out.attn.size(0) == 0)
else decoder_out.attn[terminated]
)
if self.retain_history:
finalized_history_tokens = [h[terminated] for h in decoder_out.history]
for i in range(finalized_idxs.size(0)):
finalized[finalized_idxs[i]] = [
finalized_hypos(
step,
finalized_tokens[i],
finalized_scores[i],
None if finalized_attn is None else finalized_attn[i],
)
]
if self.retain_history:
finalized[finalized_idxs[i]][0]["history"] = []
for j in range(len(finalized_history_tokens)):
finalized[finalized_idxs[i]][0]["history"].append(
finalized_hypos(
step, finalized_history_tokens[j][i], None, None
)
)
# check if all terminated
if terminated.sum() == terminated.size(0):
break
# for next step
not_terminated = ~terminated
prev_decoder_out = decoder_out._replace(
output_tokens=decoder_out.output_tokens[not_terminated],
output_scores=decoder_out.output_scores[not_terminated],
attn=decoder_out.attn[not_terminated]
if (decoder_out.attn is not None and decoder_out.attn.size(0) > 0)
else None,
history=[h[not_terminated] for h in decoder_out.history]
if decoder_out.history is not None
else None,
)
encoder_out = model.encoder.reorder_encoder_out(
encoder_out, not_terminated.nonzero(as_tuple=False).squeeze()
)
sent_idxs = sent_idxs[not_terminated]
prev_output_tokens = prev_decoder_out.output_tokens.clone()
if self.beam_size > 1:
if reranker is not None:
finalized = self.rerank(
reranker, finalized, [src_tokens, src_lengths], self.beam_size
)
# aggregate information from length beam
finalized = [
finalized[
np.argmax(
[
finalized[self.beam_size * i + j][0]["score"]
for j in range(self.beam_size)
]
)
+ self.beam_size * i
]
for i in range(len(finalized) // self.beam_size)
]
return finalized
def rerank(self, reranker, finalized, encoder_input, beam_size):
def rebuild_batch(finalized):
finalized_tokens = [f[0]["tokens"] for f in finalized]
finalized_maxlen = max(f.size(0) for f in finalized_tokens)
final_output_tokens = (
finalized_tokens[0]
.new_zeros(len(finalized_tokens), finalized_maxlen)
.fill_(self.pad)
)
for i, f in enumerate(finalized_tokens):
final_output_tokens[i, : f.size(0)] = f
return final_output_tokens
final_output_tokens = rebuild_batch(finalized)
final_output_tokens[
:, 0
] = self.eos # autoregressive model assumes starting with EOS
reranker_encoder_out = reranker.encoder(*encoder_input)
length_beam_order = (
utils.new_arange(
final_output_tokens, beam_size, reranker_encoder_out.encoder_out.size(1)
)
.t()
.reshape(-1)
)
reranker_encoder_out = reranker.encoder.reorder_encoder_out(
reranker_encoder_out, length_beam_order
)
reranking_scores = reranker.get_normalized_probs(
reranker.decoder(final_output_tokens[:, :-1], reranker_encoder_out),
True,
None,
)
reranking_scores = reranking_scores.gather(2, final_output_tokens[:, 1:, None])
reranking_masks = final_output_tokens[:, 1:].ne(self.pad)
reranking_scores = (
reranking_scores[:, :, 0].masked_fill_(~reranking_masks, 0).sum(1)
)
reranking_scores = reranking_scores / reranking_masks.sum(1).type_as(
reranking_scores
)
for i in range(len(finalized)):
finalized[i][0]["score"] = reranking_scores[i]
return finalized
| KosmosX-API-main | kosmosX/fairseq/fairseq/iterative_refinement_generator.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import torch
logger = logging.getLogger(__name__)
class NanDetector:
"""
Detects the first NaN or Inf in forward and/or backward pass and logs, together with the module name
"""
def __init__(self, model, forward=True, backward=True):
self.bhooks = []
self.fhooks = []
self.forward = forward
self.backward = backward
self.named_parameters = list(model.named_parameters())
self.reset()
for name, mod in model.named_modules():
mod.__module_name = name
self.add_hooks(mod)
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, exc_traceback):
# Dump out all model gnorms to enable better debugging
norm = {}
gradients = {}
for name, param in self.named_parameters:
if param.grad is not None:
grad_norm = torch.norm(param.grad.data.float(), p=2)
norm[name] = grad_norm.item()
if torch.isnan(grad_norm).any() or torch.isinf(grad_norm).any():
gradients[name] = param.grad.data
if len(gradients) > 0:
logger.info("Detected nan/inf grad norm, dumping norms...")
logger.info(f"norms: {norm}")
logger.info(f"gradients: {gradients}")
self.close()
def add_hooks(self, module):
if self.forward:
self.fhooks.append(module.register_forward_hook(self.fhook_fn))
if self.backward:
self.bhooks.append(module.register_backward_hook(self.bhook_fn))
def reset(self):
self.has_printed_f = False
self.has_printed_b = False
def _detect(self, tensor, name, backward):
err = None
if (
torch.is_floating_point(tensor)
# single value tensors (like the loss) will not provide much info
and tensor.numel() >= 2
):
with torch.no_grad():
if torch.isnan(tensor).any():
err = "NaN"
elif torch.isinf(tensor).any():
err = "Inf"
if err is not None:
err = f"{err} detected in output of {name}, shape: {tensor.shape}, {'backward' if backward else 'forward'}"
return err
def _apply(self, module, inp, x, backward):
if torch.is_tensor(x):
if isinstance(inp, tuple) and len(inp) > 0:
inp = inp[0]
err = self._detect(x, module.__module_name, backward)
if err is not None:
if torch.is_tensor(inp) and not backward:
err += (
f" input max: {inp.max().item()}, input min: {inp.min().item()}"
)
has_printed_attr = "has_printed_b" if backward else "has_printed_f"
logger.warning(err)
setattr(self, has_printed_attr, True)
elif isinstance(x, dict):
for v in x.values():
self._apply(module, inp, v, backward)
elif isinstance(x, list) or isinstance(x, tuple):
for v in x:
self._apply(module, inp, v, backward)
def fhook_fn(self, module, inp, output):
if not self.has_printed_f:
self._apply(module, inp, output, backward=False)
def bhook_fn(self, module, inp, output):
if not self.has_printed_b:
self._apply(module, inp, output, backward=True)
def close(self):
for hook in self.fhooks + self.bhooks:
hook.remove()
| KosmosX-API-main | kosmosX/fairseq/fairseq/nan_detector.py |
# Originally from Microsoft Corporation.
# Licensed under the MIT License.
""" Wrapper for ngram_repeat_block cuda extension """
import math
import warnings
from typing import Dict, List
import torch
from torch import nn
try:
from fairseq import ngram_repeat_block_cuda
EXTENSION_BUILT = True
except ImportError:
EXTENSION_BUILT = False
def is_cuda_extension_usable() -> bool:
"""Check whether ngram_repeat_block_cuda is built properly"""
if not EXTENSION_BUILT or not torch.cuda.is_available():
return False
bsz = 2
tokens = torch.tensor([[4, 4, 3, 2], [1, 2, 3, 4]], dtype=torch.long, device="cuda")
lprobs = torch.rand((8, 12), device="cuda")
try:
outputs = ngram_repeat_block_cuda.forward(tokens, lprobs, bsz, 3, 4, 3)
outputs = outputs + 4 # This line breaks if the extension is built incorrectly.
return True
except RuntimeError:
warnings.warn(
"NGramRepeatBlock extension must be rebuilt."
'Run TORCH_CUDA_ARCH_LIST="6.0;6.1;7.0" python setup.py build_ext --inplace'
)
return False
class NGramRepeatBlock(nn.Module):
"""Wrapper class for calling ngram_repeat_block cuda extension"""
def __init__(self, no_repeat_ngram_size: int, use_extension: bool = True):
super().__init__()
self.use_extension = is_cuda_extension_usable() if use_extension else False
self.no_repeat_ngram_size = no_repeat_ngram_size
def reset_parameters(self):
pass
@torch.jit.unused
def call_cuda_extension(
self,
tokens,
lprobs,
bsz: int,
beam_size: int,
step: int,
):
return ngram_repeat_block_cuda.forward(
tokens, lprobs, bsz, step, beam_size, self.no_repeat_ngram_size
)
def forward(
self,
tokens,
lprobs,
bsz: int,
beam_size: int,
step: int,
):
"""
Args:
tokens(Tensor): Input tokens(Bsz*beam, seq_len)
lprobs(Tensor): likelihood probability,
Expected to be updated in place.(Bsz*beam, vocab_size)
bsz(int): batch size
step(int): current step
beam_size(int): beam size
no_repeat_ngram_size(int): Ngram size
"""
msg = f"expected {bsz *beam_size} got"
assert tokens.size(0) == bsz * beam_size, f"{msg} {tokens.size(0)}"
assert lprobs.size(0) == bsz * beam_size, f"{msg} {lprobs.size(0)}"
if self.use_extension:
return self.call_cuda_extension(tokens, lprobs, bsz, beam_size, step)
else:
return self._no_repeat_ngram(
tokens,
lprobs,
bsz,
beam_size,
step,
)
def _no_repeat_ngram(self, tokens, lprobs, bsz: int, beam_size: int, step: int):
"""For each hypothesis generate a list of previous ngrams and set associated lprobs to -inf"""
gen_ngrams: List[Dict[str, List[int]]] = [
torch.jit.annotate(Dict[str, List[int]], {})
for bbsz_idx in range(bsz * beam_size)
]
cpu_tokens = tokens.cpu()
for bbsz_idx in range(bsz * beam_size):
gen_tokens: List[int] = cpu_tokens[bbsz_idx].tolist()
for ngram in self.transpose_list(
[gen_tokens[i:] for i in range(self.no_repeat_ngram_size)]
):
key = ",".join([str(x) for x in ngram[:-1]])
gen_ngrams[bbsz_idx][key] = gen_ngrams[bbsz_idx].get(
key, torch.jit.annotate(List[int], [])
) + [ngram[-1]]
if step + 2 - self.no_repeat_ngram_size >= 0:
# no banned tokens if we haven't generated no_repeat_ngram_size tokens yet
banned_tokens = [
self.calculate_banned_tokens(
tokens, step, gen_ngrams, self.no_repeat_ngram_size, bbsz_idx
)
for bbsz_idx in range(bsz * beam_size)
]
else:
banned_tokens = [
torch.jit.annotate(List[int], []) for bbsz_idx in range(bsz * beam_size)
]
for bbsz_idx in range(bsz * beam_size):
lprobs[bbsz_idx][
torch.tensor(banned_tokens[bbsz_idx], dtype=torch.int64)
] = torch.tensor(-math.inf).to(lprobs)
return lprobs
@staticmethod
def calculate_banned_tokens(
tokens,
step: int,
gen_ngrams: List[Dict[str, List[int]]],
no_repeat_ngram_size: int,
bbsz_idx: int,
):
tokens_list: List[int] = tokens[
bbsz_idx, step + 2 - no_repeat_ngram_size : step + 1
].tolist()
# before decoding the next token, prevent decoding of ngrams that have already appeared
ngram_index = ",".join([str(x) for x in tokens_list])
return gen_ngrams[bbsz_idx].get(ngram_index, torch.jit.annotate(List[int], []))
@staticmethod
def transpose_list(l: List[List[int]]):
# GeneratorExp aren't supported in TS so ignoring the lint
min_len = min([len(x) for x in l]) # noqa
l2 = [[row[i] for row in l] for i in range(min_len)]
return l2
| KosmosX-API-main | kosmosX/fairseq/fairseq/ngram_repeat_block.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from argparse import Namespace
from typing import Union
from fairseq.dataclass import FairseqDataclass
from fairseq.dataclass.utils import merge_with_parent
from hydra.core.config_store import ConfigStore
from omegaconf import DictConfig
REGISTRIES = {}
def setup_registry(registry_name: str, base_class=None, default=None, required=False):
assert registry_name.startswith("--")
registry_name = registry_name[2:].replace("-", "_")
REGISTRY = {}
REGISTRY_CLASS_NAMES = set()
DATACLASS_REGISTRY = {}
# maintain a registry of all registries
if registry_name in REGISTRIES:
return # registry already exists
REGISTRIES[registry_name] = {
"registry": REGISTRY,
"default": default,
"dataclass_registry": DATACLASS_REGISTRY,
}
def build_x(cfg: Union[DictConfig, str, Namespace], *extra_args, **extra_kwargs):
if isinstance(cfg, DictConfig):
choice = cfg._name
if choice and choice in DATACLASS_REGISTRY:
dc = DATACLASS_REGISTRY[choice]
cfg = merge_with_parent(dc(), cfg)
elif isinstance(cfg, str):
choice = cfg
if choice in DATACLASS_REGISTRY:
cfg = DATACLASS_REGISTRY[choice]()
else:
choice = getattr(cfg, registry_name, None)
if choice in DATACLASS_REGISTRY:
cfg = DATACLASS_REGISTRY[choice].from_namespace(cfg)
if choice is None:
if required:
raise ValueError("{} is required!".format(registry_name))
return None
cls = REGISTRY[choice]
if hasattr(cls, "build_" + registry_name):
builder = getattr(cls, "build_" + registry_name)
else:
builder = cls
return builder(cfg, *extra_args, **extra_kwargs)
def register_x(name, dataclass=None):
def register_x_cls(cls):
if name in REGISTRY:
raise ValueError(
"Cannot register duplicate {} ({})".format(registry_name, name)
)
if cls.__name__ in REGISTRY_CLASS_NAMES:
raise ValueError(
"Cannot register {} with duplicate class name ({})".format(
registry_name, cls.__name__
)
)
if base_class is not None and not issubclass(cls, base_class):
raise ValueError(
"{} must extend {}".format(cls.__name__, base_class.__name__)
)
if dataclass is not None and not issubclass(dataclass, FairseqDataclass):
raise ValueError(
"Dataclass {} must extend FairseqDataclass".format(dataclass)
)
cls.__dataclass = dataclass
if cls.__dataclass is not None:
DATACLASS_REGISTRY[name] = cls.__dataclass
cs = ConfigStore.instance()
node = dataclass()
node._name = name
cs.store(name=name, group=registry_name, node=node, provider="fairseq")
REGISTRY[name] = cls
return cls
return register_x_cls
return build_x, register_x, REGISTRY, DATACLASS_REGISTRY
| KosmosX-API-main | kosmosX/fairseq/fairseq/registry.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import numpy as np
from fairseq.data.audio.speech_to_text_dataset import S2TDataConfig
class SpeechGenerator(object):
def __init__(self, model, vocoder, data_cfg: S2TDataConfig):
self.model = model
self.vocoder = vocoder
stats_npz_path = data_cfg.global_cmvn_stats_npz
self.gcmvn_stats = None
if stats_npz_path is not None:
self.gcmvn_stats = np.load(stats_npz_path)
def gcmvn_denormalize(self, x):
# x: B x T x C
if self.gcmvn_stats is None:
return x
mean = torch.from_numpy(self.gcmvn_stats["mean"]).to(x)
std = torch.from_numpy(self.gcmvn_stats["std"]).to(x)
assert len(x.shape) == 3 and mean.shape[0] == std.shape[0] == x.shape[2]
x = x * std.view(1, 1, -1).expand_as(x)
return x + mean.view(1, 1, -1).expand_as(x)
def get_waveform(self, feat):
# T x C -> T
return None if self.vocoder is None else self.vocoder(feat).squeeze(0)
class AutoRegressiveSpeechGenerator(SpeechGenerator):
def __init__(
self,
model,
vocoder,
data_cfg,
max_iter: int = 6000,
eos_prob_threshold: float = 0.5,
):
super().__init__(model, vocoder, data_cfg)
self.max_iter = max_iter
self.eos_prob_threshold = eos_prob_threshold
@torch.no_grad()
def generate(self, model, sample, has_targ=False, **kwargs):
model.eval()
src_tokens = sample["net_input"]["src_tokens"]
src_lengths = sample["net_input"]["src_lengths"]
bsz, src_len = src_tokens.size()[:2]
n_frames_per_step = model.decoder.n_frames_per_step
out_dim = model.decoder.out_dim
raw_dim = out_dim // n_frames_per_step
# initialize
encoder_out = model.forward_encoder(
src_tokens, src_lengths, speaker=sample["speaker"]
)
incremental_state = {}
feat, attn, eos_prob = [], [], []
finished = src_tokens.new_zeros((bsz,)).bool()
out_lens = src_lengths.new_zeros((bsz,)).long().fill_(self.max_iter)
prev_feat_out = encoder_out["encoder_out"][0].new_zeros(bsz, 1, out_dim)
for step in range(self.max_iter):
cur_out_lens = out_lens.clone()
cur_out_lens.masked_fill_(cur_out_lens.eq(self.max_iter), step + 1)
_, cur_eos_out, cur_extra = model.forward_decoder(
prev_feat_out,
encoder_out=encoder_out,
incremental_state=incremental_state,
target_lengths=cur_out_lens,
speaker=sample["speaker"],
**kwargs
)
cur_eos_prob = torch.sigmoid(cur_eos_out).squeeze(2)
feat.append(cur_extra["feature_out"])
attn.append(cur_extra["attn"])
eos_prob.append(cur_eos_prob)
cur_finished = cur_eos_prob.squeeze(1) > self.eos_prob_threshold
out_lens.masked_fill_((~finished) & cur_finished, step + 1)
finished = finished | cur_finished
if finished.sum().item() == bsz:
break
prev_feat_out = cur_extra["feature_out"]
feat = torch.cat(feat, dim=1)
feat = model.decoder.postnet(feat) + feat
eos_prob = torch.cat(eos_prob, dim=1)
attn = torch.cat(attn, dim=2)
alignment = attn.max(dim=1)[1]
feat = feat.reshape(bsz, -1, raw_dim)
feat = self.gcmvn_denormalize(feat)
eos_prob = eos_prob.repeat_interleave(n_frames_per_step, dim=1)
attn = attn.repeat_interleave(n_frames_per_step, dim=2)
alignment = alignment.repeat_interleave(n_frames_per_step, dim=1)
out_lens = out_lens * n_frames_per_step
finalized = [
{
"feature": feat[b, :out_len],
"eos_prob": eos_prob[b, :out_len],
"attn": attn[b, :, :out_len],
"alignment": alignment[b, :out_len],
"waveform": self.get_waveform(feat[b, :out_len]),
}
for b, out_len in zip(range(bsz), out_lens)
]
if has_targ:
assert sample["target"].size(-1) == out_dim
tgt_feats = sample["target"].view(bsz, -1, raw_dim)
tgt_feats = self.gcmvn_denormalize(tgt_feats)
tgt_lens = sample["target_lengths"] * n_frames_per_step
for b, (f, l) in enumerate(zip(tgt_feats, tgt_lens)):
finalized[b]["targ_feature"] = f[:l]
finalized[b]["targ_waveform"] = self.get_waveform(f[:l])
return finalized
class NonAutoregressiveSpeechGenerator(SpeechGenerator):
@torch.no_grad()
def generate(self, model, sample, has_targ=False, **kwargs):
model.eval()
bsz, max_src_len = sample["net_input"]["src_tokens"].size()
n_frames_per_step = model.encoder.n_frames_per_step
out_dim = model.encoder.out_dim
raw_dim = out_dim // n_frames_per_step
feat, feat_post, out_lens, log_dur_out, _, _ = model(
src_tokens=sample["net_input"]["src_tokens"],
src_lengths=sample["net_input"]["src_lengths"],
prev_output_tokens=sample["net_input"]["prev_output_tokens"],
incremental_state=None,
target_lengths=sample["target_lengths"],
speaker=sample["speaker"],
)
if feat_post is not None:
feat = feat_post
feat = feat.view(bsz, -1, raw_dim)
feat = self.gcmvn_denormalize(feat)
dur_out = torch.clamp(torch.round(torch.exp(log_dur_out) - 1).long(), min=0)
def get_dur_plot_data(d):
r = []
for i, dd in enumerate(d):
r += [i + 1] * dd.item()
return r
out_lens = out_lens * n_frames_per_step
finalized = [
{
"feature": feat[b, :l] if l > 0 else feat.new_zeros([1, raw_dim]),
"waveform": self.get_waveform(
feat[b, :l] if l > 0 else feat.new_zeros([1, raw_dim])
),
"attn": feat.new_tensor(get_dur_plot_data(dur_out[b])),
}
for b, l in zip(range(bsz), out_lens)
]
if has_targ:
tgt_feats = sample["target"].view(bsz, -1, raw_dim)
tgt_feats = self.gcmvn_denormalize(tgt_feats)
tgt_lens = sample["target_lengths"] * n_frames_per_step
for b, (f, l) in enumerate(zip(tgt_feats, tgt_lens)):
finalized[b]["targ_feature"] = f[:l]
finalized[b]["targ_waveform"] = self.get_waveform(f[:l])
return finalized
class TeacherForcingAutoRegressiveSpeechGenerator(AutoRegressiveSpeechGenerator):
@torch.no_grad()
def generate(self, model, sample, has_targ=False, **kwargs):
model.eval()
src_tokens = sample["net_input"]["src_tokens"]
src_lens = sample["net_input"]["src_lengths"]
prev_out_tokens = sample["net_input"]["prev_output_tokens"]
tgt_lens = sample["target_lengths"]
n_frames_per_step = model.decoder.n_frames_per_step
raw_dim = model.decoder.out_dim // n_frames_per_step
bsz = src_tokens.shape[0]
feat, eos_prob, extra = model(
src_tokens,
src_lens,
prev_out_tokens,
incremental_state=None,
target_lengths=tgt_lens,
speaker=sample["speaker"],
)
attn = extra["attn"] # B x T_s x T_t
alignment = attn.max(dim=1)[1]
feat = feat.reshape(bsz, -1, raw_dim)
feat = self.gcmvn_denormalize(feat)
eos_prob = eos_prob.repeat_interleave(n_frames_per_step, dim=1)
attn = attn.repeat_interleave(n_frames_per_step, dim=2)
alignment = alignment.repeat_interleave(n_frames_per_step, dim=1)
tgt_lens = sample["target_lengths"] * n_frames_per_step
finalized = [
{
"feature": feat[b, :tgt_len],
"eos_prob": eos_prob[b, :tgt_len],
"attn": attn[b, :, :tgt_len],
"alignment": alignment[b, :tgt_len],
"waveform": self.get_waveform(feat[b, :tgt_len]),
}
for b, tgt_len in zip(range(bsz), tgt_lens)
]
if has_targ:
tgt_feats = sample["target"].view(bsz, -1, raw_dim)
tgt_feats = self.gcmvn_denormalize(tgt_feats)
for b, (f, l) in enumerate(zip(tgt_feats, tgt_lens)):
finalized[b]["targ_feature"] = f[:l]
finalized[b]["targ_waveform"] = self.get_waveform(f[:l])
return finalized
| KosmosX-API-main | kosmosX/fairseq/fairseq/speech_generator.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import typing as tp
def _safe_readline(fd) -> str:
pos = fd.tell()
while True:
try:
return fd.readline()
except UnicodeDecodeError:
pos -= 1
fd.seek(pos) # search where this character begins
def find_offsets(filename: str, num_chunks: int) -> tp.List[int]:
"""
given a file and a number of chuncks, find the offsets in the file
to be able to chunk around full lines.
"""
with open(filename, "r", encoding="utf-8") as f:
size = os.fstat(f.fileno()).st_size
chunk_size = size // num_chunks
offsets = [0 for _ in range(num_chunks + 1)]
for i in range(1, num_chunks):
f.seek(chunk_size * i)
_safe_readline(f)
offsets[i] = f.tell()
offsets[-1] = size
return offsets
class ChunkLineIterator:
"""
Iterator to properly iterate over lines of a file chunck.
"""
def __init__(self, fd, start_offset: int, end_offset: int):
self._fd = fd
self._start_offset = start_offset
self._end_offset = end_offset
def __iter__(self) -> tp.Iterable[str]:
self._fd.seek(self._start_offset)
# next(f) breaks f.tell(), hence readline() must be used
line = _safe_readline(self._fd)
while line:
pos = self._fd.tell()
# f.tell() does not always give the byte position in the file
# sometimes it skips to a very large number
# it is unlikely that through a normal read we go from
# end bytes to end + 2**32 bytes (4 GB) and this makes it unlikely
# that the procedure breaks by the undeterministic behavior of
# f.tell()
if (
self._end_offset > 0
and pos > self._end_offset
and pos < self._end_offset + 2 ** 32
):
break
yield line
line = self._fd.readline()
class Chunker:
"""
contextmanager to read a chunck of a file line by line.
"""
def __init__(self, path: str, start_offset: int, end_offset: int):
self.path = path
self.start_offset = start_offset
self.end_offset = end_offset
def __enter__(self) -> ChunkLineIterator:
self.fd = open(self.path, "r", encoding="utf-8")
return ChunkLineIterator(self.fd, self.start_offset, self.end_offset)
def __exit__(self, exc_type, exc_val, exc_tb) -> None:
self.fd.close()
| KosmosX-API-main | kosmosX/fairseq/fairseq/file_chunker_utils.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""isort:skip_file"""
import os
import sys
try:
from .version import __version__ # noqa
except ImportError:
version_txt = os.path.join(os.path.dirname(__file__), "version.txt")
with open(version_txt) as f:
__version__ = f.read().strip()
__all__ = ["pdb"]
# backwards compatibility to support `from fairseq.X import Y`
from fairseq.distributed import utils as distributed_utils
from fairseq.logging import meters, metrics, progress_bar # noqa
sys.modules["fairseq.distributed_utils"] = distributed_utils
sys.modules["fairseq.meters"] = meters
sys.modules["fairseq.metrics"] = metrics
sys.modules["fairseq.progress_bar"] = progress_bar
# initialize hydra
from fairseq.dataclass.initialize import hydra_init
hydra_init()
import fairseq.criterions # noqa
import fairseq.distributed # noqa
import fairseq.models # noqa
import fairseq.modules # noqa
import fairseq.optim # noqa
import fairseq.optim.lr_scheduler # noqa
import fairseq.pdb # noqa
import fairseq.scoring # noqa
import fairseq.tasks # noqa
import fairseq.token_generation_constraints # noqa
import fairseq.benchmark # noqa
import fairseq.model_parallel # noqa
| KosmosX-API-main | kosmosX/fairseq/fairseq/__init__.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
from typing import Dict, List, Optional
import sys
import torch
import torch.nn as nn
from fairseq import search, utils
from fairseq.data import data_utils
from fairseq.models import FairseqIncrementalDecoder
from torch import Tensor
from fairseq.ngram_repeat_block import NGramRepeatBlock
class SequenceGenerator(nn.Module):
def __init__(
self,
models,
tgt_dict,
beam_size=1,
max_len_a=0,
max_len_b=200,
max_len=0,
min_len=1,
normalize_scores=True,
len_penalty=1.0,
unk_penalty=0.0,
temperature=1.0,
match_source_len=False,
no_repeat_ngram_size=0,
search_strategy=None,
eos=None,
symbols_to_strip_from_output=None,
lm_model=None,
lm_weight=1.0,
):
"""Generates translations of a given source sentence.
Args:
models (List[~fairseq.models.FairseqModel]): ensemble of models,
currently support fairseq.models.TransformerModel for scripting
beam_size (int, optional): beam width (default: 1)
max_len_a/b (int, optional): generate sequences of maximum length
ax + b, where x is the source length
max_len (int, optional): the maximum length of the generated output
(not including end-of-sentence)
min_len (int, optional): the minimum length of the generated output
(not including end-of-sentence)
normalize_scores (bool, optional): normalize scores by the length
of the output (default: True)
len_penalty (float, optional): length penalty, where <1.0 favors
shorter, >1.0 favors longer sentences (default: 1.0)
unk_penalty (float, optional): unknown word penalty, where <0
produces more unks, >0 produces fewer (default: 0.0)
temperature (float, optional): temperature, where values
>1.0 produce more uniform samples and values <1.0 produce
sharper samples (default: 1.0)
match_source_len (bool, optional): outputs should match the source
length (default: False)
"""
super().__init__()
if isinstance(models, EnsembleModel):
self.model = models
else:
self.model = EnsembleModel(models)
self.tgt_dict = tgt_dict
self.pad = tgt_dict.pad()
self.unk = tgt_dict.unk()
self.eos = tgt_dict.eos() if eos is None else eos
self.symbols_to_strip_from_output = (
symbols_to_strip_from_output.union({self.eos})
if symbols_to_strip_from_output is not None
else {self.eos}
)
self.vocab_size = len(tgt_dict)
self.beam_size = beam_size
# the max beam size is the dictionary size - 1, since we never select pad
self.beam_size = min(beam_size, self.vocab_size - 1)
self.max_len_a = max_len_a
self.max_len_b = max_len_b
self.min_len = min_len
self.max_len = max_len or self.model.max_decoder_positions()
self.normalize_scores = normalize_scores
self.len_penalty = len_penalty
self.unk_penalty = unk_penalty
self.temperature = temperature
self.match_source_len = match_source_len
if no_repeat_ngram_size > 0:
self.repeat_ngram_blocker = NGramRepeatBlock(no_repeat_ngram_size)
else:
self.repeat_ngram_blocker = None
assert temperature > 0, "--temperature must be greater than 0"
self.search = (
search.BeamSearch(tgt_dict) if search_strategy is None else search_strategy
)
# We only need to set src_lengths in LengthConstrainedBeamSearch.
# As a module attribute, setting it would break in multithread
# settings when the model is shared.
self.should_set_src_lengths = (
hasattr(self.search, "needs_src_lengths") and self.search.needs_src_lengths
)
self.model.eval()
self.lm_model = lm_model
self.lm_weight = lm_weight
if self.lm_model is not None:
self.lm_model.eval()
def cuda(self):
self.model.cuda()
return self
@torch.no_grad()
def forward(
self,
sample: Dict[str, Dict[str, Tensor]],
prefix_tokens: Optional[Tensor] = None,
bos_token: Optional[int] = None,
):
"""Generate a batch of translations.
Args:
sample (dict): batch
prefix_tokens (torch.LongTensor, optional): force decoder to begin
with these tokens
bos_token (int, optional): beginning of sentence token
(default: self.eos)
"""
return self._generate(sample, prefix_tokens, bos_token=bos_token)
# TODO(myleott): unused, deprecate after pytorch-translate migration
def generate_batched_itr(self, data_itr, beam_size=None, cuda=False, timer=None):
"""Iterate over a batched dataset and yield individual translations.
Args:
cuda (bool, optional): use GPU for generation
timer (StopwatchMeter, optional): time generations
"""
for sample in data_itr:
s = utils.move_to_cuda(sample) if cuda else sample
if "net_input" not in s:
continue
input = s["net_input"]
# model.forward normally channels prev_output_tokens into the decoder
# separately, but SequenceGenerator directly calls model.encoder
encoder_input = {
k: v for k, v in input.items() if k != "prev_output_tokens"
}
if timer is not None:
timer.start()
with torch.no_grad():
hypos = self.generate(encoder_input)
if timer is not None:
timer.stop(sum(len(h[0]["tokens"]) for h in hypos))
for i, id in enumerate(s["id"].data):
# remove padding
src = utils.strip_pad(input["src_tokens"].data[i, :], self.pad)
ref = (
utils.strip_pad(s["target"].data[i, :], self.pad)
if s["target"] is not None
else None
)
yield id, src, ref, hypos[i]
@torch.no_grad()
def generate(
self, models, sample: Dict[str, Dict[str, Tensor]], **kwargs
) -> List[List[Dict[str, Tensor]]]:
"""Generate translations. Match the api of other fairseq generators.
Args:
models (List[~fairseq.models.FairseqModel]): ensemble of models
sample (dict): batch
prefix_tokens (torch.LongTensor, optional): force decoder to begin
with these tokens
constraints (torch.LongTensor, optional): force decoder to include
the list of constraints
bos_token (int, optional): beginning of sentence token
(default: self.eos)
"""
return self._generate(sample, **kwargs)
def _generate(
self,
sample: Dict[str, Dict[str, Tensor]],
prefix_tokens: Optional[Tensor] = None,
constraints: Optional[Tensor] = None,
bos_token: Optional[int] = None,
):
incremental_states = torch.jit.annotate(
List[Dict[str, Dict[str, Optional[Tensor]]]],
[
torch.jit.annotate(Dict[str, Dict[str, Optional[Tensor]]], {})
for i in range(self.model.models_size)
],
)
net_input = sample["net_input"]
prefix_tokens.clone()
prefix_tokens = prefix_tokens[:, 1:]
if "src_tokens" in net_input:
src_tokens = net_input["src_tokens"]
# length of the source text being the character length except EndOfSentence and pad
src_lengths = (
(src_tokens.ne(self.eos) & src_tokens.ne(self.pad)).long().sum(dim=1)
)
elif "source" in net_input:
src_tokens = net_input["source"]
src_lengths = (
net_input["padding_mask"].size(-1) - net_input["padding_mask"].sum(-1)
if net_input["padding_mask"] is not None
else torch.tensor(src_tokens.size(-1)).to(src_tokens)
)
elif "features" in net_input:
src_tokens = net_input["features"]
src_lengths = (
net_input["padding_mask"].size(-1) - net_input["padding_mask"].sum(-1)
if net_input["padding_mask"] is not None
else torch.tensor(src_tokens.size(-1)).to(src_tokens)
)
else:
raise Exception(
"expected src_tokens or source in net input. input keys: "
+ str(net_input.keys())
)
# bsz: total number of sentences in beam
# Note that src_tokens may have more than 2 dimensions (i.e. audio features)
bsz, src_len = src_tokens.size()[:2]
beam_size = self.beam_size
if constraints is not None and not self.search.supports_constraints:
raise NotImplementedError(
"Target-side constraints were provided, but search method doesn't support them"
)
# Initialize constraints, when active
self.search.init_constraints(constraints, beam_size)
max_len: int = -1
if self.match_source_len:
max_len = src_lengths.max().item()
else:
max_len = min(
int(self.max_len_a * src_len + self.max_len_b),
self.max_len - 1,
)
assert (
self.min_len <= max_len
), "min_len cannot be larger than max_len, please adjust these!"
# compute the encoder output for each beam
with torch.autograd.profiler.record_function("EnsembleModel: forward_encoder"):
encoder_outs = self.model.forward_encoder(net_input)
# placeholder of indices for bsz * beam_size to hold tokens and accumulative scores
new_order = torch.arange(bsz).view(-1, 1).repeat(1, beam_size).view(-1)
new_order = new_order.to(src_tokens.device).long()
encoder_outs = self.model.reorder_encoder_out(encoder_outs, new_order)
# ensure encoder_outs is a List.
assert encoder_outs is not None
# initialize buffers
scores = (
torch.zeros(bsz * beam_size, max_len + 1).to(src_tokens).float()
) # +1 for eos; pad is never chosen for scoring
tokens = (
torch.zeros(bsz * beam_size, max_len + 2)
.to(src_tokens)
.long()
.fill_(self.pad)
) # +2 for eos and pad
tokens[:, 0] = self.eos if bos_token is None else bos_token
attn: Optional[Tensor] = None
# A list that indicates candidates that should be ignored.
# For example, suppose we're sampling and have already finalized 2/5
# samples. Then cands_to_ignore would mark 2 positions as being ignored,
# so that we only finalize the remaining 3 samples.
cands_to_ignore = (
torch.zeros(bsz, beam_size).to(src_tokens).eq(-1)
) # forward and backward-compatible False mask
# list of completed sentences
finalized = torch.jit.annotate(
List[List[Dict[str, Tensor]]],
[torch.jit.annotate(List[Dict[str, Tensor]], []) for i in range(bsz)],
) # contains lists of dictionaries of infomation about the hypothesis being finalized at each step
# a boolean array indicating if the sentence at the index is finished or not
finished = [False for i in range(bsz)]
num_remaining_sent = bsz # number of sentences remaining
# number of candidate hypos per step
cand_size = 2 * beam_size # 2 x beam size in case half are EOS
# offset arrays for converting between different indexing schemes
bbsz_offsets = (
(torch.arange(0, bsz) * beam_size)
.unsqueeze(1)
.type_as(tokens)
.to(src_tokens.device)
)
cand_offsets = torch.arange(0, cand_size).type_as(tokens).to(src_tokens.device)
reorder_state: Optional[Tensor] = None
batch_idxs: Optional[Tensor] = None
original_batch_idxs: Optional[Tensor] = None
if "id" in sample and isinstance(sample["id"], Tensor):
original_batch_idxs = sample["id"]
else:
original_batch_idxs = torch.arange(0, bsz).type_as(tokens)
prefix_lprobs = None
multimodal_infer = False
for step in range(max_len + 1): # one extra step for EOS marker
# reorder decoder internal states based on the prev choice of beams
if reorder_state is not None:
if batch_idxs is not None:
# update beam indices to take into account removed sentences
corr = batch_idxs - torch.arange(batch_idxs.numel()).type_as(
batch_idxs
)
reorder_state.view(-1, beam_size).add_(
corr.unsqueeze(-1) * beam_size
)
original_batch_idxs = original_batch_idxs[batch_idxs]
self.model.reorder_incremental_state(incremental_states, reorder_state)
encoder_outs = self.model.reorder_encoder_out(
encoder_outs, reorder_state
)
with torch.autograd.profiler.record_function(
"EnsembleModel: forward_decoder"
):
if "img_src_tokens" in net_input and step == 0:
# import pudb; pu.db
# input: [B, D] -> [B, Beam Size, D]
img_token_size = sample['net_input']['img_src_tokens'].size()
if len(img_token_size) == 5: # few-shot setting, [B, K-shot, D(3, 244, 244)]
img_token_size[0]
img_token_size[1]
img_tokens = sample['net_input']['img_src_tokens'].cuda().view(-1, *img_token_size[2:])
else:
img_token_size[0]
img_tokens = sample['net_input']['img_src_tokens'].cuda()
multimodal_infer = True
img_features = self.model.models[0].get_image_representation(img_tokens)
first_src_tokens = sample['net_input']['src_tokens'].unsqueeze(1).repeat(1, beam_size, 1).view(bsz*beam_size, -1)
img_feature_dim = img_features.size(-1)
first_img_features = img_features.view(bsz, -1, img_feature_dim).unsqueeze(1).repeat(1, beam_size, 1, 1).view(-1, img_feature_dim)
img_gpt_input_mask = sample['net_input']['img_gpt_input_mask'].cuda().bool()
first_gpt_input_mask = img_gpt_input_mask.unsqueeze(1).repeat(1, beam_size, 1).view(bsz*beam_size, -1)
decoder_out = self.model.models[0].gpt_model.decoder.forward(
first_src_tokens,
img_features=first_img_features,
img_gpt_input_mask=first_gpt_input_mask,
incremental_state=incremental_states[0],
first_step=True)
attn: Optional[Tensor] = None
decoder_out_tuple = decoder_out[0].div_(self.temperature)
decoder_out_tuple = (decoder_out_tuple, None)
probs = self.model.models[0].gpt_model.get_normalized_probs(
decoder_out_tuple, log_probs=True, sample=None
)
if len(probs.size()) == 2:
probs = probs.unsqueeze(0)
prefix_lprobs = probs.clone().reshape(bsz*beam_size, probs.size(1), -1)
lprobs, avg_attn_scores = prefix_lprobs[:,step,:].clone(), None
elif "aud_src_tokens" in net_input and step == 0:
# import pudb; pu.db
multimodal_infer = True
aud_features = self.model.models[0].get_audio_representation(sample['net_input']['aud_src_tokens'].cuda(), sample['net_input']['aud_masks'].cuda())
decoder_out = self.model.models[0].gpt_model.decoder.forward(
sample['net_input']['src_tokens'],
aud_features=aud_features,
aud_gpt_input_mask=sample['net_input']['aud_gpt_input_mask'].cuda().bool(),
incremental_state=incremental_states[0],
first_step=True)
attn: Optional[Tensor] = None
decoder_out_tuple = decoder_out[0].div_(self.temperature)
decoder_out_tuple = (decoder_out_tuple, None)
probs = self.model.models[0].gpt_model.get_normalized_probs(
decoder_out_tuple, log_probs=True, sample=None
)
if len(probs.size()) == 2:
probs = probs.unsqueeze(0)
prefix_lprobs = probs.clone().unsqueeze(0).expand(beam_size, -1, -1, -1).reshape(bsz*beam_size, probs.size(1), -1)
lprobs, avg_attn_scores = prefix_lprobs[:,step,:].clone(), None
elif ("img_src_tokens" in net_input or "aud_src_tokens" in net_input) and step < len(sample['net_input']['src_tokens'][0]):
lprobs, avg_attn_scores = prefix_lprobs[:,step,:].clone(), None
multimodal_infer = True
else:
lprobs, avg_attn_scores = self.model.forward_decoder(
tokens[:, : step + 1],
encoder_outs,
incremental_states,
self.temperature,
multimodal=multimodal_infer,
)
if self.lm_model is not None:
lm_out = self.lm_model(tokens[:, : step + 1])
probs = self.lm_model.get_normalized_probs(
lm_out, log_probs=True, sample=None
)
probs = probs[:, -1, :] * self.lm_weight
lprobs += probs
lprobs[lprobs != lprobs] = torch.tensor(-math.inf).to(lprobs)
lprobs[:, self.pad] = -math.inf # never select pad
lprobs[:, self.unk] -= self.unk_penalty # apply unk penalty
# handle max length constraint
if step >= max_len:
lprobs[:, : self.eos] = -math.inf
lprobs[:, self.eos + 1 :] = -math.inf
# handle prefix tokens (possibly with different lengths)
if (
prefix_tokens is not None
and step < prefix_tokens.size(1)
and step < max_len
):
lprobs, tokens, scores = self._prefix_tokens(
step, lprobs, scores, tokens, prefix_tokens, beam_size
)
elif step < self.min_len:
# minimum length constraint (does not apply if using prefix_tokens)
lprobs[:, self.eos] = -math.inf
# Record attention scores, only support avg_attn_scores is a Tensor
if avg_attn_scores is not None:
if attn is None:
attn = torch.empty(
bsz * beam_size, avg_attn_scores.size(1), max_len + 2
).to(scores)
attn[:, :, step + 1].copy_(avg_attn_scores)
scores = scores.type_as(lprobs)
eos_bbsz_idx = torch.empty(0).to(
tokens
) # indices of hypothesis ending with eos (finished sentences)
eos_scores = torch.empty(0).to(
scores
) # scores of hypothesis ending with eos (finished sentences)
if self.should_set_src_lengths:
self.search.set_src_lengths(src_lengths)
skip_ngram_blocker = False
if ("img_src_tokens" in net_input or "aud_src_tokens" in net_input) and step < len(sample['net_input']['src_tokens'][0]):
skip_ngram_blocker = True
if self.repeat_ngram_blocker is not None and not skip_ngram_blocker:
lprobs = self.repeat_ngram_blocker(tokens, lprobs, bsz, beam_size, step)
# Shape: (batch, cand_size)
cand_scores, cand_indices, cand_beams = self.search.step(
step,
lprobs.view(bsz, -1, self.vocab_size),
scores.view(bsz, beam_size, -1)[:, :, :step],
tokens[:, : step + 1],
original_batch_idxs,
)
# cand_bbsz_idx contains beam indices for the top candidate
# hypotheses, with a range of values: [0, bsz*beam_size),
# and dimensions: [bsz, cand_size]
cand_bbsz_idx = cand_beams.add(bbsz_offsets)
# finalize hypotheses that end in eos
# Shape of eos_mask: (batch size, beam size)
eos_mask = cand_indices.eq(self.eos) & cand_scores.ne(-math.inf)
eos_mask[:, :beam_size][cands_to_ignore] = torch.tensor(0).to(eos_mask)
if skip_ngram_blocker:
eos_mask[:] = False
# only consider eos when it's among the top beam_size indices
# Now we know what beam item(s) to finish
# Shape: 1d list of absolute-numbered
eos_bbsz_idx = torch.masked_select(
cand_bbsz_idx[:, :beam_size], mask=eos_mask[:, :beam_size]
)
finalized_sents: List[int] = []
if eos_bbsz_idx.numel() > 0:
eos_scores = torch.masked_select(
cand_scores[:, :beam_size], mask=eos_mask[:, :beam_size]
)
finalized_sents = self.finalize_hypos(
step,
eos_bbsz_idx,
eos_scores,
tokens,
scores,
finalized,
finished,
beam_size,
attn,
src_lengths,
max_len,
)
num_remaining_sent -= len(finalized_sents)
assert num_remaining_sent >= 0
if num_remaining_sent == 0:
break
if self.search.stop_on_max_len and step >= max_len:
break
if step >= max_len:
break
assert step < max_len, f"{step} < {max_len}"
# Remove finalized sentences (ones for which {beam_size}
# finished hypotheses have been generated) from the batch.
if len(finalized_sents) > 0:
new_bsz = bsz - len(finalized_sents)
# construct batch_idxs which holds indices of batches to keep for the next pass
batch_mask = torch.ones(
bsz, dtype=torch.bool, device=cand_indices.device
)
batch_mask[finalized_sents] = False
# TODO replace `nonzero(as_tuple=False)` after TorchScript supports it
batch_idxs = torch.arange(
bsz, device=cand_indices.device
).masked_select(batch_mask)
# Choose the subset of the hypothesized constraints that will continue
self.search.prune_sentences(batch_idxs)
eos_mask = eos_mask[batch_idxs]
cand_beams = cand_beams[batch_idxs]
bbsz_offsets.resize_(new_bsz, 1)
cand_bbsz_idx = cand_beams.add(bbsz_offsets)
cand_scores = cand_scores[batch_idxs]
cand_indices = cand_indices[batch_idxs]
if prefix_tokens is not None:
prefix_tokens = prefix_tokens[batch_idxs]
src_lengths = src_lengths[batch_idxs]
cands_to_ignore = cands_to_ignore[batch_idxs]
scores = scores.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1)
tokens = tokens.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1)
if attn is not None:
attn = attn.view(bsz, -1)[batch_idxs].view(
new_bsz * beam_size, attn.size(1), -1
)
bsz = new_bsz
else:
batch_idxs = None
# Set active_mask so that values > cand_size indicate eos hypos
# and values < cand_size indicate candidate active hypos.
# After, the min values per row are the top candidate active hypos
# Rewrite the operator since the element wise or is not supported in torchscript.
eos_mask[:, :beam_size] = ~((~cands_to_ignore) & (~eos_mask[:, :beam_size]))
active_mask = torch.add(
eos_mask.type_as(cand_offsets) * cand_size,
cand_offsets[: eos_mask.size(1)],
)
# get the top beam_size active hypotheses, which are just
# the hypos with the smallest values in active_mask.
# {active_hypos} indicates which {beam_size} hypotheses
# from the list of {2 * beam_size} candidates were
# selected. Shapes: (batch size, beam size)
new_cands_to_ignore, active_hypos = torch.topk(
active_mask, k=beam_size, dim=1, largest=False
)
# update cands_to_ignore to ignore any finalized hypos.
cands_to_ignore = new_cands_to_ignore.ge(cand_size)[:, :beam_size]
# Make sure there is at least one active item for each sentence in the batch.
assert (~cands_to_ignore).any(dim=1).all()
# update cands_to_ignore to ignore any finalized hypos
# {active_bbsz_idx} denotes which beam number is continued for each new hypothesis (a beam
# can be selected more than once).
active_bbsz_idx = torch.gather(cand_bbsz_idx, dim=1, index=active_hypos)
active_scores = torch.gather(cand_scores, dim=1, index=active_hypos)
active_bbsz_idx = active_bbsz_idx.view(-1)
active_scores = active_scores.view(-1)
# copy tokens and scores for active hypotheses
# Set the tokens for each beam (can select the same row more than once)
tokens[:, : step + 1] = torch.index_select(
tokens[:, : step + 1], dim=0, index=active_bbsz_idx
)
# Select the next token for each of them
tokens.view(bsz, beam_size, -1)[:, :, step + 1] = torch.gather(
cand_indices, dim=1, index=active_hypos
)
if step > 0:
scores[:, :step] = torch.index_select(
scores[:, :step], dim=0, index=active_bbsz_idx
)
scores.view(bsz, beam_size, -1)[:, :, step] = torch.gather(
cand_scores, dim=1, index=active_hypos
)
# Update constraints based on which candidates were selected for the next beam
self.search.update_constraints(active_hypos)
# copy attention for active hypotheses
if attn is not None:
attn[:, :, : step + 2] = torch.index_select(
attn[:, :, : step + 2], dim=0, index=active_bbsz_idx
)
# reorder incremental state in decoder
reorder_state = active_bbsz_idx
# sort by score descending
for sent in range(len(finalized)):
scores = torch.tensor(
[float(elem["score"].item()) for elem in finalized[sent]]
)
_, sorted_scores_indices = torch.sort(scores, descending=True)
finalized[sent] = [finalized[sent][ssi] for ssi in sorted_scores_indices]
finalized[sent] = torch.jit.annotate(
List[Dict[str, Tensor]], finalized[sent]
)
return finalized
def _prefix_tokens(
self, step: int, lprobs, scores, tokens, prefix_tokens, beam_size: int
):
"""Handle prefix tokens"""
prefix_toks = prefix_tokens[:, step].unsqueeze(-1).repeat(1, beam_size).view(-1)
prefix_lprobs = lprobs.gather(-1, prefix_toks.unsqueeze(-1))
prefix_mask = prefix_toks.ne(self.pad)
lprobs[prefix_mask] = torch.tensor(-math.inf).to(lprobs)
lprobs[prefix_mask] = lprobs[prefix_mask].scatter(
-1, prefix_toks[prefix_mask].unsqueeze(-1), prefix_lprobs[prefix_mask]
)
# if prefix includes eos, then we should make sure tokens and
# scores are the same across all beams
eos_mask = prefix_toks.eq(self.eos)
if eos_mask.any():
# validate that the first beam matches the prefix
first_beam = tokens[eos_mask].view(-1, beam_size, tokens.size(-1))[
:, 0, 1 : step + 1
]
eos_mask_batch_dim = eos_mask.view(-1, beam_size)[:, 0]
target_prefix = prefix_tokens[eos_mask_batch_dim][:, :step]
assert (first_beam == target_prefix).all()
# copy tokens, scores and lprobs from the first beam to all beams
tokens = self.replicate_first_beam(tokens, eos_mask_batch_dim, beam_size)
scores = self.replicate_first_beam(scores, eos_mask_batch_dim, beam_size)
lprobs = self.replicate_first_beam(lprobs, eos_mask_batch_dim, beam_size)
return lprobs, tokens, scores
def replicate_first_beam(self, tensor, mask, beam_size: int):
tensor = tensor.view(-1, beam_size, tensor.size(-1))
tensor[mask] = tensor[mask][:, :1, :]
return tensor.view(-1, tensor.size(-1))
def finalize_hypos(
self,
step: int,
bbsz_idx,
eos_scores,
tokens,
scores,
finalized: List[List[Dict[str, Tensor]]],
finished: List[bool],
beam_size: int,
attn: Optional[Tensor],
src_lengths,
max_len: int,
):
"""Finalize hypothesis, store finalized information in `finalized`, and change `finished` accordingly.
A sentence is finalized when {beam_size} finished items have been collected for it.
Returns number of sentences (not beam items) being finalized.
These will be removed from the batch and not processed further.
Args:
bbsz_idx (Tensor):
"""
assert bbsz_idx.numel() == eos_scores.numel()
# clone relevant token and attention tensors.
# tokens is (batch * beam, max_len). So the index_select
# gets the newly EOS rows, then selects cols 1..{step + 2}
tokens_clone = tokens.index_select(0, bbsz_idx)[
:, 1 : step + 2
] # skip the first index, which is EOS
tokens_clone[:, step] = self.eos
attn_clone = (
attn.index_select(0, bbsz_idx)[:, :, 1 : step + 2]
if attn is not None
else None
)
# compute scores per token position
pos_scores = scores.index_select(0, bbsz_idx)[:, : step + 1]
pos_scores[:, step] = eos_scores
# convert from cumulative to per-position scores
pos_scores[:, 1:] = pos_scores[:, 1:] - pos_scores[:, :-1]
# normalize sentence-level scores
if self.normalize_scores:
eos_scores /= (step + 1) ** self.len_penalty
# cum_unfin records which sentences in the batch are finished.
# It helps match indexing between (a) the original sentences
# in the batch and (b) the current, possibly-reduced set of
# sentences.
cum_unfin: List[int] = []
prev = 0
for f in finished:
if f:
prev += 1
else:
cum_unfin.append(prev)
cum_fin_tensor = torch.tensor(cum_unfin, dtype=torch.int).to(bbsz_idx)
unfin_idx = bbsz_idx // beam_size
sent = unfin_idx + torch.index_select(cum_fin_tensor, 0, unfin_idx)
# Create a set of "{sent}{unfin_idx}", where
# "unfin_idx" is the index in the current (possibly reduced)
# list of sentences, and "sent" is the index in the original,
# unreduced batch
# For every finished beam item
# sentence index in the current (possibly reduced) batch
seen = (sent << 32) + unfin_idx
unique_seen: List[int] = torch.unique(seen).tolist()
if self.match_source_len:
condition = step > torch.index_select(src_lengths, 0, unfin_idx)
eos_scores = torch.where(condition, torch.tensor(-math.inf), eos_scores)
sent_list: List[int] = sent.tolist()
for i in range(bbsz_idx.size()[0]):
# An input sentence (among those in a batch) is finished when
# beam_size hypotheses have been collected for it
if len(finalized[sent_list[i]]) < beam_size:
if attn_clone is not None:
# remove padding tokens from attn scores
hypo_attn = attn_clone[i]
else:
hypo_attn = torch.empty(0)
finalized[sent_list[i]].append(
{
"tokens": tokens_clone[i],
"score": eos_scores[i],
"attention": hypo_attn, # src_len x tgt_len
"alignment": torch.empty(0),
"positional_scores": pos_scores[i],
}
)
newly_finished: List[int] = []
for unique_s in unique_seen:
# check termination conditions for this sentence
unique_sent: int = unique_s >> 32
unique_unfin_idx: int = unique_s - (unique_sent << 32)
if not finished[unique_sent] and self.is_finished(
step, unique_unfin_idx, max_len, len(finalized[unique_sent]), beam_size
):
finished[unique_sent] = True
newly_finished.append(unique_unfin_idx)
return newly_finished
def is_finished(
self,
step: int,
unfin_idx: int,
max_len: int,
finalized_sent_len: int,
beam_size: int,
):
"""
Check whether decoding for a sentence is finished, which
occurs when the list of finalized sentences has reached the
beam size, or when we reach the maximum length.
"""
assert finalized_sent_len <= beam_size
if finalized_sent_len == beam_size or step == max_len:
return True
return False
class EnsembleModel(nn.Module):
"""A wrapper around an ensemble of models."""
def __init__(self, models):
super().__init__()
self.models_size = len(models)
# method '__len__' is not supported in ModuleList for torch script
self.single_model = models[0]
self.models = nn.ModuleList(models)
self.has_incremental: bool = False
if all(
hasattr(m, "decoder") and isinstance(m.decoder, FairseqIncrementalDecoder)
for m in models
):
self.has_incremental = True
if all(
hasattr(m, "gpt_model") and isinstance(m.gpt_model.decoder, FairseqIncrementalDecoder)
for m in models
):
self.has_incremental = True
def forward(self):
pass
def has_encoder(self):
return hasattr(self.single_model, "encoder")
def has_incremental_states(self):
return self.has_incremental
def max_decoder_positions(self):
return min(
[
m.max_decoder_positions()
for m in self.models
if hasattr(m, "max_decoder_positions")
]
+ [sys.maxsize]
)
@torch.jit.export
def forward_encoder(self, net_input: Dict[str, Tensor]):
if not self.has_encoder():
return None
return [model.encoder.forward_torchscript(net_input) for model in self.models]
@torch.jit.export
def forward_decoder(
self,
tokens,
encoder_outs: List[Dict[str, List[Tensor]]],
incremental_states: List[Dict[str, Dict[str, Optional[Tensor]]]],
temperature: float = 1.0,
multimodal: bool = False,
):
log_probs = []
avg_attn: Optional[Tensor] = None
encoder_out: Optional[Dict[str, List[Tensor]]] = None
for i, model in enumerate(self.models):
if self.has_encoder():
encoder_out = encoder_outs[i]
# decode each model
if self.has_incremental_states():
if hasattr(model, "gpt_model"):
decoder_out = model.gpt_model.decoder.forward(
tokens,
encoder_out=encoder_out,
incremental_state=incremental_states[i],
)
else:
decoder_out = model.decoder.forward(
tokens,
encoder_out=encoder_out,
incremental_state=incremental_states[i],
)
elif incremental_states is not None and hasattr(model, "gpt_model") and multimodal:
# elif False: #TODO: skip this for text zero-shot
decoder_out = model.gpt_model.decoder.forward(
tokens,
encoder_out=encoder_out,
incremental_state=incremental_states[i],
)
else:
if hasattr(model, "decoder"):
decoder_out = model.decoder.forward(tokens, encoder_out=encoder_out)
else:
decoder_out = model.forward(tokens)
attn: Optional[Tensor] = None
decoder_len = len(decoder_out)
if decoder_len > 1 and decoder_out[1] is not None:
if isinstance(decoder_out[1], Tensor):
attn = decoder_out[1]
else:
attn_holder = decoder_out[1]["attn"]
if isinstance(attn_holder, Tensor):
attn = attn_holder
elif attn_holder is not None:
attn = attn_holder[0]
if attn is not None:
attn = attn[:, -1, :]
decoder_out_tuple = (
decoder_out[0][:, -1:, :].div_(temperature),
None if decoder_len <= 1 else decoder_out[1],
)
probs = model.get_normalized_probs(
decoder_out_tuple, log_probs=True, sample=None
)
probs = probs[:, -1, :]
if self.models_size == 1:
return probs, attn
log_probs.append(probs)
if attn is not None:
if avg_attn is None:
avg_attn = attn
else:
avg_attn.add_(attn)
avg_probs = torch.logsumexp(torch.stack(log_probs, dim=0), dim=0) - math.log(
self.models_size
)
if avg_attn is not None:
avg_attn.div_(self.models_size)
return avg_probs, avg_attn
@torch.jit.export
def reorder_encoder_out(
self, encoder_outs: Optional[List[Dict[str, List[Tensor]]]], new_order
):
"""
Reorder encoder output according to *new_order*.
Args:
encoder_out: output from the ``forward()`` method
new_order (LongTensor): desired order
Returns:
*encoder_out* rearranged according to *new_order*
"""
new_outs: List[Dict[str, List[Tensor]]] = []
if not self.has_encoder():
return new_outs
for i, model in enumerate(self.models):
assert encoder_outs is not None
new_outs.append(
model.encoder.reorder_encoder_out(encoder_outs[i], new_order)
)
return new_outs
@torch.jit.export
def reorder_incremental_state(
self,
incremental_states: List[Dict[str, Dict[str, Optional[Tensor]]]],
new_order,
):
if not self.has_incremental_states():
return
for i, model in enumerate(self.models):
if hasattr(model, "gpt_model"):
model.gpt_model.decoder.reorder_incremental_state_scripting(
incremental_states[i], new_order
)
else:
model.decoder.reorder_incremental_state_scripting(
incremental_states[i], new_order
)
class SequenceGeneratorWithAlignment(SequenceGenerator):
def __init__(
self, models, tgt_dict, left_pad_target=False, print_alignment="hard", **kwargs
):
"""Generates translations of a given source sentence.
Produces alignments following "Jointly Learning to Align and
Translate with Transformer Models" (Garg et al., EMNLP 2019).
Args:
left_pad_target (bool, optional): Whether or not the
hypothesis should be left padded or not when they are
teacher forced for generating alignments.
"""
super().__init__(EnsembleModelWithAlignment(models), tgt_dict, **kwargs)
self.left_pad_target = left_pad_target
if print_alignment == "hard":
self.extract_alignment = utils.extract_hard_alignment
elif print_alignment == "soft":
self.extract_alignment = utils.extract_soft_alignment
@torch.no_grad()
def generate(self, models, sample, **kwargs):
finalized = super()._generate(sample, **kwargs)
src_tokens = sample["net_input"]["src_tokens"]
bsz = src_tokens.shape[0]
beam_size = self.beam_size
(
src_tokens,
src_lengths,
prev_output_tokens,
tgt_tokens,
) = self._prepare_batch_for_alignment(sample, finalized)
if any(getattr(m, "full_context_alignment", False) for m in self.model.models):
attn = self.model.forward_align(src_tokens, src_lengths, prev_output_tokens)
else:
attn = [
finalized[i // beam_size][i % beam_size]["attention"].transpose(1, 0)
for i in range(bsz * beam_size)
]
if src_tokens.device != "cpu":
src_tokens = src_tokens.to("cpu")
tgt_tokens = tgt_tokens.to("cpu")
attn = [i.to("cpu") for i in attn]
# Process the attn matrix to extract hard alignments.
for i in range(bsz * beam_size):
alignment = self.extract_alignment(
attn[i], src_tokens[i], tgt_tokens[i], self.pad, self.eos
)
finalized[i // beam_size][i % beam_size]["alignment"] = alignment
return finalized
def _prepare_batch_for_alignment(self, sample, hypothesis):
src_tokens = sample["net_input"]["src_tokens"]
bsz = src_tokens.shape[0]
src_tokens = (
src_tokens[:, None, :]
.expand(-1, self.beam_size, -1)
.contiguous()
.view(bsz * self.beam_size, -1)
)
src_lengths = sample["net_input"]["src_lengths"]
src_lengths = (
src_lengths[:, None]
.expand(-1, self.beam_size)
.contiguous()
.view(bsz * self.beam_size)
)
prev_output_tokens = data_utils.collate_tokens(
[beam["tokens"] for example in hypothesis for beam in example],
self.pad,
self.eos,
self.left_pad_target,
move_eos_to_beginning=True,
)
tgt_tokens = data_utils.collate_tokens(
[beam["tokens"] for example in hypothesis for beam in example],
self.pad,
self.eos,
self.left_pad_target,
move_eos_to_beginning=False,
)
return src_tokens, src_lengths, prev_output_tokens, tgt_tokens
class EnsembleModelWithAlignment(EnsembleModel):
"""A wrapper around an ensemble of models."""
def __init__(self, models):
super().__init__(models)
def forward_align(self, src_tokens, src_lengths, prev_output_tokens):
avg_attn = None
for model in self.models:
decoder_out = model(src_tokens, src_lengths, prev_output_tokens)
attn = decoder_out[1]["attn"][0]
if avg_attn is None:
avg_attn = attn
else:
avg_attn.add_(attn)
if len(self.models) > 1:
avg_attn.div_(len(self.models))
return avg_attn
| KosmosX-API-main | kosmosX/fairseq/fairseq/sequence_generator.py |
"""
DeepSpeed trainer
"""
import os
import sys
import torch
import time
import logging
import deepspeed
import json
from typing import Any, Dict, List
from itertools import chain
from argparse import Namespace
import torch.distributed as dist
from fairseq import optim, utils
from fairseq.distributed import utils as distributed_utils
from fairseq.dataclass.configs import FairseqConfig
from fairseq.logging import meters, metrics
from fairseq.optim import lr_scheduler
from fairseq.optim.dynamic_loss_scaler import DynamicLossScaler
from omegaconf import OmegaConf
logger = logging.getLogger(__name__)
def get_config(config, full_name, fairseq_value):
_config = config
for name in full_name.split(":"):
if name in _config:
_config = _config[name]
else:
_config = fairseq_value
break
assert _config == fairseq_value, f"deepspeed config: {full_name} does not align with fairseq value: {fairseq_value}"
return _config
class DeepSpeedTrainer(object):
"""Main class for data parallel training w. DeepSpeed.
Similar to fairseq.Trainer this class supports synchronous distributed
data parallel training. However, in this case we expose DeepSpeed features
like ZeRO stages 1, 2, and 3.
"""
def __init__(self, cfg: FairseqConfig, task, model, criterion):
if isinstance(cfg, Namespace):
logger.warning(
"argparse.Namespace configuration is deprecated! Automatically converting to OmegaConf"
)
cfg = convert_namespace_to_omegaconf(cfg)
self.cfg = cfg
self.task = task
# try:
# subprocess.check_output('which rsync', shell=True)
# except subprocess.CalledProcessError:
# raise RuntimeError('Please install rsync, this is required for model checkpointing')
ds_config = {}
if isinstance(cfg.common.deepspeed, str):
assert os.path.isfile(cfg.common.deepspeed), f"deepspeed config path is not a file: {cfg.common.deepspeed}"
with open(cfg.common.deepspeed, 'r') as fd:
ds_config = json.load(fd)
# ds_config['zero_allow_untested_optimizer'] = True
# gradient accumulation steps
assert len(self.cfg.optimization.update_freq) == 1, "no support for gradient accumulation schedules"
gas = ds_config.get("gradient_accumulation_steps", self.cfg.optimization.update_freq[0])
ds_config["gradient_accumulation_steps"] = gas
# train_micro_batch_size_per_gpu
micro_batch_size = get_config(ds_config, "train_micro_batch_size_per_gpu", self.cfg.dataset.batch_size)
# micro_batch_size = get_config(ds_config, "train_micro_batch_size_per_gpu", self.cfg.dataset.max_tokens // self.cfg.task.tokens_per_sample)
ds_config["train_micro_batch_size_per_gpu"] = int(micro_batch_size)
# enable fp16
fp16 = get_config(config=ds_config, full_name="fp16:enabled", fairseq_value=self.cfg.common.fp16)
if "fp16" not in ds_config:
ds_config["fp16"] = {}
ds_config["fp16"]["enabled"] = fp16
# gradient_clipping self.cfg.optimization.clip_norm
grad_clip = get_config(ds_config, "gradient_clipping", self.cfg.optimization.clip_norm)
ds_config["gradient_clipping"] = grad_clip
# force zero elastic checkpoint disabled
elastic_ckpt = get_config(ds_config, "zero_optimization:elastic_checkpoint", False)
if "zero_optimization" not in ds_config:
ds_config["zero_optimization"] = {}
ds_config["zero_optimization"]["elastic_checkpoint"] = elastic_ckpt
zero_stage = get_config(ds_config, "zero_optimization:stage", cfg.common.zero)
ds_config["zero_optimization"]["stage"] = zero_stage
self.zero_stage = int(zero_stage)
ds_config["zero_optimization"]["contiguous_gradients"] = False
assert cfg.common.zero != 3, "zero stage 3 is currently untested with this codebase"
self.ds_config = ds_config
print(f"****** fairseq generated ds-config: {self.ds_config}")
# catalog shared parameters
shared_params = _catalog_shared_params(model)
self.tpu = cfg.common.tpu
assert not self.tpu, "deepspeed does not support tpu"
self.cuda = torch.cuda.is_available()
assert self.cuda, "deepspeed assumes cuda devices are available"
self.device = torch.device("cuda")
self._criterion = criterion
self._model = model
# assert self.cfg.common.fp16, "only fp16 is supported"
assert self.cfg.distributed_training.ddp_backend in ["c10d", "legacy_ddp", "no_c10d"]
assert cfg.distributed_training.ddp_backend != "fully_sharded"
assert not cfg.common.bf16, "bf16 not yet supported"
assert not cfg.distributed_training.pipeline_model_parallel, "pipeline not yet supported"
assert not self.cfg.optimization.use_bmuf, "bmuf not yet supported"
assert self.cfg.distributed_training.zero_sharding != "os"
assert not self.cfg.common.memory_efficient_fp16, "mem efficient fp16 not yet supported"
assert self.cfg.distributed_training.ddp_backend != "slow_mo"
self.pipeline_model_parallel = cfg.distributed_training.pipeline_model_parallel
self.zero_enabled = False
if cfg.common.fp16:
self._criterion = self._criterion.half()
self._model = self._model.half()
assert not utils.has_parameters(self._criterion), "criterion has params, not supported yet"
# check that shared parameters are preserved after device transfer
for shared_param in shared_params:
ref = _get_module_by_path(self._model, shared_param[0])
for path in shared_param[1:]:
logger.info(
"detected shared parameter: {} <- {}".format(shared_param[0], path)
)
_set_module_by_path(self._model, path, ref)
self._dummy_batch = None # indicates we don't have a dummy batch at first
self._lr_scheduler = None
self._num_updates = 0
self._num_xla_compiles = 0 # for TPUs
self._optim_history = None
self._optimizer = None
self._warn_once = set()
self._wrapped_criterion = None
self._wrapped_model = None
self.train_step_count = 0
if self.cuda and self.data_parallel_world_size > 1:
self._grad_norm_buf = torch.cuda.DoubleTensor(self.data_parallel_world_size)
else:
self._grad_norm_buf = None
self.quantizer = None
# get detailed cuda environment
if self.cuda:
self.cuda_env = utils.CudaEnvironment()
if self.data_parallel_world_size > 1:
self.cuda_env_arr = distributed_utils.all_gather_list(
self.cuda_env, group=distributed_utils.get_global_group()
)
else:
self.cuda_env_arr = [self.cuda_env]
if self.data_parallel_rank == 0:
utils.CudaEnvironment.pretty_print_cuda_env_list(self.cuda_env_arr)
else:
self.cuda_env = None
self.cuda_env_arr = None
metrics.log_start_time("wall", priority=790, round=2)
self._start_time = time.time()
self._previous_training_time = 0
self._cumulative_training_time = None
self._build_optimizer()
def _build_optimizer(self):
params = list(
filter(
lambda p: p.requires_grad,
chain(self.model.parameters(), self.criterion.parameters()),
)
)
# create simple optimizer, DS will handle fp16 wrappers
optimizer = optim.build_optimizer(self.cfg.optimizer, params)
print(f"************ built fairseq optimizer: {optimizer}")
os.environ['LOCAL_RANK'] = str(self.cfg.distributed_training.device_id)
os.environ['OMPI_COMM_WORLD_LOCAL_RANK'] = str(self.cfg.distributed_training.device_id)
self.device = torch.device("cuda", self.cfg.distributed_training.device_id)
self.model.to(device=self.device)
torch.distributed.barrier()
print(f'done pre-engine rank={dist.get_rank()}')
engine, optimizer, _, _ = deepspeed.initialize(
model=self.model,
optimizer=optimizer,
config_params=self.ds_config
)
self.zero_enabled = engine.zero_optimization_stage() > 0
# We should initialize the learning rate scheduler immediately after
# building the optimizer, so that the initial learning rate is set.
self._lr_scheduler = lr_scheduler.build_lr_scheduler(
self.cfg.lr_scheduler,
engine.optimizer,
)
self._lr_scheduler.step_update(0)
self._optimizer = optimizer
self._wrapped_model = engine
self.device = engine.device
self._criterion.to(device=self.device)
print(f"local_rank={torch.distributed.get_rank()}, engine.device={engine.device}") #, engine.module.device={engine.module.device}")
torch.distributed.barrier()
if getattr(self.cfg.common, "fp16_scale_window", None) is None:
if len(self.cfg.optimization.update_freq) > 1:
raise ValueError(
"--fp16-scale-window must be given explicitly when using a "
"custom --update-freq schedule"
)
data_parallel_size = int(
self.cfg.distributed_training.distributed_world_size
/ self.cfg.common.model_parallel_size
)
scale_window = int(
2 ** 14 / data_parallel_size / self.cfg.optimization.update_freq[0]
)
else:
scale_window = self.cfg.common.fp16_scale_window
self.scaler = DynamicLossScaler(
init_scale=self.cfg.common.fp16_init_scale,
scale_window=scale_window,
tolerance=self.cfg.common.fp16_scale_tolerance,
threshold=self.cfg.common.threshold_loss_scale,
min_loss_scale=self.cfg.common.min_loss_scale,
)
@metrics.aggregate("train")
def train_step(self, samples, raise_oom=False):
"""Do forward, backward and parameter update."""
self._set_seed()
self.model.train()
self.criterion.train()
self.zero_grad()
metrics.log_start_time("train_wall", priority=800, round=2)
grad_norm = torch.tensor(0.0).cuda()
# let fairseq handle grad accumlation scaling
self.model.scale_wrt_gas = False
# forward and backward pass
logging_outputs, sample_size, ooms = [], 0, 0
# print(f'** samples size: {len(samples)}')
sample_count = len(samples)
for i, sample in enumerate(samples): # delayed update loop
sample, is_dummy_batch = self._prepare_sample(sample)
if self.cfg.common.fp16:
self.model.optimizer.override_loss_scale(self.scaler.loss_scale)
self.model.set_gradient_accumulation_boundary(is_boundary=False)
try:
# forward and backward
# print(f'i={i}, rank={dist.get_rank()}, pre task.train_step')
dist.barrier()
loss, sample_size_i, logging_output = self.task.train_step(
sample=sample,
model=self.model,
criterion=self.criterion,
optimizer=self.optimizer,
update_num=self.get_num_updates(),
ignore_grad=is_dummy_batch,
)
self.train_step_count += 1
# increment deepspeed micro step on non-final train step since optimizer.step will increment it for us
if (i + 1) != sample_count:
self.model.micro_steps += 1
self.model.set_gradient_accumulation_boundary(is_boundary=True)
if self.zero_stage <= 2:
self.model.allreduce_gradients()
# print(f'grads[0]={list([p.grad for p in self.model.optimizer.fp16_groups[0]])}')
# print(f'train_step={self.train_step_count}, loss_scale={self.model.optimizer.cur_scale}')
# print(f'i={i}, rank={dist.get_rank()}, loss={loss}')
if torch.distributed.get_rank() == 0:
_loss_scale = self.model.optimizer.external_loss_scale if self.cfg.common.fp16 else 0
print(f"[{torch.distributed.get_rank()}], " \
f"micro_step={self.model.micro_steps}, " \
f"gas_boundary={self.model.is_gradient_accumulation_boundary()}, " \
f"train_step={self.train_step_count}, " \
f"lr={self.get_lr()}, " \
f"loss_scale={_loss_scale}, " \
f"loss={loss}")
if self.cfg.common.exit_interval and self.train_step_count % self.cfg.common.exit_interval == 0:
if torch.distributed.get_rank() == 0:
print("exiting early...")
sys.exit()
logging_outputs.append(logging_output)
sample_size += sample_size_i
# emptying the CUDA cache after the first step can
# reduce the chance of OOM
if self.cuda and self.get_num_updates() == 0:
torch.cuda.empty_cache()
except RuntimeError as e:
if "out of memory" in str(e):
self._log_oom(e)
if raise_oom:
raise e
logger.warning(
"attempting to recover from OOM in forward/backward pass"
)
ooms += 1
self.zero_grad()
if self.cuda:
torch.cuda.empty_cache()
if self.cfg.distributed_training.distributed_world_size == 1:
return None
else:
raise e
if is_dummy_batch:
if torch.is_tensor(sample_size):
sample_size.zero_()
else:
sample_size *= 0.0
if torch.is_tensor(sample_size):
sample_size = sample_size.float()
else:
sample_size = float(sample_size)
# gather logging outputs from all replicas
if self.data_parallel_world_size > 1:
train_time = self._local_cumulative_training_time()
logging_outputs, (
sample_size,
ooms,
total_train_time,
) = self._aggregate_logging_outputs(
logging_outputs, sample_size, ooms, train_time, ignore=is_dummy_batch
)
self._cumulative_training_time = (
total_train_time / self.data_parallel_world_size
)
# grad_norms = []
# for param in self.optimizer.fp16_params:
# if param.grad is not None:
# grad_norms.append(param.grad.norm())
# print(grad_norms)
# self.model.optimizer.dump_grad_norms()
######################
### multiply grads ###
######################
# numer = (
# self.data_parallel_world_size
# if not self.cfg.optimization.use_bmuf or self._sync_stats()
# else 1
# )
# self.optimizer.multiply_grads(numer / (sample_size or 1.0))
# grad_norm = self.optimizer.clip_grad_norm(self.cfg.optimization.clip_norm)
overflow = False
try:
with torch.autograd.profiler.record_function("optimizer"):
# take an optimization step
self.task.optimizer_step(
self.optimizer, model=self.model, update_num=self.get_num_updates()
)
# pass overflow flag from ds to fairseq
if self.cfg.common.fp16:
overflow = self.model.optimizer.overflow
self.scaler.check_overflow(overflow=overflow)
self.scaler.update()
_grad_norm = self.model.get_global_grad_norm()
if _grad_norm is not None:
grad_norm = torch.tensor(_grad_norm).to(self.device)
except FloatingPointError:
raise
except OverflowError as e:
logger.info(f"NOTE: gradient overflow detected, ignoring gradient, {str(e)}")
overflow = True
# import sys; sys.exit()
# except RuntimeError as e:
# raise e
# except FloatingPointError:
# # re-run the forward and backward pass with hooks attached to print
# # out where it fails
# self.zero_grad()
# with NanDetector(self.get_model()):
# for _, sample in enumerate(samples):
# sample, _ = self._prepare_sample(sample)
# self.task.train_step(
# sample,
# self.model,
# self.criterion,
# self.optimizer,
# self.get_num_updates(),
# ignore_grad=False,
# )
# raise
# except OverflowError as e:
# overflow = True
# logger.info(f"NOTE: gradient overflow detected, ignoring gradient, {str(e)}")
# grad_norm = torch.tensor(0.0).cuda()
# self.zero_grad()
# except RuntimeError as e:
# if "out of memory" in str(e):
# self._log_oom(e)
# logger.error("OOM during optimization, irrecoverable")
# raise e
# Some distributed wrappers (e.g., SlowMo) need access to the optimizer
# after the step
# if hasattr(self.model, "perform_additional_optimizer_actions"):
# if hasattr(self.optimizer, "fp32_params"):
# self.model.perform_additional_optimizer_actions(
# self.optimizer.optimizer, self.optimizer.fp32_params
# )
# else:
# self.model.perform_additional_optimizer_actions(
# self.optimizer.optimizer
# )
logging_output = None
if not overflow or self.cfg.distributed_training.ddp_backend == "slow_mo":
self.set_num_updates(self.get_num_updates() + 1)
if self.cuda and self.cuda_env is not None:
# log minimum free memory over the iteration
gb_used = torch.cuda.max_memory_allocated() / 1024 / 1024 / 1024
torch.cuda.reset_peak_memory_stats()
gb_free = self.cuda_env.total_memory_in_GB - gb_used
metrics.log_scalar(
"gb_free", gb_free, priority=1500, round=1, weight=0
)
# log stats
logging_output = self._reduce_and_log_stats(
logging_outputs, sample_size, grad_norm
)
# clear CUDA cache to reduce memory fragmentation
# if (
# self.cuda
# and self.cfg.common.empty_cache_freq > 0
# and (
# (self.get_num_updates() + self.cfg.common.empty_cache_freq - 1)
# % self.cfg.common.empty_cache_freq
# )
# == 0
# ):
# torch.cuda.empty_cache()
if self.cfg.common.fp16:
metrics.log_scalar(
"loss_scale",
# self.optimizer.loss_scaler.loss_scaler,
self.optimizer.cur_scale,
priority=700,
round=4,
weight=0,
)
metrics.log_stop_time("train_wall")
return logging_output
def _sync_stats():
if self.data_parallel_world_size == 1:
return False
else:
return True
def set_num_updates(self, num_updates):
"""Set the number of parameters updates."""
self._num_updates = num_updates
self.lr_step_update()
metrics.log_scalar("num_updates", self._num_updates, weight=0, priority=200)
def _aggregate_logging_outputs(
self,
logging_outputs: List[Dict[str, Any]],
*extra_stats_to_sum,
ignore=False,
):
if self.task.__class__.logging_outputs_can_be_summed(self.get_criterion()):
return self._fast_stat_sync_sum(
logging_outputs, *extra_stats_to_sum, ignore=ignore
)
else:
return self._all_gather_list_sync(
logging_outputs, *extra_stats_to_sum, ignore=ignore
)
def _fast_stat_sync_sum(
self, logging_outputs: List[Dict[str, Any]], *extra_stats_to_sum, ignore=False,
):
"""
Sync logging outputs across workers. fast_stat_sync_sum is
faster than all_gather_list_sync, but is only suitable when
logging outputs are scalars and can be summed. Note that
*logging_outputs* cannot contain any nested dicts/lists.
"""
data = {}
for i, stat in enumerate(extra_stats_to_sum):
data["extra_stats_" + str(i)] = stat
if len(logging_outputs) > 0:
log_keys = list(logging_outputs[0].keys())
for k in log_keys:
if not ignore:
v = sum(log[k] for log in logging_outputs if k in log)
else:
v = logging_outputs[0][k]
v = torch.zeros_like(v) if torch.is_tensor(v) else 0
data["logging_outputs_" + k] = v
else:
log_keys = None
data = distributed_utils.all_reduce_dict(
data, device=self.device, group=self.data_parallel_process_group
)
extra_stats_to_sum = [
data["extra_stats_" + str(i)] for i in range(len(extra_stats_to_sum))
]
if log_keys is not None:
logging_outputs = [{k: data["logging_outputs_" + k] for k in log_keys}]
else:
logging_outputs = []
return logging_outputs, extra_stats_to_sum
def _all_gather_list_sync(
self,
logging_outputs: List[Dict[str, Any]],
*extra_stats_to_sum,
ignore=False,
):
"""
Sync logging outputs across workers. all_gather_list_sync is
suitable when logging outputs are complex types.
"""
if self.tpu:
raise NotImplementedError
if ignore:
logging_outputs = []
results = list(
zip(
*distributed_utils.all_gather_list(
[logging_outputs] + list(extra_stats_to_sum),
max_size=getattr(self.cfg.common, "all_gather_list_size", 16384),
group=self.data_parallel_process_group,
)
)
)
logging_outputs, extra_stats_to_sum = results[0], results[1:]
logging_outputs = list(chain.from_iterable(logging_outputs))
extra_stats_to_sum = [sum(s) for s in extra_stats_to_sum]
return logging_outputs, extra_stats_to_sum
def _reduce_and_log_stats(self, logging_outputs, sample_size, grad_norm=None):
if grad_norm is not None and (
not torch.is_tensor(grad_norm) or torch.isfinite(grad_norm)
):
metrics.log_speed("ups", 1.0, priority=100, round=2)
metrics.log_scalar("gnorm", grad_norm, priority=400, round=3)
if self.cfg.optimization.clip_norm > 0:
metrics.log_scalar(
"clip",
torch.where(
grad_norm > self.cfg.optimization.clip_norm,
grad_norm.new_tensor(100),
grad_norm.new_tensor(0),
),
priority=500,
round=1,
)
with metrics.aggregate() as agg:
if logging_outputs is not None:
self.task.reduce_metrics(logging_outputs, self.get_criterion())
del logging_outputs
# extra warning for criterions that don't properly log a loss value
if "loss" not in agg:
if "loss" not in self._warn_once:
self._warn_once.add("loss")
logger.warning(
"Criterion.reduce_metrics did not log a 'loss' value, "
"which may break some functionality"
)
metrics.log_scalar("loss", -1)
# support legacy interface
if self.tpu:
logging_output = {}
else:
logging_output = agg.get_smoothed_values()
logging_output["sample_size"] = sample_size
for key_to_delete in ["ppl", "wps", "wpb", "bsz"]:
if key_to_delete in logging_output:
del logging_output[key_to_delete]
return logging_output
def cumulative_training_time(self):
if self._cumulative_training_time is None:
# single GPU
return self._local_cumulative_training_time()
else:
return self._cumulative_training_time
def _local_cumulative_training_time(self):
"""Aggregate training time in seconds."""
return time.time() - self._start_time + self._previous_training_time
def _prepare_sample(self, sample, is_dummy=False):
#DS: untouched
if sample == "DUMMY":
raise Exception(
"Trying to use an uninitialized 'dummy' batch. This usually indicates "
"that the total number of batches is smaller than the number of "
"participating GPUs. Try reducing the batch size or using fewer GPUs."
)
if sample is None or len(sample) == 0:
assert (
self._dummy_batch is not None and len(self._dummy_batch) > 0
), "Invalid dummy batch: {}".format(self._dummy_batch)
sample, _ = self._prepare_sample(self._dummy_batch, is_dummy=True)
return sample, True
if self.cuda:
if self.pipeline_model_parallel:
if "target" in sample:
sample["target"] = utils.move_to_cuda(
sample["target"], device=self.last_device
)
else:
sample = utils.move_to_cuda(sample)
elif self.tpu and is_dummy:
# the dummy batch may not be on the appropriate device
sample = utils.move_to_cuda(sample, device=self.device)
def apply_half(t):
if t.dtype is torch.float32:
return t.half()
return t
def apply_bfloat16(t):
if t.dtype is torch.float32:
return t.to(dtype=torch.bfloat16)
return t
if self.cfg.common.fp16:
sample = utils.apply_to_sample(apply_half, sample)
if self.cfg.common.bf16:
sample = utils.apply_to_sample(apply_bfloat16, sample)
if self._dummy_batch == "DUMMY":
self._dummy_batch = sample
return sample, False
def lr_step(self, epoch, val_loss=None):
"""Adjust the learning rate at the end of the epoch."""
self.lr_scheduler.step(epoch, val_loss)
# prefer updating the LR based on the number of steps
return self.lr_step_update()
def get_lr(self):
"""Get the current learning rate."""
return self.model.optimizer.get_lr()
def get_num_updates(self):
"""Get the number of parameters updates."""
return self._num_updates
def lr_step_update(self):
"""Update the learning rate after each update."""
new_lr = self.lr_scheduler.step_update(self.get_num_updates())
if isinstance(new_lr, dict):
for k, v in new_lr.items():
metrics.log_scalar(f"lr_{k}", v, weight=0, priority=300)
new_lr = new_lr.get("default", next(iter(new_lr.values())))
else:
metrics.log_scalar("lr", new_lr, weight=0, priority=300)
return new_lr
def begin_epoch(self, epoch):
"""Called at the beginning of each epoch."""
logger.info("begin training epoch {}".format(epoch))
self.lr_step_begin_epoch(epoch)
# task specific setup per epoch
self.task.begin_epoch(epoch, self.get_model())
def lr_step_begin_epoch(self, epoch):
"""Adjust the learning rate at the beginning of the epoch."""
self.lr_scheduler.step_begin_epoch(epoch)
# prefer updating the LR based on the number of steps
return self.lr_step_update()
def get_model(self):
"""Get the (non-wrapped) model instance."""
return self._model
def get_criterion(self):
"""Get the (non-wrapped) criterion instance."""
return self._criterion
def _set_seed(self):
# Set seed based on args.seed and the update number so that we get
# reproducible results when resuming from checkpoints
seed = self.cfg.common.seed + self.get_num_updates()
utils.set_torch_seed(seed)
def consolidate_optimizer(self):
""" DeepSpeed doesn't require any optimizer consolidation. """
return False
@metrics.aggregate("valid")
def valid_step(self, sample, raise_oom=False):
"""Do forward pass in evaluation mode."""
with torch.no_grad():
self.model.eval()
self.criterion.eval()
sample, is_dummy_batch = self._prepare_sample(sample)
try:
_loss, sample_size, logging_output = self.task.valid_step(
sample, self.model, self.criterion
)
except RuntimeError as e:
if "out of memory" in str(e):
self._log_oom(e)
if not raise_oom:
logger.warning(
"ran out of memory in validation step, retrying batch"
)
for p in self.model.parameters():
if p.grad is not None:
p.grad = None # free some memory
if self.cuda:
torch.cuda.empty_cache()
return self.valid_step(sample, raise_oom=True)
raise e
logging_outputs = [logging_output]
if is_dummy_batch:
if torch.is_tensor(sample_size):
sample_size.zero_()
else:
sample_size *= 0.0
# gather logging outputs from all replicas
if self.data_parallel_world_size > 1:
logging_outputs, (sample_size,) = self._aggregate_logging_outputs(
logging_outputs,
sample_size,
ignore=is_dummy_batch,
)
# log validation stats
if self.tpu:
logging_outputs = self._xla_markstep_and_send_to_cpu(logging_outputs)
# don't reduce here, otherwise the metric is wrong
# logging_output = self._reduce_and_log_stats(logging_outputs, sample_size)
return logging_outputs
def begin_valid_epoch(self, epoch):
"""Called at the beginning of each validation epoch."""
# task specific setup per validation epoch
self.task.begin_valid_epoch(epoch, self.get_model())
def get_valid_iterator(
self,
subset,
disable_iterator_cache=False,
):
"""Return an EpochBatchIterator over given validation subset for a given epoch."""
batch_iterator = self.task.get_batch_iterator(
dataset=self.task.dataset(subset),
max_tokens=self.cfg.dataset.max_tokens_valid,
max_sentences=self.cfg.dataset.batch_size_valid,
max_positions=utils.resolve_max_positions(
self.task.max_positions(),
self.model.max_positions(),
),
ignore_invalid_inputs=self.cfg.dataset.skip_invalid_size_inputs_valid_test,
required_batch_size_multiple=self.cfg.dataset.required_batch_size_multiple,
seed=self.cfg.common.seed,
num_shards=self.data_parallel_world_size,
shard_id=self.data_parallel_rank,
num_workers=self.cfg.dataset.num_workers,
# always pass a fixed "epoch" to keep validation data consistent
# across training epochs
epoch=1,
data_buffer_size=self.cfg.dataset.data_buffer_size,
disable_iterator_cache=disable_iterator_cache,
)
self.reset_dummy_batch(batch_iterator.first_batch)
return batch_iterator
def load_checkpoint(
self,
filename,
reset_optimizer=False,
reset_lr_scheduler=False,
optimizer_overrides=None,
reset_meters=False,
):
"""
Load all training state from a checkpoint file.
rank = 0 will load the checkpoint, and then broadcast it to all
other ranks.
"""
extra_state, self._optim_history, last_optim_state = None, [], None
logger.info(f"Preparing to load checkpoint {filename}")
bexists = os.path.isdir(filename) #PathManager.isfile(filename)
if not bexists:
logger.info("No existing checkpoint found {}".format(filename))
return None
def load_model(src, dst):
if torch.distributed.get_rank() == 0:
print(self.cfg.model)
dst.load_state_dict(src, strict=False, model_cfg=self.cfg.model)
load_path, client_states = self.model.load_checkpoint(load_dir=filename, load_optimizer_states=not reset_optimizer, model_f=load_model)
print(f'[{torch.distributed.get_rank()}] ckpt client states={client_states}')
assert not utils.has_parameters(self.get_criterion()), "criterion w. params not supported yet"
extra_state = client_states["extra_state"]
if not reset_optimizer and not reset_lr_scheduler:
self.lr_scheduler.load_state_dict(client_states["lr_scheduler_state"])
self.set_num_updates(client_states["num_updates"])
self.scaler.loss_scale = client_states["loss_scale"]
if extra_state is not None:
itr_state = extra_state["train_iterator"]
epoch = itr_state.get("epoch", 1)
if "previous_training_time" in extra_state:
self._previous_training_time = extra_state["previous_training_time"]
self._start_time = time.time()
self.lr_step(epoch)
if itr_state.get("version", 1) >= 2 and itr_state["iterations_in_epoch"] == 0:
# reset meters at start of epoch
reset_meters = True
if "metrics" in extra_state and not reset_meters:
metrics.load_state_dict(extra_state["metrics"])
# reset TimeMeters, since their start times don't make sense anymore
for meter in metrics.get_meters("default"):
if isinstance(meter, meters.TimeMeter):
meter.reset()
logger.info(
"Loaded checkpoint {} (epoch {} @ {} updates)".format(
filename, epoch, self.get_num_updates()
)
)
return extra_state
def get_train_iterator(
self,
epoch,
combine=True,
load_dataset=True,
data_selector=None,
shard_batch_itr=True,
disable_iterator_cache=False,
):
"""Return an EpochBatchIterator over the training set for a given epoch."""
if load_dataset:
logger.info("loading train data for epoch {}".format(epoch))
self.task.load_dataset(
self.cfg.dataset.train_subset,
epoch=epoch,
combine=combine,
data_selector=data_selector,
tpu=self.tpu,
)
seed = self.cfg.common.seed
if hasattr(self.cfg, 'infinibatch_dataloader'):
print("| If using infinibatch, do reset_dataloader!", flush=True)
assert self.cfg.reset_dataloader
seed += self.get_num_updates()
print("| Set seed {}={}+{}".format(seed, self.cfg.common.seed, self.get_num_updates()), flush=True)
batch_iterator = self.task.get_batch_iterator(
dataset=self.task.dataset(self.cfg.dataset.train_subset),
max_tokens=self.cfg.dataset.max_tokens,
max_sentences=self.cfg.dataset.batch_size,
max_positions=utils.resolve_max_positions(
self.task.max_positions(),
self.model.max_positions(),
self.cfg.dataset.max_tokens,
),
ignore_invalid_inputs=True,
required_batch_size_multiple=self.cfg.dataset.required_batch_size_multiple,
seed=seed,
num_shards=self.data_parallel_world_size if shard_batch_itr else 1,
shard_id=self.data_parallel_rank if shard_batch_itr else 0,
num_workers=self.cfg.dataset.num_workers,
epoch=epoch,
data_buffer_size=self.cfg.dataset.data_buffer_size,
disable_iterator_cache=disable_iterator_cache,
)
self.reset_dummy_batch(batch_iterator.first_batch)
return batch_iterator
def reset_dummy_batch(self, batch):
self._dummy_batch = batch
def zero_grad(self):
self.optimizer.zero_grad()
@property
def model(self):
if self._wrapped_model is None:
self._wrapped_model = self._model
return self._wrapped_model
@property
def criterion(self):
if self._wrapped_criterion is None:
self._wrapped_criterion = self._criterion
return self._wrapped_criterion
@property
def data_parallel_world_size(self):
if self.cfg.distributed_training.distributed_world_size == 1:
return 1
return distributed_utils.get_data_parallel_world_size()
@property
def lr_scheduler(self):
if self._lr_scheduler is None:
self._build_optimizer() # this will initialize self._lr_scheduler
return self._lr_scheduler
@property
def optimizer(self):
if self._optimizer is None:
self._build_optimizer()
return self._optimizer
@property
def data_parallel_process_group(self):
return distributed_utils.get_data_parallel_group()
@property
def data_parallel_rank(self):
if self.cfg.distributed_training.distributed_world_size == 1:
return 0
return distributed_utils.get_data_parallel_rank()
@property
def is_data_parallel_master(self):
# NOTE: this returns true for all model parallel replicas with data
# parallel rank 0
return self.data_parallel_rank == 0
@property
def checkpoint_suffix(self) -> str:
"""Suffix to add to the checkpoint file name."""
# if self.cfg.distributed_training.ddp_backend == "fully_sharded":
# return self.cfg.checkpoint.checkpoint_suffix + "-shard{0}".format(self.data_parallel_rank)
# else:
return self.cfg.checkpoint.checkpoint_suffix or ""
@property
def should_save_checkpoint_on_current_rank(self) -> bool:
"""Indicates whether to save checkpoints on the current DDP rank."""
if self.zero_enabled:
return True
else:
return self.is_data_parallel_master
def save_checkpoint(self, filename, extra_state):
"""Save all training state in a checkpoint file."""
logger.info(f"Saving checkpoint to {filename}")
state_dict = self.state_dict(exclude_model_opt=True)
state_dict["extra_state"].update(extra_state)
self.model.save_checkpoint(save_dir=filename, client_state=state_dict)
logger.info(f"Finished saving checkpoint to {filename}")
def state_dict(self, exclude_model_opt=False):
state_dict = {
"args": None, # legacy
"cfg": (
OmegaConf.to_container(self.cfg)
if OmegaConf.is_config(self.cfg) else self.cfg
),
"model": None if exclude_model_opt else self.model.state_dict(),
"criterion": (
self.criterion.state_dict()
if utils.has_parameters(self.criterion) else None
),
"optimizer_history": (self._optim_history or [])
+ [
{
"criterion_name": self.get_criterion().__class__.__name__,
"optimizer_name": self.optimizer.__class__.__name__,
"lr_scheduler_state": self.lr_scheduler.state_dict(),
"num_updates": self.get_num_updates(),
}
],
"lr_scheduler_state": self.lr_scheduler.state_dict(),
"num_updates": self.get_num_updates(),
"task_state": self.task.state_dict() if self.task is not None else {},
"loss_scale": self.scaler.loss_scale,
"extra_state": {
"metrics": metrics.state_dict(),
"previous_training_time": self.cumulative_training_time(),
}
}
if exclude_model_opt and not self.cfg.checkpoint.no_save_optimizer_state:
state_dict["last_optimizer_state"] = self.optimizer.state_dict()
return state_dict
def _catalog_shared_params(module, memo=None, prefix=""):
if memo is None:
first_call = True
memo = {}
else:
first_call = False
for name, param in module._parameters.items():
param_prefix = prefix + ("." if prefix else "") + name
if param not in memo:
memo[param] = []
memo[param].append(param_prefix)
for name, m in module._modules.items():
if m is None:
continue
submodule_prefix = prefix + ("." if prefix else "") + name
_catalog_shared_params(m, memo, submodule_prefix)
if first_call:
return [x for x in memo.values() if len(x) > 1]
def _get_module_by_path(module, path):
path = path.split(".")
for name in path:
module = getattr(module, name)
return module
def _set_module_by_path(module, path, value):
path = path.split(".")
for name in path[:-1]:
module = getattr(module, name)
setattr(module, path[-1], value)
| KosmosX-API-main | kosmosX/fairseq/fairseq/ds_trainer.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import multiprocessing
import os
import pdb
import sys
__all__ = ["set_trace"]
_stdin = [None]
_stdin_lock = multiprocessing.Lock()
try:
_stdin_fd = sys.stdin.fileno()
except Exception:
_stdin_fd = None
class MultiprocessingPdb(pdb.Pdb):
"""A Pdb wrapper that works in a multiprocessing environment.
Usage: `from fairseq import pdb; pdb.set_trace()`
"""
def __init__(self):
pdb.Pdb.__init__(self, nosigint=True)
def _cmdloop(self):
stdin_bak = sys.stdin
with _stdin_lock:
try:
if _stdin_fd is not None:
if not _stdin[0]:
_stdin[0] = os.fdopen(_stdin_fd)
sys.stdin = _stdin[0]
self.cmdloop()
finally:
sys.stdin = stdin_bak
def set_trace():
pdb = MultiprocessingPdb()
pdb.set_trace(sys._getframe().f_back)
| KosmosX-API-main | kosmosX/fairseq/fairseq/pdb.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import re
SPACE_NORMALIZER = re.compile(r"\s+")
def tokenize_line(line):
line = SPACE_NORMALIZER.sub(" ", line)
line = line.strip()
return line.split()
| KosmosX-API-main | kosmosX/fairseq/fairseq/tokenizer.py |
#!/usr/bin/env python3 -u
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import copy
import logging
import os
from typing import Any, Dict, Iterator, List
import torch
from omegaconf import open_dict
from torch import nn
from fairseq import utils
from fairseq.data import encoders
logger = logging.getLogger(__name__)
def from_pretrained(
model_name_or_path,
checkpoint_file="model.pt",
data_name_or_path=".",
archive_map=None,
**kwargs
):
from fairseq import checkpoint_utils, file_utils
if archive_map is not None:
if model_name_or_path in archive_map:
model_name_or_path = archive_map[model_name_or_path]
if data_name_or_path is not None and data_name_or_path in archive_map:
data_name_or_path = archive_map[data_name_or_path]
# allow archive_map to set default arg_overrides (e.g., tokenizer, bpe)
# for each model
if isinstance(model_name_or_path, dict):
for k, v in model_name_or_path.items():
if k == "checkpoint_file":
checkpoint_file = v
elif (
k != "path"
# only set kwargs that don't already have overrides
and k not in kwargs
):
kwargs[k] = v
model_name_or_path = model_name_or_path["path"]
model_path = file_utils.load_archive_file(model_name_or_path)
# convenience hack for loading data and BPE codes from model archive
if data_name_or_path.startswith("."):
kwargs["data"] = os.path.abspath(os.path.join(model_path, data_name_or_path))
else:
kwargs["data"] = file_utils.load_archive_file(data_name_or_path)
for file, arg in {
"code": "bpe_codes",
"bpecodes": "bpe_codes",
"sentencepiece.bpe.model": "sentencepiece_model",
"merges.txt": "bpe_merges",
"vocab.json": "bpe_vocab",
}.items():
path = os.path.join(model_path, file)
if os.path.exists(path):
kwargs[arg] = path
if "user_dir" in kwargs:
utils.import_user_module(argparse.Namespace(user_dir=kwargs["user_dir"]))
models, args, task = checkpoint_utils.load_model_ensemble_and_task(
[os.path.join(model_path, cpt) for cpt in checkpoint_file.split(os.pathsep)],
arg_overrides=kwargs,
)
return {
"args": args,
"task": task,
"models": models,
}
class GeneratorHubInterface(nn.Module):
"""
PyTorch Hub interface for generating sequences from a pre-trained
translation or language model.
"""
def __init__(self, cfg, task, models):
super().__init__()
self.cfg = cfg
self.task = task
self.models = nn.ModuleList(models)
self.src_dict = task.source_dictionary
self.tgt_dict = task.target_dictionary
# optimize model for generation
for model in self.models:
model.prepare_for_inference_(cfg)
# Load alignment dictionary for unknown word replacement
# (None if no unknown word replacement, empty if no path to align dictionary)
self.align_dict = utils.load_align_dict(cfg.generation.replace_unk)
self.tokenizer = encoders.build_tokenizer(cfg.tokenizer)
self.bpe = encoders.build_bpe(cfg.bpe)
self.max_positions = utils.resolve_max_positions(
self.task.max_positions(), *[model.max_positions() for model in models]
)
# this is useful for determining the device
self.register_buffer("_float_tensor", torch.tensor([0], dtype=torch.float))
@property
def device(self):
return self._float_tensor.device
def translate(
self, sentences: List[str], beam: int = 5, verbose: bool = False, **kwargs
) -> List[str]:
return self.sample(sentences, beam, verbose, **kwargs)
def sample(
self, sentences: List[str], beam: int = 1, verbose: bool = False, **kwargs
) -> List[str]:
if isinstance(sentences, str):
return self.sample([sentences], beam=beam, verbose=verbose, **kwargs)[0]
tokenized_sentences = [self.encode(sentence) for sentence in sentences]
batched_hypos = self.generate(tokenized_sentences, beam, verbose, **kwargs)
return [self.decode(hypos[0]["tokens"]) for hypos in batched_hypos]
def score(
self, sentences: List[str], replace_newline_with_eos: bool = False, **kwargs
):
if isinstance(sentences, str):
return self.score(
[sentences], replace_newline_with_eos=replace_newline_with_eos, **kwargs
)[0]
def encode(sentence):
if replace_newline_with_eos:
return torch.cat([self.encode(line) for line in sentence.splitlines()])
else:
return self.encode(sentence)
# NOTE: this doesn't support translation tasks currently
tokenized_sentences = [encode(sentence) for sentence in sentences]
return [
hypos[0]
for hypos in self.generate(
tokenized_sentences, score_reference=True, **kwargs
)
]
def generate(
self,
tokenized_sentences: List[torch.LongTensor],
beam: int = 5,
verbose: bool = False,
skip_invalid_size_inputs=False,
inference_step_args=None,
prefix_allowed_tokens_fn=None,
**kwargs
) -> List[List[Dict[str, torch.Tensor]]]:
if torch.is_tensor(tokenized_sentences) and tokenized_sentences.dim() == 1:
return self.generate(
tokenized_sentences.unsqueeze(0), beam=beam, verbose=verbose, **kwargs
)[0]
# build generator using current args as well as any kwargs
gen_args = copy.deepcopy(self.cfg.generation)
with open_dict(gen_args):
gen_args.beam = beam
for k, v in kwargs.items():
setattr(gen_args, k, v)
generator = self.task.build_generator(
self.models,
gen_args,
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
)
inference_step_args = inference_step_args or {}
results = []
for batch in self._build_batches(tokenized_sentences, skip_invalid_size_inputs):
batch = utils.apply_to_sample(lambda t: t.to(self.device), batch)
translations = self.task.inference_step(
generator, self.models, batch, **inference_step_args
)
for id, hypos in zip(batch["id"].tolist(), translations):
results.append((id, hypos))
# sort output to match input order
outputs = [hypos for _, hypos in sorted(results, key=lambda x: x[0])]
if verbose:
def getarg(name, default):
return getattr(gen_args, name, getattr(self.cfg, name, default))
for source_tokens, target_hypotheses in zip(tokenized_sentences, outputs):
src_str_with_unk = self.string(source_tokens)
logger.info("S\t{}".format(src_str_with_unk))
for hypo in target_hypotheses:
hypo_str = self.decode(hypo["tokens"])
logger.info("H\t{}\t{}".format(hypo["score"], hypo_str))
logger.info(
"P\t{}".format(
" ".join(
map(
lambda x: "{:.4f}".format(x),
hypo["positional_scores"].tolist(),
)
)
)
)
if hypo["alignment"] is not None and getarg(
"print_alignment", False
):
logger.info(
"A\t{}".format(
" ".join(
[
"{}-{}".format(src_idx, tgt_idx)
for src_idx, tgt_idx in hypo["alignment"]
]
)
)
)
return outputs
def encode(self, sentence: str) -> torch.LongTensor:
sentence = self.tokenize(sentence)
sentence = self.apply_bpe(sentence)
return self.binarize(sentence)
def decode(self, tokens: torch.LongTensor) -> str:
sentence = self.string(tokens)
sentence = self.remove_bpe(sentence)
return self.detokenize(sentence)
def tokenize(self, sentence: str) -> str:
if self.tokenizer is not None:
sentence = self.tokenizer.encode(sentence)
return sentence
def detokenize(self, sentence: str) -> str:
if self.tokenizer is not None:
sentence = self.tokenizer.decode(sentence)
return sentence
def apply_bpe(self, sentence: str) -> str:
if self.bpe is not None:
sentence = self.bpe.encode(sentence)
return sentence
def remove_bpe(self, sentence: str) -> str:
if self.bpe is not None:
sentence = self.bpe.decode(sentence)
return sentence
def binarize(self, sentence: str) -> torch.LongTensor:
return self.src_dict.encode_line(sentence, add_if_not_exist=False).long()
def string(self, tokens: torch.LongTensor) -> str:
return self.tgt_dict.string(tokens)
def _build_batches(
self, tokens: List[List[int]], skip_invalid_size_inputs: bool
) -> Iterator[Dict[str, Any]]:
lengths = torch.LongTensor([t.numel() for t in tokens])
batch_iterator = self.task.get_batch_iterator(
dataset=self.task.build_dataset_for_inference(tokens, lengths),
max_tokens=self.cfg.dataset.max_tokens,
max_sentences=self.cfg.dataset.batch_size,
max_positions=self.max_positions,
ignore_invalid_inputs=skip_invalid_size_inputs,
disable_iterator_cache=True,
).next_epoch_itr(shuffle=False)
return batch_iterator
class BPEHubInterface(object):
"""PyTorch Hub interface for Byte-Pair Encoding (BPE)."""
def __init__(self, bpe, **kwargs):
super().__init__()
args = argparse.Namespace(bpe=bpe, **kwargs)
self.bpe = encoders.build_bpe(args)
assert self.bpe is not None
def encode(self, sentence: str) -> str:
return self.bpe.encode(sentence)
def decode(self, sentence: str) -> str:
return self.bpe.decode(sentence)
class TokenizerHubInterface(object):
"""PyTorch Hub interface for tokenization."""
def __init__(self, tokenizer, **kwargs):
super().__init__()
args = argparse.Namespace(tokenizer=tokenizer, **kwargs)
self.tokenizer = encoders.build_tokenizer(args)
assert self.tokenizer is not None
def encode(self, sentence: str) -> str:
return self.tokenizer.encode(sentence)
def decode(self, sentence: str) -> str:
return self.tokenizer.decode(sentence)
| KosmosX-API-main | kosmosX/fairseq/fairseq/hub_utils.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import sys
import torch
from fairseq import utils
class SequenceScorer(object):
"""Scores the target for a given source sentence."""
def __init__(
self,
tgt_dict,
softmax_batch=None,
compute_alignment=False,
eos=None,
symbols_to_strip_from_output=None,
):
self.pad = tgt_dict.pad()
self.eos = tgt_dict.eos() if eos is None else eos
self.softmax_batch = softmax_batch or sys.maxsize
assert self.softmax_batch > 0
self.compute_alignment = compute_alignment
self.symbols_to_strip_from_output = (
symbols_to_strip_from_output.union({self.eos})
if symbols_to_strip_from_output is not None
else {self.eos}
)
@torch.no_grad()
def generate(self, models, sample, **kwargs):
"""Score a batch of translations."""
net_input = sample["net_input"]
def batch_for_softmax(dec_out, target):
# assumes decoder_out[0] is the only thing needed (may not be correct for future models!)
first, rest = dec_out[0], dec_out[1:]
bsz, tsz, dim = first.shape
if bsz * tsz < self.softmax_batch:
yield dec_out, target, True
else:
flat = first.contiguous().view(1, -1, dim)
flat_tgt = target.contiguous().view(flat.shape[:-1])
s = 0
while s < flat.size(1):
e = s + self.softmax_batch
yield (flat[:, s:e],) + rest, flat_tgt[:, s:e], False
s = e
def gather_target_probs(probs, target):
probs = probs.gather(
dim=2,
index=target.unsqueeze(-1),
)
return probs
orig_target = sample["target"]
# compute scores for each model in the ensemble
avg_probs = None
avg_attn = None
for model in models:
model.eval()
decoder_out = model(**net_input)
attn = decoder_out[1] if len(decoder_out) > 1 else None
if type(attn) is dict:
attn = attn.get("attn", None)
batched = batch_for_softmax(decoder_out, orig_target)
probs, idx = None, 0
for bd, tgt, is_single in batched:
sample["target"] = tgt
curr_prob = model.get_normalized_probs(
bd, log_probs=len(models) == 1, sample=sample
).data
if is_single:
probs = gather_target_probs(curr_prob, orig_target)
else:
if probs is None:
probs = curr_prob.new(orig_target.numel())
step = curr_prob.size(0) * curr_prob.size(1)
end = step + idx
tgt_probs = gather_target_probs(
curr_prob.view(tgt.shape + (curr_prob.size(-1),)), tgt
)
probs[idx:end] = tgt_probs.view(-1)
idx = end
sample["target"] = orig_target
probs = probs.view(sample["target"].shape)
if avg_probs is None:
avg_probs = probs
else:
avg_probs.add_(probs)
if attn is not None:
if torch.is_tensor(attn):
attn = attn.data
else:
attn = attn[0]
if avg_attn is None:
avg_attn = attn
else:
avg_attn.add_(attn)
if len(models) > 1:
avg_probs.div_(len(models))
avg_probs.log_()
if avg_attn is not None:
avg_attn.div_(len(models))
bsz = avg_probs.size(0)
hypos = []
start_idxs = sample["start_indices"] if "start_indices" in sample else [0] * bsz
for i in range(bsz):
# remove padding from ref
ref = (
utils.strip_pad(sample["target"][i, start_idxs[i] :], self.pad)
if sample["target"] is not None
else None
)
tgt_len = ref.numel()
avg_probs_i = avg_probs[i][start_idxs[i] : start_idxs[i] + tgt_len]
score_i = avg_probs_i.sum() / tgt_len
if avg_attn is not None:
avg_attn_i = avg_attn[i]
if self.compute_alignment:
alignment = utils.extract_hard_alignment(
avg_attn_i,
sample["net_input"]["src_tokens"][i],
sample["target"][i],
self.pad,
self.eos,
)
else:
alignment = None
else:
avg_attn_i = alignment = None
hypos.append(
[
{
"tokens": ref,
"score": score_i,
"attention": avg_attn_i,
"alignment": alignment,
"positional_scores": avg_probs_i,
}
]
)
return hypos
| KosmosX-API-main | kosmosX/fairseq/fairseq/sequence_scorer.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import uuid
from typing import Dict, Optional
from torch import Tensor
class FairseqIncrementalState(object):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.init_incremental_state()
def init_incremental_state(self):
self._incremental_state_id = str(uuid.uuid4())
def _get_full_incremental_state_key(self, key: str) -> str:
return "{}.{}".format(self._incremental_state_id, key)
def get_incremental_state(
self,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]],
key: str,
) -> Optional[Dict[str, Optional[Tensor]]]:
"""Helper for getting incremental state for an nn.Module."""
full_key = self._get_full_incremental_state_key(key)
if incremental_state is None or full_key not in incremental_state:
return None
return incremental_state[full_key]
def set_incremental_state(
self,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]],
key: str,
value: Dict[str, Optional[Tensor]],
) -> Optional[Dict[str, Dict[str, Optional[Tensor]]]]:
"""Helper for setting incremental state for an nn.Module."""
if incremental_state is not None:
full_key = self._get_full_incremental_state_key(key)
incremental_state[full_key] = value
return incremental_state
def with_incremental_state(cls):
cls.__bases__ = (FairseqIncrementalState,) + tuple(
b for b in cls.__bases__ if b != FairseqIncrementalState
)
return cls
| KosmosX-API-main | kosmosX/fairseq/fairseq/incremental_decoding_utils.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import contextlib
import copy
import importlib
import logging
import os
import sys
import warnings
from itertools import accumulate
from typing import Callable, Dict, List, Optional, TYPE_CHECKING
import torch
import torch.nn.functional as F
from torch import Tensor
import collections
if TYPE_CHECKING:
from fairseq.modules.multihead_attention import MultiheadAttention
try:
from amp_C import multi_tensor_l2norm
multi_tensor_l2norm_available = True
except ImportError:
multi_tensor_l2norm_available = False
try:
import torch_xla.core.xla_model as xm
except ImportError:
xm = None
logger = logging.getLogger(__name__)
MANIFOLD_PATH_SEP = "|"
class FileContentsAction(argparse.Action):
def __init__(self, option_strings, dest, nargs=None, **kwargs):
if nargs is not None:
raise ValueError("nargs not allowed")
super(FileContentsAction, self).__init__(option_strings, dest, **kwargs)
def __call__(self, parser, namespace, values, option_string=None):
from fairseq.file_io import PathManager
if PathManager.isfile(values):
with PathManager.open(values) as f:
argument = f.read().strip()
else:
argument = values
setattr(namespace, self.dest, argument)
def split_paths(paths: str, separator=os.pathsep) -> List[str]:
return (
paths.split(separator) if "://" not in paths else paths.split(MANIFOLD_PATH_SEP)
)
def load_ensemble_for_inference(filenames, task, model_arg_overrides=None):
from fairseq import checkpoint_utils
deprecation_warning(
"utils.load_ensemble_for_inference is deprecated. "
"Please use checkpoint_utils.load_model_ensemble instead."
)
return checkpoint_utils.load_model_ensemble(
filenames, arg_overrides=model_arg_overrides, task=task
)
def apply_to_sample(f, sample):
if hasattr(sample, "__len__") and len(sample) == 0:
return {}
def _apply(x):
if torch.is_tensor(x):
return f(x)
elif isinstance(x, collections.OrderedDict):
# OrderedDict has attributes that needs to be preserved
od = collections.OrderedDict(
(key, _apply(value)) for key, value in x.items()
)
od.__dict__ = x.__dict__
return od
elif isinstance(x, dict):
return {key: _apply(value) for key, value in x.items()}
elif isinstance(x, list):
return [_apply(x) for x in x]
elif isinstance(x, tuple):
return tuple(_apply(x) for x in x)
elif isinstance(x, set):
return {_apply(x) for x in x}
else:
return x
return _apply(sample)
def move_to_cuda(sample, device=None):
device = device or torch.cuda.current_device()
def _move_to_cuda(tensor):
# non_blocking is ignored if tensor is not pinned, so we can always set
# to True (see github.com/PyTorchLightning/pytorch-lightning/issues/620)
return tensor.to(device=device, non_blocking=True)
return apply_to_sample(_move_to_cuda, sample)
def move_to_cpu(sample):
def _move_to_cpu(tensor):
# PyTorch has poor support for half tensors (float16) on CPU.
# Move any such tensors to float32.
if tensor.dtype in {torch.bfloat16, torch.float16}:
tensor = tensor.to(dtype=torch.float32)
return tensor.cpu()
return apply_to_sample(_move_to_cpu, sample)
def move_to_tpu(sample):
import torch_xla.core.xla_model as xm
device = xm.xla_device()
def _move_to_tpu(tensor):
return tensor.to(device)
return apply_to_sample(_move_to_tpu, sample)
def get_incremental_state(
module: "MultiheadAttention",
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]],
key: str,
) -> Optional[Dict[str, Optional[Tensor]]]:
"""Helper for getting incremental state for an nn.Module."""
return module.get_incremental_state(incremental_state, key)
def set_incremental_state(
module: "MultiheadAttention",
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]],
key: str,
value: Dict[str, Optional[Tensor]],
) -> Optional[Dict[str, Dict[str, Optional[Tensor]]]]:
"""Helper for setting incremental state for an nn.Module."""
if incremental_state is not None:
result = module.set_incremental_state(incremental_state, key, value)
if result is not None:
incremental_state = result
return incremental_state
def load_align_dict(replace_unk):
if replace_unk is None:
align_dict = None
elif isinstance(replace_unk, str) and len(replace_unk) > 0:
# Load alignment dictionary for unknown word replacement if it was passed as an argument.
align_dict = {}
with open(replace_unk, "r") as f:
for line in f:
cols = line.split()
align_dict[cols[0]] = cols[1]
else:
# No alignment dictionary provided but we still want to perform unknown word replacement by copying the
# original source word.
align_dict = {}
return align_dict
def print_embed_overlap(embed_dict, vocab_dict):
embed_keys = set(embed_dict.keys())
vocab_keys = set(vocab_dict.symbols)
overlap = len(embed_keys & vocab_keys)
logger.info("found {}/{} types in embedding file".format(overlap, len(vocab_dict)))
def parse_embedding(embed_path):
"""Parse embedding text file into a dictionary of word and embedding tensors.
The first line can have vocabulary size and dimension. The following lines
should contain word and embedding separated by spaces.
Example:
2 5
the -0.0230 -0.0264 0.0287 0.0171 0.1403
at -0.0395 -0.1286 0.0275 0.0254 -0.0932
"""
embed_dict = {}
with open(embed_path) as f_embed:
next(f_embed) # skip header
for line in f_embed:
pieces = line.rstrip().split(" ")
embed_dict[pieces[0]] = torch.Tensor(
[float(weight) for weight in pieces[1:]]
)
return embed_dict
def load_embedding(embed_dict, vocab, embedding):
for idx in range(len(vocab)):
token = vocab[idx]
if token in embed_dict:
embedding.weight.data[idx] = embed_dict[token]
return embedding
def replace_unk(hypo_str, src_str, alignment, align_dict, unk):
from fairseq import tokenizer
# Tokens are strings here
hypo_tokens = tokenizer.tokenize_line(hypo_str)
# TODO: Very rare cases where the replacement is '<eos>' should be handled gracefully
src_tokens = tokenizer.tokenize_line(src_str) + ["<eos>"]
for i, ht in enumerate(hypo_tokens):
if ht == unk:
src_token = src_tokens[alignment[i]]
# Either take the corresponding value in the aligned dictionary or just copy the original value.
hypo_tokens[i] = align_dict.get(src_token, src_token)
return " ".join(hypo_tokens)
def post_process_prediction(
hypo_tokens,
src_str,
alignment,
align_dict,
tgt_dict,
remove_bpe=None,
extra_symbols_to_ignore=None,
):
hypo_str = tgt_dict.string(
hypo_tokens, remove_bpe, extra_symbols_to_ignore=extra_symbols_to_ignore
)
if align_dict is not None:
hypo_str = replace_unk(
hypo_str, src_str, alignment, align_dict, tgt_dict.unk_string()
)
if align_dict is not None or remove_bpe is not None:
# Convert back to tokens for evaluating with unk replacement or without BPE
# Note that the dictionary can be modified inside the method.
hypo_tokens = tgt_dict.encode_line(hypo_str, add_if_not_exist=True)
return hypo_tokens, hypo_str, alignment
def make_positions(tensor, padding_idx: int, onnx_trace: bool = False):
"""Replace non-padding symbols with their position numbers.
Position numbers begin at padding_idx+1. Padding symbols are ignored.
"""
# The series of casts and type-conversions here are carefully
# balanced to both work with ONNX export and XLA. In particular XLA
# prefers ints, cumsum defaults to output longs, and ONNX doesn't know
# how to handle the dtype kwarg in cumsum.
mask = tensor.ne(padding_idx).int()
return (torch.cumsum(mask, dim=1).type_as(mask) * mask).long() + padding_idx
def strip_pad(tensor, pad):
return tensor[tensor.ne(pad)]
def buffered_arange(max):
if not hasattr(buffered_arange, "buf"):
buffered_arange.buf = torch.LongTensor()
if max > buffered_arange.buf.numel():
buffered_arange.buf.resize_(max)
torch.arange(max, out=buffered_arange.buf)
return buffered_arange.buf[:max]
def convert_padding_direction(
src_tokens, padding_idx, right_to_left: bool = False, left_to_right: bool = False
):
assert right_to_left ^ left_to_right
pad_mask = src_tokens.eq(padding_idx)
if not pad_mask.any():
# no padding, return early
return src_tokens
if left_to_right and not pad_mask[:, 0].any():
# already right padded
return src_tokens
if right_to_left and not pad_mask[:, -1].any():
# already left padded
return src_tokens
max_len = src_tokens.size(1)
buffered = torch.empty(0).long()
if max_len > 0:
torch.arange(max_len, out=buffered)
range = buffered.type_as(src_tokens).expand_as(src_tokens)
num_pads = pad_mask.long().sum(dim=1, keepdim=True)
if right_to_left:
index = torch.remainder(range - num_pads, max_len)
else:
index = torch.remainder(range + num_pads, max_len)
return src_tokens.gather(1, index)
def item(tensor):
# tpu-comment: making this a no-op for xla devices.
if torch.is_tensor(tensor) and tensor.device.type == "xla":
return tensor.detach()
if hasattr(tensor, "item"):
return tensor.item()
if hasattr(tensor, "__getitem__"):
return tensor[0]
return tensor
def multi_tensor_total_norm(grads, chunk_size=2048 * 32) -> torch.Tensor:
per_device_grads = {}
norms = []
for grad in grads:
device = grad.device
cur_device_grads = per_device_grads.get(device)
if cur_device_grads is None:
cur_device_grads = []
per_device_grads[device] = cur_device_grads
cur_device_grads.append(grad)
for device in per_device_grads.keys():
cur_device_grads = per_device_grads[device]
if device.type == "cuda":
# TODO(msb) return has_inf
has_inf = torch.zeros((1, 1), dtype=torch.int, device=device)
with torch.cuda.device(device):
norm = multi_tensor_l2norm(
chunk_size, has_inf, [cur_device_grads], False
)
norms.append(norm[0].to(torch.cuda.current_device()))
else:
norms += [torch.norm(g, p=2, dtype=torch.float32) for g in cur_device_grads]
total_norm = torch.norm(torch.stack(norms))
return total_norm
@torch.no_grad()
def clip_grad_norm_(params, max_norm, aggregate_norm_fn=None) -> torch.Tensor:
def grad_exists(p):
return p is not None and getattr(p, "grad", None) is not None
if isinstance(params, torch.Tensor):
params = [params]
params = list(params)
grads = [
p.grad.detach() for p in params if grad_exists(p) and not hasattr(p, "expert")
]
expert_grads = [
p.grad.detach() for p in params if grad_exists(p) and hasattr(p, "expert")
]
if len(grads) == 0:
if len(params) > 0:
return params[0].new_tensor(0.0)
else:
return torch.tensor(0.0)
if len(grads) == 1:
total_norm = torch.norm(grads[0], p=2, dtype=torch.float32)
else:
if multi_tensor_l2norm_available:
total_norm = multi_tensor_total_norm(grads)
else:
if torch.cuda.is_available():
warnings.warn(
"amp_C fused kernels unavailable, disabling multi_tensor_l2norm; "
"you may get better performance by installing NVIDIA's apex library"
)
device = torch.cuda.current_device()
elif grads[0].device.type == "xla":
device = grads[0].device
else:
device = torch.device("cpu")
total_norm = torch.norm(
torch.stack(
[torch.norm(g, p=2, dtype=torch.float32).to(device) for g in grads]
)
)
if aggregate_norm_fn is not None:
total_norm = aggregate_norm_fn(total_norm)
if max_norm > 0:
max_norm = float(max_norm)
clip_coef = (max_norm / (total_norm + 1e-6)).clamp_(max=1)
for g in grads + expert_grads:
g.mul_(clip_coef)
return total_norm
def fill_with_neg_inf(t):
"""FP16-compatible function that fills a tensor with -inf."""
return t.float().fill_(float("-inf")).type_as(t)
def _match_types(arg1, arg2):
"""Convert the numerical argument to the same type as the other argument"""
def upgrade(arg_number, arg_structure):
if isinstance(arg_structure, tuple):
return tuple([arg_number] * len(arg_structure))
elif isinstance(arg_structure, dict):
arg = copy.deepcopy(arg_structure)
for k in arg:
arg[k] = upgrade(arg_number, arg_structure[k])
return arg
else:
return arg_number
if isinstance(arg1, float) or isinstance(arg1, int):
return upgrade(arg1, arg2), arg2
elif isinstance(arg2, float) or isinstance(arg2, int):
return arg1, upgrade(arg2, arg1)
return arg1, arg2
def resolve_max_positions(*args):
"""Resolve max position constraints from multiple sources."""
def map_value_update(d1, d2):
updated_value = copy.deepcopy(d1)
for key in d2:
if key not in updated_value:
updated_value[key] = d2[key]
else:
updated_value[key] = min(d1[key], d2[key])
return updated_value
def nullsafe_min(l):
minim = None
for item in l:
if minim is None:
minim = item
elif item is not None and item < minim:
minim = item
return minim
max_positions = None
for arg in args:
if max_positions is None:
max_positions = arg
elif arg is not None:
max_positions, arg = _match_types(max_positions, arg)
if isinstance(arg, float) or isinstance(arg, int):
max_positions = min(max_positions, arg)
elif isinstance(arg, dict):
max_positions = map_value_update(max_positions, arg)
else:
max_positions = tuple(map(nullsafe_min, zip(max_positions, arg)))
return max_positions
def import_user_module(args):
module_path = getattr(args, "user_dir", None)
if module_path is not None:
module_path = os.path.abspath(args.user_dir)
if not os.path.exists(module_path) and not os.path.isfile(
os.path.dirname(module_path)
):
fairseq_rel_path = os.path.join(os.path.dirname(__file__), args.user_dir)
if os.path.exists(fairseq_rel_path):
module_path = fairseq_rel_path
else:
fairseq_rel_path = os.path.join(
os.path.dirname(__file__), "..", args.user_dir
)
if os.path.exists(fairseq_rel_path):
module_path = fairseq_rel_path
else:
raise FileNotFoundError(module_path)
# ensure that user modules are only imported once
import_user_module.memo = getattr(import_user_module, "memo", set())
if module_path not in import_user_module.memo:
import_user_module.memo.add(module_path)
module_parent, module_name = os.path.split(module_path)
if module_name not in sys.modules:
sys.path.insert(0, module_parent)
importlib.import_module(module_name)
tasks_path = os.path.join(module_path, "tasks")
if os.path.exists(tasks_path):
from fairseq.tasks import import_tasks
import_tasks(tasks_path, f"{module_name}.tasks")
models_path = os.path.join(module_path, "models")
if os.path.exists(models_path):
from fairseq.models import import_models
import_models(models_path, f"{module_name}.models")
else:
raise ImportError(
"Failed to import --user-dir={} because the corresponding module name "
"({}) is not globally unique. Please rename the directory to "
"something unique and try again.".format(module_path, module_name)
)
def softmax(x, dim: int, onnx_trace: bool = False):
if onnx_trace:
return F.softmax(x.float(), dim=dim)
else:
return F.softmax(x, dim=dim, dtype=torch.float32)
def log_softmax(x, dim: int, onnx_trace: bool = False):
if onnx_trace:
return F.log_softmax(x.float(), dim=dim)
else:
return F.log_softmax(x, dim=dim, dtype=torch.float32)
def get_perplexity(loss, round=2, base=2):
from fairseq.logging.meters import safe_round
if loss is None:
return 0.0
try:
return safe_round(base ** loss, round)
except OverflowError:
return float("inf")
def deprecation_warning(message, stacklevel=3):
# don't use DeprecationWarning, since it's ignored by default
warnings.warn(message, stacklevel=stacklevel)
def relu_squared(x: torch.Tensor):
return F.relu(x).pow(2)
def get_activation_fn(activation: str) -> Callable:
"""Returns the activation function corresponding to `activation`"""
from fairseq.modules import gelu, gelu_accurate
if activation == "relu":
return F.relu
elif activation == "relu_squared":
return relu_squared
elif activation == "gelu":
return gelu
elif activation == "gelu_fast":
deprecation_warning(
"--activation-fn=gelu_fast has been renamed to gelu_accurate"
)
return gelu_accurate
elif activation == "gelu_accurate":
return gelu_accurate
elif activation == "tanh":
return torch.tanh
elif activation == "linear":
return lambda x: x
elif activation == "swish":
return torch.nn.SiLU
else:
raise RuntimeError("--activation-fn {} not supported".format(activation))
def get_available_activation_fns() -> List:
return [
"relu",
"gelu",
"gelu_fast", # deprecated
"gelu_accurate",
"tanh",
"linear",
]
@contextlib.contextmanager
def model_eval(model):
is_training = model.training
model.eval()
yield
model.train(is_training)
def has_parameters(module):
try:
next(module.parameters())
return True
except StopIteration:
return False
def get_rng_state():
state = {"torch_rng_state": torch.get_rng_state()}
if xm is not None:
state["xla_rng_state"] = xm.get_rng_state()
if torch.cuda.is_available():
state["cuda_rng_state"] = torch.cuda.get_rng_state()
return state
def set_rng_state(state):
torch.set_rng_state(state["torch_rng_state"])
if xm is not None:
xm.set_rng_state(state["xla_rng_state"])
if torch.cuda.is_available():
torch.cuda.set_rng_state(state["cuda_rng_state"])
class set_torch_seed(object):
def __init__(self, seed):
assert isinstance(seed, int)
self.rng_state = get_rng_state()
torch.manual_seed(seed)
if xm is not None:
xm.set_rng_state(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
def __enter__(self):
return self
def __exit__(self, *exc):
set_rng_state(self.rng_state)
def parse_alignment(line):
"""
Parses a single line from the alingment file.
Args:
line (str): String containing the alignment of the format:
<src_idx_1>-<tgt_idx_1> <src_idx_2>-<tgt_idx_2> ..
<src_idx_m>-<tgt_idx_m>. All indices are 0 indexed.
Returns:
torch.IntTensor: packed alignments of shape (2 * m).
"""
alignments = line.strip().split()
parsed_alignment = torch.IntTensor(2 * len(alignments))
for idx, alignment in enumerate(alignments):
src_idx, tgt_idx = alignment.split("-")
parsed_alignment[2 * idx] = int(src_idx)
parsed_alignment[2 * idx + 1] = int(tgt_idx)
return parsed_alignment
def get_token_to_word_mapping(tokens, exclude_list):
n = len(tokens)
word_start = [int(token not in exclude_list) for token in tokens]
word_idx = list(accumulate(word_start))
token_to_word = {i: word_idx[i] for i in range(n)}
return token_to_word
def extract_hard_alignment(attn, src_sent, tgt_sent, pad, eos):
tgt_valid = (
((tgt_sent != pad) & (tgt_sent != eos)).nonzero(as_tuple=False).squeeze(dim=-1)
)
src_invalid = (
((src_sent == pad) | (src_sent == eos)).nonzero(as_tuple=False).squeeze(dim=-1)
)
src_token_to_word = get_token_to_word_mapping(src_sent, [eos, pad])
tgt_token_to_word = get_token_to_word_mapping(tgt_sent, [eos, pad])
alignment = []
if len(tgt_valid) != 0 and len(src_invalid) < len(src_sent):
attn_valid = attn[tgt_valid]
attn_valid[:, src_invalid] = float("-inf")
_, src_indices = attn_valid.max(dim=1)
for tgt_idx, src_idx in zip(tgt_valid, src_indices):
alignment.append(
(
src_token_to_word[src_idx.item()] - 1,
tgt_token_to_word[tgt_idx.item()] - 1,
)
)
return alignment
def extract_soft_alignment(attn, src_sent, tgt_sent, pad, eos):
tgt_valid = ((tgt_sent != pad)).nonzero(as_tuple=False)
src_valid = ((src_sent != pad)).nonzero(as_tuple=False).squeeze(dim=-1)
alignment = []
if len(tgt_valid) != 0 and len(src_valid) != 0:
attn_valid = attn[tgt_valid, src_valid]
alignment = [
["{:.6f}".format(p) for p in src_probs.tolist()] for src_probs in attn_valid
]
return alignment
def new_arange(x, *size):
"""
Return a Tensor of `size` filled with a range function on the device of x.
If size is empty, using the size of the variable x.
"""
if len(size) == 0:
size = x.size()
return torch.arange(size[-1], device=x.device).expand(*size).contiguous()
def get_tpu_device():
return xm.xla_device()
def tpu_data_loader(itr):
import torch_xla.core.xla_model as xm
import torch_xla.distributed.parallel_loader as pl
from fairseq.data import iterators
xm.rendezvous("tpu_data_loader") # wait for all workers
xm.mark_step()
device = xm.xla_device()
return iterators.CountingIterator(
pl.ParallelLoader(itr, [device]).per_device_loader(device),
start=getattr(itr, "n", 0),
total=len(itr),
)
def is_xla_tensor(tensor):
return torch.is_tensor(tensor) and tensor.device.type == "xla"
def index_put(tensor, indices, value):
if is_xla_tensor(tensor):
for _ in range(indices.dim(), tensor.dim()):
indices = indices.unsqueeze(-1)
if indices.size(-1) < tensor.size(-1):
indices = indices.expand_as(tensor)
tensor = torch.mul(tensor, ~indices) + torch.mul(value, indices)
else:
tensor[indices] = value
return tensor
def xla_device_to_cpu(dat):
import torch_xla.core.xla_model as xm
return xm._maybe_convert_to_cpu(dat)
class CudaEnvironment(object):
def __init__(self):
cur_device = torch.cuda.current_device()
prop = torch.cuda.get_device_properties("cuda:{}".format(cur_device))
self.name = prop.name
self.major = prop.major
self.minor = prop.minor
self.total_memory_in_GB = prop.total_memory / 1024 / 1024 / 1024
@staticmethod
def pretty_print_cuda_env_list(cuda_env_list):
"""
Given a list of CudaEnviorments, pretty print them
"""
num_workers = len(cuda_env_list)
center = "CUDA enviroments for all {} workers".format(num_workers)
banner_len = 40 - len(center) // 2
first_line = "*" * banner_len + center + "*" * banner_len
logger.info(first_line)
for r, env in enumerate(cuda_env_list):
logger.info(
"rank {:3d}: ".format(r)
+ "capabilities = {:2d}.{:<2d} ; ".format(env.major, env.minor)
+ "total memory = {:.3f} GB ; ".format(env.total_memory_in_GB)
+ "name = {:40s}".format(env.name)
)
logger.info(first_line)
def csv_str_list(x):
return x.split(",")
def eval_str_list(x, type=float):
if x is None:
return None
if isinstance(x, str):
x = eval(x)
try:
return list(map(type, x))
except TypeError:
return [type(x)]
def eval_str_dict(x, type=dict):
if x is None:
return None
if isinstance(x, str):
x = eval(x)
return x
def eval_bool(x, default=False):
if x is None:
return default
try:
return bool(eval(x))
except TypeError:
return default
def reset_logging():
root = logging.getLogger()
for handler in root.handlers:
root.removeHandler(handler)
root.setLevel(os.environ.get("LOGLEVEL", "INFO").upper())
handler = logging.StreamHandler(sys.stdout)
handler.setFormatter(
logging.Formatter(
fmt="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
)
)
root.addHandler(handler)
def safe_getattr(obj, k, default=None):
"""Returns obj[k] if it exists and is not None, otherwise returns default."""
from omegaconf import OmegaConf
if OmegaConf.is_config(obj):
return obj[k] if k in obj and obj[k] is not None else default
return getattr(obj, k, default)
def safe_hasattr(obj, k):
"""Returns True if the given key exists and is not None."""
return getattr(obj, k, None) is not None
| KosmosX-API-main | kosmosX/fairseq/fairseq/utils.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import ast
import collections
import contextlib
import logging
import numpy as np
import os
import re
import time
import traceback
from collections import OrderedDict
from typing import Any, Dict, Optional, Union
import torch
from fairseq.data import data_utils
from fairseq.dataclass.configs import CheckpointConfig
from fairseq.dataclass.utils import (
convert_namespace_to_omegaconf,
overwrite_args_by_name,
)
from fairseq.distributed.fully_sharded_data_parallel import FSDP, has_FSDP
from fairseq.distributed import utils as distributed_utils
from fairseq.file_io import PathManager
from fairseq.models import FairseqDecoder, FairseqEncoder
from omegaconf import DictConfig, open_dict, OmegaConf
from fairseq.ds_trainer import DeepSpeedTrainer
logger = logging.getLogger(__name__)
def save_checkpoint(cfg: CheckpointConfig, trainer, epoch_itr, val_loss):
from fairseq import meters
# only one worker should attempt to create the required dir
if trainer.data_parallel_rank == 0:
os.makedirs(cfg.save_dir, exist_ok=True)
prev_best = getattr(save_checkpoint, "best", val_loss)
if val_loss is not None:
best_function = max if cfg.maximize_best_checkpoint_metric else min
save_checkpoint.best = best_function(val_loss, prev_best)
if cfg.no_save:
return
trainer.consolidate_optimizer() # TODO(SS): do we need this if no_save_optimizer_state
extra_state = {"train_iterator": epoch_itr.state_dict(), "val_loss": val_loss}
if hasattr(save_checkpoint, "best"):
extra_state.update({"best": save_checkpoint.best})
if getattr(epoch_itr, "sharded_checkpoint", False):
local_state_dict = extra_state["train_iterator"]
all_state_dicts = distributed_utils.all_gather_list(
local_state_dict,
max_size=getattr(trainer.cfg.common, "all_gather_list_size", 16384),
group=trainer.data_parallel_process_group,
)
extra_state["train_iterator"] = all_state_dicts
if not trainer.should_save_checkpoint_on_current_rank:
if trainer.always_call_state_dict_during_save_checkpoint:
trainer.state_dict()
return
write_timer = meters.StopwatchMeter()
write_timer.start()
epoch = epoch_itr.epoch
end_of_epoch = epoch_itr.end_of_epoch()
updates = trainer.get_num_updates()
logger.info(f"Preparing to save checkpoint for epoch {epoch} @ {updates} updates")
def is_better(a, b):
return a >= b if cfg.maximize_best_checkpoint_metric else a <= b
suffix = trainer.checkpoint_suffix
checkpoint_conds = collections.OrderedDict()
if isinstance(trainer, DeepSpeedTrainer):
checkpoint_conds["checkpoints"] = (
not end_of_epoch
and cfg.save_interval_updates > 0
and updates % cfg.save_interval_updates == 0
)
else:
checkpoint_conds["checkpoint{}{}.pt".format(epoch, suffix)] = (
end_of_epoch and not cfg.no_epoch_checkpoints and epoch % cfg.save_interval == 0
)
checkpoint_conds["checkpoint_{}_{}{}.pt".format(epoch, updates, suffix)] = (
not end_of_epoch
and cfg.save_interval_updates > 0
and updates % cfg.save_interval_updates == 0
)
checkpoint_conds["checkpoint_best{}.pt".format(suffix)] = val_loss is not None and (
not hasattr(save_checkpoint, "best")
or is_better(val_loss, save_checkpoint.best)
)
if val_loss is not None and cfg.keep_best_checkpoints > 0:
worst_best = getattr(save_checkpoint, "best", None)
chkpts = checkpoint_paths(
cfg.save_dir,
pattern=r"checkpoint\.best_{}_(\d+\.?\d*){}\.pt".format(
cfg.best_checkpoint_metric, suffix
),
)
if len(chkpts) > 0:
p = chkpts[-1] if cfg.maximize_best_checkpoint_metric else chkpts[0]
worst_best = float(p.rsplit("_")[-1].replace("{}.pt".format(suffix), ""))
# add random digits to resolve ties
with data_utils.numpy_seed(epoch, updates, val_loss):
rand_sfx = np.random.randint(0, cfg.keep_best_checkpoints)
checkpoint_conds[
"checkpoint.best_{}_{:.3f}{}{}.pt".format(
cfg.best_checkpoint_metric,
val_loss,
rand_sfx,
suffix
)
] = worst_best is None or is_better(val_loss, worst_best)
checkpoint_conds[
"checkpoint_last{}.pt".format(suffix)
] = not cfg.no_last_checkpoints
checkpoints = [
os.path.join(cfg.save_dir, fn) for fn, cond in checkpoint_conds.items() if cond
]
if len(checkpoints) > 0:
trainer.save_checkpoint(checkpoints[0], extra_state)
if not isinstance(trainer, DeepSpeedTrainer):
for cp in checkpoints[1:]:
if cfg.write_checkpoints_asynchronously:
# TODO[ioPath]: Need to implement a delayed asynchronous
# file copying/moving feature.
logger.warning(
f"ioPath is not copying {checkpoints[0]} to {cp} "
"since async write mode is on."
)
else:
assert PathManager.copy(
checkpoints[0], cp, overwrite=True
), f"Failed to copy {checkpoints[0]} to {cp}"
write_timer.stop()
logger.info(
"Saved checkpoint {} (epoch {} @ {} updates, score {}) (writing took {} seconds)".format(
checkpoints[0], epoch, updates, val_loss, write_timer.sum
)
)
if not end_of_epoch and cfg.keep_interval_updates > 0:
# remove old checkpoints; checkpoints are sorted in descending order
if cfg.keep_interval_updates_pattern == -1:
checkpoints = checkpoint_paths(
cfg.save_dir, pattern=r"checkpoint_\d+_(\d+){}\.pt".format(suffix)
)
else:
checkpoints = checkpoint_paths(
cfg.save_dir,
pattern=r"checkpoint_\d+_(\d+){}\.pt".format(suffix),
keep_match=True,
)
checkpoints = [
x[0]
for x in checkpoints
if x[1] % cfg.keep_interval_updates_pattern != 0
]
for old_chk in checkpoints[cfg.keep_interval_updates :]:
if os.path.lexists(old_chk):
os.remove(old_chk)
elif PathManager.exists(old_chk):
PathManager.rm(old_chk)
if cfg.keep_last_epochs > 0:
# remove old epoch checkpoints; checkpoints are sorted in descending order
checkpoints = checkpoint_paths(
cfg.save_dir, pattern=r"checkpoint(\d+){}\.pt".format(suffix)
)
for old_chk in checkpoints[cfg.keep_last_epochs :]:
if os.path.lexists(old_chk):
os.remove(old_chk)
elif PathManager.exists(old_chk):
PathManager.rm(old_chk)
if cfg.keep_best_checkpoints > 0:
# only keep the best N checkpoints according to validation metric
checkpoints = checkpoint_paths(
cfg.save_dir,
pattern=r"checkpoint\.best_{}_(\d+\.?\d*){}\.pt".format(
cfg.best_checkpoint_metric, suffix
),
)
if not cfg.maximize_best_checkpoint_metric:
checkpoints = checkpoints[::-1]
for old_chk in checkpoints[cfg.keep_best_checkpoints :]:
if os.path.lexists(old_chk):
os.remove(old_chk)
elif PathManager.exists(old_chk):
PathManager.rm(old_chk)
def load_checkpoint(cfg: CheckpointConfig, trainer, **passthrough_args):
"""
Load a checkpoint and restore the training iterator.
*passthrough_args* will be passed through to
``trainer.get_train_iterator``.
"""
reset_optimizer = cfg.reset_optimizer
reset_lr_scheduler = cfg.reset_lr_scheduler
optimizer_overrides = ast.literal_eval(cfg.optimizer_overrides)
reset_meters = cfg.reset_meters
reset_dataloader = cfg.reset_dataloader
if cfg.finetune_from_model is not None and (
reset_optimizer or reset_lr_scheduler or reset_meters or reset_dataloader
):
raise ValueError(
"--finetune-from-model can not be set together with either --reset-optimizer"
" or reset_lr_scheduler or reset_meters or reset_dataloader"
)
suffix = trainer.checkpoint_suffix
if isinstance(trainer, DeepSpeedTrainer):
checkpoint_path = os.path.join(cfg.save_dir, "checkpoints/")
else:
if (
cfg.restore_file == "checkpoint_last.pt"
): # default value of restore_file is 'checkpoint_last.pt'
checkpoint_path = os.path.join(
cfg.save_dir, "checkpoint_last{}.pt".format(suffix)
)
first_launch = not PathManager.exists(checkpoint_path)
if cfg.finetune_from_model is not None and first_launch:
# if there is no last checkpoint to restore, start the finetune from pretrained model
# else just use usual logic to load checkpoint, e.g. restart from last checkpoint and etc.
if PathManager.exists(cfg.finetune_from_model):
checkpoint_path = cfg.finetune_from_model
reset_optimizer = True
reset_lr_scheduler = True
reset_meters = True
reset_dataloader = True
logger.info(
f"loading pretrained model from {checkpoint_path}: "
"optimizer, lr scheduler, meters, dataloader will be reset"
)
else:
raise ValueError(
f"--funetune-from-model {cfg.finetune_from_model} does not exist"
)
elif suffix is not None:
checkpoint_path = cfg.restore_file.replace(".pt", suffix + ".pt")
else:
checkpoint_path = cfg.restore_file
if cfg.restore_file != "checkpoint_last.pt" and cfg.finetune_from_model:
raise ValueError(
"--finetune-from-model and --restore-file (non-default value) "
"can not be specified together: " + str(cfg)
)
extra_state = trainer.load_checkpoint(
checkpoint_path,
reset_optimizer,
reset_lr_scheduler,
optimizer_overrides,
reset_meters=reset_meters,
)
if (
extra_state is not None
and "best" in extra_state
and not reset_optimizer
and not reset_meters
):
save_checkpoint.best = extra_state["best"]
if extra_state is not None and not reset_dataloader:
# restore iterator from checkpoint
itr_state = extra_state["train_iterator"]
epoch_itr = trainer.get_train_iterator(
epoch=itr_state.get("epoch", 1), load_dataset=True, **passthrough_args
)
epoch_itr.load_state_dict(itr_state)
else:
epoch_itr = trainer.get_train_iterator(
epoch=1, load_dataset=True, **passthrough_args
)
trainer.lr_step(epoch_itr.epoch)
return extra_state, epoch_itr
def load_checkpoint_to_cpu(path, arg_overrides=None, load_on_all_ranks=False):
"""Loads a checkpoint to CPU (with upgrading for backward compatibility).
If doing single-GPU training or if the checkpoint is only being loaded by at
most one process on each node (current default behavior is for only rank 0
to read the checkpoint from disk), load_on_all_ranks should be False to
avoid errors from torch.distributed not having been initialized or
torch.distributed.barrier() hanging.
If all processes on each node may be loading the checkpoint
simultaneously, load_on_all_ranks should be set to True to avoid I/O
conflicts.
There's currently no support for > 1 but < all processes loading the
checkpoint on each node.
"""
local_path = PathManager.get_local_path(path)
# The locally cached file returned by get_local_path() may be stale for
# remote files that are periodically updated/overwritten (ex:
# checkpoint_last.pt) - so we remove the local copy, sync across processes
# (if needed), and then download a fresh copy.
if local_path != path and PathManager.path_requires_pathmanager(path):
try:
os.remove(local_path)
except FileNotFoundError:
# With potentially multiple processes removing the same file, the
# file being missing is benign (missing_ok isn't available until
# Python 3.8).
pass
if load_on_all_ranks:
torch.distributed.barrier()
local_path = PathManager.get_local_path(path)
with open(local_path, "rb") as f:
state = torch.load(f, map_location=torch.device("cpu"))
if "args" in state and state["args"] is not None and arg_overrides is not None:
args = state["args"]
for arg_name, arg_val in arg_overrides.items():
setattr(args, arg_name, arg_val)
if "cfg" in state and state["cfg"] is not None:
# hack to be able to set Namespace in dict config. this should be removed when we update to newer
# omegaconf version that supports object flags, or when we migrate all existing models
from omegaconf import _utils
old_primitive = _utils.is_primitive_type
_utils.is_primitive_type = lambda _: True
state["cfg"] = OmegaConf.create(state["cfg"])
_utils.is_primitive_type = old_primitive
OmegaConf.set_struct(state["cfg"], True)
if arg_overrides is not None:
overwrite_args_by_name(state["cfg"], arg_overrides)
state = _upgrade_state_dict(state)
return state
def load_model_ensemble(
filenames,
arg_overrides: Optional[Dict[str, Any]] = None,
task=None,
strict=True,
suffix="",
num_shards=1,
state=None,
):
"""Loads an ensemble of models.
Args:
filenames (List[str]): checkpoint files to load
arg_overrides (Dict[str,Any], optional): override model args that
were used during model training
task (fairseq.tasks.FairseqTask, optional): task to use for loading
"""
assert not (
strict and num_shards > 1
), "Cannot load state dict with strict=True and checkpoint shards > 1"
ensemble, args, _task = load_model_ensemble_and_task(
filenames,
arg_overrides,
task,
strict,
suffix,
num_shards,
state,
)
return ensemble, args
def get_maybe_sharded_checkpoint_filename(
filename: str, suffix: str, shard_idx: int, num_shards: int
) -> str:
orig_filename = filename
filename = filename.replace(".pt", suffix + ".pt")
fsdp_filename = filename[:-3] + f"-shard{shard_idx}.pt"
model_parallel_filename = orig_filename[:-3] + f"_part{shard_idx}.pt"
if PathManager.exists(fsdp_filename):
return fsdp_filename
elif num_shards > 1:
return model_parallel_filename
else:
return filename
def load_model_ensemble_and_task(
filenames,
arg_overrides: Optional[Dict[str, Any]] = None,
task=None,
strict=True,
suffix="",
num_shards=1,
state=None,
):
assert state is None or len(filenames) == 1
from fairseq import tasks
assert not (
strict and num_shards > 1
), "Cannot load state dict with strict=True and checkpoint shards > 1"
ensemble = []
cfg = None
for filename in filenames:
orig_filename = filename
model_shard_state = {"shard_weights": [], "shard_metadata": []}
assert num_shards > 0
st = time.time()
for shard_idx in range(num_shards):
filename = get_maybe_sharded_checkpoint_filename(
orig_filename, suffix, shard_idx, num_shards
)
if not PathManager.exists(filename):
raise IOError("Model file not found: {}".format(filename))
if state is None:
state = load_checkpoint_to_cpu(filename, arg_overrides)
if "args" in state and state["args"] is not None:
cfg = convert_namespace_to_omegaconf(state["args"])
elif "cfg" in state and state["cfg"] is not None:
cfg = state["cfg"]
else:
raise RuntimeError(
f"Neither args nor cfg exist in state keys = {state.keys()}"
)
if task is None:
task = tasks.setup_task(cfg.task)
if "task_state" in state:
task.load_state_dict(state["task_state"])
if "fsdp_metadata" in state and num_shards > 1:
model_shard_state["shard_weights"].append(state["model"])
model_shard_state["shard_metadata"].append(state["fsdp_metadata"])
# check FSDP import before the code goes too far
if not has_FSDP:
raise ImportError(
"Cannot find FullyShardedDataParallel. "
"Please install fairscale with: pip install fairscale"
)
if shard_idx == num_shards - 1:
consolidated_model_state = FSDP.consolidate_shard_weights(
shard_weights=model_shard_state["shard_weights"],
shard_metadata=model_shard_state["shard_metadata"],
)
model = task.build_model(cfg.model)
if (
"optimizer_history" in state
and len(state["optimizer_history"]) > 0
and "num_updates" in state["optimizer_history"][-1]
):
model.set_num_updates(
state["optimizer_history"][-1]["num_updates"]
)
model.load_state_dict(
consolidated_model_state, strict=strict, model_cfg=cfg.model
)
else:
# model parallel checkpoint or unsharded checkpoint
model = task.build_model(cfg.model)
if (
"optimizer_history" in state
and len(state["optimizer_history"]) > 0
and "num_updates" in state["optimizer_history"][-1]
):
model.set_num_updates(
state["optimizer_history"][-1]["num_updates"]
)
model.load_state_dict(
state["model"], strict=strict, model_cfg=cfg.model
)
# reset state so it gets loaded for the next model in ensemble
state = None
if shard_idx % 10 == 0 and shard_idx > 0:
elapsed = time.time() - st
logger.info(
f"Loaded {shard_idx} shards in {elapsed:.2f}s, {elapsed / (shard_idx+1):.2f}s/shard"
)
# build model for ensemble
ensemble.append(model)
return ensemble, cfg, task
def checkpoint_paths(path, pattern=r"checkpoint(\d+)\.pt", keep_match=False):
"""Retrieves all checkpoints found in `path` directory.
Checkpoints are identified by matching filename to the specified pattern. If
the pattern contains groups, the result will be sorted by the first group in
descending order.
"""
pt_regexp = re.compile(pattern)
files = PathManager.ls(path)
entries = []
for i, f in enumerate(files):
m = pt_regexp.fullmatch(f)
if m is not None:
idx = float(m.group(1)) if len(m.groups()) > 0 else i
entries.append((idx, m.group(0)))
if keep_match:
return [(os.path.join(path, x[1]), x[0]) for x in sorted(entries, reverse=True)]
else:
return [os.path.join(path, x[1]) for x in sorted(entries, reverse=True)]
def torch_persistent_save(obj, filename, async_write: bool = False):
if async_write:
with PathManager.opena(filename, "wb") as f:
_torch_persistent_save(obj, f)
else:
if PathManager.supports_rename(filename):
# do atomic save
with PathManager.open(filename + ".tmp", "wb") as f:
_torch_persistent_save(obj, f)
PathManager.rename(filename + ".tmp", filename)
else:
# fallback to non-atomic save
with PathManager.open(filename, "wb") as f:
_torch_persistent_save(obj, f)
def _torch_persistent_save(obj, f):
if isinstance(f, str):
with PathManager.open(f, "wb") as h:
torch_persistent_save(obj, h)
return
for i in range(3):
try:
return torch.save(obj, f)
except Exception:
if i == 2:
logger.error(traceback.format_exc())
raise
def _upgrade_state_dict(state):
"""Helper for upgrading old model checkpoints."""
# add optimizer_history
if "optimizer_history" not in state:
state["optimizer_history"] = [
{"criterion_name": "CrossEntropyCriterion", "best_loss": state["best_loss"]}
]
state["last_optimizer_state"] = state["optimizer"]
del state["optimizer"]
del state["best_loss"]
# move extra_state into sub-dictionary
if "epoch" in state and "extra_state" not in state:
state["extra_state"] = {
"epoch": state["epoch"],
"batch_offset": state["batch_offset"],
"val_loss": state["val_loss"],
}
del state["epoch"]
del state["batch_offset"]
del state["val_loss"]
# reduce optimizer history's memory usage (only keep the last state)
if "optimizer" in state["optimizer_history"][-1]:
state["last_optimizer_state"] = state["optimizer_history"][-1]["optimizer"]
for optim_hist in state["optimizer_history"]:
del optim_hist["optimizer"]
# record the optimizer class name
if "optimizer_name" not in state["optimizer_history"][-1]:
state["optimizer_history"][-1]["optimizer_name"] = "FairseqNAG"
# move best_loss into lr_scheduler_state
if "lr_scheduler_state" not in state["optimizer_history"][-1]:
state["optimizer_history"][-1]["lr_scheduler_state"] = {
"best": state["optimizer_history"][-1]["best_loss"]
}
del state["optimizer_history"][-1]["best_loss"]
# keep track of number of updates
if "num_updates" not in state["optimizer_history"][-1]:
state["optimizer_history"][-1]["num_updates"] = 0
# old model checkpoints may not have separate source/target positions
if (
"args" in state
and hasattr(state["args"], "max_positions")
and not hasattr(state["args"], "max_source_positions")
):
state["args"].max_source_positions = state["args"].max_positions
state["args"].max_target_positions = state["args"].max_positions
# use stateful training data iterator
if "train_iterator" not in state["extra_state"]:
state["extra_state"]["train_iterator"] = {
"epoch": state["extra_state"]["epoch"],
"iterations_in_epoch": state["extra_state"].get("batch_offset", 0),
}
# backward compatibility, cfg updates
if "args" in state and state["args"] is not None:
# default to translation task
if not hasattr(state["args"], "task"):
state["args"].task = "translation"
# --raw-text and --lazy-load are deprecated
if getattr(state["args"], "raw_text", False):
state["args"].dataset_impl = "raw"
elif getattr(state["args"], "lazy_load", False):
state["args"].dataset_impl = "lazy"
# epochs start at 1
if state["extra_state"]["train_iterator"] is not None:
state["extra_state"]["train_iterator"]["epoch"] = max(
state["extra_state"]["train_iterator"].get("epoch", 1), 1
)
# --remove-bpe ==> --postprocess
if hasattr(state["args"], "remove_bpe"):
state["args"].post_process = state["args"].remove_bpe
# --min-lr ==> --stop-min-lr
if hasattr(state["args"], "min_lr"):
state["args"].stop_min_lr = state["args"].min_lr
del state["args"].min_lr
# binary_cross_entropy / kd_binary_cross_entropy => wav2vec criterion
if (
hasattr(state["args"], "criterion")
and state["args"].criterion in [
"binary_cross_entropy",
"kd_binary_cross_entropy",
]
):
state["args"].criterion = "wav2vec"
# remove log_keys if it's None (criteria will supply a default value of [])
if hasattr(state["args"], "log_keys") and state["args"].log_keys is None:
delattr(state["args"], "log_keys")
# speech_pretraining => audio pretraining
if (
hasattr(state["args"], "task")
and state["args"].task == "speech_pretraining"
):
state["args"].task = "audio_pretraining"
# audio_cpc => wav2vec
if hasattr(state["args"], "arch") and state["args"].arch == "audio_cpc":
state["args"].arch = "wav2vec"
# convert legacy float learning rate to List[float]
if hasattr(state["args"], "lr") and isinstance(state["args"].lr, float):
state["args"].lr = [state["args"].lr]
# convert task data arg to a string instead of List[string]
if (
hasattr(state["args"], "data")
and isinstance(state["args"].data, list)
and len(state["args"].data) > 0
):
state["args"].data = state["args"].data[0]
# remove keys in state["args"] related to teacher-student learning
for key in [
"static_teachers",
"static_teacher_weights",
"dynamic_teachers",
"dynamic_teacher_weights",
]:
if key in state["args"]:
delattr(state["args"], key)
state["cfg"] = convert_namespace_to_omegaconf(state["args"])
if "cfg" in state and state["cfg"] is not None:
cfg = state["cfg"]
with open_dict(cfg):
# any upgrades for Hydra-based configs
if (
"task" in cfg
and "eval_wer_config" in cfg.task
and isinstance(cfg.task.eval_wer_config.print_alignment, bool)
):
cfg.task.eval_wer_config.print_alignment = "hard"
if "generation" in cfg and isinstance(cfg.generation.print_alignment, bool):
cfg.generation.print_alignment = "hard" if cfg.generation.print_alignment else None
if (
"model" in cfg
and "w2v_args" in cfg.model
and cfg.model.w2v_args is not None
and (
hasattr(cfg.model.w2v_args, "task") or "task" in cfg.model.w2v_args
)
and hasattr(cfg.model.w2v_args.task, "eval_wer_config")
and cfg.model.w2v_args.task.eval_wer_config is not None
and isinstance(
cfg.model.w2v_args.task.eval_wer_config.print_alignment, bool
)
):
cfg.model.w2v_args.task.eval_wer_config.print_alignment = "hard"
return state
def prune_state_dict(state_dict, model_cfg: Optional[DictConfig]):
"""Prune the given state_dict if desired for LayerDrop
(https://arxiv.org/abs/1909.11556).
Training with LayerDrop allows models to be robust to pruning at inference
time. This function prunes state_dict to allow smaller models to be loaded
from a larger model and re-maps the existing state_dict for this to occur.
It's called by functions that load models from checkpoints and does not
need to be called directly.
"""
arch = None
if model_cfg is not None:
arch = (
model_cfg._name
if isinstance(model_cfg, DictConfig)
else getattr(model_cfg, "arch", None)
)
if not model_cfg or arch is None or arch == "ptt_transformer":
# args should not be none, but don't crash if it is.
return state_dict
encoder_layers_to_keep = getattr(model_cfg, "encoder_layers_to_keep", None)
decoder_layers_to_keep = getattr(model_cfg, "decoder_layers_to_keep", None)
if not encoder_layers_to_keep and not decoder_layers_to_keep:
return state_dict
# apply pruning
logger.info(
"Pruning model to specified layer configuration - this works best if the model was trained with LayerDrop"
)
def create_pruning_pass(layers_to_keep, layer_name):
keep_layers = sorted(
int(layer_string) for layer_string in layers_to_keep.split(",")
)
mapping_dict = {}
for i in range(len(keep_layers)):
mapping_dict[str(keep_layers[i])] = str(i)
regex = re.compile(r"^{layer}.*\.layers\.(\d+)".format(layer=layer_name))
return {"substitution_regex": regex, "mapping_dict": mapping_dict}
pruning_passes = []
if encoder_layers_to_keep:
pruning_passes.append(create_pruning_pass(encoder_layers_to_keep, "encoder"))
if decoder_layers_to_keep:
pruning_passes.append(create_pruning_pass(decoder_layers_to_keep, "decoder"))
new_state_dict = {}
for layer_name in state_dict.keys():
match = re.search(r"\.layers\.(\d+)\.", layer_name)
# if layer has no number in it, it is a supporting layer, such as an
# embedding
if not match:
new_state_dict[layer_name] = state_dict[layer_name]
continue
# otherwise, layer should be pruned.
original_layer_number = match.group(1)
# figure out which mapping dict to replace from
for pruning_pass in pruning_passes:
if original_layer_number in pruning_pass["mapping_dict"] and pruning_pass[
"substitution_regex"
].search(layer_name):
new_layer_number = pruning_pass["mapping_dict"][original_layer_number]
substitution_match = pruning_pass["substitution_regex"].search(
layer_name
)
new_state_key = (
layer_name[: substitution_match.start(1)]
+ new_layer_number
+ layer_name[substitution_match.end(1) :]
)
new_state_dict[new_state_key] = state_dict[layer_name]
# Since layers are now pruned, *_layers_to_keep are no longer needed.
# This is more of "It would make it work fix" rather than a proper fix.
if isinstance(model_cfg, DictConfig):
context = open_dict(model_cfg)
else:
context = contextlib.ExitStack()
with context:
if hasattr(model_cfg, "encoder_layers_to_keep"):
model_cfg.encoder_layers_to_keep = None
if hasattr(model_cfg, "decoder_layers_to_keep"):
model_cfg.decoder_layers_to_keep = None
return new_state_dict
def load_pretrained_component_from_model(
component: Union[FairseqEncoder, FairseqDecoder], checkpoint: str
):
"""
Load a pretrained FairseqEncoder or FairseqDecoder from checkpoint into the
provided `component` object. If state_dict fails to load, there may be a
mismatch in the architecture of the corresponding `component` found in the
`checkpoint` file.
"""
if not PathManager.exists(checkpoint):
raise IOError("Model file not found: {}".format(checkpoint))
state = load_checkpoint_to_cpu(checkpoint)
if isinstance(component, FairseqEncoder):
component_type = "encoder"
elif isinstance(component, FairseqDecoder):
component_type = "decoder"
else:
raise ValueError(
"component to load must be either a FairseqEncoder or "
"FairseqDecoder. Loading other component types are not supported."
)
component_state_dict = OrderedDict()
for key in state["model"].keys():
if key.startswith(component_type):
# encoder.input_layers.0.0.weight --> input_layers.0.0.weight
component_subkey = key[len(component_type) + 1 :]
component_state_dict[component_subkey] = state["model"][key]
component.load_state_dict(component_state_dict, strict=True)
return component
def verify_checkpoint_directory(save_dir: str, rank: int) -> None:
if not os.path.exists(save_dir):
os.makedirs(save_dir, exist_ok=True)
temp_file_path = os.path.join(save_dir, f"dummy-{rank}")
try:
with open(temp_file_path, "w"):
pass
except OSError as e:
logger.warning(
"Unable to access checkpoint save directory: {}".format(save_dir)
)
raise e
else:
os.remove(temp_file_path)
def load_ema_from_checkpoint(fpath):
"""Loads exponential moving averaged (EMA) checkpoint from input and
returns a model with ema weights.
Args:
fpath: A string path of checkpoint to load from.
Returns:
A dict of string keys mapping to various values. The 'model' key
from the returned dict should correspond to an OrderedDict mapping
string parameter names to torch Tensors.
"""
params_dict = collections.OrderedDict()
new_state = None
with PathManager.open(fpath, 'rb') as f:
new_state = torch.load(
f,
map_location=(
lambda s, _: torch.serialization.default_restore_location(s, 'cpu')
),
)
# EMA model is stored in a separate "extra state"
model_params = new_state['extra_state']['ema']
for key in list(model_params.keys()):
p = model_params[key]
if isinstance(p, torch.HalfTensor):
p = p.float()
if key not in params_dict:
params_dict[key] = p.clone()
# NOTE: clone() is needed in case of p is a shared parameter
else:
raise ValueError("Key {} is repeated in EMA model params.".format(key))
if len(params_dict) == 0:
raise ValueError(
f"Input checkpoint path '{fpath}' does not contain "
"ema model weights, is this model trained with EMA?"
)
new_state['model'] = params_dict
return new_state
| KosmosX-API-main | kosmosX/fairseq/fairseq/checkpoint_utils.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
from fairseq.modules.quantization import pq, quantization_options, scalar
from omegaconf import DictConfig
logger = logging.getLogger(__name__)
def quantize_model_scalar(model, model_cfg: DictConfig):
quant_noise_scalar = getattr(model_cfg, "quant_noise_scalar", 0) or 0
if quant_noise_scalar > 0:
# quantize_model edits the model in place
scalar.quantize_model_(model, p=quant_noise_scalar, bits=8, update_step=1000)
return model
class Quantizer(object):
def __init__(self, config_path, max_epoch, max_update):
try:
import yaml
except ImportError:
raise ImportError("Please install yaml with: pip install yaml")
# parse config
if config_path:
with open(config_path) as config_file:
config = quantization_options.parse_config_yaml(
yaml.safe_load(config_file)
)
else:
config = quantization_options.parse_config_yaml({})
self.n_centroids_config = config["n_centroids"]
self.block_sizes_config = config["block_sizes"]
self.layers_to_quantize = config["layers_to_quantize"]
# We assume that training will run for a fixed number of epochs
# (or updates) and that we should train for equal durations
# between iterations of PQ.
num_iterations = len(self.layers_to_quantize)
if max_epoch > 0:
assert max_epoch % num_iterations == 0, (
"for iterative PQ, --max-epoch (={}) must be evenly divisible by "
"len(layers_to_quantize) (={})".format(max_epoch, num_iterations)
)
self.epoch_schedule = max_epoch // num_iterations
else:
self.epoch_schedule = None
if max_update > 0:
assert max_update % num_iterations == 0, (
"for iterative PQ, --max-update (={}) must be evenly divisible by "
"len(layers_to_quantize) (={})".format(max_update, num_iterations)
)
self.update_schedule = max_update // num_iterations
else:
self.update_schedule = None
assert (self.epoch_schedule is not None) ^ (
self.update_schedule is not None
), "for iterative PQ, cannot specify both --max-update and --max-epoch"
# 0 is a special value for quantization step, which will force
# the first call to begin_epoch() to call step()
self.quantization_step = 0
def set_trainer(self, trainer):
self.trainer = trainer
self.size_tracker = pq.SizeTracker(self.trainer.get_model())
def step(self):
"""Move to the next stage of quantization."""
if self.quantization_step >= len(self.layers_to_quantize):
# Maybe we just finished the last training step or we loaded
# a checkpoint for an iterative PQ model which previously
# finished training. Either way, don't quantize again.
return
logger.info(
"quantizing model (step={}; layers_to_quantize[step]={})".format(
self.quantization_step, self.layers_to_quantize[self.quantization_step]
)
)
quantized_layers = pq.quantize_model_(
self.trainer.get_model(),
self.size_tracker,
self.layers_to_quantize,
self.block_sizes_config,
self.n_centroids_config,
step=self.quantization_step,
)
logger.info("quantized layers: {}".format(quantized_layers))
logger.info(self.size_tracker)
self.quantization_step += 1
# reintialize the Trainer since model parameters have changed
self.trainer.reinitialize()
def begin_epoch(self, epoch):
"""Called at the beginning of each epoch (epochs start at 1)."""
if (
(
self.epoch_schedule is not None
and epoch > 0
and (epoch - 1) % self.epoch_schedule == 0
)
# we always step once in the beginning, even if using
# update-based quantization
or self.quantization_step == 0
):
self.step()
def step_update(self, num_updates):
"""Called at the end of each step."""
if (
self.update_schedule is not None
and num_updates > 0
and num_updates % self.update_schedule == 0
):
self.step()
def state_dict(self):
return {
"n_centroids_config": self.n_centroids_config,
"block_sizes_config": self.block_sizes_config,
"layers_to_quantize": self.layers_to_quantize,
"epoch_schedule": self.epoch_schedule,
"update_schedule": self.update_schedule,
"quantization_step": self.quantization_step,
}
def load_state_dict(self, state_dict):
self.n_centroids_config = state_dict["n_centroids_config"]
self.block_sizes_config = state_dict["block_sizes_config"]
self.layers_to_quantize = state_dict["layers_to_quantize"]
self.epoch_schedule = state_dict["epoch_schedule"]
self.update_schedule = state_dict["update_schedule"]
self.quantization_step = state_dict["quantization_step"]
| KosmosX-API-main | kosmosX/fairseq/fairseq/quantization_utils.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
Utilities for working with the local dataset cache.
This file is adapted from `AllenNLP <https://github.com/allenai/allennlp>`_.
and `huggingface <https://github.com/huggingface>`_.
"""
import fnmatch
import json
import logging
import os
import shutil
import tarfile
import tempfile
from functools import partial, wraps
from hashlib import sha256
from io import open
try:
from torch.hub import _get_torch_home
torch_cache_home = _get_torch_home()
except ImportError:
torch_cache_home = os.path.expanduser(
os.getenv(
"TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch")
)
)
default_cache_path = os.path.join(torch_cache_home, "pytorch_fairseq")
try:
from urllib.parse import urlparse
except ImportError:
from urlparse import urlparse
try:
from pathlib import Path
PYTORCH_FAIRSEQ_CACHE = Path(os.getenv("PYTORCH_FAIRSEQ_CACHE", default_cache_path))
except (AttributeError, ImportError):
PYTORCH_FAIRSEQ_CACHE = os.getenv("PYTORCH_FAIRSEQ_CACHE", default_cache_path)
CONFIG_NAME = "config.json"
WEIGHTS_NAME = "pytorch_model.bin"
logger = logging.getLogger(__name__) # pylint: disable=invalid-name
def load_archive_file(archive_file):
# redirect to the cache, if necessary
try:
resolved_archive_file = cached_path(archive_file, cache_dir=None)
except EnvironmentError:
logger.info(
"Archive name '{}' was not found in archive name list. "
"We assumed '{}' was a path or URL but couldn't find any file "
"associated to this path or URL.".format(
archive_file,
archive_file,
)
)
return None
if resolved_archive_file == archive_file:
logger.info("loading archive file {}".format(archive_file))
else:
logger.info(
"loading archive file {} from cache at {}".format(
archive_file, resolved_archive_file
)
)
# Extract archive to temp dir and replace .tar.bz2 if necessary
tempdir = None
if not os.path.isdir(resolved_archive_file):
tempdir = tempfile.mkdtemp()
logger.info(
"extracting archive file {} to temp dir {}".format(
resolved_archive_file, tempdir
)
)
ext = os.path.splitext(archive_file)[1][1:]
with tarfile.open(resolved_archive_file, "r:" + ext) as archive:
top_dir = os.path.commonprefix(archive.getnames())
archive.extractall(tempdir)
os.remove(resolved_archive_file)
shutil.move(os.path.join(tempdir, top_dir), resolved_archive_file)
shutil.rmtree(tempdir)
return resolved_archive_file
def url_to_filename(url, etag=None):
"""
Convert `url` into a hashed filename in a repeatable way.
If `etag` is specified, append its hash to the URL's, delimited
by a period.
"""
url_bytes = url.encode("utf-8")
url_hash = sha256(url_bytes)
filename = url_hash.hexdigest()
if etag:
etag_bytes = etag.encode("utf-8")
etag_hash = sha256(etag_bytes)
filename += "." + etag_hash.hexdigest()
return filename
def filename_to_url(filename, cache_dir=None):
"""
Return the url and etag (which may be ``None``) stored for `filename`.
Raise ``EnvironmentError`` if `filename` or its stored metadata do not exist.
"""
if cache_dir is None:
cache_dir = PYTORCH_FAIRSEQ_CACHE
if isinstance(cache_dir, Path):
cache_dir = str(cache_dir)
cache_path = os.path.join(cache_dir, filename)
if not os.path.exists(cache_path):
raise EnvironmentError("file {} not found".format(cache_path))
meta_path = cache_path + ".json"
if not os.path.exists(meta_path):
raise EnvironmentError("file {} not found".format(meta_path))
with open(meta_path, encoding="utf-8") as meta_file:
metadata = json.load(meta_file)
url = metadata["url"]
etag = metadata["etag"]
return url, etag
def cached_path_from_pm(url_or_filename):
"""
Tries to cache the specified URL using PathManager class.
Returns the cached path if success otherwise failure.
"""
try:
from fairseq.file_io import PathManager
local_path = PathManager.get_local_path(url_or_filename)
return local_path
except Exception:
return None
def cached_path(url_or_filename, cache_dir=None):
"""
Given something that might be a URL (or might be a local path),
determine which. If it's a URL, download the file and cache it, and
return the path to the cached file. If it's already a local path,
make sure the file exists and then return the path.
"""
if cache_dir is None:
cache_dir = PYTORCH_FAIRSEQ_CACHE
if isinstance(url_or_filename, Path):
url_or_filename = str(url_or_filename)
if isinstance(cache_dir, Path):
cache_dir = str(cache_dir)
parsed = urlparse(url_or_filename)
if parsed.scheme in ("http", "https", "s3"):
# URL, so get it from the cache (downloading if necessary)
return get_from_cache(url_or_filename, cache_dir)
elif os.path.exists(url_or_filename):
# File, and it exists.
return url_or_filename
elif parsed.scheme == "":
# File, but it doesn't exist.
raise EnvironmentError("file {} not found".format(url_or_filename))
else:
cached_path = cached_path_from_pm(url_or_filename)
if cached_path:
return cached_path
# Something unknown
raise ValueError(
"unable to parse {} as a URL or as a local path".format(url_or_filename)
)
def split_s3_path(url):
"""Split a full s3 path into the bucket name and path."""
parsed = urlparse(url)
if not parsed.netloc or not parsed.path:
raise ValueError("bad s3 path {}".format(url))
bucket_name = parsed.netloc
s3_path = parsed.path
# Remove '/' at beginning of path.
if s3_path.startswith("/"):
s3_path = s3_path[1:]
return bucket_name, s3_path
def s3_request(func):
"""
Wrapper function for s3 requests in order to create more helpful error
messages.
"""
@wraps(func)
def wrapper(url, *args, **kwargs):
from botocore.exceptions import ClientError
try:
return func(url, *args, **kwargs)
except ClientError as exc:
if int(exc.response["Error"]["Code"]) == 404:
raise EnvironmentError("file {} not found".format(url))
else:
raise
return wrapper
@s3_request
def s3_etag(url):
"""Check ETag on S3 object."""
import boto3
s3_resource = boto3.resource("s3")
bucket_name, s3_path = split_s3_path(url)
s3_object = s3_resource.Object(bucket_name, s3_path)
return s3_object.e_tag
@s3_request
def s3_get(url, temp_file):
"""Pull a file directly from S3."""
import boto3
s3_resource = boto3.resource("s3")
bucket_name, s3_path = split_s3_path(url)
s3_resource.Bucket(bucket_name).download_fileobj(s3_path, temp_file)
def request_wrap_timeout(func, url):
import requests
for attempt, timeout in enumerate([10, 20, 40, 60, 60]):
try:
return func(timeout=timeout)
except requests.exceptions.Timeout as e:
logger.warning(
"Request for %s timed-out (attempt %d). Retrying with a timeout of %d secs",
url,
attempt,
timeout,
exc_info=e,
)
continue
raise RuntimeError(f"Unable to fetch file {url}")
def http_get(url, temp_file):
import requests
from tqdm import tqdm
req = request_wrap_timeout(partial(requests.get, url, stream=True), url)
content_length = req.headers.get("Content-Length")
total = int(content_length) if content_length is not None else None
progress = tqdm(unit="B", total=total)
for chunk in req.iter_content(chunk_size=1024):
if chunk: # filter out keep-alive new chunks
progress.update(len(chunk))
temp_file.write(chunk)
progress.close()
def get_from_cache(url, cache_dir=None):
"""
Given a URL, look for the corresponding dataset in the local cache.
If it's not there, download it. Then return the path to the cached file.
"""
if cache_dir is None:
cache_dir = PYTORCH_FAIRSEQ_CACHE
if isinstance(cache_dir, Path):
cache_dir = str(cache_dir)
if not os.path.exists(cache_dir):
os.makedirs(cache_dir)
# Get eTag to add to filename, if it exists.
if url.startswith("s3://"):
etag = s3_etag(url)
else:
try:
import requests
response = request_wrap_timeout(
partial(requests.head, url, allow_redirects=True), url
)
if response.status_code != 200:
etag = None
else:
etag = response.headers.get("ETag")
except RuntimeError:
etag = None
filename = url_to_filename(url, etag)
# get cache path to put the file
cache_path = os.path.join(cache_dir, filename)
# If we don't have a connection (etag is None) and can't identify the file
# try to get the last downloaded one
if not os.path.exists(cache_path) and etag is None:
matching_files = fnmatch.filter(os.listdir(cache_dir), filename + ".*")
matching_files = list(filter(lambda s: not s.endswith(".json"), matching_files))
if matching_files:
cache_path = os.path.join(cache_dir, matching_files[-1])
if not os.path.exists(cache_path):
# Download to temporary file, then copy to cache dir once finished.
# Otherwise you get corrupt cache entries if the download gets interrupted.
with tempfile.NamedTemporaryFile() as temp_file:
logger.info("%s not found in cache, downloading to %s", url, temp_file.name)
# GET file object
if url.startswith("s3://"):
s3_get(url, temp_file)
else:
http_get(url, temp_file)
# we are copying the file before closing it, so flush to avoid truncation
temp_file.flush()
# shutil.copyfileobj() starts at the current position, so go to the start
temp_file.seek(0)
logger.info("copying %s to cache at %s", temp_file.name, cache_path)
with open(cache_path, "wb") as cache_file:
shutil.copyfileobj(temp_file, cache_file)
logger.info("creating metadata file for %s", cache_path)
meta = {"url": url, "etag": etag}
meta_path = cache_path + ".json"
with open(meta_path, "w") as meta_file:
output_string = json.dumps(meta)
meta_file.write(output_string)
logger.info("removing temp file %s", temp_file.name)
return cache_path
def read_set_from_file(filename):
"""
Extract a de-duped collection (set) of text from a file.
Expected file format is one item per line.
"""
collection = set()
with open(filename, "r", encoding="utf-8") as file_:
for line in file_:
collection.add(line.rstrip())
return collection
def get_file_extension(path, dot=True, lower=True):
ext = os.path.splitext(path)[1]
ext = ext if dot else ext[1:]
return ext.lower() if lower else ext
| KosmosX-API-main | kosmosX/fairseq/fairseq/file_utils.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
from typing import List, Optional
import torch
import torch.nn as nn
from fairseq.token_generation_constraints import (
ConstraintState,
OrderedConstraintState,
UnorderedConstraintState,
)
from torch import Tensor
class Search(nn.Module):
def __init__(self, tgt_dict):
super().__init__()
self.pad = tgt_dict.pad()
self.unk = tgt_dict.unk()
self.eos = tgt_dict.eos()
self.vocab_size = len(tgt_dict)
self.src_lengths = torch.tensor(-1)
self.supports_constraints = False
self.stop_on_max_len = False
def step(
self, step, lprobs, scores, prev_output_tokens=None, original_batch_idxs=None
):
"""Take a single search step.
Args:
step: the current search step, starting at 0
lprobs: (bsz x input_beam_size x vocab_size)
the model's log-probabilities over the vocabulary at the current step
scores: (bsz x input_beam_size x step)
the historical model scores of each hypothesis up to this point
prev_output_tokens: (bsz x step)
the previously generated oputput tokens
original_batch_idxs: (bsz)
the tensor with the batch indices, in the range [0, bsz)
this is useful in case there has been applied a re-ordering
and we need to know the orignal indices
Return: A tuple of (scores, indices, beams) where:
scores: (bsz x output_beam_size)
the scores of the chosen elements; output_beam_size can be
larger than input_beam_size, e.g., we may return
2*input_beam_size to account for EOS
indices: (bsz x output_beam_size)
the indices of the chosen elements
beams: (bsz x output_beam_size)
the hypothesis ids of the chosen elements, in the range [0, input_beam_size)
"""
raise NotImplementedError
@torch.jit.export
def set_src_lengths(self, src_lengths):
self.src_lengths = src_lengths
@torch.jit.export
def init_constraints(self, batch_constraints: Optional[Tensor], beam_size: int):
"""Initialize constraint states for constrained decoding (if supported).
Args:
batch_constraints: (torch.Tensor, optional)
the list of constraints, in packed form
beam_size: (int)
the beam size
Returns:
*encoder_out* rearranged according to *new_order*
"""
pass
def prune_sentences(self, batch_idxs: Tensor):
"""
Removes constraint states for completed sentences (if supported).
This is called from sequence_generator._generate() when sentences are
deleted from the batch.
Args:
batch_idxs: Indices of *sentences* whose constraint state should be *kept*.
"""
pass
def update_constraints(self, active_hypos: Tensor):
"""
Updates the constraint states by selecting the beam items that are retained.
This is called at each time step of sequence_generator._generate() when
the set of 2 * {beam_size} candidate hypotheses are reduced to the beam size.
Args:
active_hypos: (batch size, beam size)
list of integers denoting, for each sentence, which beam candidate items
should be kept.
"""
pass
class BeamSearch(Search):
def __init__(self, tgt_dict):
super().__init__(tgt_dict)
self.constraint_states = None
@torch.jit.export
def step(
self,
step: int,
lprobs,
scores: Optional[Tensor],
prev_output_tokens: Optional[Tensor] = None,
original_batch_idxs: Optional[Tensor] = None,
):
bsz, beam_size, vocab_size = lprobs.size()
if step == 0:
# at the first step all hypotheses are equally likely, so use
# only the first beam
lprobs = lprobs[:, ::beam_size, :].contiguous()
else:
# make probs contain cumulative scores for each hypothesis
assert scores is not None
lprobs = lprobs + scores[:, :, step - 1].unsqueeze(-1)
top_prediction = torch.topk(
lprobs.view(bsz, -1),
k=min(
# Take the best 2 x beam_size predictions. We'll choose the first
# beam_size of these which don't predict eos to continue with.
beam_size * 2,
lprobs.view(bsz, -1).size(1) - 1, # -1 so we never select pad
),
)
scores_buf = top_prediction[0]
indices_buf = top_prediction[1]
# Project back into relative indices and beams
beams_buf = indices_buf // vocab_size
indices_buf = indices_buf.fmod(vocab_size)
# At this point, beams_buf and indices_buf are single-dim and contain relative indices
return scores_buf, indices_buf, beams_buf
class PrefixConstrainedBeamSearch(Search):
def __init__(self, tgt_dict, prefix_allowed_tokens_fn):
super().__init__(tgt_dict)
self.prefix_allowed_tokens_fn = prefix_allowed_tokens_fn
self.stop_on_max_len = True
@torch.jit.export
def apply_mask(self, x, prev_output_tokens, original_batch_idxs):
beam_size = x.shape[0] // original_batch_idxs.shape[0]
original_batch_idxs = (
original_batch_idxs.unsqueeze(-1).repeat((1, beam_size)).flatten().tolist()
)
mask = torch.full_like(x, -math.inf)
for sent_i, (sent, batch_i) in enumerate(
zip(prev_output_tokens, original_batch_idxs)
):
mask[sent_i, :, self.prefix_allowed_tokens_fn(batch_i, sent)] = 0
return mask
@torch.jit.export
def step(
self,
step: int,
lprobs: Tensor,
scores: Tensor,
prev_output_tokens: Tensor,
original_batch_idxs: Tensor,
):
bsz, beam_size, vocab_size = lprobs.size()
lprobs += self.apply_mask(
lprobs.view(bsz * beam_size, 1, vocab_size),
prev_output_tokens,
original_batch_idxs,
).view(bsz, beam_size, vocab_size)
if step == 0:
# at the first step all hypotheses are equally likely, so use
# only the first beam
lprobs = lprobs[:, ::beam_size, :].contiguous()
else:
# make probs contain cumulative scores for each hypothesis
assert scores is not None
lprobs = lprobs + scores[:, :, step - 1].unsqueeze(-1)
top_prediction = torch.topk(
lprobs.view(bsz, -1),
k=min(
# Take the best beam_size predictions. We'll choose the first
# beam_size of these which don't predict eos to continue with.
beam_size,
lprobs.view(bsz, -1).size(1) - 1, # -1 so we never select pad
),
)
scores_buf = top_prediction[0]
indices_buf = top_prediction[1]
beams_buf = indices_buf // vocab_size
indices_buf = indices_buf.fmod(vocab_size)
return scores_buf, indices_buf, beams_buf
class LexicallyConstrainedBeamSearch(Search):
"""Implements lexically constrained beam search as described in
Fast Lexically Constrained Decoding with Dynamic Beam
Allocation for Neural Machine Translation. Post & Vilar,
NAACL 2018. https://www.aclweb.org/anthology/N18-1119/
and
Improved Lexically Constrained Decoding for Translation and
Monolingual Rewriting. Hu et al, NAACL
2019. https://www.aclweb.org/anthology/N19-1090/
This is accomplished by maintaining, for each beam hypothesis, a
ConstraintState object (see constraints.py) that tracks which
constraints have been generated and using this information to
shape the beam for each input sentence.
"""
def __init__(self, tgt_dict, representation):
super().__init__(tgt_dict)
self.representation = representation
self.vocab_size = len(tgt_dict)
self.num_cands = 0
self.supports_constraints = True
@torch.jit.export
def init_constraints(self, batch_constraints: Optional[Tensor], beam_size: int):
self.constraint_states = []
for constraint_tensor in batch_constraints:
if self.representation == "ordered":
constraint_state = OrderedConstraintState.create(constraint_tensor)
elif self.representation == "unordered":
constraint_state = UnorderedConstraintState.create(constraint_tensor)
self.constraint_states.append([constraint_state for i in range(beam_size)])
@torch.jit.export
def prune_sentences(self, batch_idxs: Tensor):
self.constraint_states = [
self.constraint_states[i] for i in batch_idxs.tolist()
]
@torch.jit.export
def update_constraints(self, active_hypos: Tensor):
if self.constraint_states:
batch_size = active_hypos.size(0)
for sentid in range(batch_size):
self.constraint_states[sentid] = [
self.constraint_states[sentid][i] for i in active_hypos[sentid]
]
@torch.jit.export
def step(
self,
step: int,
lprobs: Tensor,
scores: Optional[Tensor],
prev_output_tokens: Optional[Tensor] = None,
original_batch_idxs: Optional[Tensor] = None,
):
"""
A constrained step builds a large candidates list from the following:
- the top 2 * {beam_size} items over the whole beam
- for each item in the beam
- the top {each_k} (default 1)
- all next constraints
We then compute the constrained state of each beam item, and assign
stripe codes: 0 to the best in each bank, 1 to the 2nd-best, and so
on. We then sort by (stripe, score), and truncate the list at
2 * beam size.
Args:
step: the decoder step
lprobs: (batch size, beam size, target vocab)
the target-vocab distributions for each item in the beam.
Retrun: A tuple of (scores, indices, beams, constraints) where:
scores: (batch, output beam size)
the scores of the chosen elements
indices: (batch, output beam size)
the target vocab indices of the chosen elements
beams: (batch, output beam size)
the 0-indexed hypothesis ids of the chosen elements
constraints: (batch, output beam size)
the new constraint states
"""
each_k = 1
device = lprobs.device
batch_size, beam_size, vocab_size = lprobs.size()
self.num_cands = min(
# Just take the k-best. We'll get another k from the 1-best from each
# row, plus more from the constraints
beam_size * 2,
lprobs.view(batch_size, -1).size(1) - 1, # -1 so we never select pad
)
# STEP 0: Preliminary. Prevent EOS for unfinished hyps across all batch items
constraint_states = self.constraint_states
if constraint_states and step > 0:
not_finished_indices = []
for sentno, sent_constraints in enumerate(constraint_states):
for beamno, state in enumerate(sent_constraints):
index = sentno * beam_size + beamno
if not state.finished:
not_finished_indices.append(index)
not_finished_indices = torch.tensor(not_finished_indices)
if not_finished_indices.numel() > 0:
lprobs.view(batch_size * beam_size, -1)[
not_finished_indices, self.eos
] = -math.inf
if step == 0:
# at the first step all hypotheses are equally likely, so use
# only the first beam entry for each batch item
lprobs = lprobs[:, ::beam_size, :].contiguous()
else:
# make probs contain cumulative scores for each hypothesis
assert scores is not None
lprobs = lprobs + scores[:, :, step - 1].unsqueeze(-1)
top_prediction = torch.topk(
lprobs.view(batch_size, -1),
self.num_cands,
)
scores_buf, indices_buf = top_prediction
# Project back into relative indices and beams
beams_buf = indices_buf // vocab_size
indices_buf = indices_buf.fmod(vocab_size)
# Short circuit if there are no constraints in this batch
if not constraint_states:
return scores_buf, indices_buf, beams_buf
# STEP 1: get top-1 from each hypothesis across all sentences in the batch
if step > 0:
top_scores, top_indices = torch.topk(
lprobs.view(batch_size * beam_size, -1),
k=each_k,
dim=1,
)
top_scores = top_scores.view(batch_size, -1)
top_indices = top_indices.view(batch_size, -1)
scores_buf = torch.cat((scores_buf, top_scores), dim=1)
indices_buf = torch.cat((indices_buf, top_indices), dim=1)
new_beams = torch.arange(0, beam_size, device=device).repeat(batch_size, 1)
beams_buf = torch.cat((beams_buf, new_beams), dim=1)
# Now, process sentences in the batch one by one.
new_scores_buf = torch.zeros((batch_size, 2 * beam_size), device=device)
new_indices_buf = torch.zeros((batch_size, 2 * beam_size), device=device).long()
new_beams_buf = torch.zeros((batch_size, 2 * beam_size), device=device).long()
for sentno, states in enumerate(constraint_states):
scores, indices, beams, new_states = self.step_sentence(
step,
sentno,
lprobs[sentno],
constraint_states[sentno],
beams_buf[sentno].clone(),
indices_buf[sentno].clone(),
scores_buf[sentno].clone(),
)
new_scores_buf[sentno] = scores
new_indices_buf[sentno] = indices
new_beams_buf[sentno] = beams
self.constraint_states[sentno] = new_states
return new_scores_buf, new_indices_buf, new_beams_buf
@torch.jit.export
def step_sentence(
self,
step: int,
sentno: int,
lprobs: Tensor,
constraint_states: List[List[ConstraintState]],
beams_buf: Tensor,
indices_buf: Tensor,
scores_buf: Tensor,
):
"""Does per-sentence processing. Adds all constraints for each
hypothesis to the list of candidates; then removes duplicates,
sorts, and dynamically stripes across the banks. All tensor inputs
are collapsed to those pertaining to a single input sentence.
"""
device = lprobs.device
# STEP 2: Add all constraints for each beam item
for beamno, state in enumerate(constraint_states):
next_tokens = torch.tensor(list(state.next_tokens()), device=device).long()
if next_tokens.numel() != 0:
indices_buf = torch.cat((indices_buf, next_tokens))
next_beams = (
torch.tensor(beamno, device=device)
.repeat(next_tokens.size(0))
.long()
)
beams_buf = torch.cat((beams_buf, next_beams))
next_values = lprobs[beamno].take(next_tokens.view(-1))
scores_buf = torch.cat((scores_buf, next_values))
# At the 0th time step, there is just one beam item
if step == 0:
break
# STEP 3: Compute the "bank" for each candidate. This is the
# number of constraints it's generated. We need this so that
# we can do round-robin allocation of the beam across these
# banks. If C is the number of constraints, we select the best
# item in bank C, then the best in bank C-1, etc, followed by
# the 2nd-best in bank C, the 2nd-best in bank C-1, etc, and so
# on, until the maximum beam size. We accomplish this by
# creating a sort key and striping across the banks.
# Compute the new states for all candidates
cands_size = indices_buf.size(0)
constraint_states = [
constraint_states[beams_buf[i]].advance(indices_buf[i])
for i in range(cands_size)
]
banks = torch.tensor([state.bank for state in constraint_states], device=device)
# STEP 4: Sort
num_constraint_tokens = len(state.tokens)
# Sort by keys (bank, score) (i.e., sort banks together, and scores
# within banks). AFAIK pytorch doesn't support either stable sort or
# multi-key sorting, so we have to hack this.
MAX_SCORE = -100
sort_key = (num_constraint_tokens - banks) * MAX_SCORE + scores_buf
sort_values, sort_indices = sort_key.sort(dim=0, descending=True)
scores_buf = scores_buf[sort_indices]
indices_buf = indices_buf[sort_indices]
beams_buf = beams_buf[sort_indices]
banks = banks[sort_indices]
# Sort the constraints to follow suit
constraint_states = [constraint_states[i] for i in sort_indices]
# STEP 5: Remove duplicates. The topk calls (overall and
# per-row) plus the per-row generation of constraints will
# produce duplicates. Here we remove them.
def roll(t):
"""Rolls a 1d tensor left by 1.
[0, 1, 2, 3, 4] becomes [4, 0, 1, 2, 3]
"""
return torch.cat((t[-1].unsqueeze(0), t[0:-1]), dim=0)
# We map candidates (beam, token_id) to a single dimension.
# This is then shifted by 1. We can then easily identify
# duplicates and create a mask that identifies unique
# extensions.
uniques_mask = beams_buf * (self.vocab_size + 1) + indices_buf
uniques_mask = roll(uniques_mask) != uniques_mask
# Use the mask to pare down the data structures
scores_buf = torch.masked_select(scores_buf, uniques_mask)
indices_buf = torch.masked_select(indices_buf, uniques_mask)
beams_buf = torch.masked_select(beams_buf, uniques_mask)
banks = torch.masked_select(banks, uniques_mask)
i = 1
for mask in uniques_mask[1:]:
if not mask:
constraint_states.pop(i)
i += mask
# STEP 6: Assign IDs round-robin across banks, sort, and
# truncate. Now that the candidates are sorted by (bank,
# score) and uniqed, we dynamically allocate the {beam_size}
# beam by striping across the candidates. These stripes will
# be used as sort keys to do round-robin selection. This is
# accomplished in a single pass with offsets. Sorting by
# highest-banks (furthest-along hypotheses) first ensures
# progress through the constraints.
#
# e.g., BANKS: 3 3 3 2 2 2 2 1 1 1 0 0
# OLD STRIPES: 0 1 2 0 1 2 3 0 1 2 0 1
# NEW STRIPES: 0 1+4 2+8 0+1 1+5 2+9 3+11 0+2 1+6 2+10 0+3 1+7
# = 0 5 10 1 6 11 13 2 7 12 3 8
#
# Sorting by this then gives the following banks:
#
# 3 2 1 0 3 2 1 0 3 2 1 2
#
# We'll take the top {beam_size} of these.
stripe_offsets = [offset * (len(banks) + 1) for offset in range(len(banks) + 1)]
stripes = torch.zeros_like(banks)
cur_bank_count = -1
cur_bank = banks[0]
for i, bank in enumerate(banks):
if bank != cur_bank:
cur_bank_count = 0
cur_bank = bank
else:
cur_bank_count += 1
stripes[i] = num_constraint_tokens - bank + stripe_offsets[cur_bank_count]
# STEP 7: Sort by the stripes values
sort_values, sort_indices = stripes.sort(dim=0)
scores_buf = scores_buf[sort_indices]
indices_buf = indices_buf[sort_indices]
beams_buf = beams_buf[sort_indices]
constraint_states = [constraint_states[i] for i in sort_indices]
# STEP 8: Truncate to the candidates size!
scores_buf = scores_buf[: self.num_cands]
indices_buf = indices_buf[: self.num_cands]
beams_buf = beams_buf[: self.num_cands]
return scores_buf, indices_buf, beams_buf, constraint_states
class LengthConstrainedBeamSearch(Search):
def __init__(self, tgt_dict, min_len_a, min_len_b, max_len_a, max_len_b):
super().__init__(tgt_dict)
self.min_len_a = min_len_a
self.min_len_b = min_len_b
self.max_len_a = max_len_a
self.max_len_b = max_len_b
self.beam = BeamSearch(tgt_dict)
self.needs_src_lengths = True
def step(
self,
step: int,
lprobs,
scores,
prev_output_tokens: Optional[Tensor] = None,
original_batch_idxs: Optional[Tensor] = None,
):
min_lens = self.min_len_a * self.src_lengths + self.min_len_b
max_lens = self.max_len_a * self.src_lengths + self.max_len_b
lprobs[step < min_lens, :, self.eos] = -math.inf
lprobs[step >= max_lens, :, self.eos] = 0
return self.beam.step(step, lprobs, scores)
class DiverseBeamSearch(Search):
"""Diverse Beam Search.
See "Diverse Beam Search: Decoding Diverse Solutions from Neural Sequence
Models" for details.
We only implement the Hamming Diversity penalty here, which performed best
in the original paper.
"""
def __init__(self, tgt_dict, num_groups, diversity_strength):
super().__init__(tgt_dict)
self.num_groups = num_groups
self.diversity_strength = -diversity_strength
self.beam = BeamSearch(tgt_dict)
@torch.jit.export
def step(
self,
step: int,
lprobs,
scores,
prev_output_tokens: Optional[Tensor] = None,
original_batch_idxs: Optional[Tensor] = None,
):
bsz, beam_size, vocab_size = lprobs.size()
if beam_size % self.num_groups != 0:
raise ValueError(
"DiverseBeamSearch requires --beam to be divisible by the number of groups"
)
# initialize diversity penalty
diversity_buf = torch.zeros(lprobs[:, 0, :].size()).to(lprobs)
scores_G, indices_G, beams_G = [], [], []
for g in range(self.num_groups):
lprobs_g = lprobs[:, g :: self.num_groups, :]
scores_g = scores[:, g :: self.num_groups, :] if step > 0 else None
# apply diversity penalty
if g > 0:
lprobs_g = torch.add(
lprobs_g,
other=diversity_buf.unsqueeze(1),
alpha=self.diversity_strength,
)
else:
lprobs_g = lprobs_g.contiguous()
scores_buf, indices_buf, beams_buf = self.beam.step(
step, lprobs_g, scores_g
)
beams_buf.mul_(self.num_groups).add_(g)
scores_G.append(scores_buf.clone())
indices_G.append(indices_buf.clone())
beams_G.append(beams_buf.clone())
# update diversity penalty
diversity_buf.scatter_add_(
1, indices_buf, torch.ones(indices_buf.size()).to(diversity_buf)
)
# interleave results from different groups
scores_buf = torch.stack(scores_G, dim=2).view(bsz, -1)
indices_buf = torch.stack(indices_G, dim=2).view(bsz, -1)
beams_buf = torch.stack(beams_G, dim=2).view(bsz, -1)
return scores_buf, indices_buf, beams_buf
class Sampling(Search):
sampling_topk: int
sampling_topp: float
def __init__(self, tgt_dict, sampling_topk=-1, sampling_topp=-1.0):
super().__init__(tgt_dict)
self.sampling_topk = sampling_topk
self.sampling_topp = sampling_topp
def _sample_topp(self, lprobs):
"""Sample among the smallest set of elements whose cumulative probability mass exceeds p.
See `"The Curious Case of Neural Text Degeneration"
(Holtzman et al., 2019) <https://arxiv.org/abs/1904.09751>`_.
Args:
lprobs: (bsz x input_beam_size x vocab_size)
the model's log-probabilities over the vocabulary at the current step
Return: A tuple of (trimed_probs, truncated_indices) where:
trimed_probs: (bsz x input_beam_size x ?)
the model's probabilities over the elements selected to sample from. The
width of the third dimension is determined by top-P.
truncated_indices: (bsz x input_beam_size x ?)
the indices of the chosen elements.
"""
probs = lprobs.exp_()
# sort the last dimension (vocab dimension) in descending order
sorted_probs, sorted_indices = probs.sort(descending=True)
# compute a mask to indicate the words to be included in the top-P set.
cumsum_probs = sorted_probs.cumsum(dim=2)
mask = cumsum_probs.lt(self.sampling_topp)
# note that mask was computed by 'lt'. One more word needs to be included
# so that the cumulative probability mass can exceed p.
cumsum_mask = mask.cumsum(dim=2)
last_included = cumsum_mask[:, :, -1:]
last_included.clamp_(0, mask.size()[2] - 1)
mask = mask.scatter_(2, last_included, 1)
# truncate unnecessary dims.
max_dim = last_included.max()
truncated_mask = mask[:, :, : max_dim + 1]
truncated_probs = sorted_probs[:, :, : max_dim + 1]
truncated_indices = sorted_indices[:, :, : max_dim + 1]
# trim the words that are not in top-P by setting their probabilities
# to 0, so that they would not be sampled later.
trim_mask = ~truncated_mask
trimed_probs = truncated_probs.masked_fill_(trim_mask, 0)
return trimed_probs, truncated_indices
@torch.jit.export
def step(
self,
step: int,
lprobs,
scores,
prev_output_tokens: Optional[Tensor] = None,
original_batch_idxs: Optional[Tensor] = None,
):
bsz, beam_size, vocab_size = lprobs.size()
if step == 0:
# at the first step all hypotheses are equally likely, so use
# only the first beam
lprobs = lprobs[:, ::beam_size, :].contiguous()
if self.sampling_topp > 0:
# only sample from the smallest set of words whose cumulative probability mass exceeds p
probs, top_indices = self._sample_topp(lprobs)
elif self.sampling_topk > 0:
# only sample from top-k candidates
lprobs, top_indices = lprobs.topk(self.sampling_topk)
probs = lprobs.exp_()
else:
probs = lprobs.exp_()
# dummy data to be consistent with true branch for type check
top_indices = torch.empty(0).to(probs)
# sample
if step == 0:
indices_buf = torch.multinomial(
probs.view(bsz, -1),
beam_size,
replacement=True,
).view(bsz, beam_size)
else:
indices_buf = torch.multinomial(
probs.view(bsz * beam_size, -1),
1,
replacement=True,
).view(bsz, beam_size)
if step == 0:
# expand to beam size
probs = probs.expand(bsz, beam_size, -1)
# gather scores
scores_buf = torch.gather(probs, dim=2, index=indices_buf.unsqueeze(-1))
scores_buf = scores_buf.log_().view(bsz, -1)
# remap indices if using top-k or top-P sampling
if self.sampling_topk > 0 or self.sampling_topp > 0:
indices_buf = torch.gather(
top_indices.expand(bsz, beam_size, -1),
dim=2,
index=indices_buf.unsqueeze(-1),
).squeeze(2)
if step == 0:
beams_buf = indices_buf.new_zeros(bsz, beam_size)
else:
beams_buf = torch.arange(0, beam_size).to(indices_buf).repeat(bsz, 1)
# make scores cumulative
scores_buf.add_(
torch.gather(scores[:, :, step - 1], dim=1, index=beams_buf)
)
return scores_buf, indices_buf, beams_buf
class DiverseSiblingsSearch(Search):
"""
Beam search with diverse siblings.
See "A Simple, Fast Diverse Decoding Algorithm for Neural Generation" for details.
https://arxiv.org/abs/1611.08562
1/ Calculate hypotheses for each beam
2/ Intra-sibling ordering
3/ Rewrite scores
4/ Choose top K hypotheses
if diversity_rate == 0 is equivalent to BeamSearch
"""
def __init__(self, tgt_dict, diversity_rate):
super().__init__(tgt_dict)
self.diversity_rate = diversity_rate
self.beam = BeamSearch(tgt_dict)
def step(
self,
step: int,
lprobs,
scores,
prev_output_tokens: Optional[Tensor] = None,
original_batch_idxs: Optional[Tensor] = None,
):
bsz, beam_size, vocab_size = lprobs.size()
k = min(
# Take the best 2 x beam_size predictions. We'll choose the first
# beam_size of these which don't predict eos to continue with.
beam_size * 2,
lprobs.view(bsz, -1).size(1) - 1, # -1 so we never select pad
)
s_list: List[Tensor]
i_list: List[Tensor]
s_list = [torch.empty(0).to(lprobs) for i in range(beam_size)]
i_list = [torch.LongTensor().to(device=lprobs.device) for i in range(beam_size)]
sibling_score = torch.arange(1, k + 1).to(lprobs) * self.diversity_rate
if step == 0:
return self.beam.step(step, lprobs, scores)
lprobs.add_(scores[:, :, step - 1].unsqueeze(-1))
# 1/ Calculate hypotheses for each beam
for i in range(beam_size):
torch.topk(lprobs[:, i, :].view(bsz, -1), k, out=(s_list[i], i_list[i]))
i_list[i].fmod_(vocab_size)
# 2/ Intra-sibling ordering by default from topk + 3/ Rewrite scores
s_list[i].sub_(sibling_score)
# 4/ Choose top K hypotheses
indices = torch.stack(i_list, dim=1).view(bsz, -1)
final_scores = torch.empty(0).to(lprobs)
final_indices = torch.LongTensor().to(device=lprobs.device)
final_beams = torch.LongTensor().to(device=lprobs.device)
(final_scores, final_indices) = torch.topk(
torch.stack(s_list, dim=1).view(bsz, -1),
k,
)
final_beams = final_indices // k
for i in range(bsz):
final_indices[i] = indices[i][final_indices[i]]
return final_scores, final_indices, final_beams
| KosmosX-API-main | kosmosX/fairseq/fairseq/search.py |
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import os
import shutil
from typing import List, Optional
logger = logging.getLogger(__file__)
try:
from iopath.common.file_io import g_pathmgr as IOPathManager
try:
# [FB only - for now] AWS PathHandler for PathManager
from .fb_pathhandlers import S3PathHandler
IOPathManager.register_handler(S3PathHandler())
except KeyError:
logging.warning("S3PathHandler already registered.")
except ImportError:
logging.debug(
"S3PathHandler couldn't be imported. Either missing fb-only files, or boto3 module."
)
except ImportError:
IOPathManager = None
class PathManager:
"""
Wrapper for insulating OSS I/O (using Python builtin operations) from
iopath's PathManager abstraction (for transparently handling various
internal backends).
"""
@staticmethod
def open(
path: str,
mode: str = "r",
buffering: int = -1,
encoding: Optional[str] = None,
errors: Optional[str] = None,
newline: Optional[str] = None,
):
if IOPathManager:
return IOPathManager.open(
path=path,
mode=mode,
buffering=buffering,
encoding=encoding,
errors=errors,
newline=newline,
)
return open(
path,
mode=mode,
buffering=buffering,
encoding=encoding,
errors=errors,
newline=newline,
)
@staticmethod
def copy(src_path: str, dst_path: str, overwrite: bool = False) -> bool:
if IOPathManager:
return IOPathManager.copy(
src_path=src_path, dst_path=dst_path, overwrite=overwrite
)
return shutil.copyfile(src_path, dst_path)
@staticmethod
def get_local_path(path: str, **kwargs) -> str:
if IOPathManager:
return IOPathManager.get_local_path(path, **kwargs)
return path
@staticmethod
def exists(path: str) -> bool:
if IOPathManager:
return IOPathManager.exists(path)
return os.path.exists(path)
@staticmethod
def isfile(path: str) -> bool:
if IOPathManager:
return IOPathManager.isfile(path)
return os.path.isfile(path)
@staticmethod
def ls(path: str) -> List[str]:
if IOPathManager:
return IOPathManager.ls(path)
return os.listdir(path)
@staticmethod
def mkdirs(path: str) -> None:
if IOPathManager:
return IOPathManager.mkdirs(path)
os.makedirs(path, exist_ok=True)
@staticmethod
def rm(path: str) -> None:
if IOPathManager:
return IOPathManager.rm(path)
os.remove(path)
@staticmethod
def chmod(path: str, mode: int) -> None:
if not PathManager.path_requires_pathmanager(path):
os.chmod(path, mode)
@staticmethod
def register_handler(handler) -> None:
if IOPathManager:
return IOPathManager.register_handler(handler=handler)
@staticmethod
def copy_from_local(
local_path: str, dst_path: str, overwrite: bool = False, **kwargs
) -> None:
if IOPathManager:
return IOPathManager.copy_from_local(
local_path=local_path, dst_path=dst_path, overwrite=overwrite, **kwargs
)
return shutil.copyfile(local_path, dst_path)
@staticmethod
def path_requires_pathmanager(path: str) -> bool:
"""Do we require PathManager to access given path?"""
if IOPathManager:
for p in IOPathManager._path_handlers.keys():
if path.startswith(p):
return True
return False
@staticmethod
def supports_rename(path: str) -> bool:
# PathManager doesn't yet support renames
return not PathManager.path_requires_pathmanager(path)
@staticmethod
def rename(src: str, dst: str):
os.rename(src, dst)
"""
ioPath async PathManager methods:
"""
@staticmethod
def opena(
path: str,
mode: str = "r",
buffering: int = -1,
encoding: Optional[str] = None,
errors: Optional[str] = None,
newline: Optional[str] = None,
):
"""
Return file descriptor with asynchronous write operations.
"""
global IOPathManager
if not IOPathManager:
logging.info("ioPath is initializing PathManager.")
try:
from iopath.common.file_io import PathManager
IOPathManager = PathManager()
except Exception:
logging.exception("Failed to initialize ioPath PathManager object.")
return IOPathManager.opena(
path=path,
mode=mode,
buffering=buffering,
encoding=encoding,
errors=errors,
newline=newline,
)
@staticmethod
def async_close() -> bool:
"""
Wait for files to be written and clean up asynchronous PathManager.
NOTE: `PathManager.async_close()` must be called at the end of any
script that uses `PathManager.opena(...)`.
"""
global IOPathManager
if IOPathManager:
return IOPathManager.async_close()
return False
| KosmosX-API-main | kosmosX/fairseq/fairseq/file_io.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
Train a network across multiple GPUs.
"""
import contextlib
import logging
import os
import sys
import time
from argparse import Namespace
from itertools import chain
from typing import Any, Dict, List
import torch
from fairseq import checkpoint_utils, models, optim, utils
from fairseq.dataclass.configs import FairseqConfig
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from fairseq.distributed import utils as distributed_utils
from fairseq.file_io import PathManager
from fairseq.logging import meters, metrics
# from fairseq.models.ema import build_ema
from fairseq.nan_detector import NanDetector
from fairseq.optim import lr_scheduler
from fairseq.utils import safe_hasattr
from omegaconf import OmegaConf
logger = logging.getLogger(__name__)
class Trainer(object):
"""Main class for data parallel training.
This class supports synchronous distributed data parallel training,
where multiple workers each have a full model replica and gradients
are accumulated across workers before each update. We use
:class:`~torch.nn.parallel.DistributedDataParallel` to handle
communication of the gradients across workers.
"""
def __init__(self, cfg: FairseqConfig, task, model, criterion, quantizer=None):
if isinstance(cfg, Namespace):
logger.warning(
"argparse.Namespace configuration is deprecated! Automatically converting to OmegaConf"
)
cfg = convert_namespace_to_omegaconf(cfg)
self.cfg = cfg
self.task = task
# catalog shared parameters
shared_params = _catalog_shared_params(model)
self.tpu = cfg.common.tpu
self.cuda = torch.cuda.is_available() and not cfg.common.cpu and not self.tpu
if self.cuda:
self.device = torch.device("cuda")
elif self.tpu:
self.device = utils.get_tpu_device()
else:
self.device = torch.device("cpu")
if self.is_fsdp:
import fairscale
if self.cfg.common.bf16:
raise ValueError(
"FullyShardedDataParallel is not compatible with --bf16 or "
"--memory-efficient-bf16"
)
if self.cfg.distributed_training.zero_sharding != "none":
raise ValueError(
"FullyShardedDataParallel is not compatible with --zero-sharding "
"option (it's already built in)"
)
if (
max(self.cfg.optimization.update_freq) > 1
and fairscale.__version__ < "0.4.0"
):
raise RuntimeError(
"Please update to fairscale 0.4.0 or newer when combining "
"--update-freq with FullyShardedDataParallel"
)
else:
if (
hasattr(self.cfg.distributed_training, "cpu_offload")
and self.cfg.distributed_training.cpu_offload
):
raise ValueError("--cpu-offload requires --ddp-backend=fully_sharded")
# copy model and criterion to current device/dtype
self._criterion = criterion
self._model = model
if not self.is_fsdp:
if cfg.common.fp16:
assert not cfg.common.amp, "Cannot use fp16 and AMP together"
self._criterion = self._criterion.half()
self._model = self._model.half()
elif cfg.common.bf16:
self._criterion = self._criterion.to(dtype=torch.bfloat16)
self._model = self._model.to(dtype=torch.bfloat16)
elif cfg.common.amp:
self._amp_retries = 0
if (
not cfg.distributed_training.pipeline_model_parallel
# the DistributedFairseqModel wrapper will handle moving to device,
# so only handle cases which don't use the wrapper
and not self.use_distributed_wrapper
):
self._criterion = self._criterion.to(device=self.device)
self._model = self._model.to(device=self.device)
self.pipeline_model_parallel = cfg.distributed_training.pipeline_model_parallel
self.last_device = None
if self.cuda and self.pipeline_model_parallel:
self.last_device = torch.device(
cfg.distributed_training.pipeline_devices[-1]
)
# check that shared parameters are preserved after device transfer
for shared_param in shared_params:
ref = _get_module_by_path(self._model, shared_param[0])
for path in shared_param[1:]:
logger.info(
"detected shared parameter: {} <- {}".format(shared_param[0], path)
)
_set_module_by_path(self._model, path, ref)
self._dummy_batch = None # indicates we don't have a dummy batch at first
self._lr_scheduler = None
self._num_updates = 0
self._num_xla_compiles = 0 # for TPUs
self._optim_history = None
self._optimizer = None
self._warn_once = set()
self._wrapped_criterion = None
self._wrapped_model = None
self._ema = None
# TODO(myleott): support tpu
if self.cuda and self.data_parallel_world_size > 1:
self._grad_norm_buf = torch.cuda.DoubleTensor(self.data_parallel_world_size)
else:
self._grad_norm_buf = None
self.quantizer = quantizer
if self.quantizer is not None:
self.quantizer.set_trainer(self)
# get detailed cuda environment
if self.cuda:
self.cuda_env = utils.CudaEnvironment()
if self.data_parallel_world_size > 1:
self.cuda_env_arr = distributed_utils.all_gather_list(
self.cuda_env, group=distributed_utils.get_global_group()
)
else:
self.cuda_env_arr = [self.cuda_env]
if self.data_parallel_rank == 0:
utils.CudaEnvironment.pretty_print_cuda_env_list(self.cuda_env_arr)
else:
self.cuda_env = None
self.cuda_env_arr = None
metrics.log_start_time("wall", priority=790, round=0)
self._start_time = time.time()
self._previous_training_time = 0
self._cumulative_training_time = None
def reinitialize(self):
"""Reinitialize the Trainer, typically after model params change."""
self._lr_scheduler = None
self._optimizer = None
self._wrapped_criterion = None
self._wrapped_model = None
@property
def data_parallel_world_size(self):
if self.cfg.distributed_training.distributed_world_size == 1:
return 1
return distributed_utils.get_data_parallel_world_size()
@property
def data_parallel_process_group(self):
return distributed_utils.get_data_parallel_group()
@property
def data_parallel_rank(self):
if self.cfg.distributed_training.distributed_world_size == 1:
return 0
return distributed_utils.get_data_parallel_rank()
@property
def is_data_parallel_master(self):
# NOTE: this returns true for all model parallel replicas with data
# parallel rank 0
return self.data_parallel_rank == 0
@property
def use_distributed_wrapper(self) -> bool:
return (
self.data_parallel_world_size > 1 and not self.cfg.optimization.use_bmuf
) or (self.is_fsdp and self.cfg.distributed_training.cpu_offload)
@property
def should_save_checkpoint_on_current_rank(self) -> bool:
"""Indicates whether to save checkpoints on the current DDP rank."""
if (
self.is_fsdp and self.cfg.distributed_training.use_sharded_state
) or getattr(self.cfg.model, "base_layers", 0) > 0:
return True
else:
return self.is_data_parallel_master
@property
def always_call_state_dict_during_save_checkpoint(self) -> bool:
if self.is_fsdp and not self.cfg.distributed_training.use_sharded_state:
# FSDP calls communication collective when consolidating checkpoints
return True
else:
return False
@property
def checkpoint_suffix(self) -> str:
"""Suffix to add to the checkpoint file name."""
if self.is_fsdp and self.cfg.distributed_training.use_sharded_state:
return self.cfg.checkpoint.checkpoint_suffix + "-shard{0}".format(
self.data_parallel_rank
)
else:
return self.cfg.checkpoint.checkpoint_suffix or ""
@property
def criterion(self):
if self._wrapped_criterion is None:
if utils.has_parameters(self._criterion) and self.use_distributed_wrapper:
self._wrapped_criterion = models.DistributedFairseqModel(
self.cfg.distributed_training,
self._criterion,
process_group=self.data_parallel_process_group,
device=self.device,
)
else:
self._wrapped_criterion = self._criterion
return self._wrapped_criterion
@property
def model(self):
if self._wrapped_model is None:
if self.use_distributed_wrapper:
self._wrapped_model = models.DistributedFairseqModel(
self.cfg.distributed_training,
self._model,
process_group=self.data_parallel_process_group,
device=self.device,
)
else:
self._wrapped_model = self._model
return self._wrapped_model
@property
def ema(self):
if self._ema is None:
self._build_ema()
return self._ema
def _build_ema(self):
if self.cfg.ema.store_ema:
self._ema = build_ema(self._model, self.cfg.ema, self.device)
logger.info("Exponential Moving Average Shadow Model is initialized.")
@property
def optimizer(self):
if self._optimizer is None:
self._build_optimizer()
return self._optimizer
@property
def lr_scheduler(self):
if self._lr_scheduler is None:
self._build_optimizer() # this will initialize self._lr_scheduler
return self._lr_scheduler
def _build_optimizer(self):
params = list(
filter(
lambda p: p.requires_grad,
chain(self.model.parameters(), self.criterion.parameters()),
)
)
if self.is_fsdp and self.cfg.common.fp16:
# FullyShardedDataParallel always uses MemoryEfficientFP16 wrapper,
# mostly for the grad scaling. But if we don't have the
# --memory-efficient-fp16 flag set, then we're effectively doing
# regular --fp16 and can allow the use of optimizers that would
# otherwise be unsupported by MemoryEfficientFP16Optimizer.
allow_unsupported = not self.cfg.common.memory_efficient_fp16
self._optimizer = optim.MemoryEfficientFP16Optimizer.build_optimizer(
self.cfg, params, allow_unsupported=allow_unsupported
)
elif self.cfg.common.fp16 or self.cfg.common.bf16 or self.cfg.common.amp:
if self.cuda and torch.cuda.get_device_capability(0)[0] < 7:
logger.info(
"NOTE: your device does NOT support faster training with --fp16 or --amp, "
"please switch to FP32 which is likely to be faster"
)
if (
self.cfg.common.memory_efficient_fp16
or self.cfg.common.memory_efficient_bf16
):
self._optimizer = optim.MemoryEfficientFP16Optimizer.build_optimizer(
self.cfg, params
)
elif self.cfg.common.amp:
self._optimizer = optim.AMPOptimizer.build_optimizer(self.cfg, params)
else:
self._optimizer = optim.FP16Optimizer.build_optimizer(self.cfg, params)
else:
if self.cuda and torch.cuda.get_device_capability(0)[0] >= 7:
logger.info(
"NOTE: your device may support faster training with --fp16 or --amp"
)
self._optimizer = optim.build_optimizer(self.cfg.optimizer, params)
if self.is_fsdp:
assert (
not self.cfg.optimization.use_bmuf
), "--ddp-backend=fully_sharded is not compatible with BMUF"
assert self._optimizer.supports_flat_params, (
"--ddp-backend=fully_sharded is only compatible with pointwise "
"optimizers (e.g., Adam, AdamW, Adadelta, Adamax, SGD, etc.). "
"However, the sharding will result in slightly different results when "
"using non-pointwise optimizers (e.g., Adagrad, Adafactor, LAMB)"
)
if self.cfg.optimization.use_bmuf:
self._optimizer = optim.FairseqBMUF(
self.cfg.bmuf,
self._optimizer,
)
if self.cfg.distributed_training.zero_sharding == "os":
if (
self.cfg.common.fp16
and not self.cfg.common.memory_efficient_fp16
and not self.cfg.common.memory_efficient_bf16
) and not self.cfg.common.fp16_no_flatten_grads:
raise ValueError(
"ZeRO is incomptabile with fp16 and flattened grads. "
"Please use --fp16-no-flatten-grads"
)
else:
optim.shard_(self._optimizer, self.data_parallel_process_group)
# We should initialize the learning rate scheduler immediately after
# building the optimizer, so that the initial learning rate is set.
self._lr_scheduler = lr_scheduler.build_lr_scheduler(
self.cfg.lr_scheduler,
self.optimizer,
)
self._lr_scheduler.step_update(0)
@property
def is_fsdp(self):
return self.cfg.distributed_training.ddp_backend == "fully_sharded"
def consolidate_optimizer(self):
"""For OSS, we need to consolidate the state dict."""
if self.cfg.checkpoint.no_save_optimizer_state:
return
self._gathered_optim_state = None
if hasattr(self.optimizer.optimizer, "consolidate_state_dict"):
self.optimizer.optimizer.consolidate_state_dict()
elif self.is_fsdp and not self.model.use_sharded_state:
st = self.model.gather_full_optim_state_dict(
self.optimizer
) # only returns on rank 0
self._gathered_optim_state = st
def state_dict(self):
state_dict = {
"args": None, # legacy
"cfg": (
OmegaConf.to_container(self.cfg, resolve=True, enum_to_str=True)
if OmegaConf.is_config(self.cfg)
else self.cfg
),
"model": self.model.state_dict(),
"criterion": (
self.criterion.state_dict()
if utils.has_parameters(self.criterion)
else None
),
"optimizer_history": (self._optim_history or [])
+ [
{
"criterion_name": self.get_criterion().__class__.__name__,
"optimizer_name": self.optimizer.__class__.__name__,
"lr_scheduler_state": self.lr_scheduler.state_dict(),
"num_updates": self.get_num_updates(),
}
],
"task_state": self.task.state_dict() if self.task is not None else {},
"extra_state": {
"metrics": metrics.state_dict(),
"previous_training_time": self.cumulative_training_time(),
},
}
if self.cfg.ema.store_ema:
# Save EMA model state as extra state
state_dict["extra_state"]["ema"] = self.ema.get_model().state_dict()
if self.cfg.ema.ema_fp32:
# Save EMA params in fp32
state_dict["extra_state"]["ema_fp32_params"] = self.ema.fp32_params
if not self.cfg.checkpoint.no_save_optimizer_state:
if self._gathered_optim_state is not None:
state_dict["last_optimizer_state"] = self._gathered_optim_state
self._gathered_optim_state = None
else:
state_dict["last_optimizer_state"] = self.optimizer.state_dict()
if self.is_fsdp:
# save meta data for recombining checkpoint upon loading
state_dict["fsdp_metadata"] = self.model.local_metadata_dict()
return state_dict
def save_checkpoint(self, filename, extra_state):
"""Save all training state in a checkpoint file."""
logger.info(f"Saving checkpoint to {os.path.abspath(filename)}")
# call state_dict on all ranks in case it needs internal communication
state_dict = utils.move_to_cpu(self.state_dict())
state_dict["extra_state"].update(extra_state)
if self.should_save_checkpoint_on_current_rank:
checkpoint_utils.torch_persistent_save(
state_dict,
filename,
async_write=self.cfg.checkpoint.write_checkpoints_asynchronously,
)
logger.info(f"Finished saving checkpoint to {os.path.abspath(filename)}")
def load_checkpoint(
self,
filename,
reset_optimizer=False,
reset_lr_scheduler=False,
optimizer_overrides=None,
reset_meters=False,
):
"""
Load all training state from a checkpoint file.
rank = 0 will load the checkpoint, and then broadcast it to all
other ranks.
"""
extra_state, self._optim_history, last_optim_state = None, [], None
logger.info(f"Preparing to load checkpoint {filename}")
is_distributed = self.data_parallel_world_size > 1
bexists = PathManager.isfile(filename)
if bexists:
load_on_all_ranks = (
self.cfg.checkpoint.load_checkpoint_on_all_dp_ranks
# TPUs don't support broadcast yet, so load checkpoints
# on every worker for now
or self.tpu
# FSDP requires loading checkpoint shards on all ranks
or (self.is_fsdp and self.cfg.distributed_training.use_sharded_state)
or getattr(self.cfg.model, "base_layers", 0) > 0
)
if load_on_all_ranks or self.data_parallel_rank == 0:
state = checkpoint_utils.load_checkpoint_to_cpu(
filename, load_on_all_ranks=load_on_all_ranks
)
last_optim_state = state.get("last_optimizer_state", None)
# If doing zero_sharding, do not broadcast global optimizer
# state. Later we will broadcast sharded states to each rank
# to avoid memory from exploding.
if (
not load_on_all_ranks
and self.cfg.distributed_training.zero_sharding == "os"
and "last_optimizer_state" in state
and is_distributed
):
state["last_optimizer_state"] = "SHARDED"
else:
last_optim_state = None
state = None
if is_distributed and not load_on_all_ranks:
state = distributed_utils.broadcast_object(
state,
src_rank=0,
group=self.data_parallel_process_group,
dist_device=self.device,
)
if self.data_parallel_rank > 0:
last_optim_state = state.get("last_optimizer_state", None)
# load model parameters
try:
if (
"optimizer_history" in state
and len(state["optimizer_history"]) > 0
and "num_updates" in state["optimizer_history"][-1]
):
self.model.set_num_updates(
state["optimizer_history"][-1]["num_updates"]
)
# this is the code related to AdaPrune
# In short, it removes redundant heads in multi-head attention module based on heads importance provided
# For more info, please refer to the paper: https://openreview.net/forum?id=_CMSV7FTzGI
# The idea of prune in mha can be summarized as
# Fine tune model (e.g. roberta encoder) on a certain datasets with regularization
# After the model is trained. User could use get_reserve_head_index and _adaptive_prune_heads functions to get the top X heads with most importance.
# Then user uses the rank to prune a new roberta encoder and save the pruned ckpt manually.
# User will fine tune the the new roberta encoder via the ckpt saved above
# To get rid of registering different pruned version of Roberta, I use the argument --mha-heads-to-keep to prune the Roberta model into a pruned version which matches the pruned ckpt.
if (
safe_hasattr(self.model, "args")
and safe_hasattr(self.model.args, "mha_heads_to_keep")
and self.model.args.mha_heads_to_keep != -1
):
logger.info(
f"Prune model: keep {self.model.args.mha_heads_to_keep} heads for each multihead attention module"
)
for layer in self.model.encoder.sentence_encoder.layers:
reserve_head_index = layer.self_attn._get_reserve_head_index(
num_heads_to_keep=self.model.args.mha_heads_to_keep
)
layer.self_attn._adaptive_prune_heads(
reserve_head_index=reserve_head_index
)
layer.self_attn._set_skip_embed_dim_check()
logger.info(self.model)
# this is the code related to AdaPrune
# In short, it removes redundant units in feedforward layer in each transformer layer based on importance
# For more info, please refer to the paper: https://openreview.net/forum?id=_CMSV7FTzGI
# The idea of prune in ffn can be summarized as
# Fine tune model (e.g. roberta encoder) on a certain datasets with regularization
# After the model is trained. User could use _get_fc_rank and _prune_fc_layer functions to get the top X units with most importance.
# Then user uses the rank to prune a new roberta encoder and save the pruned ckpt manually.
# User will fine tune the the new roberta encoder via the ckpt saved above
# To get rid of registering different pruned version of Roberta, I use the argument --ffn-blocks-to-remove to prune the Roberta model into a pruned version which matches the pruned ckpt.
if (
safe_hasattr(self.model, "args")
and safe_hasattr(self.model.args, "ffn_blocks_to_remove")
and self.model.args.ffn_blocks_to_remove != -1
):
logger.info(
f"Prune model: remove {self.model.args.ffn_blocks_to_remove} ffn blocks for each transformer layer"
)
for layer in self.model.encoder.sentence_encoder.layers:
remove_index = layer._get_fc_rank(
remove_num=self.model.args.ffn_blocks_to_remove
)
layer._prune_fc_layer(remove_index=remove_index)
logger.info(self.model)
self.model.load_state_dict(
state["model"], strict=True, model_cfg=self.cfg.model
)
# save memory for later steps
del state["model"]
if utils.has_parameters(self.get_criterion()):
self.get_criterion().load_state_dict(
state["criterion"], strict=True
)
del state["criterion"]
except Exception:
raise Exception(
"Cannot load model parameters from checkpoint {}; "
"please ensure that the architectures match.".format(filename)
)
extra_state = state["extra_state"]
self._optim_history = state["optimizer_history"]
if last_optim_state is not None and not reset_optimizer:
# rebuild optimizer after loading model, since params may have changed
self._build_optimizer()
# only reload optimizer and lr_scheduler if they match
last_optim = self._optim_history[-1]
assert (
last_optim["criterion_name"] == self.get_criterion().__class__.__name__
), f"Criterion does not match; please reset the optimizer (--reset-optimizer). {last_optim['criterion_name']} vs {self.get_criterion().__class__.__name__}"
assert (
last_optim["optimizer_name"] == self.optimizer.__class__.__name__
), f"Optimizer does not match; please reset the optimizer (--reset-optimizer). {last_optim['optimizer_name']} vs {self.optimizer.__class__.__name__}"
if not reset_lr_scheduler:
self.lr_scheduler.load_state_dict(last_optim["lr_scheduler_state"])
if self.is_fsdp and not self.model.use_sharded_state:
# if use_sharded_state, the last_optim_state is already sharded, skip this
last_optim_state = self.model.get_shard_from_optim_state_dict(
last_optim_state
)
elif not load_on_all_ranks and is_distributed:
last_optim_state = self.optimizer.broadcast_global_state_dict(
last_optim_state
)
self.optimizer.load_state_dict(last_optim_state, optimizer_overrides)
self.set_num_updates(last_optim["num_updates"])
if extra_state is not None:
itr_state = extra_state["train_iterator"]
if type(itr_state) == list:
# assert len(itr_state) == self.data_parallel_world_size
itr_state = itr_state[self.data_parallel_rank % len(itr_state)]
extra_state["train_iterator"] = itr_state
epoch = itr_state.get("epoch", 1)
if "previous_training_time" in extra_state:
self._previous_training_time = extra_state["previous_training_time"]
self._start_time = time.time()
self.lr_step(epoch)
if (
itr_state.get("version", 1) >= 2
and itr_state["iterations_in_epoch"] == 0
):
# reset meters at start of epoch
reset_meters = True
if "metrics" in extra_state and not reset_meters:
metrics.load_state_dict(extra_state["metrics"])
# reset TimeMeters, since their start times don't make sense anymore
for meter in metrics.get_meters("default"):
if isinstance(meter, meters.TimeMeter):
meter.reset()
if self.cfg.ema.store_ema:
if "ema" not in extra_state:
logger.warn(
"EMA not found in checkpoint. But store_ema is True. "
"EMA is re-initialized from checkpoint."
)
self.ema.restore(
state["model"], build_fp32_params=self.cfg.ema.ema_fp32
)
else:
logger.info("Loading EMA from checkpoint")
self.ema.restore(extra_state["ema"], build_fp32_params=False)
if self.cfg.ema.ema_fp32:
if "ema_fp32_params" in extra_state:
logger.info("Loading EMA fp32 params from checkpoint")
self.ema.build_fp32_params(extra_state["ema_fp32_params"])
else:
logger.info(
"Building EMA fp32 params from EMA model in checkpoint"
)
self.ema.build_fp32_params()
logger.info(
"Loaded checkpoint {} (epoch {} @ {} updates)".format(
filename, epoch, self.get_num_updates()
)
)
else:
logger.info("No existing checkpoint found {}".format(filename))
return extra_state
def get_train_iterator(
self,
epoch,
combine=True,
load_dataset=True,
data_selector=None,
shard_batch_itr=True,
disable_iterator_cache=False,
):
"""Return an EpochBatchIterator over the training set for a given epoch."""
if load_dataset:
logger.info("loading train data for epoch {}".format(epoch))
self.task.load_dataset(
self.cfg.dataset.train_subset,
epoch=epoch,
combine=combine,
data_selector=data_selector,
tpu=self.tpu,
)
batch_iterator = self.task.get_batch_iterator(
dataset=self.task.dataset(self.cfg.dataset.train_subset),
max_tokens=self.cfg.dataset.max_tokens,
max_sentences=self.cfg.dataset.batch_size,
max_positions=utils.resolve_max_positions(
self.task.max_positions(),
self.model.max_positions(),
self.cfg.dataset.max_tokens,
),
ignore_invalid_inputs=True,
required_batch_size_multiple=self.cfg.dataset.required_batch_size_multiple,
seed=(self.cfg.common.seed + epoch)
if self.cfg.dataset.update_ordered_indices_seed
else self.cfg.common.seed,
num_shards=self.data_parallel_world_size if shard_batch_itr else 1,
shard_id=self.data_parallel_rank if shard_batch_itr else 0,
num_workers=self.cfg.dataset.num_workers,
epoch=epoch,
data_buffer_size=self.cfg.dataset.data_buffer_size,
disable_iterator_cache=disable_iterator_cache,
skip_remainder_batch=self.cfg.optimization.skip_remainder_batch,
grouped_shuffling=self.cfg.dataset.grouped_shuffling,
update_epoch_batch_itr=self.cfg.dataset.update_epoch_batch_itr,
)
self.reset_dummy_batch(batch_iterator.first_batch)
return batch_iterator
def get_valid_iterator(
self,
subset,
disable_iterator_cache=False,
):
"""Return an EpochBatchIterator over given validation subset for a given epoch."""
batch_iterator = self.task.get_batch_iterator(
dataset=self.task.dataset(subset),
max_tokens=self.cfg.dataset.max_tokens_valid,
max_sentences=self.cfg.dataset.batch_size_valid,
max_positions=utils.resolve_max_positions(
self.task.max_positions(),
self.model.max_positions(),
),
ignore_invalid_inputs=self.cfg.dataset.skip_invalid_size_inputs_valid_test,
required_batch_size_multiple=self.cfg.dataset.required_batch_size_multiple,
seed=self.cfg.common.seed,
num_shards=self.data_parallel_world_size,
shard_id=self.data_parallel_rank,
num_workers=self.cfg.dataset.num_workers,
# always pass a fixed "epoch" to keep validation data consistent
# across training epochs
epoch=1,
data_buffer_size=self.cfg.dataset.data_buffer_size,
disable_iterator_cache=disable_iterator_cache,
skip_remainder_batch=False,
)
self.reset_dummy_batch(batch_iterator.first_batch)
return batch_iterator
def begin_epoch(self, epoch):
"""Called at the beginning of each epoch."""
logger.info("begin training epoch {}".format(epoch))
self.lr_step_begin_epoch(epoch)
if self.quantizer is not None:
self.quantizer.begin_epoch(epoch)
# task specific setup per epoch
self.task.begin_epoch(epoch, self.get_model())
if self.tpu:
import torch_xla.core.xla_model as xm
xm.rendezvous("begin_epoch") # wait for all workers
xm.mark_step()
def begin_valid_epoch(self, epoch):
"""Called at the beginning of each validation epoch."""
# task specific setup per validation epoch
self.task.begin_valid_epoch(epoch, self.get_model())
def reset_dummy_batch(self, batch):
self._dummy_batch = batch
@metrics.aggregate("train")
def train_step(self, samples, raise_oom=False):
"""Do forward, backward and parameter update."""
self._set_seed()
self.model.train()
self.criterion.train()
self.zero_grad()
metrics.log_start_time("train_wall", priority=800, round=0)
# If EMA is enabled through store_ema=True
# and task.uses_ema is True, pass the EMA model as a keyword
# argument to the task.
extra_kwargs = {}
if self.cfg.ema.store_ema and getattr(self.task, "uses_ema", False):
extra_kwargs["ema_model"] = self.ema.get_model()
# forward and backward pass
logging_outputs, sample_size, ooms = [], 0, 0
for i, sample in enumerate(samples): # delayed update loop
sample, is_dummy_batch = self._prepare_sample(sample)
def maybe_no_sync():
"""
Whenever *samples* contains more than one mini-batch, we
want to accumulate gradients locally and only call
all-reduce in the last backwards pass.
"""
if (
self.data_parallel_world_size > 1
and hasattr(self.model, "no_sync")
and i < len(samples) - 1
# The no_sync context manager results in increased memory
# usage with FSDP, since full-size gradients will be
# accumulated on each GPU. It's typically a better tradeoff
# to do the extra communication with FSDP.
and not self.is_fsdp
):
return self.model.no_sync()
else:
return contextlib.ExitStack() # dummy contextmanager
try:
with maybe_no_sync():
# forward and backward
loss, sample_size_i, logging_output = self.task.train_step(
sample=sample,
model=self.model,
criterion=self.criterion,
optimizer=self.optimizer,
update_num=self.get_num_updates(),
ignore_grad=is_dummy_batch,
**extra_kwargs,
)
del loss
logging_outputs.append(logging_output)
sample_size += sample_size_i
# emptying the CUDA cache after the first step can
# reduce the chance of OOM
if self.cuda and self.get_num_updates() == 0:
torch.cuda.empty_cache()
except RuntimeError as e:
if "out of memory" in str(e):
self._log_oom(e)
if raise_oom:
raise e
logger.warning(
"attempting to recover from OOM in forward/backward pass"
)
ooms += 1
self.zero_grad()
if self.cuda:
torch.cuda.empty_cache()
if self.cfg.distributed_training.distributed_world_size == 1:
return None
else:
raise e
except Exception:
self.consolidate_optimizer()
self.save_checkpoint(
os.path.join(self.cfg.checkpoint.save_dir, "crash.pt"), {}
)
raise
if self.tpu and i < len(samples) - 1:
# tpu-comment: every XLA operation before marking step is
# appended to the IR graph, and processing too many batches
# before marking step can lead to OOM errors.
# To handle gradient accumulation use case, we explicitly
# mark step here for every forward pass without a backward pass
self._xla_markstep_and_send_to_cpu()
if is_dummy_batch:
if torch.is_tensor(sample_size):
sample_size.zero_()
else:
sample_size *= 0.0
if torch.is_tensor(sample_size):
sample_size = sample_size.float()
else:
sample_size = float(sample_size)
# gather logging outputs from all replicas
if self._sync_stats():
train_time = self._local_cumulative_training_time()
(
logging_outputs,
(
sample_size,
ooms,
total_train_time,
),
) = self._aggregate_logging_outputs(
logging_outputs, sample_size, ooms, train_time, ignore=is_dummy_batch
)
self._cumulative_training_time = (
total_train_time / self.data_parallel_world_size
)
overflow = False
try:
with torch.autograd.profiler.record_function("reduce-grads"):
# reduce gradients across workers
self.optimizer.all_reduce_grads(self.model)
if utils.has_parameters(self.criterion):
self.optimizer.all_reduce_grads(self.criterion)
with torch.autograd.profiler.record_function("multiply-grads"):
# multiply gradients by (data_parallel_size / sample_size) since
# DDP normalizes by the number of data parallel workers for
# improved fp16 precision.
# Thus we get (sum_of_gradients / sample_size) at the end.
# In case of fp16, this step also undoes loss scaling.
# (Debugging note: Some optimizers perform this scaling on the
# fly, so inspecting model.parameters() or optimizer.params may
# still show the original, unscaled gradients.)
numer = (
self.data_parallel_world_size
if not self.cfg.optimization.use_bmuf or self._sync_stats()
else 1
)
self.optimizer.multiply_grads(numer / (sample_size or 1.0))
# Note: (sample_size or 1.0) handles the case of a zero gradient, in a
# way that avoids CPU/device transfers in case sample_size is a GPU or
# TPU object. The assumption is that the gradient itself is also 0.
with torch.autograd.profiler.record_function("clip-grads"):
# clip grads
grad_norm = self.clip_grad_norm(self.cfg.optimization.clip_norm)
# check that grad norms are consistent across workers
# on tpu check tensor is slow
if not self.tpu:
if (
not self.cfg.optimization.use_bmuf
and self.cfg.distributed_training.ddp_backend != "slowmo"
):
self._check_grad_norms(grad_norm)
if not torch.isfinite(grad_norm).all():
# in case of AMP, if gradients are Nan/Inf then
# optimizer step is still required
if self.cfg.common.amp:
overflow = True
else:
# check local gradnorm single GPU case, trigger NanDetector
raise FloatingPointError("gradients are Nan/Inf")
with torch.autograd.profiler.record_function("optimizer"):
# take an optimization step
self.task.optimizer_step(
self.optimizer, model=self.model, update_num=self.get_num_updates()
)
if self.cfg.common.amp and overflow:
if self._amp_retries == self.cfg.common.amp_batch_retries:
logger.info("AMP: skipping this batch.")
self._amp_retries = 0
else:
self._amp_retries += 1
return self.train_step(
samples, raise_oom
) # recursion to feed in same batch
except FloatingPointError:
self.consolidate_optimizer()
self.save_checkpoint(
os.path.join(self.cfg.checkpoint.save_dir, "crash.pt"), {}
)
# re-run the forward and backward pass with hooks attached to print
# out where it fails
self.zero_grad()
with NanDetector(self.get_model()):
for _, sample in enumerate(samples):
sample, _ = self._prepare_sample(sample)
self.task.train_step(
sample,
self.model,
self.criterion,
self.optimizer,
self.get_num_updates(),
ignore_grad=False,
**extra_kwargs,
)
raise
except OverflowError as e:
overflow = True
logger.info(
f"NOTE: gradient overflow detected, ignoring gradient, {str(e)}"
)
grad_norm = torch.tensor(0.0).cuda()
self.zero_grad()
except RuntimeError as e:
if "out of memory" in str(e):
self._log_oom(e)
logger.error("OOM during optimization, irrecoverable")
raise e
# Some distributed wrappers (e.g., SlowMo) need access to the optimizer
# after the step
if hasattr(self.model, "perform_slowmo"):
self.model.perform_slowmo(
self.optimizer.optimizer, getattr(self.optimizer, "fp32_params", None)
)
logging_output = None
if not overflow or self.cfg.distributed_training.ddp_backend == "slowmo":
self.set_num_updates(self.get_num_updates() + 1)
if self.cfg.ema.store_ema:
# Step EMA forward with new model.
self.ema.step(
self.get_model(),
self.get_num_updates(),
)
metrics.log_scalar(
"ema_decay",
self.ema.get_decay(),
priority=10000,
round=5,
weight=0,
)
if self.tpu:
import torch_xla.core.xla_model as xm
# mark step on TPUs
self._xla_markstep_and_send_to_cpu()
# only log stats every log_interval steps
# this causes wps to be misreported when log_interval > 1
logging_output = {}
if self.get_num_updates() % self.cfg.common.log_interval == 0:
# log memory usage
mem_info = xm.get_memory_info(self.device)
gb_free = mem_info["kb_free"] / 1024 / 1024
gb_total = mem_info["kb_total"] / 1024 / 1024
metrics.log_scalar(
"gb_free", gb_free, priority=1500, round=1, weight=0
)
metrics.log_scalar(
"gb_total", gb_total, priority=1600, round=1, weight=0
)
logging_outputs = self._xla_markstep_and_send_to_cpu(
logging_outputs
)
logging_output = self._reduce_and_log_stats(
logging_outputs, sample_size, grad_norm
)
# log whenever there's an XLA compilation, since these
# slow down training and may indicate opportunities for
# optimization
self._check_xla_compilation()
else:
if self.cuda and self.cuda_env is not None:
# log minimum free memory over the iteration
gb_used = torch.cuda.max_memory_allocated() / 1024 / 1024 / 1024
torch.cuda.reset_peak_memory_stats()
gb_free = self.cuda_env.total_memory_in_GB - gb_used
metrics.log_scalar(
"gb_free", gb_free, priority=1500, round=1, weight=0
)
# log stats
logging_output = self._reduce_and_log_stats(
logging_outputs, sample_size, grad_norm
)
# clear CUDA cache to reduce memory fragmentation
if (
self.cuda
and self.cfg.common.empty_cache_freq > 0
and (
(self.get_num_updates() + self.cfg.common.empty_cache_freq - 1)
% self.cfg.common.empty_cache_freq
)
== 0
):
torch.cuda.empty_cache()
if self.cfg.common.fp16 or self.cfg.common.amp:
metrics.log_scalar(
"loss_scale",
(
self.optimizer.scaler.loss_scale
if self.cfg.common.fp16
else self.optimizer.scaler.get_scale()
),
priority=700,
round=4,
weight=0,
)
metrics.log_stop_time("train_wall")
return logging_output
@metrics.aggregate("valid")
def valid_step(self, sample, raise_oom=False):
"""Do forward pass in evaluation mode."""
if self.tpu:
import torch_xla.core.xla_model as xm
xm.rendezvous("valid_step") # wait for all workers
# If EMA is enabled through store_ema=True
# and task.uses_ema is True, pass the EMA model as a keyword
# argument to the task.
extra_kwargs = {}
if self.cfg.ema.store_ema and getattr(self.task, "uses_ema", False):
extra_kwargs["ema_model"] = self.ema.get_model()
with torch.no_grad():
self.model.eval()
self.criterion.eval()
sample, is_dummy_batch = self._prepare_sample(sample)
try:
_loss, sample_size, logging_output = self.task.valid_step(
sample, self.model, self.criterion, **extra_kwargs
)
except RuntimeError as e:
if "out of memory" in str(e):
self._log_oom(e)
if not raise_oom:
logger.warning(
"ran out of memory in validation step, retrying batch"
)
for p in self.model.parameters():
if p.grad is not None:
p.grad = None # free some memory
if self.cuda:
torch.cuda.empty_cache()
return self.valid_step(sample, raise_oom=True)
raise e
logging_outputs = [logging_output]
if is_dummy_batch:
if torch.is_tensor(sample_size):
sample_size.zero_()
else:
sample_size *= 0.0
# gather logging outputs from all replicas
if self.data_parallel_world_size > 1:
logging_outputs, (sample_size,) = self._aggregate_logging_outputs(
logging_outputs,
sample_size,
ignore=is_dummy_batch,
)
# log validation stats
if self.tpu:
logging_outputs = self._xla_markstep_and_send_to_cpu(logging_outputs)
logging_output = self._reduce_and_log_stats(logging_outputs, sample_size)
return logging_output
def zero_grad(self):
self.optimizer.zero_grad()
def lr_step_begin_epoch(self, epoch):
"""Adjust the learning rate at the beginning of the epoch."""
self.lr_scheduler.step_begin_epoch(epoch)
# prefer updating the LR based on the number of steps
return self.lr_step_update()
def lr_step(self, epoch, val_loss=None):
"""Adjust the learning rate at the end of the epoch."""
self.lr_scheduler.step(epoch, val_loss)
# prefer updating the LR based on the number of steps
return self.lr_step_update()
def lr_step_update(self):
"""Update the learning rate after each update."""
new_lr = self.lr_scheduler.step_update(self.get_num_updates())
if isinstance(new_lr, dict):
for k, v in new_lr.items():
metrics.log_scalar(f"lr_{k}", v, weight=0, priority=300)
new_lr = new_lr.get("default", next(iter(new_lr.values())))
else:
metrics.log_scalar("lr", new_lr, weight=0, priority=300)
return new_lr
def get_lr(self):
"""Get the current learning rate."""
return self.optimizer.get_lr()
def get_model(self):
"""Get the (non-wrapped) model instance."""
return self._model
def get_criterion(self):
"""Get the (non-wrapped) criterion instance."""
return self._criterion
def get_meter(self, name):
"""[deprecated] Get a specific meter by name."""
from fairseq import meters
if "get_meter" not in self._warn_once:
self._warn_once.add("get_meter")
utils.deprecation_warning(
"Trainer.get_meter is deprecated. Please use fairseq.metrics instead."
)
train_meters = metrics.get_meters("train")
if train_meters is None:
train_meters = {}
if name == "train_loss" and "loss" in train_meters:
return train_meters["loss"]
elif name == "train_nll_loss":
# support for legacy train.py, which assumed this meter is
# always initialized
m = train_meters.get("nll_loss", None)
return m or meters.AverageMeter()
elif name == "wall":
# support for legacy train.py, which assumed this meter is
# always initialized
m = metrics.get_meter("default", "wall")
return m or meters.TimeMeter()
elif name == "wps":
m = metrics.get_meter("train", "wps")
return m or meters.TimeMeter()
elif name in {"valid_loss", "valid_nll_loss"}:
# support for legacy train.py, which assumed these meters
# are always initialized
k = name[len("valid_") :]
m = metrics.get_meter("valid", k)
return m or meters.AverageMeter()
elif name == "oom":
return meters.AverageMeter()
elif name in train_meters:
return train_meters[name]
return None
def get_num_updates(self):
"""Get the number of parameters updates."""
return self._num_updates
def set_num_updates(self, num_updates):
"""Set the number of parameters updates."""
self._num_updates = num_updates
self.lr_step_update()
if self.quantizer:
self.quantizer.step_update(self._num_updates)
metrics.log_scalar("num_updates", self._num_updates, weight=0, priority=200)
def clip_grad_norm(self, clip_norm):
def agg_norm_fn(total_norm):
total_norm = total_norm.cuda().float() ** 2
total_norm = distributed_utils.all_reduce(
total_norm, group=self.data_parallel_process_group
)
return total_norm ** 0.5
should_agg_norm = self.is_fsdp and (
self.data_parallel_process_group is not None
or torch.distributed.is_initialized()
)
return self.optimizer.clip_grad_norm(
clip_norm, aggregate_norm_fn=agg_norm_fn if should_agg_norm else None
)
def cumulative_training_time(self):
if self._cumulative_training_time is None:
# single GPU
return self._local_cumulative_training_time()
else:
return self._cumulative_training_time
def _local_cumulative_training_time(self):
"""Aggregate training time in seconds."""
return time.time() - self._start_time + self._previous_training_time
def _fp_convert_sample(self, sample):
def apply_half(t):
if t.dtype is torch.float32:
return t.to(dtype=torch.half)
return t
def apply_bfloat16(t):
if t.dtype is torch.float32:
return t.to(dtype=torch.bfloat16)
return t
if self.cfg.common.fp16:
sample = utils.apply_to_sample(apply_half, sample)
if self.cfg.common.bf16:
sample = utils.apply_to_sample(apply_bfloat16, sample)
return sample
def _prepare_sample(self, sample, is_dummy=False):
if sample == "DUMMY":
raise Exception(
"Trying to use an uninitialized 'dummy' batch. This usually indicates "
"that the total number of batches is smaller than the number of "
"participating GPUs. Try reducing the batch size or using fewer GPUs."
)
if sample is None or len(sample) == 0:
assert (
self._dummy_batch is not None and len(self._dummy_batch) > 0
), "Invalid dummy batch: {}".format(self._dummy_batch)
sample, _ = self._prepare_sample(self._dummy_batch, is_dummy=True)
return sample, True
# Given that PCIe/NVLink bandwidth is significantly smaller than DRAM bandwidth
# it makes sense to do the format conversion on the CPU and then transfer
# a smaller buffer to the device. This also saves GPU memory capacity.
if self.cfg.common.on_cpu_convert_precision:
sample = self._fp_convert_sample(sample)
if self.cuda:
if self.pipeline_model_parallel:
if "target" in sample:
sample["target"] = utils.move_to_cuda(
sample["target"], device=self.last_device
)
else:
sample = utils.move_to_cuda(sample)
elif self.tpu and is_dummy:
# the dummy batch may not be on the appropriate device
sample = utils.move_to_cuda(sample, device=self.device)
if not self.cfg.common.on_cpu_convert_precision:
sample = self._fp_convert_sample(sample)
if self._dummy_batch == "DUMMY":
self._dummy_batch = sample
return sample, False
def _set_seed(self):
# Set seed based on args.seed and the update number so that we get
# reproducible results when resuming from checkpoints
seed = self.cfg.common.seed + self.get_num_updates()
utils.set_torch_seed(seed)
def _sync_stats(self):
# Return True if it's using multiple GPUs and DDP or multiple GPUs with
# BMUF and it's a bmuf sync with warmup iterations completed before.
if self.data_parallel_world_size == 1:
return False
elif self.cfg.optimization.use_bmuf:
return (
self.get_num_updates() + 1
) % self.cfg.bmuf.global_sync_iter == 0 and (
self.get_num_updates() + 1
) > self.cfg.bmuf.warmup_iterations
else:
return True
def _log_oom(self, exc):
msg = "OOM: Ran out of memory with exception: {}".format(exc)
logger.warning(msg)
if torch.cuda.is_available() and hasattr(torch.cuda, "memory_summary"):
for device_idx in range(torch.cuda.device_count()):
logger.warning(torch.cuda.memory_summary(device=device_idx))
sys.stderr.flush()
def _aggregate_logging_outputs(
self,
logging_outputs: List[Dict[str, Any]],
*extra_stats_to_sum,
ignore=False,
):
if self.task.__class__.logging_outputs_can_be_summed(self.get_criterion()):
return self._fast_stat_sync_sum(
logging_outputs, *extra_stats_to_sum, ignore=ignore
)
else:
return self._all_gather_list_sync(
logging_outputs, *extra_stats_to_sum, ignore=ignore
)
def _all_gather_list_sync(
self,
logging_outputs: List[Dict[str, Any]],
*extra_stats_to_sum,
ignore=False,
):
"""
Sync logging outputs across workers. all_gather_list_sync is
suitable when logging outputs are complex types.
"""
if self.tpu:
raise NotImplementedError
if ignore:
logging_outputs = []
results = list(
zip(
*distributed_utils.all_gather_list(
[logging_outputs] + list(extra_stats_to_sum),
max_size=getattr(self.cfg.common, "all_gather_list_size", 16384),
group=self.data_parallel_process_group,
)
)
)
logging_outputs, extra_stats_to_sum = results[0], results[1:]
logging_outputs = list(chain.from_iterable(logging_outputs))
extra_stats_to_sum = [sum(s) for s in extra_stats_to_sum]
return logging_outputs, extra_stats_to_sum
def _fast_stat_sync_sum(
self,
logging_outputs: List[Dict[str, Any]],
*extra_stats_to_sum,
ignore=False,
):
"""
Sync logging outputs across workers. fast_stat_sync_sum is
faster than all_gather_list_sync, but is only suitable when
logging outputs are scalars and can be summed. Note that
*logging_outputs* cannot contain any nested dicts/lists.
"""
data = {}
for i, stat in enumerate(extra_stats_to_sum):
data["extra_stats_" + str(i)] = stat
if len(logging_outputs) > 0:
log_keys = list(logging_outputs[0].keys())
for k in log_keys:
if not ignore:
v = sum(log[k] for log in logging_outputs if k in log)
else:
v = logging_outputs[0][k]
v = torch.zeros_like(v) if torch.is_tensor(v) else 0
data["logging_outputs_" + k] = v
else:
log_keys = None
data = distributed_utils.all_reduce_dict(
data, device=self.device, group=self.data_parallel_process_group
)
extra_stats_to_sum = [
data["extra_stats_" + str(i)] for i in range(len(extra_stats_to_sum))
]
if log_keys is not None:
logging_outputs = [{k: data["logging_outputs_" + k] for k in log_keys}]
else:
logging_outputs = []
return logging_outputs, extra_stats_to_sum
def _check_grad_norms(self, grad_norm):
"""Check that grad norms are consistent across workers."""
if self._grad_norm_buf is not None:
self._grad_norm_buf.zero_()
self._grad_norm_buf[self.data_parallel_rank] = grad_norm
distributed_utils.all_reduce(
self._grad_norm_buf, group=self.data_parallel_process_group
)
def is_consistent(tensor):
max_abs_diff = torch.max(torch.abs(tensor - tensor[0]))
return (
(
torch.isfinite(tensor).all()
and (max_abs_diff / (tensor[0] + 1e-6) < 1e-6).all()
)
or (self.cfg.common.amp and not torch.isfinite(tensor).all())
# in case of amp non-finite grads are fine
)
if not is_consistent(self._grad_norm_buf):
pretty_detail = "\n".join(
"rank {:3d} = {:.8f}".format(r, n)
for r, n in enumerate(self._grad_norm_buf.tolist())
)
error_detail = "grad_norm across the workers:\n{}\n".format(
pretty_detail
)
# use FloatingPointError to trigger NanDetector
raise FloatingPointError(
"Fatal error: gradients are inconsistent between workers. "
"Try --ddp-backend=legacy_ddp. "
"Or are you mixing up different generation of GPUs in training?"
+ "\n"
+ "-" * 80
+ "\n{}\n".format(error_detail)
+ "-" * 80
)
def _reduce_and_log_stats(self, logging_outputs, sample_size, grad_norm=None):
if grad_norm is not None and (
not torch.is_tensor(grad_norm) or torch.isfinite(grad_norm)
):
metrics.log_speed("ups", 1.0, priority=100, round=2)
metrics.log_scalar("gnorm", grad_norm, priority=400, round=3)
if self.cfg.optimization.clip_norm > 0:
metrics.log_scalar(
"clip",
torch.where(
grad_norm > self.cfg.optimization.clip_norm,
grad_norm.new_tensor(100),
grad_norm.new_tensor(0),
),
priority=500,
round=1,
)
with metrics.aggregate() as agg:
if logging_outputs is not None:
self.task.reduce_metrics(logging_outputs, self.get_criterion())
del logging_outputs
# extra warning for criterions that don't properly log a loss value
if "loss" not in agg:
if "loss" not in self._warn_once:
self._warn_once.add("loss")
logger.warning(
"Criterion.reduce_metrics did not log a 'loss' value, "
"which may break some functionality"
)
metrics.log_scalar("loss", -1)
# support legacy interface
if self.tpu:
logging_output = {}
else:
logging_output = agg.get_smoothed_values()
logging_output["sample_size"] = sample_size
for key_to_delete in ["ppl", "wps", "wpb", "bsz"]:
if key_to_delete in logging_output:
del logging_output[key_to_delete]
return logging_output
def _check_xla_compilation(self):
import torch_xla.debug.metrics as met
compile_stats = met.metric_data("CompileTime")
if compile_stats is None:
return
num_xla_compiles = compile_stats[0]
if num_xla_compiles > self._num_xla_compiles:
logger.warning(
"XLA compilation detected on device #{}; too many of these can lead "
"to slow training, but we expect a few in the beginning".format(
self.cfg.distributed_training.distributed_rank
)
)
self._num_xla_compiles = num_xla_compiles
def _xla_markstep_and_send_to_cpu(self, data=None):
import torch_xla.core.xla_model as xm
xm.mark_step()
if data is not None:
from fairseq.utils import xla_device_to_cpu
return xla_device_to_cpu(data)
def _catalog_shared_params(module, memo=None, prefix=""):
if memo is None:
first_call = True
memo = {}
else:
first_call = False
for name, param in module._parameters.items():
param_prefix = prefix + ("." if prefix else "") + name
if param not in memo:
memo[param] = []
memo[param].append(param_prefix)
for name, m in module._modules.items():
if m is None:
continue
submodule_prefix = prefix + ("." if prefix else "") + name
_catalog_shared_params(m, memo, submodule_prefix)
if first_call:
return [x for x in memo.values() if len(x) > 1]
def _get_module_by_path(module, path):
path = path.split(".")
for name in path:
module = getattr(module, name)
return module
def _set_module_by_path(module, path, value):
path = path.split(".")
for name in path[:-1]:
module = getattr(module, name)
setattr(module, path[-1], value)
| KosmosX-API-main | kosmosX/fairseq/fairseq/trainer.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import os
import typing as tp
from abc import ABC, abstractmethod
from collections import Counter
from dataclasses import dataclass
from multiprocessing import Pool
import torch
from fairseq.data import Dictionary, indexed_dataset
from fairseq.file_chunker_utils import Chunker, find_offsets
from fairseq.file_io import PathManager
from fairseq.tokenizer import tokenize_line
logger = logging.getLogger("binarizer")
@dataclass
class BinarizeSummary:
"""
Keep track of what's going on in the binarizer
"""
num_seq: int = 0
replaced: tp.Optional[Counter] = None
num_tok: int = 0
@property
def num_replaced(self) -> int:
if self.replaced is None:
return 0
return sum(self.replaced.values())
@property
def replaced_percent(self) -> float:
return 100 * self.num_replaced / self.num_tok
def __str__(self) -> str:
base = f"{self.num_seq} sents, {self.num_tok} tokens"
if self.replaced is None:
return base
return f"{base}, {self.replaced_percent:.3}% replaced"
def merge(self, other: "BinarizeSummary"):
replaced = None
if self.replaced is not None:
replaced = self.replaced
if other.replaced is not None:
if replaced is None:
replaced = other.replaced
else:
replaced += other.replaced
self.replaced = replaced
self.num_seq += other.num_seq
self.num_tok += other.num_tok
class Binarizer(ABC):
"""
a binarizer describes how to take a string and build a tensor out of it
"""
@abstractmethod
def binarize_line(
self,
line: str,
summary: BinarizeSummary,
) -> torch.IntTensor:
...
def _worker_prefix(output_prefix: str, worker_id: int):
return f"{output_prefix}.pt{worker_id}"
class FileBinarizer:
"""
An file binarizer can take a file, tokenize it, and binarize each line to a tensor
"""
@classmethod
def multiprocess_dataset(
cls,
input_file: str,
dataset_impl: str,
binarizer: Binarizer,
output_prefix: str,
vocab_size=None,
num_workers=1,
) -> BinarizeSummary:
final_summary = BinarizeSummary()
offsets = find_offsets(input_file, num_workers)
# find_offsets returns a list of position [pos1, pos2, pos3, pos4] but we would want pairs:
# [(pos1, pos2), (pos2, pos3), (pos3, pos4)] to process the chunks with start/end info
# we zip the list with itself shifted by one to get all the pairs.
(first_chunk, *more_chunks) = zip(offsets, offsets[1:])
pool = None
if num_workers > 1:
pool = Pool(processes=num_workers - 1)
worker_results = [
pool.apply_async(
cls._binarize_chunk_and_finalize,
args=(
binarizer,
input_file,
start_offset,
end_offset,
_worker_prefix(
output_prefix,
worker_id,
),
dataset_impl,
),
kwds={
"vocab_size": vocab_size,
}
if vocab_size is not None
else {},
)
for worker_id, (start_offset, end_offset) in enumerate(
more_chunks, start=1
)
]
pool.close()
pool.join()
for r in worker_results:
summ = r.get()
final_summary.merge(summ)
# do not close the bin file as we need to merge the worker results in
final_ds, summ = cls._binarize_file_chunk(
binarizer,
input_file,
offset_start=first_chunk[0],
offset_end=first_chunk[1],
output_prefix=output_prefix,
dataset_impl=dataset_impl,
vocab_size=vocab_size if vocab_size is not None else None,
)
final_summary.merge(summ)
if num_workers > 1:
for worker_id in range(1, num_workers):
# merge the worker outputs
worker_output_prefix = _worker_prefix(
output_prefix,
worker_id,
)
final_ds.merge_file_(worker_output_prefix)
try:
os.remove(indexed_dataset.data_file_path(worker_output_prefix))
os.remove(indexed_dataset.index_file_path(worker_output_prefix))
except Exception as e:
logger.error(
f"couldn't remove {worker_output_prefix}.*", exc_info=e
)
# now we can close the file
idx_file = indexed_dataset.index_file_path(output_prefix)
final_ds.finalize(idx_file)
return final_summary
@staticmethod
def _binarize_file_chunk(
binarizer: Binarizer,
filename: str,
offset_start: int,
offset_end: int,
output_prefix: str,
dataset_impl: str,
vocab_size=None,
) -> tp.Tuple[tp.Any, BinarizeSummary]: # (dataset builder, BinarizeSummary)
"""
creates a dataset builder and append binarized items to it. This function does not
finalize the builder, this is useful if you want to do other things with your bin file
like appending/merging other files
"""
bin_file = indexed_dataset.data_file_path(output_prefix)
ds = indexed_dataset.make_builder(
bin_file,
impl=dataset_impl,
vocab_size=vocab_size,
)
summary = BinarizeSummary()
with Chunker(
PathManager.get_local_path(filename), offset_start, offset_end
) as line_iterator:
for line in line_iterator:
ds.add_item(binarizer.binarize_line(line, summary))
return ds, summary
@classmethod
def _binarize_chunk_and_finalize(
cls,
binarizer: Binarizer,
filename: str,
offset_start: int,
offset_end: int,
output_prefix: str,
dataset_impl: str,
vocab_size=None,
):
"""
same as above, but also finalizes the builder
"""
ds, summ = cls._binarize_file_chunk(
binarizer,
filename,
offset_start,
offset_end,
output_prefix,
dataset_impl,
vocab_size=vocab_size,
)
idx_file = indexed_dataset.index_file_path(output_prefix)
ds.finalize(idx_file)
return summ
class VocabularyDatasetBinarizer(Binarizer):
"""
Takes a Dictionary/Vocabulary, assign ids to each
token using the dictionary encode_line function.
"""
def __init__(
self,
dict: Dictionary,
tokenize: tp.Callable[[str], tp.List[str]] = tokenize_line,
append_eos: bool = True,
reverse_order: bool = False,
already_numberized: bool = False,
) -> None:
self.dict = dict
self.tokenize = tokenize
self.append_eos = append_eos
self.reverse_order = reverse_order
self.already_numberized = already_numberized
super().__init__()
def binarize_line(
self,
line: str,
summary: BinarizeSummary,
):
if summary.replaced is None:
summary.replaced = Counter()
def replaced_consumer(word, idx):
if idx == self.dict.unk_index and word != self.dict.unk_word:
summary.replaced.update([word])
if self.already_numberized:
id_strings = line.strip().split()
id_list = [int(id_string) for id_string in id_strings]
if self.reverse_order:
id_list.reverse()
if self.append_eos:
id_list.append(self.dict.eos())
ids = torch.IntTensor(id_list)
else:
ids = self.dict.encode_line(
line=line,
line_tokenizer=self.tokenize,
add_if_not_exist=False,
consumer=replaced_consumer,
append_eos=self.append_eos,
reverse_order=self.reverse_order,
)
summary.num_seq += 1
summary.num_tok += len(ids)
return ids
class AlignmentDatasetBinarizer(Binarizer):
"""
binarize by parsing a set of alignments and packing
them in a tensor (see utils.parse_alignment)
"""
def __init__(
self,
alignment_parser: tp.Callable[[str], torch.IntTensor],
) -> None:
super().__init__()
self.alignment_parser = alignment_parser
def binarize_line(
self,
line: str,
summary: BinarizeSummary,
):
ids = self.alignment_parser(line)
summary.num_seq += 1
summary.num_tok += len(ids)
return ids
class LegacyBinarizer:
@classmethod
def binarize(
cls,
filename: str,
dico: Dictionary,
consumer: tp.Callable[[torch.IntTensor], None],
tokenize: tp.Callable[[str], tp.List[str]] = tokenize_line,
append_eos: bool = True,
reverse_order: bool = False,
offset: int = 0,
end: int = -1,
already_numberized: bool = False,
) -> tp.Dict[str, int]:
binarizer = VocabularyDatasetBinarizer(
dict=dico,
tokenize=tokenize,
append_eos=append_eos,
reverse_order=reverse_order,
already_numberized=already_numberized,
)
return cls._consume_file(
filename,
binarizer,
consumer,
offset_start=offset,
offset_end=end,
)
@classmethod
def binarize_alignments(
cls,
filename: str,
alignment_parser: tp.Callable[[str], torch.IntTensor],
consumer: tp.Callable[[torch.IntTensor], None],
offset: int = 0,
end: int = -1,
) -> tp.Dict[str, int]:
binarizer = AlignmentDatasetBinarizer(alignment_parser)
return cls._consume_file(
filename,
binarizer,
consumer,
offset_start=offset,
offset_end=end,
)
@staticmethod
def _consume_file(
filename: str,
binarizer: Binarizer,
consumer: tp.Callable[[torch.IntTensor], None],
offset_start: int,
offset_end: int,
) -> tp.Dict[str, int]:
summary = BinarizeSummary()
with Chunker(
PathManager.get_local_path(filename), offset_start, offset_end
) as line_iterator:
for line in line_iterator:
consumer(binarizer.binarize_line(line, summary))
return {
"nseq": summary.num_seq,
"nunk": summary.num_replaced,
"ntok": summary.num_tok,
"replaced": summary.replaced,
}
| KosmosX-API-main | kosmosX/fairseq/fairseq/binarizer.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""Implements tracking of constraints for a beam item.
A list of constraints is given as a list of one or more token
sequences, each of length at least one token. For example, for an input sentence
> Die maschinelle Übersetzung ist schwer zu kontrollieren.
We could have the constraints:
* to influence
* hard
There are two implementations:
* OrderedConstraintState: Tracks progress through an ordered list of multitoken constraints.
* UnorderedConstraintState: Tracks progress through an unordered list of multitoken constraints.
The difference is that in the first, the constraints are assumed to be
in order; the algorithm will permit zero or more tokens between them.
In the second, the constraints are not ordered, so many orderings will
be explored.
The same sequence can be present any number of times, and will appear
that many times in the output.
"""
from collections import Counter
from typing import List, Set
import torch
class ConstraintState:
def __init__(self):
pass
def pack_constraints(batch_constraints: List[List[torch.Tensor]]) -> torch.Tensor:
"""Takes a list of list of constraints in tensor form (a list of
tensor constraints for each sentence) and transforms it into a
packed Tensor. For example, here is a batch of size 3 with 3, 0,
and 1 constraints:
[ [ [3 1 2], [3], [4 5 6 7], ]
[],
[ [1 8 9 10 1 4 11 12], ]
]
Its corresponding packed structure is:
[ [ 3 3 1 2 0 3 0 4 5 6 7 0],
[ 0 0 0 0 0 0 0 0 0 0 0 0],
[ 1 1 8 9 10 1 4 11 12 0 0 0] ]
The packed tensor has shape (batch size, maxlen), where
maxlen is defined below. Each row contains concatenated
constraint tokens for that sentence, with 0 appended after
each constraint. The first item in each row is the number
of constraints for that sentence. So maxlen is the maximum
of
(number of constraints) + (sum length of constraints) + 1.
across all sentences in the batch.
"""
# The maximum word length of concatenated constraints for any sentence
max_constraints_len = 1
for sentence_constraints in batch_constraints:
if len(sentence_constraints):
# number of constraints, plus sum of constrain lens, plus a zero after each
constraints_len = (
1
+ sum([c.size(0) for c in sentence_constraints])
+ len(sentence_constraints)
)
max_constraints_len = max(max_constraints_len, constraints_len)
batch_size = len(batch_constraints)
constraints_tensor = torch.zeros((batch_size, max_constraints_len)).long()
for i, sentence_constraints in enumerate(batch_constraints):
constraints_tensor[i, 0] = len(sentence_constraints)
offset = 1
for j, constraint in enumerate(sentence_constraints):
this_len = constraint.size(0)
constraints_tensor[i, offset : offset + this_len] = constraint
offset += this_len + 1
return constraints_tensor.long()
def unpack_constraints(constraint_tensor: torch.Tensor) -> List[torch.Tensor]:
"""
Transforms *one row* of a packed constraint tensor (e.g., for one
sentence in the batch) into a list of constraint tensors.
"""
constraint_list = []
num_constraints = constraint_tensor[0]
constraints = constraint_tensor.tolist()
offset = 1
for i in range(num_constraints):
where = constraints.index(0, offset)
constraint_list.append(constraint_tensor[offset:where])
offset = where + 1
return constraint_list
class ConstraintNode:
"""
Represents a node in a trie managing unordered constraints.
"""
def __init__(self, token: int = None, parent=None):
# The token associate with this node (None for the root)
self.token = int(token) if token is not None else None
# The parent (None at the root)
self.parent = parent
# Whether this node is a completed constraint
self.terminal = 0
# List of child nodes
self.children = {}
# The cumulative number of constraints from this point in the
# trie forward
self.num_constraints = 0
@property
def id(self):
return self.token
def __str__(self):
term = self.terminal != 0
return f"[{self.token}].{term}#{self.num_constraints}"
def __getitem__(self, key: int):
return self.children.get(key, None)
def next_tokens(self) -> Set[int]:
"""The set of child labels."""
return set(self.children.keys())
@staticmethod
def create(constraints: List[List[int]]):
root = ConstraintNode()
for sequence in constraints:
root.add_sequence(sequence)
return root
@staticmethod
def print_graph(node: "ConstraintNode"):
if len(node.children) == 0:
return str(node)
else:
s = f"({node}"
for child in node.children.values():
s += " " + ConstraintNode.print_graph(child)
s += ")"
return s
def token_counts(self) -> Counter:
"""Returns a counter of the number of times each token is used
in a constraint.
"""
token_counts = Counter()
kids = list(self.children.values())
while len(kids) > 0:
kid = kids.pop()
token_counts[kid.id] += kid.num_constraints
kids += list(kid.children.values())
return token_counts
def tokens(self) -> Set[int]:
"""Returns the set of tokens in constraints."""
return set(self.token_counts().keys())
def add_sequence(self, sequence: List[int]):
"""Adds a constraint, represented as a list of integers, to
the trie."""
assert len(sequence) > 0
token = int(sequence[0])
if token not in self.children:
self.children[token] = ConstraintNode(token, parent=self)
node = self.children[token]
if len(sequence) == 1:
node.terminal += 1
node.num_constraints += 1
parent = node.parent
while parent is not None:
parent.num_constraints += 1
parent = parent.parent
else:
node.add_sequence(sequence[1:])
class UnorderedConstraintState(ConstraintState):
"""
Records progress through the set of constraints for each item in the beam
using a trie.
"""
def __init__(self, node: ConstraintNode, copy_from: "ConstraintState" = None):
self.node = node
if copy_from is None:
# The root node
self.root = node
# The set of states in the graph that have been completed
self.completed = Counter()
# The...
self.generated = Counter()
# The list of tokens we need to generate
self.needed_tokens = self.root.tokens()
else:
self.completed = Counter(copy_from.completed)
self.generated = Counter(copy_from.generated)
self.root = copy_from.root
# Mark the node as generated
if self.node != self.root:
self.generated[node] += 1
@staticmethod
def create(constraint_tensor: torch.Tensor):
constraint_list = unpack_constraints(constraint_tensor)
constraint_trie_root = ConstraintNode.create(constraint_list)
return UnorderedConstraintState(constraint_trie_root)
def __str__(self):
gen_str = ",".join([str(node) for node in self.generated])
return f"{self.name}/{self.bank}({gen_str})x{self.num_completed}"
def __copy__(self):
copied_state = UnorderedConstraintState(self.node, copy_from=self)
return copied_state
def copy(self):
return self.__copy__()
@property
def name(self):
if self.node.id is None:
return "ROOT"
else:
return str(self.node.id)
@property
def is_root(self):
return self.node == self.root
@property
def bank(self):
return sum(self.generated.values())
@property
def num_completed(self):
"""The number of constraints (not constraint tokens) that are completed.
In addition to the already-completed states, we need to account for the
current state, which might get marked as completed when another token
is generated.
"""
in_final = self.node.terminal and self.completed[self.node] < self.node.terminal
return sum(self.completed.values()) + in_final
@property
def finished(self):
return self.root.num_constraints - self.num_completed == 0
@property
def token_counts(self):
return self.root.token_counts()
@property
def tokens(self):
return self.root.tokens()
@property
def num_constraint_tokens(self):
return sum(self.token_counts.values())
def next_tokens(self) -> Set[int]:
"""Returns the list of tokens that could come next.
These are (a) all tokens extending the root state and, for
non-root states, additionally all tokens extending the current
state."""
if self.node != self.root:
return self.root.next_tokens().union(self.node.next_tokens())
else:
return self.root.next_tokens()
def advance(self, token: int):
"""Reads in a token and advances the state. Here's how it works.
We can advance to the next state if:
- there is a matching child
- its path isn't blocked
A path is blocked when all constraints that are descendants of
that node have already been generated, in the current state.
If we are not able to advance from the current state, we "fall
off the graph" and return to the root state. There, we again
try to advance, checking the same criteria.
In any case, when falling off the graph, we need to do some
bookkeeping. We:
- check whether any constraints were met (all prefixes of
current state)
- if one is found, mark it as completed
- adjust visited nodes accordingly
"""
token = int(token)
next_state = None
child = self.node[token]
if child is not None and self.generated[child] < child.num_constraints:
next_state = UnorderedConstraintState(child, copy_from=self)
def rewind():
"""If we're mid-trie and an "illegal" token is chosen next, we need
to reset our state to the root state. However, along the way, we need
to check whether a prefix of the current trie state represents a state
we could mark as completed.
"""
node = self.node
while node != self.root:
if node.terminal and self.completed[node] < node.terminal:
next_state.completed[node] += 1
return
next_state.generated[node] -= 1
node = node.parent
# Fall off the graph, check the root
if next_state is None and token in self.root.next_tokens():
child = self.root[token]
# We can only traverse this edge if it's not saturated
if self.generated[child] < child.num_constraints:
next_state = UnorderedConstraintState(child, copy_from=self)
else:
next_state = UnorderedConstraintState(self.root, copy_from=self)
# Rewind
rewind()
elif next_state is None:
next_state = UnorderedConstraintState(self.root, copy_from=self)
# Rewind
rewind()
return next_state
class ConstraintSequence:
def __init__(self, sequences: List[List[int]]):
"""Represents a set of possibly multitoken constraints by
concatenating them and internally recording the end points.
"""
self.sequences = []
self.endpoints = []
self.num_tokens = 0
self.tokens = set()
for sequence in sequences:
for token in sequence:
self.tokens.add(token)
self.num_tokens += len(sequence)
self.endpoints += [False for x in range(len(sequence) - 1)] + [True]
self.sequences += sequence
def __getitem__(self, key: int):
return self.sequences[key]
def __len__(self):
return len(self.sequences)
def __str__(self):
return str(self.sequences)
class OrderedConstraintState(ConstraintState):
"""
Records progress through the set of linear nonbranching constraints with gaps.
"""
def __init__(self, sequence: ConstraintSequence, state: int = -1):
self.sequence = sequence
self.state = state
@staticmethod
def create(constraint_tensor: torch.Tensor):
constraint_list = unpack_constraints(constraint_tensor)
return OrderedConstraintState(ConstraintSequence(constraint_list), -1)
def __str__(self):
return f"{self.state}/{self.bank}x{self.num_completed}"
def __copy__(self):
return OrderedConstraintState(self.sequence, self.state)
def copy(self):
return self.__copy__()
@property
def num_completed(self):
if self.state == -1:
return 0
count = len(
list(filter(lambda x: x, self.sequence.endpoints[0 : self.state + 1]))
)
return count
@property
def is_root(self):
return self.state == -1
@property
def name(self):
if self.state == -1:
return "ROOT"
else:
return str(self.sequence[self.state])
@property
def bank(self) -> int:
return self.state + 1
@property
def finished(self):
return self.state + 1 == len(self.sequence)
@property
def token_counts(self):
return self.sequence.token_counts()
@property
def tokens(self):
return self.sequence.tokens
@property
def num_constraint_tokens(self):
return sum(self.token_counts.values())
def next_tokens(self) -> Set[int]:
"""Returns the list of tokens that could come next.
These are (a) all tokens extending the root state and, for
non-root states, additionally all tokens extending the current
state."""
tokens = set()
if self.state > 0:
tokens.add(self.sequence[0])
if not self.finished:
tokens.add(self.sequence[self.state + 1])
return tokens
def advance(self, token: int):
"""Reads in a token and advances the state. Here's how it works.
We can advance to the next state if:
- there is a matching child
- its path isn't blocked
A path is blocked when all constraints that are descendants of
that node have already been generated, in the current state.
If we are not able to advance from the current state, we "fall
off the graph" and return to the root state. There, we again
try to advance, checking the same criteria.
In any case, when falling off the graph, we need to do some
bookkeeping. We:
- check whether any constraints were met (all prefixes of
current state)
- if one is found, mark it as completed
- adjust visited nodes accordingly
"""
token = int(token)
# print(f"{self} ADVANCE({token}) {self.sequence} -> ", end="")
if self.finished:
# Accept anything
next_state = self.copy()
elif self.sequence[self.state + 1] == token:
# Advance to the next token
next_state = OrderedConstraintState(self.sequence, self.state + 1)
elif self.sequence.endpoints[self.state]:
# Accept anything between constraints (*)
next_state = self.copy()
elif token == self.sequence[0]:
# Start over having generated the first token
next_state = OrderedConstraintState(self.sequence, 0)
else:
# Start over from the root
next_state = OrderedConstraintState(self.sequence, -1)
return next_state
| KosmosX-API-main | kosmosX/fairseq/fairseq/token_generation_constraints.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
from dataclasses import dataclass, field
from typing import Optional
import torch
from omegaconf import II
from .dummy_dataset import DummyDataset
from fairseq.data import Dictionary
from fairseq.dataclass import FairseqDataclass
from fairseq.tasks import FairseqTask, register_task
logger = logging.getLogger(__name__)
@dataclass
class DummyMaskedLMConfig(FairseqDataclass):
dict_size: int = 49996
dataset_size: int = 100000
tokens_per_sample: int = field(
default=512,
metadata={
"help": "max number of total tokens over all"
" segments per sample for BERT dataset"
},
)
batch_size: Optional[int] = II("dataset.batch_size")
max_tokens: Optional[int] = II("dataset.max_tokens")
max_target_positions: int = II("task.tokens_per_sample")
@register_task("dummy_masked_lm", dataclass=DummyMaskedLMConfig)
class DummyMaskedLMTask(FairseqTask):
def __init__(self, cfg: DummyMaskedLMConfig):
super().__init__(cfg)
self.dictionary = Dictionary()
for i in range(cfg.dict_size):
self.dictionary.add_symbol("word{}".format(i))
logger.info("dictionary: {} types".format(len(self.dictionary)))
# add mask token
self.mask_idx = self.dictionary.add_symbol("<mask>")
self.dictionary.pad_to_multiple_(8) # often faster if divisible by 8
mask_idx = 0
pad_idx = 1
seq = torch.arange(cfg.tokens_per_sample) + pad_idx + 1
mask = torch.arange(2, cfg.tokens_per_sample, 7) # ~15%
src = seq.clone()
src[mask] = mask_idx
tgt = torch.full_like(seq, pad_idx)
tgt[mask] = seq[mask]
self.dummy_src = src
self.dummy_tgt = tgt
def load_dataset(self, split, epoch=1, combine=False, **kwargs):
"""Load a given dataset split.
Args:
split (str): name of the split (e.g., train, valid, test)
"""
if self.cfg.batch_size is not None:
bsz = self.cfg.batch_size
else:
bsz = max(1, self.cfg.max_tokens // self.cfg.tokens_per_sample)
self.datasets[split] = DummyDataset(
{
"id": 1,
"net_input": {
"src_tokens": torch.stack([self.dummy_src for _ in range(bsz)]),
"src_lengths": torch.full(
(bsz,), self.cfg.tokens_per_sample, dtype=torch.long
),
},
"target": torch.stack([self.dummy_tgt for _ in range(bsz)]),
"nsentences": bsz,
"ntokens": bsz * self.cfg.tokens_per_sample,
},
num_items=self.cfg.dataset_size,
item_size=self.cfg.tokens_per_sample,
)
@property
def source_dictionary(self):
return self.dictionary
@property
def target_dictionary(self):
return self.dictionary
| KosmosX-API-main | kosmosX/fairseq/fairseq/benchmark/dummy_masked_lm.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
from dataclasses import dataclass, field
from typing import Optional
import torch
from .dummy_dataset import DummyDataset
from fairseq.data import Dictionary
from fairseq.dataclass import FairseqDataclass
from fairseq.tasks import FairseqTask, register_task
from omegaconf import II
logger = logging.getLogger(__name__)
@dataclass
class DummyLMConfig(FairseqDataclass):
dict_size: int = 49996
dataset_size: int = 100000
tokens_per_sample: int = field(
default=512, metadata={"help": "max sequence length"}
)
add_bos_token: bool = False
batch_size: Optional[int] = II("dataset.batch_size")
max_tokens: Optional[int] = II("dataset.max_tokens")
max_target_positions: int = II("task.tokens_per_sample")
@register_task("dummy_lm", dataclass=DummyLMConfig)
class DummyLMTask(FairseqTask):
def __init__(self, cfg: DummyLMConfig):
super().__init__(cfg)
# load dictionary
self.dictionary = Dictionary()
for i in range(cfg.dict_size):
self.dictionary.add_symbol("word{}".format(i))
self.dictionary.pad_to_multiple_(8) # often faster if divisible by 8
logger.info("dictionary: {} types".format(len(self.dictionary)))
seq = torch.arange(cfg.tokens_per_sample + 1) + self.dictionary.pad() + 1
self.dummy_src = seq[:-1]
self.dummy_tgt = seq[1:]
def load_dataset(self, split, epoch=1, combine=False, **kwargs):
"""Load a given dataset split.
Args:
split (str): name of the split (e.g., train, valid, test)
"""
if self.cfg.batch_size is not None:
bsz = self.cfg.batch_size
else:
bsz = max(1, self.cfg.max_tokens // self.cfg.tokens_per_sample)
self.datasets[split] = DummyDataset(
{
"id": 1,
"net_input": {
"src_tokens": torch.stack([self.dummy_src for _ in range(bsz)]),
"src_lengths": torch.full(
(bsz,), self.cfg.tokens_per_sample, dtype=torch.long
),
},
"target": torch.stack([self.dummy_tgt for _ in range(bsz)]),
"nsentences": bsz,
"ntokens": bsz * self.cfg.tokens_per_sample,
},
num_items=self.cfg.dataset_size,
item_size=self.cfg.tokens_per_sample,
)
@property
def source_dictionary(self):
return self.dictionary
@property
def target_dictionary(self):
return self.dictionary
| KosmosX-API-main | kosmosX/fairseq/fairseq/benchmark/dummy_lm.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import numpy as np
import torch
from fairseq.data import Dictionary, FairseqDataset
from fairseq.tasks import LegacyFairseqTask, register_task
logger = logging.getLogger(__name__)
@register_task("dummy_mt")
class DummyMTTask(LegacyFairseqTask):
@staticmethod
def add_args(parser):
"""Add task-specific arguments to the parser."""
parser.add_argument("--dict-size", default=49996, type=int)
parser.add_argument("--dataset-size", default=100000, type=int)
parser.add_argument("--src-len", default=30, type=int)
parser.add_argument("--tgt-len", default=30, type=int)
def __init__(self, args, dictionary):
super().__init__(args)
self.dictionary = dictionary
self.seed = args.seed
dictionary.pad_to_multiple_(8) # often faster if divisible by 8
self.dummy_src = torch.arange(args.src_len + 1) + dictionary.pad() + 1
self.dummy_tgt = torch.arange(args.tgt_len + 1) + dictionary.pad() + 1
@classmethod
def setup_task(cls, args, **kwargs):
"""Setup the task."""
dictionary = Dictionary()
for i in range(args.dict_size):
dictionary.add_symbol("word{}".format(i))
logger.info("dictionary: {} types".format(len(dictionary)))
args.max_source_positions = args.src_len + dictionary.pad() + 2
args.max_target_positions = args.tgt_len + dictionary.pad() + 2
return cls(args, dictionary)
def load_dataset(self, split, epoch=1, combine=False, **kwargs):
"""Load a given dataset split.
Args:
split (str): name of the split (e.g., train, valid, test)
"""
item_size = max(self.args.src_len, self.args.tgt_len)
if self.args.batch_size is not None:
bsz = self.args.batch_size
else:
bsz = max(1, self.args.max_tokens // item_size)
tgt = torch.stack([self.dummy_tgt for _ in range(bsz)])
self.datasets[split] = DummyDataset(
{
"id": 1,
"net_input": {
"src_tokens": torch.stack([self.dummy_src for _ in range(bsz)]),
"src_lengths": torch.full(
(bsz,), self.args.src_len, dtype=torch.long
),
"prev_output_tokens": tgt.clone(),
},
"target": tgt,
"nsentences": bsz,
"ntokens": bsz * self.args.tgt_len,
},
num_items=self.args.dataset_size,
item_size=item_size,
)
@property
def source_dictionary(self):
return self.dictionary
@property
def target_dictionary(self):
return self.dictionary
class DummyDataset(FairseqDataset):
def __init__(self, batch, num_items, item_size):
super().__init__()
self.batch = batch
self.num_items = num_items
self.item_size = item_size
def __getitem__(self, index):
return index
def __len__(self):
return self.num_items
def collater(self, samples):
return self.batch
@property
def sizes(self):
return np.array([self.item_size] * self.num_items)
def num_tokens(self, index):
return self.item_size
def size(self, index):
return self.item_size
def ordered_indices(self):
return np.arange(self.num_items)
@property
def supports_prefetch(self):
return False
| KosmosX-API-main | kosmosX/fairseq/fairseq/benchmark/dummy_mt.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
# import models/tasks to register them
from . import dummy_dataset, dummy_lm, dummy_masked_lm, dummy_model, dummy_mt # noqa
| KosmosX-API-main | kosmosX/fairseq/fairseq/benchmark/__init__.py |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.