python_code
stringlengths 0
992k
| repo_name
stringlengths 8
46
| file_path
stringlengths 5
162
|
---|---|---|
Pegasus-master | pegasus/ImageBind/models/__init__.py |
|
#!/usr/bin/env python3
# Portions Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import os
from functools import partial
from types import SimpleNamespace
import torch
import torch.nn as nn
from .helpers import (
EinOpsRearrange,
LearnableLogitScaling,
Normalize,
SelectElement,
SelectEOSAndProject,
)
from .multimodal_preprocessors import (
AudioPreprocessor,
IMUPreprocessor,
PadIm2Video,
PatchEmbedGeneric,
RGBDTPreprocessor,
SpatioTemporalPosEmbeddingHelper,
TextPreprocessor,
ThermalPreprocessor,
)
from .transformer import MultiheadAttention, SimpleTransformer
ModalityType = SimpleNamespace(
VISION="vision",
TEXT="text",
AUDIO="audio",
THERMAL="thermal",
DEPTH="depth",
IMU="imu",
)
class ImageBindModel(nn.Module):
def __init__(
self,
video_frames=2,
kernel_size=(2, 14, 14),
audio_kernel_size=16,
audio_stride=10,
out_embed_dim=768,
vision_embed_dim=1024,
vision_num_blocks=24,
vision_num_heads=16,
audio_embed_dim=768,
audio_num_blocks=12,
audio_num_heads=12,
audio_num_mel_bins=128,
audio_target_len=204,
audio_drop_path=0.1,
text_embed_dim=768,
text_num_blocks=12,
text_num_heads=12,
depth_embed_dim=384,
depth_kernel_size=16,
depth_num_blocks=12,
depth_num_heads=8,
depth_drop_path=0.0,
thermal_embed_dim=768,
thermal_kernel_size=16,
thermal_num_blocks=12,
thermal_num_heads=12,
thermal_drop_path=0.0,
imu_embed_dim=512,
imu_kernel_size=8,
imu_num_blocks=6,
imu_num_heads=8,
imu_drop_path=0.7,
):
super().__init__()
self.modality_preprocessors = self._create_modality_preprocessors(
video_frames,
vision_embed_dim,
kernel_size,
text_embed_dim,
audio_embed_dim,
audio_kernel_size,
audio_stride,
audio_num_mel_bins,
audio_target_len,
depth_embed_dim,
depth_kernel_size,
thermal_embed_dim,
thermal_kernel_size,
imu_embed_dim,
)
self.modality_trunks = self._create_modality_trunks(
vision_embed_dim,
vision_num_blocks,
vision_num_heads,
text_embed_dim,
text_num_blocks,
text_num_heads,
audio_embed_dim,
audio_num_blocks,
audio_num_heads,
audio_drop_path,
depth_embed_dim,
depth_num_blocks,
depth_num_heads,
depth_drop_path,
thermal_embed_dim,
thermal_num_blocks,
thermal_num_heads,
thermal_drop_path,
imu_embed_dim,
imu_num_blocks,
imu_num_heads,
imu_drop_path,
)
self.modality_heads = self._create_modality_heads(
out_embed_dim,
vision_embed_dim,
text_embed_dim,
audio_embed_dim,
depth_embed_dim,
thermal_embed_dim,
imu_embed_dim,
)
self.modality_postprocessors = self._create_modality_postprocessors(
out_embed_dim
)
def _create_modality_preprocessors(
self,
video_frames=2,
vision_embed_dim=1024,
kernel_size=(2, 14, 14),
text_embed_dim=768,
audio_embed_dim=768,
audio_kernel_size=16,
audio_stride=10,
audio_num_mel_bins=128,
audio_target_len=204,
depth_embed_dim=768,
depth_kernel_size=16,
thermal_embed_dim=768,
thermal_kernel_size=16,
imu_embed_dim=512,
):
rgbt_stem = PatchEmbedGeneric(
proj_stem=[
PadIm2Video(pad_type="repeat", ntimes=2),
nn.Conv3d(
in_channels=3,
kernel_size=kernel_size,
out_channels=vision_embed_dim,
stride=kernel_size,
bias=False,
),
]
)
rgbt_preprocessor = RGBDTPreprocessor(
img_size=[3, video_frames, 224, 224],
num_cls_tokens=1,
pos_embed_fn=partial(SpatioTemporalPosEmbeddingHelper, learnable=True),
rgbt_stem=rgbt_stem,
depth_stem=None,
)
text_preprocessor = TextPreprocessor(
context_length=77,
vocab_size=49408,
embed_dim=text_embed_dim,
causal_masking=True,
)
audio_stem = PatchEmbedGeneric(
proj_stem=[
nn.Conv2d(
in_channels=1,
kernel_size=audio_kernel_size,
stride=audio_stride,
out_channels=audio_embed_dim,
bias=False,
),
],
norm_layer=nn.LayerNorm(normalized_shape=audio_embed_dim),
)
audio_preprocessor = AudioPreprocessor(
img_size=[1, audio_num_mel_bins, audio_target_len],
num_cls_tokens=1,
pos_embed_fn=partial(SpatioTemporalPosEmbeddingHelper, learnable=True),
audio_stem=audio_stem,
)
depth_stem = PatchEmbedGeneric(
[
nn.Conv2d(
kernel_size=depth_kernel_size,
in_channels=1,
out_channels=depth_embed_dim,
stride=depth_kernel_size,
bias=False,
),
],
norm_layer=nn.LayerNorm(normalized_shape=depth_embed_dim),
)
depth_preprocessor = RGBDTPreprocessor(
img_size=[1, 224, 224],
num_cls_tokens=1,
pos_embed_fn=partial(SpatioTemporalPosEmbeddingHelper, learnable=True),
rgbt_stem=None,
depth_stem=depth_stem,
)
thermal_stem = PatchEmbedGeneric(
[
nn.Conv2d(
kernel_size=thermal_kernel_size,
in_channels=1,
out_channels=thermal_embed_dim,
stride=thermal_kernel_size,
bias=False,
),
],
norm_layer=nn.LayerNorm(normalized_shape=thermal_embed_dim),
)
thermal_preprocessor = ThermalPreprocessor(
img_size=[1, 224, 224],
num_cls_tokens=1,
pos_embed_fn=partial(SpatioTemporalPosEmbeddingHelper, learnable=True),
thermal_stem=thermal_stem,
)
imu_stem = PatchEmbedGeneric(
[
nn.Linear(
in_features=48,
out_features=imu_embed_dim,
bias=False,
),
],
norm_layer=nn.LayerNorm(normalized_shape=imu_embed_dim),
)
imu_preprocessor = IMUPreprocessor(
img_size=[6, 2000],
num_cls_tokens=1,
kernel_size=8,
embed_dim=imu_embed_dim,
pos_embed_fn=partial(SpatioTemporalPosEmbeddingHelper, learnable=True),
imu_stem=imu_stem,
)
modality_preprocessors = {
ModalityType.VISION: rgbt_preprocessor,
ModalityType.TEXT: text_preprocessor,
ModalityType.AUDIO: audio_preprocessor,
ModalityType.DEPTH: depth_preprocessor,
ModalityType.THERMAL: thermal_preprocessor,
ModalityType.IMU: imu_preprocessor,
}
return nn.ModuleDict(modality_preprocessors)
def _create_modality_trunks(
self,
vision_embed_dim=1024,
vision_num_blocks=24,
vision_num_heads=16,
text_embed_dim=768,
text_num_blocks=12,
text_num_heads=12,
audio_embed_dim=768,
audio_num_blocks=12,
audio_num_heads=12,
audio_drop_path=0.0,
depth_embed_dim=768,
depth_num_blocks=12,
depth_num_heads=12,
depth_drop_path=0.0,
thermal_embed_dim=768,
thermal_num_blocks=12,
thermal_num_heads=12,
thermal_drop_path=0.0,
imu_embed_dim=512,
imu_num_blocks=6,
imu_num_heads=8,
imu_drop_path=0.7,
):
def instantiate_trunk(
embed_dim, num_blocks, num_heads, pre_transformer_ln, add_bias_kv, drop_path
):
return SimpleTransformer(
embed_dim=embed_dim,
num_blocks=num_blocks,
ffn_dropout_rate=0.0,
drop_path_rate=drop_path,
attn_target=partial(
MultiheadAttention,
embed_dim=embed_dim,
num_heads=num_heads,
bias=True,
add_bias_kv=add_bias_kv,
),
pre_transformer_layer=nn.Sequential(
nn.LayerNorm(embed_dim, eps=1e-6)
if pre_transformer_ln
else nn.Identity(),
EinOpsRearrange("b l d -> l b d"),
),
post_transformer_layer=EinOpsRearrange("l b d -> b l d"),
)
modality_trunks = {}
modality_trunks[ModalityType.VISION] = instantiate_trunk(
vision_embed_dim,
vision_num_blocks,
vision_num_heads,
pre_transformer_ln=True,
add_bias_kv=False,
drop_path=0.0,
)
modality_trunks[ModalityType.TEXT] = instantiate_trunk(
text_embed_dim,
text_num_blocks,
text_num_heads,
pre_transformer_ln=False,
add_bias_kv=False,
drop_path=0.0,
)
modality_trunks[ModalityType.AUDIO] = instantiate_trunk(
audio_embed_dim,
audio_num_blocks,
audio_num_heads,
pre_transformer_ln=False,
add_bias_kv=True,
drop_path=audio_drop_path,
)
modality_trunks[ModalityType.DEPTH] = instantiate_trunk(
depth_embed_dim,
depth_num_blocks,
depth_num_heads,
pre_transformer_ln=False,
add_bias_kv=True,
drop_path=depth_drop_path,
)
modality_trunks[ModalityType.THERMAL] = instantiate_trunk(
thermal_embed_dim,
thermal_num_blocks,
thermal_num_heads,
pre_transformer_ln=False,
add_bias_kv=True,
drop_path=thermal_drop_path,
)
modality_trunks[ModalityType.IMU] = instantiate_trunk(
imu_embed_dim,
imu_num_blocks,
imu_num_heads,
pre_transformer_ln=False,
add_bias_kv=True,
drop_path=imu_drop_path,
)
return nn.ModuleDict(modality_trunks)
def _create_modality_heads(
self,
out_embed_dim,
vision_embed_dim,
text_embed_dim,
audio_embed_dim,
depth_embed_dim,
thermal_embed_dim,
imu_embed_dim,
):
modality_heads = {}
modality_heads[ModalityType.VISION] = nn.Sequential(
nn.LayerNorm(normalized_shape=vision_embed_dim, eps=1e-6),
SelectElement(index=0),
nn.Linear(vision_embed_dim, out_embed_dim, bias=False),
)
modality_heads[ModalityType.TEXT] = SelectEOSAndProject(
proj=nn.Sequential(
nn.LayerNorm(normalized_shape=text_embed_dim, eps=1e-6),
nn.Linear(text_embed_dim, out_embed_dim, bias=False),
)
)
modality_heads[ModalityType.AUDIO] = nn.Sequential(
nn.LayerNorm(normalized_shape=audio_embed_dim, eps=1e-6),
SelectElement(index=0),
nn.Linear(audio_embed_dim, out_embed_dim, bias=False),
)
modality_heads[ModalityType.DEPTH] = nn.Sequential(
nn.LayerNorm(normalized_shape=depth_embed_dim, eps=1e-6),
SelectElement(index=0),
nn.Linear(depth_embed_dim, out_embed_dim, bias=False),
)
modality_heads[ModalityType.THERMAL] = nn.Sequential(
nn.LayerNorm(normalized_shape=thermal_embed_dim, eps=1e-6),
SelectElement(index=0),
nn.Linear(thermal_embed_dim, out_embed_dim, bias=False),
)
modality_heads[ModalityType.IMU] = nn.Sequential(
nn.LayerNorm(normalized_shape=imu_embed_dim, eps=1e-6),
SelectElement(index=0),
nn.Dropout(p=0.5),
nn.Linear(imu_embed_dim, out_embed_dim, bias=False),
)
return nn.ModuleDict(modality_heads)
def _create_modality_postprocessors(self, out_embed_dim):
modality_postprocessors = {}
modality_postprocessors[ModalityType.VISION] = Normalize(dim=-1)
modality_postprocessors[ModalityType.TEXT] = nn.Sequential(
Normalize(dim=-1), LearnableLogitScaling(learnable=True)
)
modality_postprocessors[ModalityType.AUDIO] = nn.Sequential(
Normalize(dim=-1),
LearnableLogitScaling(logit_scale_init=20.0, learnable=False),
)
modality_postprocessors[ModalityType.DEPTH] = nn.Sequential(
Normalize(dim=-1),
LearnableLogitScaling(logit_scale_init=5.0, learnable=False),
)
modality_postprocessors[ModalityType.THERMAL] = nn.Sequential(
Normalize(dim=-1),
LearnableLogitScaling(logit_scale_init=10.0, learnable=False),
)
modality_postprocessors[ModalityType.IMU] = nn.Sequential(
Normalize(dim=-1),
LearnableLogitScaling(logit_scale_init=5.0, learnable=False),
)
return nn.ModuleDict(modality_postprocessors)
def forward(self, inputs):
outputs = {}
for modality_key, modality_value in inputs.items():
reduce_list = (
modality_value.ndim >= 5
) # Audio and Video inputs consist of multiple clips
if reduce_list:
B, S = modality_value.shape[:2]
modality_value = modality_value.reshape(
B * S, *modality_value.shape[2:]
)
if modality_value is not None:
modality_value = self.modality_preprocessors[modality_key](
**{modality_key: modality_value}
)
trunk_inputs = modality_value["trunk"]
head_inputs = modality_value["head"]
modality_value = self.modality_trunks[modality_key](**trunk_inputs)
modality_value = self.modality_heads[modality_key](
modality_value, **head_inputs
)
modality_value = self.modality_postprocessors[modality_key](
modality_value
)
if reduce_list:
modality_value = modality_value.reshape(B, S, -1)
modality_value = modality_value.mean(dim=1)
outputs[modality_key] = modality_value
return outputs
def imagebind_huge(pretrained=False):
model = ImageBindModel(
vision_embed_dim=1280,
vision_num_blocks=32,
vision_num_heads=16,
text_embed_dim=1024,
text_num_blocks=24,
text_num_heads=16,
out_embed_dim=1024,
audio_drop_path=0.1,
imu_drop_path=0.7,
)
if pretrained:
if not os.path.exists(".checkpoints/imagebind_huge.pth"):
print(
"Downloading imagebind weights to .checkpoints/imagebind_huge.pth ..."
)
os.makedirs(".checkpoints", exist_ok=True)
torch.hub.download_url_to_file(
"https://dl.fbaipublicfiles.com/imagebind/imagebind_huge.pth",
".checkpoints/imagebind_huge.pth",
progress=True,
)
model.load_state_dict(torch.load(".checkpoints/imagebind_huge.pth"))
return model
| Pegasus-master | pegasus/ImageBind/models/imagebind_model.py |
#!/usr/bin/env python3
# Portions Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# Code modified from
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py ;
# https://github.com/facebookresearch/deit/blob/main/models.py
# and https://github.com/facebookresearch/vissl/blob/main/vissl/models/trunks/vision_transformer.py
from functools import partial
from typing import Callable, List
import torch
import torch.nn as nn
import torch.utils.checkpoint as checkpoint
from timm.models.layers import DropPath, trunc_normal_
class Attention(nn.Module):
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version,
# can set manually to be compat with prev weights
self.scale = qk_scale or head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
qkv = (
self.qkv(x)
.reshape(B, N, 3, self.num_heads, C // self.num_heads)
.permute(2, 0, 3, 1, 4)
)
q, k, v = (
qkv[0],
qkv[1],
qkv[2],
) # make torchscript happy (cannot use tensor as tuple)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Mlp(nn.Module):
def __init__(
self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.0,
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class MultiheadAttention(nn.MultiheadAttention):
def forward(self, x: torch.Tensor, attn_mask: torch.Tensor):
return super().forward(x, x, x, need_weights=False, attn_mask=attn_mask)[0]
class ViTAttention(Attention):
def forward(self, x: torch.Tensor, attn_mask: torch.Tensor):
assert attn_mask is None
return super().forward(x)
class BlockWithMasking(nn.Module):
def __init__(
self,
dim: int,
attn_target: Callable,
mlp_ratio: int = 4,
act_layer: Callable = nn.GELU,
norm_layer: Callable = nn.LayerNorm,
ffn_dropout_rate: float = 0.0,
drop_path: float = 0.0,
layer_scale_type: str = None,
layer_scale_init_value: float = 1e-4,
):
super().__init__()
assert not isinstance(
attn_target, nn.Module
), "attn_target should be a Callable. Otherwise attn_target is shared across blocks!"
self.attn = attn_target()
if drop_path > 0.0:
self.drop_path = DropPath(drop_path)
else:
self.drop_path = nn.Identity()
self.norm_1 = norm_layer(dim)
mlp_hidden_dim = int(mlp_ratio * dim)
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=ffn_dropout_rate,
)
self.norm_2 = norm_layer(dim)
self.layer_scale_type = layer_scale_type
if self.layer_scale_type is not None:
assert self.layer_scale_type in [
"per_channel",
"scalar",
], f"Found Layer scale type {self.layer_scale_type}"
if self.layer_scale_type == "per_channel":
# one gamma value per channel
gamma_shape = [1, 1, dim]
elif self.layer_scale_type == "scalar":
# single gamma value for all channels
gamma_shape = [1, 1, 1]
# two gammas: for each part of the fwd in the encoder
self.layer_scale_gamma1 = nn.Parameter(
torch.ones(size=gamma_shape) * layer_scale_init_value,
requires_grad=True,
)
self.layer_scale_gamma2 = nn.Parameter(
torch.ones(size=gamma_shape) * layer_scale_init_value,
requires_grad=True,
)
def forward(self, x: torch.Tensor, attn_mask: torch.Tensor):
if self.layer_scale_type is None:
x = x + self.drop_path(self.attn(self.norm_1(x), attn_mask))
x = x + self.drop_path(self.mlp(self.norm_2(x)))
else:
x = (
x
+ self.drop_path(self.attn(self.norm_1(x), attn_mask))
* self.layer_scale_gamma1
)
x = x + self.drop_path(self.mlp(self.norm_2(x))) * self.layer_scale_gamma2
return x
_LAYER_NORM = partial(nn.LayerNorm, eps=1e-6)
class SimpleTransformer(nn.Module):
def __init__(
self,
attn_target: Callable,
embed_dim: int,
num_blocks: int,
block: Callable = BlockWithMasking,
pre_transformer_layer: Callable = None,
post_transformer_layer: Callable = None,
drop_path_rate: float = 0.0,
drop_path_type: str = "progressive",
norm_layer: Callable = _LAYER_NORM,
mlp_ratio: int = 4,
ffn_dropout_rate: float = 0.0,
layer_scale_type: str = None, # from cait; possible values are None, "per_channel", "scalar"
layer_scale_init_value: float = 1e-4, # from cait; float
weight_init_style: str = "jax", # possible values jax or pytorch
):
"""
Simple Transformer with the following features
1. Supports masked attention
2. Supports DropPath
3. Supports LayerScale
4. Supports Dropout in Attention and FFN
5. Makes few assumptions about the input except that it is a Tensor
"""
super().__init__()
self.pre_transformer_layer = pre_transformer_layer
if drop_path_type == "progressive":
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, num_blocks)]
elif drop_path_type == "uniform":
dpr = [drop_path_rate for i in range(num_blocks)]
else:
raise ValueError(f"Unknown drop_path_type: {drop_path_type}")
self.blocks = nn.Sequential(
*[
block(
dim=embed_dim,
attn_target=attn_target,
mlp_ratio=mlp_ratio,
ffn_dropout_rate=ffn_dropout_rate,
drop_path=dpr[i],
norm_layer=norm_layer,
layer_scale_type=layer_scale_type,
layer_scale_init_value=layer_scale_init_value,
)
for i in range(num_blocks)
]
)
self.post_transformer_layer = post_transformer_layer
self.weight_init_style = weight_init_style
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
if self.weight_init_style == "jax":
# Based on MAE and official Jax ViT implementation
torch.nn.init.xavier_uniform_(m.weight)
elif self.weight_init_style == "pytorch":
# PyTorch ViT uses trunc_normal_
trunc_normal_(m.weight, std=0.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, (nn.LayerNorm)):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def forward(
self,
tokens: torch.Tensor,
attn_mask: torch.Tensor = None,
use_checkpoint: bool = False,
checkpoint_every_n: int = 1,
checkpoint_blk_ids: List[int] = None,
):
"""
Inputs
- tokens: data of shape N x L x D (or L x N x D depending on the attention implementation)
- attn: mask of shape L x L
Output
- x: data of shape N x L x D (or L x N x D depending on the attention implementation)
"""
if self.pre_transformer_layer:
tokens = self.pre_transformer_layer(tokens)
if use_checkpoint and checkpoint_blk_ids is None:
checkpoint_blk_ids = [
blk_id
for blk_id in range(len(self.blocks))
if blk_id % checkpoint_every_n == 0
]
if checkpoint_blk_ids:
checkpoint_blk_ids = set(checkpoint_blk_ids)
for blk_id, blk in enumerate(self.blocks):
if use_checkpoint and blk_id in checkpoint_blk_ids:
tokens = checkpoint.checkpoint(
blk, tokens, attn_mask, use_reentrant=False
)
else:
tokens = blk(tokens, attn_mask=attn_mask)
if self.post_transformer_layer:
tokens = self.post_transformer_layer(tokens)
return tokens
| Pegasus-master | pegasus/ImageBind/models/transformer.py |
#!/usr/bin/env python3
# Portions Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import gzip
import html
import io
import math
from functools import lru_cache
from typing import Callable, List, Optional
import ftfy
import numpy as np
import regex as re
import torch
import torch.nn as nn
from iopath.common.file_io import g_pathmgr
from timm.models.layers import trunc_normal_
from .helpers import cast_if_src_dtype, VerboseNNModule
def get_sinusoid_encoding_table(n_position, d_hid):
"""Sinusoid position encoding table"""
# TODO: make it with torch instead of numpy
def get_position_angle_vec(position):
return [
position / np.power(10000, 2 * (hid_j // 2) / d_hid)
for hid_j in range(d_hid)
]
sinusoid_table = np.array(
[get_position_angle_vec(pos_i) for pos_i in range(n_position)]
)
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
return torch.FloatTensor(sinusoid_table).unsqueeze(0)
def interpolate_pos_encoding_2d(target_spatial_size, pos_embed):
N = pos_embed.shape[1]
if N == target_spatial_size:
return pos_embed
dim = pos_embed.shape[-1]
# nn.functional.interpolate doesn't work with bfloat16 so we cast to float32
pos_embed, updated = cast_if_src_dtype(pos_embed, torch.bfloat16, torch.float32)
pos_embed = nn.functional.interpolate(
pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(
0, 3, 1, 2
),
scale_factor=math.sqrt(target_spatial_size / N),
mode="bicubic",
)
if updated:
pos_embed, _ = cast_if_src_dtype(pos_embed, torch.float32, torch.bfloat16)
pos_embed = pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return pos_embed
def interpolate_pos_encoding(
npatch_per_img,
pos_embed,
patches_layout,
input_shape=None,
first_patch_idx=1,
):
assert first_patch_idx == 0 or first_patch_idx == 1, "there is 1 CLS token or none"
N = pos_embed.shape[1] - first_patch_idx # since it's 1 if cls_token exists
if npatch_per_img == N:
return pos_embed
assert (
patches_layout[-1] == patches_layout[-2]
), "Interpolation of pos embed not supported for non-square layouts"
class_emb = pos_embed[:, :first_patch_idx]
pos_embed = pos_embed[:, first_patch_idx:]
if input_shape is None or patches_layout[0] == 1:
# simple 2D pos embedding, no temporal component
pos_embed = interpolate_pos_encoding_2d(npatch_per_img, pos_embed)
elif patches_layout[0] > 1:
# pos embed has a temporal component
assert len(input_shape) == 4, "temporal interpolation not supported"
# we only support 2D interpolation in this case
num_frames = patches_layout[0]
num_spatial_tokens = patches_layout[1] * patches_layout[2]
pos_embed = pos_embed.view(1, num_frames, num_spatial_tokens, -1)
# interpolate embedding for zeroth frame
pos_embed = interpolate_pos_encoding_2d(
npatch_per_img, pos_embed[0, 0, ...].unsqueeze(0)
)
else:
raise ValueError("This type of interpolation isn't implemented")
return torch.cat((class_emb, pos_embed), dim=1)
def _get_pos_embedding(
npatch_per_img,
pos_embed,
patches_layout,
input_shape,
first_patch_idx=1,
):
pos_embed = interpolate_pos_encoding(
npatch_per_img,
pos_embed,
patches_layout,
input_shape=input_shape,
first_patch_idx=first_patch_idx,
)
return pos_embed
class PatchEmbedGeneric(nn.Module):
"""
PatchEmbed from Hydra
"""
def __init__(self, proj_stem, norm_layer: Optional[nn.Module] = None):
super().__init__()
if len(proj_stem) > 1:
self.proj = nn.Sequential(*proj_stem)
else:
# Special case to be able to load pre-trained models that were
# trained with a standard stem
self.proj = proj_stem[0]
self.norm_layer = norm_layer
def get_patch_layout(self, img_size):
with torch.no_grad():
dummy_img = torch.zeros(
[
1,
]
+ img_size
)
dummy_out = self.proj(dummy_img)
embed_dim = dummy_out.shape[1]
patches_layout = tuple(dummy_out.shape[2:])
num_patches = np.prod(patches_layout)
return patches_layout, num_patches, embed_dim
def forward(self, x):
x = self.proj(x)
# B C (T) H W -> B (T)HW C
x = x.flatten(2).transpose(1, 2)
if self.norm_layer is not None:
x = self.norm_layer(x)
return x
class SpatioTemporalPosEmbeddingHelper(VerboseNNModule):
def __init__(
self,
patches_layout: List,
num_patches: int,
num_cls_tokens: int,
embed_dim: int,
learnable: bool,
) -> None:
super().__init__()
self.num_cls_tokens = num_cls_tokens
self.patches_layout = patches_layout
self.num_patches = num_patches
self.num_tokens = num_cls_tokens + num_patches
self.learnable = learnable
if self.learnable:
self.pos_embed = nn.Parameter(torch.zeros(1, self.num_tokens, embed_dim))
trunc_normal_(self.pos_embed, std=0.02)
else:
self.register_buffer(
"pos_embed", get_sinusoid_encoding_table(self.num_tokens, embed_dim)
)
def get_pos_embedding(self, vision_input, all_vision_tokens):
input_shape = vision_input.shape
pos_embed = _get_pos_embedding(
all_vision_tokens.size(1) - self.num_cls_tokens,
pos_embed=self.pos_embed,
patches_layout=self.patches_layout,
input_shape=input_shape,
first_patch_idx=self.num_cls_tokens,
)
return pos_embed
class RGBDTPreprocessor(VerboseNNModule):
def __init__(
self,
rgbt_stem: PatchEmbedGeneric,
depth_stem: PatchEmbedGeneric,
img_size: List = (3, 224, 224),
num_cls_tokens: int = 1,
pos_embed_fn: Callable = None,
use_type_embed: bool = False,
init_param_style: str = "openclip",
) -> None:
super().__init__()
stem = rgbt_stem if rgbt_stem is not None else depth_stem
(
self.patches_layout,
self.num_patches,
self.embed_dim,
) = stem.get_patch_layout(img_size)
self.rgbt_stem = rgbt_stem
self.depth_stem = depth_stem
self.use_pos_embed = pos_embed_fn is not None
self.use_type_embed = use_type_embed
self.num_cls_tokens = num_cls_tokens
if self.use_pos_embed:
self.pos_embedding_helper = pos_embed_fn(
patches_layout=self.patches_layout,
num_cls_tokens=num_cls_tokens,
num_patches=self.num_patches,
embed_dim=self.embed_dim,
)
if self.num_cls_tokens > 0:
self.cls_token = nn.Parameter(
torch.zeros(1, self.num_cls_tokens, self.embed_dim)
)
if self.use_type_embed:
self.type_embed = nn.Parameter(torch.zeros(1, 1, self.embed_dim))
self.init_parameters(init_param_style)
@torch.no_grad()
def init_parameters(self, init_param_style):
if init_param_style == "openclip":
# OpenCLIP style initialization
scale = self.embed_dim**-0.5
if self.use_pos_embed:
nn.init.normal_(self.pos_embedding_helper.pos_embed)
self.pos_embedding_helper.pos_embed *= scale
if self.num_cls_tokens > 0:
nn.init.normal_(self.cls_token)
self.cls_token *= scale
elif init_param_style == "vit":
self.cls_token.data.fill_(0)
else:
raise ValueError(f"Unknown init {init_param_style}")
if self.use_type_embed:
nn.init.normal_(self.type_embed)
def tokenize_input_and_cls_pos(self, input, stem, mask):
# tokens is of shape B x L x D
tokens = stem(input)
assert tokens.ndim == 3
assert tokens.shape[2] == self.embed_dim
B = tokens.shape[0]
if self.num_cls_tokens > 0:
class_tokens = self.cls_token.expand(
B, -1, -1
) # stole class_tokens impl from Phil Wang, thanks
tokens = torch.cat((class_tokens, tokens), dim=1)
if self.use_pos_embed:
pos_embed = self.pos_embedding_helper.get_pos_embedding(input, tokens)
tokens = tokens + pos_embed
if self.use_type_embed:
tokens = tokens + self.type_embed.expand(B, -1, -1)
return tokens
def forward(self, vision=None, depth=None, patch_mask=None):
if patch_mask is not None:
raise NotImplementedError()
if vision is not None:
vision_tokens = self.tokenize_input_and_cls_pos(
vision, self.rgbt_stem, patch_mask
)
if depth is not None:
depth_tokens = self.tokenize_input_and_cls_pos(
depth, self.depth_stem, patch_mask
)
# aggregate tokens
if vision is not None and depth is not None:
final_tokens = vision_tokens + depth_tokens
else:
final_tokens = vision_tokens if vision is not None else depth_tokens
return_dict = {
"trunk": {
"tokens": final_tokens,
},
"head": {},
}
return return_dict
class AudioPreprocessor(RGBDTPreprocessor):
def __init__(self, audio_stem: PatchEmbedGeneric, **kwargs) -> None:
super().__init__(rgbt_stem=audio_stem, depth_stem=None, **kwargs)
def forward(self, audio=None):
return super().forward(vision=audio)
class ThermalPreprocessor(RGBDTPreprocessor):
def __init__(self, thermal_stem: PatchEmbedGeneric, **kwargs) -> None:
super().__init__(rgbt_stem=thermal_stem, depth_stem=None, **kwargs)
def forward(self, thermal=None):
return super().forward(vision=thermal)
def build_causal_attention_mask(context_length):
# lazily create causal attention mask, with full attention between the vision tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(context_length, context_length, requires_grad=False)
mask.fill_(float("-inf"))
mask.triu_(1) # zero out the lower diagonal
return mask
class TextPreprocessor(VerboseNNModule):
def __init__(
self,
vocab_size: int,
context_length: int,
embed_dim: int,
causal_masking: bool,
supply_seq_len_to_head: bool = True,
num_cls_tokens: int = 0,
init_param_style: str = "openclip",
) -> None:
super().__init__()
self.vocab_size = vocab_size
self.context_length = context_length
self.token_embedding = nn.Embedding(vocab_size, embed_dim)
self.pos_embed = nn.Parameter(
torch.empty(1, self.context_length + num_cls_tokens, embed_dim)
)
self.causal_masking = causal_masking
if self.causal_masking:
mask = build_causal_attention_mask(self.context_length)
# register the mask as a buffer so it can be moved to the right device
self.register_buffer("mask", mask)
self.supply_seq_len_to_head = supply_seq_len_to_head
self.num_cls_tokens = num_cls_tokens
self.embed_dim = embed_dim
if num_cls_tokens > 0:
assert self.causal_masking is False, "Masking + CLS token isn't implemented"
self.cls_token = nn.Parameter(
torch.zeros(1, self.num_cls_tokens, embed_dim)
)
self.init_parameters(init_param_style)
@torch.no_grad()
def init_parameters(self, init_param_style="openclip"):
# OpenCLIP style initialization
nn.init.normal_(self.token_embedding.weight, std=0.02)
nn.init.normal_(self.pos_embed, std=0.01)
if init_param_style == "openclip":
# OpenCLIP style initialization
scale = self.embed_dim**-0.5
if self.num_cls_tokens > 0:
nn.init.normal_(self.cls_token)
self.cls_token *= scale
elif init_param_style == "vit":
self.cls_token.data.fill_(0)
else:
raise ValueError(f"Unknown init {init_param_style}")
def forward(self, text):
# text tokens are of shape B x L x D
text_tokens = self.token_embedding(text)
# concat CLS tokens if any
if self.num_cls_tokens > 0:
B = text_tokens.shape[0]
class_tokens = self.cls_token.expand(
B, -1, -1
) # stole class_tokens impl from Phil Wang, thanks
text_tokens = torch.cat((class_tokens, text_tokens), dim=1)
text_tokens = text_tokens + self.pos_embed
return_dict = {
"trunk": {
"tokens": text_tokens,
},
"head": {},
}
# Compute sequence length after adding CLS tokens
if self.supply_seq_len_to_head:
text_lengths = text.argmax(dim=-1)
return_dict["head"] = {
"seq_len": text_lengths,
}
if self.causal_masking:
return_dict["trunk"].update({"attn_mask": self.mask})
return return_dict
class Im2Video(nn.Module):
"""Convert an image into a trivial video."""
def __init__(self, time_dim=2):
super().__init__()
self.time_dim = time_dim
def forward(self, x):
if x.ndim == 4:
# B, C, H, W -> B, C, T, H, W
return x.unsqueeze(self.time_dim)
elif x.ndim == 5:
return x
else:
raise ValueError(f"Dimension incorrect {x.shape}")
class PadIm2Video(Im2Video):
def __init__(self, ntimes, pad_type, time_dim=2):
super().__init__(time_dim=time_dim)
assert ntimes > 0
assert pad_type in ["zero", "repeat"]
self.ntimes = ntimes
self.pad_type = pad_type
def forward(self, x):
x = super().forward(x)
if x.shape[self.time_dim] == 1:
if self.pad_type == "repeat":
new_shape = [1] * len(x.shape)
new_shape[self.time_dim] = self.ntimes
x = x.repeat(new_shape)
elif self.pad_type == "zero":
padarg = [0, 0] * len(x.shape)
padarg[2 * self.time_dim + 1] = self.ntimes - x.shape[self.time_dim]
x = nn.functional.pad(x, padarg)
return x
# Modified from github.com/openai/CLIP
@lru_cache()
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a signficant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = (
list(range(ord("!"), ord("~") + 1))
+ list(range(ord("¡"), ord("¬") + 1))
+ list(range(ord("®"), ord("ÿ") + 1))
)
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8 + n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
def get_pairs(word):
"""Return set of symbol pairs in a word.
Word is represented as tuple of symbols (symbols being variable-length strings).
"""
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
return pairs
def basic_clean(text):
text = ftfy.fix_text(text)
text = html.unescape(html.unescape(text))
return text.strip()
def whitespace_clean(text):
text = re.sub(r"\s+", " ", text)
text = text.strip()
return text
class SimpleTokenizer(object):
def __init__(self, bpe_path: str, context_length=77):
self.byte_encoder = bytes_to_unicode()
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
with g_pathmgr.open(bpe_path, "rb") as fh:
bpe_bytes = io.BytesIO(fh.read())
merges = gzip.open(bpe_bytes).read().decode("utf-8").split("\n")
merges = merges[1 : 49152 - 256 - 2 + 1]
merges = [tuple(merge.split()) for merge in merges]
vocab = list(bytes_to_unicode().values())
vocab = vocab + [v + "</w>" for v in vocab]
for merge in merges:
vocab.append("".join(merge))
vocab.extend(["<|startoftext|>", "<|endoftext|>"])
self.encoder = dict(zip(vocab, range(len(vocab))))
self.decoder = {v: k for k, v in self.encoder.items()}
self.bpe_ranks = dict(zip(merges, range(len(merges))))
self.cache = {
"<|startoftext|>": "<|startoftext|>",
"<|endoftext|>": "<|endoftext|>",
}
self.pat = re.compile(
r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""",
re.IGNORECASE,
)
self.context_length = context_length
def bpe(self, token):
if token in self.cache:
return self.cache[token]
word = tuple(token[:-1]) + (token[-1] + "</w>",)
pairs = get_pairs(word)
if not pairs:
return token + "</w>"
while True:
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
new_word.extend(word[i:j])
i = j
except:
new_word.extend(word[i:])
break
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = " ".join(word)
self.cache[token] = word
return word
def encode(self, text):
bpe_tokens = []
text = whitespace_clean(basic_clean(text)).lower()
for token in re.findall(self.pat, text):
token = "".join(self.byte_encoder[b] for b in token.encode("utf-8"))
bpe_tokens.extend(
self.encoder[bpe_token] for bpe_token in self.bpe(token).split(" ")
)
return bpe_tokens
def decode(self, tokens):
text = "".join([self.decoder[token] for token in tokens])
text = (
bytearray([self.byte_decoder[c] for c in text])
.decode("utf-8", errors="replace")
.replace("</w>", " ")
)
return text
def __call__(self, texts, context_length=None):
if not context_length:
context_length = self.context_length
if isinstance(texts, str):
texts = [texts]
sot_token = self.encoder["<|startoftext|>"]
eot_token = self.encoder["<|endoftext|>"]
all_tokens = [[sot_token] + self.encode(text) + [eot_token] for text in texts]
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
for i, tokens in enumerate(all_tokens):
tokens = tokens[:context_length]
result[i, : len(tokens)] = torch.tensor(tokens)
if len(result) == 1:
return result[0]
return result
class IMUPreprocessor(VerboseNNModule):
def __init__(
self,
kernel_size: int,
imu_stem: PatchEmbedGeneric,
embed_dim: int,
img_size: List = (6, 2000),
num_cls_tokens: int = 1,
pos_embed_fn: Callable = None,
init_param_style: str = "openclip",
) -> None:
super().__init__()
self.imu_stem = imu_stem
self.embed_dim = embed_dim
self.use_pos_embed = pos_embed_fn is not None
self.num_cls_tokens = num_cls_tokens
self.kernel_size = kernel_size
self.pos_embed = nn.Parameter(
torch.empty(1, (img_size[1] // kernel_size) + num_cls_tokens, embed_dim)
)
if self.num_cls_tokens > 0:
self.cls_token = nn.Parameter(
torch.zeros(1, self.num_cls_tokens, self.embed_dim)
)
self.init_parameters(init_param_style)
@torch.no_grad()
def init_parameters(self, init_param_style):
nn.init.normal_(self.pos_embed, std=0.01)
if init_param_style == "openclip":
# OpenCLIP style initialization
scale = self.embed_dim**-0.5
if self.num_cls_tokens > 0:
nn.init.normal_(self.cls_token)
self.cls_token *= scale
elif init_param_style == "vit":
self.cls_token.data.fill_(0)
else:
raise ValueError(f"Unknown init {init_param_style}")
def tokenize_input_and_cls_pos(self, input, stem):
# tokens is of shape B x L x D
tokens = stem.norm_layer(stem.proj(input))
assert tokens.ndim == 3
assert tokens.shape[2] == self.embed_dim
B = tokens.shape[0]
if self.num_cls_tokens > 0:
class_tokens = self.cls_token.expand(
B, -1, -1
) # stole class_tokens impl from Phil Wang, thanks
tokens = torch.cat((class_tokens, tokens), dim=1)
if self.use_pos_embed:
tokens = tokens + self.pos_embed
return tokens
def forward(self, imu):
# Patchify
imu = imu.unfold(
-1,
self.kernel_size,
self.kernel_size,
).permute(0, 2, 1, 3)
imu = imu.reshape(imu.size(0), imu.size(1), -1)
imu_tokens = self.tokenize_input_and_cls_pos(
imu,
self.imu_stem,
)
return_dict = {
"trunk": {
"tokens": imu_tokens,
},
"head": {},
}
return return_dict
| Pegasus-master | pegasus/ImageBind/models/multimodal_preprocessors.py |
#!/usr/bin/env python3
# Portions Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import einops
import numpy as np
import torch
import torch.nn as nn
class Normalize(nn.Module):
def __init__(self, dim: int) -> None:
super().__init__()
self.dim = dim
def forward(self, x):
return torch.nn.functional.normalize(x, dim=self.dim, p=2)
class LearnableLogitScaling(nn.Module):
def __init__(
self,
logit_scale_init: float = 1 / 0.07,
learnable: bool = True,
max_logit_scale: float = 100,
) -> None:
super().__init__()
self.max_logit_scale = max_logit_scale
self.logit_scale_init = logit_scale_init
self.learnable = learnable
log_logit_scale = torch.ones([]) * np.log(self.logit_scale_init)
if learnable:
self.log_logit_scale = nn.Parameter(log_logit_scale)
else:
self.register_buffer("log_logit_scale", log_logit_scale)
def forward(self, x):
return torch.clip(self.log_logit_scale.exp(), max=self.max_logit_scale) * x
def extra_repr(self):
st = f"logit_scale_init={self.logit_scale_init},learnable={self.learnable}, max_logit_scale={self.max_logit_scale}"
return st
class EinOpsRearrange(nn.Module):
def __init__(self, rearrange_expr: str, **kwargs) -> None:
super().__init__()
self.rearrange_expr = rearrange_expr
self.kwargs = kwargs
def forward(self, x):
assert isinstance(x, torch.Tensor)
return einops.rearrange(x, self.rearrange_expr, **self.kwargs)
class VerboseNNModule(nn.Module):
"""
Wrapper around nn.Module that prints registered buffers and parameter names.
"""
@staticmethod
def get_readable_tensor_repr(name: str, tensor: torch.Tensor) -> str:
st = (
"("
+ name
+ "): "
+ "tensor("
+ str(tuple(tensor[1].shape))
+ ", requires_grad="
+ str(tensor[1].requires_grad)
+ ")\n"
)
return st
def extra_repr(self) -> str:
named_modules = set()
for p in self.named_modules():
named_modules.update([p[0]])
named_modules = list(named_modules)
string_repr = ""
for p in self.named_parameters():
name = p[0].split(".")[0]
if name not in named_modules:
string_repr += self.get_readable_tensor_repr(name, p)
for p in self.named_buffers():
name = p[0].split(".")[0]
string_repr += self.get_readable_tensor_repr(name, p)
return string_repr
def cast_if_src_dtype(
tensor: torch.Tensor, src_dtype: torch.dtype, tgt_dtype: torch.dtype
):
updated = False
if tensor.dtype == src_dtype:
tensor = tensor.to(dtype=tgt_dtype)
updated = True
return tensor, updated
class QuickGELU(nn.Module):
# From https://github.com/openai/CLIP/blob/d50d76daa670286dd6cacf3bcd80b5e4823fc8e1/clip/model.py#L166
def forward(self, x: torch.Tensor):
return x * torch.sigmoid(1.702 * x)
class SelectElement(nn.Module):
def __init__(self, index) -> None:
super().__init__()
self.index = index
def forward(self, x):
assert x.ndim >= 3
return x[:, self.index, ...]
class SelectEOSAndProject(nn.Module):
"""
Text Pooling used in OpenCLIP
"""
def __init__(self, proj: nn.Module) -> None:
super().__init__()
self.proj = proj
def forward(self, x, seq_len):
assert x.ndim == 3
# x is of shape B x L x D
# take features from the eot embedding (eot_token is the highest number in each sequence)
x = x[torch.arange(x.shape[0]), seq_len]
x = self.proj(x)
return x
| Pegasus-master | pegasus/ImageBind/models/helpers.py |
from setuptools import setup, find_packages
setup(
name = 'the-compiler',
packages = find_packages(exclude=[]),
version = '0.0.6',
license='MIT',
description = 'The Compiler ',
author = 'Kye Gomez',
author_email = '[email protected]',
long_description_content_type = 'text/markdown',
url = 'https://github.com/kyegomez/the-compiler',
keywords = [
'artificial intelligence',
'deep learning',
'optimizers',
"Prompt Engineering"
],
install_requires=[
"swarms"
],
classifiers=[
'Development Status :: 4 - Beta',
'Intended Audience :: Developers',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 3.6',
],
) | the-compiler-main | setup.py |
from the_compiler import TheCompiler
api_key = "" # Your OpenAI API key
create = "a simple calculator program"
compiler = TheCompiler(api_key)
code = compiler.run(create)
print("Generated Code:\n", code)
| the-compiler-main | example.py |
the-compiler-main | the_compiler/__init__.py |
|
from swarms import Swarms
class Architect:
def __init__(self, create, api_key):
self.create = create
self.boss_node = boss_node(openai_api_key=api_key)
def generate_architecture(self):
objective = f"""
Create an architectural analysis specification in markdown in the most optimal programming language for {self.create}, provide the fastest, reliable architecture, and then break down that architecture into classes and algorithms needed to create {self.create}
"""
task = self.boss_node.create_task(objective=objective)
return self.boss_node.execute(task)
class CodeGenerator:
def __init__(self, boss1, create, api_key, unit_tests):
self.boss1 = boss1
self.create = create
self.unit_tests = unit_tests
self.boss_node = boss_node(openai_api_key=api_key)
def generate_code(self):
objective = f"""
Generate a Python program that meets the following product specification: {self.boss1} to create: {self.create}. Use the following unit tests as an evaluation score: {self.unit_tests}.
"""
task = self.boss_node.create_task(objective=objective)
return self.boss_node.execute(task)
class TestCreator:
def __init__(self, boss1, api_key):
self.boss1 = boss1
self.boss_node = boss_node(openai_api_key=api_key)
def generate_tests(self):
objective = f"""
Generate a suite of unit tests for a Python program that meets the following product specification: {self.boss1}
"""
task = self.boss_node.create_task(objective=objective)
return self.boss_node.execute(task)
class TheCompiler:
def __init__(self, api_key):
if not api_key:
raise ValueError("API key is required")
self.swarms = Swarms(api_key=api_key)
def run(self, create):
if not create:
raise ValueError("You need to specify what to create")
try:
architecture = self.swarms.run_swarms(
objective=f"Create an architectural analysis specification in markdown in the most optimal programming language for {create}, provide the fastest, reliable architecture, and then break down that architecture into classes and algorithms needed to create {create}"
)
unit_tests = self.swarms.run_swarms(
objective=f"Generate a suite of unit tests for a Python program that meets the following product specification: {architecture}"
)
generate_code = self.swarms.run_swarms(
objective=f"Generate a Python program that meets the following product specification: {architecture} to create: {create}. Use the following unit tests as an evaluation score: {unit_tests}."
)
except Exception as e:
raise RuntimeError("An error occurred while generating the code") from e
return generate_code
# api_key = "" # Your OpenAI API key
# create = "a simple calculator program"
# compiler = TheCompiler(api_key)
# code = compiler.run(create)
# print("Generated Code:\n", code)
# class TheCompiler(Swarms):
# def __init__(self, api_key):
# super().__init__(api_key=api_key)
# def _generate_architecture(self, create):
# objective = f"""
# Create an architectural analysis specification in markdown in the most optimal programming language for {create}, provide the fastest, reliable architecture, and then break down that architecture into classes and algorithms needed to create {create}
# """
# return self.run_swarms(objective=objective)
# def _generate_tests(self, boss1):
# objective = f"""
# Generate a suite of unit tests for a Python program that meets the following product specification: {boss1}
# """
# return self.run_swarms(objective=objective)
# def _generate_code(self, boss1, create, unit_tests):
# objective = f"""
# Generate a Python program that meets the following product specification: {boss1} to create: {create}. Use the following unit tests as an evaluation score: {unit_tests}.
# """
# return self.run_swarms(objective=objective)
# def run(self, create):
# architecture = self._generate_architecture(create)
# unit_tests = self._generate_tests(architecture)
# code = self._generate_code(architecture, create, unit_tests)
# return code, unit_tests
# class TheCompiler:
# def __init__(self, create, api_key):
# self.create = create
# self.api_key = api_key
# def generate_code(self):
# architect = Architect(self.create, self.api_key)
# architecture = architect.generate_architecture()
# test_creator = TestCreator(architecture, self.api_key)
# unit_tests = test_creator.generate_tests()
# code_generator = CodeGenerator(architecture, self.create, self.api_key, unit_tests)
# code = code_generator.generate_code()
# return code, unit_tests
# # Sample usage
# openai_api_key = os.environ['OPENAI_API_KEY'] = 'api key here' # Replace with your OpenAI API key
# compiler = TheCompiler(create="an e-commerce website", api_key=openai_api_key)
# code, unit_tests = compiler.generate_code()
# create = "What do you want to create?"
# architect_prompt = f"""
# Create an architectural analysis specification in markdown in the most optimal programming language for {create}, provide the fastest, reliable architecture, and then break down that architecture into classes and algorithms needed to create {create}
# """
# objective = f"{architect_prompt}"
# #create a task
# task1 = boss_node.create_task(objective=objective)
# boss1 = boss_node.execute(task1)
# ##### 2nd agent - code generator
# generator_prompt = f"""
# Generate a Python program that meets the following product specification: {boss1} to create: {create}. Use the following unit tests as an evaluation score: {unit_tests}.
# """
# task2 = boss_node.create(objective=f"{generator_prompt}")
# boss2 = boss_node.execute(task2)
# ############### 3rd agent -- Unit test creator
# generator_prompt = f"""
# Generate a suite of unit tests for a Python program that meets the following product specification: {boss1}
# """
# task3 = boss_node.create(objective=f"{generator_prompt}")
# boss3 = boss_node.execute(task2) | the-compiler-main | the_compiler/main.py |
import gzip
import random
import numpy as np
import torch
import torch.optim as optim
import tqdm
from torch.utils.data import DataLoader, Dataset
from Andromeda.model import Andromeda
from Andromeda.core.transformer import Decoder, Transformer
from Andromeda.core.autoregressive_wrapper import AutoregressiveWrapper
# constants
NUM_BATCHES = int(1e5)
BATCH_SIZE = 4
GRADIENT_ACCUMULATE_EVERY = 1
LEARNING_RATE = 1e-4
VALIDATE_EVERY = 100
GENERATE_EVERY = 500
GENERATE_LENGTH = 1024
SEQ_LEN = 1024
# helpers
def cycle(loader):
while True:
for data in loader:
yield data
def decode_token(token):
return str(chr(max(32, token)))
def decode_tokens(tokens):
return ''.join(list(map(decode_token, tokens)))
# instantiate GPT-like decoder model
model = Andromeda()
model.cuda()
# prepare enwik8 data
with gzip.open('./data/enwik8.gz') as file:
data = np.frombuffer(file.read(int(95e6)), dtype=np.uint8).copy()
train_x, valid_x = np.split(data, [int(90e6)])
data_train, data_val = torch.from_numpy(train_x), torch.from_numpy(valid_x)
class TextSamplerDataset(Dataset):
def __init__(self, data, seq_len):
super().__init__()
self.data = data
self.seq_len = seq_len
def __getitem__(self, index):
rand_start = torch.randint(0, self.data.size(0) - self.seq_len - 1, (1,))
full_seq = self.data[rand_start: rand_start + self.seq_len + 1].long()
return full_seq.cuda()
def __len__(self):
return self.data.size(0) // self.seq_len
train_dataset = TextSamplerDataset(data_train, SEQ_LEN)
val_dataset = TextSamplerDataset(data_val, SEQ_LEN)
train_loader = cycle(DataLoader(train_dataset, batch_size = BATCH_SIZE, drop_last = True))
val_loader = cycle(DataLoader(val_dataset, batch_size = BATCH_SIZE, drop_last = True))
# optimizer
optim = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
# training
for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10., desc='training'):
model.train()
for __ in range(GRADIENT_ACCUMULATE_EVERY):
loss = model(next(train_loader))
(loss / GRADIENT_ACCUMULATE_EVERY).backward()
print(f'training loss: {loss.item()}')
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
optim.step()
optim.zero_grad()
if i % VALIDATE_EVERY == 0:
model.eval()
with torch.no_grad():
loss = model(next(val_loader))
print(f'validation loss: {loss.item()}')
#save the model weights
torch.save(model.state_dict(), f"./model_{i}.pth")
if i % GENERATE_EVERY == 0:
model.eval()
inp = random.choice(val_dataset)[:-1]
prime = decode_tokens(inp)
print('%s \n\n %s', (prime, '*' * 100))
sample = model.generate(inp, GENERATE_LENGTH)
output_str = decode_tokens(sample)
print(output_str) | Andromeda-master | train_simple.py |
import torch
from Andromeda.model import Andromeda
model = Andromeda().cuda()
x = torch.randint(0, 256, (1, 1024)).cuda()
model(x) # (1, 1024, 20000) | Andromeda-master | example.py |
import math
import multiprocessing
import os
from datetime import timedelta
from functools import partial
from itertools import chain
import torch
# import bitsandbytes as bnb
from torch.distributed.fsdp import (
FullyShardedDataParallel,
MixedPrecision,
BackwardPrefetch,
ShardingStrategy,
)
from accelerate import Accelerator
from accelerate.utils import (DummyOptim, InitProcessGroupKwargs)
from accelerate.logging import get_logger
from datasets import load_dataset
from lion_pytorch import Lion
from torch.nn import LayerNorm
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointImpl, apply_activation_checkpointing, checkpoint_wrapper)
from torch.distributed.fsdp.wrap import (
transformer_auto_wrap_policy
)
from torch.optim import AdamW
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import (AutoTokenizer, default_data_collator,
get_cosine_schedule_with_warmup,
get_linear_schedule_with_warmup, set_seed)
from Andromeda.utils.stable_adamw import StableAdamWUnfused
from Andromeda.core.transformer import Transformer
# from Andromeda.model import Andromeda
from Andromeda.configs import Andromeda1Billion
########### SETUP CONFIG
import torch.distributed as dist
from accelerate.state import AcceleratorState
# state = AcceleratorState()
logger = get_logger(__name__, log_level="INFO")
class CFG:
BATCH_SIZE = 1
GRADIENT_ACCUMULATE_EVERY: int = 1
SEED: int = 42
LEARNING_RATE: float = 1e-4 #3e-4 # 1e-4 for lion
WEIGHT_DECAY: float = 0.1
SEQ_LEN: int = 8192
NUM_CPU: int = multiprocessing.cpu_count()
USE_DEEPSPEED: bool = True
USE_FSDP: bool = True
USE_PRETOKENIZED: bool = True
USE_ACTIVATION_CHECKPOINTING: bool = True
RESUME_FROM_CHECKPOINT: str = False
CHECKPOINTING_STEPS: int = 1000
OUTPUT_DIR: str = 'checkpoints/' # Folder
ENTITY_NAME: str = "Andromeda"
LOGGING_STEPS: int = 100
# helpers
def print_num_params(model, accelerator: Accelerator):
# n_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
n_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
accelerator.print(f"Number of parameters in model: {n_params}")
# activation checkpointing
def activation_checkpointing(
model: torch.nn.Module,
offload_to_cpu: bool = False,
accelerator: Accelerator = None,
):
"""
Apply activation checkpointing to a model.
Args:
model (Module): The model to which to apply activation checkpointing.
offload_to_cpu (bool, optional): Whether to offload the activations to CPU. Defaults to False.
accelerator (Accelerator, optional): The Accelerate library accelerator. Defaults to None.
"""
if accelerator is not None:
accelerator.print("Using activation checkpointing")
def check_fn(submodule):
return isinstance(submodule, Transformer)
non_reentrant_wrapper = partial(
checkpoint_wrapper,
offload_to_cpu=offload_to_cpu,
checkpoint_impl=CheckpointImpl.NO_REENTRANT,
)
apply_activation_checkpointing(
model, checkpoint_wrapper_fn=non_reentrant_wrapper, check_fn=check_fn
)
# FSDP
def fsdp(
model: torch.nn.Module,
auto_wrap: bool = False,
mp: str = "fp32",
shard_strat: str = "NO_SHARD",
):
"""
This function wraps a given PyTorch model with the FullyShardedDataParallel (FSDP) wrapper to enable efficient data parallelism and model sharding.
Args:
model (torch.nn.Module): The original PyTorch model to be wrapped with FSDP.
auto_wrap (bool, optional): If True, it enables automatic wrapping of the model's layers according to the transformer_auto_wrap_policy. Default is False.
mp (str, optional): The mixed precision mode to be used. Can be 'bf16' for BFloat16, 'fp16' for Float16 or 'fp32' for Float32 precision. Default is 'fp32'.
shard_strat (str, optional): The sharding strategy to be used. Can be 'SHARD_GRAD' for sharding at gradient computation, 'FULL_SHARD' for full model sharding or 'NO_SHARD' for no sharding. Default is 'NO_SHARD'.
Raises:
ValueError: If the provided mp (mixed precision mode) is not 'bf16', 'fp16' or 'fp32'.
ValueError: If the provided shard_strat (sharding strategy) is not 'SHARD_GRAD', 'FULL_SHARD' or 'NO_SHARD'.
Returns:
torch.nn.Module: The input model wrapped with FSDP.
"""
if auto_wrap:
Andromeda_auto_wrap_policy = partial(
transformer_auto_wrap_policy,
transformer_layer_cls={
Transformer,
},
)
else:
Andromeda_auto_wrap_policy = None
if mp == "bf16":
mp_fsdp = MixedPrecision(
param_dtype=torch.bfloat16,
# Gradient communication precision.
reduce_dtype=torch.bfloat16,
# Buffer precision.
buffer_dtype=torch.bfloat16,
)
elif mp == "fp16":
mp_fsdp = MixedPrecision(
param_dtype=torch.float16,
# Gradient communication precision.
reduce_dtype=torch.float16,
# Buffer precision.
buffer_dtype=torch.float16,
)
elif mp == "fp32":
mp_fsdp = MixedPrecision(
param_dtype=torch.float32,
# Gradient communication precision.
reduce_dtype=torch.float32,
# Buffer precision.
buffer_dtype=torch.float32,
)
else:
raise ValueError(
"Invalid scheduler_type. Expected 'bf16', 'fp16' or 'fp32', got: {}".format(
mp
)
)
if shard_strat == "SHARD_GRAD":
sharding_strat_fsdp = ShardingStrategy.SHARD_GRAD_OP
elif shard_strat == "FULL_SHARD":
sharding_strat_fsdp = ShardingStrategy.FULL_SHARD
elif shard_strat == "NO_SHARD":
sharding_strat_fsdp = ShardingStrategy.NO_SHARD
else:
raise ValueError(
"Invalid scheduler_type. Expected 'SHARD_GRAD', 'FULL_SHARD' or 'NO_SHARD', got: {}".format(
shard_strat
)
)
model = FullyShardedDataParallel(
model,
auto_wrap_policy=Andromeda_auto_wrap_policy,
mixed_precision=mp_fsdp,
backward_prefetch=BackwardPrefetch.BACKWARD_PRE,
sharding_strategy=sharding_strat_fsdp,
forward_prefetch=True,
use_orig_params=True,
)
return model
# learning rate scheduler
def get_lr_scheduler_with_warmup(
optimizer: torch.optim.Optimizer,
scheduler_type: str,
num_warmup_steps: int,
max_train_steps: int,
grad_accumulate_every: int = 1,
accelerator: Accelerator = None,
):
"""
Get a learning rate scheduler with warmup.
Args:
optimizer (Optimizer): The optimizer for which to create the learning rate scheduler.
scheduler_type (str): The type of learning rate scheduler to create, either "linear" or "cosine".
num_warmup_steps (int): The number of warmup steps for the learning rate scheduler.
max_train_steps (int): The maximum number of training steps.
grad_accumulate_every (int, optional): The gradient accumulation factor. Defaults to 1.
accelerator (Accelerator, optional): The Accelerate library accelerator. Defaults to None.
Returns:
The learning rate scheduler with warmup.
Raises:
ValueError: If scheduler_type is not "linear" or "cosine".
"""
NUM_WARMUP_STEPS = num_warmup_steps
GRADIENT_ACCUMULATE_EVERY = grad_accumulate_every
if accelerator is not None:
accelerator.print(f"Using {scheduler_type} lr scheduler")
if scheduler_type == "linear":
return get_linear_schedule_with_warmup(
optimizer=optimizer,
num_warmup_steps=NUM_WARMUP_STEPS * GRADIENT_ACCUMULATE_EVERY,
num_training_steps=max_train_steps * GRADIENT_ACCUMULATE_EVERY,
)
elif scheduler_type == "cosine":
return get_cosine_schedule_with_warmup(
optimizer=optimizer,
num_warmup_steps=NUM_WARMUP_STEPS * GRADIENT_ACCUMULATE_EVERY,
num_training_steps=max_train_steps * GRADIENT_ACCUMULATE_EVERY,
)
else:
raise ValueError(
"Invalid scheduler_type. Expected 'linear' or 'cosine', got: {}".format(
scheduler_type
)
)
# optimizers
def decoupled_optimizer(
model: torch.nn.Module,
learning_rate: float,
weight_decay: float,
beta_1: float,
beta_2: float,
optimizer_type: str,
use_fsdp: bool = True,
accelerator: Accelerator = None,
):
"""
Decouples the optimizer from the training process.
This function sets up the optimizer for the model by creating two groups of parameters:
one for weight decay and one without weight decay. Then, it initializes the optimizer
with these two groups of parameters.
Args:
model (Module): The model whose parameters are optimized.
learning_rate (float): The learning rate for the optimizer.
weight_decay (float): The weight decay for the optimizer.
beta_1 (float): The exponential decay rate for the 1st moment estimates.
beta_2 (float): The exponential decay rate for the 2nd moment estimates.
optimizer_type (str): The type of the optimizer. Can be 'lion', 'adamw', or 'stable_adamw'.
use_fsdp (bool, optional): If True, the optimizer will work with fully sharded data parallelism. Defaults to True.
accelerator (Accelerator, optional): The accelerator from HuggingFace's Accelerate library. Defaults to None.
Returns:
Optimizer: The initialized optimizer.
Raises:
ValueError: If the optimizer type is not 'lion', 'adamw' or 'stable_adamw'.
"""
accelerator.print(f"Using {optimizer_type} optimizer")
# Create an empty dictionary called param_dict to store the model's named parameters.
param_dict = {}
# Iterate over the model's named parameters and populate the param_dict with key-value pairs.
for param_name, param in model.named_parameters():
param_dict[param_name] = param
# Separate the model's named modules into two groups: decay and no_decay.
# Create an empty list to store the names of the LayerNorm and Embedding layer weights with no weight decay.
no_decay = []
if use_fsdp:
exclude_module = "_fsdp_wrapped_module.token_emb"
else:
exclude_module = "token_emb"
# Iterate through the named modules of the model.
for module_name, module in model.named_modules():
# Check if the current module is an instance of any of the desired types (LayerNorm or torch.nn.Embedding).
for ndim in [LayerNorm, torch.nn.Embedding]:
if isinstance(module, ndim):
# If torch.nn.Embedding, append its name with a ".weight" suffix to the no_decay list.
if module_name == exclude_module:
no_decay.append(f"{module_name}.weight")
else:
# If the module is an instance of LayerNorm
no_decay.append(f"{module_name}.gamma")
# Exit the inner loop since the desired module has been found.
break
# Create an empty list to store the names of the Linear layer weights with weight decay.
decay = []
# Iterate through the named modules of the model.
for module_name, module in model.named_modules():
# Check if the current module is an instance of the desired type (torch.nn.Linear).
for ndim in [torch.nn.Linear]:
if isinstance(module, ndim):
# If the module is an instance of torch.nn.Linear, append its name with a ".weight" suffix to the decay list.
decay.append(f"{module_name}.weight")
# Exit the inner loop since the desired module has been found.
break
# Create two separate lists of model parameters: decay_param and no_decay_param.
# The decay_param list contains the parameters that should have weight decay applied.
# The no_decay_param list contains the parameters that should not have weight decay applied, excluding the 'to_logits.weight' parameter.
# Create an empty list called decay_param to store the parameters with weight decay.
decay_param = []
if use_fsdp:
exclude_param = "_fsdp_wrapped_module.to_logits.weight"
else:
exclude_param = "to_logits.weight"
# Iterate over the decay list, which contains the names of the parameters with weight decay.
for param in decay:
# Check if the current parameter is not 'to_logits.weight'.
# Append the corresponding parameter from param_dict to the decay_param list.
if param != exclude_param:
decay_param.append(param_dict[param])
# Create an empty list called no_decay_param to store the parameters without weight decay.
no_decay_param = []
# Iterate over the no_decay list, which contains the names of the parameters without weight decay.
for param in no_decay:
try:
# Append the corresponding parameter from param_dict to the no_decay_param list.
no_decay_param.append(param_dict[param])
except KeyError:
# print(f"Parameter {param_name} does not exist in the model")
pass
# Create a list called grouped_params that contains two dictionaries.
# The first dictionary has the decay_param list and the corresponding weight_decay value.
# The second dictionary has the no_decay_param list and a weight_decay value of 0.0.
grouped_params = [
{"params": decay_param, "weight_decay": weight_decay},
{"params": no_decay_param, "weight_decay": 0.0},
]
# Create a variable called optimizer that stores an instance of the optimizer.
if optimizer_type == "lion":
optimizer = Lion(grouped_params, lr=learning_rate, betas=(beta_1, beta_2),)
elif optimizer_type == "adamw":
optimizer = AdamW(grouped_params, lr=learning_rate, betas=(beta_1, beta_2),)
elif optimizer_type == "deepspeed":
optimizer = DummyOptim(grouped_params, lr=learning_rate, betas=(beta_1, beta_2),)
elif optimizer_type == "stable_adamw":
optimizer = StableAdamWUnfused(
grouped_params, lr=learning_rate, betas=(beta_1, beta_2),
)
# elif optimizer_type=="Adam8bit":
# optimizer = bnb.optim.Adam8bit(grouped_params, lr=learning_rate, betas=(beta_1, beta_2))
# elif optimizer_type=="Lion8Bit":
# optimizer = bnb.optim.Lion8bit(grouped_params, lr=learning_rate, betas=(beta_1, beta_2))
else:
raise ValueError(
"Invalid optimizer_type. Expected 'lion', 'adamw', 'deepspeed' or 'stable_adamw', got: {}".format(
optimizer_type
)
)
# Return the optimizer.
return optimizer
# dataloaders
def build_dataloaders():
"""
Build data loaders for training.
This function performs the following steps:
1. Load the tokenizer from the pretrained "EleutherAI/gpt-neox-20b" model.
2. Load the "openwebtext" dataset.
3. Tokenize the dataset, adding the end-of-sentence token to each text.
4. Process the tokenized dataset into chunks of a specified block size.
Returns:
Dataset: The processed dataset ready for training.
"""
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b")
dataset = load_dataset("openwebtext", split="train")
tokenized_dataset = dataset.map(
lambda example: tokenizer([t + tokenizer.eos_token for t in example["text"]]),
batched=True,
num_proc=CFG.NUM_CPU,
remove_columns=["text"],
)
block_size = CFG.SEQ_LEN
# Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
def group_texts(examples):
# Concatenate all texts.
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
total_length = len(concatenated_examples[list(examples.keys())[0]])
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
# customize this part to your needs.
if total_length >= block_size:
total_length = (total_length // block_size) * block_size
# Split by chunks of max_len.
result = {
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
for k, t in concatenated_examples.items()
}
return result
train_dataset = tokenized_dataset.map(
group_texts, batched=True, num_proc=CFG.NUM_CPU,
)
return train_dataset
#switch to falconwebdataset
def build_pre_tokenized():
d0 = load_dataset("conceptofmind/c4_0-to-20_neox_with_eos_8k", split="train[:10]")
# d1 = load_dataset("conceptofmind/c4_21-to-40_neox_with_eos_8k", split="train")
# d2 = load_dataset("conceptofmind/c4_41-to-60_neox_with_eos_8k", split="train")
# d3 = load_dataset("conceptofmind/c4_61-to-80_neox_with_eos_8k", split="train")
# d4 = load_dataset("conceptofmind/c4_81-to-100_neox_with_eos_8k", split="train")
# train_dataset = concatenate_datasets([d0, d1, d2, d3, d4])
return d0
def Train():
# accelerator
timeout = InitProcessGroupKwargs(timeout=timedelta(seconds=1_000_000))
accelerator = Accelerator(
gradient_accumulation_steps=CFG.GRADIENT_ACCUMULATE_EVERY,
mixed_precision="fp16",
log_with="wandb",
kwargs_handlers=[timeout],
)
state = AcceleratorState()
state.deepspeed_plugin.deepspeed_config['train_micro_batch_size_per_gpu'] = CFG.BATCH_SIZE #??????
accelerator.init_trackers(
project_name="Andromeda",
config={
"batch_size": CFG.BATCH_SIZE,
"gradient_accumulate_every": CFG.GRADIENT_ACCUMULATE_EVERY,
"learning_rate": CFG.LEARNING_RATE,
"seq_len": CFG.SEQ_LEN,
},
# init_kwargs={"wandb": {"entity": CFG.ENTITY_NAME}},
)
accelerator.print(f"Total GPUS: {accelerator.num_processes}")
# set seed
set_seed(CFG.SEED)
# model = Andromeda(
# num_tokens=50432,
# max_seq_len=8192,
# dim=3072,
# depth=24,
# dim_head=128,
# heads=12,
# use_abs_pos_emb=False,
# alibi_pos_bias=True,
# alibi_num_heads=6,
# rotary_xpos=True,
# attn_flash=True,
# shift_tokens=1,
# attn_one_kv_head=True,
# qk_norm=True,
# attn_qk_norm=True,
# attn_qk_norm_dim_scale=True,
# embedding_provider=AndromedaEmbedding()
# )
model = Andromeda1Billion()
print_num_params(model, accelerator)
if CFG.USE_FSDP:
model = fsdp(
model,
mp="fp16",
shard_strat="SHARD_GRAD"
)
if CFG.USE_ACTIVATION_CHECKPOINTING:
activation_checkpointing(model, accelerator)
model = accelerator.prepare(model)
# dataloaders
if CFG.USE_PRETOKENIZED:
train_dataset = build_pre_tokenized()
else:
train_dataset = build_dataloaders()
train_loader = DataLoader(
train_dataset, batch_size=CFG.BATCH_SIZE, collate_fn=default_data_collator,
)
# optimizer
optim = decoupled_optimizer(
model=model,
learning_rate=CFG.LEARNING_RATE,
weight_decay=CFG.WEIGHT_DECAY,
beta_1=0.90,
beta_2=0.95,
optimizer_type='lion',
use_fsdp=True,
accelerator=accelerator
)
# Determine number of training steps
max_train_steps = math.ceil(len(train_loader) / CFG.GRADIENT_ACCUMULATE_EVERY)
accelerator.print(f"Max train steps: {max_train_steps}")
# lr scheduler
NUM_WARMUP_STEPS = int(max_train_steps * 0.01)
accelerator.print(f"Num warmup steps: {NUM_WARMUP_STEPS}")
# if False: # if CFG.USE_DEEPSPEED:
# lr_scheduler = DummyScheduler(
# optim,
# total_num_steps=max_train_steps * accelerator.num_processes,
# warmup_num_steps=NUM_WARMUP_STEPS
# )
# else:
lr_scheduler = get_lr_scheduler_with_warmup(
optimizer=optim,
scheduler_type="cosine",
num_warmup_steps=NUM_WARMUP_STEPS,
max_train_steps=max_train_steps,
grad_accumulate_every=CFG.GRADIENT_ACCUMULATE_EVERY,
)
# prepare
optim, train_loader, lr_scheduler = accelerator.prepare(
optim, train_loader, lr_scheduler
)
# checkpoint scheduler
accelerator.register_for_checkpointing(lr_scheduler)
# I do not know why Huggingface recommends recalculation of max_train_steps
max_train_steps = math.ceil(len(train_loader) / CFG.GRADIENT_ACCUMULATE_EVERY)
accelerator.print(f"Max train steps recalculated: {max_train_steps}")
# Total batch size for logging
total_batch_size = (
CFG.BATCH_SIZE * accelerator.num_processes * CFG.GRADIENT_ACCUMULATE_EVERY
)
accelerator.print(f"Total batch size: {total_batch_size}")
# resume training
progress_bar = tqdm(
range(max_train_steps), disable=not accelerator.is_local_main_process
)
completed_steps = 0
if CFG.RESUME_FROM_CHECKPOINT:
if CFG.RESUME_FROM_CHECKPOINT is not None or CFG.RESUME_FROM_CHECKPOINT != "":
accelerator.print(f"Resuming from checkpoint {CFG.RESUME_FROM_CHECKPOINT}")
accelerator.load_state(CFG.RESUME_FROM_CHECKPOINT)
path = os.path.basename(CFG.RESUME_FROM_CHECKPOINT)
training_difference = os.path.splitext(path)[0]
# need to multiply `gradient_accumulation_steps` to reflect real steps
resume_step = (
int(training_difference.replace("step_", ""))
* CFG.GRADIENT_ACCUMULATE_EVERY
)
if CFG.RESUME_FROM_CHECKPOINT and resume_step is not None:
train_loader = accelerator.skip_first_batches(train_loader, resume_step)
completed_steps += resume_step
progress_bar.update(resume_step)
# training
model.train()
for step, batch in enumerate(train_loader):
with accelerator.accumulate(model):
inputs = batch["input_ids"].to(accelerator.device)
loss = model(inputs, return_loss=True)
accelerator.backward(loss)
accelerator.log({"loss": loss.item()}, step=step)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(model.parameters(), 1.0)
optim.step()
lr_scheduler.step()
optim.zero_grad()
if accelerator.sync_gradients:
progress_bar.update(1)
completed_steps += 1
if isinstance(CFG.CHECKPOINTING_STEPS, int):
if completed_steps % CFG.CHECKPOINTING_STEPS == 0:
output_dir = f"step_{completed_steps }"
if CFG.OUTPUT_DIR is not None:
output_dir = os.path.join(CFG.OUTPUT_DIR, output_dir)
accelerator.save_state(output_dir)
if completed_steps >= max_train_steps:
break
#logging every CFG.LOGGING STEPS
if CFG.LOGGING_STEPS > 0 and step % CFG.LOGGING_STEPS == 0:
logger.info(
f"Step: {completed_steps}/{max_train_steps}, Loss: {loss.item():.5f}"
)
# end training
# accelerator.print(f"Training Finished")
accelerator.end_training()
# save final model
# accelerator.print(f"Saving model to {CFG.OUTPUT_DIR}")
if CFG.OUTPUT_DIR is not None:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
with accelerator.main_process_first():
accelerator.save(
unwrapped_model.state_dict(), f"{CFG.OUTPUT_DIR}/final/final_model.pt"
)
def main():
os.environ['MASTER_ADDR'] #'localhost'
os.environ['MASTER_PORT'] #= '9994'
# # [CRITICAL] Pay attention to this when scaling to multiple GPUs and clusters
# # Pay attention to this, use "accelerate config"
os.environ['RANK'] #= str(0) # Number of nodes (servers)
os.environ['WORLD_SIZE'] # = str(torch.cuda.device_count())
dist.init_process_group(backend='nccl') #init_method="env://")
Train()
if __name__ == '__main__':
main() | Andromeda-master | train.py |
from Andromeda.model import Andromeda
Andromeda1Billion = Andromeda(
num_tokens=25000,
max_seq_len=4192,
dim=2048,
depth=16,
dim_head=128,
heads=8,
use_abs_pos_emb=False,
alibi_pos_bias=True,
alibi_num_heads=4,
rotary_xpos=True,
attn_flash=True,
attn_kv_heads = 2,
qk_norm=True,
attn_qk_norm=True,
attn_qk_norm_dim_scale=True,
)
Andromeda3Billion = Andromeda(
num_tokens=50432,
max_seq_len=8192,
dim=3072,
depth=24,
dim_head=128,
heads=12,
use_abs_pos_emb=False,
alibi_pos_bias=True,
alibi_num_heads=6,
rotary_xpos=True,
attn_kv_heads = 2,
qk_norm=True,
attn_qk_norm=True,
attn_qk_norm_dim_scale=True,
)
Andromeda7Billion = Andromeda(
num_tokens=50432,
max_seq_len=8192,
dim=4096,
depth=32,
dim_head=128,
heads=16,
use_abs_pos_emb=False,
alibi_pos_bias=True,
alibi_num_heads=8,
rotary_xpos=True,
attn_kv_heads = 2,
qk_norm=True,
attn_qk_norm=True,
attn_qk_norm_dim_scale=True,
)
Andromeda10Billion = Andromeda(
num_tokens=50432,
max_seq_len=8192,
dim=5120,
depth=32,
dim_head=128,
heads=20,
use_abs_pos_emb=False,
alibi_pos_bias=True,
alibi_num_heads=4,
rotary_xpos=True,
attn_kv_heads = 2,
qk_norm=True,
attn_qk_norm=True,
attn_qk_norm_dim_scale=True,
)
Andromeda15Billion = Andromeda(
num_tokens=50432,
max_seq_len=8192,
dim=6144,
depth=40,
dim_head=128,
heads=24,
use_abs_pos_emb=False,
alibi_pos_bias=True,
alibi_num_heads=4,
rotary_xpos=True,
attn_kv_heads = 2,
qk_norm=True,
attn_qk_norm=True,
attn_qk_norm_dim_scale=True,
)
Andromeda20Billion = Andromeda(
num_tokens=50432,
max_seq_len=8192,
dim=7168,
depth=48,
dim_head=128,
heads=28,
use_abs_pos_emb=False,
alibi_pos_bias=True,
alibi_num_heads=4,
rotary_xpos=True,
attn_kv_heads = 2,
qk_norm=True,
attn_qk_norm=True,
attn_qk_norm_dim_scale=True,
)
#to GPT like 176Billion Parameters 122888 dimension, 96 depth, 96 heads, attn dim head 128 | Andromeda-master | Andromeda/configs.py |
# from Andromeda.train import Train
from Andromeda.model import AndromedaTokenizer, Andromeda
from Andromeda.train import Train, train | Andromeda-master | Andromeda/__init__.py |
from torch.nn import Module
from transformers import AutoTokenizer
from Andromeda.core.transformer import (
Decoder,
Transformer,
)
from Andromeda.core.autoregressive_wrapper import AutoregressiveWrapper
class AndromedaTokenizer:
def __init__(self):
self.tokenizer= AutoTokenizer.from_pretrained(
"EleutherAI/gpt-neox-20b",
eos_token="<eos>",
pad_token="<pad>",
extra_ids=0,
model_max_length=8192
)
def tokenize_texts(self, texts):
return self.tokenizer(texts, return_tensors='pt', padding=True, truncation=True).input_ids
def decode(self, texts):
return self.tokenizer.decode(texts)
def __len__(self):
num_tokens = len(self.tokenizer)
return num_tokens
class Andromeda(Module):
"""
Andromeda is a transformer-based model architecture. It initializes with
a Transformer and AutoregressiveWrapper with default or user-specified parameters.
"""
def __init__(self,
num_tokens=50432,
max_seq_len=8192,
dim=2560,
depth=32,
dim_head=128,
heads=24,
use_abs_pos_emb=False,
alibi_pos_bias=True,
alibi_num_heads=12,
rotary_xpos=True,
attn_flash=True,
attn_kv_heads = 2,
qk_norm=True,
attn_qk_norm=True,
attn_qk_norm_dim_scale=True,
):
"""
Initialize the model with specified or default parameters.
Args:
- num_tokens: Number of tokens in the vocabulary
- max_seq_len: Maximum sequence length
- dim: Dimension of the model
- depth: Depth of the model
- dim_head: Dimension of the model head
- heads: Number of heads
- use_abs_pos_emb: Whether to use absolute position embedding
- alibi_pos_bias: Alibi position bias
- alibi_num_heads: Number of alibi heads
- rotary_xpos: Rotary position
- attn_flash: Attention flash
- deepnorm: Deep normalization
- shift_tokens: Number of tokens to shift
- attn_one_kv_head: Attention one key/value head
- qk_norm: Query-key normalization
- attn_qk_norm: Attention query-key normalization
- attn_qk_norm_dim_scale: Attention query-key normalization dimension scale
- embedding_provider: Embedding provider module
"""
super().__init__()
try:
self.Andromeda = Transformer(
num_tokens=num_tokens,
max_seq_len=max_seq_len,
use_abs_pos_emb=use_abs_pos_emb,
attn_layers=Decoder(
dim=dim,
depth=depth,
dim_head=dim_head,
heads=heads,
alibi_pos_bias=alibi_pos_bias,
alibi_num_heads=alibi_num_heads,
rotary_xpos=rotary_xpos,
attn_flash=attn_flash,
attn_kv_heads=attn_kv_heads,
qk_norm=qk_norm,
attn_qk_norm=attn_qk_norm,
attn_qk_norm_dim_scale=attn_qk_norm_dim_scale
)
)
self.decoder = AutoregressiveWrapper(self.Andromeda)
except Exception as e:
print("Failed to initialize Andromeda: ", e)
raise
def forward(self, text_tokens, **kwargs):
"""
Forward pass through the model. It expects the input text_tokens.
Args:
- text_tokens: Input tokens
- kwargs: Other arguments
Returns:
- output from the decoder
"""
try:
model_input = self.decoder.forward(text_tokens)[0]
return self.decoder(model_input, padded_x=model_input[0])
except Exception as e:
print("Failed in forward method: ", e)
raise
| Andromeda-master | Andromeda/model.py |
import math
import multiprocessing
import os
from datetime import timedelta
from functools import partial
from itertools import chain
import torch
########### SETUP CONFIG
import torch.distributed as dist
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.state import AcceleratorState
from accelerate.utils import InitProcessGroupKwargs
from datasets import load_dataset
from lion_pytorch import Lion
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointImpl,
apply_activation_checkpointing,
checkpoint_wrapper,
)
# import bitsandbytes as bnb
from torch.distributed.fsdp import (
BackwardPrefetch,
FullyShardedDataParallel,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn import LayerNorm
from torch.optim import AdamW
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import (
AutoTokenizer,
default_data_collator,
get_cosine_schedule_with_warmup,
get_linear_schedule_with_warmup,
set_seed,
)
# from Andromeda.model import Andromeda
from Andromeda.configs import Andromeda1Billion
from Andromeda.core.transformer import Transformer
from Andromeda.utils.stable_adamw import StableAdamWUnfused
# state = AcceleratorState()
logger = get_logger(__name__, log_level="INFO")
class CFG:
BATCH_SIZE = 1
GRADIENT_ACCUMULATE_EVERY: int = 1
SEED: int = 42
LEARNING_RATE: float = 1e-4 #3e-4 # 1e-4 for lion
WEIGHT_DECAY: float = 0.1
SEQ_LEN: int = 8192
NUM_CPU: int = multiprocessing.cpu_count()
USE_DEEPSPEED: bool = True
USE_FSDP: bool = True
USE_PRETOKENIZED: bool = True
USE_ACTIVATION_CHECKPOINTING: bool = True
RESUME_FROM_CHECKPOINT: str = False
CHECKPOINTING_STEPS: int = 1000
OUTPUT_DIR: str = 'checkpoints/' # Folder
ENTITY_NAME: str = "Andromeda"
LOGGING_STEPS: int = 100
# helpers
def print_num_params(model, accelerator: Accelerator):
# n_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
n_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
accelerator.print(f"Number of parameters in model: {n_params}")
# activation checkpointing
def activation_checkpointing(
model: torch.nn.Module,
offload_to_cpu: bool = False,
accelerator: Accelerator = None,
):
"""
Apply activation checkpointing to a model.
Args:
model (Module): The model to which to apply activation checkpointing.
offload_to_cpu (bool, optional): Whether to offload the activations to CPU. Defaults to False.
accelerator (Accelerator, optional): The Accelerate library accelerator. Defaults to None.
"""
if accelerator is not None:
accelerator.print("Using activation checkpointing")
def check_fn(submodule):
return isinstance(submodule, Transformer)
non_reentrant_wrapper = partial(
checkpoint_wrapper,
offload_to_cpu=offload_to_cpu,
checkpoint_impl=CheckpointImpl.NO_REENTRANT,
)
apply_activation_checkpointing(
model, checkpoint_wrapper_fn=non_reentrant_wrapper, check_fn=check_fn
)
# FSDP
def fsdp(
model: torch.nn.Module,
auto_wrap: bool = False,
mp: str = "fp32",
shard_strat: str = "NO_SHARD",
):
"""
This function wraps a given PyTorch model with the FullyShardedDataParallel (FSDP) wrapper to enable efficient data parallelism and model sharding.
Args:
model (torch.nn.Module): The original PyTorch model to be wrapped with FSDP.
auto_wrap (bool, optional): If True, it enables automatic wrapping of the model's layers according to the transformer_auto_wrap_policy. Default is False.
mp (str, optional): The mixed precision mode to be used. Can be 'bf16' for BFloat16, 'fp16' for Float16 or 'fp32' for Float32 precision. Default is 'fp32'.
shard_strat (str, optional): The sharding strategy to be used. Can be 'SHARD_GRAD' for sharding at gradient computation, 'FULL_SHARD' for full model sharding or 'NO_SHARD' for no sharding. Default is 'NO_SHARD'.
Raises:
ValueError: If the provided mp (mixed precision mode) is not 'bf16', 'fp16' or 'fp32'.
ValueError: If the provided shard_strat (sharding strategy) is not 'SHARD_GRAD', 'FULL_SHARD' or 'NO_SHARD'.
Returns:
torch.nn.Module: The input model wrapped with FSDP.
"""
if auto_wrap:
Andromeda_auto_wrap_policy = partial(
transformer_auto_wrap_policy,
transformer_layer_cls={
Transformer,
},
)
else:
Andromeda_auto_wrap_policy = None
if mp == "bf16":
mp_fsdp = MixedPrecision(
param_dtype=torch.bfloat16,
# Gradient communication precision.
reduce_dtype=torch.bfloat16,
# Buffer precision.
buffer_dtype=torch.bfloat16,
)
elif mp == "fp16":
mp_fsdp = MixedPrecision(
param_dtype=torch.float16,
# Gradient communication precision.
reduce_dtype=torch.float16,
# Buffer precision.
buffer_dtype=torch.float16,
)
elif mp == "fp32":
mp_fsdp = MixedPrecision(
param_dtype=torch.float32,
# Gradient communication precision.
reduce_dtype=torch.float32,
# Buffer precision.
buffer_dtype=torch.float32,
)
else:
raise ValueError(
"Invalid scheduler_type. Expected 'bf16', 'fp16' or 'fp32', got: {}".format(
mp
)
)
if shard_strat == "SHARD_GRAD":
sharding_strat_fsdp = ShardingStrategy.SHARD_GRAD_OP
elif shard_strat == "FULL_SHARD":
sharding_strat_fsdp = ShardingStrategy.FULL_SHARD
elif shard_strat == "NO_SHARD":
sharding_strat_fsdp = ShardingStrategy.NO_SHARD
else:
raise ValueError(
"Invalid scheduler_type. Expected 'SHARD_GRAD', 'FULL_SHARD' or 'NO_SHARD', got: {}".format(
shard_strat
)
)
model = FullyShardedDataParallel(
model,
auto_wrap_policy=Andromeda_auto_wrap_policy,
mixed_precision=mp_fsdp,
backward_prefetch=BackwardPrefetch.BACKWARD_PRE,
sharding_strategy=sharding_strat_fsdp,
forward_prefetch=True,
use_orig_params=True,
)
return model
# learning rate scheduler
def get_lr_scheduler_with_warmup(
optimizer: torch.optim.Optimizer,
scheduler_type: str,
num_warmup_steps: int,
max_train_steps: int,
grad_accumulate_every: int = 1,
accelerator: Accelerator = None,
):
"""
Get a learning rate scheduler with warmup.
Args:
optimizer (Optimizer): The optimizer for which to create the learning rate scheduler.
scheduler_type (str): The type of learning rate scheduler to create, either "linear" or "cosine".
num_warmup_steps (int): The number of warmup steps for the learning rate scheduler.
max_train_steps (int): The maximum number of training steps.
grad_accumulate_every (int, optional): The gradient accumulation factor. Defaults to 1.
accelerator (Accelerator, optional): The Accelerate library accelerator. Defaults to None.
Returns:
The learning rate scheduler with warmup.
Raises:
ValueError: If scheduler_type is not "linear" or "cosine".
"""
NUM_WARMUP_STEPS = num_warmup_steps
GRADIENT_ACCUMULATE_EVERY = grad_accumulate_every
if accelerator is not None:
accelerator.print(f"Using {scheduler_type} lr scheduler")
if scheduler_type == "linear":
return get_linear_schedule_with_warmup(
optimizer=optimizer,
num_warmup_steps=NUM_WARMUP_STEPS * GRADIENT_ACCUMULATE_EVERY,
num_training_steps=max_train_steps * GRADIENT_ACCUMULATE_EVERY,
)
elif scheduler_type == "cosine":
return get_cosine_schedule_with_warmup(
optimizer=optimizer,
num_warmup_steps=NUM_WARMUP_STEPS * GRADIENT_ACCUMULATE_EVERY,
num_training_steps=max_train_steps * GRADIENT_ACCUMULATE_EVERY,
)
else:
raise ValueError(
"Invalid scheduler_type. Expected 'linear' or 'cosine', got: {}".format(
scheduler_type
)
)
# optimizers
def decoupled_optimizer(
model: torch.nn.Module,
learning_rate: float,
weight_decay: float,
beta_1: float,
beta_2: float,
optimizer_type: str,
use_fsdp: bool = True,
accelerator: Accelerator = None,
):
"""
Decouples the optimizer from the training process.
This function sets up the optimizer for the model by creating two groups of parameters:
one for weight decay and one without weight decay. Then, it initializes the optimizer
with these two groups of parameters.
Args:
model (Module): The model whose parameters are optimized.
learning_rate (float): The learning rate for the optimizer.
weight_decay (float): The weight decay for the optimizer.
beta_1 (float): The exponential decay rate for the 1st moment estimates.
beta_2 (float): The exponential decay rate for the 2nd moment estimates.
optimizer_type (str): The type of the optimizer. Can be 'lion', 'adamw', or 'stable_adamw'.
use_fsdp (bool, optional): If True, the optimizer will work with fully sharded data parallelism. Defaults to True.
accelerator (Accelerator, optional): The accelerator from HuggingFace's Accelerate library. Defaults to None.
Returns:
Optimizer: The initialized optimizer.
Raises:
ValueError: If the optimizer type is not 'lion', 'adamw' or 'stable_adamw'.
"""
accelerator.print(f"Using {optimizer_type} optimizer")
# Create an empty dictionary called param_dict to store the model's named parameters.
param_dict = {}
# Iterate over the model's named parameters and populate the param_dict with key-value pairs.
for param_name, param in model.named_parameters():
param_dict[param_name] = param
# Separate the model's named modules into two groups: decay and no_decay.
# Create an empty list to store the names of the LayerNorm and Embedding layer weights with no weight decay.
no_decay = []
if use_fsdp:
exclude_module = "_fsdp_wrapped_module.token_emb"
else:
exclude_module = "token_emb"
# Iterate through the named modules of the model.
for module_name, module in model.named_modules():
# Check if the current module is an instance of any of the desired types (LayerNorm or torch.nn.Embedding).
for ndim in [LayerNorm, torch.nn.Embedding]:
if isinstance(module, ndim):
# If torch.nn.Embedding, append its name with a ".weight" suffix to the no_decay list.
if module_name == exclude_module:
no_decay.append(f"{module_name}.weight")
else:
# If the module is an instance of LayerNorm
no_decay.append(f"{module_name}.gamma")
# Exit the inner loop since the desired module has been found.
break
# Create an empty list to store the names of the Linear layer weights with weight decay.
decay = []
# Iterate through the named modules of the model.
for module_name, module in model.named_modules():
# Check if the current module is an instance of the desired type (torch.nn.Linear).
for ndim in [torch.nn.Linear]:
if isinstance(module, ndim):
# If the module is an instance of torch.nn.Linear, append its name with a ".weight" suffix to the decay list.
decay.append(f"{module_name}.weight")
# Exit the inner loop since the desired module has been found.
break
# Create two separate lists of model parameters: decay_param and no_decay_param.
# The decay_param list contains the parameters that should have weight decay applied.
# The no_decay_param list contains the parameters that should not have weight decay applied, excluding the 'to_logits.weight' parameter.
# Create an empty list called decay_param to store the parameters with weight decay.
decay_param = []
if use_fsdp:
exclude_param = "_fsdp_wrapped_module.to_logits.weight"
else:
exclude_param = "to_logits.weight"
# Iterate over the decay list, which contains the names of the parameters with weight decay.
for param in decay:
# Check if the current parameter is not 'to_logits.weight'.
# Append the corresponding parameter from param_dict to the decay_param list.
if param != exclude_param:
decay_param.append(param_dict[param])
# Create an empty list called no_decay_param to store the parameters without weight decay.
no_decay_param = []
# Iterate over the no_decay list, which contains the names of the parameters without weight decay.
for param in no_decay:
try:
# Append the corresponding parameter from param_dict to the no_decay_param list.
no_decay_param.append(param_dict[param])
except KeyError:
# print(f"Parameter {param_name} does not exist in the model")
pass
# Create a list called grouped_params that contains two dictionaries.
# The first dictionary has the decay_param list and the corresponding weight_decay value.
# The second dictionary has the no_decay_param list and a weight_decay value of 0.0.
grouped_params = [
{"params": decay_param, "weight_decay": weight_decay},
{"params": no_decay_param, "weight_decay": 0.0},
]
# Create a variable called optimizer that stores an instance of the optimizer.
if optimizer_type == "lion":
optimizer = Lion(grouped_params, lr=learning_rate, betas=(beta_1, beta_2),)
elif optimizer_type == "adamw":
optimizer = AdamW(grouped_params, lr=learning_rate, betas=(beta_1, beta_2),)
elif optimizer_type == "stable_adamw":
optimizer = StableAdamWUnfused(
grouped_params, lr=learning_rate, betas=(beta_1, beta_2),
)
# elif optimizer_type=="Adam8bit":
# optimizer = bnb.optim.Adam8bit(grouped_params, lr=learning_rate, betas=(beta_1, beta_2))
# elif optimizer_type=="Lion8Bit":
# optimizer = bnb.optim.Lion8bit(grouped_params, lr=learning_rate, betas=(beta_1, beta_2))
else:
raise ValueError(
"Invalid optimizer_type. Expected 'lion', 'adamw', 'deepspeed' or 'stable_adamw', got: {}".format(
optimizer_type
)
)
# Return the optimizer.
return optimizer
# dataloaders
def build_dataloaders():
"""
Build data loaders for training.
This function performs the following steps:
1. Load the tokenizer from the pretrained "EleutherAI/gpt-neox-20b" model.
2. Load the "openwebtext" dataset.
3. Tokenize the dataset, adding the end-of-sentence token to each text.
4. Process the tokenized dataset into chunks of a specified block size.
Returns:
Dataset: The processed dataset ready for training.
"""
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b")
dataset = load_dataset("openwebtext", split="train")
tokenized_dataset = dataset.map(
lambda example: tokenizer([t + tokenizer.eos_token for t in example["text"]]),
batched=True,
num_proc=CFG.NUM_CPU,
remove_columns=["text"],
)
block_size = CFG.SEQ_LEN
# Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
def group_texts(examples):
# Concatenate all texts.
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
total_length = len(concatenated_examples[list(examples.keys())[0]])
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
# customize this part to your needs.
if total_length >= block_size:
total_length = (total_length // block_size) * block_size
# Split by chunks of max_len.
result = {
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
for k, t in concatenated_examples.items()
}
return result
train_dataset = tokenized_dataset.map(
group_texts, batched=True, num_proc=CFG.NUM_CPU,
)
return train_dataset
#switch to falconwebdataset
def build_pre_tokenized():
d0 = load_dataset("conceptofmind/c4_0-to-20_neox_with_eos_8k", split="train[:10]")
# d1 = load_dataset("conceptofmind/c4_21-to-40_neox_with_eos_8k", split="train")
# d2 = load_dataset("conceptofmind/c4_41-to-60_neox_with_eos_8k", split="train")
# d3 = load_dataset("conceptofmind/c4_61-to-80_neox_with_eos_8k", split="train")
# d4 = load_dataset("conceptofmind/c4_81-to-100_neox_with_eos_8k", split="train")
# train_dataset = concatenate_datasets([d0, d1, d2, d3, d4])
return d0
def Train():
# accelerator
timeout = InitProcessGroupKwargs(timeout=timedelta(seconds=1_000_000))
accelerator = Accelerator(
gradient_accumulation_steps=CFG.GRADIENT_ACCUMULATE_EVERY,
mixed_precision="fp16",
log_with="wandb",
kwargs_handlers=[timeout],
)
state = AcceleratorState()
state.deepspeed_plugin.deepspeed_config['train_micro_batch_size_per_gpu'] = CFG.BATCH_SIZE #??????
accelerator.init_trackers(
project_name="Andromeda",
config={
"batch_size": CFG.BATCH_SIZE,
"gradient_accumulate_every": CFG.GRADIENT_ACCUMULATE_EVERY,
"learning_rate": CFG.LEARNING_RATE,
"seq_len": CFG.SEQ_LEN,
},
# init_kwargs={"wandb": {"entity": CFG.ENTITY_NAME}},
)
accelerator.print(f"Total GPUS: {accelerator.num_processes}")
# set seed
set_seed(CFG.SEED)
model = Andromeda1Billion()
print_num_params(model, accelerator)
if CFG.USE_FSDP:
model = fsdp(
model,
mp="fp16",
shard_strat="SHARD_GRAD"
)
if CFG.USE_ACTIVATION_CHECKPOINTING:
activation_checkpointing(model, accelerator)
model = accelerator.prepare(model)
# dataloaders
if CFG.USE_PRETOKENIZED:
train_dataset = build_pre_tokenized()
else:
train_dataset = build_dataloaders()
train_loader = DataLoader(
train_dataset, batch_size=CFG.BATCH_SIZE, collate_fn=default_data_collator,
)
# optimizer
optim = decoupled_optimizer(
model=model,
learning_rate=CFG.LEARNING_RATE,
weight_decay=CFG.WEIGHT_DECAY,
beta_1=0.90,
beta_2=0.95,
optimizer_type='lion',
use_fsdp=True,
accelerator=accelerator
)
# Determine number of training steps
max_train_steps = math.ceil(len(train_loader) / CFG.GRADIENT_ACCUMULATE_EVERY)
accelerator.print(f"Max train steps: {max_train_steps}")
# lr scheduler
NUM_WARMUP_STEPS = int(max_train_steps * 0.01)
accelerator.print(f"Num warmup steps: {NUM_WARMUP_STEPS}")
# if False: # if CFG.USE_DEEPSPEED:
# lr_scheduler = DummyScheduler(
# optim,
# total_num_steps=max_train_steps * accelerator.num_processes,
# warmup_num_steps=NUM_WARMUP_STEPS
# )
# else:
lr_scheduler = get_lr_scheduler_with_warmup(
optimizer=optim,
scheduler_type="cosine",
num_warmup_steps=NUM_WARMUP_STEPS,
max_train_steps=max_train_steps,
grad_accumulate_every=CFG.GRADIENT_ACCUMULATE_EVERY,
)
# prepare
optim, train_loader, lr_scheduler = accelerator.prepare(
optim, train_loader, lr_scheduler
)
# checkpoint scheduler
accelerator.register_for_checkpointing(lr_scheduler)
# I do not know why Huggingface recommends recalculation of max_train_steps
max_train_steps = math.ceil(len(train_loader) / CFG.GRADIENT_ACCUMULATE_EVERY)
accelerator.print(f"Max train steps recalculated: {max_train_steps}")
# Total batch size for logging
total_batch_size = (
CFG.BATCH_SIZE * accelerator.num_processes * CFG.GRADIENT_ACCUMULATE_EVERY
)
accelerator.print(f"Total batch size: {total_batch_size}")
# resume training
progress_bar = tqdm(
range(max_train_steps), disable=not accelerator.is_local_main_process
)
completed_steps = 0
if CFG.RESUME_FROM_CHECKPOINT:
if CFG.RESUME_FROM_CHECKPOINT is not None or CFG.RESUME_FROM_CHECKPOINT != "":
accelerator.print(f"Resuming from checkpoint {CFG.RESUME_FROM_CHECKPOINT}")
accelerator.load_state(CFG.RESUME_FROM_CHECKPOINT)
path = os.path.basename(CFG.RESUME_FROM_CHECKPOINT)
training_difference = os.path.splitext(path)[0]
# need to multiply `gradient_accumulation_steps` to reflect real steps
resume_step = (
int(training_difference.replace("step_", ""))
* CFG.GRADIENT_ACCUMULATE_EVERY
)
if CFG.RESUME_FROM_CHECKPOINT and resume_step is not None:
train_loader = accelerator.skip_first_batches(train_loader, resume_step)
completed_steps += resume_step
progress_bar.update(resume_step)
# training
model.train()
for step, batch in enumerate(train_loader):
with accelerator.accumulate(model):
inputs = batch["input_ids"].to(accelerator.device)
loss = model(inputs, return_loss=True)
accelerator.backward(loss)
accelerator.log({"loss": loss.item()}, step=step)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(model.parameters(), 1.0)
optim.step()
lr_scheduler.step()
optim.zero_grad()
if accelerator.sync_gradients:
progress_bar.update(1)
completed_steps += 1
if isinstance(CFG.CHECKPOINTING_STEPS, int):
if completed_steps % CFG.CHECKPOINTING_STEPS == 0:
output_dir = f"step_{completed_steps }"
if CFG.OUTPUT_DIR is not None:
output_dir = os.path.join(CFG.OUTPUT_DIR, output_dir)
accelerator.save_state(output_dir)
if completed_steps >= max_train_steps:
break
#logging every CFG.LOGGING STEPS
if CFG.LOGGING_STEPS > 0 and step % CFG.LOGGING_STEPS == 0:
logger.info(
f"Step: {completed_steps}/{max_train_steps}, Loss: {loss.item():.5f}"
)
# end training
# accelerator.print(f"Training Finished")
accelerator.end_training()
# save final model
# accelerator.print(f"Saving model to {CFG.OUTPUT_DIR}")
if CFG.OUTPUT_DIR is not None:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
with accelerator.main_process_first():
accelerator.save(
unwrapped_model.state_dict(), f"{CFG.OUTPUT_DIR}/final/final_model.pt"
)
def train():
os.environ['MASTER_ADDR'] #'localhost'
os.environ['MASTER_PORT'] #= '9994'
# # [CRITICAL] Pay attention to this when scaling to multiple GPUs and clusters
# # Pay attention to this, use "accelerate config"
os.environ['RANK'] #= str(0) # Number of nodes (servers)
os.environ['WORLD_SIZE'] # = str(torch.cuda.device_count())
dist.init_process_group(backend='nccl') #init_method="env://")
Train()
if __name__ == '__main__':
train() | Andromeda-master | Andromeda/train.py |
import torch
from transformers import AutoTokenizer
from einops._torch_specific import allow_ops_in_compiled_graph
import argparse
# class AndromedaEval:
# def __init__(self, path, seed=42, device=None):
# self.path = path
# self.seed = seed
# self.device = device
# if self.device is None:
# self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# set_seed(self.seed)
# #tokenizer
# self.tokenizer = AndromedaTokenizer
# #model
# self.model = Andromeda
# #checkpoint
# self.model.load_state_dict(torch.load(self.path))
# self.model.eval()
# #device
# self.model = self.model.to(self.device)
# #metrics
# self.metrics = {}
# self.reset_metrics()
# def reset_metrics(self):
# self.metrics = {
# "generation_steps": None,
# "time_forward": [],
# "time_forward_average": None,
# "memory_usages": [],
# "memory_usage_average": None,
# "time_end_to_end": None,
# "throughput": None
# }
# def get_num_params(self):
# num_params = sum(param.numel() for param in self.model.parameters() if param.requires_grad)
# return num_params
# def generate(self, prompt, generation_steps=32):
# #make sure all of the metrics reset at every generation
# self.reset_metrics()
# self.metrics["generation_steps"] = generation_steps
# tokens = self.tokenizer.encode(prompt)
# tokens_new = []
# time_end_to_end = time.time()
# #generation loop
# for _ in range(generation_steps):
# tokens_tensor = torch.tensor([tokens], device=self.device)
# #forward pass
# tracemalloc.start()
# time_forward_0 = time.time()
# logits = self.model(tokens_tensor, return_loss=False)[:, -1] # no loss takes the output of the last tokens
# time_forward_1 = time.time()
# _, memory_usage = tracemalloc.get_traced_memory()
# tracemalloc.stop()
# self.metrics["memory_usages"].append(memory_usage)
# time_forward = time_forward_1 - time_forward_0
# self.metrics["times_forward"].append(time_forward)
# next_token = torch.armax(logits).item()
# #save the newly generated token
# tokens.append(next_token)
# tokens_new.append(next_token)
# time_end_to_end_1 = time.time()
# time_end_to_end = time_end_to_end_1 - time_end_to_end_0
# self.metrics["time_end_to_end"] = time_end_to_end
# decoded = self.tokenizer.decode(tokens)
# self.metrics["time_forward_average"] = np.mean(self.metrics["times_forward"])
# self.metrics["memory_usage_average"] = np.mean(self.metrics["memory_usage"])
# self.metrics['throughput'] = generation_steps / np.sum(self.metrics["times_forward"])
# return tokens_new, decoded
# def main():
# prompt = 'My name is'
# andromeda = EvalAndromeda(path='checkpoints/step_44927_6656/pytorch_model.bin')
# num_params = Andromeda.get_num_params()
# print(f'The model has {num_params} parameters')
# _, output = Andromeda.generate(prompt)
# for metric, value in Andromeda.metrics.items():
# print(f'{metric}: {value}\n')
# print('\n')
# print(output)
def main():
allow_ops_in_compiled_graph()
torch.hub._validate_not_a_forked_repo = lambda a, b, c: True
parser = argparse.ArgumentParser(description="Generate text using Andromeda model")
parser.add_argument("prompt", type=str, help="Text prompt to generate text")
parser.add_argument(
"--seq_len", type=int, default=256, help="Sequence length for generated text"
)
parser.add_argument(
"--temperature", type=float, default=0.8, help="Sampling temperature"
)
parser.add_argument(
"--filter_thres", type=float, default=0.9, help="Filter threshold for sampling"
)
parser.add_argument(
"--model",
type=str,
default="andromeda-e-1",
help="Model to use for generation",
)
parser.add_argument(
"--dtype",
type=str,
default="fp32",
help="Data type for the model: 'bf16', or 'fp32'",
)
args = parser.parse_args()
dtype = torch.float32
if args.dtype == 'bf16':
dtype = torch.bfloat16
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#need to submit to torch hub
model = torch.hub.load("apacai/andromeda", args.model).to(device).to(dtype)
opt_model = torch.compile(model, backend="hidet")
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b")
encoded_text = tokenizer(args.prompt, return_tensors="pt")
output_tensor = opt_model.generate(
seq_len=args.seq_len,
prompt=encoded_text["input_ids"].to(device),
temperature=args.temperature,
filter_thres=args.filter_thres,
pad_value=0.0,
eos_token=tokenizer.eos_token_id,
return_seq_without_prompt=False,
use_tqdm=True,
)
decoded_output = tokenizer.batch_decode(output_tensor, skip_special_tokens=True)
return decoded_output
if __name__ == "__main__":
generated_text = main()
for text in generated_text:
print(f"{text}") | Andromeda-master | Andromeda/inference.py |
from math import ceil
import torch
from torch import nn
import torch.nn.functional as F
from einops import rearrange, pack, unpack
def exists(val):
return val is not None
def eval_decorator(fn):
def inner(self, *args, **kwargs):
was_training = self.training
self.eval()
out = fn(self, *args, **kwargs)
self.train(was_training)
return out
return inner
# nucleus
def top_p(logits, thres = 0.9):
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cum_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cum_probs > (1 - thres)
sorted_indices_to_remove[:, 1:] = sorted_indices_to_remove[:, :-1].clone()
sorted_indices_to_remove[:, 0] = 0
sorted_logits[sorted_indices_to_remove] = float('-inf')
return sorted_logits.scatter(1, sorted_indices, sorted_logits)
# topk
def top_k(logits, thres = 0.9):
k = ceil((1 - thres) * logits.shape[-1])
val, ind = torch.topk(logits, k)
probs = torch.full_like(logits, float('-inf'))
probs.scatter_(1, ind, val)
return probs
# top_a
def top_a(logits, min_p_pow=2.0, min_p_ratio=0.02):
probs = F.softmax(logits, dim=-1)
limit = torch.pow(torch.max(probs), min_p_pow) * min_p_ratio
logits[probs < limit] = float('-inf')
logits[probs >= limit] = 1
return logits
# autoregressive wrapper class
class AutoregressiveWrapper(nn.Module):
def __init__(
self,
net,
ignore_index = -100,
pad_value = 0,
mask_prob = 0.
):
super().__init__()
self.pad_value = pad_value
self.ignore_index = ignore_index
self.net = net
self.max_seq_len = net.max_seq_len
# paper shows masking (MLM) in conjunction with autoregressive decoder-only training leads to big improvements https://arxiv.org/abs/2210.13432
assert mask_prob < 1.
self.mask_prob = mask_prob
@torch.no_grad()
@eval_decorator
def generate(
self,
start_tokens,
seq_len,
eos_token = None,
temperature = 1.,
filter_logits_fn = top_k,
filter_thres = 0.9,
min_p_pow = 2.0,
min_p_ratio = 0.02,
**kwargs
):
start_tokens, ps = pack([start_tokens], '* n')
b, t = start_tokens.shape
out = start_tokens
for _ in range(seq_len):
x = out[:, -self.max_seq_len:]
logits = self.net(x, **kwargs)[:, -1]
if filter_logits_fn in {top_k, top_p}:
filtered_logits = filter_logits_fn(logits, thres = filter_thres)
probs = F.softmax(filtered_logits / temperature, dim=-1)
elif filter_logits_fn is top_a:
filtered_logits = filter_logits_fn(logits, min_p_pow = min_p_pow, min_p_ratio= min_p_ratio)
probs = F.softmax(filtered_logits / temperature, dim=-1)
sample = torch.multinomial(probs, 1)
out = torch.cat((out, sample), dim=-1)
if exists(eos_token):
is_eos_tokens = (out == eos_token)
if is_eos_tokens.any(dim = -1).all():
# mask out everything after the eos tokens
shifted_is_eos_tokens = F.pad(is_eos_tokens, (1, -1))
mask = shifted_is_eos_tokens.float().cumsum(dim = -1) >= 1
out = out.masked_fill(mask, self.pad_value)
break
out = out[:, t:]
out, = unpack(out, ps, '* n')
return out
def forward(self, x, return_loss=True, **kwargs):
seq, ignore_index = x.shape[1], self.ignore_index
inp, target = x[:, :-1], x[:, 1:]
if self.mask_prob > 0.:
rand = torch.randn(inp.shape, device = x.device)
rand[:, 0] = -torch.finfo(rand.dtype).max # first token should not be masked out
num_mask = min(int(seq * self.mask_prob), seq - 1)
indices = rand.topk(num_mask, dim = -1).indices
mask = ~torch.zeros_like(inp).scatter(1, indices, 1.).bool()
kwargs.update(self_attn_context_mask = mask)
logits = self.net(inp, **kwargs)
loss = F.cross_entropy(
rearrange(logits, 'b n c -> b c n'),
target,
ignore_index = ignore_index
)
if return_loss:
return logits, loss
return logits
| Andromeda-master | Andromeda/core/autoregressive_wrapper.py |
import torch
from packaging import version
if version.parse(torch.__version__) >= version.parse('2.0.0'):
from einops._torch_specific import allow_ops_in_compiled_graph
allow_ops_in_compiled_graph()
| Andromeda-master | Andromeda/core/__init__.py |
from functools import partial
from typing import Optional
import torch
from torch import nn, einsum, Tensor
import torch.nn.functional as F
from collections import namedtuple
from functools import wraps
from packaging import version
from dataclasses import dataclass
from einops import rearrange, repeat
# constants
EfficientAttentionConfig = namedtuple('EfficientAttentionConfig', ['enable_flash', 'enable_math', 'enable_mem_efficient'])
@dataclass
class Intermediates:
qk_similarities: Optional[Tensor] = None
pre_softmax_attn: Optional[Tensor] = None
post_softmax_attn: Optional[Tensor] = None
def to_tuple(self):
return (self.qk_similarities, self.pre_softmax_attn, self.post_softmax_attn)
# helpers
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def compact(arr):
return [*filter(exists, arr)]
def once(fn):
called = False
@wraps(fn)
def inner(x):
nonlocal called
if called:
return
called = True
return fn(x)
return inner
print_once = once(print)
# functions for creating causal mask
# need a special one for onnx cpu (no support for .triu)
def create_causal_mask(i, j, device):
return torch.ones((i, j), device = device, dtype = torch.bool).triu(j - i + 1)
def onnx_create_causal_mask(i, j, device):
r = torch.arange(i, device = device)
causal_mask = rearrange(r, 'i -> i 1') < rearrange(r, 'j -> 1 j')
causal_mask = F.pad(causal_mask, (j - i, 0), value = False)
return causal_mask
# main class
class Attend(nn.Module):
def __init__(
self,
*,
dropout = 0.,
causal = False,
heads = None,
talking_heads = False,
sparse_topk = None,
scale = None,
qk_norm = False,
flash = False,
add_zero_kv = False,
onnxable = False
):
super().__init__()
self.scale = scale
self.qk_norm = qk_norm
self.causal = causal
self.create_causal_mask = onnx_create_causal_mask if onnxable else create_causal_mask
self.attn_fn = partial(F.softmax, dtype = torch.float32) if not qk_norm else F.softmax
self.dropout = dropout
self.attn_dropout = nn.Dropout(dropout)
# talking heads
assert not (flash and talking_heads), 'talking heads not compatible with flash attention'
self.talking_heads = talking_heads
if talking_heads:
self.pre_softmax_talking_heads = nn.Conv2d(heads, heads, 1, bias = False)
self.post_softmax_talking_heads = nn.Conv2d(heads, heads, 1, bias = False)
# sparse topk
assert not (flash and sparse_topk), 'sparse topk not compatible with flash attention'
self.sparse_topk = sparse_topk
# add a key / value token composed of zeros
# in case this helps controlling outliers, proposed by https://www.evanmiller.org/attention-is-off-by-one.html
self.add_zero_kv = add_zero_kv
# flash attention
self.flash = flash
assert not (flash and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above'
# determine efficient attention configs for cuda and cpu
self.cpu_config = EfficientAttentionConfig(True, True, True)
self.cuda_config = None
if not torch.cuda.is_available() or not flash:
return
device_properties = torch.cuda.get_device_properties(torch.device('cuda'))
if device_properties.major == 8 and device_properties.minor == 0:
print_once('A100 GPU detected, using flash attention if input tensor is on cuda')
self.cuda_config = EfficientAttentionConfig(True, False, False)
else:
print_once('Non-A100 GPU detected, using math or mem efficient attention if input tensor is on cuda')
self.cuda_config = EfficientAttentionConfig(False, True, True)
def flash_attn(
self,
q, k, v,
mask = None,
attn_bias = None
):
batch, heads, q_len, _, k_len, is_cuda, device = *q.shape, k.shape[-2], q.is_cuda, q.device
# Recommended for multi-query single-key-value attention by Tri Dao
# kv shape torch.Size([1, 512, 64]) -> torch.Size([1, 8, 512, 64])
if k.ndim == 3:
k = rearrange(k, 'b ... -> b 1 ...').expand_as(q)
if v.ndim == 3:
v = rearrange(v, 'b ... -> b 1 ...').expand_as(q)
# handle scale - by default they scale by dim_head ** -0.5, but need to take care if using cosine sim attention
if self.qk_norm:
default_scale = q.shape[-1] ** -0.5
q = q * (default_scale / self.scale)
# Check if mask exists and expand to compatible shape
# The mask is B L, so it would have to be expanded to B H N L
causal = self.causal
if exists(mask):
assert mask.ndim == 4
mask = mask.expand(batch, heads, q_len, k_len)
# manually handle causal mask, if another mask was given
if causal:
causal_mask = self.create_causal_mask(q_len, k_len, device = device)
mask = mask & ~causal_mask
causal = False
# handle alibi positional bias
# convert from bool to float
if exists(attn_bias):
attn_bias = rearrange(attn_bias, 'h i j -> 1 h i j').expand(batch, heads, -1, -1)
# if mask given, the mask would already contain the causal mask from above logic
# otherwise, if no mask given but still causal, mask out alibi positional bias to a large negative number
mask_value = -torch.finfo(q.dtype).max
if exists(mask):
attn_bias = attn_bias.masked_fill(~mask, mask_value // 2)
elif causal:
causal_mask = self.create_causal_mask(q_len, k_len, device = device)
attn_bias = attn_bias.masked_fill(causal_mask, mask_value // 2)
causal = False
# scaled_dot_product_attention handles attn_mask either as bool or additive bias
# make it an additive bias here
mask = attn_bias
# Check if there is a compatible device for flash attention
config = self.cuda_config if is_cuda else self.cpu_config
# pytorch 2.0 flash attn: q, k, v, mask, dropout, causal, softmax_scale
with torch.backends.cuda.sdp_kernel(**config._asdict()):
out = F.scaled_dot_product_attention(
q, k, v,
attn_mask = mask,
dropout_p = self.dropout if self.training else 0.,
is_causal = causal
)
return out, Intermediates()
def forward(
self,
q, k, v,
mask = None,
attn_bias = None,
prev_attn = None
):
"""
einstein notation
b - batch
h - heads
n, i, j - sequence length (base sequence length, source, target)
d - feature dimension
"""
n, heads, kv_heads, device = q.shape[-2], q.shape[1], k.shape[1], q.device
scale = default(self.scale, q.shape[-1] ** -0.5)
# handle grouped multi-query attention
if kv_heads == 1:
k, v = map(lambda t: rearrange(t, 'b 1 n d -> b n d'), (k, v))
elif kv_heads < heads:
k, v = map(lambda t: repeat(t, 'b kvh n d -> b (r kvh) n d', r = heads // kv_heads), (k, v))
# handle zero kv, as means for allowing network to attend to nothing
if self.add_zero_kv:
k, v = map(lambda t: F.pad(t, (0, 0, 1, 0), value = 0.), (k, v))
if exists(mask):
mask = F.pad(mask, (1, 0), value = True)
if exists(attn_bias):
attn_bias = F.pad(attn_bias, (1, 0), value = 0.)
if self.flash:
assert not exists(prev_attn), 'residual attention not compatible with flash attention'
return self.flash_attn(q, k, v, mask = mask, attn_bias = attn_bias)
kv_einsum_eq = 'b j d' if k.ndim == 3 else 'b h j d'
dots = einsum(f'b h i d, {kv_einsum_eq} -> b h i j', q, k) * scale
if exists(prev_attn):
dots = dots + prev_attn
qk_similarities = dots.clone()
if self.talking_heads:
dots = self.pre_softmax_talking_heads(dots)
if exists(attn_bias):
dots = dots + attn_bias
i, j, dtype = *dots.shape[-2:], dots.dtype
mask_value = -torch.finfo(dots.dtype).max
if exists(self.sparse_topk) and self.sparse_topk < j:
top_values, _ = dots.topk(self.sparse_topk, dim = -1)
sparse_topk_mask = dots < top_values[..., -1:]
mask = (mask & sparse_topk_mask) if exists(mask) else sparse_topk_mask
if exists(mask):
dots = dots.masked_fill(~mask, mask_value)
if self.causal:
causal_mask = self.create_causal_mask(i, j, device = device)
dots = dots.masked_fill(causal_mask, mask_value)
pre_softmax_attn = dots.clone()
attn = self.attn_fn(dots, dim = -1)
attn = attn.type(dtype)
post_softmax_attn = attn.clone()
attn = self.attn_dropout(attn)
if self.talking_heads:
attn = self.post_softmax_talking_heads(attn)
out = einsum(f'b h i j, {kv_einsum_eq} -> b h i d', attn, v)
intermediates = Intermediates(
qk_similarities = qk_similarities,
pre_softmax_attn = pre_softmax_attn,
post_softmax_attn = post_softmax_attn
)
return out, intermediates
# cascading heads logic
def to_single_heads(t, dim = 1):
heads = t.unbind(dim = dim)
return tuple(head.unsqueeze(dim) for head in heads)
class CascadingHeads(nn.Module):
def __init__(self, attend: Attend):
super().__init__()
self.attend = attend
def forward(
self,
q, k, v,
mask = None,
attn_bias = None,
prev_attn = None
):
assert q.shape[-1] == v.shape[-1], 'cascading heads can only be done if query / key and value head dimensions are the same'
# split inputs into per-head inputs
heads = q.shape[1]
queries = to_single_heads(q)
keys = to_single_heads(k) if k.ndim == 4 else ((k,) * heads)
values = to_single_heads(v) if v.ndim == 4 else ((v,) * heads)
mask = (mask,) * heads
attn_bias = to_single_heads(attn_bias, dim = 0) if exists(attn_bias) else ((None,) * heads)
prev_attn = to_single_heads(prev_attn) if exists(prev_attn) else ((None,) * heads)
# now loop through each head, without output of previous head summed with the next head
# thus cascading
all_outs = []
all_intermediates = []
prev_head_out = None
for h_q, h_k, h_v, h_mask, h_attn_bias, h_prev_attn in zip(queries, keys, values, mask, attn_bias, prev_attn):
if exists(prev_head_out):
h_q = h_q + prev_head_out
out, intermediates = self.attend(
h_q, h_k, h_v,
mask = h_mask,
attn_bias = h_attn_bias,
prev_attn = h_prev_attn
)
prev_head_out = out
all_outs.append(out)
all_intermediates.append(intermediates)
# cat all output heads
all_outs = torch.cat(all_outs, dim = 1)
# cat all intermediates, if they exist
qk_similarities, pre_softmax_attn, post_softmax_attn = zip(*map(lambda i: i.to_tuple(), all_intermediates))
qk_similarities, pre_softmax_attn, post_softmax_attn = map(compact, (qk_similarities, pre_softmax_attn, post_softmax_attn))
aggregated_intermediates = Intermediates(
qk_similarities = torch.cat(qk_similarities, dim = 1) if len(qk_similarities) > 0 else None,
pre_softmax_attn = torch.cat(pre_softmax_attn, dim = 1) if len(pre_softmax_attn) > 0 else None,
post_softmax_attn = torch.cat(post_softmax_attn, dim = 1) if len(post_softmax_attn) > 0 else None
)
return all_outs, aggregated_intermediates | Andromeda-master | Andromeda/core/attend.py |
import math
from random import random
import torch
from torch import nn, einsum, Tensor
import torch.nn.functional as F
from functools import partial, wraps
from inspect import isfunction
from dataclasses import dataclass
from typing import Callable, List, Optional
from einops import rearrange, repeat, reduce
from Andromeda.core.attend import Attend, Intermediates
DEFAULT_DIM_HEAD = 64
@dataclass
class LayerIntermediates:
hiddens: Optional[List[Tensor]] = None
attn_intermediates: Optional[List[Intermediates]] = None
layer_hiddens: Optional[List[Tensor]] = None
attn_z_loss: Optional[Tensor] = None
# helpers
def exists(val):
return val is not None
def default(val, d):
if exists(val):
return val
return d() if isfunction(d) else d
def cast_tuple(val, depth):
return val if isinstance(val, tuple) else (val,) * depth
def divisible_by(num, den):
return (num % den) == 0
def maybe(fn):
@wraps(fn)
def inner(x, *args, **kwargs):
if not exists(x):
return x
return fn(x, *args, **kwargs)
return inner
class always():
def __init__(self, val):
self.val = val
def __call__(self, *args, **kwargs):
return self.val
class not_equals():
def __init__(self, val):
self.val = val
def __call__(self, x, *args, **kwargs):
return x != self.val
class equals():
def __init__(self, val):
self.val = val
def __call__(self, x, *args, **kwargs):
return x == self.val
def Sequential(*modules):
return nn.Sequential(*filter(exists, modules))
# tensor helpers
def max_neg_value(tensor):
return -torch.finfo(tensor.dtype).max
def l2norm(t, groups = 1):
t = rearrange(t, '... (g d) -> ... g d', g = groups)
t = F.normalize(t, p = 2, dim = -1)
return rearrange(t, '... g d -> ... (g d)')
def pad_at_dim(t, pad, dim = -1, value = 0.):
dims_from_right = (- dim - 1) if dim < 0 else (t.ndim - dim - 1)
zeros = ((0, 0) * dims_from_right)
return F.pad(t, (*zeros, *pad), value = value)
def or_reduce(masks):
head, *body = masks
for rest in body:
head = head | rest
return head
# auxiliary loss helpers
def calc_z_loss(
pre_softmax_attns: List[Tensor],
mask = None,
weight = 1.
):
# the same loss applied to the mixture of experts router logits in https://arxiv.org/abs/2202.08906
# in the paper, in a tiny footnote, they mention using it on attention logits with stabilizing effects
# also used in PaLM as one of the measures
lse = 0.
for attn in pre_softmax_attns:
lse = lse + attn.logsumexp(dim = -1)
loss = torch.square(lse)
loss = reduce(loss, 'b h n -> b n', 'sum')
if not exists(mask):
return loss.mean() * weight
loss = loss[mask].sum() / mask.sum().clamp(min = 1e-5)
return loss * weight
# init helpers
def init_zero_(layer):
nn.init.constant_(layer.weight, 0.)
if exists(layer.bias):
nn.init.constant_(layer.bias, 0.)
# keyword argument helpers
def pick_and_pop(keys, d):
values = list(map(lambda key: d.pop(key), keys))
return dict(zip(keys, values))
def group_dict_by_key(cond, d):
return_val = [dict(),dict()]
for key in d.keys():
match = bool(cond(key))
ind = int(not match)
return_val[ind][key] = d[key]
return (*return_val,)
def string_begins_with(prefix, str):
return str.startswith(prefix)
def group_by_key_prefix(prefix, d):
return group_dict_by_key(partial(string_begins_with, prefix), d)
def groupby_prefix_and_trim(prefix, d):
kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d)
kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
return kwargs_without_prefix, kwargs
# initializations
def deepnorm_init(
transformer,
beta,
module_name_match_list = ['.ff.', '.to_v', '.to_out']
):
for name, module in transformer.named_modules():
if type(module) != nn.Linear:
continue
needs_beta_gain = any(map(lambda substr: substr in name, module_name_match_list))
gain = beta if needs_beta_gain else 1
nn.init.xavier_normal_(module.weight.data, gain = gain)
if exists(module.bias):
nn.init.constant_(module.bias.data, 0)
# structured dropout, more effective than traditional attention dropouts
def dropout_seq(seq, mask, dropout):
b, n, *_, device = *seq.shape, seq.device
logits = torch.randn(b, n, device = device)
if exists(mask):
mask_value = max_neg_value(logits)
logits = logits.masked_fill(~mask, mask_value)
keep_prob = 1. - dropout
num_keep = max(1, int(keep_prob * n))
keep_indices = logits.topk(num_keep, dim = 1).indices
batch_indices = torch.arange(b, device = device)
batch_indices = rearrange(batch_indices, 'b -> b 1')
seq = seq[batch_indices, keep_indices]
if exists(mask):
seq_counts = mask.sum(dim = -1)
seq_keep_counts = torch.ceil(seq_counts * keep_prob).int()
keep_mask = torch.arange(num_keep, device = device) < rearrange(seq_keep_counts, 'b -> b 1')
mask = mask[batch_indices, keep_indices] & keep_mask
return seq, mask
# activations
class ReluSquared(nn.Module):
def forward(self, x):
return F.relu(x) ** 2
# embedding
class TokenEmbedding(nn.Module):
def __init__(self, dim, num_tokens, l2norm_embed = False):
super().__init__()
self.l2norm_embed = l2norm_embed
self.emb = nn.Embedding(num_tokens, dim)
def forward(self, x):
token_emb = self.emb(x)
return l2norm(token_emb) if self.l2norm_embed else token_emb
# positional embeddings
class AbsolutePositionalEmbedding(nn.Module):
def __init__(self, dim, max_seq_len, l2norm_embed = False):
super().__init__()
self.scale = dim ** -0.5 if not l2norm_embed else 1.
self.max_seq_len = max_seq_len
self.l2norm_embed = l2norm_embed
self.emb = nn.Embedding(max_seq_len, dim)
def forward(self, x, pos = None):
seq_len, device = x.shape[1], x.device
assert seq_len <= self.max_seq_len, f'you are passing in a sequence length of {seq_len} but your absolute positional embedding has a max sequence length of {self.max_seq_len}'
if not exists(pos):
pos = torch.arange(seq_len, device = device)
pos_emb = self.emb(pos)
pos_emb = pos_emb * self.scale
return l2norm(pos_emb) if self.l2norm_embed else pos_emb
class ScaledSinusoidalEmbedding(nn.Module):
def __init__(self, dim, theta = 10000):
super().__init__()
assert divisible_by(dim, 2)
self.scale = nn.Parameter(torch.ones(1) * dim ** -0.5)
half_dim = dim // 2
freq_seq = torch.arange(half_dim).float() / half_dim
inv_freq = theta ** -freq_seq
self.register_buffer('inv_freq', inv_freq, persistent = False)
def forward(self, x, pos = None):
seq_len, device = x.shape[1], x.device
if not exists(pos):
pos = torch.arange(seq_len, device = device)
emb = einsum('i, j -> i j', pos, self.inv_freq)
emb = torch.cat((emb.sin(), emb.cos()), dim = -1)
return emb * self.scale
class RelativePositionBias(nn.Module):
def __init__(self, scale, causal = False, num_buckets = 32, max_distance = 128, heads = 8):
super().__init__()
self.scale = scale
self.causal = causal
self.num_buckets = num_buckets
self.max_distance = max_distance
self.relative_attention_bias = nn.Embedding(num_buckets, heads)
@staticmethod
def _relative_position_bucket(relative_position, causal = True, num_buckets = 32, max_distance = 128):
ret = 0
n = -relative_position
if not causal:
num_buckets //= 2
ret += (n < 0).long() * num_buckets
n = torch.abs(n)
else:
n = torch.max(n, torch.zeros_like(n))
max_exact = num_buckets // 2
is_small = n < max_exact
val_if_large = max_exact + (
torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact)
).long()
val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1))
ret += torch.where(is_small, n, val_if_large)
return ret
@property
def device(self):
return next(self.parameters()).device
def forward(self, i, j):
device = self.device
q_pos = torch.arange(j - i, j, dtype = torch.long, device = device)
k_pos = torch.arange(j, dtype = torch.long, device = device)
rel_pos = k_pos[None, :] - q_pos[:, None]
rp_bucket = self._relative_position_bucket(rel_pos, causal = self.causal, num_buckets = self.num_buckets, max_distance = self.max_distance)
values = self.relative_attention_bias(rp_bucket)
bias = rearrange(values, 'i j h -> h i j')
return bias * self.scale
class DynamicPositionBias(nn.Module):
def __init__(self, dim, *, heads, depth, log_distance = False, norm = False):
super().__init__()
assert depth >= 1, 'depth for dynamic position bias MLP must be greater or equal to 1'
self.log_distance = log_distance
self.mlp = nn.ModuleList([])
self.mlp.append(Sequential(
nn.Linear(1, dim),
nn.LayerNorm(dim) if norm else None,
nn.SiLU()
))
for _ in range(depth - 1):
self.mlp.append(Sequential(
nn.Linear(dim, dim),
nn.LayerNorm(dim) if norm else None,
nn.SiLU()
))
self.mlp.append(nn.Linear(dim, heads))
@property
def device(self):
return next(self.parameters()).device
def forward(self, i, j):
assert i == j
n, device = j, self.device
# get the (n x n) matrix of distances
seq_arange = torch.arange(n, device = device)
context_arange = torch.arange(n, device = device)
indices = rearrange(seq_arange, 'i -> i 1') - rearrange(context_arange, 'j -> 1 j')
indices += (n - 1)
# input to continuous positions MLP
pos = torch.arange(-n + 1, n, device = device).float()
pos = rearrange(pos, '... -> ... 1')
if self.log_distance:
pos = torch.sign(pos) * torch.log(pos.abs() + 1) # log of distance is sign(rel_pos) * log(abs(rel_pos) + 1)
for layer in self.mlp:
pos = layer(pos)
# get position biases
bias = pos[indices]
bias = rearrange(bias, 'i j h -> h i j')
return bias
class AlibiPositionalBias(nn.Module):
def __init__(self, heads, total_heads, **kwargs):
super().__init__()
self.heads = heads
self.total_heads = total_heads
slopes = Tensor(self._get_slopes(heads))
slopes = rearrange(slopes, 'h -> h 1 1')
self.register_buffer('slopes', slopes, persistent = False)
self.register_buffer('bias', None, persistent = False)
def get_bias(self, i, j, device):
i_arange = torch.arange(j - i, j, device = device)
j_arange = torch.arange(j, device = device)
bias = -torch.abs(rearrange(j_arange, 'j -> 1 1 j') - rearrange(i_arange, 'i -> 1 i 1'))
return bias
@staticmethod
def _get_slopes(heads):
def get_slopes_power_of_2(n):
start = (2**(-2**-(math.log2(n)-3)))
ratio = start
return [start*ratio**i for i in range(n)]
if math.log2(heads).is_integer():
return get_slopes_power_of_2(heads)
closest_power_of_2 = 2 ** math.floor(math.log2(heads))
return get_slopes_power_of_2(closest_power_of_2) + get_slopes_power_of_2(2 * closest_power_of_2)[0::2][:heads-closest_power_of_2]
@property
def device(self):
return next(self.buffers()).device
def forward(self, i, j):
h, device = self.total_heads, self.device
if exists(self.bias) and self.bias.shape[-1] >= j and self.bias.shape[-2] >= i:
return self.bias[..., :i, :j]
bias = self.get_bias(i, j, device)
bias = bias * self.slopes
num_heads_unalibied = h - bias.shape[0]
bias = pad_at_dim(bias, (0, num_heads_unalibied), dim = 0)
self.register_buffer('bias', bias, persistent = False)
return self.bias
class RotaryEmbedding(nn.Module):
def __init__(
self,
dim,
use_xpos = False,
scale_base = 512,
interpolation_factor = 1.,
base = 10000,
base_rescale_factor = 1.
):
super().__init__()
# proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
# has some connection to NTK literature
# https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
base *= base_rescale_factor ** (dim / (dim - 2))
inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer('inv_freq', inv_freq)
assert interpolation_factor >= 1.
self.interpolation_factor = interpolation_factor
if not use_xpos:
self.register_buffer('scale', None)
return
scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim)
self.scale_base = scale_base
self.register_buffer('scale', scale)
def forward(self, seq_len, device):
t = torch.arange(seq_len, device = device).type_as(self.inv_freq)
t = t / self.interpolation_factor
freqs = torch.einsum('i , j -> i j', t, self.inv_freq)
freqs = torch.cat((freqs, freqs), dim = -1)
if not exists(self.scale):
return freqs, 1.
power = (torch.arange(seq_len, device = device) - (seq_len // 2)) / self.scale_base
scale = self.scale ** rearrange(power, 'n -> n 1')
scale = torch.cat((scale, scale), dim = -1)
return freqs, scale
def rotate_half(x):
x = rearrange(x, '... (j d) -> ... j d', j = 2)
x1, x2 = x.unbind(dim = -2)
return torch.cat((-x2, x1), dim = -1)
def apply_rotary_pos_emb(t, freqs, scale = 1):
seq_len = t.shape[-2]
freqs = freqs[-seq_len:, :]
return (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale)
# norms
class Scale(nn.Module):
def __init__(self, value, fn):
super().__init__()
self.value = value
self.fn = fn
def forward(self, x, **kwargs):
out = self.fn(x, **kwargs)
def scale_fn(t):
return t * self.value
if not isinstance(out, tuple):
return scale_fn(out)
return (scale_fn(out[0]), *out[1:])
class ScaleNorm(nn.Module):
def __init__(self, dim, eps = 1e-5):
super().__init__()
self.eps = eps
self.g = nn.Parameter(torch.ones(1) * (dim ** -0.5))
def forward(self, x):
norm = torch.norm(x, dim = -1, keepdim = True)
return x / norm.clamp(min = self.eps) * self.g
class RMSNorm(nn.Module):
def __init__(self, dim):
super().__init__()
self.scale = dim ** 0.5
self.g = nn.Parameter(torch.ones(dim))
def forward(self, x):
return F.normalize(x, dim = -1) * self.scale * self.g
class SimpleRMSNorm(nn.Module):
def __init__(self, dim):
super().__init__()
self.scale = dim ** 0.5
def forward(self, x):
return F.normalize(x, dim = -1) * self.scale
# residual and residual gates
class Residual(nn.Module):
def __init__(self, dim, scale_residual = False, scale_residual_constant = 1.):
super().__init__()
self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None
self.scale_residual_constant = scale_residual_constant
def forward(self, x, residual):
if exists(self.residual_scale):
residual = residual * self.residual_scale
if self.scale_residual_constant != 1:
residual = residual * self.scale_residual_constant
return x + residual
class GRUGating(nn.Module):
def __init__(self, dim, scale_residual = False, **kwargs):
super().__init__()
self.gru = nn.GRUCell(dim, dim)
self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None
def forward(self, x, residual):
if exists(self.residual_scale):
residual = residual * self.residual_scale
gated_output = self.gru(
rearrange(x, 'b n d -> (b n) d'),
rearrange(residual, 'b n d -> (b n) d')
)
return gated_output.reshape_as(x)
# token shifting
def shift(t, amount, mask = None):
if amount == 0:
return t
else:
amount = min(amount, t.shape[1])
if exists(mask):
t = t.masked_fill(~mask[..., None], 0.)
return pad_at_dim(t, (amount, -amount), dim = - 2, value = 0.)
class ShiftTokens(nn.Module):
def __init__(self, shifts, fn):
super().__init__()
self.fn = fn
self.shifts = tuple(shifts)
def forward(self, x, **kwargs):
mask = kwargs.get('mask', None)
shifts = self.shifts
segments = len(shifts)
feats_per_shift = x.shape[-1] // segments
splitted = x.split(feats_per_shift, dim = -1)
segments_to_shift, rest = splitted[:segments], splitted[segments:]
segments_to_shift = list(map(lambda args: shift(*args, mask = mask), zip(segments_to_shift, shifts)))
x = torch.cat((*segments_to_shift, *rest), dim = -1)
return self.fn(x, **kwargs)
# feedforward
class GLU(nn.Module):
def __init__(
self,
dim_in,
dim_out,
activation: Callable,
mult_bias = False
):
super().__init__()
self.act = activation
self.proj = nn.Linear(dim_in, dim_out * 2)
self.mult_bias = nn.Parameter(torch.ones(dim_out)) if mult_bias else 1.
def forward(self, x):
x, gate = self.proj(x).chunk(2, dim = -1)
return x * self.act(gate) * self.mult_bias
class FeedForward(nn.Module):
def __init__(
self,
dim,
dim_out = None,
mult = 4,
glu = False,
glu_mult_bias = False,
swish = False,
relu_squared = False,
post_act_ln = False,
dropout = 0.,
no_bias = False,
zero_init_output = False
):
super().__init__()
inner_dim = int(dim * mult)
dim_out = default(dim_out, dim)
if relu_squared:
activation = ReluSquared()
elif swish:
activation = nn.SiLU()
else:
activation = nn.GELU()
if glu:
project_in = GLU(dim, inner_dim, activation, mult_bias = glu_mult_bias)
else:
project_in = nn.Sequential(
nn.Linear(dim, inner_dim, bias = not no_bias),
activation
)
self.ff = Sequential(
project_in,
nn.LayerNorm(inner_dim) if post_act_ln else None,
nn.Dropout(dropout),
nn.Linear(inner_dim, dim_out, bias = not no_bias)
)
# init last linear layer to 0
if zero_init_output:
init_zero_(self.ff[-1])
def forward(self, x):
return self.ff(x)
# attention. it is all we need
class Attention(nn.Module):
def __init__(
self,
dim,
dim_head = DEFAULT_DIM_HEAD,
heads = 8,
causal = False,
flash = False,
talking_heads = False,
head_scale = False,
sparse_topk = None,
num_mem_kv = 0,
dropout = 0.,
on_attn = False,
gate_values = False,
zero_init_output = False,
max_attend_past = None,
qk_norm = False,
qk_norm_groups = 1,
qk_norm_scale = 10,
qk_norm_dim_scale = False,
one_kv_head = False,
kv_heads = None,
shared_kv = False,
value_dim_head = None,
tensor_product = False, # https://arxiv.org/abs/2208.06061
cascading_heads = False,
add_zero_kv = False, # same as add_zero_attn in pytorch
onnxable = False
):
super().__init__()
self.scale = dim_head ** -0.5
self.heads = heads
self.causal = causal
self.max_attend_past = max_attend_past
assert not (exists(kv_heads) and one_kv_head), 'either attn_one_kv_head is set to True (in which case kv_heads is set to 1), or attn_kv_heads is set, but not both'
value_dim_head = default(value_dim_head, dim_head)
kv_heads = default(kv_heads, heads)
kv_heads = 1 if one_kv_head else kv_heads
assert divisible_by(heads, kv_heads)
self.kv_heads = kv_heads
q_dim = dim_head * heads
k_dim = dim_head * kv_heads
v_dim = value_dim_head * kv_heads
out_dim = value_dim_head * heads
self.to_q = nn.Linear(dim, q_dim, bias = False)
self.to_k = nn.Linear(dim, k_dim, bias = False)
# shared key / values, for further memory savings during inference
assert not (shared_kv and value_dim_head != dim_head), 'key and value head dimensions must be equal for shared key / values'
self.to_v = nn.Linear(dim, v_dim, bias = False) if not shared_kv else None
# relations projection from tp-attention
self.to_r = nn.Linear(dim, v_dim, bias = False) if tensor_product else None
# add GLU gating for aggregated values, from alphafold2
self.to_v_gate = None
if gate_values:
self.to_v_gate = nn.Linear(dim, out_dim)
nn.init.constant_(self.to_v_gate.weight, 0)
nn.init.constant_(self.to_v_gate.bias, 1)
# cosine sim attention
self.qk_norm = qk_norm
self.qk_norm_groups = qk_norm_groups
self.qk_norm_scale = qk_norm_scale
# whether to use the rmsnorm (equivalent to cosine sim attention when scale is equal to 1) - https://arxiv.org/abs/2302.05442
self.qk_norm_dim_scale = qk_norm_dim_scale
self.qk_norm_q_scale = self.qk_norm_k_scale = 1
if qk_norm and qk_norm_dim_scale:
self.qk_norm_q_scale = nn.Parameter(torch.ones(dim_head))
self.qk_norm_k_scale = nn.Parameter(torch.ones(dim_head))
assert (not qk_norm) or divisible_by(dim_head, qk_norm_groups), 'dimension per attention head must be divisible by the qk norm groups'
assert not (qk_norm and (dim_head // qk_norm_groups) <= 2), 'the group dimension may be too small (2 was too small in my tests, but 4 still works, surprisingly)'
# attend class - includes core attention algorithm + talking heads
self.attend = Attend(
heads = heads,
causal = causal,
talking_heads = talking_heads,
dropout = dropout,
sparse_topk = sparse_topk,
qk_norm = qk_norm,
scale = qk_norm_scale if qk_norm else self.scale,
add_zero_kv = add_zero_kv,
flash = flash,
onnxable = onnxable
)
# head scaling
self.head_scale = head_scale
if head_scale:
self.head_scale_params = nn.Parameter(torch.ones(1, heads, 1, 1))
# explicit topk sparse attention
self.sparse_topk = sparse_topk
# add memory key / values
self.num_mem_kv = num_mem_kv
if num_mem_kv > 0:
self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
# attention on attention
self.attn_on_attn = on_attn
self.to_out = nn.Sequential(nn.Linear(out_dim, dim * 2, bias = False), nn.GLU()) if on_attn else nn.Linear(out_dim, dim, bias = False)
# init output projection 0
if zero_init_output:
init_zero_(self.to_out)
def forward(
self,
x,
context = None,
mask = None,
context_mask = None,
attn_mask = None,
rel_pos = None,
rotary_pos_emb = None,
prev_attn = None,
mem = None
):
b, n, _, h, kv_h, head_scale, device, has_context = *x.shape, self.heads, self.kv_heads, self.head_scale, x.device, exists(context)
kv_input = default(context, x)
q_input = x
k_input = kv_input
v_input = kv_input
r_input = x
if exists(mem):
k_input = torch.cat((mem, k_input), dim = -2)
v_input = torch.cat((mem, v_input), dim = -2)
q = self.to_q(q_input)
k = self.to_k(k_input)
v = self.to_v(v_input) if exists(self.to_v) else k
r = self.to_r(r_input) if exists(self.to_r) else None
q = rearrange(q, 'b n (h d) -> b h n d', h = h)
k, v, r = map(lambda t: maybe(rearrange)(t, 'b n (h d) -> b h n d', h = kv_h), (k, v, r))
if self.qk_norm:
qk_l2norm = partial(l2norm, groups = self.qk_norm_groups)
q, k = map(qk_l2norm, (q, k))
q = q * self.qk_norm_q_scale
k = k * self.qk_norm_k_scale
if exists(rotary_pos_emb) and not has_context:
freqs, xpos_scale = rotary_pos_emb
l = freqs.shape[-1]
q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale ** -1.) if exists(xpos_scale) else (1., 1.)
(ql, qr), (kl, kr), (vl, vr) = map(lambda t: (t[..., :l], t[..., l:]), (q, k, v))
ql, kl, vl = map(lambda arg: apply_rotary_pos_emb(arg[0], freqs, arg[1]), ((ql, q_xpos_scale), (kl, k_xpos_scale), (vl, k_xpos_scale)))
q, k, v = map(lambda t: torch.cat(t, dim = -1), ((ql, qr), (kl, kr), (vl, vr)))
input_mask = context_mask if has_context else mask
if self.num_mem_kv > 0:
mem_k, mem_v = map(lambda t: repeat(t, 'h n d -> b h n d', b = b), (self.mem_k, self.mem_v))
if self.qk_norm:
mem_k = l2norm(mem_k)
mem_k = mem_k * self.qk_norm_k_scale
k = torch.cat((mem_k, k), dim = -2)
v = torch.cat((mem_v, v), dim = -2)
if exists(input_mask):
input_mask = pad_at_dim(input_mask, (self.num_mem_kv, 0), dim = -1, value = True)
i, j = map(lambda t: t.shape[-2], (q, k))
# determine masking
max_neg_value(q)
masks = []
final_attn_mask = None
if exists(input_mask):
input_mask = rearrange(input_mask, 'b j -> b 1 1 j')
masks.append(~input_mask)
if exists(attn_mask):
assert 2 <= attn_mask.ndim <= 4, 'attention mask must have greater than 2 dimensions but less than or equal to 4'
if attn_mask.ndim == 2:
attn_mask = rearrange(attn_mask, 'i j -> 1 1 i j')
elif attn_mask.ndim == 3:
attn_mask = rearrange(attn_mask, 'h i j -> 1 h i j')
masks.append(~attn_mask)
if exists(self.max_attend_past):
range_q = torch.arange(j - i, j, device = device)
range_k = torch.arange(j, device = device)
dist = rearrange(range_q, 'i -> 1 1 i 1') - rearrange(range_k, 'j -> 1 1 1 j')
max_attend_past_mask = dist > self.max_attend_past
masks.append(max_attend_past_mask)
if len(masks) > 0:
final_attn_mask = ~or_reduce(masks)
# prepare relative positional bias, if needed
attn_bias = None
if exists(rel_pos):
attn_bias = rel_pos(i, j)
# attention is all we need
out, intermediates = self.attend(
q, k, v,
mask = final_attn_mask,
attn_bias = attn_bias,
prev_attn = prev_attn
)
# https://arxiv.org/abs/2208.06061 proposes to add a residual for better gradients
if exists(r):
out = out * r + out
# normformer scaling of heads
if head_scale:
out = out * self.head_scale_params
# merge heads
out = rearrange(out, 'b h n d -> b n (h d)')
# alphafold2 styled gating of the values
if exists(self.to_v_gate):
gates = self.to_v_gate(x)
out = out * gates.sigmoid()
# combine the heads
out = self.to_out(out)
if exists(mask):
mask = rearrange(mask, 'b n -> b n 1')
out = out.masked_fill(~mask, 0.)
return out, intermediates
class AttentionLayers(nn.Module):
def __init__(
self,
dim,
depth,
heads = 8,
causal = False,
cross_attend = False,
only_cross = False,
use_scalenorm = False,
use_rmsnorm = False,
use_simple_rmsnorm = False,
alibi_pos_bias = False,
alibi_num_heads = None,
rel_pos_bias = False,
rel_pos_num_buckets = 32,
rel_pos_max_distance = 128,
dynamic_pos_bias = False,
dynamic_pos_bias_log_distance = False,
dynamic_pos_bias_mlp_depth = 2,
dynamic_pos_bias_norm = False,
rotary_pos_emb = False,
rotary_emb_dim = None,
rotary_xpos = False,
rotary_interpolation_factor = 1.,
rotary_xpos_scale_base = 512,
rotary_base_rescale_factor = 1.,
custom_layers = None,
sandwich_coef = None,
par_ratio = None,
residual_attn = False,
cross_residual_attn = False,
macaron = False,
pre_norm = True,
pre_norm_has_final_norm = True,
gate_residual = False,
scale_residual = False,
scale_residual_constant = 1.,
deepnorm = False,
shift_tokens = 0,
sandwich_norm = False,
resi_dual = False,
resi_dual_scale = 1.,
zero_init_branch_output = False,
layer_dropout = 0.,
cross_attn_tokens_dropout = 0.,
**kwargs
):
super().__init__()
rotary_pos_emb = rotary_pos_emb or rotary_xpos
ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs)
attn_kwargs, kwargs = groupby_prefix_and_trim('attn_', kwargs)
dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD)
self.dim = dim
self.depth = depth
self.layers = nn.ModuleList([])
self.has_pos_emb = rel_pos_bias or rotary_pos_emb
rotary_emb_dim = max(default(rotary_emb_dim, dim_head // 2), 32)
assert not (rotary_xpos and not causal), 'rotary xpos is not compatible with bidirectional attention'
self.rotary_pos_emb = RotaryEmbedding(rotary_emb_dim, use_xpos = rotary_xpos, scale_base = rotary_xpos_scale_base, interpolation_factor = rotary_interpolation_factor, base_rescale_factor = rotary_base_rescale_factor) if rotary_pos_emb else None
assert not (alibi_pos_bias and rel_pos_bias), 'you can only choose Alibi positional bias or T5 relative positional bias, not both'
assert rel_pos_num_buckets <= rel_pos_max_distance, 'number of relative position buckets must be less than the relative position max distance'
# relative positional bias
flash_attn = attn_kwargs.get('flash', False)
assert (int(rel_pos_bias) + int(dynamic_pos_bias) + int(alibi_pos_bias)) <= 1, 'you can only choose up to one of t5, alibi, or dynamic positional bias'
self.rel_pos = None
if rel_pos_bias:
assert not flash_attn, 'flash attention not compatible with t5 relative positional bias'
self.rel_pos = RelativePositionBias(scale = dim_head ** 0.5, causal = causal, heads = heads, num_buckets = rel_pos_num_buckets, max_distance = rel_pos_max_distance)
elif dynamic_pos_bias:
assert not flash_attn, 'flash attention not compatible with dynamic positional bias'
self.rel_pos = DynamicPositionBias(dim = dim // 4, heads = heads, log_distance = dynamic_pos_bias_log_distance, depth = dynamic_pos_bias_mlp_depth, norm = dynamic_pos_bias_norm)
elif alibi_pos_bias:
alibi_num_heads = default(alibi_num_heads, heads)
assert alibi_num_heads <= heads, 'number of ALiBi heads must be less than the total number of heads'
self.rel_pos = AlibiPositionalBias(heads = alibi_num_heads, total_heads = heads)
# determine deepnorm and residual scale
if deepnorm:
assert scale_residual_constant == 1, 'scale residual constant is being overridden by deep norm settings'
pre_norm = sandwich_norm = resi_dual = False
scale_residual = True
scale_residual_constant = (2 * depth) ** 0.25
assert (int(sandwich_norm) + int(resi_dual)) <= 1, 'either sandwich norm or resiDual is selected, but not both'
assert not (not pre_norm and sandwich_norm), 'sandwich norm cannot be used when not using prenorm'
if resi_dual:
pre_norm = False
self.pre_norm = pre_norm
self.sandwich_norm = sandwich_norm
self.resi_dual = resi_dual
assert 0 < resi_dual_scale <= 1., 'resiDual prenorm residual must be scaled by a factor greater than 0 and less than or equal to 1.'
self.resi_dual_scale = resi_dual_scale
self.residual_attn = residual_attn
self.cross_residual_attn = cross_residual_attn
assert not (flash_attn and (residual_attn or cross_residual_attn)), 'flash attention is not compatible with residual attention'
self.cross_attend = cross_attend
assert (int(use_scalenorm) + int(use_rmsnorm) + int(use_simple_rmsnorm)) <= 1, 'you can only use either scalenorm, rmsnorm, or simple rmsnorm'
if use_scalenorm:
norm_class = ScaleNorm
elif use_rmsnorm:
norm_class = RMSNorm
elif use_simple_rmsnorm:
norm_class = SimpleRMSNorm
else:
norm_class = nn.LayerNorm
norm_fn = partial(norm_class, dim)
if cross_attend and not only_cross:
default_block = ('a', 'c', 'f')
elif cross_attend and only_cross:
default_block = ('c', 'f')
else:
default_block = ('a', 'f')
if macaron:
default_block = ('f',) + default_block
# zero init
if zero_init_branch_output:
attn_kwargs = {**attn_kwargs, 'zero_init_output': True}
ff_kwargs = {**ff_kwargs, 'zero_init_output': True}
# calculate layer block order
if exists(custom_layers):
layer_types = custom_layers
elif exists(par_ratio):
par_depth = depth * len(default_block)
assert 1 < par_ratio <= par_depth, 'par ratio out of range'
default_block = tuple(filter(not_equals('f'), default_block))
par_attn = par_depth // par_ratio
depth_cut = par_depth * 2 // 3 # 2 / 3 attention layer cutoff suggested by PAR paper
par_width = (depth_cut + depth_cut // par_attn) // par_attn
assert len(default_block) <= par_width, 'default block is too large for par_ratio'
par_block = default_block + ('f',) * (par_width - len(default_block))
par_head = par_block * par_attn
layer_types = par_head + ('f',) * (par_depth - len(par_head))
elif exists(sandwich_coef):
assert sandwich_coef > 0 and sandwich_coef <= depth, 'sandwich coefficient should be less than the depth'
layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef
else:
layer_types = default_block * depth
self.layer_types = layer_types
self.num_attn_layers = len(list(filter(equals('a'), layer_types)))
# stochastic depth
self.layer_dropouts = cast_tuple(layer_dropout, len(layer_types))
# structured dropout for cross attending
self.cross_attn_tokens_dropout = cross_attn_tokens_dropout
# calculate token shifting
shift_tokens = cast_tuple(shift_tokens, len(layer_types))
# whether it has post norm
self.final_norm = norm_fn() if pre_norm or resi_dual else nn.Identity()
# iterate and construct layers
for ind, (layer_type, layer_shift_tokens) in enumerate(zip(self.layer_types, shift_tokens)):
ind == (len(self.layer_types) - 1)
if layer_type == 'a':
layer = Attention(dim, heads = heads, causal = causal, **attn_kwargs)
elif layer_type == 'c':
layer = Attention(dim, heads = heads, **attn_kwargs)
elif layer_type == 'f':
layer = FeedForward(dim, **ff_kwargs)
layer = layer if not macaron else Scale(0.5, layer)
else:
raise Exception(f'invalid layer type {layer_type}')
if layer_shift_tokens > 0:
shift_range_upper = layer_shift_tokens + 1
shift_range_lower = -layer_shift_tokens if not causal else 0
layer = ShiftTokens(range(shift_range_lower, shift_range_upper), layer)
residual_fn = GRUGating if gate_residual else Residual
residual = residual_fn(dim, scale_residual = scale_residual, scale_residual_constant = scale_residual_constant)
pre_branch_norm = norm_fn() if pre_norm else None
post_branch_norm = norm_fn() if sandwich_norm else None
post_main_norm = norm_fn() if not pre_norm else None
norms = nn.ModuleList([
pre_branch_norm,
post_branch_norm,
post_main_norm
])
self.layers.append(nn.ModuleList([
norms,
layer,
residual
]))
if deepnorm:
init_gain = (8 * depth) ** -0.25
deepnorm_init(self, init_gain)
def forward(
self,
x,
context = None,
mask = None,
context_mask = None,
attn_mask = None,
self_attn_context_mask = None,
mems = None,
return_hiddens = False
):
assert not (self.cross_attend ^ exists(context)), 'context must be passed in if cross_attend is set to True'
hiddens = []
layer_hiddens = []
intermediates = []
prev_attn = None
prev_cross_attn = None
mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers
rotary_pos_emb = None
if exists(self.rotary_pos_emb):
max_rotary_emb_length = max(list(map(lambda m: (m.shape[1] if exists(m) else 0) + x.shape[1], mems)))
rotary_pos_emb = self.rotary_pos_emb(max_rotary_emb_length, x.device)
outer_residual = x * self.resi_dual_scale
for ind, (layer_type, (norm, block, residual_fn), layer_dropout) in enumerate(zip(self.layer_types, self.layers, self.layer_dropouts)):
ind == (len(self.layers) - 1)
if self.training and layer_dropout > 0. and random() < layer_dropout:
continue
if layer_type == 'a':
if return_hiddens:
hiddens.append(x)
layer_mem = mems.pop(0) if mems else None
if layer_type == 'c':
if self.training and self.cross_attn_tokens_dropout > 0.:
context, context_mask = dropout_seq(context, context_mask, self.cross_attn_tokens_dropout)
inner_residual = x
if return_hiddens:
layer_hiddens.append(x)
pre_norm, post_branch_norm, post_main_norm = norm
if exists(pre_norm):
x = pre_norm(x)
if layer_type == 'a':
out, inter = block(x, mask = mask, context_mask = self_attn_context_mask, attn_mask = attn_mask, rel_pos = self.rel_pos, rotary_pos_emb = rotary_pos_emb, prev_attn = prev_attn, mem = layer_mem)
elif layer_type == 'c':
out, inter = block(x, context = context, mask = mask, context_mask = context_mask, prev_attn = prev_cross_attn)
elif layer_type == 'f':
out = block(x)
if self.resi_dual:
outer_residual = outer_residual + out * self.resi_dual_scale
if exists(post_branch_norm):
out = post_branch_norm(out)
x = residual_fn(out, inner_residual)
if layer_type in ('a', 'c') and return_hiddens:
intermediates.append(inter)
if layer_type == 'a' and self.residual_attn:
prev_attn = inter.pre_softmax_attn
elif layer_type == 'c' and self.cross_residual_attn:
prev_cross_attn = inter.pre_softmax_attn
if exists(post_main_norm):
x = post_main_norm(x)
if return_hiddens:
layer_hiddens.append(x)
if self.resi_dual:
x = x + self.final_norm(outer_residual)
else:
x = self.final_norm(x)
if return_hiddens:
intermediates = LayerIntermediates(
hiddens = hiddens,
attn_intermediates = intermediates,
layer_hiddens = layer_hiddens
)
return x, intermediates
return x
class Encoder(AttentionLayers):
def __init__(self, **kwargs):
assert 'causal' not in kwargs, 'cannot set causality on encoder'
super().__init__(causal = False, **kwargs)
class Decoder(AttentionLayers):
def __init__(self, **kwargs):
assert 'causal' not in kwargs, 'cannot set causality on decoder'
super().__init__(causal = True, **kwargs)
class CrossAttender(AttentionLayers):
def __init__(self, **kwargs):
super().__init__(cross_attend = True, only_cross = True, **kwargs)
class ViTransformerWrapper(nn.Module):
def __init__(
self,
*,
image_size,
patch_size,
attn_layers,
channels = 3,
num_classes = None,
post_emb_norm = False,
emb_dropout = 0.
):
super().__init__()
assert isinstance(attn_layers, Encoder), 'attention layers must be an Encoder'
assert divisible_by(image_size, patch_size), 'image dimensions must be divisible by the patch size'
dim = attn_layers.dim
num_patches = (image_size // patch_size) ** 2
patch_dim = channels * patch_size ** 2
self.patch_size = patch_size
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches, dim))
self.patch_to_embedding = nn.Sequential(
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim)
)
self.post_emb_norm = nn.LayerNorm(dim) if post_emb_norm else nn.Identity()
self.dropout = nn.Dropout(emb_dropout)
self.attn_layers = attn_layers
self.mlp_head = nn.Linear(dim, num_classes) if exists(num_classes) else nn.Identity()
def forward(
self,
img,
return_embeddings = False
):
p = self.patch_size
x = rearrange(img, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = p, p2 = p)
x = self.patch_to_embedding(x)
n = x.shape[1]
x = x + self.pos_embedding[:, :n]
x = self.post_emb_norm(x)
x = self.dropout(x)
x = self.attn_layers(x)
if not exists(self.mlp_head) or return_embeddings:
return x
x = x.mean(dim = -2)
return self.mlp_head(x)
class Transformer(nn.Module):
def __init__(
self,
*,
num_tokens,
max_seq_len,
attn_layers,
emb_dim = None,
max_mem_len = 0,
shift_mem_down = 0,
emb_dropout = 0.,
post_emb_norm = False,
num_memory_tokens = None,
tie_embedding = False,
logits_dim = None,
use_abs_pos_emb = True,
scaled_sinu_pos_emb = False,
l2norm_embed = False,
emb_frac_gradient = 1., # GLM-130B and Cogview successfully used this, set at 0.1
attn_z_loss_weight = 1e-4
):
super().__init__()
assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder'
dim = attn_layers.dim
emb_dim = default(emb_dim, dim)
self.emb_dim = emb_dim
self.num_tokens = num_tokens
self.max_seq_len = max_seq_len
self.max_mem_len = max_mem_len
self.shift_mem_down = shift_mem_down
self.l2norm_embed = l2norm_embed
self.token_emb = TokenEmbedding(emb_dim, num_tokens, l2norm_embed = l2norm_embed)
if not (use_abs_pos_emb and not attn_layers.has_pos_emb):
self.pos_emb = always(0)
elif scaled_sinu_pos_emb:
self.pos_emb = ScaledSinusoidalEmbedding(emb_dim)
else:
self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len, l2norm_embed = l2norm_embed)
self.emb_frac_gradient = emb_frac_gradient # fraction of the gradient that should go to the embedding, https://arxiv.org/abs/2105.13290
self.post_emb_norm = nn.LayerNorm(emb_dim) if post_emb_norm else nn.Identity()
self.emb_dropout = nn.Dropout(emb_dropout)
self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity()
self.attn_layers = attn_layers
self.init_()
logits_dim = default(logits_dim, num_tokens)
self.to_logits = nn.Linear(dim, logits_dim) if not tie_embedding else lambda t: t @ self.token_emb.emb.weight.t()
# memory tokens (like [cls]) from Memory Transformers paper
num_memory_tokens = default(num_memory_tokens, 0)
self.num_memory_tokens = num_memory_tokens
if num_memory_tokens > 0:
self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim))
def init_(self):
if self.l2norm_embed:
nn.init.normal_(self.token_emb.emb.weight, std = 1e-5)
if not isinstance(self.pos_emb, always):
nn.init.normal_(self.pos_emb.emb.weight, std = 1e-5)
return
nn.init.kaiming_normal_(self.token_emb.emb.weight)
def forward(
self,
x,
return_embeddings = False,
return_logits_and_embeddings = False,
return_intermediates = False,
mask = None,
return_mems = False,
return_attn = False,
mems = None,
pos = None,
prepend_embeds = None,
sum_embeds = None,
return_attn_z_loss = False,
attn_z_loss_weight = 1e-4,
**kwargs
):
b, n, device, num_mem, emb_frac_gradient = *x.shape, x.device, self.num_memory_tokens, self.emb_frac_gradient
return_hiddens = return_mems | return_attn | return_intermediates | return_attn_z_loss
# absolute positional embedding
external_pos_emb = exists(pos) and pos.dtype != torch.long
pos_emb = self.pos_emb(x, pos = pos) if not external_pos_emb else pos
x = self.token_emb(x) + pos_emb
# for summing embeddings passed externally - needs this for self-conditioning in non-autoregressive training
if exists(sum_embeds):
x = x + sum_embeds
# post embedding norm, purportedly leads to greater stabilization
x = self.post_emb_norm(x)
# whether to append embeds, as in PaLI, for image embeddings
if exists(prepend_embeds):
prepend_seq, prepend_dim = prepend_embeds.shape[1:]
assert prepend_dim == x.shape[-1], 'prepended embeddings need to have same dimensions as text model dimensions'
x = torch.cat((prepend_embeds, x), dim = -2)
# whether to reduce the gradient going to the embedding, from cogview paper, corroborated by GLM-130B model
if emb_frac_gradient < 1:
assert emb_frac_gradient > 0
x = x * emb_frac_gradient + x.detach() * (1 - emb_frac_gradient)
# embedding dropout
x = self.emb_dropout(x)
x = self.project_emb(x)
if num_mem > 0:
mem = repeat(self.memory_tokens, 'n d -> b n d', b = b)
x = torch.cat((mem, x), dim = 1)
# auto-handle masking after appending memory tokens
if exists(mask):
mask = pad_at_dim(mask, (num_mem, 0), dim = -1, value = True)
if self.shift_mem_down and exists(mems):
mems_l, mems_r = mems[:self.shift_mem_down], mems[self.shift_mem_down:]
mems = [*mems_r, *mems_l]
if return_hiddens:
x, intermediates = self.attn_layers(x, mask = mask, mems = mems, return_hiddens = True, **kwargs)
else:
x = self.attn_layers(x, mask = mask, mems = mems, **kwargs)
mem, x = x[:, :num_mem], x[:, num_mem:]
if return_logits_and_embeddings:
out = (self.to_logits(x), x)
elif return_embeddings:
out = x
else:
out = self.to_logits(x)
if return_attn_z_loss:
pre_softmax_attns = list(map(lambda t: t.pre_softmax_attn, intermediates.attn_intermediates))
intermediates.attn_z_loss = calc_z_loss(pre_softmax_attns, weight = attn_z_loss_weight)
return_intermediates = True
if return_intermediates:
return out, intermediates
if return_mems:
hiddens = intermediates.hiddens
new_mems = list(map(lambda pair: torch.cat(pair, dim = -2), zip(mems, hiddens))) if exists(mems) else hiddens
new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), new_mems))
return out, new_mems
if return_attn:
attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates))
return out, attn_maps
return out | Andromeda-master | Andromeda/core/transformer.py |
import torch
import triton
import triton.language as tl
@triton.jit
def max_fn(x, y):
return tl.math.max(x, y)
@triton.jit
def _fwd_kernel(
Q, K, V, sm_scale,
L,
Out,
stride_qz, stride_qh, stride_qm, stride_qk,
stride_kz, stride_kh, stride_kn, stride_kk,
stride_vz, stride_vh, stride_vk, stride_vn,
stride_oz, stride_oh, stride_om, stride_on,
Z, H, N_CTX,
BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr,
BLOCK_N: tl.constexpr,
IS_CAUSAL: tl.constexpr,
):
start_m = tl.program_id(0)
off_hz = tl.program_id(1)
qvk_offset = off_hz * stride_qh
Q_block_ptr = tl.make_block_ptr(
base=Q + qvk_offset,
shape=(N_CTX, BLOCK_DMODEL),
strides=(stride_qm, stride_qk),
offsets=(start_m * BLOCK_M, 0),
block_shape=(BLOCK_M, BLOCK_DMODEL),
order=(1, 0)
)
K_block_ptr = tl.make_block_ptr(
base=K + qvk_offset,
shape=(BLOCK_DMODEL, N_CTX),
strides=(stride_kk, stride_kn),
offsets=(0, 0),
block_shape=(BLOCK_DMODEL, BLOCK_N),
order=(0, 1)
)
V_block_ptr = tl.make_block_ptr(
base=V + qvk_offset,
shape=(N_CTX, BLOCK_DMODEL),
strides=(stride_vk, stride_vn),
offsets=(0, 0),
block_shape=(BLOCK_N, BLOCK_DMODEL),
order=(1, 0)
)
# initialize offsets
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
offs_n = tl.arange(0, BLOCK_N)
# initialize pointer to m and l
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
l_i = tl.zeros([BLOCK_M], dtype=tl.float32)
acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
# scale sm_scale by log_2(e) and use
# 2^x instead of exp in the loop because CSE and LICM
# don't work as expected with `exp` in the loop
qk_scale = sm_scale * 1.44269504
# load q: it will stay in SRAM throughout
q = tl.load(Q_block_ptr)
q = (q * qk_scale).to(tl.float16)
# loop over k, v and update accumulator
lo = 0
hi = (start_m + 1) * BLOCK_M if IS_CAUSAL else N_CTX
for start_n in range(lo, hi, BLOCK_N):
# -- load k, v --
k = tl.load(K_block_ptr)
v = tl.load(V_block_ptr)
# -- compute qk ---
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
if IS_CAUSAL:
qk = tl.where(offs_m[:, None] >= (start_n + offs_n[None, :]), qk, float("-inf"))
qk += tl.dot(q, k)
# -- compute scaling constant ---
m_i_new = tl.maximum(m_i, tl.max(qk, 1))
alpha = tl.math.exp2(m_i - m_i_new)
p = tl.math.exp2(qk - m_i_new[:, None])
# -- scale and update acc --
acc_scale = l_i * 0 + alpha # workaround some compiler bug
acc *= acc_scale[:, None]
acc += tl.dot(p.to(tl.float16), v)
# -- update m_i and l_i --
l_i = l_i * alpha + tl.sum(p, 1)
m_i = m_i_new
# update pointers
K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N))
V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0))
# write back l and m
acc = acc / l_i[:, None]
l_ptrs = L + off_hz * N_CTX + offs_m
tl.store(l_ptrs, m_i + tl.math.log2(l_i))
# write back O
O_block_ptr = tl.make_block_ptr(
base=Out + qvk_offset,
shape=(N_CTX, BLOCK_DMODEL),
strides=(stride_om, stride_on),
offsets=(start_m * BLOCK_M, 0),
block_shape=(BLOCK_M, BLOCK_DMODEL),
order=(1, 0)
)
tl.store(O_block_ptr, acc.to(tl.float16))
@triton.jit
def _bwd_preprocess(
Out, DO,
Delta,
BLOCK_M: tl.constexpr, D_HEAD: tl.constexpr,
):
off_m = tl.program_id(0) * BLOCK_M + tl.arange(0, BLOCK_M)
off_n = tl.arange(0, D_HEAD)
# load
o = tl.load(Out + off_m[:, None] * D_HEAD + off_n[None, :]).to(tl.float32)
do = tl.load(DO + off_m[:, None] * D_HEAD + off_n[None, :]).to(tl.float32)
# compute
delta = tl.sum(o * do, axis=1)
# write-back
tl.store(Delta + off_m, delta)
@triton.jit
def _bwd_kernel(
Q, K, V, sm_scale, Out, DO,
DQ, DK, DV,
L,
D,
stride_qz, stride_qh, stride_qm, stride_qk,
stride_kz, stride_kh, stride_kn, stride_kk,
stride_vz, stride_vh, stride_vk, stride_vn,
Z, H, N_CTX,
num_block,
BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr,
BLOCK_N: tl.constexpr,
CAUSAL: tl.constexpr,
):
off_hz = tl.program_id(0)
off_z = off_hz // H
off_h = off_hz % H
qk_scale = sm_scale * 1.44269504
# offset pointers for batch/head
Q += off_z * stride_qz + off_h * stride_qh
K += off_z * stride_qz + off_h * stride_qh
V += off_z * stride_qz + off_h * stride_qh
DO += off_z * stride_qz + off_h * stride_qh
DQ += off_z * stride_qz + off_h * stride_qh
DK += off_z * stride_qz + off_h * stride_qh
DV += off_z * stride_qz + off_h * stride_qh
for start_n in range(0, num_block):
if CAUSAL:
lo = start_n * BLOCK_M
else:
lo = 0
# initialize row/col offsets
offs_qm = lo + tl.arange(0, BLOCK_M)
offs_n = start_n * BLOCK_M + tl.arange(0, BLOCK_M)
offs_m = tl.arange(0, BLOCK_N)
offs_k = tl.arange(0, BLOCK_DMODEL)
# initialize pointers to value-like data
q_ptrs = Q + (offs_qm[:, None] * stride_qm + offs_k[None, :] * stride_qk)
k_ptrs = K + (offs_n[:, None] * stride_kn + offs_k[None, :] * stride_kk)
v_ptrs = V + (offs_n[:, None] * stride_qm + offs_k[None, :] * stride_qk)
do_ptrs = DO + (offs_qm[:, None] * stride_qm + offs_k[None, :] * stride_qk)
dq_ptrs = DQ + (offs_qm[:, None] * stride_qm + offs_k[None, :] * stride_qk)
# pointer to row-wise quantities in value-like data
D_ptrs = D + off_hz * N_CTX
l_ptrs = L + off_hz * N_CTX
# initialize dv amd dk
dv = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
dk = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
# k and v stay in SRAM throughout
k = tl.load(k_ptrs)
v = tl.load(v_ptrs)
# loop over rows
for start_m in range(lo, num_block * BLOCK_M, BLOCK_M):
offs_m_curr = start_m + offs_m
# load q, k, v, do on-chip
q = tl.load(q_ptrs)
# recompute p = softmax(qk, dim=-1).T
if CAUSAL:
qk = tl.where(offs_m_curr[:, None] >= (offs_n[None, :]), float(0.), float("-inf"))
else:
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
qk += tl.dot(q, tl.trans(k))
qk *= qk_scale
l_i = tl.load(l_ptrs + offs_m_curr)
p = tl.math.exp2(qk - l_i[:, None])
# compute dv
do = tl.load(do_ptrs)
dv += tl.dot(tl.trans(p.to(Q.dtype.element_ty)), do)
# compute dp = dot(v, do)
Di = tl.load(D_ptrs + offs_m_curr)
dp = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) - Di[:, None]
dp += tl.dot(do, tl.trans(v))
# compute ds = p * (dp - delta[:, None])
ds = p * dp * sm_scale
# compute dk = dot(ds.T, q)
dk += tl.dot(tl.trans(ds.to(Q.dtype.element_ty)), q)
# compute dq
dq = tl.load(dq_ptrs)
dq += tl.dot(ds.to(Q.dtype.element_ty), k)
tl.store(dq_ptrs, dq)
# increment pointers
dq_ptrs += BLOCK_M * stride_qm
q_ptrs += BLOCK_M * stride_qm
do_ptrs += BLOCK_M * stride_qm
# write-back
dv_ptrs = DV + (offs_n[:, None] * stride_qm + offs_k[None, :] * stride_qk)
dk_ptrs = DK + (offs_n[:, None] * stride_kn + offs_k[None, :] * stride_kk)
tl.store(dv_ptrs, dv)
tl.store(dk_ptrs, dk)
empty = torch.empty(128, device="cuda")
class _attention(torch.autograd.Function):
@staticmethod
def forward(ctx, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, causal, sm_scale):
# shape constraints
Lq, Lk, Lv = q.shape[-1], k.shape[-1], v.shape[-1]
assert Lq == Lk and Lk == Lv
assert Lk in {16, 32, 64, 128}
o = torch.empty_like(q)
BLOCK_M = 128
BLOCK_N = 64
grid = (triton.cdiv(q.shape[2], BLOCK_M), q.shape[0] * q.shape[1], 1)
L = torch.empty((q.shape[0] * q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32)
num_warps = 4 if Lk <= 64 else 8
_fwd_kernel[grid](
q, k, v, sm_scale,
L,
o,
q.stride(0), q.stride(1), q.stride(2), q.stride(3),
k.stride(0), k.stride(1), k.stride(2), k.stride(3),
v.stride(0), v.stride(1), v.stride(2), v.stride(3),
o.stride(0), o.stride(1), o.stride(2), o.stride(3),
q.shape[0], q.shape[1], q.shape[2],
BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N, BLOCK_DMODEL=Lk,
IS_CAUSAL=causal,
num_warps=num_warps,
num_stages=4)
ctx.save_for_backward(q, k, v, o, L)
ctx.grid = grid
ctx.sm_scale = sm_scale
ctx.BLOCK_DMODEL = Lk
ctx.causal = causal
return o
@staticmethod
def backward(ctx, do):
BLOCK = 128
q, k, v, o, L = ctx.saved_tensors
do = do.contiguous()
dq = torch.zeros_like(q, dtype=torch.float32)
dk = torch.empty_like(k)
dv = torch.empty_like(v)
delta = torch.empty_like(L)
_bwd_preprocess[(ctx.grid[0] * ctx.grid[1], )](
o, do,
delta,
BLOCK_M=BLOCK, D_HEAD=ctx.BLOCK_DMODEL,
)
_bwd_kernel[(ctx.grid[1],)](
q, k, v, ctx.sm_scale,
o, do,
dq, dk, dv,
L, delta,
q.stride(0), q.stride(1), q.stride(2), q.stride(3),
k.stride(0), k.stride(1), k.stride(2), k.stride(3),
v.stride(0), v.stride(1), v.stride(2), v.stride(3),
q.shape[0], q.shape[1], q.shape[2],
ctx.grid[0],
BLOCK_M=BLOCK, BLOCK_N=BLOCK,
BLOCK_DMODEL=ctx.BLOCK_DMODEL, num_warps=8,
CAUSAL=ctx.causal,
num_stages=1,
)
return dq, dk, dv, None, None
attention = _attention.apply
| Andromeda-master | Andromeda/core/flash.py |
import torch
# This is the unfused version of StableAdamW. It is slower than the fused version (coming).
class StableAdamWUnfused(torch.optim.Optimizer):
def __init__(
self,
params,
lr=0.002,
weight_decay=0.2,
betas=(0.9, 0.99),
eps=1e-8,
clip_thresh=1.0,
precision="amp_bfloat16",
custom_scalar=65536,
):
beta1, beta2 = betas[0], betas[1]
defaults = dict(lr=lr, weight_decay=weight_decay, beta1=beta1, beta2=beta2)
super(StableAdamWUnfused, self).__init__(params, defaults)
self.eps = eps
self.d = clip_thresh
# Set precision to "custom_fp16" if you want to use a fixed loss scalar, custom_scalar, which is divided out in the update step.
# If you do this, call (custom_scalar * loss).backward() instead of loss.backward().
self.precision = precision
self.custom_scaler = custom_scalar
for group in self.param_groups:
group["step"] = 1.0
print("Using StableAdamWUnfused-v1")
def __setstate__(self, state):
super(StableAdamWUnfused, self).__setstate__(state)
def step(self, closure=None):
if closure is not None:
closure()
for group in self.param_groups:
lr = group["lr"]
weight_decay = group["weight_decay"]
beta1 = group["beta1"]
beta2 = group["beta2"]
step = group["step"]
for p in group["params"]:
if p.grad is None:
continue
theta = p.data
param_state = self.state[p]
if self.precision == "custom_fp16":
g = p.grad.data / self.custom_scaler
if torch.any(torch.isnan(g) | torch.isinf(g)):
continue
else:
g = p.grad.data
if "exp_avg" not in param_state:
v = param_state["exp_avg"] = torch.zeros_like(theta)
u = param_state["exp_avg_sq"] = torch.zeros_like(theta)
else:
v = param_state["exp_avg"]
u = param_state["exp_avg_sq"]
beta1hat = beta1 * (1 - beta1 ** (step - 1)) / (1 - beta1**step)
beta2hat = beta2 * (1 - beta2 ** (step - 1)) / (1 - beta2**step)
v = v.mul_(beta1hat).add_(g, alpha=1.0 - beta1hat)
u = u.mul_(beta2hat).addcmul_(g, g, value=1.0 - beta2hat)
denominator = u.sqrt().add_(self.eps)
# StableAdamW = AdamW + update clipping (https://arxiv.org/abs/1804.04235) applied tensor-wise.
rms = (
torch.div(
g.pow(2), torch.maximum(u, (self.eps**2) * torch.ones_like(u))
)
.mean()
.sqrt()
.item()
)
theta = theta.mul_(1.0 - lr * weight_decay).addcdiv_(
v, denominator, value=-lr * (1.0 / max(1.0, rms / self.d))
)
# save current params
param_state["exp_avg"] = v
param_state["exp_avg_sq"] = u
group["step"] = step + 1 | Andromeda-master | Andromeda/utils/stable_adamw.py |
Andromeda-master | Andromeda/utils/__init__.py |
|
import torch
# from palm_rlhf_pytorch.palm import LayerNorm
from torch.nn import LayerNorm
from torch.optim import AdamW
# from palm.utils import print_main
from Andromeda.utils.helpers import print_main
from Andromeda.utils.stable_adamw import StableAdamWUnfused
# optimizers
def decoupled_optimizer(
model: torch.nn.Module,
learning_rate: float,
weight_decay: float = 0.1,
beta_1: float = 0.90,
beta_2: float = 0.95,
optimizer_type: str = "adamw",
use_fsdp: bool = True,
):
"""
Decouples the optimizer from the training process.
This function sets up the optimizer for the model by creating two groups of parameters:
one for weight decay and one without weight decay. Then, it initializes the optimizer
with these two groups of parameters.
Args:
model (Module): The model whose parameters are optimized.
learning_rate (float): The learning rate for the optimizer.
weight_decay (float): The weight decay for the optimizer.
beta_1 (float): The exponential decay rate for the 1st moment estimates.
beta_2 (float): The exponential decay rate for the 2nd moment estimates.
optimizer_type (str): The type of the optimizer. Can be 'lion', 'adamw', or 'stable_adamw'.
use_fsdp (bool, optional): If True, the optimizer will work with fully sharded data parallelism. Defaults to True.
accelerator (Accelerator, optional): The accelerator from HuggingFace's Accelerate library. Defaults to None.
Returns:
Optimizer: The initialized optimizer.
Raises:
ValueError: If the optimizer type is not 'lion', 'adamw' or 'stable_adamw'.
"""
print_main(f"Using {optimizer_type} optimizer")
# Create an empty dictionary called param_dict to store the model's named parameters.
param_dict = {}
# Iterate over the model's named parameters and populate the param_dict with key-value pairs.
for param_name, param in model.named_parameters():
print_main(param_name)
param_dict[param_name] = param
# Separate the model's named modules into two groups: decay and no_decay.
# Create an empty list to store the names of the LayerNorm and Embedding layer weights with no weight decay.
no_decay = []
if use_fsdp:
exclude_module = "_fsdp_wrapped_module.token_emb"
else:
exclude_module = "token_emb"
# Iterate through the named modules of the model.
for module_name, module in model.named_modules():
# Check if the current module is an instance of any of the desired types (LayerNorm or torch.nn.Embedding).
for ndim in [LayerNorm, torch.nn.Embedding]:
if isinstance(module, ndim):
# If torch.nn.Embedding, append its name with a ".weight" suffix to the no_decay list.
if module_name == exclude_module:
no_decay.append(f"{module_name}.weight")
else:
# If the module is an instance of LayerNorm
no_decay.append(f"{module_name}.gamma")
# Exit the inner loop since the desired module has been found.
break
# Create an empty list to store the names of the Linear layer weights with weight decay.
decay = []
# Iterate through the named modules of the model.
for module_name, module in model.named_modules():
# Check if the current module is an instance of the desired type (torch.nn.Linear).
for ndim in [torch.nn.Linear]:
if isinstance(module, ndim):
# If the module is an instance of torch.nn.Linear, append its name with a ".weight" suffix to the decay list.
decay.append(f"{module_name}.weight")
# Exit the inner loop since the desired module has been found.
break
# Create two separate lists of model parameters: decay_param and no_decay_param.
# The decay_param list contains the parameters that should have weight decay applied.
# The no_decay_param list contains the parameters that should not have weight decay applied, excluding the 'to_logits.weight' parameter.
# Create an empty list called decay_param to store the parameters with weight decay.
decay_param = []
if use_fsdp:
exclude_param = "_fsdp_wrapped_module.to_logits.weight"
else:
exclude_param = "to_logits.weight"
# Iterate over the decay list, which contains the names of the parameters with weight decay.
for param in decay:
# Check if the current parameter is not 'to_logits.weight'.
# Append the corresponding parameter from param_dict to the decay_param list.
if param != exclude_param:
decay_param.append(param_dict[param])
# Create an empty list called no_decay_param to store the parameters without weight decay.
no_decay_param = []
# Iterate over the no_decay list, which contains the names of the parameters without weight decay.
for param in no_decay:
# Append the corresponding parameter from param_dict to the no_decay_param list.
no_decay_param.append(param_dict[param])
# Create a list called grouped_params that contains two dictionaries.
# The first dictionary has the decay_param list and the corresponding weight_decay value.
# The second dictionary has the no_decay_param list and a weight_decay value of 0.0.
grouped_params = [
{"params": decay_param, "weight_decay": weight_decay},
{"params": no_decay_param, "weight_decay": 0.0},
]
# Create a variable called optimizer that stores an instance of the optimizer.
if optimizer_type == "adamw":
optimizer = AdamW(
grouped_params,
lr=learning_rate,
betas=(beta_1, beta_2),
)
elif optimizer_type == "stable_adamw":
optimizer = StableAdamWUnfused(
grouped_params,
lr=learning_rate,
betas=(beta_1, beta_2),
)
else:
raise ValueError(
"Invalid optimizer_type. Expected 'lion', 'adamw', 'deepspeed' or 'stable_adamw', got: {}".format(
optimizer_type
)
)
# Return the optimizer.
return optimizer | Andromeda-master | Andromeda/utils/decoupled_optimizer.py |
import math
import torch
from torch import einsum, _nnpack_available
import torch.nn.functional as F
from torch import nn
from einops import rearrange
import copy
from pathlib import PurePath
from tqdm import tqdm_gui
from beartype import beartype
from beartype.typing import Tuple, Optional
from einops import rearrange, repeat, reduce, unpack
from einops.layers.torch import Rearrange, Reduce
#helpers
def exists(val):
return val is not None
#decorators
def eval_decorator(fn):
def inner(self, *args, **kwargs):
was_training = self.training
self.eval()
out = fn(self, *args, **kwargs)
self.train(was_training)
return out
return inner
def defaults(val, d):
return val if exists(val) else d
#tensor helpers
def log(t, eps=1e-20):
return torch.log(t.clamp(min = eps))
def masked_mean(seq, mask=None, dim=1, keepdim=True):
if not exists(mask):
return seq.mean(dim=dim)
if seq.ndim == 3:
mask = rearrange(mask, 'b n -> b n 1')
masked_seq = seq.masked_fill(~mask, 0.)
numer = masked_seq.sum(dim=dim, keepdim=keepdim)
denom = mask.sum(dim=dim, keepdim=keepdim)
masked_mean = numer / denom.clamp(min = 1e-3)
masked_mean = masked_mean.masked_fill(denom == 0, 0.)
return masked_mean
#sampling helpers
def gumbel_noise(t):
noise = torch.zeros_like(t).uniform(0, 1)
return -log(-log(noise))
def gumbel_sample(t, temperature = 1., dim=-1):
return ((t / max(temperature, 1e-10)) + gumbel_noise(t)).argmax(dim=dim)
def top_p(logits, thres=0.9):
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cum_probs = torch.einsum(F.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cum_probs > (1 - thres)
sorted_indices_to_remove[:, 1:] = sorted_indices_to_remove[:, :-1].clone()
sorted_indices_to_remove[:, 0] = 0
sorted_logits[sorted_indices_to_remove] = float("-inf")
return sorted_logits.scatter(1, sorted_indices, sorted_logits)
def top_k(logits, thres=0.9):
k = math.ceil((1 - thres) * logits.shape[-1])
val, ind = torch.topk(logits, k)
probs = torch.full_like(logits, float('-inf'))
probs.scatter_(1, ind, val)
return probs
class LoRA(nn.Module):
def __init__(
self,
dim,
dim_out,
r=8,
alpha=None
):
super().__init__()
alpha = defaults(alpha, r)
self.scale = alpha / r
self.A = nn.Parameter(torch.randn(dim, r))
self.B = nn.Parameter(torch.zeros(r, dim_out))
#reward model
@beartype
class RewardModel(nn.Module):
def __init__(
self,
model: Andromeda,
dropout=0.1,
num_binned_output = 0.,
use_lora = True,
lora_r = 8,
reward_lora_scope = 'reward',
):
super().__init__()
self.model = copy.deepcopy(Andromeda)
self.model.set_dropout(dropout)
self.reward_lora_scope = reward_lora_scope is use_lora else None
if exists(self.reward_lora_scope):
self.model.add_finetune_params(reward_lora_scope, lora_r = lora_r)
dim = model.dim
self.binned_output = num_binned_output > 1
self.prompt_embed = nn.Parameter(torch.zeros(1, 1, dim))
self.response_embed = nn.Parameter(torch.zeros(1, 1, dim))
if self.binned_output:
self.to_pred = nn.Linear(dim, num_binned_output)
else:
self.to_pred = nn.Sequential(
nn.Linear(dim, 1, bias=False),
Rearrange('... 1 -> ...')
)
def load(self, path):
path = Path(path)
assert path.exists()
self.load_state_dict(torch.load(str(path)))
def finetune_parameters(self):
return (
*self.to_pred.parameters(),
*(self.model.finetune_parameters(self.reward_lora_scope) if exists(self.reward_lora_scope) else model.parameters())
)
def forward(
self,
x,
mask=None,
prompt_mask=None,
prompt_lengths=None,
labels=None,
sample=False,
sample_temperature=1.,
disable_lora=False
):
assert not (exists(prompt_mask) and exists(prompt_lengths))
#derive prompt mask from prompt lengths
if exists(prompt_lengths):
batch, seq_len = x.shape
arange = torch.arange(seq_len, device = x.device)
prompt_mask = repeat(arange, 'n -> n n', b = batch) > rearrange(prompt_lengths, 'b -> b 1')
#rward model should have an understand of which section is prompt and which section is repsonse
extra_embed = None
if exists(prompt_mask):
extra_embed = torch.where(
rearrange(prompt_mask, 'b n -> b n 1'),
self.prompt_embed,
self.response_embed
)
embeds = self.model(
x,
) | Andromeda-master | Andromeda/utils/rf_utils.py |
import torch.distributed as dist # Add this line
def print_num_params(model):
n_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
if dist.is_available():
if dist.get_rank() == 0:
print(f"Number of parameters in model: {n_params}")
else:
print(f"Number of parameters in model: {n_params}")
def print_main(msg):
if dist.is_available():
if dist.get_rank() == 0:
print(msg)
else:
print(msg) | Andromeda-master | Andromeda/utils/helpers.py |
import unittest
from Andromeda.dataset_builder import DatasetBuilder
class TestDatasetBuilder(unittest.TestCase):
def setUp(self):
self.builder = DatasetBuilder(dataset_name="tiiuae/falcon-refinedweb")
def test_initialization(self):
self.assertEqual(self.builder.dataset_name, "tiiuae/falcon-refinedweb", "Dataset name is not correctly set.")
self.assertEqual(self.builder.seq_len, 8192, "Sequence length is not correctly set.")
self.assertEqual(self.builder.tokenizer, "EleutherAI/gpt-neox-20b", "Tokenizer is not correctly set.")
def test_build_dataset(self):
dataset = self.builder.build_dataset()
self.assertIsNotNone(dataset, "Dataset is not built.")
self.assertTrue(hasattr(dataset, "map"), "Dataset does not have a map method.")
def test_tokenize_function(self):
example = {"text": ["Hello, world!", "Andromeda is great."]}
tokenized_example = self.builder.tokenize_function(example)
self.assertIsInstance(tokenized_example, dict, "Tokenized example is not a dictionary.")
self.assertTrue(all(isinstance(t, list) for t in tokenized_example.values()), "Tokenized example values are not lists.")
def test_group_texts(self):
examples = {"input_ids": [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]] * 10}
grouped_examples = self.builder.group_texts(examples)
self.assertIsInstance(grouped_examples, dict, "Grouped examples is not a dictionary.")
self.assertTrue(all(isinstance(t, list) for t in grouped_examples.values()), "Grouped example values are not lists.")
self.assertTrue(all(len(t) == self.builder.seq_len for t in grouped_examples["input_ids"]), "Grouped example sequences are not the correct length.")
if __name__ == '__main__':
unittest.main() | Andromeda-master | testing/dataset_builder.py |
import torch
import unittest
from Andromeda.model import Andromeda
class TestAndromeda(unittest.TestCase):
def setUp(self):
self.model = Andromeda()
def test_initialization(self):
self.assertIsNotNone(self.model.andromeda, "Transformer is not initialized.")
self.assertIsNotNone(self.model.decoder, "AutoregressiveWrapper is not initialized.")
def test_forward_pass(self):
input_tokens = torch.randint(0, 50432, (1, 8192))
output = self.model(input_tokens)
self.assertIsInstance(output, torch.Tensor, "Output is not a PyTorch tensor.")
self.assertEqual(output.shape[0], input_tokens.shape[0], "Output batch size does not match input.")
def test_error_handling(self):
with self.assertRaises(Exception):
self.model.forward(None)
def test_model_parameters(self):
self.assertEqual(self.model.Andromeda.num_tokens, 50432, "Number of tokens is not correctly set.")
self.assertEqual(self.model.Andromeda.max_seq_len, 8192, "Max sequence length is not correctly set.")
def test_model_output(self):
input_tokens = torch.randint(0, 50432, (1, 8192))
output1 = self.model(input_tokens)
output2 = self.model(input_tokens)
self.assertTrue(torch.allclose(output1, output2), "Model does not produce consistent output.")
class TestAndromedaExtended(unittest.TestCase):
def setUp(self):
self.model = Andromeda()
def test_input_size(self):
for seq_len in [512, 1024, 2048, 4096]:
input_tokens = torch.randint(0, 50432, (1, seq_len))
output = self.model(input_tokens)
self.assertEqual(output.shape[1], seq_len, f"Output sequence length does not match input for seq_len={seq_len}.")
def test_batch_size(self):
for batch_size in [2, 4, 8, 16]:
input_tokens = torch.randint(0, 50432, (batch_size, 8192))
output = self.model(input_tokens)
self.assertEqual(output.shape[0], batch_size, f"Output batch size does not match input for batch_size={batch_size}.")
def test_token_range(self):
for token in [0, 50431]:
input_tokens = torch.full((1, 8192), fill_value=token)
output = self.model(input_tokens)
self.assertIsInstance(output, torch.Tensor, f"Output is not a PyTorch tensor for token={token}.")
def test_model_depth(self):
for depth in [16, 32, 64]:
model = Andromeda(depth=depth)
self.assertEqual(model.Andromeda.attn_layers.depth, depth, f"Model depth is not correctly set for depth={depth}.")
def test_model_dim(self):
for dim in [1280, 2560, 5120]:
model = Andromeda(dim=dim)
self.assertEqual(model.Andromeda.attn_layers.dim, dim, f"Model dimension is not correctly set for dim={dim}.")
def test_model_heads(self):
for heads in [12, 24, 48]:
model = Andromeda(heads=heads)
self.assertEqual(model.Andromeda.attn_layers.heads, heads, f"Number of heads is not correctly set for heads={heads}.")
def test_model_dim_head(self):
for dim_head in [64, 128, 256]:
model = Andromeda(dim_head=dim_head)
self.assertEqual(model.Andromeda.attn_layers.dim_head, dim_head, f"Head dimension is not correctly set for dim_head={dim_head}.")
def test_model_alibi_num_heads(self):
for alibi_num_heads in [6, 12, 24]:
model = Andromeda(alibi_num_heads=alibi_num_heads)
self.assertEqual(model.Andromeda.attn_layers.alibi_num_heads, alibi_num_heads, f"Number of alibi heads is not correctly set for alibi_num_heads={alibi_num_heads}.")
def test_model_shift_tokens(self):
for shift_tokens in [0, 1, 2]:
model = Andromeda(shift_tokens=shift_tokens)
self.assertEqual(model.Andromeda.attn_layers.shift_tokens, shift_tokens, f"Number of shift tokens is not correctly set for shift_tokens={shift_tokens}.")
def test_model_use_abs_pos_emb(self):
for use_abs_pos_emb in [True, False]:
model = Andromeda(use_abs_pos_emb=use_abs_pos_emb)
self.assertEqual(model.Andromeda.use_abs_pos_emb, use_abs_pos_emb, f"Use absolute position embedding flag is not correctly set for use_abs_pos_emb={use_abs_pos_emb}.")
def test_model_alibi_pos_bias(self):
for alibi_pos_bias in [True, False]:
model = Andromeda(alibi_pos_bias=alibi_pos_bias)
self.assertEqual(model.Andromeda.attn_layers.alibi_pos_bias, alibi_pos_bias, f"Alibi position bias flag is not correctly set for alibi_pos_bias={alibi_pos_bias}.")
def test_model_rotary_xpos(self):
for rotary_xpos in [True, False]:
model = Andromeda(rotary_xpos=rotary_xpos)
self.assertEqual(model.Andromeda.attn_layers.rotary_xpos, rotary_xpos, f"Rotary position flag is not correctly set for rotary_xpos={rotary_xpos}.")
def test_model_attn_flash(self):
for attn_flash in [True, False]:
model = Andromeda(attn_flash=attn_flash)
self.assertEqual(model.Andromeda.attn_layers.attn_flash, attn_flash, f"Attention flash flag is not correctly set for attn_flash={attn_flash}")
if __name__ == '__main__':
unittest.main() | Andromeda-master | testing/model.py |
import unittest
from Andromeda.model import AndromedaTokenizer
class TestAndromedaTokenizer(unittest.TestCase):
def setUp(self):
self.tokenizer = AndromedaTokenizer()
def test_initialization(self):
self.assertIsNotNone(self.tokenizer.tokenizer, "Tokenizer is not initialized.")
self.assertEqual(self.tokenizer.tokenizer.eos_token, "<eos>", "EOS token is not correctly set.")
self.assertEqual(self.tokenizer.tokenizer.pad_token, "<pad>", "PAD token is not correctly set.")
self.assertEqual(self.tokenizer.tokenizer.model_max_length, 8192, "Model max length is not correctly set.")
def test_tokenize_texts(self):
texts = ["Hello, world!", "Andromeda is great."]
tokenized_texts = self.tokenizer.tokenize_texts(texts)
self.assertEqual(tokenized_texts.shape[0], len(texts), "Number of tokenized texts does not match input.")
self.assertTrue(all(isinstance(t, torch.Tensor) for t in tokenized_texts), "Not all tokenized texts are PyTorch tensors.")
def test_decode(self):
texts = ["Hello, world!", "Andromeda is great."]
tokenized_texts = self.tokenizer.tokenize_texts(texts)
decoded_texts = [self.tokenizer.decode(t) for t in tokenized_texts]
self.assertEqual(decoded_texts, texts, "Decoded texts do not match original texts.")
def test_len(self):
num_tokens = len(self.tokenizer)
self.assertIsInstance(num_tokens, int, "Number of tokens is not an integer.")
self.assertGreater(num_tokens, 0, "Number of tokens is not greater than 0.")
if __name__ == '__main__':
unittest.main() | Andromeda-master | testing/tokenizer.py |
import matplotlib.pyplot as plt
import time
import torch
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
import numpy as np
import tracemalloc
# from Andromeda.model import Andromeda
from Andromeda.model import Andromeda
from Andromeda.utils.stable_adamw import StableAdamWUnfused
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed(0)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
import torch.nn.functional as F
from nltk.translate.bleu_score import corpus_bleu
from rouge import Rouge
from sklearn.metrics import f1_score
class AccuracyMetrics:
def __init__(self):
self.rouge = Rouge()
def calculate_perplexity(self, model, data_loader):
model.eval()
total_loss = 0
with torch.no_grad():
for batch in data_loader:
input_ids, labels = batch
output = model(input_ids)
loss = F.cross_entropy(output.view(-1, output.size(-1)), labels.view(-1))
total_loss += loss.item()
return torch.exp(torch.tensor(total_loss / len(data_loader)))
def calculate_bleu(self, references, hypotheses):
return corpus_bleu(references, hypotheses)
def calculate_rouge(self, references, hypotheses):
scores = self.rouge.get_scores(hypotheses, references, avg=True)
return scores
def calculate_f1(self, true_labels, pred_labels):
return f1_score(true_labels, pred_labels, average="weighted")
#mock test dataset
test_dataset = datasets.FakeData(size=1000, transform=transforms.ToTensor())
#model
model = Andromeda(
num_tokens=50304,
dim=1024,
depth=24,
dim_head=128,
heads=8,
alibi_num_heads=4
)
# Usage:
accuracy_metrics = AccuracyMetrics()
# Calculate Perplexity
perplexity = accuracy_metrics.calculate_perplexity(model, data_loader)
print('Perplexity:', perplexity)
# Calculate BLEU
bleu = accuracy_metrics.calculate_bleu(references, hypotheses)
print('BLEU Score:', bleu)
# Calculate ROUGE
rouge_scores = accuracy_metrics.calculate_rouge(references, hypotheses)
print('ROUGE Scores:', rouge_scores)
# Calculate F1 Score
f1 = accuracy_metrics.calculate_f1(true_labels, pred_labels)
print('F1 Score:', f1)
# Add at the bottom of your file
if __name__ == "__main__":
AccuracyMetrics() | Andromeda-master | testing/accuracy.py |
import matplotlib.pyplot as plt
import time
import torch
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
import numpy as np
import tracemalloc
# from Andromeda.model import Andromeda
from Andromeda.model import Andromeda
from Andromeda.utils.stable_adamw import StableAdamWUnfused
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed(0)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class AndromedaModelTest:
def __init__(self):
self.model = Andromeda
self.optimizer = StableAdamWUnfused()
self.loss_function = torch.nn.CrossEntropyLoss()
self.test_input = torch.randint(0, 256, (1, 1024)).cuda()
def test_forward_pass(self):
output = self.model(self.test_input)
assert output.shape == (1, 1024, 64007), "Forward pass output shape mismatch"
def test_backward_pass(self):
self.optimizer.zero_grad()
output = self.model(self.test_input)
loss = self.loss_function(output, self.test_input)
loss.backward()
for name, parameter in self.model.named_parameters():
assert not torch.isnan(parameter.grad().any()), f"Gradient for {name} contains NaNs"
assert not torch.isinf(parameter.grad().any()), f"Gradient for {name} contains Infs"
def test_optimizer_step(self):
initial_params = [param.clone() for param in self.model_parameters()]
output = self.model(self.test_input)
loss = self.loss_function(output, self.test_input)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
for initial_param, param in zip(initial_params, self.model.parameters()):
assert not torch.equal(initial_param, param), "Model Parameters did not change after an optimizer step"
class SpeedMetrics:
def __init__(self, model):
self.model = model.to(device)
def forward_pass_time(self):
start_time = time.time()
self.model.decoder.forward(torch.randint(0, 50304, (1, 8192), device=device, dtype=torch.long))[0]
end_time = time.time()
return end_time - start_time
def backward_pass_time(self):
model_input = self.model.decoder.forward(torch.randint(0, 50304, (1, 8192), device=device, dtype=torch.long))[0]
start_time = time.time()
loss = torch.nn.CrossEntropyLoss()(model_input, torch.randint(0, 50304, (1, 8192), device=device, dtype=torch.long))
loss.backward()
end_time = time.time()
return end_time - start_time
def end_to_end_latency(self):
start_time = time.time()
self.model.forward(torch.randint(0, 50304, (1, 8192), device=device, dtype=torch.long))
end_time = time.time()
return end_time - start_time
class ScalabilityMetrics:
def __init__(self, model, dataset):
self.model = model
self.dataset = dataset
self.dataloader = DataLoader(dataset, batch_size=32)
def throughput(self):
start_time = time.time()
for i, data in enumerate(self.dataloader, 0):
self.model.forward(data)
end_time = time.time()
return len(self.dataset) / (end_time - start_time)
class ConsistencyMetrics:
def __init__(self, model):
self.model = model
def consistency_over_time(self):
consistency_times = []
outputs_list = []
for _ in range(10):
start_time = time.time()
outputs = self.model.forward(torch.randint(0, 50304, (1, 8192)))
end_time = time.time()
consistency_times.append(end_time - start_time)
outputs_list.append(outputs.detach().numpy())
initial_output = outputs_list[0]
consistency_score = 0
for output in outputs_list[1:]:
if np.array_equal(initial_output, output):
consistency_score += 1
consistency_score = consistency_score / len(outputs_list) * 100
return consistency_times, consistency_score
class MemoryMetrics:
def __init__(self, model):
self.model = model
def memory_footprint(self):
tracemalloc.start()
self.model.forward(torch.randint(0, 50304, (1, 8192)))
current, peak = tracemalloc.get_traced_memory()
tracemalloc.stop()
return current, peak
class SequenceMetrics:
def __init__(self, model):
self.model = model
def sequence_length_impact(self):
seq_lengths = [1024, 2048, 4096, 8192]
seq_impact_times = []
for length in seq_lengths:
start_time = time.time()
self.model.forward(torch.randint(0, 50304, (1, length)))
end_time = time.time()
seq_impact_times.append(end_time - start_time)
return seq_lengths, seq_impact_times
class FlopsBenchmark:
def __init__(self, model, bsz=32, d_model=1024, num_heads=8, sequence_lengths=list(range(500, 32001, 500))):
self.bsz = bsz
self.d_model = d_model
self.num_heads = num_heads
self.sequence_lengths = sequence_lengths
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.dtype=torch.float32
self.model = model.to(self.device)
def benchmark(self):
time_taken = []
tflops_per_s = []
for seq_len in self.sequence_lengths:
x = torch.randn(self.bsz, seq_len, self.d_model).to(self.device).type(self.dtype)
torch.cuda.synchronize()
start = time.time()
self.model(x)
torch.cuda.synchronize()
elapsed = time.time() - start
time_taken.append(elapsed)
total_flops = 4 * seq_len **2 * (self.d_model // self.num_heads) * self.num_heads
tflops_per_s.append(total_flops / elapsed / 1e12) # Convert to TFLOPs
for seq_len, elapsed, tflops in zip(self.sequence_lengths, time_taken, tflops_per_s):
print(f"Sequence length: {seq_len}, Time elapsed: {elapsed} s, TFLOPs/s: {tflops}")
#mock test dataset
test_dataset = datasets.FakeData(size=1000, transform=transforms.ToTensor())
#model
model = Andromeda(
num_tokens=50304,
dim=1024,
depth=24,
dim_head=128,
heads=8,
alibi_num_heads=4
)
#speed test metrics test
# speed test metrics test
speed_metrics = SpeedMetrics(model)
forward_pass_time = speed_metrics.forward_pass_time()
backward_pass_time = speed_metrics.backward_pass_time()
end_to_end_latency = speed_metrics.end_to_end_latency()
#scalability metrics test
scalability_metrics = ScalabilityMetrics(model, test_dataset)
throughput = scalability_metrics.throughput()
#consistency metrucs test
consistency_metrics = ConsistencyMetrics(model)
consistency_times, consistency_score = consistency_metrics.consistency_over_time()
#memory metrics test
memory_metrics = MemoryMetrics(model)
current, peak = memory_metrics.memory_footprint()
#sequence metrics test
sequence_metrics = SequenceMetrics(model)
seq_lengths, seq_impact_times = sequence_metrics.sequence_length_impact()
#flops
flops_benchmark = FlopsBenchmark(model)
flops_benchmark.benchmark()
# Graphical Interface
fig, axs = plt.subplots(3)
axs[0].bar(["Forward Pass Time", "Backward Pass Time", "End-to-End Latency"], [forward_pass_time, backward_pass_time, end_to_end_latency])
axs[0].set_title('Speed Metrics')
axs[0].set_xlabel('Metrics')
axs[0].set_ylabel('Time (seconds)')
axs[1].bar(seq_lengths, seq_impact_times)
axs[1].set_title('Sequence Length Impact')
axs[1].set_xlabel('Sequence Length')
axs[1].set_ylabel('Time (seconds)')
axs[2].plot(list(range(1, 11)), consistency_times)
axs[2].set_title('Consistency Over Time')
axs[2].set_xlabel('Run Number')
axs[2].set_ylabel('Time (seconds)')
plt.tight_layout()
plt.show()
print(f"Throughput: {throughput} instances/second")
print(f"Memory used: {current / 10**6}MB; Peak: {peak / 10**6}MB")
# Add at the bottom of your file
if __name__ == "__main__":
model_test = AndromedaModelTest()
model_test.test_forward_pass()
model_test.test_backward_pass()
model_test.test_optimizer_step() | Andromeda-master | testing/benchmarking.py |
# Copyright 2022 MosaicML LLM Foundry authors
# SPDX-License-Identifier: Apache-2.0
"""Run pytest using MCP."""
import argparse
import time
from mcli.sdk import (RunConfig, RunStatus, create_run, follow_run_logs,
stop_run, wait_for_run_status)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--name',
type=str,
default='mcp-pytest',
help='Base name of run')
parser.add_argument('--cluster',
type=str,
default='r1z4',
help='Cluster to use')
parser.add_argument('--gpu_type',
type=str,
default='a100_40gb',
help='Type of GPU to use')
parser.add_argument('--gpu_num',
type=int,
default=2,
help='Number of the GPU to use')
parser.add_argument('--image',
type=str,
default='mosaicml/pytorch:latest',
help='Docker image to use')
parser.add_argument('--git_branch',
type=str,
help='Git branch to check out')
parser.add_argument(
'--git_commit',
type=str,
help='Git commit to check out. Overrides git_branch if specified')
parser.add_argument(
'--pr_number',
type=int,
help=
'PR number to check out. Overrides git_branch/git_commit if specified')
parser.add_argument('--pytest_markers',
type=str,
help='Markers to pass to pytest')
parser.add_argument('--pytest_command',
type=str,
help='Command to run pytest')
parser.add_argument('--timeout',
type=int,
default=1800,
help='Timeout for run (in seconds)')
args = parser.parse_args()
name = args.name
git_integration = {
'integration_type': 'git_repo',
'git_repo': 'mosaicml/llm-foundry',
'ssh_clone': 'False',
}
if args.git_branch is not None and args.git_commit is None:
name += f'-branch-{args.git_branch}'
git_integration['git_branch'] = args.git_branch
if args.git_commit is not None:
name += f'-commit-{args.git_commit}'
git_integration['git_commit'] = args.git_commit
command = 'cd llm-foundry'
# Checkout a specific PR if specified
if args.pr_number is not None:
name += f'-pr-{args.pr_number}'
command += f'''
git fetch origin pull/{args.pr_number}/head:pr_branch
git checkout pr_branch
'''
# Shorten name if too long
if len(name) > 56:
name = name[:56]
command += f'''
pip install --upgrade --user .[all]
export COMMON_ARGS="-v --durations=20 -m '{args.pytest_markers}'"
make test PYTEST='{args.pytest_command}' EXTRA_ARGS="$COMMON_ARGS --codeblocks"
make test-dist PYTEST='{args.pytest_command}' EXTRA_ARGS="$COMMON_ARGS" WORLD_SIZE=2
python -m coverage combine
python -m coverage report
'''
config = RunConfig(
name=name,
cluster=args.cluster,
gpu_type=args.gpu_type,
gpu_num=args.gpu_num,
image=args.image,
integrations=[git_integration],
command=command,
)
# Create run
run = create_run(config)
print(f'[GHA] Run created: {run.name}')
# Wait until run starts before fetching logs
run = wait_for_run_status(run, status='running')
start_time = time.time()
print('[GHA] Run started. Following logs...')
# Print logs
for line in follow_run_logs(run):
print(line, end='')
# Check if args.timeout seconds have elapsed
if time.time() - start_time > args.timeout:
print(
f'[GHA] Run timed out and did not complete in {args.timeout/60} minutes.'
)
run = stop_run(run)
print('[GHA] Run stopped.')
break
print('[GHA] Run completed. Waiting for run to finish...')
run = wait_for_run_status(run, status='completed')
# Fail if command exited with non-zero exit code or timed out
assert run.status == RunStatus.COMPLETED
| Andromeda-master | .github/mcp/mcp_pytest.py |
# Copyright (c) 2022 Agora
# Licensed under The MIT License [see LICENSE for details]
from io import open
from setuptools import find_packages, setup
setup(
name="zetascale",
version="0.0.3",
author="Zeta Team",
author_email="[email protected]",
description="Transformers at zeta scales",
long_description=open("README.md", "r", encoding="utf-8").read(),
long_description_content_type="text/markdown",
keywords="Transformers at zeta scale",
license="MIT",
url="https://github.com/kyegomez/zeta",
packages=find_packages(exclude=["*.tests", "*.tests.*", "tests.*", "tests"]),
install_requires=["torch>=1.8", "fairscale==0.4.0", "timm==0.6.13", 'optimus-prime-transformers', 'triton', 'pytest'],
python_requires=">=3.8.0",
classifiers=[
"Programming Language :: Python :: 3",
],
)
| zeta-main | setup.py |
import torch
from zeta import FlashAttention
q = torch.randn(2, 4, 6, 8)
k = torch.randn(2, 4, 10, 8)
v = torch.randn(2, 4, 10, 8)
attention = FlashAttention(causal=False, dropout=0.1, flash=False)
output = attention(q, k, v)
print(output.shape) | zeta-main | example.py |
#architecture
from zeta.models import *
from zeta.models.andromeda import Andromeda
#models
from zeta.models.gpt4 import GPT4, GPT4MultiModal
from zeta.models.palme import PalmE
#######
from zeta.nn import *
from zeta.nn.architecture.transformer import (
AttentionLayers,
Decoder,
Encoder,
Transformer,
)
from zeta.nn.attention.dilated_attention import DilatedAttention
from zeta.nn.attention.flash_attention import FlashAttention
from zeta.nn.attention.flash_attention2 import FlashAttentionTwo
# from zeta.nn.attention.cross_attention import CrossAttend
from zeta.nn.attention.multihead_attention import MultiheadAttention
# from zeta.nn.architecture.attn_layers import AttentionLayers
# from zeta.nn.architecture.encoder import Encoder
# from zeta.nn.architecture.decoder import Decoder
#attentions
from zeta.nn.attention.multiquery_attention import MultiQueryAttention
from zeta.tokenizers.language_tokenizer import LanguageTokenizerGPTX
#tokenizers
from zeta.tokenizers.multi_modal_tokenizer import MultiModalTokenizer
from zeta.training import *
#loss
from zeta.training.loss.nebula import Nebula
#train
from zeta.training.train import Trainer, train
| zeta-main | zeta/__init__.py |
import os
from logging import getLogger
from typing import List, Optional
from sentencepiece import SentencePieceProcessor
logger = getLogger()
class SentencePieceTokenizer:
"""
A SentencePieceTokenizer is a tokenizer that uses a pretrained SentencePiece model to convert text into tokens and vice versa.
It includes the ability to add special tokens for infilling tasks and provides functionality to encode and decode text with or without implicit leading spaces.
Parameters:
- model_path (str): Path to the pretrained SentencePiece model file.
Attributes:
- n_words (int): Vocabulary size of the SentencePiece model.
- bos_id (int): Token ID of the beginning-of-sentence (BOS) token.
- eos_id (int): Token ID of the end-of-sentence (EOS) token.
- pad_id (int): Token ID of the padding (PAD) token.
- prefix_id (int, optional): Token ID of the prefix token. Default: None.
- middle_id (int, optional): Token ID of the middle token. Default: None.
- suffix_id (int, optional): Token ID of the suffix token. Default: None.
- eot_id (int, optional): Token ID of the end-of-turn (EOT) token. Default: None.
"""
def __init__(self, model_path: str):
# reload tokenizer
assert os.path.isfile(model_path), model_path
self.sp_model = SentencePieceProcessor(model_file=model_path)
logger.info(f"Reloaded SentencePiece model from {model_path}")
# BOS / EOS token IDs
self.n_words: int = self.sp_model.vocab_size()
self.bos_id: int = self.sp_model.bos_id()
self.eos_id: int = self.sp_model.eos_id()
self.pad_id: int = self.sp_model.pad_id()
# token IDs for special infilling tokens
self.prefix_id: Optional[int] = self.sp_model.piece_to_id("▁<PRE>") or None
self.middle_id: Optional[int] = self.sp_model.piece_to_id("▁<MID>") or None
self.suffix_id: Optional[int] = self.sp_model.piece_to_id("▁<SUF>") or None
self.eot_id: Optional[int] = self.sp_model.piece_to_id("▁<EOT>") or None
logger.info(
f"#words: {self.n_words} - BOS ID: {self.bos_id} - EOS ID: {self.eos_id} "
f"- PRE ID: {self.prefix_id} - MID ID: {self.middle_id} - SUF ID: {self.suffix_id} - EOT ID: {self.eot_id}"
)
assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()
def encode(self, s: str, bos: bool, eos: bool) -> List[int]:
assert type(s) is str
t = self.sp_model.encode(s)
if bos:
t = [self.bos_id] + t
if eos:
t = t + [self.eos_id]
return t
def decode(self, t: List[int]) -> str:
return self.sp_model.decode(t)
def encode_infilling(self, s: str) -> List[int]:
"""Encode a string without an implicit leading space."""
return self.sp_model.encode("☺" + s)[2:]
def decode_infilling(self, t: List[int]) -> str:
"""Decode a string without an implicit leading space."""
return self.sp_model.decode([self.sp_model.piece_to_id("☺")] + t)[1:] | zeta-main | zeta/tokenizers/sentence_piece.py |
from zeta.tokenizers.language_tokenizer import LanguageTokenizerGPTX
from zeta.tokenizers.multi_modal_tokenizer import MultiModalTokenizer
from zeta.tokenizers.sentence_piece import SentencePieceTokenizer | zeta-main | zeta/tokenizers/__init__.py |
from transformers import AutoTokenizer
class LanguageTokenizerGPTX:
def __init__(self):
self.tokenizer= AutoTokenizer.from_pretrained(
"EleutherAI/gpt-neox-20b",
eos_token="<eos>",
pad_token="<pad>",
extra_ids=0,
model_max_length=8192
)
def tokenize_texts(self, texts):
return self.tokenizer(texts, return_tensors='pt', padding=True, truncation=True).input_ids
def decode(self, texts):
return self.tokenizer.decode(texts)
def __len__(self):
num_tokens = len(self.tokenizer)
return num_tokens
| zeta-main | zeta/tokenizers/language_tokenizer.py |
import logging
import torch
from transformers import CLIPProcessor, AutoTokenizer
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
class MultiModalTokenizer:
"""
A tokenizer class for the kosmos model
Attributes:
processor(CLIPProcessor): The processor to tokenize images
tokenizer: (AutoTokenizer): The tokenizer to tokenize text
im_idx: (int): The Index of the "<image>" token.
im_end_idx (int): The index of the "</image>" token.
"""
def __init__(self,
max_length: int = 8192):
self.max_length = max_length
try:
self.processor = CLIPProcessor.from_pretrained("laion/CLIP-ViT-L-14-laion2B-s32B-b82K")
self.tokenizer = AutoTokenizer.from_pretrained(
"EleutherAI/gpt-neox-20b",
additional_special_tokens=["<image>", "</image>"],
eos_token="<eos>",
pad_token="<pad>",
extra_ids=0,
model_max_length=self.max_length
)
except Exception as e:
logging.error(f"Failed to initialize KosmosTokenizer: {e}")
raise
self.im_idx, self.im_end_idx = self.tokenizer.convert_tokens_to_ids(["<image>", "</image>"])
def tokenize_texts(self, texts: str):
"""
Tokenize given texts.
Args:
Texts (str): The Text to be tokenized
Returns:
A tuple containing the tokenized texts and only the text tokens.
"""
try:
texts = self.tokenizer(texts, return_tensors="pt", padding=True, truncation=True).input_ids
# Add image tokens to text as "<s> <image> </image> text </s>"
image_tokens = torch.tensor([[self.im_idx, self.im_end_idx]] * texts.shape[0])
return torch.cat([texts[:, 0:1], image_tokens, texts[:, 1:]], dim=1), texts
except Exception as e:
logging.error(f"Failed to tokenize texts: {e}")
raise
def tokenize_images(self, images):
"""
Tokenizes given images.
Args:
images: The images to be tokenized
Returns:
The tokenized images.
"""
try:
return self.processor(images=images, return_tensors="pt").pixel_values
except Exception as e:
logging.error(f"Failed to tokenize images: {e}")
raise
def tokenize(self, sample):
"""
Tokenizes given sample.
Args:
Sample: The sample to be tokenized
Returns:
A dictionary containing the tokenized text tokens, images, labels, and attention mask.
"""
try:
text_tokens, only_text_tokens = self.tokenize_texts(sample["target_text"])
attention_mask = text_tokens != self.tokenizer.pad_token_id
dummy_image_features = torch.ones((text_tokens.shape[0], 64))
attention_mask = torch.cat([dummy_image_features, attention_mask], dim=1)
return {
"text_tokens": text_tokens,
"images": self.tokenize_images(sample["image"]),
"labels": only_text_tokens,
"attention_mask": attention_mask,
}
except Exception as e:
logging.error(f"Failed to tokenize sample: {e}")
raise | zeta-main | zeta/tokenizers/multi_modal_tokenizer.py |
# Copyright (c) 2022 Agora
# Licensed under The MIT License [see LICENSE for details]
# attention
from zeta.nn.architecture.auto_regressive_wrapper import AutoregressiveWrapper
from zeta.nn.architecture.local_transformer import LocalTransformer
from zeta.nn.architecture.parallel_transformer import ParallelTransformerBlock
from zeta.nn.architecture.transformer import (
Decoder,
Encoder,
Transformer,
ViTransformerWrapper,
)
from zeta.nn.attention.flash_attention2 import FlashAttentionTwo
from zeta.nn.attention.local_attention import LocalAttention
from zeta.nn.attention.local_attention_mha import LocalMHA
# from zeta.nn.attention.cross_attention import CrossAttend
from zeta.nn.attention.multihead_attention import MultiheadAttention
# from zeta.nn.architecture.cross_attender import CrossAttender
######### Attention
from zeta.nn.attention.multiquery_attention import MultiQueryAttention
from zeta.nn.embeddings.base import BaseEmbedding
from zeta.nn.embeddings.bnb_embedding import BnBEmbedding
from zeta.nn.embeddings.multiway_network import (
MultiwayEmbedding,
MultiwayNetwork,
MultiwayWrapper,
)
from zeta.nn.embeddings.nominal_embeddings import NominalEmbedding
# embeddings
from zeta.nn.embeddings.rope import RotaryEmbedding
from zeta.nn.embeddings.xpos_relative_position import (
XPOS,
apply_rotary_pos_emb,
rotate_every_two,
)
from zeta.nn.modules.droppath import DropPath
from zeta.nn.modules.feedforward_network import FeedForwardNetwork
# modules
from zeta.nn.modules.lora import Lora
from zeta.nn.modules.token_learner import TokenLearner
from zeta.nn.modules.dynamic_module import DynamicModule
from zeta.nn.architecture.hierarchical_transformer import HierarchicalTransformer
| zeta-main | zeta/nn/__init__.py |
import math
import torch
import torch.nn.functional as F
from torch import nn
try:
from apex.normalization import FusedLayerNorm as LayerNorm
except ModuleNotFoundError:
from torch.nn import LayerNorm
from zeta.nn.attention.base import BaseAttention
from zeta.nn.embeddings.multiway_network import MultiwayWrapper
from zeta.nn.embeddings.xpos_relative_position import XPOS
class MultiheadAttention(BaseAttention):
def __init__(
self,
args,
embed_dim: int = None,
num_heads: int = None,
dropout: int = 0.0,
self_attention: bool =False,
encoder_decoder_attention: bool = False,
subln: bool =False,
):
super().__init__()
self.args = args
self.embed_dim = embed_dim
self.num_heads = num_heads
self.head_dim = embed_dim // num_heads
self.scaling = self.head_dim**-0.5
self.self_attention = self_attention
self.encoder_decoder_attention = encoder_decoder_attention
assert self.self_attention ^ self.encoder_decoder_attention
self.k_proj = MultiwayWrapper(args, nn.Linear(embed_dim, embed_dim, bias=True))
self.v_proj = MultiwayWrapper(args, nn.Linear(embed_dim, embed_dim, bias=True))
self.q_proj = MultiwayWrapper(args, nn.Linear(embed_dim, embed_dim, bias=True))
self.out_proj = MultiwayWrapper(
args, nn.Linear(embed_dim, embed_dim, bias=True)
)
self.inner_attn_ln = (
MultiwayWrapper(args, LayerNorm(self.embed_dim, eps=args.layernorm_eps))
if subln and self.self_attention
else None
)
self.dropout_module = torch.nn.Dropout(dropout)
self.xpos = (
XPOS(self.head_dim, args.xpos_scale_base)
if args.xpos_rel_pos and self.self_attention
else None
)
def reset_parameters(self):
nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2))
nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2))
nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2))
nn.init.xavier_uniform_(self.out_proj.weight)
nn.init.constant_(self.out_proj.bias, 0.0)
def forward(
self,
query,
key,
value,
incremental_state=None,
key_padding_mask=None,
attn_mask=None,
rel_pos=None,
is_first_step=False,
):
bsz, tgt_len, embed_dim = query.size()
src_len = tgt_len
assert embed_dim == self.embed_dim, f"query dim {embed_dim} != {self.embed_dim}"
key_bsz, src_len, _ = key.size()
assert key_bsz == bsz, f"{query.size(), key.size()}"
assert value is not None
assert bsz, src_len == value.shape[:2]
q = self.q_proj(query)
k = self.k_proj(key)
v = self.v_proj(value)
q *= self.scaling
q = q.view(bsz, tgt_len, self.num_heads, self.head_dim).transpose(1, 2)
k = k.view(bsz, src_len, self.num_heads, self.head_dim).transpose(1, 2)
v = v.view(bsz, src_len, self.num_heads, self.head_dim).transpose(1, 2)
q = q.reshape(bsz * self.num_heads, tgt_len, self.head_dim)
k = k.reshape(bsz * self.num_heads, src_len, self.head_dim)
v = v.reshape(bsz * self.num_heads, src_len, self.head_dim)
if incremental_state is not None:
if "prev_key" in incremental_state:
prev_key = incremental_state["prev_key"].view(
bsz * self.num_heads, -1, self.head_dim
)
prev_value = incremental_state["prev_value"].view(
bsz * self.num_heads, -1, self.head_dim
)
k = torch.cat([prev_key, k], dim=1)
v = torch.cat([prev_value, v], dim=1)
incremental_state["prev_key"] = k.view(
bsz, self.num_heads, -1, self.head_dim
)
incremental_state["prev_value"] = v.view(
bsz, self.num_heads, -1, self.head_dim
)
src_len = k.size(1)
if self.xpos is not None:
if incremental_state is not None and not is_first_step:
offset = src_len - 1
else:
offset = 0
k = self.xpos(k, offset=0, downscale=True)
q = self.xpos(q, offset=offset, downscale=False)
attn_weights = torch.bmm(q, k.transpose(1, 2))
if attn_mask is not None:
attn_weights = torch.nan_to_num(attn_weights)
attn_mask = attn_mask.unsqueeze(0)
attn_weights += attn_mask
if key_padding_mask is not None:
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.masked_fill(
key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool),
float("-inf"),
)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if rel_pos is not None:
rel_pos = rel_pos.view(attn_weights.size())
attn_weights = attn_weights + rel_pos
attn_weights = F.softmax(attn_weights, dim=-1, dtype=torch.float32).type_as(
attn_weights
)
attn_probs = self.dropout_module(attn_weights)
attn = torch.bmm(attn_probs, v)
attn = attn.transpose(0, 1).reshape(tgt_len, bsz, embed_dim).transpose(0, 1)
if self.inner_attn_ln is not None:
attn = self.inner_attn_ln(attn)
attn = self.out_proj(attn)
attn_weights = attn_weights.view(
bsz, self.num_heads, tgt_len, src_len
).transpose(1, 0)
return attn, attn_weights | zeta-main | zeta/nn/attention/multihead_attention.py |
import torch
from torch import nn
import torch.nn.functional as F
from einops import rearrange
from zeta.nn.attention.local_attention import LocalAttention
from zeta.utils.main import default, exists, l2norm
class LocalMHA(nn.Module):
def __init__(
self,
*,
dim,
window_size,
dim_head=64,
heads=8,
dropout=0.,
causal=False,
prenorm=False,
qk_rmsnorm=False,
qk_scale=8,
use_xpos=False,
xpos_scale_base=None,
exact_windowsize=None,
**kwargs
):
super().__init__()
inner_dim = dim_head * heads
self.norm = nn.LayerNorm(dim) if prenorm else None
self.heads = heads
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias=False)
self.qk_rmsnorm = qk_rmsnorm
if qk_rmsnorm:
self.q_scale = nn.Parameter(torch.ones(dim_head))
self.k_scale = nn.Parameter(torch.ones(dim_head))
self.attn_fn = LocalAttention(
dim = dim_head,
window_size=window_size,
causal=causal,
autopad=True,
scale = (qk_scale if qk_rmsnorm else None),
exact_windowsize = default(exact_windowsize, True),
use_xpos=use_xpos,
xpos_scale_base=xpos_scale_base,
**kwargs
)
self.to_out = nn.Linear(inner_dim, dim, bias=False)
def forward(
self,
x,
mask=None,
attn_bias=None
):
if exists(self.norm):
x = self.norm(x)
q, k, v = self.to_qkv(x).chunk(3, dim=-1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=self.heads), (q, k, v))
if self.qk_rmsnorm:
q, k = map(l2norm, (q, k))
q = q * self.q_scale
k = k * self.k_scale
out = self.attn_fn(
q,
k,
v,
mask=mask,
attn_bias=attn_bias
)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out) | zeta-main | zeta/nn/attention/local_attention_mha.py |
import math
import warnings
from typing import Dict, Optional, Type
import torch
import torch.nn as nn
from einops import rearrange
from packaging import version
from zeta.nn.attention.base import BaseAttention
def _cast_if_autocast_enabled(tensor):
if torch.is_autocast_enabled():
if tensor.device.type == 'cuda':
dtype = torch.get_autocast_gpu_dtype()
elif tensor.device.type == 'cpu':
dtype = torch.get_autocast_cpu_dtype()
else:
raise NotImplementedError()
return tensor.to(dtype=dtype)
return tensor
class LPLayerNorm(nn.Module):
def __init__(
self,
normalized_shape,
eps=1e-05,
elementwise_affine=True,
device=None,
dtype=None,
):
super().__init__(
normalized_shape=normalized_shape,
eps=eps,
elementwise_affine=elementwise_affine,
device=device,
dtype=dtype
)
def forward(self, x):
module_device = x.device
downcast_x = _cast_if_autocast_enabled(x)
downcast_weight = _cast_if_autocast_enabled(
self.weight) if self.weight is not None else self.weight
downcast_bias = _cast_if_autocast_enabled(
self.bias) if self.bias is not None else self.bias
with torch.autocast(enabled=False, device_type=module_device.type):
return torch.nn.functional.layer_norm(
downcast_x,
self.normalized_shape,
downcast_weight,
downcast_bias,
self.eps,
)
def rms_norm(x, weight=None, eps=1e-5):
output = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + eps)
if weight is not None:
return output * weight
return output
class RMSNorm(nn.Module):
def __init__(
self,
normalized_shape,
eps=1e-5,
weight=True,
dtype=None,
device=None,
):
super().__init__()
self.eps = eps
if weight:
self.weight = torch.nn.Parameter(
torch.ones(normalized_shape, dtype=dtype, device=device)
)
else:
self.register_parameter('weight', None)
def forward(self, x):
return rms_norm(x.float(), self.weight, self.eps).to(dtype=x.dtype)
class LPRMSNorm(RMSNorm):
def __init__(
self,
normalized_shape,
eps=1e-5,
weight=True,
dtype=None,
device=None,
):
super().__init__(
normalized_shape=normalized_shape,
eps=eps,
weight=weight,
dtype=dtype,
device=device,
)
def forward(self, x):
downcast_x = _cast_if_autocast_enabled(x)
downcast_weight = _cast_if_autocast_enabled(
self.weight) if self.weight is not None else self.weight
with torch.autocast(enabled=False, device_type=x.device_type):
return rms_norm(downcast_x, downcast_weight,
self.eps).to(dtype=x.dtype)
#Registers
FC_CLASS_REGISTRY = {
'torch': nn.Linear,
}
NORM_CLASS_REGISTRY = {
'layernornm': nn.LayerNorm,
'low_precision_layernorm': LPLayerNorm,
'rmsnorm': LPLayerNorm,
'low_precision_rmsnorm': LPRMSNorm,
}
def _reset_causal(num_query_tokens: int, num_key_tokens: int,
original_causal: bool):
# disable causal when it is not needed
# necessary for flash & triton for generation with kv_cache
if original_causal and num_query_tokens != num_key_tokens:
if num_query_tokens != 1:
raise NotImplementedError(
'MPT does not support query and key with different number of tokens, unless number of query tokens is 1.'
)
else:
return False
return original_causal
def scaled_multihead_dot_product_attention(
query,
key,
value,
heads,
past_key_value=None,
softmax_scale=None,
bias=None,
key_padding_mask=None,
causal=False,
dropout=0.0,
training=False,
needs_weights=False,
multiquery=False,
):
q = rearrange(query, 'b s (h d) -> b h s d', h=heads)
kv_heads = 1 if multiquery else heads
k = rearrange(key, 'b s (h d) -> b h d s', h=kv_heads)
v = rearrange(value, 'b s (h d) -> b h s d', h=kv_heads)
if past_key_value is not None:
# attn_impl: flash & triton use kernels which expect input shape [b, s, h, d_head].
# kv_cache is therefore stored using that shape.
# attn_impl: torch stores the kv_cache in the ordering which is most advantageous
# for its attn computation ie
# keys are stored as tensors with shape [b, h, d_head, s] and
# values are stored as tensors with shape [b, h, s, d_head]
if len(past_key_value) != 0:
k = torch.cat([past_key_value[0], k], dim=3)
v = torch.cat([past_key_value[1], v], dim=2)
past_key_value = (k, v)
b, _, s_q, d = q.shape
s_k = k.size(-1)
if softmax_scale is None:
softmax_scale = 1 / math.sqrt(d)
attn_weight = q.matmul(k) * softmax_scale
if bias is not None:
# clamp to 0 necessary for torch 2.0 compile()
_s_q = max(0, bias.size(2) - s_q)
_s_k = max(0, bias.size(3) - s_k)
bias = bias[:, :, _s_q:, _s_k:]
if (bias.size(-1) != 1 and
bias.size(-1) != s_k) or (bias.size(-2) != 1 and
bias.size(-2) != s_q):
raise RuntimeError(
f'bias (shape: {bias.shape}) is expected to broadcast to shape: {attn_weight.shape}.'
)
attn_weight = attn_weight + bias
min_val = torch.finfo(q.dtype).min
if key_padding_mask is not None:
if bias is not None:
warnings.warn(
'Propogating key_padding_mask to the attention module ' +\
'and applying it within the attention module can cause ' +\
'unneccessary computation/memory usage. Consider integrating ' +\
'into bias once and passing that to each attention ' +\
'module instead.'
)
attn_weight = attn_weight.masked_fill(
~key_padding_mask.view((b, 1, 1, s_k)), min_val)
if causal and (not q.size(2) == 1):
s = max(s_q, s_k)
causal_mask = attn_weight.new_ones(s, s, dtype=torch.float32)
causal_mask = causal_mask.tril()
causal_mask = causal_mask.to(torch.bool)
causal_mask = ~causal_mask
causal_mask = causal_mask[-s_q:, -s_k:]
attn_weight = attn_weight.masked_fill(causal_mask.view(1, 1, s_q, s_k),
min_val)
attn_weight = torch.softmax(attn_weight, dim=-1)
if dropout:
attn_weight = torch.nn.functional.dropout(attn_weight,
p=dropout,
training=training,
inplace=True)
out = attn_weight.to(v.dtype).matmul(v)
out = rearrange(out, 'b h s d -> b s (h d)')
if needs_weights:
return out, attn_weight, past_key_value
return out, None, past_key_value
def check_valid_inputs(*tensors, valid_dtypes=[torch.float16, torch.bfloat16]):
for tensor in tensors:
if tensor.dtype not in valid_dtypes:
raise TypeError(f'{tensor.dtype=} must be in {valid_dtypes=}.')
if not tensor.is_cuda:
raise TypeError(f'Inputs must be cuda tensors ({tensor.is_cuda=}).')
def flash_attn_fn(
query,
key,
value,
heads,
past_key_value=None,
softmax_scale=None,
bias=None,
key_padding_mask=None,
causal=False,
dropout=0.0,
training=False,
needs_weights=False,
multiquery=False,
):
try:
from flash_attn import bert_padding, flash_attn_interface # type: ignore # yapf: disable # isort: skip
except:
raise RuntimeError('Please install flash-attn==1.0.3.post0')
check_valid_inputs(query, key, value)
if past_key_value is not None:
if len(past_key_value) != 0:
key = torch.cat([past_key_value[0], key], dim=1)
value = torch.cat([past_key_value[1], value], dim=1)
past_key_value = (key, value)
if bias is not None:
# clamp to 0 necessary for torch 2.0 compile()
_s_q = max(0, bias.size(2) - query.size(1))
_s_k = max(0, bias.size(3) - key.size(1))
bias = bias[:, :, _s_q:, _s_k:]
if bias is not None:
raise NotImplementedError('bias not implemented for flash attn.')
batch_size, seqlen = query.shape[:2]
if key_padding_mask is None:
key_padding_mask = torch.ones_like(key[:, :, 0], dtype=torch.bool)
query_padding_mask = key_padding_mask[:, -query.size(1):]
query_unpad, indices_q, cu_seqlens_q, max_seqlen_q = bert_padding.unpad_input(
query, query_padding_mask)
query_unpad = rearrange(query_unpad, 'nnz (h d) -> nnz h d', h=heads)
key_unpad, _, cu_seqlens_k, max_seqlen_k = bert_padding.unpad_input(
key, key_padding_mask)
key_unpad = rearrange(key_unpad,
'nnz (h d) -> nnz h d',
h=1 if multiquery else heads)
value_unpad, _, _, _ = bert_padding.unpad_input(value, key_padding_mask)
value_unpad = rearrange(value_unpad,
'nnz (h d) -> nnz h d',
h=1 if multiquery else heads)
if multiquery:
key_unpad = key_unpad.expand(key_unpad.size(0), heads,
key_unpad.size(-1))
value_unpad = value_unpad.expand(value_unpad.size(0), heads,
value_unpad.size(-1))
dropout = dropout if training else 0.0
reset_causal = _reset_causal(query.size(1), key.size(1), causal)
output_unpad = flash_attn_interface.flash_attn_unpadded_func(
query_unpad,
key_unpad,
value_unpad,
cu_seqlens_q,
cu_seqlens_k,
max_seqlen_q,
max_seqlen_k,
dropout,
softmax_scale=softmax_scale,
causal=reset_causal,
return_attn_probs=needs_weights)
output = bert_padding.pad_input(
rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices_q, batch_size,
seqlen)
return output, None, past_key_value
def attn_bias_shape(attn_impl, heads, seq_len, alibi, prefix_lm, causal,
use_sequence_id):
if attn_impl == 'flash':
return None
elif attn_impl in ['torch', 'triton']:
if alibi:
if (prefix_lm or not causal) or use_sequence_id:
return (1, heads, seq_len, seq_len)
return (1, heads, 1, seq_len)
elif prefix_lm or use_sequence_id:
return (1, 1, seq_len, seq_len)
return None
else:
raise ValueError(f'{attn_impl=} is an invalid setting.')
def build_attn_bias(
attn_impl,
bias,
heads,
seq_len,
causal=False,
alibi=False,
alibi_bias_max=8,
):
if attn_impl == 'flash':
return None
elif attn_impl in ['torch', 'triton']:
if alibi:
# in place add alibi to attn bias
device, dtype = bias.device, bias.dtype
bias = bias.add(
build_alibi_bias(
heads,
seq_len,
full=not causal,
alibi_bias_max=alibi_bias_max,
device=device,
dtype=dtype,
))
return bias
else:
raise ValueError(f'{attn_impl=} is an invalid setting.')
#helper helpers
def gen_slopes(heads, alibi_bias_max=8, device=None):
_heads = 2**math.ceil(math.log2(heads))
m = torch.arange(1, _heads + 1, dtype=torch.float32, device=device)
m = m.mul(alibi_bias_max / _heads)
slopes = (1. / torch.pow(2, m))
if _heads != heads:
# if heads is not a power of two,
# Huggingface and FasterTransformer calculate slopes normally,
# then return this strided concatenation of slopes
slopes = torch.concat([slopes[1::2], slopes[::2]])[:heads]
return slopes.view(1, heads, 1, 1)
def build_alibi_bias(
heads,
seq_len,
full=False,
alibi_bias_max=8,
device=None,
dtype=None,
):
alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32,
device=device).view(1, 1, 1, seq_len)
if full:
# generate 1 x Heads x SeqLen x SeqLen alibi bias mask
# otherwise the mask is 1 x Heads x 1 x SeqLen (which is broadcast to the appropriate size)
alibi_bias = alibi_bias - torch.arange(
1 - seq_len, 1, dtype=torch.int32, device=device).view(
1, 1, seq_len, 1)
alibi_bias = alibi_bias.abs().mul(-1)
slopes = gen_slopes(heads, alibi_bias_max, device=device)
alibi_bias = alibi_bias * slopes
return alibi_bias.to(dtype=dtype)
def triton_flash_attn_fn(
query,
key,
value,
heads,
past_key_value=None,
softmax_scale=None,
bias=None,
key_padding_mask=None,
causal=False,
dropout=0.0,
training=False,
needs_weights=False,
multiquery=False,
):
try:
from llmfoundry.models.layers.flash_attn_triton import flash_attn_func
except:
_installed = False
if version.parse(torch.__version__) < version.parse('2.0.0'):
_installed = True
# if torch1.13.1 revert to using triton flash attn from HazyResearch
# with flash-attn==1.0.3.post0 and triton==2.0.0.dev20221202
try:
from flash_attn.flash_attn_triton import flash_attn_func
except:
_installed = False
if not _installed:
# installing triton-pre-mlir works for both torch1.13.1 and torch2.0+
# default recommendation is to install this variant
raise RuntimeError(
'Requirements for `attn_impl: triton` not installed. Either (1) have a CUDA-compatible GPU '
'and `pip install .[gpu]` if installing from source or '
'`pip install triton-pre-mlir@git+https://github.com/vchiley/triton.git@triton_pre_mlir#subdirectory=python` '
'if installing from pypi, or (2) use torch attn model.attn_config.attn_impl=torch (torch attn_impl will be slow). '
'Note: (1) requires you have CMake and PyTorch already installed.'
)
check_valid_inputs(query, key, value)
if past_key_value is not None:
if len(past_key_value) != 0:
key = torch.cat([past_key_value[0], key], dim=1)
value = torch.cat([past_key_value[1], value], dim=1)
past_key_value = (key, value)
if bias is not None:
# clamp to 0 necessary for torch 2.0 compile()
_s_q = max(0, bias.size(2) - query.size(1))
_s_k = max(0, bias.size(3) - key.size(1))
bias = bias[:, :, _s_q:, _s_k:]
if dropout:
raise NotImplementedError(
'Dropout not implemented for attn_impl: triton.')
if needs_weights:
raise NotImplementedError(
'attn_impl: triton cannot return attn weights.')
if key_padding_mask is not None:
warnings.warn(
'Propagating key_padding_mask to the attention module ' +\
'and applying it within the attention module can cause ' +\
'unnecessary computation/memory usage. Consider integrating ' +\
'into bias once and passing that to each attention ' +\
'module instead.'
)
b_size, s_k = key_padding_mask.shape[:2]
if bias is None:
bias = query.new_zeros(b_size, 1, 1, s_k)
bias = bias.masked_fill(
~key_padding_mask.view((b_size, 1, 1, s_k)),
torch.finfo(query.dtype).min)
query = rearrange(query, 'b s (h d) -> b s h d', h=heads)
key = rearrange(key, 'b s (h d) -> b s h d', h=1 if multiquery else heads)
value = rearrange(value,
'b s (h d) -> b s h d',
h=1 if multiquery else heads)
if multiquery:
# necessary to repeat instead of expand tensor because
# output contains NaN in edge cases such as with head dimension = 8
key = key.repeat(1, 1, heads, 1)
value = value.repeat(1, 1, heads, 1)
reset_causal = _reset_causal(query.size(1), key.size(1), causal)
attn_output = flash_attn_func(query, key, value, bias, reset_causal,
softmax_scale)
output = attn_output.view(*attn_output.shape[:2], -1)
return output, None, past_key_value
class MultiHeadAttention(nn.Module):
"""Multi-head self attention.
Using torch or triton attention implemetation enables user to also use
additive bias.
"""
def __init__(
self,
d_model: int,
heads: int,
attn_impl: str = 'triton',
clip_qkv: Optional[float] = None,
qk_ln: bool = False,
softmax_scale: Optional[float] = None,
attn_pdrop: float = 0.0,
norm_type: str = 'low_precision_layernorm',
fc_type: str = 'torch',
verbose: int = 0,
device: Optional[str] = None,
):
super().__init__()
self.attn_impl = attn_impl
self.clip_qkv = clip_qkv
self.qk_ln = qk_ln
self.d_model = d_model
self.heads = heads
self.softmax_scale = softmax_scale
if self.softmax_scale is None:
self.softmax_scale = 1 / math.sqrt(self.d_model / self.heads)
self.attn_dropout = attn_pdrop
fc_kwargs = {}
if fc_type != 'te':
fc_kwargs['device'] = device
self.Wqkv = FC_CLASS_REGISTRY[fc_type](
self.d_model,
3 * self.d_model,
**fc_kwargs,
)
# for param init fn; enables shape based init of fused layers
fuse_splits = (d_model, 2 * d_model)
self.Wqkv._fused = (0, fuse_splits) # type: ignore
if self.qk_ln:
norm_class = NORM_CLASS_REGISTRY[norm_type.lower()]
self.q_ln = norm_class(self.d_model, device=device)
self.k_ln = norm_class(self.d_model, device=device)
if self.attn_impl == 'flash':
self.attn_fn = flash_attn_fn
elif self.attn_impl == 'triton':
self.attn_fn = triton_flash_attn_fn
if verbose:
warnings.warn(
'While `attn_impl: triton` can be faster than `attn_impl: flash` ' +\
'it uses more memory. When training larger models this can trigger ' +\
'alloc retries which hurts performance. If encountered, we recommend ' +\
'using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`.'
)
elif self.attn_impl == 'torch':
self.attn_fn = scaled_multihead_dot_product_attention
if torch.cuda.is_available() and verbose:
warnings.warn(
'Using `attn_impl: torch`. If your model does not use `alibi` or ' +\
'`prefix_lm` we recommend using `attn_impl: flash` otherwise ' +\
'we recommend using `attn_impl: triton`.'
)
else:
raise ValueError(f'{attn_impl=} is an invalid setting.')
self.out_proj = FC_CLASS_REGISTRY[fc_type](
self.d_model,
self.d_model,
**fc_kwargs,
)
self.out_proj._is_residual = True # type: ignore
def forward(
self,
x,
past_key_value=None,
bias=None,
mask=None,
causal=True,
needs_weights=False,
):
qkv = self.Wqkv(x)
if self.clip_qkv:
qkv = qkv.clamp(min=-self.clip_qkv, max=self.clip_qkv)
query, key, value = qkv.chunk(3, dim=2)
key_padding_mask = mask
if self.qk_ln:
# Applying layernorm to qk
dtype = query.dtype
query = self.q_ln(query).to(dtype)
key = self.k_ln(key).to(dtype)
context, attn_weights, past_key_value = self.attn_fn(
query,
key,
value,
self.heads,
past_key_value=past_key_value,
softmax_scale=self.softmax_scale,
bias=bias,
key_padding_mask=key_padding_mask,
causal=causal,
dropout=self.attn_dropout,
training=self.training,
needs_weights=needs_weights,
)
return self.out_proj(context), attn_weights, past_key_value
class MultiQueryAttention(BaseAttention):
"""Multi-Query self attention.
Using torch or triton attention implemetation enables user to also use
additive bias.
Look for documentation
"""
def __init__(
self,
d_model: int,
heads: int,
attn_impl: str = 'torch',
clip_qkv: Optional[float] = None,
qk_ln: bool = False,
softmax_scale: Optional[float] = None,
attn_pdrop: float = 0.0,
norm_type: str = 'low_precision_layernorm',
fc_type: str = 'torch',
verbose: int = 0,
device: Optional[str] = None,
):
super().__init__()
self.attn_impl = attn_impl
self.clip_qkv = clip_qkv
self.qk_ln = qk_ln
self.d_model = d_model
self.heads = heads
self.head_dim = d_model // heads
self.softmax_scale = softmax_scale
if self.softmax_scale is None:
self.softmax_scale = 1 / math.sqrt(self.head_dim)
self.attn_dropout = attn_pdrop
fc_kwargs = {}
if fc_type != 'te':
fc_kwargs['device'] = device
# - vchiley
self.Wqkv = FC_CLASS_REGISTRY[fc_type](
d_model,
d_model + 2 * self.head_dim,
**fc_kwargs,
)
# for param init fn; enables shape based init of fused layers
fuse_splits = (d_model, d_model + self.head_dim)
self.Wqkv._fused = (0, fuse_splits) # type: ignore
if self.qk_ln:
norm_class = NORM_CLASS_REGISTRY[norm_type.lower()]
self.q_ln = norm_class(d_model, device=device)
self.k_ln = norm_class(self.head_dim, device=device)
if self.attn_impl == 'flash':
self.attn_fn = flash_attn_fn
elif self.attn_impl == 'triton':
self.attn_fn = triton_flash_attn_fn
if verbose:
warnings.warn(
'While `attn_impl: triton` can be faster than `attn_impl: flash` ' +\
'it uses more memory. When training larger models this can trigger ' +\
'alloc retries which hurts performance. If encountered, we recommend ' +\
'using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`.'
)
elif self.attn_impl == 'torch':
self.attn_fn = scaled_multihead_dot_product_attention
if torch.cuda.is_available() and verbose:
warnings.warn(
'Using `attn_impl: torch`. If your model does not use `alibi` or ' +\
'`prefix_lm` we recommend using `attn_impl: flash` otherwise ' +\
'we recommend using `attn_impl: triton`.'
)
else:
raise ValueError(f'{attn_impl=} is an invalid setting.')
self.out_proj = FC_CLASS_REGISTRY[fc_type](
self.d_model,
self.d_model,
**fc_kwargs,
)
self.out_proj._is_residual = True # type: ignore
def forward(
self,
x,
past_key_value=None,
bias=None,
mask=None,
causal=True,
needs_weights=False,
):
qkv = self.Wqkv(x)
if self.clip_qkv:
qkv = qkv.clamp(min=-self.clip_qkv, max=self.clip_qkv)
query, key, value = qkv.split(
[self.d_model, self.head_dim, self.head_dim], dim=2)
key_padding_mask = mask
if self.qk_ln:
# Applying layernorm to qk
dtype = query.dtype
query = self.q_ln(query).to(dtype)
key = self.k_ln(key).to(dtype)
context, attn_weights, past_key_value = self.attn_fn(
query,
key,
value,
self.heads,
past_key_value=past_key_value,
softmax_scale=self.softmax_scale,
bias=bias,
key_padding_mask=key_padding_mask,
causal=causal,
dropout=self.attn_dropout,
training=self.training,
needs_weights=needs_weights,
multiquery=True,
)
return self.out_proj(context), attn_weights, past_key_value | zeta-main | zeta/nn/attention/multiquery_attention.py |
import torch
from torch import nn
from typing import Optional, Any
from zeta.nn.attention.attend import Attend
class MultiGroupQueryAttention(nn.Module):
def __init__(
self,
dim,
heads: int = None,
softmax_scale: Optional[float] = None,
attn_pdrop: float = 0.0,
device: Optional[str] = None,
kv_heads: int = None
):
super(MultiGroupQueryAttention, self).__init__()
self.dim = dim
self.heads = heads
self.softmax_scale = softmax_scale
self.attn_pdrop = attn_pdrop
self.device = device
self.kv_heads = kv_heads
def forward(self):
pass | zeta-main | zeta/nn/attention/multi_group_attention.py |
"""Zeta Halo"""
#attentions
from zeta.nn.attention.dilated_attention import DilatedAttention
from zeta.nn.attention.flash_attention import FlashAttention
from zeta.nn.attention.flash_attention2 import FlashAttentionTwo
# from zeta.nn.attention.cross_attention import CrossAttend
from zeta.nn.attention.multihead_attention import MultiheadAttention
from zeta.nn.attention.multiquery_attention import MultiQueryAttention | zeta-main | zeta/nn/attention/__init__.py |
import math
import torch
from einops import rearrange
from torch import einsum, nn
from torch.autograd.function import Function
from torch.cuda.amp import GradScaler, autocast
from torch.nn import DataParallel
from zeta.nn.attention.base import BaseAttention
# constants
EPSILON = 1e-10
# helper functions
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
# flash attention forwards and backwards
# flash attention v1 - https://arxiv.org/abs/2205.14135
# flash attention v2 - https://tridao.me/publications/flash2/flash2.pdf
class FlashAttentionFunction(Function):
@staticmethod
@torch.no_grad()
def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size):
""" Algorithm 1 in the v2 paper """
device = q.device
max_neg_value = -torch.finfo(q.dtype).max
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
o = torch.zeros_like(q)
all_row_sums = torch.zeros((*q.shape[:-1], 1), device = device)
all_row_maxes = torch.full((*q.shape[:-1], 1), max_neg_value, device = device)
scale = (q.shape[-1] ** -0.5)
num_row_tiles = math.ceil(q.shape[-2] / q_bucket_size)
num_col_tiles = math.ceil(k.shape[-2] / k_bucket_size)
if exists(mask) and mask.ndim == 2:
mask = rearrange(mask, 'b n -> b 1 1 n')
if not exists(mask):
col_masks = (None,) * num_col_tiles
mask = (col_masks,) * num_row_tiles
else:
mask = ((mask,) * num_row_tiles) if mask.shape[-2] == 1 else mask.split(q_bucket_size, dim = -2)
mask = tuple(((row_mask,) * num_col_tiles) if row_mask.shape[-1] == 1 else row_mask.split(k_bucket_size, dim = -1) for row_mask in mask)
row_splits = zip(
q.split(q_bucket_size, dim = -2),
o.split(q_bucket_size, dim = -2),
mask,
all_row_sums.split(q_bucket_size, dim = -2),
all_row_maxes.split(q_bucket_size, dim = -2),
)
for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits):
q_start_index = ind * q_bucket_size - qk_len_diff
col_splits = zip(
k.split(k_bucket_size, dim = -2),
v.split(k_bucket_size, dim = -2),
row_mask
)
for k_ind, (kc, vc, col_mask) in enumerate(col_splits):
k_start_index = k_ind * k_bucket_size
attn_weights = einsum('... i d, ... j d -> ... i j', qc, kc) * scale
if exists(col_mask):
attn_weights.masked_fill_(~col_mask, max_neg_value)
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype = torch.bool, device = device).triu(q_start_index - k_start_index + 1)
attn_weights.masked_fill_(causal_mask, max_neg_value)
block_row_maxes = attn_weights.amax(dim = -1, keepdims = True)
new_row_maxes = torch.maximum(block_row_maxes, row_maxes)
exp_weights = torch.exp(attn_weights - new_row_maxes)
if exists(col_mask):
exp_weights.masked_fill_(~col_mask, 0.)
block_row_sums = exp_weights.sum(dim = -1, keepdims = True).clamp(min = EPSILON)
exp_values = einsum('... i j, ... j d -> ... i d', exp_weights, vc)
exp_row_max_diff = torch.exp(row_maxes - new_row_maxes)
new_row_sums = exp_row_max_diff * row_sums + block_row_sums
oc.mul_(exp_row_max_diff).add_(exp_values)
row_maxes.copy_(new_row_maxes)
row_sums.copy_(new_row_sums)
oc.div_(row_sums)
lse = all_row_sums.log() + all_row_maxes
ctx.args = (causal, scale, mask, q_bucket_size, k_bucket_size)
ctx.save_for_backward(q, k, v, o, lse)
return o
@staticmethod
@torch.no_grad()
def backward(ctx, do):
""" Algorithm 2 in the v2 paper """
causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args
q, k, v, o, lse = ctx.saved_tensors
device = q.device
max_neg_value = -torch.finfo(q.dtype).max
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
dq = torch.zeros_like(q)
dk = torch.zeros_like(k)
dv = torch.zeros_like(v)
row_splits = zip(
q.split(q_bucket_size, dim = -2),
o.split(q_bucket_size, dim = -2),
do.split(q_bucket_size, dim = -2),
mask,
lse.split(q_bucket_size, dim = -2),
dq.split(q_bucket_size, dim = -2)
)
for ind, (qc, oc, doc, row_mask, lsec, dqc) in enumerate(row_splits):
q_start_index = ind * q_bucket_size - qk_len_diff
col_splits = zip(
k.split(k_bucket_size, dim = -2),
v.split(k_bucket_size, dim = -2),
dk.split(k_bucket_size, dim = -2),
dv.split(k_bucket_size, dim = -2),
row_mask
)
for k_ind, (kc, vc, dkc, dvc, col_mask) in enumerate(col_splits):
k_start_index = k_ind * k_bucket_size
attn_weights = einsum('... i d, ... j d -> ... i j', qc, kc) * scale
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype = torch.bool, device = device).triu(q_start_index - k_start_index + 1)
attn_weights.masked_fill_(causal_mask, max_neg_value)
p = torch.exp(attn_weights - lsec)
if exists(col_mask):
p.masked_fill_(~col_mask, 0.)
dv_chunk = einsum('... i j, ... i d -> ... j d', p, doc)
dp = einsum('... i d, ... j d -> ... i j', doc, vc)
D = (doc * oc).sum(dim = -1, keepdims = True)
ds = p * scale * (dp - D)
dq_chunk = einsum('... i j, ... j d -> ... i d', ds, kc)
dk_chunk = einsum('... i j, ... i d -> ... j d', ds, qc)
dqc.add_(dq_chunk)
dkc.add_(dk_chunk)
dvc.add_(dv_chunk)
return dq, dk, dv, None, None, None, None
# main class
# just flash attention in plain pytorch
# it will be way slower than implementing it in CUDA
# for tinkering and educational purposes
class FlashAttentionTwo(BaseAttention):
def __init__(
self,
*,
dim: int = None,
heads: int = 8,
dim_head: int = 64,
causal: bool = False,
q_bucket_size: int = 512,
k_bucket_size: int = 1024,
parallel: bool = False,
mixed_precision: bool = False
):
super().__init__()
self.heads = heads
self.causal = causal
self.parallel = parallel
self.mixed_precision = mixed_precision
inner_dim = heads * dim_head
self.to_q = nn.Linear(dim, inner_dim, bias = False)
self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False)
self.to_out = nn.Linear(inner_dim, dim, bias = False)
# memory efficient attention related parameters
# can be overriden on forward
self.q_bucket_size = q_bucket_size
self.k_bucket_size = k_bucket_size
if self.parallel:
self.model = DataParallel(self)
if self.mixed_precision:
self.scaler = GradScaler()
def forward(
self,
x,
context = None,
mask = None,
q_bucket_size = None,
k_bucket_size = None,
):
q_bucket_size = default(q_bucket_size, self.q_bucket_size)
k_bucket_size = default(k_bucket_size, self.k_bucket_size)
h = self.heads
context = default(context, x)
q = self.to_q(x)
k, v = self.to_kv(context).chunk(2, dim=-1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v))
if self.parallel:
# Split the input data into chunks and move each chunk to the correct GPU
num_gpus = torch.cuda.device_count()
x_chunks = x.split(x.size(0) // num_gpus)
x_chunks = [chunk.to(f'cuda:{i}') for i, chunk in enumerate(x_chunks)]
q = x_chunks
if self.mixed_precision:
# Use autocast to allow operations to run in lower precision
with autocast():
out = FlashAttentionFunction.apply(q, k, v, mask, self.causal, q_bucket_size, k_bucket_size)
else:
out = FlashAttentionFunction.apply(q, k, v, mask, self.causal, q_bucket_size, k_bucket_size)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out) | zeta-main | zeta/nn/attention/flash_attention2.py |
from collections import namedtuple
from dataclasses import dataclass
from functools import partial, wraps
from typing import Optional
import torch
import torch.nn.functional as F
from einops import rearrange, repeat
from packaging import version
from torch import Tensor, einsum, nn
# constants
EfficientAttentionConfig = namedtuple('EfficientAttentionConfig', ['enable_flash', 'enable_math', 'enable_mem_efficient'])
@dataclass
class Intermediates:
qk_similarities: Optional[Tensor] = None
pre_softmax_attn: Optional[Tensor] = None
post_softmax_attn: Optional[Tensor] = None
def to_tuple(self):
return (self.qk_similarities, self.pre_softmax_attn, self.post_softmax_attn)
# helpers
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def compact(arr):
return [*filter(exists, arr)]
def once(fn):
called = False
@wraps(fn)
def inner(x):
nonlocal called
if called:
return
called = True
return fn(x)
return inner
print_once = once(print)
# functions for creating causal mask
# need a special one for onnx cpu (no support for .triu)
def create_causal_mask(i, j, device):
return torch.ones((i, j), device = device, dtype = torch.bool).triu(j - i + 1)
def onnx_create_causal_mask(i, j, device):
r = torch.arange(i, device = device)
causal_mask = rearrange(r, 'i -> i 1') < rearrange(r, 'j -> 1 j')
causal_mask = F.pad(causal_mask, (j - i, 0), value = False)
return causal_mask
# main class
class Attend(nn.Module):
def __init__(
self,
*,
dropout = 0.,
causal = False,
heads = None,
talking_heads = False,
sparse_topk = None,
scale = None,
qk_norm = False,
flash = False,
add_zero_kv = False,
onnxable = False
):
super().__init__()
self.scale = scale
self.qk_norm = qk_norm
self.causal = causal
self.create_causal_mask = onnx_create_causal_mask if onnxable else create_causal_mask
self.attn_fn = partial(F.softmax, dtype = torch.float32) if not qk_norm else F.softmax
self.dropout = dropout
self.attn_dropout = nn.Dropout(dropout)
# talking heads
assert not (flash and talking_heads), 'talking heads not compatible with flash attention'
self.talking_heads = talking_heads
if talking_heads:
self.pre_softmax_talking_heads = nn.Conv2d(heads, heads, 1, bias = False)
self.post_softmax_talking_heads = nn.Conv2d(heads, heads, 1, bias = False)
# sparse topk
assert not (flash and sparse_topk), 'sparse topk not compatible with flash attention'
self.sparse_topk = sparse_topk
# add a key / value token composed of zeros
# in case this helps controlling outliers, proposed by https://www.evanmiller.org/attention-is-off-by-one.html
self.add_zero_kv = add_zero_kv
# flash attention
self.flash = flash
assert not (flash and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above'
# determine efficient attention configs for cuda and cpu
self.cpu_config = EfficientAttentionConfig(True, True, True)
self.cuda_config = None
if not torch.cuda.is_available() or not flash:
return
device_properties = torch.cuda.get_device_properties(torch.device('cuda'))
if device_properties.major == 8 and device_properties.minor == 0:
print_once('A100 GPU detected, using flash attention if input tensor is on cuda')
self.cuda_config = EfficientAttentionConfig(True, False, False)
else:
print_once('Non-A100 GPU detected, using math or mem efficient attention if input tensor is on cuda')
self.cuda_config = EfficientAttentionConfig(False, True, True)
def flash_attn(
self,
q, k, v,
mask = None,
attn_bias = None
):
batch, heads, q_len, _, k_len, is_cuda, device = *q.shape, k.shape[-2], q.is_cuda, q.device
# Recommended for multi-query single-key-value attention by Tri Dao
# kv shape torch.Size([1, 512, 64]) -> torch.Size([1, 8, 512, 64])
if k.ndim == 3:
k = rearrange(k, 'b ... -> b 1 ...').expand_as(q)
if v.ndim == 3:
v = rearrange(v, 'b ... -> b 1 ...').expand_as(q)
# handle scale - by default they scale by dim_head ** -0.5, but need to take care if using cosine sim attention
if self.qk_norm:
default_scale = q.shape[-1] ** -0.5
q = q * (default_scale / self.scale)
# Check if mask exists and expand to compatible shape
# The mask is B L, so it would have to be expanded to B H N L
causal = self.causal
if exists(mask):
assert mask.ndim == 4
mask = mask.expand(batch, heads, q_len, k_len)
# manually handle causal mask, if another mask was given
if causal:
causal_mask = self.create_causal_mask(q_len, k_len, device = device)
mask = mask & ~causal_mask
causal = False
# handle alibi positional bias
# convert from bool to float
if exists(attn_bias):
attn_bias = rearrange(attn_bias, 'h i j -> 1 h i j').expand(batch, heads, -1, -1)
# if mask given, the mask would already contain the causal mask from above logic
# otherwise, if no mask given but still causal, mask out alibi positional bias to a large negative number
mask_value = -torch.finfo(q.dtype).max
if exists(mask):
attn_bias = attn_bias.masked_fill(~mask, mask_value // 2)
elif causal:
causal_mask = self.create_causal_mask(q_len, k_len, device = device)
attn_bias = attn_bias.masked_fill(causal_mask, mask_value // 2)
causal = False
# scaled_dot_product_attention handles attn_mask either as bool or additive bias
# make it an additive bias here
mask = attn_bias
# Check if there is a compatible device for flash attention
config = self.cuda_config if is_cuda else self.cpu_config
# pytorch 2.0 flash attn: q, k, v, mask, dropout, causal, softmax_scale
with torch.backends.cuda.sdp_kernel(**config._asdict()):
out = F.scaled_dot_product_attention(
q, k, v,
attn_mask = mask,
dropout_p = self.dropout if self.training else 0.,
is_causal = causal
)
return out, Intermediates()
def forward(
self,
q, k, v,
mask = None,
attn_bias = None,
prev_attn = None
):
"""
einstein notation
b - batch
h - heads
n, i, j - sequence length (base sequence length, source, target)
d - feature dimension
"""
n, heads, kv_heads, device = q.shape[-2], q.shape[1], k.shape[1], q.device
scale = default(self.scale, q.shape[-1] ** -0.5)
# handle grouped multi-query attention
if kv_heads == 1:
k, v = map(lambda t: rearrange(t, 'b 1 n d -> b n d'), (k, v))
elif kv_heads < heads:
k, v = map(lambda t: repeat(t, 'b kvh n d -> b (r kvh) n d', r = heads // kv_heads), (k, v))
# handle zero kv, as means for allowing network to attend to nothing
if self.add_zero_kv:
k, v = map(lambda t: F.pad(t, (0, 0, 1, 0), value = 0.), (k, v))
if exists(mask):
mask = F.pad(mask, (1, 0), value = True)
if exists(attn_bias):
attn_bias = F.pad(attn_bias, (1, 0), value = 0.)
if self.flash:
assert not exists(prev_attn), 'residual attention not compatible with flash attention'
return self.flash_attn(q, k, v, mask = mask, attn_bias = attn_bias)
kv_einsum_eq = 'b j d' if k.ndim == 3 else 'b h j d'
dots = einsum(f'b h i d, {kv_einsum_eq} -> b h i j', q, k) * scale
if exists(prev_attn):
dots = dots + prev_attn
qk_similarities = dots.clone()
if self.talking_heads:
dots = self.pre_softmax_talking_heads(dots)
if exists(attn_bias):
dots = dots + attn_bias
i, j, dtype = *dots.shape[-2:], dots.dtype
mask_value = -torch.finfo(dots.dtype).max
if exists(self.sparse_topk) and self.sparse_topk < j:
top_values, _ = dots.topk(self.sparse_topk, dim = -1)
sparse_topk_mask = dots < top_values[..., -1:]
mask = (mask & sparse_topk_mask) if exists(mask) else sparse_topk_mask
if exists(mask):
dots = dots.masked_fill(~mask, mask_value)
if self.causal:
causal_mask = self.create_causal_mask(i, j, device = device)
dots = dots.masked_fill(causal_mask, mask_value)
pre_softmax_attn = dots.clone()
attn = self.attn_fn(dots, dim = -1)
attn = attn.type(dtype)
post_softmax_attn = attn.clone()
attn = self.attn_dropout(attn)
if self.talking_heads:
attn = self.post_softmax_talking_heads(attn)
out = einsum(f'b h i j, {kv_einsum_eq} -> b h i d', attn, v)
intermediates = Intermediates(
qk_similarities = qk_similarities,
pre_softmax_attn = pre_softmax_attn,
post_softmax_attn = post_softmax_attn
)
return out, intermediates
# cascading heads logic
def to_single_heads(t, dim = 1):
heads = t.unbind(dim = dim)
return tuple(head.unsqueeze(dim) for head in heads)
class CascadingHeads(nn.Module):
def __init__(self, attend: Attend):
super().__init__()
self.attend = attend
def forward(
self,
q, k, v,
mask = None,
attn_bias = None,
prev_attn = None
):
assert q.shape[-1] == v.shape[-1], 'cascading heads can only be done if query / key and value head dimensions are the same'
# split inputs into per-head inputs
heads = q.shape[1]
queries = to_single_heads(q)
keys = to_single_heads(k) if k.ndim == 4 else ((k,) * heads)
values = to_single_heads(v) if v.ndim == 4 else ((v,) * heads)
mask = (mask,) * heads
attn_bias = to_single_heads(attn_bias, dim = 0) if exists(attn_bias) else ((None,) * heads)
prev_attn = to_single_heads(prev_attn) if exists(prev_attn) else ((None,) * heads)
# now loop through each head, without output of previous head summed with the next head
# thus cascading
all_outs = []
all_intermediates = []
prev_head_out = None
for h_q, h_k, h_v, h_mask, h_attn_bias, h_prev_attn in zip(queries, keys, values, mask, attn_bias, prev_attn):
if exists(prev_head_out):
h_q = h_q + prev_head_out
out, intermediates = self.attend(
h_q, h_k, h_v,
mask = h_mask,
attn_bias = h_attn_bias,
prev_attn = h_prev_attn
)
prev_head_out = out
all_outs.append(out)
all_intermediates.append(intermediates)
# cat all output heads
all_outs = torch.cat(all_outs, dim = 1)
# cat all intermediates, if they exist
qk_similarities, pre_softmax_attn, post_softmax_attn = zip(*map(lambda i: i.to_tuple(), all_intermediates))
qk_similarities, pre_softmax_attn, post_softmax_attn = map(compact, (qk_similarities, pre_softmax_attn, post_softmax_attn))
aggregated_intermediates = Intermediates(
qk_similarities = torch.cat(qk_similarities, dim = 1) if len(qk_similarities) > 0 else None,
pre_softmax_attn = torch.cat(pre_softmax_attn, dim = 1) if len(pre_softmax_attn) > 0 else None,
post_softmax_attn = torch.cat(post_softmax_attn, dim = 1) if len(post_softmax_attn) > 0 else None
)
return all_outs, aggregated_intermediates | zeta-main | zeta/nn/attention/attend.py |
from typing import Optional, Sequence, Tuple, Union
import torch
import torch.nn.functional as F
from einops import rearrange
from torch import Tensor, nn
from zeta.nn.attention.flash_attention import FlashAttention
from zeta.nn.biases.relative_position_bias import RelativePositionBias
from zeta.nn.embeddings.xpos_relative_position import XPOS
from zeta.nn.attention.base import BaseAttention
device = "cuda:0"
dtype=torch.float16
class ParallelWrapper:
"""
A simple wrapper to enable easy usage of data parallelism.
Arguments:
model: The neural network model to be parallelized.
device (optional): The device to which the model should be moved. Default: "cuda".
use_data_parallel (optional): A boolean flag to indicate whether to use data parallelism or not. Default: True.
"""
def __init__(
self,
model,
device="cuda",
use_data_parallel=True
):
self.model = model.to(device)
self.use_data_parallel = use_data_parallel
self.device = device
if self.use_data_parallel and torch.cuda.device_count() < 1:
print(f"Using {torch.cuda.device_count()} GPUS")
self.model = nn.DataParallel(self.model)
def forward(self, *args, **kwargs):
return self.model(*args, **kwargs)
def to(self, device):
self.device = device
self.model= self.model.to(device)
return self
def __getattr__(self, name):
#redirect attribute access to the internal model to allow direct access to its methods and props
return getattr(self.model, name)
#add alibi, qk layer norm, one write head, multihway,
class DilatedAttention(BaseAttention):
"""
Dilated Attention Module.
Arguments:
d_model: The dimension of the attention layers.
num_heads: The number of attention heads.
dilation_rate: The dilation rate for dilated attention.
segment_size: The segment size for dilated attention.
dropout (optional): The dropout probability. Default: 0.0
casual (optional): If set to True, the attention mechanism is casual. Default: False
use_xpos (optional): If set to True, xpos is used for positional encoding. Default: False
use_rel_pos_bias (optional): If set to True, relative position bias is used in the attention mechanism. Default: False
Usage:
The `DilatedAttention` class can be used as a module for neural networks and is especially suited for transformer architectures.
Example:
attention = DilatedAttention(d_model=512, num_heads=8, dilation_rate=2, segment_size=64, use_xpos=True, use_rel_pos_bias=True)
output = attention(input_tensor)
This will return the output tensor after applying dilated attention. The `use_xpos` and `use_rel_pos_bias` parameters allow for switching on positional encoding and relative positional bias respectively.
"""
def __init__(self,
d_model: int = None,
num_heads: int = None,
dilation_rate: int = None,
segment_size: int = None,
dropout: int = 0.0,
casual: bool = False,
use_xpos: bool = False,
use_rel_pos_bias: bool = False):
super(DilatedAttention, self).__init__()
self.d_model = d_model
self.num_heads = num_heads
self.dilation_rate = dilation_rate
self.segment_size = segment_size
self.dropout = nn.Dropout(dropout)
self.casual = casual
self.use_xpos = use_xpos
self.use_rel_pos_bias = use_rel_pos_bias
self.attention = FlashAttention(causal=self.casual, dropout=dropout).to(device)
if use_xpos:
self.xpos = XPOS(head_dim=d_model//num_heads)
if use_rel_pos_bias:
self.relative_bias = RelativePositionBias(num_buckets=32, max_distance=128, n_heads=num_heads)
#head offsets
self.head_offsets = nn.Parameter(torch.randn(num_heads, d_model))
def get_mask(self, i, j):
return torch.ones((i, j), device=device, dtype=torch.bool).triu(j - i + 2)
def forward(self, x):
print(f"X original shape: {x.shape} and x dtype: {x.dtype}")
batch_size, seq_len, _ = x.shape
padding_len = -seq_len % self.segment_size
x = F.pad(x, (0,0,0,padding_len))
seq_len = seq_len + padding_len
print(f"Paddex x shape: {x.shape}")
if self.use_xpos:
x = self.xpos(x)
# Split and sparsify
x = x.view(batch_size, -1, self.segment_size, self.d_model)
print(f"z after view shape: {x.shape}")
x = x[:, :, :: self.dilation_rate, :]
print(f"x after dilation shape: {x.shape} and x.dtype: {x.dtype}")
# Perform attention
attn_output = self.attention(x, x, x)
print(f"Attn output: {attn_output.shape} and dtype: {attn_output.dtype}")
#if use rel pos => apply relative positioning bias
if self.use_rel_pos_bias:
attn_output += self.relative_bias(batch_size, attn_output.size(1), attn_output.size(1))
print(f"attn_output: {attn_output.shape} and attn output: {attn_output.dtype}")
# if casual create a mask and apply to the output
if self.casual:
mask = self.get_mask(attn_output.size(1), attn_output.size(1))
print(f"mask shape: {mask.shape} and mask dtype: {x.dtype}")
attn_output = attn_output.masked_fill(mask, float('-inf'))
print(f"attn output shape: {attn_output.shape} and attn_output: {attn_output.dtype}")
# apply dropout
attn_output = self.dropout(attn_output)
print(f"attn output after dropout: {attn_output.shape} and dtype: {attn_output.dtype}")
# Scatter and concatenate
attn_output = attn_output.reshape(batch_size, -1, self.d_model)
print(f"attn_output scatter and concatenate: {attn_output.shape} and {attn_output.dtype}")
return attn_output
class MultiheadDilatedAttention(nn.Module):
def __init__(
self,
embed_dim: int,
num_heads: int,
dilation_rates: Sequence[int],
segment_lengths: Sequence[int],
dropout: float = 0.0,
bias: bool = True,
layer_norm: bool = True,
layer_norm_eps: float = 1e-5,
gamma_init: float = 1.0,
device: Optional[Union[torch.device, str]] = None,
dtype: Optional[torch.dtype] = None,
):
super().__init__()
self.num_heads = num_heads
self.layer_norm = layer_norm
self.gamma_init = gamma_init
if not embed_dim % self.num_heads == 0:
raise ValueError(
f"embed_dim ({embed_dim}) must be divisible by "
f"num_heads ({num_heads})"
)
num_dilations = len(dilation_rates)
num_segments = len(segment_lengths)
if num_dilations != num_segments:
raise ValueError(
f"len(dilation_rates) ({num_dilations}) must be equal to "
f"len(segment_lengths) ({num_segments})"
)
head_dim = embed_dim // num_heads
if not head_dim % 8 == 0:
raise ValueError(
f"head_dim (embed_dim / num_heads = {head_dim}) must be divisible by 8"
)
if not head_dim <= 128:
raise ValueError(
f"head_dim (embed_dim / num_heads = {head_dim}) must be <= 128"
)
self.q_proj = nn.Linear(
embed_dim, embed_dim, bias=bias, device=device, dtype=dtype
)
self.k_proj = nn.Linear(
embed_dim, embed_dim, bias=bias, device=device, dtype=dtype
)
self.v_proj = nn.Linear(
embed_dim, embed_dim, bias=bias, device=device, dtype=dtype
)
self.attention = DilatedAttention(
segment_lengths=segment_lengths,
dilation_rates=dilation_rates,
dropout=dropout,
# op=op,
)
self.norm: Optional[nn.LayerNorm] = None
if layer_norm:
self.norm = nn.LayerNorm(
embed_dim, eps=layer_norm_eps, device=device, dtype=dtype
)
self.out_proj = nn.Linear(
embed_dim, embed_dim, bias=bias, device=device, dtype=dtype
)
self._reset_parameters()
def _reset_parameters(self):
nn.init.xavier_normal_(self.q_proj.weight)
if self.q_proj.bias is not None:
nn.init.constant_(self.q_proj.bias, 0)
nn.init.xavier_normal_(self.k_proj.weight)
if self.k_proj.bias is not None:
nn.init.constant_(self.k_proj.bias, 0)
# NOTE: We follow the initialization strategy from MAGNETO. See:
# https://arxiv.org/pdf/2210.06423.pdf, Fig. 2
# Gain (self.gamma_init) should be provided as a keyword argument when
# initializing the larger Transformer model, since it requires knowledge
# of the number of encoder/decoder layers in the model.
nn.init.xavier_normal_(self.v_proj.weight, gain=self.gamma_init)
if self.v_proj.bias is not None:
nn.init.constant_(self.v_proj.bias, 0)
nn.init.xavier_normal_(self.out_proj.weight, gain=self.gamma_init)
if self.out_proj.bias is not None:
nn.init.constant_(self.out_proj.bias, 0)
def forward(
self, query: Tensor, key: Tensor, value: Tensor, is_causal: bool = False
) -> Tuple[Tensor, None]:
# Notation:
# b - batch size
# n - sequence length
# h - number of heads
# d - embedding dimension
#
# Input shape: (b, n, d)
q = self.q_proj(query)
k = self.k_proj(key)
v = self.v_proj(value)
# Unfold 'd' dimension into 'h' separate attention heads.
q = rearrange(q, "b n (h d) -> b n h d", h=self.num_heads)
k = rearrange(k, "b n (h d) -> b n h d", h=self.num_heads)
v = rearrange(v, "b n (h d) -> b n h d", h=self.num_heads)
# Apply attention, then fold 'h' attention heads back into 'd'.
x = self.attention(q, k, v, is_causal=is_causal)
x = rearrange(x, "b n h d -> b n (h d)")
if self.layer_norm:
assert self.norm is not None
x = self.norm(x)
# Linear projection on attention outputs.
x = self.out_proj(x)
return x, None | zeta-main | zeta/nn/attention/dilated_attention.py |
# import torch
# import torch.nn as nn
# from einops import rearrange
# from einops_exts import check_shape, rearrange_many
# class SpatialLinearAttention(nn.Module):
# def __init__(self,
# dim: int = None,
# heads: int = 4,
# dim_head: int = 32):
# super().__init__()
# self.scale = dim_head ** -0.5
# self.heads = heads
# hidden_dim = dim_head * heads
# self.to_qkv = nn.Conv2d(dim,
# hidden_dim * 3,
# 1,
# bias=False)
# self.to_out = nn.Conv2d(hidden_dim,
# dim,
# 1)
# def forward(self, x):
# b, c, f, h, w = x.shape
# x = rearrange(x, 'b c f h w -> (b f) c h w')
# qkv = self.to_qkv(x).chunk(3, dim=1)
# q, k, v = rearrange_many(qkv, 'b (h c) x y -> b h c (x y)', h = self.heads)
# q = q.softmax(dim=-2)
# k = k.softmax(dim=-1)
# q = q * self.scale
# context = torch.einsum('b h d n, b h e n -> b h d e', k, v)
# out = torch.einsum('b h d e, b h d n -> b h e n', context, q)
# out = rearrange(out, 'b h c (x y) -> b (h c) x y', h=self.heads, x=h, y=w)
# out = self.to_out(out)
# return rearrange(out, '(b f) c h w -> b c f h w', b=b)
# class EinopsToAndFrom(nn.Module):
# def __init_(self, from_einops, to_einops, fn):
# super().__init__()
# self.from_einops = from_einops
# self.to_einops = to_einops
# self.fn = fn
# def forward(self, x, **kwargs):
# shape = x.shape
# reconstruction_kwargs = dict(tuple(zip(self.from_einops.split(' '), shape)))
# x = rearrange(x, f'{self.from_einops} -> {self.to_einops}')
# x = self.fn(x, **kwargs)
# x = rearrange(x, f"{self.to_einops} -> {self.from_einops}", **reconstitue_kwargs)
| zeta-main | zeta/nn/attention/spatial_linear_attention.py |
from collections import namedtuple
from dataclasses import dataclass
from functools import wraps
import torch
import torch.nn.functional as F
from einops import rearrange
from packaging import version
from torch import Tensor, einsum, nn
from zeta.nn.attention.base import BaseAttention
# constants
EfficientAttentionConfig = namedtuple('EfficientAttentionConfig', ['enable_flash', 'enable_math', 'enable_mem_efficient'])
# helpers
def exists(val):
return val is not None
def once(fn):
called = False
@wraps(fn)
def inner(x):
nonlocal called
if called:
return
called = True
return fn(x)
return inner
print_once = once(print)
# main class
@dataclass
class Intermediates:
"""
Dataclass to store intermediate tensors during attention computation.
Args:
qk_similarities (torch.Tensor): Tensor storing the similarities between query and key.
pre_softmax_attn (torch.Tensor): Tensor storing the attention weights before softmax.
post_softmax_attn (torch.Tensor): Tensor storing the attention weights after softmax.
Methods:
to_tuple(): Convert the Intermediates object to a tuple.
"""
qk_similarities: Tensor = None
pre_softmax_attn: Tensor = None
post_softmax_attn: Tensor = None
def to_tuple(self):
"""
Convert the Intermediates object to a tuple.
Returns:
tuple: Tuple representation of the Intermediates object.
"""
return (self.qk_similarities, self.pre_softmax_attn, self.post_softmax_attn)
class FlashAttention(BaseAttention):
def __init__(
self,
causal: bool = False,
dropout: float = 0.,
flash: bool = True
):
"""
FlashAttention module that performs attention computation.
Args:
causal (bool): Whether to apply causal masking (default: False).
dropout (float): Dropout probability (default: 0.).
flash (bool): Whether to use flash attention (default: True).
"""
super().__init__()
self.dropout = dropout
self.attn_dropout = nn.Dropout(dropout)
self.causal = causal
self.flash = flash
assert not (flash and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above'
# determine efficient attention configs for cuda and cpu
self.cpu_config = EfficientAttentionConfig(True, True, True)
self.cuda_config = None
if not torch.cuda.is_available() or not flash:
return
device_properties = torch.cuda.get_device_properties(torch.device('cuda'))
if device_properties.major == 8 and device_properties.minor == 0:
print_once('A100 GPU detected, using flash attention if input tensor is on cuda')
self.cuda_config = EfficientAttentionConfig(True, False, False)
else:
print_once('Non-A100 GPU detected, using math or mem efficient attention if input tensor is on cuda')
self.cuda_config = EfficientAttentionConfig(False, True, True)
def get_mask(self, i, j, device):
"""
Generate a mask for attention computation.
Args:
i (int): Length of the query sequence.
j (int): Length of the key sequence.
device (torch.device): Device to place the mask tensor.
Returns:
torch.Tensor: Mask tensor of shape (i, j).
"""
return torch.ones((i, j), device=device, dtype=torch.bool).triu(j - i + 1)
def flash_attn(
self,
q, k, v,
mask = None,
attn_bias = None
):
"""
Perform flash attention computation.
Args:
q (torch.Tensor): Query tensor of shape (batch, heads, q_len, dim).
k (torch.Tensor): Key tensor of shape (batch, heads, k_len, dim).
v (torch.Tensor): Value tensor of shape (batch, heads, v_len, dim).
mask (torch.Tensor): Mask tensor of shape (batch, heads, q_len, k_len) (default: None).
attn_bias (torch.Tensor): Attention bias tensor of shape (batch, heads, q_len, k_len) (default: None).
Returns:
torch.Tensor: Output tensor of shape (batch, heads, q_len, dim).
"""
batch, heads, q_len, _, k_len, is_cuda, device = *q.shape, k.shape[-2], q.is_cuda, q.device
# Recommended for multi-query single-key-value attention by Tri Dao
# kv shape torch.Size([1, 512, 64]) -> torch.Size([1, 8, 512, 64])
if k.ndim == 3:
k = rearrange(k, 'b ... -> b 1 ...').expand_as(q)
if v.ndim == 3:
v = rearrange(v, 'b ... -> b 1 ...').expand_as(q)
# handle scale - by default they scale by dim_head ** -0.5, but need to take care if using cosine sim attention
# Check if mask exists and expand to compatible shape
# The mask is B L, so it would have to be expanded to B H N L
causal = self.causal
if exists(mask):
assert mask.ndim == 4
mask = mask.expand(batch, heads, q_len, k_len)
# manually handle causal mask, if another mask was given
if causal:
causal_mask = self.create_causal_mask(q_len, k_len, device = device)
mask = mask & ~causal_mask
causal = False
# handle alibi positional bias
# convert from bool to float
if exists(attn_bias):
attn_bias = rearrange(attn_bias, 'h i j -> 1 h i j').expand(batch, heads, -1, -1)
# if mask given, the mask would already contain the causal mask from above logic
# otherwise, if no mask given but still causal, mask out alibi positional bias to a large negative number
mask_value = -torch.finfo(q.dtype).max
if exists(mask):
attn_bias = attn_bias.masked_fill(~mask, mask_value // 2)
elif causal:
causal_mask = self.create_causal_mask(q_len, k_len, device = device)
attn_bias = attn_bias.masked_fill(causal_mask, mask_value // 2)
causal = False
# scaled_dot_product_attention handles attn_mask either as bool or additive bias
# make it an additive bias here
mask = attn_bias
# Check if there is a compatible device for flash attention
config = self.cuda_config if is_cuda else self.cpu_config
# pytorch 2.0 flash attn: q, k, v, mask, dropout, causal, softmax_scale
with torch.backends.cuda.sdp_kernel(**config._asdict()):
out = F.scaled_dot_product_attention(
q, k, v,
attn_mask = mask,
dropout_p = self.dropout if self.training else 0.,
is_causal = causal
)
return out
def forward(self, q, k, v, mask = None, attn_bias = None):
"""
Perform attention computation.
einstein notation
b - batch
h - heads
n, i, j - sequence length (base sequence length, source, target)
d - feature dimension
Args:
q (torch.Tensor): Query tensor of shape (batch, heads, q_len, dim).
k (torch.Tensor): Key tensor of shape (batch, heads, k_len, dim).
v (torch.Tensor): Value tensor of shape (batch, heads, v_len, dim).
mask (torch.Tensor): Mask tensor of shape (batch, heads, q_len, k_len) (default: None).
attn_bias (torch.Tensor): Attention bias tensor of shape (batch, heads, q_len, k_len) (default: None).
Returns:
torch.Tensor: Output tensor of shape (batch, heads, q_len, dim).
"""
q_len, k_len, device = q.shape[-2], k.shape[-2], q.device
scale = q.shape[-1] ** -0.5
kv_einsum_eq = 'b j d' if k.ndim == 3 else 'b h j d'
if self.flash:
return self.flash_attn(q, k, v, mask = mask, attn_bias = attn_bias)
# similarity
sim = einsum(f"b h i d, {kv_einsum_eq} -> b h i j", q, k) * scale
# attention bias
if exists(attn_bias):
sim = sim + attn_bias
# causal mask
if self.causal:
causal_mask = self.get_mask(q_len, k_len, device)
sim = sim.masked_fill(causal_mask, -torch.finfo(sim.dtype).max)
# attention
attn = sim.softmax(dim=-1)
attn = self.attn_dropout(attn)
# aggregate values
out = einsum(f"b h i j, {kv_einsum_eq} -> b h i d", attn, v)
return out
| zeta-main | zeta/nn/attention/flash_attention.py |
from zeta.nn.architecture.transformer import AttentionLayers
class CrossAttend(AttentionLayers):
def __init__(self, **kwargs):
super().__init__(cross_attend=True,
only_cross=True,
**kwargs) | zeta-main | zeta/nn/attention/cross_attention.py |
import torch
from torch import nn, einsum
from einops import rearrange, repeat, pack, unpack
from zeta.nn.embeddings.sinusoidal import SinusoidalEmbeddings, apply_rotary_pos_emb
from zeta.utils.main import exists, default, pad_to_multiple, l2norm, look_around, max_neg_values
#constant
TOKEN_SELF_ATTN_VALUE = -5e4
class LocalAttention(nn.Module):
"""
The LocalAttention module provides a mechanism to perform local attention operations.
Unlike global attention where every token can attend to every other token, in local attention each token can only attend to a subset of tokens within a defined window. This reduces the computational cost and captures the local structure in sequences like text or time-series data.
window_size: (int) The size of the attention window.
causal: (bool, optional) If set to True, ensures causal attention. Default: False.
look_backward: (int, optional) How many positions to look backward from the current position. Default: 1.
look_forward: (int, optional) How many positions to look forward from the current position. Default: None which implies 0 if causal is True.
dropout: (float, optional) Dropout rate for attention weights. Default: 0..
shared_qk: (bool, optional) If set to True, the query and key are the same. Useful for certain types of attention mechanisms. Default: False.
rel_pos_emb_config: (Optional) Deprecated. Configuration for the relative positional embeddings.
dim: (int, optional) Dimension of embeddings. Only needed if rel_pos_emb_config is not provided.
autopad: (bool, optional) If set to True, sequence will be automatically padded to be divisible by the window size. Default: False.
exact_windowsize: (bool, optional) Ensures exact window size for non-causal attention. Default: False.
scale: (Optional) Scaling factor for the queries.
use_rotary_pos_emb: (bool, optional) If set to True, rotary positional embeddings will be used. Default: True.
use_xpos: (bool, optional) If set to True, allows for extrapolation of window sizes. Requires use_rotary_pos_emb to be True. Default: False.
xpos_scale_base: (Optional) Base scaling factor for extrapolated window sizes.
"""
def __init__(
self,
window_size,
causal = False,
look_backward = 1,
look_forward = None,
dropout = 0.,
shared_qk = False,
rel_pos_emb_config = None,
dim = None,
autopad = False,
exact_windowsize = False,
scale = None,
use_rotary_pos_emb = True,
use_xpos = False,
xpos_scale_base = None
):
super().__init__()
look_forward = default(look_forward, 0 if causal else 1)
assert not (causal and look_forward > 0), 'you cannot look forward if causal'
self.scale = scale
self.window_size = window_size
self.autopad = autopad
self.exact_windowsize = exact_windowsize
self.causal = causal
self.look_backward = look_backward
self.look_forward = look_forward
self.dropout = nn.Dropout(dropout)
self.shared_qk = shared_qk
# relative positions
self.rel_pos = None
self.use_xpos = use_xpos
if use_rotary_pos_emb and (exists(rel_pos_emb_config) or exists(dim)): # backwards compatible with old `rel_pos_emb_config` deprecated argument
if exists(rel_pos_emb_config):
dim = rel_pos_emb_config[0]
self.rel_pos = SinusoidalEmbeddings(
dim,
use_xpos = use_xpos,
scale_base = default(xpos_scale_base, window_size // 2)
)
"""
Forward Method
Parameters
q: (Tensor) The query tensor.
k: (Tensor) The key tensor.
v: (Tensor) The value tensor.
mask: (Optional[Tensor]) A mask tensor for the keys. Can also be passed as input_mask.
input_mask: (Optional[Tensor]) Another way to pass the mask tensor for keys.
attn_bias: (Optional[Tensor]) Additional biases to add to the attention scores.
window_size: (Optional[int]) If provided, this window size will override the default window size defined during initialization.
Returns
out: (Tensor) The output tensor after the attention operation.
"""
def forward(
self,
q, k, v,
mask = None,
input_mask = None,
attn_bias = None,
window_size = None
):
mask = default(mask, input_mask)
assert not (exists(window_size) and not self.use_xpos), 'cannot perform window size extrapolation if xpos is not turned on'
shape, autopad, pad_value, window_size, causal, look_backward, look_forward, shared_qk = q.shape, self.autopad, -1, default(window_size, self.window_size), self.causal, self.look_backward, self.look_forward, self.shared_qk
# https://github.com/arogozhnikov/einops/blob/master/docs/4-pack-and-unpack.ipynb
(q, packed_shape), (k, _), (v, _) = map(lambda t: pack([t], '* n d'), (q, k, v))
# auto padding
if autopad:
orig_seq_len = q.shape[1]
(needed_pad, q), (_, k), (_, v) = map(lambda t: pad_to_multiple(t, self.window_size, dim = -2), (q, k, v))
b, n, dim_head, device, dtype = *q.shape, q.device, q.dtype
scale = default(self.scale, dim_head ** -0.5)
assert (n % window_size) == 0, f'sequence length {n} must be divisible by window size {window_size} for local attention'
windows = n // window_size
if shared_qk:
k = l2norm(k)
seq = torch.arange(n, device = device)
b_t = rearrange(seq, '(w n) -> 1 w n', w = windows, n = window_size)
# bucketing
bq, bk, bv = map(lambda t: rearrange(t, 'b (w n) d -> b w n d', w = windows), (q, k, v))
bq = bq * scale
look_around_kwargs = dict(
backward = look_backward,
forward = look_forward,
pad_value = pad_value
)
bk = look_around(bk, **look_around_kwargs)
bv = look_around(bv, **look_around_kwargs)
# rotary embeddings
if exists(self.rel_pos):
pos_emb, xpos_scale = self.rel_pos(bk)
bq, bk = apply_rotary_pos_emb(bq, bk, pos_emb, scale = xpos_scale)
# calculate positions for masking
bq_t = b_t
bq_k = look_around(b_t, **look_around_kwargs)
bq_t = rearrange(bq_t, '... i -> ... i 1')
bq_k = rearrange(bq_k, '... j -> ... 1 j')
pad_mask = bq_k == pad_value
sim = einsum('b h i e, b h j e -> b h i j', bq, bk)
if exists(attn_bias):
heads = attn_bias.shape[0]
assert (b % heads) == 0
attn_bias = repeat(attn_bias, 'h i j -> (b h) 1 i j', b = b // heads)
sim = sim + attn_bias
mask_value = max_neg_values(sim)
if shared_qk:
self_mask = bq_t == bq_k
sim = sim.masked_fill(self_mask, TOKEN_SELF_ATTN_VALUE)
del self_mask
if causal:
causal_mask = bq_t < bq_k
if self.exact_windowsize:
max_causal_window_size = (self.window_size * self.look_backward)
causal_mask = causal_mask | (bq_t > (bq_k + max_causal_window_size))
sim = sim.masked_fill(causal_mask, mask_value)
del causal_mask
# masking out for exact window size for non-causal
# as well as masking out for padding value
if not causal and self.exact_windowsize:
max_backward_window_size = (self.window_size * self.look_backward)
max_forward_window_size = (self.window_size * self.look_forward)
window_mask = ((bq_k - max_forward_window_size) > bq_t) | (bq_t > (bq_k + max_backward_window_size)) | pad_mask
sim = sim.masked_fill(window_mask, mask_value)
else:
sim = sim.masked_fill(pad_mask, mask_value)
# take care of key padding mask passed in
if exists(mask):
batch = mask.shape[0]
assert (b % batch) == 0
h = b // mask.shape[0]
if autopad:
_, mask = pad_to_multiple(mask, window_size, dim = -1, value = False)
mask = rearrange(mask, '... (w n) -> (...) w n', w = windows, n = window_size)
mask = look_around(mask, **{**look_around_kwargs, 'pad_value': False})
mask = rearrange(mask, '... j -> ... 1 j')
mask = repeat(mask, 'b ... -> (b h) ...', h = h)
sim = sim.masked_fill(~mask, mask_value)
del mask
# attention
attn = sim.softmax(dim = -1)
attn = self.dropout(attn)
# aggregation
out = einsum('b h i j, b h j e -> b h i e', attn, bv)
out = rearrange(out, 'b w n d -> b (w n) d')
if autopad:
out = out[:, :orig_seq_len, :]
out, *_ = unpack(out, packed_shape, '* n d')
return out | zeta-main | zeta/nn/attention/local_attention.py |
import math
import torch
import torch.nn.functional as F
from torch import Tensor, nn, einsum
from typing import Tuple, Optional
from einops import rearrange, repeat, reduce, pack, unpack
from zeta.models.vit import exists
from zeta.nn.architecture.attn_layers import RMSNorm, apply_rotary_pos_emb
from zeta.nn.attention.attend import Attend
from zeta.nn.attention.local_attention_mha import LocalMHA
from zeta.utils.main import default, pad_to_multiple
from colt5_attention import CoordinateDescentRouter
class Attention(nn.Module):
def __init__(
self,
dim,
*,
dim_head=64,
dim_context=None,
heads=8,
causal=False,
groups=1,
dropout=0.,
flash=False,
prenorm=False
):
super().__init__()
self.heads = heads
self.groups = groups
dim_inner = dim_head * heads
dim_context = default(dim_context, dim)
self.norm = RMSNorm(
dim,
groups=groups
) if prenorm else nn.Identity()
self.context_norm = RMSNorm(
dim_context,
groups=groups
) if prenorm else nn.Identity()
self.attend = Attend(
dropout=dropout,
causal=causal,
flash=flash
)
#null key value to proetect againsta row that is masked
self.null_kv = nn.Parameter(torch.randn(
2,
groups,
heads,
1,
dim_head
))
#utilizing convo groups to process experts in parallel
self.to_q = nn.Conv1d(
dim * groups,
dim_inner * groups,
1,
bias=False,
groups=groups
)
self.to_kv = nn.Conv1d(
dim_context * groups,
dim_inner * 2 * groups,
1,
bias=False,
groups=groups
)
self.to_out = nn.Conv1d(
dim_inner * groups,
dim * groups,
1,
bias=False,
groups=groups
)
def forward(
self,
x,
context = None,
mask=None,
queries_scale=None,
keys_scale=None,
values_scale=None,
output_scale=None,
rotary_emb: Optional[Tuple[Tensor, Tensor]] = None
):
"""
Einops
b - batch
g - groups
n - sequence
d - feature dimension
"""
b, g, h = x.shape[0], self.groups, self.heads
one_expert = x.ndim == 3
if one_expert:
assert g == 1
x = rearrange(x, 'b n d -> b 1 n d')
assert x.ndim == 4
assert x.shape[1] == g
#fold the groups into the feature dimension to be processed in one go by grouped convolutional
x = rearrange(x, 'b g n d -> b g d n')
#handle context for cross attention
if exists(context):
context_one_expert = context.ndim == 3
if context_one_expert:
assert g == 1
context = rearrange(context, 'b n d -> b 1 n d')
assert context.ndim == 4
assert context.shape[1] == g
context = rearrange(context, 'b g n d -> b g d n')
context = default(context, x)
#take care of mask
if exists(mask):
if mask.ndim == 2:
mask = repeat(mask, 'b n -> (b g) n', g=g)
elif mask.ndim == 3:
mask = rearrange(mask, 'b g n -> (b d) n')
mask = F.pad(mask, (1, 0), value=True)
#prenorm
x = self.norm(x)
context = self.context_norm(context)
#fold groups into dimension for grouped conv
x, context = map(lambda t: rearrange(t, 'b g d n -> b (g d) n'), (x, context))
#q, k, v
q, k, v = (self.to_q(x), *self.to_kv(context).chunk(2, dim=1))
#split heads and merge groups into batches
q, k, v = map(lambda t: rearrange(t, 'b (g h d) n -> b g h n d', h=h, g=g), (q, k, v))
#rotary embedding
if exists(rotary_emb):
q_rotary_emb, k_rotary_emb = rotary_emb
if q_rotary_emb.ndim > 2:
q_rotary_emb = rearrange(q_rotary_emb, 'b g n d -> b g 1 n d')
if k_rotary_emb.ndim > 2:
k_rotary_emb = rearrange(k_rotary_emb, 'b g n d -> b g 1 n d')
q = apply_rotary_pos_emb(q_rotary_emb, q)
k = apply_rotary_pos_emb(k_rotary_emb, k)
#give gradients to routed keys/values via normalized scores from the router, if passed in
if exists(queries_scale):
q = q * queries_scale
if exists(keys_scale):
k = k * keys_scale
if exists(values_scale):
v = v * values_scale
#merge group into batch
q, k, v = map(lambda t: rearrange(t, 'b g ... -> (b g) ...'), (q, k, v))
#concat null key /values, to protect against a row having all masked out elements and have a save a lot of headache
nk, nv = map(lambda t: repeat(t, 'g h 1 d -> (b g) h 1 d', b=b), self.null_kv)
k = torch.cat((nk, k), dim=-2)
v = torch.cat((nv, v), dim=-2)
#attention
out = self.attend(q, k, v, mask=mask)
#combine heads out
out = rearrange(out, '(b g) h n d -> b (g h d) n', g=g)
out = self.to_out(out)
out = rearrange(out, 'b (g d) n -> b g n d', g=g)
if one_expert:
out = rearrange(out, 'b 1 n d -> b n d')
if exists(output_scale):
out = out * output_scale
return out
class MixtureOfAttention(nn.Module):
def __init__(
self,
dim,
*,
num_routed_queries,
num_routed_key_values,
dim_context=None,
local_attn=False,
local_attn_window_size=None,
num_experts,
dim_head=64,
heads=8,
dropout=0.,
use_triton=True,
flash_attn=True,
prenorm=True,
average_routed=False,
**kwargs
):
super().__init__()
dim_context = default(dim_context, dim)
self.num_routed_queries = num_routed_queries
self.num_routed_key_values = num_routed_key_values
self.null_routed_token = nn.Parameter(torch.randn(1, 1, dim)) if not local_attn else None
self.average_routed = average_routed
self.local_attn = None
if local_attn:
assert exists(local_attn_window_size)
self.local_attn = LocalMHA(
dim=dim,
dim_head=dim_head,
head=heads,
prenorm=prenorm,
window_size=local_attn_window_size
)
self.query_router = CoordinateDescentRouter(
dim,
num_routing_tokens=num_experts,
use_triton=use_triton,
**kwargs
)
self.key_value_router = CoordinateDescentRouter(
dim_context,
num_routing_tokens=num_experts,
use_triton=use_triton,
**kwargs
)
self.attn = Attention(
dim=dim,
dim_context=dim_context,
dim_head=dim_head,
heads=heads,
groups=num_experts,
dropout=dropout,
flash=flash_attn,
prenorm=prenorm
)
@property
def device(self):
return next(self.parameters()).device
def forward(
self,
x,
context=None,
mask=None,
context_mask=None,
num_routed_queries=None,
num_routed_key_values=None,
rotary_emb=None
):
num_routed_queries = default(num_routed_queries, self.num_routed_queries)
num_routed_key_values = default(num_routed_key_values, self.num_routed_key_values)
is_cross_attn = exists(context)
assert not (exists(self.local_attn) and is_cross_attn), 'cannot do cross attention with local attention'
if not is_cross_attn:
#self attention if context and context mask not passed in
context = x
context_mask = mask
query_indices, query_scores, queries, query_mask = self.query_router(
x,
mask=mask,
num_routed=num_routed_queries,
keep_one_route_dim=True
)
query_score = rearrange(query_scores, 'b g n -> b g n 1')
kv_indices, key_value_scores, key_values, key_value_mask = self.key_value_router(
context,
mask=context_mask,
num_tokens=num_routed_key_values,
keep_one_route_dim=True
)
key_value_scores = rearrange(key_value_scores, 'b g n -> b g 1 n 1')
#rotary embeddings
if exists(rotary_emb):
assert not is_cross_attn, 'rotary embedding should not be used for cross attending'
q_rotary_emb = rotary_emb[query_indices] if exists(query_indices) else rotary_emb
k_rotary_emb = rotary_emb[kv_indices] if exists(kv_indices) else rotary_emb
rotary_emb = (q_rotary_emb, k_rotary_emb)
#attend
attn_out = self.attn(
queries,
rotary_emb=rotary_emb,
context=key_values,
mask=key_value_mask,
values_scale=key_value_scores,
output_scale=query_scores
)
local_out = None
if exists(self.local_attn):
local_out = self.local_attn(x, mask=mask)
need_route_queries = exists(query_indices)
if not need_route_queries:
out = attn_out
if exists(local_out):
local_out = rearrange(local_out, 'b n d -> b 1 n d')
out = torch.cat((local_out, out), dim=1)
out = reduce(attn_out, 'b e n d -> b n d', 'mean')
if exists(mask):
out = out.masked_fill(~mask[..., None], 0.)
out = torch.zeros_like(x)
counts = torch.zeros(x.shape[:-1], device=x.device)
query_indices = rearrange(query_indices, 'b g n -> b (g n)')
attn_out = rearrange(attn_out, 'b g n d -> b (g n) d')
expanded_query_indices = repeat(query_indices, 'b n -> b n d', d=x.shape[-1])
attn_out_summed = out.scatter_add(1, expanded_query_indices, attn_out)
ones = torch.ones(attn_out.shape[:-1], device=self.device)
if exists(query_mask):
ones = ones * rearrange(query_mask, 'b g n -> b (g n)')
counts = counts.scatter_add(1, query_indices, ones)
counts = rearrange(counts, '... -> ... 1')
has_unrouted = not exists(local_out)
if not has_unrouted:
counts = counts + 1
attn_out_summed = attn_out_summed + local_out
else:
not_routed_mask = counts == 0
attn_out_summed = attn_out_summed.masked_fill(not_routed_mask, 0.)
out = attn_out_summed
#average if needed
if self.average_routed:
out = out / counts.clamp(min=1e-5)
#for the position that were not routed, use a learned routing token instead of just 0s
if has_unrouted:
out = torch.where(
not_routed_mask,
self.null_routed_token,
out
)
if exists(mask):
out = out.masked_fill(~mask[..., None], 0.)
return out
class MixtureOfAutoregressiveAttention(nn.Module):
def __init__(
self,
dim,
*,
num_routed_queries,
num_routed_key_values,
local_attn_window_size,
routed_window_size=None,
num_experts=2,
dim_head=64,
heads=8,
dropout=0.,
use_triton=False,
flash_attn=True,
prenorm=True,
average_routed=False,
**kwargs
):
super().__init__()
self.num_routed_queries = num_routed_queries
self.num_routed_key_values = num_routed_key_values
self.num_experts = num_experts
self.null_tokens = nn.Parameter(torch.randn(num_experts, dim))
routed_window_size = default(routed_window_size, local_attn_window_size)
self.routed_window_size = routed_window_size
self.average_routed = average_routed
self.local_attn = LocalMHA(
dim=dim,
dim_head=dim_head,
heads=heads,
prenorm=prenorm,
causal=True,
window_size=local_attn_window_size,
)
self.query_router = CoordinateDescentRouter(
dim,
num_routing_tokens=num_experts,
use_triton=use_triton,
**kwargs
)
self.key_value_tensor = CoordinateDescentRouter(
dim,
num_routing_tokens=num_experts,
use_triton=use_triton,
**kwargs
)
self.attn = Attention(
dim=dim,
dim_head=dim_head,
heads=heads,
groups=num_experts,
dropout=dropout,
flash=flash_attn,
prenorm=prenorm
)
@property
def device(self):
return next(self.parameters()).device
def forward(
self,
x,
rotary_emb=None,
num_routed_queries=None,
num_routed_key_values=None
):
b = x.shape[0]
w = self.routed_window_size
num_windows = math.ceil(x.shape[-2] / w) - 1
#cal local attn
local_out = self.local_attn(x)
if num_windows == 0:
return local_out
#pad sequence to multiple of routing window size
mask = torch.ones(x.shape[:-1], device=self.device, dtype=torch.bool)
x, seq_len = pad_to_multiple(x, w, dim=-2)
mask, _ = pad_to_multiple(mask, w, dim=-1, value=False)
context = x[..., :-w, :]
context = repeat(context, 'b n d -> (b nw) n d', mw=num_windows)
context_mask = torch.ones((num_windows, num_windows), device=self.device, dtype=torch.bool).tril()
context_mask = repeat(context_mask, 'n1 n2 -> (b n1) (n2 w)', b=b, w=w)
#fold queries and mask into windows
x = rearrange(x, 'b (n w) d -> b n w d', w=w)
mask = rearrange(mask, 'b (n w) -> b n w', w=w)
#omit the first window of queries as they have nothing to attend to
x = rearrange(x[:, 1:, ...], 'b n w d -> (b n) w d')
mask = rearrange(mask[:, 1:, ...], 'b n w -> (b n) w')
#gets number of queries and key values to route
num_routed_queries = default(num_routed_queries, self.num_routed_queries)
num_routed_key_values = default(num_routed_key_values, self.num_routed_key_values)
#coordinate descent routing
query_indices, query_scores, queries, query_mask = self.query_router(
x,
mask=mask,
num_tokens=num_routed_queries,
keep_one_route_dim=True
)
query_scores = rearrange(query_scores, 'b g n -> b g n 1')
kv_indices, key_value_scores, key_values, key_value_mask = self.key_value_router(
context,
mask=context_mask,
num_tokens=num_routed_key_values,
keep_one_route_dim=True
)
key_value_scores = rearrange(key_value_scores, 'b g n -> b g 1 n 1')
if exists(rotary_emb):
rotary_emb, _ = pad_to_multiple(rotary_emb, w, dim=-2)
windowed_rotary_emb = rearrange(rotary_emb, '(n w) d -> n w d', w=w)
windowed_rotary_emb = windowed_rotary_emb[1:]
windowed_rotary_emb = repeat(
windowed_rotary_emb,
'n w d -> (b n) g w d',
b=b,
g=query_scores.shape[1]
)
if exists(query_indices):
rotary_query_indices = repeat(
query_indices,
'... -> ... d',
d=windowed_rotary_emb.shape[-1]
)
q_rotary_emb = windowed_rotary_emb.gather(2, rotary_query_indices)
else:
q_rotary_emb = windowed_rotary_emb
k_rotary_emb = rotary_emb[kv_indices] if exists(kv_indices) else rotary_emb[:context.shape[-2]]
rotary_emb = (q_rotary_emb, k_rotary_emb)
attn_out = self.attn(
queries,
rotary_emb=rotary_emb,
context=key_values,
mask=key_value_mask,
values_scale=key_value_scores,
output_scale=query_scores
)
need_route_queries = exists(query_indices)
if not need_route_queries:
out = F.pad(
attn_out,
(0, 0, w, 0),
value=0.
)
out = out[:, :, :seq_len]
if exists(local_out):
local_out = rearrange(local_out, 'b n d -> b 1 n d')
out = torch.cat((local_out, out), dim=1)
out = reduce(
out,
'b e n d -> b n d',
'mean' if self.averaged_routed else "sum"
)
out = torch.zeros((
x.shape[0],
self.num_experts,
*x.shape[1:]
), device=x.device, dtype=x.dtype)
counts = torch.zeros(
(
x.shape[0],
self.num_experts,
x.shape[-2]
), device=x.device
)
ones = torch.ones(
attn_out.shape[:-1],
device=self.device
)
if exists(query_mask):
ones = ones * query_mask
counts = counts.scatter_add(
2,
query_indices,
ones
)
expanded_query_indices = repeat(
query_indices,
'b g n -> b g n d',
d=x.shape[-1]
)
attn_out_summed = out.scatter_add(
2,
expanded_query_indices,
attn_out
)
#for the positions that were not routed fill each with individual expert null token
fill_null_tokens = counts == 0 & ~rearrange(mask, 'b n -> b 1 n')
attn_out_summed = torch.where(
rearrange(fill_null_tokens, '... -> ... 1'),
rearrange(self.null_tokens, 'g d -> 1 g 1 d'),
attn_out_summed
)
#un window the attention output as well as the routed counts
attn_out_summed = rearrange(attn_out_summed, '(b n) g w d -> b g (n w) d', b=b)
attn_out_summed = F.pad(
attn_out_summed,
(0, 0, w, 0),
value=0.
)
attn_out_summed = attn_out_summed[..., :seq_len, :]
#local attended tokens with routed otkens
attn_out_summed = reduce(attn_out_summed, 'b g n d -> b n d', 'sum')
attn_out_summed = attn_out_summed + local_out
#in expert seems to perform better while averaging
if not self.averaged_routed:
return attn_out_summed
#avg tokens
return attn_out_summed / (self.num_experts + 1)
| zeta-main | zeta/nn/attention/mixture_attention.py |
from abc import abstractmethod
import torch.nn as nn
class BaseAttention(nn.Module):
@abstractmethod
def __init__(self):
super().__init__()
@abstractmethod
def forward(self, x, context=None, mask=None):
pass | zeta-main | zeta/nn/attention/base.py |
import torch
import torch.nn as nn
def fixed_pos_embedding(x):
"""
Generates fixed positional embeddings for the input tensor.
Args:
- x: Input tensor of shape (seq_len, dim)
Returns:
- sin: Sine positional embeddings of shape (seq_len, dim)
- cos: Cosine positional embeddings of shape (seq_len, dim)
"""
seq_len, dim = x.shape
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim) / dim))
sinusoid_inp = (
torch.einsum("i , j -> i j", torch.arange(0, seq_len, dtype=torch.float), inv_freq).to(x)
)
return torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)
def rotate_every_two(x):
"""
Rearranges the elements of the input tensor by rotating every two elements.
Args:
- x: Input tensor of shape (batch_size, seq_len, dim)
Returns:
- x: Rearranged tensor of shape (batch_size, seq_len, dim)
"""
x1 = x[:, :, ::2]
x2 = x[:, :, 1::2]
x = torch.stack((-x2, x1), dim=-1)
return x.flatten(-2)
def duplicate_interleave(m):
"""
Duplicates a matrix while interleaving the copy.
Args:
- m: Input matrix
Returns:
- m: Duplicated and interleaved matrix
"""
dim0 = m.shape[0]
m = m.view(-1, 1)
m = m.repeat(1, 2)
m = m.view(dim0, -1)
return m
def apply_rotary_pos_emb(x, sin, cos, scale=1):
"""
Applies rotary positional embeddings to the input tensor.
Args:
- x: Input tensor of shape (batch_size, seq_len, dim)
- sin: Sine positional embeddings of shape (seq_len, dim)
- cos: Cosine positional embeddings of shape (seq_len, dim)
- scale: Scaling factor for the positional embeddings
Returns:
- x: Tensor with applied rotary positional embeddings
"""
sin, cos = map(lambda t: duplicate_interleave(t * scale), (sin, cos))
return (x * cos) + (rotate_every_two(x) * sin)
class XPOS(nn.Module):
def __init__(
self,
head_dim: int = None,
scale_base: int = 512
):
super().__init__()
self.head_dim = head_dim
self.scale_base = scale_base
self.register_buffer(
"scale", (torch.arange(0, head_dim, 2) + 0.4 * head_dim) / (1.4 * head_dim)
)
def forward(self,
x,
offset=0,
downscale=False):
"""
Forward pass of the XPOS module.
Args:
- x: Input tensor of shape (batch_size, seq_len, dim)
- offset: Offset value for positional embeddings
- downscale: Boolean indicating whether to downscale the positional embeddings
Returns:
- x: Tensor with applied rotary positional embeddings
"""
length = x.shape[1]
min_pos = -(length + offset) // 2
max_pos = length + offset + min_pos
scale = self.scale ** torch.arange(min_pos, max_pos, 1).to(self.scale).div(self.scale_base)[:, None]
sin, cos = fixed_pos_embedding(scale)
if scale.shape[0] > length:
scale = scale[-length:]
sin = sin[-length:]
cos = cos[-length:]
if downscale:
scale = 1 / scale
x = apply_rotary_pos_emb(x, sin, cos, scale)
return x | zeta-main | zeta/nn/embeddings/xpos_relative_position.py |
# Copyright (c) 2022 Agora
# Licensed under The MIT License [see LICENSE for details]
from torch import nn
from zeta.nn.embeddings.base import BaseEmbedding
#Other embedding
class NominalEmbedding(BaseEmbedding):
def forward(self,
num_tokens: int,
dim: int) -> nn.Module:
embedding = nn.Embedding(num_tokens, dim)
return embedding | zeta-main | zeta/nn/embeddings/nominal_embeddings.py |
import torch
from torch import nn
from zeta.utils.main import exists, l2norm
class AbsolutePositionalEmbedding(nn.Module):
def __init__(self, dim, max_seq_len, l2norm_embed=False):
super().__init__()
self.scale = dim ** -0.5 if not l2norm_embed else 1.
self.max_seq_len = max_seq_len
self.l2norm_embed = l2norm_embed
self.emb = nn.Embedding(max_seq_len, dim)
def forward(self, x, pos=None):
seq_len, device = x.shape[-1], x.device
assert seq_len <= self.max_seq_len, f"You are passing in a sequence length of {seq_len} but you absolute positional embedding has a max of length of {self.max_seq_len}"
if not exists(pos):
pos = torch.arange(seq_len, device=device)
pos_emb = self.emb(pos)
pos_emb = pos_emb * self.scale
return l2norm(pos_emb) if self.l2norm_embed else pos_emb | zeta-main | zeta/nn/embeddings/abc_pos_emb.py |
# Copyright (c) 2022 Agora
# Licensed under The MIT License [see LICENSE for details]
import copy
import torch
import torch.nn as nn
def MultiwayWrapper(args, module, dim=1):
if args.multiway:
return MultiwayNetwork(module, dim=dim)
return module
def set_split_position(position):
def apply_fn(module):
if hasattr(module, "split_position"):
module.split_position = position
return apply_fn
class MultiwayNetwork(nn.Module):
def __init__(self, module, dim=1):
super().__init__()
self.dim = dim
self.A = module
self.B = copy.deepcopy(module)
self.B.reset_parameters()
self.split_position = -1
def forward(self, x, **kwargs):
if self.split_position == -1:
return self.A(x, **kwargs)
if self.split_position == 0:
return self.B(x, **kwargs)
x1, x2 = torch.split(
x,
[self.split_position, x.size(self.dim) - self.split_position],
dim=self.dim,
)
# x1, x2 = x[:self.split_position], x[self.split_position:]
y1, y2 = self.A(x1, **kwargs), self.B(x2, **kwargs)
return torch.cat([y1, y2], dim=self.dim)
class MultiwayEmbedding(MultiwayNetwork):
"""
A specialized version of the MultiwayNetwork to perform multi-way embeddings on an input tensor.
Parameters:
- modules (List[nn.Module]): A list containing exactly two PyTorch modules. Typically these would be embedding layers.
- dim (int): The dimension along which to split and concatenate the input tensor. Default is 1.
"""
def __init__(self, modules, dim=1):
super(MultiwayNetwork, self).__init__()
self.dim = dim
assert len(modules) == 2
self.A = modules[0]
self.B = modules[1]
self.split_position = -1 | zeta-main | zeta/nn/embeddings/multiway_network.py |
# Copyright (c) 2022 Agora
# Licensed under The MIT License [see LICENSE for details]
import torch.nn as nn
from abc import ABC, abstractmethod
import bitsandbytes as bnb
class BaseEmbedding(ABC):
@abstractmethod
def forward(self, num_tokens: int, dim: int) -> nn.Module:
#custom embedding function
embedding = ...
return embedding
#Other embedding
class Embedding(BaseEmbedding):
def forward(self,
num_tokens: int,
dim: int) -> nn.Module:
embedding = nn.Embedding(num_tokens, dim)
return embedding
class BnBEmbedding(BaseEmbedding):
def forward(self,
num_tokens: int,
dim: int,
padding_idx) -> bnb.nn.modules:
embedding = bnb.nn.modules.Embedding(num_tokens, dim, padding_idx)
return embedding
class TextEmbedding(nn.Embedding):
def reset_parameters(self):
nn.init.normal_(self.weight, mean=0, std=self.embedding_dim**-0.5)
self._fill_padding_idx_with_zero()
| zeta-main | zeta/nn/embeddings/embedding.py |
# embeddings
from zeta.nn.embeddings.rope import RotaryEmbedding
from zeta.nn.embeddings.xpos_relative_position import XPOS, rotate_every_two, apply_rotary_pos_emb
from zeta.nn.embeddings.multiway_network import MultiwayEmbedding, MultiwayNetwork, MultiwayWrapper
from zeta.nn.embeddings.bnb_embedding import BnBEmbedding
from zeta.nn.embeddings.base import BaseEmbedding
from zeta.nn.embeddings.nominal_embeddings import NominalEmbedding
| zeta-main | zeta/nn/embeddings/__init__.py |
import torch
from torch import nn
class VisionEmbedding(nn.Module):
"""Image to Patch Embedding"""
def __init__(
self,
img_size=224,
patch_size=16,
in_chans=3,
embed_dim=768,
contain_mask_token=False,
prepend_cls_token=False,
):
super().__init__()
img_size = (img_size, img_size)
patch_size = (patch_size, patch_size)
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = nn.Conv2d(
in_chans, embed_dim, kernel_size=patch_size, stride=patch_size
)
if contain_mask_token:
self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
else:
self.mask_token = None
if prepend_cls_token:
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
else:
self.cls_token = None
def num_position_embeddings(self):
if self.cls_token is None:
return self.num_patches
else:
return self.num_patches + 1
def forward(self, x, masked_position=None, **kwargs):
B, C, H, W = x.shape
assert (
H == self.img_size[0] and W == self.img_size[1]
), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
x = self.proj(x).flatten(2).transpose(1, 2)
batch_size, seq_len, _ = x.size()
if masked_position is not None:
assert self.mask_token is not None
mask_token = self.mask_token.expand(batch_size, seq_len, -1)
w = masked_position.unsqueeze(-1).type_as(mask_token)
x = x * (1 - w) + mask_token * w
if self.cls_token is not None:
cls_tokens = self.cls_token.expand(
batch_size, -1, -1
) # stole cls_tokens impl from Phil Wang, thanks
x = torch.cat((cls_tokens, x), dim=1)
return x
| zeta-main | zeta/nn/embeddings/vision_emb.py |
#from paper:: https://arxiv.org/pdf/2308.10882.pdf
import torch
from torch import nn
class TruncatedRotaryEmbedding(nn.Module):
def __init__(
self,
dim,
a,
b,
rho
):
super().__init__()
self.dim = dim
self.a = a
self.b = b
self.rho = rho
self.base = 10000
self.inv_freq = 1. / (self.base ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer('inv_freq', self.inv_freq)
def forward(self, seq_len, device):
t = torch.arange(seq_len, device=device).type_as(self.inv_freq)
freqs = torch.einsum('i, j -> i j', t, self.inv_freq)
freqs = torch.cat((freqs, freqs), dim=-1)
theta = self.base ** (-2 * torch.arange(0, self.dim, 2).float() / self.dim)
theta_star = torch.where(theta >= self.b, theta,
torch.where(theta < self.a, torch.zeros_like(theta),
self.rho * torch.ones_like(theta)))
theta_star = torch.cat((theta_star, theta_star), dim=-1)
result = freqs * theta_star
return result
| zeta-main | zeta/nn/embeddings/truncated_rope.py |
# Copyright (c) 2022 Agora
# Licensed under The MIT License [see LICENSE for details]
import bitsandbytes as bnb
from zeta.nn.embeddings.base import BaseEmbedding
class BnBEmbedding(BaseEmbedding):
def forward(self,
num_tokens: int,
dim: int,
padding_idx) -> bnb.nn.modules:
embedding = bnb.nn.modules.Embedding(num_tokens, dim, padding_idx)
return embedding
| zeta-main | zeta/nn/embeddings/bnb_embedding.py |
import torch
from torch import nn, einsum
from einops import rearrange
def exists(val):
return val is not None
class SinusoidalEmbeddings(nn.Module):
def __init__(
self,
dim,
scale_base = None,
use_xpos = False
):
super().__init__()
inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer('inv_freq', inv_freq)
# xpos related
self.use_xpos = use_xpos
self.scale_base = scale_base
assert not (use_xpos and not exists(scale_base)), 'scale base must be defined if using xpos'
scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim)
self.register_buffer('scale', scale, persistent = False)
def forward(self, x):
seq_len, device = x.shape[-2], x.device
t = torch.arange(seq_len, device = x.device).type_as(self.inv_freq)
freqs = torch.einsum('i , j -> i j', t, self.inv_freq)
freqs = torch.cat((freqs, freqs), dim = -1)
if not self.use_xpos:
return freqs, torch.ones(1, device = device)
power = (t - (seq_len // 2)) / self.scale_base
scale = self.scale ** rearrange(power, 'n -> n 1')
scale = torch.cat((scale, scale), dim = -1)
return freqs, scale
def rotate_half(x):
x = rearrange(x, 'b ... (r d) -> b ... r d', r = 2)
x1, x2 = x.unbind(dim = -2)
return torch.cat((-x2, x1), dim = -1)
def apply_rotary_pos_emb(q, k, freqs, scale = 1):
q_len = q.shape[-2]
q_freqs = freqs[..., -q_len:, :]
inv_scale = scale ** -1
if scale.ndim == 2:
scale = scale[-q_len:, :]
q = (q * q_freqs.cos() * scale) + (rotate_half(q) * q_freqs.sin() * scale)
k = (k * freqs.cos() * inv_scale) + (rotate_half(k) * freqs.sin() * inv_scale)
return q, k | zeta-main | zeta/nn/embeddings/sinusoidal.py |
#prompts to jquesnelle
# https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaDynamicYaRNScaledRotaryEmbedding.py
import torch
from torch import nn
import math
#helpers
#inveerse dim formula to find dim based on number of rotations
def find_correction_dim(
num_rotations,
dim,
base=10000,
max_position_embeddings=2048
):
return (dim * math.log(
max_position_embeddings/ (num_rotations * 2 * math.pi))) / (2 * math.log(base))
#find dim range bounds based on rotations
def find_correction_range(
low_rot,
high_rot,
dim,
base=10000,
max_position_embeddings=2048
):
low = math.floor(find_correction_dim(
low_rot, dim, base, max_position_embeddings
))
high = math.ceil(find_correction_dim(
high_rot,
dim,
base,
max_position_embeddings
))
return max(low, 0), min(high, dim-1) #clamp values just in case
def linear_ramp_mask(
min,
max,
dim):
if min == max:
max += 0.001
linear_func = (torch.arange(
dim,
dtype=torch.float32
) - min) / (max - min)
ramp_func = torch.clamp(linear_func, 0, 1)
return ramp_func
def get_mscale(scale=1):
if scale <= 1:
return 1.0
return 0.1 * math.log(scale) + 1.0
class LLamaDynamicYarnScaledRotaryEmbedding(nn.Module):
def __init__(
self,
dim,
max_position_embeddings: int = 2048,
base: int = 10000,
original_max_position_embeddings: int = 2048,
extrapolation_factor: int = 1,
attn_factor: int =1,
beta_fast: int = 32,
beta_slow: int = 1,
finetuned=False,
device=None
):
super().__init__()
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
self.original_max_position_embeddings = original_max_position_embeddings
self.extrapolation_factor = extrapolation_factor
self.attn_factor = attn_factor
self.beta_fast = beta_fast
self.beta_slow = beta_slow
if finetuned:
self.yarn(
self.max_position_embedding / self.original_max_position_embeddings, device
)
else:
inv_freq = 1.0 / \
(base ** (torch.arange(0, dim, 2).float().to(device) / dim))
self.register_buffer("inv_freq", inv_freq)
self.mscale = 1
#build
self.max_seq_len_cached = max_position_embeddings
t = torch.arange(
self.max_seq_len_cached,
device=self.inv_freq.device,
dtype=self.inv_freq.dtype
)
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
emb = torch.cat((freqs,
freqs), dim=-1)
dtype = torch.get_default_dtype()
self.register_buffer(
"cos_cached",
(emb.cos() * self.mscale)[None, None, :, :].to(dtype), persistent=False
)
self.register_buffer(
"sin_cached",
(emb.sin() * self.mscale)[None, None, :, :].to(dtype), persistent=False
)
def forward(
self,
x,
seq_len=None
):
if seq_len > self.max_seq_len_cached:
self.max_seq_len_cached = seq_len
self.yarn(
seq_len / self.original_max_position_embeddings, x.device
)
t = torch.arange(
self.max_seq_len_cached,
device=x.dtype,
dtype=self.inv_freq.dtype
)
freqs = torch.einsum(
'i,j->ij',
t,
self.inv_freq
)
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
self.register_buffer(
"cos_cached",
(emb.cos() * self.mscale)[None, None, :, :].to(x.dtype), persistent=False
)
self.register_buffer(
"sin_cached", (emb.sin() * self.mscale)[None, None, :, :].to(x.dtype), persistent=False
)
return (
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
)
def yarn(
self,
scale,
device
):
pos_freqs = self.base ** (torch.arange(
0,
self.dim,
2
).float().to(device) / self.dim)
inv_freq_extrapolation = 1.0 / pos_freqs
inv_freq_interpolation = 1.0 / (scale * pos_freqs)
low, high = find_correction_range(
self.beta_fast,
self.beta_slow,
self.dim,
self.base,
self.original_max_position_embeddings
)
inv_freq_mask = (1 - linear_ramp_mask(
low,
high,
self.dim // 2
).float().to(device)) * self.extrapolation_factor
inv_freq = inv_freq_interpolation * (1 - inv_freq_mask) \
+ inv_freq_extrapolation * inv_freq_mask
self.register_buffer("inv_freq", inv_freq)
self.mscale = float(
get_mscale(scale) * self.attn_factor
)
| zeta-main | zeta/nn/embeddings/yarn.py |
#from paper:: https://arxiv.org/pdf/2308.10882.pdf
import torch
from torch import nn
from einops import rearrange
def exists(val):
return val is not None
class RotaryEmbedding(nn.Module):
def __init__(
self,
dim,
use_xpos=False,
scale_base=512,
interpolation_factor=1.,
base=10000,
base_rescale_factor=1.,
):
super().__init__()
#rscal rotary embeddings to long sequence length without finetuning
base *= base_rescale_factor ** (dim / (dim - 2))
inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer('inv_freq', inv_freq)
assert interpolation_factor >= 1
self.interpolation_factor = interpolation_factor
if not use_xpos:
self.register_buffer('scale', None)
return
scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim)
self.scale_base = scale_base
self.register_buffer('scale', scale)
def forward(self, seq_len, device):
t = torch.arange(seq_len, device=device).type_as(self.inv_freq)
t = t / self.interpolation_factor
freqs = torch.einsum('i, j -> i j', t, self.inv_freq)
freqs = torch.cat((freqs, freqs), dim=-1)
if not exists(self.scale):
return freqs, 1.
power = (torch.arange(seq_len, device=device) - (seq_len // 2)) / self.scale_base
scale = self.scale ** rearrange(power, 'n -> n 1')
scale = torch.cat((scale, scale), dim=-1)
return freqs, scale
def rotate_half(x):
x = rearrange(x, '... (j d) -> ... j d', j=2)
x1, x2 = x.unbind(dim=-1)
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(t, freqs, scale=1):
seq_len = t.shape[-2]
freqs = freqs[-seq_len:, :]
return (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale)
| zeta-main | zeta/nn/embeddings/rope.py |
from torch import nn
from abc import ABC, abstractmethod
class BaseEmbedding(ABC):
@abstractmethod
def forward(self, num_tokens: int, dim: int) -> nn.Module:
#custom embedding function
embedding = ...
return embedding | zeta-main | zeta/nn/embeddings/base.py |
import torch
from torch import nn
class VisionLanguageEmbedding(nn.Module):
def __init__(self, text_embed, vision_embed):
super().__init__()
self.text_embed = text_embed
self.vision_embed = vision_embed
def forward(self, textual_tokens, visual_tokens, **kwargs):
if textual_tokens is None:
return self.vision_embed(visual_tokens)
if visual_tokens is None:
return self.text_embed(textual_tokens)
x1 = self.vision_embed(visual_tokens)
x2 = self.text_embed(textual_tokens)
return torch.cat([x1, x2], dim=1) | zeta-main | zeta/nn/embeddings/vis_lang_emb.py |
import torch
from torch import nn
import torch.nn.functional as F
class PositionalEmbedding(nn.Embedding):
def forward(
self,
x,
positions=None,
**kwargs,
):
if positions is None:
# being consistent with Fairseq, which starts from 2.
positions = (
torch.arange(2, x.size(1) + 2, device=x.device).long().unsqueeze(0)
)
return F.embedding(
positions,
self.weight,
self.padding_idx,
self.max_norm,
self.norm_type,
self.scale_grad_by_freq,
self.sparse,
) | zeta-main | zeta/nn/embeddings/positional.py |
from zeta.nn.architecture.attn_layers import AttentionLayers
class Decoder(AttentionLayers):
def __init__(self, **kwargs):
assert 'causal' not in kwargs, 'cannot set causality on decoder'
super().__init__(causal=True, **kwargs)
| zeta-main | zeta/nn/architecture/decoder.py |
import math
from collections import namedtuple
from dataclasses import dataclass
from functools import partial, wraps
from inspect import isfunction
from random import random
from typing import Callable, List, Optional
import torch
import torch.nn.functional as F
from einops import rearrange, reduce, repeat
from torch import Tensor, einsum, nn
from zeta.nn.attention.attend import Attend, Intermediates
EfficientAttentionConfig = namedtuple('EfficientAttentionConfig', ['enable_flash', 'enable_math', 'enable_mem_efficient'])
DEFAULT_DIM_HEAD = 64
@dataclass
class LayerIntermediates:
hiddens: Optional[List[Tensor]] = None
attn_intermediates: Optional[List[Intermediates]] = None
layer_hiddens: Optional[List[Tensor]] = None
attn_z_loss: Optional[Tensor] = None
# helpers
def exists(val):
return val is not None
def default(val, d):
if exists(val):
return val
return d() if isfunction(d) else d
def cast_tuple(val, depth):
return val if isinstance(val, tuple) else (val,) * depth
def divisible_by(num, den):
return (num % den) == 0
def maybe(fn):
@wraps(fn)
def inner(x, *args, **kwargs):
if not exists(x):
return x
return fn(x, *args, **kwargs)
return inner
class always():
def __init__(self, val):
self.val = val
def __call__(self, *args, **kwargs):
return self.val
class not_equals():
def __init__(self, val):
self.val = val
def __call__(self, x, *args, **kwargs):
return x != self.val
class equals():
def __init__(self, val):
self.val = val
def __call__(self, x, *args, **kwargs):
return x == self.val
def Sequential(*modules):
return nn.Sequential(*filter(exists, modules))
# tensor helpers
def max_neg_value(tensor):
return -torch.finfo(tensor.dtype).max
def l2norm(t, groups = 1):
t = rearrange(t, '... (g d) -> ... g d', g = groups)
t = F.normalize(t, p = 2, dim = -1)
return rearrange(t, '... g d -> ... (g d)')
def pad_at_dim(t, pad, dim = -1, value = 0.):
dims_from_right = (- dim - 1) if dim < 0 else (t.ndim - dim - 1)
zeros = ((0, 0) * dims_from_right)
return F.pad(t, (*zeros, *pad), value = value)
def or_reduce(masks):
head, *body = masks
for rest in body:
head = head | rest
return head
# auxiliary loss helpers
def calc_z_loss(
pre_softmax_attns: List[Tensor],
mask = None,
weight = 1.
):
# the same loss applied to the mixture of experts router logits in https://arxiv.org/abs/2202.08906
# in the paper, in a tiny footnote, they mention using it on attention logits with stabilizing effects
# also used in PaLM as one of the measures
lse = 0.
for attn in pre_softmax_attns:
lse = lse + attn.logsumexp(dim = -1)
loss = torch.square(lse)
loss = reduce(loss, 'b h n -> b n', 'sum')
if not exists(mask):
return loss.mean() * weight
loss = loss[mask].sum() / mask.sum().clamp(min = 1e-5)
return loss * weight
# init helpers
def init_zero_(layer):
nn.init.constant_(layer.weight, 0.)
if exists(layer.bias):
nn.init.constant_(layer.bias, 0.)
# keyword argument helpers
def pick_and_pop(keys, d):
values = list(map(lambda key: d.pop(key), keys))
return dict(zip(keys, values))
def group_dict_by_key(cond, d):
return_val = [dict(),dict()]
for key in d.keys():
match = bool(cond(key))
ind = int(not match)
return_val[ind][key] = d[key]
return (*return_val,)
def string_begins_with(prefix, str):
return str.startswith(prefix)
def group_by_key_prefix(prefix, d):
return group_dict_by_key(partial(string_begins_with, prefix), d)
def groupby_prefix_and_trim(prefix, d):
kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d)
kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
return kwargs_without_prefix, kwargs
# initializations
def deepnorm_init(
transformer,
beta,
module_name_match_list = ['.ff.', '.to_v', '.to_out']
):
for name, module in transformer.named_modules():
if type(module) != nn.Linear:
continue
needs_beta_gain = any(map(lambda substr: substr in name, module_name_match_list))
gain = beta if needs_beta_gain else 1
nn.init.xavier_normal_(module.weight.data, gain = gain)
if exists(module.bias):
nn.init.constant_(module.bias.data, 0)
# structured dropout, more effective than traditional attention dropouts
def dropout_seq(seq, mask, dropout):
b, n, *_, device = *seq.shape, seq.device
logits = torch.randn(b, n, device = device)
if exists(mask):
mask_value = max_neg_value(logits)
logits = logits.masked_fill(~mask, mask_value)
keep_prob = 1. - dropout
num_keep = max(1, int(keep_prob * n))
keep_indices = logits.topk(num_keep, dim = 1).indices
batch_indices = torch.arange(b, device = device)
batch_indices = rearrange(batch_indices, 'b -> b 1')
seq = seq[batch_indices, keep_indices]
if exists(mask):
seq_counts = mask.sum(dim = -1)
seq_keep_counts = torch.ceil(seq_counts * keep_prob).int()
keep_mask = torch.arange(num_keep, device = device) < rearrange(seq_keep_counts, 'b -> b 1')
mask = mask[batch_indices, keep_indices] & keep_mask
return seq, mask
# activations
class ReluSquared(nn.Module):
def forward(self, x):
return F.relu(x) ** 2
# embedding
class TokenEmbedding(nn.Module):
def __init__(self, dim, num_tokens, l2norm_embed = False):
super().__init__()
self.l2norm_embed = l2norm_embed
self.emb = nn.Embedding(num_tokens, dim)
def forward(self, x):
token_emb = self.emb(x)
return l2norm(token_emb) if self.l2norm_embed else token_emb
# positional embeddings
class AbsolutePositionalEmbedding(nn.Module):
def __init__(self, dim, max_seq_len, l2norm_embed = False):
super().__init__()
self.scale = dim ** -0.5 if not l2norm_embed else 1.
self.max_seq_len = max_seq_len
self.l2norm_embed = l2norm_embed
self.emb = nn.Embedding(max_seq_len, dim)
def forward(self, x, pos = None):
seq_len, device = x.shape[1], x.device
assert seq_len <= self.max_seq_len, f'you are passing in a sequence length of {seq_len} but your absolute positional embedding has a max sequence length of {self.max_seq_len}'
if not exists(pos):
pos = torch.arange(seq_len, device = device)
pos_emb = self.emb(pos)
pos_emb = pos_emb * self.scale
return l2norm(pos_emb) if self.l2norm_embed else pos_emb
class ScaledSinusoidalEmbedding(nn.Module):
def __init__(self, dim, theta = 10000):
super().__init__()
assert divisible_by(dim, 2)
self.scale = nn.Parameter(torch.ones(1) * dim ** -0.5)
half_dim = dim // 2
freq_seq = torch.arange(half_dim).float() / half_dim
inv_freq = theta ** -freq_seq
self.register_buffer('inv_freq', inv_freq, persistent = False)
def forward(self, x, pos = None):
seq_len, device = x.shape[1], x.device
if not exists(pos):
pos = torch.arange(seq_len, device = device)
emb = einsum('i, j -> i j', pos, self.inv_freq)
emb = torch.cat((emb.sin(), emb.cos()), dim = -1)
return emb * self.scale
class RelativePositionBias(nn.Module):
def __init__(self, scale, causal = False, num_buckets = 32, max_distance = 128, heads = 8):
super().__init__()
self.scale = scale
self.causal = causal
self.num_buckets = num_buckets
self.max_distance = max_distance
self.relative_attention_bias = nn.Embedding(num_buckets, heads)
@staticmethod
def _relative_position_bucket(relative_position, causal = True, num_buckets = 32, max_distance = 128):
ret = 0
n = -relative_position
if not causal:
num_buckets //= 2
ret += (n < 0).long() * num_buckets
n = torch.abs(n)
else:
n = torch.max(n, torch.zeros_like(n))
max_exact = num_buckets // 2
is_small = n < max_exact
val_if_large = max_exact + (
torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact)
).long()
val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1))
ret += torch.where(is_small, n, val_if_large)
return ret
@property
def device(self):
return next(self.parameters()).device
def forward(self, i, j):
device = self.device
q_pos = torch.arange(j - i, j, dtype = torch.long, device = device)
k_pos = torch.arange(j, dtype = torch.long, device = device)
rel_pos = k_pos[None, :] - q_pos[:, None]
rp_bucket = self._relative_position_bucket(rel_pos, causal = self.causal, num_buckets = self.num_buckets, max_distance = self.max_distance)
values = self.relative_attention_bias(rp_bucket)
bias = rearrange(values, 'i j h -> h i j')
return bias * self.scale
class DynamicPositionBias(nn.Module):
def __init__(self, dim, *, heads, depth, log_distance = False, norm = False):
super().__init__()
assert depth >= 1, 'depth for dynamic position bias MLP must be greater or equal to 1'
self.log_distance = log_distance
self.mlp = nn.ModuleList([])
self.mlp.append(Sequential(
nn.Linear(1, dim),
nn.LayerNorm(dim) if norm else None,
nn.SiLU()
))
for _ in range(depth - 1):
self.mlp.append(Sequential(
nn.Linear(dim, dim),
nn.LayerNorm(dim) if norm else None,
nn.SiLU()
))
self.mlp.append(nn.Linear(dim, heads))
@property
def device(self):
return next(self.parameters()).device
def forward(self, i, j):
assert i == j
n, device = j, self.device
# get the (n x n) matrix of distances
seq_arange = torch.arange(n, device = device)
context_arange = torch.arange(n, device = device)
indices = rearrange(seq_arange, 'i -> i 1') - rearrange(context_arange, 'j -> 1 j')
indices += (n - 1)
# input to continuous positions MLP
pos = torch.arange(-n + 1, n, device = device).float()
pos = rearrange(pos, '... -> ... 1')
if self.log_distance:
pos = torch.sign(pos) * torch.log(pos.abs() + 1) # log of distance is sign(rel_pos) * log(abs(rel_pos) + 1)
for layer in self.mlp:
pos = layer(pos)
# get position biases
bias = pos[indices]
bias = rearrange(bias, 'i j h -> h i j')
return bias
class AlibiPositionalBias(nn.Module):
def __init__(self, heads, total_heads, **kwargs):
super().__init__()
self.heads = heads
self.total_heads = total_heads
slopes = Tensor(self._get_slopes(heads))
slopes = rearrange(slopes, 'h -> h 1 1')
self.register_buffer('slopes', slopes, persistent = False)
self.register_buffer('bias', None, persistent = False)
def get_bias(self, i, j, device):
i_arange = torch.arange(j - i, j, device = device)
j_arange = torch.arange(j, device = device)
bias = -torch.abs(rearrange(j_arange, 'j -> 1 1 j') - rearrange(i_arange, 'i -> 1 i 1'))
return bias
@staticmethod
def _get_slopes(heads):
def get_slopes_power_of_2(n):
start = (2**(-2**-(math.log2(n)-3)))
ratio = start
return [start*ratio**i for i in range(n)]
if math.log2(heads).is_integer():
return get_slopes_power_of_2(heads)
closest_power_of_2 = 2 ** math.floor(math.log2(heads))
return get_slopes_power_of_2(closest_power_of_2) + get_slopes_power_of_2(2 * closest_power_of_2)[0::2][:heads-closest_power_of_2]
@property
def device(self):
return next(self.buffers()).device
def forward(self, i, j):
h, device = self.total_heads, self.device
if exists(self.bias) and self.bias.shape[-1] >= j and self.bias.shape[-2] >= i:
return self.bias[..., :i, :j]
bias = self.get_bias(i, j, device)
bias = bias * self.slopes
num_heads_unalibied = h - bias.shape[0]
bias = pad_at_dim(bias, (0, num_heads_unalibied), dim = 0)
self.register_buffer('bias', bias, persistent = False)
return self.bias
class RotaryEmbedding(nn.Module):
def __init__(
self,
dim,
use_xpos = False,
scale_base = 512,
interpolation_factor = 1.,
base = 10000,
base_rescale_factor = 1.
):
super().__init__()
# proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
# has some connection to NTK literature
# https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
base *= base_rescale_factor ** (dim / (dim - 2))
inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer('inv_freq', inv_freq)
assert interpolation_factor >= 1.
self.interpolation_factor = interpolation_factor
if not use_xpos:
self.register_buffer('scale', None)
return
scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim)
self.scale_base = scale_base
self.register_buffer('scale', scale)
def forward(self, seq_len, device):
t = torch.arange(seq_len, device = device).type_as(self.inv_freq)
t = t / self.interpolation_factor
freqs = torch.einsum('i , j -> i j', t, self.inv_freq)
freqs = torch.cat((freqs, freqs), dim = -1)
if not exists(self.scale):
return freqs, 1.
power = (torch.arange(seq_len, device = device) - (seq_len // 2)) / self.scale_base
scale = self.scale ** rearrange(power, 'n -> n 1')
scale = torch.cat((scale, scale), dim = -1)
return freqs, scale
def rotate_half(x):
x = rearrange(x, '... (j d) -> ... j d', j = 2)
x1, x2 = x.unbind(dim = -2)
return torch.cat((-x2, x1), dim = -1)
def apply_rotary_pos_emb(t, freqs, scale = 1):
seq_len = t.shape[-2]
freqs = freqs[-seq_len:, :]
return (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale)
# norms
class Scale(nn.Module):
def __init__(self, value, fn):
super().__init__()
self.value = value
self.fn = fn
def forward(self, x, **kwargs):
out = self.fn(x, **kwargs)
def scale_fn(t):
return t * self.value
if not isinstance(out, tuple):
return scale_fn(out)
return (scale_fn(out[0]), *out[1:])
class ScaleNorm(nn.Module):
def __init__(self, dim, eps = 1e-5):
super().__init__()
self.eps = eps
self.g = nn.Parameter(torch.ones(1) * (dim ** -0.5))
def forward(self, x):
norm = torch.norm(x, dim = -1, keepdim = True)
return x / norm.clamp(min = self.eps) * self.g
class RMSNorm(nn.Module):
def __init__(self, dim):
super().__init__()
self.scale = dim ** 0.5
self.g = nn.Parameter(torch.ones(dim))
def forward(self, x):
return F.normalize(x, dim = -1) * self.scale * self.g
class SimpleRMSNorm(nn.Module):
def __init__(self, dim):
super().__init__()
self.scale = dim ** 0.5
def forward(self, x):
return F.normalize(x, dim = -1) * self.scale
# residual and residual gates
class Residual(nn.Module):
def __init__(self, dim, scale_residual = False, scale_residual_constant = 1.):
super().__init__()
self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None
self.scale_residual_constant = scale_residual_constant
def forward(self, x, residual):
if exists(self.residual_scale):
residual = residual * self.residual_scale
if self.scale_residual_constant != 1:
residual = residual * self.scale_residual_constant
return x + residual
class GRUGating(nn.Module):
def __init__(self, dim, scale_residual = False, **kwargs):
super().__init__()
self.gru = nn.GRUCell(dim, dim)
self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None
def forward(self, x, residual):
if exists(self.residual_scale):
residual = residual * self.residual_scale
gated_output = self.gru(
rearrange(x, 'b n d -> (b n) d'),
rearrange(residual, 'b n d -> (b n) d')
)
return gated_output.reshape_as(x)
# token shifting
def shift(t, amount, mask = None):
if amount == 0:
return t
else:
amount = min(amount, t.shape[1])
if exists(mask):
t = t.masked_fill(~mask[..., None], 0.)
return pad_at_dim(t, (amount, -amount), dim = - 2, value = 0.)
class ShiftTokens(nn.Module):
def __init__(self, shifts, fn):
super().__init__()
self.fn = fn
self.shifts = tuple(shifts)
def forward(self, x, **kwargs):
mask = kwargs.get('mask', None)
shifts = self.shifts
segments = len(shifts)
feats_per_shift = x.shape[-1] // segments
splitted = x.split(feats_per_shift, dim = -1)
segments_to_shift, rest = splitted[:segments], splitted[segments:]
segments_to_shift = list(map(lambda args: shift(*args, mask = mask), zip(segments_to_shift, shifts)))
x = torch.cat((*segments_to_shift, *rest), dim = -1)
return self.fn(x, **kwargs)
# feedforward
class GLU(nn.Module):
def __init__(
self,
dim_in,
dim_out,
activation: Callable,
mult_bias = False
):
super().__init__()
self.act = activation
self.proj = nn.Linear(dim_in, dim_out * 2)
self.mult_bias = nn.Parameter(torch.ones(dim_out)) if mult_bias else 1.
def forward(self, x):
x, gate = self.proj(x).chunk(2, dim = -1)
return x * self.act(gate) * self.mult_bias
class FeedForward(nn.Module):
def __init__(
self,
dim,
dim_out = None,
mult = 4,
glu = False,
glu_mult_bias = False,
swish = False,
relu_squared = False,
post_act_ln = False,
dropout = 0.,
no_bias = False,
zero_init_output = False
):
super().__init__()
inner_dim = int(dim * mult)
dim_out = default(dim_out, dim)
if relu_squared:
activation = ReluSquared()
elif swish:
activation = nn.SiLU()
else:
activation = nn.GELU()
if glu:
project_in = GLU(dim, inner_dim, activation, mult_bias = glu_mult_bias)
else:
project_in = nn.Sequential(
nn.Linear(dim, inner_dim, bias = not no_bias),
activation
)
self.ff = Sequential(
project_in,
nn.LayerNorm(inner_dim) if post_act_ln else None,
nn.Dropout(dropout),
nn.Linear(inner_dim, dim_out, bias = not no_bias)
)
# init last linear layer to 0
if zero_init_output:
init_zero_(self.ff[-1])
def forward(self, x):
return self.ff(x)
# attention. it is all we need
class Attention(nn.Module):
def __init__(
self,
dim,
dim_head = DEFAULT_DIM_HEAD,
heads = 8,
causal = False,
flash = False,
talking_heads = False,
head_scale = False,
sparse_topk = None,
num_mem_kv = 0,
dropout = 0.,
on_attn = False,
gate_values = False,
zero_init_output = False,
max_attend_past = None,
qk_norm = False,
qk_norm_groups = 1,
qk_norm_scale = 10,
qk_norm_dim_scale = False,
one_kv_head = False,
kv_heads = None,
shared_kv = False,
value_dim_head = None,
tensor_product = False, # https://arxiv.org/abs/2208.06061
cascading_heads = False,
add_zero_kv = False, # same as add_zero_attn in pytorch
onnxable = False
):
super().__init__()
self.scale = dim_head ** -0.5
self.heads = heads
self.causal = causal
self.max_attend_past = max_attend_past
assert not (exists(kv_heads) and one_kv_head), 'either attn_one_kv_head is set to True (in which case kv_heads is set to 1), or attn_kv_heads is set, but not both'
value_dim_head = default(value_dim_head, dim_head)
kv_heads = default(kv_heads, heads)
kv_heads = 1 if one_kv_head else kv_heads
assert divisible_by(heads, kv_heads)
self.kv_heads = kv_heads
q_dim = dim_head * heads
k_dim = dim_head * kv_heads
v_dim = value_dim_head * kv_heads
out_dim = value_dim_head * heads
self.to_q = nn.Linear(dim, q_dim, bias = False)
self.to_k = nn.Linear(dim, k_dim, bias = False)
# shared key / values, for further memory savings during inference
assert not (shared_kv and value_dim_head != dim_head), 'key and value head dimensions must be equal for shared key / values'
self.to_v = nn.Linear(dim, v_dim, bias = False) if not shared_kv else None
# relations projection from tp-attention
self.to_r = nn.Linear(dim, v_dim, bias = False) if tensor_product else None
# add GLU gating for aggregated values, from alphafold2
self.to_v_gate = None
if gate_values:
self.to_v_gate = nn.Linear(dim, out_dim)
nn.init.constant_(self.to_v_gate.weight, 0)
nn.init.constant_(self.to_v_gate.bias, 1)
# cosine sim attention
self.qk_norm = qk_norm
self.qk_norm_groups = qk_norm_groups
self.qk_norm_scale = qk_norm_scale
# whether to use the rmsnorm (equivalent to cosine sim attention when scale is equal to 1) - https://arxiv.org/abs/2302.05442
self.qk_norm_dim_scale = qk_norm_dim_scale
self.qk_norm_q_scale = self.qk_norm_k_scale = 1
if qk_norm and qk_norm_dim_scale:
self.qk_norm_q_scale = nn.Parameter(torch.ones(dim_head))
self.qk_norm_k_scale = nn.Parameter(torch.ones(dim_head))
assert (not qk_norm) or divisible_by(dim_head, qk_norm_groups), 'dimension per attention head must be divisible by the qk norm groups'
assert not (qk_norm and (dim_head // qk_norm_groups) <= 2), 'the group dimension may be too small (2 was too small in my tests, but 4 still works, surprisingly)'
# attend class - includes core attention algorithm + talking heads
self.attend = Attend(
heads = heads,
causal = causal,
talking_heads = talking_heads,
dropout = dropout,
sparse_topk = sparse_topk,
qk_norm = qk_norm,
scale = qk_norm_scale if qk_norm else self.scale,
add_zero_kv = add_zero_kv,
flash = flash,
onnxable = onnxable
)
# if cascading_heads:
# # cascading heads - wrap the Attend logic
# self.attend = CascadingHeads(self.attend)
# head scaling
self.head_scale = head_scale
if head_scale:
self.head_scale_params = nn.Parameter(torch.ones(1, heads, 1, 1))
# explicit topk sparse attention
self.sparse_topk = sparse_topk
# add memory key / values
self.num_mem_kv = num_mem_kv
if num_mem_kv > 0:
self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
# attention on attention
self.attn_on_attn = on_attn
self.to_out = nn.Sequential(nn.Linear(out_dim, dim * 2, bias = False), nn.GLU()) if on_attn else nn.Linear(out_dim, dim, bias = False)
# init output projection 0
if zero_init_output:
init_zero_(self.to_out)
def forward(
self,
x,
context = None,
mask = None,
context_mask = None,
attn_mask = None,
rel_pos = None,
rotary_pos_emb = None,
prev_attn = None,
mem = None
):
b, n, _, h, kv_h, head_scale, device, has_context = *x.shape, self.heads, self.kv_heads, self.head_scale, x.device, exists(context)
kv_input = default(context, x)
q_input = x
k_input = kv_input
v_input = kv_input
r_input = x
if exists(mem):
k_input = torch.cat((mem, k_input), dim = -2)
v_input = torch.cat((mem, v_input), dim = -2)
q = self.to_q(q_input)
k = self.to_k(k_input)
v = self.to_v(v_input) if exists(self.to_v) else k
r = self.to_r(r_input) if exists(self.to_r) else None
q = rearrange(q, 'b n (h d) -> b h n d', h = h)
k, v, r = map(lambda t: maybe(rearrange)(t, 'b n (h d) -> b h n d', h = kv_h), (k, v, r))
if self.qk_norm:
qk_l2norm = partial(l2norm, groups = self.qk_norm_groups)
q, k = map(qk_l2norm, (q, k))
q = q * self.qk_norm_q_scale
k = k * self.qk_norm_k_scale
if exists(rotary_pos_emb) and not has_context:
freqs, xpos_scale = rotary_pos_emb
l = freqs.shape[-1]
q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale ** -1.) if exists(xpos_scale) else (1., 1.)
(ql, qr), (kl, kr), (vl, vr) = map(lambda t: (t[..., :l], t[..., l:]), (q, k, v))
ql, kl, vl = map(lambda arg: apply_rotary_pos_emb(arg[0], freqs, arg[1]), ((ql, q_xpos_scale), (kl, k_xpos_scale), (vl, k_xpos_scale)))
q, k, v = map(lambda t: torch.cat(t, dim = -1), ((ql, qr), (kl, kr), (vl, vr)))
input_mask = context_mask if has_context else mask
if self.num_mem_kv > 0:
mem_k, mem_v = map(lambda t: repeat(t, 'h n d -> b h n d', b = b), (self.mem_k, self.mem_v))
if self.qk_norm:
mem_k = l2norm(mem_k)
mem_k = mem_k * self.qk_norm_k_scale
k = torch.cat((mem_k, k), dim = -2)
v = torch.cat((mem_v, v), dim = -2)
if exists(input_mask):
input_mask = pad_at_dim(input_mask, (self.num_mem_kv, 0), dim = -1, value = True)
i, j = map(lambda t: t.shape[-2], (q, k))
# determine masking
max_neg_value(q)
masks = []
final_attn_mask = None
if exists(input_mask):
input_mask = rearrange(input_mask, 'b j -> b 1 1 j')
masks.append(~input_mask)
if exists(attn_mask):
assert 2 <= attn_mask.ndim <= 4, 'attention mask must have greater than 2 dimensions but less than or equal to 4'
if attn_mask.ndim == 2:
attn_mask = rearrange(attn_mask, 'i j -> 1 1 i j')
elif attn_mask.ndim == 3:
attn_mask = rearrange(attn_mask, 'h i j -> 1 h i j')
masks.append(~attn_mask)
if exists(self.max_attend_past):
range_q = torch.arange(j - i, j, device = device)
range_k = torch.arange(j, device = device)
dist = rearrange(range_q, 'i -> 1 1 i 1') - rearrange(range_k, 'j -> 1 1 1 j')
max_attend_past_mask = dist > self.max_attend_past
masks.append(max_attend_past_mask)
if len(masks) > 0:
final_attn_mask = ~or_reduce(masks)
# prepare relative positional bias, if needed
attn_bias = None
if exists(rel_pos):
attn_bias = rel_pos(i, j)
# attention is all we need
out, intermediates = self.attend(
q, k, v,
mask = final_attn_mask,
attn_bias = attn_bias,
prev_attn = prev_attn
)
# https://arxiv.org/abs/2208.06061 proposes to add a residual for better gradients
if exists(r):
out = out * r + out
# normformer scaling of heads
if head_scale:
out = out * self.head_scale_params
# merge heads
out = rearrange(out, 'b h n d -> b n (h d)')
# alphafold2 styled gating of the values
if exists(self.to_v_gate):
gates = self.to_v_gate(x)
out = out * gates.sigmoid()
# combine the heads
out = self.to_out(out)
if exists(mask):
mask = rearrange(mask, 'b n -> b n 1')
out = out.masked_fill(~mask, 0.)
return out, intermediates
class AttentionLayers(nn.Module):
def __init__(
self,
dim,
depth,
heads = 8,
causal = False,
cross_attend = False,
only_cross = False,
use_scalenorm = False,
use_rmsnorm = False,
use_simple_rmsnorm = False,
alibi_pos_bias = False,
alibi_num_heads = None,
rel_pos_bias = False,
rel_pos_num_buckets = 32,
rel_pos_max_distance = 128,
dynamic_pos_bias = False,
dynamic_pos_bias_log_distance = False,
dynamic_pos_bias_mlp_depth = 2,
dynamic_pos_bias_norm = False,
rotary_pos_emb = False,
rotary_emb_dim = None,
rotary_xpos = False,
rotary_interpolation_factor = 1.,
rotary_xpos_scale_base = 512,
rotary_base_rescale_factor = 1.,
custom_layers = None,
sandwich_coef = None,
par_ratio = None,
residual_attn = False,
cross_residual_attn = False,
macaron = False,
pre_norm = True,
pre_norm_has_final_norm = True,
gate_residual = False,
scale_residual = False,
scale_residual_constant = 1.,
deepnorm = False,
shift_tokens = 0,
sandwich_norm = False,
resi_dual = False,
resi_dual_scale = 1.,
zero_init_branch_output = False,
layer_dropout = 0.,
cross_attn_tokens_dropout = 0.,
**kwargs
):
super().__init__()
rotary_pos_emb = rotary_pos_emb or rotary_xpos
ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs)
attn_kwargs, kwargs = groupby_prefix_and_trim('attn_', kwargs)
dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD)
self.dim = dim
self.depth = depth
self.layers = nn.ModuleList([])
self.has_pos_emb = rel_pos_bias or rotary_pos_emb
rotary_emb_dim = max(default(rotary_emb_dim, dim_head // 2), 32)
assert not (rotary_xpos and not causal), 'rotary xpos is not compatible with bidirectional attention'
self.rotary_pos_emb = RotaryEmbedding(rotary_emb_dim, use_xpos = rotary_xpos, scale_base = rotary_xpos_scale_base, interpolation_factor = rotary_interpolation_factor, base_rescale_factor = rotary_base_rescale_factor) if rotary_pos_emb else None
assert not (alibi_pos_bias and rel_pos_bias), 'you can only choose Alibi positional bias or T5 relative positional bias, not both'
assert rel_pos_num_buckets <= rel_pos_max_distance, 'number of relative position buckets must be less than the relative position max distance'
# relative positional bias
flash_attn = attn_kwargs.get('flash', False)
assert (int(rel_pos_bias) + int(dynamic_pos_bias) + int(alibi_pos_bias)) <= 1, 'you can only choose up to one of t5, alibi, or dynamic positional bias'
self.rel_pos = None
if rel_pos_bias:
assert not flash_attn, 'flash attention not compatible with t5 relative positional bias'
self.rel_pos = RelativePositionBias(scale = dim_head ** 0.5, causal = causal, heads = heads, num_buckets = rel_pos_num_buckets, max_distance = rel_pos_max_distance)
elif dynamic_pos_bias:
assert not flash_attn, 'flash attention not compatible with dynamic positional bias'
self.rel_pos = DynamicPositionBias(dim = dim // 4, heads = heads, log_distance = dynamic_pos_bias_log_distance, depth = dynamic_pos_bias_mlp_depth, norm = dynamic_pos_bias_norm)
elif alibi_pos_bias:
alibi_num_heads = default(alibi_num_heads, heads)
assert alibi_num_heads <= heads, 'number of ALiBi heads must be less than the total number of heads'
self.rel_pos = AlibiPositionalBias(heads = alibi_num_heads, total_heads = heads)
# determine deepnorm and residual scale
if deepnorm:
assert scale_residual_constant == 1, 'scale residual constant is being overridden by deep norm settings'
pre_norm = sandwich_norm = resi_dual = False
scale_residual = True
scale_residual_constant = (2 * depth) ** 0.25
assert (int(sandwich_norm) + int(resi_dual)) <= 1, 'either sandwich norm or resiDual is selected, but not both'
assert not (not pre_norm and sandwich_norm), 'sandwich norm cannot be used when not using prenorm'
if resi_dual:
pre_norm = False
self.pre_norm = pre_norm
self.sandwich_norm = sandwich_norm
self.resi_dual = resi_dual
assert 0 < resi_dual_scale <= 1., 'resiDual prenorm residual must be scaled by a factor greater than 0 and less than or equal to 1.'
self.resi_dual_scale = resi_dual_scale
self.residual_attn = residual_attn
self.cross_residual_attn = cross_residual_attn
assert not (flash_attn and (residual_attn or cross_residual_attn)), 'flash attention is not compatible with residual attention'
self.cross_attend = cross_attend
assert (int(use_scalenorm) + int(use_rmsnorm) + int(use_simple_rmsnorm)) <= 1, 'you can only use either scalenorm, rmsnorm, or simple rmsnorm'
if use_scalenorm:
norm_class = ScaleNorm
elif use_rmsnorm:
norm_class = RMSNorm
elif use_simple_rmsnorm:
norm_class = SimpleRMSNorm
else:
norm_class = nn.LayerNorm
norm_fn = partial(norm_class, dim)
if cross_attend and not only_cross:
default_block = ('a', 'c', 'f')
elif cross_attend and only_cross:
default_block = ('c', 'f')
else:
default_block = ('a', 'f')
if macaron:
default_block = ('f',) + default_block
# zero init
if zero_init_branch_output:
attn_kwargs = {**attn_kwargs, 'zero_init_output': True}
ff_kwargs = {**ff_kwargs, 'zero_init_output': True}
# calculate layer block order
if exists(custom_layers):
layer_types = custom_layers
elif exists(par_ratio):
par_depth = depth * len(default_block)
assert 1 < par_ratio <= par_depth, 'par ratio out of range'
default_block = tuple(filter(not_equals('f'), default_block))
par_attn = par_depth // par_ratio
depth_cut = par_depth * 2 // 3 # 2 / 3 attention layer cutoff suggested by PAR paper
par_width = (depth_cut + depth_cut // par_attn) // par_attn
assert len(default_block) <= par_width, 'default block is too large for par_ratio'
par_block = default_block + ('f',) * (par_width - len(default_block))
par_head = par_block * par_attn
layer_types = par_head + ('f',) * (par_depth - len(par_head))
elif exists(sandwich_coef):
assert sandwich_coef > 0 and sandwich_coef <= depth, 'sandwich coefficient should be less than the depth'
layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef
else:
layer_types = default_block * depth
self.layer_types = layer_types
self.num_attn_layers = len(list(filter(equals('a'), layer_types)))
# stochastic depth
self.layer_dropouts = cast_tuple(layer_dropout, len(layer_types))
# structured dropout for cross attending
self.cross_attn_tokens_dropout = cross_attn_tokens_dropout
# calculate token shifting
shift_tokens = cast_tuple(shift_tokens, len(layer_types))
# whether it has post norm
self.final_norm = norm_fn() if pre_norm or resi_dual else nn.Identity()
# iterate and construct layers
for ind, (layer_type, layer_shift_tokens) in enumerate(zip(self.layer_types, shift_tokens)):
ind == (len(self.layer_types) - 1)
if layer_type == 'a':
layer = Attention(dim, heads = heads, causal = causal, **attn_kwargs)
elif layer_type == 'c':
layer = Attention(dim, heads = heads, **attn_kwargs)
elif layer_type == 'f':
layer = FeedForward(dim, **ff_kwargs)
layer = layer if not macaron else Scale(0.5, layer)
else:
raise Exception(f'invalid layer type {layer_type}')
if layer_shift_tokens > 0:
shift_range_upper = layer_shift_tokens + 1
shift_range_lower = -layer_shift_tokens if not causal else 0
layer = ShiftTokens(range(shift_range_lower, shift_range_upper), layer)
residual_fn = GRUGating if gate_residual else Residual
residual = residual_fn(dim, scale_residual = scale_residual, scale_residual_constant = scale_residual_constant)
pre_branch_norm = norm_fn() if pre_norm else None
post_branch_norm = norm_fn() if sandwich_norm else None
post_main_norm = norm_fn() if not pre_norm else None
norms = nn.ModuleList([
pre_branch_norm,
post_branch_norm,
post_main_norm
])
self.layers.append(nn.ModuleList([
norms,
layer,
residual
]))
if deepnorm:
init_gain = (8 * depth) ** -0.25
deepnorm_init(self, init_gain)
def forward(
self,
x,
context = None,
mask = None,
context_mask = None,
attn_mask = None,
self_attn_context_mask = None,
mems = None,
return_hiddens = False
):
assert not (self.cross_attend ^ exists(context)), 'context must be passed in if cross_attend is set to True'
hiddens = []
layer_hiddens = []
intermediates = []
prev_attn = None
prev_cross_attn = None
mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers
rotary_pos_emb = None
if exists(self.rotary_pos_emb):
max_rotary_emb_length = max(list(map(lambda m: (m.shape[1] if exists(m) else 0) + x.shape[1], mems)))
rotary_pos_emb = self.rotary_pos_emb(max_rotary_emb_length, x.device)
outer_residual = x * self.resi_dual_scale
for ind, (layer_type, (norm, block, residual_fn), layer_dropout) in enumerate(zip(self.layer_types, self.layers, self.layer_dropouts)):
ind == (len(self.layers) - 1)
if self.training and layer_dropout > 0. and random() < layer_dropout:
continue
if layer_type == 'a':
if return_hiddens:
hiddens.append(x)
layer_mem = mems.pop(0) if mems else None
if layer_type == 'c':
if self.training and self.cross_attn_tokens_dropout > 0.:
context, context_mask = dropout_seq(context, context_mask, self.cross_attn_tokens_dropout)
inner_residual = x
if return_hiddens:
layer_hiddens.append(x)
pre_norm, post_branch_norm, post_main_norm = norm
if exists(pre_norm):
x = pre_norm(x)
if layer_type == 'a':
out, inter = block(x, mask = mask, context_mask = self_attn_context_mask, attn_mask = attn_mask, rel_pos = self.rel_pos, rotary_pos_emb = rotary_pos_emb, prev_attn = prev_attn, mem = layer_mem)
elif layer_type == 'c':
out, inter = block(x, context = context, mask = mask, context_mask = context_mask, prev_attn = prev_cross_attn)
elif layer_type == 'f':
out = block(x)
if self.resi_dual:
outer_residual = outer_residual + out * self.resi_dual_scale
if exists(post_branch_norm):
out = post_branch_norm(out)
x = residual_fn(out, inner_residual)
if layer_type in ('a', 'c') and return_hiddens:
intermediates.append(inter)
if layer_type == 'a' and self.residual_attn:
prev_attn = inter.pre_softmax_attn
elif layer_type == 'c' and self.cross_residual_attn:
prev_cross_attn = inter.pre_softmax_attn
if exists(post_main_norm):
x = post_main_norm(x)
if return_hiddens:
layer_hiddens.append(x)
if self.resi_dual:
x = x + self.final_norm(outer_residual)
else:
x = self.final_norm(x)
if return_hiddens:
intermediates = LayerIntermediates(
hiddens = hiddens,
attn_intermediates = intermediates,
layer_hiddens = layer_hiddens
)
return x, intermediates
return x
| zeta-main | zeta/nn/architecture/attn_layers.py |
# Copyright (c) 2022 Agora
# Licensed under The MIT License [see LICENSE for details]
import torch.nn as nn
from zeta.nn.architecture.decoder import Decoder
from zeta.nn.architecture.encoder import Encoder
class EncoderDecoder(nn.Module):
def __init__(
self,
args,
encoder_embed_tokens=None,
encoder_embed_positions=None,
decoder_embed_tokens=None,
decoder_embed_positions=None,
output_projection=None,
**kwargs
):
super().__init__()
self.args = args
if args.share_all_embeddings:
args.share_decoder_input_output_embed = True
self.encoder = Encoder(
args,
encoder_embed_tokens,
encoder_embed_positions,
is_encoder_decoder=True,
**kwargs
)
if args.share_all_embeddings and decoder_embed_tokens is None:
decoder_embed_tokens = self.encoder.embed_tokens
self.decoder = Decoder(
args,
decoder_embed_tokens,
decoder_embed_positions,
output_projection,
is_encoder_decoder=True,
**kwargs
)
def forward(
self,
src_tokens,
prev_output_tokens,
return_all_hiddens=False,
features_only=False,
**kwargs
):
encoder_out = self.encoder(src_tokens, return_all_hiddens=return_all_hiddens)
decoder_out = self.decoder(
prev_output_tokens,
encoder_out=encoder_out,
features_only=features_only,
return_all_hiddens=return_all_hiddens,
)
return decoder_out
| zeta-main | zeta/nn/architecture/encoder_decoder.py |
import torch
from torch import nn
import torch.nn.functional as F
from einops import rearrange
from zeta.nn.attention.attend import Attend as Attention
# functions and decorators
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def identity(t, *args, **kwargs):
return t
def l2norm(t):
return F.normalize(t, dim = -1)
# normalization
# they use layernorm without bias, something that pytorch does not offer
class LayerNorm(nn.Module):
def __init__(self, dim):
super().__init__()
self.gamma = nn.Parameter(torch.ones(dim))
self.register_buffer("beta", torch.zeros(dim))
def forward(self, x):
return F.layer_norm(x, x.shape[-1:], self.gamma, self.beta)
# residual
class Residual(nn.Module):
def __init__(self, fn):
super().__init__()
self.fn = fn
def forward(self, x, **kwargs):
y = self.fn(x, **kwargs)
if not any([t.requires_grad for t in (x, y)]):
return x.add_(y)
return y + x
# rotary positional embedding w/ xpos
# https://arxiv.org/abs/2104.09864
# https://arxiv.org/abs/2212.10554v1
class RotaryEmbedding(nn.Module):
def __init__(
self,
dim,
scale_base = 512,
use_xpos = True
):
super().__init__()
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer("inv_freq", inv_freq)
self.use_xpos = use_xpos
self.scale_base = scale_base
scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim)
self.register_buffer('scale', scale)
def forward(
self,
seq_len,
device
):
t = torch.arange(seq_len, device = device).type_as(self.inv_freq)
freqs = torch.einsum('i , j -> i j', t, self.inv_freq)
freqs = torch.cat((freqs, freqs), dim = -1)
if not self.use_xpos:
return freqs, torch.ones(1, device = device)
power = (t - (seq_len // 2)) / self.scale_base
scale = self.scale ** rearrange(power, 'n -> n 1')
scale = torch.cat((scale, scale), dim = -1)
return freqs, scale
def rotate_half(x):
x1, x2 = x.chunk(2, dim=-1)
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(pos, t, scale = 1.):
return (t * pos.cos() * scale) + (rotate_half(t) * pos.sin() * scale)
# classic Noam Shazeer paper, except here they use SwiGLU instead of the more popular GEGLU for gating the feedforward
# https://arxiv.org/abs/2002.05202
class SwiGLU(nn.Module):
def forward(self, x):
x, gate = x.chunk(2, dim=-1)
return F.silu(gate) * x
# parallel attention and feedforward with residual
# discovered by Wang et al + EleutherAI from GPT-J fame
class ParallelTransformerBlock(nn.Module):
def __init__(
self,
dim,
dim_head = 64,
causal = True,
heads = 8,
qk_rmsnorm = False,
qk_scale = 8,
ff_mult = 4,
attn_dropout = 0.,
ff_dropout = 0.,
use_xpos = True,
xpos_scale_base = 512,
flash_attn = False,
):
super().__init__()
self.norm = LayerNorm(dim)
attn_inner_dim = dim_head * heads
ff_inner_dim = dim * ff_mult
self.fused_dims = (attn_inner_dim, dim_head, dim_head, (ff_inner_dim * 2))
self.qk_rmsnorm = qk_rmsnorm
if qk_rmsnorm:
self.q_scale = nn.Parameter(torch.ones(dim_head))
self.k_scale = nn.Parameter(torch.ones(dim_head))
self.attend = Attention(
causal = causal,
dropout = attn_dropout,
use_flash_attn = flash_attn
)
self.heads = heads
self.scale = (dim_head ** -0.5) if not qk_rmsnorm else qk_scale
self.causal = causal
self.rotary_emb = RotaryEmbedding(dim_head, scale_base = xpos_scale_base, use_xpos = use_xpos and causal)
self.fused_attn_ff_proj = nn.Linear(dim, sum(self.fused_dims), bias=False)
self.flash_attn = flash_attn
self.attn_out = nn.Linear(attn_inner_dim, dim, bias=False)
self.attn_dropout = nn.Dropout(attn_dropout)
self.flash_attn_dropout = attn_dropout
# parallel feedforward tail
self.ff_out = nn.Sequential(
SwiGLU(),
nn.Dropout(ff_dropout),
nn.Linear(ff_inner_dim, dim, bias=False)
)
# for caching causal mask and rotary embeddings
self.register_buffer("pos_emb", None, persistent=False)
self.register_buffer("pos_emb_scale", None, persistent=False)
def get_rotary_embedding(self, n, device):
if exists(self.pos_emb) and self.pos_emb.shape[-2] >= n:
return self.pos_emb[:n], self.pos_emb_scale[:n]
pos_emb, scale = self.rotary_emb(n, device=device)
self.register_buffer("pos_emb", pos_emb, persistent=False)
self.register_buffer("pos_emb_scale", scale, persistent=False)
return pos_emb, scale
def forward(
self,
x,
mask = None,
finetune_modules = None
):
"""
einstein notation
b - batch
h - heads
n, i, j - sequence length (base sequence length, source, target)
d - feature dimension
"""
n, device, h = x.shape[1], x.device, self.heads
# pre layernorm
x = self.norm(x)
# attention queries, keys, values, and feedforward inner
q, k, v, ff = self.fused_attn_ff_proj(x).split(self.fused_dims, dim=-1)
# finetune loras
lora_q = lora_k = lora_v = lora_o = None
if exists(finetune_modules):
lora_q, lora_k, lora_v, lora_o = finetune_modules
q = q + lora_q(x)
k = k + lora_k(x)
v = v + lora_v(x)
# split heads
# they use multi-query single-key-value attention, yet another Noam Shazeer paper
# they found no performance loss past a certain scale, and more efficient decoding obviously
# https://arxiv.org/abs/1911.02150
q = rearrange(q, "b n (h d) -> b h n d", h=h)
# qk rmsnorm
if self.qk_rmsnorm:
q, k = map(l2norm, (q, k))
q = q * self.q_scale
k = k * self.k_scale
# rotary embeddings with xpos decay for better length extrapolation
positions, scale = self.get_rotary_embedding(n, device)
q = apply_rotary_pos_emb(positions, q, scale)
k = apply_rotary_pos_emb(positions, k, scale ** -1)
# attention function, either regular or flash
out = self.attend(q, k, v, mask = mask)
# merge heads
out = rearrange(out, "b h n d -> b n (h d)")
attn_out = self.attn_out(out)
ff_out = self.ff_out(ff)
if exists(lora_o):
attn_out = attn_out + lora_o(out)
return attn_out + ff_out
# transformer | zeta-main | zeta/nn/architecture/parallel_transformer.py |
zeta-main | zeta/nn/architecture/__init__.py |
|
from zeta.nn.architecture.attn_layers import AttentionLayers
class Encoder(AttentionLayers):
def __init__(self,
**kwargs):
assert 'causal' not in kwargs, 'cannot set causality on encoder'
super().__init__(causal=False, **kwargs)
| zeta-main | zeta/nn/architecture/encoder.py |
from einops import rearrange
from torch import nn
import torch
import torch.nn.functional as F
from zeta.nn.attention.local_attention_mha import LocalMHA
from zeta.nn.biases.dynamic_position_bias import DynamicPositionBias
from zeta.nn.modules import feedforward_network
from zeta.utils.main import eval_decorator, exists, top_k
class LocalTransformer(nn.Module):
def __init__(
self,
*,
num_tokens,
max_seq_len,
dim,
depth,
causal = True,
local_attn_window_size = 512,
dim_head = 64,
heads = 8,
ff_mult = 4,
attn_dropout = 0.,
ff_dropout = 0.,
ignore_index = -1,
use_xpos = False,
xpos_scale_base = None,
use_dynamic_pos_bias = False,
**kwargs
):
super().__init__()
self.token_emb = nn.Embedding(num_tokens, dim)
self.pos_emb = nn.Embedding(max_seq_len, dim)
self.max_seq_len = max_seq_len
self.layers = nn.ModuleList([])
self.local_attn_window_size = local_attn_window_size
self.dynamic_pos_bias = None
if use_dynamic_pos_bias:
self.dynamic_pos_bias = DynamicPositionBias(dim = dim // 2, heads = heads)
for _ in range(depth):
self.layers.append(nn.ModuleList([
LocalMHA(dim = dim, dim_head = dim_head, heads = heads, dropout = attn_dropout, causal = causal, window_size = local_attn_window_size, use_xpos = use_xpos, xpos_scale_base = xpos_scale_base, use_rotary_pos_emb = not use_dynamic_pos_bias, prenorm = True, **kwargs),
feedforward_network(dim = dim, mult = ff_mult, dropout = ff_dropout)
]))
self.ignore_index = ignore_index
self.to_logits = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_tokens, bias = False)
)
@torch.no_grad()
@eval_decorator
def generate(
self,
prime,
seq_len,
temperature = 1.,
filter_thres = 0.9,
**kwargs
):
n, device = prime.shape[1], prime.device
out = prime
for _ in range(seq_len):
logits = self.forward(out[:, -self.max_seq_len:], **kwargs)
filtered_logits = top_k(logits[:, -1], thres = filter_thres)
probs = F.softmax(filtered_logits / temperature, dim = -1)
sampled = torch.multinomial(probs, 1)
out = torch.cat((out, sampled), dim = -1)
return out[:, n:]
def forward(self, x, mask = None, return_loss = False):
if return_loss:
x, labels = x[:, :-1], x[:, 1:]
n, device = x.shape[1], x.device
x = self.token_emb(x)
assert n <= self.max_seq_len
x = x + self.pos_emb(torch.arange(n, device = device))
# dynamic pos bias
attn_bias = None
if exists(self.dynamic_pos_bias):
w = self.local_attn_window_size
attn_bias = self.dynamic_pos_bias(w, w * 2)
# go through layers
for attn, ff in self.layers:
x = attn(x, mask = mask, attn_bias = attn_bias) + x
x = ff(x) + x
logits = self.to_logits(x)
if not return_loss:
return logits
logits = rearrange(logits, 'b n c -> b c n')
loss = F.cross_entropy(logits, labels, ignore_index = self.ignore_index)
return loss | zeta-main | zeta/nn/architecture/local_transformer.py |
from inspect import isfunction
import math
from abc import ABC, abstractmethod
from collections import namedtuple
from dataclasses import dataclass
from functools import partial, wraps
from random import random
from typing import Callable, List, Optional
import torch
import torch.nn.functional as F
from einops import rearrange, reduce, repeat
from torch import Tensor, einsum, nn
from zeta.nn.attention.attend import Attend, Intermediates
EfficientAttentionConfig = namedtuple('EfficientAttentionConfig', ['enable_flash', 'enable_math', 'enable_mem_efficient'])
DEFAULT_DIM_HEAD = 64
@dataclass
class LayerIntermediates:
hiddens: Optional[List[Tensor]] = None
attn_intermediates: Optional[List[Intermediates]] = None
layer_hiddens: Optional[List[Tensor]] = None
attn_z_loss: Optional[Tensor] = None
# helpers
def exists(val):
return val is not None
def default(val, d):
if exists(val):
return val
return d() if isfunction(d) else d
def cast_tuple(val, depth):
return val if isinstance(val, tuple) else (val,) * depth
def divisible_by(num, den):
return (num % den) == 0
def maybe(fn):
@wraps(fn)
def inner(x, *args, **kwargs):
if not exists(x):
return x
return fn(x, *args, **kwargs)
return inner
class always():
def __init__(self, val):
self.val = val
def __call__(self, *args, **kwargs):
return self.val
class not_equals():
def __init__(self, val):
self.val = val
def __call__(self, x, *args, **kwargs):
return x != self.val
class equals():
def __init__(self, val):
self.val = val
def __call__(self, x, *args, **kwargs):
return x == self.val
def Sequential(*modules):
return nn.Sequential(*filter(exists, modules))
# tensor helpers
def max_neg_value(tensor):
return -torch.finfo(tensor.dtype).max
def l2norm(t, groups = 1):
t = rearrange(t, '... (g d) -> ... g d', g = groups)
t = F.normalize(t, p = 2, dim = -1)
return rearrange(t, '... g d -> ... (g d)')
def pad_at_dim(t, pad, dim = -1, value = 0.):
dims_from_right = (- dim - 1) if dim < 0 else (t.ndim - dim - 1)
zeros = ((0, 0) * dims_from_right)
return F.pad(t, (*zeros, *pad), value = value)
def or_reduce(masks):
head, *body = masks
for rest in body:
head = head | rest
return head
# auxiliary loss helpers
def calc_z_loss(
pre_softmax_attns: List[Tensor],
mask = None,
weight = 1.
):
# the same loss applied to the mixture of experts router logits in https://arxiv.org/abs/2202.08906
# in the paper, in a tiny footnote, they mention using it on attention logits with stabilizing effects
# also used in PaLM as one of the measures
lse = 0.
for attn in pre_softmax_attns:
lse = lse + attn.logsumexp(dim = -1)
loss = torch.square(lse)
loss = reduce(loss, 'b h n -> b n', 'sum')
if not exists(mask):
return loss.mean() * weight
loss = loss[mask].sum() / mask.sum().clamp(min = 1e-5)
return loss * weight
# init helpers
def init_zero_(layer):
nn.init.constant_(layer.weight, 0.)
if exists(layer.bias):
nn.init.constant_(layer.bias, 0.)
# keyword argument helpers
def pick_and_pop(keys, d):
values = list(map(lambda key: d.pop(key), keys))
return dict(zip(keys, values))
def group_dict_by_key(cond, d):
return_val = [dict(),dict()]
for key in d.keys():
match = bool(cond(key))
ind = int(not match)
return_val[ind][key] = d[key]
return (*return_val,)
def string_begins_with(prefix, str):
return str.startswith(prefix)
def group_by_key_prefix(prefix, d):
return group_dict_by_key(partial(string_begins_with, prefix), d)
def groupby_prefix_and_trim(prefix, d):
kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d)
kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
return kwargs_without_prefix, kwargs
# initializations
def deepnorm_init(
transformer,
beta,
module_name_match_list = ['.ff.', '.to_v', '.to_out']
):
for name, module in transformer.named_modules():
if type(module) != nn.Linear:
continue
needs_beta_gain = any(map(lambda substr: substr in name, module_name_match_list))
gain = beta if needs_beta_gain else 1
nn.init.xavier_normal_(module.weight.data, gain = gain)
if exists(module.bias):
nn.init.constant_(module.bias.data, 0)
# structured dropout, more effective than traditional attention dropouts
def dropout_seq(seq, mask, dropout):
b, n, *_, device = *seq.shape, seq.device
logits = torch.randn(b, n, device = device)
if exists(mask):
mask_value = max_neg_value(logits)
logits = logits.masked_fill(~mask, mask_value)
keep_prob = 1. - dropout
num_keep = max(1, int(keep_prob * n))
keep_indices = logits.topk(num_keep, dim = 1).indices
batch_indices = torch.arange(b, device = device)
batch_indices = rearrange(batch_indices, 'b -> b 1')
seq = seq[batch_indices, keep_indices]
if exists(mask):
seq_counts = mask.sum(dim = -1)
seq_keep_counts = torch.ceil(seq_counts * keep_prob).int()
keep_mask = torch.arange(num_keep, device = device) < rearrange(seq_keep_counts, 'b -> b 1')
mask = mask[batch_indices, keep_indices] & keep_mask
return seq, mask
# activations
class ReluSquared(nn.Module):
def forward(self, x):
return F.relu(x) ** 2
# embedding
class TokenEmbedding(nn.Module):
def __init__(self, dim, num_tokens, l2norm_embed = False):
super().__init__()
self.l2norm_embed = l2norm_embed
self.emb = nn.Embedding(num_tokens, dim)
def forward(self, x):
token_emb = self.emb(x)
return l2norm(token_emb) if self.l2norm_embed else token_emb
# positional embeddings
class AbsolutePositionalEmbedding(nn.Module):
def __init__(self, dim, max_seq_len, l2norm_embed = False):
super().__init__()
self.scale = dim ** -0.5 if not l2norm_embed else 1.
self.max_seq_len = max_seq_len
self.l2norm_embed = l2norm_embed
self.emb = nn.Embedding(max_seq_len, dim)
def forward(self, x, pos = None):
seq_len, device = x.shape[1], x.device
assert seq_len <= self.max_seq_len, f'you are passing in a sequence length of {seq_len} but your absolute positional embedding has a max sequence length of {self.max_seq_len}'
if not exists(pos):
pos = torch.arange(seq_len, device = device)
pos_emb = self.emb(pos)
pos_emb = pos_emb * self.scale
return l2norm(pos_emb) if self.l2norm_embed else pos_emb
class ScaledSinusoidalEmbedding(nn.Module):
def __init__(self, dim, theta = 10000):
super().__init__()
assert divisible_by(dim, 2)
self.scale = nn.Parameter(torch.ones(1) * dim ** -0.5)
half_dim = dim // 2
freq_seq = torch.arange(half_dim).float() / half_dim
inv_freq = theta ** -freq_seq
self.register_buffer('inv_freq', inv_freq, persistent = False)
def forward(self, x, pos = None):
seq_len, device = x.shape[1], x.device
if not exists(pos):
pos = torch.arange(seq_len, device = device)
emb = einsum('i, j -> i j', pos, self.inv_freq)
emb = torch.cat((emb.sin(), emb.cos()), dim = -1)
return emb * self.scale
class RelativePositionBias(nn.Module):
def __init__(self, scale, causal = False, num_buckets = 32, max_distance = 128, heads = 8):
super().__init__()
self.scale = scale
self.causal = causal
self.num_buckets = num_buckets
self.max_distance = max_distance
self.relative_attention_bias = nn.Embedding(num_buckets, heads)
@staticmethod
def _relative_position_bucket(relative_position, causal = True, num_buckets = 32, max_distance = 128):
ret = 0
n = -relative_position
if not causal:
num_buckets //= 2
ret += (n < 0).long() * num_buckets
n = torch.abs(n)
else:
n = torch.max(n, torch.zeros_like(n))
max_exact = num_buckets // 2
is_small = n < max_exact
val_if_large = max_exact + (
torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact)
).long()
val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1))
ret += torch.where(is_small, n, val_if_large)
return ret
@property
def device(self):
return next(self.parameters()).device
def forward(self, i, j):
device = self.device
q_pos = torch.arange(j - i, j, dtype = torch.long, device = device)
k_pos = torch.arange(j, dtype = torch.long, device = device)
rel_pos = k_pos[None, :] - q_pos[:, None]
rp_bucket = self._relative_position_bucket(rel_pos, causal = self.causal, num_buckets = self.num_buckets, max_distance = self.max_distance)
values = self.relative_attention_bias(rp_bucket)
bias = rearrange(values, 'i j h -> h i j')
return bias * self.scale
class DynamicPositionBias(nn.Module):
def __init__(self, dim, *, heads, depth, log_distance = False, norm = False):
super().__init__()
assert depth >= 1, 'depth for dynamic position bias MLP must be greater or equal to 1'
self.log_distance = log_distance
self.mlp = nn.ModuleList([])
self.mlp.append(Sequential(
nn.Linear(1, dim),
nn.LayerNorm(dim) if norm else None,
nn.SiLU()
))
for _ in range(depth - 1):
self.mlp.append(Sequential(
nn.Linear(dim, dim),
nn.LayerNorm(dim) if norm else None,
nn.SiLU()
))
self.mlp.append(nn.Linear(dim, heads))
@property
def device(self):
return next(self.parameters()).device
def forward(self, i, j):
assert i == j
n, device = j, self.device
# get the (n x n) matrix of distances
seq_arange = torch.arange(n, device = device)
context_arange = torch.arange(n, device = device)
indices = rearrange(seq_arange, 'i -> i 1') - rearrange(context_arange, 'j -> 1 j')
indices += (n - 1)
# input to continuous positions MLP
pos = torch.arange(-n + 1, n, device = device).float()
pos = rearrange(pos, '... -> ... 1')
if self.log_distance:
pos = torch.sign(pos) * torch.log(pos.abs() + 1) # log of distance is sign(rel_pos) * log(abs(rel_pos) + 1)
for layer in self.mlp:
pos = layer(pos)
# get position biases
bias = pos[indices]
bias = rearrange(bias, 'i j h -> h i j')
return bias
class AlibiPositionalBias(nn.Module):
def __init__(self, heads, total_heads, **kwargs):
super().__init__()
self.heads = heads
self.total_heads = total_heads
slopes = Tensor(self._get_slopes(heads))
slopes = rearrange(slopes, 'h -> h 1 1')
self.register_buffer('slopes', slopes, persistent = False)
self.register_buffer('bias', None, persistent = False)
def get_bias(self, i, j, device):
i_arange = torch.arange(j - i, j, device = device)
j_arange = torch.arange(j, device = device)
bias = -torch.abs(rearrange(j_arange, 'j -> 1 1 j') - rearrange(i_arange, 'i -> 1 i 1'))
return bias
@staticmethod
def _get_slopes(heads):
def get_slopes_power_of_2(n):
start = (2**(-2**-(math.log2(n)-3)))
ratio = start
return [start*ratio**i for i in range(n)]
if math.log2(heads).is_integer():
return get_slopes_power_of_2(heads)
closest_power_of_2 = 2 ** math.floor(math.log2(heads))
return get_slopes_power_of_2(closest_power_of_2) + get_slopes_power_of_2(2 * closest_power_of_2)[0::2][:heads-closest_power_of_2]
@property
def device(self):
return next(self.buffers()).device
def forward(self, i, j):
h, device = self.total_heads, self.device
if exists(self.bias) and self.bias.shape[-1] >= j and self.bias.shape[-2] >= i:
return self.bias[..., :i, :j]
bias = self.get_bias(i, j, device)
bias = bias * self.slopes
num_heads_unalibied = h - bias.shape[0]
bias = pad_at_dim(bias, (0, num_heads_unalibied), dim = 0)
self.register_buffer('bias', bias, persistent = False)
return self.bias
class RotaryEmbedding(nn.Module):
def __init__(
self,
dim,
use_xpos = False,
scale_base = 512,
interpolation_factor = 1.,
base = 10000,
base_rescale_factor = 1.
):
super().__init__()
# proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
# has some connection to NTK literature
# https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
base *= base_rescale_factor ** (dim / (dim - 2))
inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer('inv_freq', inv_freq)
assert interpolation_factor >= 1.
self.interpolation_factor = interpolation_factor
if not use_xpos:
self.register_buffer('scale', None)
return
scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim)
self.scale_base = scale_base
self.register_buffer('scale', scale)
def forward(self, seq_len, device):
t = torch.arange(seq_len, device = device).type_as(self.inv_freq)
t = t / self.interpolation_factor
freqs = torch.einsum('i , j -> i j', t, self.inv_freq)
freqs = torch.cat((freqs, freqs), dim = -1)
if not exists(self.scale):
return freqs, 1.
power = (torch.arange(seq_len, device = device) - (seq_len // 2)) / self.scale_base
scale = self.scale ** rearrange(power, 'n -> n 1')
scale = torch.cat((scale, scale), dim = -1)
return freqs, scale
def rotate_half(x):
x = rearrange(x, '... (j d) -> ... j d', j = 2)
x1, x2 = x.unbind(dim = -2)
return torch.cat((-x2, x1), dim = -1)
def apply_rotary_pos_emb(t, freqs, scale = 1):
seq_len = t.shape[-2]
freqs = freqs[-seq_len:, :]
return (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale)
# norms
class Scale(nn.Module):
def __init__(self, value, fn):
super().__init__()
self.value = value
self.fn = fn
def forward(self, x, **kwargs):
out = self.fn(x, **kwargs)
scale_fn = lambda t: t * self.value
if not isinstance(out, tuple):
return scale_fn(out)
return (scale_fn(out[0]), *out[1:])
class ScaleNorm(nn.Module):
def __init__(self, dim, eps = 1e-5):
super().__init__()
self.eps = eps
self.g = nn.Parameter(torch.ones(1) * (dim ** -0.5))
def forward(self, x):
norm = torch.norm(x, dim = -1, keepdim = True)
return x / norm.clamp(min = self.eps) * self.g
class RMSNorm(nn.Module):
def __init__(self, dim):
super().__init__()
self.scale = dim ** 0.5
self.g = nn.Parameter(torch.ones(dim))
def forward(self, x):
return F.normalize(x, dim = -1) * self.scale * self.g
class SimpleRMSNorm(nn.Module):
def __init__(self, dim):
super().__init__()
self.scale = dim ** 0.5
def forward(self, x):
return F.normalize(x, dim = -1) * self.scale
# residual and residual gates
class Residual(nn.Module):
def __init__(self, dim, scale_residual = False, scale_residual_constant = 1.):
super().__init__()
self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None
self.scale_residual_constant = scale_residual_constant
def forward(self, x, residual):
if exists(self.residual_scale):
residual = residual * self.residual_scale
if self.scale_residual_constant != 1:
residual = residual * self.scale_residual_constant
return x + residual
class GRUGating(nn.Module):
def __init__(self, dim, scale_residual = False, **kwargs):
super().__init__()
self.gru = nn.GRUCell(dim, dim)
self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None
def forward(self, x, residual):
if exists(self.residual_scale):
residual = residual * self.residual_scale
gated_output = self.gru(
rearrange(x, 'b n d -> (b n) d'),
rearrange(residual, 'b n d -> (b n) d')
)
return gated_output.reshape_as(x)
# token shifting
def shift(t, amount, mask = None):
if amount == 0:
return t
else:
amount = min(amount, t.shape[1])
if exists(mask):
t = t.masked_fill(~mask[..., None], 0.)
return pad_at_dim(t, (amount, -amount), dim = - 2, value = 0.)
class ShiftTokens(nn.Module):
def __init__(self, shifts, fn):
super().__init__()
self.fn = fn
self.shifts = tuple(shifts)
def forward(self, x, **kwargs):
mask = kwargs.get('mask', None)
shifts = self.shifts
segments = len(shifts)
feats_per_shift = x.shape[-1] // segments
splitted = x.split(feats_per_shift, dim = -1)
segments_to_shift, rest = splitted[:segments], splitted[segments:]
segments_to_shift = list(map(lambda args: shift(*args, mask = mask), zip(segments_to_shift, shifts)))
x = torch.cat((*segments_to_shift, *rest), dim = -1)
return self.fn(x, **kwargs)
# feedforward
class GLU(nn.Module):
def __init__(
self,
dim_in,
dim_out,
activation: Callable,
mult_bias = False
):
super().__init__()
self.act = activation
self.proj = nn.Linear(dim_in, dim_out * 2)
self.mult_bias = nn.Parameter(torch.ones(dim_out)) if mult_bias else 1.
def forward(self, x):
x, gate = self.proj(x).chunk(2, dim = -1)
return x * self.act(gate) * self.mult_bias
class FeedForward(nn.Module):
def __init__(
self,
dim,
dim_out = None,
mult = 4,
glu = False,
glu_mult_bias = False,
swish = False,
relu_squared = False,
post_act_ln = False,
dropout = 0.,
no_bias = False,
zero_init_output = False
):
super().__init__()
inner_dim = int(dim * mult)
dim_out = default(dim_out, dim)
if relu_squared:
activation = ReluSquared()
elif swish:
activation = nn.SiLU()
else:
activation = nn.GELU()
if glu:
project_in = GLU(dim, inner_dim, activation, mult_bias = glu_mult_bias)
else:
project_in = nn.Sequential(
nn.Linear(dim, inner_dim, bias = not no_bias),
activation
)
self.ff = Sequential(
project_in,
nn.LayerNorm(inner_dim) if post_act_ln else None,
nn.Dropout(dropout),
nn.Linear(inner_dim, dim_out, bias = not no_bias)
)
# init last linear layer to 0
if zero_init_output:
init_zero_(self.ff[-1])
def forward(self, x):
return self.ff(x)
# attention. it is all we need
class Attention(nn.Module):
def __init__(
self,
dim,
dim_head = DEFAULT_DIM_HEAD,
heads = 8,
causal = False,
flash = False,
talking_heads = False,
head_scale = False,
sparse_topk = None,
num_mem_kv = 0,
dropout = 0.,
on_attn = False,
gate_values = False,
zero_init_output = False,
max_attend_past = None,
qk_norm = False,
qk_norm_groups = 1,
qk_norm_scale = 10,
qk_norm_dim_scale = False,
one_kv_head = False,
kv_heads = None,
shared_kv = False,
value_dim_head = None,
tensor_product = False, # https://arxiv.org/abs/2208.06061
cascading_heads = False,
add_zero_kv = False, # same as add_zero_attn in pytorch
onnxable = False
):
super().__init__()
self.scale = dim_head ** -0.5
self.heads = heads
self.causal = causal
self.max_attend_past = max_attend_past
assert not (exists(kv_heads) and one_kv_head), 'either attn_one_kv_head is set to True (in which case kv_heads is set to 1), or attn_kv_heads is set, but not both'
value_dim_head = default(value_dim_head, dim_head)
kv_heads = default(kv_heads, heads)
kv_heads = 1 if one_kv_head else kv_heads
assert divisible_by(heads, kv_heads)
self.kv_heads = kv_heads
q_dim = dim_head * heads
k_dim = dim_head * kv_heads
v_dim = value_dim_head * kv_heads
out_dim = value_dim_head * heads
self.to_q = nn.Linear(dim, q_dim, bias = False)
self.to_k = nn.Linear(dim, k_dim, bias = False)
# shared key / values, for further memory savings during inference
assert not (shared_kv and value_dim_head != dim_head), 'key and value head dimensions must be equal for shared key / values'
self.to_v = nn.Linear(dim, v_dim, bias = False) if not shared_kv else None
# relations projection from tp-attention
self.to_r = nn.Linear(dim, v_dim, bias = False) if tensor_product else None
# add GLU gating for aggregated values, from alphafold2
self.to_v_gate = None
if gate_values:
self.to_v_gate = nn.Linear(dim, out_dim)
nn.init.constant_(self.to_v_gate.weight, 0)
nn.init.constant_(self.to_v_gate.bias, 1)
# cosine sim attention
self.qk_norm = qk_norm
self.qk_norm_groups = qk_norm_groups
self.qk_norm_scale = qk_norm_scale
# whether to use the rmsnorm (equivalent to cosine sim attention when scale is equal to 1) - https://arxiv.org/abs/2302.05442
self.qk_norm_dim_scale = qk_norm_dim_scale
self.qk_norm_q_scale = self.qk_norm_k_scale = 1
if qk_norm and qk_norm_dim_scale:
self.qk_norm_q_scale = nn.Parameter(torch.ones(dim_head))
self.qk_norm_k_scale = nn.Parameter(torch.ones(dim_head))
assert (not qk_norm) or divisible_by(dim_head, qk_norm_groups), 'dimension per attention head must be divisible by the qk norm groups'
assert not (qk_norm and (dim_head // qk_norm_groups) <= 2), 'the group dimension may be too small (2 was too small in my tests, but 4 still works, surprisingly)'
# attend class - includes core attention algorithm + talking heads
self.attend = Attend(
heads = heads,
causal = causal,
talking_heads = talking_heads,
dropout = dropout,
sparse_topk = sparse_topk,
qk_norm = qk_norm,
scale = qk_norm_scale if qk_norm else self.scale,
add_zero_kv = add_zero_kv,
flash = flash,
onnxable = onnxable
)
# if cascading_heads:
# # cascading heads - wrap the Attend logic
# self.attend = CascadingHeads(self.attend)
# head scaling
self.head_scale = head_scale
if head_scale:
self.head_scale_params = nn.Parameter(torch.ones(1, heads, 1, 1))
# explicit topk sparse attention
self.sparse_topk = sparse_topk
# add memory key / values
self.num_mem_kv = num_mem_kv
if num_mem_kv > 0:
self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
# attention on attention
self.attn_on_attn = on_attn
self.to_out = nn.Sequential(nn.Linear(out_dim, dim * 2, bias = False), nn.GLU()) if on_attn else nn.Linear(out_dim, dim, bias = False)
# init output projection 0
if zero_init_output:
init_zero_(self.to_out)
def forward(
self,
x,
context = None,
mask = None,
context_mask = None,
attn_mask = None,
rel_pos = None,
rotary_pos_emb = None,
prev_attn = None,
mem = None
):
b, n, _, h, kv_h, head_scale, device, has_context = *x.shape, self.heads, self.kv_heads, self.head_scale, x.device, exists(context)
kv_input = default(context, x)
q_input = x
k_input = kv_input
v_input = kv_input
r_input = x
if exists(mem):
k_input = torch.cat((mem, k_input), dim = -2)
v_input = torch.cat((mem, v_input), dim = -2)
q = self.to_q(q_input)
k = self.to_k(k_input)
v = self.to_v(v_input) if exists(self.to_v) else k
r = self.to_r(r_input) if exists(self.to_r) else None
q = rearrange(q, 'b n (h d) -> b h n d', h = h)
k, v, r = map(lambda t: maybe(rearrange)(t, 'b n (h d) -> b h n d', h = kv_h), (k, v, r))
if self.qk_norm:
qk_l2norm = partial(l2norm, groups = self.qk_norm_groups)
q, k = map(qk_l2norm, (q, k))
scale = self.qk_norm_scale
q = q * self.qk_norm_q_scale
k = k * self.qk_norm_k_scale
if exists(rotary_pos_emb) and not has_context:
freqs, xpos_scale = rotary_pos_emb
l = freqs.shape[-1]
q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale ** -1.) if exists(xpos_scale) else (1., 1.)
(ql, qr), (kl, kr), (vl, vr) = map(lambda t: (t[..., :l], t[..., l:]), (q, k, v))
ql, kl, vl = map(lambda arg: apply_rotary_pos_emb(arg[0], freqs, arg[1]), ((ql, q_xpos_scale), (kl, k_xpos_scale), (vl, k_xpos_scale)))
q, k, v = map(lambda t: torch.cat(t, dim = -1), ((ql, qr), (kl, kr), (vl, vr)))
input_mask = context_mask if has_context else mask
if self.num_mem_kv > 0:
mem_k, mem_v = map(lambda t: repeat(t, 'h n d -> b h n d', b = b), (self.mem_k, self.mem_v))
if self.qk_norm:
mem_k = l2norm(mem_k)
mem_k = mem_k * self.qk_norm_k_scale
k = torch.cat((mem_k, k), dim = -2)
v = torch.cat((mem_v, v), dim = -2)
if exists(input_mask):
input_mask = pad_at_dim(input_mask, (self.num_mem_kv, 0), dim = -1, value = True)
i, j = map(lambda t: t.shape[-2], (q, k))
# determine masking
mask_value = max_neg_value(q)
masks = []
final_attn_mask = None
if exists(input_mask):
input_mask = rearrange(input_mask, 'b j -> b 1 1 j')
masks.append(~input_mask)
if exists(attn_mask):
assert 2 <= attn_mask.ndim <= 4, 'attention mask must have greater than 2 dimensions but less than or equal to 4'
if attn_mask.ndim == 2:
attn_mask = rearrange(attn_mask, 'i j -> 1 1 i j')
elif attn_mask.ndim == 3:
attn_mask = rearrange(attn_mask, 'h i j -> 1 h i j')
masks.append(~attn_mask)
if exists(self.max_attend_past):
range_q = torch.arange(j - i, j, device = device)
range_k = torch.arange(j, device = device)
dist = rearrange(range_q, 'i -> 1 1 i 1') - rearrange(range_k, 'j -> 1 1 1 j')
max_attend_past_mask = dist > self.max_attend_past
masks.append(max_attend_past_mask)
if len(masks) > 0:
final_attn_mask = ~or_reduce(masks)
# prepare relative positional bias, if needed
attn_bias = None
if exists(rel_pos):
attn_bias = rel_pos(i, j)
# attention is all we need
out, intermediates = self.attend(
q, k, v,
mask = final_attn_mask,
attn_bias = attn_bias,
prev_attn = prev_attn
)
# https://arxiv.org/abs/2208.06061 proposes to add a residual for better gradients
if exists(r):
out = out * r + out
# normformer scaling of heads
if head_scale:
out = out * self.head_scale_params
# merge heads
out = rearrange(out, 'b h n d -> b n (h d)')
# alphafold2 styled gating of the values
if exists(self.to_v_gate):
gates = self.to_v_gate(x)
out = out * gates.sigmoid()
# combine the heads
out = self.to_out(out)
if exists(mask):
mask = rearrange(mask, 'b n -> b n 1')
out = out.masked_fill(~mask, 0.)
return out, intermediates
class AttentionLayers(nn.Module):
def __init__(
self,
dim,
depth,
heads = 8,
causal = False,
cross_attend = False,
only_cross = False,
use_scalenorm = False,
use_rmsnorm = False,
use_simple_rmsnorm = False,
alibi_pos_bias = False,
alibi_num_heads = None,
rel_pos_bias = False,
rel_pos_num_buckets = 32,
rel_pos_max_distance = 128,
dynamic_pos_bias = False,
dynamic_pos_bias_log_distance = False,
dynamic_pos_bias_mlp_depth = 2,
dynamic_pos_bias_norm = False,
rotary_pos_emb = False,
rotary_emb_dim = None,
rotary_xpos = False,
rotary_interpolation_factor = 1.,
rotary_xpos_scale_base = 512,
rotary_base_rescale_factor = 1.,
custom_layers = None,
sandwich_coef = None,
par_ratio = None,
residual_attn = False,
cross_residual_attn = False,
macaron = False,
pre_norm = True,
pre_norm_has_final_norm = True,
gate_residual = False,
scale_residual = False,
scale_residual_constant = 1.,
deepnorm = False,
shift_tokens = 0,
sandwich_norm = False,
resi_dual = False,
resi_dual_scale = 1.,
zero_init_branch_output = False,
layer_dropout = 0.,
cross_attn_tokens_dropout = 0.,
**kwargs
):
super().__init__()
rotary_pos_emb = rotary_pos_emb or rotary_xpos
ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs)
attn_kwargs, kwargs = groupby_prefix_and_trim('attn_', kwargs)
dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD)
self.dim = dim
self.depth = depth
self.layers = nn.ModuleList([])
self.has_pos_emb = rel_pos_bias or rotary_pos_emb
rotary_emb_dim = max(default(rotary_emb_dim, dim_head // 2), 32)
assert not (rotary_xpos and not causal), 'rotary xpos is not compatible with bidirectional attention'
self.rotary_pos_emb = RotaryEmbedding(rotary_emb_dim, use_xpos = rotary_xpos, scale_base = rotary_xpos_scale_base, interpolation_factor = rotary_interpolation_factor, base_rescale_factor = rotary_base_rescale_factor) if rotary_pos_emb else None
assert not (alibi_pos_bias and rel_pos_bias), 'you can only choose Alibi positional bias or T5 relative positional bias, not both'
assert rel_pos_num_buckets <= rel_pos_max_distance, 'number of relative position buckets must be less than the relative position max distance'
# relative positional bias
flash_attn = attn_kwargs.get('flash', False)
assert (int(rel_pos_bias) + int(dynamic_pos_bias) + int(alibi_pos_bias)) <= 1, 'you can only choose up to one of t5, alibi, or dynamic positional bias'
self.rel_pos = None
if rel_pos_bias:
assert not flash_attn, 'flash attention not compatible with t5 relative positional bias'
self.rel_pos = RelativePositionBias(scale = dim_head ** 0.5, causal = causal, heads = heads, num_buckets = rel_pos_num_buckets, max_distance = rel_pos_max_distance)
elif dynamic_pos_bias:
assert not flash_attn, 'flash attention not compatible with dynamic positional bias'
self.rel_pos = DynamicPositionBias(dim = dim // 4, heads = heads, log_distance = dynamic_pos_bias_log_distance, depth = dynamic_pos_bias_mlp_depth, norm = dynamic_pos_bias_norm)
elif alibi_pos_bias:
alibi_num_heads = default(alibi_num_heads, heads)
assert alibi_num_heads <= heads, 'number of ALiBi heads must be less than the total number of heads'
self.rel_pos = AlibiPositionalBias(heads = alibi_num_heads, total_heads = heads)
# determine deepnorm and residual scale
if deepnorm:
assert scale_residual_constant == 1, 'scale residual constant is being overridden by deep norm settings'
pre_norm = sandwich_norm = resi_dual = False
scale_residual = True
scale_residual_constant = (2 * depth) ** 0.25
assert (int(sandwich_norm) + int(resi_dual)) <= 1, 'either sandwich norm or resiDual is selected, but not both'
assert not (not pre_norm and sandwich_norm), 'sandwich norm cannot be used when not using prenorm'
if resi_dual:
pre_norm = False
self.pre_norm = pre_norm
self.sandwich_norm = sandwich_norm
self.resi_dual = resi_dual
assert 0 < resi_dual_scale <= 1., 'resiDual prenorm residual must be scaled by a factor greater than 0 and less than or equal to 1.'
self.resi_dual_scale = resi_dual_scale
self.residual_attn = residual_attn
self.cross_residual_attn = cross_residual_attn
assert not (flash_attn and (residual_attn or cross_residual_attn)), 'flash attention is not compatible with residual attention'
self.cross_attend = cross_attend
assert (int(use_scalenorm) + int(use_rmsnorm) + int(use_simple_rmsnorm)) <= 1, 'you can only use either scalenorm, rmsnorm, or simple rmsnorm'
if use_scalenorm:
norm_class = ScaleNorm
elif use_rmsnorm:
norm_class = RMSNorm
elif use_simple_rmsnorm:
norm_class = SimpleRMSNorm
else:
norm_class = nn.LayerNorm
norm_fn = partial(norm_class, dim)
if cross_attend and not only_cross:
default_block = ('a', 'c', 'f')
elif cross_attend and only_cross:
default_block = ('c', 'f')
else:
default_block = ('a', 'f')
if macaron:
default_block = ('f',) + default_block
# zero init
if zero_init_branch_output:
attn_kwargs = {**attn_kwargs, 'zero_init_output': True}
ff_kwargs = {**ff_kwargs, 'zero_init_output': True}
# calculate layer block order
if exists(custom_layers):
layer_types = custom_layers
elif exists(par_ratio):
par_depth = depth * len(default_block)
assert 1 < par_ratio <= par_depth, 'par ratio out of range'
default_block = tuple(filter(not_equals('f'), default_block))
par_attn = par_depth // par_ratio
depth_cut = par_depth * 2 // 3 # 2 / 3 attention layer cutoff suggested by PAR paper
par_width = (depth_cut + depth_cut // par_attn) // par_attn
assert len(default_block) <= par_width, 'default block is too large for par_ratio'
par_block = default_block + ('f',) * (par_width - len(default_block))
par_head = par_block * par_attn
layer_types = par_head + ('f',) * (par_depth - len(par_head))
elif exists(sandwich_coef):
assert sandwich_coef > 0 and sandwich_coef <= depth, 'sandwich coefficient should be less than the depth'
layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef
else:
layer_types = default_block * depth
self.layer_types = layer_types
self.num_attn_layers = len(list(filter(equals('a'), layer_types)))
# stochastic depth
self.layer_dropouts = cast_tuple(layer_dropout, len(layer_types))
# structured dropout for cross attending
self.cross_attn_tokens_dropout = cross_attn_tokens_dropout
# calculate token shifting
shift_tokens = cast_tuple(shift_tokens, len(layer_types))
# whether it has post norm
self.final_norm = norm_fn() if pre_norm or resi_dual else nn.Identity()
# iterate and construct layers
for ind, (layer_type, layer_shift_tokens) in enumerate(zip(self.layer_types, shift_tokens)):
is_last_layer = ind == (len(self.layer_types) - 1)
if layer_type == 'a':
layer = Attention(dim, heads = heads, causal = causal, **attn_kwargs)
elif layer_type == 'c':
layer = Attention(dim, heads = heads, **attn_kwargs)
elif layer_type == 'f':
layer = FeedForward(dim, **ff_kwargs)
layer = layer if not macaron else Scale(0.5, layer)
else:
raise Exception(f'invalid layer type {layer_type}')
if layer_shift_tokens > 0:
shift_range_upper = layer_shift_tokens + 1
shift_range_lower = -layer_shift_tokens if not causal else 0
layer = ShiftTokens(range(shift_range_lower, shift_range_upper), layer)
residual_fn = GRUGating if gate_residual else Residual
residual = residual_fn(dim, scale_residual = scale_residual, scale_residual_constant = scale_residual_constant)
pre_branch_norm = norm_fn() if pre_norm else None
post_branch_norm = norm_fn() if sandwich_norm else None
post_main_norm = norm_fn() if not pre_norm else None
norms = nn.ModuleList([
pre_branch_norm,
post_branch_norm,
post_main_norm
])
self.layers.append(nn.ModuleList([
norms,
layer,
residual
]))
if deepnorm:
init_gain = (8 * depth) ** -0.25
deepnorm_init(self, init_gain)
def forward(
self,
x,
context = None,
mask = None,
context_mask = None,
attn_mask = None,
self_attn_context_mask = None,
mems = None,
return_hiddens = False
):
assert not (self.cross_attend ^ exists(context)), 'context must be passed in if cross_attend is set to True'
hiddens = []
layer_hiddens = []
intermediates = []
prev_attn = None
prev_cross_attn = None
mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers
rotary_pos_emb = None
if exists(self.rotary_pos_emb):
max_rotary_emb_length = max(list(map(lambda m: (m.shape[1] if exists(m) else 0) + x.shape[1], mems)))
rotary_pos_emb = self.rotary_pos_emb(max_rotary_emb_length, x.device)
outer_residual = x * self.resi_dual_scale
for ind, (layer_type, (norm, block, residual_fn), layer_dropout) in enumerate(zip(self.layer_types, self.layers, self.layer_dropouts)):
is_last = ind == (len(self.layers) - 1)
if self.training and layer_dropout > 0. and random() < layer_dropout:
continue
if layer_type == 'a':
if return_hiddens:
hiddens.append(x)
layer_mem = mems.pop(0) if mems else None
if layer_type == 'c':
if self.training and self.cross_attn_tokens_dropout > 0.:
context, context_mask = dropout_seq(context, context_mask, self.cross_attn_tokens_dropout)
inner_residual = x
if return_hiddens:
layer_hiddens.append(x)
pre_norm, post_branch_norm, post_main_norm = norm
if exists(pre_norm):
x = pre_norm(x)
if layer_type == 'a':
out, inter = block(x, mask = mask, context_mask = self_attn_context_mask, attn_mask = attn_mask, rel_pos = self.rel_pos, rotary_pos_emb = rotary_pos_emb, prev_attn = prev_attn, mem = layer_mem)
elif layer_type == 'c':
out, inter = block(x, context = context, mask = mask, context_mask = context_mask, prev_attn = prev_cross_attn)
elif layer_type == 'f':
out = block(x)
if self.resi_dual:
outer_residual = outer_residual + out * self.resi_dual_scale
if exists(post_branch_norm):
out = post_branch_norm(out)
x = residual_fn(out, inner_residual)
if layer_type in ('a', 'c') and return_hiddens:
intermediates.append(inter)
if layer_type == 'a' and self.residual_attn:
prev_attn = inter.pre_softmax_attn
elif layer_type == 'c' and self.cross_residual_attn:
prev_cross_attn = inter.pre_softmax_attn
if exists(post_main_norm):
x = post_main_norm(x)
if return_hiddens:
layer_hiddens.append(x)
if self.resi_dual:
x = x + self.final_norm(outer_residual)
else:
x = self.final_norm(x)
if return_hiddens:
intermediates = LayerIntermediates(
hiddens = hiddens,
attn_intermediates = intermediates,
layer_hiddens = layer_hiddens
)
return x, intermediates
return x
class Encoder(AttentionLayers):
def __init__(self, **kwargs):
assert 'causal' not in kwargs, 'cannot set causality on encoder'
super().__init__(causal = False, **kwargs)
class Decoder(AttentionLayers):
def __init__(self, **kwargs):
assert 'causal' not in kwargs, 'cannot set causality on decoder'
super().__init__(causal = True, **kwargs)
class CrossAttender(AttentionLayers):
def __init__(self, **kwargs):
super().__init__(cross_attend = True, only_cross = True, **kwargs)
class ViTransformerWrapper(nn.Module):
def __init__(
self,
*,
image_size,
patch_size,
attn_layers,
channels = 3,
num_classes = None,
post_emb_norm = False,
emb_dropout = 0.
):
super().__init__()
assert isinstance(attn_layers, Encoder), 'attention layers must be an Encoder'
assert divisible_by(image_size, patch_size), 'image dimensions must be divisible by the patch size'
dim = attn_layers.dim
num_patches = (image_size // patch_size) ** 2
patch_dim = channels * patch_size ** 2
self.patch_size = patch_size
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches, dim))
self.patch_to_embedding = nn.Sequential(
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim)
)
self.post_emb_norm = nn.LayerNorm(dim) if post_emb_norm else nn.Identity()
self.dropout = nn.Dropout(emb_dropout)
self.attn_layers = attn_layers
self.mlp_head = nn.Linear(dim, num_classes) if exists(num_classes) else nn.Identity()
def forward(
self,
img,
return_embeddings = False
):
p = self.patch_size
x = rearrange(img, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = p, p2 = p)
x = self.patch_to_embedding(x)
n = x.shape[1]
x = x + self.pos_embedding[:, :n]
x = self.post_emb_norm(x)
x = self.dropout(x)
x = self.attn_layers(x)
if not exists(self.mlp_head) or return_embeddings:
return x
x = x.mean(dim = -2)
return self.mlp_head(x)
class Transformer(nn.Module):
def __init__(
self,
*,
num_tokens,
max_seq_len,
attn_layers,
emb_dim = None,
max_mem_len = 0,
shift_mem_down = 0,
emb_dropout = 0.,
post_emb_norm = False,
num_memory_tokens = None,
tie_embedding = False,
logits_dim = None,
use_abs_pos_emb = True,
scaled_sinu_pos_emb = False,
l2norm_embed = False,
emb_frac_gradient = 1., # GLM-130B and Cogview successfully used this, set at 0.1
attn_z_loss_weight = 1e-4
):
super().__init__()
assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder'
dim = attn_layers.dim
emb_dim = default(emb_dim, dim)
self.emb_dim = emb_dim
self.num_tokens = num_tokens
self.max_seq_len = max_seq_len
self.max_mem_len = max_mem_len
self.shift_mem_down = shift_mem_down
self.l2norm_embed = l2norm_embed
self.token_emb = TokenEmbedding(emb_dim, num_tokens, l2norm_embed = l2norm_embed)
if not (use_abs_pos_emb and not attn_layers.has_pos_emb):
self.pos_emb = always(0)
elif scaled_sinu_pos_emb:
self.pos_emb = ScaledSinusoidalEmbedding(emb_dim)
else:
self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len, l2norm_embed = l2norm_embed)
self.emb_frac_gradient = emb_frac_gradient # fraction of the gradient that should go to the embedding, https://arxiv.org/abs/2105.13290
self.post_emb_norm = nn.LayerNorm(emb_dim) if post_emb_norm else nn.Identity()
self.emb_dropout = nn.Dropout(emb_dropout)
self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity()
self.attn_layers = attn_layers
self.init_()
logits_dim = default(logits_dim, num_tokens)
self.to_logits = nn.Linear(dim, logits_dim) if not tie_embedding else lambda t: t @ self.token_emb.emb.weight.t()
# memory tokens (like [cls]) from Memory Transformers paper
num_memory_tokens = default(num_memory_tokens, 0)
self.num_memory_tokens = num_memory_tokens
if num_memory_tokens > 0:
self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim))
def init_(self):
if self.l2norm_embed:
nn.init.normal_(self.token_emb.emb.weight, std = 1e-5)
if not isinstance(self.pos_emb, always):
nn.init.normal_(self.pos_emb.emb.weight, std = 1e-5)
return
nn.init.kaiming_normal_(self.token_emb.emb.weight)
def forward(
self,
x,
return_embeddings = False,
return_logits_and_embeddings = False,
return_intermediates = False,
mask = None,
return_mems = False,
return_attn = False,
mems = None,
pos = None,
prepend_embeds = None,
sum_embeds = None,
return_attn_z_loss = False,
attn_z_loss_weight = 1e-4,
**kwargs
):
b, n, device, num_mem, emb_frac_gradient = *x.shape, x.device, self.num_memory_tokens, self.emb_frac_gradient
return_hiddens = return_mems | return_attn | return_intermediates | return_attn_z_loss
# absolute positional embedding
external_pos_emb = exists(pos) and pos.dtype != torch.long
pos_emb = self.pos_emb(x, pos = pos) if not external_pos_emb else pos
x = self.token_emb(x) + pos_emb
# for summing embeddings passed externally - needs this for self-conditioning in non-autoregressive training
if exists(sum_embeds):
x = x + sum_embeds
# post embedding norm, purportedly leads to greater stabilization
x = self.post_emb_norm(x)
# whether to append embeds, as in PaLI, for image embeddings
if exists(prepend_embeds):
prepend_seq, prepend_dim = prepend_embeds.shape[1:]
assert prepend_dim == x.shape[-1], 'prepended embeddings need to have same dimensions as text model dimensions'
x = torch.cat((prepend_embeds, x), dim = -2)
# whether to reduce the gradient going to the embedding, from cogview paper, corroborated by GLM-130B model
if emb_frac_gradient < 1:
assert emb_frac_gradient > 0
x = x * emb_frac_gradient + x.detach() * (1 - emb_frac_gradient)
# embedding dropout
x = self.emb_dropout(x)
x = self.project_emb(x)
if num_mem > 0:
mem = repeat(self.memory_tokens, 'n d -> b n d', b = b)
x = torch.cat((mem, x), dim = 1)
# auto-handle masking after appending memory tokens
if exists(mask):
mask = pad_at_dim(mask, (num_mem, 0), dim = -1, value = True)
if self.shift_mem_down and exists(mems):
mems_l, mems_r = mems[:self.shift_mem_down], mems[self.shift_mem_down:]
mems = [*mems_r, *mems_l]
if return_hiddens:
x, intermediates = self.attn_layers(x, mask = mask, mems = mems, return_hiddens = True, **kwargs)
else:
x = self.attn_layers(x, mask = mask, mems = mems, **kwargs)
mem, x = x[:, :num_mem], x[:, num_mem:]
if return_logits_and_embeddings:
out = (self.to_logits(x), x)
elif return_embeddings:
out = x
else:
out = self.to_logits(x)
if return_attn_z_loss:
pre_softmax_attns = list(map(lambda t: t.pre_softmax_attn, intermediates.attn_intermediates))
intermediates.attn_z_loss = calc_z_loss(pre_softmax_attns, weight = attn_z_loss_weight)
return_intermediates = True
if return_intermediates:
return out, intermediates
if return_mems:
hiddens = intermediates.hiddens
new_mems = list(map(lambda pair: torch.cat(pair, dim = -2), zip(mems, hiddens))) if exists(mems) else hiddens
new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), new_mems))
return out, new_mems
if return_attn:
attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates))
return out, attn_maps
return out
| zeta-main | zeta/nn/architecture/transformer.py |
import math
from functools import partial
from itertools import zip_longest
from typing import Tuple
import torch
import torch.nn.functional as F
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
from torch import einsum, nn
from vector_quantize_pytorch import RandomProjectionQuantizer
from zeta.nn.architecture.attn_layers import rotate_half
from zeta.nn.attention.attend import Attend
from zeta.nn.attention.local_attention_mha import LocalMHA
from zeta.nn.embeddings.rope import RotaryEmbedding
# constants
mlist = nn.ModuleList
Linear = partial(nn.Linear, bias = False)
LocalMHA = partial(LocalMHA, causal = True, prenorm = True)
# helper functions
def exists(val):
return val is not None
def is_power_of_two(n):
return math.log2(n).is_integer()
def all_unique(arr):
return len(set(arr)) == len(arr)
def apply_fns(fns, tensors):
return [fn(tensor) for fn, tensor in zip(fns, tensors)]
def cast_tuple(t, length = 1):
return t if isinstance(t, tuple) else ((t,) * length)
def default(*vals):
for val in vals:
if exists(val):
return val
return None
def eval_decorator(fn):
def inner(model, *args, **kwargs):
was_training = model.training
model.eval()
out = fn(model, *args, **kwargs)
model.train(was_training)
return out
return inner
# sampling helpers
def log(t, eps = 1e-20):
return t.clamp(min = eps).log()
def gumbel_noise(t):
noise = torch.zeros_like(t).uniform_(0, 1)
return -log(-log(noise))
def gumbel_sample(t, temperature = 1., dim = -1):
return ((t / max(temperature, 1e-10)) + gumbel_noise(t)).argmax(dim = dim)
def top_k(logits, thres = 0.9):
k = int((1 - thres) * logits.shape[-1])
val, ind = torch.topk(logits, k)
probs = torch.full_like(logits, -torch.finfo(logits.dtype).max)
probs.scatter_(1, ind, val)
return probs
# rotary positional embedding w/ xpos
# https://arxiv.org/abs/2104.09864
# https://arxiv.org/abs/2212.10554v1
def apply_rotary_pos_emb(pos, t, scale = 1.):
seq_len = t.shape[-2]
pos = pos[..., -seq_len:, :]
if not isinstance(scale, (int, float)):
scale = scale[..., -seq_len:, :]
return (t * pos.cos() * scale) + (rotate_half(t) * pos.sin() * scale)
def apply_rotary_pos_emb_qk(rotary_emb, q, k):
freqs, scale = rotary_emb
q = apply_rotary_pos_emb(freqs, q, scale)
k = apply_rotary_pos_emb(freqs, k, scale ** -1)
return q, k
# token shift, from Peng et al of RWKV
def token_shift(t):
t, t_shift = t.chunk(2, dim = -1)
t_shift = F.pad(t_shift, (0, 0, 1, -1))
return torch.cat((t, t_shift), dim = -1)
# hierarchy related classes
def pad_seq_to_multiple(t, mult):
seq_len = t.shape[-2]
next_seq_len_mult = math.ceil(seq_len / mult) * mult
remainder = next_seq_len_mult - seq_len
if remainder == 0:
return t, seq_len
t = F.pad(t, (0, 0, 0, remainder), value = 0.)
return t, seq_len
def curtail_seq_to_multiple(t, mult):
seq_len = t.shape[-2]
prev_seq_len_mult = (seq_len // mult) * mult
remainder = seq_len - prev_seq_len_mult
if remainder == 0:
return t
t = t[..., :prev_seq_len_mult, :]
return t
def hierarchical_cat(tokens, strides: Tuple[int, ...]):
assert len(tokens) == len(strides)
if all([s == 1 for s in strides]):
return torch.cat(tokens, dim = -1)
tokens = [repeat(t, 'b n d -> b (n s) d', s = s) for t, s in zip(tokens, strides)]
min_seq_len = min([t.shape[-2] for t in tokens])
tokens = [t[..., :min_seq_len, :] for t in tokens]
return torch.cat(tokens, dim = -1)
class CausalConv(nn.Module):
def __init__(
self,
dim_in,
dim_out,
kernel_size,
stride = 1
):
super().__init__()
self.causal_padding = kernel_size - 1
self.conv = nn.Conv1d(dim_in, dim_out, kernel_size, stride = stride)
def forward(self, x):
x = F.pad(x, (self.causal_padding, 0))
return self.conv(x)
class Compress(nn.Module):
def __init__(
self,
*,
dim,
dim_out,
num_tokens = None,
stride = 1,
compress_factor = 1,
expansion_factor = 4,
dim_head = 64,
heads = 8,
ignore_index = 0,
should_recon = False,
should_prophet = False,
prophet_num_predictions = None
):
super().__init__()
assert compress_factor > 0 and is_power_of_two(compress_factor)
self.stride = stride
self.no_compress = compress_factor == 1
self.compress_factor = compress_factor
self.should_recon = should_recon
self.should_prophet = should_prophet
if self.no_compress:
self.compress_fn = Linear(dim, dim_out) if dim != dim_out else nn.Identity()
return
dim_inner = int(dim * expansion_factor)
self.compress_fn = nn.Sequential(
Rearrange('b n d -> b d n'),
CausalConv(dim, dim_inner, compress_factor, stride = stride),
nn.SiLU(),
nn.Conv1d(dim_inner, dim_out, 1),
Rearrange('b d n -> b n d')
)
if should_recon:
assert exists(num_tokens)
self.to_recon = Linear(dim_out, compress_factor * num_tokens)
if should_prophet:
assert exists(prophet_num_predictions)
self.to_prophet = Linear(dim_out, prophet_num_predictions)
self.ignore_index = ignore_index
def prophet(self, h, ids):
if not self.should_prophet:
return torch.zeros((), device = h.device).requires_grad_()
c = self.compress_factor
seq_len = ids.shape[-1]
prophet_logits = self.to_prophet(h)
prophet_logits = rearrange(prophet_logits, 'b n (c d) -> (b c) d n', c = c)
prophet_ids = F.pad(ids, (-1, c), value = self.ignore_index)
prophet_ids = tuple(prophet_ids[:, i:(seq_len + i)] for i in range(c))
prophet_ids = torch.stack(prophet_ids, dim = 1)
prophet_ids = rearrange(prophet_ids, 'b c n -> (b c) n')
if self.stride > 1:
prophet_ids = prophet_ids[..., ::self.stride]
prophet_loss = F.cross_entropy(prophet_logits, prophet_ids, ignore_index = self.ignore_index)
return prophet_loss
def recon(self, h, ids):
assert self.should_recon
if self.no_compress:
return torch.zeros((), device = h.device).requires_grad_()
c = self.compress_factor
seq_len = ids.shape[-1]
recon_logits = self.to_recon(h)
recon_logits = rearrange(recon_logits, 'b n (c d) -> (b c) d n', c = c)
recon_ids = F.pad(ids, (c - 1, 0), value = self.ignore_index)
recon_ids = tuple(recon_ids[:, i:(seq_len + i)] for i in range(c))
recon_ids = torch.stack(recon_ids, dim = 1)
recon_ids = rearrange(recon_ids, 'b c n -> (b c) n')
if self.stride > 1:
recon_ids = recon_ids[..., ::self.stride]
recon_loss = F.cross_entropy(recon_logits, recon_ids, ignore_index = self.ignore_index)
return recon_loss
def forward(self, x):
return self.compress_fn(x)
class HierarchicalMerge(nn.Module):
def __init__(
self,
dims: Tuple[int, ...],
dim_out,
h_strides = 1
):
super().__init__()
dim = sum(dims)
strides = cast_tuple(h_strides, len(dims))
assert len(strides) == len(dims)
self.strides = strides
self.net = nn.Sequential(
RMSNorm(dim),
nn.Linear(dim, dim_out * 2),
nn.SiLU(),
nn.Linear(dim_out * 2, dim_out)
)
def forward(self, tokens):
x = hierarchical_cat(tokens, self.strides)
return self.net(x)
# classes
class RMSNorm(nn.Module):
def __init__(self, dim):
super().__init__()
self.scale = dim ** 0.5
self.gamma = nn.Parameter(torch.ones(dim))
def forward(self, x):
return F.normalize(x, dim = -1) * self.scale * self.gamma
class FeedForward(nn.Module):
def __init__(self, dim, mult = 4):
super().__init__()
dim_inner = int(dim * mult)
self.net = nn.Sequential(
RMSNorm(dim),
Linear(dim, dim_inner),
nn.GELU(),
Linear(dim_inner, dim)
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(
self,
dim,
dim_head = 64,
heads = 8,
use_flash_attn = False
):
super().__init__()
self.scale = dim_head ** -0.5
self.heads = heads
dim_inner = dim_head * heads
self.norm = RMSNorm(dim)
self.rotary_emb = RotaryEmbedding(dim_head)
self.attend = Attend(causal = True, use_flash_attn = use_flash_attn)
self.to_qkv = Linear(dim, dim_inner * 3)
self.to_out = Linear(dim_inner, dim)
def forward(self, x):
n = x.shape[-2]
x = self.norm(x)
q, k, v = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), (q, k, v))
rotary_emb = self.rotary_emb(n)
q, k = apply_rotary_pos_emb_qk(rotary_emb, q, k)
out = self.attend(q, k, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class HierarchicalBlock(nn.Module):
def __init__(
self,
dim,
dim_head = 64,
heads = 8,
window_size = None,
compress_factor = 1,
stride = 1,
ff_mult = 4
):
super().__init__()
self.stride = stride
assert is_power_of_two(compress_factor)
self.compress_factor = compress_factor
self.no_compress = compress_factor == 1
assert not exists(window_size) or window_size >= 0
self.has_attn = window_size != 0
self.attn = None
if self.has_attn:
attn_klass = Attention
if exists(window_size):
attn_klass = partial(LocalMHA, window_size = window_size)
self.attn = attn_klass(dim = dim, dim_head = dim_head, heads = heads)
self.ff = FeedForward(dim = dim, mult = ff_mult)
def forward(self, x):
c = self.compress_factor
axial_dim = c // self.stride
x, orig_seq_len = pad_seq_to_multiple(x, axial_dim)
# hierarchical attention is performed with a simple axial attention
# this, and using a convolution for compressing at the beginning
# is one of the improvements on top of hourglass transformer
# the downside is that the savings are only O(c) instead of O(c ** 2) as in hourglass transformer
# you can get the O(c ** 2) saving by setting the hierarchical stride == c, but you'll see that performance is much worse, as some tokens will have a c - 1 token gap to the last hierarchical token
if not self.no_compress:
x = rearrange(x, 'b (n c) d -> (b c) n d', c = axial_dim)
if exists(self.attn):
x = self.attn(token_shift(x)) + x
x = self.ff(token_shift(x)) + x
if not self.no_compress:
x = rearrange(x, '(b c) n d -> b (n c) d', c = axial_dim)
return x[:, :orig_seq_len]
class HierarchicalTransformer(nn.Module):
def __init__(
self,
*,
num_tokens,
dim,
depth,
seq_len = 2048,
dim_head = 64,
heads = 8,
ff_mult = 4,
hierarchies = 1,
window_sizes = None,
hierarchical_stride = 1,
hierarchy_merge_all = False, # whether to pass the pooled hierarchical information back to all hierarchies or just one doing the prediction
ignore_index = 0,
use_flash_attn = False,
recon_loss_weight = 0.1,
prophet_loss_weight = 0.,
prophet_loss_use_quantized = False, # for prophet, whether to use the next 1x token ids, or use the ids from random projection quantization
prophet_quantized_use_embed = False,
predict_hierarchy = None,
predict_use_all_hierarchy = False,
rq_num_codebooks = 4,
rq_codebook_dim = 256,
rq_codebook_size = 1024,
):
"""
By not specifying hierarchies and window_sizes, you basically default to a regular autoregressive transformer with attention across full sequence length,
Three hierarchies, all servicing predicting the next token
from zeta.nn import HierarchicalTransformer
model = HierarchicalTransformer(
num_tokens = 256,
dim = (128, 256, 512, 1024),
depth = 8,
seq_len = 1024,
use_flash_attn = True,
ff_mult = (2, 2, 4, 4),
dim_head = (16, 32, 64, 64),
heads = (2, 4, 8, 8),
hierarchies = (1, 2, 4, 16),
hierarchical_stride = (1, 1, 1, 8), # this would determine the stride when compressing, and when concatting the hierarchical tokens to the fine tokens, the past tokens will be repeated this amount of time. causality is not violated as using the trick from hourglass transformers where sequence is shifted by compression factor - 1. recommend sticking with 1 except for highly compressed hierarchies, as it becomes very uncompetitive with baseline and generations look off
window_sizes = (16, 32, 64, None)
).cuda()
# hierarchies
# 1x - dim 128 - attention (2 heads, 16 dim, receptive field 16)
# 2x - dim 256 - attention (4 heads, 32 dim, receptive field 32)
# 4x - dim 512 - attention (8 heads, 64 dim, receptive field 64)
# 8x - dim 1024 - attention (8 heads, 64 dim, receptive field of all)
"""
super().__init__()
self.seq_len = seq_len
hierarchies = cast_tuple(hierarchies)
assert all_unique(hierarchies), 'hierarchies compression factors must be all unique integers'
assert all([*map(is_power_of_two, hierarchies)]), 'only powers of two allowed for hierarchies'
self.hierarchies = hierarchies
# just use a simple tuple list per hyperparameter to customize each hierarchy
num_hierarchies = len(hierarchies)
dims = cast_tuple(dim, num_hierarchies)
assert len(dims) == num_hierarchies
window_sizes = cast_tuple(window_sizes, num_hierarchies)
assert len(window_sizes) == num_hierarchies
dim_head = cast_tuple(dim_head, num_hierarchies)
assert len(dim_head) == num_hierarchies
heads = cast_tuple(heads, num_hierarchies)
assert len(heads) == num_hierarchies
ff_mult = cast_tuple(ff_mult, num_hierarchies)
assert len(ff_mult) == num_hierarchies
hierarchical_stride = cast_tuple(hierarchical_stride, num_hierarchies)
assert all([*map(is_power_of_two, hierarchical_stride)]), 'all hierarchical strides must be power of two'
assert all([s <= h for s, h in zip(hierarchical_stride, hierarchies)]), 'all strides must be less than the compression factor of the hierarchy'
self.h_strides = hierarchical_stride
assert len(hierarchical_stride) == num_hierarchies
# this determines to which hierarchy is everything pooled into for final prediction
# however, final next token prediction can also use all hierarchies with `predict_use_all_hierarchy`
predict_hierarchy = default(predict_hierarchy, min(hierarchies))
self.predict_hierarchy_index = hierarchies.index(predict_hierarchy)
hierarchy_predict_dim = dims[self.predict_hierarchy_index]
self.hierarchy_merge_all = hierarchy_merge_all
assert hierarchy_merge_all or self.h_strides[self.predict_hierarchy_index] == 1, 'the hierarchy level being used for final next token prediction must have compression stride of 1'
# training related loss weights
self.recon_loss_weight = recon_loss_weight
self.prophet_loss_weight = prophet_loss_weight
should_recon = recon_loss_weight > 0
should_prophet = prophet_loss_weight > 0
self.should_recon = should_recon
self.should_prophet = should_prophet
self.prophet_loss_use_quantized = prophet_loss_use_quantized
self.prophet_quantized_use_embed = prophet_quantized_use_embed
# token embedding
dim_token_emb = max(dims)
self.token_emb = nn.Embedding(num_tokens, dim_token_emb)
# hierarchy compressions - 1x just uses the base token_emb weights
self.compressors = mlist([])
for dim, hierarchy, stride in zip(dims, hierarchies, hierarchical_stride):
self.compressors.append(Compress(
dim = dim_token_emb,
dim_out = dim,
num_tokens = num_tokens,
compress_factor = hierarchy,
stride = stride,
should_recon = should_recon,
should_prophet = should_prophet,
prophet_num_predictions = ((hierarchy * num_tokens) if not prophet_loss_use_quantized else (rq_num_codebooks * rq_codebook_size))
))
# post token embedding norms
self.post_token_emb_norms = mlist([nn.LayerNorm(dim) for dim in dims])
# layers
self.layers = mlist([])
self.dims = dims
self.hierarchical_merges = mlist([])
self.need_hierarchical_merge = num_hierarchies > 1
for _ in range(depth):
hierarchical_layer = mlist([])
# add a transformer block for each layer in the hierarchy
for hierarchy, h_stride, h_dim, h_window_size, h_dim_head, h_heads, h_ff_mult in zip(hierarchies, hierarchical_stride, dims, window_sizes, dim_head, heads, ff_mult):
# make sure the window size never exceeds the effective sequence length
effective_seq_len = seq_len // hierarchy
if exists(h_window_size) and h_window_size > effective_seq_len:
print(f'window size for hierarchy {hierarchy}x is greater than effective sequence length - setting window size to None (which would use normal full attention)')
h_window_size = None
# add attention and feedforward
hierarchical_layer.append(
HierarchicalBlock(
dim = h_dim,
dim_head = h_dim_head,
heads = h_heads,
window_size = h_window_size,
compress_factor = hierarchy,
stride = h_stride,
ff_mult = h_ff_mult
)
)
self.layers.append(hierarchical_layer)
# for merging the information across hierarchies
# for now, only one direction, from all hierarchies to the hierarchy that is being used to make predictions on, set by predict_hierarchy_index above
if not self.need_hierarchical_merge:
continue
merge = HierarchicalMerge(
dims = dims,
dim_out = hierarchy_predict_dim if not self.hierarchy_merge_all else sum(dims),
h_strides = hierarchical_stride
)
self.hierarchical_merges.append(merge)
# final post-transformer norms, for all hierarchies
self.norms = mlist([nn.LayerNorm(dim) for dim in dims])
# random projection quantizer, for another approach to hierarchical predictive coding
if self.prophet_loss_use_quantized:
rpq_klass = partial(
RandomProjectionQuantizer,
num_codebooks = rq_num_codebooks,
codebook_dim = rq_codebook_dim,
codebook_size = rq_codebook_size
)
self.rand_proj_quantizers = mlist([rpq_klass(dim = dim) for dim in dims])
self.rq_num_codebooks = rq_num_codebooks
# to logit, for hierarchy set at predict_hierarchy_index, or all hierarchies
self.predict_use_all_hierarchy = predict_use_all_hierarchy
logit_dim_in = sum(dims) if predict_use_all_hierarchy else hierarchy_predict_dim
self.to_logits = Linear(logit_dim_in, num_tokens)
# training related loss parameters
self.ignore_index = ignore_index
@torch.no_grad()
@eval_decorator
def generate(
self,
prompt,
seq_len,
temperature = 1.0,
filter_thres = 0.9,
**kwargs
):
b, t, device = *prompt.shape, prompt.device
out = prompt
for _ in range(seq_len):
logits = self.forward(out[:, -self.seq_len:], **kwargs)[:, -1]
filtered_logits = top_k(logits, thres = filter_thres)
sample = gumbel_sample(filtered_logits, temperature = temperature)
sample = rearrange(sample, 'b -> b 1')
out = torch.cat((out, sample), dim = -1)
return out[:, t:]
@property
def device(self):
return next(self.parameters()).device
def forward(
self,
ids,
return_loss = False,
return_hierarchical_token_embeds = False,
return_hierarchical_embeds = False,
ablate_hierarchical_merge = False,
return_random_proj_quantize_ids = False
):
"""
einops notation:
b - batch
n - sequence length
c - compression factor
d - dimension
"""
# if training, predict next token in sequence
if return_loss:
ids, labels = ids[:, :-1], ids[:, 1:]
# assert seq len
assert ids.shape[-1] <= self.seq_len
# get token embeddings, and pad to multiple of compression factor
x = self.token_emb(ids)
# for every hierarchy, compress token embeddings appropriately to the hierarchical embeddings
tokens = []
for compress in self.compressors:
tokens.append(compress(x))
# save hierarchical tokens right before norm for random projection quantization, if needed
post_compressed_tokens = tokens
# post embedding norms
tokens = apply_fns(self.post_token_emb_norms, tokens)
# if one wants all the compressed token embeds
# just to investigate the space
if return_hierarchical_token_embeds:
return tokens
# layers
for layer, merge in zip_longest(self.layers, self.hierarchical_merges):
tokens = apply_fns(layer, tokens)
# pool the information all hierarchies
# and then update the tokens that will be used to make the final autoregressive prediction
if not self.need_hierarchical_merge or ablate_hierarchical_merge:
continue
pooled = merge(tokens)
if self.hierarchy_merge_all:
tokens = [(t + p[..., ::s, :]) for t, p, s in zip(tokens, pooled.split(self.dims, dim = -1), self.h_strides)]
else:
predict_tokens = tokens[self.predict_hierarchy_index]
predict_tokens = predict_tokens + pooled
tokens[self.predict_hierarchy_index] = predict_tokens
# final normalized embeddings
embeds = apply_fns(self.norms, tokens)
# if the researcher wants the randomly projected ids of either compressed tokens or embeddings of the hierarchies
if return_random_proj_quantize_ids:
assert self.prophet_loss_use_quantized
quantize_input = embeds if self.prophet_quantized_use_embed else post_compressed_tokens
hierarchical_ids = apply_fns(self.rand_proj_quantizers, quantize_input)
return hierarchical_ids
# if one wants all the normalized hierarchical embeds
if return_hierarchical_embeds:
return embeds
# select the hierarchical embeddings that will be doing the predicting
if self.predict_use_all_hierarchy:
predict_embed = hierarchical_cat(embeds, self.h_strides)
else:
predict_embed = embeds[self.predict_hierarchy_index]
# logits for predicting next token
logits = self.to_logits(predict_embed)
if not return_loss:
return logits
ce_loss_fn = partial(F.cross_entropy, ignore_index = self.ignore_index)
# autoregressive loss (predictive coding)
logits = rearrange(logits, 'b n c -> b c n')
ce_loss = ce_loss_fn(logits, labels)
# reconstruction losses for hierarchy tokens
recon_losses = prophet_losses = torch.zeros((), device = self.device).requires_grad_()
if self.should_recon:
for compress, t in zip(self.compressors, embeds):
recon_loss = compress.recon(t, ids)
recon_losses = recon_losses + recon_loss
# prophet losses for hierarchy tokens
if self.should_prophet:
if self.prophet_loss_use_quantized:
# using random projected quantizer of the next hierarchical token
quantize_input = embeds if self.prophet_quantized_use_embed else post_compressed_tokens
hierarchical_ids = apply_fns(self.rand_proj_quantizers, quantize_input)
for hierarchy, stride, compress, embed, pred_ids in zip(self.hierarchies, self.h_strides, self.compressors, embeds, hierarchical_ids):
if hierarchy == 1:
continue
prophet_logits = compress.to_prophet(embed)
axial_dim = hierarchy // stride
prophet_logits = curtail_seq_to_multiple(prophet_logits, axial_dim)
pred_ids = curtail_seq_to_multiple(pred_ids, axial_dim)
prophet_logits, pred_ids = map(lambda t: rearrange(t, 'b (n c) ... -> (b c) n ...', c = axial_dim), (prophet_logits, pred_ids))
prophet_logits = rearrange(prophet_logits[:, :-1], 'b n (q c) -> (b q) c n', q = self.rq_num_codebooks)
pred_ids = rearrange(pred_ids[:, 1:], 'b n q -> (b q) n')
prophet_loss = ce_loss_fn(prophet_logits, pred_ids)
prophet_losses = prophet_losses + prophet_loss
else:
# or predicting the next N 1x base token ids
# like prophetnet paper
for compress, t in zip(self.compressors, embeds):
prophet_loss = compress.prophet(t, ids)
prophet_losses = prophet_losses + prophet_loss
# total loss
total_loss = ce_loss + recon_losses * self.recon_loss_weight + prophet_losses * self.prophet_loss_weight
return total_loss, (ce_loss, recon_losses, prophet_losses) | zeta-main | zeta/nn/architecture/hierarchical_transformer.py |
from zeta.nn.architecture.attn_layers import AttentionLayers
class CrossAttender(AttentionLayers):
def __init__(self, **kwargs):
super().__init__(cross_attend=True, only_cross=True, **kwargs)
| zeta-main | zeta/nn/architecture/cross_attender.py |
import torch
import torch.nn.functional as F
from einops import pack, rearrange, unpack
from torch import nn
from zeta.utils.main import ( # noqa: E402
eval_decorator,
exists,
once, # noqa: F401
)
from zeta.utils.main import top_a, top_k, top_p
class AutoregressiveWrapper(nn.Module):
def __init__(
self,
net,
ignore_index = -100,
pad_value = 0,
mask_prob = 0.,
speculative = False
):
super().__init__()
self.pad_value = pad_value
self.ignore_index = ignore_index
self.net = net
self.max_seq_len = net.max_seq_len
# paper shows masking (MLM) in conjunction with autoregressive decoder-only training leads to big improvements https://arxiv.org/abs/2210.13432
assert mask_prob < 1.
self.mask_prob = mask_prob
@torch.no_grad()
@eval_decorator
def generate(
self,
start_tokens,
seq_len,
eos_token = None,
temperature = 1.,
filter_logits_fn = top_k,
filter_thres = 0.9,
min_p_pow = 2.0,
min_p_ratio = 0.02,
gamma=5, #number of guesses for speculative decoding
**kwargs
):
start_tokens, ps = pack([start_tokens], '* n')
b, t = start_tokens.shape
out = start_tokens
if self.speculative:
for _ in range(seq_len):
x = out[:, -self.max_seq_len]
logits = self.net(x, **kwargs)[:, -1]
if filter_logits_fn in {top_k, top_p}:
filtered_logits = filter_logits_fn(logits, thres=filter_thres)
probs = F.softmax(filtered_logits / temperature, dim=-1)
elif filter_logits_fn is top_a:
filtered_logits = filter_logits_fn(logits, min_p_pow=min_p_pow, min_p_ratio=min_p_ratio)
probs = F.softmax(filtered_logits / temperature, dim=-1)
#speculative decoding
guesses = torch.multinomial(probs, gamma, replacement=True)
p_values = []
for guess in guesses:
x_prime = torch.cat((x, guess.unsqueeze(0)), dim=1)
logits_prime = self.net(x_prime, **kwargs)[:, -1]
p_values.append(F.softmax(logits_prime / temperature, dim=-1))
n = gamma
for i in range(gamma):
ri = torch.rand(1).item()
if ri > p_values[i][guesses[i].item()] / probs[guesses[i].item()]:
n = i - 1
break
p_0 = p_values[n]
if n < gamma:
q_n = probs[guesses[n].item()]
p_0 = F.normalize(torch.clamp(p_0 - q_n, min=0), p=1, dim=0)
sample = torch.multinomial(p_0, 1)
out = torch.cat((out, sample), dim=-1)
if exists(eos_token):
is_eos_tokens = (out == eos_token)
if is_eos_tokens.any(dim = -1).all():
# mask out everything after the eos tokens
shifted_is_eos_tokens = F.pad(is_eos_tokens, (1, -1))
mask = shifted_is_eos_tokens.float().cumsum(dim = -1) >= 1
out = out.masked_fill(mask, self.pad_value)
break
out = out[:, t:]
out, = unpack(out, ps, '* n')
return out
else:
for _ in range(seq_len):
x = out[:, -self.max_seq_len:]
logits = self.net(x, **kwargs)[:, -1]
if filter_logits_fn in {top_k, top_p}:
filtered_logits = filter_logits_fn(logits, thres = filter_thres)
probs = F.softmax(filtered_logits / temperature, dim=-1)
elif filter_logits_fn is top_a:
filtered_logits = filter_logits_fn(logits, min_p_pow = min_p_pow, min_p_ratio= min_p_ratio)
probs = F.softmax(filtered_logits / temperature, dim=-1)
sample = torch.multinomial(probs, 1)
out = torch.cat((out, sample), dim=-1)
if exists(eos_token):
is_eos_tokens = (out == eos_token)
if is_eos_tokens.any(dim = -1).all():
# mask out everything after the eos tokens
shifted_is_eos_tokens = F.pad(is_eos_tokens, (1, -1))
mask = shifted_is_eos_tokens.float().cumsum(dim = -1) >= 1
out = out.masked_fill(mask, self.pad_value)
break
out = out[:, t:]
out, = unpack(out, ps, '* n')
return out
def forward(self, x, return_loss=True, **kwargs):
seq, ignore_index = x.shape[1], self.ignore_index
inp, target = x[:, :-1], x[:, 1:]
if self.mask_prob > 0.:
rand = torch.randn(inp.shape, device = x.device)
rand[:, 0] = -torch.finfo(rand.dtype).max # first token should not be masked out
num_mask = min(int(seq * self.mask_prob), seq - 1)
indices = rand.topk(num_mask, dim = -1).indices
mask = ~torch.zeros_like(inp).scatter(1, indices, 1.).bool()
kwargs.update(self_attn_context_mask = mask)
logits = self.net(inp, **kwargs)
loss = F.cross_entropy(
rearrange(logits, 'b n c -> b c n'),
target,
ignore_index = ignore_index
)
if return_loss:
return logits, loss
return logits
| zeta-main | zeta/nn/architecture/auto_regressive_wrapper.py |
# Copyright (c) 2022 Agora
# Licensed under The MIT License [see LICENSE for details]
import math
import torch
import torch.nn as nn
from zeta.nn.biases.base import BaseBias
class RelativePositionBias(BaseBias):
def __init__(
self,
bidirectional: int = True,
num_buckets: int =32,
max_distance: int = 128,
num_heads: int = 1
):
super().__init__()
self.bidirectional = bidirectional
self.num_buckets = num_buckets
self.max_distance = max_distance
self.num_heads = num_heads
self.relative_attention_bias = nn.Embedding(self.num_buckets, self.num_heads)
@staticmethod
def _relative_position_bucket(
relative_position, bidirectional=True, num_buckets=32, max_distance=128
):
ret = 0
n = -relative_position
if bidirectional:
num_buckets //= 2
ret += (n < 0).to(torch.long) * num_buckets
n = torch.abs(n)
else:
n = torch.max(n, torch.zeros_like(n))
max_exact = num_buckets // 2
is_small = n < max_exact
val_if_large = max_exact + (
torch.log(n.float() / max_exact)
/ math.log(max_distance / max_exact)
* (num_buckets - max_exact)
).to(torch.long)
val_if_large = torch.min(
val_if_large, torch.full_like(val_if_large, num_buckets - 1)
)
ret += torch.where(is_small, n, val_if_large)
return ret
def compute_bias(self, qlen, klen, step=None):
step = 0 if step is None else step
context_position = torch.arange(
step,
step + qlen,
dtype=torch.long,
device=self.relative_attention_bias.weight.device,
)[:, None]
memory_position = torch.arange(
klen, dtype=torch.long, device=self.relative_attention_bias.weight.device
)[None, :]
relative_position = memory_position - context_position # shape (qlen, klen)
rp_bucket = self._relative_position_bucket(
relative_position, # shape (qlen, klen)
bidirectional=self.bidirectional,
num_buckets=self.num_buckets,
max_distance=self.max_distance,
)
rp_bucket = rp_bucket.to(self.relative_attention_bias.weight.device)
values = self.relative_attention_bias(
rp_bucket
) # shape (qlen, klen, num_heads)
values = values.permute([2, 0, 1]).unsqueeze(
0
) # shape (1, num_heads, qlen, klen)
return values
def forward(self, batch_size, qlen, klen, step=None):
# shape (batch * num_heads, qlen, klen)
return (
self.compute_bias(qlen, klen, step)
.repeat(batch_size, 1, 1, 1)
.view(-1, qlen, klen)
)
| zeta-main | zeta/nn/biases/relative_position_bias.py |
zeta-main | zeta/nn/biases/__init__.py |
|
import torch
from torch import nn
from einops import rearrange
class DynamicPositionBias(nn.Module):
def __init__(
self,
dim,
heads
):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(1, dim),
nn.SiLU(),
nn.Linear(dim, dim),
nn.SiLU(),
nn.Linear(dim, heads)
)
@property
def device(self):
return next(self.parameters()).device
def forward(self, i, j):
device = self.device
assert j >= i
rel_dist = torch.arange(j, dtype = torch.float, device = device)
bias = self.mlp(rearrange(rel_dist, '... -> ... 1'))
i_seq = torch.arange(j - i, j, device = device)
j_seq = torch.arange(j, device = device)
rel_dist_indices = (rearrange(i_seq, 'i -> i 1') - rearrange(j_seq, 'j -> 1 j')).abs()
bias = rearrange(bias[rel_dist_indices], 'i j h -> h i j')
return bias
| zeta-main | zeta/nn/biases/dynamic_position_bias.py |
from abc import abstractmethod
import torch.nn as nn
class BaseBias(nn.Module):
@abstractmethod
def __init__(self,
num_heads):
super().__init__()
self.num_heads
@abstractmethod
def forward(self):
pass
| zeta-main | zeta/nn/biases/base.py |
import math
import torch
from torch import nn, Tensor
import torch.nn.functional as F
from zeta.nn.biases.base import BaseBias
from einops import rearrange
######## Helpers
def exists(val):
return val is not None
def pad_at_dim(t, pad, dim=-1, value=0.):
dims_from_right = (- dim - 1) if dim < 0 else (t.ndim - dim - 1)
zeros = ((0, 0) * dims_from_right)
return F.pad(t, (*zeros, *pad), value=value)
class AlibiPositionalBias(BaseBias):
def __init__(self, heads, num_heads, **kwargs):
super().__init__()
self.heads = heads
self.num_heads = num_heads
slopes = Tensor(self.__get_slopes(heads))
slopes = rearrange(slopes, 'h -> h 1 1')
self.register_buffer('slopes', slopes, persistent=False)
self.register_buffer('bias', None, persistent=False)
def get_bias(self, i, j, device):
torch.arange(j - i, j, device=device)
j_arange = torch.arange(j, device = device)
bias = -torch.abs(rearrange(j_arange, 'j -> 1 1 j'))
return bias
@staticmethod
def _get_slopes(heads):
def get_slopes_power_of_2(n):
start = (2**(-2**-(math.log2(n)-3)))
ratio = start
return [start*ratio**i for i in range(n)]
if math.log2(heads).is_integer():
return get_slopes_power_of_2(heads)
closest_power_of_2 = 2 ** math.floor(math.log2(heads))
return get_slopes_power_of_2(closest_power_of_2) + get_slopes_power_of_2(2 * closest_power_of_2)[0::2][:heads-closest_power_of_2]
@property
def device(self):
return next(self.buffers()).device
def forward(self, i, j):
h, device = self.num_heads, self.device
if exists(self.bias) and self.bias.shape[-1] >= j and self.bias.shape[-2] >= i:
return self.bias[..., :i, :j]
bias = self.get_bias(i, j, device)
bias = bias * self._get_slopes
num_heads_unalibied = h - bias.shape[0]
bias = pad_at_dim(bias, (0, num_heads_unalibied), dim=0)
self.register_buffer('bias', bias, persistent=False)
return self.bias
class LearnedAlibiPositionalBias(AlibiPositionalBias):
def __init__(self, heads, num_heads):
super().__init__(heads, num_heads)
log_slopes = torch.log(self.slopes)
self.learned_logslopes = nn.Parameter(log_slopes)
def forward(self, i, j):
h, device = self.heads, self.device
def get_slopes(param):
return pad_at_dim(param.exp(), (0, h - param.shape[0]), dim=-2)
if exists(self.bias) and self.bias.shape[-1] >= j and self.bias.shape[-2] >= i:
bias = self.bias[..., :i, :j]
else:
bias = self.get_bias(i, j, device)
self.register_buffer('bias', bias, persistent=False)
slopes = get_slopes(self.learned_logslopes)
bias = bias * slopes
return bias
| zeta-main | zeta/nn/biases/alibi.py |
#from lucirains rt-1
from torch import nn
from einops import pack, unpack, repeat, reduce, rearrange
#helpers
def pack_one(x, pattern):
return pack([x], pattern)
def unpack_one(x, ps, pattern):
return unpack(x, ps, pattern)[0]
#main
class TokenLearner(nn.Module):
def __init__(
self,
*,
dim: int = None,
ff_mult: int = 2,
num_output_tokens: int = 8,
num_layers: int = 2
):
super().__init__()
inner_dim = dim * ff_mult * num_output_tokens
self.num_output_tokens = num_output_tokens
self.net = nn.Sequential(
nn.Comv2d(dim * num_output_tokens, inner_dim, 1, groups=num_output_tokens),
nn.GELU(),
nn.Conv2d(inner_dim, num_output_tokens, 1, groups=num_output_tokens),
)
def forward(self, x):
x, ps = pack_one(x, '* c h w')
x = repeat(x, 'b c h w -> b (g c) h w', g=self.num_output_tokens)
attn = self.net(x)
attn = rearrange(attn, 'b g h w -> b 1 g h w')
x = rearrange(x, 'b (g c) h w -> b c g h w', g=self.num_output_tokens)
x = reduce(x * attn, 'b c g h w -> b c g', 'mean')
x = unpack_one(x, ps, '* c n')
return x
| zeta-main | zeta/nn/modules/token_learner.py |
from torch import nn
class Residual(nn.Module):
def __init__(self, fn):
super().__init__()
self.fn = fn
def forward(self, x):
return self.fn(x) + x
| zeta-main | zeta/nn/modules/residual.py |
import torch.nn as nn
class AdaptiveParameterList(nn.ParameterList):
"""
A container that allows for parameters to adapt their values
based on the learning process
Example:
```
def adaptation_function(param):
return param * 0.9
adaptive_params = AdaptiveParameterList(
[nn.Parameter(torch.radnn(10, 10))]
)
adaptive_params.adapt(adaptation_func)
````
"""
def __init__(self, parameters=None):
super(AdaptiveParameterList, self).__init__(parameters)
def adapt(self, adaptation_functions):
"""
adapt the parameters using the provided func
Args:
adaptatio_function (callable) the function to adapt the parameters
"""
if not isinstance(adaptation_functions, dict):
raise ValueError("adaptation_functions must be a dictionary")
for i, param in enumerate(self):
if i in adaptation_functions:
adaptation_function = adaptation_functions[i]
if not callable(adaptation_function):
raise ValueError("adaptation_function must be callable")
new_param = adaptation_function(param)
if not new_param.shape == param.shape:
raise ValueError("adaptation_function must return a tensor of the same shape as the input parameter")
self[i] = nn.Parameter(new_param) | zeta-main | zeta/nn/modules/adaptive_parameter_list.py |
import torch
from torch import nn
class LN(nn.Module):
def __init__(self,
dim=None,
eps=None
):
self.dim = dim
self.eps = eps
def forward(self):
nn.LayerNorm(self.dim, self.eps)
def subln(x):
return x + LN(x) | zeta-main | zeta/nn/modules/sublayer.py |
import torch
from torch import nn
class DynamicModule(nn.Module):
"""
A container that allows for dynamic addition, removal, and modification
of modules
examples
````
dynamic_module = DynamicModule()
dynamic_module.add('linear', nn.Linear(10, 10))
dynamic_module.add('relu', nn.ReLU())
output = dynamic_module(torch.randn(1, 10))
dynamic_module.remove('relu')
"""
def __init__(
self,
forward_method=None,
):
super(DynamicModule, self).__init__()
self.module_dict = nn.ModuleDict()
self.forward_method = forward_method
def add(self, name, module):
"""
Add a module to the container
Args:
name (str) the name of the module
module(nn.Module) the module to add
"""
if isinstance(name, list):
name = '.'.join(name)
if not isinstance(module, nn.Module):
raise ValueError("Module must be a nn.Module")
if name in self.module_dict:
raise ValueError("Module name must be unique")
self.module_dict[name] = module
def remove(self, name):
"""
Remove a module from the container
Args:
name (str) the name of the module to remove
"""
if isinstance(name, list):
name = '.'.join(name, list)
if name not in self.module_dict:
raise ValueError("module name does not exist")
del self.module_dict[name]
def forward(self, x):
"""
Forward pass through the modules
Args:
x (Tensor) the input tensor
Returns:
Tensor: the output tensor
"""
if self.forward_method is not None:
return self.forward_method(self.module_dict, x)
for module in self.module_dict.values():
x = module(x)
return x
def save_state(self, path):
torch.save(self.state_dict(), path)
def load_state(self, path):
self.load_state_dict(torch.load(path))
| zeta-main | zeta/nn/modules/dynamic_module.py |
# Copyright (c) 2022 Agora
# Licensed under The MIT License [see LICENSE for details]
import torch.nn as nn
from timm.models.layers import drop_path
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
def extra_repr(self):
return "p={}".format(self.drop_prob)
| zeta-main | zeta/nn/modules/droppath.py |
# modules
from zeta.nn.modules.lora import Lora
from zeta.nn.modules.feedforward_network import FeedForwardNetwork
from zeta.nn.modules.droppath import DropPath
from zeta.nn.modules.token_learner import TokenLearner
| zeta-main | zeta/nn/modules/__init__.py |
import torch
from torch import nn
from einops import Reduce, Rearrange
class DropSample(nn.Module):
def __init__(self, prob=0):
super().__init__()
self.prob = prob
def forward(self, x):
device = x.device
if self.prob == 0. or (not self.training):
return x
keep_mask = torch.FloatTensor((x.shape[0], 1, 1, 1), device=device).uniform_() > self.prob
return x + keep_mask / (1 - self.prob)
class SqueezeExcitation(nn.Module):
def __init__(
self,
dim,
shrinkage_rate=0.25
):
super().__init__()
hidden_dim = int(dim * shrinkage_rate)
self.gate = nn.Sequential(
Reduce('b c h w -> b c', 'mean'),
nn.Linear(
dim,
hidden_dim,
bias=False
),
nn.SiLU(),
nn.Linear(
hidden_dim,
dim,
bias=False
),
nn.Sigmoid(),
Rearrange('b c -> b c 11')
)
def forward(self, x):
return x + self.gate(x)
class MBConvResidual(nn.Module):
def __init__(
self,
fn,
dropout=0.
):
super().__init__()
self.fn = fn
self.downsample = DropSample(dropout)
def forward(self, x):
out = self.fn(x)
out = self.dropsample(out)
return out + x
def MBConv(
dim_in,
dim_out,
*,
downsample,
expansion_rate=4,
shrinkage_rate=0.25,
dropout=0.
):
hidden_dim = int(expansion_rate * dim_out)
stride = 2 if downsample else 1
net = nn.Sequential(
nn.Conv2d(dim_in, hidden_dim, 1),
nn.BatchNorm2d(hidden_dim),
nn.GELU(),
nn.Conv2d(
hidden_dim,
hidden_dim,
3,
stride=stride,
padding=1,
groups=hidden_dim
),
nn.BatchNorm2d(hidden_dim),
nn.GELU(),
SqueezeExcitation(
hidden_dim,
shrinkage_rate=shrinkage_rate
),
nn.Conv2d(
hidden_dim,
dim_out,
1
),
nn.BatchNorm2d(dim_out)
)
if dim_in == dim_out and not downsample:
net = MBConvResidual(
net,
dropout=dropout
)
return net
| zeta-main | zeta/nn/modules/mbconv.py |
import torch
from torch import nn
class Lora(nn.Module):
def __init__(
self,
dim,
dim_out,
r=8,
alpha=None
):
super().__init__()
self.scale = alpha / r
self.A = nn.Parameter(torch.randn(dim, r))
self.B = nn.Parameter(torch.randn(r, dim_out))
@property
def weight(self):
return (self.A @ self.B) * self.scale
def forward(self, x):
return x @ self.weight
| zeta-main | zeta/nn/modules/lora.py |
import torch
import torch.nn.functional as F
def token_shift(t):
t, t_shift = t.chunk(2, dim=1)
t_shift = F.pad(t_shift, (0, 0, 1, -1))
return torch.cat((t, t_shift), dim=-1)
| zeta-main | zeta/nn/modules/token_shift.py |
# Copyright (c) 2022 Agora
# Licensed under The MIT License [see LICENSE for details]
import torch
import torch.nn as nn
import torch.nn.functional as F
try:
from apex.normalization import FusedLayerNorm as LayerNorm
except ModuleNotFoundError:
from torch.nn import LayerNorm
from .xmoe.global_groups import get_moe_group
class set_torch_seed(object):
def __init__(self, seed):
assert isinstance(seed, int)
self.rng_state = self.get_rng_state()
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
def get_rng_state(self):
state = {"torch_rng_state": torch.get_rng_state()}
if torch.cuda.is_available():
state["cuda_rng_state"] = torch.cuda.get_rng_state()
return state
def set_rng_state(self, state):
torch.set_rng_state(state["torch_rng_state"])
if torch.cuda.is_available():
torch.cuda.set_rng_state(state["cuda_rng_state"])
def __enter__(self):
return self
def __exit__(self, *exc):
self.set_rng_state(self.rng_state)
def make_experts(args, embed_dim, expert_ffn_dim):
world_size = (
1
if not torch.distributed.is_initialized()
else torch.distributed.get_world_size()
)
expert_list = []
ddp_rank = args.ddp_rank
start_seed = torch.randint(1000000, (1,)).item()
# at least as many experts than gpus
if args.moe_expert_count >= world_size:
assert (
args.moe_expert_count % world_size == 0
), f"{args.moe_expert_count}, {world_size}"
local_moe_expert_count = args.moe_expert_count // world_size
for i in range(local_moe_expert_count):
with set_torch_seed(start_seed + ddp_rank * local_moe_expert_count + i):
expert_list.append(
FeedForwardNetwork(
embed_dim,
expert_ffn_dim,
args.activation_fn,
args.dropout,
args.activation_dropout,
args.layernorm_eps,
args.subln,
)
)
else:
assert (
world_size % args.moe_expert_count == 0
), f"{world_size}, {args.moe_expert_count}"
moe_idx, _ = get_moe_group(args.moe_expert_count)
with set_torch_seed(start_seed + moe_idx):
expert_list.append(
FeedForwardNetwork(
embed_dim,
expert_ffn_dim,
args.activation_fn,
args.dropout,
args.activation_dropout,
args.layernorm_eps,
args.subln,
)
)
experts = nn.ModuleList(expert_list)
return experts
def get_activation_fn(activation):
if activation == "relu":
return F.relu
elif activation == "gelu":
return F.gelu
else:
raise NotImplementedError
class FeedForwardNetwork(nn.Module):
def __init__(
self,
embed_dim,
ffn_dim,
activation_fn,
dropout,
activation_dropout,
layernorm_eps,
subln=False,
):
super().__init__()
self.embed_dim = embed_dim
self.activation_fn = get_activation_fn(activation=str(activation_fn))
self.activation_dropout_module = torch.nn.Dropout(activation_dropout)
self.dropout_module = torch.nn.Dropout(dropout)
self.fc1 = nn.Linear(self.embed_dim, ffn_dim)
self.fc2 = nn.Linear(ffn_dim, self.embed_dim)
self.ffn_layernorm = LayerNorm(ffn_dim, eps=layernorm_eps) if subln else None
def reset_parameters(self):
self.fc1.reset_parameters()
self.fc2.reset_parameters()
if self.ffn_layernorm is not None:
self.ffn_layernorm.reset_parameters()
def forward(self, x):
x_shape = x.shape
x = x.reshape(-1, x.size(-1))
x = self.fc1(x)
x = self.activation_fn(x.float()).type_as(x)
x = self.activation_dropout_module(x)
if self.ffn_layernorm is not None:
x = self.ffn_layernorm(x)
x = self.fc2(x)
x = x.view(x_shape)
x = self.dropout_module(x)
return x
| zeta-main | zeta/nn/modules/feedforward_network.py |
import torch
from torch import nn
import torch.nn.functional as F
class RMSNorm(nn.Module):
def __init__(
self,
dim,
groups=1
):
super().__init__()
self.scale = dim ** -0.5
self.gamma = nn.Parameter(torch.ones(groups, dim, 1))
def forward(self, x):
normed = F.normalize(x, dim=-2)
return normed * self.scale * self.gamma | zeta-main | zeta/nn/modules/rms_norm.py |
import torch.distributed as dist
def _find_my_group_index(grouped_ranks):
my_rank = dist.get_rank()
for i, group in enumerate(grouped_ranks):
if my_rank in group:
return i
raise RuntimeError
def get_moe_group(moe_expert_count=None):
if dist.is_initialized():
if not hasattr(get_moe_group, "_moe_groups"):
world_size = dist.get_world_size()
if world_size <= moe_expert_count:
assert moe_expert_count % world_size == 0
moe_groups = [[i] for i in range(world_size)]
else:
assert world_size % moe_expert_count == 0
ranks_per_group = world_size // moe_expert_count
moe_groups = [
[i + j * moe_expert_count for j in range(ranks_per_group)]
for i in range(moe_expert_count)
]
get_moe_group._moe_expert_count = moe_expert_count
get_moe_group._moe_group_idx = moe_groups
get_moe_group._moe_groups = [dist.new_group(g) for g in moe_groups]
my_group_idx = _find_my_group_index(get_moe_group._moe_group_idx)
return my_group_idx, get_moe_group._moe_groups[my_group_idx]
def get_all2all_group(moe_expert_count):
if dist.is_initialized():
if not hasattr(get_all2all_group, "_all2all_groups"):
world_size = dist.get_world_size()
# more experts than world size
if world_size <= moe_expert_count:
assert moe_expert_count % world_size == 0
all2all_groups = [[i for i in range(world_size)]]
# larger world than num experts
else:
assert world_size % moe_expert_count == 0
ranks_per_group = world_size // moe_expert_count
all2all_groups = [
[i * moe_expert_count + j for j in range(moe_expert_count)]
for i in range(ranks_per_group)
]
get_all2all_group._all2all_group_idx = all2all_groups
get_all2all_group._all2all_groups = [
dist.new_group(g) for g in all2all_groups
]
my_group_idx = _find_my_group_index(get_all2all_group._all2all_group_idx)
return get_all2all_group._all2all_groups[my_group_idx]
| zeta-main | zeta/nn/modules/xmoe/global_groups.py |
# Copyright (c) 2022 Agora
# Licensed under The MIT License [see LICENSE for details]
| zeta-main | zeta/nn/modules/xmoe/__init__.py |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.