python_code
stringlengths
0
992k
repo_name
stringlengths
8
46
file_path
stringlengths
5
162
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch from torch import nn from typing import Any, Optional, Tuple, Type from .common import LayerNorm2d class PromptEncoder(nn.Module): def __init__( self, embed_dim: int, image_embedding_size: Tuple[int, int], input_image_size: Tuple[int, int], mask_in_chans: int, activation: Type[nn.Module] = nn.GELU, ) -> None: """ Encodes prompts for input to SAM's mask decoder. Arguments: embed_dim (int): The prompts' embedding dimension image_embedding_size (tuple(int, int)): The spatial size of the image embedding, as (H, W). input_image_size (int): The padded size of the image as input to the image encoder, as (H, W). mask_in_chans (int): The number of hidden channels used for encoding input masks. activation (nn.Module): The activation to use when encoding input masks. """ super().__init__() self.embed_dim = embed_dim self.input_image_size = input_image_size self.image_embedding_size = image_embedding_size self.pe_layer = PositionEmbeddingRandom(embed_dim // 2) self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners point_embeddings = [nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)] self.point_embeddings = nn.ModuleList(point_embeddings) self.not_a_point_embed = nn.Embedding(1, embed_dim) self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1]) self.mask_downscaling = nn.Sequential( nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2), LayerNorm2d(mask_in_chans // 4), activation(), nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2), LayerNorm2d(mask_in_chans), activation(), nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1), ) self.no_mask_embed = nn.Embedding(1, embed_dim) def get_dense_pe(self) -> torch.Tensor: """ Returns the positional encoding used to encode point prompts, applied to a dense set of points the shape of the image encoding. Returns: torch.Tensor: Positional encoding with shape 1x(embed_dim)x(embedding_h)x(embedding_w) """ return self.pe_layer(self.image_embedding_size).unsqueeze(0) def _embed_points( self, points: torch.Tensor, labels: torch.Tensor, pad: bool, ) -> torch.Tensor: """Embeds point prompts.""" points = points + 0.5 # Shift to center of pixel if pad: padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device) padding_label = -torch.ones((labels.shape[0], 1), device=labels.device) points = torch.cat([points, padding_point], dim=1) labels = torch.cat([labels, padding_label], dim=1) point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size) point_embedding[labels == -1] = 0.0 point_embedding[labels == -1] += self.not_a_point_embed.weight point_embedding[labels == 0] += self.point_embeddings[0].weight point_embedding[labels == 1] += self.point_embeddings[1].weight return point_embedding def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor: """Embeds box prompts.""" boxes = boxes + 0.5 # Shift to center of pixel coords = boxes.reshape(-1, 2, 2) corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size) corner_embedding[:, 0, :] += self.point_embeddings[2].weight corner_embedding[:, 1, :] += self.point_embeddings[3].weight return corner_embedding def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor: """Embeds mask inputs.""" mask_embedding = self.mask_downscaling(masks) return mask_embedding def _get_batch_size( self, points: Optional[Tuple[torch.Tensor, torch.Tensor]], boxes: Optional[torch.Tensor], masks: Optional[torch.Tensor], ) -> int: """ Gets the batch size of the output given the batch size of the input prompts. """ if points is not None: return points[0].shape[0] elif boxes is not None: return boxes.shape[0] elif masks is not None: return masks.shape[0] else: return 1 def _get_device(self) -> torch.device: return self.point_embeddings[0].weight.device def forward( self, points: Optional[Tuple[torch.Tensor, torch.Tensor]], boxes: Optional[torch.Tensor], masks: Optional[torch.Tensor], ) -> Tuple[torch.Tensor, torch.Tensor]: """ Embeds different types of prompts, returning both sparse and dense embeddings. Arguments: points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates and labels to embed. boxes (torch.Tensor or none): boxes to embed masks (torch.Tensor or none): masks to embed Returns: torch.Tensor: sparse embeddings for the points and boxes, with shape BxNx(embed_dim), where N is determined by the number of input points and boxes. torch.Tensor: dense embeddings for the masks, in the shape Bx(embed_dim)x(embed_H)x(embed_W) """ bs = self._get_batch_size(points, boxes, masks) sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device()) if points is not None: coords, labels = points point_embeddings = self._embed_points(coords, labels, pad=(boxes is None)) sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1) if boxes is not None: box_embeddings = self._embed_boxes(boxes) sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1) if masks is not None: dense_embeddings = self._embed_masks(masks) else: dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand( bs, -1, self.image_embedding_size[0], self.image_embedding_size[1] ) return sparse_embeddings, dense_embeddings class PositionEmbeddingRandom(nn.Module): """ Positional encoding using random spatial frequencies. """ def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None: super().__init__() if scale is None or scale <= 0.0: scale = 1.0 self.register_buffer( "positional_encoding_gaussian_matrix", scale * torch.randn((2, num_pos_feats)), ) def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor: """Positionally encode points that are normalized to [0,1].""" # assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape coords = 2 * coords - 1 coords = coords @ self.positional_encoding_gaussian_matrix coords = 2 * np.pi * coords # outputs d_1 x ... x d_n x C shape return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1) def forward(self, size: Tuple[int, int]) -> torch.Tensor: """Generate positional encoding for a grid of the specified size.""" h, w = size device: Any = self.positional_encoding_gaussian_matrix.device grid = torch.ones((h, w), device=device, dtype=torch.float32) y_embed = grid.cumsum(dim=0) - 0.5 x_embed = grid.cumsum(dim=1) - 0.5 y_embed = y_embed / h x_embed = x_embed / w pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1)) return pe.permute(2, 0, 1) # C x H x W def forward_with_coords( self, coords_input: torch.Tensor, image_size: Tuple[int, int] ) -> torch.Tensor: """Positionally encode points that are not normalized to [0,1].""" coords = coords_input.clone() coords[:, :, 0] = coords[:, :, 0] / image_size[1] coords[:, :, 1] = coords[:, :, 1] / image_size[0] return self._pe_encoding(coords.to(torch.float)) # B x N x C
swarms-master
swarms/workers/models/segment_anything/segment_anything/modeling/prompt_encoder.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch from torch import nn from torch.nn import functional as F from typing import Any, Dict, List, Tuple from .image_encoder import ImageEncoderViT from .mask_decoder import MaskDecoder from .prompt_encoder import PromptEncoder class Sam(nn.Module): mask_threshold: float = 0.0 image_format: str = "RGB" def __init__( self, image_encoder: ImageEncoderViT, prompt_encoder: PromptEncoder, mask_decoder: MaskDecoder, pixel_mean: List[float] = [123.675, 116.28, 103.53], pixel_std: List[float] = [58.395, 57.12, 57.375], ) -> None: """ SAM predicts object masks from an image and input prompts. Arguments: image_encoder (ImageEncoderViT): The backbone used to encode the image into image embeddings that allow for efficient mask prediction. prompt_encoder (PromptEncoder): Encodes various types of input prompts. mask_decoder (MaskDecoder): Predicts masks from the image embeddings and encoded prompts. pixel_mean (list(float)): Mean values for normalizing pixels in the input image. pixel_std (list(float)): Std values for normalizing pixels in the input image. """ super().__init__() self.image_encoder = image_encoder self.prompt_encoder = prompt_encoder self.mask_decoder = mask_decoder self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False) self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False) @property def device(self) -> Any: return self.pixel_mean.device @torch.no_grad() def forward( self, batched_input: List[Dict[str, Any]], multimask_output: bool, ) -> List[Dict[str, torch.Tensor]]: """ Predicts masks end-to-end from provided images and prompts. If prompts are not known in advance, using SamPredictor is recommended over calling the model directly. Arguments: batched_input (list(dict)): A list over input images, each a dictionary with the following keys. A prompt key can be excluded if it is not present. 'image': The image as a torch tensor in 3xHxW format, already transformed for input to the model. 'original_size': (tuple(int, int)) The original size of the image before transformation, as (H, W). 'point_coords': (torch.Tensor) Batched point prompts for this image, with shape BxNx2. Already transformed to the input frame of the model. 'point_labels': (torch.Tensor) Batched labels for point prompts, with shape BxN. 'boxes': (torch.Tensor) Batched box inputs, with shape Bx4. Already transformed to the input frame of the model. 'mask_inputs': (torch.Tensor) Batched mask inputs to the model, in the form Bx1xHxW. multimask_output (bool): Whether the model should predict multiple disambiguating masks, or return a single mask. Returns: (list(dict)): A list over input images, where each element is as dictionary with the following keys. 'masks': (torch.Tensor) Batched binary mask predictions, with shape BxCxHxW, where B is the number of input prompts, C is determined by multimask_output, and (H, W) is the original size of the image. 'iou_predictions': (torch.Tensor) The model's predictions of mask quality, in shape BxC. 'low_res_logits': (torch.Tensor) Low resolution logits with shape BxCxHxW, where H=W=256. Can be passed as mask input to subsequent iterations of prediction. """ input_images = torch.stack([self.preprocess(x["image"]) for x in batched_input], dim=0) image_embeddings = self.image_encoder(input_images) outputs = [] for image_record, curr_embedding in zip(batched_input, image_embeddings): if "point_coords" in image_record: points = (image_record["point_coords"], image_record["point_labels"]) else: points = None sparse_embeddings, dense_embeddings = self.prompt_encoder( points=points, boxes=image_record.get("boxes", None), masks=image_record.get("mask_inputs", None), ) low_res_masks, iou_predictions = self.mask_decoder( image_embeddings=curr_embedding.unsqueeze(0), image_pe=self.prompt_encoder.get_dense_pe(), sparse_prompt_embeddings=sparse_embeddings, dense_prompt_embeddings=dense_embeddings, multimask_output=multimask_output, ) masks = self.postprocess_masks( low_res_masks, input_size=image_record["image"].shape[-2:], original_size=image_record["original_size"], ) masks = masks > self.mask_threshold outputs.append( { "masks": masks, "iou_predictions": iou_predictions, "low_res_logits": low_res_masks, } ) return outputs def postprocess_masks( self, masks: torch.Tensor, input_size: Tuple[int, ...], original_size: Tuple[int, ...], ) -> torch.Tensor: """ Remove padding and upscale masks to the original image size. Arguments: masks (torch.Tensor): Batched masks from the mask_decoder, in BxCxHxW format. input_size (tuple(int, int)): The size of the image input to the model, in (H, W) format. Used to remove padding. original_size (tuple(int, int)): The original size of the image before resizing for input to the model, in (H, W) format. Returns: (torch.Tensor): Batched masks in BxCxHxW format, where (H, W) is given by original_size. """ masks = F.interpolate( masks, (self.image_encoder.img_size, self.image_encoder.img_size), mode="bilinear", align_corners=False, ) masks = masks[..., : input_size[0], : input_size[1]] masks = F.interpolate(masks, original_size, mode="bilinear", align_corners=False) return masks def preprocess(self, x: torch.Tensor) -> torch.Tensor: """Normalize pixel values and pad to a square input.""" # Normalize colors x = (x - self.pixel_mean) / self.pixel_std # Pad h, w = x.shape[-2:] padh = self.image_encoder.img_size - h padw = self.image_encoder.img_size - w x = F.pad(x, (0, padw, 0, padh)) return x
swarms-master
swarms/workers/models/segment_anything/segment_anything/modeling/sam.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch from torch import nn from torch.nn import functional as F from typing import List, Tuple, Type from .common import LayerNorm2d class MaskDecoder(nn.Module): def __init__( self, *, transformer_dim: int, transformer: nn.Module, num_multimask_outputs: int = 3, activation: Type[nn.Module] = nn.GELU, iou_head_depth: int = 3, iou_head_hidden_dim: int = 256, ) -> None: """ Predicts masks given an image and prompt embeddings, using a transformer architecture. Arguments: transformer_dim (int): the channel dimension of the transformer transformer (nn.Module): the transformer used to predict masks num_multimask_outputs (int): the number of masks to predict when disambiguating masks activation (nn.Module): the type of activation to use when upscaling masks iou_head_depth (int): the depth of the MLP used to predict mask quality iou_head_hidden_dim (int): the hidden dimension of the MLP used to predict mask quality """ super().__init__() self.transformer_dim = transformer_dim self.transformer = transformer self.num_multimask_outputs = num_multimask_outputs self.iou_token = nn.Embedding(1, transformer_dim) self.num_mask_tokens = num_multimask_outputs + 1 self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim) self.output_upscaling = nn.Sequential( nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2), LayerNorm2d(transformer_dim // 4), activation(), nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2), activation(), ) self.output_hypernetworks_mlps = nn.ModuleList( [ MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) for i in range(self.num_mask_tokens) ] ) self.iou_prediction_head = MLP( transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth ) def forward( self, image_embeddings: torch.Tensor, image_pe: torch.Tensor, sparse_prompt_embeddings: torch.Tensor, dense_prompt_embeddings: torch.Tensor, multimask_output: bool, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Predict masks given image and prompt embeddings. Arguments: image_embeddings (torch.Tensor): the embeddings from the image encoder image_pe (torch.Tensor): positional encoding with the shape of image_embeddings sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs multimask_output (bool): Whether to return multiple masks or a single mask. Returns: torch.Tensor: batched predicted masks torch.Tensor: batched predictions of mask quality """ masks, iou_pred = self.predict_masks( image_embeddings=image_embeddings, image_pe=image_pe, sparse_prompt_embeddings=sparse_prompt_embeddings, dense_prompt_embeddings=dense_prompt_embeddings, ) # Select the correct mask or masks for output if multimask_output: mask_slice = slice(1, None) else: mask_slice = slice(0, 1) masks = masks[:, mask_slice, :, :] iou_pred = iou_pred[:, mask_slice] # Prepare output return masks, iou_pred def predict_masks( self, image_embeddings: torch.Tensor, image_pe: torch.Tensor, sparse_prompt_embeddings: torch.Tensor, dense_prompt_embeddings: torch.Tensor, ) -> Tuple[torch.Tensor, torch.Tensor]: """Predicts masks. See 'forward' for more details.""" # Concatenate output tokens output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0) output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1) tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1) # Expand per-image data in batch direction to be per-mask src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0) src = src + dense_prompt_embeddings pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0) b, c, h, w = src.shape # Run the transformer hs, src = self.transformer(src, pos_src, tokens) iou_token_out = hs[:, 0, :] mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :] # Upscale mask embeddings and predict masks using the mask tokens src = src.transpose(1, 2).view(b, c, h, w) upscaled_embedding = self.output_upscaling(src) hyper_in_list: List[torch.Tensor] = [] for i in range(self.num_mask_tokens): hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :])) hyper_in = torch.stack(hyper_in_list, dim=1) b, c, h, w = upscaled_embedding.shape masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w) # Generate mask quality predictions iou_pred = self.iou_prediction_head(iou_token_out) return masks, iou_pred # Lightly adapted from # https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa class MLP(nn.Module): def __init__( self, input_dim: int, hidden_dim: int, output_dim: int, num_layers: int, sigmoid_output: bool = False, ) -> None: super().__init__() self.num_layers = num_layers h = [hidden_dim] * (num_layers - 1) self.layers = nn.ModuleList( nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]) ) self.sigmoid_output = sigmoid_output def forward(self, x): for i, layer in enumerate(self.layers): x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) if self.sigmoid_output: x = F.sigmoid(x) return x
swarms-master
swarms/workers/models/segment_anything/segment_anything/modeling/mask_decoder.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import cv2 # type: ignore from segment_anything import SamAutomaticMaskGenerator, sam_model_registry import argparse import json import os from typing import Any, Dict, List parser = argparse.ArgumentParser( description=( "Runs automatic mask generation on an input image or directory of images, " "and outputs masks as either PNGs or COCO-style RLEs. Requires open-cv, " "as well as pycocotools if saving in RLE format." ) ) parser.add_argument( "--input", type=str, required=True, help="Path to either a single input image or folder of images.", ) parser.add_argument( "--output", type=str, required=True, help=( "Path to the directory where masks will be output. Output will be either a folder " "of PNGs per image or a single json with COCO-style masks." ), ) parser.add_argument( "--model-type", type=str, required=True, help="The type of model to load, in ['default', 'vit_h', 'vit_l', 'vit_b']", ) parser.add_argument( "--checkpoint", type=str, required=True, help="The path to the SAM checkpoint to use for mask generation.", ) parser.add_argument("--device", type=str, default="cuda", help="The device to run generation on.") parser.add_argument( "--convert-to-rle", action="store_true", help=( "Save masks as COCO RLEs in a single json instead of as a folder of PNGs. " "Requires pycocotools." ), ) amg_settings = parser.add_argument_group("AMG Settings") amg_settings.add_argument( "--points-per-side", type=int, default=None, help="Generate masks by sampling a grid over the image with this many points to a side.", ) amg_settings.add_argument( "--points-per-batch", type=int, default=None, help="How many input points to process simultaneously in one batch.", ) amg_settings.add_argument( "--pred-iou-thresh", type=float, default=None, help="Exclude masks with a predicted score from the model that is lower than this threshold.", ) amg_settings.add_argument( "--stability-score-thresh", type=float, default=None, help="Exclude masks with a stability score lower than this threshold.", ) amg_settings.add_argument( "--stability-score-offset", type=float, default=None, help="Larger values perturb the mask more when measuring stability score.", ) amg_settings.add_argument( "--box-nms-thresh", type=float, default=None, help="The overlap threshold for excluding a duplicate mask.", ) amg_settings.add_argument( "--crop-n-layers", type=int, default=None, help=( "If >0, mask generation is run on smaller crops of the image to generate more masks. " "The value sets how many different scales to crop at." ), ) amg_settings.add_argument( "--crop-nms-thresh", type=float, default=None, help="The overlap threshold for excluding duplicate masks across different crops.", ) amg_settings.add_argument( "--crop-overlap-ratio", type=int, default=None, help="Larger numbers mean image crops will overlap more.", ) amg_settings.add_argument( "--crop-n-points-downscale-factor", type=int, default=None, help="The number of points-per-side in each layer of crop is reduced by this factor.", ) amg_settings.add_argument( "--min-mask-region-area", type=int, default=None, help=( "Disconnected mask regions or holes with area smaller than this value " "in pixels are removed by postprocessing." ), ) def write_masks_to_folder(masks: List[Dict[str, Any]], path: str) -> None: header = "id,area,bbox_x0,bbox_y0,bbox_w,bbox_h,point_input_x,point_input_y,predicted_iou,stability_score,crop_box_x0,crop_box_y0,crop_box_w,crop_box_h" # noqa metadata = [header] for i, mask_data in enumerate(masks): mask = mask_data["segmentation"] filename = f"{i}.png" cv2.imwrite(os.path.join(path, filename), mask * 255) mask_metadata = [ str(i), str(mask_data["area"]), *[str(x) for x in mask_data["bbox"]], *[str(x) for x in mask_data["point_coords"][0]], str(mask_data["predicted_iou"]), str(mask_data["stability_score"]), *[str(x) for x in mask_data["crop_box"]], ] row = ",".join(mask_metadata) metadata.append(row) metadata_path = os.path.join(path, "metadata.csv") with open(metadata_path, "w") as f: f.write("\n".join(metadata)) return def get_amg_kwargs(args): amg_kwargs = { "points_per_side": args.points_per_side, "points_per_batch": args.points_per_batch, "pred_iou_thresh": args.pred_iou_thresh, "stability_score_thresh": args.stability_score_thresh, "stability_score_offset": args.stability_score_offset, "box_nms_thresh": args.box_nms_thresh, "crop_n_layers": args.crop_n_layers, "crop_nms_thresh": args.crop_nms_thresh, "crop_overlap_ratio": args.crop_overlap_ratio, "crop_n_points_downscale_factor": args.crop_n_points_downscale_factor, "min_mask_region_area": args.min_mask_region_area, } amg_kwargs = {k: v for k, v in amg_kwargs.items() if v is not None} return amg_kwargs def main(args: argparse.Namespace) -> None: print("Loading model...") sam = sam_model_registry[args.model_type](checkpoint=args.checkpoint) _ = sam.to(device=args.device) output_mode = "coco_rle" if args.convert_to_rle else "binary_mask" amg_kwargs = get_amg_kwargs(args) generator = SamAutomaticMaskGenerator(sam, output_mode=output_mode, **amg_kwargs) if not os.path.isdir(args.input): targets = [args.input] else: targets = [ f for f in os.listdir(args.input) if not os.path.isdir(os.path.join(args.input, f)) ] targets = [os.path.join(args.input, f) for f in targets] os.makedirs(args.output, exist_ok=True) for t in targets: print(f"Processing '{t}'...") image = cv2.imread(t) if image is None: print(f"Could not load '{t}' as an image, skipping...") continue image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) masks = generator.generate(image) base = os.path.basename(t) base = os.path.splitext(base)[0] save_base = os.path.join(args.output, base) if output_mode == "binary_mask": os.makedirs(save_base, exist_ok=False) write_masks_to_folder(masks, save_base) else: save_file = save_base + ".json" with open(save_file, "w") as f: json.dump(masks, f) print("Done!") if __name__ == "__main__": args = parser.parse_args() main(args)
swarms-master
swarms/workers/models/segment_anything/scripts/amg.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch from segment_anything import sam_model_registry from segment_anything.utils.onnx import SamOnnxModel import argparse import warnings try: import onnxruntime # type: ignore onnxruntime_exists = True except ImportError: onnxruntime_exists = False parser = argparse.ArgumentParser( description="Export the SAM prompt encoder and mask decoder to an ONNX model." ) parser.add_argument( "--checkpoint", type=str, required=True, help="The path to the SAM model checkpoint." ) parser.add_argument( "--output", type=str, required=True, help="The filename to save the ONNX model to." ) parser.add_argument( "--model-type", type=str, required=True, help="In ['default', 'vit_h', 'vit_l', 'vit_b']. Which type of SAM model to export.", ) parser.add_argument( "--return-single-mask", action="store_true", help=( "If true, the exported ONNX model will only return the best mask, " "instead of returning multiple masks. For high resolution images " "this can improve runtime when upscaling masks is expensive." ), ) parser.add_argument( "--opset", type=int, default=17, help="The ONNX opset version to use. Must be >=11", ) parser.add_argument( "--quantize-out", type=str, default=None, help=( "If set, will quantize the model and save it with this name. " "Quantization is performed with quantize_dynamic from onnxruntime.quantization.quantize." ), ) parser.add_argument( "--gelu-approximate", action="store_true", help=( "Replace GELU operations with approximations using tanh. Useful " "for some runtimes that have slow or unimplemented erf ops, used in GELU." ), ) parser.add_argument( "--use-stability-score", action="store_true", help=( "Replaces the model's predicted mask quality score with the stability " "score calculated on the low resolution masks using an offset of 1.0. " ), ) parser.add_argument( "--return-extra-metrics", action="store_true", help=( "The model will return five results: (masks, scores, stability_scores, " "areas, low_res_logits) instead of the usual three. This can be " "significantly slower for high resolution outputs." ), ) def run_export( model_type: str, checkpoint: str, output: str, opset: int, return_single_mask: bool, gelu_approximate: bool = False, use_stability_score: bool = False, return_extra_metrics=False, ): print("Loading model...") sam = sam_model_registry[model_type](checkpoint=checkpoint) onnx_model = SamOnnxModel( model=sam, return_single_mask=return_single_mask, use_stability_score=use_stability_score, return_extra_metrics=return_extra_metrics, ) if gelu_approximate: for n, m in onnx_model.named_modules(): if isinstance(m, torch.nn.GELU): m.approximate = "tanh" dynamic_axes = { "point_coords": {1: "num_points"}, "point_labels": {1: "num_points"}, } embed_dim = sam.prompt_encoder.embed_dim embed_size = sam.prompt_encoder.image_embedding_size mask_input_size = [4 * x for x in embed_size] dummy_inputs = { "image_embeddings": torch.randn(1, embed_dim, *embed_size, dtype=torch.float), "point_coords": torch.randint(low=0, high=1024, size=(1, 5, 2), dtype=torch.float), "point_labels": torch.randint(low=0, high=4, size=(1, 5), dtype=torch.float), "mask_input": torch.randn(1, 1, *mask_input_size, dtype=torch.float), "has_mask_input": torch.tensor([1], dtype=torch.float), "orig_im_size": torch.tensor([1500, 2250], dtype=torch.float), } _ = onnx_model(**dummy_inputs) output_names = ["masks", "iou_predictions", "low_res_masks"] with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=torch.jit.TracerWarning) warnings.filterwarnings("ignore", category=UserWarning) with open(output, "wb") as f: print(f"Exporting onnx model to {output}...") torch.onnx.export( onnx_model, tuple(dummy_inputs.values()), f, export_params=True, verbose=False, opset_version=opset, do_constant_folding=True, input_names=list(dummy_inputs.keys()), output_names=output_names, dynamic_axes=dynamic_axes, ) if onnxruntime_exists: ort_inputs = {k: to_numpy(v) for k, v in dummy_inputs.items()} # set cpu provider default providers = ["CPUExecutionProvider"] ort_session = onnxruntime.InferenceSession(output, providers=providers) _ = ort_session.run(None, ort_inputs) print("Model has successfully been run with ONNXRuntime.") def to_numpy(tensor): return tensor.cpu().numpy() if __name__ == "__main__": args = parser.parse_args() run_export( model_type=args.model_type, checkpoint=args.checkpoint, output=args.output, opset=args.opset, return_single_mask=args.return_single_mask, gelu_approximate=args.gelu_approximate, use_stability_score=args.use_stability_score, return_extra_metrics=args.return_extra_metrics, ) if args.quantize_out is not None: assert onnxruntime_exists, "onnxruntime is required to quantize the model." from onnxruntime.quantization import QuantType # type: ignore from onnxruntime.quantization.quantize import quantize_dynamic # type: ignore print(f"Quantizing model and writing to {args.quantize_out}...") quantize_dynamic( model_input=args.output, model_output=args.quantize_out, optimize_model=True, per_channel=False, reduce_range=False, weight_type=QuantType.QUInt8, ) print("Done!")
swarms-master
swarms/workers/models/segment_anything/scripts/export_onnx_model.py
swarms-master
swarms/workers/models/GroundingDINO/__init__.py
# coding=utf-8 # Copyright 2022 The IDEA Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ------------------------------------------------------------------------------------------------ # Modified from # https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/setup.py # https://github.com/facebookresearch/detectron2/blob/main/setup.py # https://github.com/open-mmlab/mmdetection/blob/master/setup.py # https://github.com/Oneflow-Inc/libai/blob/main/setup.py # ------------------------------------------------------------------------------------------------ import glob import os import subprocess import torch from setuptools import find_packages, setup from torch.utils.cpp_extension import CUDA_HOME, CppExtension, CUDAExtension # groundingdino version info version = "0.1.0" package_name = "groundingdino" cwd = os.path.dirname(os.path.abspath(__file__)) sha = "Unknown" try: sha = subprocess.check_output(["git", "rev-parse", "HEAD"], cwd=cwd).decode("ascii").strip() except Exception: pass def write_version_file(): version_path = os.path.join(cwd, "groundingdino", "version.py") with open(version_path, "w") as f: f.write(f"__version__ = '{version}'\n") # f.write(f"git_version = {repr(sha)}\n") requirements = ["torch", "torchvision"] torch_ver = [int(x) for x in torch.__version__.split(".")[:2]] def get_extensions(): this_dir = os.path.dirname(os.path.abspath(__file__)) extensions_dir = os.path.join(this_dir, "groundingdino", "models", "GroundingDINO", "csrc") main_source = os.path.join(extensions_dir, "vision.cpp") sources = glob.glob(os.path.join(extensions_dir, "**", "*.cpp")) source_cuda = glob.glob(os.path.join(extensions_dir, "**", "*.cu")) + glob.glob( os.path.join(extensions_dir, "*.cu") ) sources = [main_source] + sources extension = CppExtension extra_compile_args = {"cxx": []} define_macros = [] if CUDA_HOME is not None and (torch.cuda.is_available() or "TORCH_CUDA_ARCH_LIST" in os.environ): print("Compiling with CUDA") extension = CUDAExtension sources += source_cuda define_macros += [("WITH_CUDA", None)] extra_compile_args["nvcc"] = [ "-DCUDA_HAS_FP16=1", "-D__CUDA_NO_HALF_OPERATORS__", "-D__CUDA_NO_HALF_CONVERSIONS__", "-D__CUDA_NO_HALF2_OPERATORS__", ] else: print("Compiling without CUDA") define_macros += [("WITH_HIP", None)] extra_compile_args["nvcc"] = [] return None sources = [os.path.join(extensions_dir, s) for s in sources] include_dirs = [extensions_dir] ext_modules = [ extension( "groundingdino._C", sources, include_dirs=include_dirs, define_macros=define_macros, extra_compile_args=extra_compile_args, ) ] return ext_modules def parse_requirements(fname="requirements.txt", with_version=True): """Parse the package dependencies listed in a requirements file but strips specific versioning information. Args: fname (str): path to requirements file with_version (bool, default=False): if True include version specs Returns: List[str]: list of requirements items CommandLine: python -c "import setup; print(setup.parse_requirements())" """ import re import sys from os.path import exists require_fpath = fname def parse_line(line): """Parse information from a line in a requirements text file.""" if line.startswith("-r "): # Allow specifying requirements in other files target = line.split(" ")[1] for info in parse_require_file(target): yield info else: info = {"line": line} if line.startswith("-e "): info["package"] = line.split("#egg=")[1] elif "@git+" in line: info["package"] = line else: # Remove versioning from the package pat = "(" + "|".join([">=", "==", ">"]) + ")" parts = re.split(pat, line, maxsplit=1) parts = [p.strip() for p in parts] info["package"] = parts[0] if len(parts) > 1: op, rest = parts[1:] if ";" in rest: # Handle platform specific dependencies # http://setuptools.readthedocs.io/en/latest/setuptools.html#declaring-platform-specific-dependencies version, platform_deps = map(str.strip, rest.split(";")) info["platform_deps"] = platform_deps else: version = rest # NOQA info["version"] = (op, version) yield info def parse_require_file(fpath): with open(fpath, "r") as f: for line in f.readlines(): line = line.strip() if line and not line.startswith("#"): for info in parse_line(line): yield info def gen_packages_items(): if exists(require_fpath): for info in parse_require_file(require_fpath): parts = [info["package"]] if with_version and "version" in info: parts.extend(info["version"]) if not sys.version.startswith("3.4"): # apparently package_deps are broken in 3.4 platform_deps = info.get("platform_deps") if platform_deps is not None: parts.append(";" + platform_deps) item = "".join(parts) yield item packages = list(gen_packages_items()) return packages if __name__ == "__main__": print(f"Building wheel {package_name}-{version}") with open("LICENSE", "r", encoding="utf-8") as f: license = f.read() write_version_file() setup( name="groundingdino", version="0.1.0", author="International Digital Economy Academy, Shilong Liu", url="https://github.com/IDEA-Research/GroundingDINO", description="open-set object detector", license=license, install_requires=parse_requirements("requirements.txt"), packages=find_packages( exclude=( "configs", "tests", ) ), ext_modules=get_extensions(), cmdclass={"build_ext": torch.utils.cpp_extension.BuildExtension}, )
swarms-master
swarms/workers/models/GroundingDINO/setup.py
import argparse import time import torch import torch.nn as nn from torch.utils.data import DataLoader from groundingdino.models import build_model import groundingdino.datasets.transforms as T from groundingdino.util import box_ops, get_tokenlizer from groundingdino.util.misc import clean_state_dict, collate_fn from groundingdino.util.slconfig import SLConfig # from torchvision.datasets import CocoDetection import torchvision from groundingdino.util.vl_utils import build_captions_and_token_span, create_positive_map_from_span from groundingdino.datasets.cocogrounding_eval import CocoGroundingEvaluator def load_model(model_config_path: str, model_checkpoint_path: str, device: str = "cuda"): args = SLConfig.fromfile(model_config_path) args.device = device model = build_model(args) checkpoint = torch.load(model_checkpoint_path, map_location="cpu") model.load_state_dict(clean_state_dict(checkpoint["ema_model"]), strict=False) model.eval() return model class CocoDetection(torchvision.datasets.CocoDetection): def __init__(self, img_folder, ann_file, transforms): super().__init__(img_folder, ann_file) self._transforms = transforms def __getitem__(self, idx): img, target = super().__getitem__(idx) # target: list # import ipdb; ipdb.set_trace() w, h = img.size boxes = [obj["bbox"] for obj in target] boxes = torch.as_tensor(boxes, dtype=torch.float32).reshape(-1, 4) boxes[:, 2:] += boxes[:, :2] # xywh -> xyxy boxes[:, 0::2].clamp_(min=0, max=w) boxes[:, 1::2].clamp_(min=0, max=h) # filt invalid boxes/masks/keypoints keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0]) boxes = boxes[keep] target_new = {} image_id = self.ids[idx] target_new["image_id"] = image_id target_new["boxes"] = boxes target_new["orig_size"] = torch.as_tensor([int(h), int(w)]) if self._transforms is not None: img, target = self._transforms(img, target_new) return img, target class PostProcessCocoGrounding(nn.Module): """ This module converts the model's output into the format expected by the coco api""" def __init__(self, num_select=300, coco_api=None, tokenlizer=None) -> None: super().__init__() self.num_select = num_select assert coco_api is not None category_dict = coco_api.dataset['categories'] cat_list = [item['name'] for item in category_dict] captions, cat2tokenspan = build_captions_and_token_span(cat_list, True) tokenspanlist = [cat2tokenspan[cat] for cat in cat_list] positive_map = create_positive_map_from_span( tokenlizer(captions), tokenspanlist) # 80, 256. normed id_map = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 7, 7: 8, 8: 9, 9: 10, 10: 11, 11: 13, 12: 14, 13: 15, 14: 16, 15: 17, 16: 18, 17: 19, 18: 20, 19: 21, 20: 22, 21: 23, 22: 24, 23: 25, 24: 27, 25: 28, 26: 31, 27: 32, 28: 33, 29: 34, 30: 35, 31: 36, 32: 37, 33: 38, 34: 39, 35: 40, 36: 41, 37: 42, 38: 43, 39: 44, 40: 46, 41: 47, 42: 48, 43: 49, 44: 50, 45: 51, 46: 52, 47: 53, 48: 54, 49: 55, 50: 56, 51: 57, 52: 58, 53: 59, 54: 60, 55: 61, 56: 62, 57: 63, 58: 64, 59: 65, 60: 67, 61: 70, 62: 72, 63: 73, 64: 74, 65: 75, 66: 76, 67: 77, 68: 78, 69: 79, 70: 80, 71: 81, 72: 82, 73: 84, 74: 85, 75: 86, 76: 87, 77: 88, 78: 89, 79: 90} # build a mapping from label_id to pos_map new_pos_map = torch.zeros((91, 256)) for k, v in id_map.items(): new_pos_map[v] = positive_map[k] self.positive_map = new_pos_map @torch.no_grad() def forward(self, outputs, target_sizes, not_to_xyxy=False): """ Perform the computation Parameters: outputs: raw outputs of the model target_sizes: tensor of dimension [batch_size x 2] containing the size of each images of the batch For evaluation, this must be the original image size (before any data augmentation) For visualization, this should be the image size after data augment, but before padding """ num_select = self.num_select out_logits, out_bbox = outputs['pred_logits'], outputs['pred_boxes'] # pos map to logit prob_to_token = out_logits.sigmoid() # bs, 100, 256 pos_maps = self.positive_map.to(prob_to_token.device) # (bs, 100, 256) @ (91, 256).T -> (bs, 100, 91) prob_to_label = prob_to_token @ pos_maps.T # if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO': # import ipdb; ipdb.set_trace() assert len(out_logits) == len(target_sizes) assert target_sizes.shape[1] == 2 prob = prob_to_label topk_values, topk_indexes = torch.topk( prob.view(out_logits.shape[0], -1), num_select, dim=1) scores = topk_values topk_boxes = topk_indexes // prob.shape[2] labels = topk_indexes % prob.shape[2] if not_to_xyxy: boxes = out_bbox else: boxes = box_ops.box_cxcywh_to_xyxy(out_bbox) boxes = torch.gather( boxes, 1, topk_boxes.unsqueeze(-1).repeat(1, 1, 4)) # and from relative [0, 1] to absolute [0, height] coordinates img_h, img_w = target_sizes.unbind(1) scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1) boxes = boxes * scale_fct[:, None, :] results = [{'scores': s, 'labels': l, 'boxes': b} for s, l, b in zip(scores, labels, boxes)] return results def main(args): # config cfg = SLConfig.fromfile(args.config_file) # build model model = load_model(args.config_file, args.checkpoint_path) model = model.to(args.device) model = model.eval() # build dataloader transform = T.Compose( [ T.RandomResize([800], max_size=1333), T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ) dataset = CocoDetection( args.image_dir, args.anno_path, transforms=transform) data_loader = DataLoader( dataset, batch_size=1, shuffle=False, num_workers=args.num_workers, collate_fn=collate_fn) # build post processor tokenlizer = get_tokenlizer.get_tokenlizer(cfg.text_encoder_type) postprocessor = PostProcessCocoGrounding( coco_api=dataset.coco, tokenlizer=tokenlizer) # build evaluator evaluator = CocoGroundingEvaluator( dataset.coco, iou_types=("bbox",), useCats=True) # build captions category_dict = dataset.coco.dataset['categories'] cat_list = [item['name'] for item in category_dict] caption = " . ".join(cat_list) + ' .' print("Input text prompt:", caption) # run inference start = time.time() for i, (images, targets) in enumerate(data_loader): # get images and captions images = images.tensors.to(args.device) bs = images.shape[0] input_captions = [caption] * bs # feed to the model outputs = model(images, captions=input_captions) orig_target_sizes = torch.stack( [t["orig_size"] for t in targets], dim=0).to(images.device) results = postprocessor(outputs, orig_target_sizes) cocogrounding_res = { target["image_id"]: output for target, output in zip(targets, results)} evaluator.update(cocogrounding_res) if (i+1) % 30 == 0: used_time = time.time() - start eta = len(data_loader) / (i+1e-5) * used_time - used_time print( f"processed {i}/{len(data_loader)} images. time: {used_time:.2f}s, ETA: {eta:.2f}s") evaluator.synchronize_between_processes() evaluator.accumulate() evaluator.summarize() print("Final results:", evaluator.coco_eval["bbox"].stats.tolist()) if __name__ == "__main__": parser = argparse.ArgumentParser( "Grounding DINO eval on COCO", add_help=True) # load model parser.add_argument("--config_file", "-c", type=str, required=True, help="path to config file") parser.add_argument( "--checkpoint_path", "-p", type=str, required=True, help="path to checkpoint file" ) parser.add_argument("--device", type=str, default="cuda", help="running device (default: cuda)") # post processing parser.add_argument("--num_select", type=int, default=300, help="number of topk to select") # coco info parser.add_argument("--anno_path", type=str, required=True, help="coco root") parser.add_argument("--image_dir", type=str, required=True, help="coco image dir") parser.add_argument("--num_workers", type=int, default=4, help="number of workers for dataloader") args = parser.parse_args() main(args)
swarms-master
swarms/workers/models/GroundingDINO/demo/test_ap_on_coco.py
import argparse import cv2 import os from PIL import Image import numpy as np import warnings import torch # prepare the environment os.system("python setup.py build develop --user") os.system("pip install packaging==21.3") os.system("pip install gradio") warnings.filterwarnings("ignore") import gradio as gr from groundingdino.models import build_model from groundingdino.util.slconfig import SLConfig from groundingdino.util.utils import clean_state_dict from groundingdino.util.inference import annotate, predict import groundingdino.datasets.transforms as T from huggingface_hub import hf_hub_download # Use this command for evaluate the Grounding DINO model config_file = "groundingdino/config/GroundingDINO_SwinT_OGC.py" ckpt_repo_id = "ShilongLiu/GroundingDINO" ckpt_filenmae = "groundingdino_swint_ogc.pth" def load_model_hf(model_config_path, repo_id, filename, device='cpu'): args = SLConfig.fromfile(model_config_path) model = build_model(args) args.device = device cache_file = hf_hub_download(repo_id=repo_id, filename=filename) checkpoint = torch.load(cache_file, map_location='cpu') log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False) print("Model loaded from {} \n => {}".format(cache_file, log)) _ = model.eval() return model def image_transform_grounding(init_image): transform = T.Compose([ T.RandomResize([800], max_size=1333), T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) image, _ = transform(init_image, None) # 3, h, w return init_image, image def image_transform_grounding_for_vis(init_image): transform = T.Compose([ T.RandomResize([800], max_size=1333), ]) image, _ = transform(init_image, None) # 3, h, w return image model = load_model_hf(config_file, ckpt_repo_id, ckpt_filenmae) def run_grounding(input_image, grounding_caption, box_threshold, text_threshold): init_image = input_image.convert("RGB") _, image_tensor = image_transform_grounding(init_image) image_pil: Image = image_transform_grounding_for_vis(init_image) # run grounidng boxes, logits, phrases = predict(model, image_tensor, grounding_caption, box_threshold, text_threshold, device='cpu') annotated_frame = annotate(image_source=np.asarray(image_pil), boxes=boxes, logits=logits, phrases=phrases) image_with_box = Image.fromarray(cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB)) return image_with_box if __name__ == "__main__": parser = argparse.ArgumentParser("Grounding DINO demo", add_help=True) parser.add_argument("--debug", action="store_true", help="using debug mode") parser.add_argument("--share", action="store_true", help="share the app") args = parser.parse_args() block = gr.Blocks().queue() with block: gr.Markdown("# [Grounding DINO](https://github.com/IDEA-Research/GroundingDINO)") gr.Markdown("### Open-World Detection with Grounding DINO") with gr.Row(): with gr.Column(): input_image = gr.Image(source='upload', type="pil") grounding_caption = gr.Textbox(label="Detection Prompt") run_button = gr.Button(label="Run") with gr.Accordion("Advanced options", open=False): box_threshold = gr.Slider( label="Box Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001 ) text_threshold = gr.Slider( label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001 ) with gr.Column(): gallery = gr.outputs.Image( type="pil", # label="grounding results" ).style(full_width=True, full_height=True) # gallery = gr.Gallery(label="Generated images", show_label=False).style( # grid=[1], height="auto", container=True, full_width=True, full_height=True) run_button.click(fn=run_grounding, inputs=[ input_image, grounding_caption, box_threshold, text_threshold], outputs=[gallery]) block.launch(server_name='0.0.0.0', server_port=7579, debug=args.debug, share=args.share)
swarms-master
swarms/workers/models/GroundingDINO/demo/gradio_app.py
import argparse import os import numpy as np import torch from PIL import Image, ImageDraw, ImageFont import groundingdino.datasets.transforms as T from groundingdino.models import build_model from groundingdino.util.slconfig import SLConfig from groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap from groundingdino.util.vl_utils import create_positive_map_from_span def plot_boxes_to_image(image_pil, tgt): H, W = tgt["size"] boxes = tgt["boxes"] labels = tgt["labels"] assert len(boxes) == len(labels), "boxes and labels must have same length" draw = ImageDraw.Draw(image_pil) mask = Image.new("L", image_pil.size, 0) mask_draw = ImageDraw.Draw(mask) # draw boxes and masks for box, label in zip(boxes, labels): # from 0..1 to 0..W, 0..H box = box * torch.Tensor([W, H, W, H]) # from xywh to xyxy box[:2] -= box[2:] / 2 box[2:] += box[:2] # random color color = tuple(np.random.randint(0, 255, size=3).tolist()) # draw x0, y0, x1, y1 = box x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1) draw.rectangle([x0, y0, x1, y1], outline=color, width=6) # draw.text((x0, y0), str(label), fill=color) font = ImageFont.load_default() if hasattr(font, "getbbox"): bbox = draw.textbbox((x0, y0), str(label), font) else: w, h = draw.textsize(str(label), font) bbox = (x0, y0, w + x0, y0 + h) # bbox = draw.textbbox((x0, y0), str(label)) draw.rectangle(bbox, fill=color) draw.text((x0, y0), str(label), fill="white") mask_draw.rectangle([x0, y0, x1, y1], fill=255, width=6) return image_pil, mask def load_image(image_path): # load image image_pil = Image.open(image_path).convert("RGB") # load image transform = T.Compose( [ T.RandomResize([800], max_size=1333), T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ) image, _ = transform(image_pil, None) # 3, h, w return image_pil, image def load_model(model_config_path, model_checkpoint_path, cpu_only=False): args = SLConfig.fromfile(model_config_path) args.device = "cuda" if not cpu_only else "cpu" model = build_model(args) checkpoint = torch.load(model_checkpoint_path, map_location="cpu") load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False) print(load_res) _ = model.eval() return model def get_grounding_output(model, image, caption, box_threshold, text_threshold=None, with_logits=True, cpu_only=False, token_spans=None): assert text_threshold is not None or token_spans is not None, "text_threshould and token_spans should not be None at the same time!" caption = caption.lower() caption = caption.strip() if not caption.endswith("."): caption = caption + "." device = "cuda" if not cpu_only else "cpu" model = model.to(device) image = image.to(device) with torch.no_grad(): outputs = model(image[None], captions=[caption]) logits = outputs["pred_logits"].sigmoid()[0] # (nq, 256) boxes = outputs["pred_boxes"][0] # (nq, 4) # filter output if token_spans is None: logits_filt = logits.cpu().clone() boxes_filt = boxes.cpu().clone() filt_mask = logits_filt.max(dim=1)[0] > box_threshold logits_filt = logits_filt[filt_mask] # num_filt, 256 boxes_filt = boxes_filt[filt_mask] # num_filt, 4 # get phrase tokenlizer = model.tokenizer tokenized = tokenlizer(caption) # build pred pred_phrases = [] for logit, box in zip(logits_filt, boxes_filt): pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer) if with_logits: pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})") else: pred_phrases.append(pred_phrase) else: # given-phrase mode positive_maps = create_positive_map_from_span( model.tokenizer(text_prompt), token_span=token_spans ).to(image.device) # n_phrase, 256 logits_for_phrases = positive_maps @ logits.T # n_phrase, nq all_logits = [] all_phrases = [] all_boxes = [] for (token_span, logit_phr) in zip(token_spans, logits_for_phrases): # get phrase phrase = ' '.join([caption[_s:_e] for (_s, _e) in token_span]) # get mask filt_mask = logit_phr > box_threshold # filt box all_boxes.append(boxes[filt_mask]) # filt logits all_logits.append(logit_phr[filt_mask]) if with_logits: logit_phr_num = logit_phr[filt_mask] all_phrases.extend([phrase + f"({str(logit.item())[:4]})" for logit in logit_phr_num]) else: all_phrases.extend([phrase for _ in range(len(filt_mask))]) boxes_filt = torch.cat(all_boxes, dim=0).cpu() pred_phrases = all_phrases return boxes_filt, pred_phrases if __name__ == "__main__": parser = argparse.ArgumentParser("Grounding DINO example", add_help=True) parser.add_argument("--config_file", "-c", type=str, required=True, help="path to config file") parser.add_argument( "--checkpoint_path", "-p", type=str, required=True, help="path to checkpoint file" ) parser.add_argument("--image_path", "-i", type=str, required=True, help="path to image file") parser.add_argument("--text_prompt", "-t", type=str, required=True, help="text prompt") parser.add_argument( "--output_dir", "-o", type=str, default="outputs", required=True, help="output directory" ) parser.add_argument("--box_threshold", type=float, default=0.3, help="box threshold") parser.add_argument("--text_threshold", type=float, default=0.25, help="text threshold") parser.add_argument("--token_spans", type=str, default=None, help= "The positions of start and end positions of phrases of interest. \ For example, a caption is 'a cat and a dog', \ if you would like to detect 'cat', the token_spans should be '[[[2, 5]], ]', since 'a cat and a dog'[2:5] is 'cat'. \ if you would like to detect 'a cat', the token_spans should be '[[[0, 1], [2, 5]], ]', since 'a cat and a dog'[0:1] is 'a', and 'a cat and a dog'[2:5] is 'cat'. \ ") parser.add_argument("--cpu-only", action="store_true", help="running on cpu only!, default=False") args = parser.parse_args() # cfg config_file = args.config_file # change the path of the model config file checkpoint_path = args.checkpoint_path # change the path of the model image_path = args.image_path text_prompt = args.text_prompt output_dir = args.output_dir box_threshold = args.box_threshold text_threshold = args.text_threshold token_spans = args.token_spans # make dir os.makedirs(output_dir, exist_ok=True) # load image image_pil, image = load_image(image_path) # load model model = load_model(config_file, checkpoint_path, cpu_only=args.cpu_only) # visualize raw image image_pil.save(os.path.join(output_dir, "raw_image.jpg")) # set the text_threshold to None if token_spans is set. if token_spans is not None: text_threshold = None print("Using token_spans. Set the text_threshold to None.") # run model boxes_filt, pred_phrases = get_grounding_output( model, image, text_prompt, box_threshold, text_threshold, cpu_only=args.cpu_only, token_spans=eval(token_spans) ) # visualize pred size = image_pil.size pred_dict = { "boxes": boxes_filt, "size": [size[1], size[0]], # H,W "labels": pred_phrases, } # import ipdb; ipdb.set_trace() image_with_box = plot_boxes_to_image(image_pil, pred_dict)[0] image_with_box.save(os.path.join(output_dir, "pred.jpg"))
swarms-master
swarms/workers/models/GroundingDINO/demo/inference_on_a_image.py
import typer from groundingdino.util.inference import load_model, load_image, predict from tqdm import tqdm import torchvision import fiftyone as fo def main( image_directory: str = 'test_grounding_dino', text_prompt: str = 'bus, car', box_threshold: float = 0.15, text_threshold: float = 0.10, export_dataset: bool = False, view_dataset: bool = False, export_annotated_images: bool = True, weights_path : str = "groundingdino_swint_ogc.pth", config_path: str = "../../GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py", subsample: int = None, ): model = load_model(config_path, weights_path) dataset = fo.Dataset.from_images_dir(image_directory) if subsample is not None: if subsample < len(dataset): dataset = dataset.take(subsample).clone() for sample in tqdm(dataset): image_source, image = load_image(sample.filepath) boxes, logits, phrases = predict( model=model, image=image, caption=text_prompt, box_threshold=box_threshold, text_threshold=text_threshold, ) detections = [] for box, logit, phrase in zip(boxes, logits, phrases): rel_box = torchvision.ops.box_convert(box, 'cxcywh', 'xywh') detections.append( fo.Detection( label=phrase, bounding_box=rel_box, confidence=logit, )) # Store detections in a field name of your choice sample["detections"] = fo.Detections(detections=detections) sample.save() # loads the voxel fiftyone UI ready for viewing the dataset. if view_dataset: session = fo.launch_app(dataset) session.wait() # exports COCO dataset ready for training if export_dataset: dataset.export( 'coco_dataset', dataset_type=fo.types.COCODetectionDataset, ) # saves bounding boxes plotted on the input images to disk if export_annotated_images: dataset.draw_labels( 'images_with_bounding_boxes', label_fields=['detections'] ) if __name__ == '__main__': typer.run(main)
swarms-master
swarms/workers/models/GroundingDINO/demo/create_coco_dataset.py
swarms-master
swarms/workers/models/GroundingDINO/groundingdino/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ Misc functions, including distributed helpers. Mostly copy-paste from torchvision references. """ import colorsys import datetime import functools import io import json import os import pickle import subprocess import time from collections import OrderedDict, defaultdict, deque from typing import List, Optional import numpy as np import torch import torch.distributed as dist # needed due to empty tensor bug in pytorch and torchvision 0.5 import torchvision from torch import Tensor __torchvision_need_compat_flag = float(torchvision.__version__.split(".")[1]) < 7 if __torchvision_need_compat_flag: from torchvision.ops import _new_empty_tensor from torchvision.ops.misc import _output_size class SmoothedValue(object): """Track a series of values and provide access to smoothed values over a window or the global series average. """ def __init__(self, window_size=20, fmt=None): if fmt is None: fmt = "{median:.4f} ({global_avg:.4f})" self.deque = deque(maxlen=window_size) self.total = 0.0 self.count = 0 self.fmt = fmt def update(self, value, n=1): self.deque.append(value) self.count += n self.total += value * n def synchronize_between_processes(self): """ Warning: does not synchronize the deque! """ if not is_dist_avail_and_initialized(): return t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda") dist.barrier() dist.all_reduce(t) t = t.tolist() self.count = int(t[0]) self.total = t[1] @property def median(self): d = torch.tensor(list(self.deque)) if d.shape[0] == 0: return 0 return d.median().item() @property def avg(self): d = torch.tensor(list(self.deque), dtype=torch.float32) return d.mean().item() @property def global_avg(self): if os.environ.get("SHILONG_AMP", None) == "1": eps = 1e-4 else: eps = 1e-6 return self.total / (self.count + eps) @property def max(self): return max(self.deque) @property def value(self): return self.deque[-1] def __str__(self): return self.fmt.format( median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value, ) @functools.lru_cache() def _get_global_gloo_group(): """ Return a process group based on gloo backend, containing all the ranks The result is cached. """ if dist.get_backend() == "nccl": return dist.new_group(backend="gloo") return dist.group.WORLD def all_gather_cpu(data): """ Run all_gather on arbitrary picklable data (not necessarily tensors) Args: data: any picklable object Returns: list[data]: list of data gathered from each rank """ world_size = get_world_size() if world_size == 1: return [data] cpu_group = _get_global_gloo_group() buffer = io.BytesIO() torch.save(data, buffer) data_view = buffer.getbuffer() device = "cuda" if cpu_group is None else "cpu" tensor = torch.ByteTensor(data_view).to(device) # obtain Tensor size of each rank local_size = torch.tensor([tensor.numel()], device=device, dtype=torch.long) size_list = [torch.tensor([0], device=device, dtype=torch.long) for _ in range(world_size)] if cpu_group is None: dist.all_gather(size_list, local_size) else: print("gathering on cpu") dist.all_gather(size_list, local_size, group=cpu_group) size_list = [int(size.item()) for size in size_list] max_size = max(size_list) assert isinstance(local_size.item(), int) local_size = int(local_size.item()) # receiving Tensor from all ranks # we pad the tensor because torch all_gather does not support # gathering tensors of different shapes tensor_list = [] for _ in size_list: tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device=device)) if local_size != max_size: padding = torch.empty(size=(max_size - local_size,), dtype=torch.uint8, device=device) tensor = torch.cat((tensor, padding), dim=0) if cpu_group is None: dist.all_gather(tensor_list, tensor) else: dist.all_gather(tensor_list, tensor, group=cpu_group) data_list = [] for size, tensor in zip(size_list, tensor_list): tensor = torch.split(tensor, [size, max_size - size], dim=0)[0] buffer = io.BytesIO(tensor.cpu().numpy()) obj = torch.load(buffer) data_list.append(obj) return data_list def all_gather(data): """ Run all_gather on arbitrary picklable data (not necessarily tensors) Args: data: any picklable object Returns: list[data]: list of data gathered from each rank """ if os.getenv("CPU_REDUCE") == "1": return all_gather_cpu(data) world_size = get_world_size() if world_size == 1: return [data] # serialized to a Tensor buffer = pickle.dumps(data) storage = torch.ByteStorage.from_buffer(buffer) tensor = torch.ByteTensor(storage).to("cuda") # obtain Tensor size of each rank local_size = torch.tensor([tensor.numel()], device="cuda") size_list = [torch.tensor([0], device="cuda") for _ in range(world_size)] dist.all_gather(size_list, local_size) size_list = [int(size.item()) for size in size_list] max_size = max(size_list) # receiving Tensor from all ranks # we pad the tensor because torch all_gather does not support # gathering tensors of different shapes tensor_list = [] for _ in size_list: tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device="cuda")) if local_size != max_size: padding = torch.empty(size=(max_size - local_size,), dtype=torch.uint8, device="cuda") tensor = torch.cat((tensor, padding), dim=0) dist.all_gather(tensor_list, tensor) data_list = [] for size, tensor in zip(size_list, tensor_list): buffer = tensor.cpu().numpy().tobytes()[:size] data_list.append(pickle.loads(buffer)) return data_list def reduce_dict(input_dict, average=True): """ Args: input_dict (dict): all the values will be reduced average (bool): whether to do average or sum Reduce the values in the dictionary from all processes so that all processes have the averaged results. Returns a dict with the same fields as input_dict, after reduction. """ world_size = get_world_size() if world_size < 2: return input_dict with torch.no_grad(): names = [] values = [] # sort the keys so that they are consistent across processes for k in sorted(input_dict.keys()): names.append(k) values.append(input_dict[k]) values = torch.stack(values, dim=0) dist.all_reduce(values) if average: values /= world_size reduced_dict = {k: v for k, v in zip(names, values)} return reduced_dict class MetricLogger(object): def __init__(self, delimiter="\t"): self.meters = defaultdict(SmoothedValue) self.delimiter = delimiter def update(self, **kwargs): for k, v in kwargs.items(): if isinstance(v, torch.Tensor): v = v.item() assert isinstance(v, (float, int)) self.meters[k].update(v) def __getattr__(self, attr): if attr in self.meters: return self.meters[attr] if attr in self.__dict__: return self.__dict__[attr] raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, attr)) def __str__(self): loss_str = [] for name, meter in self.meters.items(): # print(name, str(meter)) # import ipdb;ipdb.set_trace() if meter.count > 0: loss_str.append("{}: {}".format(name, str(meter))) return self.delimiter.join(loss_str) def synchronize_between_processes(self): for meter in self.meters.values(): meter.synchronize_between_processes() def add_meter(self, name, meter): self.meters[name] = meter def log_every(self, iterable, print_freq, header=None, logger=None): if logger is None: print_func = print else: print_func = logger.info i = 0 if not header: header = "" start_time = time.time() end = time.time() iter_time = SmoothedValue(fmt="{avg:.4f}") data_time = SmoothedValue(fmt="{avg:.4f}") space_fmt = ":" + str(len(str(len(iterable)))) + "d" if torch.cuda.is_available(): log_msg = self.delimiter.join( [ header, "[{0" + space_fmt + "}/{1}]", "eta: {eta}", "{meters}", "time: {time}", "data: {data}", "max mem: {memory:.0f}", ] ) else: log_msg = self.delimiter.join( [ header, "[{0" + space_fmt + "}/{1}]", "eta: {eta}", "{meters}", "time: {time}", "data: {data}", ] ) MB = 1024.0 * 1024.0 for obj in iterable: data_time.update(time.time() - end) yield obj # import ipdb; ipdb.set_trace() iter_time.update(time.time() - end) if i % print_freq == 0 or i == len(iterable) - 1: eta_seconds = iter_time.global_avg * (len(iterable) - i) eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) if torch.cuda.is_available(): print_func( log_msg.format( i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time), memory=torch.cuda.max_memory_allocated() / MB, ) ) else: print_func( log_msg.format( i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time), ) ) i += 1 end = time.time() total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print_func( "{} Total time: {} ({:.4f} s / it)".format( header, total_time_str, total_time / len(iterable) ) ) def get_sha(): cwd = os.path.dirname(os.path.abspath(__file__)) def _run(command): return subprocess.check_output(command, cwd=cwd).decode("ascii").strip() sha = "N/A" diff = "clean" branch = "N/A" try: sha = _run(["git", "rev-parse", "HEAD"]) subprocess.check_output(["git", "diff"], cwd=cwd) diff = _run(["git", "diff-index", "HEAD"]) diff = "has uncommited changes" if diff else "clean" branch = _run(["git", "rev-parse", "--abbrev-ref", "HEAD"]) except Exception: pass message = f"sha: {sha}, status: {diff}, branch: {branch}" return message def collate_fn(batch): # import ipdb; ipdb.set_trace() batch = list(zip(*batch)) batch[0] = nested_tensor_from_tensor_list(batch[0]) return tuple(batch) def _max_by_axis(the_list): # type: (List[List[int]]) -> List[int] maxes = the_list[0] for sublist in the_list[1:]: for index, item in enumerate(sublist): maxes[index] = max(maxes[index], item) return maxes class NestedTensor(object): def __init__(self, tensors, mask: Optional[Tensor]): self.tensors = tensors self.mask = mask if mask == "auto": self.mask = torch.zeros_like(tensors).to(tensors.device) if self.mask.dim() == 3: self.mask = self.mask.sum(0).to(bool) elif self.mask.dim() == 4: self.mask = self.mask.sum(1).to(bool) else: raise ValueError( "tensors dim must be 3 or 4 but {}({})".format( self.tensors.dim(), self.tensors.shape ) ) def imgsize(self): res = [] for i in range(self.tensors.shape[0]): mask = self.mask[i] maxH = (~mask).sum(0).max() maxW = (~mask).sum(1).max() res.append(torch.Tensor([maxH, maxW])) return res def to(self, device): # type: (Device) -> NestedTensor # noqa cast_tensor = self.tensors.to(device) mask = self.mask if mask is not None: assert mask is not None cast_mask = mask.to(device) else: cast_mask = None return NestedTensor(cast_tensor, cast_mask) def to_img_list_single(self, tensor, mask): assert tensor.dim() == 3, "dim of tensor should be 3 but {}".format(tensor.dim()) maxH = (~mask).sum(0).max() maxW = (~mask).sum(1).max() img = tensor[:, :maxH, :maxW] return img def to_img_list(self): """remove the padding and convert to img list Returns: [type]: [description] """ if self.tensors.dim() == 3: return self.to_img_list_single(self.tensors, self.mask) else: res = [] for i in range(self.tensors.shape[0]): tensor_i = self.tensors[i] mask_i = self.mask[i] res.append(self.to_img_list_single(tensor_i, mask_i)) return res @property def device(self): return self.tensors.device def decompose(self): return self.tensors, self.mask def __repr__(self): return str(self.tensors) @property def shape(self): return {"tensors.shape": self.tensors.shape, "mask.shape": self.mask.shape} def nested_tensor_from_tensor_list(tensor_list: List[Tensor]): # TODO make this more general if tensor_list[0].ndim == 3: if torchvision._is_tracing(): # nested_tensor_from_tensor_list() does not export well to ONNX # call _onnx_nested_tensor_from_tensor_list() instead return _onnx_nested_tensor_from_tensor_list(tensor_list) # TODO make it support different-sized images max_size = _max_by_axis([list(img.shape) for img in tensor_list]) # min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list])) batch_shape = [len(tensor_list)] + max_size b, c, h, w = batch_shape dtype = tensor_list[0].dtype device = tensor_list[0].device tensor = torch.zeros(batch_shape, dtype=dtype, device=device) mask = torch.ones((b, h, w), dtype=torch.bool, device=device) for img, pad_img, m in zip(tensor_list, tensor, mask): pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) m[: img.shape[1], : img.shape[2]] = False else: raise ValueError("not supported") return NestedTensor(tensor, mask) # _onnx_nested_tensor_from_tensor_list() is an implementation of # nested_tensor_from_tensor_list() that is supported by ONNX tracing. @torch.jit.unused def _onnx_nested_tensor_from_tensor_list(tensor_list: List[Tensor]) -> NestedTensor: max_size = [] for i in range(tensor_list[0].dim()): max_size_i = torch.max( torch.stack([img.shape[i] for img in tensor_list]).to(torch.float32) ).to(torch.int64) max_size.append(max_size_i) max_size = tuple(max_size) # work around for # pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) # m[: img.shape[1], :img.shape[2]] = False # which is not yet supported in onnx padded_imgs = [] padded_masks = [] for img in tensor_list: padding = [(s1 - s2) for s1, s2 in zip(max_size, tuple(img.shape))] padded_img = torch.nn.functional.pad(img, (0, padding[2], 0, padding[1], 0, padding[0])) padded_imgs.append(padded_img) m = torch.zeros_like(img[0], dtype=torch.int, device=img.device) padded_mask = torch.nn.functional.pad(m, (0, padding[2], 0, padding[1]), "constant", 1) padded_masks.append(padded_mask.to(torch.bool)) tensor = torch.stack(padded_imgs) mask = torch.stack(padded_masks) return NestedTensor(tensor, mask=mask) def setup_for_distributed(is_master): """ This function disables printing when not in master process """ import builtins as __builtin__ builtin_print = __builtin__.print def print(*args, **kwargs): force = kwargs.pop("force", False) if is_master or force: builtin_print(*args, **kwargs) __builtin__.print = print def is_dist_avail_and_initialized(): if not dist.is_available(): return False if not dist.is_initialized(): return False return True def get_world_size(): if not is_dist_avail_and_initialized(): return 1 return dist.get_world_size() def get_rank(): if not is_dist_avail_and_initialized(): return 0 return dist.get_rank() def is_main_process(): return get_rank() == 0 def save_on_master(*args, **kwargs): if is_main_process(): torch.save(*args, **kwargs) def init_distributed_mode(args): if "WORLD_SIZE" in os.environ and os.environ["WORLD_SIZE"] != "": # 'RANK' in os.environ and args.rank = int(os.environ["RANK"]) args.world_size = int(os.environ["WORLD_SIZE"]) args.gpu = args.local_rank = int(os.environ["LOCAL_RANK"]) # launch by torch.distributed.launch # Single node # python -m torch.distributed.launch --nproc_per_node=8 main.py --world-size 1 --rank 0 ... # Multi nodes # python -m torch.distributed.launch --nproc_per_node=8 main.py --world-size 2 --rank 0 --dist-url 'tcp://IP_OF_NODE0:FREEPORT' ... # python -m torch.distributed.launch --nproc_per_node=8 main.py --world-size 2 --rank 1 --dist-url 'tcp://IP_OF_NODE0:FREEPORT' ... # args.rank = int(os.environ.get('OMPI_COMM_WORLD_RANK')) # local_world_size = int(os.environ['GPU_PER_NODE_COUNT']) # args.world_size = args.world_size * local_world_size # args.gpu = args.local_rank = int(os.environ['LOCAL_RANK']) # args.rank = args.rank * local_world_size + args.local_rank print( "world size: {}, rank: {}, local rank: {}".format( args.world_size, args.rank, args.local_rank ) ) print(json.dumps(dict(os.environ), indent=2)) elif "SLURM_PROCID" in os.environ: args.rank = int(os.environ["SLURM_PROCID"]) args.gpu = args.local_rank = int(os.environ["SLURM_LOCALID"]) args.world_size = int(os.environ["SLURM_NPROCS"]) print( "world size: {}, world rank: {}, local rank: {}, device_count: {}".format( args.world_size, args.rank, args.local_rank, torch.cuda.device_count() ) ) else: print("Not using distributed mode") args.distributed = False args.world_size = 1 args.rank = 0 args.local_rank = 0 return print("world_size:{} rank:{} local_rank:{}".format(args.world_size, args.rank, args.local_rank)) args.distributed = True torch.cuda.set_device(args.local_rank) args.dist_backend = "nccl" print("| distributed init (rank {}): {}".format(args.rank, args.dist_url), flush=True) torch.distributed.init_process_group( backend=args.dist_backend, world_size=args.world_size, rank=args.rank, init_method=args.dist_url, ) print("Before torch.distributed.barrier()") torch.distributed.barrier() print("End torch.distributed.barrier()") setup_for_distributed(args.rank == 0) @torch.no_grad() def accuracy(output, target, topk=(1,)): """Computes the precision@k for the specified values of k""" if target.numel() == 0: return [torch.zeros([], device=output.device)] maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0) res.append(correct_k.mul_(100.0 / batch_size)) return res @torch.no_grad() def accuracy_onehot(pred, gt): """_summary_ Args: pred (_type_): n, c gt (_type_): n, c """ tp = ((pred - gt).abs().sum(-1) < 1e-4).float().sum() acc = tp / gt.shape[0] * 100 return acc def interpolate(input, size=None, scale_factor=None, mode="nearest", align_corners=None): # type: (Tensor, Optional[List[int]], Optional[float], str, Optional[bool]) -> Tensor """ Equivalent to nn.functional.interpolate, but with support for empty batch sizes. This will eventually be supported natively by PyTorch, and this class can go away. """ if __torchvision_need_compat_flag < 0.7: if input.numel() > 0: return torch.nn.functional.interpolate(input, size, scale_factor, mode, align_corners) output_shape = _output_size(2, input, size, scale_factor) output_shape = list(input.shape[:-2]) + list(output_shape) return _new_empty_tensor(input, output_shape) else: return torchvision.ops.misc.interpolate(input, size, scale_factor, mode, align_corners) class color_sys: def __init__(self, num_colors) -> None: self.num_colors = num_colors colors = [] for i in np.arange(0.0, 360.0, 360.0 / num_colors): hue = i / 360.0 lightness = (50 + np.random.rand() * 10) / 100.0 saturation = (90 + np.random.rand() * 10) / 100.0 colors.append( tuple([int(j * 255) for j in colorsys.hls_to_rgb(hue, lightness, saturation)]) ) self.colors = colors def __call__(self, idx): return self.colors[idx] def inverse_sigmoid(x, eps=1e-3): x = x.clamp(min=0, max=1) x1 = x.clamp(min=eps) x2 = (1 - x).clamp(min=eps) return torch.log(x1 / x2) def clean_state_dict(state_dict): new_state_dict = OrderedDict() for k, v in state_dict.items(): if k[:7] == "module.": k = k[7:] # remove `module.` new_state_dict[k] = v return new_state_dict
swarms-master
swarms/workers/models/GroundingDINO/groundingdino/util/misc.py
# ========================================================== # Modified from mmcv # ========================================================== import ast import os import os.path as osp import shutil import sys import tempfile from argparse import Action from importlib import import_module from addict import Dict from yapf.yapflib.yapf_api import FormatCode BASE_KEY = "_base_" DELETE_KEY = "_delete_" RESERVED_KEYS = ["filename", "text", "pretty_text", "get", "dump", "merge_from_dict"] def check_file_exist(filename, msg_tmpl='file "{}" does not exist'): if not osp.isfile(filename): raise FileNotFoundError(msg_tmpl.format(filename)) class ConfigDict(Dict): def __missing__(self, name): raise KeyError(name) def __getattr__(self, name): try: value = super(ConfigDict, self).__getattr__(name) except KeyError: ex = AttributeError(f"'{self.__class__.__name__}' object has no " f"attribute '{name}'") except Exception as e: ex = e else: return value raise ex class SLConfig(object): """ config files. only support .py file as config now. ref: mmcv.utils.config Example: >>> cfg = Config(dict(a=1, b=dict(b1=[0, 1]))) >>> cfg.a 1 >>> cfg.b {'b1': [0, 1]} >>> cfg.b.b1 [0, 1] >>> cfg = Config.fromfile('tests/data/config/a.py') >>> cfg.filename "/home/kchen/projects/mmcv/tests/data/config/a.py" >>> cfg.item4 'test' >>> cfg "Config [path: /home/kchen/projects/mmcv/tests/data/config/a.py]: " "{'item1': [1, 2], 'item2': {'a': 0}, 'item3': True, 'item4': 'test'}" """ @staticmethod def _validate_py_syntax(filename): with open(filename) as f: content = f.read() try: ast.parse(content) except SyntaxError: raise SyntaxError("There are syntax errors in config " f"file {filename}") @staticmethod def _file2dict(filename): filename = osp.abspath(osp.expanduser(filename)) check_file_exist(filename) if filename.lower().endswith(".py"): with tempfile.TemporaryDirectory() as temp_config_dir: temp_config_file = tempfile.NamedTemporaryFile(dir=temp_config_dir, suffix=".py") temp_config_name = osp.basename(temp_config_file.name) if os.name == 'nt': temp_config_file.close() shutil.copyfile(filename, osp.join(temp_config_dir, temp_config_name)) temp_module_name = osp.splitext(temp_config_name)[0] sys.path.insert(0, temp_config_dir) SLConfig._validate_py_syntax(filename) mod = import_module(temp_module_name) sys.path.pop(0) cfg_dict = { name: value for name, value in mod.__dict__.items() if not name.startswith("__") } # delete imported module del sys.modules[temp_module_name] # close temp file temp_config_file.close() elif filename.lower().endswith((".yml", ".yaml", ".json")): from .slio import slload cfg_dict = slload(filename) else: raise IOError("Only py/yml/yaml/json type are supported now!") cfg_text = filename + "\n" with open(filename, "r") as f: cfg_text += f.read() # parse the base file if BASE_KEY in cfg_dict: cfg_dir = osp.dirname(filename) base_filename = cfg_dict.pop(BASE_KEY) base_filename = base_filename if isinstance(base_filename, list) else [base_filename] cfg_dict_list = list() cfg_text_list = list() for f in base_filename: _cfg_dict, _cfg_text = SLConfig._file2dict(osp.join(cfg_dir, f)) cfg_dict_list.append(_cfg_dict) cfg_text_list.append(_cfg_text) base_cfg_dict = dict() for c in cfg_dict_list: if len(base_cfg_dict.keys() & c.keys()) > 0: raise KeyError("Duplicate key is not allowed among bases") # TODO Allow the duplicate key while warnning user base_cfg_dict.update(c) base_cfg_dict = SLConfig._merge_a_into_b(cfg_dict, base_cfg_dict) cfg_dict = base_cfg_dict # merge cfg_text cfg_text_list.append(cfg_text) cfg_text = "\n".join(cfg_text_list) return cfg_dict, cfg_text @staticmethod def _merge_a_into_b(a, b): """merge dict `a` into dict `b` (non-inplace). values in `a` will overwrite `b`. copy first to avoid inplace modification Args: a ([type]): [description] b ([type]): [description] Returns: [dict]: [description] """ # import ipdb; ipdb.set_trace() if not isinstance(a, dict): return a b = b.copy() for k, v in a.items(): if isinstance(v, dict) and k in b and not v.pop(DELETE_KEY, False): if not isinstance(b[k], dict) and not isinstance(b[k], list): # if : # import ipdb; ipdb.set_trace() raise TypeError( f"{k}={v} in child config cannot inherit from base " f"because {k} is a dict in the child config but is of " f"type {type(b[k])} in base config. You may set " f"`{DELETE_KEY}=True` to ignore the base config" ) b[k] = SLConfig._merge_a_into_b(v, b[k]) elif isinstance(b, list): try: _ = int(k) except: raise TypeError( f"b is a list, " f"index {k} should be an int when input but {type(k)}" ) b[int(k)] = SLConfig._merge_a_into_b(v, b[int(k)]) else: b[k] = v return b @staticmethod def fromfile(filename): cfg_dict, cfg_text = SLConfig._file2dict(filename) return SLConfig(cfg_dict, cfg_text=cfg_text, filename=filename) def __init__(self, cfg_dict=None, cfg_text=None, filename=None): if cfg_dict is None: cfg_dict = dict() elif not isinstance(cfg_dict, dict): raise TypeError("cfg_dict must be a dict, but " f"got {type(cfg_dict)}") for key in cfg_dict: if key in RESERVED_KEYS: raise KeyError(f"{key} is reserved for config file") super(SLConfig, self).__setattr__("_cfg_dict", ConfigDict(cfg_dict)) super(SLConfig, self).__setattr__("_filename", filename) if cfg_text: text = cfg_text elif filename: with open(filename, "r") as f: text = f.read() else: text = "" super(SLConfig, self).__setattr__("_text", text) @property def filename(self): return self._filename @property def text(self): return self._text @property def pretty_text(self): indent = 4 def _indent(s_, num_spaces): s = s_.split("\n") if len(s) == 1: return s_ first = s.pop(0) s = [(num_spaces * " ") + line for line in s] s = "\n".join(s) s = first + "\n" + s return s def _format_basic_types(k, v, use_mapping=False): if isinstance(v, str): v_str = f"'{v}'" else: v_str = str(v) if use_mapping: k_str = f"'{k}'" if isinstance(k, str) else str(k) attr_str = f"{k_str}: {v_str}" else: attr_str = f"{str(k)}={v_str}" attr_str = _indent(attr_str, indent) return attr_str def _format_list(k, v, use_mapping=False): # check if all items in the list are dict if all(isinstance(_, dict) for _ in v): v_str = "[\n" v_str += "\n".join( f"dict({_indent(_format_dict(v_), indent)})," for v_ in v ).rstrip(",") if use_mapping: k_str = f"'{k}'" if isinstance(k, str) else str(k) attr_str = f"{k_str}: {v_str}" else: attr_str = f"{str(k)}={v_str}" attr_str = _indent(attr_str, indent) + "]" else: attr_str = _format_basic_types(k, v, use_mapping) return attr_str def _contain_invalid_identifier(dict_str): contain_invalid_identifier = False for key_name in dict_str: contain_invalid_identifier |= not str(key_name).isidentifier() return contain_invalid_identifier def _format_dict(input_dict, outest_level=False): r = "" s = [] use_mapping = _contain_invalid_identifier(input_dict) if use_mapping: r += "{" for idx, (k, v) in enumerate(input_dict.items()): is_last = idx >= len(input_dict) - 1 end = "" if outest_level or is_last else "," if isinstance(v, dict): v_str = "\n" + _format_dict(v) if use_mapping: k_str = f"'{k}'" if isinstance(k, str) else str(k) attr_str = f"{k_str}: dict({v_str}" else: attr_str = f"{str(k)}=dict({v_str}" attr_str = _indent(attr_str, indent) + ")" + end elif isinstance(v, list): attr_str = _format_list(k, v, use_mapping) + end else: attr_str = _format_basic_types(k, v, use_mapping) + end s.append(attr_str) r += "\n".join(s) if use_mapping: r += "}" return r cfg_dict = self._cfg_dict.to_dict() text = _format_dict(cfg_dict, outest_level=True) # copied from setup.cfg yapf_style = dict( based_on_style="pep8", blank_line_before_nested_class_or_def=True, split_before_expression_after_opening_paren=True, ) text, _ = FormatCode(text, style_config=yapf_style, verify=True) return text def __repr__(self): return f"Config (path: {self.filename}): {self._cfg_dict.__repr__()}" def __len__(self): return len(self._cfg_dict) def __getattr__(self, name): # # debug # print('+'*15) # print('name=%s' % name) # print("addr:", id(self)) # # print('type(self):', type(self)) # print(self.__dict__) # print('+'*15) # if self.__dict__ == {}: # raise ValueError return getattr(self._cfg_dict, name) def __getitem__(self, name): return self._cfg_dict.__getitem__(name) def __setattr__(self, name, value): if isinstance(value, dict): value = ConfigDict(value) self._cfg_dict.__setattr__(name, value) def __setitem__(self, name, value): if isinstance(value, dict): value = ConfigDict(value) self._cfg_dict.__setitem__(name, value) def __iter__(self): return iter(self._cfg_dict) def dump(self, file=None): # import ipdb; ipdb.set_trace() if file is None: return self.pretty_text else: with open(file, "w") as f: f.write(self.pretty_text) def merge_from_dict(self, options): """Merge list into cfg_dict Merge the dict parsed by MultipleKVAction into this cfg. Examples: >>> options = {'model.backbone.depth': 50, ... 'model.backbone.with_cp':True} >>> cfg = Config(dict(model=dict(backbone=dict(type='ResNet')))) >>> cfg.merge_from_dict(options) >>> cfg_dict = super(Config, self).__getattribute__('_cfg_dict') >>> assert cfg_dict == dict( ... model=dict(backbone=dict(depth=50, with_cp=True))) Args: options (dict): dict of configs to merge from. """ option_cfg_dict = {} for full_key, v in options.items(): d = option_cfg_dict key_list = full_key.split(".") for subkey in key_list[:-1]: d.setdefault(subkey, ConfigDict()) d = d[subkey] subkey = key_list[-1] d[subkey] = v cfg_dict = super(SLConfig, self).__getattribute__("_cfg_dict") super(SLConfig, self).__setattr__( "_cfg_dict", SLConfig._merge_a_into_b(option_cfg_dict, cfg_dict) ) # for multiprocess def __setstate__(self, state): self.__init__(state) def copy(self): return SLConfig(self._cfg_dict.copy()) def deepcopy(self): return SLConfig(self._cfg_dict.deepcopy()) class DictAction(Action): """ argparse action to split an argument into KEY=VALUE form on the first = and append to a dictionary. List options should be passed as comma separated values, i.e KEY=V1,V2,V3 """ @staticmethod def _parse_int_float_bool(val): try: return int(val) except ValueError: pass try: return float(val) except ValueError: pass if val.lower() in ["true", "false"]: return True if val.lower() == "true" else False if val.lower() in ["none", "null"]: return None return val def __call__(self, parser, namespace, values, option_string=None): options = {} for kv in values: key, val = kv.split("=", maxsplit=1) val = [self._parse_int_float_bool(v) for v in val.split(",")] if len(val) == 1: val = val[0] options[key] = val setattr(namespace, self.dest, options)
swarms-master
swarms/workers/models/GroundingDINO/groundingdino/util/slconfig.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ Utilities for bounding box manipulation and GIoU. """ import torch from torchvision.ops.boxes import box_area def box_cxcywh_to_xyxy(x): x_c, y_c, w, h = x.unbind(-1) b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)] return torch.stack(b, dim=-1) def box_xyxy_to_cxcywh(x): x0, y0, x1, y1 = x.unbind(-1) b = [(x0 + x1) / 2, (y0 + y1) / 2, (x1 - x0), (y1 - y0)] return torch.stack(b, dim=-1) # modified from torchvision to also return the union def box_iou(boxes1, boxes2): area1 = box_area(boxes1) area2 = box_area(boxes2) # import ipdb; ipdb.set_trace() lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2] rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2] wh = (rb - lt).clamp(min=0) # [N,M,2] inter = wh[:, :, 0] * wh[:, :, 1] # [N,M] union = area1[:, None] + area2 - inter iou = inter / (union + 1e-6) return iou, union def generalized_box_iou(boxes1, boxes2): """ Generalized IoU from https://giou.stanford.edu/ The boxes should be in [x0, y0, x1, y1] format Returns a [N, M] pairwise matrix, where N = len(boxes1) and M = len(boxes2) """ # degenerate boxes gives inf / nan results # so do an early check assert (boxes1[:, 2:] >= boxes1[:, :2]).all() assert (boxes2[:, 2:] >= boxes2[:, :2]).all() # except: # import ipdb; ipdb.set_trace() iou, union = box_iou(boxes1, boxes2) lt = torch.min(boxes1[:, None, :2], boxes2[:, :2]) rb = torch.max(boxes1[:, None, 2:], boxes2[:, 2:]) wh = (rb - lt).clamp(min=0) # [N,M,2] area = wh[:, :, 0] * wh[:, :, 1] return iou - (area - union) / (area + 1e-6) # modified from torchvision to also return the union def box_iou_pairwise(boxes1, boxes2): area1 = box_area(boxes1) area2 = box_area(boxes2) lt = torch.max(boxes1[:, :2], boxes2[:, :2]) # [N,2] rb = torch.min(boxes1[:, 2:], boxes2[:, 2:]) # [N,2] wh = (rb - lt).clamp(min=0) # [N,2] inter = wh[:, 0] * wh[:, 1] # [N] union = area1 + area2 - inter iou = inter / union return iou, union def generalized_box_iou_pairwise(boxes1, boxes2): """ Generalized IoU from https://giou.stanford.edu/ Input: - boxes1, boxes2: N,4 Output: - giou: N, 4 """ # degenerate boxes gives inf / nan results # so do an early check assert (boxes1[:, 2:] >= boxes1[:, :2]).all() assert (boxes2[:, 2:] >= boxes2[:, :2]).all() assert boxes1.shape == boxes2.shape iou, union = box_iou_pairwise(boxes1, boxes2) # N, 4 lt = torch.min(boxes1[:, :2], boxes2[:, :2]) rb = torch.max(boxes1[:, 2:], boxes2[:, 2:]) wh = (rb - lt).clamp(min=0) # [N,2] area = wh[:, 0] * wh[:, 1] return iou - (area - union) / area def masks_to_boxes(masks): """Compute the bounding boxes around the provided masks The masks should be in format [N, H, W] where N is the number of masks, (H, W) are the spatial dimensions. Returns a [N, 4] tensors, with the boxes in xyxy format """ if masks.numel() == 0: return torch.zeros((0, 4), device=masks.device) h, w = masks.shape[-2:] y = torch.arange(0, h, dtype=torch.float) x = torch.arange(0, w, dtype=torch.float) y, x = torch.meshgrid(y, x) x_mask = masks * x.unsqueeze(0) x_max = x_mask.flatten(1).max(-1)[0] x_min = x_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0] y_mask = masks * y.unsqueeze(0) y_max = y_mask.flatten(1).max(-1)[0] y_min = y_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0] return torch.stack([x_min, y_min, x_max, y_max], 1) if __name__ == "__main__": x = torch.rand(5, 4) y = torch.rand(3, 4) iou, union = box_iou(x, y) import ipdb ipdb.set_trace()
swarms-master
swarms/workers/models/GroundingDINO/groundingdino/util/box_ops.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
swarms-master
swarms/workers/models/GroundingDINO/groundingdino/util/__init__.py
import os import random from typing import List import torch def create_positive_map_from_span(tokenized, token_span, max_text_len=256): """construct a map such that positive_map[i,j] = True iff box i is associated to token j Input: - tokenized: - input_ids: Tensor[1, ntokens] - attention_mask: Tensor[1, ntokens] - token_span: list with length num_boxes. - each item: [start_idx, end_idx] """ positive_map = torch.zeros((len(token_span), max_text_len), dtype=torch.float) for j, tok_list in enumerate(token_span): for (beg, end) in tok_list: beg_pos = tokenized.char_to_token(beg) end_pos = tokenized.char_to_token(end - 1) if beg_pos is None: try: beg_pos = tokenized.char_to_token(beg + 1) if beg_pos is None: beg_pos = tokenized.char_to_token(beg + 2) except: beg_pos = None if end_pos is None: try: end_pos = tokenized.char_to_token(end - 2) if end_pos is None: end_pos = tokenized.char_to_token(end - 3) except: end_pos = None if beg_pos is None or end_pos is None: continue assert beg_pos is not None and end_pos is not None if os.environ.get("SHILONG_DEBUG_ONLY_ONE_POS", None) == "TRUE": positive_map[j, beg_pos] = 1 break else: positive_map[j, beg_pos : end_pos + 1].fill_(1) return positive_map / (positive_map.sum(-1)[:, None] + 1e-6) def build_captions_and_token_span(cat_list, force_lowercase): """ Return: captions: str cat2tokenspan: dict { 'dog': [[0, 2]], ... } """ cat2tokenspan = {} captions = "" for catname in cat_list: class_name = catname if force_lowercase: class_name = class_name.lower() if "/" in class_name: class_name_list: List = class_name.strip().split("/") class_name_list.append(class_name) class_name: str = random.choice(class_name_list) tokens_positive_i = [] subnamelist = [i.strip() for i in class_name.strip().split(" ")] for subname in subnamelist: if len(subname) == 0: continue if len(captions) > 0: captions = captions + " " strat_idx = len(captions) end_idx = strat_idx + len(subname) tokens_positive_i.append([strat_idx, end_idx]) captions = captions + subname if len(tokens_positive_i) > 0: captions = captions + " ." cat2tokenspan[class_name] = tokens_positive_i return captions, cat2tokenspan def build_id2posspan_and_caption(category_dict: dict): """Build id2pos_span and caption from category_dict Args: category_dict (dict): category_dict """ cat_list = [item["name"].lower() for item in category_dict] id2catname = {item["id"]: item["name"].lower() for item in category_dict} caption, cat2posspan = build_captions_and_token_span(cat_list, force_lowercase=True) id2posspan = {catid: cat2posspan[catname] for catid, catname in id2catname.items()} return id2posspan, caption
swarms-master
swarms/workers/models/GroundingDINO/groundingdino/util/vl_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import functools import logging import os import sys from termcolor import colored class _ColorfulFormatter(logging.Formatter): def __init__(self, *args, **kwargs): self._root_name = kwargs.pop("root_name") + "." self._abbrev_name = kwargs.pop("abbrev_name", "") if len(self._abbrev_name): self._abbrev_name = self._abbrev_name + "." super(_ColorfulFormatter, self).__init__(*args, **kwargs) def formatMessage(self, record): record.name = record.name.replace(self._root_name, self._abbrev_name) log = super(_ColorfulFormatter, self).formatMessage(record) if record.levelno == logging.WARNING: prefix = colored("WARNING", "red", attrs=["blink"]) elif record.levelno == logging.ERROR or record.levelno == logging.CRITICAL: prefix = colored("ERROR", "red", attrs=["blink", "underline"]) else: return log return prefix + " " + log # so that calling setup_logger multiple times won't add many handlers @functools.lru_cache() def setup_logger(output=None, distributed_rank=0, *, color=True, name="imagenet", abbrev_name=None): """ Initialize the detectron2 logger and set its verbosity level to "INFO". Args: output (str): a file name or a directory to save log. If None, will not save log file. If ends with ".txt" or ".log", assumed to be a file name. Otherwise, logs will be saved to `output/log.txt`. name (str): the root module name of this logger Returns: logging.Logger: a logger """ logger = logging.getLogger(name) logger.setLevel(logging.DEBUG) logger.propagate = False if abbrev_name is None: abbrev_name = name plain_formatter = logging.Formatter( "[%(asctime)s.%(msecs)03d]: %(message)s", datefmt="%m/%d %H:%M:%S" ) # stdout logging: master only if distributed_rank == 0: ch = logging.StreamHandler(stream=sys.stdout) ch.setLevel(logging.DEBUG) if color: formatter = _ColorfulFormatter( colored("[%(asctime)s.%(msecs)03d]: ", "green") + "%(message)s", datefmt="%m/%d %H:%M:%S", root_name=name, abbrev_name=str(abbrev_name), ) else: formatter = plain_formatter ch.setFormatter(formatter) logger.addHandler(ch) # file logging: all workers if output is not None: if output.endswith(".txt") or output.endswith(".log"): filename = output else: filename = os.path.join(output, "log.txt") if distributed_rank > 0: filename = filename + f".rank{distributed_rank}" os.makedirs(os.path.dirname(filename), exist_ok=True) fh = logging.StreamHandler(_cached_log_stream(filename)) fh.setLevel(logging.DEBUG) fh.setFormatter(plain_formatter) logger.addHandler(fh) return logger # cache the opened file object, so that different calls to `setup_logger` # with the same file name can safely write to the same file. @functools.lru_cache(maxsize=None) def _cached_log_stream(filename): return open(filename, "a")
swarms-master
swarms/workers/models/GroundingDINO/groundingdino/util/logger.py
import json import time class TimeCounter: def __init__(self) -> None: pass def clear(self): self.timedict = {} self.basetime = time.perf_counter() def timeit(self, name): nowtime = time.perf_counter() - self.basetime self.timedict[name] = nowtime self.basetime = time.perf_counter() class TimeHolder: def __init__(self) -> None: self.timedict = {} def update(self, _timedict: dict): for k, v in _timedict.items(): if k not in self.timedict: self.timedict[k] = AverageMeter(name=k, val_only=True) self.timedict[k].update(val=v) def final_res(self): return {k: v.avg for k, v in self.timedict.items()} def __str__(self): return json.dumps(self.final_res(), indent=2) class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self, name, fmt=":f", val_only=False): self.name = name self.fmt = fmt self.val_only = val_only self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def __str__(self): if self.val_only: fmtstr = "{name} {val" + self.fmt + "}" else: fmtstr = "{name} {val" + self.fmt + "} ({avg" + self.fmt + "})" return fmtstr.format(**self.__dict__)
swarms-master
swarms/workers/models/GroundingDINO/groundingdino/util/time_counter.py
import argparse import json import warnings from collections import OrderedDict from copy import deepcopy from typing import Any, Dict, List import numpy as np import torch from transformers import AutoTokenizer from groundingdino.util.slconfig import SLConfig def slprint(x, name="x"): if isinstance(x, (torch.Tensor, np.ndarray)): print(f"{name}.shape:", x.shape) elif isinstance(x, (tuple, list)): print("type x:", type(x)) for i in range(min(10, len(x))): slprint(x[i], f"{name}[{i}]") elif isinstance(x, dict): for k, v in x.items(): slprint(v, f"{name}[{k}]") else: print(f"{name}.type:", type(x)) def clean_state_dict(state_dict): new_state_dict = OrderedDict() for k, v in state_dict.items(): if k[:7] == "module.": k = k[7:] # remove `module.` new_state_dict[k] = v return new_state_dict def renorm( img: torch.FloatTensor, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ) -> torch.FloatTensor: # img: tensor(3,H,W) or tensor(B,3,H,W) # return: same as img assert img.dim() == 3 or img.dim() == 4, "img.dim() should be 3 or 4 but %d" % img.dim() if img.dim() == 3: assert img.size(0) == 3, 'img.size(0) shoule be 3 but "%d". (%s)' % ( img.size(0), str(img.size()), ) img_perm = img.permute(1, 2, 0) mean = torch.Tensor(mean) std = torch.Tensor(std) img_res = img_perm * std + mean return img_res.permute(2, 0, 1) else: # img.dim() == 4 assert img.size(1) == 3, 'img.size(1) shoule be 3 but "%d". (%s)' % ( img.size(1), str(img.size()), ) img_perm = img.permute(0, 2, 3, 1) mean = torch.Tensor(mean) std = torch.Tensor(std) img_res = img_perm * std + mean return img_res.permute(0, 3, 1, 2) class CocoClassMapper: def __init__(self) -> None: self.category_map_str = { "1": 1, "2": 2, "3": 3, "4": 4, "5": 5, "6": 6, "7": 7, "8": 8, "9": 9, "10": 10, "11": 11, "13": 12, "14": 13, "15": 14, "16": 15, "17": 16, "18": 17, "19": 18, "20": 19, "21": 20, "22": 21, "23": 22, "24": 23, "25": 24, "27": 25, "28": 26, "31": 27, "32": 28, "33": 29, "34": 30, "35": 31, "36": 32, "37": 33, "38": 34, "39": 35, "40": 36, "41": 37, "42": 38, "43": 39, "44": 40, "46": 41, "47": 42, "48": 43, "49": 44, "50": 45, "51": 46, "52": 47, "53": 48, "54": 49, "55": 50, "56": 51, "57": 52, "58": 53, "59": 54, "60": 55, "61": 56, "62": 57, "63": 58, "64": 59, "65": 60, "67": 61, "70": 62, "72": 63, "73": 64, "74": 65, "75": 66, "76": 67, "77": 68, "78": 69, "79": 70, "80": 71, "81": 72, "82": 73, "84": 74, "85": 75, "86": 76, "87": 77, "88": 78, "89": 79, "90": 80, } self.origin2compact_mapper = {int(k): v - 1 for k, v in self.category_map_str.items()} self.compact2origin_mapper = {int(v - 1): int(k) for k, v in self.category_map_str.items()} def origin2compact(self, idx): return self.origin2compact_mapper[int(idx)] def compact2origin(self, idx): return self.compact2origin_mapper[int(idx)] def to_device(item, device): if isinstance(item, torch.Tensor): return item.to(device) elif isinstance(item, list): return [to_device(i, device) for i in item] elif isinstance(item, dict): return {k: to_device(v, device) for k, v in item.items()} else: raise NotImplementedError( "Call Shilong if you use other containers! type: {}".format(type(item)) ) # def get_gaussian_mean(x, axis, other_axis, softmax=True): """ Args: x (float): Input images(BxCxHxW) axis (int): The index for weighted mean other_axis (int): The other index Returns: weighted index for axis, BxC """ mat2line = torch.sum(x, axis=other_axis) # mat2line = mat2line / mat2line.mean() * 10 if softmax: u = torch.softmax(mat2line, axis=2) else: u = mat2line / (mat2line.sum(2, keepdim=True) + 1e-6) size = x.shape[axis] ind = torch.linspace(0, 1, size).to(x.device) batch = x.shape[0] channel = x.shape[1] index = ind.repeat([batch, channel, 1]) mean_position = torch.sum(index * u, dim=2) return mean_position def get_expected_points_from_map(hm, softmax=True): """get_gaussian_map_from_points B,C,H,W -> B,N,2 float(0, 1) float(0, 1) softargmax function Args: hm (float): Input images(BxCxHxW) Returns: weighted index for axis, BxCx2. float between 0 and 1. """ # hm = 10*hm B, C, H, W = hm.shape y_mean = get_gaussian_mean(hm, 2, 3, softmax=softmax) # B,C x_mean = get_gaussian_mean(hm, 3, 2, softmax=softmax) # B,C # return torch.cat((x_mean.unsqueeze(-1), y_mean.unsqueeze(-1)), 2) return torch.stack([x_mean, y_mean], dim=2) # Positional encoding (section 5.1) # borrow from nerf class Embedder: def __init__(self, **kwargs): self.kwargs = kwargs self.create_embedding_fn() def create_embedding_fn(self): embed_fns = [] d = self.kwargs["input_dims"] out_dim = 0 if self.kwargs["include_input"]: embed_fns.append(lambda x: x) out_dim += d max_freq = self.kwargs["max_freq_log2"] N_freqs = self.kwargs["num_freqs"] if self.kwargs["log_sampling"]: freq_bands = 2.0 ** torch.linspace(0.0, max_freq, steps=N_freqs) else: freq_bands = torch.linspace(2.0**0.0, 2.0**max_freq, steps=N_freqs) for freq in freq_bands: for p_fn in self.kwargs["periodic_fns"]: embed_fns.append(lambda x, p_fn=p_fn, freq=freq: p_fn(x * freq)) out_dim += d self.embed_fns = embed_fns self.out_dim = out_dim def embed(self, inputs): return torch.cat([fn(inputs) for fn in self.embed_fns], -1) def get_embedder(multires, i=0): import torch.nn as nn if i == -1: return nn.Identity(), 3 embed_kwargs = { "include_input": True, "input_dims": 3, "max_freq_log2": multires - 1, "num_freqs": multires, "log_sampling": True, "periodic_fns": [torch.sin, torch.cos], } embedder_obj = Embedder(**embed_kwargs) def embed(x, eo=embedder_obj): return eo.embed(x) return embed, embedder_obj.out_dim class APOPMeter: def __init__(self) -> None: self.tp = 0 self.fp = 0 self.tn = 0 self.fn = 0 def update(self, pred, gt): """ Input: pred, gt: Tensor() """ assert pred.shape == gt.shape self.tp += torch.logical_and(pred == 1, gt == 1).sum().item() self.fp += torch.logical_and(pred == 1, gt == 0).sum().item() self.tn += torch.logical_and(pred == 0, gt == 0).sum().item() self.tn += torch.logical_and(pred == 1, gt == 0).sum().item() def update_cm(self, tp, fp, tn, fn): self.tp += tp self.fp += fp self.tn += tn self.tn += fn def inverse_sigmoid(x, eps=1e-5): x = x.clamp(min=0, max=1) x1 = x.clamp(min=eps) x2 = (1 - x).clamp(min=eps) return torch.log(x1 / x2) def get_raw_dict(args): """ return the dicf contained in args. e.g: >>> with open(path, 'w') as f: json.dump(get_raw_dict(args), f, indent=2) """ if isinstance(args, argparse.Namespace): return vars(args) elif isinstance(args, dict): return args elif isinstance(args, SLConfig): return args._cfg_dict else: raise NotImplementedError("Unknown type {}".format(type(args))) def stat_tensors(tensor): assert tensor.dim() == 1 tensor_sm = tensor.softmax(0) entropy = (tensor_sm * torch.log(tensor_sm + 1e-9)).sum() return { "max": tensor.max(), "min": tensor.min(), "mean": tensor.mean(), "var": tensor.var(), "std": tensor.var() ** 0.5, "entropy": entropy, } class NiceRepr: """Inherit from this class and define ``__nice__`` to "nicely" print your objects. Defines ``__str__`` and ``__repr__`` in terms of ``__nice__`` function Classes that inherit from :class:`NiceRepr` should redefine ``__nice__``. If the inheriting class has a ``__len__``, method then the default ``__nice__`` method will return its length. Example: >>> class Foo(NiceRepr): ... def __nice__(self): ... return 'info' >>> foo = Foo() >>> assert str(foo) == '<Foo(info)>' >>> assert repr(foo).startswith('<Foo(info) at ') Example: >>> class Bar(NiceRepr): ... pass >>> bar = Bar() >>> import pytest >>> with pytest.warns(None) as record: >>> assert 'object at' in str(bar) >>> assert 'object at' in repr(bar) Example: >>> class Baz(NiceRepr): ... def __len__(self): ... return 5 >>> baz = Baz() >>> assert str(baz) == '<Baz(5)>' """ def __nice__(self): """str: a "nice" summary string describing this module""" if hasattr(self, "__len__"): # It is a common pattern for objects to use __len__ in __nice__ # As a convenience we define a default __nice__ for these objects return str(len(self)) else: # In all other cases force the subclass to overload __nice__ raise NotImplementedError(f"Define the __nice__ method for {self.__class__!r}") def __repr__(self): """str: the string of the module""" try: nice = self.__nice__() classname = self.__class__.__name__ return f"<{classname}({nice}) at {hex(id(self))}>" except NotImplementedError as ex: warnings.warn(str(ex), category=RuntimeWarning) return object.__repr__(self) def __str__(self): """str: the string of the module""" try: classname = self.__class__.__name__ nice = self.__nice__() return f"<{classname}({nice})>" except NotImplementedError as ex: warnings.warn(str(ex), category=RuntimeWarning) return object.__repr__(self) def ensure_rng(rng=None): """Coerces input into a random number generator. If the input is None, then a global random state is returned. If the input is a numeric value, then that is used as a seed to construct a random state. Otherwise the input is returned as-is. Adapted from [1]_. Args: rng (int | numpy.random.RandomState | None): if None, then defaults to the global rng. Otherwise this can be an integer or a RandomState class Returns: (numpy.random.RandomState) : rng - a numpy random number generator References: .. [1] https://gitlab.kitware.com/computer-vision/kwarray/blob/master/kwarray/util_random.py#L270 # noqa: E501 """ if rng is None: rng = np.random.mtrand._rand elif isinstance(rng, int): rng = np.random.RandomState(rng) else: rng = rng return rng def random_boxes(num=1, scale=1, rng=None): """Simple version of ``kwimage.Boxes.random`` Returns: Tensor: shape (n, 4) in x1, y1, x2, y2 format. References: https://gitlab.kitware.com/computer-vision/kwimage/blob/master/kwimage/structs/boxes.py#L1390 Example: >>> num = 3 >>> scale = 512 >>> rng = 0 >>> boxes = random_boxes(num, scale, rng) >>> print(boxes) tensor([[280.9925, 278.9802, 308.6148, 366.1769], [216.9113, 330.6978, 224.0446, 456.5878], [405.3632, 196.3221, 493.3953, 270.7942]]) """ rng = ensure_rng(rng) tlbr = rng.rand(num, 4).astype(np.float32) tl_x = np.minimum(tlbr[:, 0], tlbr[:, 2]) tl_y = np.minimum(tlbr[:, 1], tlbr[:, 3]) br_x = np.maximum(tlbr[:, 0], tlbr[:, 2]) br_y = np.maximum(tlbr[:, 1], tlbr[:, 3]) tlbr[:, 0] = tl_x * scale tlbr[:, 1] = tl_y * scale tlbr[:, 2] = br_x * scale tlbr[:, 3] = br_y * scale boxes = torch.from_numpy(tlbr) return boxes class ModelEma(torch.nn.Module): def __init__(self, model, decay=0.9997, device=None): super(ModelEma, self).__init__() # make a copy of the model for accumulating moving average of weights self.module = deepcopy(model) self.module.eval() # import ipdb; ipdb.set_trace() self.decay = decay self.device = device # perform ema on different device from model if set if self.device is not None: self.module.to(device=device) def _update(self, model, update_fn): with torch.no_grad(): for ema_v, model_v in zip( self.module.state_dict().values(), model.state_dict().values() ): if self.device is not None: model_v = model_v.to(device=self.device) ema_v.copy_(update_fn(ema_v, model_v)) def update(self, model): self._update(model, update_fn=lambda e, m: self.decay * e + (1.0 - self.decay) * m) def set(self, model): self._update(model, update_fn=lambda e, m: m) class BestMetricSingle: def __init__(self, init_res=0.0, better="large") -> None: self.init_res = init_res self.best_res = init_res self.best_ep = -1 self.better = better assert better in ["large", "small"] def isbetter(self, new_res, old_res): if self.better == "large": return new_res > old_res if self.better == "small": return new_res < old_res def update(self, new_res, ep): if self.isbetter(new_res, self.best_res): self.best_res = new_res self.best_ep = ep return True return False def __str__(self) -> str: return "best_res: {}\t best_ep: {}".format(self.best_res, self.best_ep) def __repr__(self) -> str: return self.__str__() def summary(self) -> dict: return { "best_res": self.best_res, "best_ep": self.best_ep, } class BestMetricHolder: def __init__(self, init_res=0.0, better="large", use_ema=False) -> None: self.best_all = BestMetricSingle(init_res, better) self.use_ema = use_ema if use_ema: self.best_ema = BestMetricSingle(init_res, better) self.best_regular = BestMetricSingle(init_res, better) def update(self, new_res, epoch, is_ema=False): """ return if the results is the best. """ if not self.use_ema: return self.best_all.update(new_res, epoch) else: if is_ema: self.best_ema.update(new_res, epoch) return self.best_all.update(new_res, epoch) else: self.best_regular.update(new_res, epoch) return self.best_all.update(new_res, epoch) def summary(self): if not self.use_ema: return self.best_all.summary() res = {} res.update({f"all_{k}": v for k, v in self.best_all.summary().items()}) res.update({f"regular_{k}": v for k, v in self.best_regular.summary().items()}) res.update({f"ema_{k}": v for k, v in self.best_ema.summary().items()}) return res def __repr__(self) -> str: return json.dumps(self.summary(), indent=2) def __str__(self) -> str: return self.__repr__() def targets_to(targets: List[Dict[str, Any]], device): """Moves the target dicts to the given device.""" excluded_keys = [ "questionId", "tokens_positive", "strings_positive", "tokens", "dataset_name", "sentence_id", "original_img_id", "nb_eval", "task_id", "original_id", "token_span", "caption", "dataset_type", ] return [ {k: v.to(device) if k not in excluded_keys else v for k, v in t.items()} for t in targets ] def get_phrases_from_posmap( posmap: torch.BoolTensor, tokenized: Dict, tokenizer: AutoTokenizer, left_idx: int = 0, right_idx: int = 255 ): assert isinstance(posmap, torch.Tensor), "posmap must be torch.Tensor" if posmap.dim() == 1: posmap[0: left_idx + 1] = False posmap[right_idx:] = False non_zero_idx = posmap.nonzero(as_tuple=True)[0].tolist() token_ids = [tokenized["input_ids"][i] for i in non_zero_idx] return tokenizer.decode(token_ids) else: raise NotImplementedError("posmap must be 1-dim")
swarms-master
swarms/workers/models/GroundingDINO/groundingdino/util/utils.py
# ========================================================== # Modified from mmcv # ========================================================== import json import pickle from abc import ABCMeta, abstractmethod from pathlib import Path import yaml try: from yaml import CLoader as Loader, CDumper as Dumper except ImportError: from yaml import Loader, Dumper # =========================== # Rigister handler # =========================== class BaseFileHandler(metaclass=ABCMeta): @abstractmethod def load_from_fileobj(self, file, **kwargs): pass @abstractmethod def dump_to_fileobj(self, obj, file, **kwargs): pass @abstractmethod def dump_to_str(self, obj, **kwargs): pass def load_from_path(self, filepath, mode="r", **kwargs): with open(filepath, mode) as f: return self.load_from_fileobj(f, **kwargs) def dump_to_path(self, obj, filepath, mode="w", **kwargs): with open(filepath, mode) as f: self.dump_to_fileobj(obj, f, **kwargs) class JsonHandler(BaseFileHandler): def load_from_fileobj(self, file): return json.load(file) def dump_to_fileobj(self, obj, file, **kwargs): json.dump(obj, file, **kwargs) def dump_to_str(self, obj, **kwargs): return json.dumps(obj, **kwargs) class PickleHandler(BaseFileHandler): def load_from_fileobj(self, file, **kwargs): return pickle.load(file, **kwargs) def load_from_path(self, filepath, **kwargs): return super(PickleHandler, self).load_from_path(filepath, mode="rb", **kwargs) def dump_to_str(self, obj, **kwargs): kwargs.setdefault("protocol", 2) return pickle.dumps(obj, **kwargs) def dump_to_fileobj(self, obj, file, **kwargs): kwargs.setdefault("protocol", 2) pickle.dump(obj, file, **kwargs) def dump_to_path(self, obj, filepath, **kwargs): super(PickleHandler, self).dump_to_path(obj, filepath, mode="wb", **kwargs) class YamlHandler(BaseFileHandler): def load_from_fileobj(self, file, **kwargs): kwargs.setdefault("Loader", Loader) return yaml.load(file, **kwargs) def dump_to_fileobj(self, obj, file, **kwargs): kwargs.setdefault("Dumper", Dumper) yaml.dump(obj, file, **kwargs) def dump_to_str(self, obj, **kwargs): kwargs.setdefault("Dumper", Dumper) return yaml.dump(obj, **kwargs) file_handlers = { "json": JsonHandler(), "yaml": YamlHandler(), "yml": YamlHandler(), "pickle": PickleHandler(), "pkl": PickleHandler(), } # =========================== # load and dump # =========================== def is_str(x): """Whether the input is an string instance. Note: This method is deprecated since python 2 is no longer supported. """ return isinstance(x, str) def slload(file, file_format=None, **kwargs): """Load data from json/yaml/pickle files. This method provides a unified api for loading data from serialized files. Args: file (str or :obj:`Path` or file-like object): Filename or a file-like object. file_format (str, optional): If not specified, the file format will be inferred from the file extension, otherwise use the specified one. Currently supported formats include "json", "yaml/yml" and "pickle/pkl". Returns: The content from the file. """ if isinstance(file, Path): file = str(file) if file_format is None and is_str(file): file_format = file.split(".")[-1] if file_format not in file_handlers: raise TypeError(f"Unsupported format: {file_format}") handler = file_handlers[file_format] if is_str(file): obj = handler.load_from_path(file, **kwargs) elif hasattr(file, "read"): obj = handler.load_from_fileobj(file, **kwargs) else: raise TypeError('"file" must be a filepath str or a file-object') return obj def sldump(obj, file=None, file_format=None, **kwargs): """Dump data to json/yaml/pickle strings or files. This method provides a unified api for dumping data as strings or to files, and also supports custom arguments for each file format. Args: obj (any): The python object to be dumped. file (str or :obj:`Path` or file-like object, optional): If not specified, then the object is dump to a str, otherwise to a file specified by the filename or file-like object. file_format (str, optional): Same as :func:`load`. Returns: bool: True for success, False otherwise. """ if isinstance(file, Path): file = str(file) if file_format is None: if is_str(file): file_format = file.split(".")[-1] elif file is None: raise ValueError("file_format must be specified since file is None") if file_format not in file_handlers: raise TypeError(f"Unsupported format: {file_format}") handler = file_handlers[file_format] if file is None: return handler.dump_to_str(obj, **kwargs) elif is_str(file): handler.dump_to_path(obj, file, **kwargs) elif hasattr(file, "write"): handler.dump_to_fileobj(obj, file, **kwargs) else: raise TypeError('"file" must be a filename str or a file-object')
swarms-master
swarms/workers/models/GroundingDINO/groundingdino/util/slio.py
from typing import Tuple, List import cv2 import numpy as np import supervision as sv import torch from PIL import Image from torchvision.ops import box_convert import bisect import groundingdino.datasets.transforms as T from groundingdino.models import build_model from groundingdino.util.misc import clean_state_dict from groundingdino.util.slconfig import SLConfig from groundingdino.util.utils import get_phrases_from_posmap # ---------------------------------------------------------------------------------------------------------------------- # OLD API # ---------------------------------------------------------------------------------------------------------------------- def preprocess_caption(caption: str) -> str: result = caption.lower().strip() if result.endswith("."): return result return result + "." def load_model(model_config_path: str, model_checkpoint_path: str, device: str = "cuda"): args = SLConfig.fromfile(model_config_path) args.device = device model = build_model(args) checkpoint = torch.load(model_checkpoint_path, map_location="cpu") model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False) model.eval() return model def load_image(image_path: str) -> Tuple[np.array, torch.Tensor]: transform = T.Compose( [ T.RandomResize([800], max_size=1333), T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ) image_source = Image.open(image_path).convert("RGB") image = np.asarray(image_source) image_transformed, _ = transform(image_source, None) return image, image_transformed def predict( model, image: torch.Tensor, caption: str, box_threshold: float, text_threshold: float, device: str = "cuda", remove_combined: bool = False ) -> Tuple[torch.Tensor, torch.Tensor, List[str]]: caption = preprocess_caption(caption=caption) model = model.to(device) image = image.to(device) with torch.no_grad(): outputs = model(image[None], captions=[caption]) prediction_logits = outputs["pred_logits"].cpu().sigmoid()[0] # prediction_logits.shape = (nq, 256) prediction_boxes = outputs["pred_boxes"].cpu()[0] # prediction_boxes.shape = (nq, 4) mask = prediction_logits.max(dim=1)[0] > box_threshold logits = prediction_logits[mask] # logits.shape = (n, 256) boxes = prediction_boxes[mask] # boxes.shape = (n, 4) tokenizer = model.tokenizer tokenized = tokenizer(caption) if remove_combined: sep_idx = [i for i in range(len(tokenized['input_ids'])) if tokenized['input_ids'][i] in [101, 102, 1012]] phrases = [] for logit in logits: max_idx = logit.argmax() insert_idx = bisect.bisect_left(sep_idx, max_idx) right_idx = sep_idx[insert_idx] left_idx = sep_idx[insert_idx - 1] phrases.append(get_phrases_from_posmap(logit > text_threshold, tokenized, tokenizer, left_idx, right_idx).replace('.', '')) else: phrases = [ get_phrases_from_posmap(logit > text_threshold, tokenized, tokenizer).replace('.', '') for logit in logits ] return boxes, logits.max(dim=1)[0], phrases def annotate(image_source: np.ndarray, boxes: torch.Tensor, logits: torch.Tensor, phrases: List[str]) -> np.ndarray: h, w, _ = image_source.shape boxes = boxes * torch.Tensor([w, h, w, h]) xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy() detections = sv.Detections(xyxy=xyxy) labels = [ f"{phrase} {logit:.2f}" for phrase, logit in zip(phrases, logits) ] box_annotator = sv.BoxAnnotator() annotated_frame = cv2.cvtColor(image_source, cv2.COLOR_RGB2BGR) annotated_frame = box_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels) return annotated_frame # ---------------------------------------------------------------------------------------------------------------------- # NEW API # ---------------------------------------------------------------------------------------------------------------------- class Model: def __init__( self, model_config_path: str, model_checkpoint_path: str, device: str = "cuda" ): self.model = load_model( model_config_path=model_config_path, model_checkpoint_path=model_checkpoint_path, device=device ).to(device) self.device = device def predict_with_caption( self, image: np.ndarray, caption: str, box_threshold: float = 0.35, text_threshold: float = 0.25 ) -> Tuple[sv.Detections, List[str]]: """ import cv2 image = cv2.imread(IMAGE_PATH) model = Model(model_config_path=CONFIG_PATH, model_checkpoint_path=WEIGHTS_PATH) detections, labels = model.predict_with_caption( image=image, caption=caption, box_threshold=BOX_THRESHOLD, text_threshold=TEXT_THRESHOLD ) import supervision as sv box_annotator = sv.BoxAnnotator() annotated_image = box_annotator.annotate(scene=image, detections=detections, labels=labels) """ processed_image = Model.preprocess_image(image_bgr=image).to(self.device) boxes, logits, phrases = predict( model=self.model, image=processed_image, caption=caption, box_threshold=box_threshold, text_threshold=text_threshold, device=self.device) source_h, source_w, _ = image.shape detections = Model.post_process_result( source_h=source_h, source_w=source_w, boxes=boxes, logits=logits) return detections, phrases def predict_with_classes( self, image: np.ndarray, classes: List[str], box_threshold: float, text_threshold: float ) -> sv.Detections: """ import cv2 image = cv2.imread(IMAGE_PATH) model = Model(model_config_path=CONFIG_PATH, model_checkpoint_path=WEIGHTS_PATH) detections = model.predict_with_classes( image=image, classes=CLASSES, box_threshold=BOX_THRESHOLD, text_threshold=TEXT_THRESHOLD ) import supervision as sv box_annotator = sv.BoxAnnotator() annotated_image = box_annotator.annotate(scene=image, detections=detections) """ caption = ". ".join(classes) processed_image = Model.preprocess_image(image_bgr=image).to(self.device) boxes, logits, phrases = predict( model=self.model, image=processed_image, caption=caption, box_threshold=box_threshold, text_threshold=text_threshold, device=self.device) source_h, source_w, _ = image.shape detections = Model.post_process_result( source_h=source_h, source_w=source_w, boxes=boxes, logits=logits) class_id = Model.phrases2classes(phrases=phrases, classes=classes) detections.class_id = class_id return detections @staticmethod def preprocess_image(image_bgr: np.ndarray) -> torch.Tensor: transform = T.Compose( [ T.RandomResize([800], max_size=1333), T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ) image_pillow = Image.fromarray(cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB)) image_transformed, _ = transform(image_pillow, None) return image_transformed @staticmethod def post_process_result( source_h: int, source_w: int, boxes: torch.Tensor, logits: torch.Tensor ) -> sv.Detections: boxes = boxes * torch.Tensor([source_w, source_h, source_w, source_h]) xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy() confidence = logits.numpy() return sv.Detections(xyxy=xyxy, confidence=confidence) @staticmethod def phrases2classes(phrases: List[str], classes: List[str]) -> np.ndarray: class_ids = [] for phrase in phrases: for class_ in classes: if class_ in phrase: class_ids.append(classes.index(class_)) break else: class_ids.append(None) return np.array(class_ids)
swarms-master
swarms/workers/models/GroundingDINO/groundingdino/util/inference.py
from transformers import AutoTokenizer, BertModel, RobertaModel import os def get_tokenlizer(text_encoder_type): if not isinstance(text_encoder_type, str): # print("text_encoder_type is not a str") if hasattr(text_encoder_type, "text_encoder_type"): text_encoder_type = text_encoder_type.text_encoder_type elif text_encoder_type.get("text_encoder_type", False): text_encoder_type = text_encoder_type.get("text_encoder_type") elif os.path.isdir(text_encoder_type) and os.path.exists(text_encoder_type): pass else: raise ValueError( "Unknown type of text_encoder_type: {}".format(type(text_encoder_type)) ) print("final text_encoder_type: {}".format(text_encoder_type)) tokenizer = AutoTokenizer.from_pretrained(text_encoder_type) return tokenizer def get_pretrained_language_model(text_encoder_type): if text_encoder_type == "bert-base-uncased" or (os.path.isdir(text_encoder_type) and os.path.exists(text_encoder_type)): return BertModel.from_pretrained(text_encoder_type) if text_encoder_type == "roberta-base": return RobertaModel.from_pretrained(text_encoder_type) raise ValueError("Unknown text_encoder_type {}".format(text_encoder_type))
swarms-master
swarms/workers/models/GroundingDINO/groundingdino/util/get_tokenlizer.py
# -*- coding: utf-8 -*- """ @File : visualizer.py @Time : 2022/04/05 11:39:33 @Author : Shilong Liu @Contact : [email protected] """ import datetime import os import matplotlib.pyplot as plt import numpy as np import torch from matplotlib import transforms from matplotlib.collections import PatchCollection from matplotlib.patches import Polygon from pycocotools import mask as maskUtils def renorm( img: torch.FloatTensor, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ) -> torch.FloatTensor: # img: tensor(3,H,W) or tensor(B,3,H,W) # return: same as img assert img.dim() == 3 or img.dim() == 4, "img.dim() should be 3 or 4 but %d" % img.dim() if img.dim() == 3: assert img.size(0) == 3, 'img.size(0) shoule be 3 but "%d". (%s)' % ( img.size(0), str(img.size()), ) img_perm = img.permute(1, 2, 0) mean = torch.Tensor(mean) std = torch.Tensor(std) img_res = img_perm * std + mean return img_res.permute(2, 0, 1) else: # img.dim() == 4 assert img.size(1) == 3, 'img.size(1) shoule be 3 but "%d". (%s)' % ( img.size(1), str(img.size()), ) img_perm = img.permute(0, 2, 3, 1) mean = torch.Tensor(mean) std = torch.Tensor(std) img_res = img_perm * std + mean return img_res.permute(0, 3, 1, 2) class ColorMap: def __init__(self, basergb=[255, 255, 0]): self.basergb = np.array(basergb) def __call__(self, attnmap): # attnmap: h, w. np.uint8. # return: h, w, 4. np.uint8. assert attnmap.dtype == np.uint8 h, w = attnmap.shape res = self.basergb.copy() res = res[None][None].repeat(h, 0).repeat(w, 1) # h, w, 3 attn1 = attnmap.copy()[..., None] # h, w, 1 res = np.concatenate((res, attn1), axis=-1).astype(np.uint8) return res def rainbow_text(x, y, ls, lc, **kw): """ Take a list of strings ``ls`` and colors ``lc`` and place them next to each other, with text ls[i] being shown in color lc[i]. This example shows how to do both vertical and horizontal text, and will pass all keyword arguments to plt.text, so you can set the font size, family, etc. """ t = plt.gca().transData fig = plt.gcf() plt.show() # horizontal version for s, c in zip(ls, lc): text = plt.text(x, y, " " + s + " ", color=c, transform=t, **kw) text.draw(fig.canvas.get_renderer()) ex = text.get_window_extent() t = transforms.offset_copy(text._transform, x=ex.width, units="dots") # #vertical version # for s,c in zip(ls,lc): # text = plt.text(x,y," "+s+" ",color=c, transform=t, # rotation=90,va='bottom',ha='center',**kw) # text.draw(fig.canvas.get_renderer()) # ex = text.get_window_extent() # t = transforms.offset_copy(text._transform, y=ex.height, units='dots') class COCOVisualizer: def __init__(self, coco=None, tokenlizer=None) -> None: self.coco = coco def visualize(self, img, tgt, caption=None, dpi=180, savedir="vis"): """ img: tensor(3, H, W) tgt: make sure they are all on cpu. must have items: 'image_id', 'boxes', 'size' """ plt.figure(dpi=dpi) plt.rcParams["font.size"] = "5" ax = plt.gca() img = renorm(img).permute(1, 2, 0) # if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO': # import ipdb; ipdb.set_trace() ax.imshow(img) self.addtgt(tgt) if tgt is None: image_id = 0 elif "image_id" not in tgt: image_id = 0 else: image_id = tgt["image_id"] if caption is None: savename = "{}/{}-{}.png".format( savedir, int(image_id), str(datetime.datetime.now()).replace(" ", "-") ) else: savename = "{}/{}-{}-{}.png".format( savedir, caption, int(image_id), str(datetime.datetime.now()).replace(" ", "-") ) print("savename: {}".format(savename)) os.makedirs(os.path.dirname(savename), exist_ok=True) plt.savefig(savename) plt.close() def addtgt(self, tgt): """ """ if tgt is None or "boxes" not in tgt: ax = plt.gca() if "caption" in tgt: ax.set_title(tgt["caption"], wrap=True) ax.set_axis_off() return ax = plt.gca() H, W = tgt["size"] numbox = tgt["boxes"].shape[0] color = [] polygons = [] boxes = [] for box in tgt["boxes"].cpu(): unnormbbox = box * torch.Tensor([W, H, W, H]) unnormbbox[:2] -= unnormbbox[2:] / 2 [bbox_x, bbox_y, bbox_w, bbox_h] = unnormbbox.tolist() boxes.append([bbox_x, bbox_y, bbox_w, bbox_h]) poly = [ [bbox_x, bbox_y], [bbox_x, bbox_y + bbox_h], [bbox_x + bbox_w, bbox_y + bbox_h], [bbox_x + bbox_w, bbox_y], ] np_poly = np.array(poly).reshape((4, 2)) polygons.append(Polygon(np_poly)) c = (np.random.random((1, 3)) * 0.6 + 0.4).tolist()[0] color.append(c) p = PatchCollection(polygons, facecolor=color, linewidths=0, alpha=0.1) ax.add_collection(p) p = PatchCollection(polygons, facecolor="none", edgecolors=color, linewidths=2) ax.add_collection(p) if "strings_positive" in tgt and len(tgt["strings_positive"]) > 0: assert ( len(tgt["strings_positive"]) == numbox ), f"{len(tgt['strings_positive'])} = {numbox}, " for idx, strlist in enumerate(tgt["strings_positive"]): cate_id = int(tgt["labels"][idx]) _string = str(cate_id) + ":" + " ".join(strlist) bbox_x, bbox_y, bbox_w, bbox_h = boxes[idx] # ax.text(bbox_x, bbox_y, _string, color='black', bbox={'facecolor': 'yellow', 'alpha': 1.0, 'pad': 1}) ax.text( bbox_x, bbox_y, _string, color="black", bbox={"facecolor": color[idx], "alpha": 0.6, "pad": 1}, ) if "box_label" in tgt: assert len(tgt["box_label"]) == numbox, f"{len(tgt['box_label'])} = {numbox}, " for idx, bl in enumerate(tgt["box_label"]): _string = str(bl) bbox_x, bbox_y, bbox_w, bbox_h = boxes[idx] # ax.text(bbox_x, bbox_y, _string, color='black', bbox={'facecolor': 'yellow', 'alpha': 1.0, 'pad': 1}) ax.text( bbox_x, bbox_y, _string, color="black", bbox={"facecolor": color[idx], "alpha": 0.6, "pad": 1}, ) if "caption" in tgt: ax.set_title(tgt["caption"], wrap=True) # plt.figure() # rainbow_text(0.0,0.0,"all unicorns poop rainbows ! ! !".split(), # ['red', 'orange', 'brown', 'green', 'blue', 'purple', 'black']) if "attn" in tgt: # if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO': # import ipdb; ipdb.set_trace() if isinstance(tgt["attn"], tuple): tgt["attn"] = [tgt["attn"]] for item in tgt["attn"]: attn_map, basergb = item attn_map = (attn_map - attn_map.min()) / (attn_map.max() - attn_map.min() + 1e-3) attn_map = (attn_map * 255).astype(np.uint8) cm = ColorMap(basergb) heatmap = cm(attn_map) ax.imshow(heatmap) ax.set_axis_off() def showAnns(self, anns, draw_bbox=False): """ Display the specified annotations. :param anns (array of object): annotations to display :return: None """ if len(anns) == 0: return 0 if "segmentation" in anns[0] or "keypoints" in anns[0]: datasetType = "instances" elif "caption" in anns[0]: datasetType = "captions" else: raise Exception("datasetType not supported") if datasetType == "instances": ax = plt.gca() ax.set_autoscale_on(False) polygons = [] color = [] for ann in anns: c = (np.random.random((1, 3)) * 0.6 + 0.4).tolist()[0] if "segmentation" in ann: if type(ann["segmentation"]) == list: # polygon for seg in ann["segmentation"]: poly = np.array(seg).reshape((int(len(seg) / 2), 2)) polygons.append(Polygon(poly)) color.append(c) else: # mask t = self.imgs[ann["image_id"]] if type(ann["segmentation"]["counts"]) == list: rle = maskUtils.frPyObjects( [ann["segmentation"]], t["height"], t["width"] ) else: rle = [ann["segmentation"]] m = maskUtils.decode(rle) img = np.ones((m.shape[0], m.shape[1], 3)) if ann["iscrowd"] == 1: color_mask = np.array([2.0, 166.0, 101.0]) / 255 if ann["iscrowd"] == 0: color_mask = np.random.random((1, 3)).tolist()[0] for i in range(3): img[:, :, i] = color_mask[i] ax.imshow(np.dstack((img, m * 0.5))) if "keypoints" in ann and type(ann["keypoints"]) == list: # turn skeleton into zero-based index sks = np.array(self.loadCats(ann["category_id"])[0]["skeleton"]) - 1 kp = np.array(ann["keypoints"]) x = kp[0::3] y = kp[1::3] v = kp[2::3] for sk in sks: if np.all(v[sk] > 0): plt.plot(x[sk], y[sk], linewidth=3, color=c) plt.plot( x[v > 0], y[v > 0], "o", markersize=8, markerfacecolor=c, markeredgecolor="k", markeredgewidth=2, ) plt.plot( x[v > 1], y[v > 1], "o", markersize=8, markerfacecolor=c, markeredgecolor=c, markeredgewidth=2, ) if draw_bbox: [bbox_x, bbox_y, bbox_w, bbox_h] = ann["bbox"] poly = [ [bbox_x, bbox_y], [bbox_x, bbox_y + bbox_h], [bbox_x + bbox_w, bbox_y + bbox_h], [bbox_x + bbox_w, bbox_y], ] np_poly = np.array(poly).reshape((4, 2)) polygons.append(Polygon(np_poly)) color.append(c) # p = PatchCollection(polygons, facecolor=color, linewidths=0, alpha=0.4) # ax.add_collection(p) p = PatchCollection(polygons, facecolor="none", edgecolors=color, linewidths=2) ax.add_collection(p) elif datasetType == "captions": for ann in anns: print(ann["caption"])
swarms-master
swarms/workers/models/GroundingDINO/groundingdino/util/visualizer.py
swarms-master
swarms/workers/models/GroundingDINO/groundingdino/config/__init__.py
batch_size = 1 modelname = "groundingdino" backbone = "swin_B_384_22k" position_embedding = "sine" pe_temperatureH = 20 pe_temperatureW = 20 return_interm_indices = [1, 2, 3] backbone_freeze_keywords = None enc_layers = 6 dec_layers = 6 pre_norm = False dim_feedforward = 2048 hidden_dim = 256 dropout = 0.0 nheads = 8 num_queries = 900 query_dim = 4 num_patterns = 0 num_feature_levels = 4 enc_n_points = 4 dec_n_points = 4 two_stage_type = "standard" two_stage_bbox_embed_share = False two_stage_class_embed_share = False transformer_activation = "relu" dec_pred_bbox_embed_share = True dn_box_noise_scale = 1.0 dn_label_noise_ratio = 0.5 dn_label_coef = 1.0 dn_bbox_coef = 1.0 embed_init_tgt = True dn_labelbook_size = 2000 max_text_len = 256 text_encoder_type = "bert-base-uncased" use_text_enhancer = True use_fusion_layer = True use_checkpoint = True use_transformer_ckpt = True use_text_cross_attention = True text_dropout = 0.0 fusion_dropout = 0.0 fusion_droppath = 0.1 sub_sentence_present = True
swarms-master
swarms/workers/models/GroundingDINO/groundingdino/config/GroundingDINO_SwinB_cfg.py
batch_size = 1 modelname = "groundingdino" backbone = "swin_T_224_1k" position_embedding = "sine" pe_temperatureH = 20 pe_temperatureW = 20 return_interm_indices = [1, 2, 3] backbone_freeze_keywords = None enc_layers = 6 dec_layers = 6 pre_norm = False dim_feedforward = 2048 hidden_dim = 256 dropout = 0.0 nheads = 8 num_queries = 900 query_dim = 4 num_patterns = 0 num_feature_levels = 4 enc_n_points = 4 dec_n_points = 4 two_stage_type = "standard" two_stage_bbox_embed_share = False two_stage_class_embed_share = False transformer_activation = "relu" dec_pred_bbox_embed_share = True dn_box_noise_scale = 1.0 dn_label_noise_ratio = 0.5 dn_label_coef = 1.0 dn_bbox_coef = 1.0 embed_init_tgt = True dn_labelbook_size = 2000 max_text_len = 256 text_encoder_type = "bert-base-uncased" use_text_enhancer = True use_fusion_layer = True use_checkpoint = True use_transformer_ckpt = True use_text_cross_attention = True text_dropout = 0.0 fusion_dropout = 0.0 fusion_droppath = 0.1 sub_sentence_present = True
swarms-master
swarms/workers/models/GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ Transforms and data augmentation for both image + bbox. """ import os import random import PIL import torch import torchvision.transforms as T import torchvision.transforms.functional as F from groundingdino.util.box_ops import box_xyxy_to_cxcywh from groundingdino.util.misc import interpolate def crop(image, target, region): cropped_image = F.crop(image, *region) target = target.copy() i, j, h, w = region # should we do something wrt the original size? target["size"] = torch.tensor([h, w]) fields = ["labels", "area", "iscrowd", "positive_map"] if "boxes" in target: boxes = target["boxes"] max_size = torch.as_tensor([w, h], dtype=torch.float32) cropped_boxes = boxes - torch.as_tensor([j, i, j, i]) cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size) cropped_boxes = cropped_boxes.clamp(min=0) area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1) target["boxes"] = cropped_boxes.reshape(-1, 4) target["area"] = area fields.append("boxes") if "masks" in target: # FIXME should we update the area here if there are no boxes? target["masks"] = target["masks"][:, i : i + h, j : j + w] fields.append("masks") # remove elements for which the boxes or masks that have zero area if "boxes" in target or "masks" in target: # favor boxes selection when defining which elements to keep # this is compatible with previous implementation if "boxes" in target: cropped_boxes = target["boxes"].reshape(-1, 2, 2) keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1) else: keep = target["masks"].flatten(1).any(1) for field in fields: if field in target: target[field] = target[field][keep] if os.environ.get("IPDB_SHILONG_DEBUG", None) == "INFO": # for debug and visualization only. if "strings_positive" in target: target["strings_positive"] = [ _i for _i, _j in zip(target["strings_positive"], keep) if _j ] return cropped_image, target def hflip(image, target): flipped_image = F.hflip(image) w, h = image.size target = target.copy() if "boxes" in target: boxes = target["boxes"] boxes = boxes[:, [2, 1, 0, 3]] * torch.as_tensor([-1, 1, -1, 1]) + torch.as_tensor( [w, 0, w, 0] ) target["boxes"] = boxes if "masks" in target: target["masks"] = target["masks"].flip(-1) return flipped_image, target def resize(image, target, size, max_size=None): # size can be min_size (scalar) or (w, h) tuple def get_size_with_aspect_ratio(image_size, size, max_size=None): w, h = image_size if max_size is not None: min_original_size = float(min((w, h))) max_original_size = float(max((w, h))) if max_original_size / min_original_size * size > max_size: size = int(round(max_size * min_original_size / max_original_size)) if (w <= h and w == size) or (h <= w and h == size): return (h, w) if w < h: ow = size oh = int(size * h / w) else: oh = size ow = int(size * w / h) return (oh, ow) def get_size(image_size, size, max_size=None): if isinstance(size, (list, tuple)): return size[::-1] else: return get_size_with_aspect_ratio(image_size, size, max_size) size = get_size(image.size, size, max_size) rescaled_image = F.resize(image, size) if target is None: return rescaled_image, None ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(rescaled_image.size, image.size)) ratio_width, ratio_height = ratios target = target.copy() if "boxes" in target: boxes = target["boxes"] scaled_boxes = boxes * torch.as_tensor( [ratio_width, ratio_height, ratio_width, ratio_height] ) target["boxes"] = scaled_boxes if "area" in target: area = target["area"] scaled_area = area * (ratio_width * ratio_height) target["area"] = scaled_area h, w = size target["size"] = torch.tensor([h, w]) if "masks" in target: target["masks"] = ( interpolate(target["masks"][:, None].float(), size, mode="nearest")[:, 0] > 0.5 ) return rescaled_image, target def pad(image, target, padding): # assumes that we only pad on the bottom right corners padded_image = F.pad(image, (0, 0, padding[0], padding[1])) if target is None: return padded_image, None target = target.copy() # should we do something wrt the original size? target["size"] = torch.tensor(padded_image.size[::-1]) if "masks" in target: target["masks"] = torch.nn.functional.pad(target["masks"], (0, padding[0], 0, padding[1])) return padded_image, target class ResizeDebug(object): def __init__(self, size): self.size = size def __call__(self, img, target): return resize(img, target, self.size) class RandomCrop(object): def __init__(self, size): self.size = size def __call__(self, img, target): region = T.RandomCrop.get_params(img, self.size) return crop(img, target, region) class RandomSizeCrop(object): def __init__(self, min_size: int, max_size: int, respect_boxes: bool = False): # respect_boxes: True to keep all boxes # False to tolerence box filter self.min_size = min_size self.max_size = max_size self.respect_boxes = respect_boxes def __call__(self, img: PIL.Image.Image, target: dict): init_boxes = len(target["boxes"]) max_patience = 10 for i in range(max_patience): w = random.randint(self.min_size, min(img.width, self.max_size)) h = random.randint(self.min_size, min(img.height, self.max_size)) region = T.RandomCrop.get_params(img, [h, w]) result_img, result_target = crop(img, target, region) if ( not self.respect_boxes or len(result_target["boxes"]) == init_boxes or i == max_patience - 1 ): return result_img, result_target return result_img, result_target class CenterCrop(object): def __init__(self, size): self.size = size def __call__(self, img, target): image_width, image_height = img.size crop_height, crop_width = self.size crop_top = int(round((image_height - crop_height) / 2.0)) crop_left = int(round((image_width - crop_width) / 2.0)) return crop(img, target, (crop_top, crop_left, crop_height, crop_width)) class RandomHorizontalFlip(object): def __init__(self, p=0.5): self.p = p def __call__(self, img, target): if random.random() < self.p: return hflip(img, target) return img, target class RandomResize(object): def __init__(self, sizes, max_size=None): assert isinstance(sizes, (list, tuple)) self.sizes = sizes self.max_size = max_size def __call__(self, img, target=None): size = random.choice(self.sizes) return resize(img, target, size, self.max_size) class RandomPad(object): def __init__(self, max_pad): self.max_pad = max_pad def __call__(self, img, target): pad_x = random.randint(0, self.max_pad) pad_y = random.randint(0, self.max_pad) return pad(img, target, (pad_x, pad_y)) class RandomSelect(object): """ Randomly selects between transforms1 and transforms2, with probability p for transforms1 and (1 - p) for transforms2 """ def __init__(self, transforms1, transforms2, p=0.5): self.transforms1 = transforms1 self.transforms2 = transforms2 self.p = p def __call__(self, img, target): if random.random() < self.p: return self.transforms1(img, target) return self.transforms2(img, target) class ToTensor(object): def __call__(self, img, target): return F.to_tensor(img), target class RandomErasing(object): def __init__(self, *args, **kwargs): self.eraser = T.RandomErasing(*args, **kwargs) def __call__(self, img, target): return self.eraser(img), target class Normalize(object): def __init__(self, mean, std): self.mean = mean self.std = std def __call__(self, image, target=None): image = F.normalize(image, mean=self.mean, std=self.std) if target is None: return image, None target = target.copy() h, w = image.shape[-2:] if "boxes" in target: boxes = target["boxes"] boxes = box_xyxy_to_cxcywh(boxes) boxes = boxes / torch.tensor([w, h, w, h], dtype=torch.float32) target["boxes"] = boxes return image, target class Compose(object): def __init__(self, transforms): self.transforms = transforms def __call__(self, image, target): for t in self.transforms: image, target = t(image, target) return image, target def __repr__(self): format_string = self.__class__.__name__ + "(" for t in self.transforms: format_string += "\n" format_string += " {0}".format(t) format_string += "\n)" return format_string
swarms-master
swarms/workers/models/GroundingDINO/groundingdino/datasets/transforms.py
swarms-master
swarms/workers/models/GroundingDINO/groundingdino/datasets/__init__.py
# ------------------------------------------------------------------------ # Grounding DINO. Midified by Shilong Liu. # url: https://github.com/IDEA-Research/GroundingDINO # Copyright (c) 2023 IDEA. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------ # Copyright (c) Aishwarya Kamath & Nicolas Carion. Licensed under the Apache License 2.0. All Rights Reserved # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ COCO evaluator that works in distributed mode. Mostly copy-paste from https://github.com/pytorch/vision/blob/edfd5a7/references/detection/coco_eval.py The difference is that there is less copy-pasting from pycocotools in the end of the file, as python3 can suppress prints with contextlib """ import contextlib import copy import os import numpy as np import pycocotools.mask as mask_util import torch from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval from groundingdino.util.misc import all_gather class CocoGroundingEvaluator(object): def __init__(self, coco_gt, iou_types, useCats=True): assert isinstance(iou_types, (list, tuple)) coco_gt = copy.deepcopy(coco_gt) self.coco_gt = coco_gt self.iou_types = iou_types self.coco_eval = {} for iou_type in iou_types: self.coco_eval[iou_type] = COCOeval(coco_gt, iouType=iou_type) self.coco_eval[iou_type].useCats = useCats self.img_ids = [] self.eval_imgs = {k: [] for k in iou_types} self.useCats = useCats def update(self, predictions): img_ids = list(np.unique(list(predictions.keys()))) self.img_ids.extend(img_ids) for iou_type in self.iou_types: results = self.prepare(predictions, iou_type) # suppress pycocotools prints with open(os.devnull, "w") as devnull: with contextlib.redirect_stdout(devnull): coco_dt = COCO.loadRes(self.coco_gt, results) if results else COCO() coco_eval = self.coco_eval[iou_type] coco_eval.cocoDt = coco_dt coco_eval.params.imgIds = list(img_ids) coco_eval.params.useCats = self.useCats img_ids, eval_imgs = evaluate(coco_eval) self.eval_imgs[iou_type].append(eval_imgs) def synchronize_between_processes(self): for iou_type in self.iou_types: self.eval_imgs[iou_type] = np.concatenate(self.eval_imgs[iou_type], 2) create_common_coco_eval(self.coco_eval[iou_type], self.img_ids, self.eval_imgs[iou_type]) def accumulate(self): for coco_eval in self.coco_eval.values(): coco_eval.accumulate() def summarize(self): for iou_type, coco_eval in self.coco_eval.items(): print("IoU metric: {}".format(iou_type)) coco_eval.summarize() def prepare(self, predictions, iou_type): if iou_type == "bbox": return self.prepare_for_coco_detection(predictions) elif iou_type == "segm": return self.prepare_for_coco_segmentation(predictions) elif iou_type == "keypoints": return self.prepare_for_coco_keypoint(predictions) else: raise ValueError("Unknown iou type {}".format(iou_type)) def prepare_for_coco_detection(self, predictions): coco_results = [] for original_id, prediction in predictions.items(): if len(prediction) == 0: continue boxes = prediction["boxes"] boxes = convert_to_xywh(boxes).tolist() scores = prediction["scores"].tolist() labels = prediction["labels"].tolist() coco_results.extend( [ { "image_id": original_id, "category_id": labels[k], "bbox": box, "score": scores[k], } for k, box in enumerate(boxes) ] ) return coco_results def prepare_for_coco_segmentation(self, predictions): coco_results = [] for original_id, prediction in predictions.items(): if len(prediction) == 0: continue scores = prediction["scores"] labels = prediction["labels"] masks = prediction["masks"] masks = masks > 0.5 scores = prediction["scores"].tolist() labels = prediction["labels"].tolist() rles = [ mask_util.encode(np.array(mask[0, :, :, np.newaxis], dtype=np.uint8, order="F"))[0] for mask in masks ] for rle in rles: rle["counts"] = rle["counts"].decode("utf-8") coco_results.extend( [ { "image_id": original_id, "category_id": labels[k], "segmentation": rle, "score": scores[k], } for k, rle in enumerate(rles) ] ) return coco_results def prepare_for_coco_keypoint(self, predictions): coco_results = [] for original_id, prediction in predictions.items(): if len(prediction) == 0: continue boxes = prediction["boxes"] boxes = convert_to_xywh(boxes).tolist() scores = prediction["scores"].tolist() labels = prediction["labels"].tolist() keypoints = prediction["keypoints"] keypoints = keypoints.flatten(start_dim=1).tolist() coco_results.extend( [ { "image_id": original_id, "category_id": labels[k], "keypoints": keypoint, "score": scores[k], } for k, keypoint in enumerate(keypoints) ] ) return coco_results def convert_to_xywh(boxes): xmin, ymin, xmax, ymax = boxes.unbind(1) return torch.stack((xmin, ymin, xmax - xmin, ymax - ymin), dim=1) def merge(img_ids, eval_imgs): all_img_ids = all_gather(img_ids) all_eval_imgs = all_gather(eval_imgs) merged_img_ids = [] for p in all_img_ids: merged_img_ids.extend(p) merged_eval_imgs = [] for p in all_eval_imgs: merged_eval_imgs.append(p) merged_img_ids = np.array(merged_img_ids) merged_eval_imgs = np.concatenate(merged_eval_imgs, 2) # keep only unique (and in sorted order) images merged_img_ids, idx = np.unique(merged_img_ids, return_index=True) merged_eval_imgs = merged_eval_imgs[..., idx] return merged_img_ids, merged_eval_imgs def create_common_coco_eval(coco_eval, img_ids, eval_imgs): img_ids, eval_imgs = merge(img_ids, eval_imgs) img_ids = list(img_ids) eval_imgs = list(eval_imgs.flatten()) coco_eval.evalImgs = eval_imgs coco_eval.params.imgIds = img_ids coco_eval._paramsEval = copy.deepcopy(coco_eval.params) ################################################################# # From pycocotools, just removed the prints and fixed # a Python3 bug about unicode not defined ################################################################# def evaluate(self): """ Run per image evaluation on given images and store results (a list of dict) in self.evalImgs :return: None """ # tic = time.time() # print('Running per image evaluation...') p = self.params # add backward compatibility if useSegm is specified in params if p.useSegm is not None: p.iouType = "segm" if p.useSegm == 1 else "bbox" print("useSegm (deprecated) is not None. Running {} evaluation".format(p.iouType)) # print('Evaluate annotation type *{}*'.format(p.iouType)) p.imgIds = list(np.unique(p.imgIds)) if p.useCats: p.catIds = list(np.unique(p.catIds)) p.maxDets = sorted(p.maxDets) self.params = p self._prepare() # loop through images, area range, max detection number catIds = p.catIds if p.useCats else [-1] if p.iouType == "segm" or p.iouType == "bbox": computeIoU = self.computeIoU elif p.iouType == "keypoints": computeIoU = self.computeOks self.ious = { (imgId, catId): computeIoU(imgId, catId) for imgId in p.imgIds for catId in catIds} evaluateImg = self.evaluateImg maxDet = p.maxDets[-1] evalImgs = [ evaluateImg(imgId, catId, areaRng, maxDet) for catId in catIds for areaRng in p.areaRng for imgId in p.imgIds ] # this is NOT in the pycocotools code, but could be done outside evalImgs = np.asarray(evalImgs).reshape(len(catIds), len(p.areaRng), len(p.imgIds)) self._paramsEval = copy.deepcopy(self.params) # toc = time.time() # print('DONE (t={:0.2f}s).'.format(toc-tic)) return p.imgIds, evalImgs ################################################################# # end of straight copy from pycocotools, just removing the prints #################################################################
swarms-master
swarms/workers/models/GroundingDINO/groundingdino/datasets/cocogrounding_eval.py
# ------------------------------------------------------------------------ # Grounding DINO # url: https://github.com/IDEA-Research/GroundingDINO # Copyright (c) 2023 IDEA. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------ # -*- coding: utf-8 -*- # @Author: Yihao Chen # @Date: 2021-08-16 16:03:17 # @Last Modified by: Shilong Liu # @Last Modified time: 2022-01-23 15:26 # modified from mmcv import inspect from functools import partial class Registry(object): def __init__(self, name): self._name = name self._module_dict = dict() def __repr__(self): format_str = self.__class__.__name__ + "(name={}, items={})".format( self._name, list(self._module_dict.keys()) ) return format_str def __len__(self): return len(self._module_dict) @property def name(self): return self._name @property def module_dict(self): return self._module_dict def get(self, key): return self._module_dict.get(key, None) def registe_with_name(self, module_name=None, force=False): return partial(self.register, module_name=module_name, force=force) def register(self, module_build_function, module_name=None, force=False): """Register a module build function. Args: module (:obj:`nn.Module`): Module to be registered. """ if not inspect.isfunction(module_build_function): raise TypeError( "module_build_function must be a function, but got {}".format( type(module_build_function) ) ) if module_name is None: module_name = module_build_function.__name__ if not force and module_name in self._module_dict: raise KeyError("{} is already registered in {}".format(module_name, self.name)) self._module_dict[module_name] = module_build_function return module_build_function MODULE_BUILD_FUNCS = Registry("model build functions")
swarms-master
swarms/workers/models/GroundingDINO/groundingdino/models/registry.py
# ------------------------------------------------------------------------ # Grounding DINO # url: https://github.com/IDEA-Research/GroundingDINO # Copyright (c) 2023 IDEA. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------ # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved def build_model(args): # we use register to maintain models from catdet6 on. from .registry import MODULE_BUILD_FUNCS assert args.modelname in MODULE_BUILD_FUNCS._module_dict build_func = MODULE_BUILD_FUNCS.get(args.modelname) model = build_func(args) return model
swarms-master
swarms/workers/models/GroundingDINO/groundingdino/models/__init__.py
# ------------------------------------------------------------------------ # Grounding DINO # url: https://github.com/IDEA-Research/GroundingDINO # Copyright (c) 2023 IDEA. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------ import torch import torch.nn as nn import torch.nn.functional as F from timm.models.layers import DropPath class FeatureResizer(nn.Module): """ This class takes as input a set of embeddings of dimension C1 and outputs a set of embedding of dimension C2, after a linear transformation, dropout and normalization (LN). """ def __init__(self, input_feat_size, output_feat_size, dropout, do_ln=True): super().__init__() self.do_ln = do_ln # Object feature encoding self.fc = nn.Linear(input_feat_size, output_feat_size, bias=True) self.layer_norm = nn.LayerNorm(output_feat_size, eps=1e-12) self.dropout = nn.Dropout(dropout) def forward(self, encoder_features): x = self.fc(encoder_features) if self.do_ln: x = self.layer_norm(x) output = self.dropout(x) return output def l1norm(X, dim, eps=1e-8): """L1-normalize columns of X""" norm = torch.abs(X).sum(dim=dim, keepdim=True) + eps X = torch.div(X, norm) return X def l2norm(X, dim, eps=1e-8): """L2-normalize columns of X""" norm = torch.pow(X, 2).sum(dim=dim, keepdim=True).sqrt() + eps X = torch.div(X, norm) return X def func_attention(query, context, smooth=1, raw_feature_norm="softmax", eps=1e-8): """ query: (n_context, queryL, d) context: (n_context, sourceL, d) """ batch_size_q, queryL = query.size(0), query.size(1) batch_size, sourceL = context.size(0), context.size(1) # Get attention # --> (batch, d, queryL) queryT = torch.transpose(query, 1, 2) # (batch, sourceL, d)(batch, d, queryL) # --> (batch, sourceL, queryL) attn = torch.bmm(context, queryT) if raw_feature_norm == "softmax": # --> (batch*sourceL, queryL) attn = attn.view(batch_size * sourceL, queryL) attn = nn.Softmax()(attn) # --> (batch, sourceL, queryL) attn = attn.view(batch_size, sourceL, queryL) elif raw_feature_norm == "l2norm": attn = l2norm(attn, 2) elif raw_feature_norm == "clipped_l2norm": attn = nn.LeakyReLU(0.1)(attn) attn = l2norm(attn, 2) else: raise ValueError("unknown first norm type:", raw_feature_norm) # --> (batch, queryL, sourceL) attn = torch.transpose(attn, 1, 2).contiguous() # --> (batch*queryL, sourceL) attn = attn.view(batch_size * queryL, sourceL) attn = nn.Softmax()(attn * smooth) # --> (batch, queryL, sourceL) attn = attn.view(batch_size, queryL, sourceL) # --> (batch, sourceL, queryL) attnT = torch.transpose(attn, 1, 2).contiguous() # --> (batch, d, sourceL) contextT = torch.transpose(context, 1, 2) # (batch x d x sourceL)(batch x sourceL x queryL) # --> (batch, d, queryL) weightedContext = torch.bmm(contextT, attnT) # --> (batch, queryL, d) weightedContext = torch.transpose(weightedContext, 1, 2) return weightedContext, attnT class BiMultiHeadAttention(nn.Module): def __init__(self, v_dim, l_dim, embed_dim, num_heads, dropout=0.1, cfg=None): super(BiMultiHeadAttention, self).__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.head_dim = embed_dim // num_heads self.v_dim = v_dim self.l_dim = l_dim assert ( self.head_dim * self.num_heads == self.embed_dim ), f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {self.num_heads})." self.scale = self.head_dim ** (-0.5) self.dropout = dropout self.v_proj = nn.Linear(self.v_dim, self.embed_dim) self.l_proj = nn.Linear(self.l_dim, self.embed_dim) self.values_v_proj = nn.Linear(self.v_dim, self.embed_dim) self.values_l_proj = nn.Linear(self.l_dim, self.embed_dim) self.out_v_proj = nn.Linear(self.embed_dim, self.v_dim) self.out_l_proj = nn.Linear(self.embed_dim, self.l_dim) self.stable_softmax_2d = True self.clamp_min_for_underflow = True self.clamp_max_for_overflow = True self._reset_parameters() def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def _reset_parameters(self): nn.init.xavier_uniform_(self.v_proj.weight) self.v_proj.bias.data.fill_(0) nn.init.xavier_uniform_(self.l_proj.weight) self.l_proj.bias.data.fill_(0) nn.init.xavier_uniform_(self.values_v_proj.weight) self.values_v_proj.bias.data.fill_(0) nn.init.xavier_uniform_(self.values_l_proj.weight) self.values_l_proj.bias.data.fill_(0) nn.init.xavier_uniform_(self.out_v_proj.weight) self.out_v_proj.bias.data.fill_(0) nn.init.xavier_uniform_(self.out_l_proj.weight) self.out_l_proj.bias.data.fill_(0) def forward(self, v, l, attention_mask_v=None, attention_mask_l=None): """_summary_ Args: v (_type_): bs, n_img, dim l (_type_): bs, n_text, dim attention_mask_v (_type_, optional): _description_. bs, n_img attention_mask_l (_type_, optional): _description_. bs, n_text Returns: _type_: _description_ """ # if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO': # import ipdb; ipdb.set_trace() bsz, tgt_len, _ = v.size() query_states = self.v_proj(v) * self.scale key_states = self._shape(self.l_proj(l), -1, bsz) value_v_states = self._shape(self.values_v_proj(v), -1, bsz) value_l_states = self._shape(self.values_l_proj(l), -1, bsz) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.view(*proj_shape) value_v_states = value_v_states.view(*proj_shape) value_l_states = value_l_states.view(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) # bs*nhead, nimg, ntxt if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {attn_weights.size()}" ) if self.stable_softmax_2d: attn_weights = attn_weights - attn_weights.max() if self.clamp_min_for_underflow: attn_weights = torch.clamp( attn_weights, min=-50000 ) # Do not increase -50000, data type half has quite limited range if self.clamp_max_for_overflow: attn_weights = torch.clamp( attn_weights, max=50000 ) # Do not increase 50000, data type half has quite limited range attn_weights_T = attn_weights.transpose(1, 2) attn_weights_l = attn_weights_T - torch.max(attn_weights_T, dim=-1, keepdim=True)[0] if self.clamp_min_for_underflow: attn_weights_l = torch.clamp( attn_weights_l, min=-50000 ) # Do not increase -50000, data type half has quite limited range if self.clamp_max_for_overflow: attn_weights_l = torch.clamp( attn_weights_l, max=50000 ) # Do not increase 50000, data type half has quite limited range # mask vison for language if attention_mask_v is not None: attention_mask_v = ( attention_mask_v[:, None, None, :].repeat(1, self.num_heads, 1, 1).flatten(0, 1) ) attn_weights_l.masked_fill_(attention_mask_v, float("-inf")) attn_weights_l = attn_weights_l.softmax(dim=-1) # mask language for vision if attention_mask_l is not None: attention_mask_l = ( attention_mask_l[:, None, None, :].repeat(1, self.num_heads, 1, 1).flatten(0, 1) ) attn_weights.masked_fill_(attention_mask_l, float("-inf")) attn_weights_v = attn_weights.softmax(dim=-1) attn_probs_v = F.dropout(attn_weights_v, p=self.dropout, training=self.training) attn_probs_l = F.dropout(attn_weights_l, p=self.dropout, training=self.training) attn_output_v = torch.bmm(attn_probs_v, value_l_states) attn_output_l = torch.bmm(attn_probs_l, value_v_states) if attn_output_v.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output_v` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {attn_output_v.size()}" ) if attn_output_l.size() != (bsz * self.num_heads, src_len, self.head_dim): raise ValueError( f"`attn_output_l` should be of size {(bsz, self.num_heads, src_len, self.head_dim)}, but is {attn_output_l.size()}" ) attn_output_v = attn_output_v.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output_v = attn_output_v.transpose(1, 2) attn_output_v = attn_output_v.reshape(bsz, tgt_len, self.embed_dim) attn_output_l = attn_output_l.view(bsz, self.num_heads, src_len, self.head_dim) attn_output_l = attn_output_l.transpose(1, 2) attn_output_l = attn_output_l.reshape(bsz, src_len, self.embed_dim) attn_output_v = self.out_v_proj(attn_output_v) attn_output_l = self.out_l_proj(attn_output_l) return attn_output_v, attn_output_l # Bi-Direction MHA (text->image, image->text) class BiAttentionBlock(nn.Module): def __init__( self, v_dim, l_dim, embed_dim, num_heads, dropout=0.1, drop_path=0.0, init_values=1e-4, cfg=None, ): """ Inputs: embed_dim - Dimensionality of input and attention feature vectors hidden_dim - Dimensionality of hidden layer in feed-forward network (usually 2-4x larger than embed_dim) num_heads - Number of heads to use in the Multi-Head Attention block dropout - Amount of dropout to apply in the feed-forward network """ super(BiAttentionBlock, self).__init__() # pre layer norm self.layer_norm_v = nn.LayerNorm(v_dim) self.layer_norm_l = nn.LayerNorm(l_dim) self.attn = BiMultiHeadAttention( v_dim=v_dim, l_dim=l_dim, embed_dim=embed_dim, num_heads=num_heads, dropout=dropout ) # add layer scale for training stability self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.gamma_v = nn.Parameter(init_values * torch.ones((v_dim)), requires_grad=True) self.gamma_l = nn.Parameter(init_values * torch.ones((l_dim)), requires_grad=True) def forward(self, v, l, attention_mask_v=None, attention_mask_l=None): v = self.layer_norm_v(v) l = self.layer_norm_l(l) delta_v, delta_l = self.attn( v, l, attention_mask_v=attention_mask_v, attention_mask_l=attention_mask_l ) # v, l = v + delta_v, l + delta_l v = v + self.drop_path(self.gamma_v * delta_v) l = l + self.drop_path(self.gamma_l * delta_l) return v, l # def forward(self, v:List[torch.Tensor], l, attention_mask_v=None, attention_mask_l=None)
swarms-master
swarms/workers/models/GroundingDINO/groundingdino/models/GroundingDINO/fuse_modules.py
# ------------------------------------------------------------------------ # Grounding DINO # url: https://github.com/IDEA-Research/GroundingDINO # Copyright (c) 2023 IDEA. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------ # Deformable DETR # Copyright (c) 2020 SenseTime. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------------------------------ # Modified from: # https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/functions/ms_deform_attn_func.py # https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/modules/ms_deform_attn.py # https://github.com/open-mmlab/mmcv/blob/master/mmcv/ops/multi_scale_deform_attn.py # ------------------------------------------------------------------------------------------------ import math import warnings from typing import Optional import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Function from torch.autograd.function import once_differentiable from torch.nn.init import constant_, xavier_uniform_ try: from groundingdino import _C except: warnings.warn("Failed to load custom C++ ops. Running on CPU mode Only!") # helpers def _is_power_of_2(n): if (not isinstance(n, int)) or (n < 0): raise ValueError("invalid input for _is_power_of_2: {} (type: {})".format(n, type(n))) return (n & (n - 1) == 0) and n != 0 class MultiScaleDeformableAttnFunction(Function): @staticmethod def forward( ctx, value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, im2col_step, ): ctx.im2col_step = im2col_step output = _C.ms_deform_attn_forward( value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, ctx.im2col_step, ) ctx.save_for_backward( value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, ) return output @staticmethod @once_differentiable def backward(ctx, grad_output): ( value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, ) = ctx.saved_tensors grad_value, grad_sampling_loc, grad_attn_weight = _C.ms_deform_attn_backward( value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, grad_output, ctx.im2col_step, ) return grad_value, None, None, grad_sampling_loc, grad_attn_weight, None def multi_scale_deformable_attn_pytorch( value: torch.Tensor, value_spatial_shapes: torch.Tensor, sampling_locations: torch.Tensor, attention_weights: torch.Tensor, ) -> torch.Tensor: bs, _, num_heads, embed_dims = value.shape _, num_queries, num_heads, num_levels, num_points, _ = sampling_locations.shape value_list = value.split([H_ * W_ for H_, W_ in value_spatial_shapes], dim=1) sampling_grids = 2 * sampling_locations - 1 sampling_value_list = [] for level, (H_, W_) in enumerate(value_spatial_shapes): # bs, H_*W_, num_heads, embed_dims -> # bs, H_*W_, num_heads*embed_dims -> # bs, num_heads*embed_dims, H_*W_ -> # bs*num_heads, embed_dims, H_, W_ value_l_ = ( value_list[level].flatten(2).transpose(1, 2).reshape(bs * num_heads, embed_dims, H_, W_) ) # bs, num_queries, num_heads, num_points, 2 -> # bs, num_heads, num_queries, num_points, 2 -> # bs*num_heads, num_queries, num_points, 2 sampling_grid_l_ = sampling_grids[:, :, :, level].transpose(1, 2).flatten(0, 1) # bs*num_heads, embed_dims, num_queries, num_points sampling_value_l_ = F.grid_sample( value_l_, sampling_grid_l_, mode="bilinear", padding_mode="zeros", align_corners=False ) sampling_value_list.append(sampling_value_l_) # (bs, num_queries, num_heads, num_levels, num_points) -> # (bs, num_heads, num_queries, num_levels, num_points) -> # (bs, num_heads, 1, num_queries, num_levels*num_points) attention_weights = attention_weights.transpose(1, 2).reshape( bs * num_heads, 1, num_queries, num_levels * num_points ) output = ( (torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights) .sum(-1) .view(bs, num_heads * embed_dims, num_queries) ) return output.transpose(1, 2).contiguous() class MultiScaleDeformableAttention(nn.Module): """Multi-Scale Deformable Attention Module used in Deformable-DETR `Deformable DETR: Deformable Transformers for End-to-End Object Detection. <https://arxiv.org/pdf/2010.04159.pdf>`_. Args: embed_dim (int): The embedding dimension of Attention. Default: 256. num_heads (int): The number of attention heads. Default: 8. num_levels (int): The number of feature map used in Attention. Default: 4. num_points (int): The number of sampling points for each query in each head. Default: 4. img2col_steps (int): The step used in image_to_column. Defualt: 64. dropout (float): Dropout layer used in output. Default: 0.1. batch_first (bool): if ``True``, then the input and output tensor will be provided as `(bs, n, embed_dim)`. Default: False. `(n, bs, embed_dim)` """ def __init__( self, embed_dim: int = 256, num_heads: int = 8, num_levels: int = 4, num_points: int = 4, img2col_step: int = 64, batch_first: bool = False, ): super().__init__() if embed_dim % num_heads != 0: raise ValueError( "embed_dim must be divisible by num_heads, but got {} and {}".format( embed_dim, num_heads ) ) head_dim = embed_dim // num_heads self.batch_first = batch_first if not _is_power_of_2(head_dim): warnings.warn( """ You'd better set d_model in MSDeformAttn to make sure that each dim of the attention head a power of 2, which is more efficient. """ ) self.im2col_step = img2col_step self.embed_dim = embed_dim self.num_heads = num_heads self.num_levels = num_levels self.num_points = num_points self.sampling_offsets = nn.Linear(embed_dim, num_heads * num_levels * num_points * 2) self.attention_weights = nn.Linear(embed_dim, num_heads * num_levels * num_points) self.value_proj = nn.Linear(embed_dim, embed_dim) self.output_proj = nn.Linear(embed_dim, embed_dim) self.init_weights() def _reset_parameters(self): return self.init_weights() def init_weights(self): """ Default initialization for Parameters of Module. """ constant_(self.sampling_offsets.weight.data, 0.0) thetas = torch.arange(self.num_heads, dtype=torch.float32) * ( 2.0 * math.pi / self.num_heads ) grid_init = torch.stack([thetas.cos(), thetas.sin()], -1) grid_init = ( (grid_init / grid_init.abs().max(-1, keepdim=True)[0]) .view(self.num_heads, 1, 1, 2) .repeat(1, self.num_levels, self.num_points, 1) ) for i in range(self.num_points): grid_init[:, :, i, :] *= i + 1 with torch.no_grad(): self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1)) constant_(self.attention_weights.weight.data, 0.0) constant_(self.attention_weights.bias.data, 0.0) xavier_uniform_(self.value_proj.weight.data) constant_(self.value_proj.bias.data, 0.0) xavier_uniform_(self.output_proj.weight.data) constant_(self.output_proj.bias.data, 0.0) def freeze_sampling_offsets(self): print("Freeze sampling offsets") self.sampling_offsets.weight.requires_grad = False self.sampling_offsets.bias.requires_grad = False def freeze_attention_weights(self): print("Freeze attention weights") self.attention_weights.weight.requires_grad = False self.attention_weights.bias.requires_grad = False def forward( self, query: torch.Tensor, key: Optional[torch.Tensor] = None, value: Optional[torch.Tensor] = None, query_pos: Optional[torch.Tensor] = None, key_padding_mask: Optional[torch.Tensor] = None, reference_points: Optional[torch.Tensor] = None, spatial_shapes: Optional[torch.Tensor] = None, level_start_index: Optional[torch.Tensor] = None, **kwargs ) -> torch.Tensor: """Forward Function of MultiScaleDeformableAttention Args: query (torch.Tensor): Query embeddings with shape `(num_query, bs, embed_dim)` key (torch.Tensor): Key embeddings with shape `(num_key, bs, embed_dim)` value (torch.Tensor): Value embeddings with shape `(num_key, bs, embed_dim)` query_pos (torch.Tensor): The position embedding for `query`. Default: None. key_padding_mask (torch.Tensor): ByteTensor for `query`, with shape `(bs, num_key)`, indicating which elements within `key` to be ignored in attention. reference_points (torch.Tensor): The normalized reference points with shape `(bs, num_query, num_levels, 2)`, all elements is range in [0, 1], top-left (0, 0), bottom-right (1, 1), including padding are. or `(N, Length_{query}, num_levels, 4)`, add additional two dimensions `(h, w)` to form reference boxes. spatial_shapes (torch.Tensor): Spatial shape of features in different levels. With shape `(num_levels, 2)`, last dimension represents `(h, w)`. level_start_index (torch.Tensor): The start index of each level. A tensor with shape `(num_levels, )` which can be represented as `[0, h_0 * w_0, h_0 * w_0 + h_1 * w_1, ...]`. Returns: torch.Tensor: forward results with shape `(num_query, bs, embed_dim)` """ if value is None: value = query if query_pos is not None: query = query + query_pos if not self.batch_first: # change to (bs, num_query ,embed_dims) query = query.permute(1, 0, 2) value = value.permute(1, 0, 2) bs, num_query, _ = query.shape bs, num_value, _ = value.shape assert (spatial_shapes[:, 0] * spatial_shapes[:, 1]).sum() == num_value value = self.value_proj(value) if key_padding_mask is not None: value = value.masked_fill(key_padding_mask[..., None], float(0)) value = value.view(bs, num_value, self.num_heads, -1) sampling_offsets = self.sampling_offsets(query).view( bs, num_query, self.num_heads, self.num_levels, self.num_points, 2 ) attention_weights = self.attention_weights(query).view( bs, num_query, self.num_heads, self.num_levels * self.num_points ) attention_weights = attention_weights.softmax(-1) attention_weights = attention_weights.view( bs, num_query, self.num_heads, self.num_levels, self.num_points, ) # bs, num_query, num_heads, num_levels, num_points, 2 if reference_points.shape[-1] == 2: offset_normalizer = torch.stack([spatial_shapes[..., 1], spatial_shapes[..., 0]], -1) sampling_locations = ( reference_points[:, :, None, :, None, :] + sampling_offsets / offset_normalizer[None, None, None, :, None, :] ) elif reference_points.shape[-1] == 4: sampling_locations = ( reference_points[:, :, None, :, None, :2] + sampling_offsets / self.num_points * reference_points[:, :, None, :, None, 2:] * 0.5 ) else: raise ValueError( "Last dim of reference_points must be 2 or 4, but get {} instead.".format( reference_points.shape[-1] ) ) if torch.cuda.is_available() and value.is_cuda: halffloat = False if value.dtype == torch.float16: halffloat = True value = value.float() sampling_locations = sampling_locations.float() attention_weights = attention_weights.float() output = MultiScaleDeformableAttnFunction.apply( value, spatial_shapes, level_start_index, sampling_locations, attention_weights, self.im2col_step, ) if halffloat: output = output.half() else: output = multi_scale_deformable_attn_pytorch( value, spatial_shapes, sampling_locations, attention_weights ) output = self.output_proj(output) if not self.batch_first: output = output.permute(1, 0, 2) return output def create_dummy_class(klass, dependency, message=""): """ When a dependency of a class is not available, create a dummy class which throws ImportError when used. Args: klass (str): name of the class. dependency (str): name of the dependency. message: extra message to print Returns: class: a class object """ err = "Cannot import '{}', therefore '{}' is not available.".format(dependency, klass) if message: err = err + " " + message class _DummyMetaClass(type): # throw error on class attribute access def __getattr__(_, __): # noqa: B902 raise ImportError(err) class _Dummy(object, metaclass=_DummyMetaClass): # throw error on constructor def __init__(self, *args, **kwargs): raise ImportError(err) return _Dummy def create_dummy_func(func, dependency, message=""): """ When a dependency of a function is not available, create a dummy function which throws ImportError when used. Args: func (str): name of the function. dependency (str or list[str]): name(s) of the dependency. message: extra message to print Returns: function: a function object """ err = "Cannot import '{}', therefore '{}' is not available.".format(dependency, func) if message: err = err + " " + message if isinstance(dependency, (list, tuple)): dependency = ",".join(dependency) def _dummy(*args, **kwargs): raise ImportError(err) return _dummy
swarms-master
swarms/workers/models/GroundingDINO/groundingdino/models/GroundingDINO/ms_deform_attn.py
# ------------------------------------------------------------------------ # Grounding DINO # url: https://github.com/IDEA-Research/GroundingDINO # Copyright (c) 2023 IDEA. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------ # Conditional DETR model and criterion classes. # Copyright (c) 2021 Microsoft. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------ # Modified from DETR (https://github.com/facebookresearch/detr) # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # ------------------------------------------------------------------------ # Modified from Deformable DETR (https://github.com/fundamentalvision/Deformable-DETR) # Copyright (c) 2020 SenseTime. All Rights Reserved. # ------------------------------------------------------------------------ import copy from typing import List import torch import torch.nn.functional as F from torch import nn from groundingdino.util import get_tokenlizer from groundingdino.util.misc import ( NestedTensor, inverse_sigmoid, nested_tensor_from_tensor_list, ) from ..registry import MODULE_BUILD_FUNCS from .backbone import build_backbone from .bertwarper import ( BertModelWarper, generate_masks_with_special_tokens_and_transfer_map, ) from .transformer import build_transformer from .utils import MLP, ContrastiveEmbed class GroundingDINO(nn.Module): """This is the Cross-Attention Detector module that performs object detection""" def __init__( self, backbone, transformer, num_queries, aux_loss=False, iter_update=False, query_dim=2, num_feature_levels=1, nheads=8, # two stage two_stage_type="no", # ['no', 'standard'] dec_pred_bbox_embed_share=True, two_stage_class_embed_share=True, two_stage_bbox_embed_share=True, num_patterns=0, dn_number=100, dn_box_noise_scale=0.4, dn_label_noise_ratio=0.5, dn_labelbook_size=100, text_encoder_type="bert-base-uncased", sub_sentence_present=True, max_text_len=256, ): """Initializes the model. Parameters: backbone: torch module of the backbone to be used. See backbone.py transformer: torch module of the transformer architecture. See transformer.py num_queries: number of object queries, ie detection slot. This is the maximal number of objects Conditional DETR can detect in a single image. For COCO, we recommend 100 queries. aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used. """ super().__init__() self.num_queries = num_queries self.transformer = transformer self.hidden_dim = hidden_dim = transformer.d_model self.num_feature_levels = num_feature_levels self.nheads = nheads self.max_text_len = 256 self.sub_sentence_present = sub_sentence_present # setting query dim self.query_dim = query_dim assert query_dim == 4 # for dn training self.num_patterns = num_patterns self.dn_number = dn_number self.dn_box_noise_scale = dn_box_noise_scale self.dn_label_noise_ratio = dn_label_noise_ratio self.dn_labelbook_size = dn_labelbook_size # bert self.tokenizer = get_tokenlizer.get_tokenlizer(text_encoder_type) self.bert = get_tokenlizer.get_pretrained_language_model(text_encoder_type) self.bert.pooler.dense.weight.requires_grad_(False) self.bert.pooler.dense.bias.requires_grad_(False) self.bert = BertModelWarper(bert_model=self.bert) self.feat_map = nn.Linear(self.bert.config.hidden_size, self.hidden_dim, bias=True) nn.init.constant_(self.feat_map.bias.data, 0) nn.init.xavier_uniform_(self.feat_map.weight.data) # freeze # special tokens self.specical_tokens = self.tokenizer.convert_tokens_to_ids(["[CLS]", "[SEP]", ".", "?"]) # prepare input projection layers if num_feature_levels > 1: num_backbone_outs = len(backbone.num_channels) input_proj_list = [] for _ in range(num_backbone_outs): in_channels = backbone.num_channels[_] input_proj_list.append( nn.Sequential( nn.Conv2d(in_channels, hidden_dim, kernel_size=1), nn.GroupNorm(32, hidden_dim), ) ) for _ in range(num_feature_levels - num_backbone_outs): input_proj_list.append( nn.Sequential( nn.Conv2d(in_channels, hidden_dim, kernel_size=3, stride=2, padding=1), nn.GroupNorm(32, hidden_dim), ) ) in_channels = hidden_dim self.input_proj = nn.ModuleList(input_proj_list) else: assert two_stage_type == "no", "two_stage_type should be no if num_feature_levels=1 !!!" self.input_proj = nn.ModuleList( [ nn.Sequential( nn.Conv2d(backbone.num_channels[-1], hidden_dim, kernel_size=1), nn.GroupNorm(32, hidden_dim), ) ] ) self.backbone = backbone self.aux_loss = aux_loss self.box_pred_damping = None self.iter_update = iter_update assert iter_update, "Why not iter_update?" # prepare pred layers self.dec_pred_bbox_embed_share = dec_pred_bbox_embed_share # prepare class & box embed _class_embed = ContrastiveEmbed() _bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3) nn.init.constant_(_bbox_embed.layers[-1].weight.data, 0) nn.init.constant_(_bbox_embed.layers[-1].bias.data, 0) if dec_pred_bbox_embed_share: box_embed_layerlist = [_bbox_embed for i in range(transformer.num_decoder_layers)] else: box_embed_layerlist = [ copy.deepcopy(_bbox_embed) for i in range(transformer.num_decoder_layers) ] class_embed_layerlist = [_class_embed for i in range(transformer.num_decoder_layers)] self.bbox_embed = nn.ModuleList(box_embed_layerlist) self.class_embed = nn.ModuleList(class_embed_layerlist) self.transformer.decoder.bbox_embed = self.bbox_embed self.transformer.decoder.class_embed = self.class_embed # two stage self.two_stage_type = two_stage_type assert two_stage_type in ["no", "standard"], "unknown param {} of two_stage_type".format( two_stage_type ) if two_stage_type != "no": if two_stage_bbox_embed_share: assert dec_pred_bbox_embed_share self.transformer.enc_out_bbox_embed = _bbox_embed else: self.transformer.enc_out_bbox_embed = copy.deepcopy(_bbox_embed) if two_stage_class_embed_share: assert dec_pred_bbox_embed_share self.transformer.enc_out_class_embed = _class_embed else: self.transformer.enc_out_class_embed = copy.deepcopy(_class_embed) self.refpoint_embed = None self._reset_parameters() def _reset_parameters(self): # init input_proj for proj in self.input_proj: nn.init.xavier_uniform_(proj[0].weight, gain=1) nn.init.constant_(proj[0].bias, 0) def init_ref_points(self, use_num_queries): self.refpoint_embed = nn.Embedding(use_num_queries, self.query_dim) def forward(self, samples: NestedTensor, targets: List = None, **kw): """The forward expects a NestedTensor, which consists of: - samples.tensor: batched images, of shape [batch_size x 3 x H x W] - samples.mask: a binary mask of shape [batch_size x H x W], containing 1 on padded pixels It returns a dict with the following elements: - "pred_logits": the classification logits (including no-object) for all queries. Shape= [batch_size x num_queries x num_classes] - "pred_boxes": The normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These values are normalized in [0, 1], relative to the size of each individual image (disregarding possible padding). See PostProcess for information on how to retrieve the unnormalized bounding box. - "aux_outputs": Optional, only returned when auxilary losses are activated. It is a list of dictionnaries containing the two above keys for each decoder layer. """ if targets is None: captions = kw["captions"] else: captions = [t["caption"] for t in targets] # encoder texts tokenized = self.tokenizer(captions, padding="longest", return_tensors="pt").to( samples.device ) ( text_self_attention_masks, position_ids, cate_to_token_mask_list, ) = generate_masks_with_special_tokens_and_transfer_map( tokenized, self.specical_tokens, self.tokenizer ) if text_self_attention_masks.shape[1] > self.max_text_len: text_self_attention_masks = text_self_attention_masks[ :, : self.max_text_len, : self.max_text_len ] position_ids = position_ids[:, : self.max_text_len] tokenized["input_ids"] = tokenized["input_ids"][:, : self.max_text_len] tokenized["attention_mask"] = tokenized["attention_mask"][:, : self.max_text_len] tokenized["token_type_ids"] = tokenized["token_type_ids"][:, : self.max_text_len] # extract text embeddings if self.sub_sentence_present: tokenized_for_encoder = {k: v for k, v in tokenized.items() if k != "attention_mask"} tokenized_for_encoder["attention_mask"] = text_self_attention_masks tokenized_for_encoder["position_ids"] = position_ids else: # import ipdb; ipdb.set_trace() tokenized_for_encoder = tokenized bert_output = self.bert(**tokenized_for_encoder) # bs, 195, 768 encoded_text = self.feat_map(bert_output["last_hidden_state"]) # bs, 195, d_model text_token_mask = tokenized.attention_mask.bool() # bs, 195 # text_token_mask: True for nomask, False for mask # text_self_attention_masks: True for nomask, False for mask if encoded_text.shape[1] > self.max_text_len: encoded_text = encoded_text[:, : self.max_text_len, :] text_token_mask = text_token_mask[:, : self.max_text_len] position_ids = position_ids[:, : self.max_text_len] text_self_attention_masks = text_self_attention_masks[ :, : self.max_text_len, : self.max_text_len ] text_dict = { "encoded_text": encoded_text, # bs, 195, d_model "text_token_mask": text_token_mask, # bs, 195 "position_ids": position_ids, # bs, 195 "text_self_attention_masks": text_self_attention_masks, # bs, 195,195 } # import ipdb; ipdb.set_trace() if isinstance(samples, (list, torch.Tensor)): samples = nested_tensor_from_tensor_list(samples) features, poss = self.backbone(samples) srcs = [] masks = [] for l, feat in enumerate(features): src, mask = feat.decompose() srcs.append(self.input_proj[l](src)) masks.append(mask) assert mask is not None if self.num_feature_levels > len(srcs): _len_srcs = len(srcs) for l in range(_len_srcs, self.num_feature_levels): if l == _len_srcs: src = self.input_proj[l](features[-1].tensors) else: src = self.input_proj[l](srcs[-1]) m = samples.mask mask = F.interpolate(m[None].float(), size=src.shape[-2:]).to(torch.bool)[0] pos_l = self.backbone[1](NestedTensor(src, mask)).to(src.dtype) srcs.append(src) masks.append(mask) poss.append(pos_l) input_query_bbox = input_query_label = attn_mask = None hs, reference, hs_enc, ref_enc, init_box_proposal = self.transformer( srcs, masks, input_query_bbox, poss, input_query_label, attn_mask, text_dict ) # deformable-detr-like anchor update outputs_coord_list = [] for dec_lid, (layer_ref_sig, layer_bbox_embed, layer_hs) in enumerate( zip(reference[:-1], self.bbox_embed, hs) ): layer_delta_unsig = layer_bbox_embed(layer_hs) layer_outputs_unsig = layer_delta_unsig + inverse_sigmoid(layer_ref_sig) layer_outputs_unsig = layer_outputs_unsig.sigmoid() outputs_coord_list.append(layer_outputs_unsig) outputs_coord_list = torch.stack(outputs_coord_list) # output outputs_class = torch.stack( [ layer_cls_embed(layer_hs, text_dict) for layer_cls_embed, layer_hs in zip(self.class_embed, hs) ] ) out = {"pred_logits": outputs_class[-1], "pred_boxes": outputs_coord_list[-1]} # # for intermediate outputs # if self.aux_loss: # out['aux_outputs'] = self._set_aux_loss(outputs_class, outputs_coord_list) # # for encoder output # if hs_enc is not None: # # prepare intermediate outputs # interm_coord = ref_enc[-1] # interm_class = self.transformer.enc_out_class_embed(hs_enc[-1], text_dict) # out['interm_outputs'] = {'pred_logits': interm_class, 'pred_boxes': interm_coord} # out['interm_outputs_for_matching_pre'] = {'pred_logits': interm_class, 'pred_boxes': init_box_proposal} return out @torch.jit.unused def _set_aux_loss(self, outputs_class, outputs_coord): # this is a workaround to make torchscript happy, as torchscript # doesn't support dictionary with non-homogeneous values, such # as a dict having both a Tensor and a list. return [ {"pred_logits": a, "pred_boxes": b} for a, b in zip(outputs_class[:-1], outputs_coord[:-1]) ] @MODULE_BUILD_FUNCS.registe_with_name(module_name="groundingdino") def build_groundingdino(args): backbone = build_backbone(args) transformer = build_transformer(args) dn_labelbook_size = args.dn_labelbook_size dec_pred_bbox_embed_share = args.dec_pred_bbox_embed_share sub_sentence_present = args.sub_sentence_present model = GroundingDINO( backbone, transformer, num_queries=args.num_queries, aux_loss=True, iter_update=True, query_dim=4, num_feature_levels=args.num_feature_levels, nheads=args.nheads, dec_pred_bbox_embed_share=dec_pred_bbox_embed_share, two_stage_type=args.two_stage_type, two_stage_bbox_embed_share=args.two_stage_bbox_embed_share, two_stage_class_embed_share=args.two_stage_class_embed_share, num_patterns=args.num_patterns, dn_number=0, dn_box_noise_scale=args.dn_box_noise_scale, dn_label_noise_ratio=args.dn_label_noise_ratio, dn_labelbook_size=dn_labelbook_size, text_encoder_type=args.text_encoder_type, sub_sentence_present=sub_sentence_present, max_text_len=args.max_text_len, ) return model
swarms-master
swarms/workers/models/GroundingDINO/groundingdino/models/GroundingDINO/groundingdino.py
# ------------------------------------------------------------------------ # Grounding DINO # url: https://github.com/IDEA-Research/GroundingDINO # Copyright (c) 2023 IDEA. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------ import torch from torch import nn from transformers.modeling_outputs import BaseModelOutputWithPoolingAndCrossAttentions class BertModelWarper(nn.Module): def __init__(self, bert_model): super().__init__() # self.bert = bert_modelc self.config = bert_model.config self.embeddings = bert_model.embeddings self.encoder = bert_model.encoder self.pooler = bert_model.pooler self.get_extended_attention_mask = bert_model.get_extended_attention_mask self.invert_attention_mask = bert_model.invert_attention_mask self.get_head_mask = bert_model.get_head_mask def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`. use_cache (:obj:`bool`, `optional`): If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up decoding (see :obj:`past_key_values`). """ output_attentions = ( output_attentions if output_attentions is not None else self.config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() batch_size, seq_length = input_shape elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] batch_size, seq_length = input_shape else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device # past_key_values_length past_key_values_length = ( past_key_values[0][0].shape[2] if past_key_values is not None else 0 ) if attention_mask is None: attention_mask = torch.ones( ((batch_size, seq_length + past_key_values_length)), device=device ) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask( attention_mask, input_shape, device ) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO': # import ipdb; ipdb.set_trace() # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) class TextEncoderShell(nn.Module): def __init__(self, text_encoder): super().__init__() self.text_encoder = text_encoder self.config = self.text_encoder.config def forward(self, **kw): # feed into text encoder return self.text_encoder(**kw) def generate_masks_with_special_tokens(tokenized, special_tokens_list, tokenizer): """Generate attention mask between each pair of special tokens Args: input_ids (torch.Tensor): input ids. Shape: [bs, num_token] special_tokens_mask (list): special tokens mask. Returns: torch.Tensor: attention mask between each special tokens. """ input_ids = tokenized["input_ids"] bs, num_token = input_ids.shape # special_tokens_mask: bs, num_token. 1 for special tokens. 0 for normal tokens special_tokens_mask = torch.zeros((bs, num_token), device=input_ids.device).bool() for special_token in special_tokens_list: special_tokens_mask |= input_ids == special_token # idxs: each row is a list of indices of special tokens idxs = torch.nonzero(special_tokens_mask) # generate attention mask and positional ids attention_mask = ( torch.eye(num_token, device=input_ids.device).bool().unsqueeze(0).repeat(bs, 1, 1) ) position_ids = torch.zeros((bs, num_token), device=input_ids.device) previous_col = 0 for i in range(idxs.shape[0]): row, col = idxs[i] if (col == 0) or (col == num_token - 1): attention_mask[row, col, col] = True position_ids[row, col] = 0 else: attention_mask[row, previous_col + 1 : col + 1, previous_col + 1 : col + 1] = True position_ids[row, previous_col + 1 : col + 1] = torch.arange( 0, col - previous_col, device=input_ids.device ) previous_col = col # # padding mask # padding_mask = tokenized['attention_mask'] # attention_mask = attention_mask & padding_mask.unsqueeze(1).bool() & padding_mask.unsqueeze(2).bool() return attention_mask, position_ids.to(torch.long) def generate_masks_with_special_tokens_and_transfer_map(tokenized, special_tokens_list, tokenizer): """Generate attention mask between each pair of special tokens Args: input_ids (torch.Tensor): input ids. Shape: [bs, num_token] special_tokens_mask (list): special tokens mask. Returns: torch.Tensor: attention mask between each special tokens. """ input_ids = tokenized["input_ids"] bs, num_token = input_ids.shape # special_tokens_mask: bs, num_token. 1 for special tokens. 0 for normal tokens special_tokens_mask = torch.zeros((bs, num_token), device=input_ids.device).bool() for special_token in special_tokens_list: special_tokens_mask |= input_ids == special_token # idxs: each row is a list of indices of special tokens idxs = torch.nonzero(special_tokens_mask) # generate attention mask and positional ids attention_mask = ( torch.eye(num_token, device=input_ids.device).bool().unsqueeze(0).repeat(bs, 1, 1) ) position_ids = torch.zeros((bs, num_token), device=input_ids.device) cate_to_token_mask_list = [[] for _ in range(bs)] previous_col = 0 for i in range(idxs.shape[0]): row, col = idxs[i] if (col == 0) or (col == num_token - 1): attention_mask[row, col, col] = True position_ids[row, col] = 0 else: attention_mask[row, previous_col + 1 : col + 1, previous_col + 1 : col + 1] = True position_ids[row, previous_col + 1 : col + 1] = torch.arange( 0, col - previous_col, device=input_ids.device ) c2t_maski = torch.zeros((num_token), device=input_ids.device).bool() c2t_maski[previous_col + 1 : col] = True cate_to_token_mask_list[row].append(c2t_maski) previous_col = col cate_to_token_mask_list = [ torch.stack(cate_to_token_mask_listi, dim=0) for cate_to_token_mask_listi in cate_to_token_mask_list ] # # padding mask # padding_mask = tokenized['attention_mask'] # attention_mask = attention_mask & padding_mask.unsqueeze(1).bool() & padding_mask.unsqueeze(2).bool() return attention_mask, position_ids.to(torch.long), cate_to_token_mask_list
swarms-master
swarms/workers/models/GroundingDINO/groundingdino/models/GroundingDINO/bertwarper.py
# ------------------------------------------------------------------------ # Grounding DINO # url: https://github.com/IDEA-Research/GroundingDINO # Copyright (c) 2023 IDEA. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------ # Conditional DETR # Copyright (c) 2021 Microsoft. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------ # Copied from DETR (https://github.com/facebookresearch/detr) # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # ------------------------------------------------------------------------
swarms-master
swarms/workers/models/GroundingDINO/groundingdino/models/GroundingDINO/__init__.py
# ------------------------------------------------------------------------ # Grounding DINO # url: https://github.com/IDEA-Research/GroundingDINO # Copyright (c) 2023 IDEA. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------ # Copyright (c) Aishwarya Kamath & Nicolas Carion. Licensed under the Apache License 2.0. All Rights Reserved # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ DETR Transformer class. Copy-paste from torch.nn.Transformer with modifications: * positional encodings are passed in MHattention * extra LN at the end of encoder is removed * decoder returns a stack of activations from all decoding layers """ from typing import Optional import torch from torch import Tensor, nn from .utils import ( _get_activation_fn, _get_clones, ) class TextTransformer(nn.Module): def __init__(self, num_layers, d_model=256, nheads=8, dim_feedforward=2048, dropout=0.1): super().__init__() self.num_layers = num_layers self.d_model = d_model self.nheads = nheads self.dim_feedforward = dim_feedforward self.norm = None single_encoder_layer = TransformerEncoderLayer( d_model=d_model, nhead=nheads, dim_feedforward=dim_feedforward, dropout=dropout ) self.layers = _get_clones(single_encoder_layer, num_layers) def forward(self, memory_text: torch.Tensor, text_attention_mask: torch.Tensor): """ Args: text_attention_mask: bs, num_token memory_text: bs, num_token, d_model Raises: RuntimeError: _description_ Returns: output: bs, num_token, d_model """ output = memory_text.transpose(0, 1) for layer in self.layers: output = layer(output, src_key_padding_mask=text_attention_mask) if self.norm is not None: output = self.norm(output) return output.transpose(0, 1) class TransformerEncoderLayer(nn.Module): def __init__( self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu", normalize_before=False, ): super().__init__() self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) # Implementation of Feedforward model self.linear1 = nn.Linear(d_model, dim_feedforward) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, d_model) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.activation = _get_activation_fn(activation) self.normalize_before = normalize_before self.nhead = nhead def with_pos_embed(self, tensor, pos: Optional[Tensor]): return tensor if pos is None else tensor + pos def forward( self, src, src_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, ): # repeat attn mask if src_mask.dim() == 3 and src_mask.shape[0] == src.shape[1]: # bs, num_q, num_k src_mask = src_mask.repeat(self.nhead, 1, 1) q = k = self.with_pos_embed(src, pos) src2 = self.self_attn(q, k, value=src, attn_mask=src_mask)[0] # src2 = self.self_attn(q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0] src = src + self.dropout1(src2) src = self.norm1(src) src2 = self.linear2(self.dropout(self.activation(self.linear1(src)))) src = src + self.dropout2(src2) src = self.norm2(src) return src
swarms-master
swarms/workers/models/GroundingDINO/groundingdino/models/GroundingDINO/transformer_vanilla.py
# ------------------------------------------------------------------------ # Grounding DINO # url: https://github.com/IDEA-Research/GroundingDINO # Copyright (c) 2023 IDEA. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------ import copy import math import torch import torch.nn.functional as F from torch import Tensor, nn def _get_clones(module, N, layer_share=False): # import ipdb; ipdb.set_trace() if layer_share: return nn.ModuleList([module for i in range(N)]) else: return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) def get_sine_pos_embed( pos_tensor: torch.Tensor, num_pos_feats: int = 128, temperature: int = 10000, exchange_xy: bool = True, ): """generate sine position embedding from a position tensor Args: pos_tensor (torch.Tensor): shape: [..., n]. num_pos_feats (int): projected shape for each float in the tensor. temperature (int): temperature in the sine/cosine function. exchange_xy (bool, optional): exchange pos x and pos y. \ For example, input tensor is [x,y], the results will be [pos(y), pos(x)]. Defaults to True. Returns: pos_embed (torch.Tensor): shape: [..., n*num_pos_feats]. """ scale = 2 * math.pi dim_t = torch.arange(num_pos_feats, dtype=torch.float32, device=pos_tensor.device) dim_t = temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / num_pos_feats) def sine_func(x: torch.Tensor): sin_x = x * scale / dim_t sin_x = torch.stack((sin_x[..., 0::2].sin(), sin_x[..., 1::2].cos()), dim=3).flatten(2) return sin_x pos_res = [sine_func(x) for x in pos_tensor.split([1] * pos_tensor.shape[-1], dim=-1)] if exchange_xy: pos_res[0], pos_res[1] = pos_res[1], pos_res[0] pos_res = torch.cat(pos_res, dim=-1) return pos_res def gen_encoder_output_proposals( memory: Tensor, memory_padding_mask: Tensor, spatial_shapes: Tensor, learnedwh=None ): """ Input: - memory: bs, \sum{hw}, d_model - memory_padding_mask: bs, \sum{hw} - spatial_shapes: nlevel, 2 - learnedwh: 2 Output: - output_memory: bs, \sum{hw}, d_model - output_proposals: bs, \sum{hw}, 4 """ N_, S_, C_ = memory.shape proposals = [] _cur = 0 for lvl, (H_, W_) in enumerate(spatial_shapes): mask_flatten_ = memory_padding_mask[:, _cur : (_cur + H_ * W_)].view(N_, H_, W_, 1) valid_H = torch.sum(~mask_flatten_[:, :, 0, 0], 1) valid_W = torch.sum(~mask_flatten_[:, 0, :, 0], 1) # import ipdb; ipdb.set_trace() grid_y, grid_x = torch.meshgrid( torch.linspace(0, H_ - 1, H_, dtype=torch.float32, device=memory.device), torch.linspace(0, W_ - 1, W_, dtype=torch.float32, device=memory.device), ) grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1) # H_, W_, 2 scale = torch.cat([valid_W.unsqueeze(-1), valid_H.unsqueeze(-1)], 1).view(N_, 1, 1, 2) grid = (grid.unsqueeze(0).expand(N_, -1, -1, -1) + 0.5) / scale if learnedwh is not None: # import ipdb; ipdb.set_trace() wh = torch.ones_like(grid) * learnedwh.sigmoid() * (2.0**lvl) else: wh = torch.ones_like(grid) * 0.05 * (2.0**lvl) # scale = torch.cat([W_[None].unsqueeze(-1), H_[None].unsqueeze(-1)], 1).view(1, 1, 1, 2).repeat(N_, 1, 1, 1) # grid = (grid.unsqueeze(0).expand(N_, -1, -1, -1) + 0.5) / scale # wh = torch.ones_like(grid) / scale proposal = torch.cat((grid, wh), -1).view(N_, -1, 4) proposals.append(proposal) _cur += H_ * W_ # import ipdb; ipdb.set_trace() output_proposals = torch.cat(proposals, 1) output_proposals_valid = ((output_proposals > 0.01) & (output_proposals < 0.99)).all( -1, keepdim=True ) output_proposals = torch.log(output_proposals / (1 - output_proposals)) # unsigmoid output_proposals = output_proposals.masked_fill(memory_padding_mask.unsqueeze(-1), float("inf")) output_proposals = output_proposals.masked_fill(~output_proposals_valid, float("inf")) output_memory = memory output_memory = output_memory.masked_fill(memory_padding_mask.unsqueeze(-1), float(0)) output_memory = output_memory.masked_fill(~output_proposals_valid, float(0)) # output_memory = output_memory.masked_fill(memory_padding_mask.unsqueeze(-1), float('inf')) # output_memory = output_memory.masked_fill(~output_proposals_valid, float('inf')) return output_memory, output_proposals class RandomBoxPerturber: def __init__( self, x_noise_scale=0.2, y_noise_scale=0.2, w_noise_scale=0.2, h_noise_scale=0.2 ) -> None: self.noise_scale = torch.Tensor( [x_noise_scale, y_noise_scale, w_noise_scale, h_noise_scale] ) def __call__(self, refanchors: Tensor) -> Tensor: nq, bs, query_dim = refanchors.shape device = refanchors.device noise_raw = torch.rand_like(refanchors) noise_scale = self.noise_scale.to(device)[:query_dim] new_refanchors = refanchors * (1 + (noise_raw - 0.5) * noise_scale) return new_refanchors.clamp_(0, 1) def sigmoid_focal_loss( inputs, targets, num_boxes, alpha: float = 0.25, gamma: float = 2, no_reduction=False ): """ Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002. Args: inputs: A float tensor of arbitrary shape. The predictions for each example. targets: A float tensor with the same shape as inputs. Stores the binary classification label for each element in inputs (0 for the negative class and 1 for the positive class). alpha: (optional) Weighting factor in range (0,1) to balance positive vs negative examples. Default = -1 (no weighting). gamma: Exponent of the modulating factor (1 - p_t) to balance easy vs hard examples. Returns: Loss tensor """ prob = inputs.sigmoid() ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none") p_t = prob * targets + (1 - prob) * (1 - targets) loss = ce_loss * ((1 - p_t) ** gamma) if alpha >= 0: alpha_t = alpha * targets + (1 - alpha) * (1 - targets) loss = alpha_t * loss if no_reduction: return loss return loss.mean(1).sum() / num_boxes class MLP(nn.Module): """Very simple multi-layer perceptron (also called FFN)""" def __init__(self, input_dim, hidden_dim, output_dim, num_layers): super().__init__() self.num_layers = num_layers h = [hidden_dim] * (num_layers - 1) self.layers = nn.ModuleList( nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]) ) def forward(self, x): for i, layer in enumerate(self.layers): x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) return x def _get_activation_fn(activation, d_model=256, batch_dim=0): """Return an activation function given a string""" if activation == "relu": return F.relu if activation == "gelu": return F.gelu if activation == "glu": return F.glu if activation == "prelu": return nn.PReLU() if activation == "selu": return F.selu raise RuntimeError(f"activation should be relu/gelu, not {activation}.") def gen_sineembed_for_position(pos_tensor): # n_query, bs, _ = pos_tensor.size() # sineembed_tensor = torch.zeros(n_query, bs, 256) scale = 2 * math.pi dim_t = torch.arange(128, dtype=torch.float32, device=pos_tensor.device) dim_t = 10000 ** (2 * (torch.div(dim_t, 2, rounding_mode='floor')) / 128) x_embed = pos_tensor[:, :, 0] * scale y_embed = pos_tensor[:, :, 1] * scale pos_x = x_embed[:, :, None] / dim_t pos_y = y_embed[:, :, None] / dim_t pos_x = torch.stack((pos_x[:, :, 0::2].sin(), pos_x[:, :, 1::2].cos()), dim=3).flatten(2) pos_y = torch.stack((pos_y[:, :, 0::2].sin(), pos_y[:, :, 1::2].cos()), dim=3).flatten(2) if pos_tensor.size(-1) == 2: pos = torch.cat((pos_y, pos_x), dim=2) elif pos_tensor.size(-1) == 4: w_embed = pos_tensor[:, :, 2] * scale pos_w = w_embed[:, :, None] / dim_t pos_w = torch.stack((pos_w[:, :, 0::2].sin(), pos_w[:, :, 1::2].cos()), dim=3).flatten(2) h_embed = pos_tensor[:, :, 3] * scale pos_h = h_embed[:, :, None] / dim_t pos_h = torch.stack((pos_h[:, :, 0::2].sin(), pos_h[:, :, 1::2].cos()), dim=3).flatten(2) pos = torch.cat((pos_y, pos_x, pos_w, pos_h), dim=2) else: raise ValueError("Unknown pos_tensor shape(-1):{}".format(pos_tensor.size(-1))) return pos class ContrastiveEmbed(nn.Module): def __init__(self, max_text_len=256): """ Args: max_text_len: max length of text. """ super().__init__() self.max_text_len = max_text_len def forward(self, x, text_dict): """_summary_ Args: x (_type_): _description_ text_dict (_type_): _description_ { 'encoded_text': encoded_text, # bs, 195, d_model 'text_token_mask': text_token_mask, # bs, 195 # True for used tokens. False for padding tokens } Returns: _type_: _description_ """ assert isinstance(text_dict, dict) y = text_dict["encoded_text"] text_token_mask = text_dict["text_token_mask"] res = x @ y.transpose(-1, -2) res.masked_fill_(~text_token_mask[:, None, :], float("-inf")) # padding to max_text_len new_res = torch.full((*res.shape[:-1], self.max_text_len), float("-inf"), device=res.device) new_res[..., : res.shape[-1]] = res return new_res
swarms-master
swarms/workers/models/GroundingDINO/groundingdino/models/GroundingDINO/utils.py
# ------------------------------------------------------------------------ # Grounding DINO # url: https://github.com/IDEA-Research/GroundingDINO # Copyright (c) 2023 IDEA. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------ # DINO # Copyright (c) 2022 IDEA. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------ # Conditional DETR Transformer class. # Copyright (c) 2021 Microsoft. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------ # Modified from DETR (https://github.com/facebookresearch/detr) # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # ------------------------------------------------------------------------ from typing import Optional import torch import torch.utils.checkpoint as checkpoint from torch import Tensor, nn from groundingdino.util.misc import inverse_sigmoid from .fuse_modules import BiAttentionBlock from .ms_deform_attn import MultiScaleDeformableAttention as MSDeformAttn from .transformer_vanilla import TransformerEncoderLayer from .utils import ( MLP, _get_activation_fn, _get_clones, gen_encoder_output_proposals, gen_sineembed_for_position, get_sine_pos_embed, ) class Transformer(nn.Module): def __init__( self, d_model=256, nhead=8, num_queries=300, num_encoder_layers=6, num_unicoder_layers=0, num_decoder_layers=6, dim_feedforward=2048, dropout=0.0, activation="relu", normalize_before=False, return_intermediate_dec=False, query_dim=4, num_patterns=0, # for deformable encoder num_feature_levels=1, enc_n_points=4, dec_n_points=4, # init query learnable_tgt_init=False, # two stage two_stage_type="no", # ['no', 'standard', 'early', 'combine', 'enceachlayer', 'enclayer1'] embed_init_tgt=False, # for text use_text_enhancer=False, use_fusion_layer=False, use_checkpoint=False, use_transformer_ckpt=False, use_text_cross_attention=False, text_dropout=0.1, fusion_dropout=0.1, fusion_droppath=0.0, ): super().__init__() self.num_feature_levels = num_feature_levels self.num_encoder_layers = num_encoder_layers self.num_unicoder_layers = num_unicoder_layers self.num_decoder_layers = num_decoder_layers self.num_queries = num_queries assert query_dim == 4 # choose encoder layer type encoder_layer = DeformableTransformerEncoderLayer( d_model, dim_feedforward, dropout, activation, num_feature_levels, nhead, enc_n_points ) if use_text_enhancer: text_enhance_layer = TransformerEncoderLayer( d_model=d_model, nhead=nhead // 2, dim_feedforward=dim_feedforward // 2, dropout=text_dropout, ) else: text_enhance_layer = None if use_fusion_layer: feature_fusion_layer = BiAttentionBlock( v_dim=d_model, l_dim=d_model, embed_dim=dim_feedforward // 2, num_heads=nhead // 2, dropout=fusion_dropout, drop_path=fusion_droppath, ) else: feature_fusion_layer = None encoder_norm = nn.LayerNorm(d_model) if normalize_before else None assert encoder_norm is None self.encoder = TransformerEncoder( encoder_layer, num_encoder_layers, d_model=d_model, num_queries=num_queries, text_enhance_layer=text_enhance_layer, feature_fusion_layer=feature_fusion_layer, use_checkpoint=use_checkpoint, use_transformer_ckpt=use_transformer_ckpt, ) # choose decoder layer type decoder_layer = DeformableTransformerDecoderLayer( d_model, dim_feedforward, dropout, activation, num_feature_levels, nhead, dec_n_points, use_text_cross_attention=use_text_cross_attention, ) decoder_norm = nn.LayerNorm(d_model) self.decoder = TransformerDecoder( decoder_layer, num_decoder_layers, decoder_norm, return_intermediate=return_intermediate_dec, d_model=d_model, query_dim=query_dim, num_feature_levels=num_feature_levels, ) self.d_model = d_model self.nhead = nhead self.dec_layers = num_decoder_layers self.num_queries = num_queries # useful for single stage model only self.num_patterns = num_patterns if not isinstance(num_patterns, int): Warning("num_patterns should be int but {}".format(type(num_patterns))) self.num_patterns = 0 if num_feature_levels > 1: if self.num_encoder_layers > 0: self.level_embed = nn.Parameter(torch.Tensor(num_feature_levels, d_model)) else: self.level_embed = None self.learnable_tgt_init = learnable_tgt_init assert learnable_tgt_init, "why not learnable_tgt_init" self.embed_init_tgt = embed_init_tgt if (two_stage_type != "no" and embed_init_tgt) or (two_stage_type == "no"): self.tgt_embed = nn.Embedding(self.num_queries, d_model) nn.init.normal_(self.tgt_embed.weight.data) else: self.tgt_embed = None # for two stage self.two_stage_type = two_stage_type assert two_stage_type in ["no", "standard"], "unknown param {} of two_stage_type".format( two_stage_type ) if two_stage_type == "standard": # anchor selection at the output of encoder self.enc_output = nn.Linear(d_model, d_model) self.enc_output_norm = nn.LayerNorm(d_model) self.two_stage_wh_embedding = None if two_stage_type == "no": self.init_ref_points(num_queries) # init self.refpoint_embed self.enc_out_class_embed = None self.enc_out_bbox_embed = None self._reset_parameters() def _reset_parameters(self): for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) for m in self.modules(): if isinstance(m, MSDeformAttn): m._reset_parameters() if self.num_feature_levels > 1 and self.level_embed is not None: nn.init.normal_(self.level_embed) def get_valid_ratio(self, mask): _, H, W = mask.shape valid_H = torch.sum(~mask[:, :, 0], 1) valid_W = torch.sum(~mask[:, 0, :], 1) valid_ratio_h = valid_H.float() / H valid_ratio_w = valid_W.float() / W valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1) return valid_ratio def init_ref_points(self, use_num_queries): self.refpoint_embed = nn.Embedding(use_num_queries, 4) def forward(self, srcs, masks, refpoint_embed, pos_embeds, tgt, attn_mask=None, text_dict=None): """ Input: - srcs: List of multi features [bs, ci, hi, wi] - masks: List of multi masks [bs, hi, wi] - refpoint_embed: [bs, num_dn, 4]. None in infer - pos_embeds: List of multi pos embeds [bs, ci, hi, wi] - tgt: [bs, num_dn, d_model]. None in infer """ # prepare input for encoder src_flatten = [] mask_flatten = [] lvl_pos_embed_flatten = [] spatial_shapes = [] for lvl, (src, mask, pos_embed) in enumerate(zip(srcs, masks, pos_embeds)): bs, c, h, w = src.shape spatial_shape = (h, w) spatial_shapes.append(spatial_shape) src = src.flatten(2).transpose(1, 2) # bs, hw, c mask = mask.flatten(1) # bs, hw pos_embed = pos_embed.flatten(2).transpose(1, 2) # bs, hw, c if self.num_feature_levels > 1 and self.level_embed is not None: lvl_pos_embed = pos_embed + self.level_embed[lvl].view(1, 1, -1) else: lvl_pos_embed = pos_embed lvl_pos_embed_flatten.append(lvl_pos_embed) src_flatten.append(src) mask_flatten.append(mask) src_flatten = torch.cat(src_flatten, 1) # bs, \sum{hxw}, c mask_flatten = torch.cat(mask_flatten, 1) # bs, \sum{hxw} lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1) # bs, \sum{hxw}, c spatial_shapes = torch.as_tensor( spatial_shapes, dtype=torch.long, device=src_flatten.device ) level_start_index = torch.cat( (spatial_shapes.new_zeros((1,)), spatial_shapes.prod(1).cumsum(0)[:-1]) ) valid_ratios = torch.stack([self.get_valid_ratio(m) for m in masks], 1) # two stage ######################################################### # Begin Encoder ######################################################### memory, memory_text = self.encoder( src_flatten, pos=lvl_pos_embed_flatten, level_start_index=level_start_index, spatial_shapes=spatial_shapes, valid_ratios=valid_ratios, key_padding_mask=mask_flatten, memory_text=text_dict["encoded_text"], text_attention_mask=~text_dict["text_token_mask"], # we ~ the mask . False means use the token; True means pad the token position_ids=text_dict["position_ids"], text_self_attention_masks=text_dict["text_self_attention_masks"], ) ######################################################### # End Encoder # - memory: bs, \sum{hw}, c # - mask_flatten: bs, \sum{hw} # - lvl_pos_embed_flatten: bs, \sum{hw}, c # - enc_intermediate_output: None or (nenc+1, bs, nq, c) or (nenc, bs, nq, c) # - enc_intermediate_refpoints: None or (nenc+1, bs, nq, c) or (nenc, bs, nq, c) ######################################################### text_dict["encoded_text"] = memory_text # if os.environ.get("SHILONG_AMP_INFNAN_DEBUG") == '1': # if memory.isnan().any() | memory.isinf().any(): # import ipdb; ipdb.set_trace() if self.two_stage_type == "standard": output_memory, output_proposals = gen_encoder_output_proposals( memory, mask_flatten, spatial_shapes ) output_memory = self.enc_output_norm(self.enc_output(output_memory)) if text_dict is not None: enc_outputs_class_unselected = self.enc_out_class_embed(output_memory, text_dict) else: enc_outputs_class_unselected = self.enc_out_class_embed(output_memory) topk_logits = enc_outputs_class_unselected.max(-1)[0] enc_outputs_coord_unselected = ( self.enc_out_bbox_embed(output_memory) + output_proposals ) # (bs, \sum{hw}, 4) unsigmoid topk = self.num_queries topk_proposals = torch.topk(topk_logits, topk, dim=1)[1] # bs, nq # gather boxes refpoint_embed_undetach = torch.gather( enc_outputs_coord_unselected, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, 4) ) # unsigmoid refpoint_embed_ = refpoint_embed_undetach.detach() init_box_proposal = torch.gather( output_proposals, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, 4) ).sigmoid() # sigmoid # gather tgt tgt_undetach = torch.gather( output_memory, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, self.d_model) ) if self.embed_init_tgt: tgt_ = ( self.tgt_embed.weight[:, None, :].repeat(1, bs, 1).transpose(0, 1) ) # nq, bs, d_model else: tgt_ = tgt_undetach.detach() if refpoint_embed is not None: refpoint_embed = torch.cat([refpoint_embed, refpoint_embed_], dim=1) tgt = torch.cat([tgt, tgt_], dim=1) else: refpoint_embed, tgt = refpoint_embed_, tgt_ elif self.two_stage_type == "no": tgt_ = ( self.tgt_embed.weight[:, None, :].repeat(1, bs, 1).transpose(0, 1) ) # nq, bs, d_model refpoint_embed_ = ( self.refpoint_embed.weight[:, None, :].repeat(1, bs, 1).transpose(0, 1) ) # nq, bs, 4 if refpoint_embed is not None: refpoint_embed = torch.cat([refpoint_embed, refpoint_embed_], dim=1) tgt = torch.cat([tgt, tgt_], dim=1) else: refpoint_embed, tgt = refpoint_embed_, tgt_ if self.num_patterns > 0: tgt_embed = tgt.repeat(1, self.num_patterns, 1) refpoint_embed = refpoint_embed.repeat(1, self.num_patterns, 1) tgt_pat = self.patterns.weight[None, :, :].repeat_interleave( self.num_queries, 1 ) # 1, n_q*n_pat, d_model tgt = tgt_embed + tgt_pat init_box_proposal = refpoint_embed_.sigmoid() else: raise NotImplementedError("unknown two_stage_type {}".format(self.two_stage_type)) ######################################################### # End preparing tgt # - tgt: bs, NQ, d_model # - refpoint_embed(unsigmoid): bs, NQ, d_model ######################################################### ######################################################### # Begin Decoder ######################################################### hs, references = self.decoder( tgt=tgt.transpose(0, 1), memory=memory.transpose(0, 1), memory_key_padding_mask=mask_flatten, pos=lvl_pos_embed_flatten.transpose(0, 1), refpoints_unsigmoid=refpoint_embed.transpose(0, 1), level_start_index=level_start_index, spatial_shapes=spatial_shapes, valid_ratios=valid_ratios, tgt_mask=attn_mask, memory_text=text_dict["encoded_text"], text_attention_mask=~text_dict["text_token_mask"], # we ~ the mask . False means use the token; True means pad the token ) ######################################################### # End Decoder # hs: n_dec, bs, nq, d_model # references: n_dec+1, bs, nq, query_dim ######################################################### ######################################################### # Begin postprocess ######################################################### if self.two_stage_type == "standard": hs_enc = tgt_undetach.unsqueeze(0) ref_enc = refpoint_embed_undetach.sigmoid().unsqueeze(0) else: hs_enc = ref_enc = None ######################################################### # End postprocess # hs_enc: (n_enc+1, bs, nq, d_model) or (1, bs, nq, d_model) or (n_enc, bs, nq, d_model) or None # ref_enc: (n_enc+1, bs, nq, query_dim) or (1, bs, nq, query_dim) or (n_enc, bs, nq, d_model) or None ######################################################### return hs, references, hs_enc, ref_enc, init_box_proposal # hs: (n_dec, bs, nq, d_model) # references: sigmoid coordinates. (n_dec+1, bs, bq, 4) # hs_enc: (n_enc+1, bs, nq, d_model) or (1, bs, nq, d_model) or None # ref_enc: sigmoid coordinates. \ # (n_enc+1, bs, nq, query_dim) or (1, bs, nq, query_dim) or None class TransformerEncoder(nn.Module): def __init__( self, encoder_layer, num_layers, d_model=256, num_queries=300, enc_layer_share=False, text_enhance_layer=None, feature_fusion_layer=None, use_checkpoint=False, use_transformer_ckpt=False, ): """_summary_ Args: encoder_layer (_type_): _description_ num_layers (_type_): _description_ norm (_type_, optional): _description_. Defaults to None. d_model (int, optional): _description_. Defaults to 256. num_queries (int, optional): _description_. Defaults to 300. enc_layer_share (bool, optional): _description_. Defaults to False. """ super().__init__() # prepare layers self.layers = [] self.text_layers = [] self.fusion_layers = [] if num_layers > 0: self.layers = _get_clones(encoder_layer, num_layers, layer_share=enc_layer_share) if text_enhance_layer is not None: self.text_layers = _get_clones( text_enhance_layer, num_layers, layer_share=enc_layer_share ) if feature_fusion_layer is not None: self.fusion_layers = _get_clones( feature_fusion_layer, num_layers, layer_share=enc_layer_share ) else: self.layers = [] del encoder_layer if text_enhance_layer is not None: self.text_layers = [] del text_enhance_layer if feature_fusion_layer is not None: self.fusion_layers = [] del feature_fusion_layer self.query_scale = None self.num_queries = num_queries self.num_layers = num_layers self.d_model = d_model self.use_checkpoint = use_checkpoint self.use_transformer_ckpt = use_transformer_ckpt @staticmethod def get_reference_points(spatial_shapes, valid_ratios, device): reference_points_list = [] for lvl, (H_, W_) in enumerate(spatial_shapes): ref_y, ref_x = torch.meshgrid( torch.linspace(0.5, H_ - 0.5, H_, dtype=torch.float32, device=device), torch.linspace(0.5, W_ - 0.5, W_, dtype=torch.float32, device=device), ) ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, lvl, 1] * H_) ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, lvl, 0] * W_) ref = torch.stack((ref_x, ref_y), -1) reference_points_list.append(ref) reference_points = torch.cat(reference_points_list, 1) reference_points = reference_points[:, :, None] * valid_ratios[:, None] return reference_points def forward( self, # for images src: Tensor, pos: Tensor, spatial_shapes: Tensor, level_start_index: Tensor, valid_ratios: Tensor, key_padding_mask: Tensor, # for texts memory_text: Tensor = None, text_attention_mask: Tensor = None, pos_text: Tensor = None, text_self_attention_masks: Tensor = None, position_ids: Tensor = None, ): """ Input: - src: [bs, sum(hi*wi), 256] - pos: pos embed for src. [bs, sum(hi*wi), 256] - spatial_shapes: h,w of each level [num_level, 2] - level_start_index: [num_level] start point of level in sum(hi*wi). - valid_ratios: [bs, num_level, 2] - key_padding_mask: [bs, sum(hi*wi)] - memory_text: bs, n_text, 256 - text_attention_mask: bs, n_text False for no padding; True for padding - pos_text: bs, n_text, 256 - position_ids: bs, n_text Intermedia: - reference_points: [bs, sum(hi*wi), num_level, 2] Outpus: - output: [bs, sum(hi*wi), 256] """ output = src # preparation and reshape if self.num_layers > 0: reference_points = self.get_reference_points( spatial_shapes, valid_ratios, device=src.device ) if self.text_layers: # generate pos_text bs, n_text, text_dim = memory_text.shape if pos_text is None and position_ids is None: pos_text = ( torch.arange(n_text, device=memory_text.device) .float() .unsqueeze(0) .unsqueeze(-1) .repeat(bs, 1, 1) ) pos_text = get_sine_pos_embed(pos_text, num_pos_feats=256, exchange_xy=False) if position_ids is not None: pos_text = get_sine_pos_embed( position_ids[..., None], num_pos_feats=256, exchange_xy=False ) # main process for layer_id, layer in enumerate(self.layers): # if output.isnan().any() or memory_text.isnan().any(): # if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO': # import ipdb; ipdb.set_trace() if self.fusion_layers: if self.use_checkpoint: output, memory_text = checkpoint.checkpoint( self.fusion_layers[layer_id], output, memory_text, key_padding_mask, text_attention_mask, ) else: output, memory_text = self.fusion_layers[layer_id]( v=output, l=memory_text, attention_mask_v=key_padding_mask, attention_mask_l=text_attention_mask, ) if self.text_layers: memory_text = self.text_layers[layer_id]( src=memory_text.transpose(0, 1), src_mask=~text_self_attention_masks, # note we use ~ for mask here src_key_padding_mask=text_attention_mask, pos=(pos_text.transpose(0, 1) if pos_text is not None else None), ).transpose(0, 1) # main process if self.use_transformer_ckpt: output = checkpoint.checkpoint( layer, output, pos, reference_points, spatial_shapes, level_start_index, key_padding_mask, ) else: output = layer( src=output, pos=pos, reference_points=reference_points, spatial_shapes=spatial_shapes, level_start_index=level_start_index, key_padding_mask=key_padding_mask, ) return output, memory_text class TransformerDecoder(nn.Module): def __init__( self, decoder_layer, num_layers, norm=None, return_intermediate=False, d_model=256, query_dim=4, num_feature_levels=1, ): super().__init__() if num_layers > 0: self.layers = _get_clones(decoder_layer, num_layers) else: self.layers = [] self.num_layers = num_layers self.norm = norm self.return_intermediate = return_intermediate assert return_intermediate, "support return_intermediate only" self.query_dim = query_dim assert query_dim in [2, 4], "query_dim should be 2/4 but {}".format(query_dim) self.num_feature_levels = num_feature_levels self.ref_point_head = MLP(query_dim // 2 * d_model, d_model, d_model, 2) self.query_pos_sine_scale = None self.query_scale = None self.bbox_embed = None self.class_embed = None self.d_model = d_model self.ref_anchor_head = None def forward( self, tgt, memory, tgt_mask: Optional[Tensor] = None, memory_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, refpoints_unsigmoid: Optional[Tensor] = None, # num_queries, bs, 2 # for memory level_start_index: Optional[Tensor] = None, # num_levels spatial_shapes: Optional[Tensor] = None, # bs, num_levels, 2 valid_ratios: Optional[Tensor] = None, # for text memory_text: Optional[Tensor] = None, text_attention_mask: Optional[Tensor] = None, ): """ Input: - tgt: nq, bs, d_model - memory: hw, bs, d_model - pos: hw, bs, d_model - refpoints_unsigmoid: nq, bs, 2/4 - valid_ratios/spatial_shapes: bs, nlevel, 2 """ output = tgt intermediate = [] reference_points = refpoints_unsigmoid.sigmoid() ref_points = [reference_points] for layer_id, layer in enumerate(self.layers): if reference_points.shape[-1] == 4: reference_points_input = ( reference_points[:, :, None] * torch.cat([valid_ratios, valid_ratios], -1)[None, :] ) # nq, bs, nlevel, 4 else: assert reference_points.shape[-1] == 2 reference_points_input = reference_points[:, :, None] * valid_ratios[None, :] query_sine_embed = gen_sineembed_for_position( reference_points_input[:, :, 0, :] ) # nq, bs, 256*2 # conditional query raw_query_pos = self.ref_point_head(query_sine_embed) # nq, bs, 256 pos_scale = self.query_scale(output) if self.query_scale is not None else 1 query_pos = pos_scale * raw_query_pos # if os.environ.get("SHILONG_AMP_INFNAN_DEBUG") == '1': # if query_pos.isnan().any() | query_pos.isinf().any(): # import ipdb; ipdb.set_trace() # main process output = layer( tgt=output, tgt_query_pos=query_pos, tgt_query_sine_embed=query_sine_embed, tgt_key_padding_mask=tgt_key_padding_mask, tgt_reference_points=reference_points_input, memory_text=memory_text, text_attention_mask=text_attention_mask, memory=memory, memory_key_padding_mask=memory_key_padding_mask, memory_level_start_index=level_start_index, memory_spatial_shapes=spatial_shapes, memory_pos=pos, self_attn_mask=tgt_mask, cross_attn_mask=memory_mask, ) if output.isnan().any() | output.isinf().any(): print(f"output layer_id {layer_id} is nan") try: num_nan = output.isnan().sum().item() num_inf = output.isinf().sum().item() print(f"num_nan {num_nan}, num_inf {num_inf}") except Exception as e: print(e) # if os.environ.get("SHILONG_AMP_INFNAN_DEBUG") == '1': # import ipdb; ipdb.set_trace() # iter update if self.bbox_embed is not None: # box_holder = self.bbox_embed(output) # box_holder[..., :self.query_dim] += inverse_sigmoid(reference_points) # new_reference_points = box_holder[..., :self.query_dim].sigmoid() reference_before_sigmoid = inverse_sigmoid(reference_points) delta_unsig = self.bbox_embed[layer_id](output) outputs_unsig = delta_unsig + reference_before_sigmoid new_reference_points = outputs_unsig.sigmoid() reference_points = new_reference_points.detach() # if layer_id != self.num_layers - 1: ref_points.append(new_reference_points) intermediate.append(self.norm(output)) return [ [itm_out.transpose(0, 1) for itm_out in intermediate], [itm_refpoint.transpose(0, 1) for itm_refpoint in ref_points], ] class DeformableTransformerEncoderLayer(nn.Module): def __init__( self, d_model=256, d_ffn=1024, dropout=0.1, activation="relu", n_levels=4, n_heads=8, n_points=4, ): super().__init__() # self attention self.self_attn = MSDeformAttn( embed_dim=d_model, num_levels=n_levels, num_heads=n_heads, num_points=n_points, batch_first=True, ) self.dropout1 = nn.Dropout(dropout) self.norm1 = nn.LayerNorm(d_model) # ffn self.linear1 = nn.Linear(d_model, d_ffn) self.activation = _get_activation_fn(activation, d_model=d_ffn) self.dropout2 = nn.Dropout(dropout) self.linear2 = nn.Linear(d_ffn, d_model) self.dropout3 = nn.Dropout(dropout) self.norm2 = nn.LayerNorm(d_model) @staticmethod def with_pos_embed(tensor, pos): return tensor if pos is None else tensor + pos def forward_ffn(self, src): src2 = self.linear2(self.dropout2(self.activation(self.linear1(src)))) src = src + self.dropout3(src2) src = self.norm2(src) return src def forward( self, src, pos, reference_points, spatial_shapes, level_start_index, key_padding_mask=None ): # self attention # import ipdb; ipdb.set_trace() src2 = self.self_attn( query=self.with_pos_embed(src, pos), reference_points=reference_points, value=src, spatial_shapes=spatial_shapes, level_start_index=level_start_index, key_padding_mask=key_padding_mask, ) src = src + self.dropout1(src2) src = self.norm1(src) # ffn src = self.forward_ffn(src) return src class DeformableTransformerDecoderLayer(nn.Module): def __init__( self, d_model=256, d_ffn=1024, dropout=0.1, activation="relu", n_levels=4, n_heads=8, n_points=4, use_text_feat_guide=False, use_text_cross_attention=False, ): super().__init__() # cross attention self.cross_attn = MSDeformAttn( embed_dim=d_model, num_levels=n_levels, num_heads=n_heads, num_points=n_points, batch_first=True, ) self.dropout1 = nn.Dropout(dropout) if dropout > 0 else nn.Identity() self.norm1 = nn.LayerNorm(d_model) # cross attention text if use_text_cross_attention: self.ca_text = nn.MultiheadAttention(d_model, n_heads, dropout=dropout) self.catext_dropout = nn.Dropout(dropout) if dropout > 0 else nn.Identity() self.catext_norm = nn.LayerNorm(d_model) # self attention self.self_attn = nn.MultiheadAttention(d_model, n_heads, dropout=dropout) self.dropout2 = nn.Dropout(dropout) if dropout > 0 else nn.Identity() self.norm2 = nn.LayerNorm(d_model) # ffn self.linear1 = nn.Linear(d_model, d_ffn) self.activation = _get_activation_fn(activation, d_model=d_ffn, batch_dim=1) self.dropout3 = nn.Dropout(dropout) if dropout > 0 else nn.Identity() self.linear2 = nn.Linear(d_ffn, d_model) self.dropout4 = nn.Dropout(dropout) if dropout > 0 else nn.Identity() self.norm3 = nn.LayerNorm(d_model) self.key_aware_proj = None self.use_text_feat_guide = use_text_feat_guide assert not use_text_feat_guide self.use_text_cross_attention = use_text_cross_attention def rm_self_attn_modules(self): self.self_attn = None self.dropout2 = None self.norm2 = None @staticmethod def with_pos_embed(tensor, pos): return tensor if pos is None else tensor + pos def forward_ffn(self, tgt): with torch.cuda.amp.autocast(enabled=False): tgt2 = self.linear2(self.dropout3(self.activation(self.linear1(tgt)))) tgt = tgt + self.dropout4(tgt2) tgt = self.norm3(tgt) return tgt def forward( self, # for tgt tgt: Optional[Tensor], # nq, bs, d_model tgt_query_pos: Optional[Tensor] = None, # pos for query. MLP(Sine(pos)) tgt_query_sine_embed: Optional[Tensor] = None, # pos for query. Sine(pos) tgt_key_padding_mask: Optional[Tensor] = None, tgt_reference_points: Optional[Tensor] = None, # nq, bs, 4 memory_text: Optional[Tensor] = None, # bs, num_token, d_model text_attention_mask: Optional[Tensor] = None, # bs, num_token # for memory memory: Optional[Tensor] = None, # hw, bs, d_model memory_key_padding_mask: Optional[Tensor] = None, memory_level_start_index: Optional[Tensor] = None, # num_levels memory_spatial_shapes: Optional[Tensor] = None, # bs, num_levels, 2 memory_pos: Optional[Tensor] = None, # pos for memory # sa self_attn_mask: Optional[Tensor] = None, # mask used for self-attention cross_attn_mask: Optional[Tensor] = None, # mask used for cross-attention ): """ Input: - tgt/tgt_query_pos: nq, bs, d_model - """ assert cross_attn_mask is None # self attention if self.self_attn is not None: # import ipdb; ipdb.set_trace() q = k = self.with_pos_embed(tgt, tgt_query_pos) tgt2 = self.self_attn(q, k, tgt, attn_mask=self_attn_mask)[0] tgt = tgt + self.dropout2(tgt2) tgt = self.norm2(tgt) if self.use_text_cross_attention: tgt2 = self.ca_text( self.with_pos_embed(tgt, tgt_query_pos), memory_text.transpose(0, 1), memory_text.transpose(0, 1), key_padding_mask=text_attention_mask, )[0] tgt = tgt + self.catext_dropout(tgt2) tgt = self.catext_norm(tgt) tgt2 = self.cross_attn( query=self.with_pos_embed(tgt, tgt_query_pos).transpose(0, 1), reference_points=tgt_reference_points.transpose(0, 1).contiguous(), value=memory.transpose(0, 1), spatial_shapes=memory_spatial_shapes, level_start_index=memory_level_start_index, key_padding_mask=memory_key_padding_mask, ).transpose(0, 1) tgt = tgt + self.dropout1(tgt2) tgt = self.norm1(tgt) # ffn tgt = self.forward_ffn(tgt) return tgt def build_transformer(args): return Transformer( d_model=args.hidden_dim, dropout=args.dropout, nhead=args.nheads, num_queries=args.num_queries, dim_feedforward=args.dim_feedforward, num_encoder_layers=args.enc_layers, num_decoder_layers=args.dec_layers, normalize_before=args.pre_norm, return_intermediate_dec=True, query_dim=args.query_dim, activation=args.transformer_activation, num_patterns=args.num_patterns, num_feature_levels=args.num_feature_levels, enc_n_points=args.enc_n_points, dec_n_points=args.dec_n_points, learnable_tgt_init=True, # two stage two_stage_type=args.two_stage_type, # ['no', 'standard', 'early'] embed_init_tgt=args.embed_init_tgt, use_text_enhancer=args.use_text_enhancer, use_fusion_layer=args.use_fusion_layer, use_checkpoint=args.use_checkpoint, use_transformer_ckpt=args.use_transformer_ckpt, use_text_cross_attention=args.use_text_cross_attention, text_dropout=args.text_dropout, fusion_dropout=args.fusion_dropout, fusion_droppath=args.fusion_droppath, )
swarms-master
swarms/workers/models/GroundingDINO/groundingdino/models/GroundingDINO/transformer.py
# ------------------------------------------------------------------------ # Grounding DINO # url: https://github.com/IDEA-Research/GroundingDINO # Copyright (c) 2023 IDEA. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------ # Conditional DETR # Copyright (c) 2021 Microsoft. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------ # Copied from DETR (https://github.com/facebookresearch/detr) # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # ------------------------------------------------------------------------ """ Backbone modules. """ from typing import Dict, List import torch import torch.nn.functional as F import torchvision from torch import nn from torchvision.models._utils import IntermediateLayerGetter from groundingdino.util.misc import NestedTensor, is_main_process from .position_encoding import build_position_encoding from .swin_transformer import build_swin_transformer class FrozenBatchNorm2d(torch.nn.Module): """ BatchNorm2d where the batch statistics and the affine parameters are fixed. Copy-paste from torchvision.misc.ops with added eps before rqsrt, without which any other models than torchvision.models.resnet[18,34,50,101] produce nans. """ def __init__(self, n): super(FrozenBatchNorm2d, self).__init__() self.register_buffer("weight", torch.ones(n)) self.register_buffer("bias", torch.zeros(n)) self.register_buffer("running_mean", torch.zeros(n)) self.register_buffer("running_var", torch.ones(n)) def _load_from_state_dict( self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs ): num_batches_tracked_key = prefix + "num_batches_tracked" if num_batches_tracked_key in state_dict: del state_dict[num_batches_tracked_key] super(FrozenBatchNorm2d, self)._load_from_state_dict( state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs ) def forward(self, x): # move reshapes to the beginning # to make it fuser-friendly w = self.weight.reshape(1, -1, 1, 1) b = self.bias.reshape(1, -1, 1, 1) rv = self.running_var.reshape(1, -1, 1, 1) rm = self.running_mean.reshape(1, -1, 1, 1) eps = 1e-5 scale = w * (rv + eps).rsqrt() bias = b - rm * scale return x * scale + bias class BackboneBase(nn.Module): def __init__( self, backbone: nn.Module, train_backbone: bool, num_channels: int, return_interm_indices: list, ): super().__init__() for name, parameter in backbone.named_parameters(): if ( not train_backbone or "layer2" not in name and "layer3" not in name and "layer4" not in name ): parameter.requires_grad_(False) return_layers = {} for idx, layer_index in enumerate(return_interm_indices): return_layers.update( {"layer{}".format(5 - len(return_interm_indices) + idx): "{}".format(layer_index)} ) # if len: # if use_stage1_feature: # return_layers = {"layer1": "0", "layer2": "1", "layer3": "2", "layer4": "3"} # else: # return_layers = {"layer2": "0", "layer3": "1", "layer4": "2"} # else: # return_layers = {'layer4': "0"} self.body = IntermediateLayerGetter(backbone, return_layers=return_layers) self.num_channels = num_channels def forward(self, tensor_list: NestedTensor): xs = self.body(tensor_list.tensors) out: Dict[str, NestedTensor] = {} for name, x in xs.items(): m = tensor_list.mask assert m is not None mask = F.interpolate(m[None].float(), size=x.shape[-2:]).to(torch.bool)[0] out[name] = NestedTensor(x, mask) # import ipdb; ipdb.set_trace() return out class Backbone(BackboneBase): """ResNet backbone with frozen BatchNorm.""" def __init__( self, name: str, train_backbone: bool, dilation: bool, return_interm_indices: list, batch_norm=FrozenBatchNorm2d, ): if name in ["resnet18", "resnet34", "resnet50", "resnet101"]: backbone = getattr(torchvision.models, name)( replace_stride_with_dilation=[False, False, dilation], pretrained=is_main_process(), norm_layer=batch_norm, ) else: raise NotImplementedError("Why you can get here with name {}".format(name)) # num_channels = 512 if name in ('resnet18', 'resnet34') else 2048 assert name not in ("resnet18", "resnet34"), "Only resnet50 and resnet101 are available." assert return_interm_indices in [[0, 1, 2, 3], [1, 2, 3], [3]] num_channels_all = [256, 512, 1024, 2048] num_channels = num_channels_all[4 - len(return_interm_indices) :] super().__init__(backbone, train_backbone, num_channels, return_interm_indices) class Joiner(nn.Sequential): def __init__(self, backbone, position_embedding): super().__init__(backbone, position_embedding) def forward(self, tensor_list: NestedTensor): xs = self[0](tensor_list) out: List[NestedTensor] = [] pos = [] for name, x in xs.items(): out.append(x) # position encoding pos.append(self[1](x).to(x.tensors.dtype)) return out, pos def build_backbone(args): """ Useful args: - backbone: backbone name - lr_backbone: - dilation - return_interm_indices: available: [0,1,2,3], [1,2,3], [3] - backbone_freeze_keywords: - use_checkpoint: for swin only for now """ position_embedding = build_position_encoding(args) train_backbone = True if not train_backbone: raise ValueError("Please set lr_backbone > 0") return_interm_indices = args.return_interm_indices assert return_interm_indices in [[0, 1, 2, 3], [1, 2, 3], [3]] args.backbone_freeze_keywords use_checkpoint = getattr(args, "use_checkpoint", False) if args.backbone in ["resnet50", "resnet101"]: backbone = Backbone( args.backbone, train_backbone, args.dilation, return_interm_indices, batch_norm=FrozenBatchNorm2d, ) bb_num_channels = backbone.num_channels elif args.backbone in [ "swin_T_224_1k", "swin_B_224_22k", "swin_B_384_22k", "swin_L_224_22k", "swin_L_384_22k", ]: pretrain_img_size = int(args.backbone.split("_")[-2]) backbone = build_swin_transformer( args.backbone, pretrain_img_size=pretrain_img_size, out_indices=tuple(return_interm_indices), dilation=False, use_checkpoint=use_checkpoint, ) bb_num_channels = backbone.num_features[4 - len(return_interm_indices) :] else: raise NotImplementedError("Unknown backbone {}".format(args.backbone)) assert len(bb_num_channels) == len( return_interm_indices ), f"len(bb_num_channels) {len(bb_num_channels)} != len(return_interm_indices) {len(return_interm_indices)}" model = Joiner(backbone, position_embedding) model.num_channels = bb_num_channels assert isinstance( bb_num_channels, List ), "bb_num_channels is expected to be a List but {}".format(type(bb_num_channels)) # import ipdb; ipdb.set_trace() return model
swarms-master
swarms/workers/models/GroundingDINO/groundingdino/models/GroundingDINO/backbone/backbone.py
# ------------------------------------------------------------------------ # Grounding DINO # url: https://github.com/IDEA-Research/GroundingDINO # Copyright (c) 2023 IDEA. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------ # DINO # Copyright (c) 2022 IDEA. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------ # Conditional DETR # Copyright (c) 2021 Microsoft. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------ # Copied from DETR (https://github.com/facebookresearch/detr) # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # ------------------------------------------------------------------------ """ Various positional encodings for the transformer. """ import math import torch from torch import nn from groundingdino.util.misc import NestedTensor class PositionEmbeddingSine(nn.Module): """ This is a more standard version of the position embedding, very similar to the one used by the Attention is all you need paper, generalized to work on images. """ def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None): super().__init__() self.num_pos_feats = num_pos_feats self.temperature = temperature self.normalize = normalize if scale is not None and normalize is False: raise ValueError("normalize should be True if scale is passed") if scale is None: scale = 2 * math.pi self.scale = scale def forward(self, tensor_list: NestedTensor): x = tensor_list.tensors mask = tensor_list.mask assert mask is not None not_mask = ~mask y_embed = not_mask.cumsum(1, dtype=torch.float32) x_embed = not_mask.cumsum(2, dtype=torch.float32) if self.normalize: eps = 1e-6 # if os.environ.get("SHILONG_AMP", None) == '1': # eps = 1e-4 # else: # eps = 1e-6 y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) pos_x = x_embed[:, :, :, None] / dim_t pos_y = y_embed[:, :, :, None] / dim_t pos_x = torch.stack( (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4 ).flatten(3) pos_y = torch.stack( (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4 ).flatten(3) pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) return pos class PositionEmbeddingSineHW(nn.Module): """ This is a more standard version of the position embedding, very similar to the one used by the Attention is all you need paper, generalized to work on images. """ def __init__( self, num_pos_feats=64, temperatureH=10000, temperatureW=10000, normalize=False, scale=None ): super().__init__() self.num_pos_feats = num_pos_feats self.temperatureH = temperatureH self.temperatureW = temperatureW self.normalize = normalize if scale is not None and normalize is False: raise ValueError("normalize should be True if scale is passed") if scale is None: scale = 2 * math.pi self.scale = scale def forward(self, tensor_list: NestedTensor): x = tensor_list.tensors mask = tensor_list.mask assert mask is not None not_mask = ~mask y_embed = not_mask.cumsum(1, dtype=torch.float32) x_embed = not_mask.cumsum(2, dtype=torch.float32) # import ipdb; ipdb.set_trace() if self.normalize: eps = 1e-6 y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale dim_tx = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) dim_tx = self.temperatureW ** (2 * (torch.div(dim_tx, 2, rounding_mode='floor')) / self.num_pos_feats) pos_x = x_embed[:, :, :, None] / dim_tx dim_ty = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) dim_ty = self.temperatureH ** (2 * (torch.div(dim_ty, 2, rounding_mode='floor')) / self.num_pos_feats) pos_y = y_embed[:, :, :, None] / dim_ty pos_x = torch.stack( (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4 ).flatten(3) pos_y = torch.stack( (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4 ).flatten(3) pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) # import ipdb; ipdb.set_trace() return pos class PositionEmbeddingLearned(nn.Module): """ Absolute pos embedding, learned. """ def __init__(self, num_pos_feats=256): super().__init__() self.row_embed = nn.Embedding(50, num_pos_feats) self.col_embed = nn.Embedding(50, num_pos_feats) self.reset_parameters() def reset_parameters(self): nn.init.uniform_(self.row_embed.weight) nn.init.uniform_(self.col_embed.weight) def forward(self, tensor_list: NestedTensor): x = tensor_list.tensors h, w = x.shape[-2:] i = torch.arange(w, device=x.device) j = torch.arange(h, device=x.device) x_emb = self.col_embed(i) y_emb = self.row_embed(j) pos = ( torch.cat( [ x_emb.unsqueeze(0).repeat(h, 1, 1), y_emb.unsqueeze(1).repeat(1, w, 1), ], dim=-1, ) .permute(2, 0, 1) .unsqueeze(0) .repeat(x.shape[0], 1, 1, 1) ) return pos def build_position_encoding(args): N_steps = args.hidden_dim // 2 if args.position_embedding in ("v2", "sine"): # TODO find a better way of exposing other arguments position_embedding = PositionEmbeddingSineHW( N_steps, temperatureH=args.pe_temperatureH, temperatureW=args.pe_temperatureW, normalize=True, ) elif args.position_embedding in ("v3", "learned"): position_embedding = PositionEmbeddingLearned(N_steps) else: raise ValueError(f"not supported {args.position_embedding}") return position_embedding
swarms-master
swarms/workers/models/GroundingDINO/groundingdino/models/GroundingDINO/backbone/position_encoding.py
swarms-master
swarms/workers/models/GroundingDINO/groundingdino/models/GroundingDINO/backbone/__init__.py
# ------------------------------------------------------------------------ # Grounding DINO # url: https://github.com/IDEA-Research/GroundingDINO # Copyright (c) 2023 IDEA. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------ # DINO # Copyright (c) 2022 IDEA. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # -------------------------------------------------------- # modified from https://github.com/SwinTransformer/Swin-Transformer-Object-Detection/blob/master/mmdet/models/backbones/swin_transformer.py # -------------------------------------------------------- import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as checkpoint from timm.models.layers import DropPath, to_2tuple, trunc_normal_ from groundingdino.util.misc import NestedTensor class Mlp(nn.Module): """Multilayer perceptron.""" def __init__( self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0 ): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x def window_partition(x, window_size): """ Args: x: (B, H, W, C) window_size (int): window size Returns: windows: (num_windows*B, window_size, window_size, C) """ B, H, W, C = x.shape x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) return windows def window_reverse(windows, window_size, H, W): """ Args: windows: (num_windows*B, window_size, window_size, C) window_size (int): Window size H (int): Height of image W (int): Width of image Returns: x: (B, H, W, C) """ B = int(windows.shape[0] / (H * W / window_size / window_size)) x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) return x class WindowAttention(nn.Module): """Window based multi-head self attention (W-MSA) module with relative position bias. It supports both of shifted and non-shifted window. Args: dim (int): Number of input channels. window_size (tuple[int]): The height and width of the window. num_heads (int): Number of attention heads. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 proj_drop (float, optional): Dropout ratio of output. Default: 0.0 """ def __init__( self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0.0, proj_drop=0.0, ): super().__init__() self.dim = dim self.window_size = window_size # Wh, Ww self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim**-0.5 # define a parameter table of relative position bias self.relative_position_bias_table = nn.Parameter( torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads) ) # 2*Wh-1 * 2*Ww-1, nH # get pair-wise relative position index for each token inside the window coords_h = torch.arange(self.window_size[0]) coords_w = torch.arange(self.window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += self.window_size[1] - 1 relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww self.register_buffer("relative_position_index", relative_position_index) self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) trunc_normal_(self.relative_position_bias_table, std=0.02) self.softmax = nn.Softmax(dim=-1) def forward(self, x, mask=None): """Forward function. Args: x: input features with shape of (num_windows*B, N, C) mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None """ B_, N, C = x.shape qkv = ( self.qkv(x) .reshape(B_, N, 3, self.num_heads, C // self.num_heads) .permute(2, 0, 3, 1, 4) ) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) q = q * self.scale attn = q @ k.transpose(-2, -1) relative_position_bias = self.relative_position_bias_table[ self.relative_position_index.view(-1) ].view( self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1 ) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.permute( 2, 0, 1 ).contiguous() # nH, Wh*Ww, Wh*Ww attn = attn + relative_position_bias.unsqueeze(0) if mask is not None: nW = mask.shape[0] attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) attn = attn.view(-1, self.num_heads, N, N) attn = self.softmax(attn) else: attn = self.softmax(attn) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B_, N, C) x = self.proj(x) x = self.proj_drop(x) return x class SwinTransformerBlock(nn.Module): """Swin Transformer Block. Args: dim (int): Number of input channels. num_heads (int): Number of attention heads. window_size (int): Window size. shift_size (int): Shift size for SW-MSA. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float, optional): Stochastic depth rate. Default: 0.0 act_layer (nn.Module, optional): Activation layer. Default: nn.GELU norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm """ def __init__( self, dim, num_heads, window_size=7, shift_size=0, mlp_ratio=4.0, qkv_bias=True, qk_scale=None, drop=0.0, attn_drop=0.0, drop_path=0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm, ): super().__init__() self.dim = dim self.num_heads = num_heads self.window_size = window_size self.shift_size = shift_size self.mlp_ratio = mlp_ratio assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size" self.norm1 = norm_layer(dim) self.attn = WindowAttention( dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, ) self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp( in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop ) self.H = None self.W = None def forward(self, x, mask_matrix): """Forward function. Args: x: Input feature, tensor size (B, H*W, C). H, W: Spatial resolution of the input feature. mask_matrix: Attention mask for cyclic shift. """ B, L, C = x.shape H, W = self.H, self.W assert L == H * W, "input feature has wrong size" shortcut = x x = self.norm1(x) x = x.view(B, H, W, C) # pad feature maps to multiples of window size pad_l = pad_t = 0 pad_r = (self.window_size - W % self.window_size) % self.window_size pad_b = (self.window_size - H % self.window_size) % self.window_size x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b)) _, Hp, Wp, _ = x.shape # cyclic shift if self.shift_size > 0: shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) attn_mask = mask_matrix else: shifted_x = x attn_mask = None # partition windows x_windows = window_partition( shifted_x, self.window_size ) # nW*B, window_size, window_size, C x_windows = x_windows.view( -1, self.window_size * self.window_size, C ) # nW*B, window_size*window_size, C # W-MSA/SW-MSA attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C # merge windows attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C # reverse cyclic shift if self.shift_size > 0: x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) else: x = shifted_x if pad_r > 0 or pad_b > 0: x = x[:, :H, :W, :].contiguous() x = x.view(B, H * W, C) # FFN x = shortcut + self.drop_path(x) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class PatchMerging(nn.Module): """Patch Merging Layer Args: dim (int): Number of input channels. norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm """ def __init__(self, dim, norm_layer=nn.LayerNorm): super().__init__() self.dim = dim self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) self.norm = norm_layer(4 * dim) def forward(self, x, H, W): """Forward function. Args: x: Input feature, tensor size (B, H*W, C). H, W: Spatial resolution of the input feature. """ B, L, C = x.shape assert L == H * W, "input feature has wrong size" x = x.view(B, H, W, C) # padding pad_input = (H % 2 == 1) or (W % 2 == 1) if pad_input: x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2)) x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C x = self.norm(x) x = self.reduction(x) return x class BasicLayer(nn.Module): """A basic Swin Transformer layer for one stage. Args: dim (int): Number of feature channels depth (int): Depths of this stage. num_heads (int): Number of attention head. window_size (int): Local window size. Default: 7. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. """ def __init__( self, dim, depth, num_heads, window_size=7, mlp_ratio=4.0, qkv_bias=True, qk_scale=None, drop=0.0, attn_drop=0.0, drop_path=0.0, norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False, ): super().__init__() self.window_size = window_size self.shift_size = window_size // 2 self.depth = depth self.use_checkpoint = use_checkpoint # build blocks self.blocks = nn.ModuleList( [ SwinTransformerBlock( dim=dim, num_heads=num_heads, window_size=window_size, shift_size=0 if (i % 2 == 0) else window_size // 2, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop, attn_drop=attn_drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, norm_layer=norm_layer, ) for i in range(depth) ] ) # patch merging layer if downsample is not None: self.downsample = downsample(dim=dim, norm_layer=norm_layer) else: self.downsample = None def forward(self, x, H, W): """Forward function. Args: x: Input feature, tensor size (B, H*W, C). H, W: Spatial resolution of the input feature. """ # calculate attention mask for SW-MSA Hp = int(np.ceil(H / self.window_size)) * self.window_size Wp = int(np.ceil(W / self.window_size)) * self.window_size img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1 h_slices = ( slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None), ) w_slices = ( slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None), ) cnt = 0 for h in h_slices: for w in w_slices: img_mask[:, h, w, :] = cnt cnt += 1 mask_windows = window_partition( img_mask, self.window_size ) # nW, window_size, window_size, 1 mask_windows = mask_windows.view(-1, self.window_size * self.window_size) attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill( attn_mask == 0, float(0.0) ) for blk in self.blocks: blk.H, blk.W = H, W if self.use_checkpoint: x = checkpoint.checkpoint(blk, x, attn_mask) else: x = blk(x, attn_mask) if self.downsample is not None: x_down = self.downsample(x, H, W) Wh, Ww = (H + 1) // 2, (W + 1) // 2 return x, H, W, x_down, Wh, Ww else: return x, H, W, x, H, W class PatchEmbed(nn.Module): """Image to Patch Embedding Args: patch_size (int): Patch token size. Default: 4. in_chans (int): Number of input image channels. Default: 3. embed_dim (int): Number of linear projection output channels. Default: 96. norm_layer (nn.Module, optional): Normalization layer. Default: None """ def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): super().__init__() patch_size = to_2tuple(patch_size) self.patch_size = patch_size self.in_chans = in_chans self.embed_dim = embed_dim self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) if norm_layer is not None: self.norm = norm_layer(embed_dim) else: self.norm = None def forward(self, x): """Forward function.""" # padding _, _, H, W = x.size() if W % self.patch_size[1] != 0: x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1])) if H % self.patch_size[0] != 0: x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0])) x = self.proj(x) # B C Wh Ww if self.norm is not None: Wh, Ww = x.size(2), x.size(3) x = x.flatten(2).transpose(1, 2) x = self.norm(x) x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww) return x class SwinTransformer(nn.Module): """Swin Transformer backbone. A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` - https://arxiv.org/pdf/2103.14030 Args: pretrain_img_size (int): Input image size for training the pretrained model, used in absolute postion embedding. Default 224. patch_size (int | tuple(int)): Patch size. Default: 4. in_chans (int): Number of input image channels. Default: 3. embed_dim (int): Number of linear projection output channels. Default: 96. depths (tuple[int]): Depths of each Swin Transformer stage. num_heads (tuple[int]): Number of attention head of each stage. window_size (int): Window size. Default: 7. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. drop_rate (float): Dropout rate. attn_drop_rate (float): Attention dropout rate. Default: 0. drop_path_rate (float): Stochastic depth rate. Default: 0.2. norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. ape (bool): If True, add absolute position embedding to the patch embedding. Default: False. patch_norm (bool): If True, add normalization after patch embedding. Default: True. out_indices (Sequence[int]): Output from which stages. frozen_stages (int): Stages to be frozen (stop grad and set eval mode). -1 means not freezing any parameters. use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. dilation (bool): if True, the output size if 16x downsample, ow 32x downsample. """ def __init__( self, pretrain_img_size=224, patch_size=4, in_chans=3, embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7, mlp_ratio=4.0, qkv_bias=True, qk_scale=None, drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.2, norm_layer=nn.LayerNorm, ape=False, patch_norm=True, out_indices=(0, 1, 2, 3), frozen_stages=-1, dilation=False, use_checkpoint=False, ): super().__init__() self.pretrain_img_size = pretrain_img_size self.num_layers = len(depths) self.embed_dim = embed_dim self.ape = ape self.patch_norm = patch_norm self.out_indices = out_indices self.frozen_stages = frozen_stages self.dilation = dilation # if use_checkpoint: # print("use_checkpoint!!!!!!!!!!!!!!!!!!!!!!!!") # split image into non-overlapping patches self.patch_embed = PatchEmbed( patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, norm_layer=norm_layer if self.patch_norm else None, ) # absolute position embedding if self.ape: pretrain_img_size = to_2tuple(pretrain_img_size) patch_size = to_2tuple(patch_size) patches_resolution = [ pretrain_img_size[0] // patch_size[0], pretrain_img_size[1] // patch_size[1], ] self.absolute_pos_embed = nn.Parameter( torch.zeros(1, embed_dim, patches_resolution[0], patches_resolution[1]) ) trunc_normal_(self.absolute_pos_embed, std=0.02) self.pos_drop = nn.Dropout(p=drop_rate) # stochastic depth dpr = [ x.item() for x in torch.linspace(0, drop_path_rate, sum(depths)) ] # stochastic depth decay rule # build layers self.layers = nn.ModuleList() # prepare downsample list downsamplelist = [PatchMerging for i in range(self.num_layers)] downsamplelist[-1] = None num_features = [int(embed_dim * 2**i) for i in range(self.num_layers)] if self.dilation: downsamplelist[-2] = None num_features[-1] = int(embed_dim * 2 ** (self.num_layers - 1)) // 2 for i_layer in range(self.num_layers): layer = BasicLayer( # dim=int(embed_dim * 2 ** i_layer), dim=num_features[i_layer], depth=depths[i_layer], num_heads=num_heads[i_layer], window_size=window_size, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[sum(depths[:i_layer]) : sum(depths[: i_layer + 1])], norm_layer=norm_layer, # downsample=PatchMerging if (i_layer < self.num_layers - 1) else None, downsample=downsamplelist[i_layer], use_checkpoint=use_checkpoint, ) self.layers.append(layer) # num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)] self.num_features = num_features # add a norm layer for each output for i_layer in out_indices: layer = norm_layer(num_features[i_layer]) layer_name = f"norm{i_layer}" self.add_module(layer_name, layer) self._freeze_stages() def _freeze_stages(self): if self.frozen_stages >= 0: self.patch_embed.eval() for param in self.patch_embed.parameters(): param.requires_grad = False if self.frozen_stages >= 1 and self.ape: self.absolute_pos_embed.requires_grad = False if self.frozen_stages >= 2: self.pos_drop.eval() for i in range(0, self.frozen_stages - 1): m = self.layers[i] m.eval() for param in m.parameters(): param.requires_grad = False # def init_weights(self, pretrained=None): # """Initialize the weights in backbone. # Args: # pretrained (str, optional): Path to pre-trained weights. # Defaults to None. # """ # def _init_weights(m): # if isinstance(m, nn.Linear): # trunc_normal_(m.weight, std=.02) # if isinstance(m, nn.Linear) and m.bias is not None: # nn.init.constant_(m.bias, 0) # elif isinstance(m, nn.LayerNorm): # nn.init.constant_(m.bias, 0) # nn.init.constant_(m.weight, 1.0) # if isinstance(pretrained, str): # self.apply(_init_weights) # logger = get_root_logger() # load_checkpoint(self, pretrained, strict=False, logger=logger) # elif pretrained is None: # self.apply(_init_weights) # else: # raise TypeError('pretrained must be a str or None') def forward_raw(self, x): """Forward function.""" x = self.patch_embed(x) Wh, Ww = x.size(2), x.size(3) if self.ape: # interpolate the position embedding to the corresponding size absolute_pos_embed = F.interpolate( self.absolute_pos_embed, size=(Wh, Ww), mode="bicubic" ) x = (x + absolute_pos_embed).flatten(2).transpose(1, 2) # B Wh*Ww C else: x = x.flatten(2).transpose(1, 2) x = self.pos_drop(x) outs = [] for i in range(self.num_layers): layer = self.layers[i] x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww) # import ipdb; ipdb.set_trace() if i in self.out_indices: norm_layer = getattr(self, f"norm{i}") x_out = norm_layer(x_out) out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous() outs.append(out) # in: # torch.Size([2, 3, 1024, 1024]) # outs: # [torch.Size([2, 192, 256, 256]), torch.Size([2, 384, 128, 128]), \ # torch.Size([2, 768, 64, 64]), torch.Size([2, 1536, 32, 32])] return tuple(outs) def forward(self, tensor_list: NestedTensor): x = tensor_list.tensors """Forward function.""" x = self.patch_embed(x) Wh, Ww = x.size(2), x.size(3) if self.ape: # interpolate the position embedding to the corresponding size absolute_pos_embed = F.interpolate( self.absolute_pos_embed, size=(Wh, Ww), mode="bicubic" ) x = (x + absolute_pos_embed).flatten(2).transpose(1, 2) # B Wh*Ww C else: x = x.flatten(2).transpose(1, 2) x = self.pos_drop(x) outs = [] for i in range(self.num_layers): layer = self.layers[i] x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww) if i in self.out_indices: norm_layer = getattr(self, f"norm{i}") x_out = norm_layer(x_out) out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous() outs.append(out) # in: # torch.Size([2, 3, 1024, 1024]) # out: # [torch.Size([2, 192, 256, 256]), torch.Size([2, 384, 128, 128]), \ # torch.Size([2, 768, 64, 64]), torch.Size([2, 1536, 32, 32])] # collect for nesttensors outs_dict = {} for idx, out_i in enumerate(outs): m = tensor_list.mask assert m is not None mask = F.interpolate(m[None].float(), size=out_i.shape[-2:]).to(torch.bool)[0] outs_dict[idx] = NestedTensor(out_i, mask) return outs_dict def train(self, mode=True): """Convert the model into training mode while keep layers freezed.""" super(SwinTransformer, self).train(mode) self._freeze_stages() def build_swin_transformer(modelname, pretrain_img_size, **kw): assert modelname in [ "swin_T_224_1k", "swin_B_224_22k", "swin_B_384_22k", "swin_L_224_22k", "swin_L_384_22k", ] model_para_dict = { "swin_T_224_1k": dict( embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7 ), "swin_B_224_22k": dict( embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=7 ), "swin_B_384_22k": dict( embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=12 ), "swin_L_224_22k": dict( embed_dim=192, depths=[2, 2, 18, 2], num_heads=[6, 12, 24, 48], window_size=7 ), "swin_L_384_22k": dict( embed_dim=192, depths=[2, 2, 18, 2], num_heads=[6, 12, 24, 48], window_size=12 ), } kw_cgf = model_para_dict[modelname] kw_cgf.update(kw) model = SwinTransformer(pretrain_img_size=pretrain_img_size, **kw_cgf) return model if __name__ == "__main__": model = build_swin_transformer("swin_L_384_22k", 384, dilation=True) x = torch.rand(2, 3, 1024, 1024) y = model.forward_raw(x) import ipdb ipdb.set_trace() x = torch.rand(2, 3, 384, 384) y = model.forward_raw(x)
swarms-master
swarms/workers/models/GroundingDINO/groundingdino/models/GroundingDINO/backbone/swin_transformer.py
swarms-master
swarms/swarms/__init__.py
import logging import queue import threading from abc import ABC, abstractmethod from concurrent.futures import ThreadPoolExecutor from typing import Any, Dict, List import chromadb from chromadb.utils import embedding_functions class Orchestrator(ABC): """ The Orchestrator takes in an agent, worker, or boss as input then handles all the logic for - task creation, - task assignment, - and task compeletion. And, the communication for millions of agents to communicate with eachother through a vector database that each agent has access to communicate with. Each LLM agent communicates with the orchestrator through a dedicated communication layer. The orchestrator assigns tasks to each LLM agent, which the agents then complete and return. This setup allows for a high degree of flexibility, scalability, and robustness. In the context of swarm LLMs, one could consider an **Omni-Vector Embedding Database for communication. This database could store and manage the high-dimensional vectors produced by each LLM agent. Strengths: This approach would allow for similarity-based lookup and matching of LLM-generated vectors, which can be particularly useful for tasks that involve finding similar outputs or recognizing patterns. Weaknesses: An Omni-Vector Embedding Database might add complexity to the system in terms of setup and maintenance. It might also require significant computational resources, depending on the volume of data being handled and the complexity of the vectors. The handling and transmission of high-dimensional vectors could also pose challenges in terms of network load. # Orchestrator * Takes in an agent class with vector store, then handles all the communication and scales up a swarm with number of agents and handles task assignment and task completion from swarms import OpenAI, Orchestrator, Swarm orchestrated = Orchestrate(OpenAI, nodes=40) #handles all the task assignment and allocation and agent communication using a vectorstore as a universal communication layer and also handlles the task completion logic Objective = "Make a business website for a marketing consultancy" Swarms = (Swarms(orchestrated, auto=True, Objective)) ``` In terms of architecture, the swarm might look something like this: ``` (Orchestrator) / \ Tools + Vector DB -- (LLM Agent)---(Communication Layer) (Communication Layer)---(LLM Agent)-- Tools + Vector DB / | | \ (Task Assignment) (Task Completion) (Task Assignment) (Task Completion) """ def __init__( self, agent, agent_list: List[Any], task_queue: List[Any], collection_name: str = "swarm", api_key: str = None, model_name: str = None ): self.agent = agent self.agents = queue.Queue() for _ in range(agent_list): self.agents.put(agent()) self.task_queue = queue.Queue() self.chroma_client = chromadb.Client() self.collection = self.chroma_client.create_collection( name = collection_name ) self.current_tasks = {} self.lock = threading.Lock() self.condition = threading.Condition(self.lock) self.executor = ThreadPoolExecutor(max_workers=len(agent_list)) @abstractmethod def assign_task( self, agent_id: int, task: Dict[str, Any] ) -> None: """Assign a task to a specific agent""" while True: with self.condition: while not self.task_queue: self.condition.wait() agent = self.agents.get() task = self.task_queue.get() try: result = self.worker.run(task["content"]) #using the embed method to get the vector representation of the result vector_representation = self.embed( result, self.api_key, self.model_name ) self.collection.add( embeddings=[vector_representation], documents=[str(id(task))], ids=[str(id(task))] ) logging.info(f"Task {id(str)} has been processed by agent {id(agent)} with") except Exception as error: logging.error(f"Failed to process task {id(task)} by agent {id(agent)}. Error: {error}") finally: with self.condition: self.agents.put(agent) self.condition.notify() def embed(self, input, api_key, model_name): openai = embedding_functions.OpenAIEmbeddingFunction( api_key=api_key, model_name=model_name ) embedding = openai(input) return embedding @abstractmethod def retrieve_results(self, agent_id: int) -> Any: """Retrieve results from a specific agent""" try: #Query the vector database for documents created by the agents results = self.collection.query( query_texts=[str(agent_id)], n_results=10 ) return results except Exception as e: logging.error(f"Failed to retrieve results from agent {agent_id}. Error {e}") raise @abstractmethod def update_vector_db(self, data) -> None: """Update the vector database""" try: self.collection.add( embeddings=[data["vector"]], documents=[str(data["task_id"])], ids=[str(data["task_id"])] ) except Exception as e: logging.error(f"Failed to update the vector database. Error: {e}") raise @abstractmethod def get_vector_db(self): """Retrieve the vector database""" return self.collection def append_to_db(self, result: str): """append the result of the swarm to a specifici collection in the database""" try: self.collection.add( documents=[result], ids=[str(id(result))] ) except Exception as e: logging.error(f"Failed to append the agent output to database. Error: {e}") raise def run(self, objective:str): """Runs""" if not objective or not isinstance(objective, str): logging.error("Invalid objective") raise ValueError("A valid objective is required") try: self.task_queue.append(objective) results = [ self.assign_task( agent_id, task ) for agent_id, task in zip( range( len(self.agents) ), self.task_queue ) ] for result in results: self.append_to_db(result) logging.info(f"Successfully ran swarms with results: {results}") return results except Exception as e: logging.error(f"An error occured in swarm: {e}") return None
swarms-master
swarms/swarms/orchestrate.py
import queue import threading from time import sleep from swarms.utils.decorators import error_decorator, log_decorator, timing_decorator from swarms.workers.worker import Worker class AutoScaler: """ The AutoScaler is like a kubernetes pod, that autoscales an agent or worker or boss! # TODO Handle task assignment and task delegation # TODO: User task => decomposed into very small sub tasks => sub tasks assigned to workers => workers complete and update the swarm, can ask for help from other agents. # TODO: Missing, Task Assignment, Task delegation, Task completion, Swarm level communication with vector db Example ``` # usage of usage auto_scaler = AutoScaler(agent=YourCustomAgent) auto_scaler.start() for i in range(100): auto_scaler.add_task9f"task {I}}) ``` """ @log_decorator @error_decorator @timing_decorator def __init__( self, initial_agents=10, scale_up_factor=1, idle_threshold=0.2, busy_threshold=0.7, agent=None, ): self.agent = agent or Worker self.agents_pool = [self.agent() for _ in range(initial_agents)] self.task_queue = queue.Queue() self.scale_up_factor = scale_up_factor self.idle_threshold = idle_threshold self.lock = threading.Lock() def add_task(self, task): self.tasks_queue.put(task) @log_decorator @error_decorator @timing_decorator def scale_up(self): with self.lock: new_agents_counts = len(self.agents_pool) * self.scale_up_factor for _ in range(new_agents_counts): self.agents_pool.append(Worker()) def scale_down(self): with self.lock: if len(self.agents_pool) > 10: #ensure minmum of 10 agents del self.agents_pool[-1] #remove last agent @log_decorator @error_decorator @timing_decorator def monitor_and_scale(self): while True: sleep(60)#check minute pending_tasks = self.task_queue.qsize() active_agents = sum([1 for agent in self.agents_pool if agent.is_busy()]) if pending_tasks / len(self.agents_pool) > self.busy_threshold: self.scale_up() elif active_agents / len(self.agents_pool) < self.idle_threshold: self.scale_down() @log_decorator @error_decorator @timing_decorator def start(self): monitor_thread = threading.Thread(target=self.monitor_and_scale) monitor_thread.start() while True: task = self.task_queue.get() if task: available_agent = next((agent for agent in self.agents_pool)) if available_agent: available_agent.run(task) def del_agent(self): with self.lock: if self.agents_pool: agent_to_remove = self.agents_poo.pop() del agent_to_remove
swarms-master
swarms/swarms/autoscaler.py
import asyncio import logging from typing import Optional from langchain import OpenAI from swarms.boss.boss_node import BossNode from swarms.workers.worker_node import WorkerNode logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') # ---------- Constants ---------- ROOT_DIR = "./data/" class HierarchicalSwarm: def __init__( self, openai_api_key: Optional[str] = "", use_vectorstore: Optional[bool] = True, use_async: Optional[bool] = True, worker_name: Optional[str] = "Swarm Worker AI Assistant", verbose: Optional[bool] = False, human_in_the_loop: Optional[bool] = True, boss_prompt: Optional[str] = "You are an Boss in a swarm who performs one task based on the following objective: {objective}. Take into account these previously completed tasks: {context}.\n", worker_prompt: Optional[str] = None, temperature: Optional[float] = 0.5, max_iterations: Optional[int] = None, logging_enabled: Optional[bool] = True ): self.openai_api_key = openai_api_key self.use_vectorstore = use_vectorstore self.use_async = use_async self.worker_name = worker_name self.human_in_the_loop = human_in_the_loop self.boss_prompt = boss_prompt self.temperature = temperature self.max_iterations = max_iterations self.logging_enabled = logging_enabled self.verbose = verbose self.worker_node = WorkerNode( openai_api_key=self.openai_api_key, temperature=self.temperature, human_in_the_loop=self.human_in_the_loop, verbose=self.verbose ) self.boss_node = BossNode( api_key=self.openai_api_key, worker_node=self.worker_node, llm_class=OpenAI, max_iterations=self.max_iterations, verbose=self.verbose ) self.logger = logging.getLogger() if not logging_enabled: self.logger.disabled = True def run(self, objective): try: self.boss_node.task = self.boss_node.create_task(objective) logging.info(f"Running task: {self.boss_node.task}") if self.use_async: loop = asyncio.get_event_loop() result = loop.run_until_complete(self.boss_node.run()) else: result = self.boss_node.run() logging.info(f"Completed tasks: {self.boss_node.task}") return result except Exception as e: logging.error(f"An error occurred in run: {e}") return None def swarm( api_key: Optional[str]="", objective: Optional[str]="" ): if not api_key or not isinstance(api_key, str): logging.error("Invalid OpenAI key") raise ValueError("A valid OpenAI API key is required") if not objective or not isinstance(objective, str): logging.error("Invalid objective") raise ValueError("A valid objective is required") try: swarms = HierarchicalSwarm(api_key, use_async=False) result = swarms.run(objective) if result is None: logging.error("Failed to run swarms") else: logging.info(f"Successfully ran swarms with results: {result}") return result except Exception as e: logging.error(f"An error occured in swarm: {e}") return None
swarms-master
swarms/swarms/swarms.py
from abc import ABC, abstractmethod class AbstractSwarm(ABC): # TODO: Pass in abstract LLM class that can utilize Hf or Anthropic models, Move away from OPENAI # TODO: ADD Universal Communication Layer, a ocean vectorstore instance # TODO: BE MORE EXPLICIT ON TOOL USE, TASK DECOMPOSITION AND TASK COMPLETETION AND ALLOCATION # TODO: Add RLHF Data collection, ask user how the swarm is performing # TODO: Create an onboarding process if not settings are preconfigured like `from swarms import Swarm, Swarm()` => then initiate onboarding name your swarm + provide purpose + etc def __init__(self, agents, vectorstore, tools): self.agents = agents self.vectorstore = vectorstore self.tools = tools @abstractmethod def communicate(self): pass @abstractmethod def run(self): pass
swarms-master
swarms/swarms/base.py
import boto3 import json import subprocess import os import re def b64text(txt): """Generate Base 64 encoded CF json for a multiline string, subbing in values where appropriate""" lines = [] for line in txt.splitlines(True): if "${" in line: lines.append({"Fn::Sub": line}) else: lines.append(line) return {"Fn::Base64": {"Fn::Join": ["", lines]}} path = os.path.dirname(os.path.realpath(__file__)) version = subprocess.check_output(f"{path}/version").decode("ascii").strip() with open(f"{path}/templates/docker-compose.yml") as f: docker_compose_file = str(f.read()) with open(f"{path}/../config/backup_disk.xml") as f: backup_disk_config = str(f.read()) with open(f"{path}/../config/ocean_users.xml") as f: ocean_users_config = str(f.read()) cloud_config_script = """ #cloud-config cloud_final_modules: - [scripts-user, always] """ cloud_init_script = f""" #!/bin/bash amazon-linux-extras install docker usermod -a -G docker ec2-user curl -L https://github.com/docker/compose/releases/latest/download/docker-compose-$(uname -s)-$(uname -m) -o /usr/local/bin/docker-compose chmod +x /usr/local/bin/docker-compose ln -s /usr/local/bin/docker-compose /usr/bin/docker-compose systemctl enable docker systemctl start docker cat << EOF > /home/ec2-user/docker-compose.yml {docker_compose_file} EOF mkdir /home/ec2-user/config cat << EOF > /home/ec2-user/config/backup_disk.xml {backup_disk_config} EOF cat << EOF > /home/ec2-user/config/ocean_users.xml {ocean_users_config} EOF docker-compose -f /home/ec2-user/docker-compose.yml up -d """ userdata = f"""Content-Type: multipart/mixed; boundary="//" MIME-Version: 1.0 --// Content-Type: text/cloud-config; charset="us-ascii" MIME-Version: 1.0 Content-Transfer-Encoding: 7bit Content-Disposition: attachment; filename="cloud-config.txt" {cloud_config_script} --// Content-Type: text/x-shellscript; charset="us-ascii" MIME-Version: 1.0 Content-Transfer-Encoding: 7bit Content-Disposition: attachment; filename="userdata.txt" {cloud_init_script} --//-- """ cf = { "AWSTemplateFormatVersion": "2010-09-09", "Description": "Create a stack that runs Ocean hosted on a single instance", "Parameters": { "KeyName": { "Description": "Name of an existing EC2 KeyPair to enable SSH access to the instance", "Type": "String", "ConstraintDescription": "If present, must be the name of an existing EC2 KeyPair.", "Default": "", }, "InstanceType": { "Description": "EC2 instance type", "Type": "String", "Default": "t3.small", }, "OceanVersion": { "Description": "Ocean version to install", "Type": "String", "Default": version, }, }, "Conditions": { "HasKeyName": {"Fn::Not": [{"Fn::Equals": [{"Ref": "KeyName"}, ""]}]}, }, "Resources": { "OceanInstance": { "Type": "AWS::EC2::Instance", "Properties": { "ImageId": { "Fn::FindInMap": ["Region2AMI", {"Ref": "AWS::Region"}, "AMI"] }, "InstanceType": {"Ref": "InstanceType"}, "UserData": b64text(userdata), "SecurityGroupIds": [{"Ref": "OceanInstanceSecurityGroup"}], "KeyName": { "Fn::If": [ "HasKeyName", {"Ref": "KeyName"}, {"Ref": "AWS::NoValue"}, ] }, "BlockDeviceMappings": [ { "DeviceName": { "Fn::FindInMap": [ "Region2AMI", {"Ref": "AWS::Region"}, "RootDeviceName", ] }, "Ebs": {"VolumeSize": 24}, } ], }, }, "OceanInstanceSecurityGroup": { "Type": "AWS::EC2::SecurityGroup", "Properties": { "GroupDescription": "Ocean Instance Security Group", "SecurityGroupIngress": [ { "IpProtocol": "tcp", "FromPort": "22", "ToPort": "22", "CidrIp": "0.0.0.0/0", }, { "IpProtocol": "tcp", "FromPort": "8000", "ToPort": "8000", "CidrIp": "0.0.0.0/0", }, ], }, }, }, "Outputs": { "ServerIp": { "Description": "IP address of the Ocean server", "Value": {"Fn::GetAtt": ["OceanInstance", "PublicIp"]}, } }, "Mappings": {"Region2AMI": {}}, } # Populate the Region2AMI mappings regions = boto3.client("ec2", region_name="us-east-1").describe_regions()["Regions"] for region in regions: region_name = region["RegionName"] ami_result = boto3.client("ec2", region_name=region_name).describe_images( Owners=["137112412989"], Filters=[ {"Name": "name", "Values": ["amzn2-ami-kernel-5.10-hvm-*-x86_64-gp2"]}, {"Name": "root-device-type", "Values": ["ebs"]}, {"Name": "virtualization-type", "Values": ["hvm"]}, ], ) img = ami_result["Images"][0] ami_id = img["ImageId"] root_device_name = img["BlockDeviceMappings"][0]["DeviceName"] cf["Mappings"]["Region2AMI"][region_name] = { "AMI": ami_id, "RootDeviceName": root_device_name, } # Write the CF json to a file json.dump(cf, open("/tmp/ocean.cf.json", "w"), indent=4) # upload to S3 s3 = boto3.client("s3", region_name="us-east-1") s3.upload_file( "/tmp/ocean.cf.json", "public.tryocean.com", f"cloudformation/{version}/ocean.cf.json", ) # Upload to s3 under /latest version only if this is a release pattern = re.compile(r"^\d+\.\d+\.\d+$") if pattern.match(version): s3.upload_file( "/tmp/ocean.cf.json", "public.tryocean.com", "cloudformation/latest/ocean.cf.json", ) else: print(f"Version {version} is not a 3-part semver, not uploading to /latest")
Ocean-master
bin/generate_cloudformation.py
# Sanity check script to ensure that the Ocean client can connect # and is capable of recieving data. import oceandb # run in in-memory mode ocean_api = oceandb.Client() print(ocean_api.heartbeat())
Ocean-master
bin/test.py
from pydantic import BaseSettings from typing import List TELEMETRY_WHITELISTED_SETTINGS = [ "ocean_db_impl", "ocean_api_impl", "ocean_server_ssl_enabled", ] class Settings(BaseSettings): environment: str = "" ocean_db_impl: str = "duckdb" ocean_api_impl: str = "local" clickhouse_host: str = None # type: ignore clickhouse_port: str = None persist_directory: str = ".ocean" ocean_server_host: str = None ocean_server_http_port: str = None ocean_server_ssl_enabled: bool = False ocean_server_grpc_port: str = None ocean_server_cors_allow_origins: List[str] = [] # eg ["http://localhost:3000"] anonymized_telemetry: bool = True def __getitem__(self, item): return getattr(self, item) class Config: env_file = ".env" env_file_encoding = "utf-8"
Ocean-master
oceandb/config.py
import oceandb.config import logging from oceandb.telemetry.events import ClientStartEvent from oceandb.telemetry.posthog import Posthog logger = logging.getLogger(__name__) __settings = oceandb.config.Settings() __version__ = "0.3.22" def configure(**kwargs): """Override Ocean's default settings, environment variables or .env files""" global __settings __settings = oceandb.config.Settings(**kwargs) def get_settings(): return __settings def get_db(settings=__settings): """Return a ocean.DB instance based on the provided or environmental settings.""" setting = settings.ocean_db_impl.lower() def require(key): assert settings[ key ], f"Setting '{key}' is required when ocean_db_impl={setting}" if setting == "clickhouse": require("clickhouse_host") require("clickhouse_port") require("persist_directory") logger.info("Using Clickhouse for database") import oceandb.db.clickhouse return oceandb.db.clickhouse.Clickhouse(settings) elif setting == "duckdb+parquet": require("persist_directory") logger.warning( f"Using embedded DuckDB with persistence: data will be stored in: {settings.persist_directory}" ) import oceandb.db.duckdb return oceandb.db.duckdb.PersistentDuckDB(settings) elif setting == "duckdb": require("persist_directory") logger.warning( "Using embedded DuckDB without persistence: data will be transient" ) import oceandb.db.duckdb return oceandb.db.duckdb.DuckDB(settings) else: raise ValueError( f"Expected ocean_db_impl to be one of clickhouse, duckdb, duckdb+parquet, got {setting}" ) def Client(settings=__settings): """Return a ocean.API instance based on the provided or environmental settings, optionally overriding the DB instance.""" setting = settings.ocean_api_impl.lower() telemetry_client = Posthog(settings) # Submit event for client start telemetry_client.capture(ClientStartEvent()) def require(key): assert settings[ key ], f"Setting '{key}' is required when ocean_api_impl={setting}" if setting == "rest": require("ocean_server_host") require("ocean_server_http_port") logger.info( "Running Ocean in client mode using REST to connect to remote server" ) import oceandb.api.fastapi return oceandb.api.fastapi.FastAPI(settings, telemetry_client) elif setting == "local": logger.info("Running Ocean using direct local API.") import oceandb.api.local return oceandb.api.local.LocalAPI(settings, get_db(settings), telemetry_client) else: raise ValueError( f"Expected ocean_api_impl to be one of rest, local, got {setting}" )
Ocean-master
oceandb/__init__.py
import oceandb import oceandb.config from oceandb.server.fastapi import FastAPI settings = oceandb.config.Settings() server = FastAPI(settings) app = server.app()
Ocean-master
oceandb/app.py
from abc import abstractmethod class OceanError(Exception): def code(self): """Return an appropriate HTTP response code for this error""" return 400 # Bad Request def message(self): return ", ".join(self.args) @classmethod @abstractmethod def name(self): """Return the error name""" pass class NoDatapointsException(OceanError): @classmethod def name(cls): return "NoDatapoints" class NoIndexException(OceanError): @classmethod def name(cls): return "NoIndex" class InvalidDimensionException(OceanError): @classmethod def name(cls): return "InvalidDimension" class NotEnoughElementsException(OceanError): @classmethod def name(cls): return "NotEnoughElements" class IDAlreadyExistsError(OceanError): def code(self): return 409 # Conflict @classmethod def name(cls): return "IDAlreadyExists" class DuplicateIDError(OceanError): @classmethod def name(cls): return "DuplicateID" class InvalidUUIDError(OceanError): @classmethod def name(cls): return "InvalidUUID" error_types = { "NoDatapoints": NoDatapointsException, "NoIndex": NoIndexException, "InvalidDimension": InvalidDimensionException, "NotEnoughElements": NotEnoughElementsException, "IDAlreadyExists": IDAlreadyExistsError, "DuplicateID": DuplicateIDError, "InvalidUUID": InvalidUUIDError, }
Ocean-master
oceandb/errors.py
from oceandb.config import Settings from oceandb import Client from oceandb.api import API import oceandb.server.fastapi from requests.exceptions import ConnectionError import hypothesis import tempfile import os import uvicorn import time from multiprocessing import Process import pytest from typing import Generator, List, Callable import shutil hypothesis.settings.register_profile( "dev", deadline=15000, suppress_health_check=[ hypothesis.HealthCheck.data_too_large, hypothesis.HealthCheck.large_base_example, ], ) hypothesis.settings.load_profile(os.getenv("HYPOTHESIS_PROFILE", "dev")) def _run_server(): """Run a Ocean server locally""" settings = Settings( ocean_api_impl="local", ocean_db_impl="duckdb", persist_directory=tempfile.gettempdir() + "/test_server", ) server = oceandb.server.fastapi.FastAPI(settings) uvicorn.run(server.app(), host="0.0.0.0", port=6666, log_level="error") def _await_server(api: API, attempts: int = 0): try: api.heartbeat() except ConnectionError as e: if attempts > 10: raise e else: time.sleep(2) _await_server(api, attempts + 1) def fastapi() -> Generator[API, None, None]: """Fixture generator that launches a server in a separate process, and yields a fastapi client connect to it""" proc = Process(target=_run_server, args=(), daemon=True) proc.start() api = oceandb.Client( Settings( ocean_api_impl="rest", ocean_server_host="localhost", ocean_server_http_port="6666", ) ) _await_server(api) yield api proc.kill() def duckdb() -> Generator[API, None, None]: """Fixture generator for duckdb""" yield Client( Settings( ocean_api_impl="local", ocean_db_impl="duckdb", persist_directory=tempfile.gettempdir(), ) ) def duckdb_parquet() -> Generator[API, None, None]: """Fixture generator for duckdb+parquet""" save_path = tempfile.gettempdir() + "/tests" yield Client( Settings( ocean_api_impl="local", ocean_db_impl="duckdb+parquet", persist_directory=save_path, ) ) if os.path.exists(save_path): shutil.rmtree(save_path) def integration_api() -> Generator[API, None, None]: """Fixture generator for returning a client configured via environmenet variables, intended for externally configured integration tests """ yield oceandb.Client() def fixtures() -> List[Callable[[], Generator[API, None, None]]]: api_fixtures = [duckdb, duckdb_parquet, fastapi] if "OCEAN_INTEGRATION_TEST" in os.environ: api_fixtures.append(integration_api) if "OCEAN_INTEGRATION_TEST_ONLY" in os.environ: api_fixtures = [integration_api] return api_fixtures @pytest.fixture(scope="module", params=fixtures()) def api(request) -> Generator[API, None, None]: yield next(request.param())
Ocean-master
oceandb/test/conftest.py
import unittest import os from unittest.mock import patch import oceandb import oceandb.config class GetDBTest(unittest.TestCase): @patch("oceandb.db.duckdb.DuckDB", autospec=True) def test_default_db(self, mock): oceandb.get_db(oceandb.config.Settings(persist_directory="./foo")) assert mock.called @patch("oceandb.db.duckdb.PersistentDuckDB", autospec=True) def test_persistent_duckdb(self, mock): oceandb.get_db( oceandb.config.Settings( ocean_db_impl="duckdb+parquet", persist_directory="./foo" ) ) assert mock.called @patch("oceandb.db.clickhouse.Clickhouse", autospec=True) def test_clickhouse(self, mock): oceandb.get_db( oceandb.config.Settings( ocean_db_impl="clickhouse", persist_directory="./foo", clickhouse_host="foo", clickhouse_port=666, ) ) assert mock.called class GetAPITest(unittest.TestCase): @patch("oceandb.db.duckdb.DuckDB", autospec=True) @patch("oceandb.api.local.LocalAPI", autospec=True) @patch.dict(os.environ, {}, clear=True) def test_local(self, mock_api, mock_db): oceandb.Client(oceandb.config.Settings(persist_directory="./foo")) assert mock_api.called assert mock_db.called @patch("oceandb.api.fastapi.FastAPI", autospec=True) @patch.dict(os.environ, {}, clear=True) def test_fastapi(self, mock): oceandb.Client( oceandb.config.Settings( ocean_api_impl="rest", persist_directory="./foo", ocean_server_host="foo", ocean_server_http_port="80", ) ) assert mock.called
Ocean-master
oceandb/test/test_chroma.py
import oceandb from oceandb.api.types import QueryResult from oceandb.config import Settings import oceandb.server.fastapi import pytest import tempfile import numpy as np @pytest.fixture def local_persist_api(): return oceandb.Client( Settings( ocean_api_impl="local", ocean_db_impl="duckdb+parquet", persist_directory=tempfile.gettempdir() + "/test_server", ) ) # https://docs.pytest.org/en/6.2.x/fixture.html#fixtures-can-be-requested-more-than-once-per-test-return-values-are-cached @pytest.fixture def local_persist_api_cache_bust(): return oceandb.Client( Settings( ocean_api_impl="local", ocean_db_impl="duckdb+parquet", persist_directory=tempfile.gettempdir() + "/test_server", ) ) @pytest.mark.parametrize("api_fixture", [local_persist_api]) def test_persist_index_loading(api_fixture, request): api = request.getfixturevalue("local_persist_api") api.reset() collection = api.create_collection("test") collection.add(ids="id1", documents="hello") api.persist() del api api2 = request.getfixturevalue("local_persist_api_cache_bust") collection = api2.get_collection("test") nn = collection.query( query_texts="hello", n_results=1, include=["embeddings", "documents", "metadatas", "distances"], ) for key in nn.keys(): assert len(nn[key]) == 1 @pytest.mark.parametrize("api_fixture", [local_persist_api]) def test_persist_index_loading_embedding_function(api_fixture, request): embedding_function = lambda x: [[1, 2, 3] for _ in range(len(x))] # noqa E731 api = request.getfixturevalue("local_persist_api") api.reset() collection = api.create_collection("test", embedding_function=embedding_function) collection.add(ids="id1", documents="hello") api.persist() del api api2 = request.getfixturevalue("local_persist_api_cache_bust") collection = api2.get_collection("test", embedding_function=embedding_function) nn = collection.query( query_texts="hello", n_results=1, include=["embeddings", "documents", "metadatas", "distances"], ) for key in nn.keys(): assert len(nn[key]) == 1 @pytest.mark.parametrize("api_fixture", [local_persist_api]) def test_persist_index_get_or_create_embedding_function(api_fixture, request): embedding_function = lambda x: [[1, 2, 3] for _ in range(len(x))] # noqa E731 api = request.getfixturevalue("local_persist_api") api.reset() collection = api.get_or_create_collection( "test", embedding_function=embedding_function ) collection.add(ids="id1", documents="hello") api.persist() del api api2 = request.getfixturevalue("local_persist_api_cache_bust") collection = api2.get_or_create_collection( "test", embedding_function=embedding_function ) nn = collection.query( query_texts="hello", n_results=1, include=["embeddings", "documents", "metadatas", "distances"], ) for key in nn.keys(): assert len(nn[key]) == 1 @pytest.mark.parametrize("api_fixture", [local_persist_api]) def test_persist(api_fixture, request): api = request.getfixturevalue(api_fixture.__name__) api.reset() collection = api.create_collection("testspace") collection.add(**batch_records) assert collection.count() == 2 api.persist() del api api = request.getfixturevalue(api_fixture.__name__) collection = api.get_collection("testspace") assert collection.count() == 2 api.delete_collection("testspace") api.persist() del api api = request.getfixturevalue(api_fixture.__name__) assert api.list_collections() == [] def test_heartbeat(api): assert isinstance(api.heartbeat(), int) batch_records = { "embeddings": [[1.1, 2.3, 3.2], [1.2, 2.24, 3.2]], "ids": ["https://example.com/1", "https://example.com/2"], } def test_add(api): api.reset() collection = api.create_collection("testspace") collection.add(**batch_records) assert collection.count() == 2 def test_get_or_create(api): api.reset() collection = api.create_collection("testspace") collection.add(**batch_records) assert collection.count() == 2 with pytest.raises(Exception): collection = api.create_collection("testspace") collection = api.get_or_create_collection("testspace") assert collection.count() == 2 minimal_records = { "embeddings": [[1.1, 2.3, 3.2], [1.2, 2.24, 3.2]], "ids": ["https://example.com/1", "https://example.com/2"], } def test_add_minimal(api): api.reset() collection = api.create_collection("testspace") collection.add(**minimal_records) assert collection.count() == 2 def test_get_from_db(api): api.reset() collection = api.create_collection("testspace") collection.add(**batch_records) records = collection.get(include=["embeddings", "documents", "metadatas"]) for key in records.keys(): assert len(records[key]) == 2 def test_reset_db(api): api.reset() collection = api.create_collection("testspace") collection.add(**batch_records) assert collection.count() == 2 assert api.reset() assert len(api.list_collections()) == 0 def test_get_nearest_neighbors(api): api.reset() collection = api.create_collection("testspace") collection.add(**batch_records) # assert api.create_index(collection_name="testspace") # default is auto now nn = collection.query( query_embeddings=[1.1, 2.3, 3.2], n_results=1, where={}, include=["embeddings", "documents", "metadatas", "distances"], ) for key in nn.keys(): assert len(nn[key]) == 1 nn = collection.query( query_embeddings=[[1.1, 2.3, 3.2]], n_results=1, where={}, include=["embeddings", "documents", "metadatas", "distances"], ) for key in nn.keys(): assert len(nn[key]) == 1 nn = collection.query( query_embeddings=[[1.1, 2.3, 3.2], [0.1, 2.3, 4.5]], n_results=1, where={}, include=["embeddings", "documents", "metadatas", "distances"], ) for key in nn.keys(): assert len(nn[key]) == 2 def test_get_nearest_neighbors_filter(api, request): api.reset() collection = api.create_collection("testspace") collection.add(**batch_records) # assert api.create_index(collection_name="testspace") # default is auto now with pytest.raises(Exception) as e: collection.query( query_embeddings=[[1.1, 2.3, 3.2]], n_results=1, where={"distance": "false"} ) assert str(e.value).__contains__("found") def test_delete(api): api.reset() collection = api.create_collection("testspace") collection.add(**batch_records) assert collection.count() == 2 collection.delete() assert collection.count() == 0 def test_delete_with_index(api): api.reset() collection = api.create_collection("testspace") collection.add(**batch_records) assert collection.count() == 2 collection.query(query_embeddings=[[1.1, 2.3, 3.2]], n_results=1) def test_count(api): api.reset() collection = api.create_collection("testspace") assert collection.count() == 0 collection.add(**batch_records) assert collection.count() == 2 def test_modify(api): api.reset() collection = api.create_collection("testspace") collection.modify(name="testspace2") # collection name is modify assert collection.name == "testspace2" def test_metadata_cru(api): api.reset() metadata_a = {"a": 1, "b": 2} # Test create metatdata collection = api.create_collection("testspace", metadata=metadata_a) assert collection.metadata is not None assert collection.metadata["a"] == 1 assert collection.metadata["b"] == 2 # Test get metatdata collection = api.get_collection("testspace") assert collection.metadata is not None assert collection.metadata["a"] == 1 assert collection.metadata["b"] == 2 # Test modify metatdata collection.modify(metadata={"a": 2, "c": 3}) assert collection.metadata["a"] == 2 assert collection.metadata["c"] == 3 assert "b" not in collection.metadata # Test get after modify metatdata collection = api.get_collection("testspace") assert collection.metadata is not None assert collection.metadata["a"] == 2 assert collection.metadata["c"] == 3 assert "b" not in collection.metadata # Test name exists get_or_create_metadata collection = api.get_or_create_collection("testspace") assert collection.metadata is not None assert collection.metadata["a"] == 2 assert collection.metadata["c"] == 3 # Test name exists create metadata collection = api.get_or_create_collection("testspace2") assert collection.metadata is None # Test list collections collections = api.list_collections() for collection in collections: if collection.name == "testspace": assert collection.metadata is not None assert collection.metadata["a"] == 2 assert collection.metadata["c"] == 3 elif collection.name == "testspace2": assert collection.metadata is None def test_increment_index_on(api): api.reset() collection = api.create_collection("testspace") collection.add(**batch_records) assert collection.count() == 2 # increment index # collection.create_index(index_type="hnsw", index_params={"M": 16, "efConstruction": 200}) nn = collection.query( query_embeddings=[[1.1, 2.3, 3.2]], n_results=1, include=["embeddings", "documents", "metadatas", "distances"], ) for key in nn.keys(): assert len(nn[key]) == 1 def test_increment_index_off(api): api.reset() collection = api.create_collection("testspace") collection.add(**batch_records, increment_index=False) assert collection.count() == 2 # incremental index collection.create_index() nn = collection.query( query_embeddings=[[1.1, 2.3, 3.2]], n_results=1, include=["embeddings", "documents", "metadatas", "distances"], ) for key in nn.keys(): assert len(nn[key]) == 1 def skipping_indexing_will_fail(api): api.reset() collection = api.create_collection("testspace") collection.add(**batch_records, increment_index=False) assert collection.count() == 2 # incremental index with pytest.raises(Exception) as e: collection.query(query_embeddings=[[1.1, 2.3, 3.2]], n_results=1) assert str(e.value).__contains__("index not found") def test_add_a_collection(api): api.reset() api.create_collection("testspace") # get collection does not throw an error collection = api.get_collection("testspace") assert collection.name == "testspace" # get collection should throw an error if collection does not exist with pytest.raises(Exception): collection = api.get_collection("testspace2") def test_list_collections(api): api.reset() api.create_collection("testspace") api.create_collection("testspace2") # get collection does not throw an error collections = api.list_collections() assert len(collections) == 2 def test_reset(api): api.reset() api.create_collection("testspace") api.create_collection("testspace2") # get collection does not throw an error collections = api.list_collections() assert len(collections) == 2 api.reset() collections = api.list_collections() assert len(collections) == 0 def test_peek(api): api.reset() collection = api.create_collection("testspace") collection.add(**batch_records) assert collection.count() == 2 # peek peek = collection.peek() for key in peek.keys(): assert len(peek[key]) == 2 # TEST METADATA AND METADATA FILTERING # region metadata_records = { "embeddings": [[1.1, 2.3, 3.2], [1.2, 2.24, 3.2]], "ids": ["id1", "id2"], "metadatas": [ {"int_value": 1, "string_value": "one", "float_value": 1.001}, {"int_value": 2}, ], } def test_metadata_add_get_int_float(api): api.reset() collection = api.create_collection("test_int") collection.add(**metadata_records) items = collection.get(ids=["id1", "id2"]) assert items["metadatas"][0]["int_value"] == 1 assert items["metadatas"][0]["float_value"] == 1.001 assert items["metadatas"][1]["int_value"] == 2 assert type(items["metadatas"][0]["int_value"]) == int assert type(items["metadatas"][0]["float_value"]) == float def test_metadata_add_query_int_float(api): api.reset() collection = api.create_collection("test_int") collection.add(**metadata_records) items: QueryResult = collection.query( query_embeddings=[[1.1, 2.3, 3.2]], n_results=1 ) assert items["metadatas"] is not None assert items["metadatas"][0][0]["int_value"] == 1 assert items["metadatas"][0][0]["float_value"] == 1.001 assert type(items["metadatas"][0][0]["int_value"]) == int assert type(items["metadatas"][0][0]["float_value"]) == float def test_metadata_get_where_string(api): api.reset() collection = api.create_collection("test_int") collection.add(**metadata_records) items = collection.get(where={"string_value": "one"}) assert items["metadatas"][0]["int_value"] == 1 assert items["metadatas"][0]["string_value"] == "one" def test_metadata_get_where_int(api): api.reset() collection = api.create_collection("test_int") collection.add(**metadata_records) items = collection.get(where={"int_value": 1}) assert items["metadatas"][0]["int_value"] == 1 assert items["metadatas"][0]["string_value"] == "one" def test_metadata_get_where_float(api): api.reset() collection = api.create_collection("test_int") collection.add(**metadata_records) items = collection.get(where={"float_value": 1.001}) assert items["metadatas"][0]["int_value"] == 1 assert items["metadatas"][0]["string_value"] == "one" assert items["metadatas"][0]["float_value"] == 1.001 def test_metadata_update_get_int_float(api): api.reset() collection = api.create_collection("test_int") collection.add(**metadata_records) collection.update( ids=["id1"], metadatas=[{"int_value": 2, "string_value": "two", "float_value": 2.002}], ) items = collection.get(ids=["id1"]) assert items["metadatas"][0]["int_value"] == 2 assert items["metadatas"][0]["string_value"] == "two" assert items["metadatas"][0]["float_value"] == 2.002 bad_metadata_records = { "embeddings": [[1.1, 2.3, 3.2], [1.2, 2.24, 3.2]], "ids": ["id1", "id2"], "metadatas": [{"value": {"nested": "5"}}, {"value": [1, 2, 3]}], } def test_metadata_validation_add(api): api.reset() collection = api.create_collection("test_metadata_validation") with pytest.raises(ValueError, match="metadata"): collection.add(**bad_metadata_records) def test_metadata_validation_update(api): api.reset() collection = api.create_collection("test_metadata_validation") collection.add(**metadata_records) with pytest.raises(ValueError, match="metadata"): collection.update(ids=["id1"], metadatas={"value": {"nested": "5"}}) def test_where_validation_get(api): api.reset() collection = api.create_collection("test_where_validation") with pytest.raises(ValueError, match="where"): collection.get(where={"value": {"nested": "5"}}) def test_where_validation_query(api): api.reset() collection = api.create_collection("test_where_validation") with pytest.raises(ValueError, match="where"): collection.query(query_embeddings=[0, 0, 0], where={"value": {"nested": "5"}}) operator_records = { "embeddings": [[1.1, 2.3, 3.2], [1.2, 2.24, 3.2]], "ids": ["id1", "id2"], "metadatas": [ {"int_value": 1, "string_value": "one", "float_value": 1.001}, {"int_value": 2, "float_value": 2.002, "string_value": "two"}, ], } def test_where_lt(api): api.reset() collection = api.create_collection("test_where_lt") collection.add(**operator_records) items = collection.get(where={"int_value": {"$lt": 2}}) assert len(items["metadatas"]) == 1 def test_where_lte(api): api.reset() collection = api.create_collection("test_where_lte") collection.add(**operator_records) items = collection.get(where={"int_value": {"$lte": 2.0}}) assert len(items["metadatas"]) == 2 def test_where_gt(api): api.reset() collection = api.create_collection("test_where_lte") collection.add(**operator_records) items = collection.get(where={"float_value": {"$gt": -1.4}}) assert len(items["metadatas"]) == 2 def test_where_gte(api): api.reset() collection = api.create_collection("test_where_lte") collection.add(**operator_records) items = collection.get(where={"float_value": {"$gte": 2.002}}) assert len(items["metadatas"]) == 1 def test_where_ne_string(api): api.reset() collection = api.create_collection("test_where_lte") collection.add(**operator_records) items = collection.get(where={"string_value": {"$ne": "two"}}) assert len(items["metadatas"]) == 1 def test_where_ne_eq_number(api): api.reset() collection = api.create_collection("test_where_lte") collection.add(**operator_records) items = collection.get(where={"int_value": {"$ne": 1}}) assert len(items["metadatas"]) == 1 items = collection.get(where={"float_value": {"$eq": 2.002}}) assert len(items["metadatas"]) == 1 def test_where_valid_operators(api): api.reset() collection = api.create_collection("test_where_valid_operators") collection.add(**operator_records) with pytest.raises(ValueError): collection.get(where={"int_value": {"$invalid": 2}}) with pytest.raises(ValueError): collection.get(where={"int_value": {"$lt": "2"}}) with pytest.raises(ValueError): collection.get(where={"int_value": {"$lt": 2, "$gt": 1}}) # Test invalid $and, $or with pytest.raises(ValueError): collection.get(where={"$and": {"int_value": {"$lt": 2}}}) with pytest.raises(ValueError): collection.get( where={"int_value": {"$lt": 2}, "$or": {"int_value": {"$gt": 1}}} ) with pytest.raises(ValueError): collection.get( where={"$gt": [{"int_value": {"$lt": 2}}, {"int_value": {"$gt": 1}}]} ) with pytest.raises(ValueError): collection.get(where={"$or": [{"int_value": {"$lt": 2}}]}) with pytest.raises(ValueError): collection.get(where={"$or": []}) with pytest.raises(ValueError): collection.get(where={"a": {"$contains": "test"}}) with pytest.raises(ValueError): collection.get( where={ "$or": [ {"a": {"$contains": "first"}}, # invalid {"$contains": "second"}, # valid ] } ) # TODO: Define the dimensionality of these embeddingds in terms of the default record bad_dimensionality_records = { "embeddings": [[1.1, 2.3, 3.2, 4.5], [1.2, 2.24, 3.2, 4.5]], "ids": ["id1", "id2"], } bad_dimensionality_query = { "query_embeddings": [[1.1, 2.3, 3.2, 4.5], [1.2, 2.24, 3.2, 4.5]], } bad_number_of_results_query = { "query_embeddings": [[1.1, 2.3, 3.2], [1.2, 2.24, 3.2]], "n_results": 100, } def test_dimensionality_validation_add(api): api.reset() collection = api.create_collection("test_dimensionality_validation") collection.add(**minimal_records) with pytest.raises(Exception) as e: collection.add(**bad_dimensionality_records) assert "dimensionality" in str(e.value) def test_dimensionality_validation_query(api): api.reset() collection = api.create_collection("test_dimensionality_validation_query") collection.add(**minimal_records) with pytest.raises(Exception) as e: collection.query(**bad_dimensionality_query) assert "dimensionality" in str(e.value) def test_number_of_elements_validation_query(api): api.reset() collection = api.create_collection("test_number_of_elements_validation") collection.add(**minimal_records) with pytest.raises(Exception) as e: collection.query(**bad_number_of_results_query) assert "number of elements" in str(e.value) def test_query_document_valid_operators(api): api.reset() collection = api.create_collection("test_where_valid_operators") collection.add(**operator_records) with pytest.raises(ValueError, match="where document"): collection.get(where_document={"$lt": {"$nested": 2}}) with pytest.raises(ValueError, match="where document"): collection.query(query_embeddings=[0, 0, 0], where_document={"$contains": 2}) with pytest.raises(ValueError, match="where document"): collection.get(where_document={"$contains": []}) # Test invalid $and, $or with pytest.raises(ValueError): collection.get(where_document={"$and": {"$unsupported": "doc"}}) with pytest.raises(ValueError): collection.get( where_document={"$or": [{"$unsupported": "doc"}, {"$unsupported": "doc"}]} ) with pytest.raises(ValueError): collection.get(where_document={"$or": [{"$contains": "doc"}]}) with pytest.raises(ValueError): collection.get(where_document={"$or": []}) with pytest.raises(ValueError): collection.get( where_document={ "$or": [{"$and": [{"$contains": "doc"}]}, {"$contains": "doc"}] } ) contains_records = { "embeddings": [[1.1, 2.3, 3.2], [1.2, 2.24, 3.2]], "documents": ["this is doc1 and it's great!", "doc2 is also great!"], "ids": ["id1", "id2"], "metadatas": [ {"int_value": 1, "string_value": "one", "float_value": 1.001}, {"int_value": 2, "float_value": 2.002, "string_value": "two"}, ], } def test_get_where_document(api): api.reset() collection = api.create_collection("test_get_where_document") collection.add(**contains_records) items = collection.get(where_document={"$contains": "doc1"}) assert len(items["metadatas"]) == 1 items = collection.get(where_document={"$contains": "great"}) assert len(items["metadatas"]) == 2 items = collection.get(where_document={"$contains": "bad"}) assert len(items["metadatas"]) == 0 def test_query_where_document(api): api.reset() collection = api.create_collection("test_query_where_document") collection.add(**contains_records) items = collection.query( query_embeddings=[1, 0, 0], where_document={"$contains": "doc1"}, n_results=1 ) assert len(items["metadatas"][0]) == 1 items = collection.query( query_embeddings=[0, 0, 0], where_document={"$contains": "great"}, n_results=2 ) assert len(items["metadatas"][0]) == 2 with pytest.raises(Exception) as e: items = collection.query( query_embeddings=[0, 0, 0], where_document={"$contains": "bad"}, n_results=1 ) assert "datapoints" in str(e.value) def test_delete_where_document(api): api.reset() collection = api.create_collection("test_delete_where_document") collection.add(**contains_records) collection.delete(where_document={"$contains": "doc1"}) assert collection.count() == 1 collection.delete(where_document={"$contains": "bad"}) assert collection.count() == 1 collection.delete(where_document={"$contains": "great"}) assert collection.count() == 0 logical_operator_records = { "embeddings": [ [1.1, 2.3, 3.2], [1.2, 2.24, 3.2], [1.3, 2.25, 3.2], [1.4, 2.26, 3.2], ], "ids": ["id1", "id2", "id3", "id4"], "metadatas": [ {"int_value": 1, "string_value": "one", "float_value": 1.001, "is": "doc"}, {"int_value": 2, "float_value": 2.002, "string_value": "two", "is": "doc"}, {"int_value": 3, "float_value": 3.003, "string_value": "three", "is": "doc"}, {"int_value": 4, "float_value": 4.004, "string_value": "four", "is": "doc"}, ], "documents": [ "this document is first and great", "this document is second and great", "this document is third and great", "this document is fourth and great", ], } def test_where_logical_operators(api): api.reset() collection = api.create_collection("test_logical_operators") collection.add(**logical_operator_records) items = collection.get( where={ "$and": [ {"$or": [{"int_value": {"$gte": 3}}, {"float_value": {"$lt": 1.9}}]}, {"is": "doc"}, ] } ) assert len(items["metadatas"]) == 3 items = collection.get( where={ "$or": [ { "$and": [ {"int_value": {"$eq": 3}}, {"string_value": {"$eq": "three"}}, ] }, { "$and": [ {"int_value": {"$eq": 4}}, {"string_value": {"$eq": "four"}}, ] }, ] } ) assert len(items["metadatas"]) == 2 items = collection.get( where={ "$or": [ { "$and": [ {"int_value": {"$eq": 3}}, {"string_value": {"$eq": "three"}}, ] }, { "$and": [ {"int_value": {"$eq": 4}}, {"string_value": {"$eq": "four"}}, ] }, ], "$and": [{"is": "doc"}, {"string_value": "four"}], } ) assert len(items["metadatas"]) == 1 def test_where_document_logical_operators(api): api.reset() collection = api.create_collection("test_document_logical_operators") collection.add(**logical_operator_records) items = collection.get( where_document={ "$and": [ {"$contains": "first"}, {"$contains": "doc"}, ] } ) assert len(items["metadatas"]) == 1 items = collection.get( where_document={ "$or": [ {"$contains": "first"}, {"$contains": "second"}, ] } ) assert len(items["metadatas"]) == 2 items = collection.get( where_document={ "$or": [ {"$contains": "first"}, {"$contains": "second"}, ] }, where={ "int_value": {"$ne": 2}, }, ) assert len(items["metadatas"]) == 1 # endregion records = { "embeddings": [[0, 0, 0], [1.2, 2.24, 3.2]], "ids": ["id1", "id2"], "metadatas": [ {"int_value": 1, "string_value": "one", "float_value": 1.001}, {"int_value": 2}, ], "documents": ["this document is first", "this document is second"], } def test_query_include(api): api.reset() collection = api.create_collection("test_query_include") collection.add(**records) items = collection.query( query_embeddings=[0, 0, 0], include=["metadatas", "documents", "distances"], n_results=1, ) assert items["embeddings"] is None assert items["ids"][0][0] == "id1" assert items["metadatas"][0][0]["int_value"] == 1 items = collection.query( query_embeddings=[0, 0, 0], include=["embeddings", "documents", "distances"], n_results=1, ) assert items["metadatas"] is None assert items["ids"][0][0] == "id1" items = collection.query( query_embeddings=[[0, 0, 0], [1, 2, 1.2]], include=[], n_results=2, ) assert items["documents"] is None assert items["metadatas"] is None assert items["embeddings"] is None assert items["distances"] is None assert items["ids"][0][0] == "id1" assert items["ids"][0][1] == "id2" def test_get_include(api): api.reset() collection = api.create_collection("test_get_include") collection.add(**records) items = collection.get(include=["metadatas", "documents"], where={"int_value": 1}) assert items["embeddings"] is None assert items["ids"][0] == "id1" assert items["metadatas"][0]["int_value"] == 1 assert items["documents"][0] == "this document is first" items = collection.get(include=["embeddings", "documents"]) assert items["metadatas"] is None assert items["ids"][0] == "id1" assert items["embeddings"][1][0] == 1.2 items = collection.get(include=[]) assert items["documents"] is None assert items["metadatas"] is None assert items["embeddings"] is None assert items["ids"][0] == "id1" with pytest.raises(ValueError, match="include"): items = collection.get(include=["metadatas", "undefined"]) with pytest.raises(ValueError, match="include"): items = collection.get(include=None) # make sure query results are returned in the right order def test_query_order(api): api.reset() collection = api.create_collection("test_query_order") collection.add(**records) items = collection.query( query_embeddings=[1.2, 2.24, 3.2], include=["metadatas", "documents", "distances"], n_results=2, ) assert items["documents"][0][0] == "this document is second" assert items["documents"][0][1] == "this document is first" # test to make sure add, get, delete error on invalid id input def test_invalid_id(api): api.reset() collection = api.create_collection("test_invalid_id") # Add with non-string id with pytest.raises(ValueError) as e: collection.add(embeddings=[0, 0, 0], ids=[1], metadatas=[{}]) assert "ID" in str(e.value) # Get with non-list id with pytest.raises(ValueError) as e: collection.get(ids=1) assert "ID" in str(e.value) # Delete with malformed ids with pytest.raises(ValueError) as e: collection.delete(ids=["valid", 0]) assert "ID" in str(e.value) def test_index_params(api): # first standard add api.reset() collection = api.create_collection(name="test_index_params") collection.add(**records) items = collection.query( query_embeddings=[0.6, 1.12, 1.6], n_results=1, ) assert items["distances"][0][0] > 4 # cosine api.reset() collection = api.create_collection( name="test_index_params", metadata={"hnsw:space": "cosine", "hnsw:construction_ef": 20, "hnsw:M": 5}, ) collection.add(**records) items = collection.query( query_embeddings=[0.6, 1.12, 1.6], n_results=1, ) assert items["distances"][0][0] > 0 assert items["distances"][0][0] < 1 # ip api.reset() collection = api.create_collection( name="test_index_params", metadata={"hnsw:space": "ip"} ) collection.add(**records) items = collection.query( query_embeddings=[0.6, 1.12, 1.6], n_results=1, ) assert items["distances"][0][0] < -5 def test_invalid_index_params(api): api.reset() with pytest.raises(Exception): collection = api.create_collection( name="test_index_params", metadata={"hnsw:foobar": "blarg"} ) collection.add(**records) with pytest.raises(Exception): collection = api.create_collection( name="test_index_params", metadata={"hnsw:space": "foobar"} ) collection.add(**records) def test_persist_index_loading_params(api, request): api = request.getfixturevalue("local_persist_api") api.reset() collection = api.create_collection("test", metadata={"hnsw:space": "ip"}) collection.add(ids="id1", documents="hello") api.persist() del api api2 = request.getfixturevalue("local_persist_api_cache_bust") collection = api2.get_collection("test") assert collection.metadata["hnsw:space"] == "ip" nn = collection.query( query_texts="hello", n_results=1, include=["embeddings", "documents", "metadatas", "distances"], ) for key in nn.keys(): assert len(nn[key]) == 1 def test_add_large(api): api.reset() collection = api.create_collection("testspace") # Test adding a large number of records large_records = np.random.rand(2000, 512).astype(np.float32).tolist() collection.add( embeddings=large_records, ids=[f"http://example.com/{i}" for i in range(len(large_records))], ) assert collection.count() == len(large_records) # test get_version def test_get_version(api): api.reset() version = api.get_version() # assert version matches the pattern x.y.z import re assert re.match(r"\d+\.\d+\.\d+", version) # test delete_collection def test_delete_collection(api): api.reset() collection = api.create_collection("test_delete_collection") collection.add(**records) assert len(api.list_collections()) == 1 api.delete_collection("test_delete_collection") assert len(api.list_collections()) == 0 def test_multiple_collections(api): embeddings1 = np.random.rand(10, 512).astype(np.float32).tolist() embeddings2 = np.random.rand(10, 512).astype(np.float32).tolist() ids1 = [f"http://example.com/1/{i}" for i in range(len(embeddings1))] ids2 = [f"http://example.com/2/{i}" for i in range(len(embeddings2))] api.reset() coll1 = api.create_collection("coll1") coll1.add(embeddings=embeddings1, ids=ids1) coll2 = api.create_collection("coll2") coll2.add(embeddings=embeddings2, ids=ids2) assert len(api.list_collections()) == 2 assert coll1.count() == len(embeddings1) assert coll2.count() == len(embeddings2) results1 = coll1.query(query_embeddings=embeddings1[0], n_results=1) results2 = coll2.query(query_embeddings=embeddings2[0], n_results=1) assert results1["ids"][0][0] == ids1[0] assert results2["ids"][0][0] == ids2[0] def test_update_query(api): api.reset() collection = api.create_collection("test_update_query") collection.add(**records) updated_records = { "ids": [records["ids"][0]], "embeddings": [[0.1, 0.2, 0.3]], "documents": ["updated document"], "metadatas": [{"foo": "bar"}], } collection.update(**updated_records) # test query results = collection.query( query_embeddings=updated_records["embeddings"], n_results=1, include=["embeddings", "documents", "metadatas"], ) assert len(results["ids"][0]) == 1 assert results["ids"][0][0] == updated_records["ids"][0] assert results["documents"][0][0] == updated_records["documents"][0] assert results["metadatas"][0][0]["foo"] == "bar" assert results["embeddings"][0][0] == updated_records["embeddings"][0] initial_records = { "embeddings": [[0, 0, 0], [1.2, 2.24, 3.2], [2.2, 3.24, 4.2]], "ids": ["id1", "id2", "id3"], "metadatas": [ {"int_value": 1, "string_value": "one", "float_value": 1.001}, {"int_value": 2}, {"string_value": "three"}, ], "documents": [ "this document is first", "this document is second", "this document is third", ], } new_records = { "embeddings": [[3.0, 3.0, 1.1], [3.2, 4.24, 5.2]], "ids": ["id1", "id4"], "metadatas": [ {"int_value": 1, "string_value": "one_of_one", "float_value": 1.001}, {"int_value": 4}, ], "documents": [ "this document is even more first", "this document is new and fourth", ], } def test_upsert(api): api.reset() collection = api.create_collection("test") collection.add(**initial_records) assert collection.count() == 3 collection.upsert(**new_records) assert collection.count() == 4 get_result = collection.get( include=["embeddings", "metadatas", "documents"], ids=new_records["ids"][0] ) assert get_result["embeddings"][0] == new_records["embeddings"][0] assert get_result["metadatas"][0] == new_records["metadatas"][0] assert get_result["documents"][0] == new_records["documents"][0] query_result = collection.query( query_embeddings=get_result["embeddings"], n_results=1, include=["embeddings", "metadatas", "documents"], ) assert query_result["embeddings"][0][0] == new_records["embeddings"][0] assert query_result["metadatas"][0][0] == new_records["metadatas"][0] assert query_result["documents"][0][0] == new_records["documents"][0] collection.delete(ids=initial_records["ids"][2]) collection.upsert( ids=initial_records["ids"][2], embeddings=[[1.1, 0.99, 2.21]], metadatas=[{"string_value": "a new string value"}], ) assert collection.count() == 4 get_result = collection.get( include=["embeddings", "metadatas", "documents"], ids=["id3"] ) assert get_result["embeddings"][0] == [1.1, 0.99, 2.21] assert get_result["metadatas"][0] == {"string_value": "a new string value"} assert get_result["documents"][0] is None
Ocean-master
oceandb/test/test_api.py
import hashlib import hypothesis import hypothesis.strategies as st from typing import Optional, List, Dict, Union from typing_extensions import TypedDict import numpy as np import oceandb.api.types as types import re from hypothesis.strategies._internal.strategies import SearchStrategy from hypothesis.errors import InvalidDefinition from dataclasses import dataclass # Set the random seed for reproducibility np.random.seed(0) # unnecessary, hypothesis does this for us # See Hypothesis documentation for creating strategies at # https://hypothesis.readthedocs.io/en/latest/data.html # NOTE: Because these strategies are used in state machines, we need to # work around an issue with state machines, in which strategies that frequently # are marked as invalid (i.e. through the use of `assume` or `.filter`) can cause the # state machine tests to fail with an hypothesis.errors.Unsatisfiable. # Ultimately this is because the entire state machine is run as a single Hypothesis # example, which ends up drawing from the same strategies an enormous number of times. # Whenever a strategy marks itself as invalid, Hypothesis tries to start the entire # state machine run over. See https://github.com/HypothesisWorks/hypothesis/issues/3618 # Because strategy generation is all interrelated, seemingly small changes (especially # ones called early in a test) can have an outside effect. Generating lists with # unique=True, or dictionaries with a min size seems especially bad. # Please make changes to these strategies incrementally, testing to make sure they don't # start generating unsatisfiable examples. test_hnsw_config = { "hnsw:construction_ef": 128, "hnsw:search_ef": 128, "hnsw:M": 128, } class RecordSet(TypedDict): """ A generated set of embeddings, ids, metadatas, and documents that represent what a user would pass to the API. """ ids: Union[types.ID, List[types.ID]] embeddings: Optional[Union[types.Embeddings, types.Embedding]] metadatas: Optional[Union[List[types.Metadata], types.Metadata]] documents: Optional[Union[List[types.Document], types.Document]] # TODO: support arbitrary text everywhere so we don't SQL-inject ourselves. # TODO: support empty strings everywhere sql_alphabet = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789-_" safe_text = st.text(alphabet=sql_alphabet, min_size=1) # Workaround for FastAPI json encoding peculiarities # https://github.com/tiangolo/fastapi/blob/8ac8d70d52bb0dd9eb55ba4e22d3e383943da05c/fastapi/encoders.py#L104 safe_text = safe_text.filter(lambda s: not s.startswith("_sa")) safe_integers = st.integers( min_value=-(2**31), max_value=2**31 - 1 ) # TODO: handle longs safe_floats = st.floats( allow_infinity=False, allow_nan=False, allow_subnormal=False ) # TODO: handle infinity and NAN safe_values = [safe_text, safe_integers, safe_floats] def one_or_both(strategy_a, strategy_b): return st.one_of( st.tuples(strategy_a, strategy_b), st.tuples(strategy_a, st.none()), st.tuples(st.none(), strategy_b), ) # Temporarily generate only these to avoid SQL formatting issues. legal_id_characters = ( "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789-_./+" ) float_types = [np.float16, np.float32, np.float64] int_types = [np.int16, np.int32, np.int64] # TODO: handle int types @st.composite def collection_name(draw) -> str: _collection_name_re = re.compile(r"^[a-zA-Z][a-zA-Z0-9-]{1,60}[a-zA-Z0-9]$") _ipv4_address_re = re.compile(r"^([0-9]{1,3}\.){3}[0-9]{1,3}$") _two_periods_re = re.compile(r"\.\.") name = draw(st.from_regex(_collection_name_re)) hypothesis.assume(not _ipv4_address_re.match(name)) hypothesis.assume(not _two_periods_re.search(name)) return name collection_metadata = st.one_of( st.none(), st.dictionaries(safe_text, st.one_of(*safe_values)) ) # TODO: Use a hypothesis strategy while maintaining embedding uniqueness # Or handle duplicate embeddings within a known epsilon def create_embeddings(dim: int, count: int, dtype: np.dtype) -> types.Embeddings: return ( np.random.uniform( low=-1.0, high=1.0, size=(count, dim), ) .astype(dtype) .tolist() ) class hashing_embedding_function(types.EmbeddingFunction): def __init__(self, dim: int, dtype: np.dtype) -> None: self.dim = dim self.dtype = dtype def __call__(self, texts: types.Documents) -> types.Embeddings: # Hash the texts and convert to hex strings hashed_texts = [ list(hashlib.sha256(text.encode("utf-8")).hexdigest()) for text in texts ] # Pad with repetition, or truncate the hex strings to the desired dimension padded_texts = [ text * (self.dim // len(text)) + text[: self.dim % len(text)] for text in hashed_texts ] # Convert the hex strings to dtype return np.array( [[int(char, 16) / 15.0 for char in text] for text in padded_texts], dtype=self.dtype, ).tolist() def embedding_function_strategy( dim: int, dtype: np.dtype ) -> st.SearchStrategy[types.EmbeddingFunction]: return st.just(hashing_embedding_function(dim, dtype)) @dataclass class Collection: name: str metadata: Optional[types.Metadata] dimension: int dtype: np.dtype known_metadata_keys: Dict[str, st.SearchStrategy] known_document_keywords: List[str] has_documents: bool = False has_embeddings: bool = False embedding_function: Optional[types.EmbeddingFunction] = None @st.composite def collections( draw, add_filterable_data=False, with_hnsw_params=False, has_embeddings: Optional[bool] = None, has_documents: Optional[bool] = None, ) -> Collection: """Strategy to generate a Collection object. If add_filterable_data is True, then known_metadata_keys and known_document_keywords will be populated with consistent data.""" assert not ((has_embeddings is False) and (has_documents is False)) name = draw(collection_name()) metadata = draw(collection_metadata) dimension = draw(st.integers(min_value=2, max_value=2048)) dtype = draw(st.sampled_from(float_types)) if with_hnsw_params: if metadata is None: metadata = {} metadata.update(test_hnsw_config) # Sometimes, select a space at random if draw(st.booleans()): # TODO: pull the distance functions from a source of truth that lives not # in tests once https://github.com/ocean-core/issues/issues/61 lands metadata["hnsw:space"] = draw(st.sampled_from(["cosine", "l2", "ip"])) known_metadata_keys = {} if add_filterable_data: while len(known_metadata_keys) < 5: key = draw(safe_text) known_metadata_keys[key] = draw(st.sampled_from(safe_values)) if has_documents is None: has_documents = draw(st.booleans()) if has_documents and add_filterable_data: known_document_keywords = draw(st.lists(safe_text, min_size=5, max_size=5)) else: known_document_keywords = [] if not has_documents: has_embeddings = True else: if has_embeddings is None: has_embeddings = draw(st.booleans()) embedding_function = draw(embedding_function_strategy(dimension, dtype)) return Collection( name=name, metadata=metadata, dimension=dimension, dtype=dtype, known_metadata_keys=known_metadata_keys, has_documents=has_documents, known_document_keywords=known_document_keywords, has_embeddings=has_embeddings, embedding_function=embedding_function, ) @st.composite def metadata(draw, collection: Collection): """Strategy for generating metadata that could be a part of the given collection""" # First draw a random dictionary. md = draw(st.dictionaries(safe_text, st.one_of(*safe_values))) # Then, remove keys that overlap with the known keys for the coll # to avoid type errors when comparing. if collection.known_metadata_keys: for key in collection.known_metadata_keys.keys(): if key in md: del md[key] # Finally, add in some of the known keys for the collection md.update( draw(st.fixed_dictionaries({}, optional=collection.known_metadata_keys)) ) return md @st.composite def document(draw, collection: Collection): """Strategy for generating documents that could be a part of the given collection""" if collection.known_document_keywords: known_words_st = st.sampled_from(collection.known_document_keywords) else: known_words_st = st.text(min_size=1) random_words_st = st.text(min_size=1) words = draw(st.lists(st.one_of(known_words_st, random_words_st), min_size=1)) return " ".join(words) @st.composite def record(draw, collection: Collection, id_strategy=safe_text): md = draw(metadata(collection)) if collection.has_embeddings: embedding = create_embeddings(collection.dimension, 1, collection.dtype)[0] else: embedding = None if collection.has_documents: doc = draw(document(collection)) else: doc = None return { "id": draw(id_strategy), "embedding": embedding, "metadata": md, "document": doc, } @st.composite def recordsets( draw, collection_strategy=collections(), id_strategy=safe_text, min_size=1, max_size=50, ) -> RecordSet: collection = draw(collection_strategy) records = draw( st.lists(record(collection, id_strategy), min_size=min_size, max_size=max_size) ) records = {r["id"]: r for r in records}.values() # Remove duplicates ids = [r["id"] for r in records] embeddings = ( [r["embedding"] for r in records] if collection.has_embeddings else None ) metadatas = [r["metadata"] for r in records] documents = [r["document"] for r in records] if collection.has_documents else None # in the case where we have a single record, sometimes exercise # the code that handles individual values rather than lists if len(records) == 1: if draw(st.booleans()): ids = ids[0] if collection.has_embeddings and draw(st.booleans()): embeddings = embeddings[0] if draw(st.booleans()): metadatas = metadatas[0] if collection.has_documents and draw(st.booleans()): documents = documents[0] return { "ids": ids, "embeddings": embeddings, "metadatas": metadatas, "documents": documents, } # This class is mostly cloned from from hypothesis.stateful.RuleStrategy, # but always runs all the rules, instead of using a FeatureStrategy to # enable/disable rules. Disabled rules cause the entire test to be marked invalida and, # combined with the complexity of our other strategies, leads to an # unacceptably increased incidence of hypothesis.errors.Unsatisfiable. class DeterministicRuleStrategy(SearchStrategy): def __init__(self, machine): super().__init__() self.machine = machine self.rules = list(machine.rules()) # The order is a bit arbitrary. Primarily we're trying to group rules # that write to the same location together, and to put rules with no # target first as they have less effect on the structure. We order from # fewer to more arguments on grounds that it will plausibly need less # data. This probably won't work especially well and we could be # smarter about it, but it's better than just doing it in definition # order. self.rules.sort( key=lambda rule: ( sorted(rule.targets), len(rule.arguments), rule.function.__name__, ) ) def __repr__(self): return "{}(machine={}({{...}}))".format( self.__class__.__name__, self.machine.__class__.__name__, ) def do_draw(self, data): if not any(self.is_valid(rule) for rule in self.rules): msg = f"No progress can be made from state {self.machine!r}" raise InvalidDefinition(msg) from None rule = data.draw(st.sampled_from([r for r in self.rules if self.is_valid(r)])) argdata = data.draw(rule.arguments_strategy) return (rule, argdata) def is_valid(self, rule): if not all(precond(self.machine) for precond in rule.preconditions): return False for b in rule.bundles: bundle = self.machine.bundle(b.name) if not bundle: return False return True @st.composite def where_clause(draw, collection): """Generate a filter that could be used in a query against the given collection""" known_keys = sorted(collection.known_metadata_keys.keys()) key = draw(st.sampled_from(known_keys)) value = draw(collection.known_metadata_keys[key]) legal_ops = [None, "$eq", "$ne"] if not isinstance(value, str): legal_ops = ["$gt", "$lt", "$lte", "$gte"] + legal_ops op = draw(st.sampled_from(legal_ops)) if op is None: return {key: value} else: return {key: {op: value}} @st.composite def where_doc_clause(draw, collection): """Generate a where_document filter that could be used against the given collection""" if collection.known_document_keywords: word = draw(st.sampled_from(collection.known_document_keywords)) else: word = draw(safe_text) return {"$contains": word} @st.composite def binary_operator_clause(draw, base_st): op = draw(st.sampled_from(["$and", "$or"])) return {op: [draw(base_st), draw(base_st)]} @st.composite def recursive_where_clause(draw, collection): base_st = where_clause(collection) return draw(st.recursive(base_st, binary_operator_clause)) @st.composite def recursive_where_doc_clause(draw, collection): base_st = where_doc_clause(collection) return draw(st.recursive(base_st, binary_operator_clause)) class Filter(TypedDict): where: Optional[Dict[str, Union[str, int, float]]] ids: Optional[Union[str, List[str]]] where_document: Optional[types.WhereDocument] @st.composite def filters( draw, collection_st: st.SearchStrategy[Collection], recordset_st: st.SearchStrategy[RecordSet], include_all_ids=False, ) -> Filter: collection = draw(collection_st) recordset = draw(recordset_st) where_clause = draw(st.one_of(st.none(), recursive_where_clause(collection))) where_document_clause = draw( st.one_of(st.none(), recursive_where_doc_clause(collection)) ) ids = recordset["ids"] # Record sets can be a value instead of a list of values if there is only one record if isinstance(ids, str): ids = [ids] if not include_all_ids: ids = draw(st.one_of(st.none(), st.lists(st.sampled_from(ids)))) if ids is not None: # Remove duplicates since hypothesis samples with replacement ids = list(set(ids)) # Test both the single value list and the unwrapped single value case if ids is not None and len(ids) == 1 and draw(st.booleans()): ids = ids[0] return {"where": where_clause, "where_document": where_document_clause, "ids": ids}
Ocean-master
oceandb/test/property/strategies.py
import pytest import logging import hypothesis.strategies as st from typing import Set from dataclasses import dataclass import oceandb.errors as errors from oceandb.api import API from oceandb.api.models.Collection import Collection import oceandb.test.property.strategies as strategies from hypothesis.stateful import ( Bundle, RuleBasedStateMachine, rule, initialize, precondition, consumes, run_state_machine_as_test, multiple, invariant, ) from collections import defaultdict import oceandb.test.property.invariants as invariants traces = defaultdict(lambda: 0) def trace(key): global traces traces[key] += 1 def print_traces(): global traces for key, value in traces.items(): print(f"{key}: {value}") dtype_shared_st = st.shared(st.sampled_from(strategies.float_types), key="dtype") dimension_shared_st = st.shared( st.integers(min_value=2, max_value=2048), key="dimension" ) @dataclass class EmbeddingStateMachineStates: initialize = "initialize" add_embeddings = "add_embeddings" delete_by_ids = "delete_by_ids" update_embeddings = "update_embeddings" upsert_embeddings = "upsert_embeddings" collection_st = st.shared(strategies.collections(with_hnsw_params=True), key="coll") class EmbeddingStateMachine(RuleBasedStateMachine): collection: Collection embedding_ids: Bundle = Bundle("embedding_ids") def __init__(self, api: API): super().__init__() self.api = api self._rules_strategy = strategies.DeterministicRuleStrategy(self) @initialize(collection=collection_st) def initialize(self, collection: strategies.Collection): self.api.reset() self.collection = self.api.create_collection( name=collection.name, metadata=collection.metadata, embedding_function=collection.embedding_function, ) self.embedding_function = collection.embedding_function trace("init") self.on_state_change(EmbeddingStateMachineStates.initialize) self.embeddings = { "ids": [], "embeddings": [], "metadatas": [], "documents": [], } @rule(target=embedding_ids, embedding_set=strategies.recordsets(collection_st)) def add_embeddings(self, embedding_set): trace("add_embeddings") self.on_state_change(EmbeddingStateMachineStates.add_embeddings) normalized_embedding_set = invariants.wrap_all(embedding_set) if len(normalized_embedding_set["ids"]) > 0: trace("add_more_embeddings") if set(normalized_embedding_set["ids"]).intersection( set(self.embeddings["ids"]) ): with pytest.raises(errors.IDAlreadyExistsError): self.collection.add(**embedding_set) return multiple() else: self.collection.add(**embedding_set) self._upsert_embeddings(embedding_set) return multiple(*normalized_embedding_set["ids"]) @precondition(lambda self: len(self.embeddings["ids"]) > 20) @rule(ids=st.lists(consumes(embedding_ids), min_size=1, max_size=20)) def delete_by_ids(self, ids): trace("remove embeddings") self.on_state_change(EmbeddingStateMachineStates.delete_by_ids) indices_to_remove = [self.embeddings["ids"].index(id) for id in ids] self.collection.delete(ids=ids) self._remove_embeddings(set(indices_to_remove)) # Removing the precondition causes the tests to frequently fail as "unsatisfiable" # Using a value < 5 causes retries and lowers the number of valid samples @precondition(lambda self: len(self.embeddings["ids"]) >= 5) @rule( embedding_set=strategies.recordsets( collection_strategy=collection_st, id_strategy=embedding_ids, min_size=1, max_size=5, ) ) def update_embeddings(self, embedding_set): trace("update embeddings") self.on_state_change(EmbeddingStateMachineStates.update_embeddings) self.collection.update(**embedding_set) self._upsert_embeddings(embedding_set) # Using a value < 3 causes more retries and lowers the number of valid samples @precondition(lambda self: len(self.embeddings["ids"]) >= 3) @rule( embedding_set=strategies.recordsets( collection_strategy=collection_st, id_strategy=st.one_of(embedding_ids, strategies.safe_text), min_size=1, max_size=5, ) ) def upsert_embeddings(self, embedding_set): trace("upsert embeddings") self.on_state_change(EmbeddingStateMachineStates.upsert_embeddings) self.collection.upsert(**embedding_set) self._upsert_embeddings(embedding_set) @invariant() def count(self): invariants.count(self.collection, self.embeddings) # type: ignore @invariant() def no_duplicates(self): invariants.no_duplicates(self.collection) @invariant() def ann_accuracy(self): invariants.ann_accuracy( collection=self.collection, record_set=self.embeddings, min_recall=0.95, embedding_function=self.embedding_function # type: ignore ) def _upsert_embeddings(self, embeddings: strategies.RecordSet): embeddings = invariants.wrap_all(embeddings) for idx, id in enumerate(embeddings["ids"]): if id in self.embeddings["ids"]: target_idx = self.embeddings["ids"].index(id) if "embeddings" in embeddings and embeddings["embeddings"] is not None: self.embeddings["embeddings"][target_idx] = embeddings[ "embeddings" ][idx] else: self.embeddings["embeddings"][target_idx] = self.embedding_function( [embeddings["documents"][idx]] )[0] if "metadatas" in embeddings and embeddings["metadatas"] is not None: self.embeddings["metadatas"][target_idx] = embeddings["metadatas"][ idx ] if "documents" in embeddings and embeddings["documents"] is not None: self.embeddings["documents"][target_idx] = embeddings["documents"][ idx ] else: # Add path self.embeddings["ids"].append(id) if "embeddings" in embeddings and embeddings["embeddings"] is not None: self.embeddings["embeddings"].append(embeddings["embeddings"][idx]) else: self.embeddings["embeddings"].append( self.embedding_function([embeddings["documents"][idx]])[0] ) if "metadatas" in embeddings and embeddings["metadatas"] is not None: self.embeddings["metadatas"].append(embeddings["metadatas"][idx]) else: self.embeddings["metadatas"].append(None) if "documents" in embeddings and embeddings["documents"] is not None: self.embeddings["documents"].append(embeddings["documents"][idx]) else: self.embeddings["documents"].append(None) def _remove_embeddings(self, indices_to_remove: Set[int]): indices_list = list(indices_to_remove) indices_list.sort(reverse=True) for i in indices_list: del self.embeddings["ids"][i] del self.embeddings["embeddings"][i] del self.embeddings["metadatas"][i] del self.embeddings["documents"][i] def on_state_change(self, new_state): pass def test_embeddings_state(caplog, api): caplog.set_level(logging.ERROR) run_state_machine_as_test(lambda: EmbeddingStateMachine(api)) print_traces() def test_multi_add(api: API): api.reset() coll = api.create_collection(name="foo") coll.add(ids=["a"], embeddings=[[0.0]]) assert coll.count() == 1 with pytest.raises(errors.IDAlreadyExistsError): coll.add(ids=["a"], embeddings=[[0.0]]) assert coll.count() == 1 results = coll.get() assert results["ids"] == ["a"] coll.delete(ids=["a"]) assert coll.count() == 0 def test_dup_add(api: API): api.reset() coll = api.create_collection(name="foo") with pytest.raises(errors.DuplicateIDError): coll.add(ids=["a", "a"], embeddings=[[0.0], [1.1]]) with pytest.raises(errors.DuplicateIDError): coll.upsert(ids=["a", "a"], embeddings=[[0.0], [1.1]]) # TODO: Use SQL escaping correctly internally @pytest.mark.xfail(reason="We don't properly escape SQL internally, causing problems") def test_escape_chars_in_ids(api: API): api.reset() id = "\x1f" coll = api.create_collection(name="foo") coll.add(ids=[id], embeddings=[[0.0]]) assert coll.count() == 1 coll.delete(ids=[id]) assert coll.count() == 0
Ocean-master
oceandb/test/property/test_embeddings.py
import pytest import hypothesis.strategies as st from hypothesis import given, settings from oceandb.api import API import oceandb.test.property.strategies as strategies import oceandb.test.property.invariants as invariants collection_st = st.shared(strategies.collections(with_hnsw_params=True), key="coll") @given(collection=collection_st, embeddings=strategies.recordsets(collection_st)) @settings(deadline=None) def test_add( api: API, collection: strategies.Collection, embeddings: strategies.RecordSet ): api.reset() # TODO: Generative embedding functions coll = api.create_collection( name=collection.name, metadata=collection.metadata, embedding_function=collection.embedding_function, ) coll.add(**embeddings) embeddings = invariants.wrap_all(embeddings) invariants.count(coll, embeddings) n_results = max(1, (len(embeddings["ids"]) // 10)) invariants.ann_accuracy( coll, embeddings, n_results=n_results, embedding_function=collection.embedding_function, ) # TODO: This test fails right now because the ids are not sorted by the input order @pytest.mark.xfail( reason="This is expected to fail right now. We should change the API to sort the \ ids by input order." ) def test_out_of_order_ids(api: API): api.reset() ooo_ids = [ "40", "05", "8", "6", "10", "01", "00", "3", "04", "20", "02", "9", "30", "11", "13", "2", "0", "7", "06", "5", "50", "12", "03", "4", "1", ] coll = api.create_collection("test", embedding_function=lambda x: [1, 2, 3]) coll.add(ids=ooo_ids, embeddings=[[1, 2, 3] for _ in range(len(ooo_ids))]) get_ids = coll.get(ids=ooo_ids)["ids"] assert get_ids == ooo_ids
Ocean-master
oceandb/test/property/test_add.py
import logging import multiprocessing from typing import Generator, Callable from hypothesis import given import hypothesis.strategies as st import pytest import oceandb from oceandb.api import API from oceandb.config import Settings import oceandb.test.property.strategies as strategies import oceandb.test.property.invariants as invariants from oceandb.test.property.test_embeddings import ( EmbeddingStateMachine, EmbeddingStateMachineStates, ) from hypothesis.stateful import run_state_machine_as_test, rule, precondition import os import shutil import tempfile CreatePersistAPI = Callable[[], API] configurations = [ Settings( ocean_api_impl="local", ocean_db_impl="duckdb+parquet", persist_directory=tempfile.gettempdir() + "/tests", ) ] @pytest.fixture(scope="module", params=configurations) def settings(request) -> Generator[Settings, None, None]: configuration = request.param yield configuration save_path = configuration.persist_directory # Remove if it exists if os.path.exists(save_path): shutil.rmtree(save_path) collection_st = st.shared(strategies.collections(with_hnsw_params=True), key="coll") @given( collection_strategy=collection_st, embeddings_strategy=strategies.recordsets(collection_st), ) def test_persist( settings: Settings, collection_strategy: strategies.Collection, embeddings_strategy: strategies.RecordSet, ): api_1 = oceandb.Client(settings) api_1.reset() coll = api_1.create_collection( name=collection_strategy.name, metadata=collection_strategy.metadata, embedding_function=collection_strategy.embedding_function, ) coll.add(**embeddings_strategy) invariants.count(coll, embeddings_strategy) invariants.metadatas_match(coll, embeddings_strategy) invariants.documents_match(coll, embeddings_strategy) invariants.ids_match(coll, embeddings_strategy) invariants.ann_accuracy( coll, embeddings_strategy, embedding_function=collection_strategy.embedding_function, ) api_1.persist() del api_1 api_2 = oceandb.Client(settings) coll = api_2.get_collection( name=collection_strategy.name, embedding_function=collection_strategy.embedding_function, ) invariants.count(coll, embeddings_strategy) invariants.metadatas_match(coll, embeddings_strategy) invariants.documents_match(coll, embeddings_strategy) invariants.ids_match(coll, embeddings_strategy) invariants.ann_accuracy( coll, embeddings_strategy, embedding_function=collection_strategy.embedding_function, ) def load_and_check(settings: Settings, collection_name: str, embeddings_set, conn): try: api = oceandb.Client(settings) coll = api.get_collection( name=collection_name, embedding_function=lambda x: None ) invariants.count(coll, embeddings_set) invariants.metadatas_match(coll, embeddings_set) invariants.documents_match(coll, embeddings_set) invariants.ids_match(coll, embeddings_set) invariants.ann_accuracy(coll, embeddings_set) except Exception as e: conn.send(e) raise e class PersistEmbeddingsStateMachineStates(EmbeddingStateMachineStates): persist = "persist" class PersistEmbeddingsStateMachine(EmbeddingStateMachine): def __init__(self, api: API, settings: Settings): self.api = api self.settings = settings self.last_persist_delay = 10 self.api.reset() super().__init__(self.api) @precondition(lambda self: len(self.embeddings["ids"]) >= 1) @precondition(lambda self: self.last_persist_delay <= 0) @rule() def persist(self): self.on_state_change(PersistEmbeddingsStateMachineStates.persist) self.api.persist() collection_name = self.collection.name # Create a new process and then inside the process run the invariants # TODO: Once we switch off of duckdb and onto sqlite we can remove this ctx = multiprocessing.get_context("spawn") conn1, conn2 = multiprocessing.Pipe() p = ctx.Process( target=load_and_check, args=(self.settings, collection_name, self.embeddings, conn2), ) p.start() p.join() if conn1.poll(): e = conn1.recv() raise e def on_state_change(self, new_state): if new_state == PersistEmbeddingsStateMachineStates.persist: self.last_persist_delay = 10 else: self.last_persist_delay -= 1 def test_persist_embeddings_state(caplog, settings: Settings): caplog.set_level(logging.ERROR) api = oceandb.Client(settings) run_state_machine_as_test( lambda: PersistEmbeddingsStateMachine(settings=settings, api=api) )
Ocean-master
oceandb/test/property/test_persist.py
import sys import os import shutil import subprocess import tempfile from typing import Generator, Tuple from hypothesis import given, settings import hypothesis.strategies as st import pytest import json from urllib import request from oceandb.api import API import oceandb.test.property.strategies as strategies import oceandb.test.property.invariants as invariants from importlib.util import spec_from_file_location, module_from_spec from packaging import version as packaging_version import re import multiprocessing from oceandb import Client from oceandb.config import Settings MINIMUM_VERSION = "0.3.20" COLLECTION_NAME_LOWERCASE_VERSION = "0.3.21" version_re = re.compile(r"^[0-9]+\.[0-9]+\.[0-9]+$") def _patch_uppercase_coll_name( collection: strategies.Collection, embeddings: strategies.RecordSet ): """Old versions didn't handle uppercase characters in collection names""" collection.name = collection.name.lower() def _patch_empty_dict_metadata( collection: strategies.Collection, embeddings: strategies.RecordSet ): """Old versions do the wrong thing when metadata is a single empty dict""" if embeddings["metadatas"] == {}: embeddings["metadatas"] = None version_patches = [ ("0.3.21", _patch_uppercase_coll_name), ("0.3.21", _patch_empty_dict_metadata), ] def patch_for_version( version, collection: strategies.Collection, embeddings: strategies.RecordSet ): """Override aspects of the collection and embeddings, before testing, to account for breaking changes in old versions.""" for patch_version, patch in version_patches: if packaging_version.Version(version) <= packaging_version.Version( patch_version ): patch(collection, embeddings) def versions(): """Returns the pinned minimum version and the latest version of oceandb.""" url = "https://pypi.org/pypi/oceandb/json" data = json.load(request.urlopen(request.Request(url))) versions = list(data["releases"].keys()) # Older versions on pypi contain "devXYZ" suffixes versions = [v for v in versions if version_re.match(v)] versions.sort(key=packaging_version.Version) return [MINIMUM_VERSION, versions[-1]] def configurations(versions): return [ ( version, Settings( ocean_api_impl="local", ocean_db_impl="duckdb+parquet", persist_directory=tempfile.gettempdir() + "/tests/" + version + "/", ), ) for version in versions ] test_old_versions = versions() base_install_dir = tempfile.gettempdir() + "/persistence_test_oceandb_versions" # This fixture is not shared with the rest of the tests because it is unique in how it # installs the versions of oceandb @pytest.fixture(scope="module", params=configurations(test_old_versions)) def version_settings(request) -> Generator[Tuple[str, Settings], None, None]: configuration = request.param version = configuration[0] install_version(version) yield configuration # Cleanup the installed version path = get_path_to_version_install(version) shutil.rmtree(path) # Cleanup the persisted data data_path = configuration[1].persist_directory if os.path.exists(data_path): shutil.rmtree(data_path) def get_path_to_version_install(version): return base_install_dir + "/" + version def get_path_to_version_library(version): return get_path_to_version_install(version) + "/oceandb/__init__.py" def install_version(version): # Check if already installed version_library = get_path_to_version_library(version) if os.path.exists(version_library): return path = get_path_to_version_install(version) install(f"oceandb=={version}", path) def install(pkg, path): # -q -q to suppress pip output to ERROR level # https://pip.pypa.io/en/stable/cli/pip/#quiet print(f"Installing oceandb version {pkg} to {path}") return subprocess.check_call( [ sys.executable, "-m", "pip", "-q", "-q", "install", pkg, "--target={}".format(path), ] ) def switch_to_version(version): module_name = "oceandb" # Remove old version from sys.modules, except test modules old_modules = { n: m for n, m in sys.modules.items() if n == module_name or (n.startswith(module_name + ".")) } for n in old_modules: del sys.modules[n] # Load the target version and override the path to the installed version # https://docs.python.org/3/library/importlib.html#importing-a-source-file-directly path = get_path_to_version_library(version) sys.path.insert(0, get_path_to_version_install(version)) spec = spec_from_file_location(module_name, path) assert spec is not None and spec.loader is not None module = module_from_spec(spec) spec.loader.exec_module(module) assert module.__version__ == version sys.modules[module_name] = module return module def persist_generated_data_with_old_version( version, settings, collection_strategy: strategies.Collection, embeddings_strategy: strategies.RecordSet, ): old_module = switch_to_version(version) api: API = old_module.Client(settings) api.reset() coll = api.create_collection( name=collection_strategy.name, metadata=collection_strategy.metadata, embedding_function=lambda x: None, ) coll.add(**embeddings_strategy) # We can't use the invariants module here because it uses the current version # Just use some basic checks for sanity and manual testing where you break the new # version check_embeddings = invariants.wrap_all(embeddings_strategy) # Check count assert coll.count() == len(check_embeddings["embeddings"] or []) # Check ids result = coll.get() actual_ids = result["ids"] embedding_id_to_index = {id: i for i, id in enumerate(check_embeddings["ids"])} actual_ids = sorted(actual_ids, key=lambda id: embedding_id_to_index[id]) assert actual_ids == check_embeddings["ids"] api.persist() del api # Since we can't pickle the embedding function, we always generate record sets with embeddings collection_st = st.shared( strategies.collections(with_hnsw_params=True, has_embeddings=True), key="coll" ) @given( collection_strategy=collection_st, embeddings_strategy=strategies.recordsets(collection_st), ) @pytest.mark.skipif( sys.version_info.major < 3 or (sys.version_info.major == 3 and sys.version_info.minor <= 7), reason="The mininum supported versions of ocean do not work with python <= 3.7", ) @settings(deadline=None) def test_cycle_versions( version_settings: Tuple[str, Settings], collection_strategy: strategies.Collection, embeddings_strategy: strategies.RecordSet, ): # # Test backwards compatibility # # For the current version, ensure that we can load a collection from # # the previous versions version, settings = version_settings patch_for_version(version, collection_strategy, embeddings_strategy) # Can't pickle a function, and we won't need them collection_strategy.embedding_function = None collection_strategy.known_metadata_keys = {} # Run the task in a separate process to avoid polluting the current process # with the old version. Using spawn instead of fork to avoid sharing the # current process memory which would cause the old version to be loaded ctx = multiprocessing.get_context("spawn") p = ctx.Process( target=persist_generated_data_with_old_version, args=(version, settings, collection_strategy, embeddings_strategy), ) p.start() p.join() # Switch to the current version (local working directory) and check the invariants # are preserved for the collection api = Client(settings) coll = api.get_collection( name=collection_strategy.name, embedding_function=lambda x: None ) invariants.count(coll, embeddings_strategy) invariants.metadatas_match(coll, embeddings_strategy) invariants.documents_match(coll, embeddings_strategy) invariants.ids_match(coll, embeddings_strategy) invariants.ann_accuracy(coll, embeddings_strategy)
Ocean-master
oceandb/test/property/test_cross_version_persist.py
import pytest import logging import hypothesis.strategies as st import oceandb.test.property.strategies as strategies from oceandb.api import API import oceandb.api.types as types from hypothesis.stateful import ( Bundle, RuleBasedStateMachine, rule, initialize, multiple, consumes, run_state_machine_as_test, MultipleResults, ) from typing import Optional, Set class CollectionStateMachine(RuleBasedStateMachine): # type: ignore collections: Bundle existing: Set[str] collections = Bundle("collections") def __init__(self, api: API): super().__init__() self.existing = set() self.api = api @initialize() # type: ignore def initialize(self) -> None: self.api.reset() self.existing = set() @rule(target=collections, coll=strategies.collections()) # type: ignore def create_coll( self, coll: strategies.Collection ) -> MultipleResults[strategies.Collection]: if coll.name in self.existing: with pytest.raises(Exception): c = self.api.create_collection( name=coll.name, metadata=coll.metadata, embedding_function=coll.embedding_function, ) return multiple() c = self.api.create_collection( name=coll.name, metadata=coll.metadata, embedding_function=coll.embedding_function, ) self.existing.add(coll.name) assert c.name == coll.name assert c.metadata == coll.metadata return multiple(coll) @rule(coll=collections) # type: ignore def get_coll(self, coll: strategies.Collection) -> None: if coll.name in self.existing: c = self.api.get_collection(name=coll.name) assert c.name == coll.name assert c.metadata == coll.metadata else: with pytest.raises(Exception): self.api.get_collection(name=coll.name) @rule(coll=consumes(collections)) # type: ignore def delete_coll(self, coll: strategies.Collection) -> None: if coll.name in self.existing: self.api.delete_collection(name=coll.name) self.existing.remove(coll.name) else: with pytest.raises(Exception): self.api.delete_collection(name=coll.name) with pytest.raises(Exception): self.api.get_collection(name=coll.name) @rule() # type: ignore def list_collections(self) -> None: colls = self.api.list_collections() assert len(colls) == len(self.existing) for c in colls: assert c.name in self.existing @rule( target=collections, new_metadata=st.one_of(st.none(), strategies.collection_metadata), coll=st.one_of(consumes(collections), strategies.collections()), ) # type: ignore def get_or_create_coll( self, coll: strategies.Collection, new_metadata: Optional[types.Metadata], ) -> MultipleResults[strategies.Collection]: # In our current system, you can create with None but not update with None # An update with none is a no-op for the update of that field if coll.name not in self.existing: coll.metadata = new_metadata else: coll.metadata = new_metadata if new_metadata is not None else coll.metadata c = self.api.get_or_create_collection( name=coll.name, metadata=new_metadata, embedding_function=coll.embedding_function, ) assert c.name == coll.name assert c.metadata == coll.metadata self.existing.add(coll.name) return multiple(coll) @rule( target=collections, coll=consumes(collections), new_metadata=strategies.collection_metadata, new_name=st.one_of(st.none(), strategies.collection_name()), ) # type: ignore def modify_coll( self, coll: strategies.Collection, new_metadata: types.Metadata, new_name: Optional[str], ) -> MultipleResults[strategies.Collection]: if coll.name not in self.existing: with pytest.raises(Exception): c = self.api.get_collection(name=coll.name) return multiple() c = self.api.get_collection(name=coll.name) if new_metadata is not None: coll.metadata = new_metadata if new_name is not None: self.existing.remove(coll.name) self.existing.add(new_name) coll.name = new_name c.modify(metadata=new_metadata, name=new_name) c = self.api.get_collection(name=coll.name) assert c.name == coll.name assert c.metadata == coll.metadata return multiple(coll) def test_collections(caplog: pytest.LogCaptureFixture, api: API) -> None: caplog.set_level(logging.ERROR) run_state_machine_as_test(lambda: CollectionStateMachine(api))
Ocean-master
oceandb/test/property/test_collections.py
import math from oceandb.test.property.strategies import RecordSet from typing import Callable, Optional, Union, List, TypeVar from typing_extensions import Literal import numpy as np from oceandb.api import types from oceandb.api.models.Collection import Collection from hypothesis import note from hypothesis.errors import InvalidArgument T = TypeVar("T") def maybe_wrap(value: Union[T, List[T]]) -> Union[None, List[T]]: """Wrap a value in a list if it is not a list""" if value is None: return None elif isinstance(value, List): return value else: return [value] def wrap_all(embeddings: RecordSet) -> RecordSet: """Ensure that an embedding set has lists for all its values""" if embeddings["embeddings"] is None: embedding_list = None elif isinstance(embeddings["embeddings"], list): if len(embeddings["embeddings"]) > 0: if isinstance(embeddings["embeddings"][0], list): embedding_list = embeddings["embeddings"] else: embedding_list = [embeddings["embeddings"]] else: embedding_list = [] else: raise InvalidArgument("embeddings must be a list, list of lists, or None") return { "ids": maybe_wrap(embeddings["ids"]), # type: ignore "documents": maybe_wrap(embeddings["documents"]), # type: ignore "metadatas": maybe_wrap(embeddings["metadatas"]), # type: ignore "embeddings": embedding_list, } def count(collection: Collection, embeddings: RecordSet): """The given collection count is equal to the number of embeddings""" count = collection.count() embeddings = wrap_all(embeddings) assert count == len(embeddings["ids"]) def _field_matches( collection: Collection, embeddings: RecordSet, field_name: Union[Literal["documents"], Literal["metadatas"]], ): """ The actual embedding field is equal to the expected field field_name: one of [documents, metadatas] """ result = collection.get(ids=embeddings["ids"], include=[field_name]) # The test_out_of_order_ids test fails because of this in test_add.py # Here we sort by the ids to match the input order embedding_id_to_index = {id: i for i, id in enumerate(embeddings["ids"])} actual_field = result[field_name] # This assert should never happen, if we include metadatas/documents it will be # [None, None..] if there is no metadata. It will not be just None. assert actual_field is not None actual_field = sorted( enumerate(actual_field), key=lambda index_and_field_value: embedding_id_to_index[ result["ids"][index_and_field_value[0]] ], ) actual_field = [field_value for _, field_value in actual_field] expected_field = embeddings[field_name] if expected_field is None: # Since an RecordSet is the user input, we need to convert the documents to # a List since thats what the API returns -> none per entry expected_field = [None] * len(embeddings["ids"]) assert actual_field == expected_field def ids_match(collection: Collection, embeddings: RecordSet): """The actual embedding ids is equal to the expected ids""" embeddings = wrap_all(embeddings) actual_ids = collection.get(ids=embeddings["ids"], include=[])["ids"] # The test_out_of_order_ids test fails because of this in test_add.py # Here we sort the ids to match the input order embedding_id_to_index = {id: i for i, id in enumerate(embeddings["ids"])} actual_ids = sorted(actual_ids, key=lambda id: embedding_id_to_index[id]) assert actual_ids == embeddings["ids"] def metadatas_match(collection: Collection, embeddings: RecordSet): """The actual embedding metadata is equal to the expected metadata""" embeddings = wrap_all(embeddings) _field_matches(collection, embeddings, "metadatas") def documents_match(collection: Collection, embeddings: RecordSet): """The actual embedding documents is equal to the expected documents""" embeddings = wrap_all(embeddings) _field_matches(collection, embeddings, "documents") def no_duplicates(collection: Collection): ids = collection.get()["ids"] assert len(ids) == len(set(ids)) # These match what the spec of hnswlib is # This epsilon is used to prevent division by zero and the value is the same # https://github.com/nmslib/hnswlib/blob/359b2ba87358224963986f709e593d799064ace6/python_bindings/bindings.cpp#L238 NORM_EPS = 1e-30 distance_functions = { "l2": lambda x, y: np.linalg.norm(x - y) ** 2, "cosine": lambda x, y: 1 - np.dot(x, y) / ((np.linalg.norm(x) + NORM_EPS) * (np.linalg.norm(y) + NORM_EPS)), "ip": lambda x, y: 1 - np.dot(x, y), } def _exact_distances( query: types.Embeddings, targets: types.Embeddings, distance_fn: Callable = lambda x, y: np.linalg.norm(x - y) ** 2, ): """Return the ordered indices and distances from each query to each target""" np_query = np.array(query) np_targets = np.array(targets) # Compute the distance between each query and each target, using the distance function distances = np.apply_along_axis( lambda query: np.apply_along_axis(distance_fn, 1, np_targets, query), 1, np_query, ) # Sort the distances and return the indices return np.argsort(distances), distances def ann_accuracy( collection: Collection, record_set: RecordSet, n_results: int = 1, min_recall: float = 0.99, embedding_function: Optional[types.EmbeddingFunction] = None, ): """Validate that the API performs nearest_neighbor searches correctly""" record_set = wrap_all(record_set) if len(record_set["ids"]) == 0: return # nothing to test here embeddings = record_set["embeddings"] have_embeddings = embeddings is not None and len(embeddings) > 0 if not have_embeddings: assert embedding_function is not None assert record_set["documents"] is not None # Compute the embeddings for the documents embeddings = embedding_function(record_set["documents"]) # l2 is the default distance function distance_function = distance_functions["l2"] accuracy_threshold = 1e-6 if "hnsw:space" in collection.metadata: space = collection.metadata["hnsw:space"] # TODO: ip and cosine are numerically unstable in HNSW. # The higher the dimensionality, the more noise is introduced, since each float element # of the vector has noise added, which is then subsequently included in all normalization calculations. # This means that higher dimensions will have more noise, and thus more error. dim = len(embeddings[0]) accuracy_threshold = accuracy_threshold * math.pow(10, int(math.log10(dim))) if space == "cosine": distance_function = distance_functions["cosine"] if space == "ip": distance_function = distance_functions["ip"] # Perform exact distance computation indices, distances = _exact_distances( embeddings, embeddings, distance_fn=distance_function ) query_results = collection.query( query_embeddings=record_set["embeddings"], query_texts=record_set["documents"] if not have_embeddings else None, n_results=n_results, include=["embeddings", "documents", "metadatas", "distances"], ) # Dict of ids to indices id_to_index = {id: i for i, id in enumerate(record_set["ids"])} missing = 0 for i, (indices_i, distances_i) in enumerate(zip(indices, distances)): expected_ids = np.array(record_set["ids"])[indices_i[:n_results]] missing += len(set(expected_ids) - set(query_results["ids"][i])) # For each id in the query results, find the index in the embeddings set # and assert that the embeddings are the same for j, id in enumerate(query_results["ids"][i]): # This may be because the true nth nearest neighbor didn't get returned by the ANN query unexpected_id = id not in expected_ids index = id_to_index[id] correct_distance = np.allclose( distances_i[index], query_results["distances"][i][j], atol=accuracy_threshold, ) if unexpected_id: # If the ID is unexpcted, but the distance is correct, then we # have a duplicate in the data. In this case, we should not reduce recall. if correct_distance: missing -= 1 else: continue else: assert correct_distance assert np.allclose(embeddings[index], query_results["embeddings"][i][j]) if record_set["documents"] is not None: assert ( record_set["documents"][index] == query_results["documents"][i][j] ) if record_set["metadatas"] is not None: assert ( record_set["metadatas"][index] == query_results["metadatas"][i][j] ) size = len(record_set["ids"]) recall = (size - missing) / size try: note( f"recall: {recall}, missing {missing} out of {size}, accuracy threshold {accuracy_threshold}" ) except InvalidArgument: pass # it's ok if we're running outside hypothesis assert recall >= min_recall # Ensure that the query results are sorted by distance for distance_result in query_results["distances"]: assert np.allclose(np.sort(distance_result), distance_result)
Ocean-master
oceandb/test/property/invariants.py
from hypothesis import given, settings, HealthCheck from oceandb.api import API from oceandb.errors import NoDatapointsException from oceandb.test.property import invariants import oceandb.test.property.strategies as strategies import hypothesis.strategies as st import logging import random def _filter_where_clause(clause, mm): """Return true if the where clause is true for the given metadata map""" key, expr = list(clause.items())[0] # Handle the shorthand for equal: {key: val} where val is a simple value if isinstance(expr, str) or isinstance(expr, int) or isinstance(expr, float): return _filter_where_clause({key: {"$eq": expr}}, mm) if key == "$and": return all(_filter_where_clause(clause, mm) for clause in expr) if key == "$or": return any(_filter_where_clause(clause, mm) for clause in expr) op, val = list(expr.items())[0] if op == "$eq": return key in mm and mm[key] == val elif op == "$ne": return key in mm and mm[key] != val elif op == "$gt": return key in mm and mm[key] > val elif op == "$gte": return key in mm and mm[key] >= val elif op == "$lt": return key in mm and mm[key] < val elif op == "$lte": return key in mm and mm[key] <= val else: raise ValueError("Unknown operator: {}".format(key)) def _filter_where_doc_clause(clause, doc): key, expr = list(clause.items())[0] if key == "$and": return all(_filter_where_doc_clause(clause, doc) for clause in expr) elif key == "$or": return any(_filter_where_doc_clause(clause, doc) for clause in expr) elif key == "$contains": return expr in doc else: raise ValueError("Unknown operator: {}".format(key)) EMPTY_DICT = {} EMPTY_STRING = "" def _filter_embedding_set(recordset: strategies.RecordSet, filter: strategies.Filter): """Return IDs from the embedding set that match the given filter object""" recordset = invariants.wrap_all(recordset) ids = set(recordset["ids"]) filter_ids = filter["ids"] if filter_ids is not None: filter_ids = invariants.maybe_wrap(filter_ids) assert filter_ids is not None # If the filter ids is an empty list then we treat that as get all if len(filter_ids) != 0: ids = ids.intersection(filter_ids) for i in range(len(recordset["ids"])): if filter["where"]: metadatas = recordset["metadatas"] or [EMPTY_DICT] * len(recordset["ids"]) if not _filter_where_clause(filter["where"], metadatas[i]): ids.discard(recordset["ids"][i]) if filter["where_document"]: documents = recordset["documents"] or [EMPTY_STRING] * len(recordset["ids"]) if not _filter_where_doc_clause(filter["where_document"], documents[i]): ids.discard(recordset["ids"][i]) return list(ids) collection_st = st.shared( strategies.collections(add_filterable_data=True, with_hnsw_params=True), key="coll", ) recordset_st = st.shared( strategies.recordsets(collection_st, max_size=1000), key="recordset" ) @settings( suppress_health_check=[ HealthCheck.function_scoped_fixture, HealthCheck.large_base_example, ] ) @given( collection=collection_st, recordset=recordset_st, filters=st.lists(strategies.filters(collection_st, recordset_st), min_size=1), ) def test_filterable_metadata_get(caplog, api: API, collection, recordset, filters): caplog.set_level(logging.ERROR) api.reset() coll = api.create_collection( name=collection.name, metadata=collection.metadata, embedding_function=collection.embedding_function, ) coll.add(**recordset) for filter in filters: result_ids = coll.get(**filter)["ids"] expected_ids = _filter_embedding_set(recordset, filter) assert sorted(result_ids) == sorted(expected_ids) @settings( suppress_health_check=[ HealthCheck.function_scoped_fixture, HealthCheck.large_base_example, ] ) @given( collection=collection_st, recordset=recordset_st, filters=st.lists( strategies.filters(collection_st, recordset_st, include_all_ids=True), min_size=1, ), ) def test_filterable_metadata_query( caplog, api: API, collection: strategies.Collection, recordset: strategies.RecordSet, filters, ): caplog.set_level(logging.ERROR) api.reset() coll = api.create_collection( name=collection.name, metadata=collection.metadata, embedding_function=collection.embedding_function, ) coll.add(**recordset) recordset = invariants.wrap_all(recordset) total_count = len(recordset["ids"]) # Pick a random vector if collection.has_embeddings: random_query = recordset["embeddings"][random.randint(0, total_count - 1)] else: random_query = collection.embedding_function( recordset["documents"][random.randint(0, total_count - 1)] ) for filter in filters: try: result_ids = set( coll.query( query_embeddings=random_query, n_results=total_count, where=filter["where"], where_document=filter["where_document"], )["ids"][0] ) except NoDatapointsException: result_ids = set() expected_ids = set(_filter_embedding_set(recordset, filter)) assert len(result_ids.intersection(expected_ids)) == len(result_ids)
Ocean-master
oceandb/test/property/test_filtering.py
from abc import ABC, abstractmethod class Server(ABC): @abstractmethod def __init__(self, settings): pass
Ocean-master
oceandb/server/__init__.py
import fastapi from fastapi import FastAPI as _FastAPI from fastapi.responses import JSONResponse from fastapi.middleware.cors import CORSMiddleware from fastapi.routing import APIRoute from fastapi import HTTPException, status from uuid import UUID import oceandb import oceandb.server import oceandb.api from oceandb.errors import ( OceanError, InvalidUUIDError, InvalidDimensionException, ) from oceandb.server.fastapi.types import ( AddEmbedding, DeleteEmbedding, GetEmbedding, QueryEmbedding, RawSql, # Results, CreateCollection, UpdateCollection, UpdateEmbedding, ) from starlette.requests import Request import logging from oceandb.telemetry import ServerContext, Telemetry logger = logging.getLogger(__name__) def use_route_names_as_operation_ids(app: _FastAPI) -> None: """ Simplify operation IDs so that generated API clients have simpler function names. Should be called only after all routes have been added. """ for route in app.routes: if isinstance(route, APIRoute): route.operation_id = route.name async def catch_exceptions_middleware(request: Request, call_next): try: return await call_next(request) except OceanError as e: return JSONResponse( content={"error": e.name(), "message": e.message()}, status_code=e.code() ) except Exception as e: logger.exception(e) return JSONResponse(content={"error": repr(e)}, status_code=500) def _uuid(uuid_str: str): try: return UUID(uuid_str) except ValueError: raise InvalidUUIDError(f"Could not parse {uuid_str} as a UUID") class FastAPI(oceandb.server.Server): def __init__(self, settings): super().__init__(settings) Telemetry.SERVER_CONTEXT = ServerContext.FASTAPI self._app = fastapi.FastAPI(debug=True) self._api: oceandb.api.API = oceandb.Client(settings) self._app.middleware("http")(catch_exceptions_middleware) self._app.add_middleware( CORSMiddleware, allow_headers=["*"], allow_origins=settings.ocean_server_cors_allow_origins, allow_methods=["*"], ) self.router = fastapi.APIRouter() self.router.add_api_route("/api/v1", self.root, methods=["GET"]) self.router.add_api_route("/api/v1/reset", self.reset, methods=["POST"]) self.router.add_api_route("/api/v1/version", self.version, methods=["GET"]) self.router.add_api_route("/api/v1/heartbeat", self.heartbeat, methods=["GET"]) self.router.add_api_route("/api/v1/persist", self.persist, methods=["POST"]) self.router.add_api_route("/api/v1/raw_sql", self.raw_sql, methods=["POST"]) self.router.add_api_route( "/api/v1/collections", self.list_collections, methods=["GET"] ) self.router.add_api_route( "/api/v1/collections", self.create_collection, methods=["POST"] ) self.router.add_api_route( "/api/v1/collections/{collection_id}/add", self.add, methods=["POST"], status_code=status.HTTP_201_CREATED, ) self.router.add_api_route( "/api/v1/collections/{collection_id}/update", self.update, methods=["POST"] ) self.router.add_api_route( "/api/v1/collections/{collection_id}/upsert", self.upsert, methods=["POST"] ) self.router.add_api_route( "/api/v1/collections/{collection_id}/get", self.get, methods=["POST"] ) self.router.add_api_route( "/api/v1/collections/{collection_id}/delete", self.delete, methods=["POST"] ) self.router.add_api_route( "/api/v1/collections/{collection_id}/count", self.count, methods=["GET"] ) self.router.add_api_route( "/api/v1/collections/{collection_id}/query", self.get_nearest_neighbors, methods=["POST"], ) self.router.add_api_route( "/api/v1/collections/{collection_name}/create_index", self.create_index, methods=["POST"], ) self.router.add_api_route( "/api/v1/collections/{collection_name}", self.get_collection, methods=["GET"], ) self.router.add_api_route( "/api/v1/collections/{collection_id}", self.update_collection, methods=["PUT"], ) self.router.add_api_route( "/api/v1/collections/{collection_name}", self.delete_collection, methods=["DELETE"], ) self._app.include_router(self.router) use_route_names_as_operation_ids(self._app) def app(self): return self._app def root(self): return {"nanosecond heartbeat": self._api.heartbeat()} def heartbeat(self): return self.root() def persist(self): self._api.persist() def version(self): return self._api.get_version() def list_collections(self): return self._api.list_collections() def create_collection(self, collection: CreateCollection): return self._api.create_collection( name=collection.name, metadata=collection.metadata, get_or_create=collection.get_or_create, ) def get_collection(self, collection_name: str): return self._api.get_collection(collection_name) def update_collection(self, collection_id: str, collection: UpdateCollection): return self._api._modify( id=_uuid(collection_id), new_name=collection.new_name, new_metadata=collection.new_metadata, ) def delete_collection(self, collection_name: str): return self._api.delete_collection(collection_name) def add(self, collection_id: str, add: AddEmbedding): try: result = self._api._add( collection_id=_uuid(collection_id), embeddings=add.embeddings, metadatas=add.metadatas, documents=add.documents, ids=add.ids, increment_index=add.increment_index, ) except InvalidDimensionException as e: raise HTTPException(status_code=500, detail=str(e)) return result def update(self, collection_id: str, add: UpdateEmbedding): return self._api._update( ids=add.ids, collection_id=_uuid(collection_id), embeddings=add.embeddings, documents=add.documents, metadatas=add.metadatas, ) def upsert(self, collection_id: str, upsert: AddEmbedding): return self._api._upsert( collection_id=_uuid(collection_id), ids=upsert.ids, embeddings=upsert.embeddings, documents=upsert.documents, metadatas=upsert.metadatas, increment_index=upsert.increment_index, ) def get(self, collection_id: str, get: GetEmbedding): return self._api._get( collection_id=_uuid(collection_id), ids=get.ids, where=get.where, where_document=get.where_document, sort=get.sort, limit=get.limit, offset=get.offset, include=get.include, ) def delete(self, collection_id: str, delete: DeleteEmbedding): return self._api._delete( where=delete.where, ids=delete.ids, collection_id=_uuid(collection_id), where_document=delete.where_document, ) def count(self, collection_id: str): return self._api._count(_uuid(collection_id)) def reset(self): return self._api.reset() def get_nearest_neighbors(self, collection_id: str, query: QueryEmbedding): nnresult = self._api._query( collection_id=_uuid(collection_id), where=query.where, where_document=query.where_document, query_embeddings=query.query_embeddings, n_results=query.n_results, include=query.include, ) return nnresult def raw_sql(self, raw_sql: RawSql): return self._api.raw_sql(raw_sql.raw_sql) def create_index(self, collection_name: str): return self._api.create_index(collection_name)
Ocean-master
oceandb/server/fastapi/__init__.py
from pydantic import BaseModel from typing import List, Union from oceandb.api.types import Include # type supports single and batch mode class AddEmbedding(BaseModel): embeddings: List metadatas: Union[List, dict] = None documents: Union[str, List] = None ids: Union[str, List] = None increment_index: bool = True class UpdateEmbedding(BaseModel): embeddings: List = None metadatas: Union[List, dict] = None documents: Union[str, List] = None ids: Union[str, List] = None increment_index: bool = True class QueryEmbedding(BaseModel): where: dict = {} where_document: dict = {} query_embeddings: List n_results: int = 10 include: Include = ["metadatas", "documents", "distances"] class ProcessEmbedding(BaseModel): collection_name: str = None training_dataset_name: str = None unlabeled_dataset_name: str = None class GetEmbedding(BaseModel): ids: List = None where: dict = None where_document: dict = None sort: str = None limit: int = None offset: int = None include: Include = ["metadatas", "documents"] class CountEmbedding(BaseModel): collection_name: str = None class RawSql(BaseModel): raw_sql: str = None class SpaceKeyInput(BaseModel): collection_name: str class DeleteEmbedding(BaseModel): ids: List = None where: dict = None where_document: dict = None class CreateCollection(BaseModel): name: str metadata: dict = None get_or_create: bool = False class UpdateCollection(BaseModel): new_name: str = None new_metadata: dict = None
Ocean-master
oceandb/server/fastapi/types.py
from oceandb.api.types import Documents, EmbeddingFunction, Embeddings from typing import Optional import torch from .ImageBind.models import imagebind_model from .ImageBind.models.imagebind_model import ModalityType from .ImageBind.data import ( load_and_transform_text, load_and_transform_vision_data, load_and_transform_audio_data, ) class SentenceTransformerEmbeddingFunction(EmbeddingFunction): models = {} # If you have a beefier machine, try "gtr-t5-large". # for a full list of options: https://huggingface.co/sentence-transformers, https://www.sbert.net/docs/pretrained_models.html def __init__(self, model_name: str = "all-MiniLM-L6-v2"): if model_name not in self.models: try: from sentence_transformers import SentenceTransformer except ImportError: raise ValueError( "The sentence_transformers python package is not installed. Please install it with `pip install sentence_transformers`" ) self.models[model_name] = SentenceTransformer(model_name) self._model = self.models[model_name] def __call__(self, texts: Documents) -> Embeddings: return self._model.encode(list(texts), convert_to_numpy=True).tolist() # class MultiModalEmbeddingFunction(EmbeddingFunction): def __init__( self, modality: str = ModalityType, # type: ignore model_path: str = "https://dl.fbaipublicfiles.com/imagebind/imagebind_huge.pth", device: str = "cuda:0", ): self._modality = modality self.device = "cuda:0" if torch.cuda.is_available() else "cpu" self._model = imagebind_model.imagebind_huge(pretrained=True) self._model.eval() self._model.to(self.device) def __call__(self, *args: Documents) -> Embeddings: if self._modality == ModalityType.TEXT: inputs = {ModalityType.TEXT: load_and_transform_text(args[0], self.device)} print("Inputs:", inputs) elif self._modality == ModalityType.VISION: inputs = { ModalityType.VISION: load_and_transform_vision_data( args[0], self.device ) } elif self._modality == ModalityType.AUDIO: inputs = { ModalityType.AUDIO: load_and_transform_audio_data(args[0], self.device) } else: raise ValueError("Invalid modality specified") with torch.no_grad(): embeddings = self._model(inputs) print("Embeddings:", embeddings) # Convert the embeddings tensor to a NumPy array and then to a list of lists (embeddings) embeddings_array = embeddings[self._modality].cpu().numpy() print("Embeddings array:", embeddings_array) # embeddings_list = embeddings_array.tolist() # return embeddings_list return [embedding.tolist() for embedding in embeddings_array] """ text_embedding_function = MultiModalEmbeddingFunction(modality=ModalityType.TEXT) vision_embedding_function = MultiModalEmbeddingFunction(modality=ModalityType.VISION) audio_embedding_function = MultiModalEmbeddingFunction(modality=ModalityType.AUDIO) """ class OpenAIEmbeddingFunction(EmbeddingFunction): def __init__( self, api_key: Optional[str] = None, model_name: str = "text-embedding-ada-002" ): try: import openai except ImportError: raise ValueError( "The openai python package is not installed. Please install it with `pip install openai`" ) if api_key is not None: openai.api_key = api_key # If the api key is still not set, raise an error elif openai.api_key is None: raise ValueError( "Please provide an OpenAI API key. You can get one at https://platform.openai.com/account/api-keys" ) self._client = openai.Embedding self._model_name = model_name def __call__(self, texts: Documents) -> Embeddings: # replace newlines, which can negatively affect performance. texts = [t.replace("\n", " ") for t in texts] # Call the OpenAI Embedding API embeddings = self._client.create(input=texts, engine=self._model_name)["data"] # Sort resulting embeddings by index sorted_embeddings = sorted(embeddings, key=lambda e: e["index"]) # Return just the embeddings return [result["embedding"] for result in sorted_embeddings] class CohereEmbeddingFunction(EmbeddingFunction): def __init__(self, api_key: str, model_name: str = "large"): try: import cohere except ImportError: raise ValueError( "The cohere python package is not installed. Please install it with `pip install cohere`" ) self._client = cohere.Client(api_key) self._model_name = model_name def __call__(self, texts: Documents) -> Embeddings: # Call Cohere Embedding API for each document. return [ embeddings for embeddings in self._client.embed(texts=texts, model=self._model_name) ] class HuggingFaceEmbeddingFunction(EmbeddingFunction): def __init__( self, api_key: str, model_name: str = "sentence-transformers/all-MiniLM-L6-v2" ): try: import requests except ImportError: raise ValueError( "The requests python package is not installed. Please install it with `pip install requests`" ) self._api_url = f"https://api-inference.huggingface.co/pipeline/feature-extraction/{model_name}" self._session = requests.Session() self._session.headers.update({"Authorization": f"Bearer {api_key}"}) def __call__(self, texts: Documents) -> Embeddings: # Call HuggingFace Embedding API for each document return self._session.post( self._api_url, json={"inputs": texts, "options": {"wait_for_model": True}} ).json() class InstructorEmbeddingFunction(EmbeddingFunction): # If you have a GPU with at least 6GB try model_name = "hkunlp/instructor-xl" and device = "cuda" # for a full list of options: https://github.com/HKUNLP/instructor-embedding#model-list def __init__(self, model_name: str = "hkunlp/instructor-base", device="cpu"): try: from InstructorEmbedding import INSTRUCTOR except ImportError: raise ValueError( "The InstructorEmbedding python package is not installed. Please install it with `pip install InstructorEmbedding`" ) self._model = INSTRUCTOR(model_name, device=device) def __call__(self, texts: Documents) -> Embeddings: return self._model.encode(texts).tolist() class GooglePalmEmbeddingFunction(EmbeddingFunction): """To use this EmbeddingFunction, you must have the google.generativeai Python package installed and have a PaLM API key.""" def __init__(self, api_key: str, model_name: str = "models/embedding-gecko-001"): if not api_key: raise ValueError("Please provide a PaLM API key.") if not model_name: raise ValueError("Please provide the model name.") try: import google.generativeai as palm except ImportError: raise ValueError( "The Google Generative AI python package is not installed. Please install it with `pip install google-generativeai`" ) palm.configure(api_key=api_key) self._palm = palm self._model_name = model_name def __call__(self, texts: Documents) -> Embeddings: return [ self._palm.generate_embeddings(model=self._model_name, text=text)[ "embedding" ] for text in texts ]
Ocean-master
oceandb/utils/embedding_functions.py
Ocean-master
oceandb/utils/__init__.py
#!/usr/bin/env python3 # Portions Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import math import torch import torch.nn as nn import torchaudio import logging # from ..multimodal_preprocessors import SimpleTokenizer from .models.multimodal_preprocessors import SimpleTokenizer from PIL import Image from pytorchvideo import transforms as pv_transforms from pytorchvideo.data.clip_sampling import ConstantClipsPerVideoSampler from pytorchvideo.data.encoded_video import EncodedVideo from torchvision import transforms from torchvision.transforms._transforms_video import NormalizeVideo DEFAULT_AUDIO_FRAME_SHIFT_MS = 10 # in milliseconds BPE_PATH = "oceandb/utils/ImageBind/bpe_simple_vocab_16e6.txt.gz" def waveform2melspec(waveform, sample_rate, num_mel_bins, target_length): # Based on https://github.com/YuanGongND/ast/blob/d7d8b4b8e06cdaeb6c843cdb38794c1c7692234c/src/dataloader.py#L102 waveform -= waveform.mean() fbank = torchaudio.compliance.kaldi.fbank( waveform, htk_compat=True, sample_frequency=sample_rate, use_energy=False, window_type="hanning", num_mel_bins=num_mel_bins, dither=0.0, frame_length=25, frame_shift=DEFAULT_AUDIO_FRAME_SHIFT_MS, ) # Convert to [mel_bins, num_frames] shape fbank = fbank.transpose(0, 1) # Pad to target_length n_frames = fbank.size(1) p = target_length - n_frames # if p is too large (say >20%), flash a warning if abs(p) / n_frames > 0.2: logging.warning( "Large gap between audio n_frames(%d) and " "target_length (%d). Is the audio_target_length " "setting correct?", n_frames, target_length, ) # cut and pad if p > 0: fbank = torch.nn.functional.pad(fbank, (0, p), mode="constant", value=0) elif p < 0: fbank = fbank[:, 0:target_length] # Convert to [1, mel_bins, num_frames] shape, essentially like a 1 # channel image fbank = fbank.unsqueeze(0) return fbank def get_clip_timepoints(clip_sampler, duration): # Read out all clips in this video all_clips_timepoints = [] is_last_clip = False end = 0.0 while not is_last_clip: start, end, _, _, is_last_clip = clip_sampler(end, duration, annotation=None) all_clips_timepoints.append((start, end)) return all_clips_timepoints def load_and_transform_vision_data(image_paths, device): if image_paths is None: return None image_ouputs = [] for image_path in image_paths: data_transform = transforms.Compose( [ transforms.Resize( 224, interpolation=transforms.InterpolationMode.BICUBIC ), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize( mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711), ), ] ) with open(image_path, "rb") as fopen: image = Image.open(fopen).convert("RGB") image = data_transform(image).to(device) image_ouputs.append(image) return torch.stack(image_ouputs, dim=0) def load_and_transform_text(text, device): if text is None: return None tokenizer = SimpleTokenizer(bpe_path=BPE_PATH) tokens = [tokenizer(t).unsqueeze(0).to(device) for t in text] tokens = torch.cat(tokens, dim=0) return tokens def load_and_transform_audio_data( audio_paths, device, num_mel_bins=128, target_length=204, sample_rate=16000, clip_duration=2, clips_per_video=3, mean=-4.268, std=9.138, ): if audio_paths is None: return None audio_outputs = [] clip_sampler = ConstantClipsPerVideoSampler( clip_duration=clip_duration, clips_per_video=clips_per_video ) for audio_path in audio_paths: waveform, sr = torchaudio.load(audio_path) if sample_rate != sr: waveform = torchaudio.functional.resample( waveform, orig_freq=sr, new_freq=sample_rate ) all_clips_timepoints = get_clip_timepoints( clip_sampler, waveform.size(1) / sample_rate ) all_clips = [] for clip_timepoints in all_clips_timepoints: waveform_clip = waveform[ :, int(clip_timepoints[0] * sample_rate) : int( clip_timepoints[1] * sample_rate ), ] waveform_melspec = waveform2melspec( waveform_clip, sample_rate, num_mel_bins, target_length ) all_clips.append(waveform_melspec) normalize = transforms.Normalize(mean=mean, std=std) all_clips = [normalize(ac).to(device) for ac in all_clips] all_clips = torch.stack(all_clips, dim=0) audio_outputs.append(all_clips) return torch.stack(audio_outputs, dim=0) def get_clip_timepoints(clip_sampler, duration): # Read out all clips in this video all_clips_timepoints = [] is_last_clip = False end = 0.0 while not is_last_clip: start, end, _, _, is_last_clip = clip_sampler(end, duration, annotation=None) all_clips_timepoints.append((start, end)) return all_clips_timepoints def crop_boxes(boxes, x_offset, y_offset): """ Peform crop on the bounding boxes given the offsets. Args: boxes (ndarray or None): bounding boxes to peform crop. The dimension is `num boxes` x 4. x_offset (int): cropping offset in the x axis. y_offset (int): cropping offset in the y axis. Returns: cropped_boxes (ndarray or None): the cropped boxes with dimension of `num boxes` x 4. """ cropped_boxes = boxes.copy() cropped_boxes[:, [0, 2]] = boxes[:, [0, 2]] - x_offset cropped_boxes[:, [1, 3]] = boxes[:, [1, 3]] - y_offset return cropped_boxes def uniform_crop(images, size, spatial_idx, boxes=None, scale_size=None): """ Perform uniform spatial sampling on the images and corresponding boxes. Args: images (tensor): images to perform uniform crop. The dimension is `num frames` x `channel` x `height` x `width`. size (int): size of height and weight to crop the images. spatial_idx (int): 0, 1, or 2 for left, center, and right crop if width is larger than height. Or 0, 1, or 2 for top, center, and bottom crop if height is larger than width. boxes (ndarray or None): optional. Corresponding boxes to images. Dimension is `num boxes` x 4. scale_size (int): optinal. If not None, resize the images to scale_size before performing any crop. Returns: cropped (tensor): images with dimension of `num frames` x `channel` x `size` x `size`. cropped_boxes (ndarray or None): the cropped boxes with dimension of `num boxes` x 4. """ assert spatial_idx in [0, 1, 2] ndim = len(images.shape) if ndim == 3: images = images.unsqueeze(0) height = images.shape[2] width = images.shape[3] if scale_size is not None: if width <= height: width, height = scale_size, int(height / width * scale_size) else: width, height = int(width / height * scale_size), scale_size images = torch.nn.functional.interpolate( images, size=(height, width), mode="bilinear", align_corners=False, ) y_offset = int(math.ceil((height - size) / 2)) x_offset = int(math.ceil((width - size) / 2)) if height > width: if spatial_idx == 0: y_offset = 0 elif spatial_idx == 2: y_offset = height - size else: if spatial_idx == 0: x_offset = 0 elif spatial_idx == 2: x_offset = width - size cropped = images[:, :, y_offset : y_offset + size, x_offset : x_offset + size] cropped_boxes = crop_boxes(boxes, x_offset, y_offset) if boxes is not None else None if ndim == 3: cropped = cropped.squeeze(0) return cropped, cropped_boxes class SpatialCrop(nn.Module): """ Convert the video into 3 smaller clips spatially. Must be used after the temporal crops to get spatial crops, and should be used with -2 in the spatial crop at the slowfast augmentation stage (so full frames are passed in here). Will return a larger list with the 3x spatial crops as well. """ def __init__(self, crop_size: int = 224, num_crops: int = 3): super().__init__() self.crop_size = crop_size if num_crops == 3: self.crops_to_ext = [0, 1, 2] self.flipped_crops_to_ext = [] elif num_crops == 1: self.crops_to_ext = [1] self.flipped_crops_to_ext = [] else: raise NotImplementedError("Nothing else supported yet") def forward(self, videos): """ Args: videos: A list of C, T, H, W videos. Returns: videos: A list with 3x the number of elements. Each video converted to C, T, H', W' by spatial cropping. """ assert isinstance(videos, list), "Must be a list of videos after temporal crops" assert all([video.ndim == 4 for video in videos]), "Must be (C,T,H,W)" res = [] for video in videos: for spatial_idx in self.crops_to_ext: res.append(uniform_crop(video, self.crop_size, spatial_idx)[0]) if not self.flipped_crops_to_ext: continue flipped_video = transforms.functional.hflip(video) for spatial_idx in self.flipped_crops_to_ext: res.append(uniform_crop(flipped_video, self.crop_size, spatial_idx)[0]) return res def load_and_transform_video_data( video_paths, device, clip_duration=2, clips_per_video=5, sample_rate=16000, ): if video_paths is None: return None video_outputs = [] video_transform = transforms.Compose( [ pv_transforms.ShortSideScale(224), NormalizeVideo( mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711), ), ] ) clip_sampler = ConstantClipsPerVideoSampler( clip_duration=clip_duration, clips_per_video=clips_per_video ) frame_sampler = pv_transforms.UniformTemporalSubsample(num_samples=clip_duration) for video_path in video_paths: video = EncodedVideo.from_path( video_path, decoder="decord", decode_audio=False, **{"sample_rate": sample_rate}, ) all_clips_timepoints = get_clip_timepoints(clip_sampler, video.duration) all_video = [] for clip_timepoints in all_clips_timepoints: # Read the clip, get frames clip = video.get_clip(clip_timepoints[0], clip_timepoints[1]) if clip is None: raise ValueError("No clip found") video_clip = frame_sampler(clip["video"]) video_clip = video_clip / 255.0 # since this is float, need 0-1 all_video.append(video_clip) all_video = [video_transform(clip) for clip in all_video] all_video = SpatialCrop(224, num_crops=3)(all_video) all_video = torch.stack(all_video, dim=0) video_outputs.append(all_video) return torch.stack(video_outputs, dim=0).to(device)
Ocean-master
oceandb/utils/ImageBind/data.py
Ocean-master
oceandb/utils/ImageBind/models/__init__.py
#!/usr/bin/env python3 # Portions Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os from functools import partial from types import SimpleNamespace import torch import torch.nn as nn from .helpers import ( EinOpsRearrange, LearnableLogitScaling, Normalize, SelectElement, SelectEOSAndProject, ) from .multimodal_preprocessors import ( AudioPreprocessor, IMUPreprocessor, PadIm2Video, PatchEmbedGeneric, RGBDTPreprocessor, SpatioTemporalPosEmbeddingHelper, TextPreprocessor, ThermalPreprocessor, ) from .transformer import MultiheadAttention, SimpleTransformer ModalityType = SimpleNamespace( VISION="vision", TEXT="text", AUDIO="audio", THERMAL="thermal", DEPTH="depth", IMU="imu", ) class ImageBindModel(nn.Module): def __init__( self, video_frames=2, kernel_size=(2, 14, 14), audio_kernel_size=16, audio_stride=10, out_embed_dim=768, vision_embed_dim=1024, vision_num_blocks=24, vision_num_heads=16, audio_embed_dim=768, audio_num_blocks=12, audio_num_heads=12, audio_num_mel_bins=128, audio_target_len=204, audio_drop_path=0.1, text_embed_dim=768, text_num_blocks=12, text_num_heads=12, depth_embed_dim=384, depth_kernel_size=16, depth_num_blocks=12, depth_num_heads=8, depth_drop_path=0.0, thermal_embed_dim=768, thermal_kernel_size=16, thermal_num_blocks=12, thermal_num_heads=12, thermal_drop_path=0.0, imu_embed_dim=512, imu_kernel_size=8, imu_num_blocks=6, imu_num_heads=8, imu_drop_path=0.7, ): super().__init__() self.modality_preprocessors = self._create_modality_preprocessors( video_frames, vision_embed_dim, kernel_size, text_embed_dim, audio_embed_dim, audio_kernel_size, audio_stride, audio_num_mel_bins, audio_target_len, depth_embed_dim, depth_kernel_size, thermal_embed_dim, thermal_kernel_size, imu_embed_dim, ) self.modality_trunks = self._create_modality_trunks( vision_embed_dim, vision_num_blocks, vision_num_heads, text_embed_dim, text_num_blocks, text_num_heads, audio_embed_dim, audio_num_blocks, audio_num_heads, audio_drop_path, depth_embed_dim, depth_num_blocks, depth_num_heads, depth_drop_path, thermal_embed_dim, thermal_num_blocks, thermal_num_heads, thermal_drop_path, imu_embed_dim, imu_num_blocks, imu_num_heads, imu_drop_path, ) self.modality_heads = self._create_modality_heads( out_embed_dim, vision_embed_dim, text_embed_dim, audio_embed_dim, depth_embed_dim, thermal_embed_dim, imu_embed_dim, ) self.modality_postprocessors = self._create_modality_postprocessors( out_embed_dim ) def _create_modality_preprocessors( self, video_frames=2, vision_embed_dim=1024, kernel_size=(2, 14, 14), text_embed_dim=768, audio_embed_dim=768, audio_kernel_size=16, audio_stride=10, audio_num_mel_bins=128, audio_target_len=204, depth_embed_dim=768, depth_kernel_size=16, thermal_embed_dim=768, thermal_kernel_size=16, imu_embed_dim=512, ): rgbt_stem = PatchEmbedGeneric( proj_stem=[ PadIm2Video(pad_type="repeat", ntimes=2), nn.Conv3d( in_channels=3, kernel_size=kernel_size, out_channels=vision_embed_dim, stride=kernel_size, bias=False, ), ] ) rgbt_preprocessor = RGBDTPreprocessor( img_size=[3, video_frames, 224, 224], num_cls_tokens=1, pos_embed_fn=partial(SpatioTemporalPosEmbeddingHelper, learnable=True), rgbt_stem=rgbt_stem, depth_stem=None, ) text_preprocessor = TextPreprocessor( context_length=77, vocab_size=49408, embed_dim=text_embed_dim, causal_masking=True, ) audio_stem = PatchEmbedGeneric( proj_stem=[ nn.Conv2d( in_channels=1, kernel_size=audio_kernel_size, stride=audio_stride, out_channels=audio_embed_dim, bias=False, ), ], norm_layer=nn.LayerNorm(normalized_shape=audio_embed_dim), ) audio_preprocessor = AudioPreprocessor( img_size=[1, audio_num_mel_bins, audio_target_len], num_cls_tokens=1, pos_embed_fn=partial(SpatioTemporalPosEmbeddingHelper, learnable=True), audio_stem=audio_stem, ) depth_stem = PatchEmbedGeneric( [ nn.Conv2d( kernel_size=depth_kernel_size, in_channels=1, out_channels=depth_embed_dim, stride=depth_kernel_size, bias=False, ), ], norm_layer=nn.LayerNorm(normalized_shape=depth_embed_dim), ) depth_preprocessor = RGBDTPreprocessor( img_size=[1, 224, 224], num_cls_tokens=1, pos_embed_fn=partial(SpatioTemporalPosEmbeddingHelper, learnable=True), rgbt_stem=None, depth_stem=depth_stem, ) thermal_stem = PatchEmbedGeneric( [ nn.Conv2d( kernel_size=thermal_kernel_size, in_channels=1, out_channels=thermal_embed_dim, stride=thermal_kernel_size, bias=False, ), ], norm_layer=nn.LayerNorm(normalized_shape=thermal_embed_dim), ) thermal_preprocessor = ThermalPreprocessor( img_size=[1, 224, 224], num_cls_tokens=1, pos_embed_fn=partial(SpatioTemporalPosEmbeddingHelper, learnable=True), thermal_stem=thermal_stem, ) imu_stem = PatchEmbedGeneric( [ nn.Linear( in_features=48, out_features=imu_embed_dim, bias=False, ), ], norm_layer=nn.LayerNorm(normalized_shape=imu_embed_dim), ) imu_preprocessor = IMUPreprocessor( img_size=[6, 2000], num_cls_tokens=1, kernel_size=8, embed_dim=imu_embed_dim, pos_embed_fn=partial(SpatioTemporalPosEmbeddingHelper, learnable=True), imu_stem=imu_stem, ) modality_preprocessors = { ModalityType.VISION: rgbt_preprocessor, ModalityType.TEXT: text_preprocessor, ModalityType.AUDIO: audio_preprocessor, ModalityType.DEPTH: depth_preprocessor, ModalityType.THERMAL: thermal_preprocessor, ModalityType.IMU: imu_preprocessor, } return nn.ModuleDict(modality_preprocessors) def _create_modality_trunks( self, vision_embed_dim=1024, vision_num_blocks=24, vision_num_heads=16, text_embed_dim=768, text_num_blocks=12, text_num_heads=12, audio_embed_dim=768, audio_num_blocks=12, audio_num_heads=12, audio_drop_path=0.0, depth_embed_dim=768, depth_num_blocks=12, depth_num_heads=12, depth_drop_path=0.0, thermal_embed_dim=768, thermal_num_blocks=12, thermal_num_heads=12, thermal_drop_path=0.0, imu_embed_dim=512, imu_num_blocks=6, imu_num_heads=8, imu_drop_path=0.7, ): def instantiate_trunk( embed_dim, num_blocks, num_heads, pre_transformer_ln, add_bias_kv, drop_path ): return SimpleTransformer( embed_dim=embed_dim, num_blocks=num_blocks, ffn_dropout_rate=0.0, drop_path_rate=drop_path, attn_target=partial( MultiheadAttention, embed_dim=embed_dim, num_heads=num_heads, bias=True, add_bias_kv=add_bias_kv, ), pre_transformer_layer=nn.Sequential( nn.LayerNorm(embed_dim, eps=1e-6) if pre_transformer_ln else nn.Identity(), EinOpsRearrange("b l d -> l b d"), ), post_transformer_layer=EinOpsRearrange("l b d -> b l d"), ) modality_trunks = {} modality_trunks[ModalityType.VISION] = instantiate_trunk( vision_embed_dim, vision_num_blocks, vision_num_heads, pre_transformer_ln=True, add_bias_kv=False, drop_path=0.0, ) modality_trunks[ModalityType.TEXT] = instantiate_trunk( text_embed_dim, text_num_blocks, text_num_heads, pre_transformer_ln=False, add_bias_kv=False, drop_path=0.0, ) modality_trunks[ModalityType.AUDIO] = instantiate_trunk( audio_embed_dim, audio_num_blocks, audio_num_heads, pre_transformer_ln=False, add_bias_kv=True, drop_path=audio_drop_path, ) modality_trunks[ModalityType.DEPTH] = instantiate_trunk( depth_embed_dim, depth_num_blocks, depth_num_heads, pre_transformer_ln=False, add_bias_kv=True, drop_path=depth_drop_path, ) modality_trunks[ModalityType.THERMAL] = instantiate_trunk( thermal_embed_dim, thermal_num_blocks, thermal_num_heads, pre_transformer_ln=False, add_bias_kv=True, drop_path=thermal_drop_path, ) modality_trunks[ModalityType.IMU] = instantiate_trunk( imu_embed_dim, imu_num_blocks, imu_num_heads, pre_transformer_ln=False, add_bias_kv=True, drop_path=imu_drop_path, ) return nn.ModuleDict(modality_trunks) def _create_modality_heads( self, out_embed_dim, vision_embed_dim, text_embed_dim, audio_embed_dim, depth_embed_dim, thermal_embed_dim, imu_embed_dim, ): modality_heads = {} modality_heads[ModalityType.VISION] = nn.Sequential( nn.LayerNorm(normalized_shape=vision_embed_dim, eps=1e-6), SelectElement(index=0), nn.Linear(vision_embed_dim, out_embed_dim, bias=False), ) modality_heads[ModalityType.TEXT] = SelectEOSAndProject( proj=nn.Sequential( nn.LayerNorm(normalized_shape=text_embed_dim, eps=1e-6), nn.Linear(text_embed_dim, out_embed_dim, bias=False), ) ) modality_heads[ModalityType.AUDIO] = nn.Sequential( nn.LayerNorm(normalized_shape=audio_embed_dim, eps=1e-6), SelectElement(index=0), nn.Linear(audio_embed_dim, out_embed_dim, bias=False), ) modality_heads[ModalityType.DEPTH] = nn.Sequential( nn.LayerNorm(normalized_shape=depth_embed_dim, eps=1e-6), SelectElement(index=0), nn.Linear(depth_embed_dim, out_embed_dim, bias=False), ) modality_heads[ModalityType.THERMAL] = nn.Sequential( nn.LayerNorm(normalized_shape=thermal_embed_dim, eps=1e-6), SelectElement(index=0), nn.Linear(thermal_embed_dim, out_embed_dim, bias=False), ) modality_heads[ModalityType.IMU] = nn.Sequential( nn.LayerNorm(normalized_shape=imu_embed_dim, eps=1e-6), SelectElement(index=0), nn.Dropout(p=0.5), nn.Linear(imu_embed_dim, out_embed_dim, bias=False), ) return nn.ModuleDict(modality_heads) def _create_modality_postprocessors(self, out_embed_dim): modality_postprocessors = {} modality_postprocessors[ModalityType.VISION] = Normalize(dim=-1) modality_postprocessors[ModalityType.TEXT] = nn.Sequential( Normalize(dim=-1), LearnableLogitScaling(learnable=True) ) modality_postprocessors[ModalityType.AUDIO] = nn.Sequential( Normalize(dim=-1), LearnableLogitScaling(logit_scale_init=20.0, learnable=False), ) modality_postprocessors[ModalityType.DEPTH] = nn.Sequential( Normalize(dim=-1), LearnableLogitScaling(logit_scale_init=5.0, learnable=False), ) modality_postprocessors[ModalityType.THERMAL] = nn.Sequential( Normalize(dim=-1), LearnableLogitScaling(logit_scale_init=10.0, learnable=False), ) modality_postprocessors[ModalityType.IMU] = nn.Sequential( Normalize(dim=-1), LearnableLogitScaling(logit_scale_init=5.0, learnable=False), ) return nn.ModuleDict(modality_postprocessors) def forward(self, inputs): outputs = {} for modality_key, modality_value in inputs.items(): reduce_list = ( modality_value.ndim >= 5 ) # Audio and Video inputs consist of multiple clips if reduce_list: B, S = modality_value.shape[:2] modality_value = modality_value.reshape( B * S, *modality_value.shape[2:] ) if modality_value is not None: modality_value = self.modality_preprocessors[modality_key]( **{modality_key: modality_value} ) trunk_inputs = modality_value["trunk"] head_inputs = modality_value["head"] modality_value = self.modality_trunks[modality_key](**trunk_inputs) modality_value = self.modality_heads[modality_key]( modality_value, **head_inputs ) modality_value = self.modality_postprocessors[modality_key]( modality_value ) if reduce_list: modality_value = modality_value.reshape(B, S, -1) modality_value = modality_value.mean(dim=1) outputs[modality_key] = modality_value return outputs def imagebind_huge(pretrained=False): model = ImageBindModel( vision_embed_dim=1280, vision_num_blocks=32, vision_num_heads=16, text_embed_dim=1024, text_num_blocks=24, text_num_heads=16, out_embed_dim=1024, audio_drop_path=0.1, imu_drop_path=0.7, ) if pretrained: if not os.path.exists(".checkpoints/imagebind_huge.pth"): print( "Downloading imagebind weights to .checkpoints/imagebind_huge.pth ..." ) os.makedirs(".checkpoints", exist_ok=True) torch.hub.download_url_to_file( "https://dl.fbaipublicfiles.com/imagebind/imagebind_huge.pth", ".checkpoints/imagebind_huge.pth", progress=True, ) model.load_state_dict(torch.load(".checkpoints/imagebind_huge.pth")) return model
Ocean-master
oceandb/utils/ImageBind/models/imagebind_model.py
#!/usr/bin/env python3 # Portions Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # Code modified from # https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py ; # https://github.com/facebookresearch/deit/blob/main/models.py # and https://github.com/facebookresearch/vissl/blob/main/vissl/models/trunks/vision_transformer.py from functools import partial from typing import Callable, List import torch import torch.nn as nn import torch.utils.checkpoint as checkpoint from timm.models.layers import DropPath, trunc_normal_ class Attention(nn.Module): def __init__( self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0, ): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads # NOTE scale factor was wrong in my original version, # can set manually to be compat with prev weights self.scale = qk_scale or head_dim**-0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, N, C = x.shape qkv = ( self.qkv(x) .reshape(B, N, 3, self.num_heads, C // self.num_heads) .permute(2, 0, 3, 1, 4) ) q, k, v = ( qkv[0], qkv[1], qkv[2], ) # make torchscript happy (cannot use tensor as tuple) attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class Mlp(nn.Module): def __init__( self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0, ): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class MultiheadAttention(nn.MultiheadAttention): def forward(self, x: torch.Tensor, attn_mask: torch.Tensor): return super().forward(x, x, x, need_weights=False, attn_mask=attn_mask)[0] class ViTAttention(Attention): def forward(self, x: torch.Tensor, attn_mask: torch.Tensor): assert attn_mask is None return super().forward(x) class BlockWithMasking(nn.Module): def __init__( self, dim: int, attn_target: Callable, mlp_ratio: int = 4, act_layer: Callable = nn.GELU, norm_layer: Callable = nn.LayerNorm, ffn_dropout_rate: float = 0.0, drop_path: float = 0.0, layer_scale_type: str = None, layer_scale_init_value: float = 1e-4, ): super().__init__() assert not isinstance( attn_target, nn.Module ), "attn_target should be a Callable. Otherwise attn_target is shared across blocks!" self.attn = attn_target() if drop_path > 0.0: self.drop_path = DropPath(drop_path) else: self.drop_path = nn.Identity() self.norm_1 = norm_layer(dim) mlp_hidden_dim = int(mlp_ratio * dim) self.mlp = Mlp( in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=ffn_dropout_rate, ) self.norm_2 = norm_layer(dim) self.layer_scale_type = layer_scale_type if self.layer_scale_type is not None: assert self.layer_scale_type in [ "per_channel", "scalar", ], f"Found Layer scale type {self.layer_scale_type}" if self.layer_scale_type == "per_channel": # one gamma value per channel gamma_shape = [1, 1, dim] elif self.layer_scale_type == "scalar": # single gamma value for all channels gamma_shape = [1, 1, 1] # two gammas: for each part of the fwd in the encoder self.layer_scale_gamma1 = nn.Parameter( torch.ones(size=gamma_shape) * layer_scale_init_value, requires_grad=True, ) self.layer_scale_gamma2 = nn.Parameter( torch.ones(size=gamma_shape) * layer_scale_init_value, requires_grad=True, ) def forward(self, x: torch.Tensor, attn_mask: torch.Tensor): if self.layer_scale_type is None: x = x + self.drop_path(self.attn(self.norm_1(x), attn_mask)) x = x + self.drop_path(self.mlp(self.norm_2(x))) else: x = ( x + self.drop_path(self.attn(self.norm_1(x), attn_mask)) * self.layer_scale_gamma1 ) x = x + self.drop_path(self.mlp(self.norm_2(x))) * self.layer_scale_gamma2 return x _LAYER_NORM = partial(nn.LayerNorm, eps=1e-6) class SimpleTransformer(nn.Module): def __init__( self, attn_target: Callable, embed_dim: int, num_blocks: int, block: Callable = BlockWithMasking, pre_transformer_layer: Callable = None, post_transformer_layer: Callable = None, drop_path_rate: float = 0.0, drop_path_type: str = "progressive", norm_layer: Callable = _LAYER_NORM, mlp_ratio: int = 4, ffn_dropout_rate: float = 0.0, layer_scale_type: str = None, # from cait; possible values are None, "per_channel", "scalar" layer_scale_init_value: float = 1e-4, # from cait; float weight_init_style: str = "jax", # possible values jax or pytorch ): """ Simple Transformer with the following features 1. Supports masked attention 2. Supports DropPath 3. Supports LayerScale 4. Supports Dropout in Attention and FFN 5. Makes few assumptions about the input except that it is a Tensor """ super().__init__() self.pre_transformer_layer = pre_transformer_layer if drop_path_type == "progressive": dpr = [x.item() for x in torch.linspace(0, drop_path_rate, num_blocks)] elif drop_path_type == "uniform": dpr = [drop_path_rate for i in range(num_blocks)] else: raise ValueError(f"Unknown drop_path_type: {drop_path_type}") self.blocks = nn.Sequential( *[ block( dim=embed_dim, attn_target=attn_target, mlp_ratio=mlp_ratio, ffn_dropout_rate=ffn_dropout_rate, drop_path=dpr[i], norm_layer=norm_layer, layer_scale_type=layer_scale_type, layer_scale_init_value=layer_scale_init_value, ) for i in range(num_blocks) ] ) self.post_transformer_layer = post_transformer_layer self.weight_init_style = weight_init_style self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): if self.weight_init_style == "jax": # Based on MAE and official Jax ViT implementation torch.nn.init.xavier_uniform_(m.weight) elif self.weight_init_style == "pytorch": # PyTorch ViT uses trunc_normal_ trunc_normal_(m.weight, std=0.02) if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, (nn.LayerNorm)): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def forward( self, tokens: torch.Tensor, attn_mask: torch.Tensor = None, use_checkpoint: bool = False, checkpoint_every_n: int = 1, checkpoint_blk_ids: List[int] = None, ): """ Inputs - tokens: data of shape N x L x D (or L x N x D depending on the attention implementation) - attn: mask of shape L x L Output - x: data of shape N x L x D (or L x N x D depending on the attention implementation) """ if self.pre_transformer_layer: tokens = self.pre_transformer_layer(tokens) if use_checkpoint and checkpoint_blk_ids is None: checkpoint_blk_ids = [ blk_id for blk_id in range(len(self.blocks)) if blk_id % checkpoint_every_n == 0 ] if checkpoint_blk_ids: checkpoint_blk_ids = set(checkpoint_blk_ids) for blk_id, blk in enumerate(self.blocks): if use_checkpoint and blk_id in checkpoint_blk_ids: tokens = checkpoint.checkpoint( blk, tokens, attn_mask, use_reentrant=False ) else: tokens = blk(tokens, attn_mask=attn_mask) if self.post_transformer_layer: tokens = self.post_transformer_layer(tokens) return tokens
Ocean-master
oceandb/utils/ImageBind/models/transformer.py
#!/usr/bin/env python3 # Portions Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import gzip import html import io import math from functools import lru_cache from typing import Callable, List, Optional import ftfy import numpy as np import regex as re import torch import torch.nn as nn from iopath.common.file_io import g_pathmgr from timm.models.layers import trunc_normal_ from .helpers import cast_if_src_dtype, VerboseNNModule def get_sinusoid_encoding_table(n_position, d_hid): """Sinusoid position encoding table""" # TODO: make it with torch instead of numpy def get_position_angle_vec(position): return [ position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid) ] sinusoid_table = np.array( [get_position_angle_vec(pos_i) for pos_i in range(n_position)] ) sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1 return torch.FloatTensor(sinusoid_table).unsqueeze(0) def interpolate_pos_encoding_2d(target_spatial_size, pos_embed): N = pos_embed.shape[1] if N == target_spatial_size: return pos_embed dim = pos_embed.shape[-1] # nn.functional.interpolate doesn't work with bfloat16 so we cast to float32 pos_embed, updated = cast_if_src_dtype(pos_embed, torch.bfloat16, torch.float32) pos_embed = nn.functional.interpolate( pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute( 0, 3, 1, 2 ), scale_factor=math.sqrt(target_spatial_size / N), mode="bicubic", ) if updated: pos_embed, _ = cast_if_src_dtype(pos_embed, torch.float32, torch.bfloat16) pos_embed = pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) return pos_embed def interpolate_pos_encoding( npatch_per_img, pos_embed, patches_layout, input_shape=None, first_patch_idx=1, ): assert first_patch_idx == 0 or first_patch_idx == 1, "there is 1 CLS token or none" N = pos_embed.shape[1] - first_patch_idx # since it's 1 if cls_token exists if npatch_per_img == N: return pos_embed assert ( patches_layout[-1] == patches_layout[-2] ), "Interpolation of pos embed not supported for non-square layouts" class_emb = pos_embed[:, :first_patch_idx] pos_embed = pos_embed[:, first_patch_idx:] if input_shape is None or patches_layout[0] == 1: # simple 2D pos embedding, no temporal component pos_embed = interpolate_pos_encoding_2d(npatch_per_img, pos_embed) elif patches_layout[0] > 1: # pos embed has a temporal component assert len(input_shape) == 4, "temporal interpolation not supported" # we only support 2D interpolation in this case num_frames = patches_layout[0] num_spatial_tokens = patches_layout[1] * patches_layout[2] pos_embed = pos_embed.view(1, num_frames, num_spatial_tokens, -1) # interpolate embedding for zeroth frame pos_embed = interpolate_pos_encoding_2d( npatch_per_img, pos_embed[0, 0, ...].unsqueeze(0) ) else: raise ValueError("This type of interpolation isn't implemented") return torch.cat((class_emb, pos_embed), dim=1) def _get_pos_embedding( npatch_per_img, pos_embed, patches_layout, input_shape, first_patch_idx=1, ): pos_embed = interpolate_pos_encoding( npatch_per_img, pos_embed, patches_layout, input_shape=input_shape, first_patch_idx=first_patch_idx, ) return pos_embed class PatchEmbedGeneric(nn.Module): """ PatchEmbed from Hydra """ def __init__(self, proj_stem, norm_layer: Optional[nn.Module] = None): super().__init__() if len(proj_stem) > 1: self.proj = nn.Sequential(*proj_stem) else: # Special case to be able to load pre-trained models that were # trained with a standard stem self.proj = proj_stem[0] self.norm_layer = norm_layer def get_patch_layout(self, img_size): with torch.no_grad(): dummy_img = torch.zeros( [ 1, ] + img_size ) dummy_out = self.proj(dummy_img) embed_dim = dummy_out.shape[1] patches_layout = tuple(dummy_out.shape[2:]) num_patches = np.prod(patches_layout) return patches_layout, num_patches, embed_dim def forward(self, x): x = self.proj(x) # B C (T) H W -> B (T)HW C x = x.flatten(2).transpose(1, 2) if self.norm_layer is not None: x = self.norm_layer(x) return x class SpatioTemporalPosEmbeddingHelper(VerboseNNModule): def __init__( self, patches_layout: List, num_patches: int, num_cls_tokens: int, embed_dim: int, learnable: bool, ) -> None: super().__init__() self.num_cls_tokens = num_cls_tokens self.patches_layout = patches_layout self.num_patches = num_patches self.num_tokens = num_cls_tokens + num_patches self.learnable = learnable if self.learnable: self.pos_embed = nn.Parameter(torch.zeros(1, self.num_tokens, embed_dim)) trunc_normal_(self.pos_embed, std=0.02) else: self.register_buffer( "pos_embed", get_sinusoid_encoding_table(self.num_tokens, embed_dim) ) def get_pos_embedding(self, vision_input, all_vision_tokens): input_shape = vision_input.shape pos_embed = _get_pos_embedding( all_vision_tokens.size(1) - self.num_cls_tokens, pos_embed=self.pos_embed, patches_layout=self.patches_layout, input_shape=input_shape, first_patch_idx=self.num_cls_tokens, ) return pos_embed class RGBDTPreprocessor(VerboseNNModule): def __init__( self, rgbt_stem: PatchEmbedGeneric, depth_stem: PatchEmbedGeneric, img_size: List = (3, 224, 224), num_cls_tokens: int = 1, pos_embed_fn: Callable = None, use_type_embed: bool = False, init_param_style: str = "openclip", ) -> None: super().__init__() stem = rgbt_stem if rgbt_stem is not None else depth_stem ( self.patches_layout, self.num_patches, self.embed_dim, ) = stem.get_patch_layout(img_size) self.rgbt_stem = rgbt_stem self.depth_stem = depth_stem self.use_pos_embed = pos_embed_fn is not None self.use_type_embed = use_type_embed self.num_cls_tokens = num_cls_tokens if self.use_pos_embed: self.pos_embedding_helper = pos_embed_fn( patches_layout=self.patches_layout, num_cls_tokens=num_cls_tokens, num_patches=self.num_patches, embed_dim=self.embed_dim, ) if self.num_cls_tokens > 0: self.cls_token = nn.Parameter( torch.zeros(1, self.num_cls_tokens, self.embed_dim) ) if self.use_type_embed: self.type_embed = nn.Parameter(torch.zeros(1, 1, self.embed_dim)) self.init_parameters(init_param_style) @torch.no_grad() def init_parameters(self, init_param_style): if init_param_style == "openclip": # OpenCLIP style initialization scale = self.embed_dim**-0.5 if self.use_pos_embed: nn.init.normal_(self.pos_embedding_helper.pos_embed) self.pos_embedding_helper.pos_embed *= scale if self.num_cls_tokens > 0: nn.init.normal_(self.cls_token) self.cls_token *= scale elif init_param_style == "vit": self.cls_token.data.fill_(0) else: raise ValueError(f"Unknown init {init_param_style}") if self.use_type_embed: nn.init.normal_(self.type_embed) def tokenize_input_and_cls_pos(self, input, stem, mask): # tokens is of shape B x L x D tokens = stem(input) assert tokens.ndim == 3 assert tokens.shape[2] == self.embed_dim B = tokens.shape[0] if self.num_cls_tokens > 0: class_tokens = self.cls_token.expand( B, -1, -1 ) # stole class_tokens impl from Phil Wang, thanks tokens = torch.cat((class_tokens, tokens), dim=1) if self.use_pos_embed: pos_embed = self.pos_embedding_helper.get_pos_embedding(input, tokens) tokens = tokens + pos_embed if self.use_type_embed: tokens = tokens + self.type_embed.expand(B, -1, -1) return tokens def forward(self, vision=None, depth=None, patch_mask=None): if patch_mask is not None: raise NotImplementedError() if vision is not None: vision_tokens = self.tokenize_input_and_cls_pos( vision, self.rgbt_stem, patch_mask ) if depth is not None: depth_tokens = self.tokenize_input_and_cls_pos( depth, self.depth_stem, patch_mask ) # aggregate tokens if vision is not None and depth is not None: final_tokens = vision_tokens + depth_tokens else: final_tokens = vision_tokens if vision is not None else depth_tokens return_dict = { "trunk": { "tokens": final_tokens, }, "head": {}, } return return_dict class AudioPreprocessor(RGBDTPreprocessor): def __init__(self, audio_stem: PatchEmbedGeneric, **kwargs) -> None: super().__init__(rgbt_stem=audio_stem, depth_stem=None, **kwargs) def forward(self, audio=None): return super().forward(vision=audio) class ThermalPreprocessor(RGBDTPreprocessor): def __init__(self, thermal_stem: PatchEmbedGeneric, **kwargs) -> None: super().__init__(rgbt_stem=thermal_stem, depth_stem=None, **kwargs) def forward(self, thermal=None): return super().forward(vision=thermal) def build_causal_attention_mask(context_length): # lazily create causal attention mask, with full attention between the vision tokens # pytorch uses additive attention mask; fill with -inf mask = torch.empty(context_length, context_length, requires_grad=False) mask.fill_(float("-inf")) mask.triu_(1) # zero out the lower diagonal return mask class TextPreprocessor(VerboseNNModule): def __init__( self, vocab_size: int, context_length: int, embed_dim: int, causal_masking: bool, supply_seq_len_to_head: bool = True, num_cls_tokens: int = 0, init_param_style: str = "openclip", ) -> None: super().__init__() self.vocab_size = vocab_size self.context_length = context_length self.token_embedding = nn.Embedding(vocab_size, embed_dim) self.pos_embed = nn.Parameter( torch.empty(1, self.context_length + num_cls_tokens, embed_dim) ) self.causal_masking = causal_masking if self.causal_masking: mask = build_causal_attention_mask(self.context_length) # register the mask as a buffer so it can be moved to the right device self.register_buffer("mask", mask) self.supply_seq_len_to_head = supply_seq_len_to_head self.num_cls_tokens = num_cls_tokens self.embed_dim = embed_dim if num_cls_tokens > 0: assert self.causal_masking is False, "Masking + CLS token isn't implemented" self.cls_token = nn.Parameter( torch.zeros(1, self.num_cls_tokens, embed_dim) ) self.init_parameters(init_param_style) @torch.no_grad() def init_parameters(self, init_param_style="openclip"): # OpenCLIP style initialization nn.init.normal_(self.token_embedding.weight, std=0.02) nn.init.normal_(self.pos_embed, std=0.01) if init_param_style == "openclip": # OpenCLIP style initialization scale = self.embed_dim**-0.5 if self.num_cls_tokens > 0: nn.init.normal_(self.cls_token) self.cls_token *= scale elif init_param_style == "vit": self.cls_token.data.fill_(0) else: raise ValueError(f"Unknown init {init_param_style}") def forward(self, text): # text tokens are of shape B x L x D text_tokens = self.token_embedding(text) # concat CLS tokens if any if self.num_cls_tokens > 0: B = text_tokens.shape[0] class_tokens = self.cls_token.expand( B, -1, -1 ) # stole class_tokens impl from Phil Wang, thanks text_tokens = torch.cat((class_tokens, text_tokens), dim=1) text_tokens = text_tokens + self.pos_embed return_dict = { "trunk": { "tokens": text_tokens, }, "head": {}, } # Compute sequence length after adding CLS tokens if self.supply_seq_len_to_head: text_lengths = text.argmax(dim=-1) return_dict["head"] = { "seq_len": text_lengths, } if self.causal_masking: return_dict["trunk"].update({"attn_mask": self.mask}) return return_dict class Im2Video(nn.Module): """Convert an image into a trivial video.""" def __init__(self, time_dim=2): super().__init__() self.time_dim = time_dim def forward(self, x): if x.ndim == 4: # B, C, H, W -> B, C, T, H, W return x.unsqueeze(self.time_dim) elif x.ndim == 5: return x else: raise ValueError(f"Dimension incorrect {x.shape}") class PadIm2Video(Im2Video): def __init__(self, ntimes, pad_type, time_dim=2): super().__init__(time_dim=time_dim) assert ntimes > 0 assert pad_type in ["zero", "repeat"] self.ntimes = ntimes self.pad_type = pad_type def forward(self, x): x = super().forward(x) if x.shape[self.time_dim] == 1: if self.pad_type == "repeat": new_shape = [1] * len(x.shape) new_shape[self.time_dim] = self.ntimes x = x.repeat(new_shape) elif self.pad_type == "zero": padarg = [0, 0] * len(x.shape) padarg[2 * self.time_dim + 1] = self.ntimes - x.shape[self.time_dim] x = nn.functional.pad(x, padarg) return x # Modified from github.com/openai/CLIP @lru_cache() def bytes_to_unicode(): """ Returns list of utf-8 byte and a corresponding list of unicode strings. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a signficant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. And avoids mapping to whitespace/control characters the bpe code barfs on. """ bs = ( list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) ) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8 + n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs def basic_clean(text): text = ftfy.fix_text(text) text = html.unescape(html.unescape(text)) return text.strip() def whitespace_clean(text): text = re.sub(r"\s+", " ", text) text = text.strip() return text class SimpleTokenizer(object): def __init__(self, bpe_path: str, context_length=77): self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} with g_pathmgr.open(bpe_path, "rb") as fh: bpe_bytes = io.BytesIO(fh.read()) merges = gzip.open(bpe_bytes).read().decode("utf-8").split("\n") merges = merges[1 : 49152 - 256 - 2 + 1] merges = [tuple(merge.split()) for merge in merges] vocab = list(bytes_to_unicode().values()) vocab = vocab + [v + "</w>" for v in vocab] for merge in merges: vocab.append("".join(merge)) vocab.extend(["<|startoftext|>", "<|endoftext|>"]) self.encoder = dict(zip(vocab, range(len(vocab)))) self.decoder = {v: k for k, v in self.encoder.items()} self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = { "<|startoftext|>": "<|startoftext|>", "<|endoftext|>": "<|endoftext|>", } self.pat = re.compile( r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE, ) self.context_length = context_length def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token[:-1]) + (token[-1] + "</w>",) pairs = get_pairs(word) if not pairs: return token + "</w>" while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) new_word.extend(word[i:j]) i = j except: new_word.extend(word[i:]) break if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = " ".join(word) self.cache[token] = word return word def encode(self, text): bpe_tokens = [] text = whitespace_clean(basic_clean(text)).lower() for token in re.findall(self.pat, text): token = "".join(self.byte_encoder[b] for b in token.encode("utf-8")) bpe_tokens.extend( self.encoder[bpe_token] for bpe_token in self.bpe(token).split(" ") ) return bpe_tokens def decode(self, tokens): text = "".join([self.decoder[token] for token in tokens]) text = ( bytearray([self.byte_decoder[c] for c in text]) .decode("utf-8", errors="replace") .replace("</w>", " ") ) return text def __call__(self, texts, context_length=None): if not context_length: context_length = self.context_length if isinstance(texts, str): texts = [texts] sot_token = self.encoder["<|startoftext|>"] eot_token = self.encoder["<|endoftext|>"] all_tokens = [[sot_token] + self.encode(text) + [eot_token] for text in texts] result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) for i, tokens in enumerate(all_tokens): tokens = tokens[:context_length] result[i, : len(tokens)] = torch.tensor(tokens) if len(result) == 1: return result[0] return result class IMUPreprocessor(VerboseNNModule): def __init__( self, kernel_size: int, imu_stem: PatchEmbedGeneric, embed_dim: int, img_size: List = (6, 2000), num_cls_tokens: int = 1, pos_embed_fn: Callable = None, init_param_style: str = "openclip", ) -> None: super().__init__() self.imu_stem = imu_stem self.embed_dim = embed_dim self.use_pos_embed = pos_embed_fn is not None self.num_cls_tokens = num_cls_tokens self.kernel_size = kernel_size self.pos_embed = nn.Parameter( torch.empty(1, (img_size[1] // kernel_size) + num_cls_tokens, embed_dim) ) if self.num_cls_tokens > 0: self.cls_token = nn.Parameter( torch.zeros(1, self.num_cls_tokens, self.embed_dim) ) self.init_parameters(init_param_style) @torch.no_grad() def init_parameters(self, init_param_style): nn.init.normal_(self.pos_embed, std=0.01) if init_param_style == "openclip": # OpenCLIP style initialization scale = self.embed_dim**-0.5 if self.num_cls_tokens > 0: nn.init.normal_(self.cls_token) self.cls_token *= scale elif init_param_style == "vit": self.cls_token.data.fill_(0) else: raise ValueError(f"Unknown init {init_param_style}") def tokenize_input_and_cls_pos(self, input, stem): # tokens is of shape B x L x D tokens = stem.norm_layer(stem.proj(input)) assert tokens.ndim == 3 assert tokens.shape[2] == self.embed_dim B = tokens.shape[0] if self.num_cls_tokens > 0: class_tokens = self.cls_token.expand( B, -1, -1 ) # stole class_tokens impl from Phil Wang, thanks tokens = torch.cat((class_tokens, tokens), dim=1) if self.use_pos_embed: tokens = tokens + self.pos_embed return tokens def forward(self, imu): # Patchify imu = imu.unfold( -1, self.kernel_size, self.kernel_size, ).permute(0, 2, 1, 3) imu = imu.reshape(imu.size(0), imu.size(1), -1) imu_tokens = self.tokenize_input_and_cls_pos( imu, self.imu_stem, ) return_dict = { "trunk": { "tokens": imu_tokens, }, "head": {}, } return return_dict
Ocean-master
oceandb/utils/ImageBind/models/multimodal_preprocessors.py
#!/usr/bin/env python3 # Portions Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import einops import numpy as np import torch import torch.nn as nn class Normalize(nn.Module): def __init__(self, dim: int) -> None: super().__init__() self.dim = dim def forward(self, x): return torch.nn.functional.normalize(x, dim=self.dim, p=2) class LearnableLogitScaling(nn.Module): def __init__( self, logit_scale_init: float = 1 / 0.07, learnable: bool = True, max_logit_scale: float = 100, ) -> None: super().__init__() self.max_logit_scale = max_logit_scale self.logit_scale_init = logit_scale_init self.learnable = learnable log_logit_scale = torch.ones([]) * np.log(self.logit_scale_init) if learnable: self.log_logit_scale = nn.Parameter(log_logit_scale) else: self.register_buffer("log_logit_scale", log_logit_scale) def forward(self, x): return torch.clip(self.log_logit_scale.exp(), max=self.max_logit_scale) * x def extra_repr(self): st = f"logit_scale_init={self.logit_scale_init},learnable={self.learnable}, max_logit_scale={self.max_logit_scale}" return st class EinOpsRearrange(nn.Module): def __init__(self, rearrange_expr: str, **kwargs) -> None: super().__init__() self.rearrange_expr = rearrange_expr self.kwargs = kwargs def forward(self, x): assert isinstance(x, torch.Tensor) return einops.rearrange(x, self.rearrange_expr, **self.kwargs) class VerboseNNModule(nn.Module): """ Wrapper around nn.Module that prints registered buffers and parameter names. """ @staticmethod def get_readable_tensor_repr(name: str, tensor: torch.Tensor) -> str: st = ( "(" + name + "): " + "tensor(" + str(tuple(tensor[1].shape)) + ", requires_grad=" + str(tensor[1].requires_grad) + ")\n" ) return st def extra_repr(self) -> str: named_modules = set() for p in self.named_modules(): named_modules.update([p[0]]) named_modules = list(named_modules) string_repr = "" for p in self.named_parameters(): name = p[0].split(".")[0] if name not in named_modules: string_repr += self.get_readable_tensor_repr(name, p) for p in self.named_buffers(): name = p[0].split(".")[0] string_repr += self.get_readable_tensor_repr(name, p) return string_repr def cast_if_src_dtype( tensor: torch.Tensor, src_dtype: torch.dtype, tgt_dtype: torch.dtype ): updated = False if tensor.dtype == src_dtype: tensor = tensor.to(dtype=tgt_dtype) updated = True return tensor, updated class QuickGELU(nn.Module): # From https://github.com/openai/CLIP/blob/d50d76daa670286dd6cacf3bcd80b5e4823fc8e1/clip/model.py#L166 def forward(self, x: torch.Tensor): return x * torch.sigmoid(1.702 * x) class SelectElement(nn.Module): def __init__(self, index) -> None: super().__init__() self.index = index def forward(self, x): assert x.ndim >= 3 return x[:, self.index, ...] class SelectEOSAndProject(nn.Module): """ Text Pooling used in OpenCLIP """ def __init__(self, proj: nn.Module) -> None: super().__init__() self.proj = proj def forward(self, x, seq_len): assert x.ndim == 3 # x is of shape B x L x D # take features from the eot embedding (eot_token is the highest number in each sequence) x = x[torch.arange(x.shape[0]), seq_len] x = self.proj(x) return x
Ocean-master
oceandb/utils/ImageBind/models/helpers.py
# type: ignore from oceandb.api.types import ( Documents, Embeddings, IDs, Metadatas, Where, WhereDocument, ) from oceandb.db import DB from oceandb.db.index.hnswlib import Hnswlib, delete_all_indexes from oceandb.errors import ( NoDatapointsException, ) import uuid import numpy.typing as npt import json from typing import Dict, Optional, Sequence, List, Tuple, cast import clickhouse_connect from clickhouse_connect.driver.client import Client from clickhouse_connect import common import logging from uuid import UUID logger = logging.getLogger(__name__) COLLECTION_TABLE_SCHEMA = [{"uuid": "UUID"}, {"name": "String"}, {"metadata": "String"}] EMBEDDING_TABLE_SCHEMA = [ {"collection_uuid": "UUID"}, {"uuid": "UUID"}, {"embedding": "Array(Float64)"}, {"document": "Nullable(String)"}, {"id": "Nullable(String)"}, {"metadata": "Nullable(String)"}, ] def db_array_schema_to_clickhouse_schema(table_schema): return_str = "" for element in table_schema: for k, v in element.items(): return_str += f"{k} {v}, " return return_str def db_schema_to_keys() -> List[str]: keys = [] for element in EMBEDDING_TABLE_SCHEMA: keys.append(list(element.keys())[0]) return keys class Clickhouse(DB): # # INIT METHODS # def __init__(self, settings): self._conn = None self._settings = settings def _init_conn(self): common.set_setting("autogenerate_session_id", False) self._conn = clickhouse_connect.get_client( host=self._settings.clickhouse_host, port=int(self._settings.clickhouse_port), ) self._create_table_collections(self._conn) self._create_table_embeddings(self._conn) def _get_conn(self) -> Client: if self._conn is None: self._init_conn() return self._conn def _create_table_collections(self, conn): conn.command( f"""CREATE TABLE IF NOT EXISTS collections ( {db_array_schema_to_clickhouse_schema(COLLECTION_TABLE_SCHEMA)} ) ENGINE = MergeTree() ORDER BY uuid""" ) def _create_table_embeddings(self, conn): conn.command( f"""CREATE TABLE IF NOT EXISTS embeddings ( {db_array_schema_to_clickhouse_schema(EMBEDDING_TABLE_SCHEMA)} ) ENGINE = MergeTree() ORDER BY collection_uuid""" ) index_cache = {} def _index(self, collection_id): """Retrieve an HNSW index instance for the given collection""" if collection_id not in self.index_cache: coll = self.get_collection_by_id(collection_id) collection_metadata = coll[2] index = Hnswlib(collection_id, self._settings, collection_metadata) self.index_cache[collection_id] = index return self.index_cache[collection_id] def _delete_index(self, collection_id): """Delete an index from the cache""" index = self._index(collection_id) index.delete() del self.index_cache[collection_id] # # UTILITY METHODS # def persist(self): raise NotImplementedError( "Clickhouse is a persistent database, this method is not needed" ) def get_collection_uuid_from_name(self, name: str) -> UUID: res = self._get_conn().query( f""" SELECT uuid FROM collections WHERE name = '{name}' """ ) return res.result_rows[0][0] def _create_where_clause( self, collection_uuid: str, ids: Optional[List[str]] = None, where: Where = {}, where_document: WhereDocument = {}, ): where_clauses: List[str] = [] self._format_where(where, where_clauses) if len(where_document) > 0: where_document_clauses = [] self._format_where_document(where_document, where_document_clauses) where_clauses.extend(where_document_clauses) if ids is not None: where_clauses.append(f" id IN {tuple(ids)}") where_clauses.append(f"collection_uuid = '{collection_uuid}'") where_str = " AND ".join(where_clauses) where_str = f"WHERE {where_str}" return where_str # # COLLECTION METHODS # def create_collection( self, name: str, metadata: Optional[Dict] = None, get_or_create: bool = False ) -> Sequence: # poor man's unique constraint dupe_check = self.get_collection(name) if len(dupe_check) > 0: if get_or_create: if dupe_check[0][2] != metadata: self.update_collection( dupe_check[0][0], new_name=name, new_metadata=metadata ) dupe_check = self.get_collection(name) logger.info( f"collection with name {name} already exists, returning existing collection" ) return dupe_check else: raise ValueError(f"Collection with name {name} already exists") collection_uuid = uuid.uuid4() data_to_insert = [[collection_uuid, name, json.dumps(metadata)]] self._get_conn().insert( "collections", data_to_insert, column_names=["uuid", "name", "metadata"] ) return [[collection_uuid, name, metadata]] def get_collection(self, name: str): res = ( self._get_conn() .query( f""" SELECT * FROM collections WHERE name = '{name}' """ ) .result_rows ) # json.loads the metadata return [[x[0], x[1], json.loads(x[2])] for x in res] def get_collection_by_id(self, collection_uuid: str): res = ( self._get_conn() .query( f""" SELECT * FROM collections WHERE uuid = '{collection_uuid}' """ ) .result_rows ) # json.loads the metadata return [[x[0], x[1], json.loads(x[2])] for x in res][0] def list_collections(self) -> Sequence: res = self._get_conn().query("SELECT * FROM collections").result_rows return [[x[0], x[1], json.loads(x[2])] for x in res] def update_collection( self, id: UUID, new_name: Optional[str] = None, new_metadata: Optional[Dict] = None, ): if new_name is not None: self._get_conn().command( "ALTER TABLE collections UPDATE name = %(new_name)s WHERE uuid = %(uuid)s", parameters={"new_name": new_name, "uuid": id}, ) if new_metadata is not None: self._get_conn().command( "ALTER TABLE collections UPDATE metadata = %(new_metadata)s WHERE uuid = %(uuid)s", parameters={"new_metadata": json.dumps(new_metadata), "uuid": id}, ) def delete_collection(self, name: str): collection_uuid = self.get_collection_uuid_from_name(name) self._get_conn().command( f""" DELETE FROM embeddings WHERE collection_uuid = '{collection_uuid}' """ ) self._delete_index(collection_uuid) self._get_conn().command( f""" DELETE FROM collections WHERE name = '{name}' """ ) # # ITEM METHODS # def add(self, collection_uuid, embeddings, metadatas, documents, ids): data_to_insert = [ [ collection_uuid, uuid.uuid4(), embedding, json.dumps(metadatas[i]) if metadatas else None, documents[i] if documents else None, ids[i], ] for i, embedding in enumerate(embeddings) ] column_names = [ "collection_uuid", "uuid", "embedding", "metadata", "document", "id", ] self._get_conn().insert("embeddings", data_to_insert, column_names=column_names) return [x[1] for x in data_to_insert] # return uuids def _update( self, collection_uuid, ids: IDs, embeddings: Optional[Embeddings], metadatas: Optional[Metadatas], documents: Optional[Documents], ): updates = [] parameters = {} for i in range(len(ids)): update_fields = [] parameters[f"i{i}"] = ids[i] if embeddings is not None: update_fields.append(f"embedding = %(e{i})s") parameters[f"e{i}"] = embeddings[i] if metadatas is not None: update_fields.append(f"metadata = %(m{i})s") parameters[f"m{i}"] = json.dumps(metadatas[i]) if documents is not None: update_fields.append(f"document = %(d{i})s") parameters[f"d{i}"] = documents[i] update_statement = f""" UPDATE {",".join(update_fields)} WHERE id = %(i{i})s AND collection_uuid = '{collection_uuid}'{"" if i == len(ids) - 1 else ","} """ updates.append(update_statement) update_clauses = ("").join(updates) self._get_conn().command( f"ALTER TABLE embeddings {update_clauses}", parameters=parameters ) def update( self, collection_uuid, ids: IDs, embeddings: Optional[Embeddings] = None, metadatas: Optional[Metadatas] = None, documents: Optional[Documents] = None, ): # Verify all IDs exist existing_items = self.get(collection_uuid=collection_uuid, ids=ids) if len(existing_items) != len(ids): raise ValueError( f"Could not find {len(ids) - len(existing_items)} items for update" ) # Update the db self._update(collection_uuid, ids, embeddings, metadatas, documents) # Update the index if embeddings is not None: # `get` current returns items in arbitrary order. # TODO if we fix `get`, we can remove this explicit mapping. uuid_mapping = {r[4]: r[1] for r in existing_items} update_uuids = [uuid_mapping[id] for id in ids] index = self._index(collection_uuid) index.add(update_uuids, embeddings, update=True) def _get(self, where={}, columns: Optional[List] = None): select_columns = db_schema_to_keys() if columns is None else columns val = ( self._get_conn() .query(f"""SELECT {",".join(select_columns)} FROM embeddings {where}""") .result_rows ) for i in range(len(val)): # We know val has index abilities, so cast it for typechecker val = cast(list, val) val[i] = list(val[i]) # json.load the metadata if "metadata" in select_columns: metadata_column_index = select_columns.index("metadata") db_metadata = val[i][metadata_column_index] val[i][metadata_column_index] = ( json.loads(db_metadata) if db_metadata else None ) return val def _format_where(self, where, result): for key, value in where.items(): def has_key_and(clause): return f"(JSONHas(metadata,'{key}') = 1 AND {clause})" # Shortcut for $eq if type(value) == str: result.append( has_key_and(f" JSONExtractString(metadata,'{key}') = '{value}'") ) elif type(value) == int: result.append( has_key_and(f" JSONExtractInt(metadata,'{key}') = {value}") ) elif type(value) == float: result.append( has_key_and(f" JSONExtractFloat(metadata,'{key}') = {value}") ) # Operator expression elif type(value) == dict: operator, operand = list(value.items())[0] if operator == "$gt": return result.append( has_key_and(f" JSONExtractFloat(metadata,'{key}') > {operand}") ) elif operator == "$lt": return result.append( has_key_and(f" JSONExtractFloat(metadata,'{key}') < {operand}") ) elif operator == "$gte": return result.append( has_key_and(f" JSONExtractFloat(metadata,'{key}') >= {operand}") ) elif operator == "$lte": return result.append( has_key_and(f" JSONExtractFloat(metadata,'{key}') <= {operand}") ) elif operator == "$ne": if type(operand) == str: return result.append( has_key_and( f" JSONExtractString(metadata,'{key}') != '{operand}'" ) ) return result.append( has_key_and(f" JSONExtractFloat(metadata,'{key}') != {operand}") ) elif operator == "$eq": if type(operand) == str: return result.append( has_key_and( f" JSONExtractString(metadata,'{key}') = '{operand}'" ) ) return result.append( has_key_and(f" JSONExtractFloat(metadata,'{key}') = {operand}") ) else: raise ValueError( f"Expected one of $gt, $lt, $gte, $lte, $ne, $eq, got {operator}" ) elif type(value) == list: all_subresults = [] for subwhere in value: subresults = [] self._format_where(subwhere, subresults) all_subresults.append(subresults[0]) if key == "$or": result.append(f"({' OR '.join(all_subresults)})") elif key == "$and": result.append(f"({' AND '.join(all_subresults)})") else: raise ValueError(f"Expected one of $or, $and, got {key}") def _format_where_document(self, where_document, results): operator = list(where_document.keys())[0] if operator == "$contains": results.append(f"position(document, '{where_document[operator]}') > 0") elif operator == "$and" or operator == "$or": all_subresults = [] for subwhere in where_document[operator]: subresults = [] self._format_where_document(subwhere, subresults) all_subresults.append(subresults[0]) if operator == "$or": results.append(f"({' OR '.join(all_subresults)})") if operator == "$and": results.append(f"({' AND '.join(all_subresults)})") else: raise ValueError(f"Expected one of $contains, $and, $or, got {operator}") def get( self, where: Where = {}, collection_name: Optional[str] = None, collection_uuid: Optional[UUID] = None, ids: Optional[IDs] = None, sort: Optional[str] = None, limit: Optional[int] = None, offset: Optional[int] = None, where_document: WhereDocument = {}, columns: Optional[List[str]] = None, ) -> Sequence: if collection_name is None and collection_uuid is None: raise TypeError( "Arguments collection_name and collection_uuid cannot both be None" ) if collection_name is not None: collection_uuid = self.get_collection_uuid_from_name(collection_name) where_str = self._create_where_clause( # collection_uuid must be defined at this point, cast it for typechecker cast(str, collection_uuid), ids=ids, where=where, where_document=where_document, ) if sort is not None: where_str += f" ORDER BY {sort}" else: where_str += " ORDER BY collection_uuid" # stable ordering if limit is not None or isinstance(limit, int): where_str += f" LIMIT {limit}" if offset is not None or isinstance(offset, int): where_str += f" OFFSET {offset}" val = self._get(where=where_str, columns=columns) return val def count(self, collection_uuid: UUID): where_string = f"WHERE collection_uuid = '{collection_uuid}'" return ( self._get_conn() .query(f"SELECT COUNT() FROM embeddings {where_string}") .result_rows[0][0] ) def _delete(self, where_str: Optional[str] = None) -> List: deleted_uuids = ( self._get_conn() .query(f"""SELECT uuid FROM embeddings {where_str}""") .result_rows ) self._get_conn().command( f""" DELETE FROM embeddings {where_str} """ ) return [res[0] for res in deleted_uuids] if len(deleted_uuids) > 0 else [] def delete( self, where: Where = {}, collection_uuid: Optional[str] = None, ids: Optional[IDs] = None, where_document: WhereDocument = {}, ) -> List: where_str = self._create_where_clause( # collection_uuid must be defined at this point, cast it for typechecker cast(str, collection_uuid), ids=ids, where=where, where_document=where_document, ) deleted_uuids = self._delete(where_str) index = self._index(collection_uuid) index.delete_from_index(deleted_uuids) return deleted_uuids def get_by_ids(self, ids: list, columns: Optional[List] = None): columns = columns + ["uuid"] if columns else ["uuid"] select_columns = db_schema_to_keys() if columns is None else columns response = ( self._get_conn() .query( f""" SELECT {",".join(select_columns)} FROM embeddings WHERE uuid IN ({[id.hex for id in ids]}) """ ) .result_rows ) # sort db results by the order of the uuids response = sorted(response, key=lambda obj: ids.index(obj[len(columns) - 1])) return response def get_nearest_neighbors( self, collection_uuid: UUID, where: Where, where_document: WhereDocument, embeddings: Embeddings, n_results: int, ) -> Tuple[List[List[uuid.UUID]], npt.NDArray]: # Either the collection name or the collection uuid must be provided if collection_uuid is None: raise TypeError("Argument collection_uuid cannot be None") if len(where) != 0 or len(where_document) != 0: results = self.get( collection_uuid=collection_uuid, where=where, where_document=where_document, ) if len(results) > 0: ids = [x[1] for x in results] else: raise NoDatapointsException( f"No datapoints found for the supplied filter {json.dumps(where)}" ) else: ids = None index = self._index(collection_uuid) uuids, distances = index.get_nearest_neighbors(embeddings, n_results, ids) return uuids, distances def create_index(self, collection_uuid: str): """Create an index for a collection_uuid and optionally scoped to a dataset. Args: collection_uuid (str): The collection_uuid to create an index for dataset (str, optional): The dataset to scope the index to. Defaults to None. Returns: None """ get = self.get(collection_uuid=collection_uuid) uuids = [x[1] for x in get] embeddings = [x[2] for x in get] index = self._index(collection_uuid) index.add(uuids, embeddings) def add_incremental(self, collection_uuid, uuids, embeddings): index = self._index(collection_uuid) index.add(uuids, embeddings) def reset_indexes(self): delete_all_indexes(self._settings) self.index_cache = {} def reset(self): conn = self._get_conn() conn.command("DROP TABLE collections") conn.command("DROP TABLE embeddings") self._create_table_collections(conn) self._create_table_embeddings(conn) self.reset_indexes() def raw_sql(self, sql): return self._get_conn().query(sql).result_rows
Ocean-master
oceandb/db/clickhouse.py
from abc import ABC, abstractmethod from typing import Dict, List, Sequence, Optional, Tuple from uuid import UUID import numpy.typing as npt from oceandb.api.types import ( Embeddings, Documents, IDs, Metadatas, Where, WhereDocument, ) class DB(ABC): @abstractmethod def __init__(self): pass @abstractmethod def create_collection( self, name: str, metadata: Optional[Dict] = None, get_or_create: bool = False ) -> Sequence: pass @abstractmethod def get_collection(self, name: str) -> Sequence: pass @abstractmethod def list_collections(self) -> Sequence: pass @abstractmethod def update_collection( self, id: UUID, new_name: Optional[str] = None, new_metadata: Optional[Dict] = None, ): pass @abstractmethod def delete_collection(self, name: str): pass @abstractmethod def get_collection_uuid_from_name(self, collection_name: str) -> UUID: pass @abstractmethod def add( self, collection_uuid: UUID, embeddings: Embeddings, metadatas: Optional[Metadatas], documents: Optional[Documents], ids: List[UUID], ) -> List[UUID]: pass @abstractmethod def add_incremental( self, collection_uuid: UUID, ids: List[UUID], embeddings: Embeddings ): pass @abstractmethod def get( self, where: Where = {}, collection_name: Optional[str] = None, collection_uuid: Optional[UUID] = None, ids: Optional[IDs] = None, sort: Optional[str] = None, limit: Optional[int] = None, offset: Optional[int] = None, where_document: WhereDocument = {}, columns: Optional[List[str]] = None, ) -> Sequence: pass @abstractmethod def update( self, collection_uuid: UUID, ids: IDs, embeddings: Optional[Embeddings] = None, metadatas: Optional[Metadatas] = None, documents: Optional[Documents] = None, ): pass @abstractmethod def count(self, collection_id: UUID): pass @abstractmethod def delete( self, where: Where = {}, collection_uuid: Optional[UUID] = None, ids: Optional[IDs] = None, where_document: WhereDocument = {}, ) -> List: pass @abstractmethod def reset(self): pass @abstractmethod def get_nearest_neighbors( self, collection_uuid: UUID, where, embeddings, n_results, where_document, ) -> Tuple[List[List[UUID]], npt.NDArray]: pass @abstractmethod def get_by_ids(self, uuids, columns=None) -> Sequence: pass @abstractmethod def raw_sql(self, raw_sql): pass @abstractmethod def create_index(self, collection_uuid: UUID): pass @abstractmethod def persist(self): pass
Ocean-master
oceandb/db/__init__.py
from oceandb.api.types import Documents, Embeddings, IDs, Metadatas from oceandb.db.clickhouse import ( Clickhouse, db_array_schema_to_clickhouse_schema, EMBEDDING_TABLE_SCHEMA, db_schema_to_keys, COLLECTION_TABLE_SCHEMA, ) from typing import List, Optional, Sequence, Dict import pandas as pd import json import duckdb import uuid import os import logging import atexit logger = logging.getLogger(__name__) def clickhouse_to_duckdb_schema(table_schema): for item in table_schema: if "embedding" in item: item["embedding"] = "DOUBLE[]" # capitalize the key item[list(item.keys())[0]] = item[list(item.keys())[0]].upper() if "NULLABLE" in item[list(item.keys())[0]]: item[list(item.keys())[0]] = ( item[list(item.keys())[0]].replace("NULLABLE(", "").replace(")", "") ) if "UUID" in item[list(item.keys())[0]]: item[list(item.keys())[0]] = "STRING" if "FLOAT64" in item[list(item.keys())[0]]: item[list(item.keys())[0]] = "DOUBLE" return table_schema # TODO: inherits ClickHouse for convenience of copying behavior, not # because it's logically a subtype. Factoring out the common behavior # to a third superclass they both extend would be preferable. class DuckDB(Clickhouse): # duckdb has a different way of connecting to the database def __init__(self, settings): self._conn = duckdb.connect() self._create_table_collections() self._create_table_embeddings() self._settings = settings # https://duckdb.org/docs/extensions/overview self._conn.execute("LOAD 'json';") def _create_table_collections(self): self._conn.execute( f"""CREATE TABLE collections ( {db_array_schema_to_clickhouse_schema(clickhouse_to_duckdb_schema(COLLECTION_TABLE_SCHEMA))} ) """ ) # duckdb has different types, so we want to convert the clickhouse schema to duckdb schema def _create_table_embeddings(self): self._conn.execute( f"""CREATE TABLE embeddings ( {db_array_schema_to_clickhouse_schema(clickhouse_to_duckdb_schema(EMBEDDING_TABLE_SCHEMA))} ) """ ) # # UTILITY METHODS # def get_collection_uuid_from_name(self, name): return self._conn.execute( "SELECT uuid FROM collections WHERE name = ?", [name] ).fetchall()[0][0] # # COLLECTION METHODS # def create_collection( self, name: str, metadata: Optional[Dict] = None, get_or_create: bool = False ) -> Sequence: # poor man's unique constraint dupe_check = self.get_collection(name) if len(dupe_check) > 0: if get_or_create is True: if dupe_check[0][2] != metadata: self.update_collection( dupe_check[0][0], new_name=name, new_metadata=metadata ) dupe_check = self.get_collection(name) logger.info( f"collection with name {name} already exists, returning existing collection" ) return dupe_check else: raise ValueError(f"Collection with name {name} already exists") collection_uuid = uuid.uuid4() self._conn.execute( """INSERT INTO collections (uuid, name, metadata) VALUES (?, ?, ?)""", [str(collection_uuid), name, json.dumps(metadata)], ) return [[str(collection_uuid), name, metadata]] def get_collection(self, name: str) -> Sequence: res = self._conn.execute( """SELECT * FROM collections WHERE name = ?""", [name] ).fetchall() # json.loads the metadata return [[x[0], x[1], json.loads(x[2])] for x in res] def get_collection_by_id(self, uuid: str) -> Sequence: res = self._conn.execute( """SELECT * FROM collections WHERE uuid = ?""", [uuid] ).fetchone() return [res[0], res[1], json.loads(res[2])] def list_collections(self) -> Sequence: res = self._conn.execute("""SELECT * FROM collections""").fetchall() return [[x[0], x[1], json.loads(x[2])] for x in res] def delete_collection(self, name: str): collection_uuid = self.get_collection_uuid_from_name(name) self._conn.execute( """DELETE FROM embeddings WHERE collection_uuid = ?""", [collection_uuid] ) self._delete_index(collection_uuid) self._conn.execute("""DELETE FROM collections WHERE name = ?""", [name]) def update_collection( self, id: uuid.UUID, new_name: str, new_metadata: Optional[Dict] = None ): if new_name is not None: self._conn.execute( """UPDATE collections SET name = ? WHERE uuid = ?""", [new_name, id], ) if new_metadata is not None: self._conn.execute( """UPDATE collections SET metadata = ? WHERE uuid = ?""", [json.dumps(new_metadata), id], ) # # ITEM METHODS # # the execute many syntax is different than clickhouse, the (?,?) syntax is different than clickhouse def add(self, collection_uuid, embeddings, metadatas, documents, ids): data_to_insert = [ [ collection_uuid, str(uuid.uuid4()), embedding, json.dumps(metadatas[i]) if metadatas else None, documents[i] if documents else None, ids[i], ] for i, embedding in enumerate(embeddings) ] insert_string = "collection_uuid, uuid, embedding, metadata, document, id" self._conn.executemany( f""" INSERT INTO embeddings ({insert_string}) VALUES (?,?,?,?,?,?)""", data_to_insert, ) return [uuid.UUID(x[1]) for x in data_to_insert] # return uuids def count(self, collection_uuid): where_string = f"WHERE collection_uuid = '{collection_uuid}'" return self._conn.query( f"SELECT COUNT() FROM embeddings {where_string}" ).fetchall()[0][0] def _format_where(self, where, result): for key, value in where.items(): # Shortcut for $eq if type(value) == str: result.append(f" json_extract_string(metadata,'$.{key}') = '{value}'") if type(value) == int: result.append( f" CAST(json_extract(metadata,'$.{key}') AS INT) = {value}" ) if type(value) == float: result.append( f" CAST(json_extract(metadata,'$.{key}') AS DOUBLE) = {value}" ) # Operator expression elif type(value) == dict: operator, operand = list(value.items())[0] if operator == "$gt": result.append( f" CAST(json_extract(metadata,'$.{key}') AS DOUBLE) > {operand}" ) elif operator == "$lt": result.append( f" CAST(json_extract(metadata,'$.{key}') AS DOUBLE) < {operand}" ) elif operator == "$gte": result.append( f" CAST(json_extract(metadata,'$.{key}') AS DOUBLE) >= {operand}" ) elif operator == "$lte": result.append( f" CAST(json_extract(metadata,'$.{key}') AS DOUBLE) <= {operand}" ) elif operator == "$ne": if type(operand) == str: return result.append( f" json_extract_string(metadata,'$.{key}') != '{operand}'" ) return result.append( f" CAST(json_extract(metadata,'$.{key}') AS DOUBLE) != {operand}" ) elif operator == "$eq": if type(operand) == str: return result.append( f" json_extract_string(metadata,'$.{key}') = '{operand}'" ) return result.append( f" CAST(json_extract(metadata,'$.{key}') AS DOUBLE) = {operand}" ) else: raise ValueError(f"Operator {operator} not supported") elif type(value) == list: all_subresults = [] for subwhere in value: subresults = [] self._format_where(subwhere, subresults) all_subresults.append(subresults[0]) if key == "$or": result.append(f"({' OR '.join(all_subresults)})") elif key == "$and": result.append(f"({' AND '.join(all_subresults)})") else: raise ValueError( f"Operator {key} not supported with a list of where clauses" ) def _format_where_document(self, where_document, results): operator = list(where_document.keys())[0] if operator == "$contains": results.append(f"position('{where_document[operator]}' in document) > 0") elif operator == "$and" or operator == "$or": all_subresults = [] for subwhere in where_document[operator]: subresults = [] self._format_where_document(subwhere, subresults) all_subresults.append(subresults[0]) if operator == "$or": results.append(f"({' OR '.join(all_subresults)})") if operator == "$and": results.append(f"({' AND '.join(all_subresults)})") else: raise ValueError(f"Operator {operator} not supported") def _get(self, where, columns: Optional[List] = None): select_columns = db_schema_to_keys() if columns is None else columns val = self._conn.execute( f"""SELECT {",".join(select_columns)} FROM embeddings {where}""" ).fetchall() for i in range(len(val)): val[i] = list(val[i]) if "collection_uuid" in select_columns: collection_uuid_column_index = select_columns.index("collection_uuid") val[i][collection_uuid_column_index] = uuid.UUID( val[i][collection_uuid_column_index] ) if "uuid" in select_columns: uuid_column_index = select_columns.index("uuid") val[i][uuid_column_index] = uuid.UUID(val[i][uuid_column_index]) if "metadata" in select_columns: metadata_column_index = select_columns.index("metadata") val[i][metadata_column_index] = ( json.loads(val[i][metadata_column_index]) if val[i][metadata_column_index] else None ) return val def _update( self, collection_uuid, ids: IDs, embeddings: Optional[Embeddings], metadatas: Optional[Metadatas], documents: Optional[Documents], ): update_data = [] for i in range(len(ids)): data = [] update_data.append(data) if embeddings is not None: data.append(embeddings[i]) if metadatas is not None: data.append(json.dumps(metadatas[i])) if documents is not None: data.append(documents[i]) data.append(ids[i]) update_fields = [] if embeddings is not None: update_fields.append("embedding = ?") if metadatas is not None: update_fields.append("metadata = ?") if documents is not None: update_fields.append("document = ?") update_statement = f""" UPDATE embeddings SET {", ".join(update_fields)} WHERE id = ? AND collection_uuid = '{collection_uuid}'; """ self._conn.executemany(update_statement, update_data) def _delete(self, where_str: Optional[str] = None) -> List: uuids_deleted = self._conn.execute( f"""SELECT uuid FROM embeddings {where_str}""" ).fetchall() self._conn.execute( f""" DELETE FROM embeddings {where_str} """ ).fetchall()[0] return [uuid.UUID(x[0]) for x in uuids_deleted] def get_by_ids(self, ids: List, columns: Optional[List] = None): # select from duckdb table where ids are in the list if not isinstance(ids, list): raise TypeError(f"Expected ids to be a list, got {ids}") if not ids: # create an empty pandas dataframe return pd.DataFrame() columns = columns + ["uuid"] if columns else ["uuid"] select_columns = db_schema_to_keys() if columns is None else columns response = self._conn.execute( f""" SELECT {",".join(select_columns)} FROM embeddings WHERE uuid IN ({','.join([("'" + str(x) + "'") for x in ids])}) """ ).fetchall() # sort db results by the order of the uuids response = sorted( response, key=lambda obj: ids.index(uuid.UUID(obj[len(columns) - 1])) ) return response def raw_sql(self, sql): return self._conn.execute(sql).df() # TODO: This method should share logic with clickhouse impl def reset(self): self._conn.execute("DROP TABLE collections") self._conn.execute("DROP TABLE embeddings") self._create_table_collections() self._create_table_embeddings() self.reset_indexes() def __del__(self): logger.info("Exiting: Cleaning up .ocean directory") self.reset_indexes() def persist(self): raise NotImplementedError( "Set ocean_db_impl='duckdb+parquet' to get persistence functionality" ) class PersistentDuckDB(DuckDB): _save_folder = None def __init__(self, settings): super().__init__(settings=settings) if settings.persist_directory == ".ocean": raise ValueError( "You cannot use ocean's cache directory .ocean/, please set a different directory" ) self._save_folder = settings.persist_directory self.load() # https://docs.python.org/3/library/atexit.html atexit.register(self.persist) def set_save_folder(self, path): self._save_folder = path def get_save_folder(self): return self._save_folder def persist(self): """ Persist the database to disk """ logger.info( f"Persisting DB to disk, putting it in the save folder: {self._save_folder}" ) if self._conn is None: return if not os.path.exists(self._save_folder): os.makedirs(self._save_folder) # if the db is empty, dont save if self._conn.query("SELECT COUNT() FROM embeddings") == 0: return self._conn.execute( f""" COPY (SELECT * FROM embeddings) TO '{self._save_folder}/ocean-embeddings.parquet' (FORMAT PARQUET); """ ) self._conn.execute( f""" COPY (SELECT * FROM collections) TO '{self._save_folder}/ocean-collections.parquet' (FORMAT PARQUET); """ ) def load(self): """ Load the database from disk """ if not os.path.exists(self._save_folder): os.makedirs(self._save_folder) # load in the embeddings if not os.path.exists(f"{self._save_folder}/ocean-embeddings.parquet"): logger.info(f"No existing DB found in {self._save_folder}, skipping load") else: path = self._save_folder + "/ocean-embeddings.parquet" self._conn.execute( f"INSERT INTO embeddings SELECT * FROM read_parquet('{path}');" ) logger.info( f"""loaded in {self._conn.query("SELECT COUNT() FROM embeddings").fetchall()[0][0]} embeddings""" ) # load in the collections if not os.path.exists(f"{self._save_folder}/ocean-collections.parquet"): logger.info(f"No existing DB found in {self._save_folder}, skipping load") else: path = self._save_folder + "/ocean-collections.parquet" self._conn.execute( f"INSERT INTO collections SELECT * FROM read_parquet('{path}');" ) logger.info( f"""loaded in {self._conn.query("SELECT COUNT() FROM collections").fetchall()[0][0]} collections""" ) def __del__(self): # No-op for duckdb with persistence since the base class will delete the indexes pass def reset(self): super().reset() # empty the save folder import shutil import os shutil.rmtree(self._save_folder) os.mkdir(self._save_folder)
Ocean-master
oceandb/db/duckdb.py
from abc import ABC, abstractmethod class Index(ABC): @abstractmethod def __init__(self, id, settings, metadata): pass @abstractmethod def delete(self): pass @abstractmethod def delete_from_index(self, ids): pass @abstractmethod def add(self, ids, embeddings, update=False): pass @abstractmethod def get_nearest_neighbors(self, embedding, n_results, ids): pass
Ocean-master
oceandb/db/index/__init__.py
import os import pickle import time from typing import Dict from oceandb.api.types import IndexMetadata import hnswlib from oceandb.db.index import Index from oceandb.errors import ( NoIndexException, InvalidDimensionException, NotEnoughElementsException, ) import logging import re from uuid import UUID import multiprocessing logger = logging.getLogger(__name__) valid_params = { "hnsw:space": r"^(l2|cosine|ip)$", "hnsw:construction_ef": r"^\d+$", "hnsw:search_ef": r"^\d+$", "hnsw:M": r"^\d+$", "hnsw:num_threads": r"^\d+$", "hnsw:resize_factor": r"^\d+(\.\d+)?$", } class HnswParams: space: str construction_ef: int search_ef: int M: int num_threads: int resize_factor: float def __init__(self, metadata): metadata = metadata or {} # Convert all values to strings for future compatibility. metadata = {k: str(v) for k, v in metadata.items()} for param, value in metadata.items(): if param.startswith("hnsw:"): if param not in valid_params: raise ValueError(f"Unknown HNSW parameter: {param}") if not re.match(valid_params[param], value): raise ValueError( f"Invalid value for HNSW parameter: {param} = {value}" ) self.space = metadata.get("hnsw:space", "l2") self.construction_ef = int(metadata.get("hnsw:construction_ef", 100)) self.search_ef = int(metadata.get("hnsw:search_ef", 10)) self.M = int(metadata.get("hnsw:M", 16)) self.num_threads = int( metadata.get("hnsw:num_threads", multiprocessing.cpu_count()) ) self.resize_factor = float(metadata.get("hnsw:resize_factor", 1.2)) def hexid(id): """Backwards compatibility for old indexes which called uuid.hex on UUID ids""" return id.hex if isinstance(id, UUID) else id def delete_all_indexes(settings): if os.path.exists(f"{settings.persist_directory}/index"): for file in os.listdir(f"{settings.persist_directory}/index"): os.remove(f"{settings.persist_directory}/index/{file}") class Hnswlib(Index): _id: str _index: hnswlib.Index _index_metadata: IndexMetadata _params: HnswParams _id_to_label: Dict[str, int] _label_to_id: Dict[int, UUID] def __init__(self, id, settings, metadata): self._save_folder = settings.persist_directory + "/index" self._params = HnswParams(metadata) self._id = id self._index = None # Mapping of IDs to HNSW integer labels self._id_to_label = {} self._label_to_id = {} self._load() def _init_index(self, dimensionality): # more comments available at the source: https://github.com/nmslib/hnswlib index = hnswlib.Index( space=self._params.space, dim=dimensionality ) # possible options are l2, cosine or ip index.init_index( max_elements=1000, ef_construction=self._params.construction_ef, M=self._params.M, ) index.set_ef(self._params.search_ef) index.set_num_threads(self._params.num_threads) self._index = index self._index_metadata = { "dimensionality": dimensionality, "elements": 0, "time_created": time.time(), } self._save() def _check_dimensionality(self, data): """Assert that the given data matches the index dimensionality""" dim = len(data[0]) idx_dim = self._index.dim if dim != idx_dim: raise InvalidDimensionException( f"Dimensionality of ({dim}) does not match index dimensionality ({idx_dim})" ) def add(self, ids, embeddings, update=False): """Add or update embeddings to the index""" dim = len(embeddings[0]) if self._index is None: self._init_index(dim) # Check dimensionality self._check_dimensionality(embeddings) labels = [] for id in ids: if hexid(id) in self._id_to_label: if update: labels.append(self._id_to_label[hexid(id)]) else: raise ValueError(f"ID {id} already exists in index") else: self._index_metadata["elements"] += 1 next_label = self._index_metadata["elements"] self._id_to_label[hexid(id)] = next_label self._label_to_id[next_label] = id labels.append(next_label) if self._index_metadata["elements"] > self._index.get_max_elements(): new_size = max( self._index_metadata["elements"] * self._params.resize_factor, 1000 ) self._index.resize_index(int(new_size)) self._index.add_items(embeddings, labels) self._save() def delete(self): # delete files, dont throw error if they dont exist try: os.remove(f"{self._save_folder}/id_to_uuid_{self._id}.pkl") os.remove(f"{self._save_folder}/uuid_to_id_{self._id}.pkl") os.remove(f"{self._save_folder}/index_{self._id}.bin") os.remove(f"{self._save_folder}/index_metadata_{self._id}.pkl") except Exception: pass self._index = None self._collection_uuid = None self._id_to_label = {} self._label_to_id = {} def delete_from_index(self, ids): if self._index is not None: for id in ids: label = self._id_to_label[hexid(id)] self._index.mark_deleted(label) del self._label_to_id[label] del self._id_to_label[hexid(id)] self._save() def _save(self): # create the directory if it doesn't exist if not os.path.exists(f"{self._save_folder}"): os.makedirs(f"{self._save_folder}") if self._index is None: return self._index.save_index(f"{self._save_folder}/index_{self._id}.bin") # pickle the mappers # Use old filenames for backwards compatibility with open(f"{self._save_folder}/id_to_uuid_{self._id}.pkl", "wb") as f: pickle.dump(self._label_to_id, f, pickle.HIGHEST_PROTOCOL) with open(f"{self._save_folder}/uuid_to_id_{self._id}.pkl", "wb") as f: pickle.dump(self._id_to_label, f, pickle.HIGHEST_PROTOCOL) with open(f"{self._save_folder}/index_metadata_{self._id}.pkl", "wb") as f: pickle.dump(self._index_metadata, f, pickle.HIGHEST_PROTOCOL) logger.debug(f"Index saved to {self._save_folder}/index.bin") def _exists(self): return def _load(self): if not os.path.exists(f"{self._save_folder}/index_{self._id}.bin"): return # unpickle the mappers with open(f"{self._save_folder}/id_to_uuid_{self._id}.pkl", "rb") as f: self._label_to_id = pickle.load(f) with open(f"{self._save_folder}/uuid_to_id_{self._id}.pkl", "rb") as f: self._id_to_label = pickle.load(f) with open(f"{self._save_folder}/index_metadata_{self._id}.pkl", "rb") as f: self._index_metadata = pickle.load(f) p = hnswlib.Index( space=self._params.space, dim=self._index_metadata["dimensionality"] ) self._index = p self._index.load_index( f"{self._save_folder}/index_{self._id}.bin", max_elements=self._index_metadata["elements"], ) self._index.set_ef(self._params.search_ef) self._index.set_num_threads(self._params.num_threads) def get_nearest_neighbors(self, query, k, ids=None): if self._index is None: raise NoIndexException( "Index not found, please create an instance before querying" ) # Check dimensionality self._check_dimensionality(query) if k > self._index_metadata["elements"]: raise NotEnoughElementsException( f"Number of requested results {k} cannot be greater than number of elements in index {self._index_metadata['elements']}" ) s2 = time.time() # get ids from uuids as a set, if they are available labels = {} if ids is not None: labels = {self._id_to_label[hexid(id)] for id in ids} if len(labels) < k: k = len(labels) filter_function = None if len(labels) != 0: filter_function = lambda label: label in labels # NOQA: E731 logger.debug(f"time to pre process our knn query: {time.time() - s2}") s3 = time.time() database_labels, distances = self._index.knn_query( query, k=k, filter=filter_function ) logger.debug(f"time to run knn query: {time.time() - s3}") ids = [ [self._label_to_id[label] for label in labels] for labels in database_labels ] return ids, distances
Ocean-master
oceandb/db/index/hnswlib.py
from typing import Callable, Dict, List, Optional from oceandb.api import API from oceandb.api.types import ( CrossModalRetrieval, Documents, Embeddings, Embedding, IDs, Include, Metadatas, ModalitySpecificSearching, MultiModalFusion, Where, WhereDocument, ) import pandas as pd import requests import json from typing import Sequence, List, Any from oceandb.api.models.Collection import Collection from oceandb.telemetry import Telemetry import oceandb.errors as errors from uuid import UUID class FastAPI(API): def __init__(self, settings, telemetry_client: Telemetry): url_prefix = "https" if settings.ocean_server_ssl_enabled else "http" self._api_url = f"{url_prefix}://{settings.ocean_server_host}:{settings.ocean_server_http_port}/api/v1" self._telemetry_client = telemetry_client def heartbeat(self): """Returns the current server time in nanoseconds to check if the server is alive""" resp = requests.get(self._api_url) raise_ocean_error(resp) return int(resp.json()["nanosecond heartbeat"]) def list_collections(self) -> Sequence[Collection]: """Returns a list of all collections""" resp = requests.get(self._api_url + "/collections") raise_ocean_error(resp) json_collections = resp.json() collections = [] for json_collection in json_collections: collections.append(Collection(self, **json_collection)) return collections def create_collection( self, name: str, metadata: Optional[Dict] = None, embedding_function: Optional[Callable] = None, get_or_create: bool = False, ) -> Collection: """Creates a collection""" resp = requests.post( self._api_url + "/collections", data=json.dumps( {"name": name, "metadata": metadata, "get_or_create": get_or_create} ), ) raise_ocean_error(resp) resp_json = resp.json() return Collection( client=self, id=resp_json["id"], name=resp_json["name"], embedding_function=embedding_function, metadata=resp_json["metadata"], ) def get_collection( self, name: str, embedding_function: Optional[Callable] = None, ) -> Collection: """Returns a collection""" resp = requests.get(self._api_url + "/collections/" + name) raise_ocean_error(resp) resp_json = resp.json() return Collection( client=self, name=resp_json["name"], id=resp_json["id"], embedding_function=embedding_function, metadata=resp_json["metadata"], ) def get_or_create_collection( self, name: str, metadata: Optional[Dict] = None, embedding_function: Optional[Callable] = None, ) -> Collection: """Get a collection, or return it if it exists""" return self.create_collection( name, metadata, embedding_function, get_or_create=True ) def _modify(self, id: UUID, new_name: str, new_metadata: Optional[Dict] = None): """Updates a collection""" resp = requests.put( self._api_url + "/collections/" + str(id), data=json.dumps({"new_metadata": new_metadata, "new_name": new_name}), ) raise_ocean_error(resp) return resp.json() def delete_collection(self, name: str): """Deletes a collection""" resp = requests.delete(self._api_url + "/collections/" + name) raise_ocean_error(resp) def _count(self, collection_id: UUID): """Returns the number of embeddings in the database""" resp = requests.get( self._api_url + "/collections/" + str(collection_id) + "/count" ) raise_ocean_error(resp) return resp.json() def _peek(self, collection_id, limit=10): return self._get( collection_id, limit=limit, include=["embeddings", "documents", "metadatas"], ) def _get( self, collection_id: UUID, ids: Optional[IDs] = None, where: Optional[Where] = {}, sort: Optional[str] = None, limit: Optional[int] = None, offset: Optional[int] = None, page: Optional[int] = None, page_size: Optional[int] = None, where_document: Optional[WhereDocument] = {}, include: Include = ["metadatas", "documents"], ): """Gets embeddings from the database""" if page and page_size: offset = (page - 1) * page_size limit = page_size resp = requests.post( self._api_url + "/collections/" + str(collection_id) + "/get", data=json.dumps( { "ids": ids, "where": where, "sort": sort, "limit": limit, "offset": offset, "where_document": where_document, "include": include, } ), ) raise_ocean_error(resp) return resp.json() def _delete(self, collection_id: UUID, ids=None, where={}, where_document={}): """Deletes embeddings from the database""" resp = requests.post( self._api_url + "/collections/" + str(collection_id) + "/delete", data=json.dumps( {"where": where, "ids": ids, "where_document": where_document} ), ) raise_ocean_error(resp) return resp.json() def _add( self, ids, collection_id: UUID, embeddings, metadatas=None, documents=None, increment_index=True, ): """ Adds a batch of embeddings to the database - pass in column oriented data lists - by default, the index is progressively built up as you add more data. If for ingestion performance reasons you want to disable this, set increment_index to False - and then manually create the index yourself with collection.create_index() """ resp = requests.post( self._api_url + "/collections/" + str(collection_id) + "/add", data=json.dumps( { "ids": ids, "embeddings": embeddings, "metadatas": metadatas, "documents": documents, "increment_index": increment_index, } ), ) raise_ocean_error(resp) return True def _update( self, collection_id: UUID, ids: IDs, embeddings: Optional[Embeddings] = None, metadatas: Optional[Metadatas] = None, documents: Optional[Documents] = None, ): """ Updates a batch of embeddings in the database - pass in column oriented data lists """ resp = requests.post( self._api_url + "/collections/" + str(collection_id) + "/update", data=json.dumps( { "ids": ids, "embeddings": embeddings, "metadatas": metadatas, "documents": documents, } ), ) resp.raise_for_status() return True def _upsert( self, collection_id: UUID, ids: IDs, embeddings: Embeddings, metadatas: Optional[Metadatas] = None, documents: Optional[Documents] = None, increment_index: bool = True, ): """ Updates a batch of embeddings in the database - pass in column oriented data lists """ resp = requests.post( self._api_url + "/collections/" + str(collection_id) + "/upsert", data=json.dumps( { "ids": ids, "embeddings": embeddings, "metadatas": metadatas, "documents": documents, "increment_index": increment_index, } ), ) resp.raise_for_status() return True def _query( self, collection_id: UUID, query_embeddings, n_results=10, where={}, where_document={}, include: Include = ["metadatas", "documents", "distances"], ): """Gets the nearest neighbors of a single embedding""" resp = requests.post( self._api_url + "/collections/" + str(collection_id) + "/query", data=json.dumps( { "query_embeddings": query_embeddings, "n_results": n_results, "where": where, "where_document": where_document, "include": include, } ), ) raise_ocean_error(resp) body = resp.json() return body def search( self, search_function: str, query_embeddings: List[Embedding], index_data: Any ) -> List[str]: if search_function == "cross_modal_retrieval": search_instance = CrossModalRetrieval() # type: ignore elif search_function == "multi_modal_fusion": search_instance = MultiModalFusion() # type: ignore elif search_function == "modality_specific_searching": search_instance = ModalitySpecificSearching() # type: ignore else: raise ValueError("Invalid search function specified") result_ids = search_instance.search(query_embeddings, index_data) return result_ids # type: ignore def reset(self): """Resets the database""" resp = requests.post(self._api_url + "/reset") raise_ocean_error(resp) return resp.json def persist(self): """Persists the database""" resp = requests.post(self._api_url + "/persist") raise_ocean_error(resp) return resp.json def raw_sql(self, sql): """Runs a raw SQL query against the database""" resp = requests.post( self._api_url + "/raw_sql", data=json.dumps({"raw_sql": sql}) ) raise_ocean_error(resp) return pd.DataFrame.from_dict(resp.json()) def create_index(self, collection_name: str): """Creates an index for the given space key""" resp = requests.post( self._api_url + "/collections/" + collection_name + "/create_index" ) raise_ocean_error(resp) return resp.json() def get_version(self): """Returns the version of the server""" resp = requests.get(self._api_url + "/version") raise_ocean_error(resp) return resp.json() def raise_ocean_error(resp): """Raises an error if the response is not ok, using a OceanError if possible""" if resp.ok: return ocean_error = None try: body = resp.json() if "error" in body: if body["error"] in errors.error_types: ocean_error = errors.error_types[body["error"]](body["message"]) except BaseException: pass if ocean_error: raise ocean_error try: resp.raise_for_status() except requests.HTTPError: raise (Exception(resp.text))
Ocean-master
oceandb/api/fastapi.py
import json import time from uuid import UUID from typing import Dict, List, Optional, Sequence, Callable, cast from oceandb import __version__ import oceandb.errors as errors from oceandb.api import API from oceandb.db import DB from oceandb.api.types import ( Documents, Embeddings, GetResult, IDs, Include, Metadatas, QueryResult, Where, WhereDocument, ) from oceandb.api.models.Collection import Collection import re from oceandb.telemetry import Telemetry from oceandb.telemetry.events import CollectionAddEvent, CollectionDeleteEvent # mimics s3 bucket requirements for naming def check_index_name(index_name): msg = ( "Expected collection name that " "(1) contains 3-63 characters, " "(2) starts and ends with an alphanumeric character, " "(3) otherwise contains only alphanumeric characters, underscores or hyphens (-), " "(4) contains no two consecutive periods (..) and " "(5) is not a valid IPv4 address, " f"got {index_name}" ) if len(index_name) < 3 or len(index_name) > 63: raise ValueError(msg) if not re.match("^[a-zA-Z0-9][a-zA-Z0-9._-]*[a-zA-Z0-9]$", index_name): raise ValueError(msg) if ".." in index_name: raise ValueError(msg) if re.match("^[0-9]{1,3}\\.[0-9]{1,3}\\.[0-9]{1,3}\\.[0-9]{1,3}$", index_name): raise ValueError(msg) class LocalAPI(API): def __init__(self, settings, db: DB, telemetry_client: Telemetry): self._db = db self._telemetry_client = telemetry_client def heartbeat(self): """Ping the database to ensure it is alive""" return int(1000 * time.time_ns()) # # COLLECTION METHODS # def create_collection( self, name: str, metadata: Optional[Dict] = None, embedding_function: Optional[Callable] = None, get_or_create: bool = False, ) -> Collection: """Create a new collection with the given name and metadata. Args: name: The name of the collection to create metadata: Optional metadata to associate with the collection embedding_function: Optional function to use to embed documents get_or_create: If True, return the existing collection if it exists Returns: The newly created collection Raises: ValueError: If the collection already exists and get_or_create is False ValueError: If the collection name is invalid Examples: >>> client.create_collection("my_collection") collection(name="my_collection", metadata={}) >>> client.create_collection("my_collection", metadata={"foo": "bar"}) collection(name="my_collection", metadata={"foo": "bar"}) """ check_index_name(name) res = self._db.create_collection(name, metadata, get_or_create) return Collection( client=self, name=name, embedding_function=embedding_function, id=res[0][0], metadata=res[0][2], ) def get_or_create_collection( self, name: str, metadata: Optional[Dict] = None, embedding_function: Optional[Callable] = None, ) -> Collection: """Get or create a collection with the given name and metadata. Args: name: The name of the collection to get or create metadata: Optional metadata to associate with the collection embedding_function: Optional function to use to embed documents Returns: The collection Examples: >>> client.get_or_create_collection("my_collection") collection(name="my_collection", metadata={}) """ return self.create_collection( name, metadata, embedding_function, get_or_create=True ) def get_collection( self, name: str, embedding_function: Optional[Callable] = None, ) -> Collection: """Get a collection with the given name. Args: name: The name of the collection to get embedding_function: Optional function to use to embed documents Returns: The collection Raises: ValueError: If the collection does not exist Examples: >>> client.get_collection("my_collection") collection(name="my_collection", metadata={}) """ res = self._db.get_collection(name) if len(res) == 0: raise ValueError(f"Collection {name} does not exist") return Collection( client=self, name=name, id=res[0][0], embedding_function=embedding_function, metadata=res[0][2], ) def list_collections(self) -> Sequence[Collection]: """List all collections. Returns: A list of collections Examples: >>> client.list_collections() [collection(name="my_collection", metadata={})] """ collections = [] db_collections = self._db.list_collections() for db_collection in db_collections: collections.append( Collection( client=self, id=db_collection[0], name=db_collection[1], metadata=db_collection[2], ) ) return collections def _modify( self, id: UUID, new_name: Optional[str] = None, new_metadata: Optional[Dict] = None, ): if new_name is not None: check_index_name(new_name) self._db.update_collection(id, new_name, new_metadata) def delete_collection(self, name: str): """Delete a collection with the given name. Args: name: The name of the collection to delete Raises: ValueError: If the collection does not exist Examples: >>> client.delete_collection("my_collection") """ return self._db.delete_collection(name) # # ITEM METHODS # def _add( self, ids, collection_id: UUID, embeddings: Embeddings, metadatas: Optional[Metadatas] = None, documents: Optional[Documents] = None, increment_index: bool = True, ): existing_ids = self._get(collection_id, ids=ids, include=[])["ids"] if len(existing_ids) > 0: raise errors.IDAlreadyExistsError( f"IDs {existing_ids} already exist in collection {collection_id}" ) added_uuids = self._db.add( collection_id, embeddings=embeddings, metadatas=metadatas, documents=documents, ids=ids, ) if increment_index: self._db.add_incremental(collection_id, added_uuids, embeddings) self._telemetry_client.capture(CollectionAddEvent(str(collection_id), len(ids))) return True # NIT: should this return the ids of the succesfully added items? def _update( self, collection_id: UUID, ids: IDs, embeddings: Optional[Embeddings] = None, metadatas: Optional[Metadatas] = None, documents: Optional[Documents] = None, ): self._db.update(collection_id, ids, embeddings, metadatas, documents) return True def _upsert( self, collection_id: UUID, ids: IDs, embeddings: Embeddings, metadatas: Optional[Metadatas] = None, documents: Optional[Documents] = None, increment_index: bool = True, ): # Determine which ids need to be added and which need to be updated based on the ids already in the collection existing_ids = set(self._get(collection_id, ids=ids, include=[])["ids"]) ids_to_add = [] ids_to_update = [] embeddings_to_add: Embeddings = [] embeddings_to_update: Embeddings = [] metadatas_to_add: Optional[Metadatas] = [] if metadatas else None metadatas_to_update: Optional[Metadatas] = [] if metadatas else None documents_to_add: Optional[Documents] = [] if documents else None documents_to_update: Optional[Documents] = [] if documents else None for i, id in enumerate(ids): if id in existing_ids: ids_to_update.append(id) if embeddings is not None: embeddings_to_update.append(embeddings[i]) if metadatas is not None: metadatas_to_update.append(metadatas[i]) if documents is not None: documents_to_update.append(documents[i]) else: ids_to_add.append(id) if embeddings is not None: embeddings_to_add.append(embeddings[i]) if metadatas is not None: metadatas_to_add.append(metadatas[i]) if documents is not None: documents_to_add.append(documents[i]) if len(ids_to_add) > 0: self._add( ids_to_add, collection_id, embeddings_to_add, metadatas_to_add, documents_to_add, increment_index=increment_index, ) if len(ids_to_update) > 0: self._update( collection_id, ids_to_update, embeddings_to_update, metadatas_to_update, documents_to_update, ) self._db.update(collection_id, ids, embeddings, metadatas, documents) return True def _get( self, collection_id: UUID, ids: Optional[IDs] = None, where: Optional[Where] = {}, sort: Optional[str] = None, limit: Optional[int] = None, offset: Optional[int] = None, page: Optional[int] = None, page_size: Optional[int] = None, where_document: Optional[WhereDocument] = {}, include: Include = ["embeddings", "metadatas", "documents"], ): if where is None: where = {} if where_document is None: where_document = {} if page and page_size: offset = (page - 1) * page_size limit = page_size include_embeddings = "embeddings" in include include_documents = "documents" in include include_metadatas = "metadatas" in include # Remove plural from include since db columns are singular db_columns = [column[:-1] for column in include] + ["id"] column_index = { column_name: index for index, column_name in enumerate(db_columns) } db_result = self._db.get( collection_uuid=collection_id, ids=ids, where=where, sort=sort, limit=limit, offset=offset, where_document=where_document, columns=db_columns, ) get_result = GetResult( ids=[], embeddings=[] if include_embeddings else None, documents=[] if include_documents else None, metadatas=[] if include_metadatas else None, ) for entry in db_result: if include_embeddings: cast(List, get_result["embeddings"]).append( entry[column_index["embedding"]] ) if include_documents: cast(List, get_result["documents"]).append( entry[column_index["document"]] ) if include_metadatas: cast(List, get_result["metadatas"]).append( entry[column_index["metadata"]] ) get_result["ids"].append(entry[column_index["id"]]) return get_result def _delete(self, collection_id, ids=None, where=None, where_document=None): if where is None: where = {} if where_document is None: where_document = {} deleted_uuids = self._db.delete( collection_uuid=collection_id, where=where, ids=ids, where_document=where_document, ) self._telemetry_client.capture( CollectionDeleteEvent(str(collection_id), len(deleted_uuids)) ) return deleted_uuids def _count(self, collection_id): return self._db.count(collection_id) def reset(self): """Reset the database. This will delete all collections and items. Returns: True if the database was reset successfully """ self._db.reset() return True def _query( self, collection_id, query_embeddings, n_results=10, where={}, where_document={}, include: Include = ["documents", "metadatas", "distances"], ): uuids, distances = self._db.get_nearest_neighbors( collection_uuid=collection_id, where=where, where_document=where_document, embeddings=query_embeddings, n_results=n_results, ) include_embeddings = "embeddings" in include include_documents = "documents" in include include_metadatas = "metadatas" in include include_distances = "distances" in include query_result = QueryResult( ids=[], embeddings=[] if include_embeddings else None, documents=[] if include_documents else None, metadatas=[] if include_metadatas else None, distances=[] if include_distances else None, ) for i in range(len(uuids)): embeddings = [] documents = [] ids = [] metadatas = [] # Remove plural from include since db columns are singular db_columns = [ column[:-1] for column in include if column != "distances" ] + ["id"] column_index = { column_name: index for index, column_name in enumerate(db_columns) } db_result = self._db.get_by_ids(uuids[i], columns=db_columns) for entry in db_result: if include_embeddings: embeddings.append(entry[column_index["embedding"]]) if include_documents: documents.append(entry[column_index["document"]]) if include_metadatas: metadatas.append( json.loads(entry[column_index["metadata"]]) if entry[column_index["metadata"]] else None ) ids.append(entry[column_index["id"]]) if include_embeddings: cast(List, query_result["embeddings"]).append(embeddings) if include_documents: cast(List, query_result["documents"]).append(documents) if include_metadatas: cast(List, query_result["metadatas"]).append(metadatas) if include_distances: cast(List, query_result["distances"]).append(distances[i].tolist()) query_result["ids"].append(ids) return query_result def raw_sql(self, raw_sql): return self._db.raw_sql(raw_sql) def create_index(self, collection_name: str): collection_uuid = self._db.get_collection_uuid_from_name(collection_name) self._db.create_index(collection_uuid=collection_uuid) return True def _peek(self, collection_id: UUID, n=10): return self._get( collection_id=collection_id, limit=n, include=["embeddings", "documents", "metadatas"], ) def persist(self): """Persist the database to disk. Returns: True if the database was persisted successfully """ self._db.persist() return True def get_version(self): """Get the version of Ocean. Returns: The version of Ocean """ return __version__
Ocean-master
oceandb/api/local.py
from abc import ABC, abstractmethod from typing import Callable, Sequence, Optional, Dict import pandas as pd from uuid import UUID from oceandb.api.models.Collection import Collection from oceandb.api.types import ( Documents, Embeddings, IDs, Include, Metadatas, Where, QueryResult, GetResult, WhereDocument, ) from oceandb.telemetry import Telemetry class API(ABC): @abstractmethod def __init__(self, telemetry_client: Telemetry): pass @abstractmethod def heartbeat(self) -> int: """Returns the current server time in nanoseconds to check if the server is alive Args: None Returns: int: The current server time in nanoseconds """ pass @abstractmethod def list_collections(self) -> Sequence[Collection]: """Returns all collections in the database Args: None Returns: dict: A dictionary of collections """ pass @abstractmethod def create_collection( self, name: str, metadata: Optional[Dict] = None, get_or_create: bool = False, embedding_function: Optional[Callable] = None, ) -> Collection: """Creates a new collection in the database Args: name The name of the collection to create. The name must be unique. metadata: A dictionary of metadata to associate with the collection. Defaults to None. get_or_create: If True, will return the collection if it already exists, and update the metadata (if applicable). Defaults to False. embedding_function: A function that takes documents and returns an embedding. Defaults to None. Returns: dict: the created collection """ pass @abstractmethod def delete_collection( self, name: str, ): """Deletes a collection from the database Args: name: The name of the collection to delete """ @abstractmethod def get_or_create_collection( self, name: str, metadata: Optional[Dict] = None ) -> Collection: """Calls create_collection with get_or_create=True. If the collection exists, but with different metadata, the metadata will be replaced. Args: name: The name of the collection to create. The name must be unique. metadata: A dictionary of metadata to associate with the collection. Defaults to None. Returns: the created collection """ pass @abstractmethod def get_collection( self, name: Optional[str] = None, embedding_function: Optional[Callable] = None, ) -> Collection: """Gets a collection from the database by either name or uuid Args: name: The name of the collection to get. Defaults to None. embedding_function: A function that takes documents and returns an embedding. Should be the same as the one used to create the collection. Defaults to None. Returns: dict: the requested collection """ pass def _modify( self, id: UUID, new_name: Optional[str] = None, new_metadata: Optional[Dict] = None, ): """Modify a collection in the database - can update the name and/or metadata Args: current_name: The name of the collection to modify new_name: The new name of the collection. Defaults to None. new_metadata: The new metadata to associate with the collection. Defaults to None. """ pass @abstractmethod def _add( self, ids: IDs, collection_id: UUID, embeddings: Optional[Embeddings], metadatas: Optional[Metadatas] = None, documents: Optional[Documents] = None, increment_index: bool = True, ): """Add embeddings to the data store. This is the most general way to add embeddings to the database. ⚠️ It is recommended to use the more specific methods below when possible. Args: collection_id: The collection to add the embeddings to embedding: The sequence of embeddings to add metadata: The metadata to associate with the embeddings. Defaults to None. documents: The documents to associate with the embeddings. Defaults to None. ids: The ids to associate with the embeddings. Defaults to None. """ pass @abstractmethod def _update( self, collection_id: UUID, ids: IDs, embeddings: Optional[Embeddings] = None, metadatas: Optional[Metadatas] = None, documents: Optional[Documents] = None, ): """Add embeddings to the data store. This is the most general way to add embeddings to the database. ⚠️ It is recommended to use the more specific methods below when possible. Args: collection_id: The collection to add the embeddings to embedding: The sequence of embeddings to add """ pass @abstractmethod def _upsert( self, collection_id: UUID, ids: IDs, embeddings: Optional[Embeddings] = None, metadatas: Optional[Metadatas] = None, documents: Optional[Documents] = None, increment_index: bool = True, ): """Add or update entries in the embedding store. If an entry with the same id already exists, it will be updated, otherwise it will be added. Args: collection_id: The collection to add the embeddings to ids: The ids to associate with the embeddings. Defaults to None. embeddings: The sequence of embeddings to add metadatas: The metadata to associate with the embeddings. Defaults to None. documents: The documents to associate with the embeddings. Defaults to None. increment_index: If True, will incrementally add to the ANN index of the collection. Defaults to True. """ pass @abstractmethod def _count(self, collection_id: UUID) -> int: """Returns the number of embeddings in the database Args: collection_id: The collection to count the embeddings in. Returns: int: The number of embeddings in the collection """ pass @abstractmethod def _peek(self, collection_id: UUID, n: int = 10) -> GetResult: pass @abstractmethod def _get( self, collection_id: UUID, ids: Optional[IDs] = None, where: Optional[Where] = {}, sort: Optional[str] = None, limit: Optional[int] = None, offset: Optional[int] = None, page: Optional[int] = None, page_size: Optional[int] = None, where_document: Optional[WhereDocument] = {}, include: Include = ["embeddings", "metadatas", "documents"], ) -> GetResult: """Gets embeddings from the database. Supports filtering, sorting, and pagination. ⚠️ This method should not be used directly. Args: where: A dictionary of key-value pairs to filter the embeddings by. Defaults to {}. sort: The column to sort the embeddings by. Defaults to None. limit: The maximum number of embeddings to return. Defaults to None. offset: The number of embeddings to skip before returning. Defaults to None. page: The page number to return. Defaults to None. page_size: The number of embeddings to return per page. Defaults to None. Returns: pd.DataFrame: A pandas dataframe containing the embeddings and metadata """ pass @abstractmethod def _delete( self, collection_id: UUID, ids: Optional[IDs], where: Optional[Where] = {}, where_document: Optional[WhereDocument] = {}, ): """Deletes embeddings from the database ⚠️ This method should not be used directly. Args: where: A dictionary of key-value pairs to filter the embeddings by. Defaults to {}. """ pass @abstractmethod def _query( self, collection_id: UUID, query_embeddings: Embeddings, n_results: int = 10, where: Where = {}, where_document: WhereDocument = {}, include: Include = ["embeddings", "metadatas", "documents", "distances"], ) -> QueryResult: """Gets the nearest neighbors of a single embedding ⚠️ This method should not be used directly. Args: embedding: The embedding to find the nearest neighbors of n_results: The number of nearest neighbors to return. Defaults to 10. where: A dictionary of key-value pairs to filter the embeddings by. Defaults to {}. """ pass @abstractmethod def reset(self) -> bool: """Resets the database ⚠️ This is destructive and will delete all data in the database. Args: None Returns: True if the reset was successful """ pass @abstractmethod def raw_sql(self, sql: str) -> pd.DataFrame: """Runs a raw SQL query against the database ⚠️ This method should not be used directly. Args: sql: The SQL query to run Returns: pd.DataFrame: A pandas dataframe containing the results of the query """ pass @abstractmethod def create_index(self, collection_name: Optional[str] = None) -> bool: """Creates an index for the given collection ⚠️ This method should not be used directly. Args: collection_name: The collection to create the index for. Uses the client's collection if None. Defaults to None. Returns: bool: True if the index was created successfully """ pass @abstractmethod def persist(self): """Persist the database to disk""" pass
Ocean-master
oceandb/api/__init__.py
from typing import Optional, Union, Dict, Sequence, TypeVar, List from typing_extensions import Literal, TypedDict, Protocol import oceandb.errors as errors from abc import ABC, abstractmethod # from ..utils.ImageBind.imagebind_model import ModalityType from ..utils.ImageBind.models.imagebind_model import ModalityType import numpy as np # use better cosine from sklearn.metrics.pairwise import cosine_similarity ID = str IDs = List[ID] Number = Union[int, float] Embedding = List[Number] Embeddings = List[Embedding] Metadata = Dict[str, Union[str, int, float]] Metadatas = List[Metadata] Document = str Documents = List[Document] Parameter = TypeVar("Parameter", Embedding, Document, Metadata, ID) T = TypeVar("T") OneOrMany = Union[T, List[T]] Include = List[Literal["documents", "embeddings", "metadatas", "distances"]] # Grammar for where expressions LiteralValue = Union[str, int, float] LogicalOperator = Literal["$and", "$or"] WhereOperator = Literal["$gt", "$gte", "$lt", "$lte", "$ne", "$eq"] OperatorExpression = Dict[Union[WhereOperator, LogicalOperator], LiteralValue] Where = Dict[ Union[str, LogicalOperator], Union[LiteralValue, OperatorExpression, List["Where"]] ] WhereDocumentOperator = Literal["$contains", LogicalOperator] WhereDocument = Dict[WhereDocumentOperator, Union[str, List["WhereDocument"]]] class GetResult(TypedDict): ids: List[ID] embeddings: Optional[List[Embedding]] documents: Optional[List[Document]] metadatas: Optional[List[Metadata]] class QueryResult(TypedDict): ids: List[IDs] embeddings: Optional[List[List[Embedding]]] documents: Optional[List[List[Document]]] metadatas: Optional[List[List[Metadata]]] distances: Optional[List[List[float]]] class IndexMetadata(TypedDict): dimensionality: int elements: int time_created: float class EmbeddingFunction(Protocol): def __call__(self, texts: Documents) -> Embeddings: ... def maybe_cast_one_to_many( target: OneOrMany[Parameter], ) -> List[Parameter]: """Infers if target is Embedding, Metadata, or Document and casts it to a many object if its one""" if isinstance(target, Sequence): # One Document or ID if isinstance(target, str) and target is not None: return [target] # type: ignore # One Embedding if isinstance(target[0], (int, float)): return [target] # type: ignore # One Metadata dict if isinstance(target, dict): return [target] # Already a sequence return target # type: ignore def validate_ids(ids: IDs) -> IDs: """Validates ids to ensure it is a list of strings""" if not isinstance(ids, list): raise ValueError(f"Expected IDs to be a list, got {ids}") for id in ids: if not isinstance(id, str): raise ValueError(f"Expected ID to be a str, got {id}") if len(ids) != len(set(ids)): dups = set([x for x in ids if ids.count(x) > 1]) raise errors.DuplicateIDError( f"Expected IDs to be unique, found duplicates for: {dups}" ) return ids def validate_metadata(metadata: Metadata) -> Metadata: """Validates metadata to ensure it is a dictionary of strings to strings, ints, or floats""" if not isinstance(metadata, dict): raise ValueError(f"Expected metadata to be a dict, got {metadata}") for key, value in metadata.items(): if not isinstance(key, str): raise ValueError(f"Expected metadata key to be a str, got {key}") if not isinstance(value, (str, int, float)): raise ValueError( f"Expected metadata value to be a str, int, or float, got {value}" ) return metadata def validate_metadatas(metadatas: Metadatas) -> Metadatas: """Validates metadatas to ensure it is a list of dictionaries of strings to strings, ints, or floats""" if not isinstance(metadatas, list): raise ValueError(f"Expected metadatas to be a list, got {metadatas}") for metadata in metadatas: validate_metadata(metadata) return metadatas def validate_where(where: Where) -> Where: """ Validates where to ensure it is a dictionary of strings to strings, ints, floats or operator expressions, or in the case of $and and $or, a list of where expressions """ if not isinstance(where, dict): raise ValueError(f"Expected where to be a dict, got {where}") for key, value in where.items(): if not isinstance(key, str): raise ValueError(f"Expected where key to be a str, got {key}") if ( key != "$and" and key != "$or" and not isinstance(value, (str, int, float, dict)) ): raise ValueError( f"Expected where value to be a str, int, float, or operator expression, got {value}" ) if key == "$and" or key == "$or": if not isinstance(value, list): raise ValueError( f"Expected where value for $and or $or to be a list of where expressions, got {value}" ) if len(value) <= 1: raise ValueError( f"Expected where value for $and or $or to be a list with at least two where expressions, got {value}" ) for where_expression in value: validate_where(where_expression) # Value is a operator expression if isinstance(value, dict): # Ensure there is only one operator if len(value) != 1: raise ValueError( f"Expected operator expression to have exactly one operator, got {value}" ) for operator, operand in value.items(): # Only numbers can be compared with gt, gte, lt, lte if operator in ["$gt", "$gte", "$lt", "$lte"]: if not isinstance(operand, (int, float)): raise ValueError( f"Expected operand value to be an int or a float for operator {operator}, got {operand}" ) if operator not in ["$gt", "$gte", "$lt", "$lte", "$ne", "$eq"]: raise ValueError( f"Expected where operator to be one of $gt, $gte, $lt, $lte, $ne, $eq, got {operator}" ) if not isinstance(operand, (str, int, float)): raise ValueError( f"Expected where operand value to be a str, int, or float, got {operand}" ) return where def validate_where_document(where_document: WhereDocument) -> WhereDocument: """ Validates where_document to ensure it is a dictionary of WhereDocumentOperator to strings, or in the case of $and and $or, a list of where_document expressions """ if not isinstance(where_document, dict): raise ValueError( f"Expected where document to be a dictionary, got {where_document}" ) if len(where_document) != 1: raise ValueError( f"Expected where document to have exactly one operator, got {where_document}" ) for operator, operand in where_document.items(): if operator not in ["$contains", "$and", "$or"]: raise ValueError( f"Expected where document operator to be one of $contains, $and, $or, got {operator}" ) if operator == "$and" or operator == "$or": if not isinstance(operand, list): raise ValueError( f"Expected document value for $and or $or to be a list of where document expressions, got {operand}" ) if len(operand) <= 1: raise ValueError( f"Expected document value for $and or $or to be a list with at least two where document expressions, got {operand}" ) for where_document_expression in operand: validate_where_document(where_document_expression) # Value is a $contains operator elif not isinstance(operand, str): raise ValueError( f"Expected where document operand value for operator $contains to be a str, got {operand}" ) return where_document def validate_include(include: Include, allow_distances: bool) -> Include: """Validates include to ensure it is a list of strings. Since get does not allow distances, allow_distances is used to control if distances is allowed""" if not isinstance(include, list): raise ValueError(f"Expected include to be a list, got {include}") for item in include: if not isinstance(item, str): raise ValueError(f"Expected include item to be a str, got {item}") allowed_values = ["embeddings", "documents", "metadatas"] if allow_distances: allowed_values.append("distances") if item not in allowed_values: raise ValueError( f"Expected include item to be one of {', '.join(allowed_values)}, got {item}" ) return include class SearchFunction(ABC): @abstractmethod def search( self, query_embeddings: List[Embedding], index_data: dict ) -> List[List[ID]]: pass class CrossModalRetrieval(SearchFunction): """ Use the provided MultiModalEmbeddingFunction to compute embeddings for the query. Select the corresponding embeddings of the other modality. Perform similarity search using the computed embeddings. Return the results. """ def __init__(self, modality: str): self.modality = modality def search( self, query_embeddings: List[Embedding], index_data: dict ) -> List[List[ID]]: other_modality = [m for m in ModalityType if m != self.modality][0] # type: ignore # Get the embeddings for the other modality other_embeddings = index_data[other_modality] # Perform similarity search distances = cosine_similarity(query_embeddings, other_embeddings) # type: ignore sorted_indices = np.argsort(distances, axis=1)[:, ::-1] # Get the result IDs result_ids = index_data[f"{other_modality}_ids"][sorted_indices] return result_ids.tolist() class MultiModalFusion(SearchFunction): def __init__(self, fusion_type: str): self.fusion_type = fusion_type def search( self, query_embeddings: List[Embedding], index_data: dict ) -> List[List[ID]]: if self.fusion_type == "early": combined_query_embeddings = self.early_fusion(query_embeddings) # type: ignore combined_index_embeddings = self.early_fusion(index_data) elif self.fusion_type == "late": return self.late_fusion(query_embeddings, index_data) else: raise ValueError("Invalid fusion_type specified") distances = cosine_similarity( combined_query_embeddings, combined_index_embeddings ) sorted_indices = np.argsort(distances, axis=1)[:, ::-1] # Get the result IDs result_ids = index_data["ids"][sorted_indices] return result_ids.tolist() @staticmethod def early_fusion(embeddings: dict) -> np.ndarray: combined_embeddings = np.hstack(list(embeddings.values())) return combined_embeddings def late_fusion( self, query_embeddings: List[Embedding], index_data: dict ) -> List[List[ID]]: result_scores = [] for modality, embeddings in query_embeddings.items(): # type: ignore distances = cosine_similarity(embeddings, index_data[modality]) result_scores.append(distances) combined_scores = np.mean(result_scores, axis=0) sorted_indices = np.argsort(combined_scores, axis=1)[:, ::-1] # Get the result IDs result_ids = index_data["ids"][sorted_indices] return result_ids.tolist() class ModalitySpecificSearching(SearchFunction): def __init__(self, modality: str): self.modality = modality def search( self, query_embeddings: List[Embedding], index_data: dict ) -> List[List[ID]]: # Get the embeddings for the target modality modality_embeddings = index_data[self.modality] # Perform similarity search distances = cosine_similarity(query_embeddings, modality_embeddings) # type: ignore sorted_indices = np.argsort(distances, axis=1)[:, ::-1] # Get the result IDs result_ids = index_data[f"{self.modality}_ids"][sorted_indices] return result_ids.tolist() # to do -> better cosine perhaps torch nn.CosineSimilarity + exception handling
Ocean-master
oceandb/api/types.py
from typing import TYPE_CHECKING, Optional, cast, List, Dict, Tuple from pydantic import BaseModel, PrivateAttr from uuid import UUID from oceandb.api.types import ( CrossModalRetrieval, Embedding, Include, Metadata, Document, ModalitySpecificSearching, MultiModalFusion, Where, IDs, EmbeddingFunction, GetResult, QueryResult, ID, OneOrMany, WhereDocument, maybe_cast_one_to_many, validate_ids, validate_include, validate_metadatas, validate_where, validate_where_document, ) import logging logger = logging.getLogger(__name__) if TYPE_CHECKING: from oceandb.api import API class Collection(BaseModel): name: str id: UUID metadata: Optional[Dict] = None _client: "API" = PrivateAttr() _embedding_function: Optional[EmbeddingFunction] = PrivateAttr() def __init__( self, client: "API", name: str, id: UUID, embedding_function: Optional[EmbeddingFunction] = None, metadata: Optional[Dict] = None, ): self._client = client if embedding_function is not None: self._embedding_function = embedding_function else: import oceandb.utils.embedding_functions as ef logger.warning( "No embedding_function provided, using default embedding function: SentenceTransformerEmbeddingFunction" ) self._embedding_function = ef.SentenceTransformerEmbeddingFunction() super().__init__(name=name, metadata=metadata, id=id) def __repr__(self): return f"Collection(name={self.name})" def count(self) -> int: """The total number of embeddings added to the database Returns: int: The total number of embeddings added to the database """ return self._client._count(collection_id=self.id) def add( self, ids: OneOrMany[ID], embeddings: Optional[OneOrMany[Embedding]] = None, metadatas: Optional[OneOrMany[Metadata]] = None, documents: Optional[OneOrMany[Document]] = None, increment_index: bool = True, ): """Add embeddings to the data store. Args: ids: The ids of the embeddings you wish to add embedding: The embeddings to add. If None, embeddings will be computed based on the documents using the embedding_function set for the Collection. Optional. metadata: The metadata to associate with the embeddings. When querying, you can filter on this metadata. Optional. documents: The documents to associate with the embeddings. Optional. ids: The ids to associate with the embeddings. Optional. Returns: None Raises: ValueError: If you don't provide either embeddings or documents ValueError: If the length of ids, embeddings, metadatas, or documents don't match ValueError: If you don't provide an embedding function and don't provide embeddings ValueError: If you provide both embeddings and documents ValueError: If you provide an id that already exists """ ids, embeddings, metadatas, documents = self._validate_embedding_set( ids, embeddings, metadatas, documents ) self._client._add( ids, self.id, embeddings, metadatas, documents, increment_index ) def get( self, ids: Optional[OneOrMany[ID]] = None, where: Optional[Where] = None, limit: Optional[int] = None, offset: Optional[int] = None, where_document: Optional[WhereDocument] = None, include: Include = ["metadatas", "documents"], ) -> GetResult: """Get embeddings and their associate data from the data store. If no ids or where filter is provided returns all embeddings up to limit starting at offset. Args: ids: The ids of the embeddings to get. Optional. where: A Where type dict used to filter results by. E.g. {"color" : "red", "price": 4.20}. Optional. limit: The number of documents to return. Optional. offset: The offset to start returning results from. Useful for paging results with limit. Optional. where_document: A WhereDocument type dict used to filter by the documents. E.g. {$contains: {"text": "hello"}}. Optional. include: A list of what to include in the results. Can contain "embeddings", "metadatas", "documents". Ids are always included. Defaults to ["metadatas", "documents"]. Optional. Returns: GetResult: A GetResult object containing the results. """ where = validate_where(where) if where else None where_document = ( validate_where_document(where_document) if where_document else None ) ids = validate_ids(maybe_cast_one_to_many(ids)) if ids else None include = validate_include(include, allow_distances=False) return self._client._get( self.id, ids, where, None, limit, offset, where_document=where_document, include=include, ) def peek(self, limit: int = 10) -> GetResult: """Get the first few results in the database up to limit Args: limit: The number of results to return. Returns: GetResult: A GetResult object containing the results. """ return self._client._peek(self.id, limit) def query( self, search_function: Optional[str] = None, query_embeddings: Optional[OneOrMany[Embedding]] = None, query_texts: Optional[OneOrMany[Document]] = None, n_results: int = 10, where: Optional[Where] = None, where_document: Optional[WhereDocument] = None, include: Include = ["metadatas", "documents", "distances"], ) -> QueryResult: """Get the n_results nearest neighbor embeddings for provided query_embeddings or query_texts. Args: query_embeddings: The embeddings to get the closes neighbors of. Optional. query_texts: The document texts to get the closes neighbors of. Optional. n_results: The number of neighbors to return for each query_embedding or query_text. Optional. where: A Where type dict used to filter results by. E.g. {"color" : "red", "price": 4.20}. Optional. where_document: A WhereDocument type dict used to filter by the documents. E.g. {$contains: {"text": "hello"}}. Optional. include: A list of what to include in the results. Can contain "embeddings", "metadatas", "documents", "distances". Ids are always included. Defaults to ["metadatas", "documents", "distances"]. Optional. Returns: QueryResult: A QueryResult object containing the results. Raises: ValueError: If you don't provide either query_embeddings or query_texts ValueError: If you provide both query_embeddings and query_texts """ where = validate_where(where) if where else None where_document = ( validate_where_document(where_document) if where_document else None ) query_embeddings = ( maybe_cast_one_to_many(query_embeddings) if query_embeddings is not None else None ) query_texts = ( maybe_cast_one_to_many(query_texts) if query_texts is not None else None ) include = validate_include(include, allow_distances=True) # If neither query_embeddings nor query_texts are provided, or both are provided, raise an error if (query_embeddings is None and query_texts is None) or ( query_embeddings is not None and query_texts is not None ): raise ValueError( "You must provide either query embeddings or query texts, but not both" ) # If query_embeddings are not provided, we need to compute them from the query_texts if query_embeddings is None: if self._embedding_function is None: raise ValueError( "You must provide embeddings or a function to compute them" ) # We know query texts is not None at this point, cast for the typechecker query_embeddings = self._embedding_function( cast(List[Document], query_texts) ) if where is None: where = {} if where_document is None: where_document = {} if search_function: if search_function == "cross_modal_retrieval": CrossModalRetrieval() # type: ignore elif search_function == "multi_modal_fusion": MultiModalFusion() # type: ignore elif search_function == "modality_specific_searching": ModalitySpecificSearching() # type: ignore else: raise ValueError("Invalid search function specified") result_ids = self._client.search( search_function, query_embeddings, index_data ) return self._client._fetch_results( collection_id=self.id, result_ids=result_ids, include=include ) else: return self._client._query( collection_id=self.id, query_embeddings=query_embeddings, n_results=n_results, where=where, where_document=where_document, include=include, ) # def fetch_results(self, collection_id: UUID, result_ids: List[str], include: List[str]) -> QueryResult: # return self._fetch_results(collection_id, result_ids, include) def modify(self, name: Optional[str] = None, metadata=None): """Modify the collection name or metadata Args: name: The updated name for the collection. Optional. metadata: The updated metadata for the collection. Optional. Returns: None """ self._client._modify(id=self.id, new_name=name, new_metadata=metadata) if name: self.name = name if metadata: self.metadata = metadata def update( self, ids: OneOrMany[ID], embeddings: Optional[OneOrMany[Embedding]] = None, metadatas: Optional[OneOrMany[Metadata]] = None, documents: Optional[OneOrMany[Document]] = None, ): """Update the embeddings, metadatas or documents for provided ids. Args: ids: The ids of the embeddings to update embeddings: The embeddings to add. If None, embeddings will be computed based on the documents using the embedding_function set for the Collection. Optional. metadatas: The metadata to associate with the embeddings. When querying, you can filter on this metadata. Optional. documents: The documents to associate with the embeddings. Optional. Returns: None """ ids, embeddings, metadatas, documents = self._validate_embedding_set( ids, embeddings, metadatas, documents, require_embeddings_or_documents=False ) self._client._update(self.id, ids, embeddings, metadatas, documents) def upsert( self, ids: OneOrMany[ID], embeddings: Optional[OneOrMany[Embedding]] = None, metadatas: Optional[OneOrMany[Metadata]] = None, documents: Optional[OneOrMany[Document]] = None, increment_index: bool = True, ): """Update the embeddings, metadatas or documents for provided ids, or create them if they don't exist. Args: ids: The ids of the embeddings to update embeddings: The embeddings to add. If None, embeddings will be computed based on the documents using the embedding_function set for the Collection. Optional. metadatas: The metadata to associate with the embeddings. When querying, you can filter on this metadata. Optional. documents: The documents to associate with the embeddings. Optional. """ ids, embeddings, metadatas, documents = self._validate_embedding_set( ids, embeddings, metadatas, documents ) self._client._upsert( collection_id=self.id, ids=ids, embeddings=embeddings, metadatas=metadatas, documents=documents, increment_index=increment_index, ) def delete( self, ids: Optional[IDs] = None, where: Optional[Where] = None, where_document: Optional[WhereDocument] = None, ): """Delete the embeddings based on ids and/or a where filter Args: ids: The ids of the embeddings to delete where: A Where type dict used to filter the delection by. E.g. {"color" : "red", "price": 4.20}. Optional. where_document: A WhereDocument type dict used to filter the deletion by the document content. E.g. {$contains: {"text": "hello"}}. Optional. Returns: None """ ids = validate_ids(maybe_cast_one_to_many(ids)) if ids else None where = validate_where(where) if where else None where_document = ( validate_where_document(where_document) if where_document else None ) return self._client._delete(self.id, ids, where, where_document) def create_index(self): self._client.create_index(self.name) def _validate_embedding_set( self, ids, embeddings, metadatas, documents, require_embeddings_or_documents=True, ) -> Tuple[ IDs, Optional[List[Embedding]], Optional[List[Metadata]], Optional[List[Document]], ]: ids = validate_ids(maybe_cast_one_to_many(ids)) embeddings = ( maybe_cast_one_to_many(embeddings) if embeddings is not None else None ) metadatas = ( validate_metadatas(maybe_cast_one_to_many(metadatas)) if metadatas is not None else None ) documents = maybe_cast_one_to_many(documents) if documents is not None else None # Check that one of embeddings or documents is provided if require_embeddings_or_documents: if embeddings is None and documents is None: raise ValueError( "You must provide either embeddings or documents, or both" ) # Check that, if they're provided, the lengths of the arrays match the length of ids if embeddings is not None and len(embeddings) != len(ids): raise ValueError( f"Number of embeddings {len(embeddings)} must match number of ids {len(ids)}" ) if metadatas is not None and len(metadatas) != len(ids): raise ValueError( f"Number of metadatas {len(metadatas)} must match number of ids {len(ids)}" ) if documents is not None and len(documents) != len(ids): raise ValueError( f"Number of documents {len(documents)} must match number of ids {len(ids)}" ) # If document embeddings are not provided, we need to compute them if embeddings is None and documents is not None: if self._embedding_function is None: raise ValueError( "You must provide embeddings or a function to compute them" ) embeddings = self._embedding_function(documents) return ids, embeddings, metadatas, documents
Ocean-master
oceandb/api/models/Collection.py
from dataclasses import dataclass from typing import ClassVar from oceandb.telemetry import TelemetryEvent @dataclass class ClientStartEvent(TelemetryEvent): name: ClassVar[str] = "client_start" @dataclass class ServerStartEvent(TelemetryEvent): name: ClassVar[str] = "server_start" @dataclass class CollectionAddEvent(TelemetryEvent): name: ClassVar[str] = "collection_add" collection_uuid: str add_amount: int @dataclass class CollectionDeleteEvent(TelemetryEvent): name: ClassVar[str] = "collection_delete" collection_uuid: str delete_amount: int
Ocean-master
oceandb/telemetry/events.py
from abc import abstractmethod from dataclasses import asdict, dataclass import os from typing import Callable, ClassVar import uuid import time from threading import Event, Thread import oceandb from pathlib import Path from oceandb.config import TELEMETRY_WHITELISTED_SETTINGS, Settings from enum import Enum class ServerContext(Enum): NONE = "None" FASTAPI = "FastAPI" @dataclass class TelemetryEvent: name: ClassVar[str] @property def properties(self) -> dict: return asdict(self) class RepeatedTelemetry: def __init__(self, interval, function): self.interval = interval self.function = function self.start = time.time() self.event = Event() self.thread = Thread(target=self._target) self.thread.daemon = True self.thread.start() def _target(self): while not self.event.wait(self._time): self.function() @property def _time(self): return self.interval - ((time.time() - self.start) % self.interval) def stop(self): self.event.set() self.thread.join() class Telemetry: USER_ID_PATH = str(Path.home() / ".cache" / "ocean" / "telemetry_user_id") UNKNOWN_USER_ID = "UNKNOWN" SERVER_CONTEXT: ServerContext = ServerContext.NONE _curr_user_id = None @abstractmethod def __init__(self, settings: Settings): pass @abstractmethod def capture(self, event: TelemetryEvent): pass # Schedule a function that creates a TelemetryEvent to be called every `every_seconds` seconds. def schedule_event_function( self, event_function: Callable[..., TelemetryEvent], every_seconds: int ): RepeatedTelemetry(every_seconds, lambda: self.capture(event_function())) @property def context(self) -> dict: ocean_version = oceandb.__version__ settings = oceandb.get_settings() telemetry_settings = {} for whitelisted in TELEMETRY_WHITELISTED_SETTINGS: telemetry_settings[whitelisted] = settings[whitelisted] self._context = { "ocean_version": ocean_version, "server_context": self.SERVER_CONTEXT.value, **telemetry_settings, } return self._context @property def user_id(self) -> str: if self._curr_user_id: return self._curr_user_id # File access may fail due to permissions or other reasons. We don't want to crash so we catch all exceptions. try: if not os.path.exists(self.USER_ID_PATH): os.makedirs(os.path.dirname(self.USER_ID_PATH), exist_ok=True) with open(self.USER_ID_PATH, "w") as f: new_user_id = str(uuid.uuid4()) f.write(new_user_id) self._curr_user_id = new_user_id else: with open(self.USER_ID_PATH, "r") as f: self._curr_user_id = f.read() except Exception: self._curr_user_id = self.UNKNOWN_USER_ID return self._curr_user_id
Ocean-master
oceandb/telemetry/__init__.py
import posthog import logging import sys from oceandb.config import Settings from oceandb.telemetry import Telemetry, TelemetryEvent logger = logging.getLogger(__name__) class Posthog(Telemetry): def __init__(self, settings: Settings): if not settings.anonymized_telemetry or "pytest" in sys.modules: posthog.disabled = True else: logger.info( "Anonymized telemetry enabled. See https://docs.tryocean.com/telemetry for more information." ) posthog.project_api_key = "phc_YeUxaojbKk5KPi8hNlx1bBKHzuZ4FDtl67kH1blv8Bh" posthog_logger = logging.getLogger("posthog") # Silence posthog's logging posthog_logger.disabled = True def capture(self, event: TelemetryEvent): try: posthog.capture( self.user_id, event.name, {**(event.properties), "ocean_context": self.context}, ) except Exception as e: logger.error(f"Failed to send telemetry event {event.name}: {e}")
Ocean-master
oceandb/telemetry/posthog.py
import torch from nanox.model.encoder import NanoXGraphEncoder from nanox.nanox import NanoXModel, NanoXModel # Initialize the encoder encoder = NanoXGraphEncoder() # Initialize the model model = NanoXModel(encoder) # Define the batched data batched_data = torch.rand(10, 512) # Example data # Forward pass through the model output = model(batched_data)
NanoX-main
example.py
from nanox.model.encoder import NanoXGraphEncoder from nanox.nanox import NanoXModel, NanoX
NanoX-main
nanox/__init__.py
import math import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import LayerNorm try: from apex.normalization import FusedLayerNorm as LayerNorm except ModuleNotFoundError: from torch.nn import LayerNorm import copy import torch.distributed as dist from torch.hub import load_state_dict_from_url #utils def init_nanox_params(module): #init weights def normal_(data): #fsdp => module params will be on cuda => back to cpu data.copy_(data.cpu().normal_(mean=0.0, std=0.02).to(data.device)) if isinstance(module, nn.Linear): normal_(module.weight.data) if module.bias is not None: module.bias.data.zeros_() if isinstance(module, nn.Embedding): normal_(module.weight.data) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() if isinstance(module, MultiheadAttention): normal_(module.q_proj.weight.data) normal_(module.proj.weight.data) normal_(module.v_proj.weight.data) def init_params(module, n_layers): if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=0.02 / math.sqrt(n_layers)) if module.bias is not None: module.bias.data.zero_() if isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=0.02) ############## class MultiwayNetwork(nn.Module): def __init__(self, module, dim=1): super().__init__() self.dim = dim self.A = module self.B = copy.deepcopy(module) self.B.reset_parameters() self.split_position = -1 def forward(self, x, **kwargs): if self.split_position == -1: return self.A(x, **kwargs) if self.split_position == 0: return self.B(x, **kwargs) x1, x2 = torch.split( x, [self.split_position, x.size(self.dim) - self.split_position], dim=self.dim, ) # x1, x2 = x[:self.split_position], x[self.split_position:] y1, y2 = self.A(x1, **kwargs), self.B(x2, **kwargs) return torch.cat([y1, y2], dim=self.dim) class MutliwayEmbedding(MultiwayNetwork): def __init__(self, modules, dim=1): super(MultiwayNetwork, self).__init__() self.dim = dim assert len(modules) == 2 self.A = modules[0] self.B = modules[1] self.split_position = -1 class XPOS(nn.Module): def __init__( self, head_dim, scale_base=512 ): super().__init__() self.head_dim = head_dim self.scale_base = scale_base self.register_buffer( "scale", (torch.arange(0, head_dim, 2) + 0.4 * head_dim) / (1.4 * head_dim) ) def forward(self, x, offset=0, downscale=False): length = x.shape[1] min_pos = -(length + offset) // 2 max_pos = length + offset + min_pos scale = self.scale ** torch.arange(min_pos, max_pos, 1).to(self.scale).div(self.scale_base)[:, None] sin, cos = fixed_pos_embedding(scale) if scale.shape[0] > length: scale = scale[-length:] sin = sin[-length:] cos = cos[-length:] if downscale: scale = 1 / scale x = apply_rotary_pos_emb(x, sin, cos, scale) return x def MultiwayWrapper(args, module, dim=1): if args.multiway: return MultiwayNetwork(module, dim=dim) return module def set_split_position(position): def apply_fn(module): if hasattr(module, "split_position"): module.split_position = position return apply_fn def fixed_pos_embedding(x): seq_len, dim = x.shape inv_freq = 1.0 / (10000 ** (torch.arange(0, dim) / dim)) sinusoid_inp = ( torch.einsum("i , j -> i j", torch.arange(0, seq_len, dtype=torch.float), inv_freq).to(x) ) return torch.sin(sinusoid_inp), torch.cos(sinusoid_inp) def rotate_every_two(x): x1 = x[:, :, ::2] x2 = x[:, :, 1::2] x = torch.stack((-x2, x1), dim=-1) return x.flatten(-2) # in einsum notation: rearrange(x, '... d j -> ... (d j)')\ def duplicate_interleave(m): """ A simple version of `torch.repeat_interleave` for duplicating a matrix while interleaving the copy. """ dim0 = m.shape[0] m = m.view(-1, 1) # flatten the matrix m = m.repeat(1, 2) # repeat all elements into the 2nd dimension m = m.view(dim0, -1) # reshape into a matrix, interleaving the copy return m def apply_rotary_pos_emb(x, sin, cos, scale=1): sin, cos = map(lambda t: duplicate_interleave(t * scale), (sin, cos)) # einsum notation for lambda t: repeat(t[offset:x.shape[1]+offset,:], "n d -> () n () (d j)", j=2) return (x * cos) + (rotate_every_two(x) * sin) class MultiheadAttention(nn.Module): def __init__( self, args, embed_dim, num_heads, dropout=0.0, self_attention=False, encoder_decoder_attention=False, subln=False, ): super().__init__() self.args = args self.embed_dim = embed_dim self.num_heads = num_heads self.head_dim = embed_dim // num_heads self.scaling = self.head_dim**-0.5 self.self_attention = self_attention self.encoder_decoder_attention = encoder_decoder_attention assert self.self_attention ^ self.encoder_decoder_attention self.k_proj = MultiwayWrapper(args, nn.Linear(embed_dim, embed_dim, bias=True)) self.v_proj = MultiwayWrapper(args, nn.Linear(embed_dim, embed_dim, bias=True)) self.q_proj = MultiwayWrapper(args, nn.Linear(embed_dim, embed_dim, bias=True)) self.out_proj = MultiwayWrapper( args, nn.Linear(embed_dim, embed_dim, bias=True) ) self.inner_attn_ln = ( MultiwayWrapper(args, LayerNorm(self.embed_dim, eps=args.layernorm_eps)) if subln and self.self_attention else None ) self.dropout_module = torch.nn.Dropout(dropout) self.xpos = ( XPOS(self.head_dim, args.xpos_scale_base) if args.xpos_rel_pos and self.self_attention else None ) def reset_parameters(self): nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2)) nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2)) nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2)) nn.init.xavier_uniform_(self.out_proj.weight) nn.init.constant_(self.out_proj.bias, 0.0) def forward( self, query, key, value, incremental_state=None, key_padding_mask=None, attn_mask=None, rel_pos=None, is_first_step=False, ): bsz, tgt_len, embed_dim = query.size() src_len = tgt_len assert embed_dim == self.embed_dim, f"query dim {embed_dim} != {self.embed_dim}" key_bsz, src_len, _ = key.size() assert key_bsz == bsz, f"{query.size(), key.size()}" assert value is not None assert bsz, src_len == value.shape[:2] q = self.q_proj(query) k = self.k_proj(key) v = self.v_proj(value) q *= self.scaling q = q.view(bsz, tgt_len, self.num_heads, self.head_dim).transpose(1, 2) k = k.view(bsz, src_len, self.num_heads, self.head_dim).transpose(1, 2) v = v.view(bsz, src_len, self.num_heads, self.head_dim).transpose(1, 2) q = q.reshape(bsz * self.num_heads, tgt_len, self.head_dim) k = k.reshape(bsz * self.num_heads, src_len, self.head_dim) v = v.reshape(bsz * self.num_heads, src_len, self.head_dim) if incremental_state is not None: if "prev_key" in incremental_state: prev_key = incremental_state["prev_key"].view( bsz * self.num_heads, -1, self.head_dim ) prev_value = incremental_state["prev_value"].view( bsz * self.num_heads, -1, self.head_dim ) k = torch.cat([prev_key, k], dim=1) v = torch.cat([prev_value, v], dim=1) incremental_state["prev_key"] = k.view( bsz, self.num_heads, -1, self.head_dim ) incremental_state["prev_value"] = v.view( bsz, self.num_heads, -1, self.head_dim ) src_len = k.size(1) if self.xpos is not None: if incremental_state is not None and not is_first_step: offset = src_len - 1 else: offset = 0 k = self.xpos(k, offset=0, downscale=True) q = self.xpos(q, offset=offset, downscale=False) attn_weights = torch.bmm(q, k.transpose(1, 2)) if attn_mask is not None: attn_weights = torch.nan_to_num(attn_weights) attn_mask = attn_mask.unsqueeze(0) attn_weights += attn_mask if key_padding_mask is not None: attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.masked_fill( key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), float("-inf"), ) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if rel_pos is not None: rel_pos = rel_pos.view(attn_weights.size()) attn_weights = attn_weights + rel_pos attn_weights = F.softmax(attn_weights, dim=-1, dtype=torch.float32).type_as( attn_weights ) attn_probs = self.dropout_module(attn_weights) attn = torch.bmm(attn_probs, v) attn = attn.transpose(0, 1).reshape(tgt_len, bsz, embed_dim).transpose(0, 1) if self.inner_attn_ln is not None: attn = self.inner_attn_ln(attn) attn = self.out_proj(attn) attn_weights = attn_weights.view( bsz, self.num_heads, tgt_len, src_len ).transpose(1, 0) return attn, attn_weights PRETRAINED_MODEL_URLS = { "pcqm4mv1_graphormer_base":"https://ml2md.blob.core.windows.net/graphormer-ckpts/checkpoint_best_pcqm4mv1.pt", "pcqm4mv2_graphormer_base":"https://ml2md.blob.core.windows.net/graphormer-ckpts/checkpoint_best_pcqm4mv2.pt", "oc20is2re_graphormer3d_base":"https://szheng.blob.core.windows.net/graphormer/modelzoo/oc20is2re/checkpoint_last_oc20_is2re.pt", # this pretrained model is temporarily unavailable "pcqm4mv1_graphormer_base_for_molhiv":"https://ml2md.blob.core.windows.net/graphormer-ckpts/checkpoint_base_preln_pcqm4mv1_for_hiv.pt", } def load_pretrained_model(model_name): if model_name not in PRETRAINED_MODEL_URLS: raise ValueError(f"IN load_pretrained_model => UNKOWN model name {model_name}") if not dist.is_initialized(): return load_state_dict_from_url(PRETRAINED_MODEL_URLS[model_name], progress=True)["model"] else: pretrained_model = load_state_dict_from_url(PRETRAINED_MODEL_URLS[model_name], progress=True, file_name=f"{model_name}_{dist.get_rank()}")["model"] dist.barrier() return pretrained_model #### model class NanoNodeFeature(nn.Module): #compute note for each node in graph def __init__( self, num_heads, num_atoms, num_in_degree, num_out_degree, hidden_dim, n_layers ): super(NanoNodeFeature, self).__init__() self.num_heads = num_heads self.num_atoms = num_atoms #graph token self.atom_encoder = nn.Embedding(num_atoms + 1, hidden_dim, padding_idx=0) self.in_degree_encoder = nn.Embedding(num_in_degree, hidden_dim, padding_idx=0) self.out_degree_encoder = nn.Embedding( num_out_degree, hidden_dim, padding_idx=0 ) self.graph_token = nn.Embedding(1, hidden_dim) self.apply(lambda module: init_params(module, n_layers=n_layers)) def forward(self, batched_data): x, in_degree, out_degree = ( batched_data["x"], batched_data["in_degree"], batched_data["out_degree"], ) n_graph, n_node = x.size()[:2] #node feature + graph token node_feature = self.atom_encoder(x).sum(dim=-2) # [n_graph, n_node, n_hidden] node_feature = ( node_feature + self.in_degree_encoder(in_degree), + self.out_degree_encoder(out_degree) ) graph_token_feature = self.graph_token.weight.unsqueeze(0).repeat(n_graph, 1, 1) graph_node_feature = torch.cat([graph_token_feature, node_feature], dim=1) return graph_node_feature class NanoBias(nn.Module): #compute attn bias for each head def __init__( self, num_heads, num_atoms, num_edges, num_spatial, num_edge_distancetance, hidden_dim, edge_type, multi_hop_max_dist, n_layers, ): super(NanoBias, self).__init__() self.num_heads = num_heads self.multi_hop_max_dist = multi_hop_max_dist self.edge_encoder = nn.Embedding(num_edges + 1, num_heads, padding_idx=0) self.edge_type = edge_type if self.edge_type == "multihop": self.edge_dis_encoder = nn.Embedding( num_edge_distancetance * num_heads * num_heads, 1 ) self.spatial_encoder = nn.Embedding(num_spatial, num_heads, padding_idx=0) self.graph_token_virtual_distance = nn.Embedding(1, num_heads) self.apply(lambda module: init_params(module, n_layers=n_layers)) def forward(self, batched_data): bias, spatial_position, x = ( batched_data["bias"], batched_data["spatial_position"], batched_data["x"], ) edge_input, attn_edge_type = ( batched_data["edge_input"], batched_data["attn_edge_type"], ) n_graph, n_node = x.size()[:2] graph_bias = bias.clone() graph_bias = graph_bias.unsqueeze(1).repeat( 1, self.num_heads, 1, 1 ) # [n_graph, n_head, n_node+1, n_node+1] #spatial position #[n_graph, n_node, n_node, n_head] -> [n_graph, n_head, n_node, n_node] spatial_position_bias = self.spatial_position_encoder(spatial_position).permute(0, 3, 1, 2) graph_bias[:, :, 1: 1:] = graph_bias[:, :, 1:, 1:] + spatial_position_bias #reset spatial position here reshaped = self.graph_token_virtual_distance.weight.view(1, self.num_heads, 1) graph_bias[:, :, 1:, 0] = graph_bias[:, :, 1:, 0] + reshaped graph_bias[:, :, 0, :] = graph_bias[:, :, 0, :] + reshaped #edge feature if self.edge_type == "multi_hop": spatial_position_ = spatial_position.clone() spatial_position_[spatial_position_ == 0] = 1 #set pad to 1 spatial_position_ = torch.where(spatial_position_ > 1, spatial_position_ - 1, spatial_position_) if self.multi_hop_max_dist > 0: spatial_position_ = spatial_position_.clamp(0, self.multi_hop_max_dist) edge_input = edge_input[:, :, :, : self.multi_hop_max_dist, :] #[n_graph, n_node, n_node, max_dist, n_head] edge_input = self.edge_encoder(edge_input).mean(-2) max_dist = edge_input.size(-2) edge_input_flat = edge_input.permute(3, 0, 1, 2, 4).reshape( max_dist, -1, self.num_heads ) edge_input_flat = torch.bmm( edge_input_flat, self.edge_dis_encoder.weight.reshape( -1, self.num_heads, self.num_heads )[:max_dist, :, :], ) edge_input = edge_input_flat.reshape( max_dist, n_graph, n_node, n_node, self.num_heas ).permute(1, 2, 3, 0, 4) edge_input = ( edge_input.sum(-2) / (spatial_position_.float().unsqueeze(-1)) ).permute(0, 3, 1, 2) else: #[n_graph, n_node, n_node, n_head] -> [n_graph, n_head, n_node, n_node, ] edge_input = self.edge_encoder(attn_edge_type).mean(-2).permute(0, 3, 1, 2) graph_bias[:, :, 1:, 1:] = graph_bias[:, :, 1:, 1:] + edge_input graph_bias = graph_bias + bias.unsqueeze(1) # reset return graph_bias class NanoXGraphEncoderLayer(nn.Module): def __init__(self, embedding_dim=768, ffn_embedding_dim=3072, num_heads=8, dropout=0.1, activation_fn=nn.relu, pre_layernorm=False): super().__init__() self.embedding_dim = embedding_dim self.num_heads = num_heads self.dropout = dropout self.pre_layernorm = pre_layernorm self.dropout_module = nn.Dropout(dropout) self.activation_fn = activation_fn self.self_attn = MultiheadAttention(embed_dim=embedding_dim, num_heads=num_heads, dropout=dropout) self.self_attn_layer_norm = nn.LayerNorm(embedding_dim) self.fc1 = nn.Linear(embedding_dim, ffn_embedding_dim) self.fc2 = nn.Linear(ffn_embedding_dim, embedding_dim) self.final_layer_norm = nn.LayerNorm(embedding_dim) def forward(self, x, self_attn_mask=None, self_attn_padding_mask=None): residual = x if self.pre_layernorm: x = self.self_attn_layer_norm(x) x, attn = self.self_attn(x, x, x, attn_mask=self_attn_mask, key_padding_mask=self_attn_padding_mask) x = self.dropout_module(x) x = residual + x if not self.pre_layernorm: x = self.self_attn_layer_norm(x) residual = x if self.pre_layernorm: x = self.final_layer_norm(x) x = self.activation_fn(self.fc1(x)) x = self.dropout_module(x) x = self.fc2(x) x = residual + x if not self.pre_layernorm: x = self.final_layer_norm(x) return x, attn ############# class NanoXGraphEncoder(nn.Module): def __init__(self, num_atoms, num_in_degree, num_out_degree, num_edges, num_spatial, num_edge_distance, edge_type, multi_hop_max_dist, num_encoder_layers=12, embedding_dim=768, ffn_embedding_dim=768, num_attention_heads=32, dropout=0.1, activation_fn=nn.ReLU(), embed_scale=None, freeze_embeddings=False, n_trans_layers_to_freeze=0, export=False, traceable=False, q_noise=0.0, qn_block_size=8): super().__init__() self.dropout_module = nn.Dropout(dropout) self.embedding_dim = embedding_dim self.traceable = traceable self.graph_node_feature = NanoNodeFeature(num_heads=num_attention_heads, num_atoms=num_atoms, num_in_degree=num_in_degree, num_out_degree=num_out_degree, hidden_dim=embedding_dim, n_layers=num_encoder_layers) self.graph_attn_bias = NanoBias(num_heads=num_attention_heads, num_atoms=num_atoms, num_edges=num_edges, num_spatial=num_spatial, num_edge_distance=num_edge_distance, edge_type=edge_type, multi_hop_max_dist=multi_hop_max_dist, hidden_dim=embedding_dim, n_layers=num_encoder_layers) self.embed = embed_scale if q_noise > 0: self.quant_noise = nn.Linear(self.embedding_dim, self.embedding_dim, bias=False) else: self.quant_noise = None self.emb_layer_norm = nn.LayerNorm(self.embedding_dim, elementwise_affine=export) self.layers = nn.ModuleList([NanoXGraphEncoderLayer(embedding_dim=embedding_dim, ffn_embedding_dim=ffn_embedding_dim, num_heads=num_attention_heads, dropout=dropout, activation_fn=activation_fn, export=export) for _ in range(num_encoder_layers)]) if freeze_embeddings: for layer in range(n_trans_layers_to_freeze): for param in self.layers[layer].parameters(): param.requires_grad=True def forward(self, batched_data, pertub=None, last_state_only=False, token_embedding=None, mask=None): data_x = batched_data["x"] n_graph, n_node = data_x.size()[:2] padding_mask = (data_x[:, :, 0]).eq(0) padding_mask_cls = torch.zeros(n_graph, 1, device=padding_mask.device, dtype=padding_mask.dtype) padding_mask = torch.cat((padding_mask_cls, padding_mask), dim=1) if token_embedding is not None: x = token_embedding else: x = self.graph_node_feature(batched_data) if pertub is not None: x[:, 1: :] *= pertub attn_bias = self.graph_attn_bias(batched_data) if self.embed_scale is not None: x = x * self.embed_scale if self.quant_noise is not None: x = self.quant_noise(x) if self.emb_layer_norm is not None: x = self.emb_layer_norm(x) x = self.dropout_module(x) x = x.tranpose(0, 1) inner_states = [x] if not last_state_only else [] for layer in self.layers: x, _ = layer(x, self_attn_padding_mask=padding_mask, self_attn_mask=mask, self_attn_bias=attn_bias) if not last_state_only: inner_states.append(x) graph_representation = x[0, :, :] if self.traceable: return torch.stack(inner_states), graph_representation else: return inner_states, graph_representation ###################### class NanoXModel(nn.Module): def __init__(self, encoder, encoder_embed_dim=1024, pretrained_model_name="none", load_pretrained_model_output_layer=True): super().__init__() self.encoder = encoder self.encoder_embed_dim = encoder_embed_dim if pretrained_model_name != "none": self.load_state_dict(load_pretrained_model(pretrained_model_name)) if not load_pretrained_model_output_layer: self.encoder.reset_output_layer_parameters() def max_nodes(self): return self.encoder.max_nodes def forward(self, batched_data, **kwargs): return self.encoder(batched_data, **kwargs) class NanoX(nn.Module): def __init__(self, max_nodes=512, share_input_output_embed=False, remove_head=False, activation_fn=nn.GELU()): super().__init__() self.max_nodes = max_nodes self.graph_encoder = NanoXGraphEncoder() self.share_input_output_embed = share_input_output_embed self.embed_out = None self.lm_output_learned_bias = None self.load_softmax = not remove_head self.masked_lm_pooler = nn.Linear(1024, 1024) self.lm_head_transform_weight = nn.Linear(1024, 1024) self.activation_fn = activation_fn self.layer_norm = LayerNorm(1024) self.lm_output_learned_bias = None if self.load_softmax: self.lm_output_learned_bias = nn.Parameter(torch.zeros(1)) if not self.share_input_output_embed: self.embed_out = nn.Linear(1024, 1000, bias=False) def reset_output_layer_parameters(self): self.lm_output_learned_bias = nn.Parameter(torch.zeros(1)) if self.embed_out is not None: self.embed_out.reset_parameters() def forward(self, batched_data, perturb=None, masked_tokens=None, **unused): inner_states, graph_representation = self.graph_encoder(batched_data, perturb=perturb) x = inner_states[-1].transpose(0, 1) if masked_tokens is not None: raise NotImplementedError x = self.layer_norm(self.activation_fn(self.lm_head_transform_weight(x))) if self.share_input_output_embed and hasattr(self.graph_encoder.embed_tokens, "weight"): x = F.linear(x, self.graph_encoder.embed_tokens.weight) elif self.embed_out is not None: x = self.embed_out(x) if self.lm_output_learned_bias is not None: x = x + self.lm_output_learned_bias return x def max_nodes(self): return self.max_nodes def upgrade_state_dict_named(self, state_dict, name): if not self.load_softmax: for k in list(state_dict.keys()): if "embed_out.weight" in k or "lm_output_learned_bias" in k: del state_dict[k] return state_dict
NanoX-main
nanox/nanox.py
import math import torch import torch.nn.functional as F from torch import nn try: from apex.normalization import FusedLayerNorm as LayerNorm except ModuleNotFoundError: from torch.nn import LayerNorm import copy def MultiwayWrapper(args, module, dim=1): if args.multiway: return MultiwayNetwork(module, dim=dim) return module def set_split_position(position): def apply_fn(module): if hasattr(module, "split_position"): module.split_position = position return apply_fn class MultiwayNetwork(nn.Module): def __init__(self, module, dim=1): super().__init__() self.dim = dim self.A = module self.B = copy.deepcopy(module) self.B.reset_parameters() self.split_position = -1 def forward(self, x, **kwargs): if self.split_position == -1: return self.A(x, **kwargs) if self.split_position == 0: return self.B(x, **kwargs) x1, x2 = torch.split( x, [self.split_position, x.size(self.dim) - self.split_position], dim=self.dim, ) # x1, x2 = x[:self.split_position], x[self.split_position:] y1, y2 = self.A(x1, **kwargs), self.B(x2, **kwargs) return torch.cat([y1, y2], dim=self.dim) class MutliwayEmbedding(MultiwayNetwork): def __init__(self, modules, dim=1): super(MultiwayNetwork, self).__init__() self.dim = dim assert len(modules) == 2 self.A = modules[0] self.B = modules[1] self.split_position = -1 def fixed_pos_embedding(x): seq_len, dim = x.shape inv_freq = 1.0 / (10000 ** (torch.arange(0, dim) / dim)) sinusoid_inp = ( torch.einsum("i , j -> i j", torch.arange(0, seq_len, dtype=torch.float), inv_freq).to(x) ) return torch.sin(sinusoid_inp), torch.cos(sinusoid_inp) def rotate_every_two(x): x1 = x[:, :, ::2] x2 = x[:, :, 1::2] x = torch.stack((-x2, x1), dim=-1) return x.flatten(-2) # in einsum notation: rearrange(x, '... d j -> ... (d j)')\ def duplicate_interleave(m): """ A simple version of `torch.repeat_interleave` for duplicating a matrix while interleaving the copy. """ dim0 = m.shape[0] m = m.view(-1, 1) # flatten the matrix m = m.repeat(1, 2) # repeat all elements into the 2nd dimension m = m.view(dim0, -1) # reshape into a matrix, interleaving the copy return m def apply_rotary_pos_emb(x, sin, cos, scale=1): sin, cos = map(lambda t: duplicate_interleave(t * scale), (sin, cos)) # einsum notation for lambda t: repeat(t[offset:x.shape[1]+offset,:], "n d -> () n () (d j)", j=2) return (x * cos) + (rotate_every_two(x) * sin) class XPOS(nn.Module): def __init__( self, head_dim, scale_base=512 ): super().__init__() self.head_dim = head_dim self.scale_base = scale_base self.register_buffer( "scale", (torch.arange(0, head_dim, 2) + 0.4 * head_dim) / (1.4 * head_dim) ) def forward(self, x, offset=0, downscale=False): length = x.shape[1] min_pos = -(length + offset) // 2 max_pos = length + offset + min_pos scale = self.scale ** torch.arange(min_pos, max_pos, 1).to(self.scale).div(self.scale_base)[:, None] sin, cos = fixed_pos_embedding(scale) if scale.shape[0] > length: scale = scale[-length:] sin = sin[-length:] cos = cos[-length:] if downscale: scale = 1 / scale x = apply_rotary_pos_emb(x, sin, cos, scale) return x class MultiheadAttention(nn.Module): def __init__( self, args, embed_dim, num_heads, dropout=0.0, self_attention=False, encoder_decoder_attention=False, subln=False, ): super().__init__() self.args = args self.embed_dim = embed_dim self.num_heads = num_heads self.head_dim = embed_dim // num_heads self.scaling = self.head_dim**-0.5 self.self_attention = self_attention self.encoder_decoder_attention = encoder_decoder_attention assert self.self_attention ^ self.encoder_decoder_attention self.k_proj = MultiwayWrapper(args, nn.Linear(embed_dim, embed_dim, bias=True)) self.v_proj = MultiwayWrapper(args, nn.Linear(embed_dim, embed_dim, bias=True)) self.q_proj = MultiwayWrapper(args, nn.Linear(embed_dim, embed_dim, bias=True)) self.out_proj = MultiwayWrapper( args, nn.Linear(embed_dim, embed_dim, bias=True) ) self.inner_attn_ln = ( MultiwayWrapper(args, LayerNorm(self.embed_dim, eps=args.layernorm_eps)) if subln and self.self_attention else None ) self.dropout_module = torch.nn.Dropout(dropout) self.xpos = ( XPOS(self.head_dim, args.xpos_scale_base) if args.xpos_rel_pos and self.self_attention else None ) def reset_parameters(self): nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2)) nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2)) nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2)) nn.init.xavier_uniform_(self.out_proj.weight) nn.init.constant_(self.out_proj.bias, 0.0) def forward( self, query, key, value, incremental_state=None, key_padding_mask=None, attn_mask=None, rel_pos=None, is_first_step=False, ): bsz, tgt_len, embed_dim = query.size() src_len = tgt_len assert embed_dim == self.embed_dim, f"query dim {embed_dim} != {self.embed_dim}" key_bsz, src_len, _ = key.size() assert key_bsz == bsz, f"{query.size(), key.size()}" assert value is not None assert bsz, src_len == value.shape[:2] q = self.q_proj(query) k = self.k_proj(key) v = self.v_proj(value) q *= self.scaling q = q.view(bsz, tgt_len, self.num_heads, self.head_dim).transpose(1, 2) k = k.view(bsz, src_len, self.num_heads, self.head_dim).transpose(1, 2) v = v.view(bsz, src_len, self.num_heads, self.head_dim).transpose(1, 2) q = q.reshape(bsz * self.num_heads, tgt_len, self.head_dim) k = k.reshape(bsz * self.num_heads, src_len, self.head_dim) v = v.reshape(bsz * self.num_heads, src_len, self.head_dim) if incremental_state is not None: if "prev_key" in incremental_state: prev_key = incremental_state["prev_key"].view( bsz * self.num_heads, -1, self.head_dim ) prev_value = incremental_state["prev_value"].view( bsz * self.num_heads, -1, self.head_dim ) k = torch.cat([prev_key, k], dim=1) v = torch.cat([prev_value, v], dim=1) incremental_state["prev_key"] = k.view( bsz, self.num_heads, -1, self.head_dim ) incremental_state["prev_value"] = v.view( bsz, self.num_heads, -1, self.head_dim ) src_len = k.size(1) if self.xpos is not None: if incremental_state is not None and not is_first_step: offset = src_len - 1 else: offset = 0 k = self.xpos(k, offset=0, downscale=True) q = self.xpos(q, offset=offset, downscale=False) attn_weights = torch.bmm(q, k.transpose(1, 2)) if attn_mask is not None: attn_weights = torch.nan_to_num(attn_weights) attn_mask = attn_mask.unsqueeze(0) attn_weights += attn_mask if key_padding_mask is not None: attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.masked_fill( key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), float("-inf"), ) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if rel_pos is not None: rel_pos = rel_pos.view(attn_weights.size()) attn_weights = attn_weights + rel_pos attn_weights = F.softmax(attn_weights, dim=-1, dtype=torch.float32).type_as( attn_weights ) attn_probs = self.dropout_module(attn_weights) attn = torch.bmm(attn_probs, v) attn = attn.transpose(0, 1).reshape(tgt_len, bsz, embed_dim).transpose(0, 1) if self.inner_attn_ln is not None: attn = self.inner_attn_ln(attn) attn = self.out_proj(attn) attn_weights = attn_weights.view( bsz, self.num_heads, tgt_len, src_len ).transpose(1, 0) return attn, attn_weights
NanoX-main
nanox/model/multihead_attention.py
from torch.hub import load_state_dict_from_url import torch.distributed as dist PRETRAINED_MODEL_URLS = { "pcqm4mv1_graphormer_base":"https://ml2md.blob.core.windows.net/graphormer-ckpts/checkpoint_best_pcqm4mv1.pt", "pcqm4mv2_graphormer_base":"https://ml2md.blob.core.windows.net/graphormer-ckpts/checkpoint_best_pcqm4mv2.pt", "oc20is2re_graphormer3d_base":"https://szheng.blob.core.windows.net/graphormer/modelzoo/oc20is2re/checkpoint_last_oc20_is2re.pt", # this pretrained model is temporarily unavailable "pcqm4mv1_graphormer_base_for_molhiv":"https://ml2md.blob.core.windows.net/graphormer-ckpts/checkpoint_base_preln_pcqm4mv1_for_hiv.pt", } def load_pretrained_model(model_name): if model_name not in PRETRAINED_MODEL_URLS: raise ValueError(f"IN load_pretrained_model => UNKOWN model name {model_name}") if not dist.is_initialized(): return load_state_dict_from_url(PRETRAINED_MODEL_URLS[model_name], progress=True)["model"] else: pretrained_model = load_state_dict_from_url(PRETRAINED_MODEL_URLS[model_name], progress=True, file_name=f"{model_name}_{dist.get_rank()}")["model"] dist.barrier() return pretrained_model
NanoX-main
nanox/model/pretrained.py
import torch.nn as nn from nanox.model.multihead_attention import MultiheadAttention class NanoXGraphEncoderLayer(nn.Module): def __init__(self, embedding_dim=768, ffn_embedding_dim=3072, num_heads=8, dropout=0.1, activation_fn=nn.relu, pre_layernorm=False): super().__init__() self.embedding_dim = embedding_dim self.num_heads = num_heads self.dropout = dropout self.pre_layernorm = pre_layernorm self.dropout_module = nn.Dropout(dropout) self.activation_fn = activation_fn self.self_attn = MultiheadAttention(embed_dim=embedding_dim, num_heads=num_heads, dropout=dropout) self.self_attn_layer_norm = nn.LayerNorm(embedding_dim) self.fc1 = nn.Linear(embedding_dim, ffn_embedding_dim) self.fc2 = nn.Linear(ffn_embedding_dim, embedding_dim) self.final_layer_norm = nn.LayerNorm(embedding_dim) def forward(self, x, self_attn_mask=None, self_attn_padding_mask=None): residual = x if self.pre_layernorm: x = self.self_attn_layer_norm(x) x, attn = self.self_attn(x, x, x, attn_mask=self_attn_mask, key_padding_mask=self_attn_padding_mask) x = self.dropout_module(x) x = residual + x if not self.pre_layernorm: x = self.self_attn_layer_norm(x) residual = x if self.pre_layernorm: x = self.final_layer_norm(x) x = self.activation_fn(self.fc1(x)) x = self.dropout_module(x) x = self.fc2(x) x = residual + x if not self.pre_layernorm: x = self.final_layer_norm(x) return x, attn
NanoX-main
nanox/model/encoder_layer.py
NanoX-main
nanox/model/__init__.py
import torch import torch.nn as nn from nanox.model.layers import NanoNodeFeature, NanoBias from nanox.model.encoder_layer import NanoXGraphEncoderLayer from nanox.model.multihead_attention import MultiheadAttention def init_nanox_params(module): #init weights def normal_(data): #fsdp => module params will be on cuda => back to cpu data.copy_(data.cpu().normal_(mean=0.0, std=0.02).to(data.device)) if isinstance(module, nn.Linear): normal_(module.weight.data) if module.bias is not None: module.bias.data.zeros_() if isinstance(module, nn.Embedding): normal_(module.weight.data) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() if isinstance(module, MultiheadAttention): normal_(module.q_proj.weight.data) normal_(module.proj.weight.data) normal_(module.v_proj.weight.data) class NanoXGraphEncoder(nn.Module): def __init__(self, num_atoms, num_in_degree, num_out_degree, num_edges, num_spatial, num_edge_distance, edge_type, multi_hop_max_dist, num_encoder_layers=12, embedding_dim=768, ffn_embedding_dim=768, num_attention_heads=32, dropout=0.1, activation_fn=nn.ReLU(), embed_scale=None, freeze_embeddings=False, n_trans_layers_to_freeze=0, export=False, traceable=False, q_noise=0.0, qn_block_size=8): super().__init__() self.dropout_module = nn.Dropout(dropout) self.embedding_dim = embedding_dim self.traceable = traceable self.graph_node_feature = NanoNodeFeature(num_heads=num_attention_heads, num_atoms=num_atoms, num_in_degree=num_in_degree, num_out_degree=num_out_degree, hidden_dim=embedding_dim, n_layers=num_encoder_layers) self.graph_attn_bias = NanoBias(num_heads=num_attention_heads, num_atoms=num_atoms, num_edges=num_edges, num_spatial=num_spatial, num_edge_distance=num_edge_distance, edge_type=edge_type, multi_hop_max_dist=multi_hop_max_dist, hidden_dim=embedding_dim, n_layers=num_encoder_layers) self.embed = embed_scale if q_noise > 0: self.quant_noise = nn.Linear(self.embedding_dim, self.embedding_dim, bias=False) else: self.quant_noise = None self.emb_layer_norm = nn.LayerNorm(self.embedding_dim, elementwise_affine=export) self.layers = nn.ModuleList([NanoXGraphEncoderLayer(embedding_dim=embedding_dim, ffn_embedding_dim=ffn_embedding_dim, num_heads=num_attention_heads, dropout=dropout, activation_fn=activation_fn, export=export) for _ in range(num_encoder_layers)]) if freeze_embeddings: for layer in range(n_trans_layers_to_freeze): for param in self.layers[layer].parameters(): param.requires_grad=True def forward(self, batched_data, pertub=None, last_state_only=False, token_embedding=None, mask=None): data_x = batched_data["x"] n_graph, n_node = data_x.size()[:2] padding_mask = (data_x[:, :, 0]).eq(0) padding_mask_cls = torch.zeros(n_graph, 1, device=padding_mask.device, dtype=padding_mask.dtype) padding_mask = torch.cat((padding_mask_cls, padding_mask), dim=1) if token_embedding is not None: x = token_embedding else: x = self.graph_node_feature(batched_data) if pertub is not None: x[:, 1: :] *= pertub attn_bias = self.graph_attn_bias(batched_data) if self.embed_scale is not None: x = x * self.embed_scale if self.quant_noise is not None: x = self.quant_noise(x) if self.emb_layer_norm is not None: x = self.emb_layer_norm(x) x = self.dropout_module(x) x = x.tranpose(0, 1) inner_states = [x] if not last_state_only else [] for layer in self.layers: x, _ = layer(x, self_attn_padding_mask=padding_mask, self_attn_mask=mask, self_attn_bias=attn_bias) if not last_state_only: inner_states.append(x) graph_representation = x[0, :, :] if self.traceable: return torch.stack(inner_states), graph_representation else: return inner_states, graph_representation
NanoX-main
nanox/model/encoder.py
import math import torch import torch.nn as nn def init_params(module, n_layers): if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=0.02 / math.sqrt(n_layers)) if module.bias is not None: module.bias.data.zero_() if isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=0.02) class NanoNodeFeature(nn.Module): #compute note for each node in graph def __init__( self, num_heads, num_atoms, num_in_degree, num_out_degree, hidden_dim, n_layers ): super(NanoNodeFeature, self).__init__() self.num_heads = num_heads self.num_atoms = num_atoms #graph token self.atom_encoder = nn.Embedding(num_atoms + 1, hidden_dim, padding_idx=0) self.in_degree_encoder = nn.Embedding(num_in_degree, hidden_dim, padding_idx=0) self.out_degree_encoder = nn.Embedding( num_out_degree, hidden_dim, padding_idx=0 ) self.graph_token = nn.Embedding(1, hidden_dim) self.apply(lambda module: init_params(module, n_layers=n_layers)) def forward(self, batched_data): x, in_degree, out_degree = ( batched_data["x"], batched_data["in_degree"], batched_data["out_degree"], ) n_graph, n_node = x.size()[:2] #node feature + graph token node_feature = self.atom_encoder(x).sum(dim=-2) # [n_graph, n_node, n_hidden] node_feature = ( node_feature + self.in_degree_encoder(in_degree), + self.out_degree_encoder(out_degree) ) graph_token_feature = self.graph_token.weight.unsqueeze(0).repeat(n_graph, 1, 1) graph_node_feature = torch.cat([graph_token_feature, node_feature], dim=1) return graph_node_feature class NanoBias(nn.Module): #compute attn bias for each head def __init__( self, num_heads, num_atoms, num_edges, num_spatial, num_edge_distancetance, hidden_dim, edge_type, multi_hop_max_dist, n_layers, ): super(NanoBias, self).__init__() self.num_heads = num_heads self.multi_hop_max_dist = multi_hop_max_dist self.edge_encoder = nn.Embedding(num_edges + 1, num_heads, padding_idx=0) self.edge_type = edge_type if self.edge_type == "multihop": self.edge_dis_encoder = nn.Embedding( num_edge_distancetance * num_heads * num_heads, 1 ) self.spatial_encoder = nn.Embedding(num_spatial, num_heads, padding_idx=0) self.graph_token_virtual_distance = nn.Embedding(1, num_heads) self.apply(lambda module: init_params(module, n_layers=n_layers)) def forward(self, batched_data): bias, spatial_position, x = ( batched_data["bias"], batched_data["spatial_position"], batched_data["x"], ) edge_input, attn_edge_type = ( batched_data["edge_input"], batched_data["attn_edge_type"], ) n_graph, n_node = x.size()[:2] graph_bias = bias.clone() graph_bias = graph_bias.unsqueeze(1).repeat( 1, self.num_heads, 1, 1 ) # [n_graph, n_head, n_node+1, n_node+1] #spatial position #[n_graph, n_node, n_node, n_head] -> [n_graph, n_head, n_node, n_node] spatial_position_bias = self.spatial_position_encoder(spatial_position).permute(0, 3, 1, 2) graph_bias[:, :, 1: 1:] = graph_bias[:, :, 1:, 1:] + spatial_position_bias #reset spatial position here reshaped = self.graph_token_virtual_distance.weight.view(1, self.num_heads, 1) graph_bias[:, :, 1:, 0] = graph_bias[:, :, 1:, 0] + reshaped graph_bias[:, :, 0, :] = graph_bias[:, :, 0, :] + reshaped #edge feature if self.edge_type == "multi_hop": spatial_position_ = spatial_position.clone() spatial_position_[spatial_position_ == 0] = 1 #set pad to 1 spatial_position_ = torch.where(spatial_position_ > 1, spatial_position_ - 1, spatial_position_) if self.multi_hop_max_dist > 0: spatial_position_ = spatial_position_.clamp(0, self.multi_hop_max_dist) edge_input = edge_input[:, :, :, : self.multi_hop_max_dist, :] #[n_graph, n_node, n_node, max_dist, n_head] edge_input = self.edge_encoder(edge_input).mean(-2) max_dist = edge_input.size(-2) edge_input_flat = edge_input.permute(3, 0, 1, 2, 4).reshape( max_dist, -1, self.num_heads ) edge_input_flat = torch.bmm( edge_input_flat, self.edge_dis_encoder.weight.reshape( -1, self.num_heads, self.num_heads )[:max_dist, :, :], ) edge_input = edge_input_flat.reshape( max_dist, n_graph, n_node, n_node, self.num_heas ).permute(1, 2, 3, 0, 4) edge_input = ( edge_input.sum(-2) / (spatial_position_.float().unsqueeze(-1)) ).permute(0, 3, 1, 2) else: #[n_graph, n_node, n_node, n_head] -> [n_graph, n_head, n_node, n_node, ] edge_input = self.edge_encoder(attn_edge_type).mean(-2).permute(0, 3, 1, 2) graph_bias[:, :, 1:, 1:] = graph_bias[:, :, 1:, 1:] + edge_input graph_bias = graph_bias + bias.unsqueeze(1) # reset return graph_bias
NanoX-main
nanox/model/layers.py
import torch from saycan.model import SayCan model = SayCan().cuda() x = torch.randint(0, 256, (1, 1024)).cuda() model(x) # (1, 1024, 20000)
SayCan-main
example.py