python_code
stringlengths
0
992k
repo_name
stringlengths
8
46
file_path
stringlengths
5
162
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ import datetime import json import logging import os import time from pathlib import Path import torch import torch.distributed as dist import webdataset as wds from lavis.common.dist_utils import ( download_cached_file, get_rank, get_world_size, is_main_process, main_process, ) from lavis.common.registry import registry from lavis.common.utils import is_url from lavis.datasets.data_utils import concat_datasets, reorg_datasets_by_split from lavis.datasets.datasets.dataloader_utils import ( IterLoader, MultiIterLoader, PrefetchLoader, ) from torch.nn.parallel import DistributedDataParallel as DDP from torch.utils.data import DataLoader, DistributedSampler from torch.utils.data.dataset import ChainDataset @registry.register_runner("runner_base") class RunnerBase: """ A runner class to train and evaluate a model given a task and datasets. The runner uses pytorch distributed data parallel by default. Future release will support other distributed frameworks. """ def __init__(self, cfg, task, model, datasets, job_id): self.config = cfg self.job_id = job_id self.task = task self.datasets = datasets self._model = model self._wrapped_model = None self._device = None self._optimizer = None self._scaler = None self._dataloaders = None self._lr_sched = None self.start_epoch = 0 # self.setup_seeds() self.setup_output_dir() @property def device(self): if self._device is None: self._device = torch.device(self.config.run_cfg.device) return self._device @property def use_distributed(self): return self.config.run_cfg.distributed @property def model(self): """ A property to get the DDP-wrapped model on the device. """ # move model to device if self._model.device != self.device: self._model = self._model.to(self.device) # distributed training wrapper if self.use_distributed: if self._wrapped_model is None: self._wrapped_model = DDP( self._model, device_ids=[self.config.run_cfg.gpu] ) else: self._wrapped_model = self._model return self._wrapped_model @property def optimizer(self): # TODO make optimizer class and configurations if self._optimizer is None: num_parameters = 0 p_wd, p_non_wd = [], [] for n, p in self.model.named_parameters(): if not p.requires_grad: continue # frozen weights if p.ndim < 2 or "bias" in n or "ln" in n or "bn" in n: p_non_wd.append(p) else: p_wd.append(p) num_parameters += p.data.nelement() logging.info("number of trainable parameters: %d" % num_parameters) optim_params = [ { "params": p_wd, "weight_decay": float(self.config.run_cfg.weight_decay), }, {"params": p_non_wd, "weight_decay": 0}, ] beta2 = self.config.run_cfg.get("beta2", 0.999) self._optimizer = torch.optim.AdamW( optim_params, lr=float(self.config.run_cfg.init_lr), weight_decay=float(self.config.run_cfg.weight_decay), betas=(0.9, beta2), ) return self._optimizer @property def scaler(self): amp = self.config.run_cfg.get("amp", False) if amp: if self._scaler is None: self._scaler = torch.cuda.amp.GradScaler() return self._scaler @property def lr_scheduler(self): """ A property to get and create learning rate scheduler by split just in need. """ if self._lr_sched is None: lr_sched_cls = registry.get_lr_scheduler_class(self.config.run_cfg.lr_sched) # max_epoch = self.config.run_cfg.max_epoch max_epoch = self.max_epoch # min_lr = self.config.run_cfg.min_lr min_lr = self.min_lr # init_lr = self.config.run_cfg.init_lr init_lr = self.init_lr # optional parameters decay_rate = self.config.run_cfg.get("lr_decay_rate", None) warmup_start_lr = self.config.run_cfg.get("warmup_lr", -1) warmup_steps = self.config.run_cfg.get("warmup_steps", 0) self._lr_sched = lr_sched_cls( optimizer=self.optimizer, max_epoch=max_epoch, min_lr=min_lr, init_lr=init_lr, decay_rate=decay_rate, warmup_start_lr=warmup_start_lr, warmup_steps=warmup_steps, ) return self._lr_sched @property def dataloaders(self) -> dict: """ A property to get and create dataloaders by split just in need. If no train_dataset_ratio is provided, concatenate map-style datasets and chain wds.DataPipe datasets separately. Training set becomes a tuple (ConcatDataset, ChainDataset), both are optional but at least one of them is required. The resultant ConcatDataset and ChainDataset will be sampled evenly. If train_dataset_ratio is provided, create a MultiIterLoader to sample each dataset by ratios during training. Currently do not support multiple datasets for validation and test. Returns: dict: {split_name: (tuples of) dataloader} """ if self._dataloaders is None: # reoganize datasets by split and concatenate/chain if necessary dataset_ratios = self.config.run_cfg.get("train_dataset_ratios", None) # concatenate map-style datasets and chain wds.DataPipe datasets separately # training set becomes a tuple (ConcatDataset, ChainDataset), both are # optional but at least one of them is required. The resultant ConcatDataset # and ChainDataset will be sampled evenly. logging.info( "dataset_ratios not specified, datasets will be concatenated (map-style datasets) or chained (webdataset.DataPipeline)." ) datasets = reorg_datasets_by_split(self.datasets) self.datasets = concat_datasets(datasets) # print dataset statistics after concatenation/chaining for split_name in self.datasets: if isinstance(self.datasets[split_name], tuple) or isinstance( self.datasets[split_name], list ): # mixed wds.DataPipeline and torch.utils.data.Dataset num_records = sum( [ len(d) if not type(d) in [wds.DataPipeline, ChainDataset] else 0 for d in self.datasets[split_name] ] ) else: if hasattr(self.datasets[split_name], "__len__"): # a single map-style dataset num_records = len(self.datasets[split_name]) else: # a single wds.DataPipeline num_records = -1 logging.info( "Only a single wds.DataPipeline dataset, no __len__ attribute." ) if num_records >= 0: logging.info( "Loaded {} records for {} split from the dataset.".format( num_records, split_name ) ) # create dataloaders split_names = sorted(self.datasets.keys()) datasets = [self.datasets[split] for split in split_names] is_trains = [split in self.train_splits for split in split_names] batch_sizes = [ self.config.run_cfg.batch_size_train if split == "train" else self.config.run_cfg.batch_size_eval for split in split_names ] collate_fns = [] for dataset in datasets: if isinstance(dataset, tuple) or isinstance(dataset, list): collate_fns.append([getattr(d, "collater", None) for d in dataset]) else: collate_fns.append(getattr(dataset, "collater", None)) dataloaders = self.create_loaders( datasets=datasets, num_workers=self.config.run_cfg.num_workers, batch_sizes=batch_sizes, is_trains=is_trains, collate_fns=collate_fns, dataset_ratios=dataset_ratios, ) self._dataloaders = {k: v for k, v in zip(split_names, dataloaders)} return self._dataloaders @property def cuda_enabled(self): return self.device.type == "cuda" @property def max_epoch(self): return int(self.config.run_cfg.max_epoch) @property def log_freq(self): log_freq = self.config.run_cfg.get("log_freq", 50) return int(log_freq) @property def init_lr(self): return float(self.config.run_cfg.init_lr) @property def min_lr(self): return float(self.config.run_cfg.min_lr) @property def accum_grad_iters(self): return int(self.config.run_cfg.get("accum_grad_iters", 1)) @property def valid_splits(self): valid_splits = self.config.run_cfg.get("valid_splits", []) if len(valid_splits) == 0: logging.info("No validation splits found.") return valid_splits @property def test_splits(self): test_splits = self.config.run_cfg.get("test_splits", []) return test_splits @property def train_splits(self): train_splits = self.config.run_cfg.get("train_splits", []) if len(train_splits) == 0: logging.info("Empty train splits.") return train_splits @property def evaluate_only(self): """ Set to True to skip training. """ return self.config.run_cfg.evaluate @property def use_dist_eval_sampler(self): return self.config.run_cfg.get("use_dist_eval_sampler", True) @property def resume_ckpt_path(self): return self.config.run_cfg.get("resume_ckpt_path", None) @property def train_loader(self): train_dataloader = self.dataloaders["train"] return train_dataloader def setup_output_dir(self): lib_root = Path(registry.get_path("library_root")) output_dir = lib_root / self.config.run_cfg.output_dir / self.job_id result_dir = output_dir / "result" output_dir.mkdir(parents=True, exist_ok=True) result_dir.mkdir(parents=True, exist_ok=True) registry.register_path("result_dir", str(result_dir)) registry.register_path("output_dir", str(output_dir)) self.result_dir = result_dir self.output_dir = output_dir def train(self): start_time = time.time() best_agg_metric = 0 best_epoch = 0 self.log_config() # resume from checkpoint if specified if not self.evaluate_only and self.resume_ckpt_path is not None: self._load_checkpoint(self.resume_ckpt_path) for cur_epoch in range(self.start_epoch, self.max_epoch): # training phase if not self.evaluate_only: logging.info("Start training") train_stats = self.train_epoch(cur_epoch) self.log_stats(split_name="train", stats=train_stats) # evaluation phase if len(self.valid_splits) > 0: for split_name in self.valid_splits: logging.info("Evaluating on {}.".format(split_name)) val_log = self.eval_epoch( split_name=split_name, cur_epoch=cur_epoch ) if val_log is not None: if is_main_process(): assert ( "agg_metrics" in val_log ), "No agg_metrics found in validation log." agg_metrics = val_log["agg_metrics"] if agg_metrics > best_agg_metric and split_name == "val": best_epoch, best_agg_metric = cur_epoch, agg_metrics self._save_checkpoint(cur_epoch, is_best=True) val_log.update({"best_epoch": best_epoch}) self.log_stats(val_log, split_name) else: # if no validation split is provided, we just save the checkpoint at the end of each epoch. if not self.evaluate_only: self._save_checkpoint(cur_epoch, is_best=False) if self.evaluate_only: break dist.barrier() # testing phase test_epoch = "best" if len(self.valid_splits) > 0 else cur_epoch self.evaluate(cur_epoch=test_epoch, skip_reload=self.evaluate_only) total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) logging.info("Training time {}".format(total_time_str)) def evaluate(self, cur_epoch="best", skip_reload=False): test_logs = dict() if len(self.test_splits) > 0: for split_name in self.test_splits: test_logs[split_name] = self.eval_epoch( split_name=split_name, cur_epoch=cur_epoch, skip_reload=skip_reload ) return test_logs def train_epoch(self, epoch): # train self.model.train() return self.task.train_epoch( epoch=epoch, model=self.model, data_loader=self.train_loader, optimizer=self.optimizer, scaler=self.scaler, lr_scheduler=self.lr_scheduler, cuda_enabled=self.cuda_enabled, log_freq=self.log_freq, accum_grad_iters=self.accum_grad_iters, ) @torch.no_grad() def eval_epoch(self, split_name, cur_epoch, skip_reload=False): """ Evaluate the model on a given split. Args: split_name (str): name of the split to evaluate on. cur_epoch (int): current epoch. skip_reload_best (bool): whether to skip reloading the best checkpoint. During training, we will reload the best checkpoint for validation. During testing, we will use provided weights and skip reloading the best checkpoint . """ data_loader = self.dataloaders.get(split_name, None) assert data_loader, "data_loader for split {} is None.".format(split_name) # TODO In validation, you need to compute loss as well as metrics # TODO consider moving to model.before_evaluation() model = self.unwrap_dist_model(self.model) if not skip_reload and cur_epoch == "best": model = self._reload_best_model(model) model.eval() self.task.before_evaluation( model=model, dataset=self.datasets[split_name], ) results = self.task.evaluation(model, data_loader) if results is not None: return self.task.after_evaluation( val_result=results, split_name=split_name, epoch=cur_epoch, ) def unwrap_dist_model(self, model): if self.use_distributed: return model.module else: return model def create_loaders( self, datasets, num_workers, batch_sizes, is_trains, collate_fns, dataset_ratios=None, ): """ Create dataloaders for training and validation. """ def _create_loader(dataset, num_workers, bsz, is_train, collate_fn): # create a single dataloader for each split if isinstance(dataset, ChainDataset) or isinstance( dataset, wds.DataPipeline ): # wds.WebdDataset instance are chained together # webdataset.DataPipeline has its own sampler and collate_fn loader = iter( DataLoader( dataset, batch_size=bsz, num_workers=num_workers, pin_memory=True, ) ) else: # map-style dataset are concatenated together # setup distributed sampler if self.use_distributed: sampler = DistributedSampler( dataset, shuffle=is_train, num_replicas=get_world_size(), rank=get_rank(), ) if not self.use_dist_eval_sampler: # e.g. retrieval evaluation sampler = sampler if is_train else None else: sampler = None loader = DataLoader( dataset, batch_size=bsz, num_workers=num_workers, pin_memory=True, sampler=sampler, shuffle=sampler is None and is_train, collate_fn=collate_fn, drop_last=True if is_train else False, ) loader = PrefetchLoader(loader) if is_train: loader = IterLoader(loader, use_distributed=self.use_distributed) return loader loaders = [] for dataset, bsz, is_train, collate_fn in zip( datasets, batch_sizes, is_trains, collate_fns ): if isinstance(dataset, list) or isinstance(dataset, tuple): loader = MultiIterLoader( loaders=[ _create_loader(d, num_workers, bsz, is_train, collate_fn[i]) for i, d in enumerate(dataset) ], ratios=dataset_ratios, ) else: loader = _create_loader(dataset, num_workers, bsz, is_train, collate_fn) loaders.append(loader) return loaders @main_process def _save_checkpoint(self, cur_epoch, is_best=False): """ Save the checkpoint at the current epoch. """ model_no_ddp = self.unwrap_dist_model(self.model) param_grad_dic = { k: v.requires_grad for (k, v) in model_no_ddp.named_parameters() } state_dict = model_no_ddp.state_dict() for k in list(state_dict.keys()): if k in param_grad_dic.keys() and not param_grad_dic[k]: # delete parameters that do not require gradient del state_dict[k] save_obj = { "model": state_dict, "optimizer": self.optimizer.state_dict(), "config": self.config.to_dict(), "scaler": self.scaler.state_dict() if self.scaler else None, "epoch": cur_epoch, } save_to = os.path.join( self.output_dir, "checkpoint_{}.pth".format("best" if is_best else cur_epoch), ) logging.info("Saving checkpoint at epoch {} to {}.".format(cur_epoch, save_to)) torch.save(save_obj, save_to) def _reload_best_model(self, model): """ Load the best checkpoint for evaluation. """ checkpoint_path = os.path.join(self.output_dir, "checkpoint_best.pth") logging.info("Loading checkpoint from {}.".format(checkpoint_path)) checkpoint = torch.load(checkpoint_path, map_location="cpu") try: model.load_state_dict(checkpoint["model"]) except RuntimeError as e: logging.warning( """ Key mismatch when loading checkpoint. This is expected if only part of the model is saved. Trying to load the model with strict=False. """ ) model.load_state_dict(checkpoint["model"], strict=False) return model def _load_checkpoint(self, url_or_filename): """ Resume from a checkpoint. """ if is_url(url_or_filename): cached_file = download_cached_file( url_or_filename, check_hash=False, progress=True ) checkpoint = torch.load(cached_file, map_location=self.device) elif os.path.isfile(url_or_filename): checkpoint = torch.load(url_or_filename, map_location=self.device) else: raise RuntimeError("checkpoint url or path is invalid") state_dict = checkpoint["model"] self.unwrap_dist_model(self.model).load_state_dict(state_dict) self.optimizer.load_state_dict(checkpoint["optimizer"]) if self.scaler and "scaler" in checkpoint: self.scaler.load_state_dict(checkpoint["scaler"]) self.start_epoch = checkpoint["epoch"] + 1 logging.info("Resume checkpoint from {}".format(url_or_filename)) @main_process def log_stats(self, stats, split_name): if isinstance(stats, dict): log_stats = {**{f"{split_name}_{k}": v for k, v in stats.items()}} with open(os.path.join(self.output_dir, "log.txt"), "a") as f: f.write(json.dumps(log_stats) + "\n") elif isinstance(stats, list): pass @main_process def log_config(self): with open(os.path.join(self.output_dir, "log.txt"), "a") as f: f.write(json.dumps(self.config.to_dict(), indent=4) + "\n")
EXA-1-master
exa/libraries/LAVIS/lavis/runners/runner_base.py
""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ import datetime import logging import os import time import torch import torch.distributed as dist import webdataset as wds from lavis.common.dist_utils import download_cached_file, is_main_process, main_process from lavis.common.registry import registry from lavis.common.utils import is_url from lavis.datasets.data_utils import concat_datasets, reorg_datasets_by_split from lavis.runners.runner_base import RunnerBase from torch.utils.data.dataset import ChainDataset @registry.register_runner("runner_iter") class RunnerIter(RunnerBase): """ Run training based on the number of iterations. This is common when the training dataset size is large. Underhood logic is similar to epoch-based training by considering every #iters_per_inner_epoch as an inner epoch. In iter-based runner, after every #iters_per_inner_epoch steps, we 1) do a validation epoch; 2) schedule the learning rate; 3) save the checkpoint. We refer every #iters_per_inner_epoch steps as an inner epoch. """ def __init__(self, cfg, task, model, datasets, job_id): super().__init__(cfg, task, model, datasets, job_id) self.start_iters = 0 self.max_iters = int(self.config.run_cfg.get("max_iters", -1)) assert self.max_iters > 0, "max_iters must be greater than 0." self.iters_per_inner_epoch = int( self.config.run_cfg.get("iters_per_inner_epoch", -1) ) assert ( self.iters_per_inner_epoch > 0 ), "iters_per_inner_epoch must be greater than 0." @property def max_epoch(self): return int(self.max_iters / self.iters_per_inner_epoch) @property def cur_epoch(self): try: return self.train_loader.epoch except AttributeError: # pipeline data (e.g. LAION) is streaming, have no concept of epoch return 0 def _progress(self, cur_iters): return "{}_iters={}".format(self.cur_epoch, cur_iters) def train(self): start_time = time.time() best_agg_metric = 0 best_iters = 0 self.log_config() # resume from checkpoint if specified if not self.evaluate_only and self.resume_ckpt_path is not None: self._load_checkpoint(self.resume_ckpt_path) for start_iters in range( self.start_iters, self.max_iters, self.iters_per_inner_epoch ): end_iters = start_iters + self.iters_per_inner_epoch # training phase if not self.evaluate_only: logging.info( "Start training, max_iters={}, in total {} inner epochs.".format( self.max_iters, int(self.max_iters / self.iters_per_inner_epoch) ) ) train_stats = self.train_iters(self.cur_epoch, start_iters) self.log_stats(split_name="train", stats=train_stats) # evaluation phase if len(self.valid_splits) > 0: for split_name in self.valid_splits: logging.info("Evaluating on {}.".format(split_name)) val_log = self.eval_epoch( split_name=split_name, cur_epoch=self._progress(end_iters) ) if val_log is not None: if is_main_process(): assert ( "agg_metrics" in val_log ), "No agg_metrics found in validation log." agg_metrics = val_log["agg_metrics"] if agg_metrics > best_agg_metric and split_name == "val": best_iters, best_agg_metric = end_iters, agg_metrics self._save_checkpoint(end_iters, is_best=True) val_log.update({"best_iters": best_iters}) self.log_stats(val_log, split_name) else: # if no validation split is provided, we just save the checkpoint at the end of each inner epoch. if not self.evaluate_only: self._save_checkpoint(end_iters, is_best=False) if self.evaluate_only: break dist.barrier() # testing phase self.evaluate(cur_epoch=self.cur_epoch) total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) logging.info("Training time {}".format(total_time_str)) def train_iters(self, epoch, start_iters): # train by iterations self.model.train() return self.task.train_iters( epoch=epoch, start_iters=start_iters, iters_per_inner_epoch=self.iters_per_inner_epoch, model=self.model, data_loader=self.train_loader, optimizer=self.optimizer, scaler=self.scaler, lr_scheduler=self.lr_scheduler, cuda_enabled=self.cuda_enabled, log_freq=self.log_freq, accum_grad_iters=self.accum_grad_iters, ) @main_process def _save_checkpoint(self, cur_iters, is_best=False): save_obj = { "model": self.unwrap_dist_model(self.model).state_dict(), "optimizer": self.optimizer.state_dict(), "config": self.config.to_dict(), "scaler": self.scaler.state_dict() if self.scaler else None, "iters": cur_iters, } save_to = os.path.join( self.output_dir, "checkpoint_{}.pth".format("best" if is_best else cur_iters), ) logging.info("Saving checkpoint at iters {} to {}.".format(cur_iters, save_to)) torch.save(save_obj, save_to) def _load_checkpoint(self, url_or_filename): """ Resume from a checkpoint. """ if is_url(url_or_filename): cached_file = download_cached_file( url_or_filename, check_hash=False, progress=True ) checkpoint = torch.load(cached_file, map_location=self.device) elif os.path.isfile(url_or_filename): checkpoint = torch.load(url_or_filename, map_location=self.device) else: raise RuntimeError("checkpoint url or path is invalid") state_dict = checkpoint["model"] self.unwrap_dist_model(self.model).load_state_dict(state_dict) self.optimizer.load_state_dict(checkpoint["optimizer"]) if self.scaler and "scaler" in checkpoint: self.scaler.load_state_dict(checkpoint["scaler"]) self.start_iters = checkpoint["iters"] + 1 logging.info("Resume checkpoint from {}".format(url_or_filename)) @property def dataloaders(self) -> dict: """ A property to get and create dataloaders by split just in need. If no train_dataset_ratio is provided, concatenate map-style datasets and chain wds.DataPipe datasets separately. Training set becomes a tuple (ConcatDataset, ChainDataset), both are optional but at least one of them is required. The resultant ConcatDataset and ChainDataset will be sampled evenly. If train_dataset_ratio is provided, create a MultiIterLoader to sample each dataset by ratios during training. Currently do not support multiple datasets for validation and test. Returns: dict: {split_name: (tuples of) dataloader} """ if self._dataloaders is None: # reoganize datasets by split and concatenate/chain if necessary dataset_ratios = self.config.run_cfg.get("train_dataset_ratios", None) if dataset_ratios is None: # concatenate map-style datasets and chain wds.DataPipe datasets separately # training set becomes a tuple (ConcatDataset, ChainDataset), both are # optional but at least one of them is required. The resultant ConcatDataset # and ChainDataset will be sampled evenly. logging.info( "dataset_ratios not specified, datasets will be concatenated (map-style datasets) or chained (webdataset.DataPipeline)." ) datasets = reorg_datasets_by_split(self.datasets) self.datasets = concat_datasets(datasets) else: # create multi-loader with the provided ratios, without concatenating or chaining missing_keys = [k for k in dataset_ratios if k not in self.datasets] if len(missing_keys) > 0: raise ValueError( "Datasets with the following split names are not found: {}".format( missing_keys ) ) unexpected_keys = [k for k in self.datasets if k not in dataset_ratios] if len(unexpected_keys) > 0: raise ValueError( "Datasets with the following split names are not expected: {}".format( unexpected_keys ) ) dataset_ratios = [float(dataset_ratios[k]) for k in self.datasets] self.datasets = reorg_datasets_by_split(self.datasets) # to keep the same structure as return value of concat_datasets self.datasets = { k: v[0] if len(v) == 1 else v for k, v in datasets.items() } # print dataset statistics after concatenation/chaining for split_name in self.datasets: if isinstance(self.datasets[split_name], tuple) or isinstance( self.datasets[split_name], list ): # mixed wds.DataPipeline and torch.utils.data.Dataset num_records = sum( [ len(d) if not type(d) in [wds.DataPipeline, ChainDataset] else 0 for d in self.datasets[split_name] ] ) else: try: # a single map-style dataset num_records = len(self.datasets[split_name]) except TypeError: # a single wds.DataPipeline or ChainDataset num_records = -1 logging.info( "Only a single wds.DataPipeline dataset, no __len__ attribute." ) if num_records >= 0: logging.info( "Loaded {} records for {} split from the dataset.".format( num_records, split_name ) ) # create dataloaders split_names = sorted(self.datasets.keys()) datasets = [self.datasets[split] for split in split_names] is_trains = [split in self.train_splits for split in split_names] batch_sizes = [ self.config.run_cfg.batch_size_train if split == "train" else self.config.run_cfg.batch_size_eval for split in split_names ] collate_fns = [] for dataset in datasets: if isinstance(dataset, tuple) or isinstance(dataset, list): collate_fns.append([getattr(d, "collater", None) for d in dataset]) else: collate_fns.append(getattr(dataset, "collater", None)) dataloaders = self.create_loaders( datasets=datasets, num_workers=self.config.run_cfg.num_workers, batch_sizes=batch_sizes, is_trains=is_trains, collate_fns=collate_fns, dataset_ratios=dataset_ratios, ) self._dataloaders = {k: v for k, v in zip(split_names, dataloaders)} return self._dataloaders
EXA-1-master
exa/libraries/LAVIS/lavis/runners/runner_iter.py
from setuptools import setup, find_packages setup( name = 'x-transformers', packages = find_packages(exclude=['examples']), version = '1.11.0', license='MIT', description = 'X-Transformers - Pytorch', author = 'Phil Wang', author_email = '[email protected]', url = 'https://github.com/lucidrains/x-transformers', long_description_content_type = 'text/markdown', keywords = [ 'artificial intelligence', 'attention mechanism', 'transformers' ], install_requires=[ 'torch>=1.6', 'einops>=0.6.1' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
EXA-1-master
exa/libraries/x-transformers/setup.py
from math import ceil import torch from torch import nn import torch.nn.functional as F from einops import rearrange, pack, unpack from x_transformers.autoregressive_wrapper import top_p, top_k, eval_decorator # helper functions def exists(val): return val is not None def divisible_by(numer, denom): return (numer % denom) == 0 # xl autoregressive wrapper class class XLAutoregressiveWrapper(nn.Module): def __init__( self, net, ignore_index = -100, pad_value = 0 ): super().__init__() self.pad_value = pad_value self.ignore_index = ignore_index self.net = net self.max_seq_len = net.max_seq_len @torch.no_grad() @eval_decorator def generate( self, start_tokens, seq_len, eos_token = None, temperature = 1., filter_logits_fn = top_k, filter_thres = 0.9, mems = None, **kwargs ): device, max_seq_len = start_tokens.device, self.max_seq_len start_tokens, ps = pack([start_tokens], '* n') b, t = start_tokens.shape *all_leading_tokens, _ = start_tokens.split(max_seq_len, dim = -1) # catch the memory up to the current segment for leading_tokens in all_leading_tokens: _, mems = self.net( leading_tokens, mems = mems, return_mems = True, **kwargs ) # now start sampling from the current segment curr_pos = len(all_leading_tokens) * max_seq_len curr_mems = mems out = start_tokens for _ in range(seq_len): curr_segment_len = out.shape[-1] is_last_segment_tokens = divisible_by(curr_segment_len, max_seq_len) x = out[:, curr_pos:] logits, mems = self.net( x, mems = curr_mems, return_mems = True, **kwargs ) logits = logits[:, -1] filtered_logits = filter_logits_fn(logits, thres = filter_thres) probs = F.softmax(filtered_logits / temperature, dim=-1) sample = torch.multinomial(probs, 1) if is_last_segment_tokens: curr_pos = curr_segment_len curr_mems = mems out = torch.cat((out, sample), dim=-1) if exists(eos_token): is_eos_tokens = (out == eos_token) if is_eos_tokens.any(dim = -1).all(): # mask out everything after the eos tokens shifted_is_eos_tokens = F.pad(is_eos_tokens, (1, -1)) mask = shifted_is_eos_tokens.float().cumsum(dim = -1) >= 1 out = out.masked_fill(mask, self.pad_value) break out = out[:, t:] out, = unpack(out, ps, '* n') return out def forward( self, x, mems = None, **kwargs ): ignore_index, max_seq_len = self.ignore_index, self.max_seq_len x, labels = x[:, :-1], x[:, 1:] seq_len = x.shape[1] # prepare chunks split_x = x.split(max_seq_len, dim = -1) split_labels = labels.split(max_seq_len, dim = -1) loss_weights = tuple(map(lambda t: t.shape[-1] / seq_len, split_x)) # go through each chunk and derive weighted losses total_loss = 0. for chunk, chunk_labels, loss_weight in zip(split_x, split_labels, loss_weights): logits, mems = self.net( chunk, mems = mems, return_mems = True, **kwargs ) loss = F.cross_entropy( rearrange(logits, 'b n c -> b c n'), chunk_labels, ignore_index = ignore_index ) total_loss = total_loss + loss * loss_weight return total_loss
EXA-1-master
exa/libraries/x-transformers/x_transformers/xl_autoregressive_wrapper.py
from math import ceil import torch from torch import nn import torch.nn.functional as F from einops import rearrange, pack, unpack def exists(val): return val is not None def eval_decorator(fn): def inner(self, *args, **kwargs): was_training = self.training self.eval() out = fn(self, *args, **kwargs) self.train(was_training) return out return inner # nucleus def top_p(logits, thres = 0.9): sorted_logits, sorted_indices = torch.sort(logits, descending=True) cum_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) sorted_indices_to_remove = cum_probs > (1 - thres) sorted_indices_to_remove[:, 1:] = sorted_indices_to_remove[:, :-1].clone() sorted_indices_to_remove[:, 0] = 0 sorted_logits[sorted_indices_to_remove] = float('-inf') return sorted_logits.scatter(1, sorted_indices, sorted_logits) # topk def top_k(logits, thres = 0.9): k = ceil((1 - thres) * logits.shape[-1]) val, ind = torch.topk(logits, k) probs = torch.full_like(logits, float('-inf')) probs.scatter_(1, ind, val) return probs # top_a def top_a(logits, min_p_pow=2.0, min_p_ratio=0.02): probs = F.softmax(logits, dim=-1) limit = torch.pow(torch.max(probs), min_p_pow) * min_p_ratio logits[probs < limit] = float('-inf') logits[probs >= limit] = 1 return logits # autoregressive wrapper class class AutoregressiveWrapper(nn.Module): def __init__( self, net, ignore_index = -100, pad_value = 0, mask_prob = 0. ): super().__init__() self.pad_value = pad_value self.ignore_index = ignore_index self.net = net self.max_seq_len = net.max_seq_len # paper shows masking (MLM) in conjunction with autoregressive decoder-only training leads to big improvements https://arxiv.org/abs/2210.13432 assert mask_prob < 1. self.mask_prob = mask_prob @torch.no_grad() @eval_decorator def generate( self, start_tokens, seq_len, eos_token = None, temperature = 1., filter_logits_fn = top_k, filter_thres = 0.9, min_p_pow = 2.0, min_p_ratio = 0.02, **kwargs ): device = start_tokens.device num_dims = start_tokens.ndim start_tokens, ps = pack([start_tokens], '* n') b, t = start_tokens.shape out = start_tokens for _ in range(seq_len): x = out[:, -self.max_seq_len:] logits = self.net(x, **kwargs)[:, -1] if filter_logits_fn in {top_k, top_p}: filtered_logits = filter_logits_fn(logits, thres = filter_thres) probs = F.softmax(filtered_logits / temperature, dim=-1) elif filter_logits_fn is top_a: filtered_logits = filter_logits_fn(logits, min_p_pow = min_p_pow, min_p_ratio= min_p_ratio) probs = F.softmax(filtered_logits / temperature, dim=-1) sample = torch.multinomial(probs, 1) out = torch.cat((out, sample), dim=-1) if exists(eos_token): is_eos_tokens = (out == eos_token) if is_eos_tokens.any(dim = -1).all(): # mask out everything after the eos tokens shifted_is_eos_tokens = F.pad(is_eos_tokens, (1, -1)) mask = shifted_is_eos_tokens.float().cumsum(dim = -1) >= 1 out = out.masked_fill(mask, self.pad_value) break out = out[:, t:] out, = unpack(out, ps, '* n') return out def forward(self, x, **kwargs): seq, ignore_index = x.shape[1], self.ignore_index inp, target = x[:, :-1], x[:, 1:] if self.mask_prob > 0.: rand = torch.randn(inp.shape, device = x.device) rand[:, 0] = -torch.finfo(rand.dtype).max # first token should not be masked out num_mask = min(int(seq * self.mask_prob), seq - 1) indices = rand.topk(num_mask, dim = -1).indices mask = ~torch.zeros_like(inp).scatter(1, indices, 1.).bool() kwargs.update(self_attn_context_mask = mask) logits = self.net(inp, **kwargs) loss = F.cross_entropy( rearrange(logits, 'b n c -> b c n'), target, ignore_index = ignore_index ) return loss
EXA-1-master
exa/libraries/x-transformers/x_transformers/autoregressive_wrapper.py
import math from random import random import torch from torch import nn, einsum import torch.nn.functional as F from functools import partial, wraps from inspect import isfunction from collections import namedtuple from einops import rearrange, repeat, reduce from einops.layers.torch import Rearrange from x_transformers.autoregressive_wrapper import AutoregressiveWrapper # constants DEFAULT_DIM_HEAD = 64 Intermediates = namedtuple('Intermediates', [ 'qk_similarities', 'pre_softmax_attn', 'post_softmax_attn' ]) LayerIntermediates = namedtuple('Intermediates', [ 'hiddens', 'attn_intermediates' ]) # helpers def exists(val): return val is not None def default(val, d): if exists(val): return val return d() if isfunction(d) else d def cast_tuple(val, depth): return val if isinstance(val, tuple) else (val,) * depth def maybe(fn): @wraps(fn) def inner(x, *args, **kwargs): if not exists(x): return x return fn(x, *args, **kwargs) return inner class always(): def __init__(self, val): self.val = val def __call__(self, *args, **kwargs): return self.val class not_equals(): def __init__(self, val): self.val = val def __call__(self, x, *args, **kwargs): return x != self.val class equals(): def __init__(self, val): self.val = val def __call__(self, x, *args, **kwargs): return x == self.val # tensor helpers def max_neg_value(tensor): return -torch.finfo(tensor.dtype).max def l2norm(t, groups = 1): t = rearrange(t, '... (g d) -> ... g d', g = groups) t = F.normalize(t, p = 2, dim = -1) return rearrange(t, '... g d -> ... (g d)') def pad_at_dim(t, pad, dim = -1, value = 0.): dims_from_right = (- dim - 1) if dim < 0 else (t.ndim - dim - 1) zeros = ((0, 0) * dims_from_right) return F.pad(t, (*zeros, *pad), value = value) # init helpers def init_zero_(layer): nn.init.constant_(layer.weight, 0.) if exists(layer.bias): nn.init.constant_(layer.bias, 0.) # keyword argument helpers def pick_and_pop(keys, d): values = list(map(lambda key: d.pop(key), keys)) return dict(zip(keys, values)) def group_dict_by_key(cond, d): return_val = [dict(),dict()] for key in d.keys(): match = bool(cond(key)) ind = int(not match) return_val[ind][key] = d[key] return (*return_val,) def string_begins_with(prefix, str): return str.startswith(prefix) def group_by_key_prefix(prefix, d): return group_dict_by_key(partial(string_begins_with, prefix), d) def groupby_prefix_and_trim(prefix, d): kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d) kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items()))) return kwargs_without_prefix, kwargs # initializations def deepnorm_init( transformer, beta, module_name_match_list = ['.ff.', '.to_v', '.to_out'] ): for name, module in transformer.named_modules(): if type(module) != nn.Linear: continue needs_beta_gain = any(map(lambda substr: substr in name, module_name_match_list)) gain = beta if needs_beta_gain else 1 nn.init.xavier_normal_(module.weight.data, gain = gain) if exists(module.bias): nn.init.constant_(module.bias.data, 0) # structured dropout, more effective than traditional attention dropouts def dropout_seq(seq, mask, dropout): b, n, *_, device = *seq.shape, seq.device logits = torch.randn(b, n, device = device) if exists(mask): mask_value = max_neg_value(logits) logits = logits.masked_fill(~mask, mask_value) keep_prob = 1. - dropout num_keep = max(1, int(keep_prob * n)) keep_indices = logits.topk(num_keep, dim = 1).indices batch_indices = torch.arange(b, device = device) batch_indices = rearrange(batch_indices, 'b -> b 1') seq = seq[batch_indices, keep_indices] if exists(mask): seq_counts = mask.sum(dim = -1) seq_keep_counts = torch.ceil(seq_counts * keep_prob).int() keep_mask = torch.arange(num_keep, device = device) < rearrange(seq_keep_counts, 'b -> b 1') mask = mask[batch_indices, keep_indices] & keep_mask return seq, mask # activations class ReluSquared(nn.Module): def forward(self, x): return F.relu(x) ** 2 # embedding class TokenEmbedding(nn.Module): def __init__(self, dim, num_tokens, l2norm_embed = False): super().__init__() self.l2norm_embed = l2norm_embed self.emb = nn.Embedding(num_tokens, dim) def forward(self, x): token_emb = self.emb(x) return l2norm(token_emb) if self.l2norm_embed else token_emb # positional embeddings class AbsolutePositionalEmbedding(nn.Module): def __init__(self, dim, max_seq_len, l2norm_embed = False): super().__init__() self.scale = dim ** -0.5 if not l2norm_embed else 1. self.max_seq_len = max_seq_len self.l2norm_embed = l2norm_embed self.emb = nn.Embedding(max_seq_len, dim) def forward(self, x, pos = None): seq_len, device = x.shape[1], x.device assert seq_len <= self.max_seq_len, f'you are passing in a sequence length of {seq_len} but your absolute positional embedding has a max sequence length of {self.max_seq_len}' if not exists(pos): pos = torch.arange(seq_len, device = device) pos_emb = self.emb(pos) pos_emb = pos_emb * self.scale return l2norm(pos_emb) if self.l2norm_embed else pos_emb class ScaledSinusoidalEmbedding(nn.Module): def __init__(self, dim, theta = 10000): super().__init__() assert (dim % 2) == 0 self.scale = nn.Parameter(torch.ones(1) * dim ** -0.5) half_dim = dim // 2 freq_seq = torch.arange(half_dim).float() / half_dim inv_freq = theta ** -freq_seq self.register_buffer('inv_freq', inv_freq, persistent = False) def forward(self, x, pos = None): seq_len, device = x.shape[1], x.device if not exists(pos): pos = torch.arange(seq_len, device = device) emb = einsum('i, j -> i j', pos, self.inv_freq) emb = torch.cat((emb.sin(), emb.cos()), dim = -1) return emb * self.scale class RelativePositionBias(nn.Module): def __init__(self, scale, causal = False, num_buckets = 32, max_distance = 128, heads = 8): super().__init__() self.scale = scale self.causal = causal self.num_buckets = num_buckets self.max_distance = max_distance self.relative_attention_bias = nn.Embedding(num_buckets, heads) @staticmethod def _relative_position_bucket(relative_position, causal = True, num_buckets = 32, max_distance = 128): ret = 0 n = -relative_position if not causal: num_buckets //= 2 ret += (n < 0).long() * num_buckets n = torch.abs(n) else: n = torch.max(n, torch.zeros_like(n)) max_exact = num_buckets // 2 is_small = n < max_exact val_if_large = max_exact + ( torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).long() val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1)) ret += torch.where(is_small, n, val_if_large) return ret def forward(self, qk_dots): i, j, device = *qk_dots.shape[-2:], qk_dots.device q_pos = torch.arange(j - i, j, dtype = torch.long, device = device) k_pos = torch.arange(j, dtype = torch.long, device = device) rel_pos = k_pos[None, :] - q_pos[:, None] rp_bucket = self._relative_position_bucket(rel_pos, causal = self.causal, num_buckets = self.num_buckets, max_distance = self.max_distance) values = self.relative_attention_bias(rp_bucket) bias = rearrange(values, 'i j h -> h i j') return qk_dots + (bias * self.scale) class DynamicPositionBias(nn.Module): def __init__(self, dim, *, heads, depth, log_distance = False, norm = False): super().__init__() assert depth >= 1, 'depth for dynamic position bias MLP must be greater or equal to 1' self.log_distance = log_distance self.mlp = nn.ModuleList([]) self.mlp.append(nn.Sequential( nn.Linear(1, dim), nn.LayerNorm(dim) if norm else nn.Identity(), nn.SiLU() )) for _ in range(depth - 1): self.mlp.append(nn.Sequential( nn.Linear(dim, dim), nn.LayerNorm(dim) if norm else nn.Identity(), nn.SiLU() )) self.mlp.append(nn.Linear(dim, heads)) def forward(self, qk_dots): n, device, dtype = qk_dots.shape[-1], qk_dots.device, qk_dots.dtype # get the (n x n) matrix of distances seq_arange = torch.arange(n, device = device) context_arange = torch.arange(n, device = device) indices = rearrange(seq_arange, 'i -> i 1') - rearrange(context_arange, 'j -> 1 j') indices += (n - 1) # input to continuous positions MLP pos = torch.arange(-n + 1, n, device = device, dtype = dtype) pos = rearrange(pos, '... -> ... 1') if self.log_distance: pos = torch.sign(pos) * torch.log(pos.abs() + 1) # log of distance is sign(rel_pos) * log(abs(rel_pos) + 1) for layer in self.mlp: pos = layer(pos) # get position biases bias = pos[indices] bias = rearrange(bias, 'i j h -> h i j') return qk_dots + bias class AlibiPositionalBias(nn.Module): def __init__(self, heads, **kwargs): super().__init__() self.heads = heads slopes = torch.Tensor(self._get_slopes(heads)) slopes = rearrange(slopes, 'h -> h 1 1') self.register_buffer('slopes', slopes, persistent = False) self.register_buffer('bias', None, persistent = False) def get_bias(self, i, j, device): i_arange = torch.arange(j - i, j, device = device) j_arange = torch.arange(j, device = device) bias = -torch.abs(rearrange(j_arange, 'j -> 1 1 j') - rearrange(i_arange, 'i -> 1 i 1')) return bias @staticmethod def _get_slopes(heads): def get_slopes_power_of_2(n): start = (2**(-2**-(math.log2(n)-3))) ratio = start return [start*ratio**i for i in range(n)] if math.log2(heads).is_integer(): return get_slopes_power_of_2(heads) closest_power_of_2 = 2 ** math.floor(math.log2(heads)) return get_slopes_power_of_2(closest_power_of_2) + get_slopes_power_of_2(2 * closest_power_of_2)[0::2][:heads-closest_power_of_2] def forward(self, qk_dots): h, i, j, device = *qk_dots.shape[-3:], qk_dots.device if exists(self.bias) and self.bias.shape[-1] >= j: return qk_dots + self.bias[..., :i, :j] bias = self.get_bias(i, j, device) bias = bias * self.slopes num_heads_unalibied = h - bias.shape[0] bias = pad_at_dim(bias, (0, num_heads_unalibied), dim = 0) self.register_buffer('bias', bias, persistent=False) return qk_dots + self.bias class LearnedAlibiPositionalBias(AlibiPositionalBias): def __init__(self, heads): super().__init__(heads) log_slopes = torch.log(self.slopes) self.learned_logslopes = nn.Parameter(log_slopes) def forward(self, qk_dots): h, i, j, device = *qk_dots.shape[-3:], qk_dots.device def get_slopes(param): return pad_at_dim(param.exp(), (0, h - param.shape[0]), dim = -2) if exists(self.bias) and self.bias.shape[-1] >= j: bias = self.bias[..., :i, :j] else: bias = self.get_bias(i, j, device) self.register_buffer('bias', bias, persistent=False) slopes = get_slopes(self.learned_logslopes) bias = bias * slopes return qk_dots + bias class RotaryEmbedding(nn.Module): def __init__( self, dim, use_xpos = False, scale_base = 512 ): super().__init__() inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim)) self.register_buffer('inv_freq', inv_freq) if not use_xpos: self.register_buffer('scale', None) return scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim) self.scale_base = scale_base self.register_buffer('scale', scale) def forward(self, seq_len, device): t = torch.arange(seq_len, device = device).type_as(self.inv_freq) freqs = torch.einsum('i , j -> i j', t, self.inv_freq) freqs = torch.cat((freqs, freqs), dim = -1) if not exists(self.scale): return freqs, 1. power = (torch.arange(seq_len, device = device) - (seq_len // 2)) / self.scale_base scale = self.scale ** rearrange(power, 'n -> n 1') scale = torch.cat((scale, scale), dim = -1) return freqs, scale def rotate_half(x): x = rearrange(x, '... (j d) -> ... j d', j = 2) x1, x2 = x.unbind(dim = -2) return torch.cat((-x2, x1), dim = -1) def apply_rotary_pos_emb(t, freqs, scale = 1): seq_len = t.shape[-2] freqs = freqs[-seq_len:, :] return (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale) # norms class Scale(nn.Module): def __init__(self, value, fn): super().__init__() self.value = value self.fn = fn def forward(self, x, **kwargs): out = self.fn(x, **kwargs) scale_fn = lambda t: t * self.value if not isinstance(out, tuple): return scale_fn(out) return (scale_fn(out[0]), *out[1:]) class ScaleNorm(nn.Module): def __init__(self, dim, eps = 1e-5): super().__init__() self.eps = eps self.g = nn.Parameter(torch.ones(1) * (dim ** -0.5)) def forward(self, x): norm = torch.norm(x, dim = -1, keepdim = True) return x / norm.clamp(min = self.eps) * self.g class RMSNorm(nn.Module): def __init__(self, dim, eps = 1e-8): super().__init__() self.scale = dim ** -0.5 self.eps = eps self.g = nn.Parameter(torch.ones(dim)) def forward(self, x): norm = torch.norm(x, dim = -1, keepdim = True) * self.scale return x / norm.clamp(min = self.eps) * self.g # residual and residual gates class Residual(nn.Module): def __init__(self, dim, scale_residual = False, scale_residual_constant = 1.): super().__init__() self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None self.scale_residual_constant = scale_residual_constant def forward(self, x, residual): if exists(self.residual_scale): residual = residual * self.residual_scale if self.scale_residual_constant != 1: residual = residual * self.scale_residual_constant return x + residual class GRUGating(nn.Module): def __init__(self, dim, scale_residual = False, **kwargs): super().__init__() self.gru = nn.GRUCell(dim, dim) self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None def forward(self, x, residual): if exists(self.residual_scale): residual = residual * self.residual_scale gated_output = self.gru( rearrange(x, 'b n d -> (b n) d'), rearrange(residual, 'b n d -> (b n) d') ) return gated_output.reshape_as(x) # token shifting def shift(t, amount, mask = None): if amount == 0: return t else: amount = min(amount, t.shape[1]) if exists(mask): t = t.masked_fill(~mask[..., None], 0.) return pad_at_dim(t, (amount, -amount), dim = - 2, value = 0.) class ShiftTokens(nn.Module): def __init__(self, shifts, fn): super().__init__() self.fn = fn self.shifts = tuple(shifts) def forward(self, x, **kwargs): mask = kwargs.get('mask', None) shifts = self.shifts segments = len(shifts) feats_per_shift = x.shape[-1] // segments splitted = x.split(feats_per_shift, dim = -1) segments_to_shift, rest = splitted[:segments], splitted[segments:] segments_to_shift = list(map(lambda args: shift(*args, mask = mask), zip(segments_to_shift, shifts))) x = torch.cat((*segments_to_shift, *rest), dim = -1) return self.fn(x, **kwargs) # feedforward class GLU(nn.Module): def __init__(self, dim_in, dim_out, activation): super().__init__() self.act = activation self.proj = nn.Linear(dim_in, dim_out * 2) def forward(self, x): x, gate = self.proj(x).chunk(2, dim = -1) return x * self.act(gate) class FeedForward(nn.Module): def __init__( self, dim, dim_out = None, mult = 4, glu = False, swish = False, relu_squared = False, post_act_ln = False, dropout = 0., no_bias = False, zero_init_output = False ): super().__init__() inner_dim = int(dim * mult) dim_out = default(dim_out, dim) if relu_squared: activation = ReluSquared() elif swish: activation = nn.SiLU() else: activation = nn.GELU() project_in = nn.Sequential( nn.Linear(dim, inner_dim, bias = not no_bias), activation ) if not glu else GLU(dim, inner_dim, activation) self.ff = nn.Sequential( project_in, nn.LayerNorm(inner_dim) if post_act_ln else nn.Identity(), nn.Dropout(dropout), nn.Linear(inner_dim, dim_out, bias = not no_bias) ) # init last linear layer to 0 if zero_init_output: init_zero_(self.ff[-1]) def forward(self, x): return self.ff(x) # attention. it is all we need class Attention(nn.Module): def __init__( self, dim, dim_head = DEFAULT_DIM_HEAD, heads = 8, causal = False, talking_heads = False, head_scale = False, sparse_topk = None, num_mem_kv = 0, dropout = 0., on_attn = False, gate_values = False, zero_init_output = False, max_attend_past = None, qk_norm = False, qk_norm_groups = 1, qk_norm_scale = 10, qk_norm_dim_scale = False, one_kv_head = False, shared_kv = False, value_dim_head = None, tensor_product = False # https://arxiv.org/abs/2208.06061 ): super().__init__() self.scale = dim_head ** -0.5 self.heads = heads self.causal = causal self.max_attend_past = max_attend_past value_dim_head = default(value_dim_head, dim_head) q_dim = k_dim = dim_head * heads v_dim = out_dim = value_dim_head * heads self.one_kv_head = one_kv_head if one_kv_head: k_dim = dim_head v_dim = value_dim_head out_dim = v_dim * heads self.to_q = nn.Linear(dim, q_dim, bias = False) self.to_k = nn.Linear(dim, k_dim, bias = False) # shared key / values, for further memory savings during inference assert not (shared_kv and value_dim_head != dim_head), 'key and value head dimensions must be equal for shared key / values' self.to_v = nn.Linear(dim, v_dim, bias = False) if not shared_kv else None # relations projection from tp-attention self.to_r = nn.Linear(dim, v_dim, bias = False) if tensor_product else None # dropout self.dropout = nn.Dropout(dropout) # add GLU gating for aggregated values, from alphafold2 self.to_v_gate = None if gate_values: self.to_v_gate = nn.Linear(dim, out_dim) nn.init.constant_(self.to_v_gate.weight, 0) nn.init.constant_(self.to_v_gate.bias, 1) # cosine sim attention self.qk_norm = qk_norm self.qk_norm_groups = qk_norm_groups self.qk_norm_scale = qk_norm_scale # whether to use the rmsnorm (equivalent to cosine sim attention when scale is equal to 1) - https://arxiv.org/abs/2302.05442 self.qk_norm_dim_scale = qk_norm_dim_scale self.qk_norm_q_scale = self.qk_norm_k_scale = 1 if qk_norm and qk_norm_dim_scale: self.qk_norm_q_scale = nn.Parameter(torch.ones(dim_head)) self.qk_norm_k_scale = nn.Parameter(torch.ones(dim_head)) assert (not qk_norm) or (dim_head % qk_norm_groups) == 0, 'dimension per attention head must be divisible by the qk norm groups' assert not (qk_norm and (dim_head // qk_norm_groups) <= 2), 'the group dimension may be too small (2 was too small in my tests, but 4 still works, surprisingly)' # talking heads self.talking_heads = talking_heads if talking_heads: self.pre_softmax_talking_heads = nn.Conv2d(heads, heads, 1, bias = False) self.post_softmax_talking_heads = nn.Conv2d(heads, heads, 1, bias = False) # head scaling self.head_scale = head_scale if head_scale: self.head_scale_params = nn.Parameter(torch.ones(1, heads, 1, 1)) # explicit topk sparse attention self.sparse_topk = sparse_topk # attention softmax function self.attn_fn = partial(F.softmax, dtype = torch.float32) if not qk_norm else F.softmax # add memory key / values self.num_mem_kv = num_mem_kv if num_mem_kv > 0: self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head)) self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head)) # attention on attention self.attn_on_attn = on_attn self.to_out = nn.Sequential(nn.Linear(out_dim, dim * 2, bias = False), nn.GLU()) if on_attn else nn.Linear(out_dim, dim, bias = False) # init output projection 0 if zero_init_output: init_zero_(self.to_out) def forward( self, x, context = None, mask = None, context_mask = None, attn_mask = None, rel_pos = None, rotary_pos_emb = None, prev_attn = None, mem = None ): b, n, _, h, talking_heads, head_scale, scale, device, has_context = *x.shape, self.heads, self.talking_heads, self.head_scale, self.scale, x.device, exists(context) kv_input = default(context, x) q_input = x k_input = kv_input v_input = kv_input r_input = x if exists(mem): k_input = torch.cat((mem, k_input), dim = -2) v_input = torch.cat((mem, v_input), dim = -2) q = self.to_q(q_input) k = self.to_k(k_input) v = self.to_v(v_input) if exists(self.to_v) else k r = self.to_r(r_input) if exists(self.to_r) else None q = rearrange(q, 'b n (h d) -> b h n d', h = h) if not self.one_kv_head: k, v, r = map(lambda t: maybe(rearrange)(t, 'b n (h d) -> b h n d', h = h), (k, v, r)) if self.qk_norm: qk_l2norm = partial(l2norm, groups = self.qk_norm_groups) q, k = map(qk_l2norm, (q, k)) scale = self.qk_norm_scale q = q * self.qk_norm_q_scale k = k * self.qk_norm_k_scale if exists(rotary_pos_emb) and not has_context: freqs, xpos_scale = rotary_pos_emb l = freqs.shape[-1] q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale ** -1.) if exists(xpos_scale) else (1., 1.) (ql, qr), (kl, kr), (vl, vr) = map(lambda t: (t[..., :l], t[..., l:]), (q, k, v)) ql, kl, vl = map(lambda arg: apply_rotary_pos_emb(arg[0], freqs, arg[1]), ((ql, q_xpos_scale), (kl, k_xpos_scale), (vl, k_xpos_scale))) q, k, v = map(lambda t: torch.cat(t, dim = -1), ((ql, qr), (kl, kr), (vl, vr))) input_mask = default(context_mask, mask) if self.num_mem_kv > 0: mem_k, mem_v = map(lambda t: repeat(t, 'h n d -> b h n d', b = b), (self.mem_k, self.mem_v)) if self.qk_norm: mem_k = l2norm(mem_k) mem_k = mem_k * self.qk_norm_k_scale k = torch.cat((mem_k, k), dim = -2) v = torch.cat((mem_v, v), dim = -2) if exists(input_mask): input_mask = pad_at_dim(input_mask, (self.num_mem_kv, 0), dim = -1, value = True) kv_einsum_eq = 'b h j d' if not self.one_kv_head else 'b j d' dots = einsum(f'b h i d, {kv_einsum_eq} -> b h i j', q, k) * scale mask_value = max_neg_value(dots) if exists(prev_attn): dots = dots + prev_attn qk_similarities = dots.clone() if talking_heads: dots = self.pre_softmax_talking_heads(dots) if exists(rel_pos): dots = rel_pos(dots) if exists(input_mask): input_mask = rearrange(input_mask, 'b j -> b 1 1 j') dots = dots.masked_fill(~input_mask, mask_value) del input_mask if exists(attn_mask): assert 2 <= attn_mask.ndim <= 4, 'attention mask must have greater than 2 dimensions but less than or equal to 4' if attn_mask.ndim == 2: attn_mask = rearrange(attn_mask, 'i j -> 1 1 i j') elif attn_mask.ndim == 3: attn_mask = rearrange(attn_mask, 'h i j -> 1 h i j') dots = dots.masked_fill(~attn_mask, mask_value) if exists(self.max_attend_past): i, j = dots.shape[-2:] range_q = torch.arange(j - i, j, device = device) range_k = torch.arange(j, device = device) dist = rearrange(range_q, 'i -> 1 1 i 1') - rearrange(range_k, 'j -> 1 1 1 j') max_attend_past_mask = dist > self.max_attend_past dots = dots.masked_fill(max_attend_past_mask, mask_value) del max_attend_past_mask if self.causal: i, j = dots.shape[-2:] causal_mask = torch.ones((i, j), dtype = torch.bool, device = device).triu(j - i + 1) dots = dots.masked_fill(causal_mask, mask_value) del causal_mask if exists(self.sparse_topk) and self.sparse_topk < dots.shape[-1]: top, _ = dots.topk(self.sparse_topk, dim = -1) vk = rearrange(top[..., -1], '... -> ... 1') sparse_topk_mask = dots < vk dots = dots.masked_fill(sparse_topk_mask, mask_value) del sparse_topk_mask dtype = dots.dtype pre_softmax_attn = dots.clone() attn = self.attn_fn(dots, dim = -1) attn = attn.type(dtype) post_softmax_attn = attn.clone() attn = self.dropout(attn) if talking_heads: attn = self.post_softmax_talking_heads(attn) out = einsum(f'b h i j, {kv_einsum_eq} -> b h i d', attn, v) if exists(r): # https://arxiv.org/abs/2208.06061 proposes to add a residual for better gradients out = out * r + out if head_scale: out = out * self.head_scale_params out = rearrange(out, 'b h n d -> b n (h d)') if exists(self.to_v_gate): gates = self.to_v_gate(x) out = out * gates.sigmoid() intermediates = Intermediates( qk_similarities = qk_similarities, pre_softmax_attn = pre_softmax_attn, post_softmax_attn = post_softmax_attn ) out = self.to_out(out) if exists(mask): mask = rearrange(mask, 'b n -> b n 1') out = out.masked_fill(~mask, 0.) return out, intermediates class AttentionLayers(nn.Module): def __init__( self, dim, depth, heads = 8, causal = False, cross_attend = False, only_cross = False, use_scalenorm = False, use_rmsnorm = False, alibi_pos_bias = False, alibi_num_heads = None, alibi_learned = False, rel_pos_bias = False, rel_pos_num_buckets = 32, rel_pos_max_distance = 128, dynamic_pos_bias = False, dynamic_pos_bias_log_distance = False, dynamic_pos_bias_mlp_depth = 2, dynamic_pos_bias_norm = False, rotary_pos_emb = False, rotary_emb_dim = None, rotary_xpos = False, rotary_xpos_scale_base = 512, custom_layers = None, sandwich_coef = None, par_ratio = None, residual_attn = False, cross_residual_attn = False, macaron = False, pre_norm = True, gate_residual = False, scale_residual = False, scale_residual_constant = 1., deepnorm = False, shift_tokens = 0, sandwich_norm = False, zero_init_branch_output = False, layer_dropout = 0., cross_attn_tokens_dropout = 0., **kwargs ): super().__init__() rotary_pos_emb = rotary_pos_emb or rotary_xpos ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs) attn_kwargs, kwargs = groupby_prefix_and_trim('attn_', kwargs) dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD) self.dim = dim self.depth = depth self.layers = nn.ModuleList([]) self.has_pos_emb = rel_pos_bias or rotary_pos_emb rotary_emb_dim = max(default(rotary_emb_dim, dim_head // 2), 32) assert not (rotary_xpos and not causal), 'rotary xpos is not compatible with bidirectional attention' self.rotary_pos_emb = RotaryEmbedding(rotary_emb_dim, use_xpos = rotary_xpos, scale_base = rotary_xpos_scale_base) if rotary_pos_emb else None assert not (alibi_pos_bias and rel_pos_bias), 'you can only choose Alibi positional bias or T5 relative positional bias, not both' assert rel_pos_num_buckets <= rel_pos_max_distance, 'number of relative position buckets must be less than the relative position max distance' # relative positional bias self.rel_pos = None if rel_pos_bias: self.rel_pos = RelativePositionBias(scale = dim_head ** 0.5, causal = causal, heads = heads, num_buckets = rel_pos_num_buckets, max_distance = rel_pos_max_distance) elif dynamic_pos_bias: self.rel_pos = DynamicPositionBias(dim = dim // 4, heads = heads, log_distance = dynamic_pos_bias_log_distance, depth = dynamic_pos_bias_mlp_depth, norm = dynamic_pos_bias_norm) elif alibi_pos_bias: alibi_num_heads = default(alibi_num_heads, heads) assert alibi_num_heads <= heads, 'number of ALiBi heads must be less than the total number of heads' alibi_pos_klass = LearnedAlibiPositionalBias if alibi_learned else AlibiPositionalBias self.rel_pos = alibi_pos_klass(heads = alibi_num_heads) # determine deepnorm and residual scale if deepnorm: assert scale_residual_constant == 1, 'scale residual constant is being overridden by deep norm settings' pre_norm = sandwich_norm = False scale_residual = True scale_residual_constant = (2 * depth) ** 0.25 assert not (not pre_norm and sandwich_norm), 'sandwich norm cannot be used when not using prenorm' self.pre_norm = pre_norm self.sandwich_norm = sandwich_norm self.residual_attn = residual_attn self.cross_residual_attn = cross_residual_attn self.cross_attend = cross_attend norm_class = ScaleNorm if use_scalenorm else nn.LayerNorm norm_class = RMSNorm if use_rmsnorm else norm_class norm_fn = partial(norm_class, dim) if cross_attend and not only_cross: default_block = ('a', 'c', 'f') elif cross_attend and only_cross: default_block = ('c', 'f') else: default_block = ('a', 'f') if macaron: default_block = ('f',) + default_block # zero init if zero_init_branch_output: attn_kwargs = {**attn_kwargs, 'zero_init_output': True} ff_kwargs = {**ff_kwargs, 'zero_init_output': True} # calculate layer block order if exists(custom_layers): layer_types = custom_layers elif exists(par_ratio): par_depth = depth * len(default_block) assert 1 < par_ratio <= par_depth, 'par ratio out of range' default_block = tuple(filter(not_equals('f'), default_block)) par_attn = par_depth // par_ratio depth_cut = par_depth * 2 // 3 # 2 / 3 attention layer cutoff suggested by PAR paper par_width = (depth_cut + depth_cut // par_attn) // par_attn assert len(default_block) <= par_width, 'default block is too large for par_ratio' par_block = default_block + ('f',) * (par_width - len(default_block)) par_head = par_block * par_attn layer_types = par_head + ('f',) * (par_depth - len(par_head)) elif exists(sandwich_coef): assert sandwich_coef > 0 and sandwich_coef <= depth, 'sandwich coefficient should be less than the depth' layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef else: layer_types = default_block * depth self.layer_types = layer_types self.num_attn_layers = len(list(filter(equals('a'), layer_types))) # stochastic depth self.layer_dropouts = cast_tuple(layer_dropout, len(layer_types)) # structured dropout for cross attending self.cross_attn_tokens_dropout = cross_attn_tokens_dropout # calculate token shifting shift_tokens = cast_tuple(shift_tokens, len(layer_types)) # iterate and construct layers for ind, (layer_type, layer_shift_tokens) in enumerate(zip(self.layer_types, shift_tokens)): is_last_layer = ind == (len(self.layer_types) - 1) if layer_type == 'a': layer = Attention(dim, heads = heads, causal = causal, **attn_kwargs) elif layer_type == 'c': layer = Attention(dim, heads = heads, **attn_kwargs) elif layer_type == 'f': layer = FeedForward(dim, **ff_kwargs) layer = layer if not macaron else Scale(0.5, layer) else: raise Exception(f'invalid layer type {layer_type}') if layer_shift_tokens > 0: shift_range_upper = layer_shift_tokens + 1 shift_range_lower = -layer_shift_tokens if not causal else 0 layer = ShiftTokens(range(shift_range_lower, shift_range_upper), layer) residual_fn = GRUGating if gate_residual else Residual residual = residual_fn(dim, scale_residual = scale_residual, scale_residual_constant = scale_residual_constant) pre_branch_norm = norm_fn() if pre_norm else None post_branch_norm = norm_fn() if sandwich_norm else None post_main_norm = norm_fn() if not pre_norm and not is_last_layer else None norms = nn.ModuleList([ pre_branch_norm, post_branch_norm, post_main_norm ]) self.layers.append(nn.ModuleList([ norms, layer, residual ])) if deepnorm: init_gain = (8 * depth) ** -0.25 deepnorm_init(self, init_gain) def forward( self, x, context = None, mask = None, context_mask = None, attn_mask = None, self_attn_context_mask = None, mems = None, return_hiddens = False ): assert not (self.cross_attend ^ exists(context)), 'context must be passed in if cross_attend is set to True' hiddens = [] intermediates = [] prev_attn = None prev_cross_attn = None mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers rotary_pos_emb = None if exists(self.rotary_pos_emb): max_rotary_emb_length = max(list(map(lambda m: (m.shape[1] if exists(m) else 0) + x.shape[1], mems))) rotary_pos_emb = self.rotary_pos_emb(max_rotary_emb_length, x.device) for ind, (layer_type, (norm, block, residual_fn), layer_dropout) in enumerate(zip(self.layer_types, self.layers, self.layer_dropouts)): is_last = ind == (len(self.layers) - 1) if self.training and layer_dropout > 0. and random() < layer_dropout: continue if layer_type == 'a': if return_hiddens: hiddens.append(x) layer_mem = mems.pop(0) if mems else None if layer_type == 'c': if self.training and self.cross_attn_tokens_dropout > 0.: context, context_mask = dropout_seq(context, context_mask, self.cross_attn_tokens_dropout) residual = x pre_branch_norm, post_branch_norm, post_main_norm = norm if exists(pre_branch_norm): x = pre_branch_norm(x) if layer_type == 'a': out, inter = block(x, mask = mask, context_mask = self_attn_context_mask, attn_mask = attn_mask, rel_pos = self.rel_pos, rotary_pos_emb = rotary_pos_emb, prev_attn = prev_attn, mem = layer_mem) elif layer_type == 'c': out, inter = block(x, context = context, mask = mask, context_mask = context_mask, prev_attn = prev_cross_attn) elif layer_type == 'f': out = block(x) if exists(post_branch_norm): out = post_branch_norm(out) x = residual_fn(out, residual) if layer_type in ('a', 'c') and return_hiddens: intermediates.append(inter) if layer_type == 'a' and self.residual_attn: prev_attn = inter.pre_softmax_attn elif layer_type == 'c' and self.cross_residual_attn: prev_cross_attn = inter.pre_softmax_attn if exists(post_main_norm): x = post_main_norm(x) if return_hiddens: intermediates = LayerIntermediates( hiddens = hiddens, attn_intermediates = intermediates ) return x, intermediates return x class Encoder(AttentionLayers): def __init__(self, **kwargs): assert 'causal' not in kwargs, 'cannot set causality on encoder' super().__init__(causal = False, **kwargs) class Decoder(AttentionLayers): def __init__(self, **kwargs): assert 'causal' not in kwargs, 'cannot set causality on decoder' super().__init__(causal = True, **kwargs) class CrossAttender(AttentionLayers): def __init__(self, **kwargs): super().__init__(cross_attend = True, only_cross = True, **kwargs) class ViTransformerWrapper(nn.Module): def __init__( self, *, image_size, patch_size, attn_layers, channels = 3, num_classes = None, dropout = 0., post_emb_norm = False, emb_dropout = 0. ): super().__init__() assert isinstance(attn_layers, Encoder), 'attention layers must be an Encoder' assert image_size % patch_size == 0, 'image dimensions must be divisible by the patch size' dim = attn_layers.dim num_patches = (image_size // patch_size) ** 2 patch_dim = channels * patch_size ** 2 self.patch_size = patch_size self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim)) self.patch_to_embedding = nn.Sequential( nn.LayerNorm(patch_dim), nn.Linear(patch_dim, dim), nn.LayerNorm(dim) ) self.post_emb_norm = nn.LayerNorm(dim) if post_emb_norm else nn.Identity() self.dropout = nn.Dropout(emb_dropout) self.attn_layers = attn_layers self.norm = nn.LayerNorm(dim) self.mlp_head = nn.Linear(dim, num_classes) if exists(num_classes) else nn.Identity() def forward( self, img, return_embeddings = False ): p = self.patch_size x = rearrange(img, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = p, p2 = p) x = self.patch_to_embedding(x) n = x.shape[1] x = x + self.pos_embedding[:, :n] x = self.post_emb_norm(x) x = self.dropout(x) x = self.attn_layers(x) x = self.norm(x) if not exists(self.mlp_head) or return_embeddings: return x x = x.mean(dim = -2) return self.mlp_head(x) class TransformerWrapper(nn.Module): def __init__( self, *, num_tokens, max_seq_len, attn_layers, emb_dim = None, max_mem_len = 0., shift_mem_down = 0, emb_dropout = 0., post_emb_norm = False, num_memory_tokens = None, tie_embedding = False, logits_dim = None, use_abs_pos_emb = True, scaled_sinu_pos_emb = False, l2norm_embed = False, emb_frac_gradient = 1. # GLM-130B and Cogview successfully used this, set at 0.1 ): super().__init__() assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder' dim = attn_layers.dim emb_dim = default(emb_dim, dim) self.emb_dim = emb_dim self.num_tokens = num_tokens self.max_seq_len = max_seq_len self.max_mem_len = max_mem_len self.shift_mem_down = shift_mem_down self.l2norm_embed = l2norm_embed self.token_emb = TokenEmbedding(emb_dim, num_tokens, l2norm_embed = l2norm_embed) if not (use_abs_pos_emb and not attn_layers.has_pos_emb): self.pos_emb = always(0) elif scaled_sinu_pos_emb: self.pos_emb = ScaledSinusoidalEmbedding(emb_dim) else: self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len, l2norm_embed = l2norm_embed) self.emb_frac_gradient = emb_frac_gradient # fraction of the gradient that should go to the embedding, https://arxiv.org/abs/2105.13290 self.post_emb_norm = nn.LayerNorm(emb_dim) if post_emb_norm else nn.Identity() self.emb_dropout = nn.Dropout(emb_dropout) self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity() self.attn_layers = attn_layers self.norm = nn.LayerNorm(dim) self.init_() logits_dim = default(logits_dim, num_tokens) self.to_logits = nn.Linear(dim, logits_dim) if not tie_embedding else lambda t: t @ self.token_emb.weight.t() # memory tokens (like [cls]) from Memory Transformers paper num_memory_tokens = default(num_memory_tokens, 0) self.num_memory_tokens = num_memory_tokens if num_memory_tokens > 0: self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim)) def init_(self): if self.l2norm_embed: nn.init.normal_(self.token_emb.emb.weight, std = 1e-5) if not isinstance(self.pos_emb, always): nn.init.normal_(self.pos_emb.emb.weight, std = 1e-5) return nn.init.kaiming_normal_(self.token_emb.emb.weight) def forward( self, x, return_embeddings = False, return_logits_and_embeddings = False, return_intermediates = False, mask = None, return_mems = False, return_attn = False, mems = None, pos = None, prepend_embeds = None, sum_embeds = None, **kwargs ): b, n, device, num_mem, emb_frac_gradient = *x.shape, x.device, self.num_memory_tokens, self.emb_frac_gradient return_hiddens = return_mems | return_attn # absolute positional embedding external_pos_emb = exists(pos) and pos.dtype != torch.long pos_emb = self.pos_emb(x, pos = pos) if not external_pos_emb else pos x = self.token_emb(x) + pos_emb # for summing embeddings passed externally - needs this for self-conditioning in non-autoregressive training if exists(sum_embeds): x = x + sum_embeds # post embedding norm, purportedly leads to greater stabilization x = self.post_emb_norm(x) # whether to append embeds, as in PaLI, for image embeddings if exists(prepend_embeds): prepend_seq, prepend_dim = prepend_embeds.shape[1:] assert prepend_dim == x.shape[-1], 'prepended embeddings need to have same dimensions as text model dimensions' x = torch.cat((prepend_embeds, x), dim = -2) # whether to reduce the gradient going to the embedding, from cogview paper, corroborated by GLM-130B model if emb_frac_gradient < 1: assert emb_frac_gradient > 0 x = x * emb_frac_gradient + x.detach() * (1 - emb_frac_gradient) # embedding dropout x = self.emb_dropout(x) x = self.project_emb(x) if num_mem > 0: mem = repeat(self.memory_tokens, 'n d -> b n d', b = b) x = torch.cat((mem, x), dim = 1) # auto-handle masking after appending memory tokens if exists(mask): mask = pad_at_dim(mask, (num_mem, 0), dim = -1, value = True) if self.shift_mem_down and exists(mems): mems_l, mems_r = mems[:self.shift_mem_down], mems[self.shift_mem_down:] mems = [*mems_r, *mems_l] if return_hiddens: x, intermediates = self.attn_layers(x, mask = mask, mems = mems, return_hiddens = True, **kwargs) else: x = self.attn_layers(x, mask = mask, mems = mems, **kwargs) x = self.norm(x) mem, x = x[:, :num_mem], x[:, num_mem:] if return_logits_and_embeddings: out = (self.to_logits(x), x) elif return_embeddings: out = x else: out = self.to_logits(x) if return_intermediates: return out, intermediates if return_mems: hiddens = intermediates.hiddens new_mems = list(map(lambda pair: torch.cat(pair, dim = -2), zip(mems, hiddens))) if exists(mems) else hiddens new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), new_mems)) return out, new_mems if return_attn: attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates)) return out, attn_maps return out class ContinuousTransformerWrapper(nn.Module): def __init__( self, *, max_seq_len, attn_layers, dim_in = None, dim_out = None, emb_dim = None, post_emb_norm = False, emb_dropout = 0., use_abs_pos_emb = True, scaled_sinu_pos_emb = False ): super().__init__() assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder' dim = attn_layers.dim self.max_seq_len = max_seq_len if not (use_abs_pos_emb and not attn_layers.has_pos_emb): self.pos_emb = always(0) elif scaled_sinu_pos_emb: self.pos_emb = ScaledSinusoidalEmbedding(dim) else: self.pos_emb = AbsolutePositionalEmbedding(dim, max_seq_len) self.post_emb_norm = nn.LayerNorm(dim) if post_emb_norm else nn.Identity() self.emb_dropout = nn.Dropout(emb_dropout) self.project_in = nn.Linear(dim_in, dim) if exists(dim_in) else nn.Identity() self.attn_layers = attn_layers self.norm = nn.LayerNorm(dim) self.project_out = nn.Linear(dim, dim_out) if exists(dim_out) else nn.Identity() def forward( self, x, return_embeddings = False, return_intermediates = False, mask = None, return_attn = False, mems = None, pos = None, prepend_embeds = None, **kwargs ): x = self.project_in(x) x = x + self.pos_emb(x, pos = pos) x = self.post_emb_norm(x) # whether to append embeds, as in PaLI, for image embeddings if exists(prepend_embeds): _, prepend_dim = prepend_embeds.shape[1:] assert prepend_dim == x.shape[-1], 'prepended embeddings need to have same dimensions as model dimensions' x = torch.cat((prepend_embeds, x), dim = -2) x = self.emb_dropout(x) x, intermediates = self.attn_layers(x, mask = mask, mems = mems, return_hiddens = True, **kwargs) x = self.norm(x) out = self.project_out(x) if not return_embeddings else x if return_intermediates: return out, intermediates if return_attn: attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates)) return out, attn_maps return out class XTransformer(nn.Module): def __init__( self, *, dim, tie_token_emb = False, ignore_index = -100, pad_value = 0, deepnorm = False, cross_attn_tokens_dropout = 0., **kwargs ): super().__init__() enc_kwargs, kwargs = groupby_prefix_and_trim('enc_', kwargs) dec_kwargs, kwargs = groupby_prefix_and_trim('dec_', kwargs) assert 'dim' not in enc_kwargs and 'dim' not in dec_kwargs, 'dimension of either encoder or decoder must be set with `dim` keyword' enc_transformer_kwargs = pick_and_pop(['num_tokens', 'max_seq_len'], enc_kwargs) enc_transformer_kwargs['emb_dropout'] = enc_kwargs.pop('emb_dropout', 0) enc_transformer_kwargs['num_memory_tokens'] = enc_kwargs.pop('num_memory_tokens', None) enc_transformer_kwargs['scaled_sinu_pos_emb'] = enc_kwargs.pop('scaled_sinu_pos_emb', False) enc_transformer_kwargs['use_abs_pos_emb'] = enc_kwargs.pop('use_abs_pos_emb', True) dec_transformer_kwargs = pick_and_pop(['num_tokens', 'max_seq_len'], dec_kwargs) dec_transformer_kwargs['emb_dropout'] = dec_kwargs.pop('emb_dropout', 0) dec_transformer_kwargs['scaled_sinu_pos_emb'] = dec_kwargs.pop('scaled_sinu_pos_emb', False) dec_transformer_kwargs['use_abs_pos_emb'] = dec_kwargs.pop('use_abs_pos_emb', True) self.cross_attn_tokens_dropout = cross_attn_tokens_dropout # how many tokens from the encoder to dropout when cross attending from decoder - seen in a couple papers, including Perceiver AR - this will also be very effective regularization when cross attending to very long memories if deepnorm: enc_kwargs['scale_residual'] = True dec_kwargs['scale_residual'] = True enc_depth = enc_kwargs['depth'] dec_depth = dec_kwargs['depth'] enc_kwargs['scale_residual_constant'] = 0.81 * ((enc_depth ** 4) * dec_depth) ** .0625 dec_kwargs['scale_residual_constant'] = (3 * dec_depth) ** 0.25 self.encoder = TransformerWrapper( **enc_transformer_kwargs, attn_layers = Encoder(dim = dim, **enc_kwargs) ) self.decoder = TransformerWrapper( **dec_transformer_kwargs, attn_layers = Decoder(dim = dim, cross_attend = True, **dec_kwargs) ) if deepnorm: deepnorm_init(self.encoder, 0.87 * ((enc_depth ** 4) * dec_depth) ** -0.0625) deepnorm_init(self.decoder, (12 * dec_depth) ** -0.25) if tie_token_emb: self.decoder.token_emb = self.encoder.token_emb self.decoder = AutoregressiveWrapper(self.decoder, ignore_index=ignore_index, pad_value=pad_value) @torch.no_grad() def generate(self, seq_in, seq_out_start, seq_len, mask = None, attn_mask = None, **kwargs): encodings = self.encoder(seq_in, mask = mask, attn_mask = attn_mask, return_embeddings = True) return self.decoder.generate(seq_out_start, seq_len, context = encodings, context_mask = mask, **kwargs) def forward(self, src, tgt, mask = None, attn_mask = None, src_prepend_embeds = None): if exists(src_prepend_embeds) and exists(mask): mask = pad_at_dim(mask, (src_prepend_embeds.shape[-2], 0), dim = -1, value = True) enc = self.encoder(src, mask = mask, attn_mask = attn_mask, prepend_embeds = src_prepend_embeds, return_embeddings = True) if self.training and self.cross_attn_tokens_dropout > 0: enc, mask = dropout_seq(enc, mask, self.cross_attn_tokens_dropout) out = self.decoder(tgt, context = enc, context_mask = mask) return out
EXA-1-master
exa/libraries/x-transformers/x_transformers/x_transformers.py
from x_transformers.x_transformers import XTransformer, Encoder, Decoder, CrossAttender, Attention, TransformerWrapper, ViTransformerWrapper, ContinuousTransformerWrapper from x_transformers.autoregressive_wrapper import AutoregressiveWrapper from x_transformers.nonautoregressive_wrapper import NonAutoregressiveWrapper from x_transformers.continuous_autoregressive_wrapper import ContinuousAutoregressiveWrapper from x_transformers.xl_autoregressive_wrapper import XLAutoregressiveWrapper
EXA-1-master
exa/libraries/x-transformers/x_transformers/__init__.py
import torch from torch import nn import torch.nn.functional as F def exists(val): return val is not None class ContinuousAutoregressiveWrapper(nn.Module): def __init__(self, net, ignore_index = -100, pad_value = 0): super().__init__() self.net = net self.max_seq_len = net.max_seq_len @torch.no_grad() def generate(self, start_tokens, seq_len, **kwargs): device = start_tokens.device was_training = self.net.training num_dims = len(start_tokens.shape) assert num_dims >= 2, 'number of dimensions of your start tokens must be greater or equal to 2' if num_dims == 2: start_tokens = start_tokens[None, :] b, t, _, device = *start_tokens.shape, start_tokens.device self.net.eval() out = start_tokens for _ in range(seq_len): x = out[:, -self.max_seq_len:] last = self.net(x, **kwargs)[:, -1:] out = torch.cat((out, last), dim = -2) out = out[:, t:] if num_dims == 2: out = out.squeeze(0) self.net.train(was_training) return out def forward(self, x, **kwargs): inp, target = x[:, :-1], x[:, 1:] mask = kwargs.get('mask', None) if exists(mask) and mask.shape[1] == x.shape[1]: mask = mask[:, :-1] kwargs['mask'] = mask out = self.net(inp, **kwargs) loss = F.mse_loss(out, target, reduction = 'none') if exists(mask): loss = loss[mask] return loss.mean()
EXA-1-master
exa/libraries/x-transformers/x_transformers/continuous_autoregressive_wrapper.py
import math from random import random from contextlib import nullcontext from collections import namedtuple import torch import torch.nn.functional as F from torch import nn from einops import rearrange, repeat, pack, unpack from x_transformers.x_transformers import TransformerWrapper from typing import Optional # constants Losses = namedtuple('Losses', ['loss', 'generator_loss', 'critic_loss']) # helper functions def exists(val): return val is not None def default(val, d): return val if exists(val) else d # sampling helpers def top_k(logits, thres = 0.9): k = math.ceil((1 - thres) * logits.shape[-1]) val, ind = logits.topk(k, dim = -1) probs = torch.full_like(logits, float('-inf')) probs.scatter_(2, ind, val) return probs def log(t, eps = 1e-10): return torch.log(t + eps) def gumbel_noise(t): noise = torch.zeros_like(t).uniform_(0, 1) return -log(-log(noise)) def gumbel_sample(t, temperature = 1., dim = -1): return ((t / max(temperature, 1e-10)) + gumbel_noise(t)).argmax(dim = dim) # prob helpers def sample_prob(prob): return random() < prob def coin_flip(): return sample_prob(0.5) # tensor helpers def get_mask_subset_prob(mask, prob, min_mask = 0): batch, seq, device = *mask.shape, mask.device num_to_mask = (mask.sum(dim = -1, keepdim = True) * prob).clamp(min = min_mask) logits = torch.rand((batch, seq), device = device) logits = logits.masked_fill(~mask, -1) randperm = logits.argsort(dim = -1).float() num_padding = (~mask).sum(dim = -1, keepdim = True) randperm -= num_padding subset_mask = randperm < num_to_mask subset_mask.masked_fill_(~mask, False) return subset_mask # schedules def linear_schedule(t): return 1 - t def cosine_schedule(t): """ https://arxiv.org/abs/2202.04200 """ return torch.cos(t * math.pi / 2) # self token critic # inspired by Nijkamp et al. - https://aclanthology.org/2021.naacl-main.409/ class SelfCritic(nn.Module): def __init__(self, net): super().__init__() self.net = net dim = net.attn_layers.dim self.to_logits = nn.Linear(dim, 1) def forward(self, x): embed = self.net(x, return_embeddings = True) return self.to_logits(embed) class NonAutoregressiveWrapper(nn.Module): """ https://arxiv.org/abs/1904.09324 https://arxiv.org/abs/2202.04200 """ def __init__( self, net, *, mask_id, steps = 18, self_cond = False, self_cond_train_prob = 0.75, no_replace_prob = 0.15, # which percentage of the tokens masked will stay the same, done in original MLM paper random_token_prob = 0.1, # which percentage of tokens to be replaced with random token, done in original MLM paper schedule = 'linear', can_mask_prev_unmasked = False, # when unmasking, whether it can remask previously unmasked token_critic: Optional[TransformerWrapper] = None, self_token_critic = False, critic_loss_weight = 1. ): super().__init__() assert not (self_token_critic and exists(token_critic)) self.net = net dim = net.emb_dim self.dim = dim self.num_tokens = net.num_tokens self.mask_id = mask_id # afaict, maskgit paper did not do this # but may help for self conditioning, as used successfully in original BERT self.no_replace_prob = no_replace_prob self.random_token_prob = random_token_prob self.max_seq_len = net.max_seq_len self.steps = steps if callable(schedule): self.schedule_fn = schedule if schedule == 'linear': self.schedule_fn = linear_schedule elif schedule == 'cosine': self.schedule_fn = cosine_schedule else: raise ValueError(f'invalid schedule {schedule}') self.can_mask_prev_unmasked = can_mask_prev_unmasked # self conditioning self.self_cond = self_cond if self_cond: self.null_embed = nn.Parameter(torch.randn(dim)) self.to_self_cond = nn.Linear(dim, dim, bias = False) if self_cond else None self.self_cond_train_prob = self_cond_train_prob # token critic self.token_critic = token_critic if self_token_critic: self.token_critic = SelfCritic(net) self.critic_loss_weight = critic_loss_weight @torch.no_grad() def generate( self, batch_size = None, start_temperature = 1., filter_thres = 0.7, noise_level_scale = 1., **kwargs ): sample_one = not exists(batch_size) batch_size = default(batch_size, 1) device = next(self.net.parameters()).device was_training = self.training self.eval() times = torch.linspace(0., 1., self.steps + 1) # sequence starts off as all masked shape = (batch_size, self.max_seq_len) seq = torch.full(shape, self.mask_id, device = device) mask = torch.full(shape, True, device = device) # slowly demask all_mask_num_tokens = (self.schedule_fn(times[1:]) * self.max_seq_len).long() # self conditioning has_self_cond = self.self_cond last_embed = self.null_embed if has_self_cond else None for mask_num_tokens, steps_until_x0 in zip(all_mask_num_tokens.tolist(), reversed(range(self.steps))): self_cond = self.to_self_cond(last_embed) if has_self_cond else None logits, embeds = self.net( seq, sum_embeds = self_cond, return_logits_and_embeddings = True, **kwargs ) if has_self_cond: last_embed = embeds if exists(filter_thres): logits = top_k(logits, filter_thres) annealing_scale = steps_until_x0 / self.steps temperature = start_temperature * annealing_scale probs = (logits / max(temperature, 1e-3)).softmax(dim = -1) sampled_ids = gumbel_sample(logits, temperature = max(temperature, 1e-3)) seq = torch.where(mask, sampled_ids, seq) if exists(self.token_critic): scores = self.token_critic(seq) scores = rearrange(scores, 'b n 1 -> b n') scores = scores + noise_level_scale * gumbel_noise(scores) * annealing_scale else: scores = 1 - logits.softmax(dim = -1) scores = scores.gather(2, rearrange(sampled_ids, 'b n -> b n 1')) scores = rearrange(scores, 'b n 1 -> b n') if mask_num_tokens == 0: pass if not self.can_mask_prev_unmasked: scores = scores.masked_fill(~mask, -torch.finfo(scores.dtype).max) mask_indices = scores.topk(mask_num_tokens, dim = -1).indices mask = torch.zeros_like(scores, dtype = torch.bool).scatter(1, mask_indices, True) seq = seq.masked_fill(mask, self.mask_id) self.train(was_training) if sample_one: seq = rearrange(seq, '1 n -> n') return seq def forward( self, x, only_train_generator = False, only_train_critic = False, generator_sample_temperature = None, **kwargs ): b, n, device = *x.shape, x.device assert n == self.max_seq_len orig_seq = x.clone() rand_times = torch.empty(b, device = device).uniform_(0, 1) batched_randperm = torch.rand((b, n), device = device).argsort(dim = -1).float() rand_probs = self.schedule_fn(rand_times) num_tokens_mask = (rand_probs * n).clamp(min = 1.) mask = batched_randperm < rearrange(num_tokens_mask, 'b -> b 1') # to ensure all tokens produce embeddings, instead of just the ones with [mask] input, as done in seminal BERT MLM paper # potentially needed for self-conditioning (on embedding) to work well replace_mask_id_mask = mask.clone() frac_seq_left = 1. if self.no_replace_prob > 0. and coin_flip(): frac_seq_left -= self.no_replace_prob no_replace_prob_mask = get_mask_subset_prob(mask, self.no_replace_prob) replace_mask_id_mask &= ~no_replace_prob_mask if self.random_token_prob > 0. and coin_flip(): random_token_prob_mask = get_mask_subset_prob(replace_mask_id_mask, self.random_token_prob * frac_seq_left) random_tokens = torch.randint(0, self.num_tokens, (b, n), device = device) x = torch.where(random_token_prob_mask, random_tokens, x) replace_mask_id_mask &= ~random_token_prob_mask masked = torch.where(replace_mask_id_mask, self.mask_id, x) # self conditioning if self.self_cond: self_cond = self.null_embed if sample_prob(self.self_cond_train_prob): with torch.no_grad(): self_cond = self.net(masked, return_embeddings = True, **kwargs).detach() kwargs.update(sum_embeds = self.to_self_cond(self_cond)) # logits context = torch.no_grad if only_train_critic else nullcontext with context(): logits = self.net(masked, **kwargs) # cross entropy loss loss = F.cross_entropy( logits[mask], orig_seq[mask] ) if not exists(self.token_critic) or only_train_generator: return Losses(loss, loss, None) sampled_ids = gumbel_sample(logits, temperature = default(generator_sample_temperature, random())) generated = torch.where(mask, sampled_ids, orig_seq) critic_logits = self.token_critic(generated) critic_labels = (sampled_ids != orig_seq).float() critic_loss = F.binary_cross_entropy_with_logits( rearrange(critic_logits, '... 1 -> ...'), critic_labels ) # determine losses to be returned based on what researcher wants to train if only_train_critic: total_loss = critic_loss loss = None else: total_loss = loss + critic_loss * self.critic_loss_weight return Losses(total_loss, loss, critic_loss)
EXA-1-master
exa/libraries/x-transformers/x_transformers/nonautoregressive_wrapper.py
import tqdm import torch import torch.optim as optim from x_transformers import XTransformer # constants NUM_BATCHES = int(1e5) BATCH_SIZE = 32 LEARNING_RATE = 3e-4 GENERATE_EVERY = 100 NUM_TOKENS = 16 + 2 ENC_SEQ_LEN = 32 DEC_SEQ_LEN = 64 + 1 # helpers def cycle(): while True: prefix = torch.ones((BATCH_SIZE, 1)).long().cuda() src = torch.randint(2, NUM_TOKENS, (BATCH_SIZE, ENC_SEQ_LEN)).long().cuda() tgt = torch.cat((prefix, src, src), 1) src_mask = torch.ones(BATCH_SIZE, src.shape[1]).bool().cuda() yield (src, tgt, src_mask) # instantiate model model = XTransformer( dim = 512, tie_token_emb = True, return_tgt_loss = True, enc_num_tokens=NUM_TOKENS, enc_depth = 3, enc_heads = 8, enc_max_seq_len = ENC_SEQ_LEN, dec_num_tokens = NUM_TOKENS, dec_depth = 3, dec_heads = 8, dec_max_seq_len = DEC_SEQ_LEN ).cuda() # optimizer optim = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE) # training for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10., desc='training'): model.train() src, tgt, src_mask = next(cycle()) loss = model(src, tgt, mask=src_mask) loss.backward() print(f'{i}: {loss.item()}') optim.step() optim.zero_grad() if i != 0 and i % GENERATE_EVERY == 0: model.eval() src, _, src_mask = next(cycle()) src, src_mask = src[:1], src_mask[:1] start_tokens = (torch.ones((1, 1)) * 1).long().cuda() sample = model.generate(src, start_tokens, ENC_SEQ_LEN, mask = src_mask) incorrects = (src != sample).abs().sum() print(f"input: ", src) print(f"predicted output: ", sample) print(f"incorrects: {incorrects}")
EXA-1-master
exa/libraries/x-transformers/examples/toy_tasks/enc_dec_copy.py
from x_transformers import ( TransformerWrapper, Encoder, NonAutoregressiveWrapper ) import random import tqdm import gzip import numpy as np import torch import torch.optim as optim from torch.nn import functional as F from torch.utils.data import DataLoader, Dataset # constants NUM_BATCHES = int(1e8) BATCH_SIZE = 4 GRADIENT_ACCUMULATE_EVERY = 4 LEARNING_RATE = 2e-4 VALIDATE_EVERY = 100 GENERATE_EVERY = 250 SEQ_LEN = 256 # helpers def cycle(loader): while True: for data in loader: yield data def decode_token(token): return str(chr(max(32, token))) def decode_tokens(tokens): return ''.join(list(map(decode_token, tokens))) model = TransformerWrapper( num_tokens = 256 + 1, logits_dim = 256, max_seq_len = SEQ_LEN, attn_layers = Encoder( dim = 512, depth = 8, heads = 8, dynamic_pos_bias = True ) ) model = NonAutoregressiveWrapper( model, steps = 18, schedule = 'cosine', mask_id = 256, # mask id is last token, which is why num_tokens above has a +1 (special token) self_token_critic = True ) model.cuda() # prepare enwik8 data with gzip.open('./data/enwik8.gz') as file: data = np.frombuffer(file.read(int(95e6)), dtype=np.uint8).copy() train_x, valid_x = np.split(data, [int(90e6)]) data_train, data_val = torch.from_numpy(train_x), torch.from_numpy(valid_x) class TextSamplerDataset(Dataset): def __init__(self, data, seq_len): super().__init__() self.data = data self.seq_len = seq_len def __getitem__(self, index): rand_start = torch.randint(0, self.data.size(0) - self.seq_len, (1,)) full_seq = self.data[rand_start: rand_start + self.seq_len].long() return full_seq.cuda() def __len__(self): return self.data.size(0) // self.seq_len train_dataset = TextSamplerDataset(data_train, SEQ_LEN) val_dataset = TextSamplerDataset(data_val, SEQ_LEN) train_loader = cycle(DataLoader(train_dataset, batch_size = BATCH_SIZE)) val_loader = cycle(DataLoader(val_dataset, batch_size = BATCH_SIZE)) # optimizer optim = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE) # training for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10., desc='training'): model.train() for __ in range(GRADIENT_ACCUMULATE_EVERY): loss = model(next(train_loader)).loss (loss / GRADIENT_ACCUMULATE_EVERY).backward() print(f'training loss: {loss.item()}') torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5) optim.step() optim.zero_grad() if i % VALIDATE_EVERY == 0: model.eval() with torch.no_grad(): val_data = next(val_loader) loss = model(val_data).loss print(f'validation loss: {loss.item()}') if i % GENERATE_EVERY == 0: model.eval() sample = model.generate() output_str = decode_tokens(sample) print(output_str)
EXA-1-master
exa/libraries/x-transformers/examples/enwik8_simple/train_nar.py
from x_transformers import TransformerWrapper, Decoder from x_transformers.autoregressive_wrapper import AutoregressiveWrapper import random import tqdm import gzip import numpy as np import torch import torch.optim as optim from torch.nn import functional as F from torch.utils.data import DataLoader, Dataset # constants NUM_BATCHES = int(1e5) BATCH_SIZE = 4 GRADIENT_ACCUMULATE_EVERY = 4 LEARNING_RATE = 1e-4 VALIDATE_EVERY = 100 GENERATE_EVERY = 500 GENERATE_LENGTH = 1024 SEQ_LEN = 1024 # helpers def cycle(loader): while True: for data in loader: yield data def decode_token(token): return str(chr(max(32, token))) def decode_tokens(tokens): return ''.join(list(map(decode_token, tokens))) # instantiate GPT-like decoder model model = TransformerWrapper( num_tokens = 256, max_seq_len = SEQ_LEN, attn_layers = Decoder(dim = 512, depth = 6, heads = 8) ) model = AutoregressiveWrapper(model) model.cuda() # prepare enwik8 data with gzip.open('./data/enwik8.gz') as file: data = np.frombuffer(file.read(int(95e6)), dtype=np.uint8).copy() train_x, valid_x = np.split(data, [int(90e6)]) data_train, data_val = torch.from_numpy(train_x), torch.from_numpy(valid_x) class TextSamplerDataset(Dataset): def __init__(self, data, seq_len): super().__init__() self.data = data self.seq_len = seq_len def __getitem__(self, index): rand_start = torch.randint(0, self.data.size(0) - self.seq_len - 1, (1,)) full_seq = self.data[rand_start: rand_start + self.seq_len + 1].long() return full_seq.cuda() def __len__(self): return self.data.size(0) // self.seq_len train_dataset = TextSamplerDataset(data_train, SEQ_LEN) val_dataset = TextSamplerDataset(data_val, SEQ_LEN) train_loader = cycle(DataLoader(train_dataset, batch_size = BATCH_SIZE, drop_last = True)) val_loader = cycle(DataLoader(val_dataset, batch_size = BATCH_SIZE, drop_last = True)) # optimizer optim = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE) # training for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10., desc='training'): model.train() for __ in range(GRADIENT_ACCUMULATE_EVERY): loss = model(next(train_loader)) (loss / GRADIENT_ACCUMULATE_EVERY).backward() print(f'training loss: {loss.item()}') torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5) optim.step() optim.zero_grad() if i % VALIDATE_EVERY == 0: model.eval() with torch.no_grad(): loss = model(next(val_loader)) print(f'validation loss: {loss.item()}') if i % GENERATE_EVERY == 0: model.eval() inp = random.choice(val_dataset)[:-1] prime = decode_tokens(inp) print(f'%s \n\n %s', (prime, '*' * 100)) sample = model.generate(inp, GENERATE_LENGTH) output_str = decode_tokens(sample) print(output_str)
EXA-1-master
exa/libraries/x-transformers/examples/enwik8_simple/train.py
from __future__ import absolute_import from __future__ import print_function from __future__ import division import os import sys import time import logging import argparse import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.backends.cudnn as cudnn import torchvision.transforms as transforms import torchvision.datasets as dst from utils import AverageMeter, accuracy, transform_time from utils import load_pretrained_model, save_checkpoint from utils import create_exp_dir, count_parameters_in_MB from network import define_tsnet from kd_losses import * parser = argparse.ArgumentParser(description='train boundary supporting sample (bss)') # various path parser.add_argument('--save_root', type=str, default='./results', help='models and logs are saved here') parser.add_argument('--img_root', type=str, default='./datasets', help='path name of image dataset') parser.add_argument('--s_init', type=str, required=True, help='initial parameters of student model') parser.add_argument('--t_model', type=str, required=True, help='path name of teacher model') # training hyper parameters parser.add_argument('--print_freq', type=int, default=50, help='frequency of showing training results on console') parser.add_argument('--epochs', type=int, default=200, help='number of total epochs to run') parser.add_argument('--batch_size', type=int, default=128, help='The size of batch') parser.add_argument('--lr', type=float, default=0.1, help='initial learning rate') parser.add_argument('--momentum', type=float, default=0.9, help='momentum') parser.add_argument('--weight_decay', type=float, default=1e-4, help='weight decay') parser.add_argument('--num_class', type=int, default=10, help='number of classes') parser.add_argument('--cuda', type=int, default=1) # others parser.add_argument('--seed', type=int, default=2, help='random seed') parser.add_argument('--note', type=str, default='try', help='note for this run') # net and dataset choosen parser.add_argument('--data_name', type=str, required=True, help='name of dataset') # cifar10/cifar100 parser.add_argument('--t_name', type=str, required=True, help='name of teacher') # resnet20/resnet110 parser.add_argument('--s_name', type=str, required=True, help='name of student') # resnet20/resnet110 # hyperparameter parser.add_argument('--lambda_kd', type=float, default=2.0, help='trade-off parameter for kd loss') parser.add_argument('--T', type=float, default=3.0, help='temperature for bss') parser.add_argument('--attack_size', type=int, default=32, help='num of samples for bss attack') args, unparsed = parser.parse_known_args() args.save_root = os.path.join(args.save_root, args.note) create_exp_dir(args.save_root) log_format = '%(message)s' logging.basicConfig(stream=sys.stdout, level=logging.INFO, format=log_format) fh = logging.FileHandler(os.path.join(args.save_root, 'log.txt')) fh.setFormatter(logging.Formatter(log_format)) logging.getLogger().addHandler(fh) def main(): np.random.seed(args.seed) torch.manual_seed(args.seed) if args.cuda: torch.cuda.manual_seed(args.seed) cudnn.enabled = True cudnn.benchmark = True logging.info("args = %s", args) logging.info("unparsed_args = %s", unparsed) logging.info('----------- Network Initialization --------------') snet = define_tsnet(name=args.s_name, num_class=args.num_class, cuda=args.cuda) checkpoint = torch.load(args.s_init) load_pretrained_model(snet, checkpoint['net']) logging.info('Student: %s', snet) logging.info('Student param size = %fMB', count_parameters_in_MB(snet)) tnet = define_tsnet(name=args.t_name, num_class=args.num_class, cuda=args.cuda) checkpoint = torch.load(args.t_model) load_pretrained_model(tnet, checkpoint['net']) tnet.eval() for param in tnet.parameters(): param.requires_grad = False logging.info('Teacher: %s', tnet) logging.info('Teacher param size = %fMB', count_parameters_in_MB(tnet)) logging.info('-----------------------------------------------') # initialize optimizer optimizer = torch.optim.SGD(snet.parameters(), lr = args.lr, momentum = args.momentum, weight_decay = args.weight_decay, nesterov = True) # define attacker attacker = BSSAttacker(step_alpha=0.3, num_steps=10, eps=1e-4) # define loss functions criterionKD = BSS(args.T) if args.cuda: criterionCls = torch.nn.CrossEntropyLoss().cuda() else: criterionCls = torch.nn.CrossEntropyLoss() # define transforms if args.data_name == 'cifar10': dataset = dst.CIFAR10 mean = (0.4914, 0.4822, 0.4465) std = (0.2470, 0.2435, 0.2616) elif args.data_name == 'cifar100': dataset = dst.CIFAR100 mean = (0.5071, 0.4865, 0.4409) std = (0.2673, 0.2564, 0.2762) else: raise Exception('Invalid dataset name...') train_transform = transforms.Compose([ transforms.Pad(4, padding_mode='reflect'), transforms.RandomCrop(32), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=mean,std=std) ]) test_transform = transforms.Compose([ transforms.CenterCrop(32), transforms.ToTensor(), transforms.Normalize(mean=mean,std=std) ]) # define data loader train_loader = torch.utils.data.DataLoader( dataset(root = args.img_root, transform = train_transform, train = True, download = True), batch_size=args.batch_size, shuffle=True, num_workers=4, pin_memory=True) test_loader = torch.utils.data.DataLoader( dataset(root = args.img_root, transform = test_transform, train = False, download = True), batch_size=args.batch_size, shuffle=False, num_workers=4, pin_memory=True) # warp nets and criterions for train and test nets = {'snet':snet, 'tnet':tnet} criterions = {'criterionCls':criterionCls, 'criterionKD':criterionKD} best_top1 = 0 best_top5 = 0 for epoch in range(1, args.epochs+1): adjust_lr(optimizer, epoch) # train one epoch epoch_start_time = time.time() train(train_loader, nets, optimizer, criterions, attacker, epoch) # evaluate on testing set logging.info('Testing the models......') test_top1, test_top5 = test(test_loader, nets, criterions, epoch) epoch_duration = time.time() - epoch_start_time logging.info('Epoch time: {}s'.format(int(epoch_duration))) # save model is_best = False if test_top1 > best_top1: best_top1 = test_top1 best_top5 = test_top5 is_best = True logging.info('Saving models......') save_checkpoint({ 'epoch': epoch, 'snet': snet.state_dict(), 'tnet': tnet.state_dict(), 'prec@1': test_top1, 'prec@5': test_top5, }, is_best, args.save_root) def train(train_loader, nets, optimizer, criterions, attacker, epoch): batch_time = AverageMeter() data_time = AverageMeter() cls_losses = AverageMeter() kd_losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() snet = nets['snet'] tnet = nets['tnet'] criterionCls = criterions['criterionCls'] criterionKD = criterions['criterionKD'] # warmup for the first 10 epoch lambda_kd = 0 if epoch <= 10 else max(args.lambda_kd * (1 - 5 / 4 * (epoch-1) / args.epochs), 0) snet.train() end = time.time() for i, (img, target) in enumerate(train_loader, start=1): data_time.update(time.time() - end) if args.cuda: img = img.cuda(non_blocking=True) target = target.cuda(non_blocking=True) _, _, _, _, _, out_s = snet(img) _, _, _, _, _, out_t = tnet(img) cls_loss = criterionCls(out_s, target) kd_loss = None if lambda_kd > 0: condition1 = target == out_s.sort(dim=1, descending=True)[1][:,0] condition2 = target == out_t.sort(dim=1, descending=True)[1][:,0] attack_flag = condition1 & condition2 if attack_flag.sum(): # base sample selection attack_idx = attack_flag.nonzero().view(-1) if attack_idx.shape[0] > args.attack_size: diff = (F.softmax(out_t[attack_idx,:], 1) - F.softmax(out_s[attack_idx,:], 1)) ** 2 score = diff.sum(dim=1) - diff.gather(1, target[attack_idx].unsqueeze(1)).squeeze() attack_idx = attack_idx[score.sort(descending=True)[1][:args.attack_size]] # attack class selection attack_class = out_t.sort(dim=1, descending=True)[1][:,1][attack_idx] class_score, class_idx = F.softmax(out_t, 1)[attack_idx, :].sort(dim=1, descending=True) class_score = class_score[:, 1:] class_idx = class_idx[:, 1:] rand_size = attack_idx.shape[0] rand_seed = torch.rand([rand_size]).cuda() if args.cuda else torch.rand([rand_size]) rand_seed = class_score.sum(dim=1) * rand_seed prob = class_score.cumsum(dim=1) for k in range(attack_idx.shape[0]): for c in range(prob.shape[1]): if (prob[k,c] >= rand_seed[k]).cpu().numpy(): attack_class[k] = class_idx[k,c] break # forward adversarial samples attacked_img = attacker.attack(tnet, img[attack_idx, ...], target[attack_idx], attack_class) _, _, _, _, _, attacked_out_s = snet(attacked_img) _, _, _, _, _, attacked_out_t = tnet(attacked_img) kd_loss = criterionKD(attacked_out_s, attacked_out_t) * lambda_kd if kd_loss is None: kd_loss = torch.zeros(1).cuda() if args.cuda else torch.zeros(1) loss = cls_loss + kd_loss prec1, prec5 = accuracy(out_s, target, topk=(1,5)) cls_losses.update(cls_loss.item(), img.size(0)) kd_losses.update(kd_loss.item(), img.size(0)) top1.update(prec1.item(), img.size(0)) top5.update(prec5.item(), img.size(0)) optimizer.zero_grad() loss.backward() optimizer.step() batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: log_str = ('Epoch[{0}]:[{1:03}/{2:03}] ' 'Time:{batch_time.val:.4f} ' 'Data:{data_time.val:.4f} ' 'Cls:{cls_losses.val:.4f}({cls_losses.avg:.4f}) ' 'KD:{kd_losses.val:.4f}({kd_losses.avg:.4f}) ' 'prec@1:{top1.val:.2f}({top1.avg:.2f}) ' 'prec@5:{top5.val:.2f}({top5.avg:.2f})'.format( epoch, i, len(train_loader), batch_time=batch_time, data_time=data_time, cls_losses=cls_losses, kd_losses=kd_losses, top1=top1, top5=top5)) logging.info(log_str) def test(test_loader, nets, criterions, epoch): cls_losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() snet = nets['snet'] criterionCls = criterions['criterionCls'] snet.eval() end = time.time() for i, (img, target) in enumerate(test_loader, start=1): if args.cuda: img = img.cuda(non_blocking=True) target = target.cuda(non_blocking=True) with torch.no_grad(): _, _, _, _, _, out_s = snet(img) cls_loss = criterionCls(out_s, target) prec1, prec5 = accuracy(out_s, target, topk=(1,5)) cls_losses.update(cls_loss.item(), img.size(0)) top1.update(prec1.item(), img.size(0)) top5.update(prec5.item(), img.size(0)) f_l = [cls_losses.avg, top1.avg, top5.avg] logging.info('Cls: {:.4f}, Prec@1: {:.2f}, Prec@5: {:.2f}'.format(*f_l)) return top1.avg, top5.avg def adjust_lr(optimizer, epoch): scale = 0.1 lr_list = [args.lr] * 100 lr_list += [args.lr*scale] * 50 lr_list += [args.lr*scale*scale] * 50 lr = lr_list[epoch-1] logging.info('Epoch: {} lr: {:.3f}'.format(epoch, lr)) for param_group in optimizer.param_groups: param_group['lr'] = lr if __name__ == '__main__': main()
EXA-1-master
exa/libraries/Knowledge-Distillation-Zoo/train_bss.py
from __future__ import absolute_import from __future__ import print_function from __future__ import division import os import sys import time import logging import argparse import numpy as np from itertools import chain import torch import torch.nn as nn import torch.nn.functional as F import torch.backends.cudnn as cudnn import torchvision.transforms as transforms import torchvision.datasets as dst from utils import AverageMeter, accuracy, transform_time from utils import load_pretrained_model, save_checkpoint from utils import create_exp_dir, count_parameters_in_MB from network import define_tsnet from kd_losses import * parser = argparse.ArgumentParser(description='train kd') # various path parser.add_argument('--save_root', type=str, default='./results', help='models and logs are saved here') parser.add_argument('--img_root', type=str, default='./datasets', help='path name of image dataset') parser.add_argument('--s_init', type=str, required=True, help='initial parameters of student model') parser.add_argument('--t_model', type=str, required=True, help='path name of teacher model') # training hyper parameters parser.add_argument('--print_freq', type=int, default=50, help='frequency of showing training results on console') parser.add_argument('--epochs', type=int, default=200, help='number of total epochs to run') parser.add_argument('--batch_size', type=int, default=128, help='The size of batch') parser.add_argument('--lr', type=float, default=0.1, help='initial learning rate') parser.add_argument('--momentum', type=float, default=0.9, help='momentum') parser.add_argument('--weight_decay', type=float, default=1e-4, help='weight decay') parser.add_argument('--num_class', type=int, default=10, help='number of classes') parser.add_argument('--cuda', type=int, default=1) # others parser.add_argument('--seed', type=int, default=2, help='random seed') parser.add_argument('--note', type=str, default='try', help='note for this run') # net and dataset choosen parser.add_argument('--data_name', type=str, required=True, help='name of dataset') # cifar10/cifar100 parser.add_argument('--t_name', type=str, required=True, help='name of teacher') # resnet20/resnet110 parser.add_argument('--s_name', type=str, required=True, help='name of student') # resnet20/resnet110 # hyperparameter parser.add_argument('--kd_mode', type=str, required=True, help='mode of kd, which can be:' 'logits/st/at/fitnet/nst/pkt/fsp/rkd/ab/' 'sp/sobolev/cc/lwm/irg/vid/ofd/afd') parser.add_argument('--lambda_kd', type=float, default=1.0, help='trade-off parameter for kd loss') parser.add_argument('--T', type=float, default=4.0, help='temperature for ST') parser.add_argument('--p', type=float, default=2.0, help='power for AT') parser.add_argument('--w_dist', type=float, default=25.0, help='weight for RKD distance') parser.add_argument('--w_angle', type=float, default=50.0, help='weight for RKD angle') parser.add_argument('--m', type=float, default=2.0, help='margin for AB') parser.add_argument('--gamma', type=float, default=0.4, help='gamma in Gaussian RBF for CC') parser.add_argument('--P_order', type=int, default=2, help='P-order Taylor series of Gaussian RBF for CC') parser.add_argument('--w_irg_vert', type=float, default=0.1, help='weight for IRG vertex') parser.add_argument('--w_irg_edge', type=float, default=5.0, help='weight for IRG edge') parser.add_argument('--w_irg_tran', type=float, default=5.0, help='weight for IRG transformation') parser.add_argument('--sf', type=float, default=1.0, help='scale factor for VID, i.e. mid_channels = sf * out_channels') parser.add_argument('--init_var', type=float, default=5.0, help='initial variance for VID') parser.add_argument('--att_f', type=float, default=1.0, help='attention factor of mid_channels for AFD') args, unparsed = parser.parse_known_args() args.save_root = os.path.join(args.save_root, args.note) create_exp_dir(args.save_root) log_format = '%(message)s' logging.basicConfig(stream=sys.stdout, level=logging.INFO, format=log_format) fh = logging.FileHandler(os.path.join(args.save_root, 'log.txt')) fh.setFormatter(logging.Formatter(log_format)) logging.getLogger().addHandler(fh) def main(): np.random.seed(args.seed) torch.manual_seed(args.seed) if args.cuda: torch.cuda.manual_seed(args.seed) cudnn.enabled = True cudnn.benchmark = True logging.info("args = %s", args) logging.info("unparsed_args = %s", unparsed) logging.info('----------- Network Initialization --------------') snet = define_tsnet(name=args.s_name, num_class=args.num_class, cuda=args.cuda) checkpoint = torch.load(args.s_init) load_pretrained_model(snet, checkpoint['net']) logging.info('Student: %s', snet) logging.info('Student param size = %fMB', count_parameters_in_MB(snet)) tnet = define_tsnet(name=args.t_name, num_class=args.num_class, cuda=args.cuda) checkpoint = torch.load(args.t_model) load_pretrained_model(tnet, checkpoint['net']) tnet.eval() for param in tnet.parameters(): param.requires_grad = False logging.info('Teacher: %s', tnet) logging.info('Teacher param size = %fMB', count_parameters_in_MB(tnet)) logging.info('-----------------------------------------------') # define loss functions if args.kd_mode == 'logits': criterionKD = Logits() elif args.kd_mode == 'st': criterionKD = SoftTarget(args.T) elif args.kd_mode == 'at': criterionKD = AT(args.p) elif args.kd_mode == 'fitnet': criterionKD = Hint() elif args.kd_mode == 'nst': criterionKD = NST() elif args.kd_mode == 'pkt': criterionKD = PKTCosSim() elif args.kd_mode == 'fsp': criterionKD = FSP() elif args.kd_mode == 'rkd': criterionKD = RKD(args.w_dist, args.w_angle) elif args.kd_mode == 'ab': criterionKD = AB(args.m) elif args.kd_mode == 'sp': criterionKD = SP() elif args.kd_mode == 'sobolev': criterionKD = Sobolev() elif args.kd_mode == 'cc': criterionKD = CC(args.gamma, args.P_order) elif args.kd_mode == 'lwm': criterionKD = LwM() elif args.kd_mode == 'irg': criterionKD = IRG(args.w_irg_vert, args.w_irg_edge, args.w_irg_tran) elif args.kd_mode == 'vid': s_channels = snet.module.get_channel_num()[1:4] t_channels = tnet.module.get_channel_num()[1:4] criterionKD = [] for s_c, t_c in zip(s_channels, t_channels): criterionKD.append(VID(s_c, int(args.sf*t_c), t_c, args.init_var)) criterionKD = [c.cuda() for c in criterionKD] if args.cuda else criterionKD criterionKD = [None] + criterionKD # None is a placeholder elif args.kd_mode == 'ofd': s_channels = snet.module.get_channel_num()[1:4] t_channels = tnet.module.get_channel_num()[1:4] criterionKD = [] for s_c, t_c in zip(s_channels, t_channels): criterionKD.append(OFD(s_c, t_c).cuda() if args.cuda else OFD(s_c, t_c)) criterionKD = [None] + criterionKD # None is a placeholder elif args.kd_mode == 'afd': # t_channels is same with s_channels s_channels = snet.module.get_channel_num()[1:4] t_channels = tnet.module.get_channel_num()[1:4] criterionKD = [] for t_c in t_channels: criterionKD.append(AFD(t_c, args.att_f).cuda() if args.cuda else AFD(t_c, args.att_f)) criterionKD = [None] + criterionKD # None is a placeholder # # t_chws is same with s_chws # s_chws = snet.module.get_chw_num()[1:4] # t_chws = tnet.module.get_chw_num()[1:4] # criterionKD = [] # for t_chw in t_chws: # criterionKD.append(AFD(t_chw).cuda() if args.cuda else AFD(t_chw)) # criterionKD = [None] + criterionKD # None is a placeholder else: raise Exception('Invalid kd mode...') if args.cuda: criterionCls = torch.nn.CrossEntropyLoss().cuda() else: criterionCls = torch.nn.CrossEntropyLoss() # initialize optimizer if args.kd_mode in ['vid', 'ofd', 'afd']: optimizer = torch.optim.SGD(chain(snet.parameters(), *[c.parameters() for c in criterionKD[1:]]), lr = args.lr, momentum = args.momentum, weight_decay = args.weight_decay, nesterov = True) else: optimizer = torch.optim.SGD(snet.parameters(), lr = args.lr, momentum = args.momentum, weight_decay = args.weight_decay, nesterov = True) # define transforms if args.data_name == 'cifar10': dataset = dst.CIFAR10 mean = (0.4914, 0.4822, 0.4465) std = (0.2470, 0.2435, 0.2616) elif args.data_name == 'cifar100': dataset = dst.CIFAR100 mean = (0.5071, 0.4865, 0.4409) std = (0.2673, 0.2564, 0.2762) else: raise Exception('Invalid dataset name...') train_transform = transforms.Compose([ transforms.Pad(4, padding_mode='reflect'), transforms.RandomCrop(32), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=mean,std=std) ]) test_transform = transforms.Compose([ transforms.CenterCrop(32), transforms.ToTensor(), transforms.Normalize(mean=mean,std=std) ]) # define data loader train_loader = torch.utils.data.DataLoader( dataset(root = args.img_root, transform = train_transform, train = True, download = True), batch_size=args.batch_size, shuffle=True, num_workers=4, pin_memory=True) test_loader = torch.utils.data.DataLoader( dataset(root = args.img_root, transform = test_transform, train = False, download = True), batch_size=args.batch_size, shuffle=False, num_workers=4, pin_memory=True) # warp nets and criterions for train and test nets = {'snet':snet, 'tnet':tnet} criterions = {'criterionCls':criterionCls, 'criterionKD':criterionKD} # first initilizing the student nets if args.kd_mode in ['fsp', 'ab']: logging.info('The first stage, student initialization......') train_init(train_loader, nets, optimizer, criterions, 50) args.lambda_kd = 0.0 logging.info('The second stage, softmax training......') best_top1 = 0 best_top5 = 0 for epoch in range(1, args.epochs+1): adjust_lr(optimizer, epoch) # train one epoch epoch_start_time = time.time() train(train_loader, nets, optimizer, criterions, epoch) # evaluate on testing set logging.info('Testing the models......') test_top1, test_top5 = test(test_loader, nets, criterions, epoch) epoch_duration = time.time() - epoch_start_time logging.info('Epoch time: {}s'.format(int(epoch_duration))) # save model is_best = False if test_top1 > best_top1: best_top1 = test_top1 best_top5 = test_top5 is_best = True logging.info('Saving models......') save_checkpoint({ 'epoch': epoch, 'snet': snet.state_dict(), 'tnet': tnet.state_dict(), 'prec@1': test_top1, 'prec@5': test_top5, }, is_best, args.save_root) def train_init(train_loader, nets, optimizer, criterions, total_epoch): snet = nets['snet'] tnet = nets['tnet'] criterionCls = criterions['criterionCls'] criterionKD = criterions['criterionKD'] snet.train() for epoch in range(1, total_epoch+1): adjust_lr_init(optimizer, epoch) batch_time = AverageMeter() data_time = AverageMeter() cls_losses = AverageMeter() kd_losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() epoch_start_time = time.time() end = time.time() for i, (img, target) in enumerate(train_loader, start=1): data_time.update(time.time() - end) if args.cuda: img = img.cuda(non_blocking=True) target = target.cuda(non_blocking=True) stem_s, rb1_s, rb2_s, rb3_s, feat_s, out_s = snet(img) stem_t, rb1_t, rb2_t, rb3_t, feat_t, out_t = tnet(img) cls_loss = criterionCls(out_s, target) * 0.0 if args.kd_mode in ['fsp']: kd_loss = (criterionKD(stem_s[1], rb1_s[1], stem_t[1].detach(), rb1_t[1].detach()) + criterionKD(rb1_s[1], rb2_s[1], rb1_t[1].detach(), rb2_t[1].detach()) + criterionKD(rb2_s[1], rb3_s[1], rb2_t[1].detach(), rb3_t[1].detach())) / 3.0 * args.lambda_kd elif args.kd_mode in ['ab']: kd_loss = (criterionKD(rb1_s[0], rb1_t[0].detach()) + criterionKD(rb2_s[0], rb2_t[0].detach()) + criterionKD(rb3_s[0], rb3_t[0].detach())) / 3.0 * args.lambda_kd else: raise Exception('Invalid kd mode...') loss = cls_loss + kd_loss prec1, prec5 = accuracy(out_s, target, topk=(1,5)) cls_losses.update(cls_loss.item(), img.size(0)) kd_losses.update(kd_loss.item(), img.size(0)) top1.update(prec1.item(), img.size(0)) top5.update(prec5.item(), img.size(0)) optimizer.zero_grad() loss.backward() optimizer.step() batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: log_str = ('Epoch[{0}]:[{1:03}/{2:03}] ' 'Time:{batch_time.val:.4f} ' 'Data:{data_time.val:.4f} ' 'Cls:{cls_losses.val:.4f}({cls_losses.avg:.4f}) ' 'KD:{kd_losses.val:.4f}({kd_losses.avg:.4f}) ' 'prec@1:{top1.val:.2f}({top1.avg:.2f}) ' 'prec@5:{top5.val:.2f}({top5.avg:.2f})'.format( epoch, i, len(train_loader), batch_time=batch_time, data_time=data_time, cls_losses=cls_losses, kd_losses=kd_losses, top1=top1, top5=top5)) logging.info(log_str) epoch_duration = time.time() - epoch_start_time logging.info('Epoch time: {}s'.format(int(epoch_duration))) def train(train_loader, nets, optimizer, criterions, epoch): batch_time = AverageMeter() data_time = AverageMeter() cls_losses = AverageMeter() kd_losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() snet = nets['snet'] tnet = nets['tnet'] criterionCls = criterions['criterionCls'] criterionKD = criterions['criterionKD'] snet.train() if args.kd_mode in ['vid', 'ofd']: for i in range(1,4): criterionKD[i].train() end = time.time() for i, (img, target) in enumerate(train_loader, start=1): data_time.update(time.time() - end) if args.cuda: img = img.cuda(non_blocking=True) target = target.cuda(non_blocking=True) if args.kd_mode in ['sobolev', 'lwm']: img.requires_grad = True stem_s, rb1_s, rb2_s, rb3_s, feat_s, out_s = snet(img) stem_t, rb1_t, rb2_t, rb3_t, feat_t, out_t = tnet(img) cls_loss = criterionCls(out_s, target) if args.kd_mode in ['logits', 'st']: kd_loss = criterionKD(out_s, out_t.detach()) * args.lambda_kd elif args.kd_mode in ['fitnet', 'nst']: kd_loss = criterionKD(rb3_s[1], rb3_t[1].detach()) * args.lambda_kd elif args.kd_mode in ['at', 'sp']: kd_loss = (criterionKD(rb1_s[1], rb1_t[1].detach()) + criterionKD(rb2_s[1], rb2_t[1].detach()) + criterionKD(rb3_s[1], rb3_t[1].detach())) / 3.0 * args.lambda_kd elif args.kd_mode in ['pkt', 'rkd', 'cc']: kd_loss = criterionKD(feat_s, feat_t.detach()) * args.lambda_kd elif args.kd_mode in ['fsp']: kd_loss = (criterionKD(stem_s[1], rb1_s[1], stem_t[1].detach(), rb1_t[1].detach()) + criterionKD(rb1_s[1], rb2_s[1], rb1_t[1].detach(), rb2_t[1].detach()) + criterionKD(rb2_s[1], rb3_s[1], rb2_t[1].detach(), rb3_t[1].detach())) / 3.0 * args.lambda_kd elif args.kd_mode in ['ab']: kd_loss = (criterionKD(rb1_s[0], rb1_t[0].detach()) + criterionKD(rb2_s[0], rb2_t[0].detach()) + criterionKD(rb3_s[0], rb3_t[0].detach())) / 3.0 * args.lambda_kd elif args.kd_mode in ['sobolev']: kd_loss = criterionKD(out_s, out_t, img, target) * args.lambda_kd elif args.kd_mode in ['lwm']: kd_loss = criterionKD(out_s, rb2_s[1], out_t, rb2_t[1], target) * args.lambda_kd elif args.kd_mode in ['irg']: kd_loss = criterionKD([rb2_s[1], rb3_s[1], feat_s, out_s], [rb2_t[1].detach(), rb3_t[1].detach(), feat_t.detach(), out_t.detach()]) * args.lambda_kd elif args.kd_mode in ['vid', 'afd']: kd_loss = (criterionKD[1](rb1_s[1], rb1_t[1].detach()) + criterionKD[2](rb2_s[1], rb2_t[1].detach()) + criterionKD[3](rb3_s[1], rb3_t[1].detach())) / 3.0 * args.lambda_kd elif args.kd_mode in ['ofd']: kd_loss = (criterionKD[1](rb1_s[0], rb1_t[0].detach()) + criterionKD[2](rb2_s[0], rb2_t[0].detach()) + criterionKD[3](rb3_s[0], rb3_t[0].detach())) / 3.0 * args.lambda_kd else: raise Exception('Invalid kd mode...') loss = cls_loss + kd_loss prec1, prec5 = accuracy(out_s, target, topk=(1,5)) cls_losses.update(cls_loss.item(), img.size(0)) kd_losses.update(kd_loss.item(), img.size(0)) top1.update(prec1.item(), img.size(0)) top5.update(prec5.item(), img.size(0)) optimizer.zero_grad() loss.backward() optimizer.step() batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: log_str = ('Epoch[{0}]:[{1:03}/{2:03}] ' 'Time:{batch_time.val:.4f} ' 'Data:{data_time.val:.4f} ' 'Cls:{cls_losses.val:.4f}({cls_losses.avg:.4f}) ' 'KD:{kd_losses.val:.4f}({kd_losses.avg:.4f}) ' 'prec@1:{top1.val:.2f}({top1.avg:.2f}) ' 'prec@5:{top5.val:.2f}({top5.avg:.2f})'.format( epoch, i, len(train_loader), batch_time=batch_time, data_time=data_time, cls_losses=cls_losses, kd_losses=kd_losses, top1=top1, top5=top5)) logging.info(log_str) def test(test_loader, nets, criterions, epoch): cls_losses = AverageMeter() kd_losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() snet = nets['snet'] tnet = nets['tnet'] criterionCls = criterions['criterionCls'] criterionKD = criterions['criterionKD'] snet.eval() if args.kd_mode in ['vid', 'ofd']: for i in range(1,4): criterionKD[i].eval() end = time.time() for i, (img, target) in enumerate(test_loader, start=1): if args.cuda: img = img.cuda(non_blocking=True) target = target.cuda(non_blocking=True) if args.kd_mode in ['sobolev', 'lwm']: img.requires_grad = True stem_s, rb1_s, rb2_s, rb3_s, feat_s, out_s = snet(img) stem_t, rb1_t, rb2_t, rb3_t, feat_t, out_t = tnet(img) else: with torch.no_grad(): stem_s, rb1_s, rb2_s, rb3_s, feat_s, out_s = snet(img) stem_t, rb1_t, rb2_t, rb3_t, feat_t, out_t = tnet(img) cls_loss = criterionCls(out_s, target) if args.kd_mode in ['logits', 'st']: kd_loss = criterionKD(out_s, out_t.detach()) * args.lambda_kd elif args.kd_mode in ['fitnet', 'nst']: kd_loss = criterionKD(rb3_s[1], rb3_t[1].detach()) * args.lambda_kd elif args.kd_mode in ['at', 'sp']: kd_loss = (criterionKD(rb1_s[1], rb1_t[1].detach()) + criterionKD(rb2_s[1], rb2_t[1].detach()) + criterionKD(rb3_s[1], rb3_t[1].detach())) / 3.0 * args.lambda_kd elif args.kd_mode in ['pkt', 'rkd', 'cc']: kd_loss = criterionKD(feat_s, feat_t.detach()) * args.lambda_kd elif args.kd_mode in ['fsp']: kd_loss = (criterionKD(stem_s[1], rb1_s[1], stem_t[1].detach(), rb1_t[1].detach()) + criterionKD(rb1_s[1], rb2_s[1], rb1_t[1].detach(), rb2_t[1].detach()) + criterionKD(rb2_s[1], rb3_s[1], rb2_t[1].detach(), rb3_t[1].detach())) / 3.0 * args.lambda_kd elif args.kd_mode in ['ab']: kd_loss = (criterionKD(rb1_s[0], rb1_t[0].detach()) + criterionKD(rb2_s[0], rb2_t[0].detach()) + criterionKD(rb3_s[0], rb3_t[0].detach())) / 3.0 * args.lambda_kd elif args.kd_mode in ['sobolev']: kd_loss = criterionKD(out_s, out_t, img, target) * args.lambda_kd elif args.kd_mode in ['lwm']: kd_loss = criterionKD(out_s, rb2_s[1], out_t, rb2_t[1], target) * args.lambda_kd elif args.kd_mode in ['irg']: kd_loss = criterionKD([rb2_s[1], rb3_s[1], feat_s, out_s], [rb2_t[1].detach(), rb3_t[1].detach(), feat_t.detach(), out_t.detach()]) * args.lambda_kd elif args.kd_mode in ['vid', 'afd']: kd_loss = (criterionKD[1](rb1_s[1], rb1_t[1].detach()) + criterionKD[2](rb2_s[1], rb2_t[1].detach()) + criterionKD[3](rb3_s[1], rb3_t[1].detach())) / 3.0 * args.lambda_kd elif args.kd_mode in ['ofd']: kd_loss = (criterionKD[1](rb1_s[0], rb1_t[0].detach()) + criterionKD[2](rb2_s[0], rb2_t[0].detach()) + criterionKD[3](rb3_s[0], rb3_t[0].detach())) / 3.0 * args.lambda_kd else: raise Exception('Invalid kd mode...') prec1, prec5 = accuracy(out_s, target, topk=(1,5)) cls_losses.update(cls_loss.item(), img.size(0)) kd_losses.update(kd_loss.item(), img.size(0)) top1.update(prec1.item(), img.size(0)) top5.update(prec5.item(), img.size(0)) f_l = [cls_losses.avg, kd_losses.avg, top1.avg, top5.avg] logging.info('Cls: {:.4f}, KD: {:.4f}, Prec@1: {:.2f}, Prec@5: {:.2f}'.format(*f_l)) return top1.avg, top5.avg def adjust_lr_init(optimizer, epoch): scale = 0.1 lr_list = [args.lr*scale] * 30 lr_list += [args.lr*scale*scale] * 10 lr_list += [args.lr*scale*scale*scale] * 10 lr = lr_list[epoch-1] logging.info('Epoch: {} lr: {:.4f}'.format(epoch, lr)) for param_group in optimizer.param_groups: param_group['lr'] = lr def adjust_lr(optimizer, epoch): scale = 0.1 lr_list = [args.lr] * 100 lr_list += [args.lr*scale] * 50 lr_list += [args.lr*scale*scale] * 50 lr = lr_list[epoch-1] logging.info('Epoch: {} lr: {:.3f}'.format(epoch, lr)) for param_group in optimizer.param_groups: param_group['lr'] = lr if __name__ == '__main__': main()
EXA-1-master
exa/libraries/Knowledge-Distillation-Zoo/train_kd.py
from __future__ import absolute_import from __future__ import print_function from __future__ import division import os import sys import time import logging import argparse import numpy as np from itertools import chain import torch import torch.nn as nn import torch.nn.functional as F import torch.backends.cudnn as cudnn import torchvision.transforms as transforms import torchvision.datasets as dst from utils import AverageMeter, accuracy, transform_time from utils import load_pretrained_model, save_checkpoint from utils import create_exp_dir, count_parameters_in_MB from network import define_tsnet, define_paraphraser, define_translator from kd_losses import * parser = argparse.ArgumentParser(description='factor transfer') # various path parser.add_argument('--save_root', type=str, default='./results', help='models and logs are saved here') parser.add_argument('--img_root', type=str, default='./datasets', help='path name of image dataset') parser.add_argument('--s_init', type=str, required=True, help='initial parameters of student model') parser.add_argument('--t_model', type=str, required=True, help='path name of teacher model') # training hyper parameters parser.add_argument('--print_freq', type=int, default=50, help='frequency of showing training results on console') parser.add_argument('--epochs', type=int, default=200, help='number of total epochs to run') parser.add_argument('--batch_size', type=int, default=128, help='The size of batch') parser.add_argument('--lr', type=float, default=0.1, help='initial learning rate') parser.add_argument('--momentum', type=float, default=0.9, help='momentum') parser.add_argument('--weight_decay', type=float, default=1e-4, help='weight decay') parser.add_argument('--num_class', type=int, default=10, help='number of classes') parser.add_argument('--cuda', type=int, default=1) # others parser.add_argument('--seed', type=int, default=2, help='random seed') parser.add_argument('--note', type=str, default='try', help='note for this run') # net and dataset choosen parser.add_argument('--data_name', type=str, required=True, help='name of dataset') # cifar10/cifar100 parser.add_argument('--t_name', type=str, required=True, help='name of teacher') # resnet20/resnet110 parser.add_argument('--s_name', type=str, required=True, help='name of student') # resnet20/resnet110 # hyperparameter parser.add_argument('--lambda_kd', type=float, default=200.0) parser.add_argument('--k', type=float, default=0.5) args, unparsed = parser.parse_known_args() args.save_root = os.path.join(args.save_root, args.note) create_exp_dir(args.save_root) log_format = '%(message)s' logging.basicConfig(stream=sys.stdout, level=logging.INFO, format=log_format) fh = logging.FileHandler(os.path.join(args.save_root, 'log.txt')) fh.setFormatter(logging.Formatter(log_format)) logging.getLogger().addHandler(fh) def main(): np.random.seed(args.seed) torch.manual_seed(args.seed) if args.cuda: torch.cuda.manual_seed(args.seed) cudnn.enabled = True cudnn.benchmark = True logging.info("args = %s", args) logging.info("unparsed_args = %s", unparsed) logging.info('----------- Network Initialization --------------') snet = define_tsnet(name=args.s_name, num_class=args.num_class, cuda=args.cuda) checkpoint = torch.load(args.s_init) load_pretrained_model(snet, checkpoint['net']) logging.info('Student: %s', snet) logging.info('Student param size = %fMB', count_parameters_in_MB(snet)) tnet = define_tsnet(name=args.t_name, num_class=args.num_class, cuda=args.cuda) checkpoint = torch.load(args.t_model) load_pretrained_model(tnet, checkpoint['net']) tnet.eval() for param in tnet.parameters(): param.requires_grad = False logging.info('Teacher: %s', tnet) logging.info('Teacher param size = %fMB', count_parameters_in_MB(tnet)) use_bn = True if args.data_name == 'cifar10' else False in_channels_t = tnet.module.get_channel_num()[3] in_channels_s = snet.module.get_channel_num()[3] paraphraser = define_paraphraser(in_channels_t, args.k, use_bn, args.cuda) logging.info('Paraphraser: %s', paraphraser) logging.info('Paraphraser param size = %fMB', count_parameters_in_MB(paraphraser)) translator = define_translator(in_channels_s, in_channels_t, args.k, use_bn, args.cuda) logging.info('Translator: %s', paraphraser) logging.info('Translator param size = %fMB', count_parameters_in_MB(translator)) logging.info('-----------------------------------------------') # initialize optimizer optimizer_para = torch.optim.SGD(paraphraser.parameters(), lr = args.lr * 0.1, momentum = args.momentum, weight_decay = args.weight_decay) optimizer = torch.optim.SGD(chain(snet.parameters(),translator.parameters()), lr = args.lr, momentum = args.momentum, weight_decay = args.weight_decay, nesterov = True) # define loss functions criterionKD = FT() if args.cuda: criterionCls = torch.nn.CrossEntropyLoss().cuda() criterionPara = torch.nn.MSELoss().cuda() else: criterionCls = torch.nn.CrossEntropyLoss() criterionPara = torch.nn.MSELoss() # define transforms if args.data_name == 'cifar10': dataset = dst.CIFAR10 mean = (0.4914, 0.4822, 0.4465) std = (0.2470, 0.2435, 0.2616) elif args.data_name == 'cifar100': dataset = dst.CIFAR100 mean = (0.5071, 0.4865, 0.4409) std = (0.2673, 0.2564, 0.2762) else: raise Exception('Invalid dataset name...') train_transform = transforms.Compose([ transforms.Pad(4, padding_mode='reflect'), transforms.RandomCrop(32), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=mean,std=std) ]) test_transform = transforms.Compose([ transforms.CenterCrop(32), transforms.ToTensor(), transforms.Normalize(mean=mean,std=std) ]) # define data loader train_loader = torch.utils.data.DataLoader( dataset(root = args.img_root, transform = train_transform, train = True, download = True), batch_size=args.batch_size, shuffle=True, num_workers=4, pin_memory=True) test_loader = torch.utils.data.DataLoader( dataset(root = args.img_root, transform = test_transform, train = False, download = True), batch_size=args.batch_size, shuffle=False, num_workers=4, pin_memory=True) # warp nets and criterions for train and test nets = {'snet':snet, 'tnet':tnet, 'paraphraser':paraphraser, 'translator':translator} criterions = {'criterionCls':criterionCls, 'criterionKD':criterionKD} # first training the paraphraser logging.info('The first stage, training the paraphraser......') train_para(train_loader, nets, optimizer_para, criterionPara, 30) paraphraser.eval() for param in paraphraser.parameters(): param.requires_grad = False logging.info('The second stage, training the student network......') best_top1 = 0 best_top5 = 0 for epoch in range(1, args.epochs+1): adjust_lr(optimizer, epoch) # train one epoch epoch_start_time = time.time() train(train_loader, nets, optimizer, criterions, epoch) # evaluate on testing set logging.info('Testing the models......') test_top1, test_top5 = test(test_loader, nets, criterions) epoch_duration = time.time() - epoch_start_time logging.info('Epoch time: {}s'.format(int(epoch_duration))) # save model is_best = False if test_top1 > best_top1: best_top1 = test_top1 best_top5 = test_top5 is_best = True logging.info('Saving models......') save_checkpoint({ 'epoch': epoch, 'snet': snet.state_dict(), 'tnet': tnet.state_dict(), 'prec@1': test_top1, 'prec@5': test_top5, }, is_best, args.save_root) def train_para(train_loader, nets, optimizer_para, criterionPara, total_epoch): tnet = nets['tnet'] paraphraser = nets['paraphraser'] paraphraser.train() for epoch in range(1, total_epoch+1): batch_time = AverageMeter() data_time = AverageMeter() para_losses = AverageMeter() epoch_start_time = time.time() end = time.time() for i, (img, _) in enumerate(train_loader, start=1): data_time.update(time.time() - end) if args.cuda: img = img.cuda() _, _, _, rb3_t, _, _ = tnet(img) _, rb3_t_rec = paraphraser(rb3_t[1].detach()) para_loss = criterionPara(rb3_t_rec, rb3_t[1].detach()) para_losses.update(para_loss.item(), img.size(0)) optimizer_para.zero_grad() para_loss.backward() optimizer_para.step() batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: log_str = ('Epoch[{0}]:[{1:03}/{2:03}] ' 'Time:{batch_time.val:.4f} ' 'Data:{data_time.val:.4f} ' 'Para:{para_losses.val:.4f}({para_losses.avg:.4f})'.format( epoch, i, len(train_loader), batch_time=batch_time, data_time=data_time, para_losses=para_losses)) logging.info(log_str) epoch_duration = time.time() - epoch_start_time logging.info('Epoch time: {}s'.format(int(epoch_duration))) def train(train_loader, nets, optimizer, criterions, epoch): batch_time = AverageMeter() data_time = AverageMeter() cls_losses = AverageMeter() kd_losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() snet = nets['snet'] tnet = nets['tnet'] paraphraser = nets['paraphraser'] translator = nets['translator'] criterionCls = criterions['criterionCls'] criterionKD = criterions['criterionKD'] snet.train() translator.train() end = time.time() for i, (img, target) in enumerate(train_loader, start=1): data_time.update(time.time() - end) if args.cuda: img = img.cuda(non_blocking=True) target = target.cuda(non_blocking=True) _, _, _, rb3_s, _, out_s = snet(img) _, _, _, rb3_t, _, _ = tnet(img) factor_s = translator(rb3_s[1]) factor_t, _ = paraphraser(rb3_t[1]) cls_loss = criterionCls(out_s, target) kd_loss = criterionKD(factor_s, factor_t.detach()) * args.lambda_kd loss = cls_loss + kd_loss prec1, prec5 = accuracy(out_s, target, topk=(1,5)) cls_losses.update(cls_loss.item(), img.size(0)) kd_losses.update(kd_loss.item(), img.size(0)) top1.update(prec1.item(), img.size(0)) top5.update(prec5.item(), img.size(0)) optimizer.zero_grad() loss.backward() optimizer.step() batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: log_str = ('Epoch[{0}]:[{1:03}/{2:03}] ' 'Time:{batch_time.val:.4f} ' 'Data:{data_time.val:.4f} ' 'Cls:{cls_losses.val:.4f}({cls_losses.avg:.4f}) ' 'FT:{kd_losses.val:.4f}({kd_losses.avg:.4f}) ' 'prec@1:{top1.val:.2f}({top1.avg:.2f}) ' 'prec@5:{top5.val:.2f}({top5.avg:.2f})'.format( epoch, i, len(train_loader), batch_time=batch_time, data_time=data_time, cls_losses=cls_losses, kd_losses=kd_losses, top1=top1, top5=top5)) logging.info(log_str) def test(test_loader, nets, criterions): cls_losses = AverageMeter() kd_losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() snet = nets['snet'] tnet = nets['tnet'] paraphraser = nets['paraphraser'] translator = nets['translator'] criterionCls = criterions['criterionCls'] criterionKD = criterions['criterionKD'] snet.eval() translator.eval() end = time.time() for i, (img, target) in enumerate(test_loader, start=1): if args.cuda: img = img.cuda(non_blocking=True) target = target.cuda(non_blocking=True) with torch.no_grad(): _, _, _, rb3_s, _, out_s = snet(img) _, _, _, rb3_t, _, _ = tnet(img) factor_s = translator(rb3_s[1]) factor_t, _ = paraphraser(rb3_t[1]) cls_loss = criterionCls(out_s, target) kd_loss = criterionKD(factor_s, factor_t.detach()) * args.lambda_kd prec1, prec5 = accuracy(out_s, target, topk=(1,5)) cls_losses.update(cls_loss.item(), img.size(0)) kd_losses.update(kd_loss.item(), img.size(0)) top1.update(prec1.item(), img.size(0)) top5.update(prec5.item(), img.size(0)) f_l = [cls_losses.avg, kd_losses.avg, top1.avg, top5.avg] logging.info('Cls: {:.4f}, KD: {:.4f}, Prec@1: {:.2f}, Prec@5: {:.2f}'.format(*f_l)) return top1.avg, top5.avg def adjust_lr(optimizer, epoch): scale = 0.1 lr_list = [args.lr] * 100 lr_list += [args.lr*scale] * 50 lr_list += [args.lr*scale*scale] * 50 lr = lr_list[epoch-1] logging.info('epoch: {} lr: {:.3f}'.format(epoch, lr)) for param_group in optimizer.param_groups: param_group['lr'] = lr if __name__ == '__main__': main()
EXA-1-master
exa/libraries/Knowledge-Distillation-Zoo/train_ft.py
from __future__ import absolute_import from __future__ import print_function from __future__ import division import os import sys import time import logging import argparse import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.backends.cudnn as cudnn import torchvision.transforms as transforms import torchvision.datasets as dst from utils import AverageMeter, accuracy, transform_time from utils import load_pretrained_model, save_checkpoint from utils import create_exp_dir, count_parameters_in_MB from network import define_tsnet from kd_losses import * parser = argparse.ArgumentParser(description='deep mutual learning (only two nets)') # various path parser.add_argument('--save_root', type=str, default='./results', help='models and logs are saved here') parser.add_argument('--img_root', type=str, default='./datasets', help='path name of image dataset') parser.add_argument('--net1_init', type=str, required=True, help='initial parameters of net1') parser.add_argument('--net2_init', type=str, required=True, help='initial parameters of net2') # training hyper parameters parser.add_argument('--print_freq', type=int, default=50, help='frequency of showing training results on console') parser.add_argument('--epochs', type=int, default=200, help='number of total epochs to run') parser.add_argument('--batch_size', type=int, default=128, help='The size of batch') parser.add_argument('--lr', type=float, default=0.1, help='initial learning rate') parser.add_argument('--momentum', type=float, default=0.9, help='momentum') parser.add_argument('--weight_decay', type=float, default=1e-4, help='weight decay') parser.add_argument('--num_class', type=int, default=10, help='number of classes') parser.add_argument('--cuda', type=int, default=1) # others parser.add_argument('--seed', type=int, default=2, help='random seed') parser.add_argument('--note', type=str, default='try', help='note for this run') # net and dataset choosen parser.add_argument('--data_name', type=str, required=True, help='name of dataset') # cifar10/cifar100 parser.add_argument('--net1_name', type=str, required=True, help='name of net1') # resnet20/resnet110 parser.add_argument('--net2_name', type=str, required=True, help='name of net2') # resnet20/resnet110 # hyperparameter lambda parser.add_argument('--lambda_kd', type=float, default=1.0) args, unparsed = parser.parse_known_args() args.save_root = os.path.join(args.save_root, args.note) create_exp_dir(args.save_root) log_format = '%(message)s' logging.basicConfig(stream=sys.stdout, level=logging.INFO, format=log_format) fh = logging.FileHandler(os.path.join(args.save_root, 'log.txt')) fh.setFormatter(logging.Formatter(log_format)) logging.getLogger().addHandler(fh) def main(): np.random.seed(args.seed) torch.manual_seed(args.seed) if args.cuda: torch.cuda.manual_seed(args.seed) cudnn.enabled = True cudnn.benchmark = True logging.info("args = %s", args) logging.info("unparsed_args = %s", unparsed) logging.info('----------- Network Initialization --------------') net1 = define_tsnet(name=args.net1_name, num_class=args.num_class, cuda=args.cuda) checkpoint = torch.load(args.net1_init) load_pretrained_model(net1, checkpoint['net']) logging.info('Net1: %s', net1) logging.info('Net1 param size = %fMB', count_parameters_in_MB(net1)) net2 = define_tsnet(name=args.net2_name, num_class=args.num_class, cuda=args.cuda) checkpoint = torch.load(args.net2_init) load_pretrained_model(net2, checkpoint['net']) logging.info('Net2: %s', net1) logging.info('Net2 param size = %fMB', count_parameters_in_MB(net2)) logging.info('-----------------------------------------------') # initialize optimizer optimizer1 = torch.optim.SGD(net1.parameters(), lr = args.lr, momentum = args.momentum, weight_decay = args.weight_decay, nesterov = True) optimizer2 = torch.optim.SGD(net2.parameters(), lr = args.lr, momentum = args.momentum, weight_decay = args.weight_decay, nesterov = True) # define loss functions criterionKD = DML() if args.cuda: criterionCls = torch.nn.CrossEntropyLoss().cuda() else: criterionCls = torch.nn.CrossEntropyLoss() # define transforms if args.data_name == 'cifar10': dataset = dst.CIFAR10 mean = (0.4914, 0.4822, 0.4465) std = (0.2470, 0.2435, 0.2616) elif args.data_name == 'cifar100': dataset = dst.CIFAR100 mean = (0.5071, 0.4865, 0.4409) std = (0.2673, 0.2564, 0.2762) else: raise Exception('Invalid dataset name...') train_transform = transforms.Compose([ transforms.Pad(4, padding_mode='reflect'), transforms.RandomCrop(32), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=mean,std=std) ]) test_transform = transforms.Compose([ transforms.CenterCrop(32), transforms.ToTensor(), transforms.Normalize(mean=mean,std=std) ]) # define data loader train_loader = torch.utils.data.DataLoader( dataset(root = args.img_root, transform = train_transform, train = True, download = True), batch_size=args.batch_size, shuffle=True, num_workers=4, pin_memory=True) test_loader = torch.utils.data.DataLoader( dataset(root = args.img_root, transform = test_transform, train = False, download = True), batch_size=args.batch_size, shuffle=False, num_workers=4, pin_memory=True) # warp nets and criterions for train and test nets = {'net1':net1, 'net2':net2} criterions = {'criterionCls':criterionCls, 'criterionKD':criterionKD} optimizers = {'optimizer1':optimizer1, 'optimizer2':optimizer2} best_top1 = 0 best_top5 = 0 for epoch in range(1, args.epochs+1): adjust_lr(optimizers, epoch) # train one epoch epoch_start_time = time.time() train(train_loader, nets, optimizers, criterions, epoch) # evaluate on testing set logging.info('Testing the models......') test_top11, test_top15, test_top21, test_top25 = test(test_loader, nets, criterions) epoch_duration = time.time() - epoch_start_time logging.info('Epoch time: {}s'.format(int(epoch_duration))) # save model is_best = False if max(test_top11, test_top21) > best_top1: best_top1 = max(test_top11, test_top21) best_top5 = max(test_top15, test_top25) is_best = True logging.info('Saving models......') save_checkpoint({ 'epoch': epoch, 'net1': net1.state_dict(), 'net2': net2.state_dict(), 'prec1@1': test_top11, 'prec1@5': test_top15, 'prec2@1': test_top21, 'prec2@5': test_top25, }, is_best, args.save_root) def train(train_loader, nets, optimizers, criterions, epoch): batch_time = AverageMeter() data_time = AverageMeter() cls1_losses = AverageMeter() kd1_losses = AverageMeter() cls2_losses = AverageMeter() kd2_losses = AverageMeter() top11 = AverageMeter() top15 = AverageMeter() top21 = AverageMeter() top25 = AverageMeter() net1 = nets['net1'] net2 = nets['net2'] criterionCls = criterions['criterionCls'] criterionKD = criterions['criterionKD'] optimizer1 = optimizers['optimizer1'] optimizer2 = optimizers['optimizer2'] net1.train() net2.train() end = time.time() for i, (img, target) in enumerate(train_loader, start=1): data_time.update(time.time() - end) if args.cuda: img = img.cuda(non_blocking=True) target = target.cuda(non_blocking=True) _, _, _, _, _, out1 = net1(img) _, _, _, _, _, out2 = net2(img) # for net1 cls1_loss = criterionCls(out1, target) kd1_loss = criterionKD(out1, out2.detach()) * args.lambda_kd net1_loss = cls1_loss + kd1_loss prec11, prec15 = accuracy(out1, target, topk=(1,5)) cls1_losses.update(cls1_loss.item(), img.size(0)) kd1_losses.update(kd1_loss.item(), img.size(0)) top11.update(prec11.item(), img.size(0)) top15.update(prec15.item(), img.size(0)) # for net2 cls2_loss = criterionCls(out2, target) kd2_loss = criterionKD(out2, out1.detach()) * args.lambda_kd net2_loss = cls2_loss + kd2_loss prec21, prec25 = accuracy(out2, target, topk=(1,5)) cls2_losses.update(cls2_loss.item(), img.size(0)) kd2_losses.update(kd2_loss.item(), img.size(0)) top21.update(prec21.item(), img.size(0)) top25.update(prec25.item(), img.size(0)) # update net1 & net2 optimizer1.zero_grad() net1_loss.backward() optimizer1.step() optimizer2.zero_grad() net2_loss.backward() optimizer2.step() batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: log_str = ('Epoch[{0}]:[{1:03}/{2:03}] ' 'Time:{batch_time.val:.4f} ' 'Data:{data_time.val:.4f} ' 'Cls1:{cls1_losses.val:.4f}({cls1_losses.avg:.4f}) ' 'KD1:{kd1_losses.val:.4f}({kd1_losses.avg:.4f}) ' 'Cls2:{cls2_losses.val:.4f}({cls2_losses.avg:.4f}) ' 'KD2:{kd2_losses.val:.4f}({kd2_losses.avg:.4f}) ' 'prec1@1:{top11.val:.2f}({top11.avg:.2f}) ' 'prec1@5:{top15.val:.2f}({top15.avg:.2f}) ' 'prec2@1:{top21.val:.2f}({top21.avg:.2f}) ' 'prec2@5:{top25.val:.2f}({top25.avg:.2f})'.format( epoch, i, len(train_loader), batch_time=batch_time, data_time=data_time, cls1_losses=cls1_losses, kd1_losses=kd1_losses, top11=top11, top15=top15, cls2_losses=cls2_losses, kd2_losses=kd2_losses, top21=top21, top25=top25)) logging.info(log_str) def test(test_loader, nets, criterions): cls1_losses = AverageMeter() kd1_losses = AverageMeter() cls2_losses = AverageMeter() kd2_losses = AverageMeter() top11 = AverageMeter() top15 = AverageMeter() top21 = AverageMeter() top25 = AverageMeter() net1 = nets['net1'] net2 = nets['net2'] criterionCls = criterions['criterionCls'] criterionKD = criterions['criterionKD'] net1.eval() net2.eval() end = time.time() for i, (img, target) in enumerate(test_loader, start=1): if args.cuda: img = img.cuda(non_blocking=True) target = target.cuda(non_blocking=True) with torch.no_grad(): _, _, _, _, _, out1 = net1(img) _, _, _, _, _, out2 = net2(img) # for net1 cls1_loss = criterionCls(out1, target) kd1_loss = criterionKD(out1, out2.detach()) * args.lambda_kd prec11, prec15 = accuracy(out1, target, topk=(1,5)) cls1_losses.update(cls1_loss.item(), img.size(0)) kd1_losses.update(kd1_loss.item(), img.size(0)) top11.update(prec11.item(), img.size(0)) top15.update(prec15.item(), img.size(0)) # for net2 cls2_loss = criterionCls(out2, target) kd2_loss = criterionKD(out2, out1.detach()) * args.lambda_kd prec21, prec25 = accuracy(out2, target, topk=(1,5)) cls2_losses.update(cls2_loss.item(), img.size(0)) kd2_losses.update(kd2_loss.item(), img.size(0)) top21.update(prec21.item(), img.size(0)) top25.update(prec25.item(), img.size(0)) f_l = [cls1_losses.avg, kd1_losses.avg, top11.avg, top15.avg] f_l += [cls2_losses.avg, kd2_losses.avg, top21.avg, top25.avg] logging.info('Cls1: {:.4f}, KD1: {:.4f}, Prec1@1: {:.2f}, Prec1@5: {:.2f}' 'Cls2: {:.4f}, KD2: {:.4f}, Prec2@1: {:.2f}, Prec2@5: {:.2f}'.format(*f_l)) return top11.avg, top15.avg, top21.avg, top25.avg def adjust_lr(optimizers, epoch): scale = 0.1 lr_list = [args.lr] * 100 lr_list += [args.lr*scale] * 50 lr_list += [args.lr*scale*scale] * 50 lr = lr_list[epoch-1] logging.info('epoch: {} lr: {:.3f}'.format(epoch, lr)) for param_group in optimizers['optimizer1'].param_groups: param_group['lr'] = lr for param_group in optimizers['optimizer2'].param_groups: param_group['lr'] = lr if __name__ == '__main__': main()
EXA-1-master
exa/libraries/Knowledge-Distillation-Zoo/train_dml.py
from __future__ import absolute_import from __future__ import print_function from __future__ import division import os import sys import time import logging import argparse import numpy as np from itertools import chain import torch import torch.nn as nn import torch.nn.functional as F import torch.backends.cudnn as cudnn import torchvision.transforms as transforms import torchvision.datasets as dst from utils import AverageMeter, accuracy, transform_time from utils import load_pretrained_model, save_checkpoint from utils import create_exp_dir, count_parameters_in_MB from dataset import CIFAR10IdxSample, CIFAR100IdxSample from network import define_tsnet from kd_losses import CRD parser = argparse.ArgumentParser(description='contrastive representation distillation') # various path parser.add_argument('--save_root', type=str, default='./results', help='models and logs are saved here') parser.add_argument('--img_root', type=str, default='./datasets', help='path name of image dataset') parser.add_argument('--s_init', type=str, required=True, help='initial parameters of student model') parser.add_argument('--t_model', type=str, required=True, help='path name of teacher model') # training hyper parameters parser.add_argument('--print_freq', type=int, default=50, help='frequency of showing training results on console') parser.add_argument('--epochs', type=int, default=200, help='number of total epochs to run') parser.add_argument('--batch_size', type=int, default=128, help='The size of batch') parser.add_argument('--lr', type=float, default=0.1, help='initial learning rate') parser.add_argument('--momentum', type=float, default=0.9, help='momentum') parser.add_argument('--weight_decay', type=float, default=1e-4, help='weight decay') parser.add_argument('--num_class', type=int, default=10, help='number of classes') parser.add_argument('--cuda', type=int, default=1) # others parser.add_argument('--seed', type=int, default=2, help='random seed') parser.add_argument('--note', type=str, default='try', help='note for this run') # net and dataset choosen parser.add_argument('--data_name', type=str, required=True, help='name of dataset') # cifar10/cifar100 parser.add_argument('--t_name', type=str, required=True, help='name of teacher') # resnet20/resnet110 parser.add_argument('--s_name', type=str, required=True, help='name of student') # resnet20/resnet110 # hyperparameter parser.add_argument('--lambda_kd', type=float, default=0.2, help='trade-off parameter for kd loss') parser.add_argument('--feat_dim', type=int, default=128, help='dimension of the projection space') parser.add_argument('--nce_n', type=int, default=16384, help='number of negatives paired with each positive') parser.add_argument('--nce_t', type=float, default=0.1, help='temperature parameter') parser.add_argument('--nce_mom', type=float, default=0.5, help='momentum for non-parametric updates') parser.add_argument('--mode', type=str, default='exact', choices=['exact', 'relax']) args, unparsed = parser.parse_known_args() args.save_root = os.path.join(args.save_root, args.note) create_exp_dir(args.save_root) log_format = '%(message)s' logging.basicConfig(stream=sys.stdout, level=logging.INFO, format=log_format) fh = logging.FileHandler(os.path.join(args.save_root, 'log.txt')) fh.setFormatter(logging.Formatter(log_format)) logging.getLogger().addHandler(fh) def main(): np.random.seed(args.seed) torch.manual_seed(args.seed) if args.cuda: torch.cuda.manual_seed(args.seed) cudnn.enabled = True cudnn.benchmark = True logging.info("args = %s", args) logging.info("unparsed_args = %s", unparsed) logging.info('----------- Network Initialization --------------') snet = define_tsnet(name=args.s_name, num_class=args.num_class, cuda=args.cuda) checkpoint = torch.load(args.s_init) load_pretrained_model(snet, checkpoint['net']) logging.info('Student: %s', snet) logging.info('Student param size = %fMB', count_parameters_in_MB(snet)) tnet = define_tsnet(name=args.t_name, num_class=args.num_class, cuda=args.cuda) checkpoint = torch.load(args.t_model) load_pretrained_model(tnet, checkpoint['net']) tnet.eval() for param in tnet.parameters(): param.requires_grad = False logging.info('Teacher: %s', tnet) logging.info('Teacher param size = %fMB', count_parameters_in_MB(tnet)) logging.info('-----------------------------------------------') # define transforms if args.data_name == 'cifar10': train_dataset = CIFAR10IdxSample test_dataset = dst.CIFAR10 mean = (0.4914, 0.4822, 0.4465) std = (0.2470, 0.2435, 0.2616) elif args.data_name == 'cifar100': train_dataset = CIFAR100IdxSample test_dataset = dst.CIFAR100 mean = (0.5071, 0.4865, 0.4409) std = (0.2673, 0.2564, 0.2762) else: raise Exception('Invalid dataset name...') train_transform = transforms.Compose([ transforms.Pad(4, padding_mode='reflect'), transforms.RandomCrop(32), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=mean,std=std) ]) test_transform = transforms.Compose([ transforms.CenterCrop(32), transforms.ToTensor(), transforms.Normalize(mean=mean,std=std) ]) # define data loader train_loader = torch.utils.data.DataLoader( train_dataset(root = args.img_root, transform = train_transform, train = True, download = True, n = args.nce_n, mode = args.mode), batch_size=args.batch_size, shuffle=True, num_workers=4, pin_memory=True) test_loader = torch.utils.data.DataLoader( test_dataset(root = args.img_root, transform = test_transform, train = False, download = True), batch_size=args.batch_size, shuffle=False, num_workers=4, pin_memory=True) # define loss functions s_dim = snet.module.get_channel_num()[-2] t_dim = tnet.module.get_channel_num()[-2] if args.cuda: criterionCls = torch.nn.CrossEntropyLoss().cuda() criterionKD = CRD(s_dim, t_dim, args.feat_dim, args.nce_n, args.nce_t, args.nce_mom, len(train_loader.dataset)).cuda() else: criterionCls = torch.nn.CrossEntropyLoss() criterionKD = CRD(s_dim, t_dim, args.feat_dim, args.nce_n, args.nce_t, args.nce_mom, len(train_loader.dataset)) # initialize optimizer optimizer = torch.optim.SGD(chain(snet.parameters(), criterionKD.embed_t.parameters(), criterionKD.embed_s.parameters()), lr = args.lr, momentum = args.momentum, weight_decay = args.weight_decay, nesterov = True) # warp nets and criterions for train and test nets = {'snet':snet, 'tnet':tnet} criterions = {'criterionCls':criterionCls, 'criterionKD':criterionKD} best_top1 = 0 best_top5 = 0 for epoch in range(1, args.epochs+1): adjust_lr(optimizer, epoch) # train one epoch epoch_start_time = time.time() train(train_loader, nets, optimizer, criterions, epoch) # evaluate on testing set logging.info('Testing the models......') test_top1, test_top5 = test(test_loader, nets, criterions, epoch) epoch_duration = time.time() - epoch_start_time logging.info('Epoch time: {}s'.format(int(epoch_duration))) # save model is_best = False if test_top1 > best_top1: best_top1 = test_top1 best_top5 = test_top5 is_best = True logging.info('Saving models......') save_checkpoint({ 'epoch': epoch, 'snet': snet.state_dict(), 'tnet': tnet.state_dict(), 'prec@1': test_top1, 'prec@5': test_top5, }, is_best, args.save_root) def train(train_loader, nets, optimizer, criterions, epoch): batch_time = AverageMeter() data_time = AverageMeter() cls_losses = AverageMeter() kd_losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() snet = nets['snet'] tnet = nets['tnet'] criterionCls = criterions['criterionCls'] criterionKD = criterions['criterionKD'] snet.train() criterionKD.embed_s.train() criterionKD.embed_t.train() end = time.time() for i, (img, target, idx, sample_idx) in enumerate(train_loader, start=1): data_time.update(time.time() - end) if args.cuda: img = img.cuda(non_blocking=True) target = target.cuda(non_blocking=True) idx = idx.cuda(non_blocking=True) sample_idx = sample_idx.cuda(non_blocking=True) _, _, _, _, feat_s, out_s = snet(img) _, _, _, _, feat_t, out_t = tnet(img) cls_loss = criterionCls(out_s, target) kd_loss = criterionKD(feat_s, feat_t, idx, sample_idx) * args.lambda_kd loss = cls_loss + kd_loss prec1, prec5 = accuracy(out_s, target, topk=(1,5)) cls_losses.update(cls_loss.item(), img.size(0)) kd_losses.update(kd_loss.item(), img.size(0)) top1.update(prec1.item(), img.size(0)) top5.update(prec5.item(), img.size(0)) optimizer.zero_grad() loss.backward() optimizer.step() batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: log_str = ('Epoch[{0}]:[{1:03}/{2:03}] ' 'Time:{batch_time.val:.4f} ' 'Data:{data_time.val:.4f} ' 'Cls:{cls_losses.val:.4f}({cls_losses.avg:.4f}) ' 'KD:{kd_losses.val:.4f}({kd_losses.avg:.4f}) ' 'prec@1:{top1.val:.2f}({top1.avg:.2f}) ' 'prec@5:{top5.val:.2f}({top5.avg:.2f})'.format( epoch, i, len(train_loader), batch_time=batch_time, data_time=data_time, cls_losses=cls_losses, kd_losses=kd_losses, top1=top1, top5=top5)) logging.info(log_str) def test(test_loader, nets, criterions, epoch): cls_losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() snet = nets['snet'] criterionCls = criterions['criterionCls'] snet.eval() end = time.time() for i, (img, target) in enumerate(test_loader, start=1): if args.cuda: img = img.cuda(non_blocking=True) target = target.cuda(non_blocking=True) with torch.no_grad(): _, _, _, _, _, out_s = snet(img) cls_loss = criterionCls(out_s, target) prec1, prec5 = accuracy(out_s, target, topk=(1,5)) cls_losses.update(cls_loss.item(), img.size(0)) top1.update(prec1.item(), img.size(0)) top5.update(prec5.item(), img.size(0)) f_l = [cls_losses.avg, top1.avg, top5.avg] logging.info('Cls: {:.4f}, Prec@1: {:.2f}, Prec@5: {:.2f}'.format(*f_l)) return top1.avg, top5.avg def adjust_lr(optimizer, epoch): scale = 0.1 lr_list = [args.lr] * 100 lr_list += [args.lr*scale] * 50 lr_list += [args.lr*scale*scale] * 50 lr = lr_list[epoch-1] logging.info('Epoch: {} lr: {:.3f}'.format(epoch, lr)) for param_group in optimizer.param_groups: param_group['lr'] = lr if __name__ == '__main__': main()
EXA-1-master
exa/libraries/Knowledge-Distillation-Zoo/train_crd.py
from __future__ import absolute_import from __future__ import print_function from __future__ import division import os import numpy as np from PIL import Image import torchvision.datasets as dst ''' Modified from https://github.com/HobbitLong/RepDistiller/blob/master/dataset/cifar100.py ''' class CIFAR10IdxSample(dst.CIFAR10): def __init__(self, root, train=True, transform=None, target_transform=None, download=False, n=4096, mode='exact', percent=1.0): super().__init__(root=root, train=train, download=download, transform=transform, target_transform=target_transform) self.n = n self.mode = mode num_classes = 10 num_samples = len(self.data) labels = self.targets self.cls_positive = [[] for _ in range(num_classes)] for i in range(num_samples): self.cls_positive[labels[i]].append(i) self.cls_negative = [[] for _ in range(num_classes)] for i in range(num_classes): for j in range(num_classes): if j == i: continue self.cls_negative[i].extend(self.cls_positive[j]) self.cls_positive = [np.asarray(self.cls_positive[i]) for i in range(num_classes)] self.cls_negative = [np.asarray(self.cls_negative[i]) for i in range(num_classes)] if 0 < percent < 1: num = int(len(self.cls_negative[0]) * percent) self.cls_negative = [np.random.permutation(self.cls_negative[i])[0:num] for i in range(num_classes)] self.cls_positive = np.asarray(self.cls_positive) self.cls_negative = np.asarray(self.cls_negative) def __getitem__(self, index): img, target = self.data[index], self.targets[index] img = Image.fromarray(img) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) if self.mode == 'exact': pos_idx = index elif self.mode == 'relax': pos_idx = np.random.choice(self.cls_positive[target], 1)[0] else: raise NotImplementedError(self.mode) replace = True if self.n > len(self.cls_negative[target]) else False neg_idx = np.random.choice(self.cls_negative[target], self.n, replace=replace) sample_idx = np.hstack((np.asarray([pos_idx]), neg_idx)) return img, target, index, sample_idx class CIFAR100IdxSample(dst.CIFAR100): def __init__(self, root, train=True, transform=None, target_transform=None, download=False, n=4096, mode='exact', percent=1.0): super().__init__(root=root, train=train, download=download, transform=transform, target_transform=target_transform) self.n = n self.mode = mode num_classes = 100 num_samples = len(self.data) labels = self.targets self.cls_positive = [[] for _ in range(num_classes)] for i in range(num_samples): self.cls_positive[labels[i]].append(i) self.cls_negative = [[] for _ in range(num_classes)] for i in range(num_classes): for j in range(num_classes): if j == i: continue self.cls_negative[i].extend(self.cls_positive[j]) self.cls_positive = [np.asarray(self.cls_positive[i]) for i in range(num_classes)] self.cls_negative = [np.asarray(self.cls_negative[i]) for i in range(num_classes)] if 0 < percent < 1: num = int(len(self.cls_negative[0]) * percent) self.cls_negative = [np.random.permutation(self.cls_negative[i])[0:num] for i in range(num_classes)] self.cls_positive = np.asarray(self.cls_positive) self.cls_negative = np.asarray(self.cls_negative) def __getitem__(self, index): img, target = self.data[index], self.targets[index] img = Image.fromarray(img) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) if self.mode == 'exact': pos_idx = index elif self.mode == 'relax': pos_idx = np.random.choice(self.cls_positive[target], 1)[0] else: raise NotImplementedError(self.mode) replace = True if self.n > len(self.cls_negative[target]) else False neg_idx = np.random.choice(self.cls_negative[target], self.n, replace=replace) sample_idx = np.hstack((np.asarray([pos_idx]), neg_idx)) return img, target, index, sample_idx
EXA-1-master
exa/libraries/Knowledge-Distillation-Zoo/dataset.py
from __future__ import absolute_import from __future__ import print_function from __future__ import division import os import shutil import numpy as np import torch class AverageMeter(object): def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def count_parameters_in_MB(model): return sum(np.prod(v.size()) for name, v in model.named_parameters())/1e6 def create_exp_dir(path): if not os.path.exists(path): os.makedirs(path) print('Experiment dir : {}'.format(path)) def load_pretrained_model(model, pretrained_dict): model_dict = model.state_dict() # 1. filter out unnecessary keys pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict} # 2. overwrite entries in the existing state dict model_dict.update(pretrained_dict) # 3. load the new state dict model.load_state_dict(model_dict) def transform_time(s): m, s = divmod(int(s), 60) h, m = divmod(m, 60) return h,m,s def save_checkpoint(state, is_best, save_root): save_path = os.path.join(save_root, 'checkpoint.pth.tar') torch.save(state, save_path) if is_best: best_save_path = os.path.join(save_root, 'model_best.pth.tar') shutil.copyfile(save_path, best_save_path) def accuracy(output, target, topk=(1,)): """Computes the precision@k for the specified values of k""" maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0) res.append(correct_k.mul_(100.0 / batch_size)) return res
EXA-1-master
exa/libraries/Knowledge-Distillation-Zoo/utils.py
from __future__ import absolute_import from __future__ import print_function from __future__ import division import torch import torch.nn as nn def define_tsnet(name, num_class, cuda=True): if name == 'resnet20': net = resnet20(num_class=num_class) elif name == 'resnet110': net = resnet110(num_class=num_class) else: raise Exception('model name does not exist.') if cuda: net = torch.nn.DataParallel(net).cuda() else: net = torch.nn.DataParallel(net) return net class resblock(nn.Module): def __init__(self, in_channels, out_channels, return_before_act): super(resblock, self).__init__() self.return_before_act = return_before_act self.downsample = (in_channels != out_channels) if self.downsample: self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1, bias=False) self.ds = nn.Sequential(*[ nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=2, bias=False), nn.BatchNorm2d(out_channels) ]) else: self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.ds = None self.bn1 = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU() self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channels) def forward(self, x): residual = x pout = self.conv1(x) # pout: pre out before activation pout = self.bn1(pout) pout = self.relu(pout) pout = self.conv2(pout) pout = self.bn2(pout) if self.downsample: residual = self.ds(x) pout += residual out = self.relu(pout) if not self.return_before_act: return out else: return pout, out class resnet20(nn.Module): def __init__(self, num_class): super(resnet20, self).__init__() self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(16) self.relu = nn.ReLU() self.res1 = self.make_layer(resblock, 3, 16, 16) self.res2 = self.make_layer(resblock, 3, 16, 32) self.res3 = self.make_layer(resblock, 3, 32, 64) self.avgpool = nn.AvgPool2d(8) self.fc = nn.Linear(64, num_class) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) self.num_class = num_class def make_layer(self, block, num, in_channels, out_channels): # num must >=2 layers = [block(in_channels, out_channels, False)] for i in range(num-2): layers.append(block(out_channels, out_channels, False)) layers.append(block(out_channels, out_channels, True)) return nn.Sequential(*layers) def forward(self, x): pstem = self.conv1(x) # pstem: pre stem before activation pstem = self.bn1(pstem) stem = self.relu(pstem) stem = (pstem, stem) rb1 = self.res1(stem[1]) rb2 = self.res2(rb1[1]) rb3 = self.res3(rb2[1]) feat = self.avgpool(rb3[1]) feat = feat.view(feat.size(0), -1) out = self.fc(feat) return stem, rb1, rb2, rb3, feat, out def get_channel_num(self): return [16, 16, 32, 64, 64, self.num_class] def get_chw_num(self): return [(16, 32, 32), (16, 32, 32), (32, 16, 16), (64, 8 , 8 ), (64,), (self.num_class,)] class resnet110(nn.Module): def __init__(self, num_class): super(resnet110, self).__init__() self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(16) self.relu = nn.ReLU() self.res1 = self.make_layer(resblock, 18, 16, 16) self.res2 = self.make_layer(resblock, 18, 16, 32) self.res3 = self.make_layer(resblock, 18, 32, 64) self.avgpool = nn.AvgPool2d(8) self.fc = nn.Linear(64, num_class) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) self.num_class = num_class def make_layer(self, block, num, in_channels, out_channels): # num must >=2 layers = [block(in_channels, out_channels, False)] for i in range(num-2): layers.append(block(out_channels, out_channels, False)) layers.append(block(out_channels, out_channels, True)) return nn.Sequential(*layers) def forward(self, x): pstem = self.conv1(x) # pstem: pre stem before activation pstem = self.bn1(pstem) stem = self.relu(pstem) stem = (pstem, stem) rb1 = self.res1(stem[1]) rb2 = self.res2(rb1[1]) rb3 = self.res3(rb2[1]) feat = self.avgpool(rb3[1]) feat = feat.view(feat.size(0), -1) out = self.fc(feat) return stem, rb1, rb2, rb3, feat, out def get_channel_num(self): return [16, 16, 32, 64, 64, self.num_class] def get_chw_num(self): return [(16, 32, 32), (16, 32, 32), (32, 16, 16), (64, 8 , 8 ), (64,), (self.num_class,)] def define_paraphraser(in_channels_t, k, use_bn, cuda=True): net = paraphraser(in_channels_t, k, use_bn) if cuda: net = torch.nn.DataParallel(net).cuda() else: net = torch.nn.DataParallel(net) return net class paraphraser(nn.Module): def __init__(self, in_channels_t, k, use_bn=True): super(paraphraser, self).__init__() factor_channels = int(in_channels_t*k) self.encoder = nn.Sequential(*[ nn.Conv2d(in_channels_t, in_channels_t, 3, 1, 1, bias=bool(1-use_bn)), nn.BatchNorm2d(in_channels_t) if use_bn else nn.Sequential(), nn.LeakyReLU(0.1, inplace=True), nn.Conv2d(in_channels_t, factor_channels, 3, 1, 1, bias=bool(1-use_bn)), nn.BatchNorm2d(factor_channels) if use_bn else nn.Sequential(), nn.LeakyReLU(0.1, inplace=True), nn.Conv2d(factor_channels, factor_channels, 3, 1, 1, bias=bool(1-use_bn)), nn.BatchNorm2d(factor_channels) if use_bn else nn.Sequential(), nn.LeakyReLU(0.1, inplace=True), ]) self.decoder = nn.Sequential(*[ nn.ConvTranspose2d(factor_channels, factor_channels, 3, 1, 1, bias=bool(1-use_bn)), nn.BatchNorm2d(factor_channels) if use_bn else nn.Sequential(), nn.LeakyReLU(0.1, inplace=True), nn.ConvTranspose2d(factor_channels, in_channels_t, 3, 1, 1, bias=bool(1-use_bn)), nn.BatchNorm2d(in_channels_t) if use_bn else nn.Sequential(), nn.LeakyReLU(0.1, inplace=True), nn.ConvTranspose2d(in_channels_t, in_channels_t, 3, 1, 1, bias=bool(1-use_bn)), nn.BatchNorm2d(in_channels_t) if use_bn else nn.Sequential(), nn.LeakyReLU(0.1, inplace=True), ]) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.constant_(m.bias, 0) if isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def forward(self, x): z = self.encoder(x) out = self.decoder(z) return z, out def define_translator(in_channels_s, in_channels_t, k, use_bn=True, cuda=True): net = translator(in_channels_s, in_channels_t, k, use_bn) if cuda: net = torch.nn.DataParallel(net).cuda() else: net = torch.nn.DataParallel(net) return net class translator(nn.Module): def __init__(self, in_channels_s, in_channels_t, k, use_bn=True): super(translator, self).__init__() factor_channels = int(in_channels_t*k) self.encoder = nn.Sequential(*[ nn.Conv2d(in_channels_s, in_channels_s, 3, 1, 1, bias=bool(1-use_bn)), nn.BatchNorm2d(in_channels_s) if use_bn else nn.Sequential(), nn.LeakyReLU(0.1, inplace=True), nn.Conv2d(in_channels_s, factor_channels, 3, 1, 1, bias=bool(1-use_bn)), nn.BatchNorm2d(factor_channels) if use_bn else nn.Sequential(), nn.LeakyReLU(0.1, inplace=True), nn.Conv2d(factor_channels, factor_channels, 3, 1, 1, bias=bool(1-use_bn)), nn.BatchNorm2d(factor_channels) if use_bn else nn.Sequential(), nn.LeakyReLU(0.1, inplace=True), ]) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.constant_(m.bias, 0) if isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def forward(self, x): z = self.encoder(x) return z
EXA-1-master
exa/libraries/Knowledge-Distillation-Zoo/network.py
from __future__ import absolute_import from __future__ import print_function from __future__ import division import os import sys import time import logging import argparse import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.backends.cudnn as cudnn import torchvision.transforms as transforms import torchvision.datasets as dst from utils import AverageMeter, accuracy, transform_time from utils import load_pretrained_model, save_checkpoint from utils import create_exp_dir, count_parameters_in_MB from network import define_tsnet parser = argparse.ArgumentParser(description='train base net') # various path parser.add_argument('--save_root', type=str, default='./results', help='models and logs are saved here') parser.add_argument('--img_root', type=str, default='./datasets', help='path name of image dataset') # training hyper parameters parser.add_argument('--print_freq', type=int, default=50, help='frequency of showing training results on console') parser.add_argument('--epochs', type=int, default=200, help='number of total epochs to run') parser.add_argument('--batch_size', type=int, default=128, help='The size of batch') parser.add_argument('--lr', type=float, default=0.1, help='initial learning rate') parser.add_argument('--momentum', type=float, default=0.9, help='momentum') parser.add_argument('--weight_decay', type=float, default=1e-4, help='weight decay') parser.add_argument('--num_class', type=int, default=10, help='number of classes') parser.add_argument('--cuda', type=int, default=1) # others parser.add_argument('--seed', type=int, default=2, help='random seed') parser.add_argument('--note', type=str, default='try', help='note for this run') # net and dataset choosen parser.add_argument('--data_name', type=str, required=True, help='name of dataset') # cifar10/cifar100 parser.add_argument('--net_name', type=str, required=True, help='name of basenet') # resnet20/resnet110 args, unparsed = parser.parse_known_args() args.save_root = os.path.join(args.save_root, args.note) create_exp_dir(args.save_root) log_format = '%(message)s' logging.basicConfig(stream=sys.stdout, level=logging.INFO, format=log_format) fh = logging.FileHandler(os.path.join(args.save_root, 'log.txt')) fh.setFormatter(logging.Formatter(log_format)) logging.getLogger().addHandler(fh) def main(): np.random.seed(args.seed) torch.manual_seed(args.seed) if args.cuda: torch.cuda.manual_seed(args.seed) cudnn.enabled = True cudnn.benchmark = True logging.info("args = %s", args) logging.info("unparsed_args = %s", unparsed) logging.info('----------- Network Initialization --------------') net = define_tsnet(name=args.net_name, num_class=args.num_class, cuda=args.cuda) logging.info('%s', net) logging.info("param size = %fMB", count_parameters_in_MB(net)) logging.info('-----------------------------------------------') # save initial parameters logging.info('Saving initial parameters......') save_path = os.path.join(args.save_root, 'initial_r{}.pth.tar'.format(args.net_name[6:])) torch.save({ 'epoch': 0, 'net': net.state_dict(), 'prec@1': 0.0, 'prec@5': 0.0, }, save_path) # initialize optimizer optimizer = torch.optim.SGD(net.parameters(), lr = args.lr, momentum = args.momentum, weight_decay = args.weight_decay, nesterov = True) # define loss functions if args.cuda: criterion = torch.nn.CrossEntropyLoss().cuda() else: criterion = torch.nn.CrossEntropyLoss() # define transforms if args.data_name == 'cifar10': dataset = dst.CIFAR10 mean = (0.4914, 0.4822, 0.4465) std = (0.2470, 0.2435, 0.2616) elif args.data_name == 'cifar100': dataset = dst.CIFAR100 mean = (0.5071, 0.4865, 0.4409) std = (0.2673, 0.2564, 0.2762) else: raise Exception('Invalid dataset name...') train_transform = transforms.Compose([ transforms.Pad(4, padding_mode='reflect'), transforms.RandomCrop(32), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=mean,std=std) ]) test_transform = transforms.Compose([ transforms.CenterCrop(32), transforms.ToTensor(), transforms.Normalize(mean=mean,std=std) ]) # define data loader train_loader = torch.utils.data.DataLoader( dataset(root = args.img_root, transform = train_transform, train = True, download = True), batch_size=args.batch_size, shuffle=True, num_workers=4, pin_memory=True) test_loader = torch.utils.data.DataLoader( dataset(root = args.img_root, transform = test_transform, train = False, download = True), batch_size=args.batch_size, shuffle=False, num_workers=4, pin_memory=True) best_top1 = 0 best_top5 = 0 for epoch in range(1, args.epochs+1): adjust_lr(optimizer, epoch) # train one epoch epoch_start_time = time.time() train(train_loader, net, optimizer, criterion, epoch) # evaluate on testing set logging.info('Testing the models......') test_top1, test_top5 = test(test_loader, net, criterion) epoch_duration = time.time() - epoch_start_time logging.info('Epoch time: {}s'.format(int(epoch_duration))) # save model is_best = False if test_top1 > best_top1: best_top1 = test_top1 best_top5 = test_top5 is_best = True logging.info('Saving models......') save_checkpoint({ 'epoch': epoch, 'net': net.state_dict(), 'prec@1': test_top1, 'prec@5': test_top5, }, is_best, args.save_root) def train(train_loader, net, optimizer, criterion, epoch): batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() net.train() end = time.time() for i, (img, target) in enumerate(train_loader, start=1): data_time.update(time.time() - end) if args.cuda: img = img.cuda(non_blocking=True) target = target.cuda(non_blocking=True) _, _, _, _, _, out = net(img) loss = criterion(out, target) prec1, prec5 = accuracy(out, target, topk=(1,5)) losses.update(loss.item(), img.size(0)) top1.update(prec1.item(), img.size(0)) top5.update(prec5.item(), img.size(0)) optimizer.zero_grad() loss.backward() optimizer.step() batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: log_str = ('Epoch[{0}]:[{1:03}/{2:03}] ' 'Time:{batch_time.val:.4f} ' 'Data:{data_time.val:.4f} ' 'loss:{losses.val:.4f}({losses.avg:.4f}) ' 'prec@1:{top1.val:.2f}({top1.avg:.2f}) ' 'prec@5:{top5.val:.2f}({top5.avg:.2f})'.format( epoch, i, len(train_loader), batch_time=batch_time, data_time=data_time, losses=losses, top1=top1, top5=top5)) logging.info(log_str) def test(test_loader, net, criterion): losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() net.eval() end = time.time() for i, (img, target) in enumerate(test_loader, start=1): if args.cuda: img = img.cuda(non_blocking=True) target = target.cuda(non_blocking=True) with torch.no_grad(): _, _, _, _, _, out = net(img) loss = criterion(out, target) prec1, prec5 = accuracy(out, target, topk=(1,5)) losses.update(loss.item(), img.size(0)) top1.update(prec1.item(), img.size(0)) top5.update(prec5.item(), img.size(0)) f_l = [losses.avg, top1.avg, top5.avg] logging.info('Loss: {:.4f}, Prec@1: {:.2f}, Prec@5: {:.2f}'.format(*f_l)) return top1.avg, top5.avg def adjust_lr(optimizer, epoch): scale = 0.1 lr_list = [args.lr] * 100 lr_list += [args.lr*scale] * 50 lr_list += [args.lr*scale*scale] * 50 lr = lr_list[epoch-1] logging.info('Epoch: {} lr: {:.3f}'.format(epoch, lr)) for param_group in optimizer.param_groups: param_group['lr'] = lr if __name__ == '__main__': main()
EXA-1-master
exa/libraries/Knowledge-Distillation-Zoo/train_base.py
from __future__ import absolute_import from __future__ import print_function from __future__ import division import torch import torch.nn as nn import torch.nn.functional as F import math ''' CC with P-order Taylor Expansion of Gaussian RBF kernel ''' class CC(nn.Module): ''' Correlation Congruence for Knowledge Distillation http://openaccess.thecvf.com/content_ICCV_2019/papers/ Peng_Correlation_Congruence_for_Knowledge_Distillation_ICCV_2019_paper.pdf ''' def __init__(self, gamma, P_order): super(CC, self).__init__() self.gamma = gamma self.P_order = P_order def forward(self, feat_s, feat_t): corr_mat_s = self.get_correlation_matrix(feat_s) corr_mat_t = self.get_correlation_matrix(feat_t) loss = F.mse_loss(corr_mat_s, corr_mat_t) return loss def get_correlation_matrix(self, feat): feat = F.normalize(feat, p=2, dim=-1) sim_mat = torch.matmul(feat, feat.t()) corr_mat = torch.zeros_like(sim_mat) for p in range(self.P_order+1): corr_mat += math.exp(-2*self.gamma) * (2*self.gamma)**p / \ math.factorial(p) * torch.pow(sim_mat, p) return corr_mat
EXA-1-master
exa/libraries/Knowledge-Distillation-Zoo/kd_losses/cc.py
from __future__ import absolute_import from __future__ import print_function from __future__ import division import torch import torch.nn as nn import torch.nn.functional as F import numpy as np def conv1x1(in_channels, out_channels): return nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False) ''' Modified from https://github.com/HobbitLong/RepDistiller/blob/master/distiller_zoo/VID.py ''' class VID(nn.Module): ''' Variational Information Distillation for Knowledge Transfer https://zpascal.net/cvpr2019/Ahn_Variational_Information_Distillation_for_Knowledge_Transfer_CVPR_2019_paper.pdf ''' def __init__(self, in_channels, mid_channels, out_channels, init_var, eps=1e-6): super(VID, self).__init__() self.eps = eps self.regressor = nn.Sequential(*[ conv1x1(in_channels, mid_channels), # nn.BatchNorm2d(mid_channels), nn.ReLU(), conv1x1(mid_channels, mid_channels), # nn.BatchNorm2d(mid_channels), nn.ReLU(), conv1x1(mid_channels, out_channels), ]) self.alpha = nn.Parameter( np.log(np.exp(init_var-eps)-1.0) * torch.ones(out_channels) ) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.constant_(m.bias, 0) # elif isinstance(m, nn.BatchNorm2d): # nn.init.constant_(m.weight, 1) # nn.init.constant_(m.bias, 0) def forward(self, fm_s, fm_t): pred_mean = self.regressor(fm_s) pred_var = torch.log(1.0+torch.exp(self.alpha)) + self.eps pred_var = pred_var.view(1, -1, 1, 1) neg_log_prob = 0.5 * (torch.log(pred_var) + (pred_mean-fm_t)**2 / pred_var) loss = torch.mean(neg_log_prob) return loss
EXA-1-master
exa/libraries/Knowledge-Distillation-Zoo/kd_losses/vid.py
from __future__ import absolute_import from __future__ import print_function from __future__ import division import torch import torch.nn as nn import torch.nn.functional as F class AB(nn.Module): ''' Knowledge Transfer via Distillation of Activation Boundaries Formed by Hidden Neurons https://arxiv.org/pdf/1811.03233.pdf ''' def __init__(self, margin): super(AB, self).__init__() self.margin = margin def forward(self, fm_s, fm_t): # fm befor activation loss = ((fm_s + self.margin).pow(2) * ((fm_s > -self.margin) & (fm_t <= 0)).float() + (fm_s - self.margin).pow(2) * ((fm_s <= self.margin) & (fm_t > 0)).float()) loss = loss.mean() return loss
EXA-1-master
exa/libraries/Knowledge-Distillation-Zoo/kd_losses/ab.py
from __future__ import absolute_import from __future__ import print_function from __future__ import division import torch import torch.nn as nn import torch.nn.functional as F import math ''' In the original paper, AFD is one of components of AFDS. AFDS: Attention Feature Distillation and Selection AFD: Attention Feature Distillation AFS: Attention Feature Selection We find the original implementation of attention is unstable, thus we replace it with a SE block. ''' class AFD(nn.Module): ''' Pay Attention to Features, Transfer Learn Faster CNNs https://openreview.net/pdf?id=ryxyCeHtPB ''' def __init__(self, in_channels, att_f): super(AFD, self).__init__() mid_channels = int(in_channels * att_f) self.attention = nn.Sequential(*[ nn.Conv2d(in_channels, mid_channels, 1, 1, 0, bias=True), nn.ReLU(inplace=True), nn.Conv2d(mid_channels, in_channels, 1, 1, 0, bias=True) ]) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, fm_s, fm_t, eps=1e-6): fm_t_pooled = F.adaptive_avg_pool2d(fm_t, 1) rho = self.attention(fm_t_pooled) # rho = F.softmax(rho.squeeze(), dim=-1) rho = torch.sigmoid(rho.squeeze()) rho = rho / torch.sum(rho, dim=1, keepdim=True) fm_s_norm = torch.norm(fm_s, dim=(2,3), keepdim=True) fm_s = torch.div(fm_s, fm_s_norm+eps) fm_t_norm = torch.norm(fm_t, dim=(2,3), keepdim=True) fm_t = torch.div(fm_t, fm_t_norm+eps) loss = rho * torch.pow(fm_s-fm_t, 2).mean(dim=(2,3)) loss = loss.sum(1).mean(0) return loss # class AFD(nn.Module): # ''' # Pay Attention to Features, Transfer Learn Faster CNNs # https://openreview.net/pdf?id=ryxyCeHtPB # ''' # def __init__(self, chw): # super(AFD, self).__init__() # c, h, w = chw # self.weight1 = nn.Parameter(math.sqrt(2.0) / math.sqrt(h*w) * torch.randn(h, h*w)) # self.bias1 = nn.Parameter(torch.zeros(h)) # self.weight2 = nn.Parameter(math.sqrt(2.0) / math.sqrt(h) * torch.randn(h)) # self.bias2 = nn.Parameter(torch.zeros(c)) # def forward(self, fm_s, fm_t, eps=1e-6): # b, c, h, w = fm_t.size() # fm_t_flatten = fm_t.view(fm_t.size(0), fm_t.size(1), -1) # weight1 = torch.stack([self.weight1.t()]*b, dim=0) # bias1 = self.bias1.unsqueeze(0).unsqueeze(1) # rho = F.relu(torch.bmm(fm_t_flatten, weight1) + bias1) # weight2 = self.weight2.view(-1, 1) # bias2 = self.bias2.unsqueeze(0) # rho = torch.mm(rho.view(-1, rho.size(2)), weight2).view(b,c) + bias2 # # rho = F.softmax(rho, dim=-1) # rho = torch.sigmoid(rho) # rho = rho / torch.sum(rho, dim=1, keepdim=True) # # print(rho) # fm_s_norm = torch.norm(fm_s, dim=(2,3), keepdim=True) # fm_s = torch.div(fm_s, fm_s_norm+eps) # fm_t_norm = torch.norm(fm_t, dim=(2,3), keepdim=True) # fm_t = torch.div(fm_t, fm_t_norm+eps) # loss = rho * torch.pow(fm_s-fm_t, 2).mean(dim=(2,3)) # loss = loss.sum(1).mean(0) # return loss
EXA-1-master
exa/libraries/Knowledge-Distillation-Zoo/kd_losses/afd.py
from __future__ import absolute_import from __future__ import print_function from __future__ import division import torch import torch.nn as nn import torch.nn.functional as F class SoftTarget(nn.Module): ''' Distilling the Knowledge in a Neural Network https://arxiv.org/pdf/1503.02531.pdf ''' def __init__(self, T): super(SoftTarget, self).__init__() self.T = T def forward(self, out_s, out_t): loss = F.kl_div(F.log_softmax(out_s/self.T, dim=1), F.softmax(out_t/self.T, dim=1), reduction='batchmean') * self.T * self.T return loss
EXA-1-master
exa/libraries/Knowledge-Distillation-Zoo/kd_losses/st.py
from __future__ import absolute_import from __future__ import print_function from __future__ import division import torch import torch.nn as nn import torch.nn.functional as F class IRG(nn.Module): ''' Knowledge Distillation via Instance Relationship Graph http://openaccess.thecvf.com/content_CVPR_2019/papers/ Liu_Knowledge_Distillation_via_Instance_Relationship_Graph_CVPR_2019_paper.pdf The official code is written by Caffe https://github.com/yufanLIU/IRG ''' def __init__(self, w_irg_vert, w_irg_edge, w_irg_tran): super(IRG, self).__init__() self.w_irg_vert = w_irg_vert self.w_irg_edge = w_irg_edge self.w_irg_tran = w_irg_tran def forward(self, irg_s, irg_t): fm_s1, fm_s2, feat_s, out_s = irg_s fm_t1, fm_t2, feat_t, out_t = irg_t loss_irg_vert = F.mse_loss(out_s, out_t) irg_edge_feat_s = self.euclidean_dist_feat(feat_s, squared=True) irg_edge_feat_t = self.euclidean_dist_feat(feat_t, squared=True) irg_edge_fm_s1 = self.euclidean_dist_fm(fm_s1, squared=True) irg_edge_fm_t1 = self.euclidean_dist_fm(fm_t1, squared=True) irg_edge_fm_s2 = self.euclidean_dist_fm(fm_s2, squared=True) irg_edge_fm_t2 = self.euclidean_dist_fm(fm_t2, squared=True) loss_irg_edge = (F.mse_loss(irg_edge_feat_s, irg_edge_feat_t) + F.mse_loss(irg_edge_fm_s1, irg_edge_fm_t1 ) + F.mse_loss(irg_edge_fm_s2, irg_edge_fm_t2 )) / 3.0 irg_tran_s = self.euclidean_dist_fms(fm_s1, fm_s2, squared=True) irg_tran_t = self.euclidean_dist_fms(fm_t1, fm_t2, squared=True) loss_irg_tran = F.mse_loss(irg_tran_s, irg_tran_t) # print(self.w_irg_vert * loss_irg_vert) # print(self.w_irg_edge * loss_irg_edge) # print(self.w_irg_tran * loss_irg_tran) # print() loss = (self.w_irg_vert * loss_irg_vert + self.w_irg_edge * loss_irg_edge + self.w_irg_tran * loss_irg_tran) return loss def euclidean_dist_fms(self, fm1, fm2, squared=False, eps=1e-12): ''' Calculating the IRG Transformation, where fm1 precedes fm2 in the network. ''' if fm1.size(2) > fm2.size(2): fm1 = F.adaptive_avg_pool2d(fm1, (fm2.size(2), fm2.size(3))) if fm1.size(1) < fm2.size(1): fm2 = (fm2[:,0::2,:,:] + fm2[:,1::2,:,:]) / 2.0 fm1 = fm1.view(fm1.size(0), -1) fm2 = fm2.view(fm2.size(0), -1) fms_dist = torch.sum(torch.pow(fm1-fm2, 2), dim=-1).clamp(min=eps) if not squared: fms_dist = fms_dist.sqrt() fms_dist = fms_dist / fms_dist.max() return fms_dist def euclidean_dist_fm(self, fm, squared=False, eps=1e-12): ''' Calculating the IRG edge of feature map. ''' fm = fm.view(fm.size(0), -1) fm_square = fm.pow(2).sum(dim=1) fm_prod = torch.mm(fm, fm.t()) fm_dist = (fm_square.unsqueeze(0) + fm_square.unsqueeze(1) - 2 * fm_prod).clamp(min=eps) if not squared: fm_dist = fm_dist.sqrt() fm_dist = fm_dist.clone() fm_dist[range(len(fm)), range(len(fm))] = 0 fm_dist = fm_dist / fm_dist.max() return fm_dist def euclidean_dist_feat(self, feat, squared=False, eps=1e-12): ''' Calculating the IRG edge of feat. ''' feat_square = feat.pow(2).sum(dim=1) feat_prod = torch.mm(feat, feat.t()) feat_dist = (feat_square.unsqueeze(0) + feat_square.unsqueeze(1) - 2 * feat_prod).clamp(min=eps) if not squared: feat_dist = feat_dist.sqrt() feat_dist = feat_dist.clone() feat_dist[range(len(feat)), range(len(feat))] = 0 feat_dist = feat_dist / feat_dist.max() return feat_dist
EXA-1-master
exa/libraries/Knowledge-Distillation-Zoo/kd_losses/irg.py
from __future__ import absolute_import from __future__ import print_function from __future__ import division import torch import torch.nn as nn import torch.nn.functional as F # ''' # NST with Polynomial Kernel, where d=2 and c=0 # It can be treated as matching the Gram matrix of two vectorized feature map. # ''' # class NST(nn.Module): # def __init__(self): # super(NST, self).__init__() # def forward(self, fm_s, fm_t): # fm_s = fm_s.view(fm_s.size(0), fm_s.size(1), -1) # fm_s = F.normalize(fm_s, dim=2) # fm_t = fm_t.view(fm_t.size(0), fm_t.size(1), -1) # fm_t = F.normalize(fm_t, dim=2) # gram_s = self.gram_matrix(fm_s) # gram_t = self.gram_matrix(fm_t) # loss = F.mse_loss(gram_s, gram_t) # return loss # def gram_matrix(self, fm): # return torch.bmm(fm, fm.transpose(1,2)) ''' NST with Polynomial Kernel, where d=2 and c=0 ''' class NST(nn.Module): ''' Like What You Like: Knowledge Distill via Neuron Selectivity Transfer https://arxiv.org/pdf/1707.01219.pdf ''' def __init__(self): super(NST, self).__init__() def forward(self, fm_s, fm_t): fm_s = fm_s.view(fm_s.size(0), fm_s.size(1), -1) fm_s = F.normalize(fm_s, dim=2) fm_t = fm_t.view(fm_t.size(0), fm_t.size(1), -1) fm_t = F.normalize(fm_t, dim=2) loss = self.poly_kernel(fm_t, fm_t).mean() \ + self.poly_kernel(fm_s, fm_s).mean() \ - 2 * self.poly_kernel(fm_s, fm_t).mean() return loss def poly_kernel(self, fm1, fm2): fm1 = fm1.unsqueeze(1) fm2 = fm2.unsqueeze(2) out = (fm1 * fm2).sum(-1).pow(2) return out
EXA-1-master
exa/libraries/Knowledge-Distillation-Zoo/kd_losses/nst.py
from __future__ import absolute_import from __future__ import print_function from __future__ import division import torch import torch.nn as nn import torch.nn.functional as F class FT(nn.Module): ''' araphrasing Complex Network: Network Compression via Factor Transfer http://papers.nips.cc/paper/7541-paraphrasing-complex-network-network-compression-via-factor-transfer.pdf ''' def __init__(self): super(FT, self).__init__() def forward(self, factor_s, factor_t): loss = F.l1_loss(self.normalize(factor_s), self.normalize(factor_t)) return loss def normalize(self, factor): norm_factor = F.normalize(factor.view(factor.size(0),-1)) return norm_factor
EXA-1-master
exa/libraries/Knowledge-Distillation-Zoo/kd_losses/ft.py
from __future__ import absolute_import from __future__ import print_function from __future__ import division import torch import torch.nn as nn import torch.nn.functional as F class SP(nn.Module): ''' Similarity-Preserving Knowledge Distillation https://arxiv.org/pdf/1907.09682.pdf ''' def __init__(self): super(SP, self).__init__() def forward(self, fm_s, fm_t): fm_s = fm_s.view(fm_s.size(0), -1) G_s = torch.mm(fm_s, fm_s.t()) norm_G_s = F.normalize(G_s, p=2, dim=1) fm_t = fm_t.view(fm_t.size(0), -1) G_t = torch.mm(fm_t, fm_t.t()) norm_G_t = F.normalize(G_t, p=2, dim=1) loss = F.mse_loss(norm_G_s, norm_G_t) return loss
EXA-1-master
exa/libraries/Knowledge-Distillation-Zoo/kd_losses/sp.py
from .logits import Logits from .st import SoftTarget from .at import AT from .fitnet import Hint from .nst import NST from .pkt import PKTCosSim from .fsp import FSP from .ft import FT from .dml import DML from .kdsvd import KDSVD from .rkd import RKD from .ab import AB from .sp import SP from .sobolev import Sobolev from .bss import BSS, BSSAttacker from .cc import CC from .lwm import LwM from .irg import IRG from .vid import VID from .ofd import OFD from .afd import AFD from .crd import CRD
EXA-1-master
exa/libraries/Knowledge-Distillation-Zoo/kd_losses/__init__.py
from __future__ import absolute_import from __future__ import print_function from __future__ import division import torch import torch.nn as nn import torch.nn.functional as F ''' AT with sum of absolute values with power p ''' class AT(nn.Module): ''' Paying More Attention to Attention: Improving the Performance of Convolutional Neural Netkworks wia Attention Transfer https://arxiv.org/pdf/1612.03928.pdf ''' def __init__(self, p): super(AT, self).__init__() self.p = p def forward(self, fm_s, fm_t): loss = F.mse_loss(self.attention_map(fm_s), self.attention_map(fm_t)) return loss def attention_map(self, fm, eps=1e-6): am = torch.pow(torch.abs(fm), self.p) am = torch.sum(am, dim=1, keepdim=True) norm = torch.norm(am, dim=(2,3), keepdim=True) am = torch.div(am, norm+eps) return am
EXA-1-master
exa/libraries/Knowledge-Distillation-Zoo/kd_losses/at.py
from __future__ import absolute_import from __future__ import print_function from __future__ import division import torch import torch.nn as nn import torch.nn.functional as F ''' From https://github.com/lenscloth/RKD/blob/master/metric/loss.py ''' class RKD(nn.Module): ''' Relational Knowledge Distillation https://arxiv.org/pdf/1904.05068.pdf ''' def __init__(self, w_dist, w_angle): super(RKD, self).__init__() self.w_dist = w_dist self.w_angle = w_angle def forward(self, feat_s, feat_t): loss = self.w_dist * self.rkd_dist(feat_s, feat_t) + \ self.w_angle * self.rkd_angle(feat_s, feat_t) return loss def rkd_dist(self, feat_s, feat_t): feat_t_dist = self.pdist(feat_t, squared=False) mean_feat_t_dist = feat_t_dist[feat_t_dist>0].mean() feat_t_dist = feat_t_dist / mean_feat_t_dist feat_s_dist = self.pdist(feat_s, squared=False) mean_feat_s_dist = feat_s_dist[feat_s_dist>0].mean() feat_s_dist = feat_s_dist / mean_feat_s_dist loss = F.smooth_l1_loss(feat_s_dist, feat_t_dist) return loss def rkd_angle(self, feat_s, feat_t): # N x C --> N x N x C feat_t_vd = (feat_t.unsqueeze(0) - feat_t.unsqueeze(1)) norm_feat_t_vd = F.normalize(feat_t_vd, p=2, dim=2) feat_t_angle = torch.bmm(norm_feat_t_vd, norm_feat_t_vd.transpose(1, 2)).view(-1) feat_s_vd = (feat_s.unsqueeze(0) - feat_s.unsqueeze(1)) norm_feat_s_vd = F.normalize(feat_s_vd, p=2, dim=2) feat_s_angle = torch.bmm(norm_feat_s_vd, norm_feat_s_vd.transpose(1, 2)).view(-1) loss = F.smooth_l1_loss(feat_s_angle, feat_t_angle) return loss def pdist(self, feat, squared=False, eps=1e-12): feat_square = feat.pow(2).sum(dim=1) feat_prod = torch.mm(feat, feat.t()) feat_dist = (feat_square.unsqueeze(0) + feat_square.unsqueeze(1) - 2 * feat_prod).clamp(min=eps) if not squared: feat_dist = feat_dist.sqrt() feat_dist = feat_dist.clone() feat_dist[range(len(feat)), range(len(feat))] = 0 return feat_dist
EXA-1-master
exa/libraries/Knowledge-Distillation-Zoo/kd_losses/rkd.py
from __future__ import absolute_import from __future__ import print_function from __future__ import division import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import grad ''' LwM is originally an incremental learning method with classification/distillation/attention distillation losses. Here, LwM is only defined as the Grad-CAM based attention distillation. ''' class LwM(nn.Module): ''' Learning without Memorizing https://arxiv.org/pdf/1811.08051.pdf ''' def __init__(self): super(LwM, self).__init__() def forward(self, out_s, fm_s, out_t, fm_t, target): target_out_t = torch.gather(out_t, 1, target.view(-1, 1)) grad_fm_t = grad(outputs=target_out_t, inputs=fm_t, grad_outputs=torch.ones_like(target_out_t), create_graph=True, retain_graph=True, only_inputs=True)[0] weights_t = F.adaptive_avg_pool2d(grad_fm_t, 1) cam_t = torch.sum(torch.mul(weights_t, grad_fm_t), dim=1, keepdim=True) cam_t = F.relu(cam_t) cam_t = cam_t.view(cam_t.size(0), -1) norm_cam_t = F.normalize(cam_t, p=2, dim=1) target_out_s = torch.gather(out_s, 1, target.view(-1, 1)) grad_fm_s = grad(outputs=target_out_s, inputs=fm_s, grad_outputs=torch.ones_like(target_out_s), create_graph=True, retain_graph=True, only_inputs=True)[0] weights_s = F.adaptive_avg_pool2d(grad_fm_s, 1) cam_s = torch.sum(torch.mul(weights_s, grad_fm_s), dim=1, keepdim=True) cam_s = F.relu(cam_s) cam_s = cam_s.view(cam_s.size(0), -1) norm_cam_s = F.normalize(cam_s, p=2, dim=1) loss = F.l1_loss(norm_cam_s, norm_cam_t.detach()) return loss
EXA-1-master
exa/libraries/Knowledge-Distillation-Zoo/kd_losses/lwm.py
from __future__ import absolute_import from __future__ import print_function from __future__ import division import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd.gradcheck import zero_gradients ''' Modified by https://github.com/bhheo/BSS_distillation ''' def reduce_sum(x, keepdim=True): for d in reversed(range(1, x.dim())): x = x.sum(d, keepdim=keepdim) return x def l2_norm(x, keepdim=True): norm = reduce_sum(x*x, keepdim=keepdim) return norm.sqrt() class BSS(nn.Module): ''' Knowledge Distillation with Adversarial Samples Supporting Decision Boundary https://arxiv.org/pdf/1805.05532.pdf ''' def __init__(self, T): super(BSS, self).__init__() self.T = T def forward(self, attacked_out_s, attacked_out_t): loss = F.kl_div(F.log_softmax(attacked_out_s/self.T, dim=1), F.softmax(attacked_out_t/self.T, dim=1), reduction='batchmean') #* self.T * self.T return loss class BSSAttacker(): def __init__(self, step_alpha, num_steps, eps=1e-4): self.step_alpha = step_alpha self.num_steps = num_steps self.eps = eps def attack(self, model, img, target, attack_class): img = img.detach().requires_grad_(True) step = 0 while step < self.num_steps: zero_gradients(img) _, _, _, _, _, output = model(img) score = F.softmax(output, dim=1) score_target = score.gather(1, target.unsqueeze(1)) score_attack_class = score.gather(1, attack_class.unsqueeze(1)) loss = (score_attack_class - score_target).sum() loss.backward() step_alpha = self.step_alpha * (target == output.max(1)[1]).float() step_alpha = step_alpha.unsqueeze(1).unsqueeze(1).unsqueeze(1) if step_alpha.sum() == 0: break pert = (score_target - score_attack_class).unsqueeze(1).unsqueeze(1) norm_pert = step_alpha * (pert + self.eps) * img.grad / l2_norm(img.grad) step_adv = img + norm_pert step_adv = torch.clamp(step_adv, -2.5, 2.5) img.data = step_adv.data step += 1 return img
EXA-1-master
exa/libraries/Knowledge-Distillation-Zoo/kd_losses/bss.py
from __future__ import absolute_import from __future__ import print_function from __future__ import division import torch import torch.nn as nn import torch.nn.functional as F class Logits(nn.Module): ''' Do Deep Nets Really Need to be Deep? http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf ''' def __init__(self): super(Logits, self).__init__() def forward(self, out_s, out_t): loss = F.mse_loss(out_s, out_t) return loss
EXA-1-master
exa/libraries/Knowledge-Distillation-Zoo/kd_losses/logits.py
from __future__ import absolute_import from __future__ import print_function from __future__ import division import torch import torch.nn as nn import torch.nn.functional as F ''' Adopted from https://github.com/passalis/probabilistic_kt/blob/master/nn/pkt.py ''' class PKTCosSim(nn.Module): ''' Learning Deep Representations with Probabilistic Knowledge Transfer http://openaccess.thecvf.com/content_ECCV_2018/papers/Nikolaos_Passalis_Learning_Deep_Representations_ECCV_2018_paper.pdf ''' def __init__(self): super(PKTCosSim, self).__init__() def forward(self, feat_s, feat_t, eps=1e-6): # Normalize each vector by its norm feat_s_norm = torch.sqrt(torch.sum(feat_s ** 2, dim=1, keepdim=True)) feat_s = feat_s / (feat_s_norm + eps) feat_s[feat_s != feat_s] = 0 feat_t_norm = torch.sqrt(torch.sum(feat_t ** 2, dim=1, keepdim=True)) feat_t = feat_t / (feat_t_norm + eps) feat_t[feat_t != feat_t] = 0 # Calculate the cosine similarity feat_s_cos_sim = torch.mm(feat_s, feat_s.transpose(0, 1)) feat_t_cos_sim = torch.mm(feat_t, feat_t.transpose(0, 1)) # Scale cosine similarity to [0,1] feat_s_cos_sim = (feat_s_cos_sim + 1.0) / 2.0 feat_t_cos_sim = (feat_t_cos_sim + 1.0) / 2.0 # Transform them into probabilities feat_s_cond_prob = feat_s_cos_sim / torch.sum(feat_s_cos_sim, dim=1, keepdim=True) feat_t_cond_prob = feat_t_cos_sim / torch.sum(feat_t_cos_sim, dim=1, keepdim=True) # Calculate the KL-divergence loss = torch.mean(feat_t_cond_prob * torch.log((feat_t_cond_prob + eps) / (feat_s_cond_prob + eps))) return loss
EXA-1-master
exa/libraries/Knowledge-Distillation-Zoo/kd_losses/pkt.py
from __future__ import absolute_import from __future__ import print_function from __future__ import division import torch import torch.nn as nn import torch.nn.functional as F class FSP(nn.Module): ''' A Gift from Knowledge Distillation: Fast Optimization, Network Minimization and Transfer Learning http://openaccess.thecvf.com/content_cvpr_2017/papers/Yim_A_Gift_From_CVPR_2017_paper.pdf ''' def __init__(self): super(FSP, self).__init__() def forward(self, fm_s1, fm_s2, fm_t1, fm_t2): loss = F.mse_loss(self.fsp_matrix(fm_s1,fm_s2), self.fsp_matrix(fm_t1,fm_t2)) return loss def fsp_matrix(self, fm1, fm2): if fm1.size(2) > fm2.size(2): fm1 = F.adaptive_avg_pool2d(fm1, (fm2.size(2), fm2.size(3))) fm1 = fm1.view(fm1.size(0), fm1.size(1), -1) fm2 = fm2.view(fm2.size(0), fm2.size(1), -1).transpose(1,2) fsp = torch.bmm(fm1, fm2) / fm1.size(2) return fsp
EXA-1-master
exa/libraries/Knowledge-Distillation-Zoo/kd_losses/fsp.py
from __future__ import absolute_import from __future__ import print_function from __future__ import division import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import grad class Sobolev(nn.Module): ''' Sobolev Training for Neural Networks https://arxiv.org/pdf/1706.04859.pdf Knowledge Transfer with Jacobian Matching http://de.arxiv.org/pdf/1803.00443 ''' def __init__(self): super(Sobolev, self).__init__() def forward(self, out_s, out_t, img, target): target_out_s = torch.gather(out_s, 1, target.view(-1, 1)) grad_s = grad(outputs=target_out_s, inputs=img, grad_outputs=torch.ones_like(target_out_s), create_graph=True, retain_graph=True, only_inputs=True)[0] norm_grad_s = F.normalize(grad_s.view(grad_s.size(0), -1), p=2, dim=1) target_out_t = torch.gather(out_t, 1, target.view(-1, 1)) grad_t = grad(outputs=target_out_t, inputs=img, grad_outputs=torch.ones_like(target_out_t), create_graph=True, retain_graph=True, only_inputs=True)[0] norm_grad_t = F.normalize(grad_t.view(grad_t.size(0), -1), p=2, dim=1) loss = F.mse_loss(norm_grad_s, norm_grad_t.detach()) return loss
EXA-1-master
exa/libraries/Knowledge-Distillation-Zoo/kd_losses/sobolev.py
from __future__ import absolute_import from __future__ import print_function from __future__ import division import torch import torch.nn as nn import torch.nn.functional as F class Hint(nn.Module): ''' FitNets: Hints for Thin Deep Nets https://arxiv.org/pdf/1412.6550.pdf ''' def __init__(self): super(Hint, self).__init__() def forward(self, fm_s, fm_t): loss = F.mse_loss(fm_s, fm_t) return loss
EXA-1-master
exa/libraries/Knowledge-Distillation-Zoo/kd_losses/fitnet.py
from __future__ import absolute_import from __future__ import print_function from __future__ import division import torch import torch.nn as nn import torch.nn.functional as F ''' DML with only two networks ''' class DML(nn.Module): ''' Deep Mutual Learning https://zpascal.net/cvpr2018/Zhang_Deep_Mutual_Learning_CVPR_2018_paper.pdf ''' def __init__(self): super(DML, self).__init__() def forward(self, out1, out2): loss = F.kl_div(F.log_softmax(out1, dim=1), F.softmax(out2, dim=1), reduction='batchmean') return loss
EXA-1-master
exa/libraries/Knowledge-Distillation-Zoo/kd_losses/dml.py
from __future__ import absolute_import from __future__ import print_function from __future__ import division import torch import torch.nn as nn import torch.nn.functional as F import numpy as np ''' Modified from https://github.com/clovaai/overhaul-distillation/blob/master/CIFAR-100/distiller.py ''' class OFD(nn.Module): ''' A Comprehensive Overhaul of Feature Distillation http://openaccess.thecvf.com/content_ICCV_2019/papers/ Heo_A_Comprehensive_Overhaul_of_Feature_Distillation_ICCV_2019_paper.pdf ''' def __init__(self, in_channels, out_channels): super(OFD, self).__init__() self.connector = nn.Sequential(*[ nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(out_channels) ]) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def forward(self, fm_s, fm_t): margin = self.get_margin(fm_t) fm_t = torch.max(fm_t, margin) fm_s = self.connector(fm_s) mask = 1.0 - ((fm_s <= fm_t) & (fm_t <= 0.0)).float() loss = torch.mean((fm_s - fm_t)**2 * mask) return loss def get_margin(self, fm, eps=1e-6): mask = (fm < 0.0).float() masked_fm = fm * mask margin = masked_fm.sum(dim=(0,2,3), keepdim=True) / (mask.sum(dim=(0,2,3), keepdim=True)+eps) return margin
EXA-1-master
exa/libraries/Knowledge-Distillation-Zoo/kd_losses/ofd.py
from __future__ import absolute_import from __future__ import print_function from __future__ import division import torch import torch.nn as nn import torch.nn.functional as F import math ''' Modified from https://github.com/HobbitLong/RepDistiller/tree/master/crd ''' class CRD(nn.Module): ''' Contrastive Representation Distillation https://openreview.net/pdf?id=SkgpBJrtvS includes two symmetric parts: (a) using teacher as anchor, choose positive and negatives over the student side (b) using student as anchor, choose positive and negatives over the teacher side Args: s_dim: the dimension of student's feature t_dim: the dimension of teacher's feature feat_dim: the dimension of the projection space nce_n: number of negatives paired with each positive nce_t: the temperature nce_mom: the momentum for updating the memory buffer n_data: the number of samples in the training set, which is the M in Eq.(19) ''' def __init__(self, s_dim, t_dim, feat_dim, nce_n, nce_t, nce_mom, n_data): super(CRD, self).__init__() self.embed_s = Embed(s_dim, feat_dim) self.embed_t = Embed(t_dim, feat_dim) self.contrast = ContrastMemory(feat_dim, n_data, nce_n, nce_t, nce_mom) self.criterion_s = ContrastLoss(n_data) self.criterion_t = ContrastLoss(n_data) def forward(self, feat_s, feat_t, idx, sample_idx): feat_s = self.embed_s(feat_s) feat_t = self.embed_t(feat_t) out_s, out_t = self.contrast(feat_s, feat_t, idx, sample_idx) loss_s = self.criterion_s(out_s) loss_t = self.criterion_t(out_t) loss = loss_s + loss_t return loss class Embed(nn.Module): def __init__(self, in_dim, out_dim): super(Embed, self).__init__() self.linear = nn.Linear(in_dim, out_dim) def forward(self, x): x = x.view(x.size(0), -1) x = self.linear(x) x = F.normalize(x, p=2, dim=1) return x class ContrastLoss(nn.Module): ''' contrastive loss, corresponding to Eq.(18) ''' def __init__(self, n_data, eps=1e-7): super(ContrastLoss, self).__init__() self.n_data = n_data self.eps = eps def forward(self, x): bs = x.size(0) N = x.size(1) - 1 M = float(self.n_data) # loss for positive pair pos_pair = x.select(1, 0) log_pos = torch.div(pos_pair, pos_pair.add(N / M + self.eps)).log_() # loss for negative pair neg_pair = x.narrow(1, 1, N) log_neg = torch.div(neg_pair.clone().fill_(N / M), neg_pair.add(N / M + self.eps)).log_() loss = -(log_pos.sum() + log_neg.sum()) / bs return loss class ContrastMemory(nn.Module): def __init__(self, feat_dim, n_data, nce_n, nce_t, nce_mom): super(ContrastMemory, self).__init__() self.N = nce_n self.T = nce_t self.momentum = nce_mom self.Z_t = None self.Z_s = None stdv = 1. / math.sqrt(feat_dim / 3.) self.register_buffer('memory_t', torch.rand(n_data, feat_dim).mul_(2 * stdv).add_(-stdv)) self.register_buffer('memory_s', torch.rand(n_data, feat_dim).mul_(2 * stdv).add_(-stdv)) def forward(self, feat_s, feat_t, idx, sample_idx): bs = feat_s.size(0) feat_dim = self.memory_s.size(1) n_data = self.memory_s.size(0) # using teacher as anchor weight_s = torch.index_select(self.memory_s, 0, sample_idx.view(-1)).detach() weight_s = weight_s.view(bs, self.N + 1, feat_dim) out_t = torch.bmm(weight_s, feat_t.view(bs, feat_dim, 1)) out_t = torch.exp(torch.div(out_t, self.T)).squeeze().contiguous() # using student as anchor weight_t = torch.index_select(self.memory_t, 0, sample_idx.view(-1)).detach() weight_t = weight_t.view(bs, self.N + 1, feat_dim) out_s = torch.bmm(weight_t, feat_s.view(bs, feat_dim, 1)) out_s = torch.exp(torch.div(out_s, self.T)).squeeze().contiguous() # set Z if haven't been set yet if self.Z_t is None: self.Z_t = (out_t.mean() * n_data).detach().item() if self.Z_s is None: self.Z_s = (out_s.mean() * n_data).detach().item() out_t = torch.div(out_t, self.Z_t) out_s = torch.div(out_s, self.Z_s) # update memory with torch.no_grad(): pos_mem_t = torch.index_select(self.memory_t, 0, idx.view(-1)) pos_mem_t.mul_(self.momentum) pos_mem_t.add_(torch.mul(feat_t, 1 - self.momentum)) pos_mem_t = F.normalize(pos_mem_t, p=2, dim=1) self.memory_t.index_copy_(0, idx, pos_mem_t) pos_mem_s = torch.index_select(self.memory_s, 0, idx.view(-1)) pos_mem_s.mul_(self.momentum) pos_mem_s.add_(torch.mul(feat_s, 1 - self.momentum)) pos_mem_s = F.normalize(pos_mem_s, p=2, dim=1) self.memory_s.index_copy_(0, idx, pos_mem_s) return out_s, out_t
EXA-1-master
exa/libraries/Knowledge-Distillation-Zoo/kd_losses/crd.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import datetime import distutils.command.clean import glob import importlib.util import json import os import platform import shlex import shutil import subprocess import sys from pathlib import Path from typing import List import setuptools import torch from torch.utils.cpp_extension import ( CUDA_HOME, BuildExtension, CppExtension, CUDAExtension, ) this_dir = os.path.dirname(__file__) def get_extra_nvcc_flags_for_build_type() -> List[str]: build_type = os.environ.get("XFORMERS_BUILD_TYPE", "RelWithDebInfo").lower() if build_type == "relwithdebinfo": return ["--generate-line-info"] elif build_type == "release": return [] else: raise ValueError(f"Unknown build type: {build_type}") def fetch_requirements(): with open("requirements.txt") as f: reqs = f.read().strip().split("\n") return reqs def get_local_version_suffix() -> str: date_suffix = datetime.datetime.now().strftime("%Y%m%d") git_hash = subprocess.check_output( ["git", "rev-parse", "--short", "HEAD"], cwd=Path(__file__).parent ).decode("ascii")[:-1] return f"+{git_hash}.d{date_suffix}" def write_version_file(version: str): version_path = os.path.join(this_dir, "xformers", "version.py") with open(version_path, "w") as f: f.write("# noqa: C801\n") f.write(f'__version__ = "{version}"\n') tag = os.getenv("GIT_TAG") if tag is not None: f.write(f'git_tag = "{tag}"\n') def symlink_package(name: str, path: Path, is_building_wheel: bool) -> None: cwd = Path(__file__).resolve().parent path_from = cwd / path path_to = os.path.join(cwd, *name.split(".")) try: if os.path.islink(path_to): os.unlink(path_to) elif os.path.isdir(path_to): shutil.rmtree(path_to) else: os.remove(path_to) except FileNotFoundError: pass # OSError: [WinError 1314] A required privilege is not held by the client # Windows requires special permission to symlink. Fallback to copy # When building wheels for linux 3.7 and 3.8, symlinks are not included # So we force a copy, see #611 use_symlink = os.name != "nt" and not is_building_wheel if use_symlink: os.symlink(src=path_from, dst=path_to) else: shutil.copytree(src=path_from, dst=path_to) def get_cuda_version(cuda_dir) -> int: nvcc_bin = "nvcc" if cuda_dir is None else cuda_dir + "/bin/nvcc" raw_output = subprocess.check_output([nvcc_bin, "-V"], universal_newlines=True) output = raw_output.split() release_idx = output.index("release") + 1 release = output[release_idx].split(".") bare_metal_major = int(release[0]) bare_metal_minor = int(release[1][0]) assert bare_metal_minor < 100 return bare_metal_major * 100 + bare_metal_minor def get_flash_attention_extensions(cuda_version: int, extra_compile_args): # Figure out default archs to target DEFAULT_ARCHS_LIST = "" if cuda_version > 1100: DEFAULT_ARCHS_LIST = "7.5;8.0;8.6" elif cuda_version == 1100: DEFAULT_ARCHS_LIST = "7.5;8.0" else: return [] if os.getenv("XFORMERS_DISABLE_FLASH_ATTN", "0") != "0": return [] archs_list = os.environ.get("TORCH_CUDA_ARCH_LIST", DEFAULT_ARCHS_LIST) nvcc_archs_flags = [] for arch in archs_list.replace(" ", ";").split(";"): assert len(arch) >= 3, f"Invalid sm version: {arch}" num = 10 * int(arch[0]) + int(arch[2]) # Need at least 7.5 if num < 75: continue nvcc_archs_flags.append(f"-gencode=arch=compute_{num},code=sm_{num}") if arch.endswith("+PTX"): nvcc_archs_flags.append(f"-gencode=arch=compute_{num},code=compute_{num}") if not nvcc_archs_flags: return [] flash_root = os.path.join(this_dir, "third_party", "flash-attention") if not os.path.exists(flash_root): raise RuntimeError( "flashattention submodule not found. Did you forget " "to run `git submodule update --init --recursive` ?" ) return [ CUDAExtension( name="xformers._C_flashattention", sources=[ os.path.join("third_party", "flash-attention", path) for path in [ "csrc/flash_attn/fmha_api.cpp", "csrc/flash_attn/src/fmha_fwd_hdim32.cu", "csrc/flash_attn/src/fmha_fwd_hdim64.cu", "csrc/flash_attn/src/fmha_fwd_hdim128.cu", "csrc/flash_attn/src/fmha_bwd_hdim32.cu", "csrc/flash_attn/src/fmha_bwd_hdim64.cu", "csrc/flash_attn/src/fmha_bwd_hdim128.cu", "csrc/flash_attn/src/fmha_block_fprop_fp16_kernel.sm80.cu", "csrc/flash_attn/src/fmha_block_dgrad_fp16_kernel_loop.sm80.cu", ] ], extra_compile_args={ **extra_compile_args, "nvcc": extra_compile_args.get("nvcc", []) + [ "-O3", "-std=c++17", "--expt-relaxed-constexpr", "--expt-extended-lambda", "--use_fast_math", "--ptxas-options=-v", ] + nvcc_archs_flags + get_extra_nvcc_flags_for_build_type(), }, include_dirs=[ p.absolute() for p in [ Path(flash_root) / "csrc" / "flash_attn", Path(flash_root) / "csrc" / "flash_attn" / "src", Path(this_dir) / "third_party" / "cutlass" / "include", ] ], ) ] def get_extensions(): extensions_dir = os.path.join("xformers", "csrc") sources = glob.glob(os.path.join(extensions_dir, "**", "*.cpp"), recursive=True) source_cuda = glob.glob(os.path.join(extensions_dir, "**", "*.cu"), recursive=True) sputnik_dir = os.path.join(this_dir, "third_party", "sputnik") cutlass_dir = os.path.join(this_dir, "third_party", "cutlass", "include") cutlass_examples_dir = os.path.join(this_dir, "third_party", "cutlass", "examples") if not os.path.exists(cutlass_dir): raise RuntimeError( f"CUTLASS submodule not found at {cutlass_dir}. " "Did you forget to run " "`git submodule update --init --recursive` ?" ) extension = CppExtension define_macros = [] extra_compile_args = {"cxx": ["-O3"]} if sys.platform == "win32": define_macros += [("xformers_EXPORTS", None)] extra_compile_args["cxx"].extend(["/MP", "/Zc:lambda", "/Zc:preprocessor"]) elif "OpenMP not found" not in torch.__config__.parallel_info(): extra_compile_args["cxx"].append("-fopenmp") include_dirs = [extensions_dir] ext_modules = [] cuda_version = None if ( (torch.cuda.is_available() and ((CUDA_HOME is not None))) or os.getenv("FORCE_CUDA", "0") == "1" or os.getenv("TORCH_CUDA_ARCH_LIST", "") != "" ): extension = CUDAExtension sources += source_cuda include_dirs += [sputnik_dir, cutlass_dir, cutlass_examples_dir] nvcc_flags = [ "-DHAS_PYTORCH", "--use_fast_math", "-U__CUDA_NO_HALF_OPERATORS__", "-U__CUDA_NO_HALF_CONVERSIONS__", "--extended-lambda", "-D_ENABLE_EXTENDED_ALIGNED_STORAGE", # Workaround for a regression with nvcc > 11.6 # See https://github.com/facebookresearch/xformers/issues/712 "--ptxas-options=-O2", "--ptxas-options=-allow-expensive-optimizations=true", ] + get_extra_nvcc_flags_for_build_type() if os.getenv("XFORMERS_ENABLE_DEBUG_ASSERTIONS", "0") != "1": nvcc_flags.append("-DNDEBUG") nvcc_flags += shlex.split(os.getenv("NVCC_FLAGS", "")) cuda_version = get_cuda_version(CUDA_HOME) if cuda_version >= 1102: nvcc_flags += [ "--threads", "4", "--ptxas-options=-v", ] if sys.platform == "win32": nvcc_flags += [ "-std=c++17", "-Xcompiler", "/Zc:lambda", "-Xcompiler", "/Zc:preprocessor", ] extra_compile_args["nvcc"] = nvcc_flags ext_modules += get_flash_attention_extensions( cuda_version=cuda_version, extra_compile_args=extra_compile_args ) ext_modules.append( extension( "xformers._C", sorted(sources), include_dirs=[os.path.abspath(p) for p in include_dirs], define_macros=define_macros, extra_compile_args=extra_compile_args, ) ) return ext_modules, { "version": { "cuda": cuda_version, "torch": torch.__version__, "python": platform.python_version(), }, "env": { k: os.environ.get(k) for k in [ "TORCH_CUDA_ARCH_LIST", "XFORMERS_BUILD_TYPE", "XFORMERS_ENABLE_DEBUG_ASSERTIONS", "NVCC_FLAGS", "XFORMERS_PACKAGE_FROM", ] }, } class clean(distutils.command.clean.clean): # type: ignore def run(self): if os.path.exists(".gitignore"): with open(".gitignore", "r") as f: ignores = f.read() for wildcard in filter(None, ignores.split("\n")): for filename in glob.glob(wildcard): try: os.remove(filename) except OSError: shutil.rmtree(filename, ignore_errors=True) # It's an old-style class in Python 2.7... distutils.command.clean.clean.run(self) class BuildExtensionWithMetadata(BuildExtension): def __init__(self, *args, **kwargs) -> None: self.xformers_build_metadata = kwargs.pop("xformers_build_metadata") self.pkg_name = "xformers" self.metadata_json = "cpp_lib.json" super().__init__(*args, **kwargs) @staticmethod def _join_cuda_home(*paths) -> str: """ Hackfix to support custom `nvcc` binary (eg ccache) TODO: Remove once we use PT 2.1.0 (https://github.com/pytorch/pytorch/pull/96987) """ if paths == ("bin", "nvcc") and "PYTORCH_NVCC" in os.environ: return os.environ["PYTORCH_NVCC"] if CUDA_HOME is None: raise EnvironmentError( "CUDA_HOME environment variable is not set. " "Please set it to your CUDA install root." ) return os.path.join(CUDA_HOME, *paths) def build_extensions(self) -> None: torch.utils.cpp_extension._join_cuda_home = ( BuildExtensionWithMetadata._join_cuda_home ) super().build_extensions() with open( os.path.join(self.build_lib, self.pkg_name, self.metadata_json), "w+" ) as fp: json.dump(self.xformers_build_metadata, fp) def copy_extensions_to_source(self): """ Used for `pip install -e .` Copies everything we built back into the source repo """ build_py = self.get_finalized_command("build_py") package_dir = build_py.get_package_dir(self.pkg_name) inplace_file = os.path.join(package_dir, self.metadata_json) regular_file = os.path.join(self.build_lib, self.pkg_name, self.metadata_json) self.copy_file(regular_file, inplace_file, level=self.verbose) super().copy_extensions_to_source() if __name__ == "__main__": try: # when installing as a source distribution, the version module should exist # Let's import it manually to not trigger the load of the C++ # library - which does not exist yet, and creates a WARNING spec = importlib.util.spec_from_file_location( "xformers_version", os.path.join(this_dir, "xformers", "version.py") ) if spec is None or spec.loader is None: raise FileNotFoundError() module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) version = module.__version__ except FileNotFoundError: if os.getenv("BUILD_VERSION"): # In CI version = os.getenv("BUILD_VERSION", "0.0.0") else: version_txt = os.path.join(this_dir, "version.txt") with open(version_txt) as f: version = f.readline().strip() version += get_local_version_suffix() write_version_file(version) is_building_wheel = "bdist_wheel" in sys.argv # Embed a fixed version of flash_attn # NOTE: The correct way to do this would be to use the `package_dir` # parameter in `setuptools.setup`, but this does not work when # developing in editable mode # See: https://github.com/pypa/pip/issues/3160 (closed, but not fixed) symlink_package( "xformers._flash_attn", Path("third_party") / "flash-attention" / "flash_attn", is_building_wheel, ) extensions, extensions_metadata = get_extensions() setuptools.setup( name="xformers", description="XFormers: A collection of composable Transformer building blocks.", version=version, install_requires=fetch_requirements(), packages=setuptools.find_packages( exclude=("tests*", "benchmarks*", "experimental*") ), ext_modules=extensions, cmdclass={ "build_ext": BuildExtensionWithMetadata.with_options( no_python_abi_suffix=True, xformers_build_metadata=extensions_metadata ), "clean": clean, }, url="https://facebookresearch.github.io/xformers/", python_requires=">=3.7", author="Facebook AI Research", author_email="[email protected]", long_description="XFormers: A collection of composable Transformer building blocks." + "XFormers aims at being able to reproduce most architectures in the Transformer-family SOTA," + "defined as compatible and combined building blocks as opposed to monolithic models", long_description_content_type="text/markdown", classifiers=[ "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "License :: OSI Approved :: BSD License", "Topic :: Scientific/Engineering :: Artificial Intelligence", "Operating System :: OS Independent", ], zip_safe=False, )
EXA-1-master
exa/libraries/xformers/setup.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from typing import Any, Tuple, TypeVar import torch import torch.nn as nn from pyre_extensions import TypeVarTuple, Unpack from torch import Tensor from typing_extensions import Literal as L Ts = TypeVarTuple("Ts") N = TypeVar("N", bound=int) # flake8: noqa """ Tensor shape signatures can get complicated and hard to debug. We are basically writing code at the level of types. It's helpful to have type-level unit tests for the stubs. Take care to add both a positive and a negative test for your stub. That way, even if someone changes the stub to return a bad type like `Any`, we will still be warned by an unused-ignore error. Otherwise, `y: Tensor[int, L[2], L[3]] = foo(x)` would silently pass because `Any` is compatible with any type. Use `pyre --output=json | pyre-upgrade` to add the `pyre-fixme` comment for you. """ def test_sin() -> None: x: Tensor[int, L[2], L[3]] same_shape_as_x: Tensor[int, L[2], L[3]] not_same_shape_as_x: Tensor[int, L[2], L[99]] y: Tensor[int, L[2], L[3]] = torch.sin(x) # pyre-fixme[9]: y2 has type `Tensor[int, typing_extensions.Literal[2], # typing_extensions.Literal[4]]`; used as `Tensor[int, # typing_extensions.Literal[2], typing_extensions.Literal[3]]`. y2: Tensor[int, L[2], L[4]] = torch.sin(x) y3: Tensor[int, L[2], L[3]] = torch.sin(x, out=same_shape_as_x) # pyre-fixme[6]: Expected `Tensor[Variable[torch.DType], *torch.Ts]` for 2nd # param but got `Tensor[int, int, int]`. # pyre-fixme[9]: y4 has type `Tensor[int, typing_extensions.Literal[2], # typing_extensions.Literal[4]]`; used as `Tensor[int, # typing_extensions.Literal[2], typing_extensions.Literal[3]]`. y4: Tensor[int, L[2], L[4]] = torch.sin(x, out=not_same_shape_as_x) y5: Tensor[int, L[2], L[3]] = torch.sin(x, out=None) def test_unsqueeze() -> None: x: Tensor[int, L[2], L[3]] y: Tensor[int, L[1], L[2], L[3]] = x.unsqueeze(0) y_torch_function: Tensor[int, L[1], L[2], L[3]] = torch.unsqueeze(x, 0) y2: Tensor[int, L[2], L[1], L[3]] = x.unsqueeze(1) y3: Tensor[int, L[2], L[3], L[1]] = x.unsqueeze(-1) # pyre-fixme[9]: y4 has type `Tensor[int, typing_extensions.Literal[99]]`; used # as `Tensor[int, typing_extensions.Literal[1], typing_extensions.Literal[2], # typing_extensions.Literal[3]]`. y4: Tensor[int, L[99]] = x.unsqueeze(0) empty: Tensor[int] y5: Tensor[int, L[1]] = empty.unsqueeze(0) # pyre-fixme[6]: Expected `typing_extensions.Literal[0]` for 1st param but got # `typing_extensions.Literal[1]`. y6: Tensor[int, L[1]] = empty.unsqueeze(1) y7: Tensor[int, L[2], L[3], L[1]] = x.unsqueeze(2) def test_unsqueeze_() -> None: x: Tensor[int, L[2], L[3]] y: Tensor[int, L[1], L[2], L[3]] = x.unsqueeze_(0) y_error: Tensor[int, L[1], L[2], L[3]] = x.unsqueeze_(0) # pyre-ignore[9]: `unsqueeze_` is an in-place shape-transforming function. But Pyre cannot # update a variable's shape type. z: Tensor[int, L[1], L[2], L[3]] = x def test_squeeze_() -> None: x: Tensor[int, L[1], L[2], L[3]] out: Tensor y: Tensor[int, L[2], L[3]] = x.squeeze_(out=out) # pyre-ignore[9]: Expected error. y_error: Tensor[int, L[2], L[99]] = x.squeeze_() y2: Tensor[int, L[2], L[3]] = x.squeeze_().squeeze_() x2: Tensor[int, L[2], L[3], L[1], L[1]] x3: Tensor[int, L[2], L[3], L[1]] y3: Tensor[int, L[2], L[3]] = x2.squeeze_() y4: Tensor[int, L[2], L[3]] = x3.squeeze_() y5: Tensor[int, L[2], L[3]] = x.squeeze_(0) y6: Tensor[int, L[2], L[3], L[1]] = x2.squeeze_(-1) def test_squeeze() -> None: x: Tensor[int, L[1], L[2], L[3]] out: Tensor y: Tensor[int, L[2], L[3]] = x.squeeze(out=out) # pyre-ignore[9]: Expected error. y_error: Tensor[int, L[2], L[99]] = x.squeeze() y2: Tensor[int, L[2], L[3]] = x.squeeze().squeeze() x2: Tensor[int, L[2], L[3], L[1], L[1]] x3: Tensor[int, L[2], L[3], L[1]] y3: Tensor[int, L[2], L[3]] = x2.squeeze() y4: Tensor[int, L[2], L[3]] = x3.squeeze() y5: Tensor[int, L[2], L[3]] = x.squeeze(0) y6: Tensor[int, L[2], L[3], L[1]] = x2.squeeze(-1) def test_repeat() -> None: x: Tensor[int, L[2], L[3]] y: Tensor[int, L[8], L[15]] = x.repeat(4, 5) # pyre-fixme[9] y2: Tensor[int, L[8], L[16]] = x.repeat(4, 5) # TODO(T96315150): This is passing by coincidence right now. y3: Tensor[int, L[4], L[10], L[18]] = x.repeat(4, 5, 6) # pyre-ignore[9]: Doesn't error as expected because we have limited overloads. y3_error: Tensor[int, L[4], L[10], L[99]] = x.repeat(4, 5, 6) # pyre-ignore[9, 19] not_yet_supported: Tensor[int, L[4], L[5], L[12], L[21]] = x.repeat(4, 5, 6, 7) # Fewer dimensions than the Tensor. Should raise a different error. x.repeat(2) one_dimension: Tensor[int, L[2]] y4: Tensor[int, L[8]] = x.repeat(4) # pyre-ignore[9] y4_error: Tensor[int, L[99]] = x.repeat(4) def test_multiply() -> None: x: Tensor[torch.int64, L[2], L[3]] y: Tensor[torch.float32, L[2], L[3]] = x * 2 # pyre-fixme[9]: y_error has type `Tensor[torch.bool, # typing_extensions.Literal[2], typing_extensions.Literal[99]]`; used as # `Tensor[torch.float32, typing_extensions.Literal[2], # typing_extensions.Literal[3]]`. y_error: Tensor[torch.bool, L[2], L[99]] = x * 2 y2: Tensor[torch.float32, L[2], L[3]] = 2 * x # pyre-fixme[9]: y2_error has type `Tensor[torch.bool, # typing_extensions.Literal[2], typing_extensions.Literal[99]]`; used as # `Tensor[torch.float32, typing_extensions.Literal[2], # typing_extensions.Literal[3]]`. y2_error: Tensor[torch.bool, L[2], L[99]] = 2 * x y3: Tensor[torch.float32, L[2], L[3]] = x * 2.0 # pyre-fixme[9]: y3_error has type `Tensor[torch.float32, # typing_extensions.Literal[2], typing_extensions.Literal[4]]`; used as # `Tensor[torch.float32, typing_extensions.Literal[2], # typing_extensions.Literal[3]]`. y3_error: Tensor[torch.float32, L[2], L[4]] = x * 2.0 z: Tensor[torch.int64, L[4], L[1], L[1]] z_bad: Tensor[torch.int64, L[4], L[2], L[99]] y4: Tensor[torch.int64, L[4], L[2], L[3]] = x * z # pyre-fixme[2001]: Broadcast error at expression `x.__mul__(z_bad)`; types # `Tuple[typing_extensions.Literal[2], typing_extensions.Literal[3]]` and # `Tuple[typing_extensions.Literal[4], typing_extensions.Literal[2], # typing_extensions.Literal[99]]` cannot be broadcasted together. x * z_bad x4: Tensor[torch.float32, L[2], L[3]] x5: Tensor[torch.float32, L[2], L[3]] x5_bad: Tensor[torch.float32, L[2], L[99]] x4 *= x5 x4 *= 4 y5: Tensor[torch.float32, L[2], L[3]] = x5 # pyre-fixme[2001]: Broadcast error at expression `x4.__imul__(x5_bad)`; types # `Tuple[typing_extensions.Literal[2], typing_extensions.Literal[3]]` and # `Tuple[typing_extensions.Literal[2], typing_extensions.Literal[99]]` cannot be # broadcasted together. x4 *= x5_bad def test_floor_division() -> None: x: Tensor[torch.int64, L[2], L[3]] x2: Tensor[torch.int64, L[2], L[1]] y: Tensor[torch.int64, L[2], L[3]] = x // 2 # pyre-fixme[9]: y_error has type `Tensor[torch.bool, # typing_extensions.Literal[2], typing_extensions.Literal[99]]`; used as # `Tensor[torch.float32, typing_extensions.Literal[2], # typing_extensions.Literal[3]]`. y_error: Tensor[torch.bool, L[2], L[99]] = x // 2 y2: Tensor[torch.int64, L[2], L[3]] = 2 // x # pyre-fixme[9]: y2_error has type `Tensor[torch.bool, # typing_extensions.Literal[2], typing_extensions.Literal[99]]`; used as # `Tensor[torch.float32, typing_extensions.Literal[2], # typing_extensions.Literal[3]]`. y2_error: Tensor[torch.bool, L[2], L[99]] = 2 // x y3: Tensor[torch.int64, L[2], L[3]] = x // x2 x3: Tensor[torch.float32, L[2], L[3]] x4: Tensor[torch.float32, L[2], L[3]] x4_bad: Tensor[torch.float32, L[2], L[99]] x3 //= x4 x3 //= 4 y5: Tensor[torch.float32, L[2], L[3]] = x3 # pyre-fixme[2001]: Broadcast error at expression `x3.__ifloordiv__(x4_bad)`; # types `Tuple[typing_extensions.Literal[2], typing_extensions.Literal[3]]` and # `Tuple[typing_extensions.Literal[2], typing_extensions.Literal[99]]` cannot be # broadcasted together. x3 //= x4_bad def test_division() -> None: x: Tensor[torch.int64, L[2], L[3]] x2: Tensor[torch.int64, L[2], L[1]] y: Tensor[torch.float32, L[2], L[3]] = x / 2 # pyre-fixme[9]: y_error has type `Tensor[torch.bool, # typing_extensions.Literal[2], typing_extensions.Literal[99]]`; used as # `Tensor[torch.float32, typing_extensions.Literal[2], # typing_extensions.Literal[3]]`. y_error: Tensor[torch.bool, L[2], L[99]] = x / 2 y2: Tensor[torch.float32, L[2], L[3]] = 2 / x # pyre-fixme[9]: y2_error has type `Tensor[torch.bool, # typing_extensions.Literal[2], typing_extensions.Literal[99]]`; used as # `Tensor[torch.float32, typing_extensions.Literal[2], # typing_extensions.Literal[3]]`. y2_error: Tensor[torch.bool, L[2], L[99]] = 2 / x x3: Tensor[torch.float32, L[2], L[3]] y3: Tensor[torch.float32, L[2], L[3]] = x3 / 2 y4: Tensor[torch.float32, L[2], L[3]] = 2 / x3 y5: Tensor[torch.float32, L[2], L[3]] = x / x2 x5: Tensor[torch.float32, L[2], L[3]] x6: Tensor[torch.float32, L[2], L[3]] x6_bad: Tensor[torch.float32, L[2], L[99]] x5 /= x6 x5 /= 4 y6: Tensor[torch.float32, L[2], L[3]] = x5 # pyre-fixme[2001]: Broadcast error at expression `x5.__itruediv__(x6_bad)`; # types `Tuple[typing_extensions.Literal[2], typing_extensions.Literal[3]]` and # `Tuple[typing_extensions.Literal[2], typing_extensions.Literal[99]]` cannot be # broadcasted together. x5 /= x6_bad def test_setitem() -> None: x: Tensor[torch.int64, L[2], L[3]] x[0, 0] = 1 def test_arange(n: N) -> None: y: Tensor[torch.int64, L[5]] = torch.arange(5) # pyre-fixme[9]: y_error has type `Tensor[torch.int64, # typing_extensions.Literal[99]]`; used as `Tensor[torch.int64, # typing_extensions.Literal[5]]`. y_error: Tensor[torch.int64, L[99]] = torch.arange(5) y2: Tensor[torch.int64, L[4]] = torch.arange(1, 5) y3: Tensor[torch.int64, L[2]] = torch.arange(1, 6, 2) y_float: Tensor[torch.float32, L[5]] = torch.arange(5, dtype=torch.float32) y_float2: Tensor[torch.float32, L[2]] = torch.arange(1, 6, 2, dtype=torch.float32) device: torch.device y_generic: Tensor[torch.float32, N] = torch.arange( 0, n, device=device, dtype=torch.float32 ) # pyre-fixme[9]: Expected error. y_generic_error: Tensor[torch.float32, L[99]] = torch.arange( 0, n, device=device, dtype=torch.float32 ) def test_embedding() -> None: embedding = nn.Embedding(10, 20) y: Tensor[torch.float32, L[10], L[20]] = embedding.weight # pyre-fixme[9]: y_error has type `Tensor[torch.float32, # typing_extensions.Literal[10], typing_extensions.Literal[99]]`; used as # `Tensor[torch.float32, typing_extensions.Literal[10], # typing_extensions.Literal[20]]`. y_error: Tensor[torch.float32, L[10], L[99]] = embedding.weight x: Tensor[torch.float32, L[2], L[3], L[4]] y2: Tensor[torch.float32, L[2], L[3], L[4], L[20]] = embedding(x) # pyre-fixme[9]: y2_error has type `Tensor[torch.float32, typing_extensions.Liter... y2_error: Tensor[torch.float32, L[2], L[3], L[4], L[99]] = embedding(x) weight: Tensor[torch.float32, L[3], L[4]] embedding2: nn.Embedding[L[3], L[4]] = nn.Embedding.from_pretrained(weight) # pyre-fixme[9]: embedding2_error has type # `Embedding[typing_extensions.Literal[3], typing_extensions.Literal[99]]`; used # as `Embedding[typing_extensions.Literal[3], typing_extensions.Literal[4]]`. embedding2_error: nn.Embedding[L[3], L[99]] = nn.Embedding.from_pretrained(weight) y3: Tensor[torch.float32, L[2], L[3], L[4], L[4]] = embedding2(x) def test_init_normal() -> None: x: Tensor[torch.float32, L[5], L[10]] y: Tensor[torch.float32, L[5], L[10]] = nn.init.normal_(x) # pyre-fixme[9]: y_error has type `Tensor[torch.float32, # typing_extensions.Literal[5], typing_extensions.Literal[99]]`; used as # `Tensor[torch.float32, typing_extensions.Literal[5], # typing_extensions.Literal[10]]`. y_error: Tensor[torch.float32, L[5], L[99]] = nn.init.normal_(x) def test_view() -> None: x: Tensor[torch.float32, L[4], L[4]] y: Tensor[torch.float32, L[16]] = x.view(16) # pyre-fixme[9]: y_error has type `Tensor[torch.float32, # typing_extensions.Literal[99]]`; used as `Tensor[torch.float32, # typing_extensions.Literal[16]]`. y_error: Tensor[torch.float32, L[99]] = x.view(16) # Should be an error because 4 * 4 != 99. Don't think this is going to be # feasible any time soon. y_error2: Tensor[torch.float32, L[99]] = x.view(99) y_error3: Tensor[torch.float32, L[2], L[3], L[4], L[5]] = x.view(2, 3, 4, 5) y2: Tensor[torch.float32, L[2], L[8]] = x.view(-1, 8) # pyre-fixme[9]: y2_error has type `Tensor[torch.float32, # typing_extensions.Literal[2], typing_extensions.Literal[99]]`; used as # `Tensor[torch.float32, typing_extensions.Literal[2], # typing_extensions.Literal[8]]`. y2_error: Tensor[torch.float32, L[2], L[99]] = x.view(-1, 8) x3: Tensor[torch.float32, L[2], L[3], L[4]] y3: Tensor[torch.float32, L[24]] = x3.view(-1) y4: Tensor[torch.float32, L[8], L[3]] = x3.view(-1, 3) # pyre-fixme[9]: y4_error has type `Tensor[torch.float32, # typing_extensions.Literal[99], typing_extensions.Literal[3]]`; used as # `Tensor[torch.float32, typing_extensions.Literal[8], # typing_extensions.Literal[3]]`. y4_error: Tensor[torch.float32, L[99], L[3]] = x3.view(-1, 3) y5: Tensor[torch.float32, L[2], L[6], L[2]] = x3.view(2, -1, 2) x4: Tensor[torch.float32, L[2], L[3], L[4], L[5]] y6: Tensor[torch.float32, L[3], L[5], L[8]] = x4.view(3, 5, -1) def test_reshape() -> None: x: Tensor[torch.float32, L[2], L[3], L[4]] y: Tensor[torch.float32, L[24]] = torch.reshape(x, (-1,)) y2: Tensor[torch.float32, L[8], L[3]] = torch.reshape(x, (-1, 3)) # pyre-fixme[9]: y2_error has type `Tensor[torch.float32, # typing_extensions.Literal[99], typing_extensions.Literal[3]]`; used as # `Tensor[torch.float32, typing_extensions.Literal[8], # typing_extensions.Literal[3]]`. y2_error: Tensor[torch.float32, L[99], L[3]] = torch.reshape(x, (-1, 3)) y3: Tensor[torch.float32, L[6], L[2], L[2]] = torch.reshape(x, (-1, 2, 2)) y4: Tensor[torch.float32, L[2], L[6], L[2]] = torch.reshape(x, (2, -1, 2)) y5: Tensor[torch.float32, L[4], L[3], L[2]] = torch.reshape(x, (4, 3, 2)) def test_transpose() -> None: x: Tensor[torch.float32, L[2], L[3], L[4], L[5], L[6]] y: Tensor[torch.float32, L[2], L[3], L[4], L[6], L[5]] = x.transpose(-2, -1) y_function: Tensor[torch.float32, L[2], L[3], L[4], L[6], L[5]] = torch.transpose( x, -2, -1 ) # pyre-fixme[9]: y_error has type `Tensor[torch.float32, typing_extensions.Litera... y_error: Tensor[torch.float32, L[2], L[4], L[99]] = x.transpose(-2, -1) y2: Tensor[torch.float32, L[2], L[4], L[3], L[5], L[6]] = x.transpose(1, 2) y3: Tensor[torch.float32, L[3], L[2], L[4], L[5], L[6]] = x.transpose(0, 1) y4: Tensor[torch.float32, L[3], L[2], L[4], L[5], L[6]] = x.transpose(1, 0) y5: Tensor[torch.float32, L[2], L[3], L[4], L[6], L[5]] = x.transpose(-1, -2) not_yet_supported: Tensor[ torch.float32, L[3], L[2], L[4], L[5], L[6] # pyre-fixme[6]: Expected `typing_extensions.Literal[0]` for 2nd param but got # `typing_extensions.Literal[4]`. ] = x.transpose(1, 4) def test_flatten() -> None: x: Tensor[torch.float32, L[2], L[3]] x_large: Tensor[torch.float32, L[2], L[3], L[4], L[5]] y: Tensor[torch.float32, L[6]] = x.flatten() y_default: Tensor[torch.float32, L[6]] = torch.flatten(x) y_large: Tensor[torch.float32, L[120]] = x_large.flatten() # pyre-fixme[9]: y_error has type `Tensor[torch.float32, # typing_extensions.Literal[99]]`; used as `Tensor[torch.float32, # typing_extensions.Literal[6]]`. y_error: Tensor[torch.float32, L[99]] = x.flatten() z: Tensor[torch.float32, L[2], L[3], L[4]] y2: Tensor[torch.float32, L[6], L[4]] = z.flatten(0, 1) y2_keyword: Tensor[torch.float32, L[6], L[4]] = z.flatten(start_dim=0, end_dim=1) y3: Tensor[torch.float32, L[2], L[12]] = z.flatten(1, 2) y3_large: Tensor[torch.float32, L[2], L[12], L[5]] = x_large.flatten(1, 2) y4: Tensor[torch.float32, L[2], L[3], L[20]] = x_large.flatten(2, 3) x_6d: Tensor[torch.float32, L[2], L[3], L[4], L[5], L[6], L[7]] y4_large: Tensor[torch.float32, L[2], L[3], L[20], L[6], L[7]] = x_6d.flatten(2, 3) # Out of bounds. # pyre-fixme[9]: y5_error has type `Tensor[torch.float32, # typing_extensions.Literal[2], typing_extensions.Literal[12]]`; used as # `Tensor[torch.float32, typing_extensions.Literal[6]]`. # pyre-fixme[6]: Expected `typing_extensions.Literal[0]` for 1st param but got # `typing_extensions.Literal[99]`. y5_error: Tensor[torch.float32, L[2], L[12]] = x.flatten(99, 100) x_0d: Tensor[torch.float32] y_0d: Tensor[torch.float32, L[1]] = x_0d.flatten() def test_empty() -> None: x: Tuple[L[1], L[2], L[3]] y: Tensor device: torch.device result1: torch.Tensor[torch.float32, L[1], L[2], L[3]] = torch.empty( *x, device=device, layout=torch.strided, requires_grad=True, out=y, pin_memory=False, memory_format=torch.memory_format(), ) # pyre-fixme[9]: bad1 has type `Tensor[torch.float32, typing_extensions.Literal[9... bad1: torch.Tensor[torch.float32, L[99], L[2], L[3]] = torch.empty(*x) result2: torch.Tensor[torch.float32, L[1], L[2], L[3]] = torch.empty( *x, device=device, layout=torch.strided, requires_grad=True, out=y ) # pyre-fixme[9]: bad2 has type `Tensor[torch.float32, typing_extensions.Literal[9... bad2: torch.Tensor[torch.float32, L[99], L[2], L[3]] = torch.empty( *x, device=device, layout=torch.strided, requires_grad=True, out=y ) result4: torch.Tensor[torch.float32, L[1], L[2], L[3]] = torch.empty(x) result5: torch.Tensor[torch.float32, L[4]] = torch.empty(4) result6: torch.Tensor[torch.int64, L[1], L[2], L[3]] = torch.empty( x, dtype=torch.int64 ) result7: torch.Tensor[torch.int64, L[1], L[2], L[3]] = torch.empty( *x, dtype=torch.int64 ) def test_empty_like() -> None: x: torch.Tensor[torch.float32, L[1], L[2], L[3]] out: Tensor device: torch.device y1: torch.Tensor[torch.float32, L[1], L[2], L[3]] = torch.empty_like( x, device=device, layout=torch.strided, requires_grad=True, out=out ) # pyre-fixme[9]: Expected error. y1_error: torch.Tensor[torch.float32, L[99], L[2], L[3]] = torch.empty_like( x, device=device, layout=torch.strided, requires_grad=True, out=out ) y2: torch.Tensor[torch.int64, L[1], L[2], L[3]] = torch.empty_like( x, dtype=torch.int64, device=device, layout=torch.strided, requires_grad=True, out=out, ) def test_randn() -> None: x: Tuple[L[1], L[2], L[3]] y: Tensor device: torch.device result1: torch.Tensor[torch.float32, L[1], L[2], L[3]] = torch.randn( *x, device=device, layout=torch.strided, requires_grad=True, out=y ) # pyre-fixme[9]: bad1 has type `Tensor[torch.float32, typing_extensions.Literal[9... bad1: torch.Tensor[torch.float32, L[99], L[2], L[3]] = torch.randn(*x) result2: torch.Tensor[torch.float32, L[1], L[2], L[3]] = torch.randn( *x, device=device, layout=torch.strided, requires_grad=True, out=y ) # pyre-fixme[9]: bad2 has type `Tensor[torch.float32, typing_extensions.Literal[9... bad2: torch.Tensor[torch.float32, L[99], L[2], L[3]] = torch.randn( *x, device=device, layout=torch.strided, requires_grad=True, out=y ) result4: torch.Tensor[torch.float32, L[1], L[2], L[3]] = torch.randn(x) result5: torch.Tensor[torch.float32, L[4]] = torch.randn(4) result6: torch.Tensor[torch.int64, L[1], L[2], L[3]] = torch.randn( x, dtype=torch.int64 ) result7: torch.Tensor[torch.int64, L[1], L[2], L[3]] = torch.randn( *x, dtype=torch.int64 ) def test_all() -> None: x: torch.Tensor[torch.float32, L[1], L[2], L[3]] device: torch.device y: torch.Tensor[torch.bool, L[1]] = torch.all(x) # pyre-fixme[9]: bad1 has type `Tensor[torch.bool, # typing_extensions.Literal[99]]`; used as `Tensor[torch.bool, # typing_extensions.Literal[1]]`. y_error: torch.Tensor[torch.bool, L[99]] = torch.all(x) y2: torch.Tensor[torch.bool, L[2], L[3]] = torch.all(x, dim=0) y3: torch.Tensor[torch.bool, L[1], L[3]] = torch.all(x, dim=1) y4: torch.Tensor[torch.bool, L[1]] = x.all() def test_where() -> None: x: torch.Tensor[torch.float32, L[2], L[3]] good: Tuple[torch.LongTensor[int, int], torch.LongTensor[int, int]] = torch.where(x) bad: Tuple[ torch.LongTensor[int, int], torch.LongTensor[int, int], L[99] ] = torch.where(x) y: torch.Tensor[torch.float32, L[2], L[1]] not_broadcastable: torch.Tensor[torch.float32, L[2], L[99]] good: Tuple[torch.LongTensor[int, int], torch.LongTensor[int, int]] = torch.where(x) good2: torch.Tensor[torch.float32, L[2], L[3]] = torch.where(x > 0, x, y) # pyre-fixme[9]: bad2 has type `Tensor[torch.float32, # typing_extensions.Literal[2], typing_extensions.Literal[99]]`; used as # `Tensor[torch.float32, typing_extensions.Literal[2], # typing_extensions.Literal[3]]`. bad2: torch.Tensor[torch.float32, L[2], L[99]] = torch.where(x > 0, x, y) # pyre-fixme[2001]: Broadcast error at expression `torch.where(x > 0, x, # not_broadcastable)`; types `Tuple[typing_extensions.Literal[2], # typing_extensions.Literal[3]]` and `Tuple[typing_extensions.Literal[2], # typing_extensions.Literal[99]]` cannot be broadcasted together. z = torch.where(x > 0, x, not_broadcastable) def test_getitem() -> None: x: torch.Tensor[torch.float32, L[2], L[3], L[4]] good1: torch.Tensor[torch.float32, L[3], L[4]] = x[0] # pyre-fixme[9]: bad1 has type `Tensor[torch.float32, # typing_extensions.Literal[99], typing_extensions.Literal[4]]`; used as # `Tensor[torch.float32, typing_extensions.Literal[3], # typing_extensions.Literal[4]]`. bad1: torch.Tensor[torch.float32, L[99], L[4]] = x[0] good2: torch.Tensor[torch.float32, L[1], L[2], L[3], L[4]] = x[None] # pyre-fixme[9]: bad2 has type `Tensor[torch.float32, typing_extensions.Literal[9... bad2: torch.Tensor[torch.float32, L[99], L[2], L[3], L[4]] = x[None] mask: torch.Tensor[torch.bool, L[2], L[3], L[4]] good3: torch.Tensor[torch.float32, int] = x[mask] # pyre-fixme[9]: bad3 has type `Tensor[torch.float32, # typing_extensions.Literal[99]]`; used as `Tensor[torch.float32, int]`. bad3: torch.Tensor[torch.float32, L[99]] = x[mask] any1: Tuple[int, str, float] = x[2] any2: Tuple[float, str, int] = x[2] def test_expand() -> None: x: torch.Tensor[torch.float32, L[1], L[2], L[3]] shape: Tuple[L[4], L[1], L[3]] good1: torch.Tensor[torch.float32, L[4], L[2], L[3]] = x.expand(shape) # pyre-fixme[9]: bad1 has type `Tensor[torch.float32, typing_extensions.Literal[9... bad1: torch.Tensor[torch.float32, L[99], L[2], L[3]] = x.expand(shape) # pyre-fixme[2001]: Broadcast error at expression `x.expand((4, 99, 3))`; types `... x.expand((4, 99, 3)) good2: torch.Tensor[torch.float32, L[4], L[2], L[3]] = x.expand(4, 1, 3) def test_to() -> None: x: torch.Tensor[torch.float32, L[2], L[3], L[4]] good1: torch.Tensor[torch.int32, L[2], L[3], L[4]] = x.to(torch.int32) # pyre-fixme[9]: bad1 has type `Tensor[torch.int32, typing_extensions.Literal[99]... bad1: torch.Tensor[torch.int32, L[99], L[3], L[4]] = x.to(torch.int32) device: torch.device good2: torch.Tensor[torch.float32, L[2], L[3], L[4]] = x.to(device) # pyre-fixme[9]: bad2 has type `Tensor[torch.float32, typing_extensions.Literal[9... bad2: torch.Tensor[torch.float32, L[99], L[3], L[4]] = x.to(device) y: torch.Tensor[torch.int32, L[2], L[3], L[4]] good3: torch.Tensor[torch.float32, L[2], L[3], L[4]] = y.to(torch.float32, device) # pyre-fixme[9]: bad3 has type `Tensor[torch.float32, typing_extensions.Literal[9... bad3: torch.Tensor[torch.float32, L[99], L[3], L[4]] = y.to(torch.float32, device) def test_Linear_to() -> None: linear: nn.Linear[L[10], L[20]] device: torch.device linear.to(dtype=torch.int64, device=device) def test_Module_eval() -> None: module: nn.Module module.eval() def test_Module_train() -> None: module: nn.Module module.train(mode=True) y: bool = module.training def test_Linear_bias() -> None: linear: nn.Linear[L[10], L[20]] x: nn.Parameter = linear.bias def test_sum() -> None: x: torch.Tensor[torch.float32, L[2], L[3], L[4]] y1: torch.Tensor[torch.float32, L[2], L[3]] = x.sum(-1, dtype=None) # pyre-fixme[9]: y_error has type `Tensor[torch.float32, # typing_extensions.Literal[99], typing_extensions.Literal[3]]`; used as # `Tensor[torch.float32, typing_extensions.Literal[2], # typing_extensions.Literal[3]]`. y_error: torch.Tensor[torch.float32, L[99], L[3]] = x.sum(-1, dtype=None) y2: torch.Tensor[torch.float32, L[2], L[4]] = x.sum(-2) y3: torch.Tensor[torch.float32] = x.sum() y4: torch.Tensor[torch.float32, L[3], L[4]] = x.sum(0) y5: torch.Tensor[torch.float32, L[2], L[4]] = x.sum(1) y6: torch.Tensor[torch.float32] = torch.sum(x) def test_cumsum() -> None: x: torch.Tensor[torch.float32, L[2], L[3], L[4]] good1: torch.Tensor[torch.float32, L[2], L[3], L[4]] = x.cumsum() # pyre-fixme[9]: bad1 has type `Tensor[torch.float32, typing_extensions.Literal[9... bad1: torch.Tensor[torch.float32, L[99], L[3], L[4]] = x.cumsum() good2: torch.Tensor[torch.float32, L[2], L[3], L[4]] = x.cumsum(dim=0) # pyre-fixme[9]: bad2 has type `Tensor[torch.float32, typing_extensions.Literal[9... bad2: torch.Tensor[torch.float32, L[99], L[3], L[4]] = x.cumsum(dim=0) good3: torch.Tensor[torch.float32, L[2], L[3], L[4]] = x.cumsum(dtype=None) # pyre-fixme[9]: bad3 has type `Tensor[torch.float32, typing_extensions.Literal[9... bad3: torch.Tensor[torch.float32, L[99], L[3], L[4]] = x.cumsum(dtype=None) def test_contiguous() -> None: x: torch.Tensor[torch.float32, L[2], L[3], L[4]] good: torch.Tensor[torch.float32, L[2], L[3], L[4]] = x.contiguous() # pyre-fixme[9]: bad has type `Tensor[torch.float32, typing_extensions.Literal[99... bad: torch.Tensor[torch.float32, L[99], L[3], L[4]] = x.contiguous() def test_diff() -> None: x: torch.Tensor[torch.float32, L[2], L[3], L[4]] good: torch.Tensor[torch.float32, L[2], L[3], L[3]] = torch.diff(x) # pyre-fixme[9]: bad has type `Tensor[torch.float32, typing_extensions.Literal[99... bad: torch.Tensor[torch.float32, L[99], L[3], L[3]] = torch.diff(x) good2: torch.Tensor[torch.float32, L[1], L[3], L[4]] = torch.diff(x, dim=0) good3: torch.Tensor[torch.float32, L[2], L[2], L[4]] = torch.diff(x, dim=1) good4: torch.Tensor[torch.float32, L[2], L[3], L[3]] = torch.diff(x, dim=-1) good5: torch.Tensor[torch.float32, L[2], L[2], L[4]] = torch.diff(x, dim=-2) good6: torch.Tensor[torch.float32, L[2], L[2], L[4]] = x.diff(dim=-2) def test_argsort() -> None: x: torch.Tensor[torch.float32, L[2], L[3], L[4]] good1: torch.Tensor[torch.float32, L[2], L[3], L[4]] = torch.argsort(x) # pyre-fixme[9]: bad1 has type `LongTensor[torch.float32, typing_extensions.Liter... bad1: torch.Tensor[torch.float32, L[99], L[3], L[4]] = torch.argsort(x) good2: torch.Tensor[torch.float32, L[2], L[3], L[4]] = torch.argsort(x, dim=0) # pyre-fixme[9]: bad2 has type `LongTensor[torch.float32, typing_extensions.Liter... bad2: torch.Tensor[torch.float32, L[99], L[3], L[4]] = torch.argsort(x, dim=0) good3: torch.Tensor[torch.float32, L[2], L[3], L[4]] = torch.argsort( x, descending=True ) # pyre-fixme[9]: bad3 has type `LongTensor[torch.float32, typing_extensions.Liter... bad3: torch.Tensor[torch.float32, L[99], L[3], L[4]] = torch.argsort( x, descending=True ) good4: torch.Tensor[torch.float32, L[2], L[3], L[4]] = x.argsort(dim=-1) def test_functional_pad() -> None: x: torch.Tensor[torch.float32, L[2], L[3], L[4]] good: torch.Tensor[torch.float32, L[2], L[3], L[5]] = nn.functional.pad(x, (1, 0)) bad: torch.Tensor[torch.float32, L[99], L[3], L[5]] = nn.functional.pad(x, (1, 0)) good2: torch.Tensor[torch.float32, L[2], L[10], L[7]] = nn.functional.pad( x, (1, 2, 3, 4), "constant", value=0.0 ) def test_allclose() -> None: x: torch.Tensor[torch.float32, L[2], L[3]] y: torch.Tensor[torch.float32, L[2], L[1]] not_broadcastable: torch.Tensor[torch.float32, L[3], L[4]] good: bool = torch.allclose(x, y, atol=0.0, rtol=0.0, equal_nan=True) # This should complain about non-broadcastable tensors but we don't have a # way to constrain two parameter types to be broadcastable. should_error: bool = torch.allclose(x, not_broadcastable) def test_new_ones() -> None: x: torch.Tensor[torch.float32, L[2], L[3]] y: torch.Tensor[torch.float32, L[8], L[9]] = x.new_ones((8, 9)) # pyre-fixme[9]: Expected error. y_error: torch.Tensor[torch.float32, L[8], L[99]] = x.new_ones((8, 9)) y2: torch.Tensor[torch.int64, L[8], L[9]] = x.new_ones( (8, 9), dtype=torch.int64, device="cuda", requires_grad=True ) def test_ones_like() -> None: x: torch.Tensor[torch.float32, L[2], L[3]] device: torch.device good: torch.Tensor[torch.int64, L[2], L[3]] = torch.ones_like( x, dtype=torch.int64, device=device ) # pyre-fixme[9]: bad has type `Tensor[torch.int64, # typing_extensions.Literal[99], typing_extensions.Literal[3]]`; used as # `Tensor[torch.int64, typing_extensions.Literal[2], # typing_extensions.Literal[3]]`. bad: torch.Tensor[torch.int64, L[99], L[3]] = torch.ones_like( x, dtype=torch.int64, device=device ) bad2: torch.Tensor[torch.float32, L[2], L[3]] = torch.ones_like( x, ) def test_sparse_softmax() -> None: x: torch.Tensor[torch.float32, L[2], L[3]] y: torch.Tensor[torch.float32, L[2], L[3]] = torch.sparse.softmax(x, dim=-1) # pyre-fixme[9]: y_error has type `Tensor[torch.float32, # typing_extensions.Literal[99], typing_extensions.Literal[3]]`; used as # `Tensor[torch.float32, typing_extensions.Literal[2], # typing_extensions.Literal[3]]`. y_error: torch.Tensor[torch.float32, L[99], L[3]] = torch.sparse.softmax(x, dim=-1) dtype: torch.int64 y2: torch.Tensor[torch.int64, L[2], L[3]] = torch.sparse.softmax( x, dim=-1, dtype=dtype ) def test_eye() -> None: y: torch.Tensor[torch.int64, L[2], L[3]] = torch.eye(2, 3, dtype=torch.int64) # pyre-fixme[9]: y_error has type `Tensor[torch.int64, # typing_extensions.Literal[99], typing_extensions.Literal[3]]`; used as # `Tensor[torch.int64, typing_extensions.Literal[2], # typing_extensions.Literal[3]]`. y_error: torch.Tensor[torch.int64, L[99], L[3]] = torch.eye(2, 3, dtype=torch.int64) y2: torch.Tensor[torch.float32, L[3], L[3]] = torch.eye(3) def test_adaptive_average_pool2d() -> None: model: nn.AdaptiveAvgPool2d[L[5], L[7]] = nn.AdaptiveAvgPool2d((5, 7)) # pyre-fixme[9]: model_error has type # `AdaptiveAvgPool2d[typing_extensions.Literal[5], # typing_extensions.Literal[99]]`; used as # `AdaptiveAvgPool2d[typing_extensions.Literal[5], typing_extensions.Literal[7]]`. model_error: nn.AdaptiveAvgPool2d[L[5], L[99]] = nn.AdaptiveAvgPool2d((5, 7)) model2: nn.AdaptiveAvgPool2d[L[5], L[5]] = nn.AdaptiveAvgPool2d(5) # TODO(T100083794): This should be an error. model2_error: nn.AdaptiveAvgPool2d[L[5], L[99]] = nn.AdaptiveAvgPool2d(5) model3: nn.AdaptiveAvgPool2d[L[5], L[-1]] = nn.AdaptiveAvgPool2d((5, None)) # TODO(T100083794): This should be an error. model3_error: nn.AdaptiveAvgPool2d[L[5], L[99]] = nn.AdaptiveAvgPool2d((5, None)) x: torch.Tensor[torch.float32, L[2], L[3], L[4]] y: torch.Tensor[torch.float32, L[2], L[5], L[7]] = model(x) # pyre-fixme[9]: y_error has type `Tensor[torch.float32, typing_extensions.Litera... y_error: torch.Tensor[torch.float32, L[2], L[99], L[7]] = model(x) y2: torch.Tensor[torch.float32, L[2], L[5], L[5]] = model2(x) y3: torch.Tensor[torch.float32, L[2], L[5], L[4]] = model3(x) def test_randperm() -> None: y: torch.Tensor[torch.int64, L[10]] = torch.randperm(10, dtype=torch.int64) # pyre-fixme[9]: y_error has type `Tensor[torch.int64, # typing_extensions.Literal[99]]`; used as `Tensor[torch.int64, # typing_extensions.Literal[10]]`. y_error: torch.Tensor[torch.int64, L[99]] = torch.randperm(10, dtype=torch.int64) def test_sqrt() -> None: x: torch.Tensor[torch.float32, L[2], L[3]] y: torch.Tensor[torch.float32, L[2], L[3]] = torch.sqrt(x) # pyre-fixme[9]: y_error has type `Tensor[torch.float32, # typing_extensions.Literal[2], typing_extensions.Literal[99]]`; used as # `Tensor[torch.float32, typing_extensions.Literal[2], # typing_extensions.Literal[3]]`. y_error: torch.Tensor[torch.float32, L[2], L[99]] = torch.sqrt(x) def test_multinomial() -> None: x: torch.Tensor[torch.float32, L[2], L[4]] y: torch.Tensor[torch.float32, L[2], L[3]] = torch.multinomial(x, 3) # pyre-fixme[9]: y_error has type `Tensor[torch.float32, # typing_extensions.Literal[2], typing_extensions.Literal[99]]`; used as # `Tensor[torch.float32, typing_extensions.Literal[2], # typing_extensions.Literal[3]]`. y_error: torch.Tensor[torch.float32, L[2], L[99]] = torch.multinomial(x, 3) x2: torch.Tensor[torch.float32, L[4]] y2: torch.Tensor[torch.float32, L[3]] = torch.multinomial(x2, 3) y2: torch.Tensor[torch.float32, L[3]] = x2.multinomial(3) def test_bmm() -> None: x: torch.Tensor[torch.float32, L[2], L[3], L[4]] matrix: torch.Tensor[torch.float32, L[2], L[4], L[5]] y: torch.Tensor[torch.float32, L[2], L[3], L[5]] = torch.bmm(x, matrix) y2: torch.Tensor[torch.float32, L[2], L[3], L[5]] = x.bmm(matrix) # pyre-fixme[9]: y_error has type `Tensor[torch.float32, typing_extensions.Litera... y_error: torch.Tensor[torch.float32, L[2], L[3], L[99]] = torch.bmm(x, matrix) bad_matrix: torch.Tensor[torch.float32, L[2], L[99], L[5]] # Should raise an error but doesn't because we solve `L[99] <: M && L[4] <: # M` to be M = int. torch.bmm(x, bad_matrix) def test_subtract() -> None: x: torch.Tensor[torch.float32, L[2], L[3], L[1]] x2: torch.Tensor[torch.float32, L[2], L[1], L[4]] y: torch.Tensor[torch.float32, L[2], L[3], L[4]] = x - x2 # pyre-fixme[9]: y_error has type `Tensor[torch.float32, typing_extensions.Litera... y_error: torch.Tensor[torch.float32, L[2], L[3], L[99]] = x - x2 y2: torch.Tensor[torch.float32, L[2], L[3], L[4]] = x2 - x y3: torch.Tensor[torch.float32, L[2], L[3], L[1]] = x - 42.0 y4: torch.Tensor[torch.float32, L[2], L[3], L[1]] = 42.0 - x z: Any # Should not error. x - z x5: Tensor[torch.float32, L[2], L[3]] x6: Tensor[torch.float32, L[2], L[3]] x6_bad: Tensor[torch.float32, L[2], L[99]] x5 -= x6 x5 -= 4 y5: Tensor[torch.float32, L[2], L[3]] = x5 # pyre-fixme[2001]: Broadcast error at expression `x5.__isub__(x6_bad)`; types # `Tuple[typing_extensions.Literal[2], typing_extensions.Literal[3]]` and # `Tuple[typing_extensions.Literal[2], typing_extensions.Literal[99]]` cannot be # broadcasted together. x5 -= x6_bad def test_add() -> None: x: torch.Tensor[torch.float32, L[2], L[3], L[1]] x2: torch.Tensor[torch.float32, L[2], L[1], L[4]] y: torch.Tensor[torch.float32, L[2], L[3], L[4]] = x + x2 # pyre-fixme[9]: y_error has type `Tensor[torch.float32, typing_extensions.Litera... y_error: torch.Tensor[torch.float32, L[2], L[3], L[99]] = x + x2 y2: torch.Tensor[torch.float32, L[2], L[3], L[4]] = x2 + x y3: torch.Tensor[torch.float32, L[2], L[3], L[1]] = x + 42.0 y4: torch.Tensor[torch.float32, L[2], L[3], L[1]] = 42.0 + x x5: Tensor[torch.float32, L[2], L[3]] x6: Tensor[torch.float32, L[2], L[3]] x6_bad: Tensor[torch.float32, L[2], L[99]] x5 += x6 x5 += 4 y5: Tensor[torch.float32, L[2], L[3]] = x5 # pyre-fixme[2001]: Broadcast error at expression `x5.__iadd__(x6_bad)`; types # `Tuple[typing_extensions.Literal[2], typing_extensions.Literal[3]]` and # `Tuple[typing_extensions.Literal[2], typing_extensions.Literal[99]]` cannot be # broadcasted together. x5 += x6_bad def test_torch_fft() -> None: x: torch.Tensor[torch.float32, L[2], L[3], L[4]] y: torch.Tensor[torch.complex64, L[2], L[3], L[4]] = torch.fft.fft(x) # pyre-fixme[9]: y_error has type `Tensor[torch.complex64, typing_extensions.Lite... y_error: torch.Tensor[torch.complex64, L[2], L[3], L[99]] = torch.fft.fft(x) y2: torch.Tensor[torch.complex64, L[2], L[3], L[4]] = torch.fft.fft(x, dim=-2) def test_torch_real() -> None: x: torch.Tensor[torch.complex64, L[2], L[3], L[4]] y: torch.Tensor[torch.float32, L[2], L[3], L[4]] = torch.real(x) # pyre-fixme[9]: y_error has type `Tensor[torch.float32, typing_extensions.Litera... y_error: torch.Tensor[torch.float32, L[2], L[3], L[99]] = torch.real(x) x2: torch.Tensor[torch.complex128, L[2], L[3], L[4]] y2: torch.Tensor[torch.float64, L[2], L[3], L[4]] = torch.real(x2) bad: torch.Tensor[torch.float32, L[2], L[3], L[4]] # pyre-fixme[6]: Expected `Tensor[torch.complex64, *torch.Ts]` for 1st param but # got `Tensor[torch.float32, int, int, int]`. torch.real(bad) def test_logical_and() -> None: x: torch.Tensor[torch.complex64, L[2], L[1], L[4]] x2: torch.Tensor[torch.float32, L[2], L[3], L[1]] y: torch.Tensor[torch.bool, L[2], L[3], L[4]] = torch.logical_and(x, x2) # pyre-fixme[9]: y_error has type `Tensor[torch.bool, typing_extensions.Literal[2... y_error: torch.Tensor[torch.bool, L[2], L[3], L[99]] = torch.logical_and(x, x2) y2: torch.Tensor[torch.bool, L[2], L[3], L[4]] = x.logical_and(x2) not_broadcastable: torch.Tensor[torch.float32, L[2], L[3], L[99]] # pyre-fixme[2001]: Broadcast error at expression `torch.logical_and(x, not_broad... torch.logical_and(x, not_broadcastable) x3: torch.Tensor[torch.complex64, L[2], L[1], L[1]] # In-place version. x.logical_and_(x3) # This is actually an error because the output type (2, 3, 4) is not # assignable to x. But we can't catch that because the typechecker doesn't # know this is an in-place operator. Leaving this as is for now. x.logical_and_(x2) def test_and() -> None: x_bool: torch.Tensor[torch.bool, L[2], L[1], L[4]] x_bool2: torch.Tensor[torch.bool, L[2], L[3], L[1]] y3: torch.Tensor[torch.bool, L[2], L[3], L[4]] = x_bool & x_bool2 # This broadcasts to (2, 1, 4), which is assignable to x_bool. x_bool3: torch.Tensor[torch.bool, L[2], L[1], L[1]] x_bool &= x_bool3 # This broadcasts to (2, 3, 4), which is not assignable to x_bool. # pyre-fixme[9]: x_bool has type `Tensor[torch.bool, typing_extensions.Literal[2]... x_bool &= x_bool2 x: torch.Tensor[torch.complex64, L[2], L[1], L[4]] x2: torch.Tensor[torch.float32, L[2], L[3], L[1]] # pyre-fixme[58]: `&` is not supported for operand types # `Tensor[torch.complex64, int, int, int]` and `Tensor[torch.float32, int, int, # int]`. x & x2 def test_linalg_pinv() -> None: x: torch.Tensor[torch.float32, L[2], L[2], L[3], L[4]] y: torch.Tensor[torch.float32, L[2], L[2], L[4], L[3]] = torch.linalg.pinv(x) # pyre-fixme[9]: y_error has type `Tensor[torch.float32, typing_extensions.Litera... y_error: torch.Tensor[torch.float32, L[2], L[4], L[99]] = torch.linalg.pinv(x) wrong_datatype: torch.Tensor[torch.bool, L[2], L[3], L[4]] # pyre-fixme[6]: Expected `Tensor[Variable[torch.linalg.FloatOrDouble <: # [torch.float32, torch.float64, torch.complex64, torch.complex128]], # *torch.linalg.Ts, Variable[N1 (bound to int)], Variable[N2 (bound to int)]]` for # 1st param but got `Tensor[torch.bool, int, int, int]`. torch.linalg.pinv(wrong_datatype) torch.linalg.pinv(x, hermitian=True) # Last two dimensions have to be equal. x_square: torch.Tensor[torch.float32, L[2], L[3], L[4], L[4]] y2: torch.Tensor[torch.float32, L[2], L[3], L[4], L[4]] = torch.linalg.pinv( x_square, hermitian=True ) def test_linalg_qr() -> None: x: torch.Tensor[torch.float32, L[2], L[3], L[4]] y: Tuple[ torch.Tensor[torch.float32, L[2], L[3], L[3]], torch.Tensor[torch.float32, L[2], L[3], L[4]], ] = torch.linalg.qr(x) # pyre-fixme[9]: y_error has type `Tuple[Tensor[torch.float32, typing_extensions.... y_error: Tuple[ torch.Tensor[torch.float32, L[2], L[3], L[99]], torch.Tensor[torch.float32, L[2], L[3], L[4]], ] = torch.linalg.qr(x) y2: Tuple[ torch.Tensor[torch.float32, L[2], L[3], L[3]], torch.Tensor[torch.float32, L[2], L[3], L[4]], ] = torch.linalg.qr(x, mode="complete") def test_torch_matmul() -> None: x: torch.Tensor[torch.float32, L[2], L[1], L[3], L[4]] x2: torch.Tensor[torch.float32, L[1], L[5], L[4], L[3]] y: torch.Tensor[torch.float32, L[2], L[5], L[3], L[3]] = torch.matmul(x, x2) # pyre-fixme[9]: y_error has type `Tensor[torch.float32, typing_extensions.Litera... y_error: torch.Tensor[torch.float32, L[2], L[5], L[3], L[99]] = torch.matmul(x, x2) y2: torch.Tensor[torch.float32, L[2], L[5], L[3], L[3]] = x.matmul(x2) y3: torch.Tensor[torch.float32, L[2], L[5], L[3], L[3]] = x.__matmul__(x2) bad_x: torch.Tensor[torch.float32, L[1], L[5], L[99], L[3]] torch.matmul(x, bad_x) x_1d: torch.Tensor[torch.float32, L[3]] x2_1d: torch.Tensor[torch.float32, L[3]] y4: torch.Tensor[torch.float32] = torch.matmul(x_1d, x2_1d) x3_1d_different: torch.Tensor[torch.float32, L[1]] torch.matmul(x_1d, x3_1d_different) def test_torch_optim() -> None: block_parameters: Any torch.optim.SGD(block_parameters, lr=1.0) def test_torch_cuda() -> None: torch.cuda.reset_peak_memory_stats() def test_torch_profiler() -> None: torch.profiler.profile() def test_mse_loss() -> None: x: torch.Tensor[torch.float32, L[2], L[3]] x2: torch.Tensor[torch.float32, L[2], L[3]] y: torch.Tensor[torch.float32] = nn.MSELoss( size_average=True, reduce=True, reduction="mean" )(x, x2) # pyre-fixme[9]: y_error has type `Tensor[torch.float32, # typing_extensions.Literal[99]]`; used as `Tensor[torch.float32]`. y_error: torch.Tensor[torch.float32, L[99]] = nn.MSELoss()(x, x2) def test_clip_grad_norm() -> None: x: torch.Tensor[torch.float32, L[2], L[3]] y: torch.Tensor = nn.utils.clip_grad_norm_( x, max_norm=0.0, norm_type=0.0, error_if_nonfinite=True ) # pyre-fixme[9]: y_error has type `int`; used as `Tensor[typing.Any, # *Tuple[typing.Any, ...]]`. y_error: int = nn.utils.clip_grad_norm_( x, max_norm=0.0, norm_type=0.0, error_if_nonfinite=True ) def test_clip_grad_value() -> None: x: torch.Tensor[torch.float32, L[2], L[3]] nn.utils.clip_grad_value_([x], clip_value=0.0) def test_bitwise_not() -> None: x: torch.Tensor[torch.float32, L[2], L[3]] y: torch.Tensor[torch.float32, L[2], L[3]] = torch.bitwise_not(x) # pyre-fixme[9]: y_error has type `Tensor[torch.float32, # typing_extensions.Literal[2], typing_extensions.Literal[99]]`; used as # `Tensor[torch.float32, typing_extensions.Literal[2], # typing_extensions.Literal[3]]`. y_error: torch.Tensor[torch.float32, L[2], L[99]] = torch.bitwise_not(x) y2: torch.Tensor[torch.float32, L[2], L[3]] = x.bitwise_not() # In-place. y3: torch.Tensor[torch.float32, L[2], L[3]] = x.bitwise_not_() y4: torch.Tensor[torch.float32, L[2], L[3]] = ~x def test_cdist() -> None: x: torch.Tensor[torch.float32, L[5], L[1], L[2], L[3]] x2: torch.Tensor[torch.float32, L[1], L[7], L[4], L[3]] y: torch.Tensor[torch.float32, L[5], L[7], L[2], L[4]] = torch.cdist(x, x2) # pyre-fixme[9]: y_error has type `Tensor[torch.float32, typing_extensions.Litera... y_error: torch.Tensor[torch.float32, L[5], L[7], L[2], L[99]] = torch.cdist(x, x2) not_broadcastable: torch.Tensor[torch.float32, L[99], L[1], L[2], L[3]] # pyre-fixme[2001]: Broadcast error at expression `torch.cdist(x, # not_broadcastable)`; types `Tuple[typing_extensions.Literal[5], # typing_extensions.Literal[1]]` and `Tuple[typing_extensions.Literal[99], # typing_extensions.Literal[1]]` cannot be broadcasted together. torch.cdist(x, not_broadcastable) def test_random_manual_seed() -> None: torch.random.manual_seed(42) def test_clone() -> None: x: torch.Tensor[torch.float32, L[2], L[3]] y: torch.Tensor[torch.float32, L[2], L[3]] = torch.clone(x) # pyre-fixme[9]: y_error has type `Tensor[torch.float32, # typing_extensions.Literal[2], typing_extensions.Literal[99]]`; used as # `Tensor[torch.float32, typing_extensions.Literal[2], # typing_extensions.Literal[3]]`. y_error: torch.Tensor[torch.float32, L[2], L[99]] = torch.clone(x) y2: torch.Tensor[torch.float32, L[2], L[3]] = x.clone() def test_equal() -> None: x: torch.Tensor[torch.float32, L[2], L[3]] y: torch.Tensor[torch.bool, L[2], L[3]] = x == 42 # pyre-fixme[9]: y_error has type `Tensor[torch.bool, # typing_extensions.Literal[2], typing_extensions.Literal[99]]`; used as # `Tensor[torch.bool, typing_extensions.Literal[2], # typing_extensions.Literal[3]]`. y_error: torch.Tensor[torch.bool, L[2], L[99]] = x == 42 # This doesn't return a Tensor as expected because `int.__eq__` accepts `object`. y2: int = 42 == x x2: torch.Tensor[torch.float32, L[2], L[1]] x3: torch.Tensor[torch.float32, L[1], L[3]] y3: torch.Tensor[torch.bool, L[2], L[3]] = x2 == x3 def test_diag_embed() -> None: x: torch.Tensor[torch.float32, L[2], L[3], L[4]] y: torch.Tensor = torch.diag_embed(x) def test_unbind() -> None: x: torch.Tensor[torch.float32, L[2], L[3], L[4]] y: Tuple[torch.Tensor[torch.float32, L[2], L[4]], ...] = torch.unbind(x, dim=1) # pyre-fixme[9]: y_error has type `Tuple[Tensor[torch.float32, # typing_extensions.Literal[2], typing_extensions.Literal[99]], ...]`; used as # `Tuple[Tensor[torch.float32, typing_extensions.Literal[2], # typing_extensions.Literal[4]], ...]`. y_error: Tuple[torch.Tensor[torch.float32, L[2], L[99]], ...] = torch.unbind( x, dim=1 ) y2: Tuple[torch.Tensor[torch.float32, L[2], L[3]], ...] = torch.unbind(x, dim=-1) y3: Tuple[torch.Tensor[torch.float32, L[3], L[4]], ...] = torch.unbind(x) y4: Tuple[torch.Tensor[torch.float32, L[3], L[4]], ...] = x.unbind() def test_size() -> None: x: torch.Tensor[torch.float32, L[2], L[3], L[4]] y: Tuple[L[2], L[3], L[4]] = x.size() # pyre-fixme[9]: y_error has type `Tuple[typing_extensions.Literal[2], # typing_extensions.Literal[3], typing_extensions.Literal[99]]`; used as # `Tuple[typing_extensions.Literal[2], typing_extensions.Literal[3], # typing_extensions.Literal[4]]`. y_error: Tuple[L[2], L[3], L[99]] = x.size() y2: L[2] = x.size(0) y3: L[3] = x.size(1) y4: L[4] = x.size(-1) y5: L[3] = x.size(-2) def test_stack( arbitary_length_tuple: Tuple[torch.Tensor[torch.float32, L[3], L[4], L[5]], ...], variadic_tuple: Tuple[Unpack[Ts]], ) -> None: x: torch.Tensor[torch.float32, L[3], L[4], L[5]] x_incompatible: torch.Tensor[torch.float32, L[3], L[4], L[99]] y: torch.Tensor[torch.float32, L[2], L[3], L[4], L[5]] = torch.stack((x, x)) # pyre-fixme[9]: y_error has type `Tensor[torch.float32, typing_extensions.Litera... y_error: torch.Tensor[torch.float32, L[2], L[3], L[4], L[99]] = torch.stack((x, x)) y_incompatible_tensors: torch.Tensor = torch.stack((x, x_incompatible)) y2: torch.Tensor[torch.float32, L[3], L[2], L[4], L[5]] = torch.stack((x, x), dim=1) y3: torch.Tensor[torch.float32, L[3], L[3], L[4], L[5]] = torch.stack( (x, x, x), dim=1 ) y4: torch.Tensor[torch.float32, L[3], L[3], L[4], L[5]] = torch.stack((x, x, x)) # Arbitrary-length tuples make it return an arbitrary Tensor. y5: torch.Tensor = torch.stack(arbitary_length_tuple) y6: torch.Tensor = torch.stack(variadic_tuple) def test_repeat_interleave() -> None: x: torch.Tensor[torch.float32, L[2], L[3], L[4]] repeats: torch.Tensor[torch.float32, L[2]] y: torch.Tensor[torch.float32, L[72]] = torch.repeat_interleave(x, 3) # pyre-fixme[9]: y_error has type `Tensor[torch.float32, # typing_extensions.Literal[99]]`; used as `Tensor[torch.float32, # typing_extensions.Literal[72]]`. y_error: torch.Tensor[torch.float32, L[99]] = torch.repeat_interleave(x, 3) y2: torch.Tensor[torch.float32, L[4], L[3], L[4]] = torch.repeat_interleave( x, 2, dim=0 ) y3: torch.Tensor[torch.float32, L[2], L[6], L[4]] = torch.repeat_interleave( x, 2, dim=1 ) y4: torch.Tensor[torch.float32, L[2], L[3], L[8]] = torch.repeat_interleave( x, 2, dim=-1 ) # Too dynamic because the output shape depends on the contents of repeats. y5: torch.Tensor[torch.float32, L[0], L[3], L[4]] = torch.repeat_interleave( x, repeats, dim=0 ) y6: torch.Tensor[torch.float32, L[2], L[3], L[8]] = x.repeat_interleave(2, dim=-1) def test_meshgrid() -> None: x1: torch.Tensor[torch.float32, L[2]] x2: torch.Tensor[torch.float32, L[3]] x3: torch.Tensor[torch.float32, L[4]] y: Tuple[ torch.Tensor[torch.float32, L[2], L[3], L[4]], torch.Tensor[torch.float32, L[2], L[3], L[4]], torch.Tensor[torch.float32, L[2], L[3], L[4]], ] = torch.meshgrid(x1, x2, x3) # pyre-fixme[9]: y_error has type `Tuple[Tensor[torch.float32, typing_extensions.... y_error: Tuple[ torch.Tensor[torch.float32, L[2], L[3], L[4]], torch.Tensor[torch.float32, L[2], L[3], L[4]], torch.Tensor[torch.float32, L[2], L[3], L[99]], ] = torch.meshgrid(x1, x2, x3) y2: Tuple[ torch.Tensor[torch.float32, L[2], L[3]], torch.Tensor[torch.float32, L[2], L[3]], ] = torch.meshgrid(x1, x2) y3: Tuple[ torch.Tensor[torch.float32, L[2]], ] = torch.meshgrid(x1) x4: Tensor xs = tuple(x4 for _ in range(5)) y4: Tuple[torch.Tensor, ...] = torch.meshgrid(*xs) xs2 = [x4 for _ in range(5)] y5: Tuple[torch.Tensor, ...] = torch.meshgrid(*xs2) def test_argmax() -> None: x: torch.Tensor[torch.float32, L[2], L[3], L[4]] y: torch.LongTensor[torch.int64] = torch.argmax(x) # pyre-fixme[9]: y_error has type `Tensor[torch.int64, # typing_extensions.Literal[99]]`; used as `Tensor[torch.int64]`. y_error: torch.LongTensor[torch.int64, L[99]] = torch.argmax(x) y2: torch.LongTensor[torch.int64, L[3], L[4]] = torch.argmax(x, dim=0) y3: torch.LongTensor[torch.int64, L[1], L[3], L[4]] = torch.argmax( x, dim=0, keepdim=True ) y4: torch.LongTensor[torch.int64, L[2], L[4]] = torch.argmax(x, dim=1) y5: torch.LongTensor[torch.int64, L[2], L[1], L[4]] = torch.argmax( x, dim=1, keepdim=True ) y6: torch.LongTensor[torch.int64, L[2], L[3]] = torch.argmax(x, dim=2) y7: torch.LongTensor[torch.int64, L[2], L[3], L[1]] = torch.argmax( x, dim=2, keepdim=True ) y8: torch.LongTensor[torch.int64, L[2], L[3]] = torch.argmax(x, dim=-1) y9: torch.LongTensor[torch.int64, L[2], L[3], L[1]] = torch.argmax( x, dim=-1, keepdim=True ) y10: torch.LongTensor[torch.int64, L[2], L[3], L[1]] = x.argmax( dim=-1, keepdim=True ) # pyre-fixme[6]: Expected `typing_extensions.Literal[0]` for 2nd param but got # `typing_extensions.Literal[3]`. torch.argmax(x, dim=3) def test_argmin() -> None: x: torch.Tensor[torch.float32, L[2], L[3], L[4]] y: torch.LongTensor[torch.int64] = torch.argmin(x) # pyre-fixme[9]: y_error has type `Tensor[torch.int64, # typing_extensions.Literal[99]]`; used as `Tensor[torch.int64]`. y_error: torch.LongTensor[torch.int64, L[99]] = torch.argmin(x) y2: torch.LongTensor[torch.int64, L[3], L[4]] = torch.argmin(x, dim=0) y3: torch.LongTensor[torch.int64, L[1], L[3], L[4]] = torch.argmin( x, dim=0, keepdim=True ) y4: torch.LongTensor[torch.int64, L[2], L[4]] = torch.argmin(x, dim=1) y5: torch.LongTensor[torch.int64, L[2], L[1], L[4]] = torch.argmin( x, dim=1, keepdim=True ) y6: torch.LongTensor[torch.int64, L[2], L[3]] = torch.argmin(x, dim=2) y7: torch.LongTensor[torch.int64, L[2], L[3], L[1]] = torch.argmin( x, dim=2, keepdim=True ) y8: torch.LongTensor[torch.int64, L[2], L[3]] = torch.argmin(x, dim=-1) y9: torch.LongTensor[torch.int64, L[2], L[3], L[1]] = torch.argmin( x, dim=-1, keepdim=True ) y10: torch.LongTensor[torch.int64, L[2], L[3], L[1]] = x.argmin( dim=-1, keepdim=True ) # pyre-fixme[6]: Expected `typing_extensions.Literal[0]` for 2nd param but got # `typing_extensions.Literal[3]`. torch.argmin(x, dim=3) def test_mean() -> None: x: torch.Tensor[torch.float32, L[2], L[3], L[4]] y: torch.Tensor[torch.float32] = torch.mean(x) # pyre-fixme[9]: y_error has type `Tensor[torch.float32, # typing_extensions.Literal[99]]`; used as `Tensor[torch.float32]`. y_error: torch.Tensor[torch.float32, L[99]] = torch.mean(x) y2: torch.Tensor[torch.float32, L[3], L[4]] = torch.mean(x, dim=0) y3: torch.Tensor[torch.float32, L[1], L[3], L[4]] = torch.mean( x, dim=0, keepdim=True ) y4: torch.Tensor[torch.float32, L[2], L[4]] = torch.mean(x, dim=1) y5: torch.Tensor[torch.float32, L[2], L[1], L[4]] = torch.mean( x, dim=1, keepdim=True ) y6: torch.Tensor[torch.float32, L[2], L[3]] = torch.mean(x, dim=2) y7: torch.Tensor[torch.float32, L[2], L[3], L[1]] = torch.mean( x, dim=2, keepdim=True ) y8: torch.Tensor[torch.float32, L[2], L[3]] = torch.mean(x, dim=-1) y9: torch.Tensor[torch.float32, L[2], L[3], L[1]] = torch.mean( x, dim=-1, keepdim=True ) y10: torch.Tensor[torch.float32, L[2], L[3], L[1]] = x.mean(dim=-1, keepdim=True) # pyre-fixme[6]: Expected `typing_extensions.Literal[0]` for 2nd param but got # `typing_extensions.Literal[3]`. torch.mean(x, dim=3) def test_count_nonzero() -> None: x: torch.Tensor[torch.float32, L[2], L[3], L[4]] y: torch.Tensor[torch.int64] = torch.count_nonzero(x) # pyre-fixme[9]: y_error has type `Tensor[torch.int64, # typing_extensions.Literal[99]]`; used as `Tensor[torch.int64]`. y_error: torch.Tensor[torch.int64, L[99]] = torch.count_nonzero(x) y2: torch.Tensor[torch.int64, L[3], L[4]] = torch.count_nonzero(x, dim=0) y3: torch.Tensor[torch.int64, L[2], L[4]] = torch.count_nonzero(x, dim=1) y4: torch.Tensor[torch.int64, L[2], L[3]] = torch.count_nonzero(x, dim=2) y5: torch.Tensor[torch.int64, L[2], L[3]] = x.count_nonzero(dim=-1) # pyre-fixme[6]: Expected `typing_extensions.Literal[0]` for 2nd param but got # `typing_extensions.Literal[3]`. torch.count_nonzero(x, dim=3) def test_cat() -> None: x1: torch.Tensor[torch.float32, L[2], L[3], L[4]] x1_first_is_3: torch.Tensor[torch.float32, L[3], L[3], L[4]] x1_first_is_4: torch.Tensor[torch.float32, L[4], L[3], L[4]] x1_second_is_4: torch.Tensor[torch.float32, L[2], L[4], L[4]] x1_second_is_5: torch.Tensor[torch.float32, L[2], L[5], L[4]] x1_last_is_5: torch.Tensor[torch.float32, L[2], L[3], L[5]] x1_last_is_6: torch.Tensor[torch.float32, L[2], L[3], L[6]] # 2-element tuple. y: torch.Tensor[torch.float32, L[5], L[3], L[4]] = torch.cat((x1, x1_first_is_3)) # pyre-fixme[9]: y_error has type `Tensor[torch.float32, typing_extensions.Litera... y_error: torch.Tensor[torch.float32, L[99], L[3], L[4]] = torch.cat( (x1, x1_first_is_3) ) y2: torch.Tensor[torch.float32, L[2], L[7], L[4]] = torch.cat( (x1, x1_second_is_4), dim=1 ) y3: torch.Tensor[torch.float32, L[2], L[3], L[9]] = torch.cat( (x1, x1_last_is_5), dim=-1 ) y3_shape_mismatch: torch.Tensor[torch.float32, Unpack[Tuple[Any, ...]]] = torch.cat( (x1, x1_second_is_4), dim=-1 ) # 3-element tuple. y4: torch.Tensor[torch.float32, L[9], L[3], L[4]] = torch.cat( (x1, x1_first_is_3, x1_first_is_4) ) y5: torch.Tensor[torch.float32, L[2], L[12], L[4]] = torch.cat( (x1, x1_second_is_4, x1_second_is_5), dim=1 ) y6: torch.Tensor[torch.float32, L[2], L[3], L[15]] = torch.cat( (x1, x1_last_is_5, x1_last_is_6), dim=-1 ) y_many_element_tuple: torch.Tensor[ torch.float32, Unpack[Tuple[Any, ...]] ] = torch.cat((x1, x1, x1, x1)) y_list: torch.Tensor[torch.float32, Unpack[Tuple[Any, ...]]] = torch.cat([x1, x1]) def test_sign() -> None: x: torch.Tensor[torch.float32, L[2], L[3], L[4]] y: torch.Tensor[torch.float32, L[2], L[3], L[4]] = torch.sign(x) # pyre-fixme[9]: y_error has type `Tensor[torch.float32, typing_extensions.Litera... y_error: torch.Tensor[torch.float32, L[2], L[3], L[99]] = torch.sign(x) y2: torch.Tensor[torch.float32, L[2], L[3], L[4]] = x.sign() def test_diagonal() -> None: x: torch.Tensor[torch.float32, L[2], L[3], L[4], L[5]] y: torch.Tensor = torch.diagonal(x) def test_diag() -> None: x: torch.Tensor[torch.float32, L[2], L[3]] y: torch.Tensor = torch.diag(x) def test_module_list() -> None: x: torch.Tensor[torch.float32, L[2], L[3]] modules = nn.ModuleList([nn.AdaptiveAvgPool2d(0), nn.AdaptiveAvgPool2d(1)]) for module in modules: y: Tensor = module(x) z: int = len(modules) def test_sparse_coo_tensor() -> None: y: torch.Tensor[torch.float32, L[2], L[3]] = torch.sparse_coo_tensor( torch.randn(5), [6, 7, 8], size=(2, 3) ) # pyre-fixme[9]: y_error has type `Tensor[torch.float32, # typing_extensions.Literal[2], typing_extensions.Literal[99]]`; used as # `Tensor[torch.float32, typing_extensions.Literal[2], # typing_extensions.Literal[3]]`. y_error: torch.Tensor[torch.float32, L[2], L[99]] = torch.sparse_coo_tensor( torch.randn(5), [6, 7, 8], size=(2, 3) ) y2: torch.Tensor = torch.sparse_coo_tensor(torch.randn(5), [6, 7, 8]) def test_max() -> None: x: torch.Tensor[torch.float32, L[2], L[3], L[4]] y: torch.Tensor[torch.float32] = torch.max(x) y2: torch.Tensor[torch.float32, L[3], L[4]] = torch.max(x, dim=0).values y2_indices: torch.Tensor[torch.int64, L[3], L[4]] = torch.max(x, dim=0).indices y2_getitem: torch.Tensor[torch.int64, L[3], L[4]] = torch.max(x, dim=0)[1] y3: torch.Tensor[torch.float32, L[1], L[3], L[4]] = torch.max( x, dim=0, keepdim=True ).values y4: torch.Tensor[torch.float32, L[2], L[4]] = torch.max(x, dim=1).values y5: torch.Tensor[torch.float32, L[2], L[1], L[4]] = torch.max( x, dim=1, keepdim=True ).values y6: torch.Tensor[torch.float32, L[2], L[3]] = torch.max(x, dim=2).values y7: torch.Tensor[torch.float32, L[2], L[3], L[1]] = torch.max( x, dim=2, keepdim=True ).values y8: torch.Tensor[torch.float32, L[2], L[3]] = torch.max(x, dim=-1).values y9: torch.Tensor[torch.float32, L[2], L[3], L[1]] = torch.max( x, dim=-1, keepdim=True ).values y10: torch.Tensor[torch.float32, L[2], L[4]] = torch.max(x, dim=-2).values y11: torch.Tensor[torch.float32, L[2], L[1], L[4]] = torch.max( x, dim=-2, keepdim=True ).values y12: torch.Tensor[torch.float32, L[2], L[3], L[1]] = x.max( dim=-1, keepdim=True ).values # pyre-fixme[6]: Expected `typing_extensions.Literal[0]` for 2nd param but got # `typing_extensions.Literal[3]`. torch.max(x, dim=3).values def test_einsum() -> None: x: Tensor = torch.einsum("ii", torch.randn(4, 4)) def test_type_as() -> None: x: torch.Tensor[torch.float32, L[2], L[3], L[4]] x2: torch.Tensor[torch.int64, L[2], L[3], L[4]] y: torch.Tensor[torch.int64, L[2], L[3], L[4]] = x.type_as(x2) def test_softmax() -> None: x: torch.Tensor[torch.float32, L[2], L[3], L[4]] y: torch.Tensor[torch.float32, L[2], L[3], L[4]] = torch.softmax(x, dim=1) # pyre-fixme[9]: y_error has type `Tensor[torch.float32, typing_extensions.Litera... y_error: torch.Tensor[torch.float32, L[2], L[3], L[99]] = torch.softmax(x, dim=1) y2: torch.Tensor[torch.int64, L[2], L[3], L[4]] = torch.softmax( x, dim=1, dtype=torch.int64 ) y3: torch.Tensor[torch.float32, L[2], L[3], L[4]] = x.softmax(dim=1) def test_conv2d() -> None: x: Tensor[torch.float32, L[20], L[16], L[50], L[100]] y7: Tensor[torch.float32, L[20], L[33], L[56], L[100]] = nn.Conv2d( 16, 33, (3, 5), padding=(4, 2), bias=False )(x) # pyre-fixme[9]: y7_error has type `Tensor[torch.float32, typing_extensions.Liter... y7_error: Tensor[torch.float32, L[20], L[33], L[56], L[99]] = nn.Conv2d( 16, 33, (3, 5), padding=(4, 2) )(x) module: nn.Module = nn.Conv2d(16, 33, (3, 5), padding=(4, 2)) def test_nn_Parameter() -> None: x: Tensor[torch.float32, L[2], L[3], L[4]] y: Tensor[torch.float32, L[2], L[3], L[4]] = nn.Parameter(x) # pyre-fixme[9]: Expected error. y_error: Tensor[torch.float32, L[2], L[3], L[99]] = nn.Parameter(x) def test_torch_datatypes() -> None: x: torch.float16 x2: torch.int def test_norm() -> None: x: Tensor[torch.float32, L[2], L[3], L[4]] x_out: Tensor[torch.float32, L[2], L[3], L[4]] y1: Tensor[torch.float32] = torch.norm(x) y2: Tensor[torch.float32, L[3], L[4]] = torch.norm(x, dim=0, out=x_out, p=1) # pyre-fixme[9]: Expected error. y2_error: Tensor[torch.float32, L[3], L[99]] = torch.norm(x, dim=0) y3: Tensor[torch.float32, L[1], L[3], L[4]] = torch.norm(x, dim=0, keepdim=True) def test_rand() -> None: x: Tensor[torch.float32, L[2], L[3], L[4]] x_out: Tensor[torch.float32, L[2], L[3], L[4]] device: torch.device y1: Tensor[torch.float32, L[2], L[3], L[4]] = torch.rand(2, 3, 4) # pyre-fixme[9]: Expected Error. y1_error: Tensor[torch.float32, L[2], L[3], L[99]] = torch.rand(2, 3, 4) y2: Tensor[torch.int64, L[2], L[3], L[4]] = torch.rand( 2, 3, 4, dtype=torch.int64, device=device, layout=torch.strided, out=x_out, requires_grad=True, generator=torch.default_generator, ) y3: Tensor[torch.float32, L[2], L[3], L[4]] = torch.rand((2, 3, 4)) def test_randint() -> None: x: Tensor[torch.float32, L[2], L[3], L[4]] x_out: Tensor[torch.float32, L[2], L[3], L[4]] device: torch.device y1: Tensor[torch.int64, L[2], L[3], L[4]] = torch.randint(0, 3, (2, 3, 4)) # pyre-fixme[9]: Expected error. y1_error: Tensor[torch.int64, L[2], L[3], L[99]] = torch.randint(0, 3, (2, 3, 4)) y2: Tensor[torch.int64, L[2], L[3], L[4]] = torch.randint( 3, (2, 3, 4), dtype=torch.int64, device=device, layout=torch.strided, out=x_out, requires_grad=True, generator=torch.default_generator, ) def test_zeros() -> None: x: Tensor[torch.float32, L[2], L[3], L[4]] x_out: Tensor[torch.float32, L[2], L[3], L[4]] device: torch.device y1: Tensor[torch.float32, L[2], L[3], L[4]] = torch.zeros(2, 3, 4) # pyre-fixme[9]: Expected Error. y1_error: Tensor[torch.float32, L[2], L[3], L[99]] = torch.zeros(2, 3, 4) y2: Tensor[torch.int64, L[2], L[3], L[4]] = torch.zeros( 2, 3, 4, dtype=torch.int64, device=device, layout=torch.strided, out=x_out, requires_grad=True, ) y3: Tensor[torch.float32, L[2], L[3], L[4]] = torch.zeros((2, 3, 4)) def test_stride() -> None: x: Tensor[torch.float32, L[2], L[3], L[4]] y: Tuple[L[2], L[3], L[4]] = x.stride() # pyre-fixme[9]: Expected error. y_error: Tuple[L[2], L[3], L[99]] = x.stride() y2: L[12] = x.stride(0) y3: L[4] = x.stride(1) y4: L[1] = x.stride(2) def test_chunk() -> None: x: Tensor[torch.float32, L[2], L[3], L[4]] y: Tuple[ Tensor[torch.float32, L[2], L[3], L[2]], Tensor[torch.float32, L[2], L[3], L[2]] ] = torch.chunk(x, 2, dim=-1) # pyre-fixme[9]: Expected error. y_error: Tuple[ Tensor[torch.float32, L[2], L[3], L[99]], Tensor[torch.float32, L[2], L[3], L[2]], ] = torch.chunk(x, 2, dim=-1) y2: Tuple[ Tensor[torch.float32, L[1], L[3], L[4]], Tensor[torch.float32, L[1], L[3], L[4]] ] = torch.chunk(x, 2, dim=0) y3: Tuple[ Tensor[torch.float32, L[1], L[3], L[4]], Tensor[torch.float32, L[1], L[3], L[4]] ] = x.chunk(2, dim=0) def test_abs() -> None: x: Tensor[torch.float32, L[2], L[3], L[4]] y: Tensor[torch.float32, L[2], L[3], L[4]] = x.abs() # pyre-fixme[9]: Expected error. y_error: Tensor[torch.float32, L[2], L[3], L[99]] = x.abs() def test_enable_grad() -> None: with torch.enable_grad(): pass def test_normal() -> None: y: Tensor[torch.float32, L[2], L[3], L[4]] = torch.normal( 0, 1, size=(2, 3, 4), device="cuda", requires_grad=True ) # pyre-fixme[9]: Expected error. y_error: Tensor[torch.float32, L[2], L[3], L[99]] = torch.normal( 0, 1, size=(2, 3, 4), device="cuda", requires_grad=True ) def test_dim() -> None: x0: Tensor[torch.float32] x1: Tensor[torch.float32, L[2]] x2: Tensor[torch.float32, L[2], L[3]] x3: Tensor[torch.float32, L[2], L[3], L[4]] y: L[3] = x3.dim() # pyre-fixme[9]: Expected error. y_error: L[5] = x3.dim() y2: L[0] = x0.dim() y3: L[1] = x1.dim() y4: L[2] = x2.dim() def test_is_cuda() -> None: x: Tensor[torch.float32, L[2], L[3], L[4]] y: bool = x.is_cuda def test_autograd_backward() -> None: x: Tensor[torch.float32, L[2], L[3], L[4]] torch.autograd.backward(x, x) def test_linalg_norm() -> None: x: Tensor[torch.float32, L[2], L[3], L[4]] y: Tensor[torch.float32, L[2]] = torch.linalg.norm(x, dim=(-2, -1)) # pyre-fixme[9]: Expected error. y_error: Tensor[torch.float32, L[99]] = torch.linalg.norm(x, dim=(-2, -1)) def test_Sized() -> None: x: torch.Size = torch.Size((2, 3, 4)) def test_initial_seed() -> None: x: int = torch.initial_seed() def test_log_softmax() -> None: x: Tensor[torch.float32, L[2], L[3], L[4]] y: Tensor[torch.float32, L[2], L[3], L[4]] = torch.log_softmax(x, dim=1) # pyre-fixme[9]: Expected error. y_error: Tensor[torch.float32, L[2], L[3], L[99]] = torch.log_softmax(x, dim=1) y2: Tensor[torch.int64, L[2], L[3], L[4]] = torch.log_softmax( x, dtype=torch.int64, dim=1 ) def test_masked_select() -> None: x: Tensor[torch.float32, L[2], L[3], L[4]] mask: Tensor[torch.bool, L[2], L[3], L[4]] out: Tensor[torch.float32, L[2], L[3], L[4]] y: Tensor = x.masked_select(mask, out=out) y2: Tensor = torch.masked_select(x, mask, out=out) def test__lt__() -> None: x: Tensor[torch.float32, L[2], L[3], L[4]] y: Tensor[torch.bool, L[2], L[3], L[4]] = x < 3.0 def test_pow() -> None: x: Tensor[torch.float32, L[2], L[3], L[4]] y: Tensor[torch.float32, L[2], L[3], L[4]] = x**4 # pyre-fixme[9]: Expected error. y_error: Tensor[torch.float32, L[2], L[3], L[99]] = x**4 def test_item() -> None: x: Tensor[torch.float32] x2: Tensor[torch.float32, L[1]] y: torch.float32 = x.item() # pyre-fixme[9]: Expected error. y_error: torch.int64 = x.item() y2: torch.float32 = x.item() def test_uniform_() -> None: x: Tensor[torch.float32, L[2], L[3], L[4]] y: Tensor[torch.float32, L[2], L[3], L[4]] = nn.init.uniform_(x, a=1.0, b=2.0) # pyre-fixme[9]: Expected error. y_error: Tensor[torch.float32, L[2], L[3], L[99]] = nn.init.uniform_( x, a=1.0, b=2.0 ) def test_kaiming_uniform_() -> None: x: Tensor[torch.float32, L[2], L[3], L[4]] y: Tensor[torch.float32, L[2], L[3], L[4]] = nn.init.kaiming_uniform_( x, a=1.0, mode="fan_in", nonlinearity="leaky_relu" ) # pyre-fixme[9]: Expected error. y_error: Tensor[torch.float32, L[2], L[3], L[99]] = nn.init.kaiming_uniform_(x) def test_constant_() -> None: x: Tensor[torch.float32, L[2], L[3], L[4]] y: Tensor[torch.float32, L[2], L[3], L[4]] = nn.init.constant_(x, val=1.0) # pyre-fixme[9]: Expected error. y_error: Tensor[torch.float32, L[2], L[3], L[99]] = nn.init.constant_(x, val=1.0) def test_leaky_relu() -> None: x: Tensor[torch.float32, L[2], L[3], L[4]] y: Tensor[torch.float32, L[2], L[3], L[4]] = nn.LeakyReLU( negative_slope=1.0, inplace=True )(x) # pyre-fixme[9]: Expected error. y_error: Tensor[torch.float32, L[2], L[3], L[99]] = nn.LeakyReLU( negative_slope=1.0, inplace=True )(x) def test_fft_fft2() -> None: x: Tensor[torch.complex64, L[2], L[3], L[4]] y: Tensor[torch.complex64, L[2], L[3], L[4]] = torch.fft.fft2(x) # pyre-fixme[9]: Expected error. y_error: Tensor[torch.complex64, L[2], L[3], L[99]] = torch.fft.fft2(x) def test_real() -> None: x: Tensor[torch.complex64, L[2], L[3], L[4]] y: Tensor[torch.float32, L[2], L[3], L[4]] = x.real # pyre-fixme[9]: Expected error. y_error: Tensor[torch.float32, L[2], L[3], L[99]] = x.real x2: Tensor[torch.complex128, L[2], L[3], L[4]] y2: Tensor[torch.float64, L[2], L[3], L[4]] = x2.real not_complex: Tensor[torch.float64, L[2], L[3], L[4]] # Should error but we don't have overloads for @property. not_complex.real def test_Tensor_init() -> None: x: Tensor[torch.float32, L[2], L[3], L[4]] # pyre-fixme[9]: Unexpected error because the constructor doesn't bind DType. y: Tensor[torch.float32, L[2], L[3], L[4]] = Tensor((2, 3, 4), device="cuda") # pyre-fixme[9]: Expected error. y_error: Tensor[torch.float32, L[2], L[3], L[99]] = Tensor((2, 3, 4), device="cuda") y2: Tensor[torch.float32, L[2], L[3], L[4]] = Tensor(2, 3, 4, device="cuda") y3: Tensor[torch.float32, L[2], L[3], L[4]] = Tensor(x) def test_reflection_pad2d() -> None: module: nn.Module = nn.ReflectionPad2d(4) x: Tensor[torch.float32, L[20], L[16], L[50], L[100]] y: Tensor[torch.float32, L[20], L[16], L[58], L[108]] = nn.ReflectionPad2d(4)(x) # pyre-fixme[9]: Expected error. y_error: Tensor[torch.float32, L[20], L[16], L[58], L[99]] = nn.ReflectionPad2d(4)( x ) def test_half() -> None: x: torch.Tensor[torch.float32, L[2], L[3], L[4]] good1: torch.Tensor[torch.float16, L[2], L[3], L[4]] = x.half(torch.memory_format()) # pyre-fixme[9]: Expected error. bad1: torch.Tensor[torch.float16, L[99], L[3], L[4]] = x.half() def test_is_contiguous() -> None: x: torch.Tensor[torch.float32, L[2], L[3], L[4]] y: bool = x.is_contiguous(torch.memory_format()) def test_scatter() -> None: x: torch.Tensor[torch.float32, L[2], L[3], L[4]] # We don't really check for the shape of index or src. index: torch.LongTensor[torch.float32, L[99]] src: torch.Tensor[torch.float32, L[99], L[99]] y: torch.Tensor[torch.float32, L[2], L[3], L[4]] = x.scatter(0, index, src) # pyre-fixme[9]: Expected error. y_error: torch.Tensor[torch.float32, L[2], L[3], L[99]] = x.scatter(0, index, src) y2: torch.Tensor[torch.float32, L[2], L[3], L[4]] = x.scatter(2, index, src) def test_scatter_() -> None: x: torch.Tensor[torch.float32, L[2], L[3], L[4]] # We don't really check for the shape of index or src. index: torch.LongTensor[torch.float32, L[99]] src: torch.Tensor[torch.float32, L[99], L[99]] y: torch.Tensor[torch.float32, L[2], L[3], L[4]] = x.scatter_(0, index, src) # pyre-fixme[9]: Expected error. y_error: torch.Tensor[torch.float32, L[2], L[3], L[99]] = x.scatter_(0, index, src) y2: torch.Tensor[torch.float32, L[2], L[3], L[4]] = x.scatter_(2, index, src) def test_bool() -> None: x: Tensor[torch.float32, L[2], L[3], L[4]] y: Tensor[torch.bool, L[2], L[3], L[4]] = x.bool() # pyre-fixme[9]: Expected error. y_error: Tensor[torch.bool, L[2], L[3], L[99]] = x.bool()
EXA-1-master
exa/libraries/xformers/stubs/torch_stub_tests.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import subprocess from pathlib import Path from typing import Optional from packaging import version # TODO: consolidate with the code in build_conda.py THIS_PATH = Path(__file__).resolve() version_from_file = (THIS_PATH.parents[1] / "version.txt").read_text().strip() def get_tagged_version() -> Optional[str]: """ Return whether we are at an exact version (namely the version variable). """ try: tag = subprocess.check_output( ["git", "describe", "--tags", "--exact-match", "HEAD"], text=True, stderr=subprocess.DEVNULL, ).strip() except subprocess.CalledProcessError: # no tag return None if not tag.startswith("v"): return None # Should match the version in `version.txt` # (except for the suffix like `rc` tag) assert ( version.parse(version_from_file).release == version.parse(tag[1:]).release ), f"The version in version.txt ({version_from_file}) does not match the given tag ({tag})" return tag[1:] def get_dev_version() -> str: num_commits = subprocess.check_output( ["git", "rev-list", "--count", "HEAD"], text=True ).strip() return f"{version_from_file}.dev{num_commits}" if __name__ == "__main__": tagged_version = get_tagged_version() if tagged_version is not None: print(tagged_version, end="") else: print(get_dev_version(), end="")
EXA-1-master
exa/libraries/xformers/packaging/compute_wheel_version.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import argparse import os import shutil import subprocess from dataclasses import dataclass, field from pathlib import Path from typing import List, Optional import compute_wheel_version THIS_PATH = Path(__file__).resolve() SOURCE_ROOT_DIR = THIS_PATH.parents[1] PYTHON_VERSIONS = ["3.9", "3.10"] PYTORCH_TO_CUDA_VERSIONS = { "1.11.0": ["10.2", "11.1", "11.3", "11.5"], "1.12.0": ["10.2", "11.3", "11.6"], "1.12.1": ["10.2", "11.3", "11.6"], "1.13": ["11.6", "11.7"], } def conda_docker_image_for_cuda(cuda_version: str) -> str: """ Given a cuda version, return a docker image we could build in. """ if cuda_version in ("10.1", "10.2", "11.1"): return "pytorch/conda-cuda" if cuda_version == "11.3": return "pytorch/conda-builder:cuda113" if cuda_version == "11.5": return "pytorch/conda-builder:cuda115" if cuda_version == "11.6": return "pytorch/conda-builder:cuda116" if cuda_version == "11.7": return "pytorch/conda-builder:cuda117" raise ValueError(f"Unknown cuda version {cuda_version}") @dataclass class Build: """ Represents one configuration of a build, i.e. a set of versions of dependent libraries. Members: conda_always_copy: avoids hard linking which can behave weirdly. conda_debug: get added information about package search conda_dirty: see intermediate files after build build_inside_tree: output in build/ not ../build is_release: whether this is an official versioned release """ python_version: str pytorch_version: str pytorch_channel: str cuda_version: str cuda_dep_runtime: str conda_always_copy: bool = True conda_debug: bool = False conda_dirty: bool = False build_inside_tree: bool = False tagged_version: Optional[str] = field( default_factory=compute_wheel_version.get_tagged_version ) def _get_build_version(self) -> str: if self.tagged_version is not None: return self.tagged_version git_hash = subprocess.check_output( ["git", "rev-parse", "--short", "HEAD"], text=True ).strip() dev_version = compute_wheel_version.get_dev_version() return f"{dev_version}+git.{git_hash}" def _set_env_for_build(self) -> None: """ NOTE: Variables set here won't be visible in `setup.py` UNLESS they are also specified in meta.yaml """ os.environ["BUILD_VERSION"] = self._get_build_version() tag = subprocess.check_output( ["git", "rev-parse", "--short", "HEAD"], text=True ).strip() os.environ["GIT_TAG"] = tag os.environ["PYTORCH_VERSION"] = self.pytorch_version os.environ["CU_VERSION"] = self.cuda_version os.environ["SOURCE_ROOT_DIR"] = str(SOURCE_ROOT_DIR) # At build time, the same major/minor (otherwise we might get a CPU pytorch ...) cuda_constraint_build = "=" + ".".join(self.cuda_version.split(".")[:2]) pytorch_version_tuple = tuple( int(v) for v in self.pytorch_version.split(".")[:2] ) if pytorch_version_tuple < (1, 13): os.environ[ "CONDA_CUDA_CONSTRAINT_BUILD" ] = f"cudatoolkit{cuda_constraint_build}" os.environ[ "CONDA_CUDA_CONSTRAINT_RUN" ] = f"cudatoolkit{self.cuda_dep_runtime}" else: os.environ[ "CONDA_CUDA_CONSTRAINT_BUILD" ] = f"pytorch-cuda{cuda_constraint_build}" os.environ[ "CONDA_CUDA_CONSTRAINT_RUN" ] = f"pytorch-cuda{self.cuda_dep_runtime}" if self.conda_always_copy: os.environ["CONDA_ALWAYS_COPY"] = "true" def _get_build_args(self) -> List[str]: args = [ "conda", "build", "-c", self.pytorch_channel, "-c", "nvidia", "--python", self.python_version, "--no-anaconda-upload", ] if self.conda_debug: args += ["--debug"] if self.conda_dirty: args += ["--dirty"] if not self.build_inside_tree: args += ["--croot", "../build"] return args + ["packaging/xformers"] def do_build(self) -> None: self._set_env_for_build() args = self._get_build_args() print(args) subprocess.check_call(args) def move_artifacts_to_store(self, store_pytorch_package: bool) -> None: """ Run after a build to move the built package, and, if using nightly, the used PyTorch package, to a location where they will be recognized as build artifacts. """ print("moving artifacts") assert not self.build_inside_tree artifacts = Path("packages") artifacts.mkdir(exist_ok=True) for filename in Path("../build/linux-64").resolve().glob("*.tar.bz2"): print("moving", filename, "to", artifacts) shutil.move(filename, artifacts) if store_pytorch_package: for filename in Path("/opt/conda/pkgs").glob("pytorch-[12].*.tar.bz2"): print("moving", filename, "to", artifacts) shutil.move(filename, artifacts) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Build the conda package.") parser.add_argument( "--python", metavar="3.X", required=True, help="python version e.g. 3.10" ) parser.add_argument( "--cuda-dep-runtime", metavar="1X.Y", required=True, help="eg '>=11.7,<11.9" ) parser.add_argument( "--cuda", metavar="1X.Y", required=True, help="cuda version e.g. 11.3" ) parser.add_argument( "--pytorch", metavar="1.Y.Z", required=True, help="PyTorch version e.g. 1.11.0" ) parser.add_argument( "--build-inside-tree", action="store_true", help="Build in build/ instead of ../build/", ) parser.add_argument( "--store", action="store_true", help="position artifact to store", ) parser.add_argument( "--store-pytorch-package", action="store_true", help="position artifact to store", ) parser.add_argument( "--pytorch-channel", default="pytorch", help="Use 'pytorch-nightly' for nightly" ) args = parser.parse_args() pkg = Build( pytorch_channel=args.pytorch_channel, python_version=args.python, pytorch_version=args.pytorch, cuda_version=args.cuda, build_inside_tree=args.build_inside_tree, cuda_dep_runtime=args.cuda_dep_runtime, ) pkg.do_build() pkg.move_artifacts_to_store(store_pytorch_package=args.store_pytorch_package) # python packaging/conda/build_conda.py --cuda 11.6 --python 3.10 --pytorch 1.12.1 # python packaging/conda/build_conda.py --cuda 11.3 --python 3.9 --pytorch 1.12.1 # <= the dino one # python packaging/conda/build_conda.py --cuda 11.6 --python 3.10 --pytorch 1.11.0 # Note this does the build outside the root of the tree. # TODO: # - Make a local conda package cache available inside docker # - do we need builds for both _GLIBCXX_USE_CXX11_ABI values? # - how to prevent some cpu only builds of pytorch from being discovered?
EXA-1-master
exa/libraries/xformers/packaging/build_conda.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree.
EXA-1-master
exa/libraries/xformers/experimental/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from setuptools import setup setup( name="ragged_inference", author="Facebook AI Research", version="0.0.0", packages=["ragged_inference"], install_requires=[], scripts=[], python_requires=">=3.6", )
EXA-1-master
exa/libraries/xformers/experimental/setup.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import pytest import torch from ragged_inference.test_utils import assert_eq, bf16_support from ragged_inference.triton_v2_matmul import matmul SHAPES = [ (3, 7), (384, 128), (784, 512), (1024, 1024), (2048, 384), ] _dtypes = [ {"device": "cuda", "dtype": torch.float16}, {"device": "cuda", "dtype": torch.float32}, ] if bf16_support(): _dtypes.append({"device": "cuda", "dtype": torch.bfloat16}) @pytest.mark.parametrize("shape", SHAPES) @pytest.mark.parametrize("dtype", _dtypes) def test_matmul(shape, dtype): a = torch.randn(shape, **dtype) b = torch.randn(shape, **dtype).T out = matmul(a, b) torch_out = torch.matmul(a, b) assert_eq(out, torch_out, rtol=0.01, atol=0.2) """ pytest -vxs --tb=native tests/ragged_inference/test_triton_v2_matmul.py -k test_matmul """
EXA-1-master
exa/libraries/xformers/experimental/tests/test_triton_v2_matmul.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import time import pytest import torch from ragged_inference.garbage_pad_ragged_acts import RaggedActivations from ragged_inference.seq_kv_cache import ( SingleSeqKVCache, _create_indices, calculate_scores_via_qk_dotprod, extend_kv_caches, garbage_pad_keys, garbage_pad_seq_kv_cache, ) from ragged_inference.test_utils import assert_eq, bf16_support _dtypes = [{"device": "cuda", "dtype": torch.float16}] if bf16_support(): _dtypes.append({"device": "cuda", "dtype": torch.bfloat16}) def _single_seq_kv_cache(n_ctx, value, d_model, dtype) -> SingleSeqKVCache: return SingleSeqKVCache( keys=torch.full([n_ctx, d_model], value, **dtype), values=torch.full([n_ctx, d_model], value, **dtype), ) @pytest.mark.parametrize("dtype", _dtypes) def test_garbage_pad_seq_kv_cache_correctness(dtype): seq_kv_cache = [ _single_seq_kv_cache(n_ctx=1, value=33, d_model=2, dtype=dtype), _single_seq_kv_cache(n_ctx=3, value=42, d_model=2, dtype=dtype), _single_seq_kv_cache(n_ctx=7, value=55, d_model=2, dtype=dtype), ] padded_keys, padded_values = garbage_pad_seq_kv_cache(seq_kv_cache) # Check that the non-garbage portion of each is correct assert_eq(padded_keys[0, :1, :], seq_kv_cache[0].keys) assert_eq(padded_keys[1, :3, :], seq_kv_cache[1].keys) assert_eq(padded_keys[2, :7, :], seq_kv_cache[2].keys) assert_eq(padded_values[0, :1, :], seq_kv_cache[0].values) assert_eq(padded_values[1, :3, :], seq_kv_cache[1].values) assert_eq(padded_values[2, :7, :], seq_kv_cache[2].values) @pytest.mark.parametrize("dtype", _dtypes) def test_extend_kv_caches_correctness(dtype): d_model = 6 seq_kv_cache = [ _single_seq_kv_cache(n_ctx=1, value=33, d_model=d_model, dtype=dtype), _single_seq_kv_cache(n_ctx=3, value=42, d_model=d_model, dtype=dtype), _single_seq_kv_cache(n_ctx=7, value=55, d_model=d_model, dtype=dtype), ] n_ctx_new = 1 active_keys = RaggedActivations.from_list( [ torch.ones(n_ctx_new, d_model, **dtype), torch.ones(n_ctx_new, d_model, **dtype), torch.ones(n_ctx_new, d_model, **dtype), ] ) active_values = RaggedActivations.from_list( [ torch.ones(n_ctx_new, d_model, **dtype) * 2, torch.ones(n_ctx_new, d_model, **dtype) * 2, torch.ones(n_ctx_new, d_model, **dtype) * 2, ] ) new_cache = extend_kv_caches(seq_kv_cache, active_keys, active_values) assert_eq(new_cache[0].keys[:, 0].cpu(), [33, 1]) assert_eq(new_cache[0].values[:, 0].cpu(), [33, 2]) assert_eq(new_cache[1].keys[:, 0].cpu(), [42, 42, 42, 1]) assert_eq(new_cache[1].values[:, 0].cpu(), [42, 42, 42, 2]) assert_eq(new_cache[2].keys[:, 0].cpu(), [55, 55, 55, 55, 55, 55, 55, 1]) assert_eq(new_cache[2].values[:, 0].cpu(), [55, 55, 55, 55, 55, 55, 55, 2]) @pytest.mark.parametrize("dtype", _dtypes) def test_index_select_throughput(dtype): n_ctx_per_seq = 8192 n_seqs = 20 d_model_per_gpu = 12 * 1024 // 8 keys = _single_seq_kv_cache( n_ctx=n_ctx_per_seq * n_seqs, value=42, d_model=d_model_per_gpu, dtype=dtype ).keys indices = _create_indices(tuple(n_ctx_per_seq for _ in range(n_seqs))) for strategy in ["index_select", "gather", "slice"]: if strategy == "slice": def do_the_op(): return keys[indices, :] elif strategy == "gather": stacked_idxs = torch.stack([indices for _ in range(d_model_per_gpu)], dim=1) def do_the_op(): torch.gather(input=keys, dim=0, index=stacked_idxs) elif strategy == "index_select": def do_the_op(): torch.index_select(input=keys, dim=0, index=indices) else: raise ValueError(f"{strategy=}") # warmup do_the_op() torch.cuda.synchronize() started_at = time.time() n_iters = 10 for _ in range(n_iters): do_the_op() torch.cuda.synchronize() elapsed_micros = (time.time() - started_at) * 1e6 micros_per_mb = elapsed_micros / n_iters micros_per_seq = micros_per_mb / n_seqs print( f""" # Speed when {strategy=} {micros_per_seq=:.1f}µs per seq """ ) @pytest.mark.parametrize("dtype", _dtypes) def test_garbage_pad_keys_throughput(dtype, n_ctx_per_seq=1024): n_seqs = 100 d_model_per_gpu = 12 * 1024 // 8 seq_kv_cache = [ _single_seq_kv_cache( n_ctx=n_ctx_per_seq, value=42, d_model=d_model_per_gpu, dtype=dtype ) for _ in range(n_seqs) ] bytes_in_keys_per_seq = n_ctx_per_seq * d_model_per_gpu * 2 # 2 from bf16 bytes_in_keys_total = bytes_in_keys_per_seq * n_seqs hbm_bw_bytes_per_gpu = 1555e9 # 1.5TB/s # If we just read the bytes directly from memory theor_load_micros_per_seq = bytes_in_keys_per_seq / hbm_bw_bytes_per_gpu * 1e6 # Doing our operation should be slower than the theoretical minimum because we # do the following to the items # # 1. Read them from the per-seq areas # 2. Write them back into the buffer expected_micros_per_seq = theor_load_micros_per_seq * 2 # warmup garbage_pad_keys(seq_kv_cache) torch.cuda.synchronize() started_at = time.time() n_iters = 10 for _ in range(n_iters): garbage_pad_keys(seq_kv_cache) torch.cuda.synchronize() elapsed_micros = (time.time() - started_at) * 1e6 micros_per_mb = elapsed_micros / n_iters micros_per_seq = micros_per_mb / n_seqs print( f""" # Theoretical {bytes_in_keys_total/1e9=:.3f}GB {bytes_in_keys_per_seq/1e6=:.2f}MB {theor_load_micros_per_seq=:.1f}µs per seq (to just load once from memory) {expected_micros_per_seq=:.1f}µs per seq # Actual {micros_per_mb=:.1f}µs per microbatch {micros_per_seq=:.1f}µs per seq {micros_per_seq/expected_micros_per_seq:.1f}x the expected HBM-bandwidth bound time """ ) @pytest.mark.parametrize("dtype", _dtypes) def test_garbage_pad_active_queries_throughput(dtype, n_active_ctx_per_seq=5): n_seqs = 100 d_model_per_gpu = 12 * 1024 // 8 active_queries = RaggedActivations.from_list( [ torch.ones(n_active_ctx_per_seq, d_model_per_gpu, **dtype) * 2 for _ in range(n_seqs) ] ) bytes_in_queries_per_seq = n_active_ctx_per_seq * d_model_per_gpu * 2 # 2 from bf16 bytes_in_queries_total = bytes_in_queries_per_seq * n_seqs hbm_bw_bytes_per_gpu = 1555e9 # 1.5TB/s # If we just read the bytes directly from memory theor_load_micros_per_seq = bytes_in_queries_per_seq / hbm_bw_bytes_per_gpu * 1e6 # Doing our operation should be slower than the theoretical minimum because we # do the following to the items # # 1. Read them from the per-seq areas # 2. Write them back into the buffer expected_micros_per_seq = theor_load_micros_per_seq * 2 # warmup active_queries.to_garbage_padded() torch.cuda.synchronize() started_at = time.time() n_iters = 10 for _ in range(n_iters): active_queries.to_garbage_padded() torch.cuda.synchronize() elapsed_micros = (time.time() - started_at) * 1e6 micros_per_mb = elapsed_micros / n_iters micros_per_seq = micros_per_mb / n_seqs print( f""" # Theoretical {bytes_in_queries_total/1e9=:.3f}GB {bytes_in_queries_per_seq/1e6=:.2f}MB {theor_load_micros_per_seq=:.1f}µs per seq (to just load once from memory) {expected_micros_per_seq=:.1f}µs per seq # Actual {micros_per_mb=:.1f}µs per microbatch {micros_per_seq=:.1f}µs per seq {micros_per_seq/expected_micros_per_seq:.1f}x the expected HBM-bandwidth bound time """ ) @pytest.mark.parametrize("dtype", _dtypes) def test_calculate_scores_via_qk_dotprod_throughput( dtype, n_key_ctx_per_seq=1024, n_active_query_ctx_per_seq=5 ): n_seqs = 100 d_model_per_gpu = 12 * 1024 // 8 seq_kv_cache = [ _single_seq_kv_cache( n_ctx=n_key_ctx_per_seq, value=42, d_model=d_model_per_gpu, dtype=dtype ) for _ in range(n_seqs) ] active_queries = RaggedActivations.from_list( [ torch.ones(n_active_query_ctx_per_seq, d_model_per_gpu, **dtype) * 2 for _ in range(n_seqs) ] ) assert n_key_ctx_per_seq > n_active_query_ctx_per_seq * 10, ( "n_active_query_ctx_per_seq must be much larger than " "n_key_ctx_per_seq for our simulator to be useful because " "we round the HBM memory bandwidth for the active_queries and " "for the scores down to zero" ) bytes_in_keys_per_seq = n_key_ctx_per_seq * d_model_per_gpu * 2 # 2 from bf16 bytes_in_keys_total = bytes_in_keys_per_seq * n_seqs hbm_bw_bytes_per_gpu = 1555e9 # 1.5TB/s # If we just read the bytes directly from memory theor_load_micros_per_seq = bytes_in_keys_per_seq / hbm_bw_bytes_per_gpu * 1e6 # Doing our operation should be slower than the theoretical minimum because we # do the following to the items # # 1. Read them from the per-seq areas # 2. Write them back into the buffer expected_micros_per_seq = theor_load_micros_per_seq * 2 # warmup calculate_scores_via_qk_dotprod(seq_kv_cache, active_queries) torch.cuda.synchronize() started_at = time.time() n_iters = 10 for _ in range(n_iters): calculate_scores_via_qk_dotprod(seq_kv_cache, active_queries) torch.cuda.synchronize() elapsed_micros = (time.time() - started_at) * 1e6 micros_per_mb = elapsed_micros / n_iters micros_per_seq = micros_per_mb / n_seqs print( f""" # Theoretical {bytes_in_keys_total/1e9=:.3f}GB {bytes_in_keys_per_seq/1e6=:.2f}MB {theor_load_micros_per_seq=:.1f}µs per seq (to just load once from memory) {expected_micros_per_seq=:.1f}µs per seq # Actual {micros_per_mb=:.1f}µs per microbatch {micros_per_seq=:.1f}µs per seq {micros_per_seq/expected_micros_per_seq:.1f}x the expected HBM-bandwidth bound time """ ) """ # Run tests with the following pytest -vsx tests/ragged_inference/test_seq_kv_cache.py # Profile with the following pytest -vsx tests/ragged_inference/test_seq_kv_cache.py -k test_calculate_scores_via_qk_dotprod_throughput """
EXA-1-master
exa/libraries/xformers/experimental/tests/test_seq_kv_cache.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import time import pytest import torch from ragged_inference.test_utils import assert_eq, bf16_support from ragged_inference.triton_v2_qk_dotprod import qk_dotprod from ragged_inference.triton_v2_ragged_qk_dotprod import ( RaggedQkPidLookupTable, ragged_single_seq_qk_dotprod, ) SHAPES = [ (3, 7), (384, 128), (784, 512), (1024, 1024), (2048, 384), ] _dtypes = [ {"device": "cuda", "dtype": torch.float16}, {"device": "cuda", "dtype": torch.float32}, ] if bf16_support(): _dtypes.append({"device": "cuda", "dtype": torch.bfloat16}) def qk_dotprod_pytorch(q, k): # attention matrix return torch.einsum("bqd,bkd->bqk", q, k) def qk_dotprod_single_head_pytorch(q, k): # attention matrix return torch.einsum("qd,kd->qk", q, k) @pytest.mark.parametrize("shape", SHAPES) @pytest.mark.parametrize("dtype", _dtypes) def test_qk_dotprod(shape, dtype): a = torch.randn(shape, **dtype) b = torch.randn(shape, **dtype) out = qk_dotprod(a, b) torch_out = qk_dotprod_single_head_pytorch(a, b) assert_eq(out, torch_out, rtol=0.05, atol=0.2) @pytest.mark.parametrize("shape", SHAPES) @pytest.mark.parametrize("dtype", _dtypes) def test_ragged_qk_dotprod(shape, dtype): a = torch.randn(shape, **dtype) b = torch.randn(shape, **dtype) lut = RaggedQkPidLookupTable.from_single_seq(n_ctx_q=shape[0], n_ctx_k=shape[0]) out = ragged_single_seq_qk_dotprod(a, b, lut) torch_out = qk_dotprod_single_head_pytorch(a, b) assert_eq(out, torch_out, rtol=0.02, atol=0.2) @pytest.mark.parametrize("dtype", _dtypes) def test_ragged_qk_dotprod_perf(dtype): active_tokens = 5 d_head = 256 active_and_cached_tokens = 8000 * 50 n_iters = 10 q = torch.randn((active_tokens, d_head), **dtype) k = torch.randn((active_and_cached_tokens, d_head), **dtype) lut = RaggedQkPidLookupTable.from_single_seq( n_ctx_q=active_tokens, n_ctx_k=active_and_cached_tokens ) for _ in range(3): out = ragged_single_seq_qk_dotprod(q, k, lut) # noqa: F841 torch.cuda.synchronize() started_at = time.time() for _ in range(n_iters): out = ragged_single_seq_qk_dotprod(q, k, lut) # noqa: F841 torch.cuda.synchronize() elapsed_micros = (time.time() - started_at) * 1e6 bytes_in_keys_per_seq = active_and_cached_tokens * d_head * 2 # 2 from bf16 bytes_in_keys_total = bytes_in_keys_per_seq hbm_bw_bytes_per_gpu = 1555e9 # 1.5TB/s # If we just read the bytes directly from memory theor_load_micros_per_seq = bytes_in_keys_per_seq / hbm_bw_bytes_per_gpu * 1e6 expected_micros_per_seq = theor_load_micros_per_seq micros_per_seq = elapsed_micros / n_iters print( f""" # Theoretical {bytes_in_keys_total/1e9=:.3f}GB {bytes_in_keys_per_seq/1e6=:.2f}MB {theor_load_micros_per_seq=:.1f}µs per seq (to just load once from memory) {expected_micros_per_seq=:.1f}µs per seq # Actual {micros_per_seq=:.1f}µs per seq {micros_per_seq/expected_micros_per_seq:.1f}x the expected HBM-bandwidth bound time """ ) # FIXME: Write a proper device agnostic test if "A100" in torch.cuda.get_device_name(0): assert micros_per_seq / expected_micros_per_seq < 1.5 @pytest.mark.parametrize("dtype", _dtypes) def test_simple_qk_dotprod(dtype): shape = (8, 8) k = torch.zeros(shape, **dtype) k[0, 0] = 1.0 k[0, 1] = 1.0 q = torch.randn(shape, **dtype) print(f"{q=}") print(f"{k=}") out = qk_dotprod(q, k) torch_out = qk_dotprod_single_head_pytorch(q, k) assert_eq(out, torch_out, rtol=0.01, atol=0.2) """ pytest -vxs --tb=native tests/ragged_inference/test_triton_v2_qk_dotprod.py -k test_ragged_qk_dotprod """
EXA-1-master
exa/libraries/xformers/experimental/tests/test_triton_v2_qk_dotprod.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import time import pytest import torch from ragged_inference.garbage_pad_ragged_acts import RaggedActivations from ragged_inference.seq_kv_cache import scores_via_qk_dotprod from ragged_inference.test_utils import ( assert_eq, bf16_support, make_seq, make_seq_arange, ) from ragged_inference.triton_v2_ragged_qk_dotprod import ( RaggedQkPidLookupTable, ragged_qk_dotprod, ) _dtypes = [{"device": "cuda", "dtype": torch.float16}] if bf16_support(): _dtypes.append({"device": "cuda", "dtype": torch.bfloat16}) @pytest.mark.parametrize("dtype", _dtypes) def test_ragged_qk_dotprod_single_seq(dtype): d_head = 2 key = RaggedActivations.from_list( [ make_seq(n_ctx=3, value=42, d_model=d_head, dtype=dtype), ] ) query = RaggedActivations.from_list( [ make_seq(n_ctx=4, value=55, d_model=d_head, dtype=dtype), ] ) torch_scores = scores_via_qk_dotprod(query, key) print(f"{torch_scores=}") lut = RaggedQkPidLookupTable.from_query_and_key_tokens_per_seq( n_ctx_q_per_seq=query.n_ctx_per_seq, n_ctx_k_per_seq=key.n_ctx_per_seq ) scores = ragged_qk_dotprod(query, key, lut) assert_eq(torch_scores, scores) @pytest.mark.parametrize("dtype", _dtypes) def test_ragged_qk_dotprod_multiple_seqs_lut(dtype): d_head = 2 key = RaggedActivations.from_list( [ make_seq_arange(n_ctx=5, start_value=0, d_head=d_head, dtype=dtype), make_seq_arange(n_ctx=2, start_value=5, d_head=d_head, dtype=dtype), make_seq_arange(n_ctx=3, start_value=7, d_head=d_head, dtype=dtype), ] ) query = RaggedActivations.from_list( [ make_seq_arange(n_ctx=3, start_value=0, d_head=d_head, dtype=dtype), make_seq_arange(n_ctx=2, start_value=3, d_head=d_head, dtype=dtype), make_seq_arange(n_ctx=2, start_value=5, d_head=d_head, dtype=dtype), ] ) lut = RaggedQkPidLookupTable.from_query_and_key_tokens_per_seq( n_ctx_q_per_seq=query.n_ctx_per_seq, n_ctx_k_per_seq=key.n_ctx_per_seq, block_q_override=2, block_k_override=2, ) assert_eq(lut.pid_to_in_q_token_offset.cpu(), [0, 0, 0, 2, 2, 2, 3, 5, 5]) assert_eq(lut.pid_to_in_k_token_offset.cpu(), [0, 2, 4, 0, 2, 4, 5, 7, 9]) assert_eq(lut.pid_to_out_q_block.cpu(), [0, 0, 0, 1, 1, 1, 0, 0, 0]) assert_eq(lut.pid_to_out_k_block.cpu(), [0, 1, 2, 0, 1, 2, 0, 0, 1]) assert_eq(lut.pid_to_out_seq_idx.cpu(), [0, 0, 0, 0, 0, 0, 1, 2, 2]) assert_eq(lut.n_pids_total, 9) @pytest.mark.parametrize("dtype", _dtypes) def test_ragged_qk_dotprod_multiple_seqs(dtype): d_head = 2 key = RaggedActivations.from_list( [ make_seq_arange(n_ctx=5, start_value=0, d_head=d_head, dtype=dtype), make_seq_arange(n_ctx=2, start_value=5, d_head=d_head, dtype=dtype), make_seq_arange(n_ctx=3, start_value=7, d_head=d_head, dtype=dtype), ] ) query = RaggedActivations.from_list( [ make_seq_arange(n_ctx=3, start_value=0, d_head=d_head, dtype=dtype), make_seq_arange(n_ctx=2, start_value=3, d_head=d_head, dtype=dtype), make_seq_arange(n_ctx=2, start_value=5, d_head=d_head, dtype=dtype), ] ) lut = RaggedQkPidLookupTable.from_query_and_key_tokens_per_seq( n_ctx_q_per_seq=query.n_ctx_per_seq, n_ctx_k_per_seq=key.n_ctx_per_seq, ) torch_scores = scores_via_qk_dotprod(query, key) scores = ragged_qk_dotprod(query, key, lut) for seq_idx, (n_ctx_q, n_ctx_k) in enumerate( zip(key.n_ctx_per_seq, query.n_ctx_per_seq) ): print(f"Checking {seq_idx=}") assert_eq( torch_scores[seq_idx, :n_ctx_q, :n_ctx_k], scores[seq_idx, :n_ctx_q, :n_ctx_k], ) @pytest.mark.parametrize("dtype", _dtypes) def test_ragged_qk_dotprod_multiple_seqs_perf(dtype): n_q_ctx = 5 n_seqs = 50 d_head = 256 n_k_ctx = 8000 n_iters = 10 query = RaggedActivations.from_list( [ make_seq_arange(n_ctx=n_q_ctx, start_value=0, d_head=d_head, dtype=dtype) for _ in range(n_seqs) ] ) key = RaggedActivations.from_list( [ make_seq_arange(n_ctx=n_k_ctx, start_value=0, d_head=d_head, dtype=dtype) for _ in range(n_seqs) ] ) lut = RaggedQkPidLookupTable.from_query_and_key_tokens_per_seq( n_ctx_q_per_seq=query.n_ctx_per_seq, n_ctx_k_per_seq=key.n_ctx_per_seq, ) for _ in range(3): out = ragged_qk_dotprod(query, key, lut) # noqa: F841 torch.cuda.synchronize() started_at = time.time() for _ in range(n_iters): out = ragged_qk_dotprod(query, key, lut) # noqa: F841 torch.cuda.synchronize() elapsed_micros = (time.time() - started_at) * 1e6 bytes_in_keys_per_seq = n_k_ctx * d_head * 2 # 2 from bf16 bytes_in_keys_total = bytes_in_keys_per_seq * n_seqs hbm_bw_bytes_per_gpu = 1555e9 # 1.5TB/s # If we just read the bytes directly from memory theor_load_micros_per_seq = bytes_in_keys_per_seq / hbm_bw_bytes_per_gpu * 1e6 expected_micros_per_seq = theor_load_micros_per_seq micros_per_seq = elapsed_micros / (n_iters * n_seqs) micros_per_mb = elapsed_micros / (n_iters) print( f""" # Theoretical {bytes_in_keys_total/1e9=:.3f}GB {bytes_in_keys_per_seq/1e6=:.2f}MB {theor_load_micros_per_seq=:.1f}µs per seq (to just load once from memory) {expected_micros_per_seq=:.1f}µs per seq # Actual {micros_per_seq=:.1f}µs per seq {micros_per_mb=:.1f}µs per seq {micros_per_seq/expected_micros_per_seq:.1f}x the expected HBM-bandwidth bound time """ ) # FIXME: write a proper, device agnostic test if "A100" in torch.cuda.get_device_name(0): assert micros_per_seq / expected_micros_per_seq < 1.5 """ pytest -vxs --tb=native tests/ragged_inference/test_triton_v2_ragged_qk_dotprod.py -k test_ragged_qk_dotprod_multiple_seqs_perf # noqa """
EXA-1-master
exa/libraries/xformers/experimental/tests/test_triton_v2_ragged_qk_dotprod.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from typing import Any, Dict, Tuple import numpy as np import torch _DTYPE_PRECISIONS = { torch.float16: (1e-3, 1e-3), torch.bfloat16: (1e-1, 1e-3), torch.float32: (1e-4, 1e-5), torch.float64: (1e-5, 1e-8), } def _get_default_rtol_and_atol( actual: torch.Tensor, expected: torch.Tensor ) -> Tuple[float, float]: expected_rtol = expected_atol = actual_rtol = actual_atol = 0.0 if isinstance(actual, torch.Tensor): actual_rtol, actual_atol = _DTYPE_PRECISIONS.get(actual.dtype, (0.0, 0.0)) if isinstance(expected, torch.Tensor): expected_rtol, expected_atol = _DTYPE_PRECISIONS.get(expected.dtype, (0.0, 0.0)) return max(actual_rtol, expected_rtol), max(actual_atol, expected_atol) def assert_eq(actual, expected, msg="", rtol=None, atol=None): """Asserts two things are equal with nice support for lists and tensors It also gives prettier error messages than assert a == b """ if not msg: msg = f"Values are not equal: \n\ta={actual} \n\tb={expected}" if isinstance(actual, torch.Size): actual = list(actual) if isinstance(expected, torch.Size): expected = list(expected) if isinstance(actual, tuple): actual = list(actual) if isinstance(expected, tuple): expected = list(expected) if isinstance(actual, torch.Tensor): if rtol is None and atol is None: rtol, atol = _get_default_rtol_and_atol(actual=actual, expected=expected) torch.testing.assert_allclose(actual, expected, msg=msg, rtol=rtol, atol=atol) return if isinstance(actual, np.ndarray): np.testing.assert_allclose(actual, expected, rtol=rtol or 0, atol=atol or 0) return if isinstance(actual, torch.Size) or isinstance(expected, torch.Size): assert actual == expected, msg return if isinstance(actual, dict): assert isinstance(expected, dict) assert actual.keys() == expected.keys(), msg for key in actual.keys(): assert_eq(actual[key], expected[key], msg=msg, rtol=rtol, atol=atol) return if isinstance(actual, (tuple, list, set)): assert isinstance(expected, type(actual)) assert len(actual) == len(expected), msg for ai, bi in zip(actual, expected): assert_eq(ai, bi, msg=msg, rtol=rtol, atol=atol) return if rtol is None and atol is None: assert actual == expected, f"{actual} != {expected}" else: atol = 0 if atol is None else atol rtol = 0 if rtol is None else rtol assert ( abs(actual - expected) <= atol + expected * rtol ), f"{actual} != {expected}" _gpu_is_old = None def gpu_capabilities_older_than_70() -> bool: """Return True if the GPU's compute capability is older than SM70.""" global _gpu_is_old if _gpu_is_old is None: for i in range(torch.cuda.device_count()): major, _ = torch.cuda.get_device_capability(f"cuda:{i}") if major < 7: _gpu_is_old = True if _gpu_is_old is None: _gpu_is_old = False return _gpu_is_old def bf16_support(): # Ampere cards support bf16 return torch.cuda.is_available() and ( "RTX" in torch.cuda.get_device_name() or "A100" in torch.cuda.get_device_name() ) def make_seq(n_ctx: int, value: int, d_model: int, dtype: Dict[str, Any]): return torch.full([n_ctx, d_model], value, **dtype) def make_seq_arange(n_ctx: int, start_value: int, d_head: int, dtype: Dict[str, Any]): return ( torch.full([n_ctx, d_head], start_value, **dtype) + torch.arange(n_ctx, **dtype)[:, None] )
EXA-1-master
exa/libraries/xformers/experimental/ragged_inference/test_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree.
EXA-1-master
exa/libraries/xformers/experimental/ragged_inference/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from typing import List import numpy as np import torch import triton import triton.language as tl @triton.jit def garbage_pad_ragged_acts_kernel( ragged_acts_ptr, ragged_acts_offset_per_seq_ptr, n_ctx_per_seq_ptr, padded_acts_ptr, BLOCK_SIZE: tl.constexpr, # How many inputs each program should process n_ctx_max: tl.constexpr, ): # There are multiple 'program's processing different data. We identify which program # we are here seq_idx = tl.program_id(axis=0) ctx_idx = tl.program_id(axis=1) # This program will process inputs that are offset from the initial data. # for instance, if you had a vector of length 256 and block_size of 64, the programs # would each access the elements [0:64, 64:128, 128:192, 192:256]. ragged_acts_offset_ptr = ragged_acts_offset_per_seq_ptr + seq_idx ragged_acts_offset = tl.load(ragged_acts_offset_ptr) # Create a mask to guard memory operations against out-of-bounds accesses n_ctx_in_this_seq_ptr = n_ctx_per_seq_ptr + seq_idx n_ctx_in_this_seq = tl.load(n_ctx_in_this_seq_ptr) ctx_idx_too_large_mask = ctx_idx < n_ctx_in_this_seq # Note that offsets is a list of pointers ragged_acts_offsets = ragged_acts_offset + tl.arange(0, BLOCK_SIZE) # Load ragged acts, since we use a BLOCK_SIZE of d_model, the only out of bounds # that we can have is if the n_ctx value is too big acts = tl.load(ragged_acts_ptr + ragged_acts_offsets, mask=ctx_idx_too_large_mask) # Calculate the offsets for the padded acts padded_acts_offset = n_ctx_max * seq_idx * BLOCK_SIZE # Write things back, again masking out the sections that would be garbage tl.store(padded_acts_ptr + padded_acts_offset, acts, mask=ctx_idx_too_large_mask) class RaggedActivations: def __init__(self, raw_tensor: torch.Tensor, n_ctx_per_seq: List[int]): self.raw_tensor = raw_tensor self.n_ctx_per_seq = n_ctx_per_seq @property def n_seqs(self): return len(self.n_ctx_per_seq) @property def max_n_ctx_per_seq(self): return max(self.n_ctx_per_seq) @property def dtype(self): return self.raw_tensor.dtype @property def device(self): return self.raw_tensor.device @classmethod def from_list(cls, tensors: List[torch.Tensor]): """Tensors must all be of shape [n_ctx, d_model].""" return cls( raw_tensor=torch.cat(tensors), n_ctx_per_seq=[tensor.shape[0] for tensor in tensors], ) def iter_full_tensors(self): idx_so_far = 0 for n_ctx_in_this_seq in self.n_ctx_per_seq: yield self.raw_tensor[idx_so_far : idx_so_far + n_ctx_in_this_seq] idx_so_far += n_ctx_in_this_seq def to_garbage_padded(self) -> torch.Tensor: """ Create a tensor of shape (n_seqs, n_ctx_max, d_model) where the sequences are right-padded with garbage data """ n_seqs = len(self.n_ctx_per_seq) n_ctx_max = max(self.n_ctx_per_seq) n_dim = self.raw_tensor.shape[-1] # TODO: flag use zeros for garbage padded_acts = torch.zeros( n_seqs, n_ctx_max, n_dim, dtype=self.raw_tensor.dtype, device="cuda" ) idx_so_far = 0 for seq_idx, n_ctx_in_this_seq in enumerate(self.n_ctx_per_seq): this_seq = self.raw_tensor[idx_so_far : idx_so_far + n_ctx_in_this_seq] padded_acts[seq_idx, :n_ctx_in_this_seq, :] = this_seq idx_so_far += n_ctx_in_this_seq return padded_acts def triton_to_garbage_padded(self) -> torch.Tensor: """ Create a tensor of shape (n_seqs, n_ctx_max, d_model) where the sequences are right-padded with garbage data """ n_seqs = len(self.n_ctx_per_seq) n_ctx_max = max(self.n_ctx_per_seq) ragged_acts = self.raw_tensor d_model = ragged_acts.shape[-1] padded_acts = torch.empty( n_seqs, n_ctx_max, d_model, dtype=ragged_acts.dtype, device="cuda" ) # We just use one program per n_ctx position for simplicity assert d_model >= 128, f"bad {d_model=}" assert d_model <= 8 * 1024, f"bad {d_model=}" assert d_model % 32 == 0, f"bad {d_model=}" # We use numpy here because it's a bit faster n_ctx_per_seq = self.n_ctx_per_seq ragged_acts_offset_per_seq = get_acts_offset_per_seq(n_ctx_per_seq) # The SPMD launch grid denotes the number of kernel instances that run in parallel. # It is analogous to CUDA launch grids. It can be either Tuple[int], or # Callable(metaparameters) -> Tuple[int] # # In this case, we use a 2D grid where the size is n_ctx grid_2d = (n_seqs, n_ctx_max) # NOTE: # - each torch.tensor object is implicitly converted into a pointer to its # first element. # - `triton.jit`'ed functions can be indexed with a launch grid to obtain a # callable GPU kernel # [breakpoint()] garbage_pad_ragged_acts_kernel[grid_2d]( ragged_acts, torch.tensor(ragged_acts_offset_per_seq, device="cuda"), torch.tensor(self.n_ctx_per_seq, device="cuda"), padded_acts, BLOCK_SIZE=d_model, n_ctx_max=n_ctx_max, ) return padded_acts def get_acts_offset_per_seq(n_ctx_per_seq): n_ctx_per_seq_shifted = np.array([0] + n_ctx_per_seq[:-1]) ragged_acts_offset_per_seq = n_ctx_per_seq_shifted.cumsum(axis=0) return ragged_acts_offset_per_seq """ # TODO: Build LUT seq_idx = 1 ctx_idx = 0 ragged_offset = 1 # How to do a list of tensors? # # TODO: Add the QK dotprod to get scores # - Start with a ragged tensor for the keys also # - Using a list of tensors as the Keys # - Using sequences # 16x16x256 # scores [n_seq, n_ctx_keys_max, n_ctx_queries_max] # final_out [n_seq, n_ctx_keys_max, d_model] """
EXA-1-master
exa/libraries/xformers/experimental/ragged_inference/garbage_pad_ragged_acts.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from functools import lru_cache from typing import List, Tuple import torch from ragged_inference.garbage_pad_ragged_acts import RaggedActivations class SingleSeqKVCache: def __init__(self, keys: torch.Tensor, values: torch.Tensor): # Tensor of shape [2, n_ctx, d_model_per_gpu] # - keys are cache[0] # - values are cache[1] self.raw_keys = keys self.raw_values = values @property def keys(self) -> torch.Tensor: return self.raw_keys @property def values(self) -> torch.Tensor: return self.raw_values @property def n_ctx(self): return self.raw_values.shape[0] @property def d_model_per_gpu(self): return self.raw_values.shape[-1] @property def is_cuda(self): return self.raw_values.is_cuda @property def dtype(self): return self.raw_values.dtype def extend_kv_caches( seq_kv_cache: List[SingleSeqKVCache], active_keys: RaggedActivations, active_values: RaggedActivations, ) -> List[SingleSeqKVCache]: assert seq_kv_cache[0].is_cuda updated_seq_kv_cache = [] for cache, keys, values in zip( seq_kv_cache, active_keys.iter_full_tensors(), active_values.iter_full_tensors() ): # Dim 1 is the context new_cache = SingleSeqKVCache( keys=torch.cat([cache.keys, keys], dim=0), values=torch.cat([cache.values, values], dim=0), ) updated_seq_kv_cache.append(new_cache) return updated_seq_kv_cache def garbage_pad_seq_kv_cache( seq_kv_cache: List[SingleSeqKVCache], ) -> Tuple[torch.Tensor, torch.Tensor]: assert seq_kv_cache[0].is_cuda dtype = seq_kv_cache[0].dtype n_ctx_per_kv_cache = [seq.n_ctx for seq in seq_kv_cache] # Create a view so that the output is (n_seqs, n_ctx_max, d_model) # This should not incur an extra memcopy n_seqs = len(n_ctx_per_kv_cache) n_ctx_max = max(n_ctx_per_kv_cache) padded_keys = torch.empty( n_seqs, n_ctx_max, seq_kv_cache[0].d_model_per_gpu, dtype=dtype, device="cuda", ) padded_values = torch.empty( n_seqs, n_ctx_max, seq_kv_cache[0].d_model_per_gpu, dtype=dtype, device="cuda", ) for seq_idx, seq in enumerate(seq_kv_cache): padded_keys[seq_idx, : seq.n_ctx, :] = seq.keys padded_values[seq_idx, : seq.n_ctx, :] = seq.values return (padded_keys, padded_values) def garbage_pad_keys( seq_kv_cache: List[SingleSeqKVCache], ) -> torch.Tensor: assert seq_kv_cache[0].is_cuda dtype = seq_kv_cache[0].dtype n_ctx_per_kv_cache = [seq.n_ctx for seq in seq_kv_cache] # Create a view so that the output is (n_seqs, n_ctx_max, d_model) # This should not incur an extra memcopy n_seqs = len(n_ctx_per_kv_cache) n_ctx_max = max(n_ctx_per_kv_cache) padded_keys = torch.empty( n_seqs, n_ctx_max, seq_kv_cache[0].d_model_per_gpu, dtype=dtype, device="cuda", ) for seq_idx, seq in enumerate(seq_kv_cache): padded_keys[seq_idx, : seq.n_ctx, :] = seq.keys return padded_keys @lru_cache(maxsize=1) # Memoize because we repeat this for consecutive resblocks def _create_indices(n_ctx_per_kv_cache): """ We cache this because it requires some substantial CPU work and it's done multiple times sequentially (once per resblock) """ indices_list = [] ragged_idx = 0 max_n_ctx = max(n_ctx_per_kv_cache) for n_ctx in n_ctx_per_kv_cache: for idx_into_seq in range(max_n_ctx): if idx_into_seq < n_ctx: indices_list.append(ragged_idx) ragged_idx += 1 else: indices_list.append(0) # Add a placeholder return torch.tensor(indices_list, device="cuda") def calculate_scores_via_qk_dotprod( seq_kv_cache: List[SingleSeqKVCache], # These have already been extended active_queries: RaggedActivations, ) -> torch.Tensor: padded_keys = garbage_pad_keys(seq_kv_cache) padded_active_queries = active_queries.to_garbage_padded() return torch.einsum("bkd,bqd->bqk", padded_keys, padded_active_queries) def scores_via_qk_dotprod( query: RaggedActivations, key: RaggedActivations, ) -> torch.Tensor: padded_query = query.to_garbage_padded() padded_key = key.to_garbage_padded() return torch.einsum("bkd,bqd->bqk", padded_key, padded_query)
EXA-1-master
exa/libraries/xformers/experimental/ragged_inference/seq_kv_cache.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import torch import triton import triton.language as tl from triton.ops.matmul_perf_model import early_config_prune, estimate_matmul_time # This implements a simple QKt matrix multiplication (non ragged), for reference # Author: Tom B Brown def init_to_zero(name): return lambda nargs: nargs[name].zero_() def get_configs_io_bound(): configs = [] for num_stages in [2, 3, 4, 5, 6]: for block_m in [16, 32]: for block_k in [32, 64]: for block_n in [32, 64, 128, 256]: num_warps = 2 if block_n <= 64 else 4 configs.append( triton.Config( { "BLOCK_M": block_m, "BLOCK_K": block_n, "BLOCK_D": block_k, }, num_stages=num_stages, num_warps=num_warps, ) ) return configs def get_all_configs(): return [ # basic configs for compute-bound matmuls triton.Config( {"BLOCK_M": 128, "BLOCK_K": 256, "BLOCK_D": 32}, num_stages=3, num_warps=8, ), triton.Config( {"BLOCK_M": 256, "BLOCK_K": 128, "BLOCK_D": 32}, num_stages=3, num_warps=8, ), triton.Config( {"BLOCK_M": 256, "BLOCK_K": 64, "BLOCK_D": 32}, num_stages=4, num_warps=4, ), triton.Config( {"BLOCK_M": 64, "BLOCK_K": 256, "BLOCK_D": 32}, num_stages=4, num_warps=4, ), triton.Config( {"BLOCK_M": 128, "BLOCK_K": 128, "BLOCK_D": 32}, num_stages=4, num_warps=4, ), triton.Config( {"BLOCK_M": 128, "BLOCK_K": 64, "BLOCK_D": 32}, num_stages=4, num_warps=4, ), triton.Config( {"BLOCK_M": 64, "BLOCK_K": 128, "BLOCK_D": 32}, num_stages=4, num_warps=4, ), triton.Config( {"BLOCK_M": 128, "BLOCK_K": 32, "BLOCK_D": 32}, num_stages=4, num_warps=4, ), triton.Config( {"BLOCK_M": 64, "BLOCK_K": 32, "BLOCK_D": 32}, num_stages=5, num_warps=2, ), ] + get_configs_io_bound() def get_fast_dev_configs(): return [ triton.Config( {"BLOCK_Q": 64, "BLOCK_K": 32, "BLOCK_D": 32}, num_stages=5, num_warps=2, ) ] # fmt: off @triton.autotune( # configs=get_all_configs(), configs=get_fast_dev_configs(), key=["n_ctx_q", "n_ctx_k", "d_model"], prune_configs_by={ "early_config_prune": early_config_prune, "perf_model": estimate_matmul_time, "top_k": 10, }, ) @triton.jit def _kernel( q_ptr, k_ptr, scores_ptr, n_ctx_q, n_ctx_k, # N d_model, stride_ctx_q, stride_ctx_k, stride_d, # Stride along the d_model_per_head dim stride_out_q, stride_out_k, BLOCK_Q: tl.constexpr, BLOCK_K: tl.constexpr, BLOCK_D: tl.constexpr, ): # fmt: on # matrix multiplication pid = tl.program_id(0) # Determine the number of blocks in the grid grid_k = (n_ctx_k + BLOCK_K - 1) // BLOCK_K pid_q = pid // grid_k pid_k = pid % grid_k # do matrix multiplication rq = pid_q * BLOCK_Q + tl.arange(0, BLOCK_Q) rq = tl.max_contiguous(tl.multiple_of(rq % n_ctx_q, BLOCK_Q), BLOCK_Q) rk = pid_k * BLOCK_K + tl.arange(0, BLOCK_K) rk = tl.max_contiguous(tl.multiple_of(rk % n_ctx_k, BLOCK_K), BLOCK_K) # Iterate through blocks of the d_model dimension and accumulate values into acc acc_tile = tl.zeros((BLOCK_Q, BLOCK_K), dtype=tl.float32) rd = tl.arange(0, BLOCK_D) q_ptr_tile = q_ptr + (rq[:, None] * stride_ctx_q + rd[None, :] * stride_d) k_ptr_tile = k_ptr + (rd[:, None] * stride_d + rk[None, :] * stride_ctx_k) for d_max_offset in range(d_model, 0, -BLOCK_D): q_tile = tl.load(q_ptr_tile, mask=rd[None, :] < d_max_offset, other=0.0) k_tile = tl.load(k_ptr_tile, mask=rd[:, None] < d_max_offset, other=0.0) # In einsum notation, the following does: qd,dk->qk acc_tile += tl.dot(q_tile, k_tile) q_ptr_tile += BLOCK_D * stride_d k_ptr_tile += BLOCK_D * stride_d acc_tile = acc_tile.to(scores_ptr.dtype.element_ty) # We rematerialize rq and rk here because it allows them to be deallocated above # instead of being kept in registers throughout the inner for-loop rq = pid_q * BLOCK_Q + tl.arange(0, BLOCK_Q) rk = pid_k * BLOCK_K + tl.arange(0, BLOCK_K) scores_offset_tile = rq[:, None] * stride_out_q + rk[None, :] * stride_out_k scores_ptr_tile = scores_ptr + scores_offset_tile mask = (rq < n_ctx_q)[:, None] & (rk < n_ctx_k)[None, :] tl.store(scores_ptr_tile, acc_tile, mask=mask) def qk_dotprod(query, key): device = query.device # handle non-contiguous inputs if necessary if query.stride(0) > 1 and query.stride(1) > 1: query = query.contiguous() if key.stride(0) > 1 and key.stride(1) > 1: key = key.contiguous() # check constraints n_ctx_q, d_model = query.shape n_ctx_k, d_model_k = key.shape assert d_model == d_model_k, f"{query.shape=} {key.shape=}" # allocates output scores_out = torch.empty((n_ctx_q, n_ctx_k), device=device, dtype=query.dtype) # Stride along the d_model dimension stride_d = query.stride(1) assert stride_d == key.stride(1), f"{stride_d=}, {key.stride(1)=}" # launch kernel def grid(META): return ( triton.cdiv(n_ctx_q, META["BLOCK_Q"]) * triton.cdiv(n_ctx_k, META["BLOCK_K"]), ) _kernel[grid]( query, key, scores_out, n_ctx_q, n_ctx_k, d_model, query.stride(0), # stride_ctx_q key.stride(0), # stride_ctx_k stride_d, # stride_d scores_out.stride(0), # stride_out_q scores_out.stride(1), # stride_out_k ) return scores_out
EXA-1-master
exa/libraries/xformers/experimental/ragged_inference/triton_v2_qk_dotprod.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import torch import triton import triton.language as tl from triton.ops.matmul_perf_model import early_config_prune, estimate_matmul_time # Credits: this comes directly from the Triton repo, authors are Da Yan and Phil Tillet # See https://github.com/openai/triton/blob/v2.0/python/triton/ops/matmul.py # copied here to help with development of new features, to be cleaned up def init_to_zero(name): return lambda nargs: nargs[name].zero_() def get_configs_io_bound(): configs = [] for num_stages in [2, 3, 4, 5, 6]: for block_m in [16, 32]: for block_k in [32, 64]: for block_n in [32, 64, 128, 256]: num_warps = 2 if block_n <= 64 else 4 configs.append( triton.Config( { "BLOCK_M": block_m, "BLOCK_N": block_n, "BLOCK_K": block_k, }, num_stages=num_stages, num_warps=num_warps, ) ) return configs def get_all_configs(): return [ # basic configs for compute-bound matmuls triton.Config( {"BLOCK_M": 128, "BLOCK_N": 256, "BLOCK_K": 32}, num_stages=3, num_warps=8, ), triton.Config( {"BLOCK_M": 256, "BLOCK_N": 128, "BLOCK_K": 32}, num_stages=3, num_warps=8, ), triton.Config( {"BLOCK_M": 256, "BLOCK_N": 64, "BLOCK_K": 32}, num_stages=4, num_warps=4, ), triton.Config( {"BLOCK_M": 64, "BLOCK_N": 256, "BLOCK_K": 32}, num_stages=4, num_warps=4, ), triton.Config( {"BLOCK_M": 128, "BLOCK_N": 128, "BLOCK_K": 32}, num_stages=4, num_warps=4, ), triton.Config( {"BLOCK_M": 128, "BLOCK_N": 64, "BLOCK_K": 32}, num_stages=4, num_warps=4, ), triton.Config( {"BLOCK_M": 64, "BLOCK_N": 128, "BLOCK_K": 32}, num_stages=4, num_warps=4, ), triton.Config( {"BLOCK_M": 128, "BLOCK_N": 32, "BLOCK_K": 32}, num_stages=4, num_warps=4, ), triton.Config( {"BLOCK_M": 64, "BLOCK_N": 32, "BLOCK_K": 32}, num_stages=5, num_warps=2, ), ] + get_configs_io_bound() def get_fast_dev_configs(): return [ triton.Config( {"BLOCK_M": 64, "BLOCK_N": 32, "BLOCK_K": 32}, num_stages=5, num_warps=2, ) ] # fmt: off @triton.autotune( # configs=get_all_configs(), configs=get_fast_dev_configs(), key=["M", "N", "K"], prune_configs_by={ "early_config_prune": early_config_prune, "perf_model": estimate_matmul_time, "top_k": 10, }, ) @triton.jit def _kernel( A, B, C, M, N, K, stride_am, stride_ak, stride_bk, stride_bn, stride_cm, stride_cn, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, BLOCK_K: tl.constexpr, ): # fmt: on # matrix multiplication pid = tl.program_id(0) # Determine the number of blocks in the grid grid_n = (N + BLOCK_N - 1) // BLOCK_N pid_m = pid // grid_n pid_n = pid % grid_n # do matrix multiplication rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M) rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N) ram = tl.max_contiguous(tl.multiple_of(rm % M, BLOCK_M), BLOCK_M) rbn = tl.max_contiguous(tl.multiple_of(rn % N, BLOCK_N), BLOCK_N) rk = tl.arange(0, BLOCK_K) # pointers A = A + (ram[:, None] * stride_am + rk[None, :] * stride_ak) B = B + (rk[:, None] * stride_bk + rbn[None, :] * stride_bn) acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.float32) for k in range(K, 0, -BLOCK_K): a = tl.load(A, mask=rk[None, :] < k, other=0.0) b = tl.load(B, mask=rk[:, None] < k, other=0.0) acc += tl.dot(a, b) A += BLOCK_K * stride_ak B += BLOCK_K * stride_bk acc = acc.to(C.dtype.element_ty) # rematerialize rm and rn to save registers rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M) rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N) C = C + (rm[:, None] * stride_cm + rn[None, :] * stride_cn) mask = (rm < M)[:, None] & (rn < N)[None, :] tl.store(C, acc, mask=mask) def matmul(a, b): device = a.device # handle non-contiguous inputs if necessary if a.stride(0) > 1 and a.stride(1) > 1: a = a.contiguous() if b.stride(0) > 1 and b.stride(1) > 1: b = b.contiguous() # checks constraints assert a.shape[1] == b.shape[0], f"incompatible dimensions, {a.shape=} {b.shape=}" M, K = a.shape _, N = b.shape # allocates output c = torch.empty((M, N), device=device, dtype=a.dtype) # launch kernel def grid(META): return (triton.cdiv(M, META["BLOCK_M"]) * triton.cdiv(N, META["BLOCK_N"]),) # fmt: off _kernel[grid]( a, b, c, M, N, K, a.stride(0), a.stride(1), b.stride(0), b.stride(1), c.stride(0), c.stride(1), ) # fmt: on return c
EXA-1-master
exa/libraries/xformers/experimental/ragged_inference/triton_v2_matmul.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass from typing import List, Optional import torch import triton import triton.language as tl from ragged_inference.garbage_pad_ragged_acts import RaggedActivations from triton.ops.matmul_perf_model import early_config_prune, estimate_matmul_time # This implements a ragged attention (batched attention mechanism natively handling different sequence sizes) # Author: Tom B Brown def init_to_zero(name): return lambda nargs: nargs[name].zero_() # TODO: tune these BLOCK_Q = 16 BLOCK_K = 128 BLOCK_D = 32 def get_fast_dev_configs(): return [ triton.Config( {"BLOCK_Q": BLOCK_Q, "BLOCK_K": BLOCK_K, "BLOCK_D": BLOCK_D}, num_stages=5, num_warps=2, ) ] @triton.autotune( # configs=get_all_configs(), configs=get_fast_dev_configs(), key=["max_n_ctx_q_across_seqs", "max_n_ctx_k_across_seqs", "d_head"], prune_configs_by={ "early_config_prune": early_config_prune, "perf_model": estimate_matmul_time, "top_k": 10, }, ) @triton.jit def _qk_dotprod_kernel( # Pointers to our tensors q_ptr, k_ptr, scores_ptr, # Rectangular output tensor # Pointers to lookup tables (sometimes referred to as a "lut") pid_to_in_q_token_offset_ptr, pid_to_in_k_token_offset_ptr, pid_to_out_q_block_ptr, pid_to_out_k_block_ptr, pid_to_out_seq_idx_ptr, # Integers max_n_ctx_q_across_seqs, max_n_ctx_k_across_seqs, d_head, stride_ctx_q, stride_ctx_k, stride_out_q, stride_out_k, stride_out_seq, total_ctx_q_across_all_seqs, total_ctx_k_across_all_seqs, # These get populated from the triton.Config BLOCK_Q: tl.constexpr, BLOCK_K: tl.constexpr, BLOCK_D: tl.constexpr, ): """ Adapted from https://github.com/openai/triton/blob/v2.0/python/triton/ops/matmul.py """ # matrix multiplication pid = tl.program_id(0) out_q_block = tl.load(pid_to_out_q_block_ptr + pid) out_k_block = tl.load(pid_to_out_k_block_ptr + pid) out_seq_idx = tl.load(pid_to_out_seq_idx_ptr + pid) in_q_token_offset = tl.load(pid_to_in_q_token_offset_ptr + pid) in_k_token_offset = tl.load(pid_to_in_k_token_offset_ptr + pid) # Define indices ranges, we follow the triton convention of prefixing # with "r" to denote a range like "rq" is the range for queries below rq = in_q_token_offset + tl.arange(0, BLOCK_Q) rk = in_k_token_offset + tl.arange(0, BLOCK_K) # Prevent out of bounds reads. It's ok to read garbage data for queries and keys that aren't # actually used. Their values don't effect any of the outputs. q_ctx_in_bounds = rq < total_ctx_q_across_all_seqs k_ctx_in_bounds = rk < total_ctx_k_across_all_seqs # We will accumulate all the d_head items into acc acc_tile = tl.zeros((BLOCK_Q, BLOCK_K), dtype=tl.float32) rd = tl.arange(0, BLOCK_D) # rd indexes into the d_head dimension # We use broadcasting to convert our 1D ranges into 2D tiles q_ptr_tile = q_ptr + (rq[:, None] * stride_ctx_q + rd[None, :]) k_ptr_tile = k_ptr + (rd[:, None] + rk[None, :] * stride_ctx_k) # After we have profiling, see if we can rewrite this to be more readable by # just updating rd += BLOCK_D for d_max_offset in range(d_head, 0, -BLOCK_D): q_tile = tl.load( q_ptr_tile, mask=(rd[None, :] < d_max_offset) & q_ctx_in_bounds[:, None], other=0.0, ) k_tile = tl.load( k_ptr_tile, mask=(rd[:, None] < d_max_offset) & k_ctx_in_bounds[None, :], other=0.0, ) # In einsum notation, the tl.dot does: qd,dk->qk # This should use tensorcores, so the inputs might be fp16, but the outputs # and all the internal accumulators are fp32 acc_tile += tl.dot(q_tile, k_tile) q_ptr_tile += BLOCK_D k_ptr_tile += BLOCK_D # Figure out the output blocks rq_out = out_q_block * BLOCK_Q + tl.arange(0, BLOCK_Q) rk_out = out_k_block * BLOCK_K + tl.arange(0, BLOCK_K) scores_offset_tile = ( rq_out[:, None] * stride_out_q + rk_out[None, :] * stride_out_k + out_seq_idx * stride_out_seq ) scores_ptr_tile = scores_ptr + scores_offset_tile mask = (rq_out < max_n_ctx_q_across_seqs)[:, None] & ( rk_out < max_n_ctx_k_across_seqs )[None, :] # Cast back to lower precision immediately before storing acc_tile = acc_tile.to(scores_ptr.dtype.element_ty) tl.store(scores_ptr_tile, acc_tile, mask=mask) @dataclass class RaggedQkPidLookupTable: # TODO: link to a drawing of what these tensors are # All cuda tensors pid_to_in_q_token_offset: torch.Tensor pid_to_in_k_token_offset: torch.Tensor pid_to_out_q_block: torch.Tensor pid_to_out_k_block: torch.Tensor pid_to_out_seq_idx: torch.Tensor n_pids_total: int @staticmethod def from_single_seq(n_ctx_q: int, n_ctx_k: int) -> "RaggedQkPidLookupTable": grid_q = triton.cdiv(n_ctx_q, BLOCK_Q) grid_k = triton.cdiv(n_ctx_k, BLOCK_K) n_pids_total = grid_q * grid_k pid_to_in_q_token_offset = torch.zeros( n_pids_total, dtype=torch.int32, device="cuda" ) pid_to_in_k_token_offset = torch.zeros( n_pids_total, dtype=torch.int32, device="cuda" ) pid_to_out_q_block = torch.zeros(n_pids_total, dtype=torch.int32, device="cuda") pid_to_out_k_block = torch.zeros(n_pids_total, dtype=torch.int32, device="cuda") pid_to_out_seq_idx = torch.zeros(n_pids_total, dtype=torch.int32, device="cuda") for pid in range(n_pids_total): q_block_idx = pid // grid_k k_block_idx = pid % grid_k in_q_token_offset = q_block_idx * BLOCK_Q in_k_token_offset = k_block_idx * BLOCK_K pid_to_out_q_block[pid] = q_block_idx pid_to_out_k_block[pid] = k_block_idx pid_to_in_q_token_offset[pid] = in_q_token_offset pid_to_in_k_token_offset[pid] = in_k_token_offset return RaggedQkPidLookupTable( pid_to_in_q_token_offset=pid_to_in_q_token_offset, pid_to_in_k_token_offset=pid_to_in_k_token_offset, pid_to_out_q_block=pid_to_out_q_block, pid_to_out_k_block=pid_to_out_k_block, pid_to_out_seq_idx=pid_to_out_seq_idx, n_pids_total=n_pids_total, ) @staticmethod def from_query_and_key_tokens_per_seq( n_ctx_q_per_seq: List[int], n_ctx_k_per_seq: List[int], block_q_override: Optional[int] = None, block_k_override: Optional[int] = None, ) -> "RaggedQkPidLookupTable": block_q = block_q_override if block_q_override else BLOCK_Q block_k = block_k_override if block_k_override else BLOCK_K pid_to_in_q_token_offset = [] pid_to_in_k_token_offset = [] pid_to_out_q_block = [] pid_to_out_k_block = [] pid_to_out_seq_idx = [] n_in_q_token_so_far = 0 n_in_k_token_so_far = 0 for seq_idx, (n_ctx_q, n_ctx_k) in enumerate( zip(n_ctx_q_per_seq, n_ctx_k_per_seq) ): # Everything below is per sequence n_q_ctx_blocks = triton.cdiv(n_ctx_q, block_q) n_k_ctx_blocks = triton.cdiv(n_ctx_k, block_k) n_pids_in_seq = n_q_ctx_blocks * n_k_ctx_blocks for pid in range(n_pids_in_seq): q_block_idx = pid // n_k_ctx_blocks k_block_idx = pid % n_k_ctx_blocks in_q_token_offset = q_block_idx * block_q in_k_token_offset = k_block_idx * block_k pid_to_out_q_block.append(q_block_idx) pid_to_out_k_block.append(k_block_idx) pid_to_in_q_token_offset.append(in_q_token_offset + n_in_q_token_so_far) pid_to_in_k_token_offset.append(in_k_token_offset + n_in_k_token_so_far) pid_to_out_seq_idx.append(seq_idx) n_in_q_token_so_far += n_ctx_q n_in_k_token_so_far += n_ctx_k args = {"dtype": torch.int32, "device": "cuda"} return RaggedQkPidLookupTable( pid_to_in_q_token_offset=torch.tensor(pid_to_in_q_token_offset, **args), # type: ignore pid_to_in_k_token_offset=torch.tensor(pid_to_in_k_token_offset, **args), # type: ignore pid_to_out_q_block=torch.tensor(pid_to_out_q_block, **args), # type: ignore pid_to_out_k_block=torch.tensor(pid_to_out_k_block, **args), # type: ignore pid_to_out_seq_idx=torch.tensor(pid_to_out_seq_idx, **args), # type: ignore n_pids_total=len(pid_to_in_q_token_offset), ) def ragged_single_seq_qk_dotprod( query: torch.Tensor, key: torch.Tensor, lut: RaggedQkPidLookupTable ) -> torch.Tensor: assert query.ndim == 2 and key.ndim == 2 device = query.device # handle non-contiguous inputs if necessary if query.stride(0) > 1 and query.stride(1) > 1: query = query.contiguous() if key.stride(0) > 1 and key.stride(1) > 1: key = key.contiguous() # check constraints n_ctx_q, d_head = query.shape n_ctx_k, d_head_k = key.shape assert d_head == d_head_k, f"{query.shape=} {key.shape=}" # allocates output scores_out = torch.empty((1, n_ctx_q, n_ctx_k), device=device, dtype=query.dtype) # Stride along the d_head dimension must be 1 assert query.stride(1) == 1, f"{query.stride(1)}" assert key.stride(1) == 1, f"{key.stride(1)}" # pid_to_seq_idx = [0, 0, 1, 2, 2] grid = (lut.n_pids_total,) _qk_dotprod_kernel[grid]( q_ptr=query, k_ptr=key, scores_ptr=scores_out, # Lookup tables (sometimes referred to as a "lut") pid_to_in_q_token_offset_ptr=lut.pid_to_in_q_token_offset, pid_to_in_k_token_offset_ptr=lut.pid_to_in_k_token_offset, pid_to_out_q_block_ptr=lut.pid_to_out_q_block, pid_to_out_k_block_ptr=lut.pid_to_out_k_block, pid_to_out_seq_idx_ptr=lut.pid_to_out_seq_idx, # Integers max_n_ctx_q_across_seqs=n_ctx_q, max_n_ctx_k_across_seqs=n_ctx_k, d_head=d_head, stride_ctx_q=query.stride(0), stride_ctx_k=key.stride(0), stride_out_seq=scores_out.stride(0), stride_out_q=scores_out.stride(1), stride_out_k=scores_out.stride(2), total_ctx_q_across_all_seqs=n_ctx_q, total_ctx_k_across_all_seqs=n_ctx_k, ) return scores_out.reshape((n_ctx_q, n_ctx_k)) def ragged_qk_dotprod( query: RaggedActivations, key: RaggedActivations, lut: RaggedQkPidLookupTable ) -> torch.Tensor: device = query.device assert query.raw_tensor.is_contiguous() assert key.raw_tensor.is_contiguous() # check constraints total_ctx_q_across_all_seqs, d_head = query.raw_tensor.shape total_ctx_k_across_all_seqs, d_head_k = key.raw_tensor.shape assert d_head == d_head_k, f"{query.raw_tensor.shape=} {key.raw_tensor.shape=}" # allocates output # max_n_ctx_q_across_seqs = query.max_n_ctx_per_seq assert query.n_seqs == key.n_seqs # TODO: flag use zeros for garbage scores_out = torch.ones( (query.n_seqs, query.max_n_ctx_per_seq, key.max_n_ctx_per_seq), device=device, dtype=query.dtype, ) # Stride along the d_head dimension must be 1 assert query.raw_tensor.stride(1) == 1, f"{query.raw_tensor.stride(1)}" assert key.raw_tensor.stride(1) == 1, f"{key.raw_tensor.stride(1)}" # pid_to_seq_idx = [0, 0, 1, 2, 2] grid = (lut.n_pids_total,) _qk_dotprod_kernel[grid]( q_ptr=query.raw_tensor, k_ptr=key.raw_tensor, scores_ptr=scores_out, # Lookup tables (sometimes referred to as a "lut") pid_to_in_q_token_offset_ptr=lut.pid_to_in_q_token_offset, pid_to_in_k_token_offset_ptr=lut.pid_to_in_k_token_offset, pid_to_out_q_block_ptr=lut.pid_to_out_q_block, pid_to_out_k_block_ptr=lut.pid_to_out_k_block, pid_to_out_seq_idx_ptr=lut.pid_to_out_seq_idx, # Integers max_n_ctx_q_across_seqs=query.max_n_ctx_per_seq, max_n_ctx_k_across_seqs=key.max_n_ctx_per_seq, d_head=d_head, stride_ctx_q=query.raw_tensor.stride(0), stride_ctx_k=key.raw_tensor.stride(0), stride_out_seq=scores_out.stride(0), stride_out_q=scores_out.stride(1), stride_out_k=scores_out.stride(2), total_ctx_q_across_all_seqs=total_ctx_q_across_all_seqs, total_ctx_k_across_all_seqs=total_ctx_k_across_all_seqs, ) return scores_out
EXA-1-master
exa/libraries/xformers/experimental/ragged_inference/triton_v2_ragged_qk_dotprod.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import pytest import torch import xformers try: import timm from timm.models.vision_transformer import VisionTransformer except ImportError: timm = None VisionTransformer = None from xformers.helpers.timm_sparse_attention import TimmSparseAttention _device_list = ["cpu", "cuda:0"] if torch.cuda.is_available() else ["cpu"] @pytest.mark.skipif(not xformers._is_triton_available(), reason="requires triton") @pytest.mark.skipif(timm is None, reason="requires timm") @pytest.mark.parametrize("device", _device_list) def test_timm_sparse_attention(device): img_size = 224 patch_size = 16 batch = 8 # Instantiate the reference model model = VisionTransformer( img_size=img_size, patch_size=patch_size, embed_dim=96, depth=8, num_heads=8, mlp_ratio=3.0, qkv_bias=False, norm_layer=torch.nn.LayerNorm, ).to(device) # Monkey patch all attentions to test the sparse-aware wrap def replace_attn_with_xformers_one(module, att_mask): module_output = module if isinstance(module, timm.models.vision_transformer.Attention): qkv = module.qkv dim = qkv.weight.shape[1] * module.num_heads module_output = TimmSparseAttention( dim, module.num_heads, attn_mask=att_mask ) for name, child in module.named_children(): module_output.add_module( name, replace_attn_with_xformers_one(child, att_mask) ) del module return module_output H, W = img_size // patch_size, img_size // patch_size mask = (torch.rand((H * W + 1, H * W + 1), device=device) > 0.5).bool() model = replace_attn_with_xformers_one(model, att_mask=mask) # Check that we can throw a couple of random pictures at it inputs = torch.rand((batch, 3, img_size, img_size), device=device) _ = model(inputs)
EXA-1-master
exa/libraries/xformers/tests/test_timm_sparse.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import pytest import torch from xformers.components import Activation from xformers.components.feedforward import FEEDFORWARD_REGISTRY, build_feedforward from xformers.components.feedforward.mixture_of_experts import GateConfig from xformers.helpers.test_utils import init_torch_distributed_local BATCH = 4 SEQ = 256 EMBD = 16 LATENT = 128 DROPOUT = 0.5 DEVICES = ( [torch.device("cpu")] if not torch.cuda.is_available() else [torch.device("cuda")] ) assert FEEDFORWARD_REGISTRY.keys(), "Feedforward layers should have been registered" @pytest.mark.parametrize("feedforward_name", FEEDFORWARD_REGISTRY.keys()) @pytest.mark.parametrize("activation", [a.value for a in Activation]) @pytest.mark.parametrize("device", DEVICES) def test_feedforward( feedforward_name: str, activation: Activation, device: torch.device ): test_config = { "name": feedforward_name, "dim_model": LATENT, "dropout": DROPOUT, "activation": activation, "hidden_layer_multiplier": 4, "number_of_experts": 4, # MoE "gate": "top_2", # MoE } if feedforward_name == "MixtureOfExperts": init_torch_distributed_local() # dummy, just check construction and dimensions in the FW pass ffw = build_feedforward(test_config) if ffw.requires_cuda and not device.type == "cuda": # pyre-fixme[29]: The library function `pytest.skip` is not supported by Pyre. pytest.skip("This MLP requires CUDA and current device does not match") inputs = torch.rand(BATCH, SEQ, LATENT, device=device) ffw = ffw.to(device) _ = ffw(inputs) def get_expert(): return torch.nn.Linear(LATENT, LATENT, bias=False) @pytest.mark.skipif(not torch.cuda.is_available(), reason="This test requires CUDA") @pytest.mark.parametrize("gate", [g.value for g in GateConfig]) @pytest.mark.parametrize("number_of_local_experts", [None, 4]) @pytest.mark.parametrize("expert_constructor", [None, get_expert]) def test_moe(gate, number_of_local_experts, expert_constructor): test_config = { "name": "MixtureOfExperts", "dim_model": LATENT, "dropout": DROPOUT, "activation": Activation.ReLU, "hidden_layer_multiplier": 4, "number_of_experts": 4, "number_of_local_experts": number_of_local_experts, "gate": gate, "expert_constructor": expert_constructor, } init_torch_distributed_local() # dummy, just check construction and dimensions in the FW pass ffw = build_feedforward(test_config) inputs = torch.rand(BATCH, SEQ, LATENT, device=torch.device("cuda")) ffw = ffw.to(torch.device("cuda")) outputs = ffw(inputs) loss = torch.sum(outputs) loss.backward()
EXA-1-master
exa/libraries/xformers/tests/test_feedforward.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import pytest import torch import xformers from xformers.components import MultiHeadDispatch from xformers.components.attention import build_attention from xformers.components.attention.attention_patterns import block_sparsify_tensor from xformers.triton.utils import get_current_cuda_device # CREDITS: # Tests from, very lightly changed # https://github.com/openai/triton/blob/master/python/test/unit/operators/test_blocksparse.py # Initially copied here folowing a fork from the matmul kernel _triton_available = xformers._is_triton_available() _matmul_types = [] if _triton_available: try: import triton from triton.ops.blocksparse import matmul as blocksparse_matmul from triton.ops.blocksparse import softmax as blocksparse_softmax from xformers.components.attention import BlockSparseAttention from xformers.triton.utils import gpu_capabilities_older_than_70 _triton_available = not gpu_capabilities_older_than_70() _matmul_types = ["sdd", "dsd", "dds"] except (ImportError, ModuleNotFoundError) as e: import logging logging.warning(f"Triton is not available: {e}. Some tests will be skipped") _triton_available = False def mask_tensor(x, mask, block, value=0): ret = x.clone() for h, i, j in zip(*(mask == 0).nonzero(as_tuple=True)): ret[:, h, i * block : (i + 1) * block, j * block : (j + 1) * block] = value return ret @pytest.mark.skipif(not _triton_available, reason="Triton requires a recent CUDA gpu") @pytest.mark.skipif( not _triton_available or get_current_cuda_device() == "T4", reason="FIXME - blocksparse matmuls are slightly off on T4s", ) @pytest.mark.parametrize("MODE", _matmul_types) @pytest.mark.parametrize("TRANS_A", [False, True]) @pytest.mark.parametrize("TRANS_B", [False, True]) @pytest.mark.parametrize("BLOCK", [16, 32, 64]) @pytest.mark.parametrize("DTYPE", [torch.float16]) def test_matmul(MODE, TRANS_A, TRANS_B, BLOCK, DTYPE, Z=32, H=2, M=512, N=384, K=256): # set seed torch.random.manual_seed(0) # create inputs a = torch.randn( (Z, H, K, M) if TRANS_A else (Z, H, M, K), dtype=DTYPE, device="cuda" ) b = torch.randn( (Z, H, N, K) if TRANS_B else (Z, H, K, N), dtype=DTYPE, device="cuda" ) shape = { "sdd": (M, N), "dsd": (a.shape[2], a.shape[3]), "dds": (b.shape[2], b.shape[3]), }[MODE] layout = torch.randint(2, (H, shape[0] // BLOCK, shape[1] // BLOCK)) # triton result op = blocksparse_matmul( layout, BLOCK, MODE, trans_a=TRANS_A, trans_b=TRANS_B, device=torch.device("cuda"), ) ra = block_sparsify_tensor(a, layout, BLOCK) if MODE == "dsd" else a rb = block_sparsify_tensor(b, layout, BLOCK) if MODE == "dds" else b rc = triton.testing.catch_oor(lambda: op(ra, rb), pytest) # torch result ta = mask_tensor(a, layout, BLOCK) if MODE == "dsd" else a tb = mask_tensor(b, layout, BLOCK) if MODE == "dds" else b ta = ta.transpose(2, 3) if TRANS_A else ta tb = tb.transpose(2, 3) if TRANS_B else tb tc = torch.matmul(ta, tb) tc = mask_tensor(tc, layout, BLOCK) if MODE == "sdd" else tc tc = block_sparsify_tensor(tc, layout, BLOCK) if MODE == "sdd" else tc # compare torch.testing.assert_close(rc, tc) @pytest.mark.skipif(not _triton_available, reason="Triton requires a recent CUDA gpu") @pytest.mark.parametrize("BLOCK", [32, 128]) @pytest.mark.parametrize("WIDTH", [256, 576, 1024, 1792]) @pytest.mark.parametrize("DTYPE", [torch.float16, torch.float32]) def test_softmax(BLOCK, WIDTH, DTYPE): # set seed torch.random.manual_seed(0) Z, H, M, N = 2, 4, WIDTH, WIDTH scale = 0.4 # create inputs layout = torch.randint(2, (H, M // BLOCK, N // BLOCK)) x = torch.randn((Z, H, M, N), dtype=DTYPE, requires_grad=True, device="cuda") # triton result op = blocksparse_softmax(layout, BLOCK, device=torch.device("cuda")) tx = block_sparsify_tensor(x, layout, BLOCK) ty = op(tx, scale=scale) # torch result rx = mask_tensor(x, layout, BLOCK, value=float("-inf")) rx = rx[:, :, : (M // BLOCK) * BLOCK, : (M // BLOCK) * BLOCK] ry = torch.softmax(rx * scale, -1) ry = block_sparsify_tensor(ry, layout, BLOCK) # compare torch.testing.assert_close(ry, ty) @pytest.mark.skipif(not _triton_available, reason="Triton requires a recent CUDA gpu") @pytest.mark.parametrize("block", [32, 43, 128]) # 16, 32, @pytest.mark.parametrize("dtype", [torch.float16]) def test_attention_fwd_bwd( block, dtype, input_scale=1.0, scale=1 / 8.0, n_ctx=384, batch_size=2, n_heads=2, ): # inputs head_dim = 64 qkv_shape = (batch_size, n_heads, n_ctx, head_dim) qkvs = [ torch.nn.Parameter(input_scale * torch.randn(qkv_shape), requires_grad=True) .to(dtype) .cuda() for _ in range(3) ] def loss_fn(x): return (x**2).mean() # Triton: n_blocks = n_ctx // block layout = torch.ones([n_heads, n_blocks, n_blocks], dtype=torch.long) query, key, value = [x.clone() for x in qkvs] query.retain_grad() key.retain_grad() value.retain_grad() if block not in [16, 32, 64, 128]: # Check that unsupported dimensions are caught with pytest.raises(AssertionError): _ = BlockSparseAttention(layout, block) else: block_sparse_attention = BlockSparseAttention(layout, block) attn_out = block_sparse_attention(q=query, k=key, v=value, scale=scale) # ad hoc loss loss = loss_fn(attn_out) loss.backward() grads = [query.grad, key.grad, value.grad] # Torch version: torch_q, torch_k, torch_v = [x.clone() for x in qkvs] torch_q = torch_q * scale torch_q.retain_grad() torch_k.retain_grad() torch_v.retain_grad() scores = scale * torch.einsum("bhsd,bhtd->bhst", torch_q, torch_k) probs = torch.softmax(scores, dim=-1) torch_attn_out = torch.einsum("bhst,bhtd->bhsd", probs, torch_v) # ad hoc loss torch_loss = loss_fn(torch_attn_out) torch_loss.backward() torch_grads = [torch_q.grad, torch_k.grad, torch_v.grad] # comparison torch.testing.assert_close( loss, torch_loss, msg=f"Triton loss {loss} and torch loss {torch_loss}" ) for g1, g2 in zip(grads, torch_grads): torch.testing.assert_close( torch.norm(g1), torch.norm(g2), msg=f"Triton grad {torch.norm(g1).item()} and torch grad {torch.norm(g2).item()}", ) @pytest.mark.skipif(not _triton_available, reason="Triton requires a recent CUDA gpu") @pytest.mark.parametrize("dtype", [torch.float16]) def test_blocksparse_attention_parity(dtype): def _reset_seeds(): torch.manual_seed(0) seq = 64 model = 128 heads = 4 block_size = 16 batch_size = 2 batched_dim = heads * batch_size dim_head = model // heads test_config = { "dropout": 0.0, "causal": False, "seq_len": seq, "num_heads": 4, "dim_head": dim_head, "block_size": block_size, "layout": torch.ones(seq // block_size, seq // block_size, dtype=torch.long), } inputs = torch.rand(batched_dim, seq, model, device="cuda", dtype=dtype) _reset_seeds() test_config["name"] = "scaled_dot_product" attention_sdp = build_attention(test_config) multi_head_sdp = MultiHeadDispatch( seq_len=seq, dim_model=model, residual_dropout=0.0, num_heads=heads, attention=attention_sdp, ).to(device=torch.device("cuda"), dtype=dtype) r_sdp = multi_head_sdp(inputs, inputs, inputs) _reset_seeds() test_config["name"] = "blocksparse" attention_blocksparse = build_attention(test_config) multi_head_blocksparse = MultiHeadDispatch( seq_len=seq, dim_model=model, residual_dropout=0.0, num_heads=heads, attention=attention_blocksparse, ).to(device=torch.device("cuda"), dtype=dtype) r_blocksparse = multi_head_blocksparse(inputs, inputs, inputs) torch.testing.assert_close(r_sdp, r_blocksparse, atol=5e-5, rtol=6e-3)
EXA-1-master
exa/libraries/xformers/tests/test_triton_blocksparse.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import logging import pytest import torch from torch.cuda.amp.autocast_mode import autocast import xformers from xformers.components import Activation, build_activation _gpu_available = torch.cuda.is_available() _triton_available = xformers._is_triton_available() if _triton_available: try: import triton # noqa: F401 from xformers.triton import dropout as triton_dropout from xformers.triton.dropout import FusedDropoutBias from xformers.triton.utils import gpu_capabilities_older_than_70 _triton_available = True except ImportError: logging.warning( "Triton is not available, some optimizations will not be tested." ) _triton_available = False # Testing odd (non-power-of-two for instance) shapes on purpose SHAPES = [ (384, 512), (8, 384, 128), (8, 784, 512), (4, 16, 384), (4, 16, 1024), (2, 16, 2048), (2, 16, 4096), (1, 16, 12288), ] @pytest.mark.skipif(not _triton_available, reason="Triton is not available") def test_dropout_cpu(): triton_dropout = FusedDropoutBias(p=0.1, bias_shape=None) x = torch.normal(0, 1, size=(16, 16), device="cpu") _ = triton_dropout(x) # Check eval means no dropout triton_dropout.eval() y = triton_dropout(x) assert y.count_nonzero() == y.numel() triton_dropout.train() y = triton_dropout(x) assert y.count_nonzero() != y.numel() @pytest.mark.skipif(not _gpu_available, reason="GPU is not available") @pytest.mark.skipif(not _triton_available, reason="Triton is not available") @pytest.mark.skipif( not _triton_available or gpu_capabilities_older_than_70(), reason="Triton requires a SM70+ GPU", ) @pytest.mark.parametrize("shape", SHAPES) @pytest.mark.parametrize("amp", [False, True]) @pytest.mark.parametrize("bias", [False, True]) @pytest.mark.parametrize("p", [0, 0.1, 0.5]) def test_dropout(shape, amp, bias, p): """ Check some basic dropout properties """ torch.random.manual_seed(0) torch.cuda.manual_seed_all(0) x = torch.normal(0, 1, size=shape, device="cuda", requires_grad=True) b = ( torch.normal(0, 1, size=(shape[-1],), device="cuda", requires_grad=True) if bias else None ) with autocast(enabled=amp): tol = 1e-2 if amp else 1e-5 # AMP rounding causes issues, 1e-5 is the default # Check that 0 means no dropout y = triton_dropout(x, p=0, bias=b) x_ref = (x + b if bias else x).to(y.dtype) assert torch.allclose(x_ref, y, rtol=tol), f"{x[x>y]}" # Check that 1 means drop all y = triton_dropout(x, p=1, bias=b) x_ref = (x + b if bias else x).to(y.dtype) assert torch.allclose(torch.zeros_like(y), y, rtol=tol) # Check that .99 means probably dropout y = triton_dropout(x, p=0.99, bias=b) x_ref = (x + b if bias else x).to(y.dtype) assert not torch.allclose(x_ref, y, rtol=tol) # Check that the drops are different for every row (could catch broken seeds per row) y = triton_dropout(x, p=0.5) y = y.flatten(0, 1) if y.ndim == 3 else y assert not torch.sum(torch.eq(y[0, :] == 0.0, y[1, :] == 0.0)) == y.shape[1] # Check that the drops are different over time, for the same line y_a = triton_dropout(x, p=0.5) y_b = triton_dropout(x, p=0.5) y_a = y_a.flatten(0, 1) if y_a.ndim == 3 else y_a y_b = y_b.flatten(0, 1) if y_b.ndim == 3 else y_b assert ( not torch.sum(torch.eq(y_a[0, :] == 0.0, y_b[0, :] == 0.0)).item() == y.shape[1] ) # Check that the drop probability is about right y = triton_dropout(x, p=p) drop_p = (y.numel() - y.count_nonzero()) / y.numel() assert abs(drop_p - p) < 0.02 # Check that the same seeds lead to the same dropout torch.manual_seed(0) torch.cuda.manual_seed(0) y_1 = triton_dropout(x, p=0.5) torch.manual_seed(0) torch.cuda.manual_seed(0) y_2 = triton_dropout(x, p=0.5) torch.testing.assert_close(y_1, y_2) @pytest.mark.skipif(not _gpu_available, reason="GPU is not available") @pytest.mark.skipif(not _triton_available, reason="Triton is not available") @pytest.mark.skipif( not _triton_available or gpu_capabilities_older_than_70(), reason="Triton requires a SM70+ GPU", ) @pytest.mark.parametrize("shape", SHAPES) @pytest.mark.parametrize("amp", [False, True]) @pytest.mark.parametrize("bias", [True, False]) @pytest.mark.parametrize("activation", [a.value for a in Activation]) @pytest.mark.parametrize("p", [0, 0.01, 0.5]) def test_dropout_parity(shape, amp, bias, activation, p): """ Check some basic dropout properties """ torch.random.manual_seed(0) x = torch.normal(0, 1, size=shape, device="cuda", requires_grad=True) b = ( torch.ones(size=(shape[-1],), device="cuda", requires_grad=True) if bias else None ) torch.random.manual_seed(0) x_ = torch.normal(0, 1, size=shape, device="cuda", requires_grad=True) b_ = ( torch.ones(size=(shape[-1],), device="cuda", requires_grad=True) if bias else None ) with autocast(enabled=amp): torch_activation = build_activation(activation) res_torch = torch.nn.functional.dropout( torch_activation(x + b if b is not None else x), p=p ) loss_torch = torch.sum(res_torch) res_triton = triton_dropout(x=x_, p=p, bias=b_, activation=activation) loss_triton = torch.sum(res_triton) if p < 0.01: # Check the FW pass assert torch.allclose( loss_torch, loss_triton, rtol=0.01 ), f"{loss_torch} - {loss_triton}" # Check the gradients loss_torch.backward() loss_triton.backward() # - gradients wrt inputs assert torch.allclose( torch.norm(x.grad), torch.norm(x_.grad), rtol=0.01 ), f"{x.grad}\n{x_.grad}" # - gradients wrt bias if bias: assert torch.allclose( torch.norm(b.grad), torch.norm(b_.grad), rtol=0.01 ), f"{b.grad.norm()} - {b_.grad.norm()}"
EXA-1-master
exa/libraries/xformers/tests/test_triton_dropout.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import math import pytest import torch from xformers.components.attention import FavorAttention, ScaledDotProduct from xformers.components.attention.feature_maps import ( FeatureMapType, NormDistribution, SMHyperbolic, SMOrf, SMReg, ) _device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") @pytest.mark.parametrize("features", [SMOrf, SMHyperbolic, SMReg]) def test_random_matrix(features): torch.random.manual_seed(0) DRAWS = 100 DIM = 10 for _ in range(DRAWS): q = features._get_random_ortho_matrix( 1, DIM, device=_device, norm_distribution=NormDistribution.Xi ).squeeze(0) # Check that the matrix is indeed orthonormal torch.allclose( torch.diag(q @ q.transpose(0, 1)), torch.diag(torch.ones(10, device=_device)), ) # Check that the row norm is in the right ballpark (sqrt(dim)) assert abs(torch.mean(torch.norm(q, dim=1)).item() - math.sqrt(DIM)) < 1.0 def _plot_distribution(ortho_feature_map): # Debug helper, check the uniformity of the random matrix draws DRAWS = 1000 DIM = 50 q = ortho_feature_map._get_random_ortho_matrix(DRAWS, DIM, device=_device) x, y = [], [] for qq in q: # For every matrix, look at the real and imaginary eigen value e = torch.linalg.eigvals(qq) x.append(e.real) y.append(e.imag) # Ideally the repartition of the real and imaginary eigenvalues # should build a circle in the complex plane import matplotlib.pyplot as plt import seaborn as sns sns.kdeplot(x=torch.cat(x).cpu().numpy(), y=torch.cat(y).cpu().numpy()) plt.axis("equal") plt.savefig("kde.png") def _get_rng_data(device): emb = 10 batch_size = 2 seq_len = 20 num_heads = 1 shape = (batch_size * num_heads, seq_len, emb) return torch.randn(shape, device=device) def test_feature_map_shape(): # Check the delayed initialization of the feature map nb_random_features = 1000 batch = _get_rng_data(_device) att = FavorAttention( dropout=0.0, dim_features=nb_random_features, feature_map_type=FeatureMapType.SMOrf, ) _ = att(batch, batch, batch) assert att.feature_map.features.shape[0] == batch.shape[-1] assert att.feature_map.features.shape[1] == nb_random_features def test_feature_map_redraw(): # Check the delayed initialization of the feature map nb_random_features = 1000 batch = _get_rng_data(_device) def check(should_redraw: bool): att = FavorAttention( dropout=0.0, dim_features=nb_random_features, feature_map_type=FeatureMapType.SMOrf, iter_before_redraw=1 if should_redraw else 100, ) v0 = att(batch, batch, batch) assert att.feature_map is not None f0 = att.feature_map.features v1 = att(batch, batch, batch) f1 = att.feature_map.features # There should not have been a redraw after v0 assert should_redraw != torch.allclose(v0, v1) assert should_redraw != torch.allclose(f0, f1) # type: ignore check(should_redraw=True) check(should_redraw=False) @pytest.mark.parametrize("feature", ["sm_orf", "sm_hyp", "sm_reg"]) @pytest.mark.parametrize("causal", [True, False]) @pytest.mark.parametrize("normalize_inputs", [True, False]) @pytest.mark.parametrize("device", [_device]) def test_favor_approximation_accuracy(feature, causal, normalize_inputs, device): # Run two attentions in parallel, the normal scaled dot product and the favor approximation torch.random.manual_seed(0) query, key, value = ( _get_rng_data(device), _get_rng_data(device), _get_rng_data(device), ) for x in (query, key, value): x.requires_grad = True # Build the two attention heads sdp_attention = ScaledDotProduct(dropout=0.0, causal=causal).to(device) approx_attention = FavorAttention( dropout=0.0, causal=causal, dim_head=10, feature_map_type=FeatureMapType(feature), normalize_inputs=normalize_inputs, ).to(device) with torch.cuda.amp.autocast(enabled=_device.type == "cuda"): standard_attention_result = sdp_attention(query, key, value) approx_attention_result = approx_attention(query, key, value) mismatch = torch.mean( (standard_attention_result - approx_attention_result) ** 2 ).item() if causal: # FIXME(@lefaudeux) the causal case seems significantly worse, not obvious why, # could be worth investigating assert mismatch < 0.6 else: assert mismatch < 0.23 # Check trainability torch.sum(approx_attention_result).backward() if __name__ == "__main__": _plot_distribution(SMOrf)
EXA-1-master
exa/libraries/xformers/tests/test_favor.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import logging import pytest import torch from torch.cuda.amp.autocast_mode import autocast import xformers try: from xformers.triton import FusedLayerNorm from xformers.triton.utils import gpu_capabilities_older_than_70 _triton_available = xformers._is_triton_available() except ImportError: logging.warning("Triton is not available, some optimizations will not be tested.") _triton_available = False # Testing odd shapes on purpose SHAPES = [ (384, 128), (8, 384, 128), (8, 784, 512), (4, 2048, 384), (4, 3136, 1024), (2, 1024, 2048), (2, 2048, 4096), (2, 4096, 4096), (1, 2048, 12288), ] @pytest.mark.skipif(not _triton_available, reason="Triton is not available") @pytest.mark.skipif( not _triton_available or gpu_capabilities_older_than_70(), reason="Triton requires a SM70+ GPU", ) @pytest.mark.parametrize("shape", SHAPES) @pytest.mark.parametrize("amp", [True, False]) def test_layernorm_parity(shape, amp): """Check that PyTorch and Triton softmax give the same result""" # Get the same inputs torch.random.manual_seed(0) X = torch.normal(0, 1, size=shape, device="cuda", requires_grad=True) torch.random.manual_seed(0) X_ = torch.normal(0, 1, size=shape, device="cuda", requires_grad=True) eps = 1e-4 # Initialize the two layers, weights are 1 and 0 by default, no randomness torch_layernorm = torch.nn.LayerNorm(X.shape[-1], eps=eps).to("cuda") triton_layernorm = FusedLayerNorm(X.shape[-1], affine=True, eps=eps).to("cuda") with autocast(enabled=amp): assert torch.allclose(X, X_) # sanity checking, else all hell breaks loose # Check the forward pass y_torch = torch_layernorm(X) y_triton = triton_layernorm(X_) assert torch.allclose( y_torch.norm(), y_triton.norm(), atol=1e-3 ), f"{torch.norm(y_torch)} vs. {torch.norm(y_triton)}" # Check that BW also gives the same result loss_torch = torch.norm(y_torch) loss_torch.backward() loss_triton = torch.norm(y_triton) loss_triton.backward() print(torch.norm(y_torch), torch.norm(y_triton)) print(y_torch[0, :]) print(y_triton[0, :]) # There are 3 items to check: # - gradient on the inputs assert torch.allclose( X.grad, X_.grad ), f"Inputs grad mismatch: {torch.norm(X.grad)} vs. {torch.norm(X_.grad)}" # - gradient on the layernorm weight assert torch.allclose( torch_layernorm.weight.grad, triton_layernorm.weight.grad, atol=1e-3 ), ( f"Weight grad mismatch: {torch.norm(torch_layernorm.weight.grad)} vs." + f" {torch.norm(triton_layernorm.weight.grad)}" ) # - gradient on the layernorm bias assert torch.allclose( torch_layernorm.bias.grad, triton_layernorm.bias.grad, atol=1e-3 ), ( f"Bias grad mismatch: {torch.norm(torch_layernorm.bias.grad)} vs." + f" {torch.norm(triton_layernorm.bias.grad)}" ) @pytest.mark.skipif(not _triton_available, reason="Triton is not available") @pytest.mark.parametrize("dtype", [torch.float16, torch.float32, torch.bfloat16]) def test_no_contiguous(dtype): """Check that we don't choke on non-contigous tensors""" shape = (8, 384, 128) # Get the same inputs torch.random.manual_seed(0) torch.cuda.manual_seed(0) X = torch.normal(0, 1, size=shape, device="cuda", requires_grad=True, dtype=dtype) X = X.transpose(2, 1).contiguous().transpose(2, 1) assert not X.is_contiguous() triton_layernorm = FusedLayerNorm(X.shape[-1]).to(device="cuda", dtype=dtype) _ = triton_layernorm(X)
EXA-1-master
exa/libraries/xformers/tests/test_triton_layernorm.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import torch from xformers.factory import xFormer, xFormerConfig from xformers.helpers.hierarchical_configs import ( BasicLayerConfig, get_hierarchical_configuration, ) BATCH = 20 SEQ = 512 MODEL = 384 def test_hierarchical_transformer(): image_size = 32 base_hierarchical_configs = [ BasicLayerConfig( embedding=64, attention_mechanism="pooling", patch_size=7, stride=4, padding=2, seq_len=image_size * image_size // 16, feedforward="MLP", ), BasicLayerConfig( embedding=128, attention_mechanism="pooling", patch_size=3, stride=2, padding=1, seq_len=image_size * image_size // 64, feedforward="MLP", repeat_layer=2, ), BasicLayerConfig( embedding=320, attention_mechanism="scaled_dot_product", patch_size=3, stride=2, padding=1, seq_len=image_size * image_size // 256, feedforward="MLP", ), ] # Fill in the gaps in the config xformer_config = get_hierarchical_configuration( base_hierarchical_configs, residual_norm_style="pre", use_rotary_embeddings=False, mlp_multiplier=4, dim_head=32, ) config = xFormerConfig(xformer_config) hierarchical_xformer = xFormer.from_config(config) # Forward some dummy data dummy = torch.rand((2, 3, image_size, image_size)) _ = hierarchical_xformer(dummy)
EXA-1-master
exa/libraries/xformers/tests/test_hierarchical_transformer.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import torch from xformers.components.attention.utils import ( maybe_merge_masks, reshape_key_padding_mask, ) def test_reshape_key_padding_mask(): batch_size = 2 num_heads = 2 seq_len = 4 batched_dim = batch_size * num_heads key_padding_mask = torch.randint(0, 2, (batch_size, seq_len)).to(dtype=torch.bool) reshaped_mask = reshape_key_padding_mask( key_padding_mask=key_padding_mask, batched_dim=batched_dim ) assert reshaped_mask.size() == (batched_dim, 1, seq_len) merged_mask = maybe_merge_masks( att_mask=None, key_padding_mask=key_padding_mask, batch_size=batch_size, src_len=seq_len, num_heads=num_heads, ) assert torch.equal(merged_mask, reshaped_mask.expand(-1, seq_len, -1)) key_padding_mask = torch.randint(0, 2, (batched_dim, seq_len)).to(dtype=torch.bool) reshaped_mask = reshape_key_padding_mask( key_padding_mask=key_padding_mask, batched_dim=batched_dim ) assert reshaped_mask.size() == (batched_dim, 1, seq_len)
EXA-1-master
exa/libraries/xformers/tests/test_attention_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import logging import pytest import torch from torch.cuda.amp.autocast_mode import autocast import xformers try: from xformers.triton import log_softmax as triton_log_softmax from xformers.triton import softmax as triton_softmax _triton_available = xformers._is_triton_available() except ImportError as e: logging.warning( f"Triton is not available, some optimizations will not be tested.\n{e}" ) _triton_available = False SHAPES = [ (384, 384), (2, 384, 384), (1, 784, 784), (1, 1024, 1024), (1, 2048, 2048), (1, 3136, 3136), (1, 4096, 4096), (2, 2, 384, 384), (2, 2, 2, 384, 384), ] @pytest.mark.skipif(not _triton_available, reason="Triton is not available") @pytest.mark.skipif(not torch.cuda.is_available(), reason="CUDA is not available") @pytest.mark.parametrize("shape", SHAPES) @pytest.mark.parametrize("amp", [False, True]) @pytest.mark.parametrize("log", [False, True]) @pytest.mark.parametrize("masking", [True, False]) @pytest.mark.parametrize("causal", [True, False]) @pytest.mark.parametrize("contiguous", [True, False]) def test_softmax_parity(shape, amp, log, masking, causal, contiguous): """Check that PyTorch and Triton softmax give the same result""" torch.random.manual_seed(0) # Check the result of a FW pass X = torch.normal(0, 1, size=shape, device="cuda", requires_grad=False) if not contiguous: # Make sure that the buffer is not contiguous X = X.transpose(-2, -1).contiguous().transpose(-2, -1) X_ = X.clone() X.requires_grad = True X_.requires_grad = True seq = shape[-1] mask = torch.zeros((seq, seq)).cuda() if masking: mask[torch.rand((seq, seq)) > 0.8] = -float("inf") mask_triton = mask.clone() if masking else None if causal: mask[~torch.tril(torch.ones_like(mask)).bool()] = -float("inf") with autocast(enabled=amp): y_torch = ( torch.log_softmax(X + mask, dim=-1) if log else torch.softmax(X + mask, dim=-1) ) y_triton = ( triton_log_softmax(X_, mask_triton, causal) if log else triton_softmax(X_, mask_triton, causal) ) assert torch.allclose(y_torch, y_triton, equal_nan=True) # Check that BW also gives the same result loss_torch = torch.norm(y_torch.transpose(-2, -1) @ y_torch) loss_torch.backward() loss_triton = torch.norm(y_triton.transpose(-2, -1) @ y_triton) loss_triton.backward() assert torch.allclose( torch.norm(X.grad), torch.norm(X_.grad), equal_nan=True, atol=1e-5 ), f"{torch.norm(X.grad)}, {torch.norm(X_.grad)}" @pytest.mark.skipif(not _triton_available, reason="Triton is not available") @pytest.mark.skipif(not torch.cuda.is_available(), reason="CUDA is not available") @pytest.mark.parametrize("dtype", [torch.float16, torch.float32, torch.bfloat16]) def test_softmax(dtype): b, s, d = 8, 64, 32 a = torch.rand(b, s, d, device="cuda", dtype=dtype) triton_softmax(a) @pytest.mark.skipif(not _triton_available, reason="Triton is not available") @pytest.mark.parametrize("log", [False, True]) @pytest.mark.parametrize("masking", [True, False]) @pytest.mark.parametrize("causal", [True, False]) @pytest.mark.parametrize("contiguous", [True, False]) @pytest.mark.parametrize("device", ["cpu", "cuda"]) def test_softmax_parity_fallback(log, masking, causal, contiguous, device): """Check that the fallback paths are correct""" torch.random.manual_seed(0) shape = (16, 16) # Check the result of a FW pass X = torch.normal(0, 1, size=shape, device=device, requires_grad=False) if not contiguous: # Make sure that the buffer is not contiguous X = X.transpose(-2, -1).contiguous().transpose(-2, -1) X_ = X.clone() X.requires_grad = True X_.requires_grad = True seq = shape[1] mask = torch.zeros((seq, seq), device=device) if masking: mask[torch.rand((seq, seq), device=device) > 0.8] = -float("inf") mask_causal = torch.zeros_like(mask) if causal: mask_causal[~torch.tril(torch.ones_like(mask)).bool()] = -float("inf") y_torch = ( torch.log_softmax(X + mask + mask_causal, dim=-1) if log else torch.softmax(X + mask + mask_causal, dim=-1) ) y_triton = ( triton_log_softmax(X_, mask, causal) if log else triton_softmax(X_, mask, causal) ) assert torch.allclose(y_torch, y_triton, equal_nan=True) # Check that BW also gives the same result loss_torch = torch.norm(y_torch.transpose(-2, -1) @ y_torch) loss_torch.backward() loss_triton = torch.norm(y_triton.transpose(-2, -1) @ y_triton) loss_triton.backward() assert torch.allclose( torch.norm(X.grad), torch.norm(X_.grad), equal_nan=True, atol=1e-5 ), f"{torch.norm(X.grad)}, {torch.norm(X_.grad)}"
EXA-1-master
exa/libraries/xformers/tests/test_triton_softmax.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree.
EXA-1-master
exa/libraries/xformers/tests/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import copy import functools import random from contextlib import nullcontext from typing import ContextManager, Optional, Sequence, cast import pytest import torch import xformers.ops.swiglu_op as xsw torch.backends.cuda.matmul.allow_tf32 = False cuda_only = pytest.mark.skipif(not torch.cuda.is_available(), reason="requires CUDA") if torch.cuda.is_available(): _devices = ["cuda"] _is_sm80 = torch.cuda.get_device_capability(_devices[0])[0] >= 8 else: _devices = [] _is_sm80 = False sm80_only = pytest.mark.skipif(not _is_sm80, reason="requires sm80") def assert_allclose( # The output of the tested function out: torch.Tensor, # The output of the reference implementation ref: torch.Tensor, # The output of the reference implementation in f32 ref32: Optional[torch.Tensor] = None, msg: str = "failed", atol: Optional[float] = None, rtol: Optional[float] = None, ) -> None: """ Improved version of ``` assert torch.allclose(out, ref) ``` Except that we provide useful error message, and also compare to the output of the f32 calculation. """ out = out.float() ref = ref.float() if atol is None: atol = 1e-8 if rtol is None: rtol = 1e-5 assert out.shape == ref.shape compare_to = ref32 if ref32 is not None else ref assert out.shape == compare_to.shape if torch.allclose(out, ref, rtol=rtol, atol=atol) or ( ref32 is not None and torch.allclose(out, ref32, rtol=rtol, atol=atol) ): return flatten_diff = ((out - compare_to).abs() - atol - compare_to.abs() * rtol).flatten() max_pos = flatten_diff.argmax() if ref32 is not None: flatten_diff_vsf32 = ((ref - ref32).abs() - atol - ref32.abs() * rtol).flatten() max_pos_vsf32 = flatten_diff_vsf32.argmax() assert False, ( f"{msg}: " f"out={out.flatten()[max_pos]} and ref32={compare_to.flatten()[max_pos]} (diff={flatten_diff[max_pos]} > 0)" f"/ atol={atol}, rtol={rtol}.\n" f"NOTE: ref vs ref_f32:\n" f"ref={ref.flatten()[max_pos_vsf32]} and ref32={ref32.flatten()[max_pos_vsf32]} " f"(diff={flatten_diff_vsf32[max_pos_vsf32]})" ) else: assert False, ( f"{msg}: " f"out={out.flatten()[max_pos]} and ref={compare_to.flatten()[max_pos]} (diff={flatten_diff[max_pos]} > 0)" f"/ atol={atol}, rtol={rtol}" ) def generate_test_shapes(): shapes = [ # Format: [inp.shape[0], inp.shape[1], hidden.shape[1]] # ViT-Giant (9456, 1536, 2736), (4440, 1536, 2736), (4728, 1536, 2736), # GPT-3 (small) (2048, 2048, 5632), # Chinchilla (2048, 8192, 22016), ] # Add some random shapes r = random.Random(0) for _ in range(20): shapes.append( (r.randint(1, 1000) * 8, r.randint(1, 1000) * 8, r.randint(1, 512) * 8) ) return shapes _test_shapes = list(generate_test_shapes()) _test_shapes_ids = [str(s) for s in _test_shapes] _dtypes = [torch.bfloat16, torch.float16] _ops: Sequence[xsw.SwiGLUOp] = [xsw.SwiGLUFusedOp, xsw.SwiGLUPackedFusedOp] @functools.lru_cache(maxsize=1) def create_module_cached(**kwargs) -> xsw.SwiGLU: return xsw.SwiGLU(**kwargs) @pytest.mark.parametrize("autocast", [False, True], ids=["regular", "autocast"]) @pytest.mark.parametrize("op", _ops, ids=[x.NAME for x in _ops]) @pytest.mark.parametrize("dtype", _dtypes, ids=[str(x) for x in _dtypes]) @pytest.mark.parametrize("device", _devices) @pytest.mark.parametrize("bias", [False, True], ids=["nobias", "bias"]) @pytest.mark.parametrize("pack_weights", [False, True], ids=["regular", "packed"]) @pytest.mark.parametrize( "shape", _test_shapes, ids=_test_shapes_ids, ) def test_forward_backward( shape, device, op, dtype, autocast: bool, pack_weights: bool, bias: bool, ): torch.manual_seed(shape[0] * shape[1] * shape[2]) FORWARD_ATOL = {torch.float: 2e-6, torch.half: 1e-2, torch.bfloat16: 1e-2} FORWARD_RTOL = {torch.float: 1e-5, torch.half: 4e-3, torch.bfloat16: 4e-3} BACKWARD_ATOL = { torch.float: 3e-4, torch.half: 0.5, torch.bfloat16: 4.0, # !! } BACKWARD_RTOL = { torch.float: 2e-3, torch.half: 1e-2, torch.bfloat16: 4e-2, } if not op.supports( xsw.SwiGLUOpDispatch( device=device, dtype=dtype, dtype_autocast_gpu=dtype if autocast and device == "cuda" else None, packed_weights=pack_weights, bias_enabled=bias, ) ): pytest.skip("Not supported by operator") inp_model_dtype = torch.float if autocast else dtype x = torch.randn(shape[:2], device=device, dtype=inp_model_dtype) module = copy.deepcopy( create_module_cached( in_features=shape[1], hidden_features=shape[2], bias=bias, _pack_weights=pack_weights, ) ) x_f32: Optional[torch.Tensor] ref_f32: Optional[torch.Tensor] module_f32: Optional[torch.nn.Module] if dtype != torch.float: x_f32, module_f32 = x.to(device).to(torch.float), module.to(device) x_f32.requires_grad_() ref_f32 = module_f32(x_f32) else: x_f32, module_f32, ref_f32 = None, None, None x, module = x.to(device).to(inp_model_dtype), module.to(device).to(inp_model_dtype) x.requires_grad_() # Forward cm = cast( ContextManager, torch.autocast("cuda", dtype=dtype) if autocast else nullcontext(), ) with cm: ref = module(x) out = xsw.swiglu(x, *module._ordered_params(), op=op) if ref_f32 is None: ref_f32 = ref assert_allclose( out, ref, ref_f32, "fw", atol=FORWARD_ATOL[dtype], rtol=FORWARD_RTOL[dtype] ) # Backward grad = torch.randn_like(ref) def backward_gather_grads(inp, output): output.backward(grad.to(output.dtype)) grads = {} for name, param in module.named_parameters(): grads[name] = param.grad.clone() param.grad = None grads["x"] = inp.grad.clone() inp.grad = None return grads grads_ref = backward_gather_grads(x, ref) grads_out = backward_gather_grads(x, out) grads_ref32 = ( backward_gather_grads(x_f32, ref_f32) if module_f32 is not None else grads_ref ) assert list(grads_ref.keys()) == list(grads_out.keys()) for name, gref in grads_ref.items(): gout = grads_out[name] assert_allclose( gout, gref, grads_ref32.get(name), f"{name}.grad", atol=BACKWARD_ATOL[dtype], rtol=BACKWARD_RTOL[dtype], ) # Ensure `gout >> atol`, so that the test is meaningful assert gout.norm(2) > BACKWARD_ATOL[dtype] / BACKWARD_RTOL[dtype]
EXA-1-master
exa/libraries/xformers/tests/test_swiglu.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import itertools import pytest import torch import xformers.components.attention.attention_patterns as AP from xformers.components.attention.sparsity_config import ( BigBirdSparsityConfig, BSLongformerSparsityConfig, DenseSparsityConfig, FixedSparsityConfig, VariableSparsityConfig, ) # baseline implementations def _local_1d_pattern(attn_size: int, window_size: int) -> torch.Tensor: assert ( window_size % 2 == 1 ), "The window size is assumed to be odd (counts self-attention + 2 wings)" h_win_size = window_size // 2 attn_shape = (attn_size, attn_size) full_attn = torch.ones(attn_shape, dtype=torch.bool) mask = torch.tril(full_attn, diagonal=h_win_size) mask &= ~torch.tril(full_attn, diagonal=-(h_win_size + 1)) return mask def _generate_2d_grid(H, W): i = torch.arange(H) j = torch.arange(W) i, j = torch.meshgrid(i, j) return i, j def _horizontal_axial_2d_distance(H, W, p=2.0): i, _ = _generate_2d_grid(H, W) ij = i.reshape(-1, 1).float() d = torch.cdist(ij, ij, p=p) return d def _vertical_axial_2d_distance(H, W, p=2.0): _, j = _generate_2d_grid(H, W) ij = j.reshape(-1, 1).float() d = torch.cdist(ij, ij, p=p) return d def _local_2d_distance(H, W, p=2.0): # axial is a special case with p=0 and distance=2 i, j = _generate_2d_grid(H, W) ij = torch.stack([i.flatten(), j.flatten()], 1).float() d = torch.cdist(ij, ij, p=p) return d def _local_2d_gaussian_distribution(H, W, sigma=1.0): d = _local_2d_distance(H, W, p=2.0) ** 2 d = torch.exp(-0.5 * sigma ** (-2.0) * d) return d @pytest.mark.parametrize("window_size", [3, 7, 11]) @pytest.mark.parametrize("attn_size", [50, 51, 64]) def test_local_1d_pattern(attn_size, window_size): mask = AP.local_1d_pattern(attn_size, window_size).float() mask_ref = _local_1d_pattern(attn_size, window_size).float() assert torch.allclose(mask, mask_ref) @pytest.mark.parametrize("p", [0, 1, 2]) @pytest.mark.parametrize("W", [5, 7, 10]) @pytest.mark.parametrize("H", [5, 7, 10]) def test_horizontal_axial_2d_distance(H, W, p): d = AP.horizontal_axial_2d_distance(H, W, p=p) d_ref = _horizontal_axial_2d_distance(H, W, p=p) assert torch.allclose(d, d_ref) @pytest.mark.parametrize("p", [0, 1, 2]) @pytest.mark.parametrize("W", [5, 7, 10]) @pytest.mark.parametrize("H", [5, 7, 10]) def test_vertical_axial_2d_distance(H, W, p): d = AP.vertical_axial_2d_distance(H, W, p=p) d_ref = _vertical_axial_2d_distance(H, W, p=p) assert torch.allclose(d, d_ref) @pytest.mark.parametrize("p", [0, 1, 2]) @pytest.mark.parametrize("W", [5, 7, 10]) @pytest.mark.parametrize("H", [5, 7, 10]) def test_local_2d_distance(H, W, p): d = AP.local_2d_distance(H, W, p=p) d_ref = _local_2d_distance(H, W, p=p) assert torch.allclose(d, d_ref) @pytest.mark.parametrize("sigma", [0.5, 1, 2]) @pytest.mark.parametrize("W", [5, 7, 10]) @pytest.mark.parametrize("H", [5, 7, 10]) def test_local_2d_gaussian_distribution(H, W, sigma): d = AP.local_2d_gausian_distribution(H, W, sigma=sigma) d_ref = _local_2d_gaussian_distribution(H, W, sigma=sigma) assert torch.allclose(d, d_ref) @pytest.mark.parametrize("window_size", [2, 4]) @pytest.mark.parametrize("W", [8, 16]) @pytest.mark.parametrize("H", [8, 16]) def test_swin_attention_pattern(H, W, window_size): # test non-shifted case d = AP.swin_attention_pattern(H, W, window_size, shift_size=0) # partition the self-attention into regions of window_size # similar to the window_partition function from the original paper h = H // window_size w = W // window_size d = d.reshape(h, window_size, w, window_size, h, window_size, w, window_size) product = itertools.product(range(h), range(w)) for y, x in product: # every region should fully attend to itself assert torch.all(d[y, :, x, :, y, :, x, :]) for y2, x2 in product: if y == y2 or x == x2: continue # different regions shouldn't attend between each other assert torch.all(~d[y, :, x, :, y2, :, x2, :]) # test shifted case # in the shifted case, the self-attention should be the same # as in the non-shifted case, when we pad the inputs, apply the operations and then # remove the padding from the result d_shifted = AP.swin_attention_pattern( H, W, window_size, shift_size=window_size // 2 ) # add padding and remove shift h = H + window_size w = W + window_size d_padded = AP.swin_attention_pattern(h, w, window_size, shift_size=0) d_padded = d_padded.reshape(h, w, h, w) # remove padding elements half_size = window_size // 2 s = slice(half_size, -half_size) d_padded = d_padded[s, s, s, s].reshape(H * W, H * W) assert torch.all(d_padded == d_shifted) @pytest.mark.parametrize("k", [2, 3]) @pytest.mark.parametrize("W", [8, 15]) @pytest.mark.parametrize("H", [8, 15]) def test_dilated_2d_pattern(H, W, k): d = AP.dilated_2d_pattern(H, W, k) d = d.reshape(H, W, H, W) product_HW = itertools.product(range(H), range(W)) product_kk = itertools.product(range(k), range(k)) for h, w in product_HW: i = h % k j = w % k # every kth element is taken assert torch.all(d[h, w][i::k, j::k]) for ii, jj in product_kk: if ii == i and jj == j: continue # and the other elements are discarded assert torch.all(~d[h, w][ii::k, jj::k]) def test_pattern_to_layout(): BLOCK = 16 SIZE = 128 LAYOUT_SIZE = SIZE // BLOCK # All ones mask1 = torch.ones((SIZE, SIZE), dtype=torch.bool) layout1 = AP.pattern_to_layout(mask1, BLOCK) ref1 = torch.ones((LAYOUT_SIZE, LAYOUT_SIZE), dtype=torch.long) assert torch.allclose(layout1, ref1) # Diagonal -> expect block diagonal mask2 = torch.eye(SIZE, dtype=torch.bool) layout2 = AP.pattern_to_layout(mask2, BLOCK) ref2 = torch.eye(LAYOUT_SIZE, dtype=torch.long) assert torch.allclose(layout2, ref2) # Lower triangular, without the diagonal # note that the layout will need to have the diagonal, else the coefficients close enough would not be computed mask3 = torch.tril(torch.ones((SIZE, SIZE)), diagonal=-1).to(torch.bool) layout3 = AP.pattern_to_layout(mask3, BLOCK) ref3 = torch.tril(torch.ones((LAYOUT_SIZE, LAYOUT_SIZE)), diagonal=0).to(torch.long) assert torch.allclose(layout3, ref3) # Handle heads properly mask = torch.cat((mask1, mask2, mask3)) layout = AP.pattern_to_layout(mask, BLOCK) assert torch.allclose(layout, torch.cat((ref1, ref2, ref3))) # Catch problematic dimensions mask_off = torch.ones((SIZE + 3, SIZE), dtype=torch.bool) with pytest.raises(AssertionError): AP.pattern_to_layout(mask_off, BLOCK) def test_alibi_pattern(): mask = AP.alibi_pattern(1e-3, (16, 128, 128)) # Minor, check that all the top left corners are True assert torch.sum(mask[:, 0, 0]) == 16 def test_quick_layouts(): seq_size = 128 block_size = 16 num_heads = 2 # Fixed assert torch.allclose( AP.quick_fixed_layout(num_heads, block_size, seq_size), torch.Tensor( [ [ [1, 1, 1, 1, 0, 0, 0, 1], [1, 1, 1, 1, 0, 0, 0, 1], [1, 1, 1, 1, 0, 0, 0, 1], [1, 1, 1, 1, 0, 0, 0, 1], [0, 0, 0, 1, 1, 1, 1, 1], [0, 0, 0, 1, 1, 1, 1, 1], [0, 0, 0, 1, 1, 1, 1, 1], [0, 0, 0, 1, 1, 1, 1, 1], ], [ [1, 1, 1, 1, 0, 0, 0, 1], [1, 1, 1, 1, 0, 0, 0, 1], [1, 1, 1, 1, 0, 0, 0, 1], [1, 1, 1, 1, 0, 0, 0, 1], [0, 0, 0, 1, 1, 1, 1, 1], [0, 0, 0, 1, 1, 1, 1, 1], [0, 0, 0, 1, 1, 1, 1, 1], [0, 0, 0, 1, 1, 1, 1, 1], ], ] ).long(), ) # BSLongformer assert torch.allclose( AP.quick_bslongformer_layout(num_heads, block_size, seq_size), torch.Tensor( [ [ [1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 1, 0, 0, 0, 0], [1, 0, 1, 1, 1, 0, 0, 0], [1, 0, 0, 1, 1, 1, 0, 0], [1, 0, 0, 0, 1, 1, 1, 0], [1, 0, 0, 0, 0, 1, 1, 1], [1, 0, 0, 0, 0, 0, 1, 1], ], [ [1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 1, 0, 0, 0, 0], [1, 0, 1, 1, 1, 0, 0, 0], [1, 0, 0, 1, 1, 1, 0, 0], [1, 0, 0, 0, 1, 1, 1, 0], [1, 0, 0, 0, 0, 1, 1, 1], [1, 0, 0, 0, 0, 0, 1, 1], ], ] ).long(), ) # Variable assert torch.allclose( AP.quick_variable_layout(num_heads, block_size, seq_size), torch.Tensor( [ [ [1, 1, 1, 1, 0, 0, 0, 0], [1, 1, 1, 1, 0, 0, 0, 0], [1, 1, 1, 1, 0, 0, 0, 0], [1, 1, 1, 1, 0, 0, 0, 0], [1, 0, 0, 0, 1, 1, 1, 1], [1, 0, 0, 0, 1, 1, 1, 1], [1, 0, 0, 0, 1, 1, 1, 1], [1, 0, 0, 0, 1, 1, 1, 1], ], [ [1, 1, 1, 1, 0, 0, 0, 0], [1, 1, 1, 1, 0, 0, 0, 0], [1, 1, 1, 1, 0, 0, 0, 0], [1, 1, 1, 1, 0, 0, 0, 0], [1, 0, 0, 0, 1, 1, 1, 1], [1, 0, 0, 0, 1, 1, 1, 1], [1, 0, 0, 0, 1, 1, 1, 1], [1, 0, 0, 0, 1, 1, 1, 1], ], ] ).long(), ) # BigBird (just the shape) assert AP.quick_bigbird_layout(num_heads, block_size, seq_size).shape == torch.Size( [num_heads, seq_size // block_size, seq_size // block_size] ) def test_layout_to_pattern(): torch.allclose( AP.layout_to_pattern( layout=torch.Tensor([[[0, 1], [1, 0]], [[1, 0], [0, 1]]]), block_size=2 ), torch.Tensor( [ [ [0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 1.0, 1.0], [1.0, 1.0, 0.0, 0.0], [1.0, 1.0, 0.0, 0.0], ], [ [1.0, 1.0, 0.0, 0.0], [1.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 1.0, 1.0], ], ] ), ) def test_dense_sparsity_config(): sc = DenseSparsityConfig(num_heads=1, block_size=16) with pytest.raises(expected_exception=ValueError): sc.setup_layout(seq_len=17) assert torch.allclose( sc.make_layout(seq_len=32), torch.Tensor([[[1, 1], [1, 1]]]).long() ) def test_big_bird_sparsity_config(): sc = BigBirdSparsityConfig( num_heads=1, block_size=16, num_random_blocks=2, num_sliding_window_blocks=1, num_global_blocks=1, ) with pytest.raises(expected_exception=ValueError): sc.make_layout(seq_len=16) sc = BigBirdSparsityConfig( num_heads=1, block_size=16, num_random_blocks=1, num_sliding_window_blocks=2, num_global_blocks=1, ) with pytest.raises(expected_exception=ValueError): sc.make_layout(seq_len=16) sc = BigBirdSparsityConfig( num_heads=1, block_size=16, num_random_blocks=1, num_sliding_window_blocks=1, num_global_blocks=2, ) with pytest.raises(expected_exception=ValueError): sc.make_layout(seq_len=16) with pytest.raises(expected_exception=NotImplementedError): BigBirdSparsityConfig(num_heads=1, attention="directional") def test_bslongformer_sparsity_config(): sc = BSLongformerSparsityConfig(num_heads=1, global_block_end_indices=[1]) assert torch.allclose( sc.make_layout(128), torch.Tensor( [ [ [1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 1, 0, 0, 0, 0], [1, 0, 1, 1, 1, 0, 0, 0], [1, 0, 0, 1, 1, 1, 0, 0], [1, 0, 0, 0, 1, 1, 1, 0], [1, 0, 0, 0, 0, 1, 1, 1], [1, 0, 0, 0, 0, 0, 1, 1], ] ] ).long(), ) with pytest.raises(expected_exception=ValueError): BSLongformerSparsityConfig(num_heads=1, global_block_end_indices=[]) with pytest.raises(expected_exception=ValueError): BSLongformerSparsityConfig(num_heads=1, global_block_end_indices=[-1]) def test_fixed_sparsity_config(): # chech that the case end < num_blocks is correct sc = FixedSparsityConfig(num_heads=1, horizontal_global_attention=True) assert torch.allclose( sc.make_layout(112), torch.Tensor( [ [ [1, 1, 1, 1, 0, 0, 1], [1, 1, 1, 1, 0, 0, 1], [1, 1, 1, 1, 0, 0, 1], [1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 1, 1, 1, 1], [0, 0, 0, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], ] ] ).long(), ) with pytest.raises(expected_exception=ValueError): FixedSparsityConfig(num_heads=1, num_local_blocks=3, num_global_blocks=2) with pytest.raises(expected_exception=NotImplementedError): FixedSparsityConfig(num_heads=1, attention="directional") with pytest.raises(expected_exception=ValueError): FixedSparsityConfig( num_heads=1, attention="unidirectional", horizontal_global_attention=True ) with pytest.raises(expected_exception=ValueError): FixedSparsityConfig( num_heads=1, num_different_global_patterns=2, different_layout_per_head=False, ) with pytest.raises(expected_exception=ValueError): FixedSparsityConfig( num_heads=1, num_different_global_patterns=10, num_local_blocks=4, num_global_blocks=1, ) def test_variable_sparsity_config(): sc = VariableSparsityConfig(num_heads=1, global_block_end_indices=[1]) assert torch.allclose( sc.make_layout(128), torch.Tensor( [ [ [1, 1, 1, 1, 0, 0, 0, 0], [1, 1, 1, 1, 0, 0, 0, 0], [1, 1, 1, 1, 0, 0, 0, 0], [1, 1, 1, 1, 0, 0, 0, 0], [1, 0, 0, 0, 1, 1, 1, 1], [1, 0, 0, 0, 1, 1, 1, 1], [1, 0, 0, 0, 1, 1, 1, 1], [1, 0, 0, 0, 1, 1, 1, 1], ] ] ).long(), ) with pytest.raises(expected_exception=ValueError): VariableSparsityConfig(num_heads=1, global_block_end_indices=[]) with pytest.raises(expected_exception=ValueError): VariableSparsityConfig(num_heads=1, global_block_end_indices=[-1])
EXA-1-master
exa/libraries/xformers/tests/test_attention_patterns.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import pytest import torch from xformers.components.attention import AttentionMask @pytest.mark.skipif( not torch.cuda.is_available(), reason="This test requires a CUDA device" ) def test_mask_creation(): # Check that we can create from boolean bool_mask = torch.rand((256, 256)) > 0.5 additive_mask = AttentionMask.from_bool(bool_mask) assert (bool_mask == additive_mask.to_bool()).all() bool_mask = torch.rand((2, 256, 256)) > 0.5 additive_mask = AttentionMask.from_bool(bool_mask) assert (bool_mask == additive_mask.to_bool()).all() assert additive_mask.ndim == bool_mask.ndim # Check that we can create from multiplicative ref_mask = torch.randint(0, 2, (256, 256)) mul_mask = ref_mask.float() additive_mask = AttentionMask.from_multiplicative(mul_mask) assert (ref_mask.bool() == additive_mask.to_bool()).all() # Check the causal mask causal_mask = AttentionMask.make_causal(256, 256) assert (torch.tril(torch.ones(256, 256)).bool() == causal_mask.to_bool()).all() assert causal_mask.is_causal causal_mask = AttentionMask.make_causal(256) assert (torch.tril(torch.ones(256, 256)).bool() == causal_mask.to_bool()).all() causal_mask = AttentionMask.make_causal(256, 128) assert (torch.tril(torch.ones(256, 128)).bool() == causal_mask.to_bool()).all() # Check that we can add masks bool_mask_1 = torch.rand((256, 256)) > 0.5 add_mask_1 = AttentionMask.from_bool(bool_mask_1) bool_mask_2 = torch.rand((256, 256)) > 0.5 add_mask_2 = AttentionMask.from_bool(bool_mask_2) assert ((add_mask_1 + add_mask_2).to_bool() == (bool_mask_1 & bool_mask_2)).all() # Check type handling additive_mask = AttentionMask.from_bool(torch.rand((256, 256)) > 0.5) additive_mask = additive_mask.to(device=torch.device("cuda")) assert "cuda" in str(additive_mask.values.device) # Check that the causal flag is maintained additive_mask = AttentionMask.make_causal(256, 256) additive_mask = additive_mask.to(device=torch.device("cuda")) assert additive_mask.is_causal
EXA-1-master
exa/libraries/xformers/tests/test_attention_mask.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import pytest import torch from xformers.components import NormalizationType, PreNorm class Passthrough(torch.nn.Module): def __init__(self) -> None: super().__init__() def forward(self, *args): return args @pytest.mark.parametrize("normalization", [n.value for n in NormalizationType]) def test_pre_norm(normalization): # Check that passing the same tensor a bunch of times skips the extra normalizations x = torch.rand((3, 3), requires_grad=True) wrap = PreNorm( d_norm=3, sublayer=Passthrough(), normalization=normalization, use_triton=False ) outputs = wrap(inputs=[x, x, x]) assert id(outputs[0]) == id(outputs[1]) # Check the BW pass torch.sum(outputs[0]).backward()
EXA-1-master
exa/libraries/xformers/tests/test_residual.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import pytest import torch from xformers.components import MultiHeadDispatch # Automatically test all the registered attentions from xformers.components.attention import ATTENTION_REGISTRY, build_attention DEVICES = ( [torch.device("cpu")] if not torch.cuda.is_available() else [torch.device("cuda")] ) BATCH = 2 SEQ = 128 if torch.cuda.is_available() else 16 MODEL = 128 if torch.cuda.is_available() else 32 assert ATTENTION_REGISTRY.keys(), "Attention layers should have been registered" @pytest.mark.parametrize("heads", [4]) @pytest.mark.parametrize("attn_dropout", [0.0, 0.3]) @pytest.mark.parametrize("causal", [True, False]) @pytest.mark.parametrize("rules", [4]) @pytest.mark.parametrize("q_compose", [False, True]) @pytest.mark.parametrize("dim_selection", [MODEL // 2, None]) @pytest.mark.parametrize("num_rules", [2]) @pytest.mark.parametrize("qk_rule", [True, False]) @pytest.mark.parametrize("nonlinear", [True, False]) @pytest.mark.parametrize("device", DEVICES) def test_build_and_run( heads: int, attn_dropout: float, causal: bool, rules: int, q_compose: bool, dim_selection: int, num_rules: int, qk_rule: bool, nonlinear: bool, device: torch.device, ): torch.manual_seed(42) test_config = { "name": "compositional", "dropout": attn_dropout, "causal": causal, "seq_len": SEQ, "dim_model": MODEL, "num_heads": heads, "num_rules": num_rules, "q_compose": q_compose, "rules": rules, "dim_selection": dim_selection, "qk_rule": qk_rule, "nonlinear": nonlinear, } attention = build_attention(test_config) # build a multi head dispatch to test this attention mechanism multi_head = MultiHeadDispatch( seq_len=SEQ, dim_model=MODEL, num_heads=heads, attention=attention, residual_dropout=0.0, ).to(device) # Check that a shuffled input produces the same results seqs = [SEQ, SEQ // 2] for seq in seqs: # Check that we can pass a smaller sequence inputs = torch.rand(BATCH, seq, MODEL, device=device) shuffle = torch.randperm(inputs.shape[1]) inputs_shuffled = inputs[:, shuffle, :].clone() results = multi_head(inputs, inputs, inputs) results_shuffled = multi_head(inputs_shuffled, inputs_shuffled, inputs_shuffled) if attn_dropout == 0.0 and num_rules == 1 and not causal: assert (results[:, shuffle, :] - results_shuffled).abs().max() < 1e-3 # Test the non-self-attention codepath att = multi_head(inputs, inputs_shuffled, inputs) # Check that dropout actually drops some values if attn_dropout > 0: att_2 = multi_head(inputs, inputs_shuffled, inputs) assert (att != att_2).any()
EXA-1-master
exa/libraries/xformers/tests/test_compositional_attention.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import pytest import torch from torch import nn from xformers import _is_triton_available from xformers.components.attention._sputnik_sparse import SparseCS from xformers.components.attention.attention_mask import AttentionMask from xformers.components.attention.core import scaled_dot_product_attention if _is_triton_available(): from xformers.triton.utils import gpu_capabilities_older_than_70 _is_blocksparse_available = ( _is_triton_available() and not gpu_capabilities_older_than_70() ) if _is_blocksparse_available: import triton.testing _devices = ["cpu", "cuda"] if torch.cuda.is_available() else ["cpu"] def test_core_attention(): b, s, d = 2, 400, 8 prob = 0.95 a = torch.rand(b, s, d) m = torch.rand(b, s, s) > prob m = m.to_sparse() # Check that the sparse and dense computations are equivalent r_sparse = scaled_dot_product_attention(a, a, a, m) r_dense = scaled_dot_product_attention(a, a, a, m.to_dense()) assert torch.allclose(r_sparse, r_dense) def test_core_attention_mask_types(): b, s, d = 4, 90, 16 prob = 0.8 # make sure that we trigger the sparse kernels a = torch.rand(b, s, d) mask = torch.rand(b, s, s) > prob # mask of bools r_dense_bool = scaled_dot_product_attention(a, a, a, mask) r_sparse_bool = scaled_dot_product_attention(a, a, a, mask.to_sparse()) assert torch.allclose(r_dense_bool, r_sparse_bool) # Test additive mask. Mask of 0's and -infs. float_mask_add = torch.zeros_like(mask, dtype=torch.float) float_mask_add = float_mask_add.masked_fill(mask, float("-inf")) r_dense_add = scaled_dot_product_attention(a, a, a, float_mask_add) r_sparse_add = scaled_dot_product_attention(a, a, a, float_mask_add.to_sparse()) # Now properly handled assert torch.allclose(r_dense_add, r_sparse_add) # Test additive mask with mismatched batch dim d = b // 2 mask = torch.rand(d, s, s) > prob float_mask_add = torch.zeros_like(mask, dtype=torch.float) float_mask_add = float_mask_add.masked_fill(mask, float("-inf")) # Make sure masking doesn't return errors r_dense_add = scaled_dot_product_attention(a, a, a, float_mask_add) @pytest.mark.parametrize("device", _devices) def test_amp_attention_dense_no_mask(device): b, s, d = 8, 64, 32 a = torch.rand(b, s, d, device=device) with torch.cuda.amp.autocast(): r = scaled_dot_product_attention(a, a, a, att_mask=None) expected_device = torch.float16 if device == "cuda" else torch.float32 assert r.dtype == expected_device @pytest.mark.parametrize("device", _devices) def test_amp_attention_dense(device): b, s, d = 8, 64, 32 prob = 0.9 a = torch.rand(b, s, d, device=device) m = torch.rand(s, s, device=device) > prob with torch.cuda.amp.autocast(): r = scaled_dot_product_attention(a, a, a, m) expected_device = torch.float16 if device == "cuda" else torch.float32 assert r.dtype == expected_device @pytest.mark.parametrize("device", _devices) def test_amp_attention_sparse(device): b, s, d = 8, 64, 32 prob = 0.9 a = torch.rand(b, s, d, device=device) m = torch.rand(s, s, device=device) > prob m = m.to_sparse() with torch.cuda.amp.autocast(): r = scaled_dot_product_attention(a, a, a, m) expected_device = torch.float32 assert r.dtype == expected_device @pytest.mark.parametrize("device", _devices) def test_amp_attention_sparsecs(device): b, s, d = 8, 64, 32 prob = 0.9 a = torch.rand(b, s, d, device=device) m = torch.rand(s, s, device=device) > prob m = SparseCS(m, device) with torch.cuda.amp.autocast(): r = scaled_dot_product_attention(a, a, a, m) expected_device = torch.float32 assert r.dtype == expected_device @pytest.mark.skipif( not _is_blocksparse_available, reason="Blocksparse is not available" ) @pytest.mark.parametrize("device", ["cuda"]) @pytest.mark.parametrize("data_type", [torch.float16, torch.float32]) def test_switch_blocksparse(device, data_type): b, s, d = 8, 128, 32 a = torch.rand(b, s, d, device=device, dtype=data_type) # Custom causal mask m_custom = torch.triu( torch.ones(s, s, device=device, dtype=a.dtype) * float("-inf"), diagonal=1 ) m_custom_bool = m_custom != float("-inf") m_sparse = SparseCS(m_custom_bool, device) # Mask with causal flag m_att_mask = AttentionMask.make_causal(s, s, device, dtype=a.dtype) def kernel(): return scaled_dot_product_attention(a, a, a, m_att_mask) # Check that a switch to blocksparse is only triggered by causal flag with torch.cuda.amp.autocast(): r_custom = scaled_dot_product_attention(a, a, a, m_custom) r_sparse = scaled_dot_product_attention(a, a, a, m_sparse) r_att_mask = triton.testing.catch_oor(kernel, pytest) expected_device = torch.float32 assert r_sparse.dtype == expected_device if r_custom.dtype == r_att_mask.dtype: assert torch.allclose(r_custom, r_att_mask, atol=1e-6, rtol=1e-2) else: # r_custom fp16, r_att_mask fp32 assert torch.allclose(r_custom, r_att_mask.half(), atol=1e-6, rtol=1e-2) @pytest.mark.skipif( not _is_blocksparse_available, reason="Blocksparse is not available" ) @pytest.mark.parametrize("device", ["cuda"]) def test_switch_blocksparse_dims(device): b, s, d, nh = 8, 128, 32, 8 hs = d // nh data_type = torch.float32 a = torch.rand(b, nh, s, hs, device=device, dtype=data_type) # Mask with causal flag m = AttentionMask.make_causal(s, s, device, dtype=a.dtype) def kernel(): return scaled_dot_product_attention(a, a, a, m) # Check that passing qkv with shape (B, nh, S, hs) is properly handled with torch.cuda.amp.autocast(): r = triton.testing.catch_oor(kernel, pytest) expected_device = torch.float32 assert r.dtype == expected_device @pytest.mark.skipif( not _is_blocksparse_available, reason="Blocksparse is not available" ) @pytest.mark.parametrize("device", ["cuda"]) @pytest.mark.parametrize("training", [True, False]) @pytest.mark.parametrize("drop_prob", [0.0, 0.3]) def test_switch_blocksparse_dropout(device, training, drop_prob): b, s, d = 8, 128, 32 a = torch.rand(b, s, d, device=device) m = AttentionMask.make_causal(s, s, device) dropout = nn.Dropout(drop_prob) dropout.train(training).cuda() def kernel1(): return scaled_dot_product_attention(a, a, a, m) def kernel2(): return scaled_dot_product_attention(a, a, a, m, dropout) with torch.cuda.amp.autocast(): r = triton.testing.catch_oor(kernel1, pytest) r_drop = triton.testing.catch_oor(kernel2, pytest) # Check for dropout when applicable if dropout.p and dropout.training: assert (r_drop != r).any() else: assert torch.allclose(r, r_drop)
EXA-1-master
exa/libraries/xformers/tests/test_core_attention.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import logging import pytest import torch from torch.cuda.amp.autocast_mode import autocast import xformers from xformers.components import Activation, build_activation _triton_available = xformers._is_triton_available() if _triton_available: try: import triton # noqa: F401 from xformers.triton import FusedLinear from xformers.triton.k_activations import get_triton_activation_index from xformers.triton.k_fused_matmul_fw import fused_matmul from xformers.triton.utils import gpu_capabilities_older_than_70 except ImportError: logging.warning( "Triton is not available, some optimizations will not be tested." ) _triton_available = False SHAPES = [(128, 256), (8, 384, 128), (8, 784, 512)] @pytest.mark.skipif(not _triton_available, reason="Triton is not available") @pytest.mark.skipif( not _triton_available or gpu_capabilities_older_than_70(), reason="Triton requires a SM70+ GPU", ) @pytest.mark.parametrize("shape", SHAPES) @pytest.mark.parametrize("dtype", [torch.float16]) def test_fused_matmul(shape, dtype): """Check that the matrix multiply kernel and Pytorch's give the same results""" # TODO: fix or remove this pytest.skip("This is broken") torch.random.manual_seed(0) # Raw fused matrix multiply first, to catch gross errors a = torch.normal(0, 1, size=(shape[-2], shape[-1]), dtype=dtype, device="cuda") b = torch.normal(0, 1, size=(shape[-1], shape[-2]), dtype=dtype, device="cuda") # Test that not passing any bias is fine res_torch = a @ b res_triton, _ = fused_matmul( a, b.transpose(0, 1).contiguous(), bias=None, activation=0 ) torch.testing.assert_close(res_torch, res_triton) # Now test with a real FMA c = -torch.randn((shape[-2],), dtype=dtype, device="cuda") res_torch = torch.addmm(c, a, b) res_triton, _ = fused_matmul(a, b.transpose(1, 0).contiguous(), c) torch.testing.assert_close( res_torch, res_triton, atol=1e-3, rtol=1e-3, msg="Fused matmul broken", ) # Now check that adding an activation to the mix still produces valid results # NOTE: SquaredReLU fails, some outlier representation issue but the eyeballed results look reasonable # could be due to a different accumulation out of the box (tf32 for instance) for activation in filter( lambda x: x not in (Activation.SquaredReLU, Activation.StarReLU), Activation ): torch_activation = build_activation(activation.value) res_torch = torch_activation(torch.addmm(c, a, b)) triton_activation_index = get_triton_activation_index(activation) print(activation, triton_activation_index) res_triton, _ = fused_matmul( a, b.transpose(1, 0).contiguous(), c, triton_activation_index ) torch.testing.assert_close( res_torch, res_triton, atol=1e-3, rtol=1e-3, msg=f"Fused matmul broken with activation {activation}", ) @pytest.mark.skipif( not _triton_available or gpu_capabilities_older_than_70(), reason="Triton requires a SM70+ GPU", ) @pytest.mark.parametrize("activation", [None] + [a.value for a in Activation]) # type: ignore @pytest.mark.parametrize("shape", SHAPES) @pytest.mark.parametrize("bias", [True, False]) @pytest.mark.parametrize("amp", [True]) def test_fused_linear_parity(shape, activation: Activation, bias: bool, amp: bool): """Check that PyTorch and fused linear layers give the same result""" # TODO: fix or remove this pytest.skip("This is broken") torch.random.manual_seed(0) # Instantiate pytorch and fused layers, same initialization X = torch.normal(0, 1, size=shape, device="cuda") X.requires_grad_() torch_linear = torch.nn.Linear(shape[-1], shape[-1] // 2, bias=bias).to("cuda") torch_sequence = torch.nn.Sequential(torch_linear, build_activation(activation)) torch.random.manual_seed(0) X_ = torch.normal(0, 1, size=shape, device="cuda") X_.requires_grad_() # pyre-ignore[16]: TODO(T101400990): Pyre did not recognize the # `FusedLinear` import. triton_fused_linear = FusedLinear( shape[-1], shape[-1] // 2, bias=bias, activation=activation ).to("cuda") # Now check parity torch_linear.train() triton_fused_linear.train() torch_linear.zero_grad() triton_fused_linear.zero_grad() torch.testing.assert_close( triton_fused_linear.weight, torch_linear.weight, atol=1e-3, rtol=1e-3, msg="Broken test setup", ) torch.testing.assert_close(X, X_, atol=1e-3, rtol=1e-3, msg="Broken test setup") with autocast(enabled=amp): y_torch = torch_sequence(X) y_triton = triton_fused_linear(X_) grad = torch.randn_like(y_torch) # Check that BW also gives the same result y_torch.backward(grad) y_triton.backward(grad) torch.testing.assert_close(X, X_, atol=1e-3, rtol=1e-3) # Input grad being correct checks both the loss + some of the backward pass assert X.grad is not None and X_.grad is not None torch.testing.assert_close(X.grad, X_.grad, atol=1e-3, rtol=1e-3) # Check that the linear layer bias are also properly trainable if bias: assert ( triton_fused_linear.bias is not None and triton_fused_linear.bias.grad is not None ) assert torch_linear.bias is not None and torch_linear.bias.grad is not None torch.testing.assert_close( torch_linear.bias.grad, triton_fused_linear.bias.grad, atol=1e-3, rtol=1e-3, ) # Check that the linear layer weights are also properly trainable assert ( torch_linear.weight.grad is not None and triton_fused_linear.weight.grad is not None ) torch.testing.assert_close( torch_linear.weight.grad, triton_fused_linear.weight.grad, atol=1e-3, rtol=1e-3, )
EXA-1-master
exa/libraries/xformers/tests/test_triton_fused_linear.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import random import pytest import torch import xformers.ops as xops from .utils import assert_allclose cuda_only = pytest.mark.skipif(not torch.cuda.is_available(), reason="requires CUDA") @cuda_only @pytest.mark.parametrize("with_scaling", [False, True]) @pytest.mark.parametrize( "out_shape", [(48, 1, 257 * 1536), (48, 257, 1536), (192, 50, 1536)] ) def test_scaled_index_add(out_shape, with_scaling: bool) -> None: torch.manual_seed(0) alpha = 0.73 dtype = torch.float16 B_out, M, D = out_shape B_src = int(B_out * 0.6) inp = torch.randn([B_out, M, D], device="cuda", dtype=dtype, requires_grad=True) src = torch.randn([B_src, M, D], device="cuda", dtype=dtype, requires_grad=True) TENSORS = {"inp": inp, "src": src} if with_scaling: scaling = torch.randn([D], device="cuda", dtype=dtype, requires_grad=True) TENSORS["scaling"] = scaling else: scaling = torch.Tensor() index_py = [i for i in range(src.shape[0])] random.Random(B_out).shuffle(index_py) index = torch.tensor(index_py, dtype=torch.int64, device="cuda") if with_scaling: ref_src_scaled = scaling.float() * src.float() else: ref_src_scaled = src.float() ref_out = torch.index_add( inp.float(), dim=0, source=ref_src_scaled, index=index, alpha=alpha ).to(dtype) grad_output = torch.randn_like(ref_out) ref_out.backward(grad_output) ref_grads = {k: v.grad for k, v in TENSORS.items()} for v in TENSORS.values(): v.grad = None # Test FW out = xops.scaled_index_add( input=inp.clone(), index=index, source=src, scaling=scaling if with_scaling else None, alpha=alpha, ) assert_allclose(out, ref_out, "fw", atol=4e-3, rtol=1e-3) # Test BW out.backward(grad_output) for k, v in TENSORS.items(): atol = 1e-5 rtol = 1e-5 # NOTE: Ordering of operations is not 100% the same as PT, hence the small numeric diff if k == "scaling": atol, rtol = 5e-2, 1e-2 assert_allclose(v.grad, ref_grads[k], f"{k}.grad", atol=atol, rtol=rtol) # type: ignore @cuda_only @pytest.mark.parametrize("D", [1536]) def test_index_select_cat(D) -> None: torch.manual_seed(0) dtype = torch.float16 srcs = [ torch.randn([48, 25 * D]), torch.randn([192, 50 * D]), ] src = torch.cat([s.view([-1, D]) for s in srcs], dim=0).cuda().to(dtype) src.requires_grad_(True) indices = [] sources = [] elements_i = 0 for source_i in srcs: index = [i for i in range(source_i.shape[0])] random.Random(source_i.shape[0]).shuffle(index) indices.append( torch.tensor( index[: int(0.6 * source_i.shape[0])], dtype=torch.int64, device="cuda" ) ) sources.append( src[ elements_i : elements_i + source_i.shape[0] * source_i.shape[1] // D ].reshape(source_i.shape) ) elements_i += source_i.shape[0] * source_i.shape[1] // D # PT implem ref_out = torch.cat([s[i].flatten() for s, i in zip(sources, indices)], dim=0) gradient_out = torch.randn_like(ref_out) ref_out.backward(gradient_out) assert src.grad is not None ref_grad = src.grad.clone() src.grad = None # xFormers implem out = xops.index_select_cat(sources, indices) assert_allclose(out, ref_out, "fw") out.backward(gradient_out) assert src.grad is not None assert_allclose(src.grad, ref_grad, "src.grad")
EXA-1-master
exa/libraries/xformers/tests/test_indexing.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import pytest import torch from xformers.components import PatchEmbeddingConfig, build_patch_embedding from xformers.components.positional_embedding import ( POSITION_EMBEDDING_REGISTRY, build_positional_embedding, ) BATCH = 20 SEQ = 512 MODEL = 384 assert ( POSITION_EMBEDDING_REGISTRY.keys() ), "Positional encoding layers should have been registered" @pytest.mark.parametrize("encoding_name", POSITION_EMBEDDING_REGISTRY.keys()) @pytest.mark.parametrize("dropout", [0.0, 0.2]) def test_dimensions(encoding_name: str, dropout: float): test_config = { "name": encoding_name, "dim_model": MODEL, "vocab_size": 32, "dropout": dropout, "seq_len": SEQ, } # dummy, just check construction and dimensions in the FW pass encoding = build_positional_embedding(test_config) inputs = (torch.rand(BATCH, SEQ) * 10).abs().to(torch.int) _ = encoding(inputs) # Test that inputs having an embedding dimension would also work out if "name" == "sine": inputs = (torch.rand(BATCH, SEQ, MODEL) * 10).abs().to(torch.int) _ = encoding(inputs) def test_patch_embedding(): patch_embedding_config = { "in_channels": 3, "out_channels": 64, "kernel_size": 7, "stride": 4, "padding": 2, } # dummy, just check construction and dimensions in the FW pass patch_emb = build_patch_embedding(PatchEmbeddingConfig(**patch_embedding_config)) # Check BHWC inputs = torch.rand(BATCH, 32 * 32, 3) out = patch_emb(inputs) assert out.shape[-1] == 64 # Check BCHW inputs = torch.rand(BATCH, 3, 32, 32) out = patch_emb(inputs) assert out.shape[-1] == 64
EXA-1-master
exa/libraries/xformers/tests/test_embedding.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import pytest import torch # needed to register custom ops import xformers # noqa: F401 import xformers.components.attention.core from xformers.components.attention._sputnik_sparse import _csr_to_coo from xformers.components.attention.core import ( _broadcast_batch, _create_random_sparsity, _sparse_bmm, ) cuda_only = pytest.mark.skipif(not torch.cuda.is_available(), reason="requires CUDA") _devices = ["cpu", "cuda"] if torch.cuda.is_available() else ["cpu"] def _baseline_matmul_with_sparse_mask( a: torch.Tensor, b: torch.Tensor, mask: torch.Tensor ) -> torch.Tensor: assert a.ndim == b.ndim assert mask.ndim == a.ndim assert a.shape[-1] == b.shape[-2] assert a.shape[-2] == mask.shape[-2], f"{a.shape}, {mask.shape}" assert b.shape[-1] == mask.shape[-1], f"{b.shape}, {mask.shape}" assert a.shape[:-2] == b.shape[:-2], f"{a.shape}, {b.shape}" assert a.shape[:-2] == mask.shape[:-2], f"{a.shape}, {mask.shape}" idxs = mask.indices().unbind() b = b.transpose(-2, -1) # compute matmul for elements within the mask val = (a[idxs[:-2] + (idxs[-2], slice(None))] * b[idxs[:-2] + (idxs[-1], slice(None))]).sum(-1) # type: ignore out_shape = a.shape[:-1] + (b.shape[-2],) res = torch.sparse_coo_tensor(torch.stack(idxs), val, out_shape) return res def _baseline_matmul_with_dense_mask( a: torch.Tensor, b: torch.Tensor, mask: torch.Tensor ) -> torch.Tensor: res = a @ b res[~mask] = float("-inf") return res def _baseline_sparse_bmm(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: # need to use torch.sparse.mm to get gradients wrt sparse matrix a # TODO implement this in C++ / CUDA as this is slow! out = [] for ai, bi in zip(a, b): out.append(torch.sparse.mm(ai, bi)) return torch.stack(out, dim=0) @pytest.mark.parametrize("is_sparse", [True, False]) @pytest.mark.parametrize("contiguous", [True, False]) @pytest.mark.parametrize("device", _devices) def test_matmul_with_mask(device, contiguous, is_sparse): B, L, K = 8, 30, 32 prob = 0.5 a = torch.rand(B, L, K, device=device) b = torch.rand(B, K, L, device=device) if not contiguous: a = a.transpose(-2, -1).contiguous().transpose(-2, -1) b = b.transpose(-2, -1).contiguous().transpose(-2, -1) mask = torch.rand(B, L, L, device=device) > prob fn = torch.ops.xformers.matmul_with_mask fn_gt = _baseline_matmul_with_dense_mask if is_sparse: mask = mask.to_sparse() fn_gt = _baseline_matmul_with_sparse_mask res = fn(a, b, mask) res_gt = fn_gt(a, b, mask) if is_sparse: res = res.to_dense() res_gt = res_gt.to_dense() assert res.dtype == res_gt.dtype assert torch.allclose(res, res_gt) @pytest.mark.parametrize("is_sparse", [True, False]) @pytest.mark.parametrize("contiguous", [True, False]) @pytest.mark.parametrize("device", _devices) def test_matmul_with_mask_backward(device, contiguous, is_sparse): if device == "cuda" and is_sparse is False: # Skip test for now due to bug in torch 1.8 # See https://github.com/pytorch/pytorch/issues/54975 # Broken CUDA / torch 1.8 combination, awaiting an update return B, L, K = 8, 10, 16 prob = 0.5 a = torch.rand(B, L, K, device=device, requires_grad=True) b = torch.rand(B, K, L, device=device, requires_grad=True) if not contiguous: a = a.detach().transpose(-2, -1).contiguous().transpose(-2, -1).requires_grad_() b = b.detach().transpose(-2, -1).contiguous().transpose(-2, -1).requires_grad_() mask = torch.rand(B, L, L, device=device) > prob fn = torch.ops.xformers.matmul_with_mask fn_gt = _baseline_matmul_with_dense_mask if is_sparse: mask = mask.to_sparse() fn_gt = _baseline_matmul_with_sparse_mask def compute_grads(f): out = f(a, b, mask) if is_sparse: out = out.to_dense() out.sum().backward() compute_grads(fn) grad_a = a.grad.clone() grad_b = b.grad.clone() a.grad = None b.grad = None compute_grads(fn_gt) assert torch.allclose(grad_a, a.grad) assert torch.allclose(grad_b, b.grad) @pytest.mark.parametrize("device", _devices) def test_sddmm_sputnik(device): B, L, M, K = 8, 30, 16, 32 prob = 0.5 a = torch.rand(B, L, K, device=device) b = torch.rand(B, M, K, device=device).transpose(-2, -1) mask = _create_random_sparsity( torch.ones(B, L, M, dtype=torch.bool, device=device), prob ) mask_csr = xformers.components.attention.core.SparseCS(mask, device) fn = xformers.components.attention.core._matmul_with_mask mask = mask.to_sparse() res = fn(a, b, mask_csr) res_gt = fn(a, b, mask) res = res.to_dense() res_gt = res_gt.to_dense() assert res.dtype == res_gt.dtype assert torch.allclose(res, res_gt) @cuda_only @pytest.mark.parametrize("prob", [0.5, 1]) @pytest.mark.parametrize("K", [32, 17]) @pytest.mark.parametrize("M", [30, 17]) @pytest.mark.parametrize("L", [30, 17]) def test_sddmm_csr(L, M, K, prob): device = torch.device("cuda") # TODO add more checks for different nnz B = 8 a = torch.rand(B, L, K, device=device) b = torch.rand(B, M, K, device=device) mask = _create_random_sparsity( torch.ones(B, L, M, dtype=torch.bool, device=device), prob ) mask_csr = xformers.components.attention.core.SparseCS(mask, device) row_indices = mask_csr.row_indices row_offsets = mask_csr.row_offsets column_indices = mask_csr.column_indices fn = torch.ops.xformers.csr_sddmm fn_gt = torch.ops.xformers.sddmm_sputnik res = fn(a, b, row_indices, row_offsets, column_indices) res_gt = fn_gt(a, b, row_indices, row_offsets, column_indices) assert res.dtype == res_gt.dtype assert torch.allclose(res, res_gt, atol=1e-6) @cuda_only @pytest.mark.parametrize("nnz", [0, 4, 16, 20, 36]) def test_sddmm_csr_per_nnz(nnz): device = torch.device("cuda") B = 8 L, M, K = 1024, 1024, 32 a = torch.rand(B, L, K, device=device) b = torch.rand(B, M, K, device=device) mask = torch.zeros(L, M, dtype=torch.bool, device=device) mask.view(-1)[: nnz - 1] = True mask[-1, -1] = True mask_csr = xformers.components.attention.core.SparseCS(mask, device) row_indices = mask_csr.row_indices row_offsets = mask_csr.row_offsets column_indices = mask_csr.column_indices fn = torch.ops.xformers.csr_sddmm fn_gt = torch.ops.xformers.sddmm_sputnik res = fn(a, b, row_indices, row_offsets, column_indices) res_gt = fn_gt(a, b, row_indices, row_offsets, column_indices) assert res.dtype == res_gt.dtype assert torch.allclose(res, res_gt, atol=1e-6) @cuda_only @pytest.mark.parametrize("prob", [0.5, 1]) @pytest.mark.parametrize("K", [32, 17]) @pytest.mark.parametrize("M", [30, 17]) @pytest.mark.parametrize("L", [30, 17]) def test_sddmm_coo(L, M, K, prob): device = torch.device("cuda") # TODO add more checks for different nnz B = 8 a = torch.rand(B, L, K, device=device) b = torch.rand(B, M, K, device=device) mask = _create_random_sparsity( torch.ones(B, L, M, dtype=torch.bool, device=device), prob ) mask_csr = xformers.components.attention.core.SparseCS(mask, device) row_indices = mask_csr.row_indices row_offsets = mask_csr.row_offsets column_indices = mask_csr.column_indices fn = torch.ops.xformers.coo_sddmm fn_gt = torch.ops.xformers.sddmm_sputnik # convert from csr to coo row_coo, _ = _csr_to_coo(L, M, row_offsets, column_indices) res = fn(a, b, row_indices, row_coo, column_indices) res_gt = fn_gt(a, b, row_indices, row_offsets, column_indices) assert res.dtype == res_gt.dtype assert torch.allclose(res, res_gt, atol=1e-6) @pytest.mark.parametrize("device", _devices) def test_sddmm_sputnik_backward(device): contiguous = True B, L, M, K = 8, 10, 16, 32 prob = 0.5 a = torch.rand(B, L, K, device=device, requires_grad=True) b = torch.rand(B, M, K, device=device).transpose(-2, -1).requires_grad_(True) if not contiguous: a = a.detach().transpose(-2, -1).contiguous().transpose(-2, -1).requires_grad_() b = b.detach().transpose(-2, -1).contiguous().transpose(-2, -1).requires_grad_() mask = _create_random_sparsity( torch.ones(B, L, M, dtype=torch.bool, device=device), prob ) mask_csr = xformers.components.attention.core.SparseCS(mask, device) fn = xformers.components.attention.core._matmul_with_mask mask = mask.to_sparse() out_csr = fn(a, b, mask_csr) out_csr.values.sum().backward() grad_a = a.grad.clone() grad_b = b.grad.clone() a.grad = None b.grad = None # fn(a[None], b[None], mask).coalesce().values().sum().backward() # TODO check why this fails fn(a, b, mask).to_dense().sum().backward() assert torch.allclose(grad_a, a.grad, atol=1e-7) assert torch.allclose(grad_b, b.grad, atol=1e-7) @pytest.mark.parametrize("device", _devices) def test_sparse_softmax_sputnik(device): B, L = 8, 30 prob = 0.5 a = _create_random_sparsity(torch.rand(B, L, L, device=device), prob) a_csr = xformers.components.attention.core.SparseCS(a, device) fn = xformers.components.attention.core._softmax a = a.to_sparse() res = fn(a_csr) res_gt = fn(a) res = res.to_dense() res_gt = res_gt.to_dense() assert res.dtype == res_gt.dtype assert torch.allclose(res, res_gt) @pytest.mark.parametrize("device", _devices) def test_sparse_softmax_sputnik_backward(device): B, L = 8, 30 prob = 0.5 a = _create_random_sparsity(torch.rand(B, L, L, device=device), prob) a_csr = xformers.components.attention.core.SparseCS(a, device) fn = xformers.components.attention.core._softmax a = a.to_sparse() a_csr.values.requires_grad_(True) fn(a_csr).values.sum().backward() grad_a = a_csr.values.grad.clone() a.requires_grad_(True) fn(a).coalesce().values().sum().backward() assert torch.allclose( grad_a, a.grad.coalesce().values().reshape_as(grad_a), atol=1e-7 ) @pytest.mark.parametrize("device", _devices) def test_spmm_sputnik(device): B, L, K = 8, 30, 32 prob = 0.5 a = _create_random_sparsity(torch.rand(B, L, L, device=device), prob) b = torch.rand(B, L, K, device=device) a_csr = xformers.components.attention.core.SparseCS(a, device) fn = xformers.components.attention.core.bmm a = a.to_sparse() res = fn(a_csr, b) res_gt = fn(a, b) res = res res_gt = res_gt assert res.dtype == res_gt.dtype assert torch.allclose(res, res_gt) @pytest.mark.parametrize("device", _devices) def test_spmm_sputnik_backward(device): B, M, L, K = 8, 16, 30, 32 prob = 0.5 a = _create_random_sparsity(torch.rand(B, M, L, device=device), prob) b = torch.rand(B, L, K, device=device) b.requires_grad_(True) a_csr = xformers.components.attention.core.SparseCS(a, device) fn = xformers.components.attention.core.bmm a = a.to_sparse() a.requires_grad_(True) a_csr.values.requires_grad_(True) fn(a_csr, b).sum().backward() grad_a = a_csr.values.grad.clone() grad_b = b.grad.clone() b.grad = None fn(a, b).sum().backward() assert torch.allclose( grad_a, a.grad.coalesce().values().reshape_as(grad_a), atol=1e-7 ) assert torch.allclose(grad_b, b.grad, atol=1e-7) @cuda_only def test_csr_transpose(): B, L, K = 8, 30, 40 prob = 0.5 device = torch.device("cuda") a = _create_random_sparsity(torch.rand(B, L, K, device=device), prob) a_csr = xformers.components.attention.core.SparseCS(a, device) res = a_csr.transpose() res2 = res.transpose() assert torch.allclose(res.to_dense(), a.transpose(-2, -1)) assert torch.allclose(res2.to_dense(), a) @pytest.mark.parametrize("contiguous", [True, False]) @pytest.mark.parametrize("device", _devices) @pytest.mark.parametrize("prob", [0.95, 0.996]) # cover > 0.995 @pytest.mark.parametrize("N", [32, 64, 96]) # cover > 64 def test_sparse_bmm(device, contiguous, prob, N): B, M = 8, 64 a = torch.rand(B, M, N, device=device) a[a < prob] = 0 a = a.to_sparse() b = torch.rand(B, N, M, device=device) if not contiguous: a = a + a b = b.transpose(-2, -1).contiguous().transpose(-2, -1) res = _sparse_bmm(a, b) res_gt = _baseline_sparse_bmm(a, b) assert torch.allclose(res, res_gt) @pytest.mark.parametrize("contiguous", [True, False]) @pytest.mark.parametrize("device", _devices) def test_sparse_bmm_backward(device, contiguous): if device == "cuda": # Skip test for now due to bug in torch 1.8 # See https://github.com/pytorch/pytorch/issues/54975 # Broken CUDA / torch 1.8 combination, awaiting an update return B, L, K = 8, 10, 16 prob = 0.5 a = torch.rand(B, L, K, device=device) a[a < prob] = 0 a = a.to_sparse() b = torch.rand(B, K, L, device=device, requires_grad=True) if not contiguous: a = a + a b = b.detach().transpose(-2, -1).contiguous().transpose(-2, -1).requires_grad_() a.requires_grad_(True) def compute_grads(f): out = f(a, b) out.sum().backward() compute_grads(_sparse_bmm) grad_a = a.grad.clone().coalesce() grad_b = b.grad.clone() a.grad = None b.grad = None compute_grads(_baseline_sparse_bmm) new_grad_a = a.grad.coalesce() assert torch.allclose(grad_a.indices(), new_grad_a.indices()) assert torch.allclose(grad_a.values(), new_grad_a.values()) assert torch.allclose(grad_b, b.grad) @pytest.mark.parametrize("device", _devices) def test_sparse_coo_broadcast(device): B, L, K = 8, 10, 16 prob = 0.5 a = torch.rand(L, K, device=device) a[a < prob] = 0 a_sparse = a.to_sparse() res = _broadcast_batch(a_sparse, B) res_gt = a[None, :, :].expand(B, L, K) assert torch.allclose(res.to_dense(), res_gt)
EXA-1-master
exa/libraries/xformers/tests/test_custom_ops.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import pytest import torch from torch.utils._python_dispatch import TorchDispatchMode, _get_current_dispatch_mode import xformers.profiler from xformers.profiler.slow_ops_profiler import GemmOpComputeFlops, flop_mapping cuda_only = pytest.mark.skipif(not torch.cuda.is_available(), reason="requires CUDA") # Not using the PyTorch profiler, as it causes segfaults # in the CI ~30% of the time TEST_SCHEDULE = tuple( x for x in xformers.profiler.api.DEFAULT_SCHEDULE if x[0] is not xformers.profiler.PyTorchProfiler ) class GEMMShapeDispatcher(TorchDispatchMode): def __init__(self) -> None: super().__init__() self.mnk = (0, 0, 0) def __torch_dispatch__(self, func, types, args=(), kwargs=None): if kwargs is None: kwargs = {} compute_flops = flop_mapping[func._overloadpacket] if isinstance(compute_flops, GemmOpComputeFlops): self.mnk = compute_flops._get_mnk(args) return func(*args) def test_gemm_flops() -> None: M, N, K = 13, 17, 53 a = torch.empty([M, K]) b = torch.empty([K, N]) x = torch.empty([K]) with GEMMShapeDispatcher() as disp: a @ b assert disp.mnk == (M, N, K) with GEMMShapeDispatcher() as disp: a @ x assert disp.mnk == (M, 1, K) with GEMMShapeDispatcher() as disp: torch.nn.functional.linear(a, b.transpose(0, 1)) assert disp.mnk == (M, N, K) with GEMMShapeDispatcher() as disp: torch.addmm(torch.empty([1, 1]), a, b) assert disp.mnk == (M, N, K) B = 3 ba = torch.empty([B, M, K]) bb = torch.empty([B, K, N]) with GEMMShapeDispatcher() as disp: ba @ bb assert disp.mnk == (B * M, N, K) with GEMMShapeDispatcher() as disp: ba @ bb[:1] assert disp.mnk == (B * M, N, K) with GEMMShapeDispatcher() as disp: ba[:1] @ bb assert disp.mnk == (B * M, N, K) with GEMMShapeDispatcher() as disp: ba @ bb[0] assert disp.mnk == (B * M, N, K) with GEMMShapeDispatcher() as disp: torch.addbmm(torch.empty([1, 1]), ba, bb) assert disp.mnk == (B * M, N, K) @cuda_only def test_profiler_dispatcher_stream_workaround() -> None: x = torch.zeros([10, 10], device="cuda") with xformers.profiler.profile( "test_profiler_dispatcher_stream_workaround", schedule=TEST_SCHEDULE ): for _ in range(20): x.record_stream(torch.cuda.Stream()) # type: ignore xformers.profiler.step() @pytest.mark.parametrize( "device_bs_mm", [("cpu", 512, 1)] + ( [ # GPU bound ("cuda", 4096, 8), # CPU bound on GPU ("cuda", 1, 1), ] if torch.cuda.is_available() else [] ), ) def test_profiler_overhead(device_bs_mm) -> None: PROFILER_MAX_STEPS_OVERHEAD = 30 device, bs, model_mult = device_bs_mm model = torch.nn.Sequential( torch.nn.Linear(1024, 512 * model_mult), torch.nn.Linear(512 * model_mult, 1024), ) model.to(device) inp = torch.randn([bs, 1024], device=device) optim = torch.optim.Adam(model.parameters()) def one_step() -> None: model(inp).sum().backward() optim.step() optim.zero_grad() # Warmup for _ in range(2): one_step() # Run with profiler with xformers.profiler.profile( "test_profiler_overhead", module=model, schedule=TEST_SCHEDULE ): for _ in range(PROFILER_MAX_STEPS_OVERHEAD): one_step() assert not model._forward_hooks assert not model._forward_pre_hooks assert not model._backward_hooks assert _get_current_dispatch_mode() is None
EXA-1-master
exa/libraries/xformers/tests/test_profiler.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import math import random from typing import List, Optional, Sequence, Tuple, Type, TypeVar import pytest import torch from scipy.stats import binom_test from torch.utils.checkpoint import checkpoint import xformers.ops from xformers.ops import fmha from xformers.ops.fmha.common import AttentionOpBase from .utils import assert_allclose torch.backends.cuda.matmul.allow_tf32 = False cuda_only = pytest.mark.skipif(not torch.cuda.is_available(), reason="requires CUDA") compute_capability = (0, 0) if torch.cuda.is_available(): compute_capability = torch.cuda.get_device_capability("cuda") sm75_or_better_only = pytest.mark.skipif( compute_capability < (7, 5), reason="requires sm75+" ) _devices = ["cpu", "cuda"] if torch.cuda.is_available() else ["cpu"] ALL_FW_OPS: Sequence[Type[fmha.common.AttentionFwOpBase]] = [ fmha.cutlass.FwOp, fmha.flash.FwOp, fmha.triton.FwOp, fmha.small_k.FwOp, ] ALL_BW_OPS: Sequence[Type[fmha.common.AttentionBwOpBase]] = [ fmha.cutlass.BwOp, fmha.flash.BwOp, fmha.triton.BwOp, fmha.small_k.BwOp, ] T = TypeVar( "T", Type[fmha.common.AttentionFwOpBase], Type[fmha.common.AttentionBwOpBase] ) def _filter_unsupported_ops(ops: Sequence[T]) -> Sequence[T]: return [ op for op in ops if ( "cpu" in op.SUPPORTED_DEVICES or op.CUDA_MINIMUM_COMPUTE_CAPABILITY <= compute_capability ) and op.is_available() ] ALL_FW_OPS = _filter_unsupported_ops(ALL_FW_OPS) ALL_BW_OPS = _filter_unsupported_ops(ALL_BW_OPS) def sample_random_supported_fw( inp: fmha.Inputs, seed: int ) -> Type[fmha.common.AttentionFwOpBase]: r = random.Random(seed) fw_ops = list(ALL_FW_OPS) r.shuffle(fw_ops) for op in fw_ops: if op.supports(inp): return op raise NotImplementedError(f"Could not find a FW operator for: {inp}") def generate_test_shapes_B_Mq_Mkv_H_K_Kv(op): shapes = [] for B in op._TEST_BATCH_SIZES: for Mq in [32, 256]: for Mkv in [32, 64, 256]: for K in op._TEST_K: shapes.append((B, Mq, Mkv, 1, K, K)) Mq = 256 Mkv = 128 K = 32 H = 1 # Weird values of parameters for M in [2, 3, 15, 31, 32, 34, 68, 72, 90, 132, 136]: shapes.append((B, M, Mkv, H, K, K)) shapes.append((B, Mq, M, H, K, K)) for _K in [1, 2, 3, 31, 34, 36, 38, 40, 64, 256 + 2, 256 + 8, 512]: if _K <= op.SUPPORTED_MAX_K: shapes.append((B, Mq, Mkv, H, _K, _K)) # Different value for K / Kv if op.SUPPORTS_DIFFERENT_VALUE_EMBED: for _K in [32, 36, 64, 256 + 8]: shapes.append((B, Mq, Mkv, H, K, _K)) shapes.append((B, Mq, Mkv, H, _K, K)) # Exotic sizes for K in op._TEST_K: shapes.append((B, 16, 1024, H, K, K)) shapes.append((B, 1024, 16, H, K, K)) # Some number of heads for H in [3, 5, 12]: shapes.append((max(1, B // H), Mq, Mkv, H, K, K)) # Add some random shapes if op in [ fmha.cutlass.FwOp, fmha.cutlass.BwOp, fmha.flash.BwOp, ]: K_CHOICES = [8 * i for i in range(1, 256 // 8)] r = random.Random(0) for _ in range(20): B = r.randint(1, 400) Mq = r.randint(1, 500) Mkv = r.randint(1, 500) H = r.randint(2, 11) B = max(B // H, 1) K = r.choice(K_CHOICES) Kv = r.choice(K_CHOICES) if not op.SUPPORTS_DIFFERENT_VALUE_EMBED: Kv = K shapes.append((B, Mq, Mkv, H, K, Kv)) return shapes def _generate_op_device_dtype_biasT_B_Mq_Mkv_H_K_Kv( ops_list: Sequence[Type[fmha.AttentionOpBase]], max_shapes_per_op: int = 65000 ): r = random.Random(0) combination = [] ids = [] for op in ops_list: op_count = 0 for shape in generate_test_shapes_B_Mq_Mkv_H_K_Kv(op): has_one = False for device in _devices: if device not in op.SUPPORTED_DEVICES: continue for dtype in op.SUPPORTED_DTYPES: bias_type = r.choice(list(op.SUPPORTED_ATTN_BIAS_TYPES)) # Avoid using too much memory if bias_type not in [ type(None), fmha.attn_bias.LowerTriangularMask, ]: B, Mq, Mkv, H, K, Kv = shape B = min(B, 12) if ( bias_type is fmha.attn_bias.BlockDiagonalCausalFromBottomRightMask ): Mq, Mkv = min(Mkv, Mq), max(Mkv, Mq) + 2 shape = (B, Mq, Mkv, H, K, Kv) combination.append((op, device, dtype, bias_type, *shape)) ids.append( f"{op.NAME}-{device}-{str(dtype)}-{bias_type.__name__}" f"-{'-'.join([str(s) for s in shape])}" ) has_one = True if has_one: op_count += 1 if op_count > max_shapes_per_op: break # Some specific shapes for which we want to run without any mask bias_type = type(None) for shape in ( # Some strides/dims don't fit on an uint16 (1, 128, 128, 300, 128, 128), (13, 1, 67, 200, 8, 8), (1, 1 + 2**16, 4, 1, 8, 8), (1, 4, 1 + 2**16, 1, 8, 8), # TODO: Some strides don't fit on an uint32 # Crashes on Flash, Errors on Cutlass # (1, 1, 64000, 300, 128, 128) ): for device in _devices: if device not in op.SUPPORTED_DEVICES: continue for dtype in op.SUPPORTED_DTYPES: combination.append((op, device, dtype, bias_type, *shape)) ids.append( f"{op.NAME}-{device}-{str(dtype)}-{bias_type.__name__}" f"-{'-'.join([str(s) for s in shape])}" ) return { "argvalues": combination, "ids": ids, } parametrize_opFW_device_dtype_biasT_B_Mq_Mkv_H_K_Kv = pytest.mark.parametrize( "opFW_device_dtype_biasT_B_Mq_Mkv_H_K_Kv", **_generate_op_device_dtype_biasT_B_Mq_Mkv_H_K_Kv(ALL_FW_OPS), ) parametrize_opFW_device_dtype_biasT_B_Mq_Mkv_H_K_Kv__xs = pytest.mark.parametrize( "opFW_device_dtype_biasT_B_Mq_Mkv_H_K_Kv", **_generate_op_device_dtype_biasT_B_Mq_Mkv_H_K_Kv(ALL_FW_OPS, max_shapes_per_op=1), ) parametrize_opBW_device_dtype_biasT_B_Mq_Mkv_H_K_Kv = pytest.mark.parametrize( "opBW_device_dtype_biasT_B_Mq_Mkv_H_K_Kv", **_generate_op_device_dtype_biasT_B_Mq_Mkv_H_K_Kv(ALL_BW_OPS), ) parametrize_opBW_device_dtype_biasT_B_Mq_Mkv_H_K_Kv__xs = pytest.mark.parametrize( "opBW_device_dtype_biasT_B_Mq_Mkv_H_K_Kv", **_generate_op_device_dtype_biasT_B_Mq_Mkv_H_K_Kv(ALL_BW_OPS, max_shapes_per_op=1), ) def ref_attention(q, k, v, attn_bias=None, drop_mask=None, p=0.0, scale=None): if q.ndim == 4: assert p == 0.0 return ref_attention_bmhk(q, k, v, attn_bias=attn_bias) q = q.float() k = k.float() v = v.float() scale = scale if scale is not None else (1 / q.shape[-1] ** 0.5) q = q * scale attn = q @ k.transpose(-2, -1) if attn_bias is not None: if isinstance(attn_bias, xformers.ops.AttentionBias): # Always create in B,H,Mq,Mk format attn_bias_tensor = attn_bias.materialize( (q.shape[0], 1, q.shape[1], k.shape[1]), device=q.device, dtype=torch.float32, ) else: attn_bias_tensor = attn_bias if attn_bias_tensor.ndim == 4: assert q.shape[0] == attn_bias_tensor.shape[0] * attn_bias_tensor.shape[1] attn_bias_tensor = attn_bias_tensor.reshape( [-1, *attn_bias_tensor.shape[2:]] ) attn = attn + attn_bias_tensor.float() attn = attn.softmax(-1) if drop_mask is not None: attn = attn * (drop_mask / (1 - p)) return attn @ v def ref_attention_bmhk(q, k, v, attn_bias, scale=None) -> torch.Tensor: assert q.ndim == 4 def T(t): return t.permute((0, 2, 1, 3)).reshape( [t.shape[0] * t.shape[2], t.shape[1], t.shape[3]] ) if isinstance(attn_bias, xformers.ops.AttentionBias): attn_bias = attn_bias.materialize( (q.shape[0], q.shape[2], q.shape[1], k.shape[1]), device=q.device, dtype=torch.float32, ).reshape([q.shape[0] * q.shape[2], q.shape[1], k.shape[1]]) out = ref_attention(T(q), T(k), T(v), attn_bias, scale=scale) out = out.reshape([q.shape[0], q.shape[2], q.shape[1], v.shape[3]]) return out.permute((0, 2, 1, 3)) def _rand_seqlens( r: random.Random, bs: int, q_len: int, kv_len: int, more_keys_than_queries_per_block: bool, ) -> Tuple[Sequence[int], Sequence[int]]: if more_keys_than_queries_per_block: assert kv_len >= q_len q_len *= bs kv_len *= bs seqlens_q: List[int] = [] seqlens_k: List[int] = [] step_q = [max(1, q_len // 10), max(2, q_len // 2)] step_k = [max(1, kv_len // 10), max(2, kv_len // 2)] while sum(seqlens_q) < q_len and sum(seqlens_k) < kv_len: num_queries = r.randrange(*step_q) seqlens_q.append(num_queries) if more_keys_than_queries_per_block: # Must select at least `num_queries` keys # But also leave enough keys for later keys_left = kv_len - sum(seqlens_k, 0) queries_left = q_len - sum(seqlens_q[:-1], 0) assert keys_left >= queries_left seqlens_k.append(num_queries + r.randrange(0, keys_left - queries_left)) else: seqlens_k.append(r.randrange(*step_k)) seqlens_q[-1] = q_len - sum(seqlens_q[:-1]) seqlens_k[-1] = kv_len - sum(seqlens_k[:-1]) return seqlens_q, seqlens_k def _rand_seqlens_padded_k( r: random.Random, bs: int, q_len: int, kv_len: int ) -> Tuple[Sequence[int], Sequence[int]]: # we need qk_seqlens to be of len bsz. k_seqlens must be <= kv_len # no constraints on q_seqlens, but they must still sum to total_len k_seqlens = [r.randint(1, kv_len - 1) for _ in range(bs)] q_len *= bs q_idx = {0, q_len} while len(q_idx) < bs + 1: q_idx.add(r.randint(1, q_len - 1)) s = sorted(q_idx) q_seqlens = [e - b for b, e in zip(s[:-1], s[1:])] return q_seqlens, k_seqlens def _create_aligned_bias(B: int, H: int, Mq: int, Mkv: int, **kwargs) -> torch.Tensor: align_to = 8 return ( torch.randn( ( B, H, Mq, align_to * ((Mkv + align_to - 1) // align_to), ), **kwargs, ) * 3 )[:, :, :, :Mkv] def create_attn_bias( bias_type, batch_size: int, num_heads: int, q_len: int, kv_len: int, device, dtype, requires_grad: bool, fmt: str, op: Type[AttentionOpBase], ): if bias_type is None or isinstance(None, bias_type): return None r = random.Random("-".join(map(str, [batch_size, q_len, kv_len, dtype, fmt]))) if bias_type is torch.Tensor: if fmt == "BMK": batch_size *= num_heads num_heads = 1 # `small_k` only supports an expanded 1d bias if op in [fmha.small_k.FwOp, fmha.small_k.BwOp]: attn_bias = ( torch.randn( (batch_size, num_heads, 1, kv_len), device=device, dtype=dtype ) * 3 ) attn_bias = attn_bias.expand(batch_size, num_heads, q_len, kv_len) else: attn_bias = _create_aligned_bias( batch_size, num_heads, q_len, kv_len, device=device, dtype=dtype, ) # make sure it also works if the first columns are partially masked out attn_bias[0, 0, q_len - 1 :, : num_heads - 2] = -math.inf if requires_grad: attn_bias.requires_grad_(True) return attn_bias if bias_type is fmha.attn_bias.LowerTriangularMask: return fmha.attn_bias.LowerTriangularMask() if bias_type is fmha.attn_bias.LowerTriangularMaskWithTensorBias: attn_bias = _create_aligned_bias( batch_size, num_heads, q_len, kv_len, device=device, dtype=dtype, ) if requires_grad: attn_bias.requires_grad_(True) return fmha.attn_bias.LowerTriangularMaskWithTensorBias(attn_bias) if bias_type in [ fmha.attn_bias.BlockDiagonalMask, fmha.attn_bias.BlockDiagonalCausalMask, fmha.attn_bias.BlockDiagonalCausalFromBottomRightMask, ]: # This bias is not supported in BMK format assert fmt == "BMHK" block_diag = fmha.attn_bias.BlockDiagonalMask.from_seqlens( *_rand_seqlens( r, batch_size, q_len, kv_len, more_keys_than_queries_per_block=bias_type is fmha.attn_bias.BlockDiagonalCausalFromBottomRightMask, ) ) if bias_type is fmha.attn_bias.BlockDiagonalCausalMask: block_diag = block_diag.make_causal() if bias_type is fmha.attn_bias.BlockDiagonalCausalFromBottomRightMask: block_diag = block_diag.make_causal_from_bottomright() return block_diag if bias_type == fmha.attn_bias.BlockDiagonalCausalWithOffsetPaddedKeysMask: assert fmt == "BMHK" q, k = _rand_seqlens_padded_k(r, batch_size, q_len, kv_len) g_block_diag = ( fmha.attn_bias.BlockDiagonalCausalWithOffsetPaddedKeysMask.from_seqlens( q_seqlen=q, kv_padding=kv_len, kv_seqlen=k, causal_diagonal=torch.tensor( [r.randint(0, kk) for kk in k], dtype=torch.int32 ), ) ) return g_block_diag assert False, f"Unsupported bias type: {bias_type}" def get_bias_grad(attn_bias, clear: bool = False) -> Optional[torch.Tensor]: tensor_with_grad: Optional[torch.Tensor] = None if isinstance(attn_bias, torch.Tensor): tensor_with_grad = attn_bias if isinstance(attn_bias, fmha.attn_bias.LowerTriangularMaskWithTensorBias): tensor_with_grad = attn_bias._bias if tensor_with_grad is not None: grad = tensor_with_grad.grad if clear: tensor_with_grad.grad = None return grad return None def create_tensors( op: Type[AttentionOpBase], device, dtype, attn_bias_type, B, q_len, kv_len, h, k, kv, *, attn_bias_requires_grad: bool = False, fmt: str = "BMK", ): torch.manual_seed(B * q_len + kv_len * k + kv) scale = 3 if fmt == "BMK": query = torch.randn((B * h, q_len, k), device=device, dtype=dtype).mul_(scale) key = torch.randn((B * h, kv_len, k), device=device, dtype=dtype).mul_(scale) value = torch.randn((B * h, kv_len, kv), device=device, dtype=dtype).mul_(scale) else: assert fmt == "BMHK" query = torch.randn((B, q_len, h, k), device=device, dtype=dtype).mul_(scale) key = torch.randn((B, kv_len, h, k), device=device, dtype=dtype).mul_(scale) value = torch.randn((B, kv_len, h, kv), device=device, dtype=dtype).mul_(scale) if fmt == "BMK" and not fmha.common._is_bias_type_supported_in_BMK(attn_bias_type): attn_bias_type = None attn_bias = None if attn_bias_type is not None: attn_bias = create_attn_bias( attn_bias_type, batch_size=B, num_heads=h, q_len=q_len, kv_len=kv_len, dtype=dtype, device=device, requires_grad=attn_bias_requires_grad, fmt=fmt, op=op, ) if isinstance( attn_bias, ( fmha.attn_bias.BlockDiagonalMask, fmha.attn_bias.BlockDiagonalCausalWithOffsetPaddedKeysMask, ), ): query, key, value = [ x.reshape([1, -1, *x.shape[2:]]) for x in [query, key, value] ] inputs = fmha.Inputs(query=query, key=key, value=value, attn_bias=attn_bias) reasons = op.not_supported_reasons(inputs) if reasons: err_msg = f"{op.NAME}: unsupported ({'/'.join(reasons)})" # Ensure we free memory to avoid OOMs del query, key, value, attn_bias, inputs pytest.skip(err_msg) return query, key, value, attn_bias def bmhk2bmk(tensor) -> torch.Tensor: return ( tensor.permute((0, 2, 1, 3)) .contiguous() .view([tensor.shape[0] * tensor.shape[2], tensor.shape[1], tensor.shape[3]]) ) def bmk2bmhk(tensor, num_heads: int) -> torch.Tensor: return tensor.reshape([-1, num_heads, tensor.shape[1], tensor.shape[2]]).permute( (0, 2, 1, 3) ) @pytest.mark.parametrize("fmt", ["BMK", "BMHK"]) @pytest.mark.parametrize("packed", [False, True]) @parametrize_opFW_device_dtype_biasT_B_Mq_Mkv_H_K_Kv def test_forward( opFW_device_dtype_biasT_B_Mq_Mkv_H_K_Kv, packed, fmt, ): ( op, device, dtype, bias_type, batch_size, q_len, kv_len, h, k, kv, ) = opFW_device_dtype_biasT_B_Mq_Mkv_H_K_Kv if packed and not (k == kv and q_len == kv_len): pytest.skip( f"packed incompatible with `k ({k}) != kv ({kv})` or `q_len ({q_len}) != kv_len ({kv_len})`" ) if fmt == "BMK" and not fmha.common._is_bias_type_supported_in_BMK(bias_type): pytest.skip("BMK incompatible with this bias") query, key, value, attn_bias = create_tensors( *opFW_device_dtype_biasT_B_Mq_Mkv_H_K_Kv, fmt="BMHK" if packed else fmt ) if packed: c = torch.stack([query, key, value], 2) if fmt == "BMK": # bm3hk -> 3bhmk -> 3Bmk c = c.permute(2, 0, 3, 1, 4).view([3, -1, q_len, k]) query, key, value = c[0], c[1], c[2] # Re-create bias in the right format attn_bias = create_attn_bias( bias_type=bias_type, batch_size=batch_size, num_heads=h, q_len=q_len, kv_len=kv_len, device=device, dtype=dtype, requires_grad=False, fmt=fmt, op=op, ) else: # bm3hk -> 3 x bmhk query, key, value = xformers.ops.unbind(c, 2) assert not query.is_contiguous() out = xformers.ops.memory_efficient_attention_forward( query, key, value, attn_bias, op=op ) assert not out.isnan().any(), "Output has NaNs" out2 = xformers.ops.memory_efficient_attention_forward( query, key, value, attn_bias, op=op ) assert torch.allclose(out, out2, atol=0.0, rtol=0.0), "Non-deterministic behavior" ref = ref_attention(query, key, value, attn_bias) assert out.shape == ref.shape, out.shape assert_allclose( out.float(), ref, atol=op.ERROR_ATOL[dtype], rtol=op.ERROR_RTOL.get(dtype, 1e-5), ) @pytest.mark.parametrize("k_len", [5, 6, 32]) @pytest.mark.parametrize("batch_size", [1, 4]) @pytest.mark.parametrize("kv_len", [128, 512]) @pytest.mark.parametrize("q_len", [128, 512]) @pytest.mark.parametrize("device", _devices) def test_key_query_all_ones(device, q_len, kv_len, batch_size, k_len): scale = 3 query = torch.ones((batch_size, q_len, k_len), device=device) key = torch.ones((batch_size, kv_len, k_len), device=device) value = torch.randn((batch_size, kv_len, k_len), device=device) * scale out = xformers.ops.memory_efficient_attention(query, key, value) # this should be equivalent to the average over value ref = value.mean(1, keepdim=True).expand_as(query) assert_allclose(out, ref, atol=1e-5) def _block_diag_reshape_lse( lse: torch.Tensor, q_seqinfo: fmha.attn_bias._SeqLenInfo ) -> torch.Tensor: """LSE can be padded, let's remove the padding""" parts = [] for slice, (start, end) in zip(lse.unbind(0), q_seqinfo.intervals()): parts.append(slice[:, : end - start]) return torch.cat(parts, dim=1).unsqueeze(1) @parametrize_opFW_device_dtype_biasT_B_Mq_Mkv_H_K_Kv def test_logsumexp(opFW_device_dtype_biasT_B_Mq_Mkv_H_K_Kv): ( op, device, dtype, bias_type, batch_size, q_len, kv_len, h, k, kv, ) = opFW_device_dtype_biasT_B_Mq_Mkv_H_K_Kv query, key, value, attn_bias = create_tensors( *opFW_device_dtype_biasT_B_Mq_Mkv_H_K_Kv, fmt="BMK" ) _out, lse = xformers.ops.memory_efficient_attention_forward_requires_grad( query, key, value, op=op, attn_bias=attn_bias, ) attn = (query.float() / k**0.5) @ key.float().transpose(-2, -1) if attn_bias is not None: if isinstance(attn_bias, xformers.ops.AttentionBias): tensor_bias = attn_bias.materialize( (query.shape[0], 1, query.shape[1], key.shape[1]), device=query.device, dtype=torch.float32, ) else: assert isinstance(attn_bias, torch.Tensor) tensor_bias = attn_bias if tensor_bias.ndim == 4: tensor_bias = tensor_bias.reshape([-1, *tensor_bias.shape[2:]]) attn = attn + tensor_bias.float() ref_lse = attn.logsumexp(-1) if isinstance(attn_bias, fmha.attn_bias.BlockDiagonalMask): lse = _block_diag_reshape_lse(lse, attn_bias.q_seqinfo) assert_allclose(lse[:, 0, : ref_lse.shape[1]], ref_lse, atol=2e-4) @pytest.mark.parametrize("fmt", ["BMK", "BMHK"]) @pytest.mark.parametrize("grad_out_contiguous", [False, True]) @parametrize_opBW_device_dtype_biasT_B_Mq_Mkv_H_K_Kv def test_backward( opBW_device_dtype_biasT_B_Mq_Mkv_H_K_Kv, grad_out_contiguous, fmt, ): ( op_bw, device, dtype, bias_type, batch_size, q_len, kv_len, h, k, kv, ) = opBW_device_dtype_biasT_B_Mq_Mkv_H_K_Kv attn_bias_requires_grad = ( random.Random(q_len + kv_len * batch_size).randint(0, 1) > 0 ) query, key, value, attn_bias = create_tensors( *opBW_device_dtype_biasT_B_Mq_Mkv_H_K_Kv, attn_bias_requires_grad=attn_bias_requires_grad, fmt=fmt, ) op_fw = ( sample_random_supported_fw( fmha.Inputs(query=query, key=key, value=value, attn_bias=attn_bias), seed=q_len * kv + kv_len * k, ) if op_bw != fmha.cutlass.BwOp else fmha.cutlass.FwOp ) qkv = None if ( fmt == "BMHK" and query.shape[3] == value.shape[3] and query.shape[1] == value.shape[1] ): qkv = torch.stack([query, key, value], 2) qkv.requires_grad_(True) # bm3hk -> 3 x bmhk query, key, value = xformers.ops.unbind(qkv, 2) assert not query.is_contiguous() query.requires_grad_(True) key.requires_grad_(True) value.requires_grad_(True) if not op_bw.supports(fmha.Inputs(query, key, value, attn_bias)): pytest.skip("inputs not supported") out = xformers.ops.memory_efficient_attention( query, key, value, attn_bias, op=(op_fw, op_bw) ) grad_out = torch.ones_like(out) if grad_out_contiguous is False: grad_out = torch.tensor([1.0], dtype=query.dtype, device=device)[ None, None, : ].expand_as(out) out.backward(grad_out) if qkv is None and op_bw == fmha.cutlass.BwOp: assert query.stride() == query.grad.stride() grads = [] if qkv is None: grads = [query.grad, key.grad, value.grad] query.grad = None key.grad = None value.grad = None else: grads = [qkv.grad] qkv.grad = None if attn_bias_requires_grad: attn_bias_grad = get_bias_grad(attn_bias, clear=True) if attn_bias_grad is not None: grads.append(attn_bias_grad) ref = ref_attention(query, key, value, attn_bias) ref.backward(grad_out) assert_allclose( out.float(), ref.float(), "fw pass", atol=op_fw.ERROR_ATOL[dtype], rtol=op_fw.ERROR_RTOL.get(dtype, 1e-5), ) del out del grad_out del ref atol = op_bw.ERROR_ATOL[dtype] rtol = op_bw.ERROR_RTOL[dtype] grads_ref = [] grads_name = [] if qkv is None: assert isinstance(query.grad, torch.Tensor) assert isinstance(key.grad, torch.Tensor) assert isinstance(value.grad, torch.Tensor) grads_ref = [query.grad, key.grad, value.grad] grads_name = ["query", "key", "value"] else: assert isinstance(qkv.grad, torch.Tensor) grads_ref = [qkv.grad] grads_name = ["qkv"] if attn_bias_requires_grad: attn_bias_grad = get_bias_grad(attn_bias) if attn_bias_grad is not None: grads_ref.append(attn_bias.grad) grads_name.append("bias") del query del key del value del qkv assert len(grads_ref) == len( grads ), "Wrong number of gradients (maybe bias grad didn't backprop?)" for name, calc_grad, ref_grad in zip(grads_name, grads, grads_ref): assert_allclose( calc_grad, ref_grad, msg=f"{op_fw.NAME}+{op_bw.NAME}:{name}", atol=atol, rtol=rtol, ) def _vec_binom_test(x, n, p): """ vectorized implementation of scipy.stats.binom_test this makes our tests much faster reference: https://github.com/scipy/scipy/blob/v1.8.0/scipy/stats/_morestats.py#L2609-L2702 """ import numpy as np from scipy.stats import distributions x = np.atleast_1d(x) d = distributions.binom.pmf(x, n, p)[:, None] rerr = 1 + 1e-7 # x < p * n case i = np.arange(np.ceil(p * n), n + 1) y = np.sum(distributions.binom.pmf(i, n, p) <= d * rerr, axis=1) pval1 = distributions.binom.cdf(x, n, p) + distributions.binom.sf(n - y, n, p) # other case i = np.arange(np.floor(p * n) + 1) y = np.sum(distributions.binom.pmf(i, n, p) <= d * rerr, axis=1) pval2 = distributions.binom.cdf(y - 1, n, p) + distributions.binom.sf(x - 1, n, p) pval = np.where(x < p * n, pval1, pval2) pval = np.minimum(1.0, pval) return pval def _get_drop_mask(op, batch_size, q_len, kv_len, p, device): if op == fmha.cutlass.FwOp: mask = torch.empty((batch_size, 1, q_len, kv_len), device=device) rand_uniform = torch.ops.xformers._cutlass_rand_uniform(p, mask) mask = (rand_uniform > p).to(torch.float32) mask = mask.reshape(batch_size, q_len, kv_len) else: mask = torch.empty((batch_size, q_len, kv_len), device=device) mask = torch.ops.xformers._temp_dropout(mask, p) return mask @cuda_only @pytest.mark.parametrize("seed", [42, 124]) @pytest.mark.parametrize("p", [0.3, 0.7]) @pytest.mark.parametrize("k_len", [32]) @pytest.mark.parametrize("batch_size", [1, 2]) @pytest.mark.parametrize("kv_len", [3, 15, 32, 33]) @pytest.mark.parametrize("q_len", [2, 33]) @pytest.mark.parametrize("op", ALL_FW_OPS, ids=list(map(lambda t: t.NAME, ALL_FW_OPS))) def test_dropout(op, q_len, kv_len, batch_size, k_len, p, seed): device = "cuda" scale = 3 query = torch.randn((batch_size, q_len, k_len), device=device) * scale key = torch.randn((batch_size, kv_len, k_len), device=device) * scale value = torch.randn((batch_size, kv_len, k_len), device=device) * scale attn_bias = None inputs_for_support_check = fmha.Inputs(query, key, value, attn_bias, p, None) if not op.supports(inputs_for_support_check): del query, key, value, attn_bias pytest.skip(f"{op.NAME}: unsupported input") torch.manual_seed(seed) out = xformers.ops.memory_efficient_attention( query, key, value, attn_bias, p, op=(op, None) ) torch.manual_seed(seed) out2 = xformers.ops.memory_efficient_attention( query, key, value, attn_bias, p, op=(op, None) ) assert_allclose(out, out2, "dropout reproducibility") torch.manual_seed(seed) mask = _get_drop_mask(op, batch_size, q_len, kv_len, p, device) ref = ref_attention(query, key, value, attn_bias, mask, p) assert_allclose(out, ref, atol=2e-4), f"{(out - ref).abs().max()}" num_trials = 1000 p_val_tol = 1e-6 keep_prob = 1 - p masks = [] for i in range(num_trials): mask = _get_drop_mask(op, batch_size, q_len, kv_len, p, device) masks.append(mask.clone().cpu()) masks = torch.stack(masks, dim=0) p_value = binom_test(masks.sum(), masks.numel(), p=keep_prob) assert p_value > p_val_tol, p_value masks = masks.sum(0).flatten() p_values = _vec_binom_test(masks, num_trials, p=keep_prob) assert all(p_values > p_val_tol) def _test_dropout_backward(q_len, kv_len, batch_size, k, p, op, dtype): if dtype is torch.bfloat16 and compute_capability < (8, 0): pytest.skip("bf16 requires Sm80") if not op.is_available(): pytest.skip() scale = 3 device = "cuda" query = torch.randn((batch_size, q_len, k), device=device, dtype=dtype) * scale key = torch.randn((batch_size, kv_len, k), device=device, dtype=dtype) * scale value = torch.randn((batch_size, kv_len, k), device=device, dtype=dtype) * scale query.requires_grad_(True) key.requires_grad_(True) value.requires_grad_(True) grad_out = torch.ones_like(query) assert op.supports(fmha.Inputs(query=query, key=key, value=value, p=p)) seed = 42 torch.manual_seed(seed) out = xformers.ops.memory_efficient_attention(query, key, value, p=p, op=(op, None)) out.backward(grad_out) grad_q = query.grad grad_k = key.grad grad_v = value.grad query.grad = None key.grad = None value.grad = None torch.manual_seed(seed) mask = _get_drop_mask(op, batch_size, q_len, kv_len, p, device) ref = ref_attention(query, key, value, None, mask, p) ref.backward(grad_out) atol, rtol = ( fmha.AttentionBwOpBase.ERROR_ATOL[dtype], fmha.AttentionBwOpBase.ERROR_RTOL[dtype], ) assert_allclose( grad_v, value.grad, "grad_v", atol=atol, rtol=rtol, ) # TODO: Investigate why precision is worse if dtype in [torch.float16, torch.bfloat16]: atol = atol * 2 + 0.15 rtol = rtol * 2 assert_allclose( grad_q, query.grad, "grad_q", atol=atol, rtol=rtol, ) assert_allclose( grad_k, key.grad, "grad_k", atol=atol, rtol=rtol, ) @cuda_only @pytest.mark.parametrize("p", [0.3, 0.7]) @pytest.mark.parametrize("k", [5, 6, 32]) @pytest.mark.parametrize("batch_size", [1, 2]) @pytest.mark.parametrize("kv_len", [3, 15, 32, 33]) @pytest.mark.parametrize("q_len", [2, 33]) def test_dropout_backward_small_k(q_len, kv_len, batch_size, k, p): _test_dropout_backward( q_len, kv_len, batch_size, k, p, op=fmha.small_k.FwOp, dtype=torch.float32 ) @cuda_only @pytest.mark.parametrize("p", [0.000001, 0.3, 0.7]) @pytest.mark.parametrize("k", [16, 128, 256]) @pytest.mark.parametrize("batch_size", [1, 2]) @pytest.mark.parametrize("kv_len", [3, 248, 256]) @pytest.mark.parametrize("q_len", [3, 248, 256]) @pytest.mark.parametrize("dt", ["f16", "bf16", "f32"]) def test_dropout_backward_cutlass(dt, q_len, kv_len, batch_size, k, p): _test_dropout_backward( q_len, kv_len, batch_size, k, p, op=fmha.cutlass.FwOp, dtype={"f16": torch.float16, "bf16": torch.bfloat16, "f32": torch.float32}[dt], ) @pytest.mark.parametrize("k_len", [32]) @pytest.mark.parametrize("batch_size", [1]) @pytest.mark.parametrize("kv_len", [3 * 32]) @pytest.mark.parametrize("q_len", [3 * 32]) @pytest.mark.parametrize("device", _devices) def test_memory_efficient_attention_full_block_masked( device, q_len, kv_len, batch_size, k_len ): op_fw = fmha.small_k.FwOp op_bw = fmha.small_k.BwOp scale = 3 query = torch.randn((batch_size, q_len, k_len), device=device) * scale key = torch.randn((batch_size, kv_len, k_len), device=device) * scale value = torch.randn((batch_size, kv_len, k_len), device=device) * scale # in this case, most of the blocks in a row get masked attn_bias = torch.full((3, 32), float("-inf"), device=device) attn_bias[:2, :4] = 0 attn_bias = attn_bias.flatten()[None, None, :].expand(1, q_len, -1) out = xformers.ops.memory_efficient_attention( query, key, value, attn_bias, op=(op_fw, op_bw) ) ref = ref_attention(query, key, value, attn_bias) assert_allclose( out, ref, atol=op_fw.ERROR_ATOL[query.dtype], rtol=op_fw.ERROR_RTOL[query.dtype] ) query.requires_grad_(True) key.requires_grad_(True) value.requires_grad_(True) grad_out = torch.ones_like(query) out = xformers.ops.memory_efficient_attention(query, key, value, attn_bias) out.backward(grad_out) grad_q = query.grad grad_k = key.grad grad_v = value.grad query.grad = None key.grad = None value.grad = None ref = ref_attention(query, key, value, attn_bias) ref.backward(grad_out) atol = op_bw.ERROR_ATOL[query.dtype] rtol = op_bw.ERROR_RTOL[query.dtype] assert_allclose(grad_q, query.grad, "grad_q", atol=atol, rtol=rtol) assert_allclose(grad_k, key.grad, "grad_k", atol=atol, rtol=rtol) assert_allclose(grad_v, value.grad, "grad_v", atol=atol, rtol=rtol) @pytest.mark.parametrize("fmt", ["BMK", "BMHK"]) @parametrize_opBW_device_dtype_biasT_B_Mq_Mkv_H_K_Kv__xs def test_lowlevel_api_shapes(opBW_device_dtype_biasT_B_Mq_Mkv_H_K_Kv, fmt): query, key, value, attn_bias = create_tensors( *opBW_device_dtype_biasT_B_Mq_Mkv_H_K_Kv, fmt=fmt ) grad_out = torch.ones_like(query) query.requires_grad_(True) key.requires_grad_(True) value.requires_grad_(True) out, lse = xformers.ops.memory_efficient_attention_forward_requires_grad( query, key, value, attn_bias ) assert out.ndim == query.ndim dq, dk, dv = xformers.ops.memory_efficient_attention_backward( grad_out, out, lse, query, key, value, attn_bias ) assert dq.shape == query.shape assert dk.shape == key.shape assert dv.shape == value.shape @parametrize_opFW_device_dtype_biasT_B_Mq_Mkv_H_K_Kv__xs def test_cuda_streams( opFW_device_dtype_biasT_B_Mq_Mkv_H_K_Kv, ): ( op, device, dtype, bias_type, batch_size, q_len, kv_len, h, k, kv, ) = opFW_device_dtype_biasT_B_Mq_Mkv_H_K_Kv if device != "cuda": pytest.skip("Not CUDA") bias_type = None opFW_device_dtype_biasT_B_Mq_Mkv_H_K_Kv = [ op, device, dtype, bias_type, batch_size, q_len, kv_len, h, k, kv, ] s_hipri = torch.cuda.Stream(priority=-1) s_lopri = torch.cuda.Stream(priority=0) query, key, value, attn_bias = create_tensors( *opFW_device_dtype_biasT_B_Mq_Mkv_H_K_Kv, fmt="BMHK" ) torch.cuda.synchronize() with torch.cuda.stream(s_lopri): torch.cuda._sleep(100_000_000) # wait 100m cycles query *= 2 s_hipri.wait_stream(s_lopri) with torch.cuda.stream(s_hipri): # If the kernel is scheduled in the main stream # `query * 2` has not been executed yet out = xformers.ops.memory_efficient_attention(query, key, value, op=(op, None)) # Test that `s_lopri` is still sleeping # and that `query *= 2` has not been executed yet query2_main_stream = query * 2 torch.cuda.synchronize() assert torch.allclose(query2_main_stream, query), "Need to increase sleep time" ref = ref_attention(query, key, value) assert out.shape == ref.shape, out.shape assert_allclose( out.float(), ref.float(), atol=op.ERROR_ATOL[dtype], rtol=op.ERROR_RTOL.get(dtype, 1e-5), ) @parametrize_opBW_device_dtype_biasT_B_Mq_Mkv_H_K_Kv__xs def test_custom_scale(opBW_device_dtype_biasT_B_Mq_Mkv_H_K_Kv): p = 0.0 scale = 1.0 ( op_bw, device, dtype, _, _, q_len, kv_len, _, k, _, ) = opBW_device_dtype_biasT_B_Mq_Mkv_H_K_Kv torch.manual_seed(q_len + kv_len + k) if device != "cuda": pytest.skip("Not CUDA") query, key, value, attn_bias = create_tensors( *opBW_device_dtype_biasT_B_Mq_Mkv_H_K_Kv, fmt="BMK" ) inputs = fmha.Inputs( query=query, key=key, value=value, attn_bias=attn_bias, scale=scale ) op_fw = sample_random_supported_fw(inputs, seed=q_len * k + kv_len * k) grad_out = torch.ones_like(query) query.requires_grad_(True) key.requires_grad_(True) value.requires_grad_(True) reasons = op_fw.not_supported_reasons(inputs) if reasons: pytest.skip(f"{op_fw.NAME}: unsupported ({'/'.join(reasons)})") reasons = op_bw.not_supported_reasons(inputs) if reasons: pytest.skip(f"{op_bw.NAME}: unsupported ({'/'.join(reasons)})") # NOTE: we still need to scale the inputs to not blowup # the pre-softmax values (numerical stability) s = k**-0.5 out = xformers.ops.memory_efficient_attention( query * s, key, value, attn_bias, p, scale, op=(op_fw, op_bw) ) out.backward(grad_out) grad_q, grad_k, grad_v = query.grad, key.grad, value.grad query.grad = key.grad = value.grad = None ref = ref_attention(query * s, key, value, attn_bias, None, p, scale) ref.backward(grad_out) ref_grad_q, ref_grad_k, ref_grad_v = query.grad, key.grad, value.grad query.grad = key.grad = value.grad = None atol = op_fw.ERROR_ATOL[dtype] rtol = op_fw.ERROR_RTOL[dtype] assert_allclose(out.float(), ref.float(), "out", atol=atol, rtol=rtol) atol = op_bw.ERROR_ATOL[dtype] rtol = op_bw.ERROR_RTOL[dtype] assert_allclose(grad_q, ref_grad_q, "grad_q", atol=atol, rtol=rtol) assert_allclose(grad_k, ref_grad_k, "grad_k", atol=atol, rtol=rtol) assert_allclose(grad_v, ref_grad_v, "grad_v", atol=atol, rtol=rtol) def apply_attention(query, key, value, attn_bias, op_fw, proj): x = xformers.ops.memory_efficient_attention( query, key, value, attn_bias=attn_bias, op=(op_fw, None) ) x = proj(x) return x @pytest.mark.parametrize("use_reentrant", [False, True]) @parametrize_opFW_device_dtype_biasT_B_Mq_Mkv_H_K_Kv__xs def test_grad_checkpointing( opFW_device_dtype_biasT_B_Mq_Mkv_H_K_Kv, use_reentrant, ): fmt = "BMHK" ( op, device, dtype, bias_type, batch_size, q_len, kv_len, h, k, kv, ) = opFW_device_dtype_biasT_B_Mq_Mkv_H_K_Kv bias_type = None opFW_device_dtype_biasT_B_Mq_Mkv_H_K_Kv = ( op, device, dtype, bias_type, batch_size, q_len, kv_len, h, k, kv, ) query, key, value, attn_bias = create_tensors( *opFW_device_dtype_biasT_B_Mq_Mkv_H_K_Kv, fmt=fmt, ) qkv = None if ( fmt == "BMHK" and query.shape[3] == value.shape[3] and query.shape[1] == value.shape[1] ): qkv = torch.stack([query, key, value], 2) qkv.requires_grad_(True) # bm3hk -> 3 x bmhk query, key, value = xformers.ops.unbind(qkv, 2) assert not query.is_contiguous() query.requires_grad_(True) key.requires_grad_(True) value.requires_grad_(True) proj = torch.nn.Linear(kv, k, device=device, dtype=dtype) x = query for _ in range(5): x = checkpoint( apply_attention, x, key, value, attn_bias, op, proj, use_reentrant=use_reentrant, ) x.mean().backward() ALL_FW_OPS_NO_SMALLK = [op for op in ALL_FW_OPS if op is not fmha.small_k.FwOp] @pytest.mark.parametrize( "op", ALL_FW_OPS_NO_SMALLK, ids=[op.NAME for op in ALL_FW_OPS_NO_SMALLK] ) def test_unsupported_cpu(op: Type[fmha.AttentionFwOpBase]): q = torch.empty([1, 1, 1, 32]) with pytest.raises(ValueError): fmha.memory_efficient_attention(q, q, q, op=(op, None)) @cuda_only @pytest.mark.parametrize( "op", ALL_FW_OPS_NO_SMALLK, ids=[op.NAME for op in ALL_FW_OPS_NO_SMALLK] ) def test_unsupported_stride_lastdim(op: Type[fmha.AttentionFwOpBase]): q = torch.empty([1, 1, 32, 4], device="cuda", dtype=torch.float16).permute( 0, 1, 3, 2 ) try: fmha.memory_efficient_attention(q, q, q, op=(op, None)) except ValueError as e: if "Only work on pre-MLIR triton for now" in str(e): pytest.skip("Only work on pre-MLIR triton for now") q = q.contiguous() fmha.memory_efficient_attention(q, q, q, op=(op, None)) @cuda_only @pytest.mark.parametrize( "op", ALL_FW_OPS_NO_SMALLK, ids=[op.NAME for op in ALL_FW_OPS_NO_SMALLK] ) def test_unsupported_stride_alignment(op: Type[fmha.AttentionFwOpBase]): q = torch.empty([1, 2, 2, 33], device="cuda", dtype=torch.float16)[:, :, :, :32] try: fmha.memory_efficient_attention(q, q, q, op=(op, None)) except ValueError as e: if "Only work on pre-MLIR triton for now" in str(e): pytest.skip("Only work on pre-MLIR triton for now") q = q.contiguous() fmha.memory_efficient_attention(q, q, q, op=(op, None)) @sm75_or_better_only def test_unsupported_dropout_combine_flash_cutlass() -> None: q = torch.empty( [1, 4, 1, 16], device="cuda", dtype=torch.float16, requires_grad=True ) with pytest.raises(ValueError): out = fmha.memory_efficient_attention( q, q, q, p=0.1, op=(fmha.cutlass.FwOp, fmha.flash.BwOp) ) out.backward(out) with pytest.raises(ValueError): out = fmha.memory_efficient_attention( q, q, q, p=0.1, op=(fmha.flash.FwOp, fmha.cutlass.BwOp) ) out.backward(out) def test_attn_bias_causal() -> None: m = -math.inf causal_mask = torch.tensor([[0, m], [0, 0], [0, 0]]) tensor_bias = torch.tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]) attn_bias = fmha.attn_bias.LowerTriangularMask() assert_allclose(attn_bias.materialize(causal_mask.shape), causal_mask, "causal") attn_bias = attn_bias.add_bias(tensor_bias) assert_allclose( attn_bias.materialize(causal_mask.shape), tensor_bias + causal_mask, "causal+tensor_bias", ) def test_attn_bias_torch_tensor() -> None: tensor_bias = torch.tensor([[1.0, 2.0, 3.0], [3.0, 4.0, 5.0]]) attn_bias = fmha.attn_bias.LowerTriangularMaskWithTensorBias(tensor_bias) m = -math.inf causal_bias = torch.tensor([[0, m, m], [0, 0, m]]) assert_allclose( attn_bias.materialize((2, 3)), causal_bias + tensor_bias, "tensor_bias+causal" ) def test_attn_bias_blockdiag() -> None: queries = [ torch.randn([1, 3, 1, 8]), torch.randn([1, 2, 1, 8]), torch.randn([1, 5, 1, 8]), ] attn_bias, q = fmha.BlockDiagonalMask.from_tensor_list(queries) # Verify mask as_tensor = attn_bias.materialize((10, 10)) assert int((as_tensor != -math.inf).sum().item()) == 3 * 3 + 2 * 2 + 5 * 5 assert_allclose(as_tensor[0:3, 0:3], torch.zeros([3, 3]), "batch0") assert_allclose(as_tensor[3:5, 3:5], torch.zeros([2, 2]), "batch1") assert_allclose(as_tensor[5:, 5:], torch.zeros([5, 5]), "batch2") # Verify we can split it back queries2 = attn_bias.split(q) assert len(queries) == len(queries2) for q1, q2 in zip(queries, queries2): assert_allclose(q1, q2) def test_attn_bias_blockdiag_batched() -> None: queries = [ torch.randn([1, 3, 1, 8]), torch.randn([3, 2, 1, 8]), torch.randn([1, 5, 1, 8]), ] attn_bias, q = fmha.BlockDiagonalMask.from_tensor_list(queries) # Verify mask as_tensor = attn_bias.materialize((14, 14)) assert int((as_tensor != -math.inf).sum().item()) == 3 * 3 + 3 * 2 * 2 + 5 * 5 assert_allclose(as_tensor[0:3, 0:3], torch.zeros([3, 3]), "batch0") assert_allclose(as_tensor[3:5, 3:5], torch.zeros([2, 2]), "batch1.0") assert_allclose(as_tensor[5:7, 5:7], torch.zeros([2, 2]), "batch1.1") assert_allclose(as_tensor[7:9, 7:9], torch.zeros([2, 2]), "batch1.2") assert_allclose(as_tensor[9:, 9:], torch.zeros([5, 5]), "batch2") # Verify we can split it back queries2 = attn_bias.split(q) assert len(queries) == len(queries2) for q1, q2 in zip(queries, queries2): assert_allclose(q1, q2) def test_attn_bias_blockdiag_crossattn_causal() -> None: # Q / KV have different seqlen list_q = [ torch.randn([1, 3, 1, 8]), torch.randn([2, 1, 1, 8]), ] list_k = [ torch.randn([1, 2, 1, 8]), torch.randn([2, 3, 1, 8]), ] attn_bias, q, k, _ = fmha.attn_bias.BlockDiagonalMask.from_tensor_lists_qkv( list_q, list_k ) # Verify mask as_tensor = attn_bias.materialize((q.shape[1], k.shape[1])) assert int((as_tensor != -math.inf).sum().item()) == 3 * 2 + 2 * 3 * 1 assert_allclose(as_tensor[0:3, 0:2], torch.zeros([3, 2]), "batch0") assert_allclose(as_tensor[3:4, 2:5], torch.zeros([1, 3]), "batch1.0") assert_allclose(as_tensor[4:, 5:], torch.zeros([1, 3]), "batch1.1") # Also test causal version as_tensor = attn_bias.make_causal().materialize((q.shape[1], k.shape[1])) assert_allclose( as_tensor[3:4, 2:5], fmha.attn_bias.LowerTriangularMask().materialize((1, 3)), "batch1.0[causal]", ) # Verify we can split it back list_q2 = attn_bias.split_queries(q) assert len(list_q) == len(list_q2) for q1, q2 in zip(list_q, list_q2): assert_allclose(q1, q2) with pytest.raises(ValueError): attn_bias.split_queries(k) list_k2 = attn_bias.split_kv(k) assert len(list_k) == len(list_k2) for k1, k2 in zip(list_k, list_k2): assert_allclose(k1, k2) def test_attn_bias_blockdiag_crossattn_causal_with_prefix_qk_cond() -> None: list_q = [ torch.randn([1, 3, 1, 8]), ] list_k = [ torch.randn([1, 2, 1, 8]), ] attn_bias, q, k, _ = fmha.attn_bias.BlockDiagonalMask.from_tensor_lists_qkv( list_q, list_k ) with pytest.raises(ValueError): attn_bias.make_causal_from_bottomright() def test_attn_bias_blockdiag_crossattn_causal_with_prefix() -> None: # Q / KV have different seqlen list_q = [ torch.randn([1, 2, 1, 8]), torch.randn([2, 2, 1, 8]), ] list_k = [ torch.randn([1, 2, 1, 8]), torch.randn([2, 5, 1, 8]), ] attn_bias, q, k, _ = fmha.attn_bias.BlockDiagonalMask.from_tensor_lists_qkv( list_q, list_k ) as_tensor = attn_bias.make_causal_from_bottomright().materialize( (q.shape[1], k.shape[1]) ) m = -math.inf assert_allclose( as_tensor[0:2, 0:2], torch.tensor([[0, m], [0, 0]], dtype=torch.float32), "batch1.1[causal_with_prefix]", ) assert_allclose( as_tensor[2:4, 2:7], torch.tensor([[0, 0, 0, 0, m], [0, 0, 0, 0, 0]], dtype=torch.float32), "batch2.1[causal_with_prefix]", ) assert_allclose( as_tensor[4:6, 7:12], torch.tensor([[0, 0, 0, 0, m], [0, 0, 0, 0, 0]], dtype=torch.float32), "batch2.2[causal_with_prefix]", ) @cuda_only def test_attn_bias_padded() -> None: bsize, n_heads, d, padding = 8, 3, 8, 32 # Q / KV have different seqlen k = torch.randn((bsize, padding, n_heads, d)).cuda().half() k_seqlen = [5, 8, 7, 1, 9, 3, 12, 32] other = bsize - 1 v = torch.randn((bsize, padding, n_heads, d)).cuda().half() n_q_first = 4 q = [ torch.randn((1, n_q_first, n_heads, d)).cuda().half(), torch.randn((1, other, n_heads, d)).cuda().half(), ] q_cat = torch.cat([x.view(1, -1, n_heads, d) for x in q], dim=1) causal_diagonal = torch.tensor( [0] + [i - 1 for i in k_seqlen[1:]], dtype=torch.int32 ).cuda() q_seqlen = [n_q_first] + [1] * other attn_bias = fmha.attn_bias.BlockDiagonalCausalWithOffsetPaddedKeysMask.from_seqlens( q_seqlen=q_seqlen, kv_seqlen=k_seqlen, causal_diagonal=causal_diagonal, kv_padding=padding, ) v = v.view(1, -1, n_heads, d) k = k.view(1, -1, n_heads, d) scores = (q_cat.transpose(1, 2) @ k.transpose(1, 2).transpose(2, 3)).float() assert not scores.isnan().any() mask = torch.full_like(scores, -float("inf")) for i, (slen, spos, qlen) in enumerate( zip(k_seqlen, causal_diagonal.tolist(), q_seqlen) ): kseq_start = i * padding qstart = sum(q_seqlen[:i]) mask[:, :, qstart : qstart + qlen, kseq_start : kseq_start + slen] = torch.triu( mask[:, :, qstart : qstart + qlen, kseq_start : kseq_start + slen].float(), diagonal=spos + 1, ).float() scores += mask assert not scores.isnan().any() # 1,3,10,8 @ 1,3,8,256 -> 1,3,10,256 scores = torch.nn.functional.softmax(scores, -1).half() # torch.Size([1, 3, 3, 32]) @ torch.Size([1, 3, 32, 8]) output = scores @ v.transpose(1, 2) # 1,3,10,256 @ 1,3,256, 8 -> 1,3,10,8 output = output.transpose(1, 2).contiguous() fmha_output = fmha.memory_efficient_attention_forward( q_cat, k, v, attn_bias, scale=1.0 ) # assert torch.allclose(output, fmha_output) assert_allclose( output, fmha_output, atol=fmha.cutlass.FwOp.ERROR_ATOL[torch.float16], rtol=fmha.cutlass.FwOp.ERROR_RTOL[torch.float16], ) def test_attn_bias_from_seqlens() -> None: bias = fmha.attn_bias.BlockDiagonalMask.from_seqlens([3, 5, 1]) out = bias.split(torch.randn([1, 3 + 5 + 1, 16])) assert len(out) == 3 assert tuple(out[0].shape) == (1, 3, 16) @cuda_only def test_attn_bias_blockdiag_doc() -> None: """IMPORTANT: This is the example in the doc for `BlockDiagonalMask`. If this example needs to be updated, please also update the doc """ import torch from xformers.ops import fmha K = 16 dtype = torch.float16 device = "cuda" list_x = [ torch.randn([1, 3, 1, K], dtype=dtype, device=device), torch.randn([1, 6, 1, K], dtype=dtype, device=device), torch.randn([1, 2, 1, K], dtype=dtype, device=device), ] attn_bias, x = fmha.BlockDiagonalMask.from_tensor_list(list_x) linear = torch.nn.Linear(K, K * 3).to(device=device, dtype=dtype) # type: ignore q, k, v = linear(x).reshape([1, -1, 1, 3, K]).unbind(-2) out = fmha.memory_efficient_attention(q, k, v, attn_bias=attn_bias) list_out = attn_bias.split(out) print(list_out[0].shape) # [1, 3, 1, K] assert tuple(list_out[0].shape) == (1, 3, 1, K) @cuda_only class TestAttnBias: @staticmethod def create_tensors( dtype, B: int = 2, Mq: int = 32, Mkv: int = 32, H: int = 3, K: int = 16, Kv: int = 16, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: return ( torch.randn([B, Mq, H, K], device="cuda", dtype=dtype) * 3, torch.randn([B, Mkv, H, K], device="cuda", dtype=dtype) * 3, torch.randn([B, Mkv, H, Kv], device="cuda", dtype=dtype) * 3, torch.randn([B, H, Mq, Mkv], device="cuda", dtype=dtype) * 3, ) @staticmethod def pad_bias(bias: torch.Tensor) -> torch.Tensor: align_to = 16 if (bias.shape[-1] % align_to) == 0: return bias pad_count = align_to - (bias.shape[-1] % align_to) return torch.nn.functional.pad(bias, [0, pad_count])[:, :, :, : bias.shape[-1]] def test_f16_biasf32(self) -> None: q, k, v, bias = self.create_tensors(torch.float16) fmha.memory_efficient_attention(q, k, v, attn_bias=bias) bias = bias.to(torch.float32) with pytest.raises((ValueError, RuntimeError)): fmha.memory_efficient_attention(q, k, v, attn_bias=bias) def test_f32_biasf16(self) -> None: q, k, v, bias = self.create_tensors(torch.float32) fmha.memory_efficient_attention(q, k, v, attn_bias=bias) bias = bias.to(torch.float16) with pytest.raises((ValueError, RuntimeError)): fmha.memory_efficient_attention(q, k, v, attn_bias=bias) @pytest.mark.parametrize("dtype", [torch.float32, torch.float16]) def test_wrong_alignment(self, dtype) -> None: op = fmha.cutlass.FwOp q, k, v, bias = self.create_tensors(dtype, Mq=7, Mkv=5) try: fmha.memory_efficient_attention(q, k, v, attn_bias=bias, op=(op, None)) return except (ValueError, RuntimeError): pass # This case is not supported, likely due to padding issues # Let's make sure it works with padding assert bias.ndim == 4, bias.shape bias_padded = self.pad_bias(bias) out = fmha.memory_efficient_attention( q, k, v, attn_bias=bias_padded, op=(op, None) ).float() ref_out = ref_attention_bmhk(q, k, v, bias) assert_allclose( out, ref_out, atol=op.ERROR_ATOL[dtype], rtol=op.ERROR_RTOL[dtype] ) def test_permuted_attn_bias(self) -> None: op = fmha.cutlass.FwOp dtype = torch.float16 q, k, v, bias = self.create_tensors(dtype, Mq=7, Mkv=7) bias = bias.transpose(-1, -2) # now `stride(-1) != 1` # Either it works, or it raises an exception # but we should never get a CUDA error try: out = fmha.memory_efficient_attention( q, k, v, attn_bias=bias, op=(op, None) ).float() ref_out = ref_attention_bmhk(q, k, v, bias) assert_allclose( out, ref_out, atol=op.ERROR_ATOL[dtype], rtol=op.ERROR_RTOL[dtype] ) except (ValueError, RuntimeError): pass SM_AND_SHMEM_KBYTES = [ # https://docs.nvidia.com/cuda/cuda-c-programming-guide/#features-and-technical-specifications-technical-specifications-per-compute-capability (50, 64), (60, 64), (70, 96), (75, 64), (80, 163), (86, 99), (89, 99), # (90, 227), ] @cuda_only @pytest.mark.parametrize("dtype_str", ["f32", "f16", "bf16"]) @pytest.mark.parametrize( "sm_shmem", SM_AND_SHMEM_KBYTES, ids=[f"cc{sm}_shmem{shmem}kb" for sm, shmem in SM_AND_SHMEM_KBYTES], ) def test_has_kernel_for(sm_shmem: Tuple[int, int], dtype_str: str) -> None: dtype = {"f32": torch.float, "f16": torch.half, "bf16": torch.bfloat16}[dtype_str] sm, shmem_kbytes = sm_shmem if sm < 80 and dtype_str == "bf16": return for k in [16, 32, 64, 128, 256]: assert torch.ops.xformers._has_cutlassF_kernel_for( dtype, sm, shmem_kbytes * 1024, k ), f"k={k}" assert torch.ops.xformers._has_cutlassB_kernel_for( dtype, sm, shmem_kbytes * 1024, k ), f"k={k}"
EXA-1-master
exa/libraries/xformers/tests/test_mem_eff_attention.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import pytest import torch # Automatically fetch all registered attentions and Feedforwards from xformers.components import Activation from xformers.components.attention import ATTENTION_REGISTRY, AttentionMask from xformers.components.feedforward import FEEDFORWARD_REGISTRY from xformers.factory import ( xFormerDecoderBlock, xFormerDecoderConfig, xFormerEncoderBlock, xFormerEncoderConfig, ) from xformers.helpers.test_utils import init_torch_distributed_local BATCH = 2 SEQ = 64 MODEL = 64 DROPOUT = 0.5 GLOBAL_ATTENTION_RATIO = 0.1 # 10% of the tokens have a global view DEVICES = [torch.device("cuda")] VOCAB_SIZE = 64 @pytest.mark.parametrize("attn_dropout", [0.1]) @pytest.mark.parametrize("residual_dropout", [0.1]) @pytest.mark.parametrize("heads", [1, 2]) @pytest.mark.parametrize("activation", [a.value for a in Activation]) @pytest.mark.parametrize("attention_name", ATTENTION_REGISTRY.keys()) @pytest.mark.parametrize("feedforward_name", FEEDFORWARD_REGISTRY.keys()) @pytest.mark.parametrize("residual_norm_style", ["pre", "post", "deepnorm"]) @pytest.mark.parametrize("device", DEVICES) @pytest.mark.parametrize("reversible", [True, False]) @pytest.mark.skipif( not torch.cuda.is_available(), reason="This test requires a CUDA device" ) def test_xformer_encoder_block( attention_name: str, feedforward_name: str, heads: int, attn_dropout: float, residual_dropout: float, activation: Activation, residual_norm_style: str, device: torch.device, reversible: bool, ): block_size = 16 attention_config = { "name": attention_name, "dropout": attn_dropout, "causal": False, "window_size": SEQ // 8 + 1, "seq_len": SEQ, "attention_query_mask": torch.rand((SEQ, 1)) < GLOBAL_ATTENTION_RATIO, "dim_model": MODEL, "num_heads": heads, "dim_head": MODEL // heads, "layout": torch.eye(SEQ // block_size, SEQ // block_size, dtype=torch.long), "block_size": block_size, "num_rules": 2, # Compositional Attention } multi_head_config = { "num_heads": heads, "dim_model": MODEL, "residual_dropout": residual_dropout, "attention": attention_config, } feedforward_config = { "name": feedforward_name, "dim_model": MODEL, "dropout": DROPOUT, "activation": activation, "hidden_layer_multiplier": 4, "number_of_experts": 4, "gate": "top_2", } if feedforward_name == "MixtureOfExperts": init_torch_distributed_local() position_encoding_config = { "name": "sine", "dim_model": MODEL, "seq_len": SEQ, "vocab_size": VOCAB_SIZE, } block_config = xFormerEncoderConfig( dim_model=MODEL, multi_head_config=multi_head_config, feedforward_config=feedforward_config, position_encoding_config=position_encoding_config, residual_norm_style=residual_norm_style, reversible=reversible, ) # Test that the whole block can be instantiated block = xFormerEncoderBlock.from_config(block_config).to(device) # Check that the dimensions make sense, to a FW pass inputs = torch.rand(BATCH, SEQ, device=device) _ = block(inputs) # Check that we support attention masking, at least interface wise (do not check correctness yet) att_mask_tensor = torch.ones(SEQ, SEQ, dtype=torch.bool, device=device) att_mask = AttentionMask.from_bool(att_mask_tensor) if block.supports_attention_mask: _ = block(inputs, att_mask=att_mask) _ = block(inputs, att_mask=att_mask_tensor) else: with pytest.raises(AssertionError): # Check that passing an attention mask to a mechanism which does not support it raises # an exception _ = block(inputs, att_mask=att_mask) # Check that we support input masking, at least interface wise (do not check correctness yet) input_mask = torch.randn(SEQ, dtype=torch.float, device=device) input_mask[input_mask < 0.0] = -float("inf") _ = block(inputs, input_mask=input_mask) @pytest.mark.parametrize("attn_dropout", [0.1]) @pytest.mark.parametrize("residual_dropout", [0.1]) @pytest.mark.parametrize("causal", [True, False]) @pytest.mark.parametrize("heads", [1, 2]) @pytest.mark.parametrize("activation", [a.value for a in Activation]) @pytest.mark.parametrize("rotary_embeddings", [False, True]) @pytest.mark.parametrize("attention_name", ATTENTION_REGISTRY.keys()) @pytest.mark.parametrize("feedforward_name", FEEDFORWARD_REGISTRY.keys()) @pytest.mark.parametrize("residual_norm_style", ["pre", "post", "deepnorm"]) @pytest.mark.parametrize("device", DEVICES) @pytest.mark.skipif( not torch.cuda.is_available(), reason="This test requires a CUDA device" ) def test_xformer_decoder_block( attention_name: str, rotary_embeddings: bool, feedforward_name: str, heads: int, attn_dropout: float, residual_dropout: float, causal: bool, activation: Activation, residual_norm_style: str, device: torch.device, ): block_size = 16 attention_config = { "name": attention_name, "dropout": attn_dropout, "causal": causal, "window_size": SEQ // 8 + 1, "seq_len": SEQ, "dim_head": MODEL // heads, "attention_query_mask": torch.rand((SEQ, 1)) < GLOBAL_ATTENTION_RATIO, "layout": torch.eye(SEQ // block_size, SEQ // block_size, dtype=torch.long), "block_size": block_size, "num_rules": 2, # Compositional Attention } multi_head_config = { "num_heads": heads, "dim_model": MODEL, "residual_dropout": residual_dropout, "attention": attention_config, "use_rotary_embeddings": rotary_embeddings, } feedforward_config = { "name": feedforward_name, "dim_model": MODEL, "dropout": DROPOUT, "activation": activation, "hidden_layer_multiplier": 4, "number_of_experts": 4, "gate": "top_2", } if feedforward_name == "MixtureOfExperts": init_torch_distributed_local() position_encoding_config = { "name": "sine", "dim_model": MODEL, "seq_len": SEQ, "vocab_size": VOCAB_SIZE, } encoder_block_config = xFormerEncoderConfig( dim_model=MODEL, multi_head_config=multi_head_config, feedforward_config=feedforward_config, position_encoding_config=position_encoding_config, residual_norm_style=residual_norm_style, ) decoder_block_config = xFormerDecoderConfig( dim_model=MODEL, multi_head_config_masked=multi_head_config, multi_head_config_cross=multi_head_config, feedforward_config=feedforward_config, position_encoding_config=position_encoding_config, residual_norm_style=residual_norm_style, ) # Test that the whole block can be instantiated encoder_block = xFormerEncoderBlock.from_config(encoder_block_config).to(device) decoder_block = xFormerDecoderBlock.from_config(decoder_block_config).to(device) # Check that the dimensions make sense, to a FW pass inputs = torch.rand(BATCH, SEQ, device=device) encoded = encoder_block(inputs) _ = decoder_block( inputs, encoded ) # NOTE: does not make a lot of sense, just checking dimensions # Check that we support masking, at least interface wise (do not check correctness yet) att_mask_tensor = torch.ones(SEQ, SEQ, dtype=torch.bool, device=device) att_mask = AttentionMask.from_bool(att_mask_tensor) input_mask = torch.randn(SEQ, dtype=torch.float, device=device) input_mask[input_mask < 0.0] = -float("inf") encoded = encoder_block(inputs) if decoder_block.supports_attention_mask: _ = decoder_block( inputs, encoded, encoder_att_mask=att_mask, input_mask=input_mask ) _ = decoder_block( inputs, encoded, encoder_att_mask=att_mask_tensor, input_mask=input_mask ) # Test different sequence lengths when encoding and decoding if ( not decoder_block.requires_same_k_q_dimensions and not decoder_block.requires_squared_context_length ): if not causal or not decoder_block.causal_attention: _ = decoder_block(inputs[:, :-16], encoded) else: # Check that we assert properly with pytest.raises(AssertionError): _ = decoder_block(inputs[:, :-16], encoded) else: # Check that we assert properly with pytest.raises(AssertionError): _ = decoder_block(inputs[:, :-16], encoded) @pytest.mark.skipif( not torch.cuda.is_available(), reason="This test requires a CUDA device" ) def test_embedding_projection(): block_size = 16 attention_config = { "name": "scaled_dot_product", "dropout": 0.1, "causal": False, "window_size": SEQ // 8 + 1, "seq_len": SEQ, "attention_query_mask": torch.rand((SEQ, 1)) < GLOBAL_ATTENTION_RATIO, "dim_model": MODEL, "num_heads": 2, "dim_head": MODEL // 2, "layout": torch.eye(SEQ // block_size, SEQ // block_size, dtype=torch.long), "block_size": block_size, "num_rules": 2, # Compositional Attention } multi_head_config = { "num_heads": 2, "dim_model": MODEL, "residual_dropout": 0.1, "attention": attention_config, } feedforward_config = { "name": "MLP", "dim_model": MODEL, "dropout": DROPOUT, "activation": "relu", "hidden_layer_multiplier": 4, "number_of_experts": 4, "gate": "top_2", } position_encoding_config = { "name": "sine", "dim_model": 2 * MODEL, "seq_len": SEQ, "vocab_size": VOCAB_SIZE, } block_config = xFormerEncoderConfig( dim_model=MODEL, multi_head_config=multi_head_config, feedforward_config=feedforward_config, position_encoding_config=position_encoding_config, residual_norm_style="pre", reversible=False, ) device = torch.device("cuda") # Test that the whole block can be instantiated block = xFormerEncoderBlock.from_config(block_config).to(device) # Check that the dimensions make sense, to a FW pass inputs = torch.rand(BATCH, SEQ, device=device) _ = block(inputs) # Check that we support attention masking, at least interface wise (do not check correctness yet) if block.supports_attention_mask: att_mask = torch.ones(SEQ, SEQ, dtype=torch.bool, device=device) _ = block(inputs, att_mask=att_mask) # Check that we support input masking, at least interface wise (do not check correctness yet) input_mask = torch.randn(SEQ, dtype=torch.float, device=device) input_mask[input_mask < 0.0] = -float("inf") _ = block(inputs, input_mask=input_mask) @pytest.mark.parametrize("device", DEVICES) @pytest.mark.skipif( not torch.cuda.is_available(), reason="This test requires a CUDA device" ) def test_simplicial_embedding( device: torch.device, ): attention_config = { "name": "scaled_dot_product", "dropout": 0.1, "causal": False, "window_size": SEQ // 8 + 1, "seq_len": SEQ, "dim_model": MODEL, "num_heads": 4, } multi_head_config = { "num_heads": 4, "dim_model": MODEL, "residual_dropout": 0.1, "attention": attention_config, } feedforward_config = { "name": "MLP", "dim_model": MODEL, "dropout": DROPOUT, "activation": "relu", "hidden_layer_multiplier": 4, } position_encoding_config = { "name": "sine", "dim_model": MODEL, "seq_len": SEQ, "vocab_size": VOCAB_SIZE, } block_config = xFormerEncoderConfig( dim_model=MODEL, multi_head_config=multi_head_config, feedforward_config=feedforward_config, position_encoding_config=position_encoding_config, residual_norm_style="pre", reversible=False, simplicial_embeddings={"L": 4}, ) # Test that the whole block can be instantiated block = xFormerEncoderBlock.from_config(block_config).to(device) # Check that the dimensions make sense, to a FW pass inputs = torch.rand(BATCH, SEQ, device=device) _ = block(inputs) # Check that we support attention masking, at least interface wise (do not check correctness yet) att_mask = torch.ones(SEQ, SEQ, dtype=torch.bool, device=device) _ = block(inputs, att_mask=att_mask) # Check that we support input masking, at least interface wise (do not check correctness yet) input_mask = torch.randn(SEQ, dtype=torch.float, device=device) input_mask[input_mask < 0.0] = -float("inf") _ = block(inputs, input_mask=input_mask) # Check that a faulty L is caught block_config = xFormerEncoderConfig( dim_model=MODEL, multi_head_config=multi_head_config, feedforward_config=feedforward_config, position_encoding_config=position_encoding_config, residual_norm_style="pre", reversible=False, simplicial_embeddings={"L": 3}, ) # Test that the whole block can be instantiated with pytest.raises(AssertionError): block = xFormerEncoderBlock.from_config(block_config).to(device) _ = block(inputs)
EXA-1-master
exa/libraries/xformers/tests/test_block_factory.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import torch def assert_allclose( out: torch.Tensor, ref: torch.Tensor, msg: str = "failed", atol: float = 1e-8, rtol: float = 1e-5, ) -> None: assert out.shape == ref.shape, f"Shape: {out.shape} (expected: {ref.shape})" flatten_diff = ((out - ref).abs() - atol - ref.abs() * rtol).flatten() max_pos = flatten_diff.argmax() max_diff = flatten_diff[max_pos] num_different = torch.count_nonzero(flatten_diff > 0) percentage = num_different / flatten_diff.numel() del flatten_diff assert torch.allclose(out, ref, rtol=rtol, atol=atol), ( f"{msg}: " f"out={out.flatten()[max_pos]} and ref={ref.flatten()[max_pos]} (diff={max_diff} > 0)" f"/ atol={atol}, rtol={rtol}" f"/ total failing elements: {num_different}, percentage={percentage}" )
EXA-1-master
exa/libraries/xformers/tests/utils.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import pytest import torch from xformers.components.attention import maybe_sparsify from xformers.components.attention._sputnik_sparse import _dense_to_sparse from xformers.components.attention.core import SparseCS, _create_random_sparsity B = 2 M = 16 # not a nice round number, on purpose _devices_list = ["cpu", "cuda:0"] if torch.cuda.is_available() else ["cpu"] _devices = [torch.device(d) for d in _devices_list] @pytest.mark.parametrize("device", _devices) def test_logical_and(device): mask = _create_random_sparsity(torch.ones(B, M, M, dtype=torch.bool), 0.1) mask_cs = SparseCS(mask, device) # Check that we cannot & two sparse matrices (for now) with pytest.raises(Exception): _ = mask_cs & mask_cs # Check that & ones returns the same values mask_ones = mask_cs & torch.ones_like(mask, dtype=torch.bool, device=device) assert torch.allclose(mask_cs.to_dense().long(), mask_ones.to_dense().long()) # Check that & the inverse returns 0 all around mask_not = ~mask.to(device) assert (mask_cs & mask_not).values.numel() == 0 @pytest.mark.parametrize("device", _devices) @pytest.mark.parametrize("seq", [12, 32, 128]) def test_dense_sparse(seq, device): # Check that we can .to_dense() without crashing mask = torch.rand(seq, seq, device=device) > 0.1 mask_cs = SparseCS(mask, device) mask_back_forth = SparseCS(mask_cs.to_dense(), device) assert torch.allclose(mask_cs.to_dense().long(), mask_back_forth.to_dense().long()) @pytest.mark.parametrize("device", _devices) def test_device(device): mask = _create_random_sparsity( torch.ones(B, M, M, dtype=torch.bool, device=device), 0.1 ) assert mask.device.type == device.type sparse_mask = maybe_sparsify(mask) assert sparse_mask.device.type == device.type def _baseline_dense_to_sparse(matrix): import numpy as np # Extract the nonzero values. values = matrix.compress((matrix != 0).flatten()) # Calculate the offset of each row. mask = (matrix != 0).astype(np.int32) row_offsets = np.concatenate(([0], np.cumsum(np.add.reduce(mask, axis=1))), axis=0) # Create the row indices and sort them. # note: use torch.argsort to make it compatible as sorting is not stable in PyTorch row_indices = torch.argsort(-1 * torch.as_tensor(np.diff(row_offsets))).numpy() # Extract the column indices for the nonzero values. x = mask * (np.arange(matrix.shape[1]) + 1) column_indices = x.compress((x != 0).flatten()) column_indices = column_indices - 1 # Cast the desired precision. values = torch.as_tensor(values.astype(np.float32)) row_indices, row_offsets, column_indices = [ torch.as_tensor(x.astype(np.int32)) for x in [row_indices, row_offsets, column_indices] ] return values, row_indices, row_offsets, column_indices @pytest.mark.parametrize("device", _devices) @pytest.mark.parametrize("seq", [12, 32, 128]) def test_dense_to_sparse(seq, device): matrix = torch.rand(seq, seq, device=device) matrix[matrix > 0.9] = 0 baseline_res = _baseline_dense_to_sparse(matrix.cpu().numpy()) res = _dense_to_sparse(matrix, device=device) _idx_to_name = ["values", "row_indices", "row_offsets", "column_indices"] for idx, (bi, i) in enumerate(zip(baseline_res, res)): if idx != 1: # row_indices is the result of an argsort, which is not stable # for same number of elements assert torch.allclose(bi.to(device), i), f"error in {_idx_to_name[idx]}" assert bi.dtype == i.dtype assert i.device == device
EXA-1-master
exa/libraries/xformers/tests/test_sparsecs.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import pytest import torch # needed to register custom ops import xformers # noqa: F401 from xformers.ops import masked_matmul from xformers.sparse import BlockSparseTensor, SparseCSRTensor cuda_only = pytest.mark.skipif(not torch.cuda.is_available(), reason="requires CUDA") _devices = ["cpu", "cuda:0"] if torch.cuda.is_available() else ["cpu"] _tensor_types = [BlockSparseTensor, SparseCSRTensor] def _create_blocksparse_tensor( device, block_size=32, Z=8, C=2, H=64, W=64, dtype=torch.float32 ): layout = torch.randint(2, (C, H // block_size, W // block_size), device=device) layout[:, :, 0] = 1 layout[:, 0, :] = 1 values = torch.randn(Z, layout.sum(), block_size, block_size, device=device).to( dtype ) return BlockSparseTensor(values, layout) def _create_csr_tensor(device, dtype, shape, sparsity, divisible_by=4): matrix = torch.rand(shape, dtype=torch.float32, device=device).to(dtype) assert matrix.ndim == 3 keep = torch.rand_like(matrix[0], dtype=torch.float32) > sparsity nonzero = torch.nonzero(keep) nnz = nonzero.shape[0] # NOTE: need to make it a multiple of 4 for sputnik nonzero = nonzero[: (nnz - nnz % divisible_by)] i, j = nonzero.unbind(1) output = torch.zeros_like(matrix) bdim = torch.arange(matrix.shape[0], device=matrix.device)[:, None] output[bdim, i, j] = matrix[bdim, i, j] return SparseCSRTensor.from_dense(output) def _create_tensor(tensor_type, device, dtype, shape, sparsity): if tensor_type == BlockSparseTensor: block_size = 16 return _create_blocksparse_tensor( device=device, dtype=dtype, block_size=block_size ) elif tensor_type == SparseCSRTensor: return _create_csr_tensor( device=device, dtype=dtype, shape=shape, sparsity=sparsity ) def _seed(): torch.random.manual_seed(42) torch.cuda.manual_seed_all(42) def _get_dtype_atol(tensor_type, device: str): _seed() if tensor_type == BlockSparseTensor and "cuda" in device: # Upstream GPU blocksparse (Triton op) uses TF32 by default for all internal computations # TF32 has the precision of fp16 but the range of fp32 # See https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/ torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True # type: ignore return torch.float32, 1e-1 # Force pytorch to keep its computations as float32 (will default to tf32 with recent cuda and ampere+ GPU) torch.backends.cuda.matmul.allow_tf32 = False torch.backends.cudnn.allow_tf32 = False # type: ignore return torch.float32, 1e-5 @pytest.mark.parametrize("device", _devices) @pytest.mark.parametrize("func", [torch.add, torch.mul]) def test_sparse_binary_ops(func, device): # TODO: add for BlockSparseTensor as well N, H, W = 8, 64, 64 sparsity = 0.5 shape = (N, H, W) a_sparse = _create_tensor( SparseCSRTensor, device, dtype=torch.float32, shape=shape, sparsity=sparsity ) a = a_sparse.to_dense() b = a b_sparse = a_sparse res = func(a_sparse, b_sparse).to_dense() res_gt = func(a, b) assert torch.allclose(res, res_gt) @pytest.mark.parametrize("tensor_type", _tensor_types) @pytest.mark.parametrize("device", _devices) def test_masked_matmul(tensor_type, device): N, C, H, W, L = 8, 2, 64, 64, 32 sparsity = 0.7 dtype, atol = _get_dtype_atol(tensor_type, device) shape0 = (N, C, H, W) shape1 = (N, C, H, L) shape2 = (N, C, W, L) if tensor_type != BlockSparseTensor: shape0 = shape0[1:] shape1 = shape1[1:] shape2 = shape2[1:] mask_sparse = _create_tensor( tensor_type, device, dtype=torch.bool, shape=shape0, sparsity=sparsity ) mask = mask_sparse.to_dense() a = torch.randn(shape1, device=device, dtype=dtype) b = torch.randn(shape2, device=device, dtype=dtype) aa = a.clone() bb = b.clone() a.requires_grad_(True) b.requires_grad_(True) aa.requires_grad_(True) bb.requires_grad_(True) bt = b.transpose(-2, -1) bbt = bb.transpose(-2, -1) res_gt = masked_matmul(a, bt, mask) res = masked_matmul(aa, bbt, mask_sparse) res_dense = res.to_dense() res_dense = torch.where(mask, res_dense, torch.full_like(res_dense, float("-inf"))) assert res.dtype == res_gt.dtype assert torch.allclose(res_dense, res_gt, atol=atol) # try to workaround non-contiguous issues with triton for now res_gt.backward(torch.ones_like(res_gt)) res.values().backward(torch.ones_like(res.values())) assert torch.allclose(a.grad, aa.grad, atol=atol) assert torch.allclose(b.grad, bb.grad, atol=atol) @pytest.mark.parametrize("tensor_type", _tensor_types) @pytest.mark.parametrize("device", _devices) def test_bmm(tensor_type, device): N, C, H, W, L = 8, 2, 64, 64, 32 dtype, atol = _get_dtype_atol(tensor_type, device) sparsity = 0.8 shape0 = (N, C, H, W) shape1 = (N, C, W, L) if tensor_type != BlockSparseTensor: shape0 = shape0[1:] shape1 = shape1[1:] a_sparse = _create_tensor( tensor_type, device, dtype=dtype, shape=shape0, sparsity=sparsity ) a = a_sparse.to_dense() mask = a != 0 a_sparse.requires_grad_(True) a.requires_grad_(True) b = torch.randn(shape1, device=device, dtype=dtype) b2 = b.clone() b.requires_grad_(True) b2.requires_grad_(True) res_gt = a @ b res = a_sparse @ b2 assert res.dtype == res_gt.dtype assert torch.allclose( res, res_gt, atol=atol ), f"{torch.max(torch.abs(res-res_gt))} - tolerance: {atol}" res_gt.sum().backward() res.sum().backward() a_grad = a.grad.clone().detach() a_grad[~mask] = 0 assert torch.allclose(b.grad, b2.grad, atol=atol) assert torch.allclose( a_grad, a_sparse.grad.to_dense(), atol=atol ), f"{torch.max(torch.abs(a_grad-a_sparse.grad.to_dense()))}" @pytest.mark.parametrize("tensor_type", _tensor_types) @pytest.mark.parametrize("device", _devices) def test_sparse_softmax(tensor_type, device): N, C, H, W = 8, 2, 64, 64 dtype, atol = _get_dtype_atol(tensor_type, device) sparsity = 0.8 shape0 = (N, C, H, W) if tensor_type != BlockSparseTensor: shape0 = shape0[1:] a_sparse = _create_tensor( tensor_type, device, dtype=dtype, shape=shape0, sparsity=sparsity ) a = a_sparse.to_dense() mask = a != 0 a[~mask] = float("-inf") a_sparse.requires_grad_(True) a.requires_grad_(True) res_gt = torch.softmax(a, dim=-1) res_sparse = torch.softmax(a_sparse, dim=-1) res = res_sparse.to_dense() assert res.dtype == res_gt.dtype assert torch.allclose( res, res_gt, atol=atol ), f"{torch.max(torch.abs(res- res_gt))}" # WARNING: gradients are modified in-place! res_sparse.values().backward(torch.ones_like(res_sparse.values())) res_gt.backward(torch.ones_like(res_gt)) a_grad = a.grad.clone() a_grad[~mask] = 0 assert torch.allclose( a_grad, a_sparse.grad.to_dense(), atol=atol ), f"{torch.max(torch.abs(a_grad- a_sparse.grad.to_dense()))}" @pytest.mark.parametrize("tensor_type", _tensor_types) @pytest.mark.parametrize("device", _devices) def test_deepcopy(tensor_type, device): import copy N, C, H, W = 8, 2, 64, 64 dtype = torch.float32 sparsity = 0.8 shape0 = (N, C, H, W) if tensor_type != BlockSparseTensor: shape0 = shape0[1:] a_sparse = _create_tensor( tensor_type, device, dtype=dtype, shape=shape0, sparsity=sparsity ) b_sparse = copy.deepcopy(a_sparse) assert torch.equal(a_sparse, b_sparse) @pytest.mark.parametrize("tensor_type", _tensor_types) @pytest.mark.parametrize("device", _devices) def test_module_buffer(tensor_type, device): N, C, H, W = 8, 2, 64, 64 dtype = torch.float32 sparsity = 0.8 shape0 = (N, C, H, W) if tensor_type != BlockSparseTensor: shape0 = shape0[1:] a_sparse = _create_tensor( tensor_type, device, dtype=dtype, shape=shape0, sparsity=sparsity ) b_sparse = _create_tensor( tensor_type, device, dtype=dtype, shape=shape0, sparsity=sparsity ) module = torch.nn.Module() # test that register_buffer works module.register_buffer("a_sparse", a_sparse) assert module.a_sparse is a_sparse module.to(device) assert module.a_sparse.device == torch.device(device) state_dict = module.state_dict() assert "a_sparse" in state_dict assert torch.equal(a_sparse.to(device), state_dict["a_sparse"]) module.load_state_dict(state_dict) module.load_state_dict({"a_sparse": b_sparse}) assert torch.equal(module.a_sparse, b_sparse.to(device))
EXA-1-master
exa/libraries/xformers/tests/test_sparse_tensors.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. # CREDITS: Initially suggested by Jason Ramapuram, see # https://github.com/facebookresearch/xformers/issues/203 import pickle from copy import deepcopy import pytest from torch import nn from xformers import _is_triton_available from xformers.factory import xFormer, xFormerConfig test_config = [ { "reversible": False, "block_type": "encoder", "num_layers": 2, "dim_model": 768, "residual_norm_style": "pre", "multi_head_config": { "num_heads": 12, "residual_dropout": 0.1, "use_rotary_embeddings": True, "attention": { "name": "scaled_dot_product", "dropout": 0.1, "causal": False, }, }, "feedforward_config": { "name": "FusedMLP", "dropout": 0.1, "activation": "gelu", "hidden_layer_multiplier": 4, }, } ] class ViT(nn.Module): def __init__(self, mlp): super().__init__() test_config[0]["feedforward_config"]["name"] = mlp xformer_config = xFormerConfig(test_config) self.xformer = xFormer.from_config(xformer_config) MLPs = ["MLP"] if _is_triton_available(): MLPs.append("FusedMLP") @pytest.mark.parametrize("mlp", MLPs) def test_pickling(mlp): test = ViT(mlp) _ = pickle.dumps(test) _ = deepcopy(test)
EXA-1-master
exa/libraries/xformers/tests/test_pickling.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import pytest import torch from xformers.components.positional_embedding import RotaryEmbedding from xformers.components.positional_embedding.rotary import ( apply_rotary_pos_emb, rotate_half, ) DEVICES = ( [torch.device("cpu")] if not torch.cuda.is_available() else [ torch.device("cuda") ] # save a bit on CI for now, we have seperate cpu and gpu jobs ) BATCH = 2 SEQ = 32 HEADS = 2 EMB = 32 def test_helper_methods(): # rotate_half tens = torch.tensor([[0, 1, 2, 3], [3, 1, 2, 0], [0, 1, 0, 1], [1, 0, 1, 0]]) tens_rotated = rotate_half(tens) assert torch.equal( tens_rotated, torch.tensor([[-2, -3, 0, 1], [-2, 0, 3, 1], [0, -1, 0, 1], [-1, 0, 1, 0]]), ) # apply_rotary_pos_emb cos_test = torch.ones((1, 1, 4, 4)) sin_test = cos_test.clone() q_test = 3 * torch.ones((2, 2, 3, 4)) q_applied = apply_rotary_pos_emb(q_test, cos_test, sin_test) assert torch.equal( q_applied, torch.concat( ( torch.zeros((2, 2, 3, 2), dtype=torch.float), 6 * torch.ones((2, 2, 3, 2), dtype=torch.float), ), dim=-1, ), ) @pytest.mark.parametrize("device", DEVICES) @pytest.mark.parametrize("dtype", [torch.float16, torch.float32]) def test_rotary_embeddings(device, dtype): rotary = RotaryEmbedding(EMB).to(device) # Generate dummy inputs q = torch.ones( (BATCH, HEADS, SEQ, EMB), device=device, dtype=dtype ) # uniform on purpose k = q.clone() q_rot, k_rot = rotary(q, k) assert q_rot.dtype == q.dtype assert k_rot.dtype == k.dtype # Check that the sequences now encode relative position information q, k = q.float(), k.float() q_rot, k_rot = q_rot.float(), k_rot.float() att = torch.einsum("bhne,bhme->bhnm", q, k) att_rot = torch.einsum("bhne,bhme->bhnm", q_rot, k_rot) # - the attention for the same positions is not meaningfully changed assert torch.allclose( torch.diag(att[0, 0, :, :]), torch.diag(att_rot[0, 0, :, :]), rtol=0.1 ) # - the post-rotary attention is more focused on the diagonal diag_max = torch.max(torch.diag(att_rot[0, 0, :, :])) att_rot -= diag_max att_rot = ( att_rot <= 1e-4 ) # all non diagonal elements had lower attention than diagonal (+ float tolerance) assert torch.all(att_rot) # Test that different sequence lengths is ok _, _ = rotary(q[:, :, :-16, :], k)
EXA-1-master
exa/libraries/xformers/tests/test_rotary_embeddings.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import math from typing import Tuple import pytest import torch from xformers.components import ( InputProjection, InputProjectionConfig, MultiHeadDispatch, ) # Automatically test all the registered attentions from xformers.components.attention import ( _DENSITY_THRESHOLD, ATTENTION_REGISTRY, build_attention, ) DEVICES = ( [torch.device("cpu")] if not torch.cuda.is_available() else [torch.device("cuda")] ) BATCH = 2 SEQ = 128 if torch.cuda.is_available() else 36 MODEL = 128 if torch.cuda.is_available() else 16 GLOBAL_ATTENTION_RATIO = ( _DENSITY_THRESHOLD * 0.9 ) # Make sure that we test the sparse implementation, no matter the threshold assert ATTENTION_REGISTRY.keys(), "Attention layers should have been registered" _non_order_invariant_attentions = ["visual", "pooling"] def _get_multihead( attention_name, attn_dropout, res_dropout, causal, heads, device, skip_output_projection=False, use_seperate_proj_weights=True, ): test_config = { "name": attention_name, "dropout": attn_dropout, "causal": causal, "seq_len": SEQ, "window_size": SEQ // 8 + 1, # local attention "attention_query_mask": torch.rand((SEQ, 1)) < GLOBAL_ATTENTION_RATIO, "dim_model": MODEL, "num_heads": heads, "dim_head": MODEL / heads, "num_rules": 2, # Compositional Attention "r": 0.5, # random attention, ratio of tokens that the attention can attend to } if skip_output_projection: def noop(x): return x test_config["out_proj"] = noop # Add some blocksparse layout to test the corresponding attention block_size = 16 test_config["layout"] = torch.eye( SEQ // block_size, SEQ // block_size, dtype=torch.long ) test_config["block_size"] = block_size attention = build_attention(test_config) # build a multi head dispatch to test this attention mechanism multi_head = MultiHeadDispatch( seq_len=SEQ, dim_model=MODEL, residual_dropout=res_dropout, num_heads=heads, attention=attention, use_separate_proj_weight=use_seperate_proj_weights, ).to(device) return multi_head @pytest.mark.parametrize("attn_dropout", [0.0, 0.3]) @pytest.mark.parametrize("residual_dropout", [0.0, 0.1]) @pytest.mark.parametrize("causal", [True, False]) @pytest.mark.parametrize("heads", [1, 4]) @pytest.mark.parametrize( "attention_name", ATTENTION_REGISTRY.keys() - _non_order_invariant_attentions ) @pytest.mark.parametrize("device", DEVICES) def test_order_invariance( attention_name: str, heads: int, attn_dropout: float, residual_dropout: float, causal: bool, device: torch.device, ): torch.manual_seed(42) torch.cuda.manual_seed_all(42) multi_head = _get_multihead( attention_name, attn_dropout, residual_dropout, causal, heads, device, use_seperate_proj_weights=False, ) if ( int(math.sqrt(SEQ)) ** 2 != SEQ and multi_head.attention.requires_squared_context ): pytest.skip(f"{attention_name} requires squared sequence lengths") # Check that we can pass a smaller sequence seqs = ( [SEQ, SEQ // 2] if not multi_head.attention.requires_same_k_q_dimensions else [SEQ] ) for seq in seqs: # Check that the attention is invariant to a permutation of K, V inputs = torch.rand(BATCH, seq, MODEL, device=device) shuffle = torch.randperm(inputs.shape[1]) inputs_shuffled = inputs[:, shuffle, :].clone() results = multi_head(inputs, inputs, inputs) results_shuffled = multi_head(inputs, inputs_shuffled, inputs_shuffled) torch.allclose(results, results_shuffled) # Check that the attention is equivariant to a permutation of Q, # meaning that the result is permuted in the same way results_shuffled = multi_head(inputs_shuffled, inputs, inputs) torch.allclose(results[:, shuffle, :], results_shuffled) # Check that dropout actually drops some values if attn_dropout > 0: att_1 = multi_head(inputs, inputs_shuffled, inputs) att_2 = multi_head(inputs, inputs_shuffled, inputs) assert (att_1 != att_2).any() # Test AMP, if available if device.type == "cuda": with torch.cuda.amp.autocast(enabled=True): _ = multi_head(inputs, inputs_shuffled, inputs) @pytest.mark.parametrize("heads", [1, 4]) @pytest.mark.parametrize("attention_name", ["scaled_dot_product"]) @pytest.mark.parametrize("device", DEVICES) def test_kqv_ordering( attention_name: str, heads: int, device: torch.device, ): multi_head = _get_multihead(attention_name, 0.0, 0.0, False, heads, device) # Check kqv are not flipped # this will not catch all issues, but would catch a V being misplaced # make k and q complimentary, so that QKt is all zero and attention is uniform q = torch.cat( ( torch.rand((1, MODEL // 2), device=device), torch.zeros((1, MODEL // 2), device=device), ), dim=1, ).expand((BATCH, SEQ, MODEL)) k = torch.cat( ( torch.zeros((1, MODEL // 2), device=device), torch.rand((1, MODEL // 2), device=device), ), dim=1, ).expand((BATCH, SEQ, MODEL)) v = torch.rand(BATCH, SEQ, MODEL, device=device) # Normal call res = multi_head(query=q, key=k, value=v) for i in range(BATCH): assert torch.allclose(res[i, :, :], res[i, 0, :].unsqueeze(-2)) assert not torch.allclose(res[0, :, :], res[1, :, :]) # Flip qkv, and check that we invert the above check properly res_false = multi_head(query=v, key=k, value=q) assert torch.allclose(res_false[0, :, :], res_false[1, :, :]) @pytest.mark.parametrize("heads", [1, 4]) @pytest.mark.parametrize("attention_name", ["scaled_dot_product"]) @pytest.mark.parametrize("device", DEVICES) def test_different_seqlen( attention_name: str, heads: int, device: torch.device, ): multi_head = _get_multihead(attention_name, 0.0, 0.0, False, heads, device) # Check kqv are not flipped # this will not catch all issues, but would catch a V being misplaced # make k and q complimentary, so that QKt is all zero and attention is uniform q = torch.cat( ( torch.rand((1, MODEL // 2), device=device), torch.zeros((1, MODEL // 2), device=device), ), dim=1, ).expand((BATCH, SEQ, MODEL)) k = torch.cat( ( torch.zeros((1, MODEL // 2), device=device), torch.rand((1, MODEL // 2), device=device), ), dim=1, ).expand((BATCH, SEQ, MODEL)) v = torch.rand(BATCH, SEQ, MODEL, device=device) # Normal call res = multi_head(query=q, key=k, value=v) # Changing sequence length by dividing by two to simulate differing sequence length q2 = torch.cat( ( torch.rand((1, MODEL // 2), device=device), torch.zeros((1, MODEL // 2), device=device), ), dim=1, ).expand((BATCH, SEQ // 2, MODEL)) k2 = torch.cat( ( torch.zeros((1, MODEL // 2), device=device), torch.rand((1, MODEL // 2), device=device), ), dim=1, ).expand((BATCH, SEQ // 2, MODEL)) v2 = torch.rand(BATCH, SEQ // 2, MODEL, device=device) res2 = multi_head(query=q2, key=k2, value=v2) assert res.shape != res2.shape @pytest.mark.parametrize("proj_bias", [False, True]) @pytest.mark.parametrize("same_sizes", [False, True]) @pytest.mark.parametrize("same_settings", [False, True]) def test_inproj(proj_bias: bool, same_sizes: bool, same_settings: bool): test_config = { "name": "scaled_dot_product", "dropout": 0.1, "causal": False, "seq_len": SEQ, "window_size": SEQ // 8 + 1, "num_heads": 1, "dim_head": MODEL, } attention = build_attention(test_config) # Construct the initial projection, test different options in_params = InputProjectionConfig(MODEL, MODEL, proj_bias) if same_settings: in_proj = InputProjection(in_params, None, None) out_features = MODEL else: out_features = MODEL if same_sizes else MODEL // 2 in_params_flip = InputProjectionConfig(MODEL, out_features, proj_bias) in_proj = InputProjection( in_params_flip, # Q proj in_params_flip, # K proj in_params, # V proj ) # build a multi head dispatch to test this attention mechanism multi_head = MultiHeadDispatch( seq_len=SEQ, dim_model=MODEL, residual_dropout=0.1, num_heads=1, attention=attention, in_proj_container=in_proj, dim_key=out_features, dim_value=MODEL, ) # Check kqv are not flipped # this will not catch all issues, but would catch a V being misplaced # make k and q complimentary, so that QKt is all zero and attention is uniform q = torch.cat( ( torch.rand((1, MODEL // 2)), torch.zeros((1, MODEL // 2)), ), dim=1, ).expand((BATCH, SEQ, MODEL)) k = torch.cat( ( torch.zeros((1, MODEL // 2)), torch.rand((1, MODEL // 2)), ), dim=1, ).expand((BATCH, SEQ, MODEL)) v = torch.rand(BATCH, SEQ, MODEL) # just check that a FW does not assert out _ = multi_head(query=q, key=k, value=v) @pytest.mark.parametrize("heads", [1, 4]) @pytest.mark.parametrize("attention_name", ATTENTION_REGISTRY.keys()) @pytest.mark.parametrize("device", DEVICES) def test_different_kq_dimensions( attention_name: str, heads: int, device: torch.device, ): multi_head = _get_multihead(attention_name, 0.0, 0.0, False, heads, device) if multi_head.attention.requires_same_k_q_dimensions: # pyre-fixme[29]: The library function `pytest.skip` is not supported by Pyre. pytest.skip(f"{attention_name} does not support different k, q dimensions yet.") seq_q = SEQ // 2 q = torch.rand((BATCH, seq_q, MODEL), device=device) k = torch.rand((BATCH, SEQ, MODEL), device=device) v = torch.rand((BATCH, SEQ, MODEL), device=device) res = multi_head(query=q, key=k, value=v) assert res.shape == torch.Size([BATCH, seq_q, MODEL]) @pytest.mark.parametrize("heads", [1, 4]) @pytest.mark.parametrize("attention_name", ATTENTION_REGISTRY.keys()) @pytest.mark.parametrize("device", DEVICES) @pytest.mark.parametrize( "batch_sizes", [ (1, BATCH, BATCH), (BATCH, 1, BATCH), (BATCH, BATCH, 1), (1, 1, BATCH), (BATCH, 1, 1), (1, BATCH, 1), ], ) def test_broadcast_batch_dimension( attention_name: str, heads: int, device: torch.device, batch_sizes: Tuple[int, int, int], ): Q_BATCH, K_BATCH, V_BATCH = batch_sizes multi_head = _get_multihead(attention_name, 0.0, 0.0, False, heads, device) if ( int(math.sqrt(SEQ)) ** 2 != SEQ and multi_head.attention.requires_squared_context ): pytest.skip(f"{attention_name} requires squared sequence lengths") if multi_head.attention.requires_same_k_q_dimensions: # pyre-fixme[29]: The library function `pytest.skip` is not supported by Pyre. pytest.skip(f"{attention_name} does not support different k, q dimensions yet.") q = torch.rand((Q_BATCH, SEQ, MODEL), device=device) k = torch.rand((K_BATCH, SEQ, MODEL), device=device) v = torch.rand((V_BATCH, SEQ, MODEL), device=device) res = multi_head(query=q, key=k, value=v) assert res.shape == torch.Size([BATCH, SEQ, MODEL]) @pytest.mark.parametrize("heads", [1, 4]) @pytest.mark.parametrize("attention_name", ["scaled_dot_product", "favor"]) @pytest.mark.skipif(not torch.cuda.is_available(), reason="requires a CUDA gpu") def test_causal( attention_name: str, heads: int, ): """ Make sure that the causal flag is respected. The input data is orthogonal by design if causal is respected, but if the attention looks ahead this will fail """ torch.random.manual_seed(42) device = torch.device("cuda") multi_head = _get_multihead( attention_name, 0.0, 0.0, causal=True, heads=heads, device=device, skip_output_projection=True, ) k = ( torch.tril(torch.ones((SEQ, SEQ), device=device), diagonal=0) .unsqueeze(0) .expand(1, -1, -1) ) q = ( torch.triu(torch.ones((SEQ, SEQ), device=device), diagonal=0) .unsqueeze(0) .expand(1, -1, -1) ) v = ( torch.arange(SEQ, device=device) .float() .unsqueeze(0) .unsqueeze(-1) .expand(1, -1, SEQ) ) # Make sure that we don´t project, to keep the embeddings orthogonal multi_head.attention.requires_input_projection = False res = multi_head(query=q, key=k, value=v).squeeze(0) # Consolidate along the embedding, if causal was respected the amplitude should be sorted already res_sum = torch.sum(res, dim=1).cpu() assert torch.allclose(torch.sort(res_sum)[1], torch.arange(SEQ)) or torch.allclose( torch.sort(res_sum, descending=True)[1], torch.arange(SEQ) ), res_sum @pytest.mark.parametrize("attn_dropout", [0.0, 0.1]) @pytest.mark.parametrize("heads", [2]) @pytest.mark.parametrize("attention_name", ATTENTION_REGISTRY.keys()) @pytest.mark.skipif(torch.cuda.is_available(), reason="CUDA gpu not supported yet") def test_torch_script_ability( attention_name: str, heads: int, attn_dropout: float, ): if attention_name in {"favor", "global", "local", "random"}: # pyre-fixme[29]: The library function `pytest.skip` is not supported by Pyre. pytest.skip(f"{attention_name} does not support scripting yet.") device = torch.device("cpu") multi_head = _get_multihead(attention_name, attn_dropout, 0.0, False, heads, device) if ( int(math.sqrt(SEQ)) ** 2 != SEQ and multi_head.attention.requires_squared_context ): pytest.skip(f"{attention_name} requires squared sequence lengths") # input for tracing the function q = torch.rand((BATCH, SEQ, MODEL), device=device) k = torch.rand((BATCH, SEQ, MODEL), device=device) v = torch.rand((BATCH, SEQ, MODEL), device=device) # to make sure dropout behaves deterministically torch.random.manual_seed(42) # tracing the attention module traced_multi_head = torch.jit.trace(multi_head, (q, k, v)) # create new random inputs for testing the eager model and traced model q = torch.rand((BATCH, SEQ, MODEL), device=device) k = torch.rand((BATCH, SEQ, MODEL), device=device) v = torch.rand((BATCH, SEQ, MODEL), device=device) # to make sure dropout behaves deterministically need to set the seed again torch.random.manual_seed(42) res = multi_head(query=q, key=k, value=v) # to make sure dropout behaves deterministically need to set the seed again torch.random.manual_seed(42) res_traced = traced_multi_head(query=q, key=k, value=v) assert torch.allclose(res, res_traced) # TODO: way more unit tests..
EXA-1-master
exa/libraries/xformers/tests/test_attentions.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import torch from xformers.components.attention import GlobalAttention, ScaledDotProduct def test_global_attention(): b, s, d = 2, 90, 40 torch.cuda.manual_seed(42) torch.manual_seed(42) def test_ratio(global_attention_ratio: float): # Make sure that Global and Normal attention get the same results for the corresponding tokens a = torch.rand(b, s, d) config = { "name": "global", "dropout": 0.0, "causal": False, "max_seq_len": s, "attention_query_mask": torch.rand((s, 1)) < global_attention_ratio, } global_attention = GlobalAttention(**config) sdp_attention = ScaledDotProduct(**config) r_global = global_attention(a, a, a) r_dense = sdp_attention(a, a, a) # Check that the tokens which have access to the full attention give the same # results as the monolithic dense scaled_dot_product mask = config["attention_query_mask"][:, 0] assert torch.allclose(r_global[:, mask, :], r_dense[:, mask, :]) # Test with different levels of sparsity, to make sure that all the paths are covered test_ratio(0.02) test_ratio(0.5) test_ratio(1.0) # All queries allowed
EXA-1-master
exa/libraries/xformers/tests/test_global_attention.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from hydra.core.config_store import ConfigStore from xformers.factory.hydra_helper import import_xformer_config_schema def test_import_schema(): import_xformer_config_schema() cs = ConfigStore.instance() groups = cs.list("xformers") # check all groups registered assert groups == ["attention", "ff", "pe"] # check the attention is registered attentions = cs.list("xformers/attention") assert "favor_schema.yaml" in attentions
EXA-1-master
exa/libraries/xformers/tests/test_hydra_helper.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import random import pytest import torch import xformers.ops @pytest.mark.parametrize("contiguous", [True, False]) @pytest.mark.parametrize("dim", [0, 1, 2, 3, 4]) def test_unbind(dim: int, contiguous: bool): x = torch.randn([10, 20, 4, 10, 3]) x2 = x.clone() if not contiguous: perm = list(range(x.ndim)) random.Random(dim).shuffle(perm) # Let's hope we didn't pick identity x = x.permute(perm) x2 = x2.permute(perm) assert contiguous == x.is_contiguous() x.requires_grad_(True) x2.requires_grad_(True) # FW tensors = xformers.ops.unbind(x, dim) tensors2 = torch.unbind(x2, dim) assert len(tensors) == len(tensors2) for t1, t2 in zip(tensors, tensors2): assert torch.allclose(t1, t2) # BW grads = torch.unbind(torch.randn(x.shape), dim) zero = torch.zeros_like(tensors[0]) loss1 = sum(((g * t) for (g, t) in zip(grads, tensors)), zero) loss2 = sum(((g * t) for (g, t) in zip(grads, tensors2)), zero) assert torch.allclose(loss1, loss2) g = torch.randn_like(loss1) loss1.backward(g) loss2.backward(g) assert x.grad is not None assert x2.grad is not None assert torch.allclose(x.grad, x2.grad) @pytest.mark.parametrize("contiguous", [True, False]) @pytest.mark.parametrize("dim", [0, 1, 2, 3, 4]) def test_unbind_get_stack_strides(dim: int, contiguous: bool): def not_stacked(t, d): return xformers.ops.get_stack_strides(t, d) is None x = torch.randn([10, 20, 4, 4, 3]) ndim = x.ndim # Non-contiguous tensors if not contiguous: x = x.transpose(dim, (dim + 1) % ndim) assert contiguous == x.is_contiguous() tensors = xformers.ops.unbind(x, dim) tensors2 = torch.unbind(x.clone(), dim) for cat_dim in range(ndim): permute = list(range(ndim)) permute.pop(dim) permute.insert(cat_dim, dim) x_permuted = x.permute(permute) assert not_stacked([tensors2[0], tensors[1]], cat_dim), "different storage" assert not_stacked( [tensors[0], tensors[1].clone()], cat_dim ), "different storage" def test_slice(s): slices = [slice(None) for _ in range(ndim)] slices[cat_dim] = s reference = x_permuted[tuple(slices)] stacked = xformers.ops.stack_or_none(tensors[s], cat_dim) assert stacked is not None assert ( xformers.ops.get_stack_strides(tensors[s], cat_dim) == reference.stride() ) assert torch.allclose(stacked, torch.stack(tensors2[s], cat_dim)) assert stacked.storage().data_ptr() == tensors[0].storage().data_ptr() # tensors test_slice(slice(None)) # tensors[1:] test_slice(slice(1, None)) # tensors[:2] test_slice(slice(None, 2)) # tensors[::2] test_slice(slice(None, None, 2))
EXA-1-master
exa/libraries/xformers/tests/test_unbind.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import random import pytest import torch from xformers.components.attention import OrthoFormerAttention, ScaledDotProduct from xformers.components.attention.utils import maybe_merge_masks @pytest.mark.skipif(not torch.cuda.is_available(), reason="requires CUDA") @pytest.mark.parametrize( "landmark_selection", ["orthogonal", "kmeans", "kmeans_spherical", "random"] ) @pytest.mark.parametrize("num_landmarks", [30, 33, 905]) @pytest.mark.parametrize("subsample_fraction", [1.0, 0.3]) def test_ortho_attention( landmark_selection: str, num_landmarks: int, subsample_fraction: float ): # TODO: conv_kernel_size parameter not set to None fails this test. Investigate. b, s, d = 8, 900, 32 num_heads = 2 seed = 42 torch.random.manual_seed(seed) random.seed(seed) ortho_config = { "name": "orthoformer", "dropout": 0.0, "num_landmarks": num_landmarks, "num_heads": num_heads, "landmark_selection": landmark_selection, "subsample_fraction": subsample_fraction, } sdp_config = { "name": "scaled_dot_product", "dropout": 0.0, } a = torch.rand(b, s, d, device=torch.device("cuda")) def test_close_to_sdp(): # Make sure that Ortho and Normal attention are not too far off. ortho_attention = OrthoFormerAttention(**ortho_config).cuda() sdp_attention = ScaledDotProduct(**sdp_config).cuda() r_ortho = ortho_attention(a, a, a, att_mask=None) r_sdp = sdp_attention(a, a, a, att_mask=None) assert torch.allclose(r_ortho, r_sdp, rtol=0.02, atol=1e-1) # Make sure that OrthoFormerAttention and Normal attention are not too far off. ortho_attention = OrthoFormerAttention(**ortho_config).cuda() sdp_attention = ScaledDotProduct(**sdp_config).cuda() r_ortho = ortho_attention(a, a, a, att_mask=None) r_sdp = sdp_attention(a, a, a, att_mask=None) assert torch.allclose(r_ortho, r_sdp, rtol=0.02, atol=1e-1) def test_att_mask_ignored(): # If an sxs attention mask is passed in, it should be ignored. # Results should be the same as if no mask was passed in. ortho_attention = OrthoFormerAttention(**ortho_config).cuda() sdp_attention = ScaledDotProduct(**sdp_config).cuda() key_padding_mask = None att_mask = torch.randint(0, 2, (s, s), device=torch.device("cuda")).to( dtype=torch.bool ) sdp_mask = maybe_merge_masks( att_mask=None, key_padding_mask=key_padding_mask, batch_size=b // num_heads, src_len=s, num_heads=num_heads, ) r_ortho = ortho_attention( a, a, a, att_mask=att_mask, key_padding_mask=key_padding_mask ) r_sdp = sdp_attention(a, a, a, att_mask=sdp_mask) assert torch.allclose(r_ortho, r_sdp, rtol=0.02, atol=1e-1) test_close_to_sdp() test_att_mask_ignored()
EXA-1-master
exa/libraries/xformers/tests/test_ortho_attention.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import random import pytest import torch from xformers import _is_triton_available if _is_triton_available(): from xformers.benchmarks.benchmark_pytorch_transformer import evaluate, train from xformers.factory.model_factory import xFormer, xFormerConfig BATCH = 20 SEQ = 32 EMB = 8 VOCAB = 8 HEADS = 4 DROP = 0.1 LAYERS = 2 ACTIVATION = "relu" _test_config_encoder = { "block_type": "encoder", "dim_model": EMB, "num_layers": LAYERS, "residual_norm_style": "post", "multi_head_config": { "num_heads": HEADS, "residual_dropout": DROP, "bias": True, "attention": { "name": "scaled_dot_product", "dropout": DROP, "seq_len": SEQ, }, "dim_model": EMB, }, "feedforward_config": { "name": "MLP", "dropout": DROP, "activation": ACTIVATION, "hidden_layer_multiplier": 4, "dim_model": EMB, }, } _test_config_decoder = { "block_type": "decoder", "dim_model": EMB, "num_layers": LAYERS, "residual_norm_style": "post", "multi_head_config_masked": { "num_heads": HEADS, "residual_dropout": DROP, "dim_model": EMB, "bias": True, "attention": { "name": "scaled_dot_product", "dropout": DROP, "seq_len": SEQ, }, }, "multi_head_config_cross": { "num_heads": HEADS, "residual_dropout": DROP, "dim_model": EMB, "bias": True, "attention": { "name": "scaled_dot_product", "dropout": DROP, "seq_len": SEQ, }, }, "feedforward_config": { "name": "MLP", "dropout": DROP, "activation": ACTIVATION, "hidden_layer_multiplier": 4, "dim_model": EMB, }, } _test_config = [_test_config_encoder, _test_config_decoder] def reset_seeds(): torch.manual_seed(42) torch.cuda.manual_seed(42) random.seed(42) @pytest.mark.skipif( not torch.cuda.is_available(), reason="This test requires a gpu" ) def test_pytorch_encoder_parity(device=torch.device("cuda")): # Build both a xFormers and Pytorch model reset_seeds() model_xformers = xFormer.from_config(xFormerConfig([_test_config_encoder])).to( device ) print(model_xformers) model_pytorch = torch.nn.TransformerEncoder( torch.nn.TransformerEncoderLayer( d_model=EMB, nhead=HEADS, dim_feedforward=4 * EMB, dropout=DROP, activation=ACTIVATION, batch_first=True, # (batch, seq, feature) device=device, ), num_layers=LAYERS, ) print(model_pytorch) optim_xformers = torch.optim.SGD( model_xformers.parameters(), lr=1e-3, momentum=0.9 ) optim_pytorch = torch.optim.SGD( model_pytorch.parameters(), lr=1e-3, momentum=0.9 ) # Check that both models can be trained to comparable results eval_start_xformer = evaluate(model_xformers, BATCH, SEQ, EMB, device) eval_start_pytorch = evaluate(model_pytorch, BATCH, SEQ, EMB, device) print("starting point: ", eval_start_pytorch, eval_start_xformer) train(model_pytorch, optim_pytorch, "pytorch", 500, BATCH, SEQ, EMB, device) train(model_xformers, optim_xformers, "xformers", 500, BATCH, SEQ, EMB, device) # Check that we can classify this dummy example # Arbitrary threshold eval_stop_xformer = evaluate(model_xformers, BATCH, SEQ, EMB, device) eval_stop_pytorch = evaluate(model_pytorch, BATCH, SEQ, EMB, device) print("end point: ", eval_stop_pytorch, eval_stop_xformer) fit_ratio_xformer = eval_start_xformer / eval_stop_xformer fit_ratio_pytorch = eval_start_pytorch / eval_stop_pytorch print("fit ratios: ", fit_ratio_pytorch, fit_ratio_xformer) # Catch a broken training assert fit_ratio_xformer > 120 assert fit_ratio_pytorch > 120 # Catch a significant difference in between the two assert ( abs(eval_start_xformer - eval_start_pytorch) < 1e-6 ) # initial eval is about 25, arbitrary limits assert ( abs(eval_stop_xformer - eval_stop_pytorch) < 1e-1 ) # final eval is about 0.2, arbitrary limits @pytest.mark.skipif( not torch.cuda.is_available(), reason="This test requires a gpu" ) def test_pytorch_tranformer_parity(device=torch.device("cuda")): # Build both a xFormers and Pytorch model reset_seeds() model_xformers = xFormer.from_config(xFormerConfig(_test_config)).to(device) print(model_xformers) model_pytorch = torch.nn.Transformer( d_model=EMB, nhead=HEADS, num_encoder_layers=LAYERS, num_decoder_layers=LAYERS, dim_feedforward=4 * EMB, dropout=DROP, activation=ACTIVATION, batch_first=True, # (batch, seq, feature) device=device, ) print(model_pytorch) optim_xformers = torch.optim.SGD( model_xformers.parameters(), lr=1e-3, momentum=0.9 ) optim_pytorch = torch.optim.SGD( model_pytorch.parameters(), lr=1e-3, momentum=0.9 ) # Check that both models can be trained to comparable results eval_start_xformer = evaluate(model_xformers, BATCH, SEQ, EMB, device) eval_start_pytorch = evaluate(model_pytorch, BATCH, SEQ, EMB, device) print("starting point: ", eval_start_pytorch, eval_start_xformer) train(model_xformers, optim_xformers, "xformers", 100, BATCH, SEQ, EMB, device) train(model_pytorch, optim_pytorch, "pytorch", 100, BATCH, SEQ, EMB, device) # Check that we can classify this dummy example # Arbitrary threshold eval_stop_xformer = evaluate(model_xformers, BATCH, SEQ, EMB, device) eval_stop_pytorch = evaluate(model_pytorch, BATCH, SEQ, EMB, device) print("end point: ", eval_stop_pytorch, eval_stop_xformer) fit_ratio_xformer = eval_start_xformer / eval_stop_xformer fit_ratio_pytorch = eval_start_pytorch / eval_stop_pytorch print(fit_ratio_pytorch, fit_ratio_xformer) assert fit_ratio_xformer > 50 assert fit_ratio_pytorch > 50
EXA-1-master
exa/libraries/xformers/tests/test_pytorch_transformer_parity.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import pytest import torch import xformers SHAPES = [ (384, 128), (8 * 384, 128), (34, 128), (16, 128), (16, 512), (8, 384), (8, 1024), (8, 2048), (8, 4096), (8, 4096), (4, 12288), ] _triton_available = xformers._is_triton_available() if _triton_available: try: import triton import triton.language as tl from xformers.triton.sum_strided import sum_2d_dim_0 except (ImportError, ModuleNotFoundError): _triton_available = False if _triton_available: @triton.jit def k_mean(X, Mean, Var, stride, N, BLOCK_SIZE_N: tl.constexpr): # fmt: on """ Fused layernorm kernel over a 3d tensor. The layer norm is applied over the last dimension. Compute y = (x - E(x))/(sqrt(var(x) + epsilon)) * gamma + beta """ row = tl.program_id(0) cols = tl.arange(0, BLOCK_SIZE_N) # Move to this row x_ptrs = X + row * stride + cols x = tl.load(x_ptrs, mask=cols < N, other=0.0).to(tl.float32) x = tl.where(cols < N, x, 0.0) # Compute variance x_mean = tl.sum(x, axis=0) / N x_zm = x - x_mean x_zm = tl.where(cols < N, x_zm, 0.0) x_var = tl.sum(x_zm * x_zm, axis=0) / N tl.store(Mean + row, x_mean) tl.store(Var + row, x_var) def stats(x: torch.Tensor): # reshape input data into 2D tensor x_arg = x.reshape(-1, x.shape[-1]) M, N = x_arg.shape MAX_FUSED_SIZE = 65536 // x.element_size() BLOCK_SIZE_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N)) if N > BLOCK_SIZE_N: raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.") # heuristics for number of warps. num_warps = min(max(BLOCK_SIZE_N // 256, 1), 8) mean = torch.zeros((M,)).cuda() var = torch.zeros((M,)).cuda() # enqueue kernel # fmt: off k_mean[(M,)]( x_arg, mean, var, x_arg.stride(0), N, num_warps=num_warps, BLOCK_SIZE_N=BLOCK_SIZE_N ) # fmt: on return mean.reshape(x.shape[:-1]), var.reshape(x.shape[:-1]) def test_mean(): torch.random.manual_seed(0) a = torch.rand((4, 2048, 384), device=torch.device("cuda")) mean, var = stats(a) t_mean = torch.mean(a, dim=-1) t_var = torch.var(a, dim=-1) print(mean) print(t_mean) print(var) print(t_var) assert torch.allclose(mean, t_mean, rtol=1e-1) assert torch.allclose(var, t_var, rtol=1e-1) @pytest.mark.parametrize("shape", SHAPES) @pytest.mark.parametrize("dtype", [torch.float16, torch.float32]) def test_sum_strided(shape, dtype): torch.random.manual_seed(0) a = torch.rand(shape, device=torch.device("cuda"), dtype=dtype) torch_sum = torch.sum(a, dim=0) triton_sum = sum_2d_dim_0(a) assert torch.allclose( torch_sum, triton_sum, rtol=0.01 ), f"{torch_sum}\n{triton_sum}" def test_sum_strided_asserts(): torch.random.manual_seed(0) a = torch.rand((128, 256), device=torch.device("cuda"), dtype=torch.float16) with pytest.raises(AssertionError): # This kernel is not useful in that case, assert to prevent misuse sum_2d_dim_0(a.transpose(1, 0)) a = torch.rand((3, 128, 256), device=torch.device("cuda"), dtype=torch.float16) with pytest.raises(AssertionError): # This kernel expects 2D tensors, assert to prevent misuse sum_2d_dim_0(a) @triton.jit def k_rand(X, Y, SEED_X, SEED_Y, stride_x, stride_y, N: tl.constexpr): # fmt: on """ Check the random number generation """ row = tl.program_id(0) # Generate random numbers with seed A rand_offsets = tl.arange(0, N) seed_x = tl.load(SEED_X + row) randx, _, _, _ = tl.randint4x(seed_x, rand_offsets) rand_offsets = tl.arange(0, N) seed_y = tl.load(SEED_Y + row) randy, _, _, _ = tl.randint4x(seed_y, rand_offsets) # Move to this row tl.store(X + row * stride_x + tl.arange(0, N), randx) tl.store(Y + row * stride_y + tl.arange(0, N), randy) def test_rand(): # Check that the random generator used in triton works fine torch.random.manual_seed(0) x = torch.zeros((512, 32), device=torch.device("cuda"), dtype=torch.int32) y = torch.zeros((512, 32), device=torch.device("cuda"), dtype=torch.int32) M, N = x.shape seeds_x = torch.randint(65536, (M,), device=x.device) seeds_y = torch.randint(65536, (M,), device=x.device) assert not torch.allclose(seeds_x, seeds_y) # enqueue kernels, one per line # fmt: off k_rand[(M,)]( x, y, seeds_x, seeds_y, x.stride(0), y.stride(0), N, ) # fmt: on assert not torch.allclose(x, y)
EXA-1-master
exa/libraries/xformers/tests/test_triton_basics.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from contextlib import nullcontext import pytest import torch import xformers.factory.weight_init as xformers_weight_init from xformers.factory import xFormer, xFormerConfig, xFormerWeightInit BATCH = 2 SEQ = 16 EMB = 16 VOC = 16 DEVICES = ( [torch.device("cpu")] if not torch.cuda.is_available() else [ torch.device("cuda") ] # save a bit on CI for now, we have seperate cpu and gpu jobs ) encoder_configs = { "reversible": False, "block_type": "encoder", "dim_model": EMB, "residual_norm_style": "pre", "position_encoding_config": { "name": "vocab", "seq_len": SEQ, "vocab_size": VOC, "dim_model": EMB, }, "num_layers": 3, "multi_head_config": { "num_heads": 4, "residual_dropout": 0, "attention": { "name": "scaled_dot_product", "dropout": 0, "causal": True, "seq_len": SEQ, }, "dim_model": EMB, }, "feedforward_config": { "name": "MLP", "dropout": 0, "activation": "relu", "hidden_layer_multiplier": 4, "dim_model": EMB, "number_of_experts": 4, "gate_config": "top_2", }, } decoder_configs = { "block_type": "decoder", "dim_model": EMB, "residual_norm_style": "pre", "position_encoding_config": { "name": "vocab", "seq_len": SEQ, "vocab_size": VOC, "dim_model": EMB, }, "num_layers": 2, "multi_head_config_masked": { "num_heads": 4, "residual_dropout": 0, "dim_model": EMB, "attention": { "name": "scaled_dot_product", "dropout": 0, "causal": True, "seq_len": SEQ, }, }, "multi_head_config_cross": { "num_heads": 4, "residual_dropout": 0, "dim_model": EMB, "attention": { "name": "scaled_dot_product", "dropout": 0, "causal": True, "seq_len": SEQ, }, }, "feedforward_config": { "name": "MLP", "dropout": 0, "activation": "relu", "hidden_layer_multiplier": 4, "dim_model": EMB, }, } test_configs_list = [encoder_configs, decoder_configs] test_configs_dict = {"encoder": encoder_configs, "decoder": decoder_configs} """ Test all the model configurations saved in model_presets. """ @pytest.mark.parametrize("config", [test_configs_list, test_configs_dict]) @pytest.mark.parametrize("reversible", [True, False]) @pytest.mark.parametrize("tie_embedding_weights", [True, False]) @pytest.mark.parametrize("residual_norm_style", ["pre", "post", "deepnorm"]) @pytest.mark.parametrize("device", DEVICES) def test_presets( config, reversible, tie_embedding_weights, residual_norm_style, device ): torch.cuda.manual_seed(42) torch.manual_seed(42) # Build the model if isinstance(config, list): # Only the encoder can be reversible config[0]["reversible"] = reversible config[0]["residual_norm_style"] = residual_norm_style config[1]["residual_norm_style"] = residual_norm_style else: config["encoder"]["reversible"] = reversible config["encoder"]["residual_norm_style"] = residual_norm_style config["decoder"]["residual_norm_style"] = residual_norm_style modelConfig = xFormerConfig(config, tie_embedding_weights) if isinstance(modelConfig.stack_configs, dict): for _, blockConfig in modelConfig.stack_configs.items(): assert blockConfig.layer_position else: for blockConfig in modelConfig.stack_configs: assert blockConfig.layer_position context = ( pytest.raises(AssertionError) if reversible and (tie_embedding_weights or residual_norm_style == "deepnorm") else nullcontext() ) with context: model = xFormer.from_config(modelConfig).to(device) def check_against_default(p): # check that a different gain than 1 was used vanilla = p.clone() torch.nn.init.xavier_normal_(p, gain=1) change = torch.abs((torch.std(vanilla) - torch.std(p)) / torch.std(p)) assert change > 0.1 # Check deepnorm init, if applicable if residual_norm_style == "deepnorm": for n, p in model.encoders.named_parameters(): # Check the MHA if "in_proj_weight" in n: # self attention projection, check that the value projection has been changed M, _ = p.shape K = M // 3 value_rel_std = torch.abs( torch.std(p[:K, :]) - torch.std(p[-K:, :]) ) qp_rel_std = torch.abs(torch.std(p[:K, :]) - torch.std(p[K:-K, :])) # Check that the value proj init has been changed by more than the noise assert ( value_rel_std / qp_rel_std > 2 ), f"{(value_rel_std/qp_rel_std)}" if "v_proj_weight" in n: check_against_default(p) if "mha.proj" in n and "weight" in n: check_against_default(p) # Check the feedforward if "feedforward" in n and "weight" in n: check_against_default(p) # Dummy inputs, test a forward inputs = (torch.rand((BATCH, SEQ), device=device) * 10).abs().to(torch.int) input_mask = torch.randn(SEQ, dtype=torch.float, device=device) input_mask[input_mask < 0.0] = -float("inf") outputs = model( inputs, encoder_input_mask=input_mask, decoder_input_mask=input_mask ) # Test a BW loss = torch.sum(torch.abs(outputs)) loss.backward() # If we requested tied embedding weights, check that this is the case indeed if tie_embedding_weights and not reversible: assert model.encoders[0].pose_encoding == model.decoders[0].pose_encoding @pytest.mark.parametrize("weight_init", [w.value for w in xFormerWeightInit]) @pytest.mark.parametrize("feedforward", ["MLP", "Conv2DFeedforward"]) @pytest.mark.parametrize("deepnorm", [False, True]) @pytest.mark.parametrize("device", DEVICES) def test_weight_init(weight_init, feedforward, deepnorm, device): torch.cuda.manual_seed(42) torch.manual_seed(42) config = test_configs_dict if deepnorm: config["encoder"]["residual_norm_style"] = "deepnorm" config["encoder"]["feedforward_config"]["name"] = feedforward config["decoder"]["residual_norm_style"] = "deepnorm" # Make sure that all the init methods catch all the weights xformers_weight_init._assert_if_not_initialized = True # Build the model config_instance = xFormerConfig( # noqa config, tie_embedding_weights=False, weight_init=weight_init ) _ = xFormer.from_config(config_instance).to(device)
EXA-1-master
exa/libraries/xformers/tests/test_model_factory.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import random import pytest import torch from xformers.components.attention import NystromAttention, ScaledDotProduct from xformers.components.attention.utils import maybe_merge_masks @pytest.mark.parametrize("pinverse_original_init", [True, False]) @pytest.mark.parametrize("use_razavi_pinverse", [True, False]) @pytest.mark.parametrize("num_landmarks", [30, 33, 905]) def test_nystrom_attention_close_to_sdp( pinverse_original_init: bool, use_razavi_pinverse: bool, num_landmarks: int, ): # TODO: conv_kernel_size parameter not set to None fails this test. Investigate. b, s, d = 2, 900, 40 num_heads = 2 seed = 42 torch.random.manual_seed(seed) random.seed(seed) nystrom_config = { "name": "nystrom", "dropout": 0.0, "num_landmarks": num_landmarks, "num_heads": num_heads, "pinverse_original_init": pinverse_original_init, "use_razavi_pinverse": use_razavi_pinverse, } sdp_config = { "name": "scaled_dot_product", "dropout": 0.0, } a = torch.rand(b, s, d) def test_close_to_sdp(): # Make sure that Nystrom and Normal attention are not too far off. nystrom_attention = NystromAttention(**nystrom_config) sdp_attention = ScaledDotProduct(**sdp_config) r_nystrom = nystrom_attention(a, a, a, att_mask=None) r_sdp = sdp_attention(a, a, a, att_mask=None) assert torch.allclose(r_nystrom, r_sdp, rtol=0.005, atol=1e-2) # Make sure that Nystrom and Normal attention are not too far off. nystrom_attention = NystromAttention(**nystrom_config) sdp_attention = ScaledDotProduct(**sdp_config) r_nystrom = nystrom_attention(a, a, a, att_mask=None) r_sdp = sdp_attention(a, a, a, att_mask=None) assert torch.allclose(r_nystrom, r_sdp, rtol=0.005, atol=1e-2) test_close_to_sdp() @pytest.mark.parametrize("pinverse_original_init", [True]) @pytest.mark.parametrize("use_razavi_pinverse", [True]) @pytest.mark.parametrize("num_landmarks", [30]) def test_nystrom_attention( pinverse_original_init: bool, use_razavi_pinverse: bool, num_landmarks: int, ): # TODO: conv_kernel_size parameter not set to None fails this test. Investigate. b, s, d = 2, 900, 40 num_heads = 2 seed = 42 torch.random.manual_seed(seed) random.seed(seed) nystrom_config = { "name": "nystrom", "dropout": 0.0, "num_landmarks": num_landmarks, "num_heads": num_heads, "pinverse_original_init": pinverse_original_init, "use_razavi_pinverse": use_razavi_pinverse, } sdp_config = { "name": "scaled_dot_product", "dropout": 0.0, } a = torch.rand(b, s, d) def test_att_mask_ignored(): # If an sxs attention mask is passed in, it should be ignored. # Results should be the same as if no mask was passed in. nystrom_attention = NystromAttention(**nystrom_config) sdp_attention = ScaledDotProduct(**sdp_config) key_padding_mask = None att_mask = torch.randint(0, 2, (s, s)).to(dtype=torch.bool) sdp_mask = maybe_merge_masks( att_mask=None, key_padding_mask=key_padding_mask, batch_size=b // num_heads, src_len=s, num_heads=num_heads, ) r_nystrom = nystrom_attention( a, a, a, att_mask=att_mask, key_padding_mask=key_padding_mask ) r_sdp = sdp_attention(a, a, a, att_mask=sdp_mask) assert torch.allclose(r_nystrom, r_sdp, rtol=0.005, atol=1e-2) def test_masking(): # FIXME # nystrom_config["causal"] = True # sdp_config["causal"] = True nystrom_attention = NystromAttention(**nystrom_config) sdp_attention = ScaledDotProduct(**sdp_config) key_padding_mask = torch.rand((b // num_heads, s)) > 0.1 att_mask = None mask = maybe_merge_masks( att_mask, key_padding_mask, batch_size=b // num_heads, src_len=s, num_heads=num_heads, ) r_nystrom = nystrom_attention(a, a, a, key_padding_mask=key_padding_mask) r_sdp = sdp_attention(a, a, a, att_mask=mask) # Not very close, but more so testing functionality. assert torch.allclose( r_nystrom, r_sdp, rtol=0.1, atol=0.5 ), f"max diff {torch.max(torch.abs(r_nystrom-r_sdp))}" # Error when key padding mask doesn't have expected dimensions. key_padding_mask = torch.randint(0, 2, (s, b)).to(dtype=torch.bool) with pytest.raises(AssertionError): nystrom_attention(a, a, a, key_padding_mask=key_padding_mask) test_att_mask_ignored() test_masking()
EXA-1-master
exa/libraries/xformers/tests/test_nystrom_attention.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import random import pytest import torch from xformers.factory.model_factory import xFormer, xFormerConfig BATCH = 2 SEQ = 64 EMB = 48 VOCAB = 16 DEVICES = ( [torch.device("cpu")] if not torch.cuda.is_available() else [torch.device("cuda")] # save a bit on CI, we have seperate cpu and gpu jobs ) _test_config_encoder = { "reversible": False, "block_type": "encoder", "dim_model": EMB, "position_encoding_config": { "name": "vocab", "seq_len": SEQ, "vocab_size": VOCAB, "dim_model": EMB, }, "num_layers": 3, "multi_head_config": { "num_heads": 4, "residual_dropout": 0, "attention": { "name": "linformer", "dropout": 0, "causal": True, "seq_len": SEQ, }, "dim_model": EMB, }, "feedforward_config": { "name": "MLP", "dropout": 0, "activation": "relu", "hidden_layer_multiplier": 4, "dim_model": EMB, }, } _test_config_decoder = { "block_type": "decoder", "dim_model": EMB, "position_encoding_config": { "name": "vocab", "seq_len": SEQ, "vocab_size": VOCAB, "dim_model": EMB, }, "num_layers": 2, "multi_head_config_masked": { "num_heads": 4, "residual_dropout": 0, "dim_model": EMB, "attention": { "name": "linformer", "dropout": 0, "causal": True, "seq_len": SEQ, }, }, "multi_head_config_cross": { "num_heads": 4, "residual_dropout": 0, "dim_model": EMB, "attention": { "name": "linformer", "dropout": 0, "causal": True, "seq_len": SEQ, }, }, "feedforward_config": { "name": "MLP", "dropout": 0, "activation": "relu", "hidden_layer_multiplier": 4, "dim_model": EMB, }, } # Test a pure encoder, a pure decoder, an encoder/decoder stack _test_configs = [ [_test_config_encoder, _test_config_decoder], [_test_config_encoder], ] def _rev_config(config, flag: bool): for c in filter( lambda x: x["block_type"] == "encoder", config, ): c["reversible"] = flag return config @pytest.mark.parametrize("config", _test_configs) @pytest.mark.parametrize("device", DEVICES) def test_reversible_runs(config, device): # Build both a reversible and non-reversible model model_non_reversible = xFormer.from_config( xFormerConfig(_rev_config(config, False)) ).to(device) model_reversible = xFormer.from_config(xFormerConfig(_rev_config(config, True))).to( device ) # Dummy inputs, test a forward inputs = (torch.rand((BATCH, SEQ), device=device) * 10).abs().to(torch.int) _ = model_non_reversible(inputs) _ = model_reversible(inputs) @pytest.mark.parametrize("device", DEVICES) def test_reversible_no_alternate(device): # Check that we cannot build a non-coherent stack with pytest.raises(AssertionError): rev = dict(_test_config_encoder) # we need to make a copy rev["reversible"] = True non_rev = dict(_test_config_encoder) non_rev["reversible"] = False _ = xFormer.from_config(xFormerConfig([rev, non_rev])).to(device) @pytest.mark.parametrize("config", _test_configs) @pytest.mark.parametrize("device", DEVICES) def test_reversible_train(config, device): torch.manual_seed(0) random.seed(0) # Dummy inputs, test some training to make sure that we both can approximate the same thing to some extent # This is not super scientific, more of a foolproof catch def data(): input_a = torch.zeros((BATCH, SEQ), device=device).to(torch.int) input_b = (torch.rand((BATCH, SEQ), device=device) * VOCAB).abs().to(torch.int) target_a = torch.zeros((BATCH, SEQ), device=device) target_b = torch.ones((BATCH, SEQ), device=device) if random.random() > 0.5: return torch.cat([input_a, input_b], dim=0), torch.cat( [target_a, target_b], dim=0 ) return torch.cat([input_b, input_a], dim=0), torch.cat( [target_b, target_a], dim=0 ) def step(model: torch.nn.Module, optim: torch.optim.Optimizer): batch, target = data() model.train() optim.zero_grad() outputs = model(batch) loss = torch.norm(torch.mean(outputs, dim=-1) - target) loss.backward() # Clip grad and error out if we're producing NaNs, part of the unit test torch.nn.utils.clip_grad_norm_( model.parameters(), 10.0, norm_type=2.0, error_if_nonfinite=True ) optim.step() return loss.item() def evaluate(model: torch.nn.Module): batch, target = data() model.eval() outputs = model(batch) return torch.norm(torch.mean(outputs, dim=-1) - target).item() # Build both a reversible and non-reversible model model_non_reversible = xFormer.from_config( xFormerConfig(_rev_config(config, False)) ).to(device) model_reversible = xFormer.from_config(xFormerConfig(_rev_config(config, True))).to( device ) optim_rev = torch.optim.SGD(model_reversible.parameters(), lr=1e-3, momentum=0.9) optim_non_rev = torch.optim.SGD( model_non_reversible.parameters(), lr=1e-3, momentum=0.9 ) # Check that both models can be trained to comparable results eval_start_rev = evaluate(model_reversible) eval_start_non_rev = evaluate(model_non_reversible) for i in range(100): print(i, " reversible: ", step(model_reversible, optim_rev)) print(i, " non reversible: ", step(model_non_reversible, optim_non_rev)) # Check that we can classify this dummy example # Arbitrary threshold eval_stop_rev = evaluate(model_reversible) eval_stop_non_rev = evaluate(model_non_reversible) if len(config) < 2: # only check the encoder case train_ratio_rev = eval_start_rev / eval_stop_rev train_ratio_non_rev = eval_start_non_rev / eval_stop_non_rev # Assert that train ratio > 1 (we trained), # and reversible is not much worse than non-reversible (it's actually better on this dummy test) assert train_ratio_rev > 1 assert train_ratio_non_rev > 1 assert train_ratio_rev > train_ratio_non_rev
EXA-1-master
exa/libraries/xformers/tests/test_reversible.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. # type: ignore # Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys from pathlib import Path from typing import Any, List # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # from recommonmark.transform import AutoStructify sys.path.insert(0, os.path.abspath("../..")) # -- Project information ----------------------------------------------------- project = "xFormers" copyright = "Copyright © 2021 Meta Platforms, Inc" author = "Facebook AI Research" root_dir = Path(__file__).resolve().parent.parent.parent # The full version, including alpha/beta/rc tags release = (root_dir / "version.txt").read_text().strip() # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ "sphinx.ext.autodoc", "sphinx.ext.autosectionlabel", "sphinx.ext.napoleon", # support NumPy and Google style docstrings "recommonmark", "sphinx.ext.intersphinx", "sphinx.ext.todo", "sphinx.ext.coverage", "sphinx.ext.mathjax", "sphinx.ext.viewcode", "sphinx.ext.githubpages", "sphinx.ext.doctest", "sphinx.ext.ifconfig", ] # autosectionlabel throws warnings if section names are duplicated. # The following tells autosectionlabel to not throw a warning for # duplicated section names that are in different documents. autosectionlabel_prefix_document = True # -- Configurations for plugins ------------ napoleon_google_docstring = True napoleon_include_init_with_doc = True napoleon_include_special_with_doc = True napoleon_numpy_docstring = False napoleon_use_rtype = False autodoc_inherit_docstrings = False autodoc_member_order = "bysource" intersphinx_mapping = { "python": ("https://docs.python.org/3.6", None), "numpy": ("https://numpy.org/doc/stable/", None), "torch": ("https://pytorch.org/docs/master", None), } # ------------------------- # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns: List[Any] = [] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # source_suffix = [".rst", ".md"] # The master toctree document. master_doc = "index" # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = True # -- Options for HTML output ------------------------------------------------- html_theme = "pytorch_sphinx_theme" templates_path = ["_templates"] # Add any paths that contain custom static files (such as style sheets) here, # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = { "includehidden": True, "canonical_url": "https://facebookresearch.github.io/xformers", "pytorch_project": "docs", "logo_only": True, # default = False } # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] # setting custom stylesheets https://stackoverflow.com/a/34420612 html_context = {"css_files": ["_static/css/customize.css"]} # -- Options for HTMLHelp output ------------------------------------------ # Output file base name for HTML help builder. htmlhelp_basename = "xformersdocs" github_doc_root = "https://github.com/facebookresearch/xformers/tree/main/docs/" # Over-ride PyTorch Sphinx css def setup(app): app.add_config_value( "recommonmark_config", { "url_resolver": lambda url: github_doc_root + url, "auto_toc_tree_section": "Contents", "enable_math": True, "enable_inline_math": True, "enable_eval_rst": True, "enable_auto_toc_tree": True, }, True, ) app.add_transform(AutoStructify) app.add_css_file("css/customize.css")
EXA-1-master
exa/libraries/xformers/docs/source/conf.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import pytorch_lightning as pl import torch from pl_bolts.datamodules import CIFAR10DataModule from torch import nn from torchmetrics import Accuracy from examples.cifar_ViT import Classifier, VisionTransformer from xformers.factory import xFormer, xFormerConfig from xformers.helpers.hierarchical_configs import ( BasicLayerConfig, get_hierarchical_configuration, ) # This is very close to the cifarViT example, and reuses a lot of the training code, only the model part is different. # There are many ways one can use xformers to write down a MetaFormer, for instance by # picking up the parts from `xformers.components` and implementing the model explicitly, # or by patching another existing ViT-like implementation. # This example takes another approach, as we define the whole model configuration in one go (dict structure) # and then use the xformers factory to generate the model. This obfuscates a lot of the model building # (though you can inspect the resulting implementation), but makes it trivial to do some hyperparameter search class MetaVisionTransformer(VisionTransformer): def __init__( self, steps, learning_rate=5e-3, betas=(0.9, 0.99), weight_decay=0.03, image_size=32, num_classes=10, dim=384, attention="scaled_dot_product", feedforward="MLP", residual_norm_style="pre", use_rotary_embeddings=True, linear_warmup_ratio=0.1, classifier=Classifier.GAP, ): super(VisionTransformer, self).__init__() # all the inputs are saved under self.hparams (hyperparams) self.save_hyperparameters() # Generate the skeleton of our hierarchical Transformer # - This is a small poolformer configuration, adapted to the small CIFAR10 pictures (32x32) # - Please note that this does not match the L1 configuration in the paper, as this would correspond to repeated # layers. CIFAR pictures are too small for this config to be directly meaningful (although that would run) # - Any other related config would work, and the attention mechanisms don't have to be the same across layers base_hierarchical_configs = [ BasicLayerConfig( embedding=64, attention_mechanism=attention, patch_size=3, stride=2, padding=1, seq_len=image_size * image_size // 4, feedforward=feedforward, repeat_layer=1, ), BasicLayerConfig( embedding=128, attention_mechanism=attention, patch_size=3, stride=2, padding=1, seq_len=image_size * image_size // 16, feedforward=feedforward, repeat_layer=1, ), BasicLayerConfig( embedding=320, attention_mechanism=attention, patch_size=3, stride=2, padding=1, seq_len=image_size * image_size // 64, feedforward=feedforward, repeat_layer=1, ), BasicLayerConfig( embedding=512, attention_mechanism=attention, patch_size=3, stride=2, padding=1, seq_len=image_size * image_size // 256, feedforward=feedforward, repeat_layer=1, ), ] # Fill in the gaps in the config xformer_config = get_hierarchical_configuration( base_hierarchical_configs, residual_norm_style=residual_norm_style, use_rotary_embeddings=use_rotary_embeddings, mlp_multiplier=4, dim_head=32, ) # Now instantiate the metaformer trunk config = xFormerConfig(xformer_config) config.weight_init = "moco" print(config) self.trunk = xFormer.from_config(config) print(self.trunk) # The classifier head dim = base_hierarchical_configs[-1].embedding self.ln = nn.LayerNorm(dim) self.head = nn.Linear(dim, num_classes) self.criterion = torch.nn.CrossEntropyLoss() self.val_accuracy = Accuracy() def forward(self, x): x = self.trunk(x) x = self.ln(x) x = x.mean(dim=1) # mean over sequence len x = self.head(x) return x if __name__ == "__main__": pl.seed_everything(42) # Adjust batch depending on the available memory on your machine. # You can also use reversible layers to save memory REF_BATCH = 768 BATCH = 256 # lower if not enough GPU memory MAX_EPOCHS = 50 NUM_WORKERS = 4 GPUS = 1 torch.cuda.manual_seed_all(42) torch.manual_seed(42) # We'll use a datamodule here, which already handles dataset/dataloader/sampler # - See https://pytorchlightning.github.io/lightning-tutorials/notebooks/lightning_examples/cifar10-baseline.html # for a full tutorial # - Please note that default transforms are being used dm = CIFAR10DataModule( data_dir="data", batch_size=BATCH, num_workers=NUM_WORKERS, pin_memory=True, ) image_size = dm.size(-1) # 32 for CIFAR num_classes = dm.num_classes # 10 for CIFAR # compute total number of steps batch_size = BATCH * GPUS steps = dm.num_samples // REF_BATCH * MAX_EPOCHS lm = MetaVisionTransformer( steps=steps, image_size=image_size, num_classes=num_classes, attention="scaled_dot_product", residual_norm_style="pre", feedforward="MLP", use_rotary_embeddings=True, ) trainer = pl.Trainer( gpus=GPUS, max_epochs=MAX_EPOCHS, precision=16, accumulate_grad_batches=REF_BATCH // BATCH, ) trainer.fit(lm, dm) # check the training trainer.test(lm, datamodule=dm)
EXA-1-master
exa/libraries/xformers/examples/cifar_MetaFormer.py