python_code
stringlengths 0
992k
| repo_name
stringlengths 8
46
| file_path
stringlengths 5
162
|
---|---|---|
import collections
import time
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
from packaging import version
from torch import nn
from torch.utils.data import DataLoader, Dataset
from transformers.trainer_utils import EvalPrediction, PredictionOutput, speed_metrics
from transformers.utils import logging
from .funsd_trainer import FunsdTrainer
if version.parse(torch.__version__) >= version.parse("1.6"):
_is_native_amp_available = True
from torch.cuda.amp import autocast
logger = logging.get_logger(__name__)
class XfunSerTrainer(FunsdTrainer):
pass
class XfunReTrainer(FunsdTrainer):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.label_names.append("relations")
def prediction_step(
self,
model: nn.Module,
inputs: Dict[str, Union[torch.Tensor, Any]],
prediction_loss_only: bool,
ignore_keys: Optional[List[str]] = None,
) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
inputs = self._prepare_inputs(inputs)
with torch.no_grad():
if self.use_amp:
with autocast():
outputs = model(**inputs)
else:
outputs = model(**inputs)
labels = tuple(inputs.get(name) for name in self.label_names)
return outputs, labels
def prediction_loop(
self,
dataloader: DataLoader,
description: str,
prediction_loss_only: Optional[bool] = None,
ignore_keys: Optional[List[str]] = None,
metric_key_prefix: str = "eval",
) -> PredictionOutput:
"""
Prediction/evaluation loop, shared by :obj:`Trainer.evaluate()` and :obj:`Trainer.predict()`.
Works both with or without labels.
"""
if not isinstance(dataloader.dataset, collections.abc.Sized):
raise ValueError("dataset must implement __len__")
prediction_loss_only = (
prediction_loss_only if prediction_loss_only is not None else self.args.prediction_loss_only
)
if self.args.deepspeed and not self.args.do_train:
# no harm, but flagging to the user that deepspeed config is ignored for eval
# flagging only for when --do_train wasn't passed as only then it's redundant
logger.info("Detected the deepspeed argument but it will not be used for evaluation")
model = self._wrap_model(self.model, training=False)
# if full fp16 is wanted on eval and this ``evaluation`` or ``predict`` isn't called while
# ``train`` is running, half it first and then put on device
if not self.is_in_train and self.args.fp16_full_eval:
model = model.half().to(self.args.device)
batch_size = dataloader.batch_size
num_examples = self.num_examples(dataloader)
logger.info("***** Running %s *****", description)
logger.info(" Num examples = %d", num_examples)
logger.info(" Batch size = %d", batch_size)
model.eval()
self.callback_handler.eval_dataloader = dataloader
re_labels = None
pred_relations = None
entities = None
for step, inputs in enumerate(dataloader):
outputs, labels = self.prediction_step(model, inputs, prediction_loss_only, ignore_keys=ignore_keys)
re_labels = labels[1] if re_labels is None else re_labels + labels[1]
pred_relations = (
outputs.pred_relations if pred_relations is None else pred_relations + outputs.pred_relations
)
entities = outputs.entities if entities is None else entities + outputs.entities
self.control = self.callback_handler.on_prediction_step(self.args, self.state, self.control)
gt_relations = []
for b in range(len(re_labels)):
rel_sent = []
for head, tail in zip(re_labels[b]["head"], re_labels[b]["tail"]):
rel = {}
rel["head_id"] = head
rel["head"] = (entities[b]["start"][rel["head_id"]], entities[b]["end"][rel["head_id"]])
rel["head_type"] = entities[b]["label"][rel["head_id"]]
rel["tail_id"] = tail
rel["tail"] = (entities[b]["start"][rel["tail_id"]], entities[b]["end"][rel["tail_id"]])
rel["tail_type"] = entities[b]["label"][rel["tail_id"]]
rel["type"] = 1
rel_sent.append(rel)
gt_relations.append(rel_sent)
re_metrics = self.compute_metrics(EvalPrediction(predictions=pred_relations, label_ids=gt_relations))
re_metrics = {
"precision": re_metrics["ALL"]["p"],
"recall": re_metrics["ALL"]["r"],
"f1": re_metrics["ALL"]["f1"],
}
re_metrics[f"{metric_key_prefix}_loss"] = outputs.loss.mean().item()
metrics = {}
# # Prefix all keys with metric_key_prefix + '_'
for key in list(re_metrics.keys()):
if not key.startswith(f"{metric_key_prefix}_"):
metrics[f"{metric_key_prefix}_{key}"] = re_metrics.pop(key)
else:
metrics[f"{key}"] = re_metrics.pop(key)
return metrics
def evaluate(
self,
eval_dataset: Optional[Dataset] = None,
ignore_keys: Optional[List[str]] = None,
metric_key_prefix: str = "eval",
) -> Dict[str, float]:
"""
Run evaluation and returns metrics.
The calling script will be responsible for providing a method to compute metrics, as they are task-dependent
(pass it to the init :obj:`compute_metrics` argument).
You can also subclass and override this method to inject custom behavior.
Args:
eval_dataset (:obj:`Dataset`, `optional`):
Pass a dataset if you wish to override :obj:`self.eval_dataset`. If it is an :obj:`datasets.Dataset`,
columns not accepted by the ``model.forward()`` method are automatically removed. It must implement the
:obj:`__len__` method.
ignore_keys (:obj:`Lst[str]`, `optional`):
A list of keys in the output of your model (if it is a dictionary) that should be ignored when
gathering predictions.
metric_key_prefix (:obj:`str`, `optional`, defaults to :obj:`"eval"`):
An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named
"eval_bleu" if the prefix is "eval" (default)
Returns:
A dictionary containing the evaluation loss and the potential metrics computed from the predictions. The
dictionary also contains the epoch number which comes from the training state.
"""
if eval_dataset is not None and not isinstance(eval_dataset, collections.abc.Sized):
raise ValueError("eval_dataset must implement __len__")
self.args.local_rank = -1
eval_dataloader = self.get_eval_dataloader(eval_dataset)
self.args.local_rank = torch.distributed.get_rank()
start_time = time.time()
metrics = self.prediction_loop(
eval_dataloader,
description="Evaluation",
# No point gathering the predictions if there are no metrics, otherwise we defer to
# self.args.prediction_loss_only
prediction_loss_only=True if self.compute_metrics is None else None,
ignore_keys=ignore_keys,
metric_key_prefix=metric_key_prefix,
)
n_samples = len(eval_dataset if eval_dataset is not None else self.eval_dataset)
metrics.update(speed_metrics(metric_key_prefix, start_time, n_samples))
self.log(metrics)
self.control = self.callback_handler.on_evaluate(self.args, self.state, self.control, metrics)
return metrics
| EXA-1-master | exa/models/unilm-master/layoutlmft/layoutlmft/trainers/xfun_trainer.py |
from .funsd_trainer import FunsdTrainer
from .xfun_trainer import XfunReTrainer, XfunSerTrainer
| EXA-1-master | exa/models/unilm-master/layoutlmft/layoutlmft/trainers/__init__.py |
from typing import Any, Dict, Union
import torch
from transformers import Trainer
class FunsdTrainer(Trainer):
def _prepare_inputs(self, inputs: Dict[str, Union[torch.Tensor, Any]]) -> Dict[str, Union[torch.Tensor, Any]]:
"""
Prepare :obj:`inputs` before feeding them to the model, converting them to tensors if they are not already and
handling potential state.
"""
for k, v in inputs.items():
if hasattr(v, "to") and hasattr(v, "device"):
inputs[k] = v.to(self.args.device)
if self.args.past_index >= 0 and self._past is not None:
inputs["mems"] = self._past
return inputs
| EXA-1-master | exa/models/unilm-master/layoutlmft/layoutlmft/trainers/funsd_trainer.py |
EXA-1-master | exa/models/unilm-master/layoutlmft/layoutlmft/modules/__init__.py |
|
EXA-1-master | exa/models/unilm-master/layoutlmft/layoutlmft/modules/decoders/__init__.py |
|
import copy
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
class BiaffineAttention(torch.nn.Module):
"""Implements a biaffine attention operator for binary relation classification.
PyTorch implementation of the biaffine attention operator from "End-to-end neural relation
extraction using deep biaffine attention" (https://arxiv.org/abs/1812.11275) which can be used
as a classifier for binary relation classification.
Args:
in_features (int): The size of the feature dimension of the inputs.
out_features (int): The size of the feature dimension of the output.
Shape:
- x_1: `(N, *, in_features)` where `N` is the batch dimension and `*` means any number of
additional dimensisons.
- x_2: `(N, *, in_features)`, where `N` is the batch dimension and `*` means any number of
additional dimensions.
- Output: `(N, *, out_features)`, where `N` is the batch dimension and `*` means any number
of additional dimensions.
Examples:
>>> batch_size, in_features, out_features = 32, 100, 4
>>> biaffine_attention = BiaffineAttention(in_features, out_features)
>>> x_1 = torch.randn(batch_size, in_features)
>>> x_2 = torch.randn(batch_size, in_features)
>>> output = biaffine_attention(x_1, x_2)
>>> print(output.size())
torch.Size([32, 4])
"""
def __init__(self, in_features, out_features):
super(BiaffineAttention, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.bilinear = torch.nn.Bilinear(in_features, in_features, out_features, bias=False)
self.linear = torch.nn.Linear(2 * in_features, out_features, bias=True)
self.reset_parameters()
def forward(self, x_1, x_2):
return self.bilinear(x_1, x_2) + self.linear(torch.cat((x_1, x_2), dim=-1))
def reset_parameters(self):
self.bilinear.reset_parameters()
self.linear.reset_parameters()
class REDecoder(nn.Module):
def __init__(self, config):
super().__init__()
self.entity_emb = nn.Embedding(3, config.hidden_size, scale_grad_by_freq=True)
projection = nn.Sequential(
nn.Linear(config.hidden_size * 2, config.hidden_size),
nn.ReLU(),
nn.Dropout(config.hidden_dropout_prob),
nn.Linear(config.hidden_size, config.hidden_size // 2),
nn.ReLU(),
nn.Dropout(config.hidden_dropout_prob),
)
self.ffnn_head = copy.deepcopy(projection)
self.ffnn_tail = copy.deepcopy(projection)
self.rel_classifier = BiaffineAttention(config.hidden_size // 2, 2)
self.loss_fct = CrossEntropyLoss()
def build_relation(self, relations, entities):
batch_size = len(relations)
new_relations = []
for b in range(batch_size):
if len(entities[b]["start"]) <= 2:
entities[b] = {"end": [1, 1], "label": [0, 0], "start": [0, 0]}
all_possible_relations = set(
[
(i, j)
for i in range(len(entities[b]["label"]))
for j in range(len(entities[b]["label"]))
if entities[b]["label"][i] == 1 and entities[b]["label"][j] == 2
]
)
if len(all_possible_relations) == 0:
all_possible_relations = set([(0, 1)])
positive_relations = set(list(zip(relations[b]["head"], relations[b]["tail"])))
negative_relations = all_possible_relations - positive_relations
positive_relations = set([i for i in positive_relations if i in all_possible_relations])
reordered_relations = list(positive_relations) + list(negative_relations)
relation_per_doc = {"head": [], "tail": [], "label": []}
relation_per_doc["head"] = [i[0] for i in reordered_relations]
relation_per_doc["tail"] = [i[1] for i in reordered_relations]
relation_per_doc["label"] = [1] * len(positive_relations) + [0] * (
len(reordered_relations) - len(positive_relations)
)
assert len(relation_per_doc["head"]) != 0
new_relations.append(relation_per_doc)
return new_relations, entities
def get_predicted_relations(self, logits, relations, entities):
pred_relations = []
for i, pred_label in enumerate(logits.argmax(-1)):
if pred_label != 1:
continue
rel = {}
rel["head_id"] = relations["head"][i]
rel["head"] = (entities["start"][rel["head_id"]], entities["end"][rel["head_id"]])
rel["head_type"] = entities["label"][rel["head_id"]]
rel["tail_id"] = relations["tail"][i]
rel["tail"] = (entities["start"][rel["tail_id"]], entities["end"][rel["tail_id"]])
rel["tail_type"] = entities["label"][rel["tail_id"]]
rel["type"] = 1
pred_relations.append(rel)
return pred_relations
def forward(self, hidden_states, entities, relations):
batch_size, max_n_words, context_dim = hidden_states.size()
device = hidden_states.device
relations, entities = self.build_relation(relations, entities)
loss = 0
all_pred_relations = []
for b in range(batch_size):
head_entities = torch.tensor(relations[b]["head"], device=device)
tail_entities = torch.tensor(relations[b]["tail"], device=device)
relation_labels = torch.tensor(relations[b]["label"], device=device)
entities_start_index = torch.tensor(entities[b]["start"], device=device)
entities_labels = torch.tensor(entities[b]["label"], device=device)
head_index = entities_start_index[head_entities]
head_label = entities_labels[head_entities]
head_label_repr = self.entity_emb(head_label)
tail_index = entities_start_index[tail_entities]
tail_label = entities_labels[tail_entities]
tail_label_repr = self.entity_emb(tail_label)
head_repr = torch.cat(
(hidden_states[b][head_index], head_label_repr),
dim=-1,
)
tail_repr = torch.cat(
(hidden_states[b][tail_index], tail_label_repr),
dim=-1,
)
heads = self.ffnn_head(head_repr)
tails = self.ffnn_tail(tail_repr)
logits = self.rel_classifier(heads, tails)
loss += self.loss_fct(logits, relation_labels)
pred_relations = self.get_predicted_relations(logits, relations[b], entities[b])
all_pred_relations.append(pred_relations)
return loss, all_pred_relations
| EXA-1-master | exa/models/unilm-master/layoutlmft/layoutlmft/modules/decoders/re.py |
# flake8: noqa
from .data_collator import DataCollatorForKeyValueExtraction
from .datasets import *
| EXA-1-master | exa/models/unilm-master/layoutlmft/layoutlmft/data/__init__.py |
import torch
from detectron2.data.detection_utils import read_image
from detectron2.data.transforms import ResizeTransform, TransformList
def normalize_bbox(bbox, size):
return [
int(1000 * bbox[0] / size[0]),
int(1000 * bbox[1] / size[1]),
int(1000 * bbox[2] / size[0]),
int(1000 * bbox[3] / size[1]),
]
def simplify_bbox(bbox):
return [
min(bbox[0::2]),
min(bbox[1::2]),
max(bbox[2::2]),
max(bbox[3::2]),
]
def merge_bbox(bbox_list):
x0, y0, x1, y1 = list(zip(*bbox_list))
return [min(x0), min(y0), max(x1), max(y1)]
def load_image(image_path):
image = read_image(image_path, format="BGR")
h = image.shape[0]
w = image.shape[1]
img_trans = TransformList([ResizeTransform(h=h, w=w, new_h=224, new_w=224)])
image = torch.tensor(img_trans.apply_image(image).copy()).permute(2, 0, 1) # copy to make it writeable
return image, (w, h)
| EXA-1-master | exa/models/unilm-master/layoutlmft/layoutlmft/data/utils.py |
from dataclasses import dataclass, field
from typing import Optional
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
task_name: Optional[str] = field(default="ner", metadata={"help": "The name of the task (ner, pos...)."})
dataset_name: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
train_file: Optional[str] = field(
default=None, metadata={"help": "The input training data file (a csv or JSON file)."}
)
validation_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input evaluation data file to evaluate on (a csv or JSON file)."},
)
test_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input test data file to predict on (a csv or JSON file)."},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
pad_to_max_length: bool = field(
default=True,
metadata={
"help": "Whether to pad all samples to model maximum sentence length. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
"efficient on GPU but very bad for TPU."
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
},
)
max_val_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
"value if set."
},
)
max_test_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of test examples to this "
"value if set."
},
)
label_all_tokens: bool = field(
default=False,
metadata={
"help": "Whether to put the label for one word on all tokens of generated by that word or just on the "
"one (in which case the other tokens will have a padding index)."
},
)
return_entity_level_metrics: bool = field(
default=False,
metadata={"help": "Whether to return all the entity levels during evaluation or just the overall ones."},
)
@dataclass
class XFUNDataTrainingArguments(DataTrainingArguments):
lang: Optional[str] = field(default="en")
additional_langs: Optional[str] = field(default=None)
| EXA-1-master | exa/models/unilm-master/layoutlmft/layoutlmft/data/data_args.py |
from dataclasses import dataclass
from typing import Optional, Union
import torch
from detectron2.structures import ImageList
from transformers import PreTrainedTokenizerBase
from transformers.file_utils import PaddingStrategy
@dataclass
class DataCollatorForKeyValueExtraction:
"""
Data collator that will dynamically pad the inputs received, as well as the labels.
Args:
tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`):
The tokenizer used for encoding the data.
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.file_utils.PaddingStrategy`, `optional`, defaults to :obj:`True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
among:
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
maximum acceptable input length for the model if that argument is not provided.
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
different lengths).
max_length (:obj:`int`, `optional`):
Maximum length of the returned list and optionally padding length (see above).
pad_to_multiple_of (:obj:`int`, `optional`):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
7.5 (Volta).
label_pad_token_id (:obj:`int`, `optional`, defaults to -100):
The id to use when padding the labels (-100 will be automatically ignore by PyTorch loss functions).
"""
tokenizer: PreTrainedTokenizerBase
padding: Union[bool, str, PaddingStrategy] = True
max_length: Optional[int] = None
pad_to_multiple_of: Optional[int] = None
label_pad_token_id: int = -100
def __call__(self, features):
label_name = "label" if "label" in features[0].keys() else "labels"
labels = [feature[label_name] for feature in features] if label_name in features[0].keys() else None
has_image_input = "image" in features[0]
has_bbox_input = "bbox" in features[0]
if has_image_input:
image = ImageList.from_tensors([torch.tensor(feature["image"]) for feature in features], 32)
for feature in features:
del feature["image"]
batch = self.tokenizer.pad(
features,
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
# Conversion to tensors will fail if we have labels as they are not of the same length yet.
return_tensors="pt" if labels is None else None,
)
if labels is None:
return batch
sequence_length = torch.tensor(batch["input_ids"]).shape[1]
padding_side = self.tokenizer.padding_side
if padding_side == "right":
batch["labels"] = [label + [self.label_pad_token_id] * (sequence_length - len(label)) for label in labels]
if has_bbox_input:
batch["bbox"] = [bbox + [[0, 0, 0, 0]] * (sequence_length - len(bbox)) for bbox in batch["bbox"]]
else:
batch["labels"] = [[self.label_pad_token_id] * (sequence_length - len(label)) + label for label in labels]
if has_bbox_input:
batch["bbox"] = [[[0, 0, 0, 0]] * (sequence_length - len(bbox)) + bbox for bbox in batch["bbox"]]
batch = {k: torch.tensor(v, dtype=torch.int64) if isinstance(v[0], list) else v for k, v in batch.items()}
if has_image_input:
batch["image"] = image
return batch
| EXA-1-master | exa/models/unilm-master/layoutlmft/layoutlmft/data/data_collator.py |
EXA-1-master | exa/models/unilm-master/layoutlmft/layoutlmft/data/datasets/__init__.py |
|
# Lint as: python3
import json
import logging
import os
import datasets
from layoutlmft.data.utils import load_image, merge_bbox, normalize_bbox, simplify_bbox
from transformers import AutoTokenizer
_URL = "https://github.com/doc-analysis/XFUN/releases/download/v1.0/"
_LANG = ["zh", "de", "es", "fr", "en", "it", "ja", "pt"]
logger = logging.getLogger(__name__)
class XFUNConfig(datasets.BuilderConfig):
"""BuilderConfig for XFUN."""
def __init__(self, lang, additional_langs=None, **kwargs):
"""
Args:
lang: string, language for the input text
**kwargs: keyword arguments forwarded to super.
"""
super(XFUNConfig, self).__init__(**kwargs)
self.lang = lang
self.additional_langs = additional_langs
class XFUN(datasets.GeneratorBasedBuilder):
"""XFUN dataset."""
BUILDER_CONFIGS = [XFUNConfig(name=f"xfun.{lang}", lang=lang) for lang in _LANG]
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base")
def _info(self):
return datasets.DatasetInfo(
features=datasets.Features(
{
"id": datasets.Value("string"),
"input_ids": datasets.Sequence(datasets.Value("int64")),
"bbox": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))),
"labels": datasets.Sequence(
datasets.ClassLabel(
names=["O", "B-QUESTION", "B-ANSWER", "B-HEADER", "I-ANSWER", "I-QUESTION", "I-HEADER"]
)
),
"image": datasets.Array3D(shape=(3, 224, 224), dtype="uint8"),
"entities": datasets.Sequence(
{
"start": datasets.Value("int64"),
"end": datasets.Value("int64"),
"label": datasets.ClassLabel(names=["HEADER", "QUESTION", "ANSWER"]),
}
),
"relations": datasets.Sequence(
{
"head": datasets.Value("int64"),
"tail": datasets.Value("int64"),
"start_index": datasets.Value("int64"),
"end_index": datasets.Value("int64"),
}
),
}
),
supervised_keys=None,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
urls_to_download = {
"train": [f"{_URL}{self.config.lang}.train.json", f"{_URL}{self.config.lang}.train.zip"],
"val": [f"{_URL}{self.config.lang}.val.json", f"{_URL}{self.config.lang}.val.zip"],
# "test": [f"{_URL}{self.config.lang}.test.json", f"{_URL}{self.config.lang}.test.zip"],
}
downloaded_files = dl_manager.download_and_extract(urls_to_download)
train_files_for_many_langs = [downloaded_files["train"]]
val_files_for_many_langs = [downloaded_files["val"]]
# test_files_for_many_langs = [downloaded_files["test"]]
if self.config.additional_langs:
additional_langs = self.config.additional_langs.split("+")
if "all" in additional_langs:
additional_langs = [lang for lang in _LANG if lang != self.config.lang]
for lang in additional_langs:
urls_to_download = {"train": [f"{_URL}{lang}.train.json", f"{_URL}{lang}.train.zip"]}
additional_downloaded_files = dl_manager.download_and_extract(urls_to_download)
train_files_for_many_langs.append(additional_downloaded_files["train"])
logger.info(f"Training on {self.config.lang} with additional langs({self.config.additional_langs})")
logger.info(f"Evaluating on {self.config.lang}")
logger.info(f"Testing on {self.config.lang}")
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": train_files_for_many_langs}),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": val_files_for_many_langs}
),
# datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepaths": test_files_for_many_langs}),
]
def _generate_examples(self, filepaths):
for filepath in filepaths:
logger.info("Generating examples from = %s", filepath)
with open(filepath[0], "r", encoding="utf-8") as f:
data = json.load(f)
for doc in data["documents"]:
doc["img"]["fpath"] = os.path.join(filepath[1], doc["img"]["fname"])
image, size = load_image(doc["img"]["fpath"])
document = doc["document"]
tokenized_doc = {"input_ids": [], "bbox": [], "labels": []}
entities = []
relations = []
id2label = {}
entity_id_to_index_map = {}
empty_entity = set()
for line in document:
if len(line["text"]) == 0:
empty_entity.add(line["id"])
continue
id2label[line["id"]] = line["label"]
relations.extend([tuple(sorted(l)) for l in line["linking"]])
tokenized_inputs = self.tokenizer(
line["text"],
add_special_tokens=False,
return_offsets_mapping=True,
return_attention_mask=False,
)
text_length = 0
ocr_length = 0
bbox = []
last_box = None
for token_id, offset in zip(tokenized_inputs["input_ids"], tokenized_inputs["offset_mapping"]):
if token_id == 6:
bbox.append(None)
continue
text_length += offset[1] - offset[0]
tmp_box = []
while ocr_length < text_length:
ocr_word = line["words"].pop(0)
ocr_length += len(
self.tokenizer._tokenizer.normalizer.normalize_str(ocr_word["text"].strip())
)
tmp_box.append(simplify_bbox(ocr_word["box"]))
if len(tmp_box) == 0:
tmp_box = last_box
bbox.append(normalize_bbox(merge_bbox(tmp_box), size))
last_box = tmp_box
bbox = [
[bbox[i + 1][0], bbox[i + 1][1], bbox[i + 1][0], bbox[i + 1][1]] if b is None else b
for i, b in enumerate(bbox)
]
if line["label"] == "other":
label = ["O"] * len(bbox)
else:
label = [f"I-{line['label'].upper()}"] * len(bbox)
label[0] = f"B-{line['label'].upper()}"
tokenized_inputs.update({"bbox": bbox, "labels": label})
if label[0] != "O":
entity_id_to_index_map[line["id"]] = len(entities)
entities.append(
{
"start": len(tokenized_doc["input_ids"]),
"end": len(tokenized_doc["input_ids"]) + len(tokenized_inputs["input_ids"]),
"label": line["label"].upper(),
}
)
for i in tokenized_doc:
tokenized_doc[i] = tokenized_doc[i] + tokenized_inputs[i]
relations = list(set(relations))
relations = [rel for rel in relations if rel[0] not in empty_entity and rel[1] not in empty_entity]
kvrelations = []
for rel in relations:
pair = [id2label[rel[0]], id2label[rel[1]]]
if pair == ["question", "answer"]:
kvrelations.append(
{"head": entity_id_to_index_map[rel[0]], "tail": entity_id_to_index_map[rel[1]]}
)
elif pair == ["answer", "question"]:
kvrelations.append(
{"head": entity_id_to_index_map[rel[1]], "tail": entity_id_to_index_map[rel[0]]}
)
else:
continue
def get_relation_span(rel):
bound = []
for entity_index in [rel["head"], rel["tail"]]:
bound.append(entities[entity_index]["start"])
bound.append(entities[entity_index]["end"])
return min(bound), max(bound)
relations = sorted(
[
{
"head": rel["head"],
"tail": rel["tail"],
"start_index": get_relation_span(rel)[0],
"end_index": get_relation_span(rel)[1],
}
for rel in kvrelations
],
key=lambda x: x["head"],
)
chunk_size = 512
for chunk_id, index in enumerate(range(0, len(tokenized_doc["input_ids"]), chunk_size)):
item = {}
for k in tokenized_doc:
item[k] = tokenized_doc[k][index : index + chunk_size]
entities_in_this_span = []
global_to_local_map = {}
for entity_id, entity in enumerate(entities):
if (
index <= entity["start"] < index + chunk_size
and index <= entity["end"] < index + chunk_size
):
entity["start"] = entity["start"] - index
entity["end"] = entity["end"] - index
global_to_local_map[entity_id] = len(entities_in_this_span)
entities_in_this_span.append(entity)
relations_in_this_span = []
for relation in relations:
if (
index <= relation["start_index"] < index + chunk_size
and index <= relation["end_index"] < index + chunk_size
):
relations_in_this_span.append(
{
"head": global_to_local_map[relation["head"]],
"tail": global_to_local_map[relation["tail"]],
"start_index": relation["start_index"] - index,
"end_index": relation["end_index"] - index,
}
)
item.update(
{
"id": f"{doc['id']}_{chunk_id}",
"image": image,
"entities": entities_in_this_span,
"relations": relations_in_this_span,
}
)
yield f"{doc['id']}_{chunk_id}", item
| EXA-1-master | exa/models/unilm-master/layoutlmft/layoutlmft/data/datasets/xfun.py |
# coding=utf-8
import json
import os
import datasets
from layoutlmft.data.utils import load_image, normalize_bbox
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@article{Jaume2019FUNSDAD,
title={FUNSD: A Dataset for Form Understanding in Noisy Scanned Documents},
author={Guillaume Jaume and H. K. Ekenel and J. Thiran},
journal={2019 International Conference on Document Analysis and Recognition Workshops (ICDARW)},
year={2019},
volume={2},
pages={1-6}
}
"""
_DESCRIPTION = """\
https://guillaumejaume.github.io/FUNSD/
"""
class FunsdConfig(datasets.BuilderConfig):
"""BuilderConfig for FUNSD"""
def __init__(self, **kwargs):
"""BuilderConfig for FUNSD.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(FunsdConfig, self).__init__(**kwargs)
class Funsd(datasets.GeneratorBasedBuilder):
"""Conll2003 dataset."""
BUILDER_CONFIGS = [
FunsdConfig(name="funsd", version=datasets.Version("1.0.0"), description="FUNSD dataset"),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"tokens": datasets.Sequence(datasets.Value("string")),
"bboxes": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))),
"ner_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=["O", "B-HEADER", "I-HEADER", "B-QUESTION", "I-QUESTION", "B-ANSWER", "I-ANSWER"]
)
),
"image": datasets.Array3D(shape=(3, 224, 224), dtype="uint8"),
}
),
supervised_keys=None,
homepage="https://guillaumejaume.github.io/FUNSD/",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
downloaded_file = dl_manager.download_and_extract("https://guillaumejaume.github.io/FUNSD/dataset.zip")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={"filepath": f"{downloaded_file}/dataset/training_data/"}
),
datasets.SplitGenerator(
name=datasets.Split.TEST, gen_kwargs={"filepath": f"{downloaded_file}/dataset/testing_data/"}
),
]
def _generate_examples(self, filepath):
logger.info("⏳ Generating examples from = %s", filepath)
ann_dir = os.path.join(filepath, "annotations")
img_dir = os.path.join(filepath, "images")
for guid, file in enumerate(sorted(os.listdir(ann_dir))):
tokens = []
bboxes = []
ner_tags = []
file_path = os.path.join(ann_dir, file)
with open(file_path, "r", encoding="utf8") as f:
data = json.load(f)
image_path = os.path.join(img_dir, file)
image_path = image_path.replace("json", "png")
image, size = load_image(image_path)
for item in data["form"]:
words, label = item["words"], item["label"]
words = [w for w in words if w["text"].strip() != ""]
if len(words) == 0:
continue
if label == "other":
for w in words:
tokens.append(w["text"])
ner_tags.append("O")
bboxes.append(normalize_bbox(w["box"], size))
else:
tokens.append(words[0]["text"])
ner_tags.append("B-" + label.upper())
bboxes.append(normalize_bbox(words[0]["box"], size))
for w in words[1:]:
tokens.append(w["text"])
ner_tags.append("I-" + label.upper())
bboxes.append(normalize_bbox(w["box"], size))
yield guid, {"id": str(guid), "tokens": tokens, "bboxes": bboxes, "ner_tags": ner_tags, "image": image}
| EXA-1-master | exa/models/unilm-master/layoutlmft/layoutlmft/data/datasets/funsd.py |
#!/usr/bin/env python
# coding=utf-8
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import numpy as np
from datasets import ClassLabel, load_dataset, load_metric
import layoutlmft.data.datasets.xfun
import transformers
from layoutlmft.data import DataCollatorForKeyValueExtraction
from layoutlmft.data.data_args import XFUNDataTrainingArguments
from layoutlmft.models.model_args import ModelArguments
from layoutlmft.trainers import XfunSerTrainer
from transformers import (
AutoConfig,
AutoModelForTokenClassification,
AutoTokenizer,
HfArgumentParser,
PreTrainedTokenizerFast,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
from transformers.utils import check_min_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.5.0")
logger = logging.getLogger(__name__)
def main():
parser = HfArgumentParser((ModelArguments, XFUNDataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info(f"Training/evaluation parameters {training_args}")
# Set seed before initializing model.
set_seed(training_args.seed)
datasets = load_dataset(
os.path.abspath(layoutlmft.data.datasets.xfun.__file__),
f"xfun.{data_args.lang}",
additional_langs=data_args.additional_langs,
keep_in_memory=True,
)
if training_args.do_train:
column_names = datasets["train"].column_names
features = datasets["train"].features
else:
column_names = datasets["validation"].column_names
features = datasets["validation"].features
text_column_name = "input_ids"
label_column_name = "labels"
remove_columns = column_names
# In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the
# unique labels.
def get_label_list(labels):
unique_labels = set()
for label in labels:
unique_labels = unique_labels | set(label)
label_list = list(unique_labels)
label_list.sort()
return label_list
if isinstance(features[label_column_name].feature, ClassLabel):
label_list = features[label_column_name].feature.names
# No need to convert the labels since they are already ints.
label_to_id = {i: i for i in range(len(label_list))}
else:
label_list = get_label_list(datasets["train"][label_column_name])
label_to_id = {l: i for i, l in enumerate(label_list)}
num_labels = len(label_list)
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
num_labels=num_labels,
finetuning_task=data_args.task_name,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=True,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
model = AutoModelForTokenClassification.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
# Tokenizer check: this script requires a fast tokenizer.
if not isinstance(tokenizer, PreTrainedTokenizerFast):
raise ValueError(
"This example script only works for models that have a fast tokenizer. Checkout the big table of models "
"at https://huggingface.co/transformers/index.html#bigtable to find the model types that meet this "
"requirement"
)
# Preprocessing the dataset
# Padding strategy
padding = "max_length" if data_args.pad_to_max_length else False
if training_args.do_train:
if "train" not in datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = datasets["train"]
if data_args.max_train_samples is not None:
train_dataset = train_dataset.select(range(data_args.max_train_samples))
if training_args.do_eval:
if "validation" not in datasets:
raise ValueError("--do_eval requires a validation dataset")
eval_dataset = datasets["validation"]
if data_args.max_val_samples is not None:
eval_dataset = eval_dataset.select(range(data_args.max_val_samples))
if training_args.do_predict:
if "test" not in datasets:
raise ValueError("--do_predict requires a test dataset")
test_dataset = datasets["test"]
if data_args.max_test_samples is not None:
test_dataset = test_dataset.select(range(data_args.max_test_samples))
# Data collator
data_collator = DataCollatorForKeyValueExtraction(
tokenizer,
pad_to_multiple_of=8 if training_args.fp16 else None,
padding=padding,
max_length=512,
)
# Metrics
metric = load_metric("seqeval")
def compute_metrics(p):
predictions, labels = p
predictions = np.argmax(predictions, axis=2)
# Remove ignored index (special tokens)
true_predictions = [
[label_list[p] for (p, l) in zip(prediction, label) if l != -100]
for prediction, label in zip(predictions, labels)
]
true_labels = [
[label_list[l] for (p, l) in zip(prediction, label) if l != -100]
for prediction, label in zip(predictions, labels)
]
results = metric.compute(predictions=true_predictions, references=true_labels)
if data_args.return_entity_level_metrics:
# Unpack nested dictionaries
final_results = {}
for key, value in results.items():
if isinstance(value, dict):
for n, v in value.items():
final_results[f"{key}_{n}"] = v
else:
final_results[key] = value
return final_results
else:
return {
"precision": results["overall_precision"],
"recall": results["overall_recall"],
"f1": results["overall_f1"],
"accuracy": results["overall_accuracy"],
}
# Initialize our Trainer
trainer = XfunSerTrainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics,
)
# Training
if training_args.do_train:
checkpoint = last_checkpoint if last_checkpoint else None
train_result = trainer.train(resume_from_checkpoint=checkpoint)
metrics = train_result.metrics
trainer.save_model() # Saves the tokenizer too for easy upload
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate()
max_val_samples = data_args.max_val_samples if data_args.max_val_samples is not None else len(eval_dataset)
metrics["eval_samples"] = min(max_val_samples, len(eval_dataset))
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
# Predict
if training_args.do_predict:
logger.info("*** Predict ***")
predictions, labels, metrics = trainer.predict(test_dataset)
predictions = np.argmax(predictions, axis=2)
# Remove ignored index (special tokens)
true_predictions = [
[label_list[p] for (p, l) in zip(prediction, label) if l != -100]
for prediction, label in zip(predictions, labels)
]
trainer.log_metrics("test", metrics)
trainer.save_metrics("test", metrics)
# Save predictions
output_test_predictions_file = os.path.join(training_args.output_dir, "test_predictions.txt")
if trainer.is_world_process_zero():
with open(output_test_predictions_file, "w") as writer:
for prediction in true_predictions:
writer.write(" ".join(prediction) + "\n")
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| EXA-1-master | exa/models/unilm-master/layoutlmft/examples/run_xfun_ser.py |
#!/usr/bin/env python
# coding=utf-8
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import numpy as np
from datasets import ClassLabel, load_dataset, load_metric
import layoutlmft.data.datasets.funsd
import transformers
from layoutlmft.data import DataCollatorForKeyValueExtraction
from layoutlmft.data.data_args import DataTrainingArguments
from layoutlmft.models.model_args import ModelArguments
from layoutlmft.trainers import FunsdTrainer as Trainer
from transformers import (
AutoConfig,
AutoModelForTokenClassification,
AutoTokenizer,
HfArgumentParser,
PreTrainedTokenizerFast,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
from transformers.utils import check_min_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.5.0")
logger = logging.getLogger(__name__)
def main():
# See all possible arguments in layoutlmft/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info(f"Training/evaluation parameters {training_args}")
# Set seed before initializing model.
set_seed(training_args.seed)
datasets = load_dataset(os.path.abspath(layoutlmft.data.datasets.funsd.__file__))
if training_args.do_train:
column_names = datasets["train"].column_names
features = datasets["train"].features
else:
column_names = datasets["validation"].column_names
features = datasets["validation"].features
text_column_name = "tokens" if "tokens" in column_names else column_names[0]
label_column_name = (
f"{data_args.task_name}_tags" if f"{data_args.task_name}_tags" in column_names else column_names[1]
)
remove_columns = column_names
# In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the
# unique labels.
def get_label_list(labels):
unique_labels = set()
for label in labels:
unique_labels = unique_labels | set(label)
label_list = list(unique_labels)
label_list.sort()
return label_list
if isinstance(features[label_column_name].feature, ClassLabel):
label_list = features[label_column_name].feature.names
# No need to convert the labels since they are already ints.
label_to_id = {i: i for i in range(len(label_list))}
else:
label_list = get_label_list(datasets["train"][label_column_name])
label_to_id = {l: i for i, l in enumerate(label_list)}
num_labels = len(label_list)
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
num_labels=num_labels,
finetuning_task=data_args.task_name,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=True,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
model = AutoModelForTokenClassification.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
# Tokenizer check: this script requires a fast tokenizer.
if not isinstance(tokenizer, PreTrainedTokenizerFast):
raise ValueError(
"This example script only works for models that have a fast tokenizer. Checkout the big table of models "
"at https://huggingface.co/transformers/index.html#bigtable to find the model types that meet this "
"requirement"
)
# Preprocessing the dataset
# Padding strategy
padding = "max_length" if data_args.pad_to_max_length else False
# Tokenize all texts and align the labels with them.
def tokenize_and_align_labels(examples):
tokenized_inputs = tokenizer(
examples[text_column_name],
padding=padding,
truncation=True,
return_overflowing_tokens=True,
# We use this argument because the texts in our dataset are lists of words (with a label for each word).
is_split_into_words=True,
)
labels = []
bboxes = []
images = []
for batch_index in range(len(tokenized_inputs["input_ids"])):
word_ids = tokenized_inputs.word_ids(batch_index=batch_index)
org_batch_index = tokenized_inputs["overflow_to_sample_mapping"][batch_index]
label = examples[label_column_name][org_batch_index]
bbox = examples["bboxes"][org_batch_index]
image = examples["image"][org_batch_index]
previous_word_idx = None
label_ids = []
bbox_inputs = []
for word_idx in word_ids:
# Special tokens have a word id that is None. We set the label to -100 so they are automatically
# ignored in the loss function.
if word_idx is None:
label_ids.append(-100)
bbox_inputs.append([0, 0, 0, 0])
# We set the label for the first token of each word.
elif word_idx != previous_word_idx:
label_ids.append(label_to_id[label[word_idx]])
bbox_inputs.append(bbox[word_idx])
# For the other tokens in a word, we set the label to either the current label or -100, depending on
# the label_all_tokens flag.
else:
label_ids.append(label_to_id[label[word_idx]] if data_args.label_all_tokens else -100)
bbox_inputs.append(bbox[word_idx])
previous_word_idx = word_idx
labels.append(label_ids)
bboxes.append(bbox_inputs)
images.append(image)
tokenized_inputs["labels"] = labels
tokenized_inputs["bbox"] = bboxes
tokenized_inputs["image"] = images
return tokenized_inputs
if training_args.do_train:
if "train" not in datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = datasets["train"]
if data_args.max_train_samples is not None:
train_dataset = train_dataset.select(range(data_args.max_train_samples))
train_dataset = train_dataset.map(
tokenize_and_align_labels,
batched=True,
remove_columns=remove_columns,
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=not data_args.overwrite_cache,
)
if training_args.do_eval:
if "validation" not in datasets:
raise ValueError("--do_eval requires a validation dataset")
eval_dataset = datasets["validation"]
if data_args.max_val_samples is not None:
eval_dataset = eval_dataset.select(range(data_args.max_val_samples))
eval_dataset = eval_dataset.map(
tokenize_and_align_labels,
batched=True,
remove_columns=remove_columns,
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=not data_args.overwrite_cache,
)
if training_args.do_predict:
if "test" not in datasets:
raise ValueError("--do_predict requires a test dataset")
test_dataset = datasets["test"]
if data_args.max_test_samples is not None:
test_dataset = test_dataset.select(range(data_args.max_test_samples))
test_dataset = test_dataset.map(
tokenize_and_align_labels,
batched=True,
remove_columns=remove_columns,
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=not data_args.overwrite_cache,
)
# Data collator
data_collator = DataCollatorForKeyValueExtraction(
tokenizer,
pad_to_multiple_of=8 if training_args.fp16 else None,
padding=padding,
max_length=512,
)
# Metrics
metric = load_metric("seqeval")
def compute_metrics(p):
predictions, labels = p
predictions = np.argmax(predictions, axis=2)
# Remove ignored index (special tokens)
true_predictions = [
[label_list[p] for (p, l) in zip(prediction, label) if l != -100]
for prediction, label in zip(predictions, labels)
]
true_labels = [
[label_list[l] for (p, l) in zip(prediction, label) if l != -100]
for prediction, label in zip(predictions, labels)
]
results = metric.compute(predictions=true_predictions, references=true_labels)
if data_args.return_entity_level_metrics:
# Unpack nested dictionaries
final_results = {}
for key, value in results.items():
if isinstance(value, dict):
for n, v in value.items():
final_results[f"{key}_{n}"] = v
else:
final_results[key] = value
return final_results
else:
return {
"precision": results["overall_precision"],
"recall": results["overall_recall"],
"f1": results["overall_f1"],
"accuracy": results["overall_accuracy"],
}
# Initialize our Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics,
)
# Training
if training_args.do_train:
checkpoint = last_checkpoint if last_checkpoint else None
train_result = trainer.train(resume_from_checkpoint=checkpoint)
metrics = train_result.metrics
trainer.save_model() # Saves the tokenizer too for easy upload
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate()
max_val_samples = data_args.max_val_samples if data_args.max_val_samples is not None else len(eval_dataset)
metrics["eval_samples"] = min(max_val_samples, len(eval_dataset))
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
# Predict
if training_args.do_predict:
logger.info("*** Predict ***")
predictions, labels, metrics = trainer.predict(test_dataset)
predictions = np.argmax(predictions, axis=2)
# Remove ignored index (special tokens)
true_predictions = [
[label_list[p] for (p, l) in zip(prediction, label) if l != -100]
for prediction, label in zip(predictions, labels)
]
trainer.log_metrics("test", metrics)
trainer.save_metrics("test", metrics)
# Save predictions
output_test_predictions_file = os.path.join(training_args.output_dir, "test_predictions.txt")
if trainer.is_world_process_zero():
with open(output_test_predictions_file, "w") as writer:
for prediction in true_predictions:
writer.write(" ".join(prediction) + "\n")
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| EXA-1-master | exa/models/unilm-master/layoutlmft/examples/run_funsd.py |
#!/usr/bin/env python
# coding=utf-8
import logging
import os
import sys
import numpy as np
from datasets import ClassLabel, load_dataset
import layoutlmft.data.datasets.xfun
import transformers
from layoutlmft import AutoModelForRelationExtraction
from layoutlmft.data.data_args import XFUNDataTrainingArguments
from layoutlmft.data.data_collator import DataCollatorForKeyValueExtraction
from layoutlmft.evaluation import re_score
from layoutlmft.models.model_args import ModelArguments
from layoutlmft.trainers import XfunReTrainer
from transformers import (
AutoConfig,
AutoTokenizer,
HfArgumentParser,
PreTrainedTokenizerFast,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
logger = logging.getLogger(__name__)
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, XFUNDataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info(f"Training/evaluation parameters {training_args}")
# Set seed before initializing model.
set_seed(training_args.seed)
datasets = load_dataset(
os.path.abspath(layoutlmft.data.datasets.xfun.__file__),
f"xfun.{data_args.lang}",
additional_langs=data_args.additional_langs,
keep_in_memory=True,
)
if training_args.do_train:
column_names = datasets["train"].column_names
features = datasets["train"].features
else:
column_names = datasets["validation"].column_names
features = datasets["validation"].features
text_column_name = "input_ids"
label_column_name = "labels"
remove_columns = column_names
# In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the
# unique labels.
def get_label_list(labels):
unique_labels = set()
for label in labels:
unique_labels = unique_labels | set(label)
label_list = list(unique_labels)
label_list.sort()
return label_list
if isinstance(features[label_column_name].feature, ClassLabel):
label_list = features[label_column_name].feature.names
# No need to convert the labels since they are already ints.
label_to_id = {i: i for i in range(len(label_list))}
else:
label_list = get_label_list(datasets["train"][label_column_name])
label_to_id = {l: i for i, l in enumerate(label_list)}
num_labels = len(label_list)
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
num_labels=num_labels,
finetuning_task=data_args.task_name,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=True,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
model = AutoModelForRelationExtraction.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
# Tokenizer check: this script requires a fast tokenizer.
if not isinstance(tokenizer, PreTrainedTokenizerFast):
raise ValueError(
"This example script only works for models that have a fast tokenizer. Checkout the big table of models "
"at https://huggingface.co/transformers/index.html#bigtable to find the model types that meet this "
"requirement"
)
# Preprocessing the dataset
# Padding strategy
padding = "max_length" if data_args.pad_to_max_length else False
if training_args.do_train:
if "train" not in datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = datasets["train"]
if data_args.max_train_samples is not None:
train_dataset = train_dataset.select(range(data_args.max_train_samples))
if training_args.do_eval:
if "validation" not in datasets:
raise ValueError("--do_eval requires a validation dataset")
eval_dataset = datasets["validation"]
if data_args.max_val_samples is not None:
eval_dataset = eval_dataset.select(range(data_args.max_val_samples))
if training_args.do_predict:
if "test" not in datasets:
raise ValueError("--do_predict requires a test dataset")
test_dataset = datasets["test"]
if data_args.max_test_samples is not None:
test_dataset = test_dataset.select(range(data_args.max_test_samples))
# Data collator
data_collator = DataCollatorForKeyValueExtraction(
tokenizer,
pad_to_multiple_of=8 if training_args.fp16 else None,
padding=padding,
max_length=512,
)
def compute_metrics(p):
pred_relations, gt_relations = p
score = re_score(pred_relations, gt_relations, mode="boundaries")
return score
# Initialize our Trainer
trainer = XfunReTrainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics,
)
# Training
if training_args.do_train:
checkpoint = last_checkpoint if last_checkpoint else None
train_result = trainer.train(resume_from_checkpoint=checkpoint)
metrics = train_result.metrics
trainer.save_model() # Saves the tokenizer too for easy upload
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate()
max_val_samples = data_args.max_val_samples if data_args.max_val_samples is not None else len(eval_dataset)
metrics["eval_samples"] = min(max_val_samples, len(eval_dataset))
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| EXA-1-master | exa/models/unilm-master/layoutlmft/examples/run_xfun_re.py |
import os
import json
import tqdm
import numpy as np
import torch
import argparse
from datasets import Dataset
from typing import List, Dict
from functools import partial
from transformers import AutoModel, AutoTokenizer, PreTrainedTokenizerFast, BatchEncoding, DataCollatorWithPadding
from transformers.modeling_outputs import BaseModelOutput
from torch.utils.data import DataLoader
from mteb import MTEB, AbsTaskRetrieval, DRESModel
from utils import pool, logger, move_to_cuda
parser = argparse.ArgumentParser(description='evaluation for BEIR benchmark')
parser.add_argument('--model-name-or-path', default='bert-base-uncased',
type=str, metavar='N', help='which model to use')
parser.add_argument('--output-dir', default='tmp-outputs/',
type=str, metavar='N', help='output directory')
parser.add_argument('--doc-as-query', action='store_true', help='use query prefix for passages')
parser.add_argument('--pool-type', default='avg', help='pool type')
args = parser.parse_args()
logger.info('Args: {}'.format(json.dumps(args.__dict__, ensure_ascii=False, indent=4)))
assert args.pool_type in ['cls', 'avg'], 'pool_type should be cls or avg'
assert args.output_dir, 'output_dir should be set'
os.makedirs(args.output_dir, exist_ok=True)
def _transform_func(tokenizer: PreTrainedTokenizerFast,
examples: Dict[str, List]) -> BatchEncoding:
return tokenizer(examples['contents'],
max_length=512,
padding=True,
return_token_type_ids=False,
truncation=True)
class RetrievalModel(DRESModel):
# Refer to the code of DRESModel for the methods to overwrite
def __init__(self, **kwargs):
self.encoder = AutoModel.from_pretrained(args.model_name_or_path)
self.tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
self.gpu_count = torch.cuda.device_count()
if self.gpu_count > 1:
self.encoder = torch.nn.DataParallel(self.encoder)
self.encoder.cuda()
self.encoder.eval()
def encode_queries(self, queries: List[str], **kwargs) -> np.ndarray:
input_texts = ['query: {}'.format(q) for q in queries]
return self._do_encode(input_texts)
def encode_corpus(self, corpus: List[Dict[str, str]], **kwargs) -> np.ndarray:
if args.doc_as_query:
return self.encode_queries([d['text'] for d in corpus], **kwargs)
input_texts = ['{} {}'.format(doc.get('title', ''), doc['text']).strip() for doc in corpus]
input_texts = ['passage: {}'.format(t) for t in input_texts]
return self._do_encode(input_texts)
@torch.no_grad()
def _do_encode(self, input_texts: List[str]) -> np.ndarray:
dataset: Dataset = Dataset.from_dict({'contents': input_texts})
dataset.set_transform(partial(_transform_func, self.tokenizer))
data_collator = DataCollatorWithPadding(self.tokenizer, pad_to_multiple_of=8)
data_loader = DataLoader(
dataset,
batch_size=128 * self.gpu_count,
shuffle=False,
drop_last=False,
num_workers=4,
collate_fn=data_collator,
pin_memory=True)
encoded_embeds = []
for batch_dict in tqdm.tqdm(data_loader, desc='encoding', mininterval=10):
batch_dict = move_to_cuda(batch_dict)
with torch.cuda.amp.autocast():
outputs: BaseModelOutput = self.encoder(**batch_dict)
embeds = pool(outputs.last_hidden_state, batch_dict['attention_mask'], args.pool_type)
encoded_embeds.append(embeds.cpu().numpy())
return np.concatenate(encoded_embeds, axis=0)
def main():
assert AbsTaskRetrieval.is_dres_compatible(RetrievalModel)
model = RetrievalModel()
task_names = [t.description["name"] for t in MTEB(task_types=['Retrieval'], task_langs=['en']).tasks]
logger.info('Tasks: {}'.format(task_names))
for task in task_names:
logger.info('Processing task: {}'.format(task))
args.doc_as_query = task in ['QuoraRetrieval']
if task in ['MSMARCOv2']:
logger.warning('Skip task: {}, since it has no test split'.format(task))
continue
evaluation = MTEB(tasks=[task], task_langs=['en'])
evaluation.run(model, eval_splits=["test" if task not in ['MSMARCO'] else 'dev'],
output_folder=args.output_dir,
overwrite_results=False)
if __name__ == '__main__':
main()
| EXA-1-master | exa/models/unilm-master/e5/mteb_beir_eval.py |
import torch
import logging
from torch import Tensor
from typing import Mapping
def _setup_logger():
log_format = logging.Formatter("[%(asctime)s %(levelname)s] %(message)s")
logger = logging.getLogger()
logger.setLevel(logging.INFO)
console_handler = logging.StreamHandler()
console_handler.setFormatter(log_format)
logger.handlers = [console_handler]
return logger
logger = _setup_logger()
def move_to_cuda(sample):
if len(sample) == 0:
return {}
def _move_to_cuda(maybe_tensor):
if torch.is_tensor(maybe_tensor):
return maybe_tensor.cuda(non_blocking=True)
elif isinstance(maybe_tensor, dict):
return {key: _move_to_cuda(value) for key, value in maybe_tensor.items()}
elif isinstance(maybe_tensor, list):
return [_move_to_cuda(x) for x in maybe_tensor]
elif isinstance(maybe_tensor, tuple):
return tuple([_move_to_cuda(x) for x in maybe_tensor])
elif isinstance(maybe_tensor, Mapping):
return type(maybe_tensor)({k: _move_to_cuda(v) for k, v in maybe_tensor.items()})
else:
return maybe_tensor
return _move_to_cuda(sample)
def pool(last_hidden_states: Tensor,
attention_mask: Tensor,
pool_type: str) -> Tensor:
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
if pool_type == "avg":
emb = last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
elif pool_type == "cls":
emb = last_hidden[:, 0]
else:
raise ValueError(f"pool_type {pool_type} not supported")
return emb
| EXA-1-master | exa/models/unilm-master/e5/utils.py |
import os
import torch
import torch.nn.functional as F
import tqdm
import json
import numpy as np
import argparse
from functools import partial
from torch.utils.data import DataLoader
from datasets import Dataset
from transformers import AutoModel, AutoTokenizer, DataCollatorWithPadding, PreTrainedTokenizerFast, BatchEncoding
from transformers.modeling_outputs import BaseModelOutput
from typing import List, Dict
from mteb import MTEB
from utils import logger, pool, move_to_cuda
parser = argparse.ArgumentParser(description='evaluation for MTEB benchmark except its Retrieval category')
parser.add_argument('--task-types', nargs='+', default=['sts'], help='task types to evaluate')
parser.add_argument('--output-dir', default='',
type=str, metavar='N', help='output directory')
parser.add_argument('--model-name-or-path', default='tmp-outputs/',
type=str, metavar='N', help='which model to use')
parser.add_argument('--l2-normalize', action='store_true', help='whether to l2 normalize embeddings')
parser.add_argument('--pool-type', default='avg', help='pool type')
parser.add_argument('--prompt', default='query: ', help='prompt')
args = parser.parse_args()
logger.info('Args: {}'.format(json.dumps(args.__dict__, ensure_ascii=False, indent=4)))
assert args.prompt in ['', 'query: ', 'passage: ']
assert args.output_dir, 'output_dir should be specified'
os.makedirs(args.output_dir, exist_ok=True)
def _transform_func(tokenizer: PreTrainedTokenizerFast,
examples: Dict[str, List]) -> BatchEncoding:
if args.prompt:
examples['input_texts'] = [args.prompt + t for t in examples['input_texts']]
batch_dict = tokenizer(examples['input_texts'],
max_length=512,
padding=True,
truncation=True)
return batch_dict
class DenseEncoder(torch.nn.Module):
def __init__(self, **kwargs):
super().__init__()
self.encoder = AutoModel.from_pretrained(args.model_name_or_path)
self.tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
self.gpu_count = torch.cuda.device_count()
self.encoder.eval()
self.encoder.cuda()
if self.gpu_count > 1:
self.encoder = torch.nn.DataParallel(self.encoder)
@torch.no_grad()
def encode(self, sentences, **kwargs) -> np.ndarray:
""" Returns a list of embeddings for the given sentences.
Args:
sentences (`List[str]`): List of sentences to encode
batch_size (`int`): Batch size for the encoding
Returns:
`List[np.ndarray]` or `List[tensor]`: List of embeddings for the given sentences
"""
dataset: Dataset = Dataset.from_dict({'input_texts': sentences})
dataset.set_transform(partial(_transform_func, self.tokenizer))
data_collator = DataCollatorWithPadding(self.tokenizer, pad_to_multiple_of=8)
data_loader = DataLoader(
dataset,
batch_size=128 * self.gpu_count,
shuffle=False,
drop_last=False,
num_workers=2,
collate_fn=data_collator,
pin_memory=True)
encoded_embeds = []
for batch_dict in tqdm.tqdm(data_loader, desc='encoding', mininterval=10, disable=len(sentences) < 128):
batch_dict = move_to_cuda(batch_dict)
with torch.cuda.amp.autocast():
outputs: BaseModelOutput = self.encoder(**batch_dict)
embeds = pool(outputs.last_hidden_state, batch_dict['attention_mask'], args.pool_type)
if args.l2_normalize:
embeds = F.normalize(embeds, p=2, dim=-1)
encoded_embeds.append(embeds.cpu().numpy())
return np.concatenate(encoded_embeds, axis=0)
def main():
model = DenseEncoder()
args.task_types = [t for t in args.task_types if t.strip()]
evaluation = MTEB(
task_types=args.task_types or None,
task_langs=['en'])
evaluation.run(model, eval_splits=["test"],
output_folder=args.output_dir,
overwrite_results=False)
if __name__ == '__main__':
main()
| EXA-1-master | exa/models/unilm-master/e5/mteb_eval.py |
"""
Simple check list from AllenNLP repo: https://github.com/allenai/allennlp/blob/master/setup.py
To create the package for pypi.
1. Change the version in __init__.py and setup.py.
2. Commit these changes with the message: "Release: VERSION"
3. Add a tag in git to mark the release: "git tag VERSION -m'Adds tag VERSION for pypi' "
Push the tag to git: git push --tags origin master
4. Build both the sources and the wheel. Do not change anything in setup.py between
creating the wheel and the source distribution (obviously).
For the wheel, run: "python setup.py bdist_wheel" in the top level allennlp directory.
(this will build a wheel for the python version you use to build it - make sure you use python 3.x).
For the sources, run: "python setup.py sdist"
You should now have a /dist directory with both .whl and .tar.gz source versions of allennlp.
5. Check that everything looks correct by uploading the package to the pypi test server:
twine upload dist/* -r pypitest
(pypi suggest using twine as other methods upload files via plaintext.)
Check that you can install it in a virtualenv by running:
pip install -i https://testpypi.python.org/pypi allennlp
6. Upload the final version to actual pypi:
twine upload dist/* -r pypi
7. Copy the release notes from RELEASE.md to the tag in github once everything is looking hunky-dory.
"""
from setuptools import find_packages, setup
setup(
name="pytorch_pretrained_bert",
version="0.4.0",
author="Thomas Wolf, Victor Sanh, Tim Rault, Google AI Language Team Authors",
author_email="[email protected]",
description="PyTorch version of Google AI BERT model with script to load Google pre-trained models",
long_description="pytorch",
long_description_content_type="text/markdown",
keywords='BERT NLP deep learning google',
license='Apache',
url="https://github.com/huggingface/pytorch-pretrained-BERT",
packages=find_packages(exclude=["*.tests", "*.tests.*",
"tests.*", "tests"]),
install_requires=['numpy',
'boto3',
'requests',
'tqdm'],
entry_points={
'console_scripts': [
"pytorch_pretrained_bert=pytorch_pretrained_bert.__main__:main"
]
},
python_requires='>=3.5.0',
tests_require=['pytest'],
classifiers=[
'Intended Audience :: Science/Research',
'License :: OSI Approved :: Apache Software License',
'Programming Language :: Python :: 3',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
],
)
| EXA-1-master | exa/models/unilm-master/unilm-v1/src/setup.py |
import torch
from torch.nn import DataParallel
from torch.cuda._utils import _get_device_index
from torch.nn.parallel._functions import Scatter
from itertools import chain
def scatter_imbalance(inputs, target_gpus, dim=0):
r"""
Slices tensors into approximately equal chunks and
distributes them across given GPUs. Duplicates
references to objects that are not tensors.
"""
def scatter_map(obj):
if isinstance(obj, torch.Tensor):
if (len(target_gpus) == 4) and (obj.size(dim) == 22):
return Scatter.apply(target_gpus, (4, 6, 6, 6), dim, obj)
if (len(target_gpus) == 4) and (obj.size(dim) == 60):
return Scatter.apply(target_gpus, (12, 16, 16, 16), dim, obj)
elif (len(target_gpus) == 4) and (obj.size(dim) == 144):
return Scatter.apply(target_gpus, (24, 40, 40, 40), dim, obj)
elif (len(target_gpus) == 8) and (obj.size(dim) == 46):
return Scatter.apply(target_gpus, (4, 6, 6, 6, 6, 6, 6, 6), dim, obj)
elif (len(target_gpus) == 8) and (obj.size(dim) == 62):
return Scatter.apply(target_gpus, (6, 8, 8, 8, 8, 8, 8, 8), dim, obj)
elif (len(target_gpus) == 8) and (obj.size(dim) == 94):
return Scatter.apply(target_gpus, (10, 12, 12, 12, 12, 12, 12, 12), dim, obj)
elif (len(target_gpus) == 8) and (obj.size(dim) == 110):
return Scatter.apply(target_gpus, (12, 14, 14, 14, 14, 14, 14, 14), dim, obj)
elif (len(target_gpus) == 8) and (obj.size(dim) == 118):
return Scatter.apply(target_gpus, (13, 15, 15, 15, 15, 15, 15, 15), dim, obj)
elif (len(target_gpus) == 8) and (obj.size(dim) == 126):
return Scatter.apply(target_gpus, (14, 16, 16, 16, 16, 16, 16, 16), dim, obj)
elif (len(target_gpus) == 8) and (obj.size(dim) == 134):
return Scatter.apply(target_gpus, (15, 17, 17, 17, 17, 17, 17, 17), dim, obj)
elif (len(target_gpus) == 8) and (obj.size(dim) == 142):
return Scatter.apply(target_gpus, (16, 18, 18, 18, 18, 18, 18, 18), dim, obj)
elif (len(target_gpus) == 16) and (obj.size(dim) == 222):
return Scatter.apply(target_gpus, (12, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14), dim, obj)
return Scatter.apply(target_gpus, None, dim, obj)
if isinstance(obj, tuple) and len(obj) > 0:
return list(zip(*map(scatter_map, obj)))
if isinstance(obj, list) and len(obj) > 0:
return list(map(list, zip(*map(scatter_map, obj))))
if isinstance(obj, dict) and len(obj) > 0:
return list(map(type(obj), zip(*map(scatter_map, obj.items()))))
return [obj for targets in target_gpus]
# After scatter_map is called, a scatter_map cell will exist. This cell
# has a reference to the actual function scatter_map, which has references
# to a closure that has a reference to the scatter_map cell (because the
# fn is recursive). To avoid this reference cycle, we set the function to
# None, clearing the cell
try:
return scatter_map(inputs)
finally:
scatter_map = None
def scatter_kwargs_imbalance(inputs, kwargs, target_gpus, dim=0):
r"""Scatter with support for kwargs dictionary"""
inputs = scatter_imbalance(inputs, target_gpus, dim) if inputs else []
kwargs = scatter_imbalance(kwargs, target_gpus, dim) if kwargs else []
if len(inputs) < len(kwargs):
inputs.extend([() for _ in range(len(kwargs) - len(inputs))])
elif len(kwargs) < len(inputs):
kwargs.extend([{} for _ in range(len(inputs) - len(kwargs))])
inputs = tuple(inputs)
kwargs = tuple(kwargs)
return inputs, kwargs
class DataParallelImbalance(DataParallel):
def __init__(self, module, device_ids=None, output_device=None, dim=0):
super(DataParallelImbalance, self).__init__(
module, device_ids, output_device, dim)
if not torch.cuda.is_available():
self.module = module
self.device_ids = []
return
if device_ids is None:
device_ids = list(range(torch.cuda.device_count()))
if output_device is None:
output_device = device_ids[0]
if not all(t.is_cuda and t.device.index == device_ids[0]
for t in chain(module.parameters(), module.buffers())):
raise RuntimeError("module must have its parameters and buffers "
"on device %d (device_ids[0])" % device_ids[0])
self.dim = dim
self.module = module
self.device_ids = list(
map(lambda x: _get_device_index(x, True), device_ids))
self.output_device = _get_device_index(output_device, True)
if len(self.device_ids) == 1:
self.module.cuda(device_ids[0])
def forward(self, *inputs, **kwargs):
if not self.device_ids:
return self.module(*inputs, **kwargs)
inputs, kwargs = self.scatter_imbalance(
inputs, kwargs, self.device_ids)
if len(self.device_ids) == 1:
return self.module(*inputs[0], **kwargs[0])
replicas = self.replicate(self.module, self.device_ids[:len(inputs)])
outputs = self.parallel_apply(replicas, inputs, kwargs)
return self.gather(outputs, self.output_device)
def scatter_imbalance(self, inputs, kwargs, device_ids):
return scatter_kwargs_imbalance(inputs, kwargs, device_ids, dim=self.dim)
| EXA-1-master | exa/models/unilm-master/unilm-v1/src/nn/data_parallel.py |
EXA-1-master | exa/models/unilm-master/unilm-v1/src/nn/__init__.py |
|
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch optimization for BERT model."""
import math
import torch
from torch.optim import Optimizer
from torch.optim.optimizer import required
from torch.nn.utils import clip_grad_norm_
from collections import defaultdict
from torch._six import container_abcs
from copy import deepcopy
from itertools import chain
def warmup_cosine(x, warmup=0.002):
if x < warmup:
return x/warmup
return 0.5 * (1.0 + torch.cos(math.pi * x))
def warmup_constant(x, warmup=0.002):
if x < warmup:
return x/warmup
return 1.0
def warmup_linear(x, warmup=0.002):
if x < warmup:
return x/warmup
return max((x-1.)/(warmup-1.), 0)
SCHEDULES = {
'warmup_cosine': warmup_cosine,
'warmup_constant': warmup_constant,
'warmup_linear': warmup_linear,
}
class BertAdam(Optimizer):
"""Implements BERT version of Adam algorithm with weight decay fix.
Params:
lr: learning rate
warmup: portion of t_total for the warmup, -1 means no warmup. Default: -1
t_total: total number of training steps for the learning
rate schedule, -1 means constant learning rate. Default: -1
schedule: schedule to use for the warmup (see above). Default: 'warmup_linear'
b1: Adams b1. Default: 0.9
b2: Adams b2. Default: 0.999
e: Adams epsilon. Default: 1e-6
weight_decay: Weight decay. Default: 0.01
max_grad_norm: Maximum norm for the gradients (-1 means no clipping). Default: 1.0
"""
def __init__(self, params, lr=required, warmup=-1, t_total=-1, schedule='warmup_linear', b1=0.9, b2=0.999, e=1e-6, weight_decay=0.01, max_grad_norm=1.0):
if lr is not required and lr < 0.0:
raise ValueError(
"Invalid learning rate: {} - should be >= 0.0".format(lr))
if schedule not in SCHEDULES:
raise ValueError("Invalid schedule parameter: {}".format(schedule))
if not 0.0 <= warmup < 1.0 and not warmup == -1:
raise ValueError(
"Invalid warmup: {} - should be in [0.0, 1.0[ or -1".format(warmup))
if not 0.0 <= b1 < 1.0:
raise ValueError(
"Invalid b1 parameter: {} - should be in [0.0, 1.0[".format(b1))
if not 0.0 <= b2 < 1.0:
raise ValueError(
"Invalid b2 parameter: {} - should be in [0.0, 1.0[".format(b2))
if not e >= 0.0:
raise ValueError(
"Invalid epsilon value: {} - should be >= 0.0".format(e))
defaults = dict(lr=lr, schedule=schedule, warmup=warmup, t_total=t_total,
b1=b1, b2=b2, e=e, weight_decay=weight_decay,
max_grad_norm=max_grad_norm)
super(BertAdam, self).__init__(params, defaults)
def get_lr(self):
lr = []
for group in self.param_groups:
for p in group['params']:
state = self.state[p]
if len(state) == 0:
return [0]
if group['t_total'] != -1:
schedule_fct = SCHEDULES[group['schedule']]
lr_scheduled = group['lr'] * schedule_fct(
state['step']/group['t_total'], group['warmup'])
else:
lr_scheduled = group['lr']
lr.append(lr_scheduled)
return lr
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError(
'Adam does not support sparse gradients, please consider SparseAdam instead')
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['next_m'] = torch.zeros_like(p.data)
# Exponential moving average of squared gradient values
state['next_v'] = torch.zeros_like(p.data)
next_m, next_v = state['next_m'], state['next_v']
beta1, beta2 = group['b1'], group['b2']
# Add grad clipping
if group['max_grad_norm'] > 0:
clip_grad_norm_(p, group['max_grad_norm'])
# Decay the first and second moment running average coefficient
# In-place operations to update the averages at the same time
next_m.mul_(beta1).add_(1 - beta1, grad)
next_v.mul_(beta2).addcmul_(1 - beta2, grad, grad)
update = next_m / (next_v.sqrt() + group['e'])
# Just adding the square of the weights to the loss function is *not*
# the correct way of using L2 regularization/weight decay with Adam,
# since that will interact with the m and v parameters in strange ways.
#
# Instead we want to decay the weights in a manner that doesn't interact
# with the m/v parameters. This is equivalent to adding the square
# of the weights to the loss with plain (non-momentum) SGD.
if group['weight_decay'] > 0.0:
update += group['weight_decay'] * p.data
if group['t_total'] != -1:
schedule_fct = SCHEDULES[group['schedule']]
lr_scheduled = group['lr'] * schedule_fct(
state['step']/group['t_total'], group['warmup'])
else:
lr_scheduled = group['lr']
update_with_lr = lr_scheduled * update
p.data.add_(-update_with_lr)
state['step'] += 1
# step_size = lr_scheduled * math.sqrt(bias_correction2) / bias_correction1
# No bias correction
# bias_correction1 = 1 - beta1 ** state['step']
# bias_correction2 = 1 - beta2 ** state['step']
return loss
class BertAdamFineTune(BertAdam):
def __init__(self, params, lr=required, warmup=-1, t_total=-1, schedule='warmup_linear', b1=0.9, b2=0.999, e=1e-6, weight_decay=0.01, max_grad_norm=1.0):
self.init_param_group = []
super(BertAdamFineTune, self).__init__(params, lr, warmup,
t_total, schedule, b1, b2, e, weight_decay, max_grad_norm)
def save_init_param_group(self, param_groups, name_groups, missing_keys):
self.init_param_group = []
for group, name in zip(param_groups, name_groups):
if group['weight_decay'] > 0.0:
init_p_list = []
for p, n in zip(group['params'], name):
init_p = p.data.clone().detach()
if any(mk in n for mk in missing_keys):
print("[no finetuning weight decay]", n)
# should use the original weight decay
init_p.zero_()
init_p_list.append(init_p)
self.init_param_group.append(init_p_list)
else:
# placeholder
self.init_param_group.append([])
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for i_group, group in enumerate(self.param_groups):
for i_p, p in enumerate(group['params']):
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError(
'Adam does not support sparse gradients, please consider SparseAdam instead')
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['next_m'] = torch.zeros_like(p.data)
# Exponential moving average of squared gradient values
state['next_v'] = torch.zeros_like(p.data)
next_m, next_v = state['next_m'], state['next_v']
beta1, beta2 = group['b1'], group['b2']
# Add grad clipping
if group['max_grad_norm'] > 0:
clip_grad_norm_(p, group['max_grad_norm'])
# Decay the first and second moment running average coefficient
# In-place operations to update the averages at the same time
next_m.mul_(beta1).add_(1 - beta1, grad)
next_v.mul_(beta2).addcmul_(1 - beta2, grad, grad)
update = next_m / (next_v.sqrt() + group['e'])
# Just adding the square of the weights to the loss function is *not*
# the correct way of using L2 regularization/weight decay with Adam,
# since that will interact with the m and v parameters in strange ways.
#
# Instead we want to decay the weights in a manner that doesn't interact
# with the m/v parameters. This is equivalent to adding the square
# of the weights to the loss with plain (non-momentum) SGD.
if group['weight_decay'] > 0.0:
if self.init_param_group:
update += group['weight_decay'] * \
(2.0 * p.data -
self.init_param_group[i_group][i_p])
else:
update += group['weight_decay'] * p.data
if group['t_total'] != -1:
schedule_fct = SCHEDULES[group['schedule']]
lr_scheduled = group['lr'] * schedule_fct(
state['step']/group['t_total'], group['warmup'])
else:
lr_scheduled = group['lr']
update_with_lr = lr_scheduled * update
p.data.add_(-update_with_lr)
state['step'] += 1
# step_size = lr_scheduled * math.sqrt(bias_correction2) / bias_correction1
# No bias correction
# bias_correction1 = 1 - beta1 ** state['step']
# bias_correction2 = 1 - beta2 ** state['step']
return loss
def load_state_dict_subset_finetune(self, state_dict, num_load_group):
r"""Loads the optimizer state.
Arguments:
state_dict (dict): optimizer state. Should be an object returned
from a call to :meth:`state_dict`.
"""
# deepcopy, to be consistent with module API
state_dict = deepcopy(state_dict)
# Validate the state_dict
groups = self.param_groups
saved_groups = state_dict['param_groups']
if len(groups) < num_load_group or len(saved_groups) < num_load_group:
raise ValueError("loaded state dict has a different number of "
"parameter groups")
param_lens = (len(g['params']) for g in groups[:num_load_group])
saved_lens = (len(g['params']) for g in saved_groups[:num_load_group])
if any(p_len != s_len for p_len, s_len in zip(param_lens, saved_lens)):
raise ValueError("loaded state dict contains a parameter group "
"that doesn't match the size of optimizer's group")
# Update the state
id_map = {old_id: p for old_id, p in
zip(chain(*(g['params'] for g in saved_groups[:num_load_group])),
chain(*(g['params'] for g in groups[:num_load_group])))}
def cast(param, value):
r"""Make a deep copy of value, casting all tensors to device of param."""
if isinstance(value, torch.Tensor):
# Floating-point types are a bit special here. They are the only ones
# that are assumed to always match the type of params.
if param.is_floating_point():
value = value.to(param.dtype)
value = value.to(param.device)
return value
elif isinstance(value, dict):
return {k: cast(param, v) for k, v in value.items()}
elif isinstance(value, container_abcs.Iterable):
return type(value)(cast(param, v) for v in value)
else:
return value
# Copy state assigned to params (and cast tensors to appropriate types).
# State that is not assigned to params is copied as is (needed for
# backward compatibility).
state = defaultdict(dict)
for k, v in state_dict['state'].items():
if k in id_map:
param = id_map[k]
state[param] = cast(param, v)
else:
state[k] = v
# handle additional params
for k, v in self.state:
if k not in state:
state[k] = v
# do not change groups: {'weight_decay': 0.01, 'lr': 9.995e-06, 'schedule': 'warmup_linear', 'warmup': 0.1, 't_total': 400000, 'b1': 0.9, 'b2': 0.999, 'e': 1e-06, 'max_grad_norm': 1.0, 'params': [...]}
# # Update parameter groups, setting their 'params' value
# def update_group(group, new_group):
# new_group['params'] = group['params']
# return new_group
# param_groups = [
# update_group(g, ng) for g, ng in zip(groups[:num_load_group], saved_groups[:num_load_group])]
# # handle additional params
# param_groups.extend(groups[num_load_group:])
self.__setstate__({'state': state, 'param_groups': groups})
def find_state_dict_subset_finetune(org_state_dict, org_name_list, no_decay, param_optimizer):
# only use the bert encoder and embeddings
want_name_set = set()
for n in org_name_list:
if ('bert.encoder' in n) or ('bert.embeddings' in n):
want_name_set.add(n)
# original: name to pid, pid to name
org_grouped_names = [[n for n in org_name_list if not any(nd in n for nd in no_decay)],
[n for n in org_name_list if any(nd in n for nd in no_decay)]]
org_n2id, org_id2n = {}, {}
for ng, pg in zip(org_grouped_names, org_state_dict['param_groups']):
for n, pid in zip(ng, pg['params']):
org_n2id[n] = pid
org_id2n[pid] = n
# group by: whether pretrained; whether weight decay
g_np_list = [
[(n, p) for n, p in param_optimizer if n in want_name_set and not any(
nd in n for nd in no_decay)],
[(n, p) for n, p in param_optimizer if n in want_name_set and any(
nd in n for nd in no_decay)],
[(n, p) for n, p in param_optimizer if n not in want_name_set and not any(
nd in n for nd in no_decay)],
[(n, p) for n, p in param_optimizer if n not in want_name_set and any(
nd in n for nd in no_decay)],
]
optimizer_grouped_parameters = [
{'params': [p for n, p in g_np_list[0]], 'weight_decay': 0.01},
{'params': [p for n, p in g_np_list[1]], 'weight_decay': 0.0},
{'params': [p for n, p in g_np_list[2]], 'weight_decay': 0.01},
{'params': [p for n, p in g_np_list[3]], 'weight_decay': 0.0}
]
new_state_dict = {}
# regroup the original state_dict
new_state_dict['state'] = {pid: v for pid, v in org_state_dict['state'].items(
) if pid not in org_id2n or org_id2n[pid] in want_name_set}
# reset step count to 0
for pid, st in new_state_dict['state'].items():
st['step'] = 0
def _filter_group(group, g_np_list, i, org_n2id):
packed = {k: v for k, v in group.items() if k != 'params'}
packed['params'] = [pid for pid in group['params']
if pid in org_id2n and org_id2n[pid] in want_name_set]
assert len(g_np_list[i]) == len(packed['params'])
# keep them the same order
packed['params'] = [org_n2id[n] for n, p in g_np_list[i]]
return packed
new_state_dict['param_groups'] = [_filter_group(
g, g_np_list, i, org_n2id) for i, g in enumerate(org_state_dict['param_groups'])]
return new_state_dict, optimizer_grouped_parameters
| EXA-1-master | exa/models/unilm-master/unilm-v1/src/pytorch_pretrained_bert/optimization.py |
__version__ = "0.4.0"
from .tokenization import BertTokenizer, BasicTokenizer, WordpieceTokenizer
from .modeling import (BertConfig, BertModel, BertForPreTraining, BertForMaskedLM, BertForNextSentencePrediction, BertForSequenceClassification,
BertForMultipleChoice, BertForTokenClassification, BertForQuestionAnswering, BertForPreTrainingLossMask, BertPreTrainingPairRel, BertPreTrainingPairTransform)
from .optimization import BertAdam, BertAdamFineTune
from .optimization_fp16 import FP16_Optimizer_State
from .file_utils import PYTORCH_PRETRAINED_BERT_CACHE
| EXA-1-master | exa/models/unilm-master/unilm-v1/src/pytorch_pretrained_bert/__init__.py |
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import unicodedata
import os
import logging
from .file_utils import cached_path
logger = logging.getLogger(__name__)
PRETRAINED_VOCAB_ARCHIVE_MAP = {
'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-vocab.txt",
'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-vocab.txt",
'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-vocab.txt",
'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-vocab.txt",
'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-vocab.txt",
'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-vocab.txt",
'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-vocab.txt",
}
PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP = {
'bert-base-uncased': 512,
'bert-large-uncased': 512,
'bert-base-cased': 512,
'bert-large-cased': 512,
'bert-base-multilingual-uncased': 512,
'bert-base-multilingual-cased': 512,
'bert-base-chinese': 512,
}
VOCAB_NAME = 'vocab.txt'
def load_vocab(vocab_file):
"""Loads a vocabulary file into a dictionary."""
# mapping unused tokens to special tokens
extra_map = {}
extra_map['[unused1]'] = '[X_SEP]'
for i in range(10):
extra_map['[unused{}]'.format(i+2)] = '[SEP_{}]'.format(i)
extra_map['[unused12]'] = '[S2S_SEP]'
extra_map['[unused13]'] = '[S2S_CLS]'
extra_map['[unused14]'] = '[L2R_SEP]'
extra_map['[unused15]'] = '[L2R_CLS]'
extra_map['[unused16]'] = '[R2L_SEP]'
extra_map['[unused17]'] = '[R2L_CLS]'
extra_map['[unused18]'] = '[S2S_SOS]'
vocab = collections.OrderedDict()
index = 0
with open(vocab_file, "r", encoding="utf-8") as reader:
while True:
token = reader.readline()
if not token:
break
token = token.strip()
if token in extra_map:
token = extra_map[token]
vocab[token] = index
index += 1
return vocab
def whitespace_tokenize(text):
"""Runs basic whitespace cleaning and splitting on a peice of text."""
text = text.strip()
if not text:
return []
tokens = text.split()
return tokens
class BertTokenizer(object):
"""Runs end-to-end tokenization: punctuation splitting + wordpiece"""
def __init__(self, vocab_file, do_lower_case=True, max_len=None, never_split=("[UNK]", "[SEP]", "[X_SEP]", "[PAD]", "[CLS]", "[MASK]")):
if not os.path.isfile(vocab_file):
raise ValueError(
"Can't find a vocabulary file at path '{}'. To load the vocabulary from a Google pretrained "
"model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`".format(vocab_file))
self.vocab = load_vocab(vocab_file)
self.ids_to_tokens = collections.OrderedDict(
[(ids, tok) for tok, ids in self.vocab.items()])
self.basic_tokenizer = BasicTokenizer(
do_lower_case=do_lower_case, never_split=never_split)
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab)
self.max_len = max_len if max_len is not None else int(1e12)
def tokenize(self, text):
split_tokens = []
for token in self.basic_tokenizer.tokenize(text):
for sub_token in self.wordpiece_tokenizer.tokenize(token):
split_tokens.append(sub_token)
return split_tokens
def convert_tokens_to_ids(self, tokens):
"""Converts a sequence of tokens into ids using the vocab."""
ids = []
for token in tokens:
ids.append(self.vocab[token])
if len(ids) > self.max_len:
raise ValueError(
"Token indices sequence length is longer than the specified maximum "
" sequence length for this BERT model ({} > {}). Running this"
" sequence through BERT will result in indexing errors".format(
len(ids), self.max_len)
)
return ids
def convert_ids_to_tokens(self, ids):
"""Converts a sequence of ids in wordpiece tokens using the vocab."""
tokens = []
for i in ids:
tokens.append(self.ids_to_tokens[i])
return tokens
@classmethod
def from_pretrained(cls, pretrained_model_name, cache_dir=None, *inputs, **kwargs):
"""
Instantiate a PreTrainedBertModel from a pre-trained model file.
Download and cache the pre-trained model file if needed.
"""
if pretrained_model_name in PRETRAINED_VOCAB_ARCHIVE_MAP:
vocab_file = PRETRAINED_VOCAB_ARCHIVE_MAP[pretrained_model_name]
else:
vocab_file = pretrained_model_name
if os.path.isdir(vocab_file):
vocab_file = os.path.join(vocab_file, VOCAB_NAME)
# redirect to the cache, if necessary
try:
resolved_vocab_file = cached_path(vocab_file, cache_dir=cache_dir)
except FileNotFoundError:
logger.error(
"Model name '{}' was not found in model name list ({}). "
"We assumed '{}' was a path or url but couldn't find any file "
"associated to this path or url.".format(
pretrained_model_name,
', '.join(PRETRAINED_VOCAB_ARCHIVE_MAP.keys()),
vocab_file))
return None
if resolved_vocab_file == vocab_file:
logger.info("loading vocabulary file {}".format(vocab_file))
else:
logger.info("loading vocabulary file {} from cache at {}".format(
vocab_file, resolved_vocab_file))
if pretrained_model_name in PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP:
# if we're using a pretrained model, ensure the tokenizer wont index sequences longer
# than the number of positional embeddings
max_len = PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP[pretrained_model_name]
kwargs['max_len'] = min(kwargs.get('max_len', int(1e12)), max_len)
# Instantiate tokenizer.
tokenizer = cls(resolved_vocab_file, *inputs, **kwargs)
return tokenizer
class WhitespaceTokenizer(object):
def tokenize(self, text):
return whitespace_tokenize(text)
class BasicTokenizer(object):
"""Runs basic tokenization (punctuation splitting, lower casing, etc.)."""
def __init__(self, do_lower_case=True, never_split=("[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]")):
"""Constructs a BasicTokenizer.
Args:
do_lower_case: Whether to lower case the input.
"""
self.do_lower_case = do_lower_case
self.never_split = never_split
def tokenize(self, text):
"""Tokenizes a piece of text."""
text = self._clean_text(text)
# This was added on November 1st, 2018 for the multilingual and Chinese
# models. This is also applied to the English models now, but it doesn't
# matter since the English models were not trained on any Chinese data
# and generally don't have any Chinese data in them (there are Chinese
# characters in the vocabulary because Wikipedia does have some Chinese
# words in the English Wikipedia.).
text = self._tokenize_chinese_chars(text)
orig_tokens = whitespace_tokenize(text)
split_tokens = []
for token in orig_tokens:
if self.do_lower_case and token not in self.never_split:
token = token.lower()
token = self._run_strip_accents(token)
split_tokens.extend(self._run_split_on_punc(token))
output_tokens = whitespace_tokenize(" ".join(split_tokens))
return output_tokens
def _run_strip_accents(self, text):
"""Strips accents from a piece of text."""
text = unicodedata.normalize("NFD", text)
output = []
for char in text:
cat = unicodedata.category(char)
if cat == "Mn":
continue
output.append(char)
return "".join(output)
def _run_split_on_punc(self, text):
"""Splits punctuation on a piece of text."""
if text in self.never_split:
return [text]
chars = list(text)
i = 0
start_new_word = True
output = []
while i < len(chars):
char = chars[i]
if _is_punctuation(char):
output.append([char])
start_new_word = True
else:
if start_new_word:
output.append([])
start_new_word = False
output[-1].append(char)
i += 1
return ["".join(x) for x in output]
def _tokenize_chinese_chars(self, text):
"""Adds whitespace around any CJK character."""
output = []
for char in text:
cp = ord(char)
if self._is_chinese_char(cp):
output.append(" ")
output.append(char)
output.append(" ")
else:
output.append(char)
return "".join(output)
def _is_chinese_char(self, cp):
"""Checks whether CP is the codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if ((cp >= 0x4E00 and cp <= 0x9FFF) or #
(cp >= 0x3400 and cp <= 0x4DBF) or #
(cp >= 0x20000 and cp <= 0x2A6DF) or #
(cp >= 0x2A700 and cp <= 0x2B73F) or #
(cp >= 0x2B740 and cp <= 0x2B81F) or #
(cp >= 0x2B820 and cp <= 0x2CEAF) or
(cp >= 0xF900 and cp <= 0xFAFF) or #
(cp >= 0x2F800 and cp <= 0x2FA1F)): #
return True
return False
def _clean_text(self, text):
"""Performs invalid character removal and whitespace cleanup on text."""
output = []
for char in text:
cp = ord(char)
if cp == 0 or cp == 0xfffd or _is_control(char):
continue
if _is_whitespace(char):
output.append(" ")
else:
output.append(char)
return "".join(output)
class WordpieceTokenizer(object):
"""Runs WordPiece tokenization."""
def __init__(self, vocab, unk_token="[UNK]", max_input_chars_per_word=100):
self.vocab = vocab
self.unk_token = unk_token
self.max_input_chars_per_word = max_input_chars_per_word
def tokenize(self, text):
"""Tokenizes a piece of text into its word pieces.
This uses a greedy longest-match-first algorithm to perform tokenization
using the given vocabulary.
For example:
input = "unaffable"
output = ["un", "##aff", "##able"]
Args:
text: A single token or whitespace separated tokens. This should have
already been passed through `BasicTokenizer`.
Returns:
A list of wordpiece tokens.
"""
output_tokens = []
for token in whitespace_tokenize(text):
chars = list(token)
if len(chars) > self.max_input_chars_per_word:
output_tokens.append(self.unk_token)
continue
is_bad = False
start = 0
sub_tokens = []
while start < len(chars):
end = len(chars)
cur_substr = None
while start < end:
substr = "".join(chars[start:end])
if start > 0:
substr = "##" + substr
if substr in self.vocab:
cur_substr = substr
break
end -= 1
if cur_substr is None:
is_bad = True
break
sub_tokens.append(cur_substr)
start = end
if is_bad:
output_tokens.append(self.unk_token)
else:
output_tokens.extend(sub_tokens)
return output_tokens
def _is_whitespace(char):
"""Checks whether `chars` is a whitespace character."""
# \t, \n, and \r are technically contorl characters but we treat them
# as whitespace since they are generally considered as such.
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
cat = unicodedata.category(char)
if cat == "Zs":
return True
return False
def _is_control(char):
"""Checks whether `chars` is a control character."""
# These are technically control characters but we count them as whitespace
# characters.
if char == "\t" or char == "\n" or char == "\r":
return False
cat = unicodedata.category(char)
if cat.startswith("C"):
return True
return False
def _is_punctuation(char):
"""Checks whether `chars` is a punctuation character."""
cp = ord(char)
# We treat all non-letter/number ASCII as punctuation.
# Characters such as "^", "$", and "`" are not in the Unicode
# Punctuation class but we treat them as punctuation anyways, for
# consistency.
if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or
(cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)):
return True
cat = unicodedata.category(char)
if cat.startswith("P"):
return True
return False
| EXA-1-master | exa/models/unilm-master/unilm-v1/src/pytorch_pretrained_bert/tokenization.py |
# coding=utf-8
"""PyTorch optimization for BERT model."""
from apex.optimizers import FP16_Optimizer
class FP16_Optimizer_State(FP16_Optimizer):
def __init__(self,
init_optimizer,
static_loss_scale=1.0,
dynamic_loss_scale=False,
dynamic_loss_args=None,
verbose=True):
super(FP16_Optimizer_State, self).__init__(init_optimizer,
static_loss_scale, dynamic_loss_scale, dynamic_loss_args, verbose)
def state_dict(self):
"""
Returns a dict containing the current state of this :class:`FP16_Optimizer` instance.
This dict contains attributes of :class:`FP16_Optimizer`, as well as the state_dict
of the contained Pytorch optimizer.
Example::
checkpoint = {}
checkpoint['model'] = model.state_dict()
checkpoint['optimizer'] = optimizer.state_dict()
torch.save(checkpoint, "saved.pth")
"""
state_dict = {}
state_dict['dynamic_loss_scale'] = self.dynamic_loss_scale
state_dict['cur_scale'] = self.cur_scale
state_dict['cur_iter'] = self.cur_iter
if state_dict['dynamic_loss_scale']:
state_dict['last_overflow_iter'] = self.last_overflow_iter
state_dict['scale_factor'] = self.scale_factor
state_dict['scale_window'] = self.scale_window
state_dict['optimizer_state_dict'] = self.optimizer.state_dict()
state_dict['fp32_groups_flat'] = self.fp32_groups_flat
return state_dict
def load_state_dict(self, state_dict):
"""
Loads a state_dict created by an earlier call to state_dict().
If ``fp16_optimizer_instance`` was constructed from some ``init_optimizer``,
whose parameters in turn came from ``model``, it is expected that the user
will call ``model.load_state_dict()`` before
``fp16_optimizer_instance.load_state_dict()`` is called.
Example::
model = torch.nn.Linear(D_in, D_out).cuda().half()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
optimizer = FP16_Optimizer(optimizer, static_loss_scale = 128.0)
...
checkpoint = torch.load("saved.pth")
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
"""
# I think it should actually be ok to reload the optimizer before the model.
self.dynamic_loss_scale = state_dict['dynamic_loss_scale']
self.cur_scale = state_dict['cur_scale']
self.cur_iter = state_dict['cur_iter']
if state_dict['dynamic_loss_scale']:
self.last_overflow_iter = state_dict['last_overflow_iter']
self.scale_factor = state_dict['scale_factor']
self.scale_window = state_dict['scale_window']
self.optimizer.load_state_dict(state_dict['optimizer_state_dict'])
# At this point, the optimizer's references to the model's fp32 parameters are up to date.
# The optimizer's hyperparameters and internal buffers are also up to date.
# However, the fp32 master copies of the model's fp16 params stored by the optimizer are still
# out of date. There are two options.
# 1: Refresh the master params from the model's fp16 params.
# This requires less storage but incurs precision loss.
# 2: Save and restore the fp32 master copies separately.
# We choose option 2.
#
# Pytorch Optimizer.load_state_dict casts saved buffers (e.g. momentum) to the type and device
# of their associated parameters, because it's possible those buffers might not exist yet in
# the current optimizer instance. In our case, as long as the current FP16_Optimizer has been
# constructed in the same way as the one whose state_dict we are loading, the same master params
# are guaranteed to exist, so we can just copy_() from the saved master params.
for current, saved in zip(self.fp32_groups_flat, state_dict['fp32_groups_flat']):
current.data.copy_(saved.data)
| EXA-1-master | exa/models/unilm-master/unilm-v1/src/pytorch_pretrained_bert/optimization_fp16.py |
# coding=utf-8
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import torch
import torch.nn.functional as F
from torch.nn.modules.loss import _Loss
class LabelSmoothingLoss(_Loss):
"""
With label smoothing,
KL-divergence between q_{smoothed ground truth prob.}(w)
and p_{prob. computed by model}(w) is minimized.
"""
def __init__(self, label_smoothing=0, tgt_vocab_size=0, ignore_index=0, size_average=None, reduce=None, reduction='mean'):
assert 0.0 < label_smoothing <= 1.0
self.ignore_index = ignore_index
super(LabelSmoothingLoss, self).__init__(
size_average=size_average, reduce=reduce, reduction=reduction)
assert label_smoothing > 0
assert tgt_vocab_size > 0
smoothing_value = label_smoothing / (tgt_vocab_size - 2)
one_hot = torch.full((tgt_vocab_size,), smoothing_value)
one_hot[self.ignore_index] = 0
self.register_buffer('one_hot', one_hot.unsqueeze(0))
self.confidence = 1.0 - label_smoothing
self.tgt_vocab_size = tgt_vocab_size
def forward(self, output, target):
"""
output (FloatTensor): batch_size * num_pos * n_classes
target (LongTensor): batch_size * num_pos
"""
assert self.tgt_vocab_size == output.size(2)
batch_size, num_pos = target.size(0), target.size(1)
output = output.view(-1, self.tgt_vocab_size)
target = target.view(-1)
model_prob = self.one_hot.repeat(target.size(0), 1)
model_prob.scatter_(1, target.unsqueeze(1), self.confidence)
model_prob.masked_fill_((target == self.ignore_index).unsqueeze(1), 0)
return F.kl_div(output, model_prob, reduction='none').view(batch_size, num_pos, -1).sum(2)
| EXA-1-master | exa/models/unilm-master/unilm-v1/src/pytorch_pretrained_bert/loss.py |
"""
Utilities for working with the local dataset cache.
This file is adapted from the AllenNLP library at https://github.com/allenai/allennlp
Copyright by the AllenNLP authors.
"""
import os
import logging
import shutil
import tempfile
import json
from urllib.parse import urlparse
from pathlib import Path
from typing import Optional, Tuple, Union, IO, Callable, Set
from hashlib import sha256
from functools import wraps
from tqdm import tqdm
import boto3
from botocore.exceptions import ClientError
import requests
logger = logging.getLogger(__name__) # pylint: disable=invalid-name
PYTORCH_PRETRAINED_BERT_CACHE = Path(os.getenv('PYTORCH_PRETRAINED_BERT_CACHE',
Path.home() / '.pytorch_pretrained_bert'))
def url_to_filename(url: str, etag: str = None) -> str:
"""
Convert `url` into a hashed filename in a repeatable way.
If `etag` is specified, append its hash to the url's, delimited
by a period.
"""
url_bytes = url.encode('utf-8')
url_hash = sha256(url_bytes)
filename = url_hash.hexdigest()
if etag:
etag_bytes = etag.encode('utf-8')
etag_hash = sha256(etag_bytes)
filename += '.' + etag_hash.hexdigest()
return filename
def filename_to_url(filename: str, cache_dir: Union[str, Path] = None) -> Tuple[str, str]:
"""
Return the url and etag (which may be ``None``) stored for `filename`.
Raise ``FileNotFoundError`` if `filename` or its stored metadata do not exist.
"""
if cache_dir is None:
cache_dir = PYTORCH_PRETRAINED_BERT_CACHE
if isinstance(cache_dir, Path):
cache_dir = str(cache_dir)
cache_path = os.path.join(cache_dir, filename)
if not os.path.exists(cache_path):
raise FileNotFoundError("file {} not found".format(cache_path))
meta_path = cache_path + '.json'
if not os.path.exists(meta_path):
raise FileNotFoundError("file {} not found".format(meta_path))
with open(meta_path) as meta_file:
metadata = json.load(meta_file)
url = metadata['url']
etag = metadata['etag']
return url, etag
def cached_path(url_or_filename: Union[str, Path], cache_dir: Union[str, Path] = None) -> str:
"""
Given something that might be a URL (or might be a local path),
determine which. If it's a URL, download the file and cache it, and
return the path to the cached file. If it's already a local path,
make sure the file exists and then return the path.
"""
if cache_dir is None:
cache_dir = PYTORCH_PRETRAINED_BERT_CACHE
if isinstance(url_or_filename, Path):
url_or_filename = str(url_or_filename)
if isinstance(cache_dir, Path):
cache_dir = str(cache_dir)
parsed = urlparse(url_or_filename)
if parsed.scheme in ('http', 'https', 's3'):
# URL, so get it from the cache (downloading if necessary)
return get_from_cache(url_or_filename, cache_dir)
elif os.path.exists(url_or_filename):
# File, and it exists.
return url_or_filename
elif parsed.scheme == '':
# File, but it doesn't exist.
raise FileNotFoundError("file {} not found".format(url_or_filename))
else:
# Something unknown
raise ValueError("unable to parse {} as a URL or as a local path".format(url_or_filename))
def split_s3_path(url: str) -> Tuple[str, str]:
"""Split a full s3 path into the bucket name and path."""
parsed = urlparse(url)
if not parsed.netloc or not parsed.path:
raise ValueError("bad s3 path {}".format(url))
bucket_name = parsed.netloc
s3_path = parsed.path
# Remove '/' at beginning of path.
if s3_path.startswith("/"):
s3_path = s3_path[1:]
return bucket_name, s3_path
def s3_request(func: Callable):
"""
Wrapper function for s3 requests in order to create more helpful error
messages.
"""
@wraps(func)
def wrapper(url: str, *args, **kwargs):
try:
return func(url, *args, **kwargs)
except ClientError as exc:
if int(exc.response["Error"]["Code"]) == 404:
raise FileNotFoundError("file {} not found".format(url))
else:
raise
return wrapper
@s3_request
def s3_etag(url: str) -> Optional[str]:
"""Check ETag on S3 object."""
s3_resource = boto3.resource("s3")
bucket_name, s3_path = split_s3_path(url)
s3_object = s3_resource.Object(bucket_name, s3_path)
return s3_object.e_tag
@s3_request
def s3_get(url: str, temp_file: IO) -> None:
"""Pull a file directly from S3."""
s3_resource = boto3.resource("s3")
bucket_name, s3_path = split_s3_path(url)
s3_resource.Bucket(bucket_name).download_fileobj(s3_path, temp_file)
def http_get(url: str, temp_file: IO) -> None:
req = requests.get(url, stream=True)
content_length = req.headers.get('Content-Length')
total = int(content_length) if content_length is not None else None
progress = tqdm(unit="B", total=total)
for chunk in req.iter_content(chunk_size=1024):
if chunk: # filter out keep-alive new chunks
progress.update(len(chunk))
temp_file.write(chunk)
progress.close()
def get_from_cache(url: str, cache_dir: Union[str, Path] = None) -> str:
"""
Given a URL, look for the corresponding dataset in the local cache.
If it's not there, download it. Then return the path to the cached file.
"""
if cache_dir is None:
cache_dir = PYTORCH_PRETRAINED_BERT_CACHE
if isinstance(cache_dir, Path):
cache_dir = str(cache_dir)
os.makedirs(cache_dir, exist_ok=True)
# Get eTag to add to filename, if it exists.
if url.startswith("s3://"):
etag = s3_etag(url)
else:
response = requests.head(url, allow_redirects=True)
if response.status_code != 200:
raise IOError("HEAD request failed for url {} with status code {}"
.format(url, response.status_code))
etag = response.headers.get("ETag")
filename = url_to_filename(url, etag)
# get cache path to put the file
cache_path = os.path.join(cache_dir, filename)
if not os.path.exists(cache_path):
# Download to temporary file, then copy to cache dir once finished.
# Otherwise you get corrupt cache entries if the download gets interrupted.
with tempfile.NamedTemporaryFile() as temp_file:
logger.info("%s not found in cache, downloading to %s", url, temp_file.name)
# GET file object
if url.startswith("s3://"):
s3_get(url, temp_file)
else:
http_get(url, temp_file)
# we are copying the file before closing it, so flush to avoid truncation
temp_file.flush()
# shutil.copyfileobj() starts at the current position, so go to the start
temp_file.seek(0)
logger.info("copying %s to cache at %s", temp_file.name, cache_path)
with open(cache_path, 'wb') as cache_file:
shutil.copyfileobj(temp_file, cache_file)
logger.info("creating metadata file for %s", cache_path)
meta = {'url': url, 'etag': etag}
meta_path = cache_path + '.json'
with open(meta_path, 'w') as meta_file:
json.dump(meta, meta_file)
logger.info("removing temp file %s", temp_file.name)
return cache_path
def read_set_from_file(filename: str) -> Set[str]:
'''
Extract a de-duped collection (set) of text from a file.
Expected file format is one item per line.
'''
collection = set()
with open(filename, 'r', encoding='utf-8') as file_:
for line in file_:
collection.add(line.rstrip())
return collection
def get_file_extension(path: str, dot=True, lower: bool = True):
ext = os.path.splitext(path)[1]
ext = ext if dot else ext[1:]
return ext.lower() if lower else ext
| EXA-1-master | exa/models/unilm-master/unilm-v1/src/pytorch_pretrained_bert/file_utils.py |
# coding=utf-8
"""PyTorch BERT model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import copy
import json
import math
import logging
import tarfile
import tempfile
import shutil
import numpy as np
from scipy.stats import truncnorm
import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
import torch.nn.functional as F
from .file_utils import cached_path
from .loss import LabelSmoothingLoss
logger = logging.getLogger(__name__)
PRETRAINED_MODEL_ARCHIVE_MAP = {
'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased.tar.gz",
'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased.tar.gz",
'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased.tar.gz",
'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased.tar.gz",
'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased.tar.gz",
'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased.tar.gz",
'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese.tar.gz",
}
CONFIG_NAME = 'bert_config.json'
WEIGHTS_NAME = 'pytorch_model.bin'
def gelu(x):
"""Implementation of the gelu activation function.
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
"""
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
def swish(x):
return x * torch.sigmoid(x)
ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish}
class BertConfig(object):
"""Configuration class to store the configuration of a `BertModel`.
"""
def __init__(self,
vocab_size_or_config_json_file,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
relax_projection=0,
new_pos_ids=False,
initializer_range=0.02,
task_idx=None,
fp32_embedding=False,
ffn_type=0,
label_smoothing=None,
num_qkv=0,
seg_emb=False):
"""Constructs BertConfig.
Args:
vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `BertModel`.
hidden_size: Size of the encoder layers and the pooler layer.
num_hidden_layers: Number of hidden layers in the Transformer encoder.
num_attention_heads: Number of attention heads for each attention layer in
the Transformer encoder.
intermediate_size: The size of the "intermediate" (i.e., feed-forward)
layer in the Transformer encoder.
hidden_act: The non-linear activation function (function or string) in the
encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
hidden_dropout_prob: The dropout probabilitiy for all fully connected
layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob: The dropout ratio for the attention
probabilities.
max_position_embeddings: The maximum sequence length that this model might
ever be used with. Typically set this to something large just in case
(e.g., 512 or 1024 or 2048).
type_vocab_size: The vocabulary size of the `token_type_ids` passed into
`BertModel`.
initializer_range: The sttdev of the truncated_normal_initializer for
initializing all weight matrices.
"""
if isinstance(vocab_size_or_config_json_file, str):
with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
json_config = json.loads(reader.read())
for key, value in json_config.items():
self.__dict__[key] = value
elif isinstance(vocab_size_or_config_json_file, int):
self.vocab_size = vocab_size_or_config_json_file
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.relax_projection = relax_projection
self.new_pos_ids = new_pos_ids
self.initializer_range = initializer_range
self.task_idx = task_idx
self.fp32_embedding = fp32_embedding
self.ffn_type = ffn_type
self.label_smoothing = label_smoothing
self.num_qkv = num_qkv
self.seg_emb = seg_emb
else:
raise ValueError("First argument must be either a vocabulary size (int)"
"or the path to a pretrained model config file (str)")
@classmethod
def from_dict(cls, json_object):
"""Constructs a `BertConfig` from a Python dictionary of parameters."""
config = BertConfig(vocab_size_or_config_json_file=-1)
for key, value in json_object.items():
config.__dict__[key] = value
return config
@classmethod
def from_json_file(cls, json_file):
"""Constructs a `BertConfig` from a json file of parameters."""
with open(json_file, "r", encoding='utf-8') as reader:
text = reader.read()
return cls.from_dict(json.loads(text))
def __repr__(self):
return str(self.to_json_string())
def to_dict(self):
"""Serializes this instance to a Python dictionary."""
output = copy.deepcopy(self.__dict__)
return output
def to_json_string(self):
"""Serializes this instance to a JSON string."""
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
try:
from apex.normalization.fused_layer_norm import FusedLayerNorm as BertLayerNorm
except ImportError:
print("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex.")
class BertLayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-5):
"""Construct a layernorm module in the TF style (epsilon inside the square root).
"""
super(BertLayerNorm, self).__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.bias = nn.Parameter(torch.zeros(hidden_size))
self.variance_epsilon = eps
def forward(self, x):
u = x.mean(-1, keepdim=True)
s = (x - u).pow(2).mean(-1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
return self.weight * x + self.bias
class PositionalEmbedding(nn.Module):
def __init__(self, demb):
super(PositionalEmbedding, self).__init__()
self.demb = demb
inv_freq = 1 / (10000 ** (torch.arange(0.0, demb, 2.0) / demb))
self.register_buffer('inv_freq', inv_freq)
def forward(self, pos_seq, bsz=None):
sinusoid_inp = torch.ger(pos_seq, self.inv_freq)
pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=-1)
if bsz is not None:
return pos_emb[:, None, :].expand(-1, bsz, -1)
else:
return pos_emb[:, None, :]
class BertEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings.
"""
def __init__(self, config):
super(BertEmbeddings, self).__init__()
self.word_embeddings = nn.Embedding(
config.vocab_size, config.hidden_size)
self.token_type_embeddings = nn.Embedding(
config.type_vocab_size, config.hidden_size)
if hasattr(config, 'fp32_embedding'):
self.fp32_embedding = config.fp32_embedding
else:
self.fp32_embedding = False
if hasattr(config, 'new_pos_ids') and config.new_pos_ids:
self.num_pos_emb = 4
else:
self.num_pos_emb = 1
self.position_embeddings = nn.Embedding(
config.max_position_embeddings, config.hidden_size*self.num_pos_emb)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-5)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, input_ids, token_type_ids=None, position_ids=None, task_idx=None):
seq_length = input_ids.size(1)
if position_ids is None:
position_ids = torch.arange(
seq_length, dtype=torch.long, device=input_ids.device)
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
if token_type_ids is None:
token_type_ids = torch.zeros_like(input_ids)
words_embeddings = self.word_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
if self.num_pos_emb > 1:
num_batch = position_embeddings.size(0)
num_pos = position_embeddings.size(1)
position_embeddings = position_embeddings.view(
num_batch, num_pos, self.num_pos_emb, -1)[torch.arange(0, num_batch).long(), :, task_idx, :]
embeddings = words_embeddings + position_embeddings + token_type_embeddings
if self.fp32_embedding:
embeddings = embeddings.half()
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class BertSelfAttention(nn.Module):
def __init__(self, config):
super(BertSelfAttention, self).__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention "
"heads (%d)" % (config.hidden_size, config.num_attention_heads))
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(
config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
if hasattr(config, 'num_qkv') and (config.num_qkv > 1):
self.num_qkv = config.num_qkv
else:
self.num_qkv = 1
self.query = nn.Linear(
config.hidden_size, self.all_head_size*self.num_qkv)
self.key = nn.Linear(config.hidden_size,
self.all_head_size*self.num_qkv)
self.value = nn.Linear(
config.hidden_size, self.all_head_size*self.num_qkv)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.uni_debug_flag = True if os.getenv(
'UNI_DEBUG_FLAG', '') else False
if self.uni_debug_flag:
self.register_buffer('debug_attention_probs',
torch.zeros((512, 512)))
if hasattr(config, 'seg_emb') and config.seg_emb:
self.b_q_s = nn.Parameter(torch.zeros(
1, self.num_attention_heads, 1, self.attention_head_size))
self.seg_emb = nn.Embedding(
config.type_vocab_size, self.all_head_size)
else:
self.b_q_s = None
self.seg_emb = None
def transpose_for_scores(self, x, mask_qkv=None):
if self.num_qkv > 1:
sz = x.size()[:-1] + (self.num_qkv,
self.num_attention_heads, self.all_head_size)
# (batch, pos, num_qkv, head, head_hid)
x = x.view(*sz)
if mask_qkv is None:
x = x[:, :, 0, :, :]
elif isinstance(mask_qkv, int):
x = x[:, :, mask_qkv, :, :]
else:
# mask_qkv: (batch, pos)
if mask_qkv.size(1) > sz[1]:
mask_qkv = mask_qkv[:, :sz[1]]
# -> x: (batch, pos, head, head_hid)
x = x.gather(2, mask_qkv.view(sz[0], sz[1], 1, 1, 1).expand(
sz[0], sz[1], 1, sz[3], sz[4])).squeeze(2)
else:
sz = x.size()[:-1] + (self.num_attention_heads,
self.attention_head_size)
# (batch, pos, head, head_hid)
x = x.view(*sz)
# (batch, head, pos, head_hid)
return x.permute(0, 2, 1, 3)
def forward(self, hidden_states, attention_mask, history_states=None, mask_qkv=None, seg_ids=None):
if history_states is None:
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(hidden_states)
mixed_value_layer = self.value(hidden_states)
else:
x_states = torch.cat((history_states, hidden_states), dim=1)
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(x_states)
mixed_value_layer = self.value(x_states)
query_layer = self.transpose_for_scores(mixed_query_layer, mask_qkv)
key_layer = self.transpose_for_scores(mixed_key_layer, mask_qkv)
value_layer = self.transpose_for_scores(mixed_value_layer, mask_qkv)
# Take the dot product between "query" and "key" to get the raw attention scores.
# (batch, head, pos, pos)
attention_scores = torch.matmul(
query_layer / math.sqrt(self.attention_head_size), key_layer.transpose(-1, -2))
if self.seg_emb is not None:
seg_rep = self.seg_emb(seg_ids)
# (batch, pos, head, head_hid)
seg_rep = seg_rep.view(seg_rep.size(0), seg_rep.size(
1), self.num_attention_heads, self.attention_head_size)
qs = torch.einsum('bnih,bjnh->bnij',
query_layer+self.b_q_s, seg_rep)
attention_scores = attention_scores + qs
# attention_scores = attention_scores / math.sqrt(self.attention_head_size)
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
if self.uni_debug_flag:
_pos = attention_probs.size(-1)
self.debug_attention_probs[:_pos, :_pos].copy_(
attention_probs[0].mean(0).view(_pos, _pos))
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[
:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
return context_layer
class BertSelfOutput(nn.Module):
def __init__(self, config):
super(BertSelfOutput, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-5)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BertAttention(nn.Module):
def __init__(self, config):
super(BertAttention, self).__init__()
self.self = BertSelfAttention(config)
self.output = BertSelfOutput(config)
def forward(self, input_tensor, attention_mask, history_states=None, mask_qkv=None, seg_ids=None):
self_output = self.self(
input_tensor, attention_mask, history_states=history_states, mask_qkv=mask_qkv, seg_ids=seg_ids)
attention_output = self.output(self_output, input_tensor)
return attention_output
class BertIntermediate(nn.Module):
def __init__(self, config):
super(BertIntermediate, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
self.intermediate_act_fn = ACT2FN[config.hidden_act] \
if isinstance(config.hidden_act, str) else config.hidden_act
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class BertOutput(nn.Module):
def __init__(self, config):
super(BertOutput, self).__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-5)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class TransformerFFN(nn.Module):
def __init__(self, config):
super(TransformerFFN, self).__init__()
self.ffn_type = config.ffn_type
assert self.ffn_type in (1, 2)
if self.ffn_type in (1, 2):
self.wx0 = nn.Linear(config.hidden_size, config.hidden_size)
if self.ffn_type in (2,):
self.wx1 = nn.Linear(config.hidden_size, config.hidden_size)
if self.ffn_type in (1, 2):
self.output = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-5)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, x):
if self.ffn_type in (1, 2):
x0 = self.wx0(x)
if self.ffn_type == 1:
x1 = x
elif self.ffn_type == 2:
x1 = self.wx1(x)
out = self.output(x0 * x1)
out = self.dropout(out)
out = self.LayerNorm(out + x)
return out
class BertLayer(nn.Module):
def __init__(self, config):
super(BertLayer, self).__init__()
self.attention = BertAttention(config)
self.ffn_type = config.ffn_type
if self.ffn_type:
self.ffn = TransformerFFN(config)
else:
self.intermediate = BertIntermediate(config)
self.output = BertOutput(config)
def forward(self, hidden_states, attention_mask, history_states=None, mask_qkv=None, seg_ids=None):
attention_output = self.attention(
hidden_states, attention_mask, history_states=history_states, mask_qkv=mask_qkv, seg_ids=seg_ids)
if self.ffn_type:
layer_output = self.ffn(attention_output)
else:
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
class BertEncoder(nn.Module):
def __init__(self, config):
super(BertEncoder, self).__init__()
layer = BertLayer(config)
self.layer = nn.ModuleList([copy.deepcopy(layer)
for _ in range(config.num_hidden_layers)])
def forward(self, hidden_states, attention_mask, output_all_encoded_layers=True, prev_embedding=None, prev_encoded_layers=None, mask_qkv=None, seg_ids=None):
# history embedding and encoded layer must be simultanously given
assert (prev_embedding is None) == (prev_encoded_layers is None)
all_encoder_layers = []
if (prev_embedding is not None) and (prev_encoded_layers is not None):
history_states = prev_embedding
for i, layer_module in enumerate(self.layer):
hidden_states = layer_module(
hidden_states, attention_mask, history_states=history_states, mask_qkv=mask_qkv, seg_ids=seg_ids)
if output_all_encoded_layers:
all_encoder_layers.append(hidden_states)
if prev_encoded_layers is not None:
history_states = prev_encoded_layers[i]
else:
for layer_module in self.layer:
hidden_states = layer_module(
hidden_states, attention_mask, mask_qkv=mask_qkv, seg_ids=seg_ids)
if output_all_encoded_layers:
all_encoder_layers.append(hidden_states)
if not output_all_encoded_layers:
all_encoder_layers.append(hidden_states)
return all_encoder_layers
class BertPooler(nn.Module):
def __init__(self, config):
super(BertPooler, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class BertPredictionHeadTransform(nn.Module):
def __init__(self, config):
super(BertPredictionHeadTransform, self).__init__()
self.transform_act_fn = ACT2FN[config.hidden_act] \
if isinstance(config.hidden_act, str) else config.hidden_act
hid_size = config.hidden_size
if hasattr(config, 'relax_projection') and (config.relax_projection > 1):
hid_size *= config.relax_projection
self.dense = nn.Linear(config.hidden_size, hid_size)
self.LayerNorm = BertLayerNorm(hid_size, eps=1e-5)
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
class BertLMPredictionHead(nn.Module):
def __init__(self, config, bert_model_embedding_weights):
super(BertLMPredictionHead, self).__init__()
self.transform = BertPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(bert_model_embedding_weights.size(1),
bert_model_embedding_weights.size(0),
bias=False)
self.decoder.weight = bert_model_embedding_weights
self.bias = nn.Parameter(torch.zeros(
bert_model_embedding_weights.size(0)))
if hasattr(config, 'relax_projection') and (config.relax_projection > 1):
self.relax_projection = config.relax_projection
else:
self.relax_projection = 0
self.fp32_embedding = config.fp32_embedding
def convert_to_type(tensor):
if self.fp32_embedding:
return tensor.half()
else:
return tensor
self.type_converter = convert_to_type
self.converted = False
def forward(self, hidden_states, task_idx=None):
if not self.converted:
self.converted = True
if self.fp32_embedding:
self.transform.half()
hidden_states = self.transform(self.type_converter(hidden_states))
if self.relax_projection > 1:
num_batch = hidden_states.size(0)
num_pos = hidden_states.size(1)
# (batch, num_pos, relax_projection*hid) -> (batch, num_pos, relax_projection, hid) -> (batch, num_pos, hid)
hidden_states = hidden_states.view(
num_batch, num_pos, self.relax_projection, -1)[torch.arange(0, num_batch).long(), :, task_idx, :]
if self.fp32_embedding:
hidden_states = F.linear(self.type_converter(hidden_states), self.type_converter(
self.decoder.weight), self.type_converter(self.bias))
else:
hidden_states = self.decoder(hidden_states) + self.bias
return hidden_states
class BertOnlyMLMHead(nn.Module):
def __init__(self, config, bert_model_embedding_weights):
super(BertOnlyMLMHead, self).__init__()
self.predictions = BertLMPredictionHead(
config, bert_model_embedding_weights)
def forward(self, sequence_output):
prediction_scores = self.predictions(sequence_output)
return prediction_scores
class BertOnlyNSPHead(nn.Module):
def __init__(self, config):
super(BertOnlyNSPHead, self).__init__()
self.seq_relationship = nn.Linear(config.hidden_size, 2)
def forward(self, pooled_output):
seq_relationship_score = self.seq_relationship(pooled_output)
return seq_relationship_score
class BertPreTrainingHeads(nn.Module):
def __init__(self, config, bert_model_embedding_weights, num_labels=2):
super(BertPreTrainingHeads, self).__init__()
self.predictions = BertLMPredictionHead(
config, bert_model_embedding_weights)
self.seq_relationship = nn.Linear(config.hidden_size, num_labels)
def forward(self, sequence_output, pooled_output, task_idx=None):
prediction_scores = self.predictions(sequence_output, task_idx)
if pooled_output is None:
seq_relationship_score = None
else:
seq_relationship_score = self.seq_relationship(pooled_output)
return prediction_scores, seq_relationship_score
class PreTrainedBertModel(nn.Module):
""" An abstract class to handle weights initialization and
a simple interface for dowloading and loading pretrained models.
"""
def __init__(self, config, *inputs, **kwargs):
super(PreTrainedBertModel, self).__init__()
if not isinstance(config, BertConfig):
raise ValueError(
"Parameter config in `{}(config)` should be an instance of class `BertConfig`. "
"To create a model from a Google pretrained model use "
"`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
self.__class__.__name__, self.__class__.__name__
))
self.config = config
def init_bert_weights(self, module):
""" Initialize the weights.
"""
if isinstance(module, (nn.Linear, nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, BertLayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
@classmethod
def from_pretrained(cls, pretrained_model_name, state_dict=None, cache_dir=None, *inputs, **kwargs):
"""
Instantiate a PreTrainedBertModel from a pre-trained model file or a pytorch state dict.
Download and cache the pre-trained model file if needed.
Params:
pretrained_model_name: either:
- a str with the name of a pre-trained model to load selected in the list of:
. `bert-base-uncased`
. `bert-large-uncased`
. `bert-base-cased`
. `bert-base-multilingual`
. `bert-base-chinese`
- a path or url to a pretrained model archive containing:
. `bert_config.json` a configuration file for the model
. `pytorch_model.bin` a PyTorch dump of a BertForPreTraining instance
cache_dir: an optional path to a folder in which the pre-trained models will be cached.
state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of Google pre-trained models
*inputs, **kwargs: additional input for the specific Bert class
(ex: num_labels for BertForSequenceClassification)
"""
if pretrained_model_name in PRETRAINED_MODEL_ARCHIVE_MAP:
archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name]
else:
archive_file = pretrained_model_name
# redirect to the cache, if necessary
try:
resolved_archive_file = cached_path(
archive_file, cache_dir=cache_dir)
except FileNotFoundError:
logger.error(
"Model name '{}' was not found in model name list ({}). "
"We assumed '{}' was a path or url but couldn't find any file "
"associated to this path or url.".format(
pretrained_model_name,
', '.join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()),
archive_file))
return None
if resolved_archive_file == archive_file:
logger.info("loading archive file {}".format(archive_file))
else:
logger.info("loading archive file {} from cache at {}".format(
archive_file, resolved_archive_file))
tempdir = None
if os.path.isdir(resolved_archive_file):
serialization_dir = resolved_archive_file
else:
# Extract archive to temp dir
tempdir = tempfile.mkdtemp()
logger.info("extracting archive file {} to temp dir {}".format(
resolved_archive_file, tempdir))
with tarfile.open(resolved_archive_file, 'r:gz') as archive:
archive.extractall(tempdir)
serialization_dir = tempdir
# Load config
if ('config_path' in kwargs) and kwargs['config_path']:
config_file = kwargs['config_path']
else:
config_file = os.path.join(serialization_dir, CONFIG_NAME)
config = BertConfig.from_json_file(config_file)
# define new type_vocab_size (there might be different numbers of segment ids)
if 'type_vocab_size' in kwargs:
config.type_vocab_size = kwargs['type_vocab_size']
# define new relax_projection
if ('relax_projection' in kwargs) and kwargs['relax_projection']:
config.relax_projection = kwargs['relax_projection']
# new position embedding
if ('new_pos_ids' in kwargs) and kwargs['new_pos_ids']:
config.new_pos_ids = kwargs['new_pos_ids']
# define new relax_projection
if ('task_idx' in kwargs) and kwargs['task_idx']:
config.task_idx = kwargs['task_idx']
# define new max position embedding for length expansion
if ('max_position_embeddings' in kwargs) and kwargs['max_position_embeddings']:
config.max_position_embeddings = kwargs['max_position_embeddings']
# use fp32 for embeddings
if ('fp32_embedding' in kwargs) and kwargs['fp32_embedding']:
config.fp32_embedding = kwargs['fp32_embedding']
# type of FFN in transformer blocks
if ('ffn_type' in kwargs) and kwargs['ffn_type']:
config.ffn_type = kwargs['ffn_type']
# label smoothing
if ('label_smoothing' in kwargs) and kwargs['label_smoothing']:
config.label_smoothing = kwargs['label_smoothing']
# dropout
if ('hidden_dropout_prob' in kwargs) and kwargs['hidden_dropout_prob']:
config.hidden_dropout_prob = kwargs['hidden_dropout_prob']
if ('attention_probs_dropout_prob' in kwargs) and kwargs['attention_probs_dropout_prob']:
config.attention_probs_dropout_prob = kwargs['attention_probs_dropout_prob']
# different QKV
if ('num_qkv' in kwargs) and kwargs['num_qkv']:
config.num_qkv = kwargs['num_qkv']
# segment embedding for self-attention
if ('seg_emb' in kwargs) and kwargs['seg_emb']:
config.seg_emb = kwargs['seg_emb']
# initialize word embeddings
_word_emb_map = None
if ('word_emb_map' in kwargs) and kwargs['word_emb_map']:
_word_emb_map = kwargs['word_emb_map']
logger.info("Model config {}".format(config))
# clean the arguments in kwargs
for arg_clean in ('config_path', 'type_vocab_size', 'relax_projection', 'new_pos_ids', 'task_idx', 'max_position_embeddings', 'fp32_embedding', 'ffn_type', 'label_smoothing', 'hidden_dropout_prob', 'attention_probs_dropout_prob', 'num_qkv', 'seg_emb', 'word_emb_map'):
if arg_clean in kwargs:
del kwargs[arg_clean]
# Instantiate model.
model = cls(config, *inputs, **kwargs)
if state_dict is None:
weights_path = os.path.join(serialization_dir, WEIGHTS_NAME)
state_dict = torch.load(weights_path)
old_keys = []
new_keys = []
for key in state_dict.keys():
new_key = None
if 'gamma' in key:
new_key = key.replace('gamma', 'weight')
if 'beta' in key:
new_key = key.replace('beta', 'bias')
if new_key:
old_keys.append(key)
new_keys.append(new_key)
for old_key, new_key in zip(old_keys, new_keys):
state_dict[new_key] = state_dict.pop(old_key)
# initialize new segment embeddings
_k = 'bert.embeddings.token_type_embeddings.weight'
if (_k in state_dict) and (config.type_vocab_size != state_dict[_k].shape[0]):
logger.info("config.type_vocab_size != state_dict[bert.embeddings.token_type_embeddings.weight] ({0} != {1})".format(
config.type_vocab_size, state_dict[_k].shape[0]))
if config.type_vocab_size > state_dict[_k].shape[0]:
# state_dict[_k].data = state_dict[_k].data.resize_(config.type_vocab_size, state_dict[_k].shape[1])
state_dict[_k].resize_(
config.type_vocab_size, state_dict[_k].shape[1])
# L2R
if config.type_vocab_size >= 3:
state_dict[_k].data[2, :].copy_(state_dict[_k].data[0, :])
# R2L
if config.type_vocab_size >= 4:
state_dict[_k].data[3, :].copy_(state_dict[_k].data[0, :])
# S2S
if config.type_vocab_size >= 6:
state_dict[_k].data[4, :].copy_(state_dict[_k].data[0, :])
state_dict[_k].data[5, :].copy_(state_dict[_k].data[1, :])
if config.type_vocab_size >= 7:
state_dict[_k].data[6, :].copy_(state_dict[_k].data[1, :])
elif config.type_vocab_size < state_dict[_k].shape[0]:
state_dict[_k].data = state_dict[_k].data[:config.type_vocab_size, :]
_k = 'bert.embeddings.position_embeddings.weight'
n_config_pos_emb = 4 if config.new_pos_ids else 1
if (_k in state_dict) and (n_config_pos_emb*config.hidden_size != state_dict[_k].shape[1]):
logger.info("n_config_pos_emb*config.hidden_size != state_dict[bert.embeddings.position_embeddings.weight] ({0}*{1} != {2})".format(
n_config_pos_emb, config.hidden_size, state_dict[_k].shape[1]))
assert state_dict[_k].shape[1] % config.hidden_size == 0
n_state_pos_emb = int(state_dict[_k].shape[1]/config.hidden_size)
assert (n_state_pos_emb == 1) != (n_config_pos_emb ==
1), "!!!!n_state_pos_emb == 1 xor n_config_pos_emb == 1!!!!"
if n_state_pos_emb == 1:
state_dict[_k].data = state_dict[_k].data.unsqueeze(1).repeat(
1, n_config_pos_emb, 1).reshape((config.max_position_embeddings, n_config_pos_emb*config.hidden_size))
elif n_config_pos_emb == 1:
if hasattr(config, 'task_idx') and (config.task_idx is not None) and (0 <= config.task_idx <= 3):
_task_idx = config.task_idx
else:
_task_idx = 0
state_dict[_k].data = state_dict[_k].data.view(
config.max_position_embeddings, n_state_pos_emb, config.hidden_size).select(1, _task_idx)
# initialize new position embeddings
_k = 'bert.embeddings.position_embeddings.weight'
if _k in state_dict and config.max_position_embeddings != state_dict[_k].shape[0]:
logger.info("config.max_position_embeddings != state_dict[bert.embeddings.position_embeddings.weight] ({0} - {1})".format(
config.max_position_embeddings, state_dict[_k].shape[0]))
if config.max_position_embeddings > state_dict[_k].shape[0]:
old_size = state_dict[_k].shape[0]
# state_dict[_k].data = state_dict[_k].data.resize_(config.max_position_embeddings, state_dict[_k].shape[1])
state_dict[_k].resize_(
config.max_position_embeddings, state_dict[_k].shape[1])
start = old_size
while start < config.max_position_embeddings:
chunk_size = min(
old_size, config.max_position_embeddings - start)
state_dict[_k].data[start:start+chunk_size,
:].copy_(state_dict[_k].data[:chunk_size, :])
start += chunk_size
elif config.max_position_embeddings < state_dict[_k].shape[0]:
state_dict[_k].data = state_dict[_k].data[:config.max_position_embeddings, :]
# initialize relax projection
_k = 'cls.predictions.transform.dense.weight'
n_config_relax = 1 if (config.relax_projection <
1) else config.relax_projection
if (_k in state_dict) and (n_config_relax*config.hidden_size != state_dict[_k].shape[0]):
logger.info("n_config_relax*config.hidden_size != state_dict[cls.predictions.transform.dense.weight] ({0}*{1} != {2})".format(
n_config_relax, config.hidden_size, state_dict[_k].shape[0]))
assert state_dict[_k].shape[0] % config.hidden_size == 0
n_state_relax = int(state_dict[_k].shape[0]/config.hidden_size)
assert (n_state_relax == 1) != (n_config_relax ==
1), "!!!!n_state_relax == 1 xor n_config_relax == 1!!!!"
if n_state_relax == 1:
_k = 'cls.predictions.transform.dense.weight'
state_dict[_k].data = state_dict[_k].data.unsqueeze(0).repeat(
n_config_relax, 1, 1).reshape((n_config_relax*config.hidden_size, config.hidden_size))
for _k in ('cls.predictions.transform.dense.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.transform.LayerNorm.bias'):
state_dict[_k].data = state_dict[_k].data.unsqueeze(
0).repeat(n_config_relax, 1).view(-1)
elif n_config_relax == 1:
if hasattr(config, 'task_idx') and (config.task_idx is not None) and (0 <= config.task_idx <= 3):
_task_idx = config.task_idx
else:
_task_idx = 0
_k = 'cls.predictions.transform.dense.weight'
state_dict[_k].data = state_dict[_k].data.view(
n_state_relax, config.hidden_size, config.hidden_size).select(0, _task_idx)
for _k in ('cls.predictions.transform.dense.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.transform.LayerNorm.bias'):
state_dict[_k].data = state_dict[_k].data.view(
n_state_relax, config.hidden_size).select(0, _task_idx)
# initialize QKV
_all_head_size = config.num_attention_heads * \
int(config.hidden_size / config.num_attention_heads)
n_config_num_qkv = 1 if (config.num_qkv < 1) else config.num_qkv
for qkv_name in ('query', 'key', 'value'):
_k = 'bert.encoder.layer.0.attention.self.{0}.weight'.format(
qkv_name)
if (_k in state_dict) and (n_config_num_qkv*_all_head_size != state_dict[_k].shape[0]):
logger.info("n_config_num_qkv*_all_head_size != state_dict[_k] ({0}*{1} != {2})".format(
n_config_num_qkv, _all_head_size, state_dict[_k].shape[0]))
for layer_idx in range(config.num_hidden_layers):
_k = 'bert.encoder.layer.{0}.attention.self.{1}.weight'.format(
layer_idx, qkv_name)
assert state_dict[_k].shape[0] % _all_head_size == 0
n_state_qkv = int(state_dict[_k].shape[0]/_all_head_size)
assert (n_state_qkv == 1) != (n_config_num_qkv ==
1), "!!!!n_state_qkv == 1 xor n_config_num_qkv == 1!!!!"
if n_state_qkv == 1:
_k = 'bert.encoder.layer.{0}.attention.self.{1}.weight'.format(
layer_idx, qkv_name)
state_dict[_k].data = state_dict[_k].data.unsqueeze(0).repeat(
n_config_num_qkv, 1, 1).reshape((n_config_num_qkv*_all_head_size, _all_head_size))
_k = 'bert.encoder.layer.{0}.attention.self.{1}.bias'.format(
layer_idx, qkv_name)
state_dict[_k].data = state_dict[_k].data.unsqueeze(
0).repeat(n_config_num_qkv, 1).view(-1)
elif n_config_num_qkv == 1:
if hasattr(config, 'task_idx') and (config.task_idx is not None) and (0 <= config.task_idx <= 3):
_task_idx = config.task_idx
else:
_task_idx = 0
assert _task_idx != 3, "[INVALID] _task_idx=3: n_config_num_qkv=1 (should be 2)"
if _task_idx == 0:
_qkv_idx = 0
else:
_qkv_idx = 1
_k = 'bert.encoder.layer.{0}.attention.self.{1}.weight'.format(
layer_idx, qkv_name)
state_dict[_k].data = state_dict[_k].data.view(
n_state_qkv, _all_head_size, _all_head_size).select(0, _qkv_idx)
_k = 'bert.encoder.layer.{0}.attention.self.{1}.bias'.format(
layer_idx, qkv_name)
state_dict[_k].data = state_dict[_k].data.view(
n_state_qkv, _all_head_size).select(0, _qkv_idx)
if _word_emb_map:
_k = 'bert.embeddings.word_embeddings.weight'
for _tgt, _src in _word_emb_map:
state_dict[_k].data[_tgt, :].copy_(
state_dict[_k].data[_src, :])
missing_keys = []
unexpected_keys = []
error_msgs = []
# copy state_dict so _load_from_state_dict can modify it
metadata = getattr(state_dict, '_metadata', None)
state_dict = state_dict.copy()
if metadata is not None:
state_dict._metadata = metadata
def load(module, prefix=''):
local_metadata = {} if metadata is None else metadata.get(
prefix[:-1], {})
module._load_from_state_dict(
state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
for name, child in module._modules.items():
if child is not None:
load(child, prefix + name + '.')
load(model, prefix='' if hasattr(model, 'bert') else 'bert.')
model.missing_keys = missing_keys
if len(missing_keys) > 0:
logger.info("Weights of {} not initialized from pretrained model: {}".format(
model.__class__.__name__, missing_keys))
if len(unexpected_keys) > 0:
logger.info("Weights from pretrained model not used in {}: {}".format(
model.__class__.__name__, unexpected_keys))
if len(error_msgs) > 0:
logger.info('\n'.join(error_msgs))
if tempdir:
# Clean up temp dir
shutil.rmtree(tempdir)
return model
class BertModel(PreTrainedBertModel):
"""BERT model ("Bidirectional Embedding Representations from a Transformer").
Params:
config: a BertConfig class instance with the configuration to build a new model
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
`extract_features.py`, `run_classifier.py` and `run_squad.py`)
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
a `sentence B` token (see BERT paper for more details).
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
input sequence length in the current batch. It's the mask that we typically use for attention when
a batch has varying length sentences.
`output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`.
Outputs: Tuple of (encoded_layers, pooled_output)
`encoded_layers`: controled by `output_all_encoded_layers` argument:
- `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
of each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each
encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size],
- `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
to the last attention block of shape [batch_size, sequence_length, hidden_size],
`pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a
classifier pretrained on top of the hidden state associated to the first character of the
input (`CLF`) to train on the Next-Sentence task (see BERT's paper).
```
"""
def __init__(self, config):
super(BertModel, self).__init__(config)
self.embeddings = BertEmbeddings(config)
self.encoder = BertEncoder(config)
self.pooler = BertPooler(config)
self.apply(self.init_bert_weights)
def rescale_some_parameters(self):
for layer_id, layer in enumerate(self.encoder.layer):
layer.attention.output.dense.weight.data.div_(
math.sqrt(2.0*(layer_id + 1)))
layer.output.dense.weight.data.div_(math.sqrt(2.0*(layer_id + 1)))
def get_extended_attention_mask(self, input_ids, token_type_ids, attention_mask):
if attention_mask is None:
attention_mask = torch.ones_like(input_ids)
if token_type_ids is None:
token_type_ids = torch.zeros_like(input_ids)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
if attention_mask.dim() == 2:
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
elif attention_mask.dim() == 3:
extended_attention_mask = attention_mask.unsqueeze(1)
else:
raise NotImplementedError
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = extended_attention_mask.to(
dtype=next(self.parameters()).dtype) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
return extended_attention_mask
def forward(self, input_ids, token_type_ids=None, attention_mask=None, output_all_encoded_layers=True, mask_qkv=None, task_idx=None):
extended_attention_mask = self.get_extended_attention_mask(
input_ids, token_type_ids, attention_mask)
embedding_output = self.embeddings(
input_ids, token_type_ids, task_idx=task_idx)
encoded_layers = self.encoder(embedding_output, extended_attention_mask,
output_all_encoded_layers=output_all_encoded_layers, mask_qkv=mask_qkv, seg_ids=token_type_ids)
sequence_output = encoded_layers[-1]
pooled_output = self.pooler(sequence_output)
if not output_all_encoded_layers:
encoded_layers = encoded_layers[-1]
return encoded_layers, pooled_output
class BertModelIncr(BertModel):
def __init__(self, config):
super(BertModelIncr, self).__init__(config)
def forward(self, input_ids, token_type_ids, position_ids, attention_mask, output_all_encoded_layers=True, prev_embedding=None,
prev_encoded_layers=None, mask_qkv=None, task_idx=None):
extended_attention_mask = self.get_extended_attention_mask(
input_ids, token_type_ids, attention_mask)
embedding_output = self.embeddings(
input_ids, token_type_ids, position_ids, task_idx=task_idx)
encoded_layers = self.encoder(embedding_output,
extended_attention_mask,
output_all_encoded_layers=output_all_encoded_layers,
prev_embedding=prev_embedding,
prev_encoded_layers=prev_encoded_layers, mask_qkv=mask_qkv, seg_ids=token_type_ids)
sequence_output = encoded_layers[-1]
pooled_output = self.pooler(sequence_output)
if not output_all_encoded_layers:
encoded_layers = encoded_layers[-1]
return embedding_output, encoded_layers, pooled_output
class BertForPreTraining(PreTrainedBertModel):
"""BERT model with pre-training heads.
This module comprises the BERT model followed by the two pre-training heads:
- the masked language modeling head, and
- the next sentence classification head.
Params:
config: a BertConfig class instance with the configuration to build a new model.
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
`extract_features.py`, `run_classifier.py` and `run_squad.py`)
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
a `sentence B` token (see BERT paper for more details).
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
input sequence length in the current batch. It's the mask that we typically use for attention when
a batch has varying length sentences.
`masked_lm_labels`: masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
is only computed for the labels set in [0, ..., vocab_size]
`next_sentence_label`: next sentence classification loss: torch.LongTensor of shape [batch_size]
with indices selected in [0, 1].
0 => next sentence is the continuation, 1 => next sentence is a random sentence.
Outputs:
if `masked_lm_labels` and `next_sentence_label` are not `None`:
Outputs the total_loss which is the sum of the masked language modeling loss and the next
sentence classification loss.
if `masked_lm_labels` or `next_sentence_label` is `None`:
Outputs a tuple comprising
- the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and
- the next sentence classification logits of shape [batch_size, 2].
Example usage:
```python
# Already been converted into WordPiece token ids
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
model = BertForPreTraining(config)
masked_lm_logits_scores, seq_relationship_logits = model(input_ids, token_type_ids, input_mask)
```
"""
def __init__(self, config):
super(BertForPreTraining, self).__init__(config)
self.bert = BertModel(config)
self.cls = BertPreTrainingHeads(
config, self.bert.embeddings.word_embeddings.weight)
self.apply(self.init_bert_weights)
def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None, next_sentence_label=None, mask_qkv=None, task_idx=None):
sequence_output, pooled_output = self.bert(input_ids, token_type_ids, attention_mask,
output_all_encoded_layers=False, mask_qkv=mask_qkv, task_idx=task_idx)
prediction_scores, seq_relationship_score = self.cls(
sequence_output, pooled_output)
if masked_lm_labels is not None and next_sentence_label is not None:
loss_fct = CrossEntropyLoss(ignore_index=-1)
masked_lm_loss = loss_fct(
prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
next_sentence_loss = loss_fct(
seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
total_loss = masked_lm_loss + next_sentence_loss
return total_loss
else:
return prediction_scores, seq_relationship_score
class BertPreTrainingPairTransform(nn.Module):
def __init__(self, config):
super(BertPreTrainingPairTransform, self).__init__()
self.dense = nn.Linear(config.hidden_size*2, config.hidden_size)
self.transform_act_fn = ACT2FN[config.hidden_act] \
if isinstance(config.hidden_act, str) else config.hidden_act
# self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-5)
def forward(self, pair_x, pair_y):
hidden_states = torch.cat([pair_x, pair_y], dim=-1)
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
# hidden_states = self.LayerNorm(hidden_states)
return hidden_states
class BertPreTrainingPairRel(nn.Module):
def __init__(self, config, num_rel=0):
super(BertPreTrainingPairRel, self).__init__()
self.R_xy = BertPreTrainingPairTransform(config)
self.rel_emb = nn.Embedding(num_rel, config.hidden_size)
def forward(self, pair_x, pair_y, pair_r, pair_pos_neg_mask):
# (batch, num_pair, hidden)
xy = self.R_xy(pair_x, pair_y)
r = self.rel_emb(pair_r)
_batch, _num_pair, _hidden = xy.size()
pair_score = (xy * r).sum(-1)
# torch.bmm(xy.view(-1, 1, _hidden),r.view(-1, _hidden, 1)).view(_batch, _num_pair)
# .mul_(-1.0): objective to loss
return F.logsigmoid(pair_score * pair_pos_neg_mask.type_as(pair_score)).mul_(-1.0)
class BertForPreTrainingLossMask(PreTrainedBertModel):
"""refer to BertForPreTraining"""
def __init__(self, config, num_labels=2, num_rel=0, num_sentlvl_labels=0, no_nsp=False):
super(BertForPreTrainingLossMask, self).__init__(config)
self.bert = BertModel(config)
self.cls = BertPreTrainingHeads(
config, self.bert.embeddings.word_embeddings.weight, num_labels=num_labels)
self.num_sentlvl_labels = num_sentlvl_labels
self.cls2 = None
if self.num_sentlvl_labels > 0:
self.secondary_pred_proj = nn.Embedding(
num_sentlvl_labels, config.hidden_size)
self.cls2 = BertPreTrainingHeads(
config, self.secondary_pred_proj.weight, num_labels=num_sentlvl_labels)
self.crit_mask_lm = nn.CrossEntropyLoss(reduction='none')
if no_nsp:
self.crit_next_sent = None
else:
self.crit_next_sent = nn.CrossEntropyLoss(ignore_index=-1)
self.num_labels = num_labels
self.num_rel = num_rel
if self.num_rel > 0:
self.crit_pair_rel = BertPreTrainingPairRel(
config, num_rel=num_rel)
if hasattr(config, 'label_smoothing') and config.label_smoothing:
self.crit_mask_lm_smoothed = LabelSmoothingLoss(
config.label_smoothing, config.vocab_size, ignore_index=0, reduction='none')
else:
self.crit_mask_lm_smoothed = None
self.apply(self.init_bert_weights)
self.bert.rescale_some_parameters()
def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None,
next_sentence_label=None, masked_pos=None, masked_weights=None, task_idx=None, pair_x=None,
pair_x_mask=None, pair_y=None, pair_y_mask=None, pair_r=None, pair_pos_neg_mask=None,
pair_loss_mask=None, masked_pos_2=None, masked_weights_2=None, masked_labels_2=None,
num_tokens_a=None, num_tokens_b=None, mask_qkv=None):
if token_type_ids is None and attention_mask is None:
task_0 = (task_idx == 0)
task_1 = (task_idx == 1)
task_2 = (task_idx == 2)
task_3 = (task_idx == 3)
sequence_length = input_ids.shape[-1]
index_matrix = torch.arange(sequence_length).view(
1, sequence_length).to(input_ids.device)
num_tokens = num_tokens_a + num_tokens_b
base_mask = (index_matrix < num_tokens.view(-1, 1)
).type_as(input_ids)
segment_a_mask = (
index_matrix < num_tokens_a.view(-1, 1)).type_as(input_ids)
token_type_ids = (
task_idx + 1 + task_3.type_as(task_idx)).view(-1, 1) * base_mask
token_type_ids = token_type_ids - segment_a_mask * \
(task_0 | task_3).type_as(segment_a_mask).view(-1, 1)
index_matrix = index_matrix.view(1, 1, sequence_length)
index_matrix_t = index_matrix.view(1, sequence_length, 1)
tril = index_matrix <= index_matrix_t
attention_mask_task_0 = (
index_matrix < num_tokens.view(-1, 1, 1)) & (index_matrix_t < num_tokens.view(-1, 1, 1))
attention_mask_task_1 = tril & attention_mask_task_0
attention_mask_task_2 = torch.transpose(
tril, dim0=-2, dim1=-1) & attention_mask_task_0
attention_mask_task_3 = (
(index_matrix < num_tokens_a.view(-1, 1, 1)) | tril) & attention_mask_task_0
attention_mask = (attention_mask_task_0 & task_0.view(-1, 1, 1)) | \
(attention_mask_task_1 & task_1.view(-1, 1, 1)) | \
(attention_mask_task_2 & task_2.view(-1, 1, 1)) | \
(attention_mask_task_3 & task_3.view(-1, 1, 1))
attention_mask = attention_mask.type_as(input_ids)
sequence_output, pooled_output = self.bert(
input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False, mask_qkv=mask_qkv, task_idx=task_idx)
def gather_seq_out_by_pos(seq, pos):
return torch.gather(seq, 1, pos.unsqueeze(2).expand(-1, -1, seq.size(-1)))
def gather_seq_out_by_pos_average(seq, pos, mask):
# pos/mask: (batch, num_pair, max_token_num)
batch_size, max_token_num = pos.size(0), pos.size(-1)
# (batch, num_pair, max_token_num, seq.size(-1))
pos_vec = torch.gather(seq, 1, pos.view(batch_size, -1).unsqueeze(
2).expand(-1, -1, seq.size(-1))).view(batch_size, -1, max_token_num, seq.size(-1))
# (batch, num_pair, seq.size(-1))
mask = mask.type_as(pos_vec)
pos_vec_masked_sum = (
pos_vec * mask.unsqueeze(3).expand_as(pos_vec)).sum(2)
return pos_vec_masked_sum / mask.sum(2, keepdim=True).expand_as(pos_vec_masked_sum)
def loss_mask_and_normalize(loss, mask):
mask = mask.type_as(loss)
loss = loss * mask
denominator = torch.sum(mask) + 1e-5
return (loss / denominator).sum()
if masked_lm_labels is None:
if masked_pos is None:
prediction_scores, seq_relationship_score = self.cls(
sequence_output, pooled_output, task_idx=task_idx)
else:
sequence_output_masked = gather_seq_out_by_pos(
sequence_output, masked_pos)
prediction_scores, seq_relationship_score = self.cls(
sequence_output_masked, pooled_output, task_idx=task_idx)
return prediction_scores, seq_relationship_score
# masked lm
sequence_output_masked = gather_seq_out_by_pos(
sequence_output, masked_pos)
prediction_scores_masked, seq_relationship_score = self.cls(
sequence_output_masked, pooled_output, task_idx=task_idx)
if self.crit_mask_lm_smoothed:
masked_lm_loss = self.crit_mask_lm_smoothed(
F.log_softmax(prediction_scores_masked.float(), dim=-1), masked_lm_labels)
else:
masked_lm_loss = self.crit_mask_lm(
prediction_scores_masked.transpose(1, 2).float(), masked_lm_labels)
masked_lm_loss = loss_mask_and_normalize(
masked_lm_loss.float(), masked_weights)
# next sentence
if self.crit_next_sent is None or next_sentence_label is None:
next_sentence_loss = 0.0
else:
next_sentence_loss = self.crit_next_sent(
seq_relationship_score.view(-1, self.num_labels).float(), next_sentence_label.view(-1))
if self.cls2 is not None and masked_pos_2 is not None:
sequence_output_masked_2 = gather_seq_out_by_pos(
sequence_output, masked_pos_2)
prediction_scores_masked_2, _ = self.cls2(
sequence_output_masked_2, None)
masked_lm_loss_2 = self.crit_mask_lm(
prediction_scores_masked_2.transpose(1, 2).float(), masked_labels_2)
masked_lm_loss_2 = loss_mask_and_normalize(
masked_lm_loss_2.float(), masked_weights_2)
masked_lm_loss = masked_lm_loss + masked_lm_loss_2
if pair_x is None or pair_y is None or pair_r is None or pair_pos_neg_mask is None or pair_loss_mask is None:
return masked_lm_loss, next_sentence_loss
# pair and relation
if pair_x_mask is None or pair_y_mask is None:
pair_x_output_masked = gather_seq_out_by_pos(
sequence_output, pair_x)
pair_y_output_masked = gather_seq_out_by_pos(
sequence_output, pair_y)
else:
pair_x_output_masked = gather_seq_out_by_pos_average(
sequence_output, pair_x, pair_x_mask)
pair_y_output_masked = gather_seq_out_by_pos_average(
sequence_output, pair_y, pair_y_mask)
pair_loss = self.crit_pair_rel(
pair_x_output_masked, pair_y_output_masked, pair_r, pair_pos_neg_mask)
pair_loss = loss_mask_and_normalize(
pair_loss.float(), pair_loss_mask)
return masked_lm_loss, next_sentence_loss, pair_loss
class BertForExtractiveSummarization(PreTrainedBertModel):
"""refer to BertForPreTraining"""
def __init__(self, config):
super(BertForExtractiveSummarization, self).__init__(config)
self.bert = BertModel(config)
self.secondary_pred_proj = nn.Embedding(2, config.hidden_size)
self.cls2 = BertPreTrainingHeads(
config, self.secondary_pred_proj.weight, num_labels=2)
self.apply(self.init_bert_weights)
def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_pos_2=None, masked_weights_2=None, task_idx=None, mask_qkv=None):
sequence_output, pooled_output = self.bert(input_ids, token_type_ids, attention_mask,
output_all_encoded_layers=False, mask_qkv=mask_qkv, task_idx=task_idx)
def gather_seq_out_by_pos(seq, pos):
return torch.gather(seq, 1, pos.unsqueeze(2).expand(-1, -1, seq.size(-1)))
sequence_output_masked_2 = gather_seq_out_by_pos(
sequence_output, masked_pos_2)
prediction_scores_masked_2, _ = self.cls2(
sequence_output_masked_2, None, task_idx=task_idx)
predicted_probs = torch.nn.functional.softmax(
prediction_scores_masked_2, dim=-1)
return predicted_probs, masked_pos_2, masked_weights_2
class BertForSeq2SeqDecoder(PreTrainedBertModel):
"""refer to BertForPreTraining"""
def __init__(self, config, mask_word_id=0, num_labels=2, num_rel=0,
search_beam_size=1, length_penalty=1.0, eos_id=0, sos_id=0,
forbid_duplicate_ngrams=False, forbid_ignore_set=None, not_predict_set=None, ngram_size=3, min_len=0, mode="s2s", pos_shift=False):
super(BertForSeq2SeqDecoder, self).__init__(config)
self.bert = BertModelIncr(config)
self.cls = BertPreTrainingHeads(
config, self.bert.embeddings.word_embeddings.weight, num_labels=num_labels)
self.apply(self.init_bert_weights)
self.crit_mask_lm = nn.CrossEntropyLoss(reduction='none')
self.crit_next_sent = nn.CrossEntropyLoss(ignore_index=-1)
self.mask_word_id = mask_word_id
self.num_labels = num_labels
self.num_rel = num_rel
if self.num_rel > 0:
self.crit_pair_rel = BertPreTrainingPairRel(
config, num_rel=num_rel)
self.search_beam_size = search_beam_size
self.length_penalty = length_penalty
self.eos_id = eos_id
self.sos_id = sos_id
self.forbid_duplicate_ngrams = forbid_duplicate_ngrams
self.forbid_ignore_set = forbid_ignore_set
self.not_predict_set = not_predict_set
self.ngram_size = ngram_size
self.min_len = min_len
assert mode in ("s2s", "l2r")
self.mode = mode
self.pos_shift = pos_shift
def forward(self, input_ids, token_type_ids, position_ids, attention_mask, task_idx=None, mask_qkv=None):
if self.search_beam_size > 1:
return self.beam_search(input_ids, token_type_ids, position_ids, attention_mask, task_idx=task_idx, mask_qkv=mask_qkv)
input_shape = list(input_ids.size())
batch_size = input_shape[0]
input_length = input_shape[1]
output_shape = list(token_type_ids.size())
output_length = output_shape[1]
output_ids = []
prev_embedding = None
prev_encoded_layers = None
curr_ids = input_ids
mask_ids = input_ids.new(batch_size, 1).fill_(self.mask_word_id)
next_pos = input_length
if self.pos_shift:
sos_ids = input_ids.new(batch_size, 1).fill_(self.sos_id)
while next_pos < output_length:
curr_length = list(curr_ids.size())[1]
if self.pos_shift:
if next_pos == input_length:
x_input_ids = torch.cat((curr_ids, sos_ids), dim=1)
start_pos = 0
else:
x_input_ids = curr_ids
start_pos = next_pos
else:
start_pos = next_pos - curr_length
x_input_ids = torch.cat((curr_ids, mask_ids), dim=1)
curr_token_type_ids = token_type_ids[:, start_pos:next_pos+1]
curr_attention_mask = attention_mask[:,
start_pos:next_pos+1, :next_pos+1]
curr_position_ids = position_ids[:, start_pos:next_pos+1]
new_embedding, new_encoded_layers, _ = \
self.bert(x_input_ids, curr_token_type_ids, curr_position_ids, curr_attention_mask,
output_all_encoded_layers=True, prev_embedding=prev_embedding, prev_encoded_layers=prev_encoded_layers, mask_qkv=mask_qkv)
last_hidden = new_encoded_layers[-1][:, -1:, :]
prediction_scores, _ = self.cls(
last_hidden, None, task_idx=task_idx)
if self.not_predict_set:
for token_id in self.not_predict_set:
prediction_scores[:, :, token_id].fill_(-10000.0)
_, max_ids = torch.max(prediction_scores, dim=-1)
output_ids.append(max_ids)
if self.pos_shift:
if prev_embedding is None:
prev_embedding = new_embedding
else:
prev_embedding = torch.cat(
(prev_embedding, new_embedding), dim=1)
if prev_encoded_layers is None:
prev_encoded_layers = [x for x in new_encoded_layers]
else:
prev_encoded_layers = [torch.cat((x[0], x[1]), dim=1) for x in zip(
prev_encoded_layers, new_encoded_layers)]
else:
if prev_embedding is None:
prev_embedding = new_embedding[:, :-1, :]
else:
prev_embedding = torch.cat(
(prev_embedding, new_embedding[:, :-1, :]), dim=1)
if prev_encoded_layers is None:
prev_encoded_layers = [x[:, :-1, :]
for x in new_encoded_layers]
else:
prev_encoded_layers = [torch.cat((x[0], x[1][:, :-1, :]), dim=1)
for x in zip(prev_encoded_layers, new_encoded_layers)]
curr_ids = max_ids
next_pos += 1
return torch.cat(output_ids, dim=1)
def beam_search(self, input_ids, token_type_ids, position_ids, attention_mask, task_idx=None, mask_qkv=None):
input_shape = list(input_ids.size())
batch_size = input_shape[0]
input_length = input_shape[1]
output_shape = list(token_type_ids.size())
output_length = output_shape[1]
output_ids = []
prev_embedding = None
prev_encoded_layers = None
curr_ids = input_ids
mask_ids = input_ids.new(batch_size, 1).fill_(self.mask_word_id)
next_pos = input_length
if self.pos_shift:
sos_ids = input_ids.new(batch_size, 1).fill_(self.sos_id)
K = self.search_beam_size
total_scores = []
beam_masks = []
step_ids = []
step_back_ptrs = []
partial_seqs = []
forbid_word_mask = None
buf_matrix = None
while next_pos < output_length:
curr_length = list(curr_ids.size())[1]
if self.pos_shift:
if next_pos == input_length:
x_input_ids = torch.cat((curr_ids, sos_ids), dim=1)
start_pos = 0
else:
x_input_ids = curr_ids
start_pos = next_pos
else:
start_pos = next_pos - curr_length
x_input_ids = torch.cat((curr_ids, mask_ids), dim=1)
curr_token_type_ids = token_type_ids[:, start_pos:next_pos + 1]
curr_attention_mask = attention_mask[:,
start_pos:next_pos + 1, :next_pos + 1]
curr_position_ids = position_ids[:, start_pos:next_pos + 1]
new_embedding, new_encoded_layers, _ = \
self.bert(x_input_ids, curr_token_type_ids, curr_position_ids, curr_attention_mask,
output_all_encoded_layers=True, prev_embedding=prev_embedding, prev_encoded_layers=prev_encoded_layers, mask_qkv=mask_qkv)
last_hidden = new_encoded_layers[-1][:, -1:, :]
prediction_scores, _ = self.cls(
last_hidden, None, task_idx=task_idx)
log_scores = torch.nn.functional.log_softmax(
prediction_scores, dim=-1)
if forbid_word_mask is not None:
log_scores += (forbid_word_mask * -10000.0)
if self.min_len and (next_pos-input_length+1 <= self.min_len):
log_scores[:, :, self.eos_id].fill_(-10000.0)
if self.not_predict_set:
for token_id in self.not_predict_set:
log_scores[:, :, token_id].fill_(-10000.0)
kk_scores, kk_ids = torch.topk(log_scores, k=K)
if len(total_scores) == 0:
k_ids = torch.reshape(kk_ids, [batch_size, K])
back_ptrs = torch.zeros(batch_size, K, dtype=torch.long)
k_scores = torch.reshape(kk_scores, [batch_size, K])
else:
last_eos = torch.reshape(
beam_masks[-1], [batch_size * K, 1, 1])
last_seq_scores = torch.reshape(
total_scores[-1], [batch_size * K, 1, 1])
kk_scores += last_eos * (-10000.0) + last_seq_scores
kk_scores = torch.reshape(kk_scores, [batch_size, K * K])
k_scores, k_ids = torch.topk(kk_scores, k=K)
back_ptrs = torch.div(k_ids, K)
kk_ids = torch.reshape(kk_ids, [batch_size, K * K])
k_ids = torch.gather(kk_ids, 1, k_ids)
step_back_ptrs.append(back_ptrs)
step_ids.append(k_ids)
beam_masks.append(torch.eq(k_ids, self.eos_id).float())
total_scores.append(k_scores)
def first_expand(x):
input_shape = list(x.size())
expanded_shape = input_shape[:1] + [1] + input_shape[1:]
x = torch.reshape(x, expanded_shape)
repeat_count = [1, K] + [1] * (len(input_shape) - 1)
x = x.repeat(*repeat_count)
x = torch.reshape(x, [input_shape[0] * K] + input_shape[1:])
return x
def select_beam_items(x, ids):
id_shape = list(ids.size())
id_rank = len(id_shape)
assert len(id_shape) == 2
x_shape = list(x.size())
x = torch.reshape(x, [batch_size, K] + x_shape[1:])
x_rank = len(x_shape) + 1
assert x_rank >= 2
if id_rank < x_rank:
ids = torch.reshape(
ids, id_shape + [1] * (x_rank - id_rank))
ids = ids.expand(id_shape + x_shape[1:])
y = torch.gather(x, 1, ids)
y = torch.reshape(y, x_shape)
return y
is_first = (prev_embedding is None)
if self.pos_shift:
if prev_embedding is None:
prev_embedding = first_expand(new_embedding)
else:
prev_embedding = torch.cat(
(prev_embedding, new_embedding), dim=1)
prev_embedding = select_beam_items(
prev_embedding, back_ptrs)
if prev_encoded_layers is None:
prev_encoded_layers = [first_expand(
x) for x in new_encoded_layers]
else:
prev_encoded_layers = [torch.cat((x[0], x[1]), dim=1) for x in zip(
prev_encoded_layers, new_encoded_layers)]
prev_encoded_layers = [select_beam_items(
x, back_ptrs) for x in prev_encoded_layers]
else:
if prev_embedding is None:
prev_embedding = first_expand(new_embedding[:, :-1, :])
else:
prev_embedding = torch.cat(
(prev_embedding, new_embedding[:, :-1, :]), dim=1)
prev_embedding = select_beam_items(
prev_embedding, back_ptrs)
if prev_encoded_layers is None:
prev_encoded_layers = [first_expand(
x[:, :-1, :]) for x in new_encoded_layers]
else:
prev_encoded_layers = [torch.cat((x[0], x[1][:, :-1, :]), dim=1)
for x in zip(prev_encoded_layers, new_encoded_layers)]
prev_encoded_layers = [select_beam_items(
x, back_ptrs) for x in prev_encoded_layers]
curr_ids = torch.reshape(k_ids, [batch_size * K, 1])
if is_first:
token_type_ids = first_expand(token_type_ids)
position_ids = first_expand(position_ids)
attention_mask = first_expand(attention_mask)
mask_ids = first_expand(mask_ids)
if mask_qkv is not None:
mask_qkv = first_expand(mask_qkv)
if self.forbid_duplicate_ngrams:
wids = step_ids[-1].tolist()
ptrs = step_back_ptrs[-1].tolist()
if is_first:
partial_seqs = []
for b in range(batch_size):
for k in range(K):
partial_seqs.append([wids[b][k]])
else:
new_partial_seqs = []
for b in range(batch_size):
for k in range(K):
new_partial_seqs.append(
partial_seqs[ptrs[b][k] + b * K] + [wids[b][k]])
partial_seqs = new_partial_seqs
def get_dup_ngram_candidates(seq, n):
cands = set()
if len(seq) < n:
return []
tail = seq[-(n-1):]
if self.forbid_ignore_set and any(tk in self.forbid_ignore_set for tk in tail):
return []
for i in range(len(seq) - (n - 1)):
mismatch = False
for j in range(n - 1):
if tail[j] != seq[i + j]:
mismatch = True
break
if (not mismatch) and not(self.forbid_ignore_set and (seq[i + n - 1] in self.forbid_ignore_set)):
cands.add(seq[i + n - 1])
return list(sorted(cands))
if len(partial_seqs[0]) >= self.ngram_size:
dup_cands = []
for seq in partial_seqs:
dup_cands.append(
get_dup_ngram_candidates(seq, self.ngram_size))
if max(len(x) for x in dup_cands) > 0:
if buf_matrix is None:
vocab_size = list(log_scores.size())[-1]
buf_matrix = np.zeros(
(batch_size * K, vocab_size), dtype=float)
else:
buf_matrix.fill(0)
for bk, cands in enumerate(dup_cands):
for i, wid in enumerate(cands):
buf_matrix[bk, wid] = 1.0
forbid_word_mask = torch.tensor(
buf_matrix, dtype=log_scores.dtype)
forbid_word_mask = torch.reshape(
forbid_word_mask, [batch_size * K, 1, vocab_size]).cuda()
else:
forbid_word_mask = None
next_pos += 1
# [(batch, beam)]
total_scores = [x.tolist() for x in total_scores]
step_ids = [x.tolist() for x in step_ids]
step_back_ptrs = [x.tolist() for x in step_back_ptrs]
# back tracking
traces = {'pred_seq': [], 'scores': [], 'wids': [], 'ptrs': []}
for b in range(batch_size):
# [(beam,)]
scores = [x[b] for x in total_scores]
wids_list = [x[b] for x in step_ids]
ptrs = [x[b] for x in step_back_ptrs]
traces['scores'].append(scores)
traces['wids'].append(wids_list)
traces['ptrs'].append(ptrs)
# first we need to find the eos frame where all symbols are eos
# any frames after the eos frame are invalid
last_frame_id = len(scores) - 1
for i, wids in enumerate(wids_list):
if all(wid == self.eos_id for wid in wids):
last_frame_id = i
break
max_score = -math.inf
frame_id = -1
pos_in_frame = -1
for fid in range(last_frame_id + 1):
for i, wid in enumerate(wids_list[fid]):
if wid == self.eos_id or fid == last_frame_id:
s = scores[fid][i]
if self.length_penalty > 0:
s /= math.pow((5 + fid + 1) / 6.0,
self.length_penalty)
if s > max_score:
max_score = s
frame_id = fid
pos_in_frame = i
if frame_id == -1:
traces['pred_seq'].append([0])
else:
seq = [wids_list[frame_id][pos_in_frame]]
for fid in range(frame_id, 0, -1):
pos_in_frame = ptrs[fid][pos_in_frame]
seq.append(wids_list[fid - 1][pos_in_frame])
seq.reverse()
traces['pred_seq'].append(seq)
def _pad_sequence(sequences, max_len, padding_value=0):
trailing_dims = sequences[0].size()[1:]
out_dims = (len(sequences), max_len) + trailing_dims
out_tensor = sequences[0].data.new(*out_dims).fill_(padding_value)
for i, tensor in enumerate(sequences):
length = tensor.size(0)
# use index notation to prevent duplicate references to the tensor
out_tensor[i, :length, ...] = tensor
return out_tensor
# convert to tensors for DataParallel
for k in ('pred_seq', 'scores', 'wids', 'ptrs'):
ts_list = traces[k]
if not isinstance(ts_list[0], torch.Tensor):
dt = torch.float if k == 'scores' else torch.long
ts_list = [torch.tensor(it, dtype=dt) for it in ts_list]
traces[k] = _pad_sequence(
ts_list, output_length, padding_value=0).to(input_ids.device)
return traces
class BertForMaskedLM(PreTrainedBertModel):
"""BERT model with the masked language modeling head.
This module comprises the BERT model followed by the masked language modeling head.
Params:
config: a BertConfig class instance with the configuration to build a new model.
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
`extract_features.py`, `run_classifier.py` and `run_squad.py`)
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
a `sentence B` token (see BERT paper for more details).
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
input sequence length in the current batch. It's the mask that we typically use for attention when
a batch has varying length sentences.
`masked_lm_labels`: masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
is only computed for the labels set in [0, ..., vocab_size]
Outputs:
if `masked_lm_labels` is `None`:
Outputs the masked language modeling loss.
if `masked_lm_labels` is `None`:
Outputs the masked language modeling logits of shape [batch_size, sequence_length, vocab_size].
Example usage:
```python
# Already been converted into WordPiece token ids
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
model = BertForMaskedLM(config)
masked_lm_logits_scores = model(input_ids, token_type_ids, input_mask)
```
"""
def __init__(self, config):
super(BertForMaskedLM, self).__init__(config)
self.bert = BertModel(config)
self.cls = BertOnlyMLMHead(
config, self.bert.embeddings.word_embeddings.weight)
self.apply(self.init_bert_weights)
def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None, mask_qkv=None, task_idx=None):
sequence_output, _ = self.bert(input_ids, token_type_ids, attention_mask,
output_all_encoded_layers=False, mask_qkv=mask_qkv, task_idx=task_idx)
prediction_scores = self.cls(sequence_output)
if masked_lm_labels is not None:
loss_fct = CrossEntropyLoss(ignore_index=-1)
masked_lm_loss = loss_fct(
prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
return masked_lm_loss
else:
return prediction_scores
class BertForNextSentencePrediction(PreTrainedBertModel):
"""BERT model with next sentence prediction head.
This module comprises the BERT model followed by the next sentence classification head.
Params:
config: a BertConfig class instance with the configuration to build a new model.
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
`extract_features.py`, `run_classifier.py` and `run_squad.py`)
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
a `sentence B` token (see BERT paper for more details).
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
input sequence length in the current batch. It's the mask that we typically use for attention when
a batch has varying length sentences.
`next_sentence_label`: next sentence classification loss: torch.LongTensor of shape [batch_size]
with indices selected in [0, 1].
0 => next sentence is the continuation, 1 => next sentence is a random sentence.
Outputs:
if `next_sentence_label` is not `None`:
Outputs the total_loss which is the sum of the masked language modeling loss and the next
sentence classification loss.
if `next_sentence_label` is `None`:
Outputs the next sentence classification logits of shape [batch_size, 2].
Example usage:
```python
# Already been converted into WordPiece token ids
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
model = BertForNextSentencePrediction(config)
seq_relationship_logits = model(input_ids, token_type_ids, input_mask)
```
"""
def __init__(self, config):
super(BertForNextSentencePrediction, self).__init__(config)
self.bert = BertModel(config)
self.cls = BertOnlyNSPHead(config)
self.apply(self.init_bert_weights)
def forward(self, input_ids, token_type_ids=None, attention_mask=None, next_sentence_label=None, mask_qkv=None, task_idx=None):
_, pooled_output = self.bert(input_ids, token_type_ids, attention_mask,
output_all_encoded_layers=False, mask_qkv=mask_qkv, task_idx=task_idx)
seq_relationship_score = self.cls(pooled_output)
if next_sentence_label is not None:
loss_fct = CrossEntropyLoss(ignore_index=-1)
next_sentence_loss = loss_fct(
seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
return next_sentence_loss
else:
return seq_relationship_score
class BertForSequenceClassification(PreTrainedBertModel):
"""BERT model for classification.
This module is composed of the BERT model with a linear layer on top of
the pooled output.
Params:
`config`: a BertConfig class instance with the configuration to build a new model.
`num_labels`: the number of classes for the classifier. Default = 2.
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
`extract_features.py`, `run_classifier.py` and `run_squad.py`)
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
a `sentence B` token (see BERT paper for more details).
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
input sequence length in the current batch. It's the mask that we typically use for attention when
a batch has varying length sentences.
`labels`: labels for the classification output: torch.LongTensor of shape [batch_size]
with indices selected in [0, ..., num_labels].
Outputs:
if `labels` is not `None`:
Outputs the CrossEntropy classification loss of the output with the labels.
if `labels` is `None`:
Outputs the classification logits of shape [batch_size, num_labels].
Example usage:
```python
# Already been converted into WordPiece token ids
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
num_labels = 2
model = BertForSequenceClassification(config, num_labels)
logits = model(input_ids, token_type_ids, input_mask)
```
"""
def __init__(self, config, num_labels=2):
super(BertForSequenceClassification, self).__init__(config)
self.num_labels = num_labels
self.bert = BertModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, num_labels)
self.apply(self.init_bert_weights)
def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, mask_qkv=None, task_idx=None):
_, pooled_output = self.bert(
input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False, mask_qkv=mask_qkv, task_idx=task_idx)
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
if labels is not None:
if labels.dtype == torch.long:
loss_fct = CrossEntropyLoss()
loss = loss_fct(
logits.view(-1, self.num_labels), labels.view(-1))
elif labels.dtype == torch.half or labels.dtype == torch.float:
loss_fct = MSELoss()
loss = loss_fct(logits.view(-1), labels.view(-1))
else:
print('unkown labels.dtype')
loss = None
return loss
else:
return logits
class BertForMultipleChoice(PreTrainedBertModel):
"""BERT model for multiple choice tasks.
This module is composed of the BERT model with a linear layer on top of
the pooled output.
Params:
`config`: a BertConfig class instance with the configuration to build a new model.
`num_choices`: the number of classes for the classifier. Default = 2.
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length]
with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
`extract_features.py`, `run_classifier.py` and `run_squad.py`)
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, num_choices, sequence_length]
with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A`
and type 1 corresponds to a `sentence B` token (see BERT paper for more details).
`attention_mask`: an optional torch.LongTensor of shape [batch_size, num_choices, sequence_length] with indices
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
input sequence length in the current batch. It's the mask that we typically use for attention when
a batch has varying length sentences.
`labels`: labels for the classification output: torch.LongTensor of shape [batch_size]
with indices selected in [0, ..., num_choices].
Outputs:
if `labels` is not `None`:
Outputs the CrossEntropy classification loss of the output with the labels.
if `labels` is `None`:
Outputs the classification logits of shape [batch_size, num_labels].
Example usage:
```python
# Already been converted into WordPiece token ids
input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]], [[12, 16, 42], [14, 28, 57]]])
input_mask = torch.LongTensor([[[1, 1, 1], [1, 1, 0]],[[1,1,0], [1, 0, 0]]])
token_type_ids = torch.LongTensor([[[0, 0, 1], [0, 1, 0]],[[0, 1, 1], [0, 0, 1]]])
config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
num_choices = 2
model = BertForMultipleChoice(config, num_choices)
logits = model(input_ids, token_type_ids, input_mask)
```
"""
def __init__(self, config, num_choices=2):
super(BertForMultipleChoice, self).__init__(config)
self.num_choices = num_choices
self.bert = BertModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, 1)
self.apply(self.init_bert_weights)
def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, mask_qkv=None, task_idx=None):
flat_input_ids = input_ids.view(-1, input_ids.size(-1))
flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1))
_, pooled_output = self.bert(
flat_input_ids, flat_token_type_ids, flat_attention_mask, output_all_encoded_layers=False, mask_qkv=mask_qkv, task_idx=task_idx)
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, self.num_choices)
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
return loss
else:
return reshaped_logits
class BertForTokenClassification(PreTrainedBertModel):
"""BERT model for token-level classification.
This module is composed of the BERT model with a linear layer on top of
the full hidden state of the last layer.
Params:
`config`: a BertConfig class instance with the configuration to build a new model.
`num_labels`: the number of classes for the classifier. Default = 2.
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
`extract_features.py`, `run_classifier.py` and `run_squad.py`)
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
a `sentence B` token (see BERT paper for more details).
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
input sequence length in the current batch. It's the mask that we typically use for attention when
a batch has varying length sentences.
`labels`: labels for the classification output: torch.LongTensor of shape [batch_size]
with indices selected in [0, ..., num_labels].
Outputs:
if `labels` is not `None`:
Outputs the CrossEntropy classification loss of the output with the labels.
if `labels` is `None`:
Outputs the classification logits of shape [batch_size, sequence_length, num_labels].
Example usage:
```python
# Already been converted into WordPiece token ids
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
num_labels = 2
model = BertForTokenClassification(config, num_labels)
logits = model(input_ids, token_type_ids, input_mask)
```
"""
def __init__(self, config, num_labels=2):
super(BertForTokenClassification, self).__init__(config)
self.num_labels = num_labels
self.bert = BertModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, num_labels)
self.apply(self.init_bert_weights)
def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, mask_qkv=None, task_idx=None):
sequence_output, _ = self.bert(
input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False, mask_qkv=mask_qkv, task_idx=task_idx)
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
if labels is not None:
loss_fct = CrossEntropyLoss()
# Only keep active parts of the loss
if attention_mask is not None:
active_loss = attention_mask.view(-1) == 1
active_logits = logits.view(-1, self.num_labels)[active_loss]
active_labels = labels.view(-1)[active_loss]
loss = loss_fct(active_logits, active_labels)
else:
loss = loss_fct(
logits.view(-1, self.num_labels), labels.view(-1))
return loss
else:
return logits
class BertForQuestionAnswering(PreTrainedBertModel):
"""BERT model for Question Answering (span extraction).
This module is composed of the BERT model with a linear layer on top of
the sequence output that computes start_logits and end_logits
Params:
`config`: either
- a BertConfig class instance with the configuration to build a new model, or
- a str with the name of a pre-trained model to load selected in the list of:
. `bert-base-uncased`
. `bert-large-uncased`
. `bert-base-cased`
. `bert-base-multilingual`
. `bert-base-chinese`
The pre-trained model will be downloaded and cached if needed.
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
`extract_features.py`, `run_classifier.py` and `run_squad.py`)
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
a `sentence B` token (see BERT paper for more details).
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
input sequence length in the current batch. It's the mask that we typically use for attention when
a batch has varying length sentences.
`start_positions`: position of the first token for the labeled span: torch.LongTensor of shape [batch_size].
Positions are clamped to the length of the sequence and position outside of the sequence are not taken
into account for computing the loss.
`end_positions`: position of the last token for the labeled span: torch.LongTensor of shape [batch_size].
Positions are clamped to the length of the sequence and position outside of the sequence are not taken
into account for computing the loss.
Outputs:
if `start_positions` and `end_positions` are not `None`:
Outputs the total_loss which is the sum of the CrossEntropy loss for the start and end token positions.
if `start_positions` or `end_positions` is `None`:
Outputs a tuple of start_logits, end_logits which are the logits respectively for the start and end
position tokens of shape [batch_size, sequence_length].
Example usage:
```python
# Already been converted into WordPiece token ids
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
model = BertForQuestionAnswering(config)
start_logits, end_logits = model(input_ids, token_type_ids, input_mask)
```
"""
def __init__(self, config):
super(BertForQuestionAnswering, self).__init__(config)
self.bert = BertModel(config)
# self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.qa_outputs = nn.Linear(config.hidden_size, 2)
self.apply(self.init_bert_weights)
def forward(self, input_ids, token_type_ids=None, attention_mask=None, start_positions=None, end_positions=None, task_idx=None):
sequence_output, _ = self.bert(
input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False, task_idx=task_idx)
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1)
end_logits = end_logits.squeeze(-1)
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions.clamp_(0, ignored_index)
end_positions.clamp_(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
return total_loss
else:
return start_logits, end_logits
| EXA-1-master | exa/models/unilm-master/unilm-v1/src/pytorch_pretrained_bert/modeling.py |
# coding: utf8
def main():
import sys
try:
from .convert_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch
except ModuleNotFoundError:
print("pytorch_pretrained_bert can only be used from the commandline to convert TensorFlow models in PyTorch, "
"In that case, it requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions.")
raise
if len(sys.argv) != 5:
# pylint: disable=line-too-long
print("Should be used as `pytorch_pretrained_bert convert_tf_checkpoint_to_pytorch TF_CHECKPOINT TF_CONFIG PYTORCH_DUMP_OUTPUT`")
else:
PYTORCH_DUMP_OUTPUT = sys.argv.pop()
TF_CONFIG = sys.argv.pop()
TF_CHECKPOINT = sys.argv.pop()
convert_tf_checkpoint_to_pytorch(TF_CHECKPOINT, TF_CONFIG, PYTORCH_DUMP_OUTPUT)
if __name__ == '__main__':
main()
| EXA-1-master | exa/models/unilm-master/unilm-v1/src/pytorch_pretrained_bert/__main__.py |
#!/usr/bin/env python
from __future__ import print_function
__author__ = 'xinya'
from bleu.bleu import Bleu
from meteor.meteor import Meteor
from rouge.rouge import Rouge
from cider.cider import Cider
from collections import defaultdict
from argparse import ArgumentParser
import string
import sys
reload(sys)
sys.setdefaultencoding('utf-8')
_tok_dict = {"(": "-lrb-", ")": "-rrb-",
"[": "-lsb-", "]": "-rsb-",
"{": "-lcb-", "}": "-rcb-",
"[UNK]": "UNK", '&': '&', '<': '<', '>': '>'}
def _is_digit(w):
for ch in w:
if not(ch.isdigit() or ch == ','):
return False
return True
def detokenize(tk_list):
r_list = []
for tk in tk_list:
if tk.startswith('##') and len(r_list) > 0:
r_list[-1] = r_list[-1] + tk[2:]
else:
r_list.append(tk)
return r_list
def fix_tokenization(text):
input_tokens = text.split()
output_tokens = []
has_left_quote = False
has_left_single_quote = False
i = 0
prev_dash = False
while i < len(input_tokens):
tok = input_tokens[i]
flag_prev_dash = False
if tok in _tok_dict.keys():
output_tokens.append(_tok_dict[tok])
i += 1
elif tok == "\"":
if has_left_quote:
output_tokens.append("''")
else:
output_tokens.append("``")
has_left_quote = not has_left_quote
i += 1
elif tok == "'" and len(output_tokens) > 0 and output_tokens[-1].endswith("n") and i < len(input_tokens) - 1 and input_tokens[i + 1] == "t":
output_tokens[-1] = output_tokens[-1][:-1]
output_tokens.append("n't")
i += 2
elif tok == "'" and i < len(input_tokens) - 1 and input_tokens[i + 1] in ("s", "d", "ll"):
output_tokens.append("'"+input_tokens[i + 1])
i += 2
elif tok == "'":
if has_left_single_quote:
output_tokens.append("'")
else:
output_tokens.append("`")
has_left_single_quote = not has_left_single_quote
i += 1
elif tok == "." and i < len(input_tokens) - 2 and input_tokens[i + 1] == "." and input_tokens[i + 2] == ".":
output_tokens.append("...")
i += 3
elif tok == "," and len(output_tokens) > 0 and _is_digit(output_tokens[-1]) and i < len(input_tokens) - 1 and _is_digit(input_tokens[i + 1]):
# $ 3 , 000 -> $ 3,000
output_tokens[-1] += ','+input_tokens[i + 1]
i += 2
elif tok == "." and len(output_tokens) > 0 and output_tokens[-1].isdigit() and i < len(input_tokens) - 1 and input_tokens[i + 1].isdigit():
# 3 . 03 -> $ 3.03
output_tokens[-1] += '.'+input_tokens[i + 1]
i += 2
elif tok == "." and len(output_tokens) > 0 and len(output_tokens[-1]) == 1 and output_tokens[-1].isupper() and i < len(input_tokens) - 2 and len(input_tokens[i + 1]) == 1 and input_tokens[i + 1].isupper() and input_tokens[i + 2] == '.':
# U . N . -> U.N.
k = i+3
while k+2 < len(input_tokens):
if len(input_tokens[k + 1]) == 1 and input_tokens[k + 1].isupper() and input_tokens[k + 2] == '.':
k += 2
else:
break
output_tokens[-1] += ''.join(input_tokens[i:k])
i += 2
elif tok == "-":
if i < len(input_tokens) - 1 and input_tokens[i + 1] == "-":
output_tokens.append("--")
i += 2
elif i == len(input_tokens) - 1 or i == 0:
output_tokens.append("-")
i += 1
elif output_tokens[-1] not in string.punctuation and input_tokens[i + 1][0] not in string.punctuation:
output_tokens[-1] += "-"
i += 1
flag_prev_dash = True
else:
output_tokens.append("-")
i += 1
elif prev_dash and len(output_tokens) > 0 and tok[0] not in string.punctuation:
output_tokens[-1] += tok
i += 1
else:
output_tokens.append(tok)
i += 1
prev_dash = flag_prev_dash
return " ".join(output_tokens)
class QGEvalCap:
def __init__(self, gts, res):
self.gts = gts
self.res = res
def evaluate(self):
output = []
scorers = [
(Bleu(4), ["Bleu_1", "Bleu_2", "Bleu_3", "Bleu_4"]),
(Meteor(), "METEOR"),
(Rouge(), "ROUGE_L"),
# (Cider(), "CIDEr")
]
# =================================================
# Compute scores
# =================================================
for scorer, method in scorers:
# print 'computing %s score...'%(scorer.method())
score, scores = scorer.compute_score(self.gts, self.res)
if type(method) == list:
for sc, scs, m in zip(score, scores, method):
print("%s: %0.5f" % (m, sc))
output.append(sc)
else:
print("%s: %0.5f" % (method, score))
output.append(score)
return output
def eval(out_file, src_file, tgt_file, isDIn=False, num_pairs=500):
"""
Given a filename, calculate the metric scores for that prediction file
isDin: boolean value to check whether input file is DirectIn.txt
"""
pairs = []
with open(src_file, 'r') as infile:
for line in infile:
pair = {}
pair['tokenized_sentence'] = line[:-1].strip().lower()
pairs.append(pair)
with open(tgt_file, "r") as infile:
cnt = 0
for line in infile:
pairs[cnt]['tokenized_question'] = " ".join(
detokenize(line[:-1].strip().split())).lower()
cnt += 1
output = []
with open(out_file, 'r') as infile:
for line in infile:
line = line[:-1].strip().lower()
output.append(line)
for idx, pair in enumerate(pairs):
pair['prediction'] = output[idx]
# eval
from eval import QGEvalCap
import json
from json import encoder
encoder.FLOAT_REPR = lambda o: format(o, '.4f')
res = defaultdict(lambda: [])
gts = defaultdict(lambda: [])
for pair in pairs[:]:
key = pair['tokenized_sentence']
res[key] = [pair['prediction'].encode('utf-8')]
# gts
gts[key].append(pair['tokenized_question'].encode('utf-8'))
QGEval = QGEvalCap(gts, res)
return QGEval.evaluate()
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("-out", "--out_file", dest="out_file",
default="./output/pred.txt", help="output file to compare")
parser.add_argument("-src", "--src_file", dest="src_file",
default="./qg_data/test/test.pa.txt", help="src file")
parser.add_argument("-tgt", "--tgt_file", dest="tgt_file",
default="./qg_data/test/test.q.tok.txt", help="target file")
args = parser.parse_args()
print("scores: \n")
eval(args.out_file, args.src_file, args.tgt_file)
| EXA-1-master | exa/models/unilm-master/unilm-v1/src/qg/eval_on_unilm_tokenized_ref.py |
#!/usr/bin/env python
from __future__ import print_function
__author__ = 'xinya'
from bleu.bleu import Bleu
from meteor.meteor import Meteor
from rouge.rouge import Rouge
from cider.cider import Cider
from collections import defaultdict
from argparse import ArgumentParser
import string
import sys
reload(sys)
sys.setdefaultencoding('utf-8')
_tok_dict = {"(": "-lrb-", ")": "-rrb-",
"[": "-lsb-", "]": "-rsb-",
"{": "-lcb-", "}": "-rcb-",
"[UNK]": "UNK", '&': '&', '<': '<', '>': '>'}
def _is_digit(w):
for ch in w:
if not(ch.isdigit() or ch == ','):
return False
return True
def detokenize(tk_list):
r_list = []
for tk in tk_list:
if tk.startswith('##') and len(r_list) > 0:
r_list[-1] = r_list[-1] + tk[2:]
else:
r_list.append(tk)
return r_list
def fix_tokenization(text):
input_tokens = text.split()
output_tokens = []
has_left_quote = False
has_left_single_quote = False
i = 0
prev_dash = False
while i < len(input_tokens):
tok = input_tokens[i]
flag_prev_dash = False
if tok in _tok_dict.keys():
output_tokens.append(_tok_dict[tok])
i += 1
elif tok == "\"":
if has_left_quote:
output_tokens.append("''")
else:
output_tokens.append("``")
has_left_quote = not has_left_quote
i += 1
elif tok == "'" and len(output_tokens) > 0 and output_tokens[-1].endswith("n") and i < len(input_tokens) - 1 and input_tokens[i + 1] == "t":
output_tokens[-1] = output_tokens[-1][:-1]
output_tokens.append("n't")
i += 2
elif tok == "'" and i < len(input_tokens) - 1 and input_tokens[i + 1] in ("s", "d", "ll"):
output_tokens.append("'"+input_tokens[i + 1])
i += 2
elif tok == "'":
if has_left_single_quote:
output_tokens.append("'")
else:
output_tokens.append("`")
has_left_single_quote = not has_left_single_quote
i += 1
elif tok == "." and i < len(input_tokens) - 2 and input_tokens[i + 1] == "." and input_tokens[i + 2] == ".":
output_tokens.append("...")
i += 3
elif tok == "," and len(output_tokens) > 0 and _is_digit(output_tokens[-1]) and i < len(input_tokens) - 1 and _is_digit(input_tokens[i + 1]):
# $ 3 , 000 -> $ 3,000
output_tokens[-1] += ','+input_tokens[i + 1]
i += 2
elif tok == "." and len(output_tokens) > 0 and output_tokens[-1].isdigit() and i < len(input_tokens) - 1 and input_tokens[i + 1].isdigit():
# 3 . 03 -> $ 3.03
output_tokens[-1] += '.'+input_tokens[i + 1]
i += 2
elif tok == "." and len(output_tokens) > 0 and len(output_tokens[-1]) == 1 and output_tokens[-1].isupper() and i < len(input_tokens) - 2 and len(input_tokens[i + 1]) == 1 and input_tokens[i + 1].isupper() and input_tokens[i + 2] == '.':
# U . N . -> U.N.
k = i+3
while k+2 < len(input_tokens):
if len(input_tokens[k + 1]) == 1 and input_tokens[k + 1].isupper() and input_tokens[k + 2] == '.':
k += 2
else:
break
output_tokens[-1] += ''.join(input_tokens[i:k])
i += 2
elif tok == "-":
if i < len(input_tokens) - 1 and input_tokens[i + 1] == "-":
output_tokens.append("--")
i += 2
elif i == len(input_tokens) - 1 or i == 0:
output_tokens.append("-")
i += 1
elif output_tokens[-1] not in string.punctuation and input_tokens[i + 1][0] not in string.punctuation:
output_tokens[-1] += "-"
i += 1
flag_prev_dash = True
else:
output_tokens.append("-")
i += 1
elif prev_dash and len(output_tokens) > 0 and tok[0] not in string.punctuation:
output_tokens[-1] += tok
i += 1
else:
output_tokens.append(tok)
i += 1
prev_dash = flag_prev_dash
return " ".join(output_tokens)
class QGEvalCap:
def __init__(self, gts, res):
self.gts = gts
self.res = res
def evaluate(self):
output = []
scorers = [
(Bleu(4), ["Bleu_1", "Bleu_2", "Bleu_3", "Bleu_4"]),
(Meteor(), "METEOR"),
(Rouge(), "ROUGE_L"),
# (Cider(), "CIDEr")
]
# =================================================
# Compute scores
# =================================================
for scorer, method in scorers:
# print 'computing %s score...'%(scorer.method())
score, scores = scorer.compute_score(self.gts, self.res)
if type(method) == list:
for sc, scs, m in zip(score, scores, method):
print("%s: %0.5f" % (m, sc))
output.append(sc)
else:
print("%s: %0.5f" % (method, score))
output.append(score)
return output
def eval(out_file, src_file, tgt_file, isDIn=False, num_pairs=500):
"""
Given a filename, calculate the metric scores for that prediction file
isDin: boolean value to check whether input file is DirectIn.txt
"""
pairs = []
with open(src_file, 'r') as infile:
for line in infile:
pair = {}
pair['tokenized_sentence'] = line[:-1].strip().lower()
pairs.append(pair)
with open(tgt_file, "r") as infile:
cnt = 0
for line in infile:
pairs[cnt]['tokenized_question'] = line[:-1].strip()
cnt += 1
output = []
with open(out_file, 'r') as infile:
for line in infile:
line = fix_tokenization(line[:-1].strip()).lower()
output.append(line)
for idx, pair in enumerate(pairs):
pair['prediction'] = output[idx]
# eval
from eval import QGEvalCap
import json
from json import encoder
encoder.FLOAT_REPR = lambda o: format(o, '.4f')
res = defaultdict(lambda: [])
gts = defaultdict(lambda: [])
for pair in pairs[:]:
key = pair['tokenized_sentence']
res[key] = [pair['prediction'].encode('utf-8')]
# gts
gts[key].append(pair['tokenized_question'].encode('utf-8'))
QGEval = QGEvalCap(gts, res)
return QGEval.evaluate()
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("-out", "--out_file", dest="out_file",
default="./output/pred.txt", help="output file to compare")
parser.add_argument("-src", "--src_file", dest="src_file",
default="./qg_data/test/test.pa.txt", help="src file")
parser.add_argument("-tgt", "--tgt_file", dest="tgt_file",
default="./qg_data/nqg_processed_data/tgt-test.txt", help="target file")
args = parser.parse_args()
print("scores: \n")
eval(args.out_file, args.src_file, args.tgt_file)
| EXA-1-master | exa/models/unilm-master/unilm-v1/src/qg/eval.py |
EXA-1-master | exa/models/unilm-master/unilm-v1/src/gigaword/__init__.py |
|
"""BERT finetuning runner."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import logging
import glob
import json
import argparse
import math
import string
from multiprocessing import Pool, cpu_count
from tqdm import tqdm, trange
from pathlib import Path
import numpy as np
# pip install py-rouge
import rouge
import time
import tempfile
import shutil
from pytorch_pretrained_bert.tokenization import BertTokenizer
# pip install pyrouge
from gigaword.bs_pyrouge import Rouge155
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--gold", type=str, help="Gold output file.")
parser.add_argument("--pred", type=str, help="Input prediction file.")
parser.add_argument("--split", type=str, default="",
help="Data split (train/dev/test).")
parser.add_argument("--save_best", action='store_true',
help="Save best epoch.")
parser.add_argument("--only_eval_best", action='store_true',
help="Only evaluate best epoch.")
parser.add_argument("--trunc_len", type=int, default=0,
help="Truncate line by the maximum length.")
default_process_count = max(1, cpu_count() - 1)
parser.add_argument("--processes", type=int, default=default_process_count,
help="Number of processes to use (default %(default)s)")
parser.add_argument("--perl", action='store_true',
help="Using the perl script.")
parser.add_argument('--lazy_eval', action='store_true',
help="Skip evaluation if the .rouge file exists.")
args = parser.parse_args()
SPECIAL_TOKEN = ["[UNK]", "[PAD]", "[CLS]", "[MASK]"]
evaluator = rouge.Rouge(metrics=['rouge-n', 'rouge-l'], max_n=2,
limit_length=False, apply_avg=True, weight_factor=1.2)
def test_rouge(cand, ref):
temp_dir = tempfile.mkdtemp()
candidates = cand
references = ref
assert len(candidates) == len(references)
cnt = len(candidates)
current_time = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime())
tmp_dir = os.path.join(temp_dir, "rouge-tmp-{}".format(current_time))
if not os.path.isdir(tmp_dir):
os.mkdir(tmp_dir)
os.mkdir(tmp_dir + "/candidate")
os.mkdir(tmp_dir + "/reference")
try:
for i in range(cnt):
if len(references[i]) < 1:
continue
with open(tmp_dir + "/candidate/cand.{}.txt".format(i), "w",
encoding="utf-8") as f:
f.write(candidates[i])
with open(tmp_dir + "/reference/ref.{}.txt".format(i), "w",
encoding="utf-8") as f:
f.write(references[i])
r = Rouge155(temp_dir=temp_dir)
r.model_dir = tmp_dir + "/reference/"
r.system_dir = tmp_dir + "/candidate/"
r.model_filename_pattern = 'ref.#ID#.txt'
r.system_filename_pattern = r'cand.(\d+).txt'
rouge_results = r.convert_and_evaluate()
print(rouge_results)
results_dict = r.output_to_dict(rouge_results)
finally:
if os.path.isdir(tmp_dir):
shutil.rmtree(tmp_dir)
return results_dict
def rouge_results_to_str(results_dict):
return ">> ROUGE-F(1/2/l): {:.2f}/{:.2f}/{:.2f}\nROUGE-R(1/2/3/l): {:.2f}/{:.2f}/{:.2f}\n".format(
results_dict["rouge_1_f_score"] * 100,
results_dict["rouge_2_f_score"] * 100,
results_dict["rouge_l_f_score"] * 100,
results_dict["rouge_1_recall"] * 100,
results_dict["rouge_2_recall"] * 100,
results_dict["rouge_l_recall"] * 100
)
def count_tokens(tokens):
counter = {}
for t in tokens:
if t in counter.keys():
counter[t] += 1
else:
counter[t] = 1
return counter
def get_f1(text_a, text_b):
tokens_a = text_a.lower().split()
tokens_b = text_b.lower().split()
if len(tokens_a) == 0 or len(tokens_b) == 0:
return 1 if len(tokens_a) == len(tokens_b) else 0
set_a = count_tokens(tokens_a)
set_b = count_tokens(tokens_b)
match = 0
for token in set_a.keys():
if token in set_b.keys():
match += min(set_a[token], set_b[token])
p = match / len(tokens_a)
r = match / len(tokens_b)
return 2.0 * p * r / (p + r + 1e-5)
_tok_dict = {"(": "-lrb-", ")": "-rrb-",
"[": "-lsb-", "]": "-rsb-",
"{": "-lcb-", "}": "-rcb-",
"[UNK]": "UNK", '&': '&', '<': '<', '>': '>'}
def _is_digit(w):
for ch in w:
if not(ch.isdigit() or ch == ','):
return False
return True
def fix_tokenization(text):
input_tokens = text.split()
output_tokens = []
has_left_quote = False
has_left_single_quote = False
i = 0
prev_dash = False
while i < len(input_tokens):
tok = input_tokens[i]
flag_prev_dash = False
if tok in _tok_dict.keys():
output_tokens.append(_tok_dict[tok])
i += 1
elif tok == "\"":
if has_left_quote:
output_tokens.append("''")
else:
output_tokens.append("``")
has_left_quote = not has_left_quote
i += 1
elif tok == "'" and len(output_tokens) > 0 and output_tokens[-1].endswith("n") and i < len(input_tokens) - 1 and input_tokens[i + 1] == "t":
output_tokens[-1] = output_tokens[-1][:-1]
output_tokens.append("n't")
i += 2
elif tok == "'" and i < len(input_tokens) - 1 and input_tokens[i + 1] in ("s", "d", "ll"):
output_tokens.append("'"+input_tokens[i + 1])
i += 2
elif tok == "'":
if has_left_single_quote:
output_tokens.append("'")
else:
output_tokens.append("`")
has_left_single_quote = not has_left_single_quote
i += 1
elif tok == "." and i < len(input_tokens) - 2 and input_tokens[i + 1] == "." and input_tokens[i + 2] == ".":
output_tokens.append("...")
i += 3
elif tok == "," and len(output_tokens) > 0 and _is_digit(output_tokens[-1]) and i < len(input_tokens) - 1 and _is_digit(input_tokens[i + 1]):
# $ 3 , 000 -> $ 3,000
output_tokens[-1] += ','+input_tokens[i + 1]
i += 2
elif tok == "." and len(output_tokens) > 0 and output_tokens[-1].isdigit() and i < len(input_tokens) - 1 and input_tokens[i + 1].isdigit():
# 3 . 03 -> $ 3.03
output_tokens[-1] += '.'+input_tokens[i + 1]
i += 2
elif tok == "." and len(output_tokens) > 0 and len(output_tokens[-1]) == 1 and output_tokens[-1].isupper() and i < len(input_tokens) - 2 and len(input_tokens[i + 1]) == 1 and input_tokens[i + 1].isupper() and input_tokens[i + 2] == '.':
# U . N . -> U.N.
k = i+3
while k+2 < len(input_tokens):
if len(input_tokens[k + 1]) == 1 and input_tokens[k + 1].isupper() and input_tokens[k + 2] == '.':
k += 2
else:
break
output_tokens[-1] += ''.join(input_tokens[i:k])
i += 2
elif tok == "-":
if i < len(input_tokens) - 1 and input_tokens[i + 1] == "-":
output_tokens.append("--")
i += 2
elif i == len(input_tokens) - 1 or i == 0:
output_tokens.append("-")
i += 1
elif output_tokens[-1] not in string.punctuation and input_tokens[i + 1][0] not in string.punctuation:
output_tokens[-1] += "-"
i += 1
flag_prev_dash = True
else:
output_tokens.append("-")
i += 1
elif prev_dash and len(output_tokens) > 0 and tok[0] not in string.punctuation:
output_tokens[-1] += tok
i += 1
else:
output_tokens.append(tok)
i += 1
prev_dash = flag_prev_dash
return " ".join(output_tokens)
def process_eval(eval_fn):
gold_list = []
with open(args.gold, "r", encoding="utf-8") as f_in:
for l in f_in:
line = l.strip()
gold_list.append(line)
pred_list = []
with open(eval_fn, "r", encoding="utf-8") as f_in:
for l in f_in:
buf = []
sentence = fix_tokenization(l.strip()).replace('1', '#')
buf.append(sentence)
if args.trunc_len:
num_left = args.trunc_len
trunc_list = []
for bit in buf:
tk_list = bit.split()
n = min(len(tk_list), num_left)
trunc_list.append(' '.join(tk_list[:n]))
num_left -= n
if num_left <= 0:
break
else:
trunc_list = buf
line = "\n".join(trunc_list)
pred_list.append(line)
with open(eval_fn+'.post', 'w', encoding='utf-8') as f_out:
for l in pred_list:
f_out.write(l.strip())
f_out.write('\n')
# rouge scores
if len(pred_list) < len(gold_list):
# evaluate subset
gold_list = gold_list[:len(pred_list)]
assert len(pred_list) == len(gold_list)
if args.perl:
scores = test_rouge(pred_list, gold_list)
else:
scores = evaluator.get_scores(pred_list, [[it] for it in gold_list])
return eval_fn, scores
def main():
if args.perl:
eval_fn_list = list(glob.glob(args.pred))
else:
eval_fn_list = [eval_fn for eval_fn in glob.glob(args.pred) if not(
args.lazy_eval and Path(eval_fn+".rouge").exists())]
eval_fn_list = list(filter(lambda fn: not(fn.endswith(
'.post') or fn.endswith('.rouge')), eval_fn_list))
if args.only_eval_best:
best_epoch_dict = {}
for dir_path in set(Path(fn).parent for fn in eval_fn_list):
fn_save = os.path.join(dir_path, 'save_best.dev')
if Path(fn_save).exists():
with open(fn_save, 'r') as f_in:
__, o_name, __ = f_in.read().strip().split('\n')
epoch = o_name.split('.')[1]
best_epoch_dict[dir_path] = epoch
new_eval_fn_list = []
for fn in eval_fn_list:
dir_path = Path(fn).parent
if dir_path in best_epoch_dict:
if Path(fn).name.split('.')[1] == best_epoch_dict[dir_path]:
new_eval_fn_list.append(fn)
eval_fn_list = new_eval_fn_list
logger.info("***** Evaluation: %s *****", ','.join(eval_fn_list))
num_pool = min(args.processes, len(eval_fn_list))
p = Pool(num_pool)
r_list = p.imap_unordered(process_eval, eval_fn_list)
r_list = sorted([(fn, scores)
for fn, scores in r_list], key=lambda x: x[0])
rg2_dict = {}
for fn, scores in r_list:
print(fn)
if args.perl:
print(rouge_results_to_str(scores))
else:
rg2_dict[fn] = scores['rouge-2']['f']
print(
"ROUGE-1: {}\tROUGE-2: {}\n".format(scores['rouge-1']['f'], scores['rouge-2']['f']))
with open(fn+".rouge", 'w') as f_out:
f_out.write(json.dumps(
{'rg1': scores['rouge-1']['f'], 'rg2': scores['rouge-2']['f']}))
p.close()
p.join()
if args.save_best:
# find best results
group_dict = {}
for k, v in rg2_dict.items():
d_name, o_name = Path(k).parent, Path(k).name
if (d_name not in group_dict) or (v > group_dict[d_name][1]):
group_dict[d_name] = (o_name, v)
# compare and save the best result
for k, v in group_dict.items():
fn = os.path.join(k, 'save_best.'+args.split)
o_name_s, rst_s = v
should_save = True
if Path(fn).exists():
with open(fn, 'r') as f_in:
rst_f = float(f_in.read().strip().split('\n')[-1])
if rst_s <= rst_f:
should_save = False
if should_save:
with open(fn, 'w') as f_out:
f_out.write('{0}\n{1}\n{2}\n'.format(k, o_name_s, rst_s))
if __name__ == "__main__":
main()
| EXA-1-master | exa/models/unilm-master/unilm-v1/src/gigaword/eval.py |
from __future__ import print_function, unicode_literals, division
import os
import re
import codecs
import platform
from subprocess import check_output
from tempfile import mkdtemp
from functools import partial
try:
from configparser import ConfigParser
except ImportError:
from ConfigParser import ConfigParser
from pyrouge.utils import log
from pyrouge.utils.file_utils import verify_dir
REMAP = {"-lrb-": "(", "-rrb-": ")", "-lcb-": "{", "-rcb-": "}",
"-lsb-": "[", "-rsb-": "]", "``": '"', "''": '"'}
def clean(x):
return re.sub(
r"-lrb-|-rrb-|-lcb-|-rcb-|-lsb-|-rsb-|``|''",
lambda m: REMAP.get(m.group()), x)
class DirectoryProcessor:
@staticmethod
def process(input_dir, output_dir, function):
"""
Apply function to all files in input_dir and save the resulting ouput
files in output_dir.
"""
if not os.path.exists(output_dir):
os.makedirs(output_dir)
logger = log.get_global_console_logger()
logger.info("Processing files in {}.".format(input_dir))
input_file_names = os.listdir(input_dir)
for input_file_name in input_file_names:
input_file = os.path.join(input_dir, input_file_name)
with codecs.open(input_file, "r", encoding="UTF-8") as f:
input_string = f.read()
output_string = function(input_string)
output_file = os.path.join(output_dir, input_file_name)
with codecs.open(output_file, "w", encoding="UTF-8") as f:
f.write(clean(output_string.lower()))
logger.info("Saved processed files to {}.".format(output_dir))
class Rouge155(object):
"""
This is a wrapper for the ROUGE 1.5.5 summary evaluation package.
This class is designed to simplify the evaluation process by:
1) Converting summaries into a format ROUGE understands.
2) Generating the ROUGE configuration file automatically based
on filename patterns.
This class can be used within Python like this:
rouge = Rouge155()
rouge.system_dir = 'test/systems'
rouge.model_dir = 'test/models'
# The system filename pattern should contain one group that
# matches the document ID.
rouge.system_filename_pattern = 'SL.P.10.R.11.SL062003-(\d+).html'
# The model filename pattern has '#ID#' as a placeholder for the
# document ID. If there are multiple model summaries, pyrouge
# will use the provided regex to automatically match them with
# the corresponding system summary. Here, [A-Z] matches
# multiple model summaries for a given #ID#.
rouge.model_filename_pattern = 'SL.P.10.R.[A-Z].SL062003-#ID#.html'
rouge_output = rouge.evaluate()
print(rouge_output)
output_dict = rouge.output_to_dict(rouge_ouput)
print(output_dict)
-> {'rouge_1_f_score': 0.95652,
'rouge_1_f_score_cb': 0.95652,
'rouge_1_f_score_ce': 0.95652,
'rouge_1_precision': 0.95652,
[...]
To evaluate multiple systems:
rouge = Rouge155()
rouge.system_dir = '/PATH/TO/systems'
rouge.model_dir = 'PATH/TO/models'
for system_id in ['id1', 'id2', 'id3']:
rouge.system_filename_pattern = \
'SL.P/.10.R.{}.SL062003-(\d+).html'.format(system_id)
rouge.model_filename_pattern = \
'SL.P.10.R.[A-Z].SL062003-#ID#.html'
rouge_output = rouge.evaluate(system_id)
print(rouge_output)
"""
def __init__(self, rouge_dir=None, rouge_args=None, temp_dir=None):
"""
Create a Rouge155 object.
rouge_dir: Directory containing Rouge-1.5.5.pl
rouge_args: Arguments to pass through to ROUGE if you
don't want to use the default pyrouge
arguments.
"""
self.temp_dir = temp_dir
self.log = log.get_global_console_logger()
self.__set_dir_properties()
self._config_file = None
self._settings_file = self.__get_config_path()
self.__set_rouge_dir(rouge_dir)
self.args = self.__clean_rouge_args(rouge_args)
self._system_filename_pattern = None
self._model_filename_pattern = None
def save_home_dir(self):
config = ConfigParser()
section = 'pyrouge settings'
config.add_section(section)
config.set(section, 'home_dir', self._home_dir)
with open(self._settings_file, 'w') as f:
config.write(f)
self.log.info("Set ROUGE home directory to {}.".format(self._home_dir))
@property
def settings_file(self):
"""
Path of the setttings file, which stores the ROUGE home dir.
"""
return self._settings_file
@property
def bin_path(self):
"""
The full path of the ROUGE binary (although it's technically
a script), i.e. rouge_home_dir/ROUGE-1.5.5.pl
"""
if self._bin_path is None:
raise Exception(
"ROUGE path not set. Please set the ROUGE home directory "
"and ensure that ROUGE-1.5.5.pl exists in it.")
return self._bin_path
@property
def system_filename_pattern(self):
"""
The regular expression pattern for matching system summary
filenames. The regex string.
E.g. "SL.P.10.R.11.SL062003-(\d+).html" will match the system
filenames in the SPL2003/system folder of the ROUGE SPL example
in the "sample-test" folder.
Currently, there is no support for multiple systems.
"""
return self._system_filename_pattern
@system_filename_pattern.setter
def system_filename_pattern(self, pattern):
self._system_filename_pattern = pattern
@property
def model_filename_pattern(self):
"""
The regular expression pattern for matching model summary
filenames. The pattern needs to contain the string "#ID#",
which is a placeholder for the document ID.
E.g. "SL.P.10.R.[A-Z].SL062003-#ID#.html" will match the model
filenames in the SPL2003/system folder of the ROUGE SPL
example in the "sample-test" folder.
"#ID#" is a placeholder for the document ID which has been
matched by the "(\d+)" part of the system filename pattern.
The different model summaries for a given document ID are
matched by the "[A-Z]" part.
"""
return self._model_filename_pattern
@model_filename_pattern.setter
def model_filename_pattern(self, pattern):
self._model_filename_pattern = pattern
@property
def config_file(self):
return self._config_file
@config_file.setter
def config_file(self, path):
config_dir, _ = os.path.split(path)
verify_dir(config_dir, "configuration file")
self._config_file = path
def split_sentences(self):
"""
ROUGE requires texts split into sentences. In case the texts
are not already split, this method can be used.
"""
from pyrouge.utils.sentence_splitter import PunktSentenceSplitter
self.log.info("Splitting sentences.")
ss = PunktSentenceSplitter()
def sent_split_to_string(s): return "\n".join(ss.split(s))
process_func = partial(
DirectoryProcessor.process, function=sent_split_to_string)
self.__process_summaries(process_func)
@staticmethod
def convert_summaries_to_rouge_format(input_dir, output_dir):
"""
Convert all files in input_dir into a format ROUGE understands
and saves the files to output_dir. The input files are assumed
to be plain text with one sentence per line.
input_dir: Path of directory containing the input files.
output_dir: Path of directory in which the converted files
will be saved.
"""
DirectoryProcessor.process(
input_dir, output_dir, Rouge155.convert_text_to_rouge_format)
@staticmethod
def convert_text_to_rouge_format(text, title="dummy title"):
"""
Convert a text to a format ROUGE understands. The text is
assumed to contain one sentence per line.
text: The text to convert, containg one sentence per line.
title: Optional title for the text. The title will appear
in the converted file, but doesn't seem to have
any other relevance.
Returns: The converted text as string.
"""
sentences = text.split("\n")
sent_elems = [
"<a name=\"{i}\">[{i}]</a> <a href=\"#{i}\" id={i}>"
"{text}</a>".format(i=i, text=sent)
for i, sent in enumerate(sentences, start=1)]
html = """<html>
<head>
<title>{title}</title>
</head>
<body bgcolor="white">
{elems}
</body>
</html>""".format(title=title, elems="\n".join(sent_elems))
return html
@staticmethod
def write_config_static(system_dir, system_filename_pattern,
model_dir, model_filename_pattern,
config_file_path, system_id=None):
"""
Write the ROUGE configuration file, which is basically a list
of system summary files and their corresponding model summary
files.
pyrouge uses regular expressions to automatically find the
matching model summary files for a given system summary file
(cf. docstrings for system_filename_pattern and
model_filename_pattern).
system_dir: Path of directory containing
system summaries.
system_filename_pattern: Regex string for matching
system summary filenames.
model_dir: Path of directory containing
model summaries.
model_filename_pattern: Regex string for matching model
summary filenames.
config_file_path: Path of the configuration file.
system_id: Optional system ID string which
will appear in the ROUGE output.
"""
system_filenames = [f for f in os.listdir(system_dir)]
system_models_tuples = []
system_filename_pattern = re.compile(system_filename_pattern)
for system_filename in sorted(system_filenames):
match = system_filename_pattern.match(system_filename)
if match:
id = match.groups(0)[0]
model_filenames = [model_filename_pattern.replace('#ID#', id)]
# model_filenames = Rouge155.__get_model_filenames_for_id(
# id, model_dir, model_filename_pattern)
system_models_tuples.append(
(system_filename, sorted(model_filenames)))
if not system_models_tuples:
raise Exception(
"Did not find any files matching the pattern {} "
"in the system summaries directory {}.".format(
system_filename_pattern.pattern, system_dir))
with codecs.open(config_file_path, 'w', encoding='utf-8') as f:
f.write('<ROUGE-EVAL version="1.55">')
for task_id, (system_filename, model_filenames) in enumerate(
system_models_tuples, start=1):
eval_string = Rouge155.__get_eval_string(
task_id, system_id,
system_dir, system_filename,
model_dir, model_filenames)
f.write(eval_string)
f.write("</ROUGE-EVAL>")
def write_config(self, config_file_path=None, system_id=None):
"""
Write the ROUGE configuration file, which is basically a list
of system summary files and their matching model summary files.
This is a non-static version of write_config_file_static().
config_file_path: Path of the configuration file.
system_id: Optional system ID string which will
appear in the ROUGE output.
"""
if not system_id:
system_id = 1
if (not config_file_path) or (not self._config_dir):
self._config_dir = mkdtemp(dir=self.temp_dir)
config_filename = "rouge_conf.xml"
else:
config_dir, config_filename = os.path.split(config_file_path)
verify_dir(config_dir, "configuration file")
self._config_file = os.path.join(self._config_dir, config_filename)
Rouge155.write_config_static(
self._system_dir, self._system_filename_pattern,
self._model_dir, self._model_filename_pattern,
self._config_file, system_id)
self.log.info(
"Written ROUGE configuration to {}".format(self._config_file))
def evaluate(self, system_id=1, rouge_args=None):
"""
Run ROUGE to evaluate the system summaries in system_dir against
the model summaries in model_dir. The summaries are assumed to
be in the one-sentence-per-line HTML format ROUGE understands.
system_id: Optional system ID which will be printed in
ROUGE's output.
Returns: Rouge output as string.
"""
self.write_config(system_id=system_id)
options = self.__get_options(rouge_args)
command = [self._bin_path] + options
self.log.info(
"Running ROUGE with command {}".format(" ".join(command)))
rouge_output = check_output(command).decode("UTF-8")
return rouge_output
def convert_and_evaluate(self, system_id=1,
split_sentences=False, rouge_args=None):
"""
Convert plain text summaries to ROUGE format and run ROUGE to
evaluate the system summaries in system_dir against the model
summaries in model_dir. Optionally split texts into sentences
in case they aren't already.
This is just a convenience method combining
convert_summaries_to_rouge_format() and evaluate().
split_sentences: Optional argument specifying if
sentences should be split.
system_id: Optional system ID which will be printed
in ROUGE's output.
Returns: ROUGE output as string.
"""
if split_sentences:
self.split_sentences()
self.__write_summaries()
rouge_output = self.evaluate(system_id, rouge_args)
return rouge_output
def output_to_dict(self, output):
"""
Convert the ROUGE output into python dictionary for further
processing.
"""
# 0 ROUGE-1 Average_R: 0.02632 (95%-conf.int. 0.02632 - 0.02632)
pattern = re.compile(
r"(\d+) (ROUGE-\S+) (Average_\w): (\d.\d+) "
r"\(95%-conf.int. (\d.\d+) - (\d.\d+)\)")
results = {}
for line in output.split("\n"):
match = pattern.match(line)
if match:
sys_id, rouge_type, measure, result, conf_begin, conf_end = \
match.groups()
measure = {
'Average_R': 'recall',
'Average_P': 'precision',
'Average_F': 'f_score'
}[measure]
rouge_type = rouge_type.lower().replace("-", '_')
key = "{}_{}".format(rouge_type, measure)
results[key] = float(result)
results["{}_cb".format(key)] = float(conf_begin)
results["{}_ce".format(key)] = float(conf_end)
return results
###################################################################
# Private methods
def __set_rouge_dir(self, home_dir=None):
"""
Verfify presence of ROUGE-1.5.5.pl and data folder, and set
those paths.
"""
if not home_dir:
self._home_dir = self.__get_rouge_home_dir_from_settings()
else:
self._home_dir = home_dir
self.save_home_dir()
self._bin_path = os.path.join(self._home_dir, 'ROUGE-1.5.5.pl')
self.data_dir = os.path.join(self._home_dir, 'data')
if not os.path.exists(self._bin_path):
raise Exception(
"ROUGE binary not found at {}. Please set the "
"correct path by running pyrouge_set_rouge_path "
"/path/to/rouge/home.".format(self._bin_path))
def __get_rouge_home_dir_from_settings(self):
config = ConfigParser()
with open(self._settings_file) as f:
if hasattr(config, "read_file"):
config.read_file(f)
else:
# use deprecated python 2.x method
config.readfp(f)
rouge_home_dir = config.get('pyrouge settings', 'home_dir')
return rouge_home_dir
@staticmethod
def __get_eval_string(
task_id, system_id,
system_dir, system_filename,
model_dir, model_filenames):
"""
ROUGE can evaluate several system summaries for a given text
against several model summaries, i.e. there is an m-to-n
relation between system and model summaries. The system
summaries are listed in the <PEERS> tag and the model summaries
in the <MODELS> tag. pyrouge currently only supports one system
summary per text, i.e. it assumes a 1-to-n relation between
system and model summaries.
"""
peer_elems = "<P ID=\"{id}\">{name}</P>".format(
id=system_id, name=system_filename)
model_elems = ["<M ID=\"{id}\">{name}</M>".format(
id=chr(65 + i), name=name)
for i, name in enumerate(model_filenames)]
model_elems = "\n\t\t\t".join(model_elems)
eval_string = """
<EVAL ID="{task_id}">
<MODEL-ROOT>{model_root}</MODEL-ROOT>
<PEER-ROOT>{peer_root}</PEER-ROOT>
<INPUT-FORMAT TYPE="SEE">
</INPUT-FORMAT>
<PEERS>
{peer_elems}
</PEERS>
<MODELS>
{model_elems}
</MODELS>
</EVAL>
""".format(
task_id=task_id,
model_root=model_dir, model_elems=model_elems,
peer_root=system_dir, peer_elems=peer_elems)
return eval_string
def __process_summaries(self, process_func):
"""
Helper method that applies process_func to the files in the
system and model folders and saves the resulting files to new
system and model folders.
"""
temp_dir = mkdtemp(dir=self.temp_dir)
new_system_dir = os.path.join(temp_dir, "system")
os.mkdir(new_system_dir)
new_model_dir = os.path.join(temp_dir, "model")
os.mkdir(new_model_dir)
self.log.info(
"Processing summaries. Saving system files to {} and "
"model files to {}.".format(new_system_dir, new_model_dir))
process_func(self._system_dir, new_system_dir)
process_func(self._model_dir, new_model_dir)
self._system_dir = new_system_dir
self._model_dir = new_model_dir
def __write_summaries(self):
self.log.info("Writing summaries.")
self.__process_summaries(self.convert_summaries_to_rouge_format)
@staticmethod
def __get_model_filenames_for_id(id, model_dir, model_filenames_pattern):
pattern = re.compile(model_filenames_pattern.replace('#ID#', id))
model_filenames = [
f for f in os.listdir(model_dir) if pattern.match(f)]
if not model_filenames:
raise Exception(
"Could not find any model summaries for the system"
" summary with ID {}. Specified model filename pattern was: "
"{}".format(id, model_filenames_pattern))
return model_filenames
def __get_options(self, rouge_args=None):
"""
Get supplied command line arguments for ROUGE or use default
ones.
"""
if self.args:
options = self.args.split()
elif rouge_args:
options = rouge_args.split()
else:
options = [
'-e', self._data_dir,
'-c', 95,
# '-2',
# '-1',
# '-U',
'-m',
# '-v',
'-r', 1000,
'-n', 2,
# '-w', 1.2,
'-a',
]
options = list(map(str, options))
options = self.__add_config_option(options)
return options
def __create_dir_property(self, dir_name, docstring):
"""
Generate getter and setter for a directory property.
"""
property_name = "{}_dir".format(dir_name)
private_name = "_" + property_name
setattr(self, private_name, None)
def fget(self):
return getattr(self, private_name)
def fset(self, path):
verify_dir(path, dir_name)
setattr(self, private_name, path)
p = property(fget=fget, fset=fset, doc=docstring)
setattr(self.__class__, property_name, p)
def __set_dir_properties(self):
"""
Automatically generate the properties for directories.
"""
directories = [
("home", "The ROUGE home directory."),
("data", "The path of the ROUGE 'data' directory."),
("system", "Path of the directory containing system summaries."),
("model", "Path of the directory containing model summaries."),
]
for (dirname, docstring) in directories:
self.__create_dir_property(dirname, docstring)
def __clean_rouge_args(self, rouge_args):
"""
Remove enclosing quotation marks, if any.
"""
if not rouge_args:
return
quot_mark_pattern = re.compile('"(.+)"')
match = quot_mark_pattern.match(rouge_args)
if match:
cleaned_args = match.group(1)
return cleaned_args
else:
return rouge_args
def __add_config_option(self, options):
return options + [self._config_file]
def __get_config_path(self):
if platform.system() == "Windows":
parent_dir = os.getenv("APPDATA")
config_dir_name = "pyrouge"
elif os.name == "posix":
parent_dir = os.path.expanduser("~")
config_dir_name = ".pyrouge"
else:
parent_dir = os.path.dirname(__file__)
config_dir_name = ""
config_dir = os.path.join(parent_dir, config_dir_name)
if not os.path.exists(config_dir):
os.makedirs(config_dir)
return os.path.join(config_dir, 'settings.ini')
if __name__ == "__main__":
import argparse
from utils.argparsers import rouge_path_parser
parser = argparse.ArgumentParser(parents=[rouge_path_parser])
args = parser.parse_args()
rouge = Rouge155(args.rouge_home)
rouge.save_home_dir()
| EXA-1-master | exa/models/unilm-master/unilm-v1/src/gigaword/bs_pyrouge.py |
EXA-1-master | exa/models/unilm-master/unilm-v1/src/cnndm/__init__.py |
|
"""BERT finetuning runner."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import logging
import glob
import json
import argparse
import math
import string
from multiprocessing import Pool, cpu_count
from tqdm import tqdm, trange
from pathlib import Path
import numpy as np
# pip install py-rouge
import rouge
import time
import tempfile
import shutil
from pytorch_pretrained_bert.tokenization import BertTokenizer
# pip install pyrouge
from cnndm.bs_pyrouge import Rouge155
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--gold", type=str, help="Gold output file.")
parser.add_argument("--pred", type=str, help="Input prediction file.")
parser.add_argument("--split", type=str, default="",
help="Data split (train/dev/test).")
parser.add_argument("--save_best", action='store_true',
help="Save best epoch.")
parser.add_argument("--only_eval_best", action='store_true',
help="Only evaluate best epoch.")
parser.add_argument("--trunc_len", type=int, default=60,
help="Truncate line by the maximum length.")
parser.add_argument("--duplicate_rate", type=float, default=0.7,
help="If the duplicat rate (compared with history) is large, we can discard the current sentence.")
default_process_count = max(1, cpu_count() - 1)
parser.add_argument("--processes", type=int, default=default_process_count,
help="Number of processes to use (default %(default)s)")
parser.add_argument("--perl", action='store_true',
help="Using the perl script.")
parser.add_argument('--lazy_eval', action='store_true',
help="Skip evaluation if the .rouge file exists.")
args = parser.parse_args()
SPECIAL_TOKEN = ["[UNK]", "[PAD]", "[CLS]", "[MASK]"]
evaluator = rouge.Rouge(metrics=['rouge-n', 'rouge-l'], max_n=2,
limit_length=False, apply_avg=True, weight_factor=1.2)
def test_rouge(cand, ref):
temp_dir = tempfile.mkdtemp()
candidates = cand
references = ref
assert len(candidates) == len(references)
cnt = len(candidates)
current_time = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime())
tmp_dir = os.path.join(temp_dir, "rouge-tmp-{}".format(current_time))
if not os.path.isdir(tmp_dir):
os.mkdir(tmp_dir)
os.mkdir(tmp_dir + "/candidate")
os.mkdir(tmp_dir + "/reference")
try:
for i in range(cnt):
if len(references[i]) < 1:
continue
with open(tmp_dir + "/candidate/cand.{}.txt".format(i), "w",
encoding="utf-8") as f:
f.write(candidates[i])
with open(tmp_dir + "/reference/ref.{}.txt".format(i), "w",
encoding="utf-8") as f:
f.write(references[i])
r = Rouge155(temp_dir=temp_dir)
r.model_dir = tmp_dir + "/reference/"
r.system_dir = tmp_dir + "/candidate/"
r.model_filename_pattern = 'ref.#ID#.txt'
r.system_filename_pattern = r'cand.(\d+).txt'
rouge_results = r.convert_and_evaluate()
print(rouge_results)
results_dict = r.output_to_dict(rouge_results)
finally:
if os.path.isdir(tmp_dir):
shutil.rmtree(tmp_dir)
return results_dict
def rouge_results_to_str(results_dict):
return ">> ROUGE-F(1/2/l): {:.2f}/{:.2f}/{:.2f}\nROUGE-R(1/2/3/l): {:.2f}/{:.2f}/{:.2f}\n".format(
results_dict["rouge_1_f_score"] * 100,
results_dict["rouge_2_f_score"] * 100,
results_dict["rouge_l_f_score"] * 100,
results_dict["rouge_1_recall"] * 100,
results_dict["rouge_2_recall"] * 100,
results_dict["rouge_l_recall"] * 100
)
def count_tokens(tokens):
counter = {}
for t in tokens:
if t in counter.keys():
counter[t] += 1
else:
counter[t] = 1
return counter
def get_f1(text_a, text_b):
tokens_a = text_a.lower().split()
tokens_b = text_b.lower().split()
if len(tokens_a) == 0 or len(tokens_b) == 0:
return 1 if len(tokens_a) == len(tokens_b) else 0
set_a = count_tokens(tokens_a)
set_b = count_tokens(tokens_b)
match = 0
for token in set_a.keys():
if token in set_b.keys():
match += min(set_a[token], set_b[token])
p = match / len(tokens_a)
r = match / len(tokens_b)
return 2.0 * p * r / (p + r + 1e-5)
_tok_dict = {"(": "-LRB-", ")": "-RRB-",
"[": "-LSB-", "]": "-RSB-",
"{": "-LCB-", "}": "-RCB-"}
def _is_digit(w):
for ch in w:
if not(ch.isdigit() or ch == ','):
return False
return True
def fix_tokenization(text):
input_tokens = text.split()
output_tokens = []
has_left_quote = False
has_left_single_quote = False
i = 0
prev_dash = False
while i < len(input_tokens):
tok = input_tokens[i]
flag_prev_dash = False
if tok in _tok_dict.keys():
output_tokens.append(_tok_dict[tok])
i += 1
elif tok == "\"":
if has_left_quote:
output_tokens.append("''")
else:
output_tokens.append("``")
has_left_quote = not has_left_quote
i += 1
elif tok == "'" and len(output_tokens) > 0 and output_tokens[-1].endswith("n") and i < len(input_tokens) - 1 and input_tokens[i + 1] == "t":
output_tokens[-1] = output_tokens[-1][:-1]
output_tokens.append("n't")
i += 2
elif tok == "'" and i < len(input_tokens) - 1 and input_tokens[i + 1] in ("s", "d", "ll"):
output_tokens.append("'"+input_tokens[i + 1])
i += 2
elif tok == "'":
if has_left_single_quote:
output_tokens.append("'")
else:
output_tokens.append("`")
has_left_single_quote = not has_left_single_quote
i += 1
elif tok == "." and i < len(input_tokens) - 2 and input_tokens[i + 1] == "." and input_tokens[i + 2] == ".":
output_tokens.append("...")
i += 3
elif tok == "," and len(output_tokens) > 0 and _is_digit(output_tokens[-1]) and i < len(input_tokens) - 1 and _is_digit(input_tokens[i + 1]):
# $ 3 , 000 -> $ 3,000
output_tokens[-1] += ','+input_tokens[i + 1]
i += 2
elif tok == "." and len(output_tokens) > 0 and output_tokens[-1].isdigit() and i < len(input_tokens) - 1 and input_tokens[i + 1].isdigit():
# 3 . 03 -> $ 3.03
output_tokens[-1] += '.'+input_tokens[i + 1]
i += 2
elif tok == "." and len(output_tokens) > 0 and len(output_tokens[-1]) == 1 and output_tokens[-1].isupper() and i < len(input_tokens) - 2 and len(input_tokens[i + 1]) == 1 and input_tokens[i + 1].isupper() and input_tokens[i + 2] == '.':
# U . N . -> U.N.
k = i+3
while k+2 < len(input_tokens):
if len(input_tokens[k + 1]) == 1 and input_tokens[k + 1].isupper() and input_tokens[k + 2] == '.':
k += 2
else:
break
output_tokens[-1] += ''.join(input_tokens[i:k])
i += 2
elif tok == "-":
if i < len(input_tokens) - 1 and input_tokens[i + 1] == "-":
output_tokens.append("--")
i += 2
elif i == len(input_tokens) - 1 or i == 0:
output_tokens.append("-")
i += 1
elif output_tokens[-1] not in string.punctuation and input_tokens[i + 1][0] not in string.punctuation:
output_tokens[-1] += "-"
i += 1
flag_prev_dash = True
else:
output_tokens.append("-")
i += 1
elif prev_dash and len(output_tokens) > 0 and tok[0] not in string.punctuation:
output_tokens[-1] += tok
i += 1
else:
output_tokens.append(tok)
i += 1
prev_dash = flag_prev_dash
return " ".join(output_tokens)
def remove_duplicate(l_list, duplicate_rate):
tk_list = [l.lower().split() for l in l_list]
r_list = []
history_set = set()
for i, w_list in enumerate(tk_list):
w_set = set(w_list)
if len(w_set & history_set)/len(w_set) <= duplicate_rate:
r_list.append(l_list[i])
history_set |= w_set
return r_list
def process_eval(eval_fn):
gold_list = []
with open(args.gold, "r", encoding="utf-8") as f_in:
for l in f_in:
line = l.strip().replace(" <S_SEP> ", '\n')
gold_list.append(line)
pred_list = []
with open(eval_fn, "r", encoding="utf-8") as f_in:
for l in f_in:
buf = []
for sentence in l.strip().split("[X_SEP]"):
sentence = fix_tokenization(sentence)
if any(get_f1(sentence, s) > 1.0 for s in buf):
continue
s_len = len(sentence.split())
if s_len <= 4:
continue
buf.append(sentence)
if args.duplicate_rate and args.duplicate_rate < 1:
buf = remove_duplicate(buf, args.duplicate_rate)
if args.trunc_len:
num_left = args.trunc_len
trunc_list = []
for bit in buf:
tk_list = bit.split()
n = min(len(tk_list), num_left)
trunc_list.append(' '.join(tk_list[:n]))
num_left -= n
if num_left <= 0:
break
else:
trunc_list = buf
line = "\n".join(trunc_list)
pred_list.append(line)
with open(eval_fn+'.post', 'w', encoding='utf-8') as f_out:
for l in pred_list:
f_out.write(l.replace('\n', ' [X_SEP] ').strip())
f_out.write('\n')
# rouge scores
if len(pred_list) < len(gold_list):
# evaluate subset
gold_list = gold_list[:len(pred_list)]
assert len(pred_list) == len(gold_list)
if args.perl:
scores = test_rouge(pred_list, gold_list)
else:
scores = evaluator.get_scores(pred_list, [[it] for it in gold_list])
return eval_fn, scores
def main():
if args.perl:
eval_fn_list = list(glob.glob(args.pred))
else:
eval_fn_list = [eval_fn for eval_fn in glob.glob(args.pred) if not(
args.lazy_eval and Path(eval_fn+".rouge").exists())]
eval_fn_list = list(filter(lambda fn: not(fn.endswith(
'.post') or fn.endswith('.rouge')), eval_fn_list))
if args.only_eval_best:
best_epoch_dict = {}
for dir_path in set(Path(fn).parent for fn in eval_fn_list):
fn_save = os.path.join(dir_path, 'save_best.dev')
if Path(fn_save).exists():
with open(fn_save, 'r') as f_in:
__, o_name, __ = f_in.read().strip().split('\n')
epoch = o_name.split('.')[1]
best_epoch_dict[dir_path] = epoch
new_eval_fn_list = []
for fn in eval_fn_list:
dir_path = Path(fn).parent
if dir_path in best_epoch_dict:
if Path(fn).name.split('.')[1] == best_epoch_dict[dir_path]:
new_eval_fn_list.append(fn)
eval_fn_list = new_eval_fn_list
logger.info("***** Evaluation: %s *****", ','.join(eval_fn_list))
num_pool = min(args.processes, len(eval_fn_list))
p = Pool(num_pool)
r_list = p.imap_unordered(process_eval, eval_fn_list)
r_list = sorted([(fn, scores)
for fn, scores in r_list], key=lambda x: x[0])
rg2_dict = {}
for fn, scores in r_list:
print(fn)
if args.perl:
print(rouge_results_to_str(scores))
else:
rg2_dict[fn] = scores['rouge-2']['f']
print(
"ROUGE-1: {}\tROUGE-2: {}\n".format(scores['rouge-1']['f'], scores['rouge-2']['f']))
with open(fn+".rouge", 'w') as f_out:
f_out.write(json.dumps(
{'rg1': scores['rouge-1']['f'], 'rg2': scores['rouge-2']['f']}))
p.close()
p.join()
if args.save_best:
# find best results
group_dict = {}
for k, v in rg2_dict.items():
d_name, o_name = Path(k).parent, Path(k).name
if (d_name not in group_dict) or (v > group_dict[d_name][1]):
group_dict[d_name] = (o_name, v)
# compare and save the best result
for k, v in group_dict.items():
fn = os.path.join(k, 'save_best.'+args.split)
o_name_s, rst_s = v
should_save = True
if Path(fn).exists():
with open(fn, 'r') as f_in:
rst_f = float(f_in.read().strip().split('\n')[-1])
if rst_s <= rst_f:
should_save = False
if should_save:
with open(fn, 'w') as f_out:
f_out.write('{0}\n{1}\n{2}\n'.format(k, o_name_s, rst_s))
if __name__ == "__main__":
main()
| EXA-1-master | exa/models/unilm-master/unilm-v1/src/cnndm/eval.py |
from __future__ import print_function, unicode_literals, division
import os
import re
import codecs
import platform
from subprocess import check_output
from tempfile import mkdtemp
from functools import partial
try:
from configparser import ConfigParser
except ImportError:
from ConfigParser import ConfigParser
from pyrouge.utils import log
from pyrouge.utils.file_utils import verify_dir
REMAP = {"-lrb-": "(", "-rrb-": ")", "-lcb-": "{", "-rcb-": "}",
"-lsb-": "[", "-rsb-": "]", "``": '"', "''": '"'}
def clean(x):
return re.sub(
r"-lrb-|-rrb-|-lcb-|-rcb-|-lsb-|-rsb-|``|''",
lambda m: REMAP.get(m.group()), x)
class DirectoryProcessor:
@staticmethod
def process(input_dir, output_dir, function):
"""
Apply function to all files in input_dir and save the resulting ouput
files in output_dir.
"""
if not os.path.exists(output_dir):
os.makedirs(output_dir)
logger = log.get_global_console_logger()
logger.info("Processing files in {}.".format(input_dir))
input_file_names = os.listdir(input_dir)
for input_file_name in input_file_names:
input_file = os.path.join(input_dir, input_file_name)
with codecs.open(input_file, "r", encoding="UTF-8") as f:
input_string = f.read()
output_string = function(input_string)
output_file = os.path.join(output_dir, input_file_name)
with codecs.open(output_file, "w", encoding="UTF-8") as f:
f.write(clean(output_string.lower()))
logger.info("Saved processed files to {}.".format(output_dir))
class Rouge155(object):
"""
This is a wrapper for the ROUGE 1.5.5 summary evaluation package.
This class is designed to simplify the evaluation process by:
1) Converting summaries into a format ROUGE understands.
2) Generating the ROUGE configuration file automatically based
on filename patterns.
This class can be used within Python like this:
rouge = Rouge155()
rouge.system_dir = 'test/systems'
rouge.model_dir = 'test/models'
# The system filename pattern should contain one group that
# matches the document ID.
rouge.system_filename_pattern = 'SL.P.10.R.11.SL062003-(\d+).html'
# The model filename pattern has '#ID#' as a placeholder for the
# document ID. If there are multiple model summaries, pyrouge
# will use the provided regex to automatically match them with
# the corresponding system summary. Here, [A-Z] matches
# multiple model summaries for a given #ID#.
rouge.model_filename_pattern = 'SL.P.10.R.[A-Z].SL062003-#ID#.html'
rouge_output = rouge.evaluate()
print(rouge_output)
output_dict = rouge.output_to_dict(rouge_ouput)
print(output_dict)
-> {'rouge_1_f_score': 0.95652,
'rouge_1_f_score_cb': 0.95652,
'rouge_1_f_score_ce': 0.95652,
'rouge_1_precision': 0.95652,
[...]
To evaluate multiple systems:
rouge = Rouge155()
rouge.system_dir = '/PATH/TO/systems'
rouge.model_dir = 'PATH/TO/models'
for system_id in ['id1', 'id2', 'id3']:
rouge.system_filename_pattern = \
'SL.P/.10.R.{}.SL062003-(\d+).html'.format(system_id)
rouge.model_filename_pattern = \
'SL.P.10.R.[A-Z].SL062003-#ID#.html'
rouge_output = rouge.evaluate(system_id)
print(rouge_output)
"""
def __init__(self, rouge_dir=None, rouge_args=None, temp_dir=None):
"""
Create a Rouge155 object.
rouge_dir: Directory containing Rouge-1.5.5.pl
rouge_args: Arguments to pass through to ROUGE if you
don't want to use the default pyrouge
arguments.
"""
self.temp_dir = temp_dir
self.log = log.get_global_console_logger()
self.__set_dir_properties()
self._config_file = None
self._settings_file = self.__get_config_path()
self.__set_rouge_dir(rouge_dir)
self.args = self.__clean_rouge_args(rouge_args)
self._system_filename_pattern = None
self._model_filename_pattern = None
def save_home_dir(self):
config = ConfigParser()
section = 'pyrouge settings'
config.add_section(section)
config.set(section, 'home_dir', self._home_dir)
with open(self._settings_file, 'w') as f:
config.write(f)
self.log.info("Set ROUGE home directory to {}.".format(self._home_dir))
@property
def settings_file(self):
"""
Path of the setttings file, which stores the ROUGE home dir.
"""
return self._settings_file
@property
def bin_path(self):
"""
The full path of the ROUGE binary (although it's technically
a script), i.e. rouge_home_dir/ROUGE-1.5.5.pl
"""
if self._bin_path is None:
raise Exception(
"ROUGE path not set. Please set the ROUGE home directory "
"and ensure that ROUGE-1.5.5.pl exists in it.")
return self._bin_path
@property
def system_filename_pattern(self):
"""
The regular expression pattern for matching system summary
filenames. The regex string.
E.g. "SL.P.10.R.11.SL062003-(\d+).html" will match the system
filenames in the SPL2003/system folder of the ROUGE SPL example
in the "sample-test" folder.
Currently, there is no support for multiple systems.
"""
return self._system_filename_pattern
@system_filename_pattern.setter
def system_filename_pattern(self, pattern):
self._system_filename_pattern = pattern
@property
def model_filename_pattern(self):
"""
The regular expression pattern for matching model summary
filenames. The pattern needs to contain the string "#ID#",
which is a placeholder for the document ID.
E.g. "SL.P.10.R.[A-Z].SL062003-#ID#.html" will match the model
filenames in the SPL2003/system folder of the ROUGE SPL
example in the "sample-test" folder.
"#ID#" is a placeholder for the document ID which has been
matched by the "(\d+)" part of the system filename pattern.
The different model summaries for a given document ID are
matched by the "[A-Z]" part.
"""
return self._model_filename_pattern
@model_filename_pattern.setter
def model_filename_pattern(self, pattern):
self._model_filename_pattern = pattern
@property
def config_file(self):
return self._config_file
@config_file.setter
def config_file(self, path):
config_dir, _ = os.path.split(path)
verify_dir(config_dir, "configuration file")
self._config_file = path
def split_sentences(self):
"""
ROUGE requires texts split into sentences. In case the texts
are not already split, this method can be used.
"""
from pyrouge.utils.sentence_splitter import PunktSentenceSplitter
self.log.info("Splitting sentences.")
ss = PunktSentenceSplitter()
def sent_split_to_string(s): return "\n".join(ss.split(s))
process_func = partial(
DirectoryProcessor.process, function=sent_split_to_string)
self.__process_summaries(process_func)
@staticmethod
def convert_summaries_to_rouge_format(input_dir, output_dir):
"""
Convert all files in input_dir into a format ROUGE understands
and saves the files to output_dir. The input files are assumed
to be plain text with one sentence per line.
input_dir: Path of directory containing the input files.
output_dir: Path of directory in which the converted files
will be saved.
"""
DirectoryProcessor.process(
input_dir, output_dir, Rouge155.convert_text_to_rouge_format)
@staticmethod
def convert_text_to_rouge_format(text, title="dummy title"):
"""
Convert a text to a format ROUGE understands. The text is
assumed to contain one sentence per line.
text: The text to convert, containg one sentence per line.
title: Optional title for the text. The title will appear
in the converted file, but doesn't seem to have
any other relevance.
Returns: The converted text as string.
"""
sentences = text.split("\n")
sent_elems = [
"<a name=\"{i}\">[{i}]</a> <a href=\"#{i}\" id={i}>"
"{text}</a>".format(i=i, text=sent)
for i, sent in enumerate(sentences, start=1)]
html = """<html>
<head>
<title>{title}</title>
</head>
<body bgcolor="white">
{elems}
</body>
</html>""".format(title=title, elems="\n".join(sent_elems))
return html
@staticmethod
def write_config_static(system_dir, system_filename_pattern,
model_dir, model_filename_pattern,
config_file_path, system_id=None):
"""
Write the ROUGE configuration file, which is basically a list
of system summary files and their corresponding model summary
files.
pyrouge uses regular expressions to automatically find the
matching model summary files for a given system summary file
(cf. docstrings for system_filename_pattern and
model_filename_pattern).
system_dir: Path of directory containing
system summaries.
system_filename_pattern: Regex string for matching
system summary filenames.
model_dir: Path of directory containing
model summaries.
model_filename_pattern: Regex string for matching model
summary filenames.
config_file_path: Path of the configuration file.
system_id: Optional system ID string which
will appear in the ROUGE output.
"""
system_filenames = [f for f in os.listdir(system_dir)]
system_models_tuples = []
system_filename_pattern = re.compile(system_filename_pattern)
for system_filename in sorted(system_filenames):
match = system_filename_pattern.match(system_filename)
if match:
id = match.groups(0)[0]
model_filenames = [model_filename_pattern.replace('#ID#', id)]
# model_filenames = Rouge155.__get_model_filenames_for_id(
# id, model_dir, model_filename_pattern)
system_models_tuples.append(
(system_filename, sorted(model_filenames)))
if not system_models_tuples:
raise Exception(
"Did not find any files matching the pattern {} "
"in the system summaries directory {}.".format(
system_filename_pattern.pattern, system_dir))
with codecs.open(config_file_path, 'w', encoding='utf-8') as f:
f.write('<ROUGE-EVAL version="1.55">')
for task_id, (system_filename, model_filenames) in enumerate(
system_models_tuples, start=1):
eval_string = Rouge155.__get_eval_string(
task_id, system_id,
system_dir, system_filename,
model_dir, model_filenames)
f.write(eval_string)
f.write("</ROUGE-EVAL>")
def write_config(self, config_file_path=None, system_id=None):
"""
Write the ROUGE configuration file, which is basically a list
of system summary files and their matching model summary files.
This is a non-static version of write_config_file_static().
config_file_path: Path of the configuration file.
system_id: Optional system ID string which will
appear in the ROUGE output.
"""
if not system_id:
system_id = 1
if (not config_file_path) or (not self._config_dir):
self._config_dir = mkdtemp(dir=self.temp_dir)
config_filename = "rouge_conf.xml"
else:
config_dir, config_filename = os.path.split(config_file_path)
verify_dir(config_dir, "configuration file")
self._config_file = os.path.join(self._config_dir, config_filename)
Rouge155.write_config_static(
self._system_dir, self._system_filename_pattern,
self._model_dir, self._model_filename_pattern,
self._config_file, system_id)
self.log.info(
"Written ROUGE configuration to {}".format(self._config_file))
def evaluate(self, system_id=1, rouge_args=None):
"""
Run ROUGE to evaluate the system summaries in system_dir against
the model summaries in model_dir. The summaries are assumed to
be in the one-sentence-per-line HTML format ROUGE understands.
system_id: Optional system ID which will be printed in
ROUGE's output.
Returns: Rouge output as string.
"""
self.write_config(system_id=system_id)
options = self.__get_options(rouge_args)
command = [self._bin_path] + options
self.log.info(
"Running ROUGE with command {}".format(" ".join(command)))
rouge_output = check_output(command).decode("UTF-8")
return rouge_output
def convert_and_evaluate(self, system_id=1,
split_sentences=False, rouge_args=None):
"""
Convert plain text summaries to ROUGE format and run ROUGE to
evaluate the system summaries in system_dir against the model
summaries in model_dir. Optionally split texts into sentences
in case they aren't already.
This is just a convenience method combining
convert_summaries_to_rouge_format() and evaluate().
split_sentences: Optional argument specifying if
sentences should be split.
system_id: Optional system ID which will be printed
in ROUGE's output.
Returns: ROUGE output as string.
"""
if split_sentences:
self.split_sentences()
self.__write_summaries()
rouge_output = self.evaluate(system_id, rouge_args)
return rouge_output
def output_to_dict(self, output):
"""
Convert the ROUGE output into python dictionary for further
processing.
"""
# 0 ROUGE-1 Average_R: 0.02632 (95%-conf.int. 0.02632 - 0.02632)
pattern = re.compile(
r"(\d+) (ROUGE-\S+) (Average_\w): (\d.\d+) "
r"\(95%-conf.int. (\d.\d+) - (\d.\d+)\)")
results = {}
for line in output.split("\n"):
match = pattern.match(line)
if match:
sys_id, rouge_type, measure, result, conf_begin, conf_end = \
match.groups()
measure = {
'Average_R': 'recall',
'Average_P': 'precision',
'Average_F': 'f_score'
}[measure]
rouge_type = rouge_type.lower().replace("-", '_')
key = "{}_{}".format(rouge_type, measure)
results[key] = float(result)
results["{}_cb".format(key)] = float(conf_begin)
results["{}_ce".format(key)] = float(conf_end)
return results
###################################################################
# Private methods
def __set_rouge_dir(self, home_dir=None):
"""
Verfify presence of ROUGE-1.5.5.pl and data folder, and set
those paths.
"""
if not home_dir:
self._home_dir = self.__get_rouge_home_dir_from_settings()
else:
self._home_dir = home_dir
self.save_home_dir()
self._bin_path = os.path.join(self._home_dir, 'ROUGE-1.5.5.pl')
self.data_dir = os.path.join(self._home_dir, 'data')
if not os.path.exists(self._bin_path):
raise Exception(
"ROUGE binary not found at {}. Please set the "
"correct path by running pyrouge_set_rouge_path "
"/path/to/rouge/home.".format(self._bin_path))
def __get_rouge_home_dir_from_settings(self):
config = ConfigParser()
with open(self._settings_file) as f:
if hasattr(config, "read_file"):
config.read_file(f)
else:
# use deprecated python 2.x method
config.readfp(f)
rouge_home_dir = config.get('pyrouge settings', 'home_dir')
return rouge_home_dir
@staticmethod
def __get_eval_string(
task_id, system_id,
system_dir, system_filename,
model_dir, model_filenames):
"""
ROUGE can evaluate several system summaries for a given text
against several model summaries, i.e. there is an m-to-n
relation between system and model summaries. The system
summaries are listed in the <PEERS> tag and the model summaries
in the <MODELS> tag. pyrouge currently only supports one system
summary per text, i.e. it assumes a 1-to-n relation between
system and model summaries.
"""
peer_elems = "<P ID=\"{id}\">{name}</P>".format(
id=system_id, name=system_filename)
model_elems = ["<M ID=\"{id}\">{name}</M>".format(
id=chr(65 + i), name=name)
for i, name in enumerate(model_filenames)]
model_elems = "\n\t\t\t".join(model_elems)
eval_string = """
<EVAL ID="{task_id}">
<MODEL-ROOT>{model_root}</MODEL-ROOT>
<PEER-ROOT>{peer_root}</PEER-ROOT>
<INPUT-FORMAT TYPE="SEE">
</INPUT-FORMAT>
<PEERS>
{peer_elems}
</PEERS>
<MODELS>
{model_elems}
</MODELS>
</EVAL>
""".format(
task_id=task_id,
model_root=model_dir, model_elems=model_elems,
peer_root=system_dir, peer_elems=peer_elems)
return eval_string
def __process_summaries(self, process_func):
"""
Helper method that applies process_func to the files in the
system and model folders and saves the resulting files to new
system and model folders.
"""
temp_dir = mkdtemp(dir=self.temp_dir)
new_system_dir = os.path.join(temp_dir, "system")
os.mkdir(new_system_dir)
new_model_dir = os.path.join(temp_dir, "model")
os.mkdir(new_model_dir)
self.log.info(
"Processing summaries. Saving system files to {} and "
"model files to {}.".format(new_system_dir, new_model_dir))
process_func(self._system_dir, new_system_dir)
process_func(self._model_dir, new_model_dir)
self._system_dir = new_system_dir
self._model_dir = new_model_dir
def __write_summaries(self):
self.log.info("Writing summaries.")
self.__process_summaries(self.convert_summaries_to_rouge_format)
@staticmethod
def __get_model_filenames_for_id(id, model_dir, model_filenames_pattern):
pattern = re.compile(model_filenames_pattern.replace('#ID#', id))
model_filenames = [
f for f in os.listdir(model_dir) if pattern.match(f)]
if not model_filenames:
raise Exception(
"Could not find any model summaries for the system"
" summary with ID {}. Specified model filename pattern was: "
"{}".format(id, model_filenames_pattern))
return model_filenames
def __get_options(self, rouge_args=None):
"""
Get supplied command line arguments for ROUGE or use default
ones.
"""
if self.args:
options = self.args.split()
elif rouge_args:
options = rouge_args.split()
else:
options = [
'-e', self._data_dir,
'-c', 95,
# '-2',
# '-1',
# '-U',
'-m',
# '-v',
'-r', 1000,
'-n', 2,
# '-w', 1.2,
'-a',
]
options = list(map(str, options))
options = self.__add_config_option(options)
return options
def __create_dir_property(self, dir_name, docstring):
"""
Generate getter and setter for a directory property.
"""
property_name = "{}_dir".format(dir_name)
private_name = "_" + property_name
setattr(self, private_name, None)
def fget(self):
return getattr(self, private_name)
def fset(self, path):
verify_dir(path, dir_name)
setattr(self, private_name, path)
p = property(fget=fget, fset=fset, doc=docstring)
setattr(self.__class__, property_name, p)
def __set_dir_properties(self):
"""
Automatically generate the properties for directories.
"""
directories = [
("home", "The ROUGE home directory."),
("data", "The path of the ROUGE 'data' directory."),
("system", "Path of the directory containing system summaries."),
("model", "Path of the directory containing model summaries."),
]
for (dirname, docstring) in directories:
self.__create_dir_property(dirname, docstring)
def __clean_rouge_args(self, rouge_args):
"""
Remove enclosing quotation marks, if any.
"""
if not rouge_args:
return
quot_mark_pattern = re.compile('"(.+)"')
match = quot_mark_pattern.match(rouge_args)
if match:
cleaned_args = match.group(1)
return cleaned_args
else:
return rouge_args
def __add_config_option(self, options):
return options + [self._config_file]
def __get_config_path(self):
if platform.system() == "Windows":
parent_dir = os.getenv("APPDATA")
config_dir_name = "pyrouge"
elif os.name == "posix":
parent_dir = os.path.expanduser("~")
config_dir_name = ".pyrouge"
else:
parent_dir = os.path.dirname(__file__)
config_dir_name = ""
config_dir = os.path.join(parent_dir, config_dir_name)
if not os.path.exists(config_dir):
os.makedirs(config_dir)
return os.path.join(config_dir, 'settings.ini')
if __name__ == "__main__":
import argparse
from utils.argparsers import rouge_path_parser
parser = argparse.ArgumentParser(parents=[rouge_path_parser])
args = parser.parse_args()
rouge = Rouge155(args.rouge_home)
rouge.save_home_dir()
| EXA-1-master | exa/models/unilm-master/unilm-v1/src/cnndm/bs_pyrouge.py |
from random import randint, shuffle
from random import random as rand
import numpy as np
import torch
import torch.utils.data
def get_random_word(vocab_words):
i = randint(0, len(vocab_words)-1)
return vocab_words[i]
def batch_list_to_batch_tensors(batch):
batch_tensors = []
for x in zip(*batch):
if x[0] is None:
batch_tensors.append(None)
elif isinstance(x[0], torch.Tensor):
batch_tensors.append(torch.stack(x))
else:
batch_tensors.append(torch.tensor(x, dtype=torch.long))
return batch_tensors
class TrieNode(object):
def __init__(self):
self.children = {}
self.is_leaf = False
def try_get_children(self, key):
if key not in self.children:
self.children[key] = TrieNode()
return self.children[key]
class TrieTree(object):
def __init__(self):
self.root = TrieNode()
def add(self, tokens):
r = self.root
for token in tokens:
r = r.try_get_children(token)
r.is_leaf = True
def get_pieces(self, tokens, offset):
pieces = []
r = self.root
token_id = 0
last_valid = 0
match_count = 0
while last_valid < len(tokens):
if token_id < len(tokens) and tokens[token_id] in r.children:
r = r.children[tokens[token_id]]
match_count += 1
if r.is_leaf:
last_valid = token_id
token_id += 1
else:
pieces.append(
list(range(token_id - match_count + offset, last_valid + 1 + offset)))
last_valid += 1
token_id = last_valid
r = self.root
match_count = 0
return pieces
def _get_word_split_index(tokens, st, end):
split_idx = []
i = st
while i < end:
if (not tokens[i].startswith('##')) or (i == st):
split_idx.append(i)
i += 1
split_idx.append(end)
return split_idx
def _expand_whole_word(tokens, st, end):
new_st, new_end = st, end
while (new_st >= 0) and tokens[new_st].startswith('##'):
new_st -= 1
while (new_end < len(tokens)) and tokens[new_end].startswith('##'):
new_end += 1
return new_st, new_end
class Pipeline():
""" Pre-process Pipeline Class : callable """
def __init__(self):
super().__init__()
self.skipgram_prb = None
self.skipgram_size = None
self.pre_whole_word = None
self.mask_whole_word = None
self.word_subsample_prb = None
self.sp_prob = None
self.pieces_dir = None
self.vocab_words = None
self.pieces_threshold = 10
self.trie = None
self.call_count = 0
self.offline_mode = False
self.skipgram_size_geo_list = None
self.span_same_mask = False
def init_skipgram_size_geo_list(self, p):
if p > 0:
g_list = []
t = p
for _ in range(self.skipgram_size):
g_list.append(t)
t *= (1-p)
s = sum(g_list)
self.skipgram_size_geo_list = [x/s for x in g_list]
def create_trie_tree(self, pieces_dir):
print("sp_prob = {}".format(self.sp_prob))
print("pieces_threshold = {}".format(self.pieces_threshold))
if pieces_dir is not None:
self.trie = TrieTree()
pieces_files = [pieces_dir]
for token in self.vocab_words:
self.trie.add([token])
for piece_file in pieces_files:
print("Load piece file: {}".format(piece_file))
with open(piece_file, mode='r', encoding='utf-8') as reader:
for line in reader:
parts = line.split('\t')
if int(parts[-1]) < self.pieces_threshold:
pass
tokens = []
for part in parts[:-1]:
tokens.extend(part.split(' '))
self.trie.add(tokens)
def __call__(self, instance):
raise NotImplementedError
# pre_whole_word: tokenize to words before masking
# post whole word (--mask_whole_word): expand to words after masking
def get_masked_pos(self, tokens, n_pred, add_skipgram=False, mask_segment=None, protect_range=None):
if self.pieces_dir is not None and self.trie is None:
self.create_trie_tree(self.pieces_dir)
if self.pre_whole_word:
if self.trie is not None:
pieces = self.trie.get_pieces(tokens, 0)
new_pieces = []
for piece in pieces:
if len(new_pieces) > 0 and tokens[piece[0]].startswith("##"):
new_pieces[-1].extend(piece)
else:
new_pieces.append(piece)
del pieces
pieces = new_pieces
pre_word_split = list(_[-1] for _ in pieces)
pre_word_split.append(len(tokens))
else:
pre_word_split = _get_word_split_index(tokens, 0, len(tokens))
index2piece = None
else:
pre_word_split = list(range(0, len(tokens)+1))
if self.trie is not None:
pieces = self.trie.get_pieces(tokens, 0)
index2piece = {}
for piece in pieces:
for index in piece:
index2piece[index] = (piece[0], piece[-1])
else:
index2piece = None
span_list = list(zip(pre_word_split[:-1], pre_word_split[1:]))
# candidate positions of masked tokens
cand_pos = []
special_pos = set()
if mask_segment:
for i, sp in enumerate(span_list):
sp_st, sp_end = sp
if (sp_end-sp_st == 1) and tokens[sp_st].endswith('SEP]'):
segment_index = i
break
for i, sp in enumerate(span_list):
sp_st, sp_end = sp
if (sp_end-sp_st == 1) and (tokens[sp_st].endswith('CLS]') or tokens[sp_st].endswith('SEP]')):
special_pos.add(i)
else:
if mask_segment:
if ((i < segment_index) and ('a' in mask_segment)) or ((i > segment_index) and ('b' in mask_segment)):
cand_pos.append(i)
else:
cand_pos.append(i)
shuffle(cand_pos)
masked_pos = set()
for i_span in cand_pos:
if len(masked_pos) >= n_pred:
break
cand_st, cand_end = span_list[i_span]
if len(masked_pos)+cand_end-cand_st > n_pred:
continue
if any(p in masked_pos for p in range(cand_st, cand_end)):
continue
n_span = 1
if index2piece is not None:
p_start, p_end = index2piece[i_span]
if p_start < p_end and (rand() < self.sp_prob):
# n_span = p_end - p_start + 1
st_span, end_span = p_start, p_end + 1
else:
st_span, end_span = i_span, i_span + 1
else:
rand_skipgram_size = 0
# ngram
if self.skipgram_size_geo_list:
# sampling ngram size from geometric distribution
rand_skipgram_size = np.random.choice(
len(self.skipgram_size_geo_list), 1, p=self.skipgram_size_geo_list)[0] + 1
else:
if add_skipgram and (self.skipgram_prb > 0) and (self.skipgram_size >= 2) and (rand() < self.skipgram_prb):
rand_skipgram_size = min(
randint(2, self.skipgram_size), len(span_list)-i_span)
for n in range(2, rand_skipgram_size+1):
tail_st, tail_end = span_list[i_span+n-1]
if (tail_end-tail_st == 1) and (tail_st in special_pos):
break
if len(masked_pos)+tail_end-cand_st > n_pred:
break
n_span = n
st_span, end_span = i_span, i_span + n_span
if self.mask_whole_word:
# pre_whole_word==False: position index of span_list is the same as tokens
st_span, end_span = _expand_whole_word(
tokens, st_span, end_span)
# subsampling according to frequency
if self.word_subsample_prb:
skip_pos = set()
if self.pre_whole_word:
w_span_list = span_list[st_span:end_span]
else:
split_idx = _get_word_split_index(
tokens, st_span, end_span)
w_span_list = list(
zip(split_idx[:-1], split_idx[1:]))
for i, sp in enumerate(w_span_list):
sp_st, sp_end = sp
if sp_end-sp_st == 1:
w_cat = tokens[sp_st]
else:
w_cat = ''.join(tokens[sp_st:sp_end])
if (w_cat in self.word_subsample_prb) and (rand() < self.word_subsample_prb[w_cat]):
for k in range(sp_st, sp_end):
skip_pos.add(k)
else:
skip_pos = None
for sp in range(st_span, end_span):
for mp in range(span_list[sp][0], span_list[sp][1]):
if not(skip_pos and (mp in skip_pos)) and (mp not in special_pos) and not(protect_range and (protect_range[0] <= mp < protect_range[1])):
masked_pos.add(mp)
if len(masked_pos) < n_pred:
shuffle(cand_pos)
for pos in cand_pos:
if len(masked_pos) >= n_pred:
break
if pos not in masked_pos:
masked_pos.add(pos)
masked_pos = list(masked_pos)
if len(masked_pos) > n_pred:
# shuffle(masked_pos)
masked_pos = masked_pos[:n_pred]
return masked_pos
def replace_masked_tokens(self, tokens, masked_pos):
if self.span_same_mask:
masked_pos = sorted(list(masked_pos))
prev_pos, prev_rand = None, None
for pos in masked_pos:
if self.span_same_mask and (pos-1 == prev_pos):
t_rand = prev_rand
else:
t_rand = rand()
if t_rand < 0.8: # 80%
tokens[pos] = '[MASK]'
elif t_rand < 0.9: # 10%
tokens[pos] = get_random_word(self.vocab_words)
prev_pos, prev_rand = pos, t_rand
| EXA-1-master | exa/models/unilm-master/unilm-v1/src/biunilm/loader_utils.py |
"""BERT finetuning runner."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import logging
import glob
import argparse
import math
from tqdm import tqdm, trange
import numpy as np
import torch
from torch.utils.data import DataLoader, RandomSampler
from torch.utils.data.distributed import DistributedSampler
import random
import pickle
from pytorch_pretrained_bert.tokenization import BertTokenizer, WhitespaceTokenizer
from pytorch_pretrained_bert.modeling import BertForSeq2SeqDecoder
from pytorch_pretrained_bert.optimization import BertAdam, warmup_linear
from nn.data_parallel import DataParallelImbalance
import biunilm.seq2seq_loader as seq2seq_loader
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
def detokenize(tk_list):
r_list = []
for tk in tk_list:
if tk.startswith('##') and len(r_list) > 0:
r_list[-1] = r_list[-1] + tk[2:]
else:
r_list.append(tk)
return r_list
def ascii_print(text):
text = text.encode("ascii", "ignore")
print(text)
def main():
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--bert_model", default=None, type=str, required=True,
help="Bert pre-trained model selected in the list: bert-base-uncased, "
"bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.")
parser.add_argument("--model_recover_path", default=None, type=str,
help="The file of fine-tuned pretraining model.")
parser.add_argument("--max_seq_length", default=512, type=int,
help="The maximum total input sequence length after WordPiece tokenization. \n"
"Sequences longer than this will be truncated, and sequences shorter \n"
"than this will be padded.")
parser.add_argument('--ffn_type', default=0, type=int,
help="0: default mlp; 1: W((Wx+b) elem_prod x);")
parser.add_argument('--num_qkv', default=0, type=int,
help="Number of different <Q,K,V>.")
parser.add_argument('--seg_emb', action='store_true',
help="Using segment embedding for self-attention.")
# decoding parameters
parser.add_argument('--fp16', action='store_true',
help="Whether to use 16-bit float precision instead of 32-bit")
parser.add_argument('--amp', action='store_true',
help="Whether to use amp for fp16")
parser.add_argument("--input_file", type=str, help="Input file")
parser.add_argument('--subset', type=int, default=0,
help="Decode a subset of the input dataset.")
parser.add_argument("--output_file", type=str, help="output file")
parser.add_argument("--split", type=str, default="",
help="Data split (train/val/test).")
parser.add_argument('--tokenized_input', action='store_true',
help="Whether the input is tokenized.")
parser.add_argument('--seed', type=int, default=123,
help="random seed for initialization")
parser.add_argument("--do_lower_case", action='store_true',
help="Set this flag if you are using an uncased model.")
parser.add_argument('--new_segment_ids', action='store_true',
help="Use new segment ids for bi-uni-directional LM.")
parser.add_argument('--new_pos_ids', action='store_true',
help="Use new position ids for LMs.")
parser.add_argument('--batch_size', type=int, default=4,
help="Batch size for decoding.")
parser.add_argument('--beam_size', type=int, default=1,
help="Beam size for searching")
parser.add_argument('--length_penalty', type=float, default=0,
help="Length penalty for beam search")
parser.add_argument('--forbid_duplicate_ngrams', action='store_true')
parser.add_argument('--forbid_ignore_word', type=str, default=None,
help="Ignore the word during forbid_duplicate_ngrams")
parser.add_argument("--min_len", default=None, type=int)
parser.add_argument('--need_score_traces', action='store_true')
parser.add_argument('--ngram_size', type=int, default=3)
parser.add_argument('--mode', default="s2s",
choices=["s2s", "l2r", "both"])
parser.add_argument('--max_tgt_length', type=int, default=128,
help="maximum length of target sequence")
parser.add_argument('--s2s_special_token', action='store_true',
help="New special tokens ([S2S_SEP]/[S2S_CLS]) of S2S.")
parser.add_argument('--s2s_add_segment', action='store_true',
help="Additional segmental for the encoder of S2S.")
parser.add_argument('--s2s_share_segment', action='store_true',
help="Sharing segment embeddings for the encoder of S2S (used with --s2s_add_segment).")
parser.add_argument('--pos_shift', action='store_true',
help="Using position shift for fine-tuning.")
parser.add_argument('--not_predict_token', type=str, default=None,
help="Do not predict the tokens during decoding.")
args = parser.parse_args()
if args.need_score_traces and args.beam_size <= 1:
raise ValueError(
"Score trace is only available for beam search with beam size > 1.")
if args.max_tgt_length >= args.max_seq_length - 2:
raise ValueError("Maximum tgt length exceeds max seq length - 2.")
device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu")
n_gpu = torch.cuda.device_count()
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
tokenizer = BertTokenizer.from_pretrained(
args.bert_model, do_lower_case=args.do_lower_case)
tokenizer.max_len = args.max_seq_length
pair_num_relation = 0
bi_uni_pipeline = []
bi_uni_pipeline.append(seq2seq_loader.Preprocess4Seq2seqDecoder(list(tokenizer.vocab.keys()), tokenizer.convert_tokens_to_ids, args.max_seq_length, max_tgt_length=args.max_tgt_length, new_segment_ids=args.new_segment_ids,
mode="s2s", num_qkv=args.num_qkv, s2s_special_token=args.s2s_special_token, s2s_add_segment=args.s2s_add_segment, s2s_share_segment=args.s2s_share_segment, pos_shift=args.pos_shift))
amp_handle = None
if args.fp16 and args.amp:
from apex import amp
amp_handle = amp.init(enable_caching=True)
logger.info("enable fp16 with amp")
# Prepare model
cls_num_labels = 2
type_vocab_size = 6 + \
(1 if args.s2s_add_segment else 0) if args.new_segment_ids else 2
mask_word_id, eos_word_ids, sos_word_id = tokenizer.convert_tokens_to_ids(
["[MASK]", "[SEP]", "[S2S_SOS]"])
def _get_token_id_set(s):
r = None
if s:
w_list = []
for w in s.split('|'):
if w.startswith('[') and w.endswith(']'):
w_list.append(w.upper())
else:
w_list.append(w)
r = set(tokenizer.convert_tokens_to_ids(w_list))
return r
forbid_ignore_set = _get_token_id_set(args.forbid_ignore_word)
not_predict_set = _get_token_id_set(args.not_predict_token)
print(args.model_recover_path)
for model_recover_path in glob.glob(args.model_recover_path.strip()):
logger.info("***** Recover model: %s *****", model_recover_path)
model_recover = torch.load(model_recover_path)
model = BertForSeq2SeqDecoder.from_pretrained(args.bert_model, state_dict=model_recover, num_labels=cls_num_labels, num_rel=pair_num_relation, type_vocab_size=type_vocab_size, task_idx=3, mask_word_id=mask_word_id, search_beam_size=args.beam_size,
length_penalty=args.length_penalty, eos_id=eos_word_ids, sos_id=sos_word_id, forbid_duplicate_ngrams=args.forbid_duplicate_ngrams, forbid_ignore_set=forbid_ignore_set, not_predict_set=not_predict_set, ngram_size=args.ngram_size, min_len=args.min_len, mode=args.mode, max_position_embeddings=args.max_seq_length, ffn_type=args.ffn_type, num_qkv=args.num_qkv, seg_emb=args.seg_emb, pos_shift=args.pos_shift)
del model_recover
if args.fp16:
model.half()
model.to(device)
if n_gpu > 1:
model = torch.nn.DataParallel(model)
torch.cuda.empty_cache()
model.eval()
next_i = 0
max_src_length = args.max_seq_length - 2 - args.max_tgt_length
with open(args.input_file, encoding="utf-8") as fin:
input_lines = [x.strip() for x in fin.readlines()]
if args.subset > 0:
logger.info("Decoding subset: %d", args.subset)
input_lines = input_lines[:args.subset]
data_tokenizer = WhitespaceTokenizer() if args.tokenized_input else tokenizer
input_lines = [data_tokenizer.tokenize(
x)[:max_src_length] for x in input_lines]
input_lines = sorted(list(enumerate(input_lines)),
key=lambda x: -len(x[1]))
output_lines = [""] * len(input_lines)
score_trace_list = [None] * len(input_lines)
total_batch = math.ceil(len(input_lines) / args.batch_size)
with tqdm(total=total_batch) as pbar:
while next_i < len(input_lines):
_chunk = input_lines[next_i:next_i + args.batch_size]
buf_id = [x[0] for x in _chunk]
buf = [x[1] for x in _chunk]
next_i += args.batch_size
max_a_len = max([len(x) for x in buf])
instances = []
for instance in [(x, max_a_len) for x in buf]:
for proc in bi_uni_pipeline:
instances.append(proc(instance))
with torch.no_grad():
batch = seq2seq_loader.batch_list_to_batch_tensors(
instances)
batch = [
t.to(device) if t is not None else None for t in batch]
input_ids, token_type_ids, position_ids, input_mask, mask_qkv, task_idx = batch
traces = model(input_ids, token_type_ids,
position_ids, input_mask, task_idx=task_idx, mask_qkv=mask_qkv)
if args.beam_size > 1:
traces = {k: v.tolist() for k, v in traces.items()}
output_ids = traces['pred_seq']
else:
output_ids = traces.tolist()
for i in range(len(buf)):
w_ids = output_ids[i]
output_buf = tokenizer.convert_ids_to_tokens(w_ids)
output_tokens = []
for t in output_buf:
if t in ("[SEP]", "[PAD]"):
break
output_tokens.append(t)
output_sequence = ' '.join(detokenize(output_tokens))
output_lines[buf_id[i]] = output_sequence
if args.need_score_traces:
score_trace_list[buf_id[i]] = {
'scores': traces['scores'][i], 'wids': traces['wids'][i], 'ptrs': traces['ptrs'][i]}
pbar.update(1)
if args.output_file:
fn_out = args.output_file
else:
fn_out = model_recover_path+'.'+args.split
with open(fn_out, "w", encoding="utf-8") as fout:
for l in output_lines:
fout.write(l)
fout.write("\n")
if args.need_score_traces:
with open(fn_out + ".trace.pickle", "wb") as fout_trace:
pickle.dump(
{"version": 0.0, "num_samples": len(input_lines)}, fout_trace)
for x in score_trace_list:
pickle.dump(x, fout_trace)
if __name__ == "__main__":
main()
| EXA-1-master | exa/models/unilm-master/unilm-v1/src/biunilm/decode_seq2seq.py |
EXA-1-master | exa/models/unilm-master/unilm-v1/src/biunilm/__init__.py |
|
from random import randint, shuffle, choice
from random import random as rand
import math
import torch
from biunilm.loader_utils import get_random_word, batch_list_to_batch_tensors, Pipeline
# Input file format :
# 1. One sentence per line. These should ideally be actual sentences,
# not entire paragraphs or arbitrary spans of text. (Because we use
# the sentence boundaries for the "next sentence prediction" task).
# 2. Blank lines between documents. Document boundaries are needed
# so that the "next sentence prediction" task doesn't span between documents.
def truncate_tokens_pair(tokens_a, tokens_b, max_len, max_len_a=0, max_len_b=0, trunc_seg=None, always_truncate_tail=False):
num_truncated_a = [0, 0]
num_truncated_b = [0, 0]
while True:
if len(tokens_a) + len(tokens_b) <= max_len:
break
if (max_len_a > 0) and len(tokens_a) > max_len_a:
trunc_tokens = tokens_a
num_truncated = num_truncated_a
elif (max_len_b > 0) and len(tokens_b) > max_len_b:
trunc_tokens = tokens_b
num_truncated = num_truncated_b
elif trunc_seg:
# truncate the specified segment
if trunc_seg == 'a':
trunc_tokens = tokens_a
num_truncated = num_truncated_a
else:
trunc_tokens = tokens_b
num_truncated = num_truncated_b
else:
# truncate the longer segment
if len(tokens_a) > len(tokens_b):
trunc_tokens = tokens_a
num_truncated = num_truncated_a
else:
trunc_tokens = tokens_b
num_truncated = num_truncated_b
# whether always truncate source sequences
if (not always_truncate_tail) and (rand() < 0.5):
del trunc_tokens[0]
num_truncated[0] += 1
else:
trunc_tokens.pop()
num_truncated[1] += 1
return num_truncated_a, num_truncated_b
class Seq2SeqDataset(torch.utils.data.Dataset):
""" Load sentence pair (sequential or random order) from corpus """
def __init__(self, file_src, file_tgt, batch_size, tokenizer, max_len, file_oracle=None, short_sampling_prob=0.1, sent_reverse_order=False, bi_uni_pipeline=[]):
super().__init__()
self.tokenizer = tokenizer # tokenize function
self.max_len = max_len # maximum length of tokens
self.short_sampling_prob = short_sampling_prob
self.bi_uni_pipeline = bi_uni_pipeline
self.batch_size = batch_size
self.sent_reverse_order = sent_reverse_order
# read the file into memory
self.ex_list = []
if file_oracle is None:
with open(file_src, "r", encoding='utf-8') as f_src, open(file_tgt, "r", encoding='utf-8') as f_tgt:
for src, tgt in zip(f_src, f_tgt):
src_tk = tokenizer.tokenize(src.strip())
tgt_tk = tokenizer.tokenize(tgt.strip())
assert len(src_tk) > 0
assert len(tgt_tk) > 0
self.ex_list.append((src_tk, tgt_tk))
else:
with open(file_src, "r", encoding='utf-8') as f_src, \
open(file_tgt, "r", encoding='utf-8') as f_tgt, \
open(file_oracle, "r", encoding='utf-8') as f_orc:
for src, tgt, orc in zip(f_src, f_tgt, f_orc):
src_tk = tokenizer.tokenize(src.strip())
tgt_tk = tokenizer.tokenize(tgt.strip())
s_st, labl = orc.split('\t')
s_st = [int(x) for x in s_st.split()]
labl = [int(x) for x in labl.split()]
self.ex_list.append((src_tk, tgt_tk, s_st, labl))
print('Load {0} documents'.format(len(self.ex_list)))
def __len__(self):
return len(self.ex_list)
def __getitem__(self, idx):
instance = self.ex_list[idx]
proc = choice(self.bi_uni_pipeline)
instance = proc(instance)
return instance
def __iter__(self): # iterator to load data
for __ in range(math.ceil(len(self.ex_list) / float(self.batch_size))):
batch = []
for __ in range(self.batch_size):
idx = randint(0, len(self.ex_list)-1)
batch.append(self.__getitem__(idx))
# To Tensor
yield batch_list_to_batch_tensors(batch)
class Preprocess4Seq2seq(Pipeline):
""" Pre-processing steps for pretraining transformer """
def __init__(self, max_pred, mask_prob, vocab_words, indexer, max_len=512, skipgram_prb=0, skipgram_size=0, block_mask=False, mask_whole_word=False, new_segment_ids=False, truncate_config={}, mask_source_words=False, mode="s2s", has_oracle=False, num_qkv=0, s2s_special_token=False, s2s_add_segment=False, s2s_share_segment=False, pos_shift=False):
super().__init__()
self.max_len = max_len
self.max_pred = max_pred # max tokens of prediction
self.mask_prob = mask_prob # masking probability
self.vocab_words = vocab_words # vocabulary (sub)words
self.indexer = indexer # function from token to token index
self.max_len = max_len
self._tril_matrix = torch.tril(torch.ones(
(max_len, max_len), dtype=torch.long))
self.skipgram_prb = skipgram_prb
self.skipgram_size = skipgram_size
self.mask_whole_word = mask_whole_word
self.new_segment_ids = new_segment_ids
self.always_truncate_tail = truncate_config.get(
'always_truncate_tail', False)
self.max_len_a = truncate_config.get('max_len_a', None)
self.max_len_b = truncate_config.get('max_len_b', None)
self.trunc_seg = truncate_config.get('trunc_seg', None)
self.task_idx = 3 # relax projection layer for different tasks
self.mask_source_words = mask_source_words
assert mode in ("s2s", "l2r")
self.mode = mode
self.has_oracle = has_oracle
self.num_qkv = num_qkv
self.s2s_special_token = s2s_special_token
self.s2s_add_segment = s2s_add_segment
self.s2s_share_segment = s2s_share_segment
self.pos_shift = pos_shift
def __call__(self, instance):
tokens_a, tokens_b = instance[:2]
if self.pos_shift:
tokens_b = ['[S2S_SOS]'] + tokens_b
# -3 for special tokens [CLS], [SEP], [SEP]
num_truncated_a, _ = truncate_tokens_pair(tokens_a, tokens_b, self.max_len - 3, max_len_a=self.max_len_a,
max_len_b=self.max_len_b, trunc_seg=self.trunc_seg, always_truncate_tail=self.always_truncate_tail)
# Add Special Tokens
if self.s2s_special_token:
tokens = ['[S2S_CLS]'] + tokens_a + \
['[S2S_SEP]'] + tokens_b + ['[SEP]']
else:
tokens = ['[CLS]'] + tokens_a + ['[SEP]'] + tokens_b + ['[SEP]']
if self.new_segment_ids:
if self.mode == "s2s":
if self.s2s_add_segment:
if self.s2s_share_segment:
segment_ids = [0] + [1] * \
(len(tokens_a)+1) + [5]*(len(tokens_b)+1)
else:
segment_ids = [4] + [6] * \
(len(tokens_a)+1) + [5]*(len(tokens_b)+1)
else:
segment_ids = [4] * (len(tokens_a)+2) + \
[5]*(len(tokens_b)+1)
else:
segment_ids = [2] * (len(tokens))
else:
segment_ids = [0]*(len(tokens_a)+2) + [1]*(len(tokens_b)+1)
if self.pos_shift:
n_pred = min(self.max_pred, len(tokens_b))
masked_pos = [len(tokens_a)+2+i for i in range(len(tokens_b))]
masked_weights = [1]*n_pred
masked_ids = self.indexer(tokens_b[1:]+['[SEP]'])
else:
# For masked Language Models
# the number of prediction is sometimes less than max_pred when sequence is short
effective_length = len(tokens_b)
if self.mask_source_words:
effective_length += len(tokens_a)
n_pred = min(self.max_pred, max(
1, int(round(effective_length*self.mask_prob))))
# candidate positions of masked tokens
cand_pos = []
special_pos = set()
for i, tk in enumerate(tokens):
# only mask tokens_b (target sequence)
# we will mask [SEP] as an ending symbol
if (i >= len(tokens_a)+2) and (tk != '[CLS]'):
cand_pos.append(i)
elif self.mask_source_words and (i < len(tokens_a)+2) and (tk != '[CLS]') and (not tk.startswith('[SEP')):
cand_pos.append(i)
else:
special_pos.add(i)
shuffle(cand_pos)
masked_pos = set()
max_cand_pos = max(cand_pos)
for pos in cand_pos:
if len(masked_pos) >= n_pred:
break
if pos in masked_pos:
continue
def _expand_whole_word(st, end):
new_st, new_end = st, end
while (new_st >= 0) and tokens[new_st].startswith('##'):
new_st -= 1
while (new_end < len(tokens)) and tokens[new_end].startswith('##'):
new_end += 1
return new_st, new_end
if (self.skipgram_prb > 0) and (self.skipgram_size >= 2) and (rand() < self.skipgram_prb):
# ngram
cur_skipgram_size = randint(2, self.skipgram_size)
if self.mask_whole_word:
st_pos, end_pos = _expand_whole_word(
pos, pos + cur_skipgram_size)
else:
st_pos, end_pos = pos, pos + cur_skipgram_size
else:
# directly mask
if self.mask_whole_word:
st_pos, end_pos = _expand_whole_word(pos, pos + 1)
else:
st_pos, end_pos = pos, pos + 1
for mp in range(st_pos, end_pos):
if (0 < mp <= max_cand_pos) and (mp not in special_pos):
masked_pos.add(mp)
else:
break
masked_pos = list(masked_pos)
if len(masked_pos) > n_pred:
shuffle(masked_pos)
masked_pos = masked_pos[:n_pred]
masked_tokens = [tokens[pos] for pos in masked_pos]
for pos in masked_pos:
if rand() < 0.8: # 80%
tokens[pos] = '[MASK]'
elif rand() < 0.5: # 10%
tokens[pos] = get_random_word(self.vocab_words)
# when n_pred < max_pred, we only calculate loss within n_pred
masked_weights = [1]*len(masked_tokens)
# Token Indexing
masked_ids = self.indexer(masked_tokens)
# Token Indexing
input_ids = self.indexer(tokens)
# Zero Padding
n_pad = self.max_len - len(input_ids)
input_ids.extend([0]*n_pad)
segment_ids.extend([0]*n_pad)
if self.num_qkv > 1:
mask_qkv = [0]*(len(tokens_a)+2) + [1] * (len(tokens_b)+1)
mask_qkv.extend([0]*n_pad)
else:
mask_qkv = None
input_mask = torch.zeros(self.max_len, self.max_len, dtype=torch.long)
if self.mode == "s2s":
input_mask[:, :len(tokens_a)+2].fill_(1)
second_st, second_end = len(
tokens_a)+2, len(tokens_a)+len(tokens_b)+3
input_mask[second_st:second_end, second_st:second_end].copy_(
self._tril_matrix[:second_end-second_st, :second_end-second_st])
else:
st, end = 0, len(tokens_a) + len(tokens_b) + 3
input_mask[st:end, st:end].copy_(self._tril_matrix[:end, :end])
# Zero Padding for masked target
if self.max_pred > n_pred:
n_pad = self.max_pred - n_pred
if masked_ids is not None:
masked_ids.extend([0]*n_pad)
if masked_pos is not None:
masked_pos.extend([0]*n_pad)
if masked_weights is not None:
masked_weights.extend([0]*n_pad)
oracle_pos = None
oracle_weights = None
oracle_labels = None
if self.has_oracle:
s_st, labls = instance[2:]
oracle_pos = []
oracle_labels = []
for st, lb in zip(s_st, labls):
st = st - num_truncated_a[0]
if st > 0 and st < len(tokens_a):
oracle_pos.append(st)
oracle_labels.append(lb)
oracle_pos = oracle_pos[:20]
oracle_labels = oracle_labels[:20]
oracle_weights = [1] * len(oracle_pos)
if len(oracle_pos) < 20:
x_pad = 20 - len(oracle_pos)
oracle_pos.extend([0] * x_pad)
oracle_labels.extend([0] * x_pad)
oracle_weights.extend([0] * x_pad)
return (input_ids, segment_ids, input_mask, mask_qkv, masked_ids,
masked_pos, masked_weights, -1, self.task_idx,
oracle_pos, oracle_weights, oracle_labels)
return (input_ids, segment_ids, input_mask, mask_qkv, masked_ids, masked_pos, masked_weights, -1, self.task_idx)
class Preprocess4Seq2seqDecoder(Pipeline):
""" Pre-processing steps for pretraining transformer """
def __init__(self, vocab_words, indexer, max_len=512, max_tgt_length=128, new_segment_ids=False, mode="s2s", num_qkv=0, s2s_special_token=False, s2s_add_segment=False, s2s_share_segment=False, pos_shift=False):
super().__init__()
self.max_len = max_len
self.vocab_words = vocab_words # vocabulary (sub)words
self.indexer = indexer # function from token to token index
self.max_len = max_len
self._tril_matrix = torch.tril(torch.ones(
(max_len, max_len), dtype=torch.long))
self.new_segment_ids = new_segment_ids
self.task_idx = 3 # relax projection layer for different tasks
assert mode in ("s2s", "l2r")
self.mode = mode
self.max_tgt_length = max_tgt_length
self.num_qkv = num_qkv
self.s2s_special_token = s2s_special_token
self.s2s_add_segment = s2s_add_segment
self.s2s_share_segment = s2s_share_segment
self.pos_shift = pos_shift
def __call__(self, instance):
tokens_a, max_a_len = instance
# Add Special Tokens
if self.s2s_special_token:
padded_tokens_a = ['[S2S_CLS]'] + tokens_a + ['[S2S_SEP]']
else:
padded_tokens_a = ['[CLS]'] + tokens_a + ['[SEP]']
assert len(padded_tokens_a) <= max_a_len + 2
if max_a_len + 2 > len(padded_tokens_a):
padded_tokens_a += ['[PAD]'] * \
(max_a_len + 2 - len(padded_tokens_a))
assert len(padded_tokens_a) == max_a_len + 2
max_len_in_batch = min(self.max_tgt_length +
max_a_len + 2, self.max_len)
tokens = padded_tokens_a
if self.new_segment_ids:
if self.mode == "s2s":
_enc_seg1 = 0 if self.s2s_share_segment else 4
if self.s2s_add_segment:
if self.s2s_share_segment:
segment_ids = [
0] + [1]*(len(padded_tokens_a)-1) + [5]*(max_len_in_batch - len(padded_tokens_a))
else:
segment_ids = [
4] + [6]*(len(padded_tokens_a)-1) + [5]*(max_len_in_batch - len(padded_tokens_a))
else:
segment_ids = [4]*(len(padded_tokens_a)) + \
[5]*(max_len_in_batch - len(padded_tokens_a))
else:
segment_ids = [2]*max_len_in_batch
else:
segment_ids = [0]*(len(padded_tokens_a)) \
+ [1]*(max_len_in_batch - len(padded_tokens_a))
if self.num_qkv > 1:
mask_qkv = [0]*(len(padded_tokens_a)) + [1] * \
(max_len_in_batch - len(padded_tokens_a))
else:
mask_qkv = None
position_ids = []
for i in range(len(tokens_a) + 2):
position_ids.append(i)
for i in range(len(tokens_a) + 2, max_a_len + 2):
position_ids.append(0)
for i in range(max_a_len + 2, max_len_in_batch):
position_ids.append(i - (max_a_len + 2) + len(tokens_a) + 2)
# Token Indexing
input_ids = self.indexer(tokens)
# Zero Padding
input_mask = torch.zeros(
max_len_in_batch, max_len_in_batch, dtype=torch.long)
if self.mode == "s2s":
input_mask[:, :len(tokens_a)+2].fill_(1)
else:
st, end = 0, len(tokens_a) + 2
input_mask[st:end, st:end].copy_(
self._tril_matrix[:end, :end])
input_mask[end:, :len(tokens_a)+2].fill_(1)
second_st, second_end = len(padded_tokens_a), max_len_in_batch
input_mask[second_st:second_end, second_st:second_end].copy_(
self._tril_matrix[:second_end-second_st, :second_end-second_st])
return (input_ids, segment_ids, position_ids, input_mask, mask_qkv, self.task_idx)
| EXA-1-master | exa/models/unilm-master/unilm-v1/src/biunilm/seq2seq_loader.py |
import pickle
import math
import argparse
import glob
from pathlib import Path
from tqdm import tqdm
import unicodedata
from pytorch_pretrained_bert.tokenization import BertTokenizer
def read_traces_from_file(file_name):
with open(file_name, "rb") as fin:
meta = pickle.load(fin)
num_samples = meta["num_samples"]
samples = []
for _ in range(num_samples):
samples.append(pickle.load(fin))
return samples
def get_best_sequence(sample, eos_id, pad_id, length_penalty=None, alpha=None, expect=None, min_len=None):
# if not any((length_penalty, alpha, expect, min_len)):
# raise ValueError(
# "You can only specify length penalty or alpha, but not both.")
scores = sample["scores"]
wids_list = sample["wids"]
ptrs = sample["ptrs"]
last_frame_id = len(scores) - 1
for i, wids in enumerate(wids_list):
if all(wid in (eos_id, pad_id) for wid in wids):
last_frame_id = i
break
while all(wid == pad_id for wid in wids_list[last_frame_id]):
last_frame_id -= 1
max_score = -math.inf
frame_id = -1
pos_in_frame = -1
for fid in range(last_frame_id + 1):
for i, wid in enumerate(wids_list[fid]):
if fid <= last_frame_id and scores[fid][i] >= 0:
# skip paddings
continue
if (wid in (eos_id, pad_id)) or fid == last_frame_id:
s = scores[fid][i]
if length_penalty:
if expect:
s -= length_penalty * math.fabs(fid+1 - expect)
else:
s += length_penalty * (fid + 1)
elif alpha:
s = s / math.pow((5 + fid + 1) / 6.0, alpha)
if s > max_score:
# if (frame_id != -1) and min_len and (fid+1 < min_len):
# continue
max_score = s
frame_id = fid
pos_in_frame = i
if frame_id == -1:
seq = []
else:
seq = [wids_list[frame_id][pos_in_frame]]
for fid in range(frame_id, 0, -1):
pos_in_frame = ptrs[fid][pos_in_frame]
seq.append(wids_list[fid - 1][pos_in_frame])
seq.reverse()
return seq
def detokenize(tk_list):
r_list = []
for tk in tk_list:
if tk.startswith('##') and len(r_list) > 0:
r_list[-1] = r_list[-1] + tk[2:]
else:
r_list.append(tk)
return r_list
def simple_postprocess(tk_list):
# truncate duplicate punctuations
while tk_list and len(tk_list) > 4 and len(tk_list[-1]) == 1 and unicodedata.category(tk_list[-1]).startswith('P') and all(it == tk_list[-1] for it in tk_list[-4:]):
tk_list = tk_list[:-3]
return tk_list
def main(args):
tokenizer = BertTokenizer.from_pretrained(
args.bert_model, do_lower_case=args.do_lower_case)
eos_id, pad_id = set(tokenizer.convert_tokens_to_ids(["[SEP]", "[PAD]"]))
for input_file in tqdm(glob.glob(args.input)):
if not Path(input_file+'.trace.pickle').exists():
continue
print(input_file)
samples = read_traces_from_file(input_file+'.trace.pickle')
results = []
for s in samples:
word_ids = get_best_sequence(s, eos_id, pad_id, alpha=args.alpha,
length_penalty=args.length_penalty, expect=args.expect, min_len=args.min_len)
tokens = tokenizer.convert_ids_to_tokens(word_ids)
buf = []
for t in tokens:
if t in ("[SEP]", "[PAD]"):
break
else:
buf.append(t)
results.append(" ".join(simple_postprocess(detokenize(buf))))
fn_out = input_file+'.'
if args.length_penalty:
fn_out += 'lenp'+str(args.length_penalty)
if args.expect:
fn_out += 'exp'+str(args.expect)
if args.alpha:
fn_out += 'alp'+str(args.alpha)
if args.min_len:
fn_out += 'minl'+str(args.min_len)
with open(fn_out, "w", encoding="utf-8") as fout:
for line in results:
fout.write(line)
fout.write("\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--input", type=str, help="Input file.")
parser.add_argument("--bert_model", default=None, type=str, required=True,
help="Bert pre-trained model selected in the list: bert-base-uncased, "
"bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.")
parser.add_argument("--alpha", default=None, type=float)
parser.add_argument("--length_penalty", default=None, type=float)
parser.add_argument("--expect", default=None, type=float,
help="Expectation of target length.")
parser.add_argument("--min_len", default=None, type=int)
parser.add_argument("--do_lower_case", action='store_true',
help="Set this flag if you are using an uncased model.")
args = parser.parse_args()
main(args)
| EXA-1-master | exa/models/unilm-master/unilm-v1/src/biunilm/gen_seq_from_trace.py |
"""BERT finetuning runner."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import logging
import glob
import math
import json
import argparse
import random
from pathlib import Path
from tqdm import tqdm, trange
import numpy as np
import torch
from torch.utils.data import RandomSampler
from torch.utils.data.distributed import DistributedSampler
from pytorch_pretrained_bert.tokenization import BertTokenizer, WhitespaceTokenizer
from pytorch_pretrained_bert.modeling import BertForPreTrainingLossMask
from pytorch_pretrained_bert.optimization import BertAdam, warmup_linear
from nn.data_parallel import DataParallelImbalance
import biunilm.seq2seq_loader as seq2seq_loader
import torch.distributed as dist
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
def _get_max_epoch_model(output_dir):
fn_model_list = glob.glob(os.path.join(output_dir, "model.*.bin"))
fn_optim_list = glob.glob(os.path.join(output_dir, "optim.*.bin"))
if (not fn_model_list) or (not fn_optim_list):
return None
both_set = set([int(Path(fn).stem.split('.')[-1]) for fn in fn_model_list]
) & set([int(Path(fn).stem.split('.')[-1]) for fn in fn_optim_list])
if both_set:
return max(both_set)
else:
return None
def main():
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--data_dir",
default=None,
type=str,
required=True,
help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
parser.add_argument("--src_file", default=None, type=str,
help="The input data file name.")
parser.add_argument("--tgt_file", default=None, type=str,
help="The output data file name.")
parser.add_argument("--bert_model", default=None, type=str, required=True,
help="Bert pre-trained model selected in the list: bert-base-uncased, "
"bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.")
parser.add_argument("--config_path", default=None, type=str,
help="Bert config file path.")
parser.add_argument("--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the model predictions and checkpoints will be written.")
parser.add_argument("--log_dir",
default='',
type=str,
required=True,
help="The output directory where the log will be written.")
parser.add_argument("--model_recover_path",
default=None,
type=str,
required=True,
help="The file of fine-tuned pretraining model.")
parser.add_argument("--optim_recover_path",
default=None,
type=str,
help="The file of pretraining optimizer.")
# Other parameters
parser.add_argument("--max_seq_length",
default=128,
type=int,
help="The maximum total input sequence length after WordPiece tokenization. \n"
"Sequences longer than this will be truncated, and sequences shorter \n"
"than this will be padded.")
parser.add_argument("--do_train",
action='store_true',
help="Whether to run training.")
parser.add_argument("--do_eval",
action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--do_lower_case",
action='store_true',
help="Set this flag if you are using an uncased model.")
parser.add_argument("--train_batch_size",
default=32,
type=int,
help="Total batch size for training.")
parser.add_argument("--eval_batch_size",
default=64,
type=int,
help="Total batch size for eval.")
parser.add_argument("--learning_rate", default=5e-5, type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--label_smoothing", default=0, type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay",
default=0.01,
type=float,
help="The weight decay rate for Adam.")
parser.add_argument("--finetune_decay",
action='store_true',
help="Weight decay to the original weights.")
parser.add_argument("--num_train_epochs",
default=3.0,
type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--warmup_proportion",
default=0.1,
type=float,
help="Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10%% of training.")
parser.add_argument("--hidden_dropout_prob", default=0.1, type=float,
help="Dropout rate for hidden states.")
parser.add_argument("--attention_probs_dropout_prob", default=0.1, type=float,
help="Dropout rate for attention probabilities.")
parser.add_argument("--no_cuda",
action='store_true',
help="Whether not to use CUDA when available")
parser.add_argument("--local_rank",
type=int,
default=-1,
help="local_rank for distributed training on gpus")
parser.add_argument('--seed',
type=int,
default=42,
help="random seed for initialization")
parser.add_argument('--gradient_accumulation_steps',
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument('--fp16', action='store_true',
help="Whether to use 16-bit float precision instead of 32-bit")
parser.add_argument('--fp32_embedding', action='store_true',
help="Whether to use 32-bit float precision instead of 16-bit for embeddings")
parser.add_argument('--loss_scale', type=float, default=0,
help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
"0 (default value): dynamic loss scaling.\n"
"Positive power of 2: static loss scaling value.\n")
parser.add_argument('--amp', action='store_true',
help="Whether to use amp for fp16")
parser.add_argument('--from_scratch', action='store_true',
help="Initialize parameters with random values (i.e., training from scratch).")
parser.add_argument('--new_segment_ids', action='store_true',
help="Use new segment ids for bi-uni-directional LM.")
parser.add_argument('--new_pos_ids', action='store_true',
help="Use new position ids for LMs.")
parser.add_argument('--tokenized_input', action='store_true',
help="Whether the input is tokenized.")
parser.add_argument('--max_len_a', type=int, default=0,
help="Truncate_config: maximum length of segment A.")
parser.add_argument('--max_len_b', type=int, default=0,
help="Truncate_config: maximum length of segment B.")
parser.add_argument('--trunc_seg', default='',
help="Truncate_config: first truncate segment A/B (option: a, b).")
parser.add_argument('--always_truncate_tail', action='store_true',
help="Truncate_config: Whether we should always truncate tail.")
parser.add_argument("--mask_prob", default=0.15, type=float,
help="Number of prediction is sometimes less than max_pred when sequence is short.")
parser.add_argument("--mask_prob_eos", default=0, type=float,
help="Number of prediction is sometimes less than max_pred when sequence is short.")
parser.add_argument('--max_pred', type=int, default=20,
help="Max tokens of prediction.")
parser.add_argument("--num_workers", default=0, type=int,
help="Number of workers for the data loader.")
parser.add_argument('--mask_source_words', action='store_true',
help="Whether to mask source words for training")
parser.add_argument('--skipgram_prb', type=float, default=0.0,
help='prob of ngram mask')
parser.add_argument('--skipgram_size', type=int, default=1,
help='the max size of ngram mask')
parser.add_argument('--mask_whole_word', action='store_true',
help="Whether masking a whole word.")
parser.add_argument('--do_l2r_training', action='store_true',
help="Whether to do left to right training")
parser.add_argument('--has_sentence_oracle', action='store_true',
help="Whether to have sentence level oracle for training. "
"Only useful for summary generation")
parser.add_argument('--max_position_embeddings', type=int, default=None,
help="max position embeddings")
parser.add_argument('--relax_projection', action='store_true',
help="Use different projection layers for tasks.")
parser.add_argument('--ffn_type', default=0, type=int,
help="0: default mlp; 1: W((Wx+b) elem_prod x);")
parser.add_argument('--num_qkv', default=0, type=int,
help="Number of different <Q,K,V>.")
parser.add_argument('--seg_emb', action='store_true',
help="Using segment embedding for self-attention.")
parser.add_argument('--s2s_special_token', action='store_true',
help="New special tokens ([S2S_SEP]/[S2S_CLS]) of S2S.")
parser.add_argument('--s2s_add_segment', action='store_true',
help="Additional segmental for the encoder of S2S.")
parser.add_argument('--s2s_share_segment', action='store_true',
help="Sharing segment embeddings for the encoder of S2S (used with --s2s_add_segment).")
parser.add_argument('--pos_shift', action='store_true',
help="Using position shift for fine-tuning.")
args = parser.parse_args()
assert Path(args.model_recover_path).exists(
), "--model_recover_path doesn't exist"
args.output_dir = args.output_dir.replace(
'[PT_OUTPUT_DIR]', os.getenv('PT_OUTPUT_DIR', ''))
args.log_dir = args.log_dir.replace(
'[PT_OUTPUT_DIR]', os.getenv('PT_OUTPUT_DIR', ''))
os.makedirs(args.output_dir, exist_ok=True)
os.makedirs(args.log_dir, exist_ok=True)
json.dump(args.__dict__, open(os.path.join(
args.output_dir, 'opt.json'), 'w'), sort_keys=True, indent=2)
if args.local_rank == -1 or args.no_cuda:
device = torch.device(
"cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
n_gpu = torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
n_gpu = 1
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
dist.init_process_group(backend='nccl')
logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
device, n_gpu, bool(args.local_rank != -1), args.fp16))
if args.gradient_accumulation_steps < 1:
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
args.gradient_accumulation_steps))
args.train_batch_size = int(
args.train_batch_size / args.gradient_accumulation_steps)
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
if not args.do_train and not args.do_eval:
raise ValueError(
"At least one of `do_train` or `do_eval` must be True.")
if args.local_rank not in (-1, 0):
# Make sure only the first process in distributed training will download model & vocab
dist.barrier()
tokenizer = BertTokenizer.from_pretrained(
args.bert_model, do_lower_case=args.do_lower_case)
if args.max_position_embeddings:
tokenizer.max_len = args.max_position_embeddings
data_tokenizer = WhitespaceTokenizer() if args.tokenized_input else tokenizer
if args.local_rank == 0:
dist.barrier()
if args.do_train:
print("Loading Train Dataset", args.data_dir)
bi_uni_pipeline = [seq2seq_loader.Preprocess4Seq2seq(args.max_pred, args.mask_prob, list(tokenizer.vocab.keys(
)), tokenizer.convert_tokens_to_ids, args.max_seq_length, new_segment_ids=args.new_segment_ids, truncate_config={'max_len_a': args.max_len_a, 'max_len_b': args.max_len_b, 'trunc_seg': args.trunc_seg, 'always_truncate_tail': args.always_truncate_tail}, mask_source_words=args.mask_source_words, skipgram_prb=args.skipgram_prb, skipgram_size=args.skipgram_size, mask_whole_word=args.mask_whole_word, mode="s2s", has_oracle=args.has_sentence_oracle, num_qkv=args.num_qkv, s2s_special_token=args.s2s_special_token, s2s_add_segment=args.s2s_add_segment, s2s_share_segment=args.s2s_share_segment, pos_shift=args.pos_shift)]
file_oracle = None
if args.has_sentence_oracle:
file_oracle = os.path.join(args.data_dir, 'train.oracle')
fn_src = os.path.join(
args.data_dir, args.src_file if args.src_file else 'train.src')
fn_tgt = os.path.join(
args.data_dir, args.tgt_file if args.tgt_file else 'train.tgt')
train_dataset = seq2seq_loader.Seq2SeqDataset(
fn_src, fn_tgt, args.train_batch_size, data_tokenizer, args.max_seq_length, file_oracle=file_oracle, bi_uni_pipeline=bi_uni_pipeline)
if args.local_rank == -1:
train_sampler = RandomSampler(train_dataset, replacement=False)
_batch_size = args.train_batch_size
else:
train_sampler = DistributedSampler(train_dataset)
_batch_size = args.train_batch_size // dist.get_world_size()
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=_batch_size, sampler=train_sampler,
num_workers=args.num_workers, collate_fn=seq2seq_loader.batch_list_to_batch_tensors, pin_memory=False)
# note: args.train_batch_size has been changed to (/= args.gradient_accumulation_steps)
# t_total = int(math.ceil(len(train_dataset.ex_list) / args.train_batch_size)
t_total = int(len(train_dataloader) * args.num_train_epochs /
args.gradient_accumulation_steps)
amp_handle = None
if args.fp16 and args.amp:
from apex import amp
amp_handle = amp.init(enable_caching=True)
logger.info("enable fp16 with amp")
# Prepare model
recover_step = _get_max_epoch_model(args.output_dir)
cls_num_labels = 2
type_vocab_size = 6 + \
(1 if args.s2s_add_segment else 0) if args.new_segment_ids else 2
num_sentlvl_labels = 2 if args.has_sentence_oracle else 0
relax_projection = 4 if args.relax_projection else 0
if args.local_rank not in (-1, 0):
# Make sure only the first process in distributed training will download model & vocab
dist.barrier()
if (recover_step is None) and (args.model_recover_path is None):
# if _state_dict == {}, the parameters are randomly initialized
# if _state_dict == None, the parameters are initialized with bert-init
_state_dict = {} if args.from_scratch else None
model = BertForPreTrainingLossMask.from_pretrained(
args.bert_model, state_dict=_state_dict, num_labels=cls_num_labels, num_rel=0, type_vocab_size=type_vocab_size, config_path=args.config_path, task_idx=3, num_sentlvl_labels=num_sentlvl_labels, max_position_embeddings=args.max_position_embeddings, label_smoothing=args.label_smoothing, fp32_embedding=args.fp32_embedding, relax_projection=relax_projection, new_pos_ids=args.new_pos_ids, ffn_type=args.ffn_type, hidden_dropout_prob=args.hidden_dropout_prob, attention_probs_dropout_prob=args.attention_probs_dropout_prob, num_qkv=args.num_qkv, seg_emb=args.seg_emb)
global_step = 0
else:
if recover_step:
logger.info("***** Recover model: %d *****", recover_step)
model_recover = torch.load(os.path.join(
args.output_dir, "model.{0}.bin".format(recover_step)), map_location='cpu')
# recover_step == number of epochs
global_step = math.floor(
recover_step * t_total / args.num_train_epochs)
elif args.model_recover_path:
logger.info("***** Recover model: %s *****",
args.model_recover_path)
model_recover = torch.load(
args.model_recover_path, map_location='cpu')
global_step = 0
model = BertForPreTrainingLossMask.from_pretrained(
args.bert_model, state_dict=model_recover, num_labels=cls_num_labels, num_rel=0, type_vocab_size=type_vocab_size, config_path=args.config_path, task_idx=3, num_sentlvl_labels=num_sentlvl_labels, max_position_embeddings=args.max_position_embeddings, label_smoothing=args.label_smoothing, fp32_embedding=args.fp32_embedding, relax_projection=relax_projection, new_pos_ids=args.new_pos_ids, ffn_type=args.ffn_type, hidden_dropout_prob=args.hidden_dropout_prob, attention_probs_dropout_prob=args.attention_probs_dropout_prob, num_qkv=args.num_qkv, seg_emb=args.seg_emb)
if args.local_rank == 0:
dist.barrier()
if args.fp16:
model.half()
if args.fp32_embedding:
model.bert.embeddings.word_embeddings.float()
model.bert.embeddings.position_embeddings.float()
model.bert.embeddings.token_type_embeddings.float()
model.to(device)
if args.local_rank != -1:
try:
from torch.nn.parallel import DistributedDataParallel as DDP
except ImportError:
raise ImportError("DistributedDataParallel")
model = DDP(model, device_ids=[
args.local_rank], output_device=args.local_rank, find_unused_parameters=True)
elif n_gpu > 1:
# model = torch.nn.DataParallel(model)
model = DataParallelImbalance(model)
# Prepare optimizer
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(
nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(
nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
if args.fp16:
try:
# from apex.optimizers import FP16_Optimizer
from pytorch_pretrained_bert.optimization_fp16 import FP16_Optimizer_State
from apex.optimizers import FusedAdam
except ImportError:
raise ImportError(
"Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
optimizer = FusedAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
bias_correction=False,
max_grad_norm=1.0)
if args.loss_scale == 0:
optimizer = FP16_Optimizer_State(
optimizer, dynamic_loss_scale=True)
else:
optimizer = FP16_Optimizer_State(
optimizer, static_loss_scale=args.loss_scale)
else:
optimizer = BertAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=t_total)
if recover_step:
logger.info("***** Recover optimizer: %d *****", recover_step)
optim_recover = torch.load(os.path.join(
args.output_dir, "optim.{0}.bin".format(recover_step)), map_location='cpu')
if hasattr(optim_recover, 'state_dict'):
optim_recover = optim_recover.state_dict()
optimizer.load_state_dict(optim_recover)
if args.loss_scale == 0:
logger.info("***** Recover optimizer: dynamic_loss_scale *****")
optimizer.dynamic_loss_scale = True
logger.info("***** CUDA.empty_cache() *****")
torch.cuda.empty_cache()
if args.do_train:
logger.info("***** Running training *****")
logger.info(" Batch size = %d", args.train_batch_size)
logger.info(" Num steps = %d", t_total)
model.train()
if recover_step:
start_epoch = recover_step+1
else:
start_epoch = 1
for i_epoch in trange(start_epoch, int(args.num_train_epochs)+1, desc="Epoch", disable=args.local_rank not in (-1, 0)):
if args.local_rank != -1:
train_sampler.set_epoch(i_epoch)
iter_bar = tqdm(train_dataloader, desc='Iter (loss=X.XXX)',
disable=args.local_rank not in (-1, 0))
for step, batch in enumerate(iter_bar):
batch = [
t.to(device) if t is not None else None for t in batch]
if args.has_sentence_oracle:
input_ids, segment_ids, input_mask, mask_qkv, lm_label_ids, masked_pos, masked_weights, is_next, task_idx, oracle_pos, oracle_weights, oracle_labels = batch
else:
input_ids, segment_ids, input_mask, mask_qkv, lm_label_ids, masked_pos, masked_weights, is_next, task_idx = batch
oracle_pos, oracle_weights, oracle_labels = None, None, None
loss_tuple = model(input_ids, segment_ids, input_mask, lm_label_ids, is_next, masked_pos=masked_pos, masked_weights=masked_weights, task_idx=task_idx, masked_pos_2=oracle_pos, masked_weights_2=oracle_weights,
masked_labels_2=oracle_labels, mask_qkv=mask_qkv)
masked_lm_loss, next_sentence_loss = loss_tuple
if n_gpu > 1: # mean() to average on multi-gpu.
# loss = loss.mean()
masked_lm_loss = masked_lm_loss.mean()
next_sentence_loss = next_sentence_loss.mean()
loss = masked_lm_loss + next_sentence_loss
# logging for each step (i.e., before normalization by args.gradient_accumulation_steps)
iter_bar.set_description('Iter (loss=%5.3f)' % loss.item())
# ensure that accumlated gradients are normalized
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
optimizer.backward(loss)
if amp_handle:
amp_handle._clear_cache()
else:
loss.backward()
if (step + 1) % args.gradient_accumulation_steps == 0:
lr_this_step = args.learning_rate * \
warmup_linear(global_step/t_total,
args.warmup_proportion)
if args.fp16:
# modify learning rate with special warm up BERT uses
for param_group in optimizer.param_groups:
param_group['lr'] = lr_this_step
optimizer.step()
optimizer.zero_grad()
global_step += 1
# Save a trained model
if (args.local_rank == -1 or torch.distributed.get_rank() == 0):
logger.info(
"** ** * Saving fine-tuned model and optimizer ** ** * ")
model_to_save = model.module if hasattr(
model, 'module') else model # Only save the model it-self
output_model_file = os.path.join(
args.output_dir, "model.{0}.bin".format(i_epoch))
torch.save(model_to_save.state_dict(), output_model_file)
output_optim_file = os.path.join(
args.output_dir, "optim.{0}.bin".format(i_epoch))
torch.save(optimizer.state_dict(), output_optim_file)
logger.info("***** CUDA.empty_cache() *****")
torch.cuda.empty_cache()
if __name__ == "__main__":
main()
| EXA-1-master | exa/models/unilm-master/unilm-v1/src/biunilm/run_seq2seq.py |
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import subprocess
import sys
from setuptools import setup, find_packages, Extension
from setuptools import Extension, find_packages, setup
import site
site.ENABLE_USER_SITE = True
if sys.version_info < (3, 6):
sys.exit("Sorry, Python >= 3.6 is required for fairseq.")
def write_version_py():
with open(os.path.join("fairseq", "version.txt")) as f:
version = f.read().strip()
# append latest commit hash to version string
try:
sha = (
subprocess.check_output(["git", "rev-parse", "HEAD"])
.decode("ascii")
.strip()
)
version += "+" + sha[:7]
except Exception:
pass
# write version info to fairseq/version.py
with open(os.path.join("fairseq", "version.py"), "w") as f:
f.write('__version__ = "{}"\n'.format(version))
return version
version = write_version_py()
with open("README.md") as f:
readme = f.read()
if sys.platform == "darwin":
extra_compile_args = ["-stdlib=libc++", "-O3"]
else:
extra_compile_args = ["-std=c++11", "-O3"]
class NumpyExtension(Extension):
"""Source: https://stackoverflow.com/a/54128391"""
def __init__(self, *args, **kwargs):
self.__include_dirs = []
super().__init__(*args, **kwargs)
@property
def include_dirs(self):
import numpy
return self.__include_dirs + [numpy.get_include()]
@include_dirs.setter
def include_dirs(self, dirs):
self.__include_dirs = dirs
extensions = [
Extension(
"fairseq.libbleu",
sources=[
"fairseq/clib/libbleu/libbleu.cpp",
"fairseq/clib/libbleu/module.cpp",
],
extra_compile_args=extra_compile_args,
),
NumpyExtension(
"fairseq.data.data_utils_fast",
sources=["fairseq/data/data_utils_fast.pyx"],
language="c++",
extra_compile_args=extra_compile_args,
),
NumpyExtension(
"fairseq.data.token_block_utils_fast",
sources=["fairseq/data/token_block_utils_fast.pyx"],
language="c++",
extra_compile_args=extra_compile_args,
),
]
cmdclass = {}
try:
# torch is not available when generating docs
from torch.utils import cpp_extension
extensions.extend(
[
cpp_extension.CppExtension(
"fairseq.libbase",
sources=[
"fairseq/clib/libbase/balanced_assignment.cpp",
],
)
]
)
extensions.extend(
[
cpp_extension.CppExtension(
"fairseq.libnat",
sources=[
"fairseq/clib/libnat/edit_dist.cpp",
],
),
cpp_extension.CppExtension(
"alignment_train_cpu_binding",
sources=[
"examples/operators/alignment_train_cpu.cpp",
],
),
]
)
if "CUDA_HOME" in os.environ:
extensions.extend(
[
cpp_extension.CppExtension(
"fairseq.libnat_cuda",
sources=[
"fairseq/clib/libnat_cuda/edit_dist.cu",
"fairseq/clib/libnat_cuda/binding.cpp",
],
),
cpp_extension.CppExtension(
"fairseq.ngram_repeat_block_cuda",
sources=[
"fairseq/clib/cuda/ngram_repeat_block_cuda.cpp",
"fairseq/clib/cuda/ngram_repeat_block_cuda_kernel.cu",
],
),
cpp_extension.CppExtension(
"alignment_train_cuda_binding",
sources=[
"examples/operators/alignment_train_kernel.cu",
"examples/operators/alignment_train_cuda.cpp",
],
),
]
)
cmdclass["build_ext"] = cpp_extension.BuildExtension
except ImportError:
pass
if "READTHEDOCS" in os.environ:
# don't build extensions when generating docs
extensions = []
if "build_ext" in cmdclass:
del cmdclass["build_ext"]
# use CPU build of PyTorch
dependency_links = [
"https://download.pytorch.org/whl/cpu/torch-1.7.0%2Bcpu-cp36-cp36m-linux_x86_64.whl"
]
else:
dependency_links = []
if "clean" in sys.argv[1:]:
# Source: https://bit.ly/2NLVsgE
print("deleting Cython files...")
import subprocess
subprocess.run(
["rm -f fairseq/*.so fairseq/**/*.so fairseq/*.pyd fairseq/**/*.pyd"],
shell=True,
)
extra_packages = []
if os.path.exists(os.path.join("fairseq", "model_parallel", "megatron", "mpu")):
extra_packages.append("fairseq.model_parallel.megatron.mpu")
def do_setup(package_data):
setup(
name="fairseq",
version=version,
description="Facebook AI Research Sequence-to-Sequence Toolkit",
url="https://github.com/pytorch/fairseq",
classifiers=[
"Intended Audience :: Science/Research",
"License :: OSI Approved :: MIT License",
"Programming Language :: Python :: 3.6",
"Programming Language :: Python :: 3.7",
"Programming Language :: Python :: 3.8",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
],
long_description=readme,
long_description_content_type="text/markdown",
setup_requires=[
"cython",
'numpy<1.20.0; python_version<"3.7"',
'numpy; python_version>="3.7"',
"setuptools>=18.0",
],
install_requires=[
"cffi",
"cython",
'dataclasses; python_version<"3.7"',
"hydra-core>=1.0.7,<1.1",
"omegaconf<2.1",
'numpy<1.20.0; python_version<"3.7"',
'numpy; python_version>="3.7"',
"regex",
"sacrebleu>=1.4.12",
"torch",
"tqdm",
"bitarray",
"torchaudio>=0.8.0",
],
dependency_links=dependency_links,
packages=find_packages(
exclude=[
"examples",
"examples.*",
"scripts",
"scripts.*",
"tests",
"tests.*",
]
)
+ extra_packages,
package_data=package_data,
ext_modules=extensions,
test_suite="tests",
entry_points={
"console_scripts": [
"fairseq-eval-lm = fairseq_cli.eval_lm:cli_main",
"fairseq-generate = fairseq_cli.generate:cli_main",
"fairseq-hydra-train = fairseq_cli.hydra_train:cli_main",
"fairseq-interactive = fairseq_cli.interactive:cli_main",
"fairseq-preprocess = fairseq_cli.preprocess:cli_main",
"fairseq-score = fairseq_cli.score:cli_main",
"fairseq-train = fairseq_cli.train:cli_main",
"fairseq-validate = fairseq_cli.validate:cli_main",
],
},
cmdclass=cmdclass,
zip_safe=False,
)
def get_files(path, relative_to="fairseq"):
all_files = []
for root, _dirs, files in os.walk(path, followlinks=True):
root = os.path.relpath(root, relative_to)
for file in files:
if file.endswith(".pyc"):
continue
all_files.append(os.path.join(root, file))
return all_files
if __name__ == "__main__":
try:
# symlink examples into fairseq package so package_data accepts them
fairseq_examples = os.path.join("fairseq", "examples")
if "build_ext" not in sys.argv[1:] and not os.path.exists(fairseq_examples):
os.symlink(os.path.join("..", "examples"), fairseq_examples)
package_data = {
"fairseq": (
get_files(fairseq_examples) + get_files(os.path.join("fairseq", "config"))
)
}
do_setup(package_data)
finally:
if "build_ext" not in sys.argv[1:] and os.path.islink(fairseq_examples):
os.unlink(fairseq_examples)
| EXA-1-master | exa/models/unilm-master/edgelm/setup.py |
#!/usr/bin/env python3 -u
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
Legacy entry point. Use fairseq_cli/train.py or fairseq-train instead.
"""
from fairseq_cli.train import cli_main
if __name__ == "__main__":
cli_main()
| EXA-1-master | exa/models/unilm-master/edgelm/train.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""isort:skip_file"""
import functools
import importlib
dependencies = [
"dataclasses",
"hydra",
"numpy",
"omegaconf",
"regex",
"requests",
"torch",
]
# Check for required dependencies and raise a RuntimeError if any are missing.
missing_deps = []
for dep in dependencies:
try:
importlib.import_module(dep)
except ImportError:
# Hack: the hydra package is provided under the "hydra-core" name in
# pypi. We don't want the user mistakenly calling `pip install hydra`
# since that will install an unrelated package.
if dep == "hydra":
dep = "hydra-core"
missing_deps.append(dep)
if len(missing_deps) > 0:
raise RuntimeError("Missing dependencies: {}".format(", ".join(missing_deps)))
# only do fairseq imports after checking for dependencies
from fairseq.hub_utils import ( # noqa; noqa
BPEHubInterface as bpe,
TokenizerHubInterface as tokenizer,
)
from fairseq.models import MODEL_REGISTRY # noqa
# torch.hub doesn't build Cython components, so if they are not found then try
# to build them here
try:
import fairseq.data.token_block_utils_fast # noqa
except ImportError:
try:
import cython # noqa
import os
from setuptools import sandbox
sandbox.run_setup(
os.path.join(os.path.dirname(__file__), "setup.py"),
["build_ext", "--inplace"],
)
except ImportError:
print(
"Unable to build Cython components. Please make sure Cython is "
"installed if the torch.hub model you are loading depends on it."
)
# automatically expose models defined in FairseqModel::hub_models
for _model_type, _cls in MODEL_REGISTRY.items():
for model_name in _cls.hub_models().keys():
globals()[model_name] = functools.partial(
_cls.from_pretrained,
model_name,
)
| EXA-1-master | exa/models/unilm-master/edgelm/hubconf.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import io
import os
import string
import tempfile
import unittest
import torch
from fairseq import tokenizer
from fairseq.data import Dictionary
class TestDictionary(unittest.TestCase):
def test_finalize(self):
txt = [
"A B C D",
"B C D",
"C D",
"D",
]
ref_ids1 = list(
map(
torch.IntTensor,
[
[4, 5, 6, 7, 2],
[5, 6, 7, 2],
[6, 7, 2],
[7, 2],
],
)
)
ref_ids2 = list(
map(
torch.IntTensor,
[
[7, 6, 5, 4, 2],
[6, 5, 4, 2],
[5, 4, 2],
[4, 2],
],
)
)
# build dictionary
d = Dictionary()
for line in txt:
d.encode_line(line, add_if_not_exist=True)
def get_ids(dictionary):
ids = []
for line in txt:
ids.append(dictionary.encode_line(line, add_if_not_exist=False))
return ids
def assertMatch(ids, ref_ids):
for toks, ref_toks in zip(ids, ref_ids):
self.assertEqual(toks.size(), ref_toks.size())
self.assertEqual(0, (toks != ref_toks).sum().item())
ids = get_ids(d)
assertMatch(ids, ref_ids1)
# check finalized dictionary
d.finalize()
finalized_ids = get_ids(d)
assertMatch(finalized_ids, ref_ids2)
# write to disk and reload
with tempfile.NamedTemporaryFile(mode="w") as tmp_dict:
d.save(tmp_dict.name)
d = Dictionary.load(tmp_dict.name)
reload_ids = get_ids(d)
assertMatch(reload_ids, ref_ids2)
assertMatch(finalized_ids, reload_ids)
def test_overwrite(self):
# for example, Camembert overwrites <unk>, <s> and </s>
dict_file = io.StringIO(
"<unk> 999 #fairseq:overwrite\n"
"<s> 999 #fairseq:overwrite\n"
"</s> 999 #fairseq:overwrite\n"
", 999\n"
"▁de 999\n"
)
d = Dictionary()
d.add_from_file(dict_file)
self.assertEqual(d.index("<pad>"), 1)
self.assertEqual(d.index("foo"), 3)
self.assertEqual(d.index("<unk>"), 4)
self.assertEqual(d.index("<s>"), 5)
self.assertEqual(d.index("</s>"), 6)
self.assertEqual(d.index(","), 7)
self.assertEqual(d.index("▁de"), 8)
def test_no_overwrite(self):
# for example, Camembert overwrites <unk>, <s> and </s>
dict_file = io.StringIO(
"<unk> 999\n" "<s> 999\n" "</s> 999\n" ", 999\n" "▁de 999\n"
)
d = Dictionary()
with self.assertRaisesRegex(RuntimeError, "Duplicate"):
d.add_from_file(dict_file)
def test_space(self):
# for example, character models treat space as a symbol
dict_file = io.StringIO(" 999\n" "a 999\n" "b 999\n")
d = Dictionary()
d.add_from_file(dict_file)
self.assertEqual(d.index(" "), 4)
self.assertEqual(d.index("a"), 5)
self.assertEqual(d.index("b"), 6)
def test_add_file_to_dict(self):
counts = {}
num_lines = 100
per_line = 10
with tempfile.TemporaryDirectory("test_sampling") as data_dir:
filename = os.path.join(data_dir, "dummy.txt")
with open(filename, "w", encoding="utf-8") as data:
for c in string.ascii_letters:
line = f"{c} " * per_line
for _ in range(num_lines):
data.write(f"{line}\n")
counts[c] = per_line * num_lines
per_line += 5
dict = Dictionary()
Dictionary.add_file_to_dictionary(
filename, dict, tokenizer.tokenize_line, 10
)
dict.finalize(threshold=0, nwords=-1, padding_factor=8)
for c in string.ascii_letters:
count = dict.get_count(dict.index(c))
self.assertEqual(
counts[c], count, f"{c} count is {count} but should be {counts[c]}"
)
if __name__ == "__main__":
unittest.main()
| EXA-1-master | exa/models/unilm-master/edgelm/tests/test_dictionary.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import functools
import unittest
from typing import Any, Dict, Sequence
import fairseq
import fairseq.options
import fairseq.tasks
import torch
from tests.utils import dummy_dictionary
VOCAB_SIZE = 100
@fairseq.tasks.register_task("fake_task")
class FakeTask(fairseq.tasks.LegacyFairseqTask):
def __init__(self, args):
super().__init__(args)
self.dictionary = dummy_dictionary(VOCAB_SIZE - 4)
assert len(self.dictionary) == VOCAB_SIZE
@property
def source_dictionary(self):
return self.dictionary
@property
def target_dictionary(self):
return self.dictionary
@functools.lru_cache()
def get_toy_model(
device: str,
architecture: str = "roberta_enc_dec",
**extra_args: Any,
):
assert device in ("gpu", "cpu")
kwargs = {
"arch": architecture,
# Use characteristics dimensions
"encoder_layers": 3,
"encoder_embed_dim": 12,
"encoder_ffn_embed_dim": 14,
"encoder_attention_heads": 4,
"decoder_layers": 3,
"decoder_embed_dim": 12,
"decoder_ffn_embed_dim": 14,
"decoder_attention_heads": 4,
# Disable dropout so we have comparable tests.
"dropout": 0,
"attention_dropout": 0,
"activation_dropout": 0,
"encoder_layerdrop": 0,
# required args
"tokens_per_sample": 256,
"data": "/tmp/test_roberta",
}
kwargs.update(extra_args)
fake_task = FakeTask(kwargs)
args = fairseq.options.get_args(
task="online_backtranslation",
mono_langs="en,ro",
valid_lang_pairs="en-ro",
**kwargs,
)
torch.manual_seed(0)
model = fake_task.build_model(args)
if device == "gpu":
model.cuda()
return fake_task, model
def mk_sample(
lang: str, device: str, tok: Sequence[int] = None, batch_size: int = 2
) -> Dict[str, Any]:
assert device in ("gpu", "cpu")
if not tok:
if lang == "en":
tok = [10, 11, 12, 13, 14, 15, 2]
else:
tok = [20, 21, 22, 23, 24, 25, 26, 27, 2]
batch = torch.stack([torch.tensor(tok, dtype=torch.long)] * batch_size)
if device == "gpu":
batch = batch.cuda()
sample = {
"net_input": {
"src_tokens": batch,
"prev_output_tokens": batch,
"src_lengths": torch.tensor(
[len(tok)] * batch_size, dtype=torch.long, device=batch.device
),
},
"target": batch[:, 1:],
}
return sample
def cpu_gpu(fn):
def helper(self):
fn(self, "cpu")
if torch.cuda.is_available():
fn(self, "gpu")
return helper
def architectures(fn):
def helper(self):
for arch in ["roberta_enc_dec", "transformer"]:
fn(self, arch)
return helper
class RobertaTest(unittest.TestCase):
def assertTensorEqual(self, t1, t2, delta: float = 1e-6):
self.assertEqual(t1.size(), t2.size(), "size mismatch")
if delta == 0.0:
self.assertEqual(t1.ne(t2).long().sum(), 0)
else:
self.assertEqual(((t2 - t1).abs() > delta).long().sum(), 0)
def assertSharing(self, model, link_groups: Sequence[Sequence[str]]):
ids = {}
for group in link_groups:
group_ids = {name: id(params(model, name)) for name in group}
shared_id = group_ids[group[0]]
self.assertEqual(group_ids, {name: shared_id for name in group})
self.assertNotIn(shared_id, ids)
ids[shared_id] = group
def test_roberta_shared_params(self):
_, roberta = get_toy_model("cpu", architecture="roberta")
self.assertSharing(
roberta,
[
[
"encoder.sentence_encoder.embed_tokens.weight",
"encoder.lm_head.weight",
]
],
)
_, roberta = get_toy_model(
"cpu", architecture="roberta", untie_weights_roberta=True
)
self.assertSharing(
roberta,
[
["encoder.sentence_encoder.embed_tokens.weight"],
["encoder.lm_head.weight"],
],
)
def test_roberta_enc_dec_shared_params(self):
# 3 distinct embeddings
_, enc_dec = get_toy_model("cpu", architecture="roberta_enc_dec")
self.assertSharing(
enc_dec,
[
["encoder.embed_tokens.weight"],
["decoder.embed_tokens.weight"],
["decoder.output_projection.weight"],
],
)
# 2 distinct embeddings, one for encoder, one for decoder
_, enc_dec = get_toy_model(
"cpu", architecture="roberta_enc_dec", share_decoder_input_output_embed=True
)
self.assertSharing(
enc_dec,
[
["encoder.embed_tokens.weight"],
[
"decoder.embed_tokens.weight",
"decoder.output_projection.weight",
],
],
)
# shared embeddings
_, enc_dec = get_toy_model(
"cpu", architecture="roberta_enc_dec", share_all_embeddings=True
)
self.assertSharing(
enc_dec,
[
[
"encoder.embed_tokens.weight",
"decoder.embed_tokens.weight",
"decoder.output_projection.weight",
]
],
)
def test_roberta_max_positions_is_correctly_set(self):
device = "cpu"
task, model = get_toy_model(device)
max_pos = model.max_decoder_positions()
self.assertEqual(max_pos, 256)
self.assertEqual(max_pos, model.decoder.max_positions())
self.assertEqual(max_pos, model.encoder.max_positions())
self.assertEqual(max_pos, model.encoder.embed_positions.max_positions)
sentence = [31 for _ in range(max_pos)]
sample = mk_sample("en", device, sentence, batch_size=1)
self.assertEqual(list(sample["net_input"]["src_lengths"]), [max_pos])
self.assertEqual(len(sample["net_input"]["src_tokens"][0]), max_pos)
x, _ = model.forward(**sample["net_input"])
self.assertEqual(x.shape, (1, max_pos, VOCAB_SIZE))
@cpu_gpu
def test_roberta_forward_backward(self, device: str):
_, model = get_toy_model(device)
sample = mk_sample("en", device)
en_tokens = sample["net_input"]["src_tokens"]
(bs, l) = en_tokens.shape
# Forward
logits, _ = model(**sample["net_input"])
self.assertEqual(logits.shape, (bs, l, VOCAB_SIZE))
# Backward
loss = logits.sum()
loss.backward()
@cpu_gpu
def test_roberta_forward_backward_bs1(self, device: str):
_, model = get_toy_model(device)
sample = mk_sample("en", device, batch_size=1)
o, _ = model.forward(**sample["net_input"])
loss = o.sum()
sample2 = mk_sample("ro", device, batch_size=1)
o, _ = model.forward(**sample2["net_input"])
loss += o.sum()
loss.backward()
@cpu_gpu
def test_roberta_batching(self, device: str):
"""
Checks that the batch of size 2 give twice the same results than the batch of size 1.
"""
_, model = get_toy_model(device)
sample = mk_sample("en", device, batch_size=1)
slen = sample["net_input"]["src_lengths"][0]
sample2 = mk_sample("en", device, batch_size=2)
with torch.no_grad():
z = model.encoder.forward(
sample["net_input"]["src_tokens"], sample["net_input"]["src_lengths"]
)
z = z["encoder_out"][-1]
logits, _ = model.forward(**sample["net_input"])
z2 = model.encoder.forward(
sample2["net_input"]["src_tokens"], sample["net_input"]["src_lengths"]
)
z2 = z2["encoder_out"][-1]
logits2, _ = model.forward(**sample2["net_input"])
self.assertEqual(z.shape, (slen, 1, 12))
self.assertEqual(z2.shape, (slen, 2, 12))
self.assertTensorEqual(logits2[0], logits2[1])
self.assertTensorEqual(logits[0], logits2[0])
@cpu_gpu
def test_roberta_incremental_decoder(self, device: str):
"""
Checks that incremental decoding yields the same result than non incremental one.
"""
task, model = get_toy_model(device)
en_sample = mk_sample("en", device)
en_tokens = en_sample["net_input"]["src_tokens"]
ro_sample = mk_sample("ro", device)
ro_tokens = ro_sample["net_input"]["src_tokens"]
en_enc = model.encoder.forward(
en_tokens, src_lengths=en_sample["net_input"]["src_lengths"]
)
(bs, tgt_len) = ro_tokens.shape
# Decode without incremental state
ro_dec, _ = model.decoder.forward(ro_tokens, encoder_out=en_enc)
self.assertEqual(ro_dec.shape, (bs, tgt_len, VOCAB_SIZE))
self.assertTensorEqual(ro_dec[0], ro_dec[1])
# Decode with incremental state
inc_state = {}
ro_dec_inc = []
for l in range(tgt_len):
ro, _ = model.decoder.forward(
ro_tokens[:, : l + 1], encoder_out=en_enc, incremental_state=inc_state
)
self.assertEqual(ro.shape, (bs, 1, VOCAB_SIZE))
ro_dec_inc.append(ro)
for l in range(tgt_len):
# Intra-batch
self.assertTensorEqual(ro_dec_inc[l][0], ro_dec_inc[l][1])
# Incremental vs non-incremental
self.assertTensorEqual(ro_dec_inc[l][:, 0], ro_dec[:, l])
def params(model, name):
if "." not in name:
return getattr(model, name)
prefix, name = name.split(".", 1)
return params(getattr(model, prefix), name)
| EXA-1-master | exa/models/unilm-master/edgelm/tests/test_roberta.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import torch
from fairseq import utils
class TestUtils(unittest.TestCase):
def test_convert_padding_direction(self):
pad = 1
left_pad = torch.LongTensor(
[
[2, 3, 4, 5, 6],
[1, 7, 8, 9, 10],
[1, 1, 1, 11, 12],
]
)
right_pad = torch.LongTensor(
[
[2, 3, 4, 5, 6],
[7, 8, 9, 10, 1],
[11, 12, 1, 1, 1],
]
)
self.assertAlmostEqual(
right_pad,
utils.convert_padding_direction(
left_pad,
pad,
left_to_right=True,
),
)
self.assertAlmostEqual(
left_pad,
utils.convert_padding_direction(
right_pad,
pad,
right_to_left=True,
),
)
def test_make_positions(self):
pad = 1
left_pad_input = torch.LongTensor(
[
[9, 9, 9, 9, 9],
[1, 9, 9, 9, 9],
[1, 1, 1, 9, 9],
]
)
left_pad_output = torch.LongTensor(
[
[2, 3, 4, 5, 6],
[1, 2, 3, 4, 5],
[1, 1, 1, 2, 3],
]
)
right_pad_input = torch.LongTensor(
[
[9, 9, 9, 9, 9],
[9, 9, 9, 9, 1],
[9, 9, 1, 1, 1],
]
)
right_pad_output = torch.LongTensor(
[
[2, 3, 4, 5, 6],
[2, 3, 4, 5, 1],
[2, 3, 1, 1, 1],
]
)
self.assertAlmostEqual(
left_pad_output,
utils.make_positions(left_pad_input, pad),
)
self.assertAlmostEqual(
right_pad_output,
utils.make_positions(right_pad_input, pad),
)
def test_clip_grad_norm_(self):
params = torch.nn.Parameter(torch.zeros(5)).requires_grad_(False)
grad_norm = utils.clip_grad_norm_(params, 1.0)
self.assertTrue(torch.is_tensor(grad_norm))
self.assertEqual(grad_norm, 0.0)
params = [torch.nn.Parameter(torch.zeros(5)) for i in range(3)]
for p in params:
p.grad = torch.full((5,), fill_value=2.0)
grad_norm = utils.clip_grad_norm_(params, 1.0)
exp_grad_norm = torch.full((15,), fill_value=2.0).norm()
self.assertTrue(torch.is_tensor(grad_norm))
self.assertEqual(grad_norm, exp_grad_norm)
grad_norm = utils.clip_grad_norm_(params, 1.0)
self.assertAlmostEqual(grad_norm, torch.tensor(1.0))
def test_resolve_max_positions_with_tuple(self):
resolved = utils.resolve_max_positions(None, (2000, 100, 2000), 12000)
self.assertEqual(resolved, (2000, 100, 2000))
def assertAlmostEqual(self, t1, t2):
self.assertEqual(t1.size(), t2.size(), "size mismatch")
self.assertLess(utils.item((t1 - t2).abs().max()), 1e-4)
if __name__ == "__main__":
unittest.main()
| EXA-1-master | exa/models/unilm-master/edgelm/tests/test_utils.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import unittest
from copy import deepcopy
from dataclasses import dataclass
from typing import Optional
import torch
from fairseq.models.ema import EMA
class DummyModule(torch.nn.Module):
def __init__(self) -> None:
"""LightningModule for testing purposes
Args:
epoch_min_loss_override (int, optional): Pass in an epoch that will be set to the minimum
validation loss for testing purposes (zero based). If None this is ignored. Defaults to None.
"""
super().__init__()
self.layer = torch.nn.Linear(in_features=32, out_features=2)
self.another_layer = torch.nn.Linear(in_features=2, out_features=2)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.layer(x)
return self.another_layer(x)
@dataclass
class EMAConfig(object):
ema_decay: float = 0.99
ema_start_update: int = 0
ema_fp32: bool = False
ema_seed_model: Optional[str] = None
class TestEMAGPU(unittest.TestCase):
def assertTorchAllClose(self, x, y, atol=1e-8, rtol=1e-5, msg=None):
diff = x.float() - y.float()
diff_norm = torch.norm(diff)
other_norm = torch.norm(y.float())
if msg is None:
msg = "|input - other| > {} + {} * |other|".format(
atol, rtol
)
self.assertLessEqual(
diff_norm,
atol + rtol * other_norm,
msg=msg,
)
def test_ema(self):
model = DummyModule()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
state = deepcopy(model.state_dict())
config = EMAConfig()
ema = EMA(model, config)
# set decay
ema._set_decay(config.ema_decay)
self.assertEqual(ema.get_decay(), config.ema_decay)
# get model
self.assertEqual(ema.get_model(), ema.model)
# Since fp32 params is not used, it should be of size 0
self.assertEqual(len(ema.fp32_params), 0)
# EMA step
x = torch.randn(32)
y = model(x)
loss = y.sum()
loss.backward()
optimizer.step()
ema.step(model)
ema_state_dict = ema.get_model().state_dict()
for key, param in model.state_dict().items():
prev_param = state[key]
ema_param = ema_state_dict[key]
if "version" in key:
# Do not decay a model.version pytorch param
continue
self.assertTorchAllClose(
ema_param,
config.ema_decay * prev_param + (1 - config.ema_decay) * param,
)
# Since fp32 params is not used, it should be of size 0
self.assertEqual(len(ema.fp32_params), 0)
# Load EMA into model
model2 = DummyModule()
ema.reverse(model2)
for key, param in model2.state_dict().items():
ema_param = ema_state_dict[key]
self.assertTrue(
torch.allclose(ema_param, param)
)
def test_ema_fp32(self):
model = DummyModule().half()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
state = deepcopy(model.state_dict())
config = EMAConfig(ema_fp32=True)
ema = EMA(model, config)
x = torch.randn(32)
y = model(x.half())
loss = y.sum()
loss.backward()
optimizer.step()
ema.step(model)
for key, param in model.state_dict().items():
prev_param = state[key]
ema_param = ema.get_model().state_dict()[key]
if "version" in key:
# Do not decay a model.version pytorch param
continue
self.assertIn(key, ema.fp32_params)
# EMA update is done in fp32, and hence the EMA param must be
# closer to the EMA update done in fp32 than in fp16.
self.assertLessEqual(
torch.norm(
ema_param.float() -
(config.ema_decay * prev_param.float() + (1 - config.ema_decay) * param.float()).half().float()
),
torch.norm(
ema_param.float() -
(config.ema_decay * prev_param + (1 - config.ema_decay) * param).float()
),
)
self.assertTorchAllClose(
ema_param,
(config.ema_decay * prev_param.float() + (1 - config.ema_decay) * param.float()).half(),
)
def test_ema_fp16(self):
model = DummyModule().half()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
state = deepcopy(model.state_dict())
config = EMAConfig(ema_fp32=False)
ema = EMA(model, config)
# Since fp32 params is not used, it should be of size 0
self.assertEqual(len(ema.fp32_params), 0)
x = torch.randn(32)
y = model(x.half())
loss = y.sum()
loss.backward()
optimizer.step()
ema.step(model)
for key, param in model.state_dict().items():
prev_param = state[key]
ema_param = ema.get_model().state_dict()[key]
if "version" in key:
# Do not decay a model.version pytorch param
continue
# EMA update is done in fp16, and hence the EMA param must be
# closer to the EMA update done in fp16 than in fp32.
self.assertLessEqual(
torch.norm(
ema_param.float() -
(config.ema_decay * prev_param + (1 - config.ema_decay) * param).float()
),
torch.norm(
ema_param.float() -
(config.ema_decay * prev_param.float() + (1 - config.ema_decay) * param.float()).half().float()
),
)
self.assertTorchAllClose(
ema_param,
config.ema_decay * prev_param + (1 - config.ema_decay) * param,
)
# Since fp32 params is not used, it should be of size 0
self.assertEqual(len(ema.fp32_params), 0)
if __name__ == "__main__":
unittest.main()
| EXA-1-master | exa/models/unilm-master/edgelm/tests/test_ema.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import unittest
from fairseq.data import iterators
class TestIterators(unittest.TestCase):
def test_counting_iterator_index(self, ref=None, itr=None):
# Test the indexing functionality of CountingIterator
if ref is None:
assert itr is None
ref = list(range(10))
itr = iterators.CountingIterator(ref)
else:
assert len(ref) == 10
assert itr is not None
self.assertTrue(itr.has_next())
self.assertEqual(itr.n, 0)
self.assertEqual(next(itr), ref[0])
self.assertEqual(itr.n, 1)
self.assertEqual(next(itr), ref[1])
self.assertEqual(itr.n, 2)
itr.skip(3)
self.assertEqual(itr.n, 5)
self.assertEqual(next(itr), ref[5])
itr.skip(2)
self.assertEqual(itr.n, 8)
self.assertEqual(list(itr), [ref[8], ref[9]])
self.assertFalse(itr.has_next())
def test_counting_iterator_length_mismatch(self):
ref = list(range(10))
# When the underlying iterable is longer than the CountingIterator,
# the remaining items in the iterable should be ignored
itr = iterators.CountingIterator(ref, total=8)
self.assertEqual(list(itr), ref[:8])
# When the underlying iterable is shorter than the CountingIterator,
# raise an IndexError when the underlying iterable is exhausted
itr = iterators.CountingIterator(ref, total=12)
self.assertRaises(IndexError, list, itr)
def test_counting_iterator_take(self):
# Test the "take" method of CountingIterator
ref = list(range(10))
itr = iterators.CountingIterator(ref)
itr.take(5)
self.assertEqual(len(itr), len(list(iter(itr))))
self.assertEqual(len(itr), 5)
itr = iterators.CountingIterator(ref)
itr.take(5)
self.assertEqual(next(itr), ref[0])
self.assertEqual(next(itr), ref[1])
itr.skip(2)
self.assertEqual(next(itr), ref[4])
self.assertFalse(itr.has_next())
def test_grouped_iterator(self):
# test correctness
x = list(range(10))
itr = iterators.GroupedIterator(x, 1)
self.assertEqual(list(itr), [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9]])
itr = iterators.GroupedIterator(x, 4)
self.assertEqual(list(itr), [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9]])
itr = iterators.GroupedIterator(x, 5)
self.assertEqual(list(itr), [[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]])
# test the GroupIterator also works correctly as a CountingIterator
x = list(range(30))
ref = list(iterators.GroupedIterator(x, 3))
itr = iterators.GroupedIterator(x, 3)
self.test_counting_iterator_index(ref, itr)
def test_sharded_iterator(self):
# test correctness
x = list(range(10))
itr = iterators.ShardedIterator(x, num_shards=1, shard_id=0)
self.assertEqual(list(itr), x)
itr = iterators.ShardedIterator(x, num_shards=2, shard_id=0)
self.assertEqual(list(itr), [0, 2, 4, 6, 8])
itr = iterators.ShardedIterator(x, num_shards=2, shard_id=1)
self.assertEqual(list(itr), [1, 3, 5, 7, 9])
itr = iterators.ShardedIterator(x, num_shards=3, shard_id=0)
self.assertEqual(list(itr), [0, 3, 6, 9])
itr = iterators.ShardedIterator(x, num_shards=3, shard_id=1)
self.assertEqual(list(itr), [1, 4, 7, None])
itr = iterators.ShardedIterator(x, num_shards=3, shard_id=2)
self.assertEqual(list(itr), [2, 5, 8, None])
# test CountingIterator functionality
x = list(range(30))
ref = list(iterators.ShardedIterator(x, num_shards=3, shard_id=0))
itr = iterators.ShardedIterator(x, num_shards=3, shard_id=0)
self.test_counting_iterator_index(ref, itr)
def test_counting_iterator_buffered_iterator_take(self):
ref = list(range(10))
buffered_itr = iterators.BufferedIterator(2, ref)
itr = iterators.CountingIterator(buffered_itr)
itr.take(5)
self.assertEqual(len(itr), len(list(iter(itr))))
self.assertEqual(len(itr), 5)
buffered_itr = iterators.BufferedIterator(2, ref)
itr = iterators.CountingIterator(buffered_itr)
itr.take(5)
self.assertEqual(len(buffered_itr), 5)
self.assertEqual(len(list(iter(buffered_itr))), 5)
buffered_itr = iterators.BufferedIterator(2, ref)
itr = iterators.CountingIterator(buffered_itr)
itr.take(5)
self.assertEqual(next(itr), ref[0])
self.assertEqual(next(itr), ref[1])
itr.skip(2)
self.assertEqual(next(itr), ref[4])
self.assertFalse(itr.has_next())
self.assertRaises(StopIteration, next, buffered_itr)
ref = list(range(4, 10))
buffered_itr = iterators.BufferedIterator(2, ref)
itr = iterators.CountingIterator(buffered_itr, start=4)
itr.take(5)
self.assertEqual(len(itr), 5)
self.assertEqual(len(buffered_itr), 1)
self.assertEqual(next(itr), ref[0])
self.assertFalse(itr.has_next())
self.assertRaises(StopIteration, next, buffered_itr)
if __name__ == "__main__":
unittest.main()
| EXA-1-master | exa/models/unilm-master/edgelm/tests/test_iterators.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import unittest
from typing import Dict, List
import tests.utils as test_utils
import torch
from fairseq import utils
from fairseq.data import (
Dictionary,
LanguagePairDataset,
TransformEosDataset,
data_utils,
noising,
)
class TestDataNoising(unittest.TestCase):
def _get_test_data_with_bpe_cont_marker(self, append_eos=True):
"""
Args:
append_eos: if True, each input sentence in the source tokens tensor
will have an EOS appended to the end.
Returns:
vocabs: BPE vocab with continuation markers as suffixes to denote
non-end of word tokens. This is the standard BPE format used in
fairseq's preprocessing.
x: input tensor containing numberized source tokens, with EOS at the
end if append_eos is true
src_lengths: and source lengths.
"""
vocab = Dictionary()
vocab.add_symbol("he@@")
vocab.add_symbol("llo")
vocab.add_symbol("how")
vocab.add_symbol("are")
vocab.add_symbol("y@@")
vocab.add_symbol("ou")
vocab.add_symbol("n@@")
vocab.add_symbol("ew")
vocab.add_symbol("or@@")
vocab.add_symbol("k")
src_tokens = [
["he@@", "llo", "n@@", "ew", "y@@", "or@@", "k"],
["how", "are", "y@@", "ou"],
]
x, src_lengths = x, src_lengths = self._convert_src_tokens_to_tensor(
vocab=vocab, src_tokens=src_tokens, append_eos=append_eos
)
return vocab, x, src_lengths
def _get_test_data_with_bpe_end_marker(self, append_eos=True):
"""
Args:
append_eos: if True, each input sentence in the source tokens tensor
will have an EOS appended to the end.
Returns:
vocabs: BPE vocab with end-of-word markers as suffixes to denote
tokens at the end of a word. This is an alternative to fairseq's
standard preprocessing framework and is not generally supported
within fairseq.
x: input tensor containing numberized source tokens, with EOS at the
end if append_eos is true
src_lengths: and source lengths.
"""
vocab = Dictionary()
vocab.add_symbol("he")
vocab.add_symbol("llo_EOW")
vocab.add_symbol("how_EOW")
vocab.add_symbol("are_EOW")
vocab.add_symbol("y")
vocab.add_symbol("ou_EOW")
vocab.add_symbol("n")
vocab.add_symbol("ew_EOW")
vocab.add_symbol("or")
vocab.add_symbol("k_EOW")
src_tokens = [
["he", "llo_EOW", "n", "ew_EOW", "y", "or", "k_EOW"],
["how_EOW", "are_EOW", "y", "ou_EOW"],
]
x, src_lengths = x, src_lengths = self._convert_src_tokens_to_tensor(
vocab=vocab, src_tokens=src_tokens, append_eos=append_eos
)
return vocab, x, src_lengths
def _get_test_data_with_word_vocab(self, append_eos=True):
"""
Args:
append_eos: if True, each input sentence in the source tokens tensor
will have an EOS appended to the end.
Returns:
vocabs: word vocab
x: input tensor containing numberized source tokens, with EOS at the
end if append_eos is true
src_lengths: and source lengths.
"""
vocab = Dictionary()
vocab.add_symbol("hello")
vocab.add_symbol("how")
vocab.add_symbol("are")
vocab.add_symbol("you")
vocab.add_symbol("new")
vocab.add_symbol("york")
src_tokens = [
["hello", "new", "york", "you"],
["how", "are", "you", "new", "york"],
]
x, src_lengths = self._convert_src_tokens_to_tensor(
vocab=vocab, src_tokens=src_tokens, append_eos=append_eos
)
return vocab, x, src_lengths
def _convert_src_tokens_to_tensor(
self, vocab: Dictionary, src_tokens: List[List[str]], append_eos: bool
):
src_len = [len(x) for x in src_tokens]
# If we have to append EOS, we include EOS in counting src length
if append_eos:
src_len = [length + 1 for length in src_len]
x = torch.LongTensor(len(src_tokens), max(src_len)).fill_(vocab.pad())
for i in range(len(src_tokens)):
for j in range(len(src_tokens[i])):
x[i][j] = vocab.index(src_tokens[i][j])
if append_eos:
x[i][j + 1] = vocab.eos()
x = x.transpose(1, 0)
return x, torch.LongTensor(src_len)
def assert_eos_at_end(self, x, x_len, eos):
"""Asserts last token of every sentence in x is EOS """
for i in range(len(x_len)):
self.assertEqual(
x[x_len[i] - 1][i],
eos,
(
"Expected eos (token id {eos}) at the end of sentence {i} "
"but got {other} instead"
).format(i=i, eos=eos, other=x[i][-1]),
)
def assert_word_dropout_correct(self, x, x_noised, x_len, l_noised):
# Expect only the first word (2 bpe tokens) of the first example
# was dropped out
self.assertEqual(x_len[0] - 2, l_noised[0])
for i in range(l_noised[0]):
self.assertEqual(x_noised[i][0], x[i + 2][0])
def test_word_dropout_with_eos(self):
vocab, x, x_len = self._get_test_data_with_bpe_cont_marker(append_eos=True)
with data_utils.numpy_seed(1234):
noising_gen = noising.WordDropout(vocab)
x_noised, l_noised = noising_gen.noising(x, x_len, 0.2)
self.assert_word_dropout_correct(
x=x, x_noised=x_noised, x_len=x_len, l_noised=l_noised
)
self.assert_eos_at_end(x=x_noised, x_len=l_noised, eos=vocab.eos())
def assert_word_blanking_correct(self, x, x_noised, x_len, l_noised, unk):
# Expect only the first word (2 bpe tokens) of the first example
# was blanked out
self.assertEqual(x_len[0], l_noised[0])
for i in range(l_noised[0]):
if i < 2:
self.assertEqual(x_noised[i][0], unk)
else:
self.assertEqual(x_noised[i][0], x[i][0])
def test_word_blank_with_eos(self):
vocab, x, x_len = self._get_test_data_with_bpe_cont_marker(append_eos=True)
with data_utils.numpy_seed(1234):
noising_gen = noising.WordDropout(vocab)
x_noised, l_noised = noising_gen.noising(x, x_len, 0.2, vocab.unk())
self.assert_word_blanking_correct(
x=x, x_noised=x_noised, x_len=x_len, l_noised=l_noised, unk=vocab.unk()
)
self.assert_eos_at_end(x=x_noised, x_len=l_noised, eos=vocab.eos())
def generate_unchanged_shuffle_map(self, length):
return {i: i for i in range(length)}
def assert_word_shuffle_matches_expected(
self,
x,
x_len,
max_shuffle_distance: int,
vocab: Dictionary,
expected_shufle_maps: List[Dict[int, int]],
expect_eos_at_end: bool,
bpe_end_marker=None,
):
"""
This verifies that with a given x, x_len, max_shuffle_distance, and
vocab, we get the expected shuffle result.
Args:
x: Tensor of shape (T x B) = (sequence_length, batch_size)
x_len: Tensor of length B = batch_size
max_shuffle_distance: arg to pass to noising
expected_shuffle_maps: List[mapping] where mapping is a
Dict[old_index, new_index], mapping x's elements from their
old positions in x to their new positions in x.
expect_eos_at_end: if True, check the output to make sure there is
an EOS at the end.
bpe_end_marker: str denoting the BPE end token. If this is not None, we
set the BPE cont token to None in the noising classes.
"""
bpe_cont_marker = None
if bpe_end_marker is None:
bpe_cont_marker = "@@"
with data_utils.numpy_seed(1234):
word_shuffle = noising.WordShuffle(
vocab, bpe_cont_marker=bpe_cont_marker, bpe_end_marker=bpe_end_marker
)
x_noised, l_noised = word_shuffle.noising(
x, x_len, max_shuffle_distance=max_shuffle_distance
)
# For every example, we have a different expected shuffle map. We check
# that each example is shuffled as expected according to each
# corresponding shuffle map.
for i in range(len(expected_shufle_maps)):
shuffle_map = expected_shufle_maps[i]
for k, v in shuffle_map.items():
self.assertEqual(x[k][i], x_noised[v][i])
# Shuffling should not affect the length of each example
for pre_shuffle_length, post_shuffle_length in zip(x_len, l_noised):
self.assertEqual(pre_shuffle_length, post_shuffle_length)
if expect_eos_at_end:
self.assert_eos_at_end(x=x_noised, x_len=l_noised, eos=vocab.eos())
def test_word_shuffle_with_eos(self):
vocab, x, x_len = self._get_test_data_with_bpe_cont_marker(append_eos=True)
# Assert word shuffle with max shuffle distance 0 causes input to be
# unchanged
self.assert_word_shuffle_matches_expected(
x=x,
x_len=x_len,
max_shuffle_distance=0,
vocab=vocab,
expected_shufle_maps=[
self.generate_unchanged_shuffle_map(example_len)
for example_len in x_len
],
expect_eos_at_end=True,
)
# Assert word shuffle with max shuffle distance 3 matches our expected
# shuffle order
self.assert_word_shuffle_matches_expected(
x=x,
x_len=x_len,
vocab=vocab,
max_shuffle_distance=3,
expected_shufle_maps=[
self.generate_unchanged_shuffle_map(x_len[0]),
{0: 0, 1: 3, 2: 1, 3: 2},
],
expect_eos_at_end=True,
)
def test_word_shuffle_with_eos_nonbpe(self):
"""The purpose of this is to test shuffling logic with word vocabs"""
vocab, x, x_len = self._get_test_data_with_word_vocab(append_eos=True)
# Assert word shuffle with max shuffle distance 0 causes input to be
# unchanged
self.assert_word_shuffle_matches_expected(
x=x,
x_len=x_len,
max_shuffle_distance=0,
vocab=vocab,
expected_shufle_maps=[
self.generate_unchanged_shuffle_map(example_len)
for example_len in x_len
],
expect_eos_at_end=True,
)
# Assert word shuffle with max shuffle distance 3 matches our expected
# shuffle order
self.assert_word_shuffle_matches_expected(
x=x,
x_len=x_len,
vocab=vocab,
max_shuffle_distance=3,
expected_shufle_maps=[
{0: 0, 1: 1, 2: 3, 3: 2},
{0: 0, 1: 2, 2: 1, 3: 3, 4: 4},
],
expect_eos_at_end=True,
)
def test_word_shuffle_without_eos(self):
"""Same result as word shuffle with eos except no EOS at end"""
vocab, x, x_len = self._get_test_data_with_bpe_cont_marker(append_eos=False)
# Assert word shuffle with max shuffle distance 0 causes input to be
# unchanged
self.assert_word_shuffle_matches_expected(
x=x,
x_len=x_len,
max_shuffle_distance=0,
vocab=vocab,
expected_shufle_maps=[
self.generate_unchanged_shuffle_map(example_len)
for example_len in x_len
],
expect_eos_at_end=False,
)
# Assert word shuffle with max shuffle distance 3 matches our expected
# shuffle order
self.assert_word_shuffle_matches_expected(
x=x,
x_len=x_len,
vocab=vocab,
max_shuffle_distance=3,
expected_shufle_maps=[
self.generate_unchanged_shuffle_map(x_len[0]),
{0: 0, 1: 3, 2: 1, 3: 2},
],
expect_eos_at_end=False,
)
def test_word_shuffle_without_eos_with_bpe_end_marker(self):
"""Same result as word shuffle without eos except using BPE end token"""
vocab, x, x_len = self._get_test_data_with_bpe_end_marker(append_eos=False)
# Assert word shuffle with max shuffle distance 0 causes input to be
# unchanged
self.assert_word_shuffle_matches_expected(
x=x,
x_len=x_len,
max_shuffle_distance=0,
vocab=vocab,
expected_shufle_maps=[
self.generate_unchanged_shuffle_map(example_len)
for example_len in x_len
],
expect_eos_at_end=False,
bpe_end_marker="_EOW",
)
# Assert word shuffle with max shuffle distance 3 matches our expected
# shuffle order
self.assert_word_shuffle_matches_expected(
x=x,
x_len=x_len,
vocab=vocab,
max_shuffle_distance=3,
expected_shufle_maps=[
self.generate_unchanged_shuffle_map(x_len[0]),
{0: 0, 1: 3, 2: 1, 3: 2},
],
expect_eos_at_end=False,
bpe_end_marker="_EOW",
)
def assert_no_eos_at_end(self, x, x_len, eos):
"""Asserts that the last token of each sentence in x is not EOS """
for i in range(len(x_len)):
self.assertNotEqual(
x[x_len[i] - 1][i],
eos,
"Expected no eos (token id {eos}) at the end of sentence {i}.".format(
eos=eos, i=i
),
)
def test_word_dropout_without_eos(self):
"""Same result as word dropout with eos except no EOS at end"""
vocab, x, x_len = self._get_test_data_with_bpe_cont_marker(append_eos=False)
with data_utils.numpy_seed(1234):
noising_gen = noising.WordDropout(vocab)
x_noised, l_noised = noising_gen.noising(x, x_len, 0.2)
self.assert_word_dropout_correct(
x=x, x_noised=x_noised, x_len=x_len, l_noised=l_noised
)
self.assert_no_eos_at_end(x=x_noised, x_len=l_noised, eos=vocab.eos())
def test_word_blank_without_eos(self):
"""Same result as word blank with eos except no EOS at end"""
vocab, x, x_len = self._get_test_data_with_bpe_cont_marker(append_eos=False)
with data_utils.numpy_seed(1234):
noising_gen = noising.WordDropout(vocab)
x_noised, l_noised = noising_gen.noising(x, x_len, 0.2, vocab.unk())
self.assert_word_blanking_correct(
x=x, x_noised=x_noised, x_len=x_len, l_noised=l_noised, unk=vocab.unk()
)
self.assert_no_eos_at_end(x=x_noised, x_len=l_noised, eos=vocab.eos())
def _get_noising_dataset_batch(
self,
src_tokens_no_pad,
src_dict,
append_eos_to_tgt=False,
):
"""
Constructs a NoisingDataset and the corresponding
``LanguagePairDataset(NoisingDataset(src), src)``. If
*append_eos_to_tgt* is True, wrap the source dataset in
:class:`TransformEosDataset` to append EOS to the clean source when
using it as the target.
"""
src_dataset = test_utils.TestDataset(data=src_tokens_no_pad)
noising_dataset = noising.NoisingDataset(
src_dataset=src_dataset,
src_dict=src_dict,
seed=1234,
max_word_shuffle_distance=3,
word_dropout_prob=0.2,
word_blanking_prob=0.2,
noising_class=noising.UnsupervisedMTNoising,
)
tgt = src_dataset
language_pair_dataset = LanguagePairDataset(
src=noising_dataset, tgt=tgt, src_sizes=None, src_dict=src_dict
)
language_pair_dataset = TransformEosDataset(
language_pair_dataset,
src_dict.eos(),
append_eos_to_tgt=append_eos_to_tgt,
)
dataloader = torch.utils.data.DataLoader(
dataset=language_pair_dataset,
batch_size=2,
collate_fn=language_pair_dataset.collater,
)
denoising_batch_result = next(iter(dataloader))
return denoising_batch_result
def test_noising_dataset_with_eos(self):
src_dict, src_tokens, _ = self._get_test_data_with_bpe_cont_marker(
append_eos=True
)
# Format data for src_dataset
src_tokens = torch.t(src_tokens)
src_tokens_no_pad = []
for src_sentence in src_tokens:
src_tokens_no_pad.append(
utils.strip_pad(tensor=src_sentence, pad=src_dict.pad())
)
denoising_batch_result = self._get_noising_dataset_batch(
src_tokens_no_pad=src_tokens_no_pad, src_dict=src_dict
)
eos, pad = src_dict.eos(), src_dict.pad()
# Generated noisy source as source
expected_src = torch.LongTensor(
[[4, 5, 10, 11, 8, 12, 13, eos], [pad, pad, pad, 6, 8, 9, 7, eos]]
)
# Original clean source as target (right-padded)
expected_tgt = torch.LongTensor(
[[4, 5, 10, 11, 8, 12, 13, eos], [6, 7, 8, 9, eos, pad, pad, pad]]
)
generated_src = denoising_batch_result["net_input"]["src_tokens"]
tgt_tokens = denoising_batch_result["target"]
self.assertTensorEqual(expected_src, generated_src)
self.assertTensorEqual(expected_tgt, tgt_tokens)
def test_noising_dataset_without_eos(self):
"""
Similar to test noising dataset with eos except that we have to set
*append_eos_to_tgt* to ``True``.
"""
src_dict, src_tokens, _ = self._get_test_data_with_bpe_cont_marker(
append_eos=False
)
# Format data for src_dataset
src_tokens = torch.t(src_tokens)
src_tokens_no_pad = []
for src_sentence in src_tokens:
src_tokens_no_pad.append(
utils.strip_pad(tensor=src_sentence, pad=src_dict.pad())
)
denoising_batch_result = self._get_noising_dataset_batch(
src_tokens_no_pad=src_tokens_no_pad,
src_dict=src_dict,
append_eos_to_tgt=True,
)
eos, pad = src_dict.eos(), src_dict.pad()
# Generated noisy source as source
expected_src = torch.LongTensor(
[[4, 5, 10, 11, 8, 12, 13], [pad, pad, pad, 6, 8, 9, 7]]
)
# Original clean source as target (right-padded)
expected_tgt = torch.LongTensor(
[[4, 5, 10, 11, 8, 12, 13, eos], [6, 7, 8, 9, eos, pad, pad, pad]]
)
generated_src = denoising_batch_result["net_input"]["src_tokens"]
tgt_tokens = denoising_batch_result["target"]
self.assertTensorEqual(expected_src, generated_src)
self.assertTensorEqual(expected_tgt, tgt_tokens)
def assertTensorEqual(self, t1, t2):
self.assertEqual(t1.size(), t2.size(), "size mismatch")
self.assertEqual(t1.ne(t2).long().sum(), 0)
if __name__ == "__main__":
unittest.main()
| EXA-1-master | exa/models/unilm-master/edgelm/tests/test_noising.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import tempfile
import unittest
import torch
from fairseq.data.dictionary import Dictionary
from fairseq.models.lstm import LSTMModel
from fairseq.tasks.fairseq_task import LegacyFairseqTask
DEFAULT_TEST_VOCAB_SIZE = 100
class DummyTask(LegacyFairseqTask):
def __init__(self, args):
super().__init__(args)
self.dictionary = get_dummy_dictionary()
if getattr(self.args, "ctc", False):
self.dictionary.add_symbol("<ctc_blank>")
self.src_dict = self.dictionary
self.tgt_dict = self.dictionary
@property
def source_dictionary(self):
return self.src_dict
@property
def target_dictionary(self):
return self.dictionary
def get_dummy_dictionary(vocab_size=DEFAULT_TEST_VOCAB_SIZE):
dummy_dict = Dictionary()
# add dummy symbol to satisfy vocab size
for id, _ in enumerate(range(vocab_size)):
dummy_dict.add_symbol("{}".format(id), 1000)
return dummy_dict
def get_dummy_task_and_parser():
"""
to build a fariseq model, we need some dummy parse and task. This function
is used to create dummy task and parser to faciliate model/criterion test
Note: we use FbSpeechRecognitionTask as the dummy task. You may want
to use other task by providing another function
"""
parser = argparse.ArgumentParser(
description="test_dummy_s2s_task", argument_default=argparse.SUPPRESS
)
DummyTask.add_args(parser)
args = parser.parse_args([])
task = DummyTask.setup_task(args)
return task, parser
class TestJitLSTMModel(unittest.TestCase):
def _test_save_and_load(self, scripted_module):
with tempfile.NamedTemporaryFile() as f:
scripted_module.save(f.name)
torch.jit.load(f.name)
def assertTensorEqual(self, t1, t2):
t1 = t1[~torch.isnan(t1)] # can cause size mismatch errors if there are NaNs
t2 = t2[~torch.isnan(t2)]
self.assertEqual(t1.size(), t2.size(), "size mismatch")
self.assertEqual(t1.ne(t2).long().sum(), 0)
def test_jit_and_export_lstm(self):
task, parser = get_dummy_task_and_parser()
LSTMModel.add_args(parser)
args = parser.parse_args([])
args.criterion = ""
model = LSTMModel.build_model(args, task)
scripted_model = torch.jit.script(model)
self._test_save_and_load(scripted_model)
def test_assert_jit_vs_nonjit_(self):
task, parser = get_dummy_task_and_parser()
LSTMModel.add_args(parser)
args = parser.parse_args([])
args.criterion = ""
model = LSTMModel.build_model(args, task)
model.eval()
scripted_model = torch.jit.script(model)
scripted_model.eval()
idx = len(task.source_dictionary)
iter = 100
# Inject random input and check output
seq_len_tensor = torch.randint(1, 10, (iter,))
num_samples_tensor = torch.randint(1, 10, (iter,))
for i in range(iter):
seq_len = seq_len_tensor[i]
num_samples = num_samples_tensor[i]
src_token = (torch.randint(0, idx, (num_samples, seq_len)),)
src_lengths = torch.randint(1, seq_len + 1, (num_samples,))
src_lengths, _ = torch.sort(src_lengths, descending=True)
# Force the first sample to have seq_len
src_lengths[0] = seq_len
prev_output_token = (torch.randint(0, idx, (num_samples, 1)),)
result = model(src_token[0], src_lengths, prev_output_token[0], None)
scripted_result = scripted_model(
src_token[0], src_lengths, prev_output_token[0], None
)
self.assertTensorEqual(result[0], scripted_result[0])
self.assertTensorEqual(result[1], scripted_result[1])
if __name__ == "__main__":
unittest.main()
| EXA-1-master | exa/models/unilm-master/edgelm/tests/test_lstm_jitable.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import copy
import unittest
import torch
from torch.cuda.amp import autocast, GradScaler
from fairseq.optim import build_optimizer
@unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU")
class TestGradientScalingAMP(unittest.TestCase):
def setUp(self):
self.x = torch.tensor([2.0]).cuda().half()
weight = 3.0
bias = 5.0
self.error = 1.0
self.target = torch.tensor([self.x * weight + bias + self.error]).cuda()
self.loss_fn = torch.nn.L1Loss()
self.model = torch.nn.Linear(1, 1)
self.model.weight.data = torch.tensor([[weight]])
self.model.bias.data = torch.tensor([bias])
self.model.cuda()
self.params = list(self.model.parameters())
self.namespace_dls = argparse.Namespace(
optimizer="adam",
lr=[0.1],
adam_betas="(0.9, 0.999)",
adam_eps=1e-8,
weight_decay=0.0,
threshold_loss_scale=1,
min_loss_scale=1e-4,
)
self.scaler = GradScaler(
init_scale=1,
growth_interval=1,
)
def run_iter(self, model, params, optimizer):
optimizer.zero_grad()
with autocast():
y = model(self.x)
loss = self.loss_fn(y, self.target)
self.scaler.scale(loss).backward()
self.assertEqual(loss, torch.tensor(1.0, device="cuda:0", dtype=torch.float16))
self.scaler.unscale_(optimizer)
grad_norm = optimizer.clip_grad_norm(0)
self.assertAlmostEqual(grad_norm.item(), 2.2361, 4)
self.scaler.step(optimizer)
self.scaler.update()
self.assertEqual(
model.weight,
torch.tensor(
[[3.1]], device="cuda:0", requires_grad=True
),
)
self.assertEqual(
model.bias,
torch.tensor(
[5.1], device="cuda:0", requires_grad=True
),
)
self.assertEqual(self.scaler.get_scale(), 2.0)
def test_automatic_mixed_precision(self):
model = copy.deepcopy(self.model)
params = list(model.parameters())
optimizer = build_optimizer(self.namespace_dls, params)
self.run_iter(model, params, optimizer)
| EXA-1-master | exa/models/unilm-master/edgelm/tests/test_amp_optimizer.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import torch
from fairseq.modules.sparse_multihead_attention import SparseMultiheadAttention
class TestSparseMultiheadAttention(unittest.TestCase):
def test_sparse_multihead_attention(self):
attn_weights = torch.randn(1, 8, 8)
bidirectional_sparse_mask = torch.tensor(
[
[0, 0, 0, 0, 0, float("-inf"), float("-inf"), 0],
[0, 0, 0, 0, 0, float("-inf"), float("-inf"), 0],
[0, 0, 0, 0, 0, float("-inf"), float("-inf"), 0],
[0, 0, 0, 0, 0, float("-inf"), float("-inf"), 0],
[float("-inf"), float("-inf"), float("-inf"), 0, 0, 0, 0, 0],
[float("-inf"), float("-inf"), float("-inf"), 0, 0, 0, 0, 0],
[float("-inf"), float("-inf"), float("-inf"), 0, 0, 0, 0, 0],
[float("-inf"), float("-inf"), float("-inf"), 0, 0, 0, 0, 0],
]
)
bidirectional_attention = SparseMultiheadAttention(
16, 1, stride=4, expressivity=1, is_bidirectional=True
)
bidirectional_attention_sparse_mask = (
bidirectional_attention.buffered_sparse_mask(attn_weights, 8, 8)
)
torch.all(
torch.eq(bidirectional_attention_sparse_mask, bidirectional_sparse_mask)
)
sparse_mask = torch.tensor(
[
[
0,
float("-inf"),
float("-inf"),
float("-inf"),
float("-inf"),
float("-inf"),
float("-inf"),
float("-inf"),
],
[
0,
0,
float("-inf"),
float("-inf"),
float("-inf"),
float("-inf"),
float("-inf"),
float("-inf"),
],
[
0,
0,
0,
float("-inf"),
float("-inf"),
float("-inf"),
float("-inf"),
float("-inf"),
],
[
0,
0,
0,
0,
float("-inf"),
float("-inf"),
float("-inf"),
float("-inf"),
],
[0, 0, 0, 0, 0, float("-inf"), float("-inf"), float("-inf")],
[
float("-inf"),
float("-inf"),
float("-inf"),
0,
0,
0,
float("-inf"),
float("-inf"),
],
[
float("-inf"),
float("-inf"),
float("-inf"),
0,
0,
0,
0,
float("-inf"),
],
[float("-inf"), float("-inf"), float("-inf"), 0, 0, 0, 0, 0],
]
)
attention = SparseMultiheadAttention(
16, 1, stride=4, expressivity=1, is_bidirectional=False
)
attention_sparse_mask = attention.buffered_sparse_mask(attn_weights, 8, 8)
torch.all(torch.eq(attention_sparse_mask, sparse_mask))
if __name__ == "__main__":
unittest.main()
| EXA-1-master | exa/models/unilm-master/edgelm/tests/test_sparse_multihead_attention.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import uuid
from fairseq import metrics
class TestMetrics(unittest.TestCase):
def test_nesting(self):
with metrics.aggregate() as a:
metrics.log_scalar("loss", 1)
with metrics.aggregate() as b:
metrics.log_scalar("loss", 2)
self.assertEqual(a.get_smoothed_values()["loss"], 1.5)
self.assertEqual(b.get_smoothed_values()["loss"], 2)
def test_new_root(self):
with metrics.aggregate() as a:
metrics.log_scalar("loss", 1)
with metrics.aggregate(new_root=True) as b:
metrics.log_scalar("loss", 2)
self.assertEqual(a.get_smoothed_values()["loss"], 1)
self.assertEqual(b.get_smoothed_values()["loss"], 2)
def test_nested_new_root(self):
with metrics.aggregate() as layer1:
metrics.log_scalar("loss", 1)
with metrics.aggregate(new_root=True) as layer2:
metrics.log_scalar("loss", 2)
with metrics.aggregate() as layer3:
metrics.log_scalar("loss", 3)
with metrics.aggregate(new_root=True) as layer4:
metrics.log_scalar("loss", 4)
metrics.log_scalar("loss", 1.5)
self.assertEqual(layer4.get_smoothed_values()["loss"], 4)
self.assertEqual(layer3.get_smoothed_values()["loss"], 3)
self.assertEqual(layer2.get_smoothed_values()["loss"], 2.5)
self.assertEqual(layer1.get_smoothed_values()["loss"], 1.25)
def test_named(self):
name = str(uuid.uuid4())
metrics.reset_meters(name)
with metrics.aggregate(name):
metrics.log_scalar("loss", 1)
metrics.log_scalar("loss", 3)
with metrics.aggregate(name):
metrics.log_scalar("loss", 2)
self.assertEqual(metrics.get_smoothed_values(name)["loss"], 1.5)
def test_nested_duplicate_names(self):
name = str(uuid.uuid4())
metrics.reset_meters(name)
with metrics.aggregate(name):
metrics.log_scalar("loss", 1)
with metrics.aggregate() as other:
with metrics.aggregate(name):
metrics.log_scalar("loss", 2)
metrics.log_scalar("loss", 6)
self.assertEqual(metrics.get_smoothed_values(name)["loss"], 3)
self.assertEqual(other.get_smoothed_values()["loss"], 2)
if __name__ == "__main__":
unittest.main()
| EXA-1-master | exa/models/unilm-master/edgelm/tests/test_metrics.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import contextlib
import logging
import unittest
from io import StringIO
from unittest.mock import MagicMock, patch
import torch
from fairseq import checkpoint_utils, data
from omegaconf import OmegaConf
def mock_trainer(epoch, num_updates, iterations_in_epoch):
trainer = MagicMock()
trainer.load_checkpoint.return_value = {
"train_iterator": {
"epoch": epoch,
"iterations_in_epoch": iterations_in_epoch,
"shuffle": False,
},
}
trainer.get_num_updates.return_value = num_updates
return trainer
def mock_dict():
d = MagicMock()
d.pad.return_value = 1
d.eos.return_value = 2
d.unk.return_value = 3
return d
def get_trainer_and_epoch_itr(epoch, epoch_size, num_updates, iterations_in_epoch):
tokens = torch.LongTensor(list(range(epoch_size))).view(1, -1)
tokens_ds = data.TokenBlockDataset(
tokens,
sizes=[tokens.size(-1)],
block_size=1,
pad=0,
eos=1,
include_targets=False,
)
trainer = mock_trainer(epoch, num_updates, iterations_in_epoch)
dataset = data.LanguagePairDataset(
tokens_ds, tokens_ds.sizes, mock_dict(), shuffle=False
)
epoch_itr = data.EpochBatchIterator(
dataset=dataset,
collate_fn=dataset.collater,
batch_sampler=[[i] for i in range(epoch_size)],
)
return trainer, epoch_itr
def get_mock_cfg(finetune_from_model):
cfg_mock = OmegaConf.create(
{
"checkpoint": {
"save_dir": None,
"optimizer_overrides": "{}",
"reset_dataloader": False,
"reset_meters": False,
"reset_optimizer": False,
"reset_lr_scheduler": False,
"finetune_from_model": finetune_from_model,
"model_parallel_size": 1,
"restore_file": "checkpoint_last.pt",
},
"common": {
"model_parallel_size": 1,
},
}
)
return cfg_mock
class TestLoadCheckpoint(unittest.TestCase):
def setUp(self):
self.cfg_mock = get_mock_cfg(None)
self.patches = {
"os.makedirs": MagicMock(),
"os.path.join": MagicMock(),
"os.path.isfile": MagicMock(return_value=True),
"os.path.isabs": MagicMock(return_value=False),
"fairseq.file_io.PathManager.exists": MagicMock(return_value=False),
}
self.applied_patches = [patch(p, d) for p, d in self.patches.items()]
[p.start() for p in self.applied_patches]
logging.disable(logging.CRITICAL)
def tearDown(self):
patch.stopall()
logging.disable(logging.NOTSET)
def test_load_partial_checkpoint(self):
with contextlib.redirect_stdout(StringIO()):
trainer, epoch_itr = get_trainer_and_epoch_itr(2, 150, 200, 50)
trainer.get_train_iterator = MagicMock(return_value=epoch_itr)
_, epoch_itr = checkpoint_utils.load_checkpoint(
self.cfg_mock.checkpoint, trainer
)
self.assertEqual(epoch_itr.epoch, 2)
self.assertEqual(epoch_itr.iterations_in_epoch, 50)
itr = epoch_itr.next_epoch_itr(shuffle=False)
self.assertEqual(epoch_itr.epoch, 2)
self.assertEqual(epoch_itr.iterations_in_epoch, 50)
self.assertEqual(next(itr)["net_input"]["src_tokens"][0].item(), 50)
self.assertEqual(epoch_itr.iterations_in_epoch, 51)
for _ in range(150 - 52):
next(itr)
self.assertEqual(epoch_itr.iterations_in_epoch, 149)
self.assertTrue(itr.has_next())
next(itr)
self.assertFalse(itr.has_next())
itr = epoch_itr.next_epoch_itr(shuffle=False)
self.assertTrue(itr.has_next())
self.assertEqual(epoch_itr.epoch, 3)
self.assertEqual(epoch_itr.iterations_in_epoch, 0)
def test_load_full_checkpoint(self):
with contextlib.redirect_stdout(StringIO()):
trainer, epoch_itr = get_trainer_and_epoch_itr(2, 150, 300, 150)
trainer.get_train_iterator = MagicMock(return_value=epoch_itr)
_, epoch_itr = checkpoint_utils.load_checkpoint(
self.cfg_mock.checkpoint, trainer
)
itr = epoch_itr.next_epoch_itr(shuffle=False)
self.assertEqual(epoch_itr.epoch, 3)
self.assertEqual(epoch_itr.iterations_in_epoch, 0)
self.assertEqual(next(itr)["net_input"]["src_tokens"][0].item(), 0)
def test_load_no_checkpoint(self):
with contextlib.redirect_stdout(StringIO()):
trainer, epoch_itr = get_trainer_and_epoch_itr(1, 150, 0, 0)
trainer.get_train_iterator = MagicMock(return_value=epoch_itr)
self.patches["os.path.isfile"].return_value = False
_, epoch_itr = checkpoint_utils.load_checkpoint(
self.cfg_mock.checkpoint, trainer
)
itr = epoch_itr.next_epoch_itr(shuffle=False)
self.assertEqual(epoch_itr.epoch, 1)
self.assertEqual(epoch_itr.iterations_in_epoch, 0)
self.assertEqual(next(itr)["net_input"]["src_tokens"][0].item(), 0)
def test_finetune_from_model_args_conflict(self):
with contextlib.redirect_stdout(StringIO()):
trainer, epoch_itr = get_trainer_and_epoch_itr(1, 150, 0, 0)
trainer.get_train_iterator = MagicMock(return_value=epoch_itr)
for arg in [
"reset_optimizer",
"reset_lr_scheduler",
"reset_meters",
"reset_dataloader",
]:
with self.subTest(arg=arg):
cfg_mock = get_mock_cfg("/temp/checkpoint_pretrained.pt")
cfg_mock["checkpoint"][arg] = True
with self.assertRaises(Exception) as context:
_, _ = checkpoint_utils.load_checkpoint(
cfg_mock.checkpoint, trainer
)
self.assertTrue(
"--finetune-from-model can not be set together with either --reset-optimizer"
" or reset_lr_scheduler or reset_meters or reset_dataloader"
in str(context.exception)
)
def test_finetune_from_model(self):
with contextlib.redirect_stdout(StringIO()):
trainer, epoch_itr = get_trainer_and_epoch_itr(1, 150, 0, 0)
trainer.get_train_iterator = MagicMock(return_value=epoch_itr)
from_model_path = "/temp/checkpoint_pretrained.pt"
def mock_finetune_exist(path):
if path == from_model_path:
return True
else:
return False
self.patches[
"fairseq.file_io.PathManager.exists"
].side_effect = mock_finetune_exist
cfg_mock = get_mock_cfg(from_model_path)
cfg_mock.checkpoint.restore_file = "checkpoint_last.pt"
_, _ = checkpoint_utils.load_checkpoint(cfg_mock.checkpoint, trainer)
(
checkpoint_path,
reset_optimizer,
reset_lr_scheduler,
optimizer_overrides,
) = trainer.load_checkpoint.call_args[0]
reset_meters = trainer.load_checkpoint.call_args[1]["reset_meters"]
self.assertTrue(reset_optimizer)
self.assertTrue(reset_lr_scheduler)
self.assertTrue(reset_meters)
def test_finetune_from_model_resume(self):
with contextlib.redirect_stdout(StringIO()):
trainer, epoch_itr = get_trainer_and_epoch_itr(1, 150, 0, 0)
trainer.get_train_iterator = MagicMock(return_value=epoch_itr)
from_model_path = "/temp/checkpoint_pretrained.pt"
# launch second time
# both restore_file=checkpoint_last.pt and finetune_from_model are set
def mock_finetune_exist(path):
if path == from_model_path or path.endsWith("checkpoint_last.pt"):
return True
else:
return False
self.patches[
"fairseq.file_io.PathManager.exists"
].side_effect = mock_finetune_exist
cfg_mock = get_mock_cfg(from_model_path)
cfg_mock.checkpoint.restore_file = "checkpoint_last.pt"
_, _ = checkpoint_utils.load_checkpoint(cfg_mock.checkpoint, trainer)
(
checkpoint_path,
reset_optimizer,
reset_lr_scheduler,
optimizer_overrides,
) = trainer.load_checkpoint.call_args[0]
reset_meters = trainer.load_checkpoint.call_args[1]["reset_meters"]
self.assertFalse(reset_optimizer)
self.assertFalse(reset_lr_scheduler)
self.assertFalse(reset_meters)
if __name__ == "__main__":
unittest.main()
| EXA-1-master | exa/models/unilm-master/edgelm/tests/test_train.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import unittest
import tests.utils as test_utils
import torch
from fairseq.sequence_scorer import SequenceScorer
class TestSequenceScorer(unittest.TestCase):
def test_sequence_scorer(self):
# construct dummy dictionary
d = test_utils.dummy_dictionary(vocab_size=2)
self.assertEqual(d.pad(), 1)
self.assertEqual(d.eos(), 2)
self.assertEqual(d.unk(), 3)
eos = d.eos()
w1 = 4
w2 = 5
# construct dataloader
data = [
{
"source": torch.LongTensor([w1, w2, eos]),
"target": torch.LongTensor([w1, w2, w1, eos]),
},
{
"source": torch.LongTensor([w2, eos]),
"target": torch.LongTensor([w2, w1, eos]),
},
{
"source": torch.LongTensor([w2, eos]),
"target": torch.LongTensor([w2, eos]),
},
]
data_itr = test_utils.dummy_dataloader(data)
# specify expected output probabilities
args = argparse.Namespace()
unk = 0.0
args.beam_probs = [
# step 0:
torch.FloatTensor(
[
# eos w1 w2
[0.0, unk, 0.6, 0.4], # sentence 1
[0.0, unk, 0.4, 0.6], # sentence 2
[0.0, unk, 0.7, 0.3], # sentence 3
]
),
# step 1:
torch.FloatTensor(
[
# eos w1 w2
[0.0, unk, 0.2, 0.7], # sentence 1
[0.0, unk, 0.8, 0.2], # sentence 2
[0.7, unk, 0.1, 0.2], # sentence 3
]
),
# step 2:
torch.FloatTensor(
[
# eos w1 w2
[0.10, unk, 0.50, 0.4], # sentence 1
[0.15, unk, 0.15, 0.7], # sentence 2
[0.00, unk, 0.00, 0.0], # sentence 3
]
),
# step 3:
torch.FloatTensor(
[
# eos w1 w2
[0.9, unk, 0.05, 0.05], # sentence 1
[0.0, unk, 0.00, 0.0], # sentence 2
[0.0, unk, 0.00, 0.0], # sentence 3
]
),
]
expected_scores = [
[0.6, 0.7, 0.5, 0.9], # sentence 1
[0.6, 0.8, 0.15], # sentence 2
[0.3, 0.7], # sentence 3
]
task = test_utils.TestTranslationTask.setup_task(args, d, d)
model = task.build_model(args)
scorer = SequenceScorer(task.target_dictionary)
for sample in data_itr:
hypos = task.inference_step(scorer, [model], sample)
for id, hypos_id in zip(sample["id"].tolist(), hypos):
self.assertHypoTokens(hypos_id[0], data[id]["target"])
self.assertHypoScore(hypos_id[0], expected_scores[id])
def assertHypoTokens(self, hypo, tokens):
self.assertTensorEqual(hypo["tokens"], torch.LongTensor(tokens))
def assertHypoScore(self, hypo, pos_probs, normalized=True, lenpen=1.0):
pos_scores = torch.FloatTensor(pos_probs).log()
self.assertAlmostEqual(hypo["positional_scores"], pos_scores)
self.assertEqual(pos_scores.numel(), hypo["tokens"].numel())
score = pos_scores.sum()
if normalized:
score /= pos_scores.numel() ** lenpen
self.assertLess(abs(score - hypo["score"]), 1e-6)
def assertAlmostEqual(self, t1, t2):
self.assertEqual(t1.size(), t2.size(), "size mismatch")
self.assertLess((t1 - t2).abs().max(), 1e-4)
def assertTensorEqual(self, t1, t2):
self.assertEqual(t1.size(), t2.size(), "size mismatch")
self.assertEqual(t1.ne(t2).long().sum(), 0)
if __name__ == "__main__":
unittest.main()
| EXA-1-master | exa/models/unilm-master/edgelm/tests/test_sequence_scorer.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import unittest
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from fairseq.models.transformer import TransformerModel
from tests.test_sequence_generator import get_dummy_task_and_parser
class TestInferenceDropout(unittest.TestCase):
def setUp(self):
self.task, self.parser = get_dummy_task_and_parser()
TransformerModel.add_args(self.parser)
self.args = self.parser.parse_args([])
self.args.encoder_layers = 2
self.args.decoder_layers = 1
logging.disable(logging.CRITICAL)
def tearDown(self):
logging.disable(logging.NOTSET)
def test_sets_inference_dropout_to_true(self):
self.args.retain_dropout = True
self.transformer_model = TransformerModel.build_model(self.args, self.task)
cfg = convert_namespace_to_omegaconf(self.args)
self.transformer_model.prepare_for_inference_(cfg)
assert self.transformer_model.encoder.dropout_module.apply_during_inference
assert self.transformer_model.decoder.dropout_module.apply_during_inference
for layer in self.transformer_model.encoder.layers:
assert layer.dropout_module.apply_during_inference
def test_inference_dropout_false_by_default(self):
self.transformer_model = TransformerModel.build_model(self.args, self.task)
cfg = convert_namespace_to_omegaconf(self.args)
self.transformer_model.prepare_for_inference_(cfg)
assert not self.transformer_model.encoder.dropout_module.apply_during_inference
assert not self.transformer_model.decoder.dropout_module.apply_during_inference
for layer in self.transformer_model.encoder.layers:
assert not layer.dropout_module.apply_during_inference
for layer in self.transformer_model.decoder.layers:
assert not layer.dropout_module.apply_during_inference
def test_applies_training_mode(self):
self.transformer_model = TransformerModel.build_model(self.args, self.task)
assert self.transformer_model.encoder.dropout_module.training
for layer in self.transformer_model.encoder.layers:
assert layer.dropout_module.training
self.transformer_model.eval()
assert not self.transformer_model.decoder.dropout_module.training
for layer in self.transformer_model.encoder.layers:
assert not layer.dropout_module.training
def test_retain_modules(self):
self.args.retain_dropout = True
self.args.retain_dropout_modules = [
"TransformerEncoder",
"TransformerEncoderLayer",
]
self.transformer_model = TransformerModel.build_model(self.args, self.task)
cfg = convert_namespace_to_omegaconf(self.args)
self.transformer_model.prepare_for_inference_(cfg)
assert self.transformer_model.encoder.dropout_module.apply_during_inference
assert not self.transformer_model.decoder.dropout_module.apply_during_inference
for layer in self.transformer_model.decoder.layers:
assert not layer.dropout_module.apply_during_inference
| EXA-1-master | exa/models/unilm-master/edgelm/tests/test_inference_dropout.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import torch
from fairseq.modules.multihead_attention import MultiheadAttention
class TestMultiheadAttention(unittest.TestCase):
def test_append_prev_key_padding_mask(self):
bsz = 1
src_len = 4
cases = [
# no padding mask
(None, None, None),
# current padding mask only
(
torch.tensor([[1]]).bool(),
None,
torch.tensor([[0, 0, 0, 1]]).bool(),
),
# previous padding mask only
(
None,
torch.tensor([[0, 1, 0]]).bool(),
torch.tensor([[0, 1, 0, 0]]).bool(),
),
# both padding masks
(
torch.tensor([[1]]).bool(),
torch.tensor([[0, 1, 0]]).bool(),
torch.tensor([[0, 1, 0, 1]]).bool(),
),
# prev_key_padding_mask already full
(
torch.tensor([[0, 1, 0, 1]]).bool(),
None,
torch.tensor([[0, 1, 0, 1]]).bool(),
),
# key_padding_mask already full
(
None,
torch.tensor([[0, 1, 0, 1]]).bool(),
torch.tensor([[0, 1, 0, 1]]).bool(),
),
]
for c in cases:
key_padding_mask = MultiheadAttention._append_prev_key_padding_mask(
c[0],
c[1],
batch_size=bsz,
src_len=src_len,
static_kv=False,
)
if key_padding_mask is not None:
self.assertTrue(
torch.all(torch.eq(key_padding_mask, c[2])),
f"Unexpected resultant key padding mask: {key_padding_mask}"
f" given current: {c[0]} and previous: {c[1]}",
)
self.assertEqual(key_padding_mask.size(0), bsz)
self.assertEqual(key_padding_mask.size(1), src_len)
else:
self.assertIsNone(c[2])
if __name__ == "__main__":
unittest.main()
| EXA-1-master | exa/models/unilm-master/edgelm/tests/test_multihead_attention.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import numpy as np
from fairseq.data.data_utils_fast import batch_by_size_fn
from fairseq.data.data_utils_fast import batch_by_size_vec
class TestBatchBySize(unittest.TestCase):
@classmethod
def batch_by_size_baseline(
cls,
indices,
num_tokens_vec,
max_tokens,
max_sentences,
bsz_mult,
):
"""Simple, reliable and slow implementation of batch by size """
batches = []
start = 0
while start < len(indices):
for end in range(start + 1, len(indices) + 1):
max_val = max(num_tokens_vec[pos] for pos in range(start, end))
sent_count = end - start
num_tokens = max_val * sent_count
overflow = num_tokens > max_tokens > 0 or sent_count > max_sentences > 0
terminate = overflow or end == len(indices)
if overflow:
sent_count -= 1
if terminate:
if sent_count > bsz_mult:
sent_count = sent_count - sent_count % bsz_mult
batches.append(indices[start : start + sent_count])
start = start + sent_count
break
return batches
@classmethod
def _get_error_message(
cls, max_sentences, max_tokens, bsz_mult, num_tokens_vec, validation, results
):
return f"""Reference batch_by_size implementation should produce
same output as the baseline method.
Params:
max_sentences={max_sentences},
max_tokens={max_tokens},
bsz_mult={bsz_mult},
num_tokens_vec={num_tokens_vec},
expected_batches={validation},
returned_batches={results}"""
def _compare_results(
self,
indices_len,
batch_by_size_impl,
max_sentences,
max_tokens,
bsz_mult,
num_tokens_vec,
):
indices = np.array(list(range(indices_len)))
validation = self.batch_by_size_baseline(
indices,
num_tokens_vec,
max_tokens=max_tokens,
max_sentences=max_sentences,
bsz_mult=bsz_mult,
)
results = batch_by_size_impl(
indices,
num_tokens_vec,
max_tokens=max_tokens,
max_sentences=max_sentences,
bsz_mult=bsz_mult,
)
error_msg = self._get_error_message(
max_sentences, max_tokens, bsz_mult, num_tokens_vec, validation, results
)
self.assertEqual(len(validation), len(results), error_msg)
for first, second in zip(validation, results):
self.assertTrue(np.array_equal(first, second), error_msg)
def _run_compare_with_baseline_sweep(self, batch_by_size_impl):
"""Compare reference batch_by_size implementation with batch_by_size_baseline
across a dense grid of hyperparam values"""
MAX_MAX_TOKENS = 10
NUM_TOKENS_VECS_COUNT = 5
for indices_len in [10, 11]: # try odd and even len of indices
for max_sentences in range(0, indices_len + 2):
for max_tokens in range(0, MAX_MAX_TOKENS):
for bsz_mult in range(1, max(MAX_MAX_TOKENS, indices_len) + 2):
for _ in range(NUM_TOKENS_VECS_COUNT):
num_tokens_vec = np.random.randint(
0, max_tokens + 1, size=indices_len
)
self._compare_results(
indices_len,
batch_by_size_impl,
max_sentences,
max_tokens,
bsz_mult,
num_tokens_vec,
)
class TestBatchBySizeVec(TestBatchBySize):
def test_compare_with_baseline(self):
self._run_compare_with_baseline_sweep(batch_by_size_vec)
class TestBatchBySizeFn(TestBatchBySize):
def test_compare_with_baseline(self):
def batch_by_size_fn_wrapper(
indices,
num_tokens_vec,
max_tokens,
max_sentences,
bsz_mult,
):
def num_tokens_fn(idx):
return num_tokens_vec[idx]
return batch_by_size_fn(
indices, num_tokens_fn, max_tokens, max_sentences, bsz_mult
)
self._run_compare_with_baseline_sweep(batch_by_size_fn_wrapper)
if __name__ == "__main__":
unittest.main()
| EXA-1-master | exa/models/unilm-master/edgelm/tests/test_data_utils.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import random
import string
import typing as tp
import unittest
from collections import Counter
from tempfile import NamedTemporaryFile, TemporaryDirectory
from fairseq.data import Dictionary, indexed_dataset
from fairseq.data.huffman import (
HuffmanCodeBuilder,
HuffmanCoder,
HuffmanMMapIndexedDataset,
HuffmanMMapIndexedDatasetBuilder,
)
POPULATION = string.ascii_letters + string.digits
def make_sentence() -> tp.List[str]:
length = random.randint(10, 50)
return random.choices(
population=POPULATION, k=length, weights=range(1, len(POPULATION) + 1)
)
def make_data(length=1000) -> tp.List[tp.List[str]]:
return (
[make_sentence() for _ in range(0, length)]
# add all the symbols at least once
+ [list(string.ascii_letters), list(string.digits)]
)
def make_counts(data: tp.List[tp.List[str]]) -> Counter:
return Counter([symbol for sentence in data for symbol in sentence])
def make_code_builder(data: tp.List[tp.List[str]]) -> HuffmanCodeBuilder:
builder = HuffmanCodeBuilder()
for sentence in data:
builder.add_symbols(*sentence)
return builder
class TestCodeBuilder(unittest.TestCase):
def test_code_builder_can_count(self):
data = make_data()
counts = make_counts(data)
builder = make_code_builder(data)
self.assertEqual(builder.symbols, counts)
def test_code_builder_can_add(self):
data = make_data()
counts = make_counts(data)
builder = make_code_builder(data)
new_builder = builder + builder
self.assertEqual(new_builder.symbols, counts + counts)
def test_code_builder_can_io(self):
data = make_data()
builder = make_code_builder(data)
with NamedTemporaryFile() as tmp_fp:
builder.to_file(tmp_fp.name)
other_builder = HuffmanCodeBuilder.from_file(tmp_fp.name)
self.assertEqual(builder.symbols, other_builder.symbols)
class TestCoder(unittest.TestCase):
def test_coder_can_io(self):
data = make_data()
builder = make_code_builder(data)
coder = builder.build_code()
with NamedTemporaryFile() as tmp_fp:
coder.to_file(tmp_fp.name)
other_coder = HuffmanCoder.from_file(tmp_fp.name)
self.assertEqual(coder, other_coder)
def test_coder_can_encode_decode(self):
data = make_data()
builder = make_code_builder(data)
coder = builder.build_code()
encoded = [coder.encode(sentence) for sentence in data]
decoded = [[n.symbol for n in coder.decode(enc)] for enc in encoded]
self.assertEqual(decoded, data)
unseen_data = make_data()
unseen_encoded = [coder.encode(sentence) for sentence in unseen_data]
unseen_decoded = [
[n.symbol for n in coder.decode(enc)] for enc in unseen_encoded
]
self.assertEqual(unseen_decoded, unseen_data)
def build_dataset(prefix, data, coder):
with HuffmanMMapIndexedDatasetBuilder(prefix, coder) as builder:
for sentence in data:
builder.add_item(sentence)
def sizes(data):
return [len(sentence) for sentence in data]
class TestHuffmanDataset(unittest.TestCase):
def test_huffman_can_encode_decode(self):
data = make_data()
builder = make_code_builder(data)
coder = builder.build_code()
with TemporaryDirectory() as dirname:
prefix = os.path.join(dirname, "test1")
build_dataset(prefix, data, coder)
dataset = HuffmanMMapIndexedDataset(prefix)
self.assertEqual(len(dataset), len(data))
decoded = [list(dataset.get_symbols(i)) for i in range(0, len(dataset))]
self.assertEqual(decoded, data)
data_sizes = [i.item() for i in dataset.sizes]
self.assertEqual(data_sizes, sizes(data))
def test_huffman_compresses(self):
data = make_data()
builder = make_code_builder(data)
coder = builder.build_code()
with TemporaryDirectory() as dirname:
prefix = os.path.join(dirname, "huffman")
build_dataset(prefix, data, coder)
prefix_mmap = os.path.join(dirname, "mmap")
mmap_builder = indexed_dataset.make_builder(
indexed_dataset.data_file_path(prefix_mmap),
"mmap",
vocab_size=len(POPULATION),
)
dictionary = Dictionary()
for c in POPULATION:
dictionary.add_symbol(c)
dictionary.finalize()
for sentence in data:
mmap_builder.add_item(dictionary.encode_line(" ".join(sentence)))
mmap_builder.finalize(indexed_dataset.index_file_path(prefix_mmap))
huff_size = os.stat(indexed_dataset.data_file_path(prefix)).st_size
mmap_size = os.stat(indexed_dataset.data_file_path(prefix_mmap)).st_size
self.assertLess(huff_size, mmap_size)
def test_huffman_can_append(self):
data1 = make_data()
builder = make_code_builder(data1)
coder = builder.build_code()
with TemporaryDirectory() as dirname:
prefix1 = os.path.join(dirname, "test1")
build_dataset(prefix1, data1, coder)
data2 = make_data()
prefix2 = os.path.join(dirname, "test2")
build_dataset(prefix2, data2, coder)
prefix3 = os.path.join(dirname, "test3")
with HuffmanMMapIndexedDatasetBuilder(prefix3, coder) as builder:
builder.append(prefix1)
builder.append(prefix2)
dataset = HuffmanMMapIndexedDataset(prefix3)
self.assertEqual(len(dataset), len(data1) + len(data2))
decoded1 = [list(dataset.get_symbols(i)) for i in range(0, len(data1))]
self.assertEqual(decoded1, data1)
decoded2 = [
list(dataset.get_symbols(i)) for i in range(len(data1), len(dataset))
]
self.assertEqual(decoded2, data2)
data_sizes = [i.item() for i in dataset.sizes]
self.assertEqual(data_sizes[: len(data1)], sizes(data1))
self.assertEqual(data_sizes[len(data1) : len(dataset)], sizes(data2))
if __name__ == "__main__":
unittest.main()
| EXA-1-master | exa/models/unilm-master/edgelm/tests/test_huffman.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import contextlib
import logging
import os
import tempfile
import unittest
from io import StringIO
from unittest.mock import patch
from fairseq import checkpoint_utils
from omegaconf import OmegaConf
from tests.utils import (
create_dummy_data,
preprocess_translation_data,
train_translation_model,
)
class TestCheckpointUtils(unittest.TestCase):
def setUp(self):
logging.disable(logging.CRITICAL)
def tearDown(self):
logging.disable(logging.NOTSET)
@contextlib.contextmanager
def _train_transformer(self, seed, extra_args=None):
if extra_args is None:
extra_args = []
with tempfile.TemporaryDirectory(f"_train_transformer_seed{seed}") as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir)
train_translation_model(
data_dir,
"transformer_iwslt_de_en",
[
"--encoder-layers",
"3",
"--decoder-layers",
"3",
"--encoder-embed-dim",
"8",
"--decoder-embed-dim",
"8",
"--seed",
str(seed),
]
+ extra_args,
)
yield os.path.join(data_dir, "checkpoint_last.pt")
def test_load_model_ensemble_and_task(self):
# with contextlib.redirect_stdout(StringIO()):
with self._train_transformer(seed=123) as model1:
with self._train_transformer(seed=456) as model2:
ensemble, cfg, task = checkpoint_utils.load_model_ensemble_and_task(
filenames=[model1, model2]
)
self.assertEqual(len(ensemble), 2)
# after Transformer has been migrated to Hydra, this will probably
# become cfg.common.seed
self.assertEqual(ensemble[0].args.seed, 123)
self.assertEqual(ensemble[1].args.seed, 456)
# the task from the first model should be returned
self.assertTrue("seed123" in task.cfg.data)
# last cfg is saved
self.assertEqual(cfg.common.seed, 456)
def test_prune_state_dict(self):
with contextlib.redirect_stdout(StringIO()):
extra_args = ["--encoder-layerdrop", "0.01", "--decoder-layerdrop", "0.01"]
with self._train_transformer(seed=1, extra_args=extra_args) as model:
ensemble, cfg, task = checkpoint_utils.load_model_ensemble_and_task(
filenames=[model],
arg_overrides={
"encoder_layers_to_keep": "0,2",
"decoder_layers_to_keep": "1",
},
)
self.assertEqual(len(ensemble), 1)
self.assertEqual(len(ensemble[0].encoder.layers), 2)
self.assertEqual(len(ensemble[0].decoder.layers), 1)
def test_torch_persistent_save_async(self):
state_dict = {}
filename = "async_checkpoint.pt"
with patch(f"{checkpoint_utils.__name__}.PathManager.opena") as mock_opena:
with patch(f"{checkpoint_utils.__name__}._torch_persistent_save") as mock_save:
checkpoint_utils.torch_persistent_save(
state_dict, filename, async_write=True
)
mock_opena.assert_called_with(filename, "wb")
mock_save.assert_called()
if __name__ == "__main__":
unittest.main()
| EXA-1-master | exa/models/unilm-master/edgelm/tests/test_checkpoint_utils.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import unittest
from unittest import mock
class TestIOPath(unittest.TestCase):
def test_no_iopath(self):
from .test_reproducibility import TestReproducibility
with mock.patch.dict("sys.modules", {"iopath": None}):
# reuse reproducibility tests, which are e2e tests that should cover
# most checkpoint related functionality
TestReproducibility._test_reproducibility(self, "test_reproducibility")
def test_no_supports_rename(self):
from .test_reproducibility import TestReproducibility
with mock.patch("fairseq.file_io.PathManager.supports_rename") as mock_fn:
mock_fn.return_value = False
TestReproducibility._test_reproducibility(self, "test_reproducibility")
if __name__ == "__main__":
unittest.main()
| EXA-1-master | exa/models/unilm-master/edgelm/tests/test_iopath.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import collections
import unittest
import numpy as np
from fairseq.data import ListDataset, ResamplingDataset
class TestResamplingDataset(unittest.TestCase):
def setUp(self):
self.strings = ["ab", "c", "def", "ghij"]
self.weights = [4.0, 2.0, 7.0, 1.5]
self.size_ratio = 2
self.dataset = ListDataset(
self.strings, np.array([len(s) for s in self.strings])
)
def _test_common(self, resampling_dataset, iters):
assert len(self.dataset) == len(self.strings) == len(self.weights)
assert len(resampling_dataset) == self.size_ratio * len(self.strings)
results = {"ordered_by_size": True, "max_distribution_diff": 0.0}
totalfreqs = 0
freqs = collections.defaultdict(int)
for epoch_num in range(iters):
resampling_dataset.set_epoch(epoch_num)
indices = resampling_dataset.ordered_indices()
assert len(indices) == len(resampling_dataset)
prev_size = -1
for i in indices:
cur_size = resampling_dataset.size(i)
# Make sure indices map to same sequences within an epoch
assert resampling_dataset[i] == resampling_dataset[i]
# Make sure length of sequence is correct
assert cur_size == len(resampling_dataset[i])
freqs[resampling_dataset[i]] += 1
totalfreqs += 1
if prev_size > cur_size:
results["ordered_by_size"] = False
prev_size = cur_size
assert set(freqs.keys()) == set(self.strings)
for s, weight in zip(self.strings, self.weights):
freq = freqs[s] / totalfreqs
expected_freq = weight / sum(self.weights)
results["max_distribution_diff"] = max(
results["max_distribution_diff"], abs(expected_freq - freq)
)
return results
def test_resampling_dataset_batch_by_size_false(self):
resampling_dataset = ResamplingDataset(
self.dataset,
self.weights,
size_ratio=self.size_ratio,
batch_by_size=False,
seed=0,
)
results = self._test_common(resampling_dataset, iters=1000)
# For batch_by_size = False, the batches should be returned in
# arbitrary order of size.
assert not results["ordered_by_size"]
# Allow tolerance in distribution error of 2%.
assert results["max_distribution_diff"] < 0.02
def test_resampling_dataset_batch_by_size_true(self):
resampling_dataset = ResamplingDataset(
self.dataset,
self.weights,
size_ratio=self.size_ratio,
batch_by_size=True,
seed=0,
)
results = self._test_common(resampling_dataset, iters=1000)
# For batch_by_size = True, the batches should be returned in
# increasing order of size.
assert results["ordered_by_size"]
# Allow tolerance in distribution error of 2%.
assert results["max_distribution_diff"] < 0.02
if __name__ == "__main__":
unittest.main()
| EXA-1-master | exa/models/unilm-master/edgelm/tests/test_resampling_dataset.py |
import os
import shutil
import tempfile
import unittest
from fairseq import options
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from fairseq.data.data_utils import raise_if_valid_subsets_unintentionally_ignored
from .utils import create_dummy_data, preprocess_lm_data, train_language_model
def make_lm_config(
data_dir=None,
extra_flags=None,
task="language_modeling",
arch="transformer_lm_gpt2_tiny",
):
task_args = [task]
if data_dir is not None:
task_args += [data_dir]
train_parser = options.get_training_parser()
train_args = options.parse_args_and_arch(
train_parser,
[
"--task",
*task_args,
"--arch",
arch,
"--optimizer",
"adam",
"--lr",
"0.0001",
"--max-tokens",
"500",
"--tokens-per-sample",
"500",
"--save-dir",
data_dir,
"--max-epoch",
"1",
]
+ (extra_flags or []),
)
cfg = convert_namespace_to_omegaconf(train_args)
return cfg
def write_empty_file(path):
with open(path, "w"):
pass
assert os.path.exists(path)
class TestValidSubsetsErrors(unittest.TestCase):
"""Test various filesystem, clarg combinations and ensure that error raising happens as expected"""
def _test_case(self, paths, extra_flags):
with tempfile.TemporaryDirectory() as data_dir:
[
write_empty_file(os.path.join(data_dir, f"{p}.bin"))
for p in paths + ["train"]
]
cfg = make_lm_config(data_dir, extra_flags=extra_flags)
raise_if_valid_subsets_unintentionally_ignored(cfg)
def test_default_raises(self):
with self.assertRaises(ValueError):
self._test_case(["valid", "valid1"], [])
with self.assertRaises(ValueError):
self._test_case(
["valid", "valid1", "valid2"], ["--valid-subset", "valid,valid1"]
)
def partially_specified_valid_subsets(self):
with self.assertRaises(ValueError):
self._test_case(
["valid", "valid1", "valid2"], ["--valid-subset", "valid,valid1"]
)
# Fix with ignore unused
self._test_case(
["valid", "valid1", "valid2"],
["--valid-subset", "valid,valid1", "--ignore-unused-valid-subsets"],
)
def test_legal_configs(self):
self._test_case(["valid"], [])
self._test_case(["valid", "valid1"], ["--ignore-unused-valid-subsets"])
self._test_case(["valid", "valid1"], ["--combine-val"])
self._test_case(["valid", "valid1"], ["--valid-subset", "valid,valid1"])
self._test_case(["valid", "valid1"], ["--valid-subset", "valid1"])
self._test_case(
["valid", "valid1"], ["--combine-val", "--ignore-unused-valid-subsets"]
)
self._test_case(
["valid1"], ["--valid-subset", "valid1"]
) # valid.bin doesn't need to be ignored.
def test_disable_validation(self):
self._test_case([], ["--disable-validation"])
self._test_case(["valid", "valid1"], ["--disable-validation"])
def test_dummy_task(self):
cfg = make_lm_config(task="dummy_lm")
raise_if_valid_subsets_unintentionally_ignored(cfg)
def test_masked_dummy_task(self):
cfg = make_lm_config(task="dummy_masked_lm")
raise_if_valid_subsets_unintentionally_ignored(cfg)
class TestCombineValidSubsets(unittest.TestCase):
def _train(self, extra_flags):
with self.assertLogs() as logs:
with tempfile.TemporaryDirectory("test_transformer_lm") as data_dir:
create_dummy_data(data_dir, num_examples=20)
preprocess_lm_data(data_dir)
shutil.copyfile(f"{data_dir}/valid.bin", f"{data_dir}/valid1.bin")
shutil.copyfile(f"{data_dir}/valid.idx", f"{data_dir}/valid1.idx")
train_language_model(
data_dir,
"transformer_lm",
["--max-update", "0", "--log-format", "json"] + extra_flags,
run_validation=False,
)
return [x.message for x in logs.records]
def test_combined(self):
flags = ["--combine-valid-subsets"]
logs = self._train(flags)
assert any(["valid1" in x for x in logs]) # loaded 100 examples from valid1
assert not any(["valid1_ppl" in x for x in logs]) # metrics are combined
def test_subsets(self):
flags = ["--valid-subset", "valid,valid1"]
logs = self._train(flags)
assert any(["valid_ppl" in x for x in logs]) # loaded 100 examples from valid1
assert any(["valid1_ppl" in x for x in logs]) # metrics are combined
| EXA-1-master | exa/models/unilm-master/edgelm/tests/test_valid_subset_checks.py |
EXA-1-master | exa/models/unilm-master/edgelm/tests/__init__.py |
|
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import tests.utils as test_utils
import torch
from fairseq.data import (
BacktranslationDataset,
LanguagePairDataset,
TransformEosDataset,
)
from fairseq.sequence_generator import SequenceGenerator
class TestBacktranslationDataset(unittest.TestCase):
def setUp(self):
(
self.tgt_dict,
self.w1,
self.w2,
self.src_tokens,
self.src_lengths,
self.model,
) = test_utils.sequence_generator_setup()
dummy_src_samples = self.src_tokens
self.tgt_dataset = test_utils.TestDataset(data=dummy_src_samples)
self.cuda = torch.cuda.is_available()
def _backtranslation_dataset_helper(
self,
remove_eos_from_input_src,
remove_eos_from_output_src,
):
tgt_dataset = LanguagePairDataset(
src=self.tgt_dataset,
src_sizes=self.tgt_dataset.sizes,
src_dict=self.tgt_dict,
tgt=None,
tgt_sizes=None,
tgt_dict=None,
)
generator = SequenceGenerator(
[self.model],
tgt_dict=self.tgt_dict,
max_len_a=0,
max_len_b=200,
beam_size=2,
unk_penalty=0,
)
backtranslation_dataset = BacktranslationDataset(
tgt_dataset=TransformEosDataset(
dataset=tgt_dataset,
eos=self.tgt_dict.eos(),
# remove eos from the input src
remove_eos_from_src=remove_eos_from_input_src,
),
src_dict=self.tgt_dict,
backtranslation_fn=(
lambda sample: generator.generate([self.model], sample)
),
output_collater=TransformEosDataset(
dataset=tgt_dataset,
eos=self.tgt_dict.eos(),
# if we remove eos from the input src, then we need to add it
# back to the output tgt
append_eos_to_tgt=remove_eos_from_input_src,
remove_eos_from_src=remove_eos_from_output_src,
).collater,
cuda=self.cuda,
)
dataloader = torch.utils.data.DataLoader(
backtranslation_dataset,
batch_size=2,
collate_fn=backtranslation_dataset.collater,
)
backtranslation_batch_result = next(iter(dataloader))
eos, pad, w1, w2 = self.tgt_dict.eos(), self.tgt_dict.pad(), self.w1, self.w2
# Note that we sort by src_lengths and add left padding, so actually
# ids will look like: [1, 0]
expected_src = torch.LongTensor([[w1, w2, w1, eos], [pad, pad, w1, eos]])
if remove_eos_from_output_src:
expected_src = expected_src[:, :-1]
expected_tgt = torch.LongTensor([[w1, w2, eos], [w1, w2, eos]])
generated_src = backtranslation_batch_result["net_input"]["src_tokens"]
tgt_tokens = backtranslation_batch_result["target"]
self.assertTensorEqual(expected_src, generated_src)
self.assertTensorEqual(expected_tgt, tgt_tokens)
def test_backtranslation_dataset_no_eos_in_output_src(self):
self._backtranslation_dataset_helper(
remove_eos_from_input_src=False,
remove_eos_from_output_src=True,
)
def test_backtranslation_dataset_with_eos_in_output_src(self):
self._backtranslation_dataset_helper(
remove_eos_from_input_src=False,
remove_eos_from_output_src=False,
)
def test_backtranslation_dataset_no_eos_in_input_src(self):
self._backtranslation_dataset_helper(
remove_eos_from_input_src=True,
remove_eos_from_output_src=False,
)
def assertTensorEqual(self, t1, t2):
self.assertEqual(t1.size(), t2.size(), "size mismatch")
self.assertEqual(t1.ne(t2).long().sum(), 0)
if __name__ == "__main__":
unittest.main()
| EXA-1-master | exa/models/unilm-master/edgelm/tests/test_backtranslation_dataset.py |
import contextlib
import unittest
import tempfile
from io import StringIO
import numpy as np
from tests.utils import create_dummy_data, preprocess_lm_data, train_language_model
try:
from pyarrow import plasma
from fairseq.data.plasma_utils import PlasmaView, PlasmaStore
PYARROW_AVAILABLE = True
except ImportError:
PYARROW_AVAILABLE = False
dummy_path = "dummy"
@unittest.skipUnless(PYARROW_AVAILABLE, "")
class TestPlasmaView(unittest.TestCase):
def setUp(self) -> None:
self.tmp_file = tempfile.NamedTemporaryFile() # noqa: P201
self.path = self.tmp_file.name
self.server = PlasmaStore.start(path=self.path, nbytes=10000)
self.client = plasma.connect(self.path, num_retries=10)
def tearDown(self) -> None:
self.client.disconnect()
self.tmp_file.close()
self.server.kill()
def test_two_servers_do_not_share_object_id_space(self):
data_server_1 = np.array([0, 1])
data_server_2 = np.array([2, 3])
server_2_path = self.path
with tempfile.NamedTemporaryFile() as server_1_path:
server = PlasmaStore.start(path=server_1_path.name, nbytes=10000)
arr1 = PlasmaView(
data_server_1, dummy_path, 1, plasma_path=server_1_path.name
)
assert len(arr1.client.list()) == 1
assert (arr1.array == data_server_1).all()
arr2 = PlasmaView(data_server_2, dummy_path, 1, plasma_path=server_2_path)
assert (arr2.array == data_server_2).all()
assert (arr1.array == data_server_1).all()
server.kill()
def test_hash_collision(self):
data_server_1 = np.array([0, 1])
data_server_2 = np.array([2, 3])
arr1 = PlasmaView(data_server_1, dummy_path, 1, plasma_path=self.path)
assert len(arr1.client.list()) == 1
arr2 = PlasmaView(data_server_2, dummy_path, 1, plasma_path=self.path)
assert len(arr1.client.list()) == 1
assert len(arr2.client.list()) == 1
assert (arr2.array == data_server_1).all()
# New hash key based on tuples
arr3 = PlasmaView(
data_server_2, dummy_path, (1, 12312312312, None), plasma_path=self.path
)
assert (
len(arr2.client.list()) == 2
), "No new object was created by using a novel hash key"
assert (
arr3.object_id in arr2.client.list()
), "No new object was created by using a novel hash key"
assert (
arr3.object_id in arr3.client.list()
), "No new object was created by using a novel hash key"
del arr3, arr2, arr1
@staticmethod
def _assert_view_equal(pv1, pv2):
np.testing.assert_array_equal(pv1.array, pv2.array)
def test_putting_same_array_twice(self):
data = np.array([4, 4, 4])
arr1 = PlasmaView(data, dummy_path, 1, plasma_path=self.path)
assert len(self.client.list()) == 1
arr1b = PlasmaView(
data, dummy_path, 1, plasma_path=self.path
) # should not change contents of store
arr1c = PlasmaView(
None, dummy_path, 1, plasma_path=self.path
) # should not change contents of store
assert len(self.client.list()) == 1
self._assert_view_equal(arr1, arr1b)
self._assert_view_equal(arr1, arr1c)
PlasmaView(
data, dummy_path, 2, plasma_path=self.path
) # new object id, adds new entry
assert len(self.client.list()) == 2
new_client = plasma.connect(self.path)
assert len(new_client.list()) == 2 # new client can access same objects
assert isinstance(arr1.object_id, plasma.ObjectID)
del arr1b
del arr1c
def test_plasma_store_full_raises(self):
with tempfile.NamedTemporaryFile() as new_path:
server = PlasmaStore.start(path=new_path.name, nbytes=10000)
with self.assertRaises(plasma.PlasmaStoreFull):
# 2000 floats is more than 2000 bytes
PlasmaView(
np.random.rand(10000, 1), dummy_path, 1, plasma_path=new_path.name
)
server.kill()
def test_object_id_overflow(self):
PlasmaView.get_object_id("", 2 ** 21)
def test_training_lm_plasma(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_transformer_lm") as data_dir:
create_dummy_data(data_dir)
preprocess_lm_data(data_dir)
train_language_model(
data_dir,
"transformer_lm",
["--use-plasma-view", "--plasma-path", self.path],
run_validation=True,
)
| EXA-1-master | exa/models/unilm-master/edgelm/tests/test_plasma_utils.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import contextlib
import logging
import json
import os
import random
import sys
import tempfile
import unittest
from io import StringIO
from typing import List, Dict
import torch
from fairseq import options
from fairseq_cli import eval_lm, train
from tests.utils import (
create_dummy_data,
generate_main,
preprocess_lm_data,
preprocess_summarization_data,
preprocess_translation_data,
create_laser_data_and_config_json,
train_translation_model,
train_language_model,
)
try:
import transformers # noqa
has_hf_transformers = True
except ImportError:
has_hf_transformers = False
class TestTranslation(unittest.TestCase):
def setUp(self):
logging.disable(logging.CRITICAL)
def tearDown(self):
logging.disable(logging.NOTSET)
def test_fconv(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_fconv") as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir)
train_translation_model(data_dir, "fconv_iwslt_de_en")
generate_main(data_dir)
def test_raw(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_fconv_raw") as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir, ["--dataset-impl", "raw"])
train_translation_model(
data_dir, "fconv_iwslt_de_en", ["--dataset-impl", "raw"]
)
generate_main(data_dir, ["--dataset-impl", "raw"])
def test_update_freq(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_update_freq") as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir)
train_translation_model(
data_dir, "fconv_iwslt_de_en", ["--update-freq", "3"]
)
generate_main(data_dir)
def test_max_positions(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_max_positions") as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir)
with self.assertRaises(Exception) as context:
train_translation_model(
data_dir,
"fconv_iwslt_de_en",
["--max-target-positions", "5"],
)
self.assertTrue(
"skip this example with --skip-invalid-size-inputs-valid-test"
in str(context.exception)
)
train_translation_model(
data_dir,
"fconv_iwslt_de_en",
[
"--max-target-positions",
"5",
"--skip-invalid-size-inputs-valid-test",
],
)
with self.assertRaises(Exception) as context:
generate_main(data_dir)
generate_main(data_dir, ["--skip-invalid-size-inputs-valid-test"])
def test_generation(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_sampling") as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir)
train_translation_model(data_dir, "fconv_iwslt_de_en")
generate_main(
data_dir,
[
"--sampling",
"--temperature",
"2",
"--beam",
"2",
"--nbest",
"2",
],
)
generate_main(
data_dir,
[
"--sampling",
"--sampling-topk",
"3",
"--beam",
"2",
"--nbest",
"2",
],
)
generate_main(
data_dir,
[
"--sampling",
"--sampling-topp",
"0.2",
"--beam",
"2",
"--nbest",
"2",
],
)
generate_main(
data_dir,
[
"--diversity-rate",
"0.5",
"--beam",
"6",
],
)
with self.assertRaises(ValueError):
generate_main(
data_dir,
[
"--diverse-beam-groups",
"4",
"--match-source-len",
],
)
generate_main(data_dir, ["--prefix-size", "2"])
generate_main(data_dir, ["--retain-dropout"])
def test_eval_bleu(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_eval_bleu") as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir)
train_translation_model(
data_dir,
"fconv_iwslt_de_en",
[
"--eval-bleu",
"--eval-bleu-print-samples",
"--eval-bleu-remove-bpe",
"--eval-bleu-detok",
"space",
"--eval-bleu-args",
'{"beam": 4, "min_len": 10}',
],
)
def test_lstm(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_lstm") as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir)
train_translation_model(
data_dir,
"lstm_wiseman_iwslt_de_en",
[
"--encoder-layers",
"2",
"--decoder-layers",
"2",
"--encoder-embed-dim",
"8",
"--decoder-embed-dim",
"8",
"--decoder-out-embed-dim",
"8",
],
)
generate_main(data_dir)
def test_lstm_bidirectional(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_lstm_bidirectional") as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir)
train_translation_model(
data_dir,
"lstm",
[
"--encoder-layers",
"2",
"--encoder-bidirectional",
"--encoder-hidden-size",
"16",
"--encoder-embed-dim",
"8",
"--decoder-embed-dim",
"8",
"--decoder-out-embed-dim",
"8",
"--decoder-layers",
"2",
],
)
generate_main(data_dir)
def test_transformer(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_transformer") as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir)
train_translation_model(
data_dir,
"transformer_iwslt_de_en",
[
"--encoder-layers",
"2",
"--decoder-layers",
"2",
"--encoder-embed-dim",
"8",
"--decoder-embed-dim",
"8",
],
run_validation=True,
)
generate_main(data_dir)
def test_multilingual_transformer(self):
# test with all combinations of encoder/decoder lang tokens
encoder_langtok_flags = [
[],
["--encoder-langtok", "src"],
["--encoder-langtok", "tgt"],
]
decoder_langtok_flags = [[], ["--decoder-langtok"]]
with contextlib.redirect_stdout(StringIO()):
for i in range(len(encoder_langtok_flags)):
for j in range(len(decoder_langtok_flags)):
enc_ltok_flag = encoder_langtok_flags[i]
dec_ltok_flag = decoder_langtok_flags[j]
with tempfile.TemporaryDirectory(
f"test_multilingual_transformer_{i}_{j}"
) as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir)
train_translation_model(
data_dir,
arch="multilingual_transformer",
task="multilingual_translation",
extra_flags=[
"--encoder-layers",
"2",
"--decoder-layers",
"2",
"--encoder-embed-dim",
"8",
"--decoder-embed-dim",
"8",
]
+ enc_ltok_flag
+ dec_ltok_flag,
lang_flags=["--lang-pairs", "in-out,out-in"],
run_validation=True,
extra_valid_flags=enc_ltok_flag + dec_ltok_flag,
)
generate_main(
data_dir,
extra_flags=[
"--task",
"multilingual_translation",
"--lang-pairs",
"in-out,out-in",
"--source-lang",
"in",
"--target-lang",
"out",
]
+ enc_ltok_flag
+ dec_ltok_flag,
)
@unittest.skipIf(
sys.platform.lower() == "darwin", "skip latent depth test on MacOS"
)
def test_multilingual_translation_latent_depth(self):
# test with latent depth in encoder, decoder, or both
encoder_latent_layer = [[], ["--encoder-latent-layer"]]
decoder_latent_layer = [[], ["--decoder-latent-layer"]]
with contextlib.redirect_stdout(StringIO()):
for i in range(len(encoder_latent_layer)):
for j in range(len(decoder_latent_layer)):
if i == 0 and j == 0:
continue
enc_ll_flag = encoder_latent_layer[i]
dec_ll_flag = decoder_latent_layer[j]
with tempfile.TemporaryDirectory(
f"test_multilingual_translation_latent_depth_{i}_{j}"
) as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(
data_dir, extra_flags=["--joined-dictionary"]
)
train_translation_model(
data_dir,
arch="latent_multilingual_transformer",
task="multilingual_translation_latent_depth",
extra_flags=[
"--user-dir",
"examples/latent_depth/latent_depth_src",
"--encoder-layers",
"2",
"--decoder-layers",
"2",
"--encoder-embed-dim",
"8",
"--decoder-embed-dim",
"8",
"--share-encoders",
"--share-decoders",
"--sparsity-weight",
"0.1",
]
+ enc_ll_flag
+ dec_ll_flag,
lang_flags=["--lang-pairs", "in-out,out-in"],
run_validation=True,
extra_valid_flags=[
"--user-dir",
"examples/latent_depth/latent_depth_src",
]
+ enc_ll_flag
+ dec_ll_flag,
)
generate_main(
data_dir,
extra_flags=[
"--user-dir",
"examples/latent_depth/latent_depth_src",
"--task",
"multilingual_translation_latent_depth",
"--lang-pairs",
"in-out,out-in",
"--source-lang",
"in",
"--target-lang",
"out",
]
+ enc_ll_flag
+ dec_ll_flag,
)
def test_translation_multi_simple_epoch(self):
# test with all combinations of encoder/decoder lang tokens
encoder_langtok_flags = [
[],
["--encoder-langtok", "src"],
["--encoder-langtok", "tgt"],
]
decoder_langtok_flags = [[], ["--decoder-langtok"]]
with contextlib.redirect_stdout(StringIO()):
for i in range(len(encoder_langtok_flags)):
for j in range(len(decoder_langtok_flags)):
enc_ltok_flag = encoder_langtok_flags[i]
dec_ltok_flag = decoder_langtok_flags[j]
with tempfile.TemporaryDirectory(
f"test_translation_multi_simple_epoch_{i}_{j}"
) as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(
data_dir, extra_flags=["--joined-dictionary"]
)
train_translation_model(
data_dir,
arch="transformer",
task="translation_multi_simple_epoch",
extra_flags=[
"--encoder-layers",
"2",
"--decoder-layers",
"2",
"--encoder-embed-dim",
"8",
"--decoder-embed-dim",
"8",
"--sampling-method",
"temperature",
"--sampling-temperature",
"1.5",
"--virtual-epoch-size",
"1000",
]
+ enc_ltok_flag
+ dec_ltok_flag,
lang_flags=["--lang-pairs", "in-out,out-in"],
run_validation=True,
extra_valid_flags=enc_ltok_flag + dec_ltok_flag,
)
generate_main(
data_dir,
extra_flags=[
"--task",
"translation_multi_simple_epoch",
"--lang-pairs",
"in-out,out-in",
"--source-lang",
"in",
"--target-lang",
"out",
]
+ enc_ltok_flag
+ dec_ltok_flag,
)
def test_translation_multi_simple_epoch_no_vepoch(self):
# test with all combinations of encoder/decoder lang tokens
with contextlib.redirect_stdout(StringIO()):
enc_ltok_flag = ["--encoder-langtok", "src"]
dec_ltok_flag = ["--decoder-langtok"]
with tempfile.TemporaryDirectory(
"test_translation_multi_simple_epoch_dict"
) as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir, extra_flags=[])
train_translation_model(
data_dir,
arch="transformer",
task="translation_multi_simple_epoch",
extra_flags=[
"--encoder-layers",
"2",
"--decoder-layers",
"2",
"--encoder-embed-dim",
"8",
"--decoder-embed-dim",
"8",
"--sampling-method",
"temperature",
"--sampling-temperature",
"1.5",
]
+ enc_ltok_flag
+ dec_ltok_flag,
lang_flags=["--lang-pairs", "in-out"],
run_validation=True,
extra_valid_flags=enc_ltok_flag + dec_ltok_flag,
)
generate_main(
data_dir,
extra_flags=[
"--task",
"translation_multi_simple_epoch",
"--lang-pairs",
"in-out",
"--source-lang",
"in",
"--target-lang",
"out",
]
+ enc_ltok_flag
+ dec_ltok_flag,
)
def test_translation_multi_simple_epoch_dicts(self):
# test with all combinations of encoder/decoder lang tokens
with contextlib.redirect_stdout(StringIO()):
enc_ltok_flag = ["--encoder-langtok", "src"]
dec_ltok_flag = ["--decoder-langtok"]
with tempfile.TemporaryDirectory(
"test_translation_multi_simple_epoch_dict"
) as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir, extra_flags=[])
train_translation_model(
data_dir,
arch="transformer",
task="translation_multi_simple_epoch",
extra_flags=[
"--encoder-layers",
"2",
"--decoder-layers",
"2",
"--encoder-embed-dim",
"8",
"--decoder-embed-dim",
"8",
"--sampling-method",
"temperature",
"--sampling-temperature",
"1.5",
"--virtual-epoch-size",
"1000",
]
+ enc_ltok_flag
+ dec_ltok_flag,
lang_flags=["--lang-pairs", "in-out"],
run_validation=True,
extra_valid_flags=enc_ltok_flag + dec_ltok_flag,
)
generate_main(
data_dir,
extra_flags=[
"--task",
"translation_multi_simple_epoch",
"--lang-pairs",
"in-out",
"--source-lang",
"in",
"--target-lang",
"out",
]
+ enc_ltok_flag
+ dec_ltok_flag,
)
def test_translation_multi_simple_epoch_src_tgt_dict_spec(self):
# test the specification of explicit --src-dict and --tgt-dict
with contextlib.redirect_stdout(StringIO()):
enc_ltok_flag = ["--encoder-langtok", "src"]
dec_ltok_flag = ["--decoder-langtok"]
with tempfile.TemporaryDirectory(
"test_translation_multi_simple_epoch_dict"
) as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir, extra_flags=[])
train_translation_model(
data_dir,
arch="transformer",
task="translation_multi_simple_epoch",
extra_flags=[
"--source-dict",
f"{data_dir}/dict.in.txt",
"--target-dict",
f"{data_dir}/dict.out.txt",
"--encoder-layers",
"2",
"--decoder-layers",
"2",
"--encoder-embed-dim",
"8",
"--decoder-embed-dim",
"8",
"--sampling-method",
"temperature",
"--sampling-temperature",
"1.5",
"--virtual-epoch-size",
"1000",
]
+ enc_ltok_flag
+ dec_ltok_flag,
lang_flags=["--lang-pairs", "in-out"],
run_validation=True,
extra_valid_flags=enc_ltok_flag + dec_ltok_flag,
)
generate_main(
data_dir,
extra_flags=[
"--task",
"translation_multi_simple_epoch",
"--lang-pairs",
"in-out",
"--source-lang",
"in",
"--target-lang",
"out",
]
+ enc_ltok_flag
+ dec_ltok_flag,
)
def test_transformer_cross_self_attention(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory(
"test_transformer_cross_self_attention"
) as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir)
train_translation_model(
data_dir,
"transformer_iwslt_de_en",
[
"--encoder-layers",
"2",
"--decoder-layers",
"2",
"--encoder-embed-dim",
"8",
"--decoder-embed-dim",
"8",
"--decoder-embed-dim",
"8",
"--no-cross-attention",
"--cross-self-attention",
],
run_validation=True,
)
generate_main(data_dir, extra_flags=[])
def test_transformer_pointer_generator(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory(
"test_transformer_pointer_generator"
) as data_dir:
create_dummy_data(data_dir)
preprocess_summarization_data(data_dir)
train_translation_model(
data_dir,
"transformer_pointer_generator",
extra_flags=[
"--user-dir",
"examples/pointer_generator/pointer_generator_src",
"--encoder-layers",
"2",
"--decoder-layers",
"2",
"--encoder-embed-dim",
"8",
"--decoder-embed-dim",
"8",
"--alignment-layer",
"-1",
"--alignment-heads",
"1",
"--source-position-markers",
"0",
],
run_validation=True,
extra_valid_flags=[
"--user-dir",
"examples/pointer_generator/pointer_generator_src",
],
)
generate_main(
data_dir,
extra_flags=[
"--user-dir",
"examples/pointer_generator/pointer_generator_src",
],
)
def test_lightconv(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_lightconv") as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir)
train_translation_model(
data_dir,
"lightconv_iwslt_de_en",
[
"--encoder-conv-type",
"lightweight",
"--decoder-conv-type",
"lightweight",
"--encoder-embed-dim",
"8",
"--decoder-embed-dim",
"8",
],
)
generate_main(data_dir)
def test_dynamicconv(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_dynamicconv") as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir)
train_translation_model(
data_dir,
"lightconv_iwslt_de_en",
[
"--encoder-conv-type",
"dynamic",
"--decoder-conv-type",
"dynamic",
"--encoder-embed-dim",
"8",
"--decoder-embed-dim",
"8",
],
)
generate_main(data_dir)
def test_cmlm_transformer(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_cmlm_transformer") as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir, ["--joined-dictionary"])
train_translation_model(
data_dir,
"cmlm_transformer",
[
"--apply-bert-init",
"--criterion",
"nat_loss",
"--noise",
"full_mask",
"--pred-length-offset",
"--length-loss-factor",
"0.1",
],
task="translation_lev",
)
generate_main(
data_dir,
[
"--task",
"translation_lev",
"--iter-decode-max-iter",
"9",
"--iter-decode-eos-penalty",
"0",
"--print-step",
],
)
def test_nonautoregressive_transformer(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory(
"test_nonautoregressive_transformer"
) as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir, ["--joined-dictionary"])
train_translation_model(
data_dir,
"nonautoregressive_transformer",
[
"--apply-bert-init",
"--src-embedding-copy",
"--criterion",
"nat_loss",
"--noise",
"full_mask",
"--pred-length-offset",
"--length-loss-factor",
"0.1",
],
task="translation_lev",
)
generate_main(
data_dir,
[
"--task",
"translation_lev",
"--iter-decode-max-iter",
"0",
"--iter-decode-eos-penalty",
"0",
"--print-step",
],
)
# def test_nat_crf_transformer(self):
# with contextlib.redirect_stdout(StringIO()):
# with tempfile.TemporaryDirectory('test_nat_crf_transformer') as data_dir:
# create_dummy_data(data_dir)
# preprocess_translation_data(data_dir, ['--joined-dictionary'])
# train_translation_model(data_dir, 'nacrf_transformer', [
# '--apply-bert-init', '--criterion',
# 'nat_loss', '--noise', 'full_mask', '--pred-length-offset',
# '--length-loss-factor', '0.1',
# '--word-ins-loss-factor', '0.5',
# '--crf-lowrank-approx', '1',
# '--crf-beam-approx', '1'
# ], task='translation_lev')
# generate_main(data_dir, [
# '--task', 'translation_lev',
# '--iter-decode-max-iter', '0',
# '--iter-decode-eos-penalty', '0',
# '--print-step',
# ])
def test_iterative_nonautoregressive_transformer(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory(
"test_iterative_nonautoregressive_transformer"
) as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir, ["--joined-dictionary"])
train_translation_model(
data_dir,
"iterative_nonautoregressive_transformer",
[
"--apply-bert-init",
"--src-embedding-copy",
"--criterion",
"nat_loss",
"--noise",
"full_mask",
"--stochastic-approx",
"--dae-ratio",
"0.5",
"--train-step",
"3",
],
task="translation_lev",
)
generate_main(
data_dir,
[
"--task",
"translation_lev",
"--iter-decode-max-iter",
"9",
"--iter-decode-eos-penalty",
"0",
"--print-step",
],
)
def test_insertion_transformer(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_insertion_transformer") as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir, ["--joined-dictionary"])
train_translation_model(
data_dir,
"insertion_transformer",
[
"--apply-bert-init",
"--criterion",
"nat_loss",
"--noise",
"random_mask",
],
task="translation_lev",
)
generate_main(
data_dir,
[
"--task",
"translation_lev",
"--iter-decode-max-iter",
"9",
"--iter-decode-eos-penalty",
"0",
"--print-step",
],
)
def test_mixture_of_experts(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_moe") as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir)
train_translation_model(
data_dir,
"transformer_iwslt_de_en",
[
"--task",
"translation_moe",
"--user-dir",
"examples/translation_moe/translation_moe_src",
"--method",
"hMoElp",
"--mean-pool-gating-network",
"--num-experts",
"3",
"--encoder-layers",
"2",
"--decoder-layers",
"2",
"--encoder-embed-dim",
"8",
"--decoder-embed-dim",
"8",
],
)
generate_main(
data_dir,
[
"--task",
"translation_moe",
"--user-dir",
"examples/translation_moe/translation_moe_src",
"--method",
"hMoElp",
"--mean-pool-gating-network",
"--num-experts",
"3",
"--gen-expert",
"0",
],
)
def test_alignment(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_alignment") as data_dir:
create_dummy_data(data_dir, alignment=True)
preprocess_translation_data(data_dir, ["--align-suffix", "align"])
train_translation_model(
data_dir,
"transformer_align",
[
"--encoder-layers",
"2",
"--decoder-layers",
"2",
"--encoder-embed-dim",
"8",
"--decoder-embed-dim",
"8",
"--load-alignments",
"--alignment-layer",
"1",
"--criterion",
"label_smoothed_cross_entropy_with_alignment",
],
run_validation=True,
)
generate_main(data_dir)
def test_laser_lstm(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_laser_lstm") as data_dir:
laser_config_file = create_laser_data_and_config_json(data_dir)
train_translation_model(
laser_config_file.name,
"laser_lstm",
[
"--user-dir",
"examples/laser/laser_src",
"--weighting-alpha",
"0.3",
"--encoder-bidirectional",
"--encoder-hidden-size",
"512",
"--encoder-layers",
"5",
"--decoder-layers",
"1",
"--encoder-embed-dim",
"320",
"--decoder-embed-dim",
"320",
"--decoder-lang-embed-dim",
"32",
"--save-dir",
data_dir,
"--disable-validation",
],
task="laser",
lang_flags=[],
)
def test_laser_transformer(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_laser_transformer") as data_dir:
laser_config_file = create_laser_data_and_config_json(data_dir)
train_translation_model(
laser_config_file.name,
"laser_transformer",
[
"--user-dir",
"examples/laser/laser_src",
"--weighting-alpha",
"0.3",
"--encoder-embed-dim",
"320",
"--decoder-embed-dim",
"320",
"--decoder-lang-embed-dim",
"32",
"--save-dir",
data_dir,
"--disable-validation",
],
task="laser",
lang_flags=[],
)
def test_alignment_full_context(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_alignment") as data_dir:
create_dummy_data(data_dir, alignment=True)
preprocess_translation_data(data_dir, ["--align-suffix", "align"])
train_translation_model(
data_dir,
"transformer_align",
[
"--encoder-layers",
"2",
"--decoder-layers",
"2",
"--encoder-embed-dim",
"8",
"--decoder-embed-dim",
"8",
"--load-alignments",
"--alignment-layer",
"1",
"--criterion",
"label_smoothed_cross_entropy_with_alignment",
"--full-context-alignment",
],
run_validation=True,
)
generate_main(data_dir)
def test_transformer_layerdrop(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_transformer_layerdrop") as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir)
train_translation_model(
data_dir,
"transformer_iwslt_de_en",
[
"--encoder-layers",
"3",
"--decoder-layers",
"3",
"--encoder-embed-dim",
"8",
"--decoder-embed-dim",
"8",
"--encoder-layerdrop",
"0.01",
"--decoder-layerdrop",
"0.01",
],
)
generate_main(data_dir)
generate_main(
data_dir,
[
"--model-overrides",
"{'encoder_layers_to_keep':'0,2','decoder_layers_to_keep':'1'}",
],
)
class TestStories(unittest.TestCase):
def setUp(self):
logging.disable(logging.CRITICAL)
def tearDown(self):
logging.disable(logging.NOTSET)
def test_fconv_self_att_wp(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_fconv_self_att_wp") as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir)
config = [
"--encoder-layers",
"[(128, 3)] * 2",
"--decoder-layers",
"[(128, 3)] * 2",
"--decoder-attention",
"True",
"--encoder-attention",
"False",
"--gated-attention",
"True",
"--self-attention",
"True",
"--project-input",
"True",
"--encoder-embed-dim",
"8",
"--decoder-embed-dim",
"8",
"--decoder-out-embed-dim",
"8",
"--multihead-self-attention-nheads",
"2",
]
train_translation_model(data_dir, "fconv_self_att_wp", config)
generate_main(data_dir)
# fusion model
os.rename(
os.path.join(data_dir, "checkpoint_last.pt"),
os.path.join(data_dir, "pretrained.pt"),
)
config.extend(
[
"--pretrained",
"True",
"--pretrained-checkpoint",
os.path.join(data_dir, "pretrained.pt"),
"--save-dir",
os.path.join(data_dir, "fusion_model"),
]
)
train_translation_model(data_dir, "fconv_self_att_wp", config)
class TestLanguageModeling(unittest.TestCase):
def setUp(self):
logging.disable(logging.CRITICAL)
def tearDown(self):
logging.disable(logging.NOTSET)
def test_fconv_lm(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_fconv_lm") as data_dir:
create_dummy_data(data_dir)
preprocess_lm_data(data_dir)
train_language_model(
data_dir,
"fconv_lm",
[
"--decoder-layers",
"[(850, 3)] * 2 + [(1024,4)]",
"--decoder-embed-dim",
"280",
"--optimizer",
"nag",
"--lr",
"0.1",
],
)
eval_lm_main(data_dir)
generate_main(
data_dir,
[
"--task",
"language_modeling",
"--sample-break-mode",
"eos",
"--tokens-per-sample",
"500",
],
)
def test_transformer_lm(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_transformer_lm") as data_dir:
create_dummy_data(data_dir)
preprocess_lm_data(data_dir)
train_language_model(
data_dir,
"transformer_lm",
["--add-bos-token", '--nval', '1'],
run_validation=True,
)
eval_lm_main(data_dir)
eval_lm_main(data_dir, extra_flags=["--context-window", "25"])
generate_main(
data_dir,
[
"--task",
"language_modeling",
"--sample-break-mode",
"eos",
"--tokens-per-sample",
"500",
],
)
def test_normformer_lm(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_transformer_lm") as data_dir:
create_dummy_data(data_dir)
preprocess_lm_data(data_dir)
train_language_model(
data_dir,
"transformer_lm",
["--add-bos-token", '--nval', '1', '--scale-fc', '--scale-heads', '--scale-attn', '--scale-fc'],
run_validation=True,
)
eval_lm_main(data_dir)
eval_lm_main(data_dir, extra_flags=["--context-window", "25"])
generate_main(
data_dir,
[
"--task",
"language_modeling",
"--sample-break-mode",
"eos",
"--tokens-per-sample",
"500",
],
)
def test_transformer_lm_with_adaptive_softmax(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory(
"test_transformer_lm_with_adaptive_softmax"
) as data_dir:
create_dummy_data(data_dir)
preprocess_lm_data(data_dir)
train_language_model(
data_dir,
"transformer_lm",
[
"--add-bos-token",
"--criterion",
"adaptive_loss",
"--adaptive-softmax-cutoff",
"5,10,15",
],
run_validation=True,
)
eval_lm_main(data_dir)
generate_main(
data_dir,
[
"--task",
"language_modeling",
"--sample-break-mode",
"eos",
"--tokens-per-sample",
"500",
],
)
def test_lightconv_lm(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_lightconv_lm") as data_dir:
create_dummy_data(data_dir)
preprocess_lm_data(data_dir)
train_language_model(
data_dir,
"lightconv_lm",
["--add-bos-token"],
run_validation=True,
)
eval_lm_main(data_dir)
generate_main(
data_dir,
[
"--task",
"language_modeling",
"--sample-break-mode",
"eos",
"--tokens-per-sample",
"500",
],
)
def test_lstm_lm(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_lstm_lm") as data_dir:
create_dummy_data(data_dir)
preprocess_lm_data(data_dir)
train_language_model(
data_dir,
"lstm_lm",
["--add-bos-token"],
run_validation=True,
)
eval_lm_main(data_dir)
generate_main(
data_dir,
[
"--task",
"language_modeling",
"--sample-break-mode",
"eos",
"--tokens-per-sample",
"500",
],
)
def test_lstm_lm_residuals(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_lstm_lm_residuals") as data_dir:
create_dummy_data(data_dir)
preprocess_lm_data(data_dir)
train_language_model(
data_dir,
"lstm_lm",
["--add-bos-token", "--residuals"],
run_validation=True,
)
eval_lm_main(data_dir)
generate_main(
data_dir,
[
"--task",
"language_modeling",
"--sample-break-mode",
"eos",
"--tokens-per-sample",
"500",
],
)
@unittest.skipIf(not has_hf_transformers, "skip test if transformers is missing")
def test_transformer_xl_bptt_lm(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_transformer_xl_bptt_lm") as data_dir:
create_dummy_data(data_dir)
preprocess_lm_data(data_dir)
task_flags = [
"--user-dir",
"examples/truncated_bptt",
"--task",
"truncated_bptt_lm",
"--batch-size",
"2",
"--tokens-per-sample",
"50",
]
train_language_model(
data_dir=data_dir,
arch="transformer_xl",
extra_flags=task_flags
+ [
"--n-layer",
"2",
],
task="truncated_bptt_lm",
run_validation=True,
extra_valid_flags=task_flags,
)
eval_lm_main(data_dir, extra_flags=task_flags)
# Train with activation offloading
train_language_model(
data_dir=data_dir,
arch="transformer_xl",
extra_flags=task_flags
+ [
"--n-layer",
"2",
"--offload-activations",
],
task="truncated_bptt_lm",
run_validation=True,
extra_valid_flags=task_flags,
)
class TestMaskedLanguageModel(unittest.TestCase):
def setUp(self):
logging.disable(logging.CRITICAL)
def tearDown(self):
logging.disable(logging.NOTSET)
def test_legacy_masked_lm(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_legacy_mlm") as data_dir:
create_dummy_data(data_dir)
preprocess_lm_data(data_dir)
train_legacy_masked_language_model(data_dir, "masked_lm")
def test_roberta_masked_lm(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_roberta_mlm") as data_dir:
create_dummy_data(data_dir)
preprocess_lm_data(data_dir)
train_masked_lm(
data_dir, "roberta_base", extra_flags=["--encoder-layers", "2"]
)
def test_roberta_sentence_prediction(self):
num_classes = 3
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_roberta_head") as data_dir:
create_dummy_roberta_head_data(data_dir, num_classes=num_classes)
preprocess_lm_data(os.path.join(data_dir, "input0"))
preprocess_lm_data(os.path.join(data_dir, "label"))
train_roberta_head(data_dir, "roberta_base", num_classes=num_classes)
def test_roberta_regression_single(self):
num_classes = 1
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory(
"test_roberta_regression_single"
) as data_dir:
create_dummy_roberta_head_data(
data_dir, num_classes=num_classes, regression=True
)
preprocess_lm_data(os.path.join(data_dir, "input0"))
train_roberta_head(
data_dir,
"roberta_base",
num_classes=num_classes,
extra_flags=["--regression-target"],
)
def test_roberta_regression_multiple(self):
num_classes = 3
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory(
"test_roberta_regression_multiple"
) as data_dir:
create_dummy_roberta_head_data(
data_dir, num_classes=num_classes, regression=True
)
preprocess_lm_data(os.path.join(data_dir, "input0"))
train_roberta_head(
data_dir,
"roberta_base",
num_classes=num_classes,
extra_flags=["--regression-target"],
)
def test_linformer_roberta_masked_lm(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_linformer_roberta_mlm") as data_dir:
create_dummy_data(data_dir)
preprocess_lm_data(data_dir)
train_masked_lm(
data_dir,
"linformer_roberta_base",
extra_flags=[
"--user-dir",
"examples/linformer/linformer_src",
"--encoder-layers",
"2",
],
)
def test_linformer_roberta_sentence_prediction(self):
num_classes = 3
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_linformer_roberta_head") as data_dir:
create_dummy_roberta_head_data(data_dir, num_classes=num_classes)
preprocess_lm_data(os.path.join(data_dir, "input0"))
preprocess_lm_data(os.path.join(data_dir, "label"))
train_roberta_head(
data_dir,
"linformer_roberta_base",
num_classes=num_classes,
extra_flags=["--user-dir", "examples/linformer/linformer_src"],
)
def test_linformer_roberta_regression_single(self):
num_classes = 1
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory(
"test_linformer_roberta_regression_single"
) as data_dir:
create_dummy_roberta_head_data(
data_dir, num_classes=num_classes, regression=True
)
preprocess_lm_data(os.path.join(data_dir, "input0"))
train_roberta_head(
data_dir,
"linformer_roberta_base",
num_classes=num_classes,
extra_flags=[
"--regression-target",
"--user-dir",
"examples/linformer/linformer_src",
],
)
def test_linformer_roberta_regression_multiple(self):
num_classes = 3
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory(
"test_linformer_roberta_regression_multiple"
) as data_dir:
create_dummy_roberta_head_data(
data_dir, num_classes=num_classes, regression=True
)
preprocess_lm_data(os.path.join(data_dir, "input0"))
train_roberta_head(
data_dir,
"linformer_roberta_base",
num_classes=num_classes,
extra_flags=[
"--regression-target",
"--user-dir",
"examples/linformer/linformer_src",
],
)
def _test_pretrained_masked_lm_for_translation(self, learned_pos_emb, encoder_only):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_mlm") as data_dir:
create_dummy_data(data_dir)
preprocess_lm_data(data_dir)
train_legacy_masked_language_model(
data_dir,
arch="masked_lm",
extra_args=("--encoder-learned-pos",) if learned_pos_emb else (),
)
with tempfile.TemporaryDirectory(
"test_mlm_translation"
) as translation_dir:
create_dummy_data(translation_dir)
preprocess_translation_data(
translation_dir, extra_flags=["--joined-dictionary"]
)
# Train transformer with data_dir/checkpoint_last.pt
train_translation_model(
translation_dir,
arch="transformer_from_pretrained_xlm",
extra_flags=[
"--decoder-layers",
"1",
"--decoder-embed-dim",
"32",
"--decoder-attention-heads",
"1",
"--decoder-ffn-embed-dim",
"32",
"--encoder-layers",
"1",
"--encoder-embed-dim",
"32",
"--encoder-attention-heads",
"1",
"--encoder-ffn-embed-dim",
"32",
"--pretrained-xlm-checkpoint",
"{}/checkpoint_last.pt".format(data_dir),
"--activation-fn",
"gelu",
"--max-source-positions",
"500",
"--max-target-positions",
"500",
]
+ (
["--encoder-learned-pos", "--decoder-learned-pos"]
if learned_pos_emb
else []
)
+ (["--init-encoder-only"] if encoder_only else []),
task="translation_from_pretrained_xlm",
)
def test_pretrained_masked_lm_for_translation_learned_pos_emb(self):
self._test_pretrained_masked_lm_for_translation(True, False)
def test_pretrained_masked_lm_for_translation_sinusoidal_pos_emb(self):
self._test_pretrained_masked_lm_for_translation(False, False)
def test_pretrained_masked_lm_for_translation_encoder_only(self):
self._test_pretrained_masked_lm_for_translation(True, True)
def test_r4f_roberta(self):
num_classes = 3
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_r4f_roberta_head") as data_dir:
create_dummy_roberta_head_data(data_dir, num_classes=num_classes)
preprocess_lm_data(os.path.join(data_dir, "input0"))
preprocess_lm_data(os.path.join(data_dir, "label"))
train_roberta_head(
data_dir,
"roberta_base",
num_classes=num_classes,
extra_flags=[
"--user-dir",
"examples/rxf/rxf_src",
"--criterion",
"sentence_prediction_r3f",
"--spectral-norm-classification-head",
],
)
def train_legacy_masked_language_model(data_dir, arch, extra_args=()):
train_parser = options.get_training_parser()
# TODO: langs should be in and out right?
train_args = options.parse_args_and_arch(
train_parser,
[
"--task",
"cross_lingual_lm",
data_dir,
"--arch",
arch,
# Optimizer args
"--optimizer",
"adam",
"--lr-scheduler",
"reduce_lr_on_plateau",
"--lr-shrink",
"0.5",
"--lr",
"0.0001",
"--stop-min-lr",
"1e-09",
# dropout, attention args
"--dropout",
"0.1",
"--attention-dropout",
"0.1",
# MLM args
"--criterion",
"legacy_masked_lm_loss",
"--masked-lm-only",
"--monolingual-langs",
"in,out",
"--num-segment",
"5",
# Transformer args: use a small transformer model for fast training
"--encoder-layers",
"1",
"--encoder-embed-dim",
"32",
"--encoder-attention-heads",
"1",
"--encoder-ffn-embed-dim",
"32",
# Other training args
"--max-tokens",
"500",
"--tokens-per-sample",
"500",
"--save-dir",
data_dir,
"--max-epoch",
"1",
"--no-progress-bar",
"--distributed-world-size",
"1",
"--dataset-impl",
"raw",
"--num-workers",
"0",
]
+ list(extra_args),
)
train.main(train_args)
class TestOptimizers(unittest.TestCase):
def setUp(self):
logging.disable(logging.CRITICAL)
def tearDown(self):
logging.disable(logging.NOTSET)
def test_optimizers(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_optimizers") as data_dir:
# Use just a bit of data and tiny model to keep this test runtime reasonable
create_dummy_data(data_dir, num_examples=10, maxlen=5)
preprocess_translation_data(data_dir)
optimizers = ["adafactor", "adam", "nag", "adagrad", "sgd", "adadelta"]
last_checkpoint = os.path.join(data_dir, "checkpoint_last.pt")
for optimizer in optimizers:
if os.path.exists(last_checkpoint):
os.remove(last_checkpoint)
train_translation_model(
data_dir,
"lstm",
[
"--required-batch-size-multiple",
"1",
"--encoder-layers",
"1",
"--encoder-hidden-size",
"32",
"--decoder-layers",
"1",
"--optimizer",
optimizer,
],
)
generate_main(data_dir)
def read_last_log_entry(
logs: List[logging.LogRecord], logger_name: str
) -> Dict[str, float]:
for x in reversed(logs):
if x.name == logger_name:
return json.loads(x.message)
raise ValueError(f"No entries from {logger_name} found in captured logs")
class TestActivationCheckpointing(unittest.TestCase):
base_flags = [
"--encoder-layers",
"2",
"--decoder-layers",
"2",
"--encoder-embed-dim",
"8",
"--decoder-embed-dim",
"8",
"--restore-file",
"x.pt",
"--log-format",
"json",
"--log-interval",
"1",
"--max-update",
"2",
]
def _train(self, data_dir, extra_flags):
with self.assertLogs() as logs:
train_translation_model(
data_dir,
"transformer_iwslt_de_en",
self.base_flags + extra_flags,
run_validation=True,
extra_valid_flags=["--log-format", "json"],
)
return logs.records
def test_activation_offloading_does_not_change_metrics(self):
"""Neither ----checkpoint-activations nor --offload-activations should change loss"""
with tempfile.TemporaryDirectory("test_transformer_with_act_cpt") as data_dir:
with self.assertLogs():
create_dummy_data(data_dir, num_examples=20)
preprocess_translation_data(data_dir)
offload_logs = self._train(data_dir, ["--offload-activations"])
baseline_logs = self._train(data_dir, [])
assert len(baseline_logs) == len(offload_logs)
baseline_valid_stats = read_last_log_entry(baseline_logs, "valid")
offload_valid_stats = read_last_log_entry(offload_logs, "valid")
baseline_train_stats = read_last_log_entry(baseline_logs, "train")
offload_train_stats = read_last_log_entry(offload_logs, "train")
assert (
baseline_train_stats["train_loss"] == offload_train_stats["train_loss"]
)
assert (
baseline_valid_stats["valid_loss"] == offload_valid_stats["valid_loss"]
)
def test_activation_checkpointing_does_not_change_metrics(self):
"""--checkpoint-activations should not change loss"""
with tempfile.TemporaryDirectory("test_transformer_with_act_cpt") as data_dir:
with self.assertLogs():
create_dummy_data(data_dir, num_examples=20)
preprocess_translation_data(data_dir)
ckpt_logs = self._train(data_dir, ["--checkpoint-activations"])
baseline_logs = self._train(data_dir, [])
assert len(baseline_logs) == len(ckpt_logs)
baseline_train_stats = read_last_log_entry(baseline_logs, "train")
ckpt_train_stats = read_last_log_entry(ckpt_logs, "train")
assert baseline_train_stats["train_loss"] == ckpt_train_stats["train_loss"]
baseline_valid_stats = read_last_log_entry(baseline_logs, "valid")
ckpt_valid_stats = read_last_log_entry(ckpt_logs, "valid")
assert baseline_valid_stats["valid_loss"] == ckpt_valid_stats["valid_loss"]
def create_dummy_roberta_head_data(
data_dir, num_examples=100, maxlen=10, num_classes=2, regression=False
):
input_dir = "input0"
def _create_dummy_data(filename):
random_data = torch.rand(num_examples * maxlen)
input_data = 97 + torch.floor(26 * random_data).int()
if regression:
output_data = torch.rand((num_examples, num_classes))
else:
output_data = 1 + torch.floor(num_classes * torch.rand(num_examples)).int()
with open(os.path.join(data_dir, input_dir, filename + ".out"), "w") as f_in:
label_filename = filename + ".label" if regression else filename + ".out"
with open(os.path.join(data_dir, "label", label_filename), "w") as f_out:
offset = 0
for i in range(num_examples):
# write example input
ex_len = random.randint(1, maxlen)
ex_str = " ".join(map(chr, input_data[offset : offset + ex_len]))
print(ex_str, file=f_in)
# write example label
if regression:
class_str = " ".join(map(str, output_data[i].numpy()))
print(class_str, file=f_out)
else:
class_str = "class{}".format(output_data[i])
print(class_str, file=f_out)
offset += ex_len
os.mkdir(os.path.join(data_dir, input_dir))
os.mkdir(os.path.join(data_dir, "label"))
_create_dummy_data("train")
_create_dummy_data("valid")
_create_dummy_data("test")
def train_masked_lm(data_dir, arch, extra_flags=None):
train_parser = options.get_training_parser()
train_args = options.parse_args_and_arch(
train_parser,
[
"--task",
"masked_lm",
data_dir,
"--arch",
arch,
"--optimizer",
"adam",
"--lr",
"0.0001",
"--criterion",
"masked_lm",
"--batch-size",
"500",
"--save-dir",
data_dir,
"--max-epoch",
"1",
"--no-progress-bar",
"--distributed-world-size",
"1",
"--ddp-backend",
"no_c10d",
"--num-workers",
"0",
]
+ (extra_flags or []),
)
train.main(train_args)
def train_roberta_head(data_dir, arch, num_classes=2, extra_flags=None):
train_parser = options.get_training_parser()
train_args = options.parse_args_and_arch(
train_parser,
[
"--task",
"sentence_prediction",
data_dir,
"--arch",
arch,
"--encoder-layers",
"2",
"--num-classes",
str(num_classes),
"--optimizer",
"adam",
"--lr",
"0.0001",
"--criterion",
"sentence_prediction",
"--max-tokens",
"500",
"--max-positions",
"500",
"--batch-size",
"500",
"--save-dir",
data_dir,
"--max-epoch",
"1",
"--no-progress-bar",
"--distributed-world-size",
"1",
"--ddp-backend",
"no_c10d",
"--num-workers",
"0",
]
+ (extra_flags or []),
)
train.main(train_args)
def eval_lm_main(data_dir, extra_flags=None):
eval_lm_parser = options.get_eval_lm_parser()
eval_lm_args = options.parse_args_and_arch(
eval_lm_parser,
[
data_dir,
"--path",
os.path.join(data_dir, "checkpoint_last.pt"),
"--no-progress-bar",
"--num-workers",
"0",
]
+ (extra_flags or []),
)
eval_lm.main(eval_lm_args)
if __name__ == "__main__":
unittest.main()
| EXA-1-master | exa/models/unilm-master/edgelm/tests/test_binaries.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import sys
import unittest
import torch
from fairseq.token_generation_constraints import *
def tensorize(constraints: List[List[int]]) -> torch.Tensor:
return [torch.tensor(x) for x in constraints]
class TestHelperRoutines(unittest.TestCase):
def setUp(self):
self.examples = [
([[]], torch.tensor([[0]])),
([[], []], torch.tensor([[0], [0]])),
([[torch.tensor([1, 2])], []], torch.tensor([[1, 1, 2, 0], [0, 0, 0, 0]])),
(
[
[
torch.tensor([3, 1, 2]),
torch.tensor([3]),
torch.tensor([4, 5, 6, 7]),
],
[],
[torch.tensor([1, 8, 9, 10, 1, 4, 11, 12])],
],
torch.tensor(
[
[3, 3, 1, 2, 0, 3, 0, 4, 5, 6, 7, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 8, 9, 10, 1, 4, 11, 12, 0, 0, 0],
]
),
),
]
def test_packing(self):
"""Ensures the list of lists of tensors gets packed correctly."""
for batch_constraints, expected_tensor in self.examples:
packed = pack_constraints(batch_constraints)
assert torch.equal(packed, expected_tensor)
class TestUnorderedConstraintState(unittest.TestCase):
def setUp(self):
# Tuples of (contraint set, expected printed graph, token counts per node)
self.examples = [
(
tensorize([[1, 2, 3], [1, 3], [1, 4], [4, 5, 6, 7], [1], [4, 5]]),
"([None].False#6 ([1].True#4 ([2].False#1 [3].True#1) [3].True#1 [4].True#1) ([4].False#2 ([5].True#2 ([6].False#1 [7].True#1))))",
{1: 4, 2: 1, 3: 2, 4: 3, 5: 2, 6: 1, 7: 1},
),
([], "[None].False#0", {}),
(tensorize([[0]]), "([None].False#1 [0].True#1)", {0: 1}),
(
tensorize([[100000, 1, 2, 3, 4, 5]]),
"([None].False#1 ([100000].False#1 ([1].False#1 ([2].False#1 ([3].False#1 ([4].False#1 [5].True#1))))))",
{100000: 1, 1: 1, 2: 1, 3: 1, 4: 1, 5: 1},
),
(
tensorize([[1, 2], [1, 2]]),
"([None].False#2 ([1].False#2 [2].True#2))",
{1: 2, 2: 2},
),
(
tensorize([[1, 2], [3, 4]]),
"([None].False#2 ([1].False#1 [2].True#1) ([3].False#1 [4].True#1))",
{1: 1, 2: 1, 3: 1, 4: 1},
),
]
self.sequences = [
(
self.examples[0][0],
[],
{"bank": 0, "num_completed": 0, "finished": False, "is_root": True},
),
(
self.examples[0][0],
[1, 2],
{"bank": 2, "num_completed": 0, "finished": False, "is_root": False},
),
(
self.examples[0][0],
[1, 2, 94],
{"bank": 1, "num_completed": 1, "finished": False, "is_root": True},
),
(
self.examples[0][0],
[1, 3, 999, 1, 4],
{"bank": 4, "num_completed": 2, "finished": False, "is_root": False},
),
(
self.examples[0][0],
[1, 3, 999, 1, 4, 999],
{"bank": 4, "num_completed": 2, "finished": False, "is_root": True},
),
(
self.examples[0][0],
[4, 5, 6, 8],
{"bank": 2, "num_completed": 1, "finished": False, "is_root": True},
),
(
self.examples[0][0],
# Tricky, because in last three, goes down [1->4] branch, could miss [1] and [4->5]
# [[1, 2, 3], [1, 3], [1, 4], [4, 5, 6, 7], [1], [4, 5]],
[1, 2, 3, 1, 3, 1, 4, 4, 5, 6, 7, 1, 4, 5],
{"bank": 14, "num_completed": 6, "finished": True, "is_root": False},
),
(
self.examples[0][0],
[1, 2, 3, 999, 1, 3, 1, 4, 4, 5, 6, 7, 1, 4, 5, 117],
{"bank": 14, "num_completed": 6, "finished": True, "is_root": True},
),
(
tensorize([[1], [2, 3]]),
# Should not be able to get credit for entering 1 a second time
[1, 1],
{"bank": 1, "num_completed": 1, "finished": False, "is_root": True},
),
(
self.examples[4][0],
[1, 2, 1, 2],
{"bank": 4, "num_completed": 2, "finished": True, "is_root": False},
),
(
self.examples[4][0],
[1, 2, 1, 2, 1],
{"bank": 4, "num_completed": 2, "finished": True, "is_root": True},
),
(
self.examples[5][0],
[1, 2, 3, 4, 5],
{"bank": 4, "num_completed": 2, "finished": True, "is_root": True},
),
]
def test_graphs(self):
"""
Test whether unordered graph systems are created correctly.
"""
for example in self.examples:
constraints, expected, gold_counts = example
c = ConstraintNode.create(constraints)
assert (
ConstraintNode.print_graph(c) == expected
), f"got {ConstraintNode.print_graph(c)}, expected {expected}"
assert (
c.token_counts() == gold_counts
), f"{c} got {c.token_counts()} wanted {gold_counts}"
def test_next_tokens(self):
"""
Tests that the set of next tokens is correct.
"""
for example in self.examples:
constraints, expected, gold_counts = example
root = ConstraintNode.create(constraints)
root_tokens = set(root.children.keys())
for sequence in constraints:
state = UnorderedConstraintState(root)
for token in sequence:
all_tokens = root_tokens.union(state.node.children.keys())
assert (
all_tokens == state.next_tokens()
), f"ALL {all_tokens} NEXT {state.next_tokens()}"
state = state.advance(token)
def test_sequences(self):
for constraints, tokens, expected in self.sequences:
state = UnorderedConstraintState.create(pack_constraints([constraints])[0])
for token in tokens:
state = state.advance(token)
result = {}
for attr in expected.keys():
result[attr] = getattr(state, attr)
assert (
result == expected
), f"TEST({tokens}) GOT: {result} WANTED: {expected}"
class TestOrderedConstraintState(unittest.TestCase):
def setUp(self):
self.sequences = [
(
tensorize([[1, 2, 3], [1, 3], [1, 4], [4, 5, 6, 7], [1], [4, 5]]),
[],
{"bank": 0, "num_completed": 0, "finished": False, "is_root": True},
),
(
tensorize([[1, 2, 3], [1, 3], [1, 4], [4, 5, 6, 7], [1], [4, 5]]),
[1, 2],
{"bank": 2, "num_completed": 0, "finished": False, "is_root": False},
),
(
tensorize([[1, 2, 3], [1, 3], [1, 4], [4, 5, 6, 7], [1], [4, 5]]),
[1, 2, 94],
{"bank": 0, "num_completed": 0, "finished": False, "is_root": True},
),
(
tensorize([[1, 2, 3], [1, 3], [1, 4], [4, 5, 6, 7], [1], [4, 5]]),
[1, 3, 999, 1, 4],
{"bank": 0, "num_completed": 0, "finished": False, "is_root": True},
),
(
tensorize([[1, 2, 3], [1, 3], [1, 4], [4, 5, 6, 7], [1], [4, 5]]),
[1, 2, 3, 999, 999],
{"bank": 3, "num_completed": 1, "finished": False, "is_root": False},
),
(
tensorize([[1, 2, 3], [1, 3], [1, 4], [4, 5, 6, 7], [1], [4, 5]]),
[1, 2, 3, 77, 1, 3, 1],
{"bank": 6, "num_completed": 2, "finished": False, "is_root": False},
),
(
tensorize([[1, 2, 3], [1, 3], [1, 4], [4, 5, 6, 7], [1], [4, 5]]),
[1, 2, 3, 1, 3, 1, 4, 4, 5, 6, 7, 1, 4, 5],
{"bank": 14, "num_completed": 6, "finished": True, "is_root": False},
),
(
tensorize([[1, 2, 3], [1, 3], [1, 4], [4, 5, 6, 7], [1], [4, 5]]),
[1, 2, 999, 1, 2, 3, 999, 1, 3, 1, 4, 4, 5, 6, 7, 1, 4, 5, 117],
{"bank": 14, "num_completed": 6, "finished": True, "is_root": False},
),
(
tensorize([[1], [2, 3]]),
[1, 1],
{"bank": 1, "num_completed": 1, "finished": False, "is_root": False},
),
(
tensorize([[1, 2], [1, 2]]),
[1, 2, 1, 2],
{"bank": 4, "num_completed": 2, "finished": True, "is_root": False},
),
(
tensorize([[1, 2], [1, 2]]),
[1, 2, 1, 2, 1],
{"bank": 4, "num_completed": 2, "finished": True, "is_root": False},
),
(
tensorize([[1, 2], [3, 4]]),
[1, 2, 3, 4, 5],
{"bank": 4, "num_completed": 2, "finished": True, "is_root": False},
),
]
def test_sequences(self):
for i, (constraints, tokens, expected) in enumerate(self.sequences):
state = OrderedConstraintState.create(pack_constraints([constraints])[0])
for token in tokens:
state = state.advance(token)
result = {}
for attr in expected.keys():
result[attr] = getattr(state, attr)
assert (
result == expected
), f"TEST({tokens}) GOT: {result} WANTED: {expected}"
if __name__ == "__main__":
unittest.main()
| EXA-1-master | exa/models/unilm-master/edgelm/tests/test_constraints.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import copy
import unittest
import tests.utils as test_utils
import torch
from fairseq.criterions.cross_entropy import CrossEntropyCriterion
from fairseq.criterions.label_smoothed_cross_entropy import (
LabelSmoothedCrossEntropyCriterion,
)
class TestLabelSmoothing(unittest.TestCase):
def setUp(self):
# build dictionary
self.d = test_utils.dummy_dictionary(3)
vocab = len(self.d)
self.assertEqual(vocab, 4 + 3) # 4 special + 3 tokens
self.assertEqual(self.d.pad(), 1)
self.assertEqual(self.d.eos(), 2)
self.assertEqual(self.d.unk(), 3)
pad, eos, unk, w1, w2, w3 = 1, 2, 3, 4, 5, 6 # noqa: F841
# build dataset
self.data = [
# the first batch item has padding
{
"source": torch.LongTensor([w1, eos]),
"target": torch.LongTensor([w1, eos]),
},
{
"source": torch.LongTensor([w1, eos]),
"target": torch.LongTensor([w1, w1, eos]),
},
]
self.sample = next(test_utils.dummy_dataloader(self.data))
# build model
self.args = argparse.Namespace()
self.args.sentence_avg = False
self.args.report_accuracy = False
self.args.probs = (
torch.FloatTensor(
[
# pad eos unk w1 w2 w3
[0.05, 0.05, 0.1, 0.05, 0.3, 0.4, 0.05],
[0.05, 0.10, 0.2, 0.05, 0.2, 0.3, 0.10],
[0.05, 0.15, 0.3, 0.05, 0.1, 0.2, 0.15],
]
)
.unsqueeze(0)
.expand(2, 3, 7)
) # add batch dimension
self.task = test_utils.TestTranslationTask.setup_task(self.args, self.d, self.d)
self.model = self.task.build_model(self.args)
def test_nll_loss(self):
self.args.label_smoothing = 0.1
nll_crit = CrossEntropyCriterion.build_criterion(self.args, self.task)
smooth_crit = LabelSmoothedCrossEntropyCriterion.build_criterion(
self.args, self.task
)
nll_loss, nll_sample_size, nll_logging_output = nll_crit(
self.model, self.sample
)
smooth_loss, smooth_sample_size, smooth_logging_output = smooth_crit(
self.model, self.sample
)
self.assertLess(abs(nll_loss - nll_logging_output["loss"]), 1e-6)
self.assertLess(abs(nll_loss - smooth_logging_output["nll_loss"]), 1e-6)
def test_padding(self):
self.args.label_smoothing = 0.1
crit = LabelSmoothedCrossEntropyCriterion.build_criterion(self.args, self.task)
loss, _, logging_output = crit(self.model, self.sample)
def get_one_no_padding(idx):
# create a new sample with just a single batch item so that there's
# no padding
sample1 = next(test_utils.dummy_dataloader([self.data[idx]]))
args1 = copy.copy(self.args)
args1.probs = args1.probs[idx, :, :].unsqueeze(0)
model1 = self.task.build_model(args1)
loss1, _, _ = crit(model1, sample1)
return loss1
loss1 = get_one_no_padding(0)
loss2 = get_one_no_padding(1)
self.assertAlmostEqual(loss, loss1 + loss2)
def test_reduction(self):
self.args.label_smoothing = 0.1
crit = LabelSmoothedCrossEntropyCriterion.build_criterion(self.args, self.task)
loss, _, logging_output = crit(self.model, self.sample, reduce=True)
unreduced_loss, _, _ = crit(self.model, self.sample, reduce=False)
self.assertAlmostEqual(loss, unreduced_loss.sum())
def test_zero_eps(self):
self.args.label_smoothing = 0.0
nll_crit = CrossEntropyCriterion.build_criterion(self.args, self.task)
smooth_crit = LabelSmoothedCrossEntropyCriterion.build_criterion(
self.args, self.task
)
nll_loss, nll_sample_size, nll_logging_output = nll_crit(
self.model, self.sample
)
smooth_loss, smooth_sample_size, smooth_logging_output = smooth_crit(
self.model, self.sample
)
self.assertAlmostEqual(nll_loss, smooth_loss)
def assertAlmostEqual(self, t1, t2):
self.assertEqual(t1.size(), t2.size(), "size mismatch")
self.assertLess((t1 - t2).abs().max(), 1e-6)
if __name__ == "__main__":
unittest.main()
| EXA-1-master | exa/models/unilm-master/edgelm/tests/test_label_smoothing.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import json
import os
import random
import sys
from io import StringIO
import torch
import torch.nn.functional as F
from fairseq import options, utils
from fairseq.data import Dictionary
from fairseq.data.language_pair_dataset import collate
from fairseq.models import (
FairseqEncoder,
FairseqEncoderDecoderModel,
FairseqIncrementalDecoder,
)
from fairseq.models.fairseq_encoder import EncoderOut
from fairseq.tasks import LegacyFairseqTask
from fairseq_cli import generate, interactive, preprocess, train, validate
import fairseq.distributed.utils as distributed_utils
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
def dummy_dictionary(vocab_size, prefix="token_"):
d = Dictionary()
for i in range(vocab_size):
token = prefix + str(i)
d.add_symbol(token)
d.finalize(padding_factor=1) # don't add extra padding symbols
return d
def dummy_dataloader(
samples, padding_idx=1, eos_idx=2, batch_size=None,
):
if batch_size is None:
batch_size = len(samples)
# add any missing data to samples
for i, sample in enumerate(samples):
if "id" not in sample:
sample["id"] = i
# create dataloader
dataset = TestDataset(samples)
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=batch_size,
collate_fn=(lambda samples: collate(samples, padding_idx, eos_idx)),
)
return iter(dataloader)
def sequence_generator_setup():
# construct dummy dictionary
d = dummy_dictionary(vocab_size=2)
eos = d.eos()
w1 = 4
w2 = 5
# construct source data
src_tokens = torch.LongTensor([[w1, w2, eos], [w1, w2, eos]])
src_lengths = torch.LongTensor([2, 2])
args = argparse.Namespace()
unk = 0.0
args.beam_probs = [
# step 0:
torch.FloatTensor(
[
# eos w1 w2
# sentence 1:
[0.0, unk, 0.9, 0.1], # beam 1
[0.0, unk, 0.9, 0.1], # beam 2
# sentence 2:
[0.0, unk, 0.7, 0.3],
[0.0, unk, 0.7, 0.3],
]
),
# step 1:
torch.FloatTensor(
[
# eos w1 w2 prefix
# sentence 1:
[1.0, unk, 0.0, 0.0], # w1: 0.9 (emit: w1 <eos>: 0.9*1.0)
[0.0, unk, 0.9, 0.1], # w2: 0.1
# sentence 2:
[0.25, unk, 0.35, 0.4], # w1: 0.7 (don't emit: w1 <eos>: 0.7*0.25)
[0.00, unk, 0.10, 0.9], # w2: 0.3
]
),
# step 2:
torch.FloatTensor(
[
# eos w1 w2 prefix
# sentence 1:
[0.0, unk, 0.1, 0.9], # w2 w1: 0.1*0.9
[
0.6,
unk,
0.2,
0.2,
], # w2 w2: 0.1*0.1 (emit: w2 w2 <eos>: 0.1*0.1*0.6)
# sentence 2:
[
0.60,
unk,
0.4,
0.00,
], # w1 w2: 0.7*0.4 (emit: w1 w2 <eos>: 0.7*0.4*0.6)
[0.01, unk, 0.0, 0.99], # w2 w2: 0.3*0.9
]
),
# step 3:
torch.FloatTensor(
[
# eos w1 w2 prefix
# sentence 1:
[
1.0,
unk,
0.0,
0.0,
], # w2 w1 w2: 0.1*0.9*0.9 (emit: w2 w1 w2 <eos>: 0.1*0.9*0.9*1.0)
[
1.0,
unk,
0.0,
0.0,
], # w2 w1 w1: 0.1*0.9*0.1 (emit: w2 w1 w1 <eos>: 0.1*0.9*0.1*1.0)
# sentence 2:
[
0.1,
unk,
0.5,
0.4,
], # w2 w2 w2: 0.3*0.9*0.99 (emit: w2 w2 w2 <eos>: 0.3*0.9*0.99*0.1)
[
1.0,
unk,
0.0,
0.0,
], # w1 w2 w1: 0.7*0.4*0.4 (emit: w1 w2 w1 <eos>: 0.7*0.4*0.4*1.0)
]
),
]
task = TestTranslationTask.setup_task(args, d, d)
model = task.build_model(args)
tgt_dict = task.target_dictionary
return tgt_dict, w1, w2, src_tokens, src_lengths, model
def create_dummy_data(data_dir, num_examples=100, maxlen=20, alignment=False):
def _create_dummy_data(filename):
data = torch.rand(num_examples * maxlen)
data = 97 + torch.floor(26 * data).int()
with open(os.path.join(data_dir, filename), "w") as h:
offset = 0
for _ in range(num_examples):
ex_len = random.randint(1, maxlen)
ex_str = " ".join(map(chr, data[offset : offset + ex_len]))
print(ex_str, file=h)
offset += ex_len
def _create_dummy_alignment_data(filename_src, filename_tgt, filename):
with open(os.path.join(data_dir, filename_src), "r") as src_f, open(
os.path.join(data_dir, filename_tgt), "r"
) as tgt_f, open(os.path.join(data_dir, filename), "w") as h:
for src, tgt in zip(src_f, tgt_f):
src_len = len(src.split())
tgt_len = len(tgt.split())
avg_len = (src_len + tgt_len) // 2
num_alignments = random.randint(avg_len // 2, 2 * avg_len)
src_indices = torch.floor(torch.rand(num_alignments) * src_len).int()
tgt_indices = torch.floor(torch.rand(num_alignments) * tgt_len).int()
ex_str = " ".join(
[
"{}-{}".format(src, tgt)
for src, tgt in zip(src_indices, tgt_indices)
]
)
print(ex_str, file=h)
_create_dummy_data("train.in")
_create_dummy_data("train.out")
_create_dummy_data("valid.in")
_create_dummy_data("valid.out")
_create_dummy_data("test.in")
_create_dummy_data("test.out")
if alignment:
_create_dummy_alignment_data("train.in", "train.out", "train.align")
_create_dummy_alignment_data("valid.in", "valid.out", "valid.align")
_create_dummy_alignment_data("test.in", "test.out", "test.align")
def preprocess_lm_data(data_dir):
preprocess_parser = options.get_preprocessing_parser()
preprocess_args = preprocess_parser.parse_args(
[
"--only-source",
"--trainpref",
os.path.join(data_dir, "train.out"),
"--validpref",
os.path.join(data_dir, "valid.out"),
"--testpref",
os.path.join(data_dir, "test.out"),
"--destdir",
data_dir,
]
)
preprocess.main(preprocess_args)
def preprocess_translation_data(data_dir, extra_flags=None):
preprocess_parser = options.get_preprocessing_parser()
preprocess_args = preprocess_parser.parse_args(
[
"--source-lang",
"in",
"--target-lang",
"out",
"--trainpref",
os.path.join(data_dir, "train"),
"--validpref",
os.path.join(data_dir, "valid"),
"--testpref",
os.path.join(data_dir, "test"),
"--thresholdtgt",
"0",
"--thresholdsrc",
"0",
"--destdir",
data_dir,
]
+ (extra_flags or []),
)
preprocess.main(preprocess_args)
def preprocess_summarization_data(data_dir, extra_flags=None):
preprocess_parser = options.get_preprocessing_parser()
preprocess_args = preprocess_parser.parse_args(
[
"--source-lang",
"in",
"--target-lang",
"out",
"--trainpref",
os.path.join(data_dir, "train"),
"--validpref",
os.path.join(data_dir, "valid"),
"--testpref",
os.path.join(data_dir, "test"),
"--thresholdtgt",
"0",
"--thresholdsrc",
"0",
"--joined-dictionary",
"--destdir",
data_dir,
]
+ (extra_flags or []),
)
preprocess.main(preprocess_args)
def create_laser_data_and_config_json(data_dir):
src_langs = ["de", "fr", "ru", "tr", "zh"]
tgt_langs = ["en", "es"]
config_json = {}
config_train_json = []
src_vocab = None
tgt_vocab = None
for src_lang in src_langs:
for tgt_lang in tgt_langs:
langpair_folder = f"{src_lang}-{tgt_lang}"
langpair_path = os.path.join(data_dir, langpair_folder)
os.mkdir(langpair_path)
create_dummy_data(langpair_path)
preprocess_translation_data(langpair_path, ["--dataset-impl", "cached"])
src_vocab = os.path.join(langpair_path, "dict.in.txt")
tgt_vocab = os.path.join(langpair_path, "dict.out.txt")
config_train_json.append(
{
"id": 0 if tgt_lang == "en" else 1,
"src": os.path.join(langpair_path, "train.in-out.in"),
"tgt": os.path.join(langpair_path, "train.in-out.out"),
}
)
config_json["src_vocab"] = src_vocab
config_json["tgt_vocab"] = tgt_vocab
config_json["train"] = config_train_json
with open(os.path.join(data_dir, "laserconfig.json"), "w") as config_file:
json.dump(config_json, config_file)
return config_file
def train_translation_model(
data_dir,
arch,
extra_flags=None,
task="translation",
run_validation=False,
lang_flags=None,
extra_valid_flags=None,
world_size=1,
):
if lang_flags is None:
lang_flags = [
"--source-lang",
"in",
"--target-lang",
"out",
]
train_parser = options.get_training_parser()
train_args = options.parse_args_and_arch(
train_parser,
[
"--task",
task,
data_dir,
"--save-dir",
data_dir,
"--arch",
arch,
"--optimizer",
"nag",
"--lr",
"0.05",
"--max-tokens",
"500",
"--max-epoch",
"1",
"--no-progress-bar",
"--distributed-world-size",
str(world_size),
"--num-workers",
"0",
]
+ lang_flags
+ (extra_flags or []),
)
cfg = convert_namespace_to_omegaconf(train_args)
distributed_utils.call_main(cfg, train.main)
if run_validation:
# test validation
validate_parser = options.get_validation_parser()
validate_args = options.parse_args_and_arch(
validate_parser,
[
"--task",
task,
data_dir,
"--path",
os.path.join(data_dir, "checkpoint_last.pt"),
"--valid-subset",
"valid",
"--max-tokens",
"500",
"--no-progress-bar",
"--num-workers",
"0",
]
+ lang_flags
+ (extra_valid_flags or []),
)
validate.main(validate_args)
def generate_main(data_dir, extra_flags=None, path=None):
if extra_flags is None:
extra_flags = [
"--print-alignment",
]
if path is None:
path = os.path.join(data_dir, "checkpoint_last.pt")
generate_parser = options.get_generation_parser()
generate_args = options.parse_args_and_arch(
generate_parser,
[
data_dir,
"--path",
path,
"--beam",
"3",
"--batch-size",
"64",
"--max-len-b",
"5",
"--gen-subset",
"valid",
"--no-progress-bar",
"--num-workers",
"0",
]
+ (extra_flags or []),
)
# evaluate model in batch mode
generate.main(generate_args)
# evaluate model interactively
generate_args.buffer_size = 0
generate_args.input = "-"
generate_args.batch_size = None
orig_stdin = sys.stdin
sys.stdin = StringIO("h e l l o\n")
interactive.main(generate_args)
sys.stdin = orig_stdin
class TestDataset(torch.utils.data.Dataset):
def __init__(self, data):
super().__init__()
self.data = data
self.sizes = None
def __getitem__(self, index):
return self.data[index]
def __len__(self):
return len(self.data)
class TestTranslationTask(LegacyFairseqTask):
def __init__(self, args, src_dict, tgt_dict, model):
super().__init__(args)
self.src_dict = src_dict
self.tgt_dict = tgt_dict
self.model = model
@classmethod
def setup_task(cls, args, src_dict=None, tgt_dict=None, model=None):
return cls(args, src_dict, tgt_dict, model)
def build_model(self, args):
return TestModel.build_model(args, self)
@property
def source_dictionary(self):
return self.src_dict
@property
def target_dictionary(self):
return self.tgt_dict
class TestModel(FairseqEncoderDecoderModel):
def __init__(self, encoder, decoder):
super().__init__(encoder, decoder)
@classmethod
def build_model(cls, args, task):
encoder = TestEncoder(args, task.source_dictionary)
decoder = TestIncrementalDecoder(args, task.target_dictionary)
return cls(encoder, decoder)
class TestEncoder(FairseqEncoder):
def __init__(self, args, dictionary):
super().__init__(dictionary)
self.args = args
def forward(self, src_tokens, src_lengths=None, **kwargs):
return EncoderOut(
encoder_out=src_tokens,
encoder_padding_mask=None,
encoder_embedding=None,
encoder_states=None,
src_tokens=None,
src_lengths=None,
)
def reorder_encoder_out(self, encoder_out, new_order):
return EncoderOut(
encoder_out=encoder_out.encoder_out.index_select(0, new_order),
encoder_padding_mask=None,
encoder_embedding=None,
encoder_states=None,
src_tokens=None,
src_lengths=None,
)
class TestIncrementalDecoder(FairseqIncrementalDecoder):
def __init__(self, args, dictionary):
super().__init__(dictionary)
assert hasattr(args, "beam_probs") or hasattr(args, "probs")
args.max_decoder_positions = getattr(args, "max_decoder_positions", 100)
self.args = args
def forward(self, prev_output_tokens, encoder_out=None, incremental_state=None):
if incremental_state is not None:
prev_output_tokens = prev_output_tokens[:, -1:]
bbsz = prev_output_tokens.size(0)
vocab = len(self.dictionary)
src_len = encoder_out.encoder_out.size(1)
tgt_len = prev_output_tokens.size(1)
# determine number of steps
if incremental_state is not None:
# cache step number
step = utils.get_incremental_state(self, incremental_state, "step")
if step is None:
step = 0
utils.set_incremental_state(self, incremental_state, "step", step + 1)
steps = [step]
else:
steps = list(range(tgt_len))
# define output in terms of raw probs
if hasattr(self.args, "probs"):
assert (
self.args.probs.dim() == 3
), "expected probs to have size bsz*steps*vocab"
probs = self.args.probs.index_select(1, torch.LongTensor(steps))
else:
probs = torch.FloatTensor(bbsz, len(steps), vocab).zero_()
for i, step in enumerate(steps):
# args.beam_probs gives the probability for every vocab element,
# starting with eos, then unknown, and then the rest of the vocab
if step < len(self.args.beam_probs):
probs[:, i, self.dictionary.eos() :] = self.args.beam_probs[step]
else:
probs[:, i, self.dictionary.eos()] = 1.0
# random attention
attn = torch.rand(bbsz, tgt_len, src_len)
dev = prev_output_tokens.device
return probs.to(dev), {"attn": [attn.to(dev)]}
def get_normalized_probs(self, net_output, log_probs, _):
# the decoder returns probabilities directly
probs = net_output[0]
if log_probs:
return probs.log()
else:
return probs
def max_positions(self):
return self.args.max_decoder_positions
class TestReshapingEncoder(FairseqEncoder):
def __init__(self, args, dictionary):
super().__init__(dictionary)
self.args = args
def forward(self, src_tokens, src_lengths=None, **kwargs):
b_sz, t_sz = src_tokens.shape
padding_needed = t_sz % 2
x = src_tokens
if padding_needed > 0:
padding_needed = 2 - padding_needed
x = F.pad(x, (0, padding_needed))
return EncoderOut(
encoder_out=x.view(b_sz, -1, 2),
encoder_padding_mask=None,
encoder_embedding=None,
encoder_states=None,
src_tokens=None,
src_lengths=None,
)
def reorder_encoder_out(self, encoder_out, new_order):
return EncoderOut(
encoder_out=encoder_out.encoder_out.index_select(0, new_order),
encoder_padding_mask=None,
encoder_embedding=None,
encoder_states=None,
src_tokens=None,
src_lengths=None,
)
class TestReshapingModel(FairseqEncoderDecoderModel):
def __init__(self, encoder, decoder):
super().__init__(encoder, decoder)
@classmethod
def build_model(cls, args, task):
encoder = TestReshapingEncoder(args, task.source_dictionary)
decoder = TestIncrementalDecoder(args, task.target_dictionary)
return cls(encoder, decoder)
class TestAdditionalInputEncoder(FairseqEncoder):
def __init__(self, args, dictionary):
super().__init__(dictionary)
self.args = args
def forward(self, src_tokens, src_lengths=None, **kwargs):
assert "fancy_other_input" in kwargs
assert kwargs["fancy_other_input"] is not None
return EncoderOut(
encoder_out=src_tokens,
encoder_padding_mask=None,
encoder_embedding=None,
encoder_states=None,
src_tokens=None,
src_lengths=None,
)
def reorder_encoder_out(self, encoder_out, new_order):
return EncoderOut(
encoder_out=encoder_out.encoder_out.index_select(0, new_order),
encoder_padding_mask=None,
encoder_embedding=None,
encoder_states=None,
src_tokens=None,
src_lengths=None,
)
class TestAdditionalInputModel(FairseqEncoderDecoderModel):
def __init__(self, encoder, decoder):
super().__init__(encoder, decoder)
@classmethod
def build_model(cls, args, task):
encoder = TestAdditionalInputEncoder(args, task.source_dictionary)
decoder = TestIncrementalDecoder(args, task.target_dictionary)
return cls(encoder, decoder)
def forward(self, src_tokens, src_lengths, prev_output_tokens, **kwargs):
encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, **kwargs)
decoder_out = self.decoder(
prev_output_tokens, encoder_out=encoder_out, **kwargs
)
return decoder_out
def train_language_model(
data_dir,
arch,
extra_flags=None,
run_validation=False,
extra_valid_flags=None,
task="language_modeling",
world_size=1,
):
train_parser = options.get_training_parser()
train_args = options.parse_args_and_arch(
train_parser,
[
"--task",
task,
data_dir,
"--arch",
arch,
"--optimizer",
"adam",
"--lr",
"0.0001",
"--max-tokens",
"500",
"--tokens-per-sample",
"500",
"--save-dir",
data_dir,
"--max-epoch",
"1",
"--no-progress-bar",
"--distributed-world-size",
str(world_size),
"--ddp-backend",
"no_c10d",
"--num-workers",
"0",
]
+ (extra_flags or []),
)
cfg = convert_namespace_to_omegaconf(train_args)
distributed_utils.call_main(cfg, train.main)
if run_validation:
# test validation
validate_parser = options.get_validation_parser()
validate_args = options.parse_args_and_arch(
validate_parser,
[
"--task",
task,
data_dir,
"--path",
os.path.join(data_dir, "checkpoint_last.pt"),
"--valid-subset",
"valid",
"--max-tokens",
"500",
"--no-progress-bar",
"--num-workers",
"0",
]
+ (extra_valid_flags or []),
)
validate.main(validate_args)
| EXA-1-master | exa/models/unilm-master/edgelm/tests/utils.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import unittest
from typing import Sequence
from fairseq.data import LanguagePairDataset, ListDataset, RoundRobinZipDatasets
from tests.test_train import mock_dict
def lang_pair_dataset(lengths: Sequence[int]) -> LanguagePairDataset:
tokens = [[i] * l for i, l in enumerate(lengths)]
return LanguagePairDataset(ListDataset(tokens), lengths, mock_dict())
def sample(id: int, length: int):
return {"id": id, "source": [id] * length, "target": None}
class TestDataset(unittest.TestCase):
def setUp(self):
logging.disable(logging.CRITICAL)
def tearDown(self):
logging.disable(logging.NOTSET)
def test_round_robin_zip_datasets(self):
long_dataset = lang_pair_dataset([10, 9, 8, 11])
short_dataset = lang_pair_dataset([11, 9])
dataset = RoundRobinZipDatasets({"a": long_dataset, "b": short_dataset})
# Dataset is now sorted by sentence length
dataset.ordered_indices()
assert dataset.longest_dataset is long_dataset
self.assertEqual(dict(dataset[0]), {"a": sample(2, 8), "b": sample(1, 9)})
# The item 2 of dataset 'a' is with item (2 % 2 = 0) of dataset 'b'
self.assertEqual(dict(dataset[2]), {"a": sample(0, 10), "b": sample(1, 9)})
def test_round_robin_zip_datasets_filtered(self):
long_dataset = lang_pair_dataset([10, 20, 8, 11, 1000, 7, 12])
short_dataset = lang_pair_dataset([11, 20, 9, 1000])
dataset = RoundRobinZipDatasets({"a": long_dataset, "b": short_dataset})
# Dataset is now sorted by sentence length
idx = dataset.ordered_indices()
idx, _ = dataset.filter_indices_by_size(idx, {"a": 19, "b": 900})
self.assertEqual(list(idx), [0, 1, 2, 3, 4])
self.assertEqual(dict(dataset[0]), {"a": sample(5, 7), "b": sample(2, 9)})
self.assertEqual(dict(dataset[2]), {"a": sample(0, 10), "b": sample(1, 20)})
self.assertEqual(dict(dataset[4]), {"a": sample(6, 12), "b": sample(0, 11)})
def test_round_robin_zip_datasets_filtered_with_tuple(self):
long_dataset = lang_pair_dataset([10, 20, 8, 11, 1000, 7, 12])
short_dataset = lang_pair_dataset([11, 20, 9, 1000])
dataset = RoundRobinZipDatasets({"a": long_dataset, "b": short_dataset})
# Dataset is now sorted by sentence length
idx = dataset.ordered_indices()
idx, _ = dataset.filter_indices_by_size(idx, 19)
self.assertEqual(list(idx), [0, 1, 2, 3, 4])
self.assertEqual(dict(dataset[0]), {"a": sample(5, 7), "b": sample(2, 9)})
self.assertEqual(dict(dataset[2]), {"a": sample(0, 10), "b": sample(2, 9)})
self.assertEqual(dict(dataset[4]), {"a": sample(6, 12), "b": sample(2, 9)})
| EXA-1-master | exa/models/unilm-master/edgelm/tests/test_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import torch
import torch.nn as nn
from fairseq.modules import ConvTBC
class TestConvTBC(unittest.TestCase):
def test_convtbc(self):
# ksz, in_channels, out_channels
conv_tbc = ConvTBC(4, 5, kernel_size=3, padding=1)
# out_channels, in_channels, ksz
conv1d = nn.Conv1d(4, 5, kernel_size=3, padding=1)
conv_tbc.weight.data.copy_(conv1d.weight.data.transpose(0, 2))
conv_tbc.bias.data.copy_(conv1d.bias.data)
input_tbc = torch.randn(7, 2, 4, requires_grad=True)
input1d = input_tbc.data.transpose(0, 1).transpose(1, 2)
input1d.requires_grad = True
output_tbc = conv_tbc(input_tbc)
output1d = conv1d(input1d)
self.assertAlmostEqual(
output_tbc.data.transpose(0, 1).transpose(1, 2), output1d.data
)
grad_tbc = torch.randn(output_tbc.size())
grad1d = grad_tbc.transpose(0, 1).transpose(1, 2).contiguous()
output_tbc.backward(grad_tbc)
output1d.backward(grad1d)
self.assertAlmostEqual(
conv_tbc.weight.grad.data.transpose(0, 2), conv1d.weight.grad.data
)
self.assertAlmostEqual(conv_tbc.bias.grad.data, conv1d.bias.grad.data)
self.assertAlmostEqual(
input_tbc.grad.data.transpose(0, 1).transpose(1, 2), input1d.grad.data
)
def assertAlmostEqual(self, t1, t2):
self.assertEqual(t1.size(), t2.size(), "size mismatch")
self.assertLess((t1 - t2).abs().max(), 1e-4)
if __name__ == "__main__":
unittest.main()
| EXA-1-master | exa/models/unilm-master/edgelm/tests/test_convtbc.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import unittest
from collections import OrderedDict
import torch
from fairseq.data import LanguagePairDataset, TokenBlockDataset
from fairseq.data.multi_corpus_dataset import MultiCorpusDataset
from tests.test_train import mock_dict
class TestMultiCorpusDataset(unittest.TestCase):
def setUp(self):
d = mock_dict()
tokens_1 = torch.LongTensor([i for i in range(1, 5000, 2)]).view(1, -1)
tokens_ds1 = TokenBlockDataset(
tokens_1,
sizes=[tokens_1.size(-1)],
block_size=1,
pad=0,
eos=1,
include_targets=False,
)
self.dataset_1 = LanguagePairDataset(
tokens_ds1, tokens_ds1.sizes, d, shuffle=False
)
tokens_2 = torch.LongTensor([i for i in range(0, 5000, 2)]).view(1, -1)
tokens_ds2 = TokenBlockDataset(
tokens_2,
sizes=[tokens_2.size(-1)],
block_size=1,
pad=0,
eos=1,
include_targets=False,
)
self.dataset_2 = LanguagePairDataset(
tokens_ds2, tokens_ds2.sizes, d, shuffle=False
)
def _test_sample_helper(
self,
distribution,
):
m = MultiCorpusDataset(
OrderedDict({0: self.dataset_1, 1: self.dataset_2}),
distribution=distribution,
seed=0,
sort_indices=True,
)
m.set_epoch(1)
indices = m.ordered_indices()
count_sample_from_first_dataset = 0
items = set()
for i in indices:
item = m[i]["source"].item()
if item % 2 == 1:
count_sample_from_first_dataset += 1
items.add(item)
sample_from_first_ds_percentage = (
1.0 * count_sample_from_first_dataset / len(indices)
)
self.assertLess(
abs(sample_from_first_ds_percentage - distribution[0]),
0.01,
)
self.assertEqual(
len(items),
int(min(len(self.dataset_1), len(indices) * distribution[0])
+ min(len(self.dataset_1), len(indices) * distribution[1]))
)
print(distribution)
def test_multi_corpus_dataset(self):
for distribution in [[0.5, 0.5], [0.1, 0.9], [0.9, 0.1], [0.0, 1.0]]:
self._test_sample_helper(distribution=distribution)
| EXA-1-master | exa/models/unilm-master/edgelm/tests/test_multi_corpus_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import copy
import logging
import unittest
import torch
from fairseq.optim.fp16_optimizer import FP16Optimizer, MemoryEfficientFP16Optimizer
from omegaconf import OmegaConf
@unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU")
class TestGradientScaling(unittest.TestCase):
def setUp(self):
self.x = torch.tensor([2.0]).cuda().half()
weight = 3.0
bias = 5.0
self.error = 1.0
self.target = torch.tensor([self.x * weight + bias + self.error]).cuda().half()
self.loss_fn = torch.nn.L1Loss()
self.model = torch.nn.Linear(1, 1)
self.model.weight.data = torch.tensor([[weight]])
self.model.bias.data = torch.tensor([bias])
self.model.cuda().half()
self.params = list(self.model.parameters())
self.cfg_dls = OmegaConf.create(
{
"optimization": {
"lr": [0.1],
},
"optimizer": {
"_name": "adam",
"lr": [0.1],
"adam_betas": "(0.9, 0.999)",
"adam_eps": 1e-8,
"weight_decay": 0.0,
},
"common": {
"fp16_init_scale": 1,
"fp16_scale_window": 1,
"fp16_scale_tolerance": 1,
"threshold_loss_scale": 1,
"min_loss_scale": 1e-4,
"tpu": False,
},
}
)
logging.disable(logging.CRITICAL)
def tearDown(self):
logging.disable(logging.NOTSET)
def run_iter(self, model, params, optimizer):
optimizer.zero_grad()
y = model(self.x)
loss = self.loss_fn(y, self.target)
optimizer.backward(loss)
self.assertEqual(loss, torch.tensor(1.0, device="cuda:0", dtype=torch.float16))
grad_norm = optimizer.clip_grad_norm(0)
self.assertAlmostEqual(grad_norm.item(), 2.2361, 4)
optimizer.step()
self.assertEqual(
model.weight,
torch.tensor(
[[3.0996]], device="cuda:0", dtype=torch.float16, requires_grad=True
),
)
self.assertEqual(
model.bias,
torch.tensor(
[5.1016], device="cuda:0", dtype=torch.float16, requires_grad=True
),
)
self.assertEqual(optimizer.scaler.loss_scale, 2.0)
def test_mixed_precision(self):
model = copy.deepcopy(self.model)
params = list(model.parameters())
optimizer = FP16Optimizer.build_optimizer(self.cfg_dls, params)
self.run_iter(model, params, optimizer)
self.assertTrue(
all(
torch.all(
fp32_params.eq(
torch.tensor(
[3.1000, 5.1000], device="cuda:0", requires_grad=True
)
)
)
for fp32_params in optimizer.fp32_params.values()
)
)
def test_memory_efficient(self):
model = copy.deepcopy(self.model)
params = list(model.parameters())
optimizer = MemoryEfficientFP16Optimizer.build_optimizer(self.cfg_dls, params)
self.run_iter(model, params, optimizer)
if __name__ == "__main__":
unittest.main()
| EXA-1-master | exa/models/unilm-master/edgelm/tests/test_fp16_optimizer.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import logging
import unittest
import torch
from fairseq.optim.adam import FairseqAdam
from fairseq.optim.fp16_optimizer import MemoryEfficientFP16Optimizer
from omegaconf import OmegaConf
@unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU")
class TestMemoryEfficientFP16(unittest.TestCase):
def setUp(self):
logging.disable(logging.CRITICAL)
def tearDown(self):
logging.disable(logging.NOTSET)
def test_load_state_dict(self):
# define simple FP16 model
model = torch.nn.Linear(5, 5).cuda().half()
params = list(model.parameters())
# initialize memory efficient FP16 optimizer
# with pseudo DictConfigs
optimizer = FairseqAdam(
cfg=OmegaConf.create(
vars(
argparse.Namespace(
adam_betas="(0.9, 0.999)",
adam_eps=1e-8,
weight_decay=0.0,
lr=[0.00001],
)
)
),
params=params,
)
me_optimizer = MemoryEfficientFP16Optimizer(
cfg=OmegaConf.create(
{
"common": vars(
argparse.Namespace(
fp16_init_scale=1,
fp16_scale_window=1,
fp16_scale_tolerance=1,
threshold_loss_scale=1,
min_loss_scale=1e-4,
)
)
}
),
params=params,
optimizer=optimizer,
)
# optimizer state is created in the first step
loss = model(torch.rand(5).cuda().half()).sum()
me_optimizer.backward(loss)
me_optimizer.step()
# reload state
state = me_optimizer.state_dict()
me_optimizer.load_state_dict(state)
for k, v in me_optimizer.optimizer.state.items():
self.assertTrue(k.dtype == torch.float16)
for v_i in v.values():
if torch.is_tensor(v_i):
self.assertTrue(v_i.dtype == torch.float32)
if __name__ == "__main__":
unittest.main()
| EXA-1-master | exa/models/unilm-master/edgelm/tests/test_memory_efficient_fp16.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import tests.utils as test_utils
import torch
from fairseq.data import TokenBlockDataset
class TestTokenBlockDataset(unittest.TestCase):
def _build_dataset(self, data, **kwargs):
sizes = [len(x) for x in data]
underlying_ds = test_utils.TestDataset(data)
return TokenBlockDataset(underlying_ds, sizes, **kwargs)
def test_eos_break_mode(self):
data = [
torch.tensor([5, 4, 3, 2, 1], dtype=torch.long),
torch.tensor([1], dtype=torch.long),
torch.tensor([8, 7, 6, 1], dtype=torch.long),
]
ds = self._build_dataset(data, block_size=None, pad=0, eos=1, break_mode="eos")
self.assertEqual(ds[0].tolist(), [5, 4, 3, 2, 1])
self.assertEqual(ds[1].tolist(), [1])
self.assertEqual(ds[2].tolist(), [8, 7, 6, 1])
data = [
torch.tensor([5, 4, 3, 2, 1], dtype=torch.long),
torch.tensor([8, 7, 6, 1], dtype=torch.long),
torch.tensor([1], dtype=torch.long),
]
ds = self._build_dataset(data, block_size=None, pad=0, eos=1, break_mode="eos")
self.assertEqual(ds[0].tolist(), [5, 4, 3, 2, 1])
self.assertEqual(ds[1].tolist(), [8, 7, 6, 1])
self.assertEqual(ds[2].tolist(), [1])
def test_block_break_mode(self):
data = [
torch.tensor([5, 4, 3, 2, 1], dtype=torch.long),
torch.tensor([8, 7, 6, 1], dtype=torch.long),
torch.tensor([9, 1], dtype=torch.long),
]
ds = self._build_dataset(data, block_size=3, pad=0, eos=1, break_mode="none")
self.assertEqual(ds[0].tolist(), [5, 4, 3])
self.assertEqual(ds[1].tolist(), [2, 1, 8])
self.assertEqual(ds[2].tolist(), [7, 6, 1])
self.assertEqual(ds[3].tolist(), [9, 1])
def test_complete_break_mode(self):
data = [
torch.tensor([5, 4, 3, 2, 1], dtype=torch.long),
torch.tensor([8, 7, 6, 1], dtype=torch.long),
torch.tensor([9, 1], dtype=torch.long),
]
ds = self._build_dataset(
data, block_size=6, pad=0, eos=1, break_mode="complete"
)
self.assertEqual(ds[0].tolist(), [5, 4, 3, 2, 1])
self.assertEqual(ds[1].tolist(), [8, 7, 6, 1, 9, 1])
data = [
torch.tensor([4, 3, 2, 1], dtype=torch.long),
torch.tensor([5, 1], dtype=torch.long),
torch.tensor([1], dtype=torch.long),
torch.tensor([6, 1], dtype=torch.long),
]
ds = self._build_dataset(
data, block_size=3, pad=0, eos=1, break_mode="complete"
)
self.assertEqual(ds[0].tolist(), [4, 3, 2, 1])
self.assertEqual(ds[1].tolist(), [5, 1, 1])
self.assertEqual(ds[2].tolist(), [6, 1])
def test_4billion_tokens(self):
"""Regression test for numpy type promotion issue https://github.com/numpy/numpy/issues/5745"""
data = [torch.tensor(list(range(10000)), dtype=torch.long)] * 430000
ds = self._build_dataset(
data, block_size=6, pad=0, eos=1, break_mode="complete"
)
ds[-1] # __getitem__ works
start, end = ds.slice_indices[-1]
assert end > 4294967295 # data must be sufficiently large to overflow uint32
assert not isinstance(
end + 1, float
) # this would also raise, since np.uint64(1) + 1 => 2.0
if __name__ == "__main__":
unittest.main()
| EXA-1-master | exa/models/unilm-master/edgelm/tests/test_token_block_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import tempfile
import unittest
import math
import numpy as np
import tests.utils as test_utils
import torch
from fairseq import search
from fairseq.data.dictionary import Dictionary
from fairseq.models.transformer import TransformerModel
from fairseq.sequence_generator import EnsembleModel, SequenceGenerator
from fairseq.ngram_repeat_block import NGramRepeatBlock
from fairseq.tasks.fairseq_task import LegacyFairseqTask
DEFAULT_TEST_VOCAB_SIZE = 100
class DummyTask(LegacyFairseqTask):
def __init__(self, args):
super().__init__(args)
self.dictionary = get_dummy_dictionary()
if getattr(self.args, "ctc", False):
self.dictionary.add_symbol("<ctc_blank>")
self.src_dict = self.dictionary
self.tgt_dict = self.dictionary
@property
def source_dictionary(self):
return self.src_dict
@property
def target_dictionary(self):
return self.dictionary
def get_dummy_dictionary(vocab_size=DEFAULT_TEST_VOCAB_SIZE):
dummy_dict = Dictionary()
# add dummy symbol to satisfy vocab size
for id, _ in enumerate(range(vocab_size)):
dummy_dict.add_symbol("{}".format(id), n=1000)
return dummy_dict
def get_dummy_task_and_parser():
"""
to build a fariseq model, we need some dummy parse and task. This function
is used to create dummy task and parser to faciliate model/criterion test
Note: we use FbSpeechRecognitionTask as the dummy task. You may want
to use other task by providing another function
"""
parser = argparse.ArgumentParser(
description="test_dummy_s2s_task", argument_default=argparse.SUPPRESS
)
DummyTask.add_args(parser)
args = parser.parse_args([])
task = DummyTask.setup_task(args)
return task, parser
class TestJitSequenceGeneratorBase(unittest.TestCase):
def setUp(self):
self.task, self.parser = get_dummy_task_and_parser()
eos = self.task.tgt_dict.eos()
src_tokens = torch.randint(3, 50, (2, 10)).long()
src_tokens = torch.cat((src_tokens, torch.LongTensor([[eos], [eos]])), -1)
src_lengths = torch.LongTensor([2, 10])
self.sample = {
"net_input": {"src_tokens": src_tokens, "src_lengths": src_lengths}
}
TransformerModel.add_args(self.parser)
args = self.parser.parse_args([])
args.encoder_layers = 2
args.decoder_layers = 1
self.transformer_model = TransformerModel.build_model(args, self.task)
def assertOutputEqual(self, hypo, pos_probs):
pos_scores = torch.FloatTensor(pos_probs).log()
self.assertTensorSizeEqual(hypo["positional_scores"], pos_scores)
self.assertTensorSizeEqual(pos_scores.numel(), hypo["tokens"].numel())
def assertTensorSizeEqual(self, t1, t2):
self.assertEqual(t1.size(), t2.size(), "size mismatch")
def assertAlmostEqual(self, t1, t2):
self.assertEqual(t1.size(), t2.size(), "size mismatch")
self.assertLess((t1 - t2).abs().max(), 1e-4)
def assertTensorEqual(self, t1, t2):
self.assertEqual(t1.size(), t2.size(), "size mismatch")
self.assertEqual(t1.ne(t2).long().sum(), 0)
def assertHypoEqual(self, h1, h2):
"Check two hypos are equal"
self.assertTensorEqual(h1["tokens"], h2["tokens"])
self.assertAlmostEqual(h1["positional_scores"], h2["positional_scores"])
self.assertLess(abs(h1["score"] - h2["score"]), 1e-6)
self.assertAlmostEqual(h1["attention"], h2["attention"])
def _test_save_and_load(self, scripted_module):
with tempfile.NamedTemporaryFile() as f:
scripted_module.save(f.name)
torch.jit.load(f.name)
JIT_MSG = "Targeting OSS scriptability for the 1.6 release"
@unittest.skipIf(torch.__version__ < "1.6.0", JIT_MSG)
class TestJitSequenceGenerator(TestJitSequenceGeneratorBase):
def test_export_transformer(self):
model = self.transformer_model
torch.jit.script(model)
def test_ensemble_sequence_generator(self):
model = self.transformer_model
generator = SequenceGenerator(
[model],
self.task.tgt_dict,
beam_size=2,
no_repeat_ngram_size=2,
max_len_b=10,
)
scripted_model = torch.jit.script(generator)
self._test_save_and_load(scripted_model)
def test_export_ensemble_model(self):
model = self.transformer_model
ensemble_models = EnsembleModel([model])
torch.jit.script(ensemble_models)
class TestExportSearch(unittest.TestCase):
def setUp(self):
task, _ = get_dummy_task_and_parser()
self.tgt_dict = task.tgt_dict
self.min_top1_prob = 0.4
def test_export_diverse_bs(self):
search_strategy = search.DiverseBeamSearch(
self.tgt_dict, num_groups=2, diversity_strength=0.0
)
torch.jit.script(search_strategy)
def test_export_sampling(self):
low_sampling_topp = self.min_top1_prob / 2.0
search_strategy = search.Sampling(
self.tgt_dict, sampling_topp=low_sampling_topp
)
torch.jit.script(search_strategy)
def test_export_diverse_siblings_search(self):
search_strategy = search.DiverseSiblingsSearch(
self.tgt_dict, diversity_rate=0.5
)
torch.jit.script(search_strategy)
class TestSequenceGeneratorBase(unittest.TestCase):
def assertHypoTokens(self, hypo, tokens):
self.assertTensorEqual(hypo["tokens"], torch.LongTensor(tokens))
def assertHypoScore(self, hypo, pos_probs, normalized=True, lenpen=1.0):
pos_scores = torch.FloatTensor(pos_probs).log()
self.assertAlmostEqual(hypo["positional_scores"], pos_scores)
self.assertEqual(pos_scores.numel(), hypo["tokens"].numel())
score = pos_scores.sum()
if normalized:
score /= pos_scores.numel() ** lenpen
self.assertLess(abs(score - hypo["score"]), 1e-6)
def assertAlmostEqual(self, t1, t2):
self.assertEqual(t1.size(), t2.size(), "size mismatch")
self.assertLess((t1 - t2).abs().max(), 1e-4)
def assertTensorEqual(self, t1, t2):
self.assertEqual(t1.size(), t2.size(), "size mismatch")
self.assertEqual(t1.ne(t2).long().sum(), 0)
class TestSequenceGenerator(TestSequenceGeneratorBase):
def setUp(self):
(
self.tgt_dict,
self.w1,
self.w2,
src_tokens,
src_lengths,
self.model,
) = test_utils.sequence_generator_setup()
self.sample = {
"net_input": {"src_tokens": src_tokens, "src_lengths": src_lengths}
}
def test_with_normalization(self):
generator = SequenceGenerator([self.model], self.tgt_dict, beam_size=2)
hypos = generator.forward(self.sample)
eos, w1, w2 = self.tgt_dict.eos(), self.w1, self.w2
# sentence 1, beam 1
self.assertHypoTokens(hypos[0][0], [w1, eos])
self.assertHypoScore(hypos[0][0], [0.9, 1.0])
# sentence 1, beam 2
self.assertHypoTokens(hypos[0][1], [w2, w1, w2, eos])
self.assertHypoScore(hypos[0][1], [0.1, 0.9, 0.9, 1.0])
# sentence 2, beam 1
self.assertHypoTokens(hypos[1][0], [w1, w2, w1, eos])
self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.4, 1.0])
# sentence 2, beam 2
self.assertHypoTokens(hypos[1][1], [w1, w2, eos])
self.assertHypoScore(hypos[1][1], [0.7, 0.4, 0.6])
def test_without_normalization(self):
# Sentence 1: unchanged from the normalized case
# Sentence 2: beams swap order
generator = SequenceGenerator(
[self.model], self.tgt_dict, beam_size=2, normalize_scores=False
)
hypos = generator.forward(self.sample)
eos, w1, w2 = self.tgt_dict.eos(), self.w1, self.w2
# sentence 1, beam 1
self.assertHypoTokens(hypos[0][0], [w1, eos])
self.assertHypoScore(hypos[0][0], [0.9, 1.0], normalized=False)
# sentence 1, beam 2
self.assertHypoTokens(hypos[0][1], [w2, w1, w2, eos])
self.assertHypoScore(hypos[0][1], [0.1, 0.9, 0.9, 1.0], normalized=False)
# sentence 2, beam 1
self.assertHypoTokens(hypos[1][0], [w1, w2, eos])
self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.6], normalized=False)
# sentence 2, beam 2
self.assertHypoTokens(hypos[1][1], [w1, w2, w1, eos])
self.assertHypoScore(hypos[1][1], [0.7, 0.4, 0.4, 1.0], normalized=False)
def test_with_lenpen_favoring_short_hypos(self):
lenpen = 0.6
generator = SequenceGenerator(
[self.model], self.tgt_dict, beam_size=2, len_penalty=lenpen
)
hypos = generator.forward(self.sample)
eos, w1, w2 = self.tgt_dict.eos(), self.w1, self.w2
# sentence 1, beam 1
self.assertHypoTokens(hypos[0][0], [w1, eos])
self.assertHypoScore(hypos[0][0], [0.9, 1.0], lenpen=lenpen)
# sentence 1, beam 2
self.assertHypoTokens(hypos[0][1], [w2, w1, w2, eos])
self.assertHypoScore(hypos[0][1], [0.1, 0.9, 0.9, 1.0], lenpen=lenpen)
# sentence 2, beam 1
self.assertHypoTokens(hypos[1][0], [w1, w2, eos])
self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.6], lenpen=lenpen)
# sentence 2, beam 2
self.assertHypoTokens(hypos[1][1], [w1, w2, w1, eos])
self.assertHypoScore(hypos[1][1], [0.7, 0.4, 0.4, 1.0], lenpen=lenpen)
def test_with_lenpen_favoring_long_hypos(self):
lenpen = 5.0
generator = SequenceGenerator(
[self.model], self.tgt_dict, beam_size=2, len_penalty=lenpen
)
hypos = generator.forward(self.sample)
eos, w1, w2 = self.tgt_dict.eos(), self.w1, self.w2
# sentence 1, beam 1
self.assertHypoTokens(hypos[0][0], [w2, w1, w2, eos])
self.assertHypoScore(hypos[0][0], [0.1, 0.9, 0.9, 1.0], lenpen=lenpen)
# sentence 1, beam 2
self.assertHypoTokens(hypos[0][1], [w1, eos])
self.assertHypoScore(hypos[0][1], [0.9, 1.0], lenpen=lenpen)
# sentence 2, beam 1
self.assertHypoTokens(hypos[1][0], [w1, w2, w1, eos])
self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.4, 1.0], lenpen=lenpen)
# sentence 2, beam 2
self.assertHypoTokens(hypos[1][1], [w1, w2, eos])
self.assertHypoScore(hypos[1][1], [0.7, 0.4, 0.6], lenpen=lenpen)
def test_maxlen(self):
generator = SequenceGenerator(
[self.model], self.tgt_dict, beam_size=2, max_len_b=2
)
hypos = generator.forward(self.sample)
eos, w1, w2 = self.tgt_dict.eos(), self.w1, self.w2
# sentence 1, beam 1
self.assertHypoTokens(hypos[0][0], [w1, eos])
self.assertHypoScore(hypos[0][0], [0.9, 1.0])
# sentence 1, beam 2
self.assertHypoTokens(hypos[0][1], [w2, w2, eos])
self.assertHypoScore(hypos[0][1], [0.1, 0.1, 0.6])
# sentence 2, beam 1
self.assertHypoTokens(hypos[1][0], [w1, w2, eos])
self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.6])
# sentence 2, beam 2
self.assertHypoTokens(hypos[1][1], [w2, w2, eos])
self.assertHypoScore(hypos[1][1], [0.3, 0.9, 0.01])
def test_encoder_with_different_output_len(self):
args = self.model.encoder.args
task = test_utils.TestTranslationTask.setup_task(
args, self.tgt_dict, self.tgt_dict
)
reshaping_model = test_utils.TestReshapingModel.build_model(args, task)
generator = SequenceGenerator(
[reshaping_model], self.tgt_dict, beam_size=2, max_len_b=2
)
hypos = generator.forward(self.sample)
for sent in [0, 1]:
for beam in [0, 1]:
assert hypos[sent][beam]["attention"] is not None
def test_generation_with_additional_input(self):
args = self.model.encoder.args
task = test_utils.TestTranslationTask.setup_task(
args, self.tgt_dict, self.tgt_dict
)
add_input_model = test_utils.TestAdditionalInputModel.build_model(args, task)
generator = SequenceGenerator([add_input_model], self.tgt_dict, beam_size=2)
sample = self.sample.copy()
sample["net_input"]["fancy_other_input"] = sample["net_input"]["src_tokens"]
hypos = generator.forward(self.sample)
eos, w1, w2 = self.tgt_dict.eos(), self.w1, self.w2
# sentence 1, beam 1
self.assertHypoTokens(hypos[0][0], [w1, eos])
self.assertHypoScore(hypos[0][0], [0.9, 1.0])
@unittest.skipUnless(torch.cuda.is_available(), "")
class TestRepeatNgramBlocking(TestSequenceGeneratorBase):
@classmethod
def setUpClass(cls):
(
cls.tgt_dict,
cls.w1,
cls.w2,
src_tokens,
src_lengths,
cls.model,
) = test_utils.sequence_generator_setup()
return cls
def test_finds_repetitive_tokens(self):
bsz, vocab_size, beam_size, step = 2, 4, 1, 3
generated_tok = torch.tensor(
[[2, 2, 2, 2], [3, 3, 3, 3]], dtype=torch.long, device="cuda"
)
lprobs = torch.zeros((beam_size * bsz, vocab_size), device="cuda")
desired_result = lprobs.new_tensor(
[[0.0, 0.0, -math.inf, 0.0], [0.0, 0.0, 0.0, -math.inf]]
)
cuda_ext_result, baseline_result = self._compare_cuda_ext_to_default_implem(
bsz, beam_size, generated_tok, lprobs, step, 2
)
self.assertTensorEqual(cuda_ext_result, desired_result)
self.assertTensorEqual(baseline_result, desired_result)
@unittest.skipIf(torch.__version__ < "1.6.0", JIT_MSG)
def test_jit_no_extension(self):
bsz, vocab_size, beam_size, step = 2, 4, 1, 3
generated_tok = torch.tensor(
[[2, 2, 2, 2], [3, 3, 3, 3]], dtype=torch.long, device="cuda"
)
lprobs = torch.zeros((beam_size * bsz, vocab_size), device="cuda")
blocker = NGramRepeatBlock(2, use_extension=False)
base_result = blocker(generated_tok, lprobs.clone(), bsz, beam_size, step)
scripted_blocker = torch.jit.script(blocker)
jit_result = scripted_blocker(
generated_tok, lprobs.clone(), bsz, beam_size, step
)
self.assertTensorEqual(base_result, jit_result)
def test_ngram_blocking_same_as_default_implem(self):
"""Test that cuda extension returns same things as default impl in many settings."""
vocab_size = 4
step = 6
for _ in range(2):
block_param = np.random.choice([1, 2, 3, 4])
batch_size = np.random.randint(1, 8)
beam_size = np.random.choice([1, 2, 4, 8])
lprobs = torch.zeros((beam_size * batch_size, vocab_size), device="cuda")
generated_tok = torch.tensor(
np.random.randint(
0, vocab_size, size=(batch_size * beam_size, step + 1)
),
device="cuda",
dtype=torch.long,
)
self._compare_cuda_ext_to_default_implem(
batch_size,
beam_size,
generated_tok,
lprobs,
step,
block_param,
)
def _compare_cuda_ext_to_default_implem(
self, bsz, beam_size, generated_tok, lprobs, step, block_param
):
"""Assert that cuda extension and default implem return the same thing."""
blocker = NGramRepeatBlock(block_param)
assert blocker.use_extension, "Extension not compiled"
cuda_ext_result = blocker(
generated_tok,
lprobs.clone(),
bsz,
beam_size,
step,
)
blocker.use_extension = False
baseline_result = blocker(
generated_tok,
lprobs.clone(),
bsz,
beam_size,
step,
)
self.assertTensorEqual(cuda_ext_result, baseline_result)
blocker.use_extension = True
return cuda_ext_result, baseline_result
class TestDiverseBeamSearch(TestSequenceGeneratorBase):
def setUp(self):
# construct dummy dictionary
d = test_utils.dummy_dictionary(vocab_size=2)
self.assertEqual(d.pad(), 1)
self.assertEqual(d.eos(), 2)
self.assertEqual(d.unk(), 3)
self.eos = d.eos()
self.w1 = 4
self.w2 = 5
# construct source data
self.src_tokens = torch.LongTensor(
[
[self.w1, self.w2, self.eos],
[self.w1, self.w2, self.eos],
]
)
self.src_lengths = torch.LongTensor([2, 2])
args = argparse.Namespace()
unk = 0.0
args.beam_probs = [
# step 0:
torch.FloatTensor(
[
# eos w1 w2
# sentence 1:
[0.0, unk, 0.9, 0.1], # beam 1
[0.0, unk, 0.9, 0.1], # beam 2
# sentence 2:
[0.0, unk, 0.7, 0.3],
[0.0, unk, 0.7, 0.3],
]
),
# step 1:
torch.FloatTensor(
[
# eos w1 w2
# sentence 1:
[0.0, unk, 0.6, 0.4],
[0.0, unk, 0.6, 0.4],
# sentence 2:
[0.25, unk, 0.35, 0.4],
[0.25, unk, 0.35, 0.4],
]
),
# step 2:
torch.FloatTensor(
[
# eos w1 w2
# sentence 1:
[1.0, unk, 0.0, 0.0],
[1.0, unk, 0.0, 0.0],
# sentence 2:
[0.9, unk, 0.1, 0.0],
[0.9, unk, 0.1, 0.0],
]
),
]
task = test_utils.TestTranslationTask.setup_task(args, d, d)
self.model = task.build_model(args)
self.tgt_dict = task.target_dictionary
def test_diverse_beam_search(self):
search_strategy = search.DiverseBeamSearch(
self.tgt_dict, num_groups=2, diversity_strength=0.0
)
generator = SequenceGenerator(
[self.model],
self.tgt_dict,
beam_size=2,
search_strategy=search_strategy,
)
sample = {
"net_input": {
"src_tokens": self.src_tokens,
"src_lengths": self.src_lengths,
}
}
hypos = generator.forward(sample)
eos, w1, w2 = self.eos, self.w1, self.w2
# sentence 1, beam 1
self.assertHypoTokens(hypos[0][0], [w1, w1, eos])
self.assertHypoScore(hypos[0][0], [0.9, 0.6, 1.0])
# sentence 1, beam 2
self.assertHypoTokens(hypos[0][1], [w1, w1, eos])
self.assertHypoScore(hypos[0][1], [0.9, 0.6, 1.0])
# sentence 2, beam 1
self.assertHypoTokens(hypos[1][0], [w1, w2, eos])
self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.9])
# sentence 2, beam 2
self.assertHypoTokens(hypos[1][1], [w1, w2, eos])
self.assertHypoScore(hypos[1][1], [0.7, 0.4, 0.9])
class TestDiverseSiblingsSearch(TestDiverseBeamSearch):
def assertHypoScore(
self, hypo, pos_probs, sibling_rank, diversity_rate, normalized=True, lenpen=1.0
):
pos_scores = torch.FloatTensor(pos_probs).log()
pos_scores.sub_(torch.Tensor(sibling_rank) * diversity_rate)
self.assertAlmostEqual(hypo["positional_scores"], pos_scores)
self.assertEqual(pos_scores.numel(), hypo["tokens"].numel())
score = pos_scores.sum()
if normalized:
score /= pos_scores.numel() ** lenpen
self.assertLess(abs(score - hypo["score"]), 1e-6)
def test_diverse_beam_search(self):
search_strategy = search.DiverseSiblingsSearch(
self.tgt_dict, diversity_rate=0.5
)
generator = SequenceGenerator(
[self.model], self.tgt_dict, beam_size=2, search_strategy=search_strategy
)
sample = {
"net_input": {
"src_tokens": self.src_tokens,
"src_lengths": self.src_lengths,
}
}
hypos = generator.forward(sample)
eos, w1, w2 = self.eos, self.w1, self.w2
# sentence 1, beam 1
self.assertHypoTokens(hypos[0][0], [w1, w1, eos])
self.assertHypoScore(hypos[0][0], [0.9, 0.6, 1.0], [0, 1, 1], 0.5)
# sentence 1, beam 2
self.assertHypoTokens(hypos[0][1], [w1, w2, eos])
self.assertHypoScore(hypos[0][1], [0.9, 0.4, 1.0], [0, 2, 1], 0.5)
# sentence 2, beam 1
self.assertHypoTokens(hypos[1][0], [w1, w2, eos])
self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.9], [0, 1, 1], 0.5)
# sentence 2, beam 2
self.assertHypoTokens(hypos[1][1], [w1, w1, eos])
self.assertHypoScore(hypos[1][1], [0.7, 0.35, 0.9], [0, 2, 1], 0.5)
class TestPrefixBeamSearch(TestSequenceGeneratorBase):
def setUp(self):
# construct dummy dictionary
vocab_size = 10
d = test_utils.dummy_dictionary(vocab_size=vocab_size)
self.assertEqual(d.pad(), 1)
self.assertEqual(d.eos(), 2)
self.assertEqual(d.unk(), 3)
self.eos = d.eos()
self.w1 = 4
self.w2 = 5
self.beam_size = 3
# construct prefix data
self.tokens = torch.LongTensor(
[
[self.w1, self.w2, self.eos],
]
)
self.token_lengths = torch.LongTensor([2])
args = argparse.Namespace()
unk = 0.0
args.beam_probs = [
# prefix step 0:
torch.FloatTensor(
[
# eos
[0.0, unk] + [1.0 / vocab_size] * vocab_size # beam 1
] * self.beam_size
),
] * vocab_size
task = test_utils.TestTranslationTask.setup_task(args, d, d)
self.model = task.build_model(args)
self.tgt_dict = task.target_dictionary
def test_prefix_beam_search(self):
search_strategy = search.BeamSearch(self.tgt_dict)
generator = SequenceGenerator(
[self.model],
self.tgt_dict,
beam_size=self.beam_size,
search_strategy=search_strategy,
)
sample = {
"net_input": {
"src_tokens": self.tokens,
"src_lengths": self.token_lengths,
}
}
# make sure test sample doesn't break any assertion
generator.forward(sample, prefix_tokens=self.tokens[:, :-1])
class TestTopPSamplingSearch(TestSequenceGeneratorBase):
def setUp(self):
# construct dummy dictionary
d = test_utils.dummy_dictionary(vocab_size=2)
self.assertEqual(d.pad(), 1)
self.assertEqual(d.eos(), 2)
self.assertEqual(d.unk(), 3)
self.eos = d.eos()
self.w1 = 4
self.w2 = 5
# construct source data
self.src_tokens = torch.LongTensor(
[
[self.w1, self.w2, self.eos],
[self.w1, self.w2, self.eos],
]
)
self.src_lengths = torch.LongTensor([2, 2])
args = argparse.Namespace()
unk = 0.0
# The minimal probability of top 2 tokens.
self.min_top2_prob = 0.75
# The minimal probability of the top 1 token.
self.min_top1_prob = 0.4
w1_prob = self.min_top1_prob
w2_prob = self.min_top2_prob - self.min_top1_prob
eos_prob = 1 - self.min_top2_prob
args.beam_probs = [
# step 0:
torch.FloatTensor(
[
# eos w1 w2
[0.0, unk, 1.0, 0.0],
[0.0, unk, 1.0, 0.0],
[0.0, unk, 1.0, 0.0],
[0.0, unk, 1.0, 0.0],
]
),
# step 1:
torch.FloatTensor(
[
# eos w1 w2
[eos_prob, unk, w1_prob, w2_prob],
[eos_prob, unk, w1_prob, w2_prob],
[eos_prob, unk, w1_prob, w2_prob],
[eos_prob, unk, w1_prob, w2_prob],
]
),
# step 2:
torch.FloatTensor(
[
# eos w1 w2
[1.0, unk, 0.0, 0.0],
[1.0, unk, 0.0, 0.0],
[1.0, unk, 0.0, 0.0],
[1.0, unk, 0.0, 0.0],
]
),
]
task = test_utils.TestTranslationTask.setup_task(args, d, d)
self.model = task.build_model(args)
self.tgt_dict = task.target_dictionary
def test_topp_sampling_search_low_prob(self):
# Given a prob low enough to top-P sampling, we expect only the top
# 1 token to be sampled, which always results in the same output.
low_sampling_topp = self.min_top1_prob / 2.0
search_strategy = search.Sampling(
self.tgt_dict, sampling_topp=low_sampling_topp
)
generator = SequenceGenerator(
[self.model], self.tgt_dict, beam_size=2, search_strategy=search_strategy
)
sample = {
"net_input": {
"src_tokens": self.src_tokens,
"src_lengths": self.src_lengths,
}
}
hypos = generator.forward(sample)
eos, w1 = self.eos, self.w1
# sentence 1, beam 1
self.assertHypoTokens(hypos[0][0], [w1, w1, eos])
self.assertHypoScore(hypos[0][0], [1.0, 0.4, 1.0])
# sentence 1, beam 2
self.assertHypoTokens(hypos[0][1], [w1, w1, eos])
self.assertHypoScore(hypos[0][1], [1.0, 0.4, 1.0])
# sentence 2, beam 1
self.assertHypoTokens(hypos[1][0], [w1, w1, eos])
self.assertHypoScore(hypos[1][0], [1.0, 0.4, 1.0])
# sentence 2, beam 2
self.assertHypoTokens(hypos[1][1], [w1, w1, eos])
self.assertHypoScore(hypos[1][1], [1.0, 0.4, 1.0])
def test_topp_sampling_search_high_prob(self):
# Given a prob high enough to top-P sampling, any of the top 2
# tokens could be sampled. This can cause different outputs.
high_sampling_topp = (self.min_top1_prob + self.min_top2_prob) / 2.0
search_strategy = search.Sampling(
self.tgt_dict, sampling_topp=high_sampling_topp
)
generator = SequenceGenerator(
[self.model], self.tgt_dict, beam_size=2, search_strategy=search_strategy
)
sample = {
"net_input": {
"src_tokens": self.src_tokens,
"src_lengths": self.src_lengths,
}
}
hypos = generator.forward(sample)
eos, w1, w2 = self.eos, self.w1, self.w2
# sentence 1, beam 1
self.assertTrue(
self.hypoTokens(hypos[0][0], [w1, w1, eos])
or self.hypoTokens(hypos[0][0], [w1, w2, eos])
)
self.assertTrue(
self.hypoScore(hypos[0][0], [1.0, 0.4, 1.0])
or self.hypoScore(hypos[0][0], [1.0, 0.35, 1.0])
)
# sentence 1, beam 2
self.assertTrue(
self.hypoTokens(hypos[0][1], [w1, w1, eos])
or self.hypoTokens(hypos[0][1], [w1, w2, eos])
)
self.assertTrue(
self.hypoScore(hypos[0][1], [1.0, 0.4, 1.0])
or self.hypoScore(hypos[0][1], [1.0, 0.35, 1.0])
)
# sentence 2, beam 1
self.assertTrue(
self.hypoTokens(hypos[1][0], [w1, w1, eos])
or self.hypoTokens(hypos[1][0], [w1, w2, eos])
)
self.assertTrue(
self.hypoScore(hypos[1][0], [1.0, 0.4, 1.0])
or self.hypoScore(hypos[1][0], [1.0, 0.35, 1.0])
)
# sentence 2, beam 2
self.assertTrue(
self.hypoTokens(hypos[1][1], [w1, w1, eos])
or self.hypoTokens(hypos[1][1], [w1, w2, eos])
)
self.assertTrue(
self.hypoScore(hypos[1][1], [1.0, 0.4, 1.0])
or self.hypoScore(hypos[1][1], [1.0, 0.35, 1.0])
)
def hypoTokens(self, hypo, tokens):
return self.tensorEqual(hypo["tokens"], torch.LongTensor(tokens))
def hypoScore(self, hypo, pos_probs, normalized=True, lenpen=1.0):
pos_scores = torch.FloatTensor(pos_probs).log()
if not self.almostEqual(hypo["positional_scores"], pos_scores):
return False
if pos_scores.numel() != hypo["tokens"].numel():
return False
score = pos_scores.sum()
if normalized:
score /= pos_scores.numel() ** lenpen
return abs(score - hypo["score"]) < 1e-6
def almostEqual(self, t1, t2):
return t1.size() == t2.size() and (t1 - t2).abs().max() < 1e-4
def tensorEqual(self, t1, t2):
return t1.size() == t2.size() and t1.ne(t2).long().sum() == 0
if __name__ == "__main__":
unittest.main()
| EXA-1-master | exa/models/unilm-master/edgelm/tests/test_sequence_generator.py |
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import shutil
import tempfile
import unittest
from typing import Optional
class TestFileChunker(unittest.TestCase):
_tmpdir: Optional[str] = None
_tmpfile: Optional[str] = None
_line_content = "Hello, World\n"
_num_bytes = None
_num_lines = 200
_num_splits = 20
@classmethod
def setUpClass(cls) -> None:
cls._num_bytes = len(cls._line_content.encode("utf-8"))
cls._tmpdir = tempfile.mkdtemp()
with open(os.path.join(cls._tmpdir, "test.txt"), "w") as f:
cls._tmpfile = f.name
for _i in range(cls._num_lines):
f.write(cls._line_content)
f.flush()
@classmethod
def tearDownClass(cls) -> None:
# Cleanup temp working dir.
if cls._tmpdir is not None:
shutil.rmtree(cls._tmpdir) # type: ignore
def test_find_offsets(self):
from fairseq.file_chunker_utils import find_offsets
offsets = find_offsets(self._tmpfile, self._num_splits)
self.assertEqual(len(offsets), self._num_splits + 1)
(zero, *real_offsets, last) = offsets
self.assertEqual(zero, 0)
for i, o in enumerate(real_offsets):
self.assertEqual(
o,
self._num_bytes
+ ((i + 1) * self._num_bytes * self._num_lines / self._num_splits),
)
self.assertEqual(last, self._num_bytes * self._num_lines)
def test_readchunks(self):
from fairseq.file_chunker_utils import Chunker, find_offsets
offsets = find_offsets(self._tmpfile, self._num_splits)
for start, end in zip(offsets, offsets[1:]):
with Chunker(self._tmpfile, start, end) as lines:
all_lines = list(lines)
num_lines = self._num_lines / self._num_splits
self.assertAlmostEqual(
len(all_lines), num_lines, delta=1
) # because we split on the bites, we might end up with one more/less line in a chunk
self.assertListEqual(
all_lines, [self._line_content for _ in range(len(all_lines))]
)
| EXA-1-master | exa/models/unilm-master/edgelm/tests/test_file_chunker_utils.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import unittest
from argparse import ArgumentParser
from dataclasses import dataclass, field
from fairseq.dataclass import FairseqDataclass
from fairseq.dataclass.utils import gen_parser_from_dataclass
@dataclass
class A(FairseqDataclass):
data: str = field(default="test", metadata={"help": "the data input"})
num_layers: int = field(default=200, metadata={"help": "more layers is better?"})
@dataclass
class B(FairseqDataclass):
bar: A = field(default=A())
foo: int = field(default=0, metadata={"help": "not a bar"})
@dataclass
class D(FairseqDataclass):
arch: A = field(default=A())
foo: int = field(default=0, metadata={"help": "not a bar"})
@dataclass
class C(FairseqDataclass):
data: str = field(default="test", metadata={"help": "root level data input"})
encoder: D = field(default=D())
decoder: A = field(default=A())
lr: int = field(default=0, metadata={"help": "learning rate"})
class TestDataclassUtils(unittest.TestCase):
def test_argparse_convert_basic(self):
parser = ArgumentParser()
gen_parser_from_dataclass(parser, A(), True)
args = parser.parse_args(["--num-layers", '10', "the/data/path"])
self.assertEqual(args.num_layers, 10)
self.assertEqual(args.data, "the/data/path")
def test_argparse_recursive(self):
parser = ArgumentParser()
gen_parser_from_dataclass(parser, B(), True)
args = parser.parse_args(["--num-layers", "10", "--foo", "10", "the/data/path"])
self.assertEqual(args.num_layers, 10)
self.assertEqual(args.foo, 10)
self.assertEqual(args.data, "the/data/path")
def test_argparse_recursive_prefixing(self):
self.maxDiff = None
parser = ArgumentParser()
gen_parser_from_dataclass(parser, C(), True, "")
args = parser.parse_args(
[
"--encoder-arch-data",
"ENCODER_ARCH_DATA",
"--encoder-arch-num-layers",
"10",
"--encoder-foo",
"10",
"--decoder-data",
"DECODER_DATA",
"--decoder-num-layers",
"10",
"--lr",
"10",
"the/data/path",
]
)
self.assertEqual(args.encoder_arch_data, "ENCODER_ARCH_DATA")
self.assertEqual(args.encoder_arch_num_layers, 10)
self.assertEqual(args.encoder_foo, 10)
self.assertEqual(args.decoder_data, "DECODER_DATA")
self.assertEqual(args.decoder_num_layers, 10)
self.assertEqual(args.lr, 10)
self.assertEqual(args.data, "the/data/path")
if __name__ == "__main__":
unittest.main()
| EXA-1-master | exa/models/unilm-master/edgelm/tests/test_dataclass_utils.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import torch
from fairseq.data import LanguagePairDataset, TokenBlockDataset
from fairseq.data.concat_dataset import ConcatDataset
from tests.test_train import mock_dict
class TestConcatDataset(unittest.TestCase):
def setUp(self):
d = mock_dict()
tokens_1 = torch.LongTensor([1]).view(1, -1)
tokens_ds1 = TokenBlockDataset(
tokens_1,
sizes=[tokens_1.size(-1)],
block_size=1,
pad=0,
eos=1,
include_targets=False,
)
self.dataset_1 = LanguagePairDataset(
tokens_ds1, tokens_ds1.sizes, d, shuffle=False
)
tokens_2 = torch.LongTensor([2]).view(1, -1)
tokens_ds2 = TokenBlockDataset(
tokens_2,
sizes=[tokens_2.size(-1)],
block_size=1,
pad=0,
eos=1,
include_targets=False,
)
self.dataset_2 = LanguagePairDataset(
tokens_ds2, tokens_ds2.sizes, d, shuffle=False
)
def test_concat_dataset_basics(self):
d = ConcatDataset([self.dataset_1, self.dataset_2])
assert len(d) == 2
assert d[0]["source"][0] == 1
assert d[1]["source"][0] == 2
d = ConcatDataset([self.dataset_1, self.dataset_2], sample_ratios=[1, 2])
assert len(d) == 3
assert d[0]["source"][0] == 1
assert d[1]["source"][0] == 2
assert d[2]["source"][0] == 2
d = ConcatDataset([self.dataset_1, self.dataset_2], sample_ratios=[2, 1])
assert len(d) == 3
assert d[0]["source"][0] == 1
assert d[1]["source"][0] == 1
assert d[2]["source"][0] == 2
| EXA-1-master | exa/models/unilm-master/edgelm/tests/test_concat_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import tempfile
import unittest
from pathlib import Path
from typing import Any, Dict, Sequence
import fairseq.data.indexed_dataset as indexed_dataset
import fairseq.options
import fairseq.tasks.online_backtranslation as obt
import torch
from tests import utils
def mk_sample(tokens: Sequence[int], batch_size: int = 2) -> Dict[str, Any]:
batch = torch.stack([torch.tensor(tokens, dtype=torch.long)] * batch_size)
sample = {
"net_input": {
"src_tokens": batch,
"prev_output_tokens": batch,
"src_lengths": torch.tensor([len(tokens)] * batch_size, dtype=torch.long),
},
"target": batch[:, 1:],
}
return sample
def mk_dataset(num_samples: int, max_len: int, output: Path):
output.parent.mkdir(exist_ok=True)
idx = indexed_dataset.IndexedDatasetBuilder(str(output))
data = torch.randint(5, 100, (num_samples, max_len))
lengths = torch.randint(3, max_len, (num_samples,))
for d, l in zip(data, lengths):
d[0] = 0
idx.add_item(d[:l])
idx.finalize(output.with_suffix(".idx"))
assert output.exists()
assert output.with_suffix(".idx").exists()
class OnlineBacktranslationTest(unittest.TestCase):
tmp_dir = Path(tempfile.mkdtemp(suffix="OnlineBacktranslationTest"))
@classmethod
def obt_task(
cls, languages: Sequence[str], data: Path = None, language_mapping: str = None
):
dict_path = cls.tmp_dir / "dict.txt"
if not dict_path.exists():
dictionary = utils.dummy_dictionary(100)
dictionary.save(str(dict_path))
if data is not None:
(data / "dict.txt").write_text(dict_path.read_text())
else:
data = cls.tmp_dir
assert len(languages) >= 2
kwargs = {
"arch": "transformer",
# --max-sentences=1 for better predictability of batches
"max_sentences": 1,
# Use characteristics dimensions
"encoder_layers": 3,
"encoder_embed_dim": 12,
"encoder_ffn_embed_dim": 14,
"encoder_attention_heads": 4,
"decoder_layers": 3,
"decoder_embed_dim": 12,
"decoder_output_dim": 12,
"decoder_ffn_embed_dim": 14,
"decoder_attention_heads": 4,
# Disable dropout so we have comparable tests.
"dropout": 0,
"attention_dropout": 0,
"activation_dropout": 0,
"encoder_layerdrop": 0,
}
args = fairseq.options.get_args(
data,
task="online_backtranslation",
mono_langs=",".join(languages),
valid_lang_pairs=f"{languages[0]}-{languages[1]}",
tokens_per_sample=256,
language_mapping=language_mapping,
**kwargs,
)
task = obt.OnlineBackTranslationTask.setup_task(args)
# we need to build the model to have the correct dictionary
model = task.build_model(task.args)
return task, model
def tmp_path(self, test_case: str) -> Path:
return Path(tempfile.mkdtemp(test_case, dir=self.tmp_dir))
def test_lang_tokens(self):
task, model = self.obt_task(["en", "ro", "zh"])
assert obt._lang_token("en") in task.dictionary
assert obt._lang_token("ro") in task.dictionary
assert obt._lang_token("zh") in task.dictionary
en_bos = obt._lang_token_index(task.common_dict, "en")
assert "en" == task.common_dict[en_bos].strip("_")
zh_bos = obt._lang_token_index(task.common_dict, "zh")
assert "zh" == task.common_dict[zh_bos].strip("_")
zh_sample = mk_sample([zh_bos, 16, 14, 12, 10])
# we expect to receive the bos token for translation
assert task.get_bos_token_from_sample(zh_sample) == en_bos
def test_backtranslate_sample(self):
task, model = self.obt_task(["en", "ro", "zh"])
en_bos = obt._lang_token_index(task.common_dict, "en")
zh_bos = obt._lang_token_index(task.common_dict, "zh")
sample = mk_sample([zh_bos, 16, 14, 12, 10])
task.backtranslate_sample(sample, "zh", "en")
target_zh = list(sample["target"][0])
assert target_zh == [16, 14, 12, 10] # original zh sentence
generated_en = sample["net_input"]["src_tokens"][0]
assert generated_en[0] == en_bos
def test_train_dataset(self):
data = self.tmp_path("test_train_dataset")
mk_dataset(20, 10, data / "en" / "train.bin")
mk_dataset(10, 10, data / "zh" / "train.bin")
task, model = self.obt_task(["en", "zh"], data)
task.load_dataset("train")
en_bos = obt._lang_token_index(task.common_dict, "en")
zh_bos = obt._lang_token_index(task.common_dict, "zh")
train = task.datasets["train"]
train.ordered_indices()
train.prefetch([0, 19])
sample_0 = train[0]
sample_19 = train[19]
self.assertEqual(
set(sample_0.keys()), {"en-BT", "en-DENOISE", "zh-BT", "zh-DENOISE"}
)
for sample in (sample_0, sample_19):
self.assertEqual(sample["en-BT"]["source"][0], en_bos)
# bt target isn't ready to look at.
self.assertEqual(sample["en-DENOISE"]["source"][0], en_bos)
# TODO What could we check on the target side ?
for i in range(10):
# Zh dataset is shorter, and is wrapped around En dataset.
train.prefetch([i, i + 10])
self.assertEqual(
list(train[i]["zh-DENOISE"]["source"]),
list(train[i + 10]["zh-DENOISE"]["source"]),
)
self.assertEqual(train[i]["zh-DENOISE"]["source"][0].item(), zh_bos)
# Sorted by increasing len
self.assertLess(
len(sample_0["en-BT"]["source"]), len(sample_19["en-BT"]["source"])
)
def test_valid_dataset(self):
data = self.tmp_path("test_valid_dataset")
mk_dataset(10, 21, data / "valid.en-zh.en.bin")
mk_dataset(10, 21, data / "valid.en-zh.zh.bin")
task, model = self.obt_task(["en", "zh"], data)
valid = task.load_dataset("valid")
en_bos = obt._lang_token_index(task.common_dict, "en")
assert valid is not None
valid.prefetch(range(10))
sample_0 = valid[0]
sample_9 = valid[9]
self.assertEqual(sample_0["id"], 0)
self.assertEqual(sample_9["id"], 9)
self.assertEqual(sample_0["source"][0], en_bos)
self.assertEqual(sample_9["source"][0], en_bos)
# TODO: could we test the target side ?
def assertFnMatch(self, fn, values):
for x, y in values.items():
fn_x = fn(x)
self.assertEqual(fn_x, y, f"Fn has wrong value: fn({x}) = {fn_x} != {y}")
def test_piecewise_linear_fn(self):
self.assertFnMatch(
obt.PiecewiseLinearFn.from_string("1.0"), {0: 1, 100: 1, 500: 1, 1000: 1}
)
self.assertFnMatch(
obt.PiecewiseLinearFn.from_string("0:1,1000:0"),
{0: 1, 500: 0.5, 1000: 0, 2000: 0},
)
self.assertFnMatch(
obt.PiecewiseLinearFn.from_string("0:0,1000:1"),
{0: 0, 500: 0.5, 1000: 1, 2000: 1},
)
self.assertFnMatch(
obt.PiecewiseLinearFn.from_string("0:0,1000:1,2000:0"),
{0: 0, 500: 0.5, 1000: 1, 1500: 0.5, 2000: 0, 3000: 0},
)
| EXA-1-master | exa/models/unilm-master/edgelm/tests/test_online_backtranslation.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import torch
from fairseq.data import MonolingualDataset
from fairseq.tasks.language_modeling import LanguageModelingTask, LanguageModelingConfig
from tests import utils as test_utils
class TestLMContextWindow(unittest.TestCase):
def test_eval_dataloader(self):
dictionary = test_utils.dummy_dictionary(10)
assert len(dictionary) == 14 # 4 extra special symbols
assert dictionary.pad() == 1
dataset = test_utils.TestDataset([
torch.tensor([4, 5, 6, 7], dtype=torch.long),
torch.tensor([8, 9, 10, 11], dtype=torch.long),
torch.tensor([12, 13], dtype=torch.long),
])
dataset = MonolingualDataset(dataset, sizes=[4, 4, 2], src_vocab=dictionary)
config = LanguageModelingConfig(tokens_per_sample=4)
task = LanguageModelingTask(config, dictionary)
eval_dataloader = task.eval_lm_dataloader(
dataset=dataset,
batch_size=1,
context_window=2,
)
batch = next(eval_dataloader)
assert batch["net_input"]["src_tokens"][0].tolist() == [4, 5, 6, 7, 1, 1]
assert batch["target"][0].tolist() == [4, 5, 6, 7, 1, 1]
batch = next(eval_dataloader)
assert batch["net_input"]["src_tokens"][0].tolist() == [6, 7, 8, 9, 10, 11]
assert batch["target"][0].tolist() == [1, 1, 8, 9, 10, 11]
batch = next(eval_dataloader)
assert batch["net_input"]["src_tokens"][0].tolist() == [10, 11, 12, 13]
assert batch["target"][0].tolist() == [1, 1, 12, 13]
if __name__ == "__main__":
unittest.main()
| EXA-1-master | exa/models/unilm-master/edgelm/tests/test_lm_context_window.py |
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import shutil
import sys
import tempfile
import unittest
from typing import Optional
from unittest.mock import MagicMock
class TestFileIO(unittest.TestCase):
_tmpdir: Optional[str] = None
_tmpfile: Optional[str] = None
_tmpfile_contents = "Hello, World"
@classmethod
def setUpClass(cls) -> None:
cls._tmpdir = tempfile.mkdtemp()
with open(os.path.join(cls._tmpdir, "test.txt"), "w") as f:
cls._tmpfile = f.name
f.write(cls._tmpfile_contents)
f.flush()
@classmethod
def tearDownClass(cls) -> None:
# Cleanup temp working dir.
if cls._tmpdir is not None:
shutil.rmtree(cls._tmpdir) # type: ignore
def test_file_io(self):
from fairseq.file_io import PathManager
with PathManager.open(os.path.join(self._tmpdir, "test.txt"), "r") as f:
s = f.read()
self.assertEqual(s, self._tmpfile_contents)
def test_file_io_oss(self):
# Mock iopath to simulate oss environment.
sys.modules["iopath"] = MagicMock()
from fairseq.file_io import PathManager
with PathManager.open(os.path.join(self._tmpdir, "test.txt"), "r") as f:
s = f.read()
self.assertEqual(s, self._tmpfile_contents)
def test_file_io_async(self):
# ioPath `PathManager` is initialized after the first `opena` call.
try:
from fairseq.file_io import IOPathManager, PathManager
_asyncfile = os.path.join(self._tmpdir, "async.txt")
f = PathManager.opena(_asyncfile, "wb")
f.close()
finally:
self.assertTrue(PathManager.async_close())
| EXA-1-master | exa/models/unilm-master/edgelm/tests/test_file_io.py |
import argparse
import unittest
from typing import Any, Dict, Sequence
import torch
from fairseq.models import transformer
from tests.test_roberta import FakeTask
def mk_sample(tok: Sequence[int] = None, batch_size: int = 2) -> Dict[str, Any]:
if not tok:
tok = [10, 11, 12, 13, 14, 15, 2]
batch = torch.stack([torch.tensor(tok, dtype=torch.long)] * batch_size)
sample = {
"net_input": {
"src_tokens": batch,
"prev_output_tokens": batch,
"src_lengths": torch.tensor(
[len(tok)] * batch_size, dtype=torch.long, device=batch.device
),
},
"target": batch[:, 1:],
}
return sample
def mk_transformer(**extra_args: Any):
overrides = {
# Use characteristics dimensions
"encoder_embed_dim": 12,
"encoder_ffn_embed_dim": 14,
"decoder_embed_dim": 12,
"decoder_ffn_embed_dim": 14,
# Disable dropout so we have comparable tests.
"dropout": 0,
"attention_dropout": 0,
"activation_dropout": 0,
"encoder_layerdrop": 0,
}
overrides.update(extra_args)
# Overrides the defaults from the parser
args = argparse.Namespace(**overrides)
transformer.tiny_architecture(args)
torch.manual_seed(0)
task = FakeTask(args)
return transformer.TransformerModel.build_model(args, task)
class TransformerTestCase(unittest.TestCase):
def test_forward_backward(self):
model = mk_transformer(encoder_embed_dim=12, decoder_embed_dim=12)
sample = mk_sample()
o, _ = model.forward(**sample["net_input"])
loss = o.sum()
loss.backward()
def test_different_encoder_decoder_embed_dim(self):
model = mk_transformer(encoder_embed_dim=12, decoder_embed_dim=16)
sample = mk_sample()
o, _ = model.forward(**sample["net_input"])
loss = o.sum()
loss.backward()
| EXA-1-master | exa/models/unilm-master/edgelm/tests/test_transformer.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import contextlib
import json
import os
import tempfile
import unittest
from io import StringIO
import torch
from . import test_binaries
class TestReproducibility(unittest.TestCase):
def _test_reproducibility(
self,
name,
extra_flags=None,
delta=0.0001,
resume_checkpoint="checkpoint1.pt",
max_epoch=3,
):
def get_last_log_stats_containing_string(log_records, search_string):
for log_record in logs.records[::-1]:
if isinstance(log_record.msg, str) and search_string in log_record.msg:
return json.loads(log_record.msg)
if extra_flags is None:
extra_flags = []
with tempfile.TemporaryDirectory(name) as data_dir:
with self.assertLogs() as logs:
test_binaries.create_dummy_data(data_dir)
test_binaries.preprocess_translation_data(data_dir)
# train epochs 1 and 2 together
with self.assertLogs() as logs:
test_binaries.train_translation_model(
data_dir,
"fconv_iwslt_de_en",
[
"--dropout",
"0.0",
"--log-format",
"json",
"--log-interval",
"1",
"--max-epoch",
str(max_epoch),
]
+ extra_flags,
)
train_log = get_last_log_stats_containing_string(logs.records, "train_loss")
valid_log = get_last_log_stats_containing_string(logs.records, "valid_loss")
# train epoch 2, resuming from previous checkpoint 1
os.rename(
os.path.join(data_dir, resume_checkpoint),
os.path.join(data_dir, "checkpoint_last.pt"),
)
with self.assertLogs() as logs:
test_binaries.train_translation_model(
data_dir,
"fconv_iwslt_de_en",
[
"--dropout",
"0.0",
"--log-format",
"json",
"--log-interval",
"1",
"--max-epoch",
str(max_epoch),
]
+ extra_flags,
)
train_res_log = get_last_log_stats_containing_string(
logs.records, "train_loss"
)
valid_res_log = get_last_log_stats_containing_string(
logs.records, "valid_loss"
)
for k in ["train_loss", "train_ppl", "train_num_updates", "train_gnorm"]:
self.assertAlmostEqual(
float(train_log[k]), float(train_res_log[k]), delta=delta
)
for k in [
"valid_loss",
"valid_ppl",
"valid_num_updates",
"valid_best_loss",
]:
self.assertAlmostEqual(
float(valid_log[k]), float(valid_res_log[k]), delta=delta
)
def test_reproducibility(self):
self._test_reproducibility("test_reproducibility")
@unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU")
def test_reproducibility_fp16(self):
self._test_reproducibility(
"test_reproducibility_fp16",
[
"--fp16",
"--fp16-init-scale",
"4096",
],
delta=0.011,
)
@unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU")
def test_reproducibility_memory_efficient_fp16(self):
self._test_reproducibility(
"test_reproducibility_memory_efficient_fp16",
[
"--memory-efficient-fp16",
"--fp16-init-scale",
"4096",
],
)
@unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU")
def test_reproducibility_amp(self):
self._test_reproducibility(
"test_reproducibility_amp",
[
"--amp",
"--fp16-init-scale",
"4096",
],
delta=0.011,
)
def test_mid_epoch_reproducibility(self):
self._test_reproducibility(
"test_mid_epoch_reproducibility",
["--save-interval-updates", "3"],
resume_checkpoint="checkpoint_1_3.pt",
max_epoch=1,
)
if __name__ == "__main__":
unittest.main()
| EXA-1-master | exa/models/unilm-master/edgelm/tests/test_reproducibility.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import torch
from fairseq.data import Dictionary
from fairseq.modules import CharacterTokenEmbedder
class TestCharacterTokenEmbedder(unittest.TestCase):
def test_character_token_embedder(self):
vocab = Dictionary()
vocab.add_symbol("hello")
vocab.add_symbol("there")
embedder = CharacterTokenEmbedder(
vocab, [(2, 16), (4, 32), (8, 64), (16, 2)], 64, 5, 2
)
test_sents = [["hello", "unk", "there"], ["there"], ["hello", "there"]]
max_len = max(len(s) for s in test_sents)
input = torch.LongTensor(len(test_sents), max_len + 2).fill_(vocab.pad())
for i in range(len(test_sents)):
input[i][0] = vocab.eos()
for j in range(len(test_sents[i])):
input[i][j + 1] = vocab.index(test_sents[i][j])
input[i][j + 2] = vocab.eos()
embs = embedder(input)
assert embs.size() == (len(test_sents), max_len + 2, 5)
self.assertAlmostEqual(embs[0][0], embs[1][0])
self.assertAlmostEqual(embs[0][0], embs[0][-1])
self.assertAlmostEqual(embs[0][1], embs[2][1])
self.assertAlmostEqual(embs[0][3], embs[1][1])
embs.sum().backward()
assert embedder.char_embeddings.weight.grad is not None
def assertAlmostEqual(self, t1, t2):
self.assertEqual(t1.size(), t2.size(), "size mismatch")
self.assertLess((t1 - t2).abs().max(), 1e-6)
if __name__ == "__main__":
unittest.main()
| EXA-1-master | exa/models/unilm-master/edgelm/tests/test_character_token_embedder.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import collections
import os
import shutil
import tempfile
import unittest
import numpy as np
import torch
from scripts.average_checkpoints import average_checkpoints
from torch import nn
class ModelWithSharedParameter(nn.Module):
def __init__(self):
super(ModelWithSharedParameter, self).__init__()
self.embedding = nn.Embedding(1000, 200)
self.FC1 = nn.Linear(200, 200)
self.FC2 = nn.Linear(200, 200)
# tie weight in FC2 to FC1
self.FC2.weight = nn.Parameter(self.FC1.weight)
self.FC2.bias = nn.Parameter(self.FC1.bias)
self.relu = nn.ReLU()
def forward(self, input):
return self.FC2(self.ReLU(self.FC1(input))) + self.FC1(input)
class TestAverageCheckpoints(unittest.TestCase):
def test_average_checkpoints(self):
params_0 = collections.OrderedDict(
[
("a", torch.DoubleTensor([100.0])),
("b", torch.FloatTensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])),
("c", torch.IntTensor([7, 8, 9])),
]
)
params_1 = collections.OrderedDict(
[
("a", torch.DoubleTensor([1.0])),
("b", torch.FloatTensor([[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]])),
("c", torch.IntTensor([2, 2, 2])),
]
)
params_avg = collections.OrderedDict(
[
("a", torch.DoubleTensor([50.5])),
("b", torch.FloatTensor([[1.0, 1.5, 2.0], [2.5, 3.0, 3.5]])),
# We expect truncation for integer division
("c", torch.IntTensor([4, 5, 5])),
]
)
fd_0, path_0 = tempfile.mkstemp()
fd_1, path_1 = tempfile.mkstemp()
torch.save(collections.OrderedDict([("model", params_0)]), path_0)
torch.save(collections.OrderedDict([("model", params_1)]), path_1)
output = average_checkpoints([path_0, path_1])["model"]
os.close(fd_0)
os.remove(path_0)
os.close(fd_1)
os.remove(path_1)
for (k_expected, v_expected), (k_out, v_out) in zip(
params_avg.items(), output.items()
):
self.assertEqual(
k_expected,
k_out,
"Key mismatch - expected {} but found {}. "
"(Expected list of keys: {} vs actual list of keys: {})".format(
k_expected, k_out, params_avg.keys(), output.keys()
),
)
np.testing.assert_allclose(
v_expected.numpy(),
v_out.numpy(),
err_msg="Tensor value mismatch for key {}".format(k_expected),
)
def test_average_checkpoints_with_shared_parameters(self):
def _construct_model_with_shared_parameters(path, value):
m = ModelWithSharedParameter()
nn.init.constant_(m.FC1.weight, value)
torch.save({"model": m.state_dict()}, path)
return m
tmpdir = tempfile.mkdtemp()
paths = []
path = os.path.join(tmpdir, "m1.pt")
m1 = _construct_model_with_shared_parameters(path, 1.0)
paths.append(path)
path = os.path.join(tmpdir, "m2.pt")
m2 = _construct_model_with_shared_parameters(path, 2.0)
paths.append(path)
path = os.path.join(tmpdir, "m3.pt")
m3 = _construct_model_with_shared_parameters(path, 3.0)
paths.append(path)
new_model = average_checkpoints(paths)
self.assertTrue(
torch.equal(
new_model["model"]["embedding.weight"],
(m1.embedding.weight + m2.embedding.weight + m3.embedding.weight) / 3.0,
)
)
self.assertTrue(
torch.equal(
new_model["model"]["FC1.weight"],
(m1.FC1.weight + m2.FC1.weight + m3.FC1.weight) / 3.0,
)
)
self.assertTrue(
torch.equal(
new_model["model"]["FC2.weight"],
(m1.FC2.weight + m2.FC2.weight + m3.FC2.weight) / 3.0,
)
)
shutil.rmtree(tmpdir)
if __name__ == "__main__":
unittest.main()
| EXA-1-master | exa/models/unilm-master/edgelm/tests/test_average_checkpoints.py |
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import tempfile
import unittest
import torch
from fairseq.data.dictionary import Dictionary
from fairseq.models.transformer import TransformerModel
from fairseq.modules import multihead_attention, sinusoidal_positional_embedding
from fairseq.tasks.fairseq_task import LegacyFairseqTask
DEFAULT_TEST_VOCAB_SIZE = 100
class DummyTask(LegacyFairseqTask):
def __init__(self, args):
super().__init__(args)
self.dictionary = get_dummy_dictionary()
if getattr(self.args, "ctc", False):
self.dictionary.add_symbol("<ctc_blank>")
self.src_dict = self.dictionary
self.tgt_dict = self.dictionary
@property
def source_dictionary(self):
return self.src_dict
@property
def target_dictionary(self):
return self.dictionary
def get_dummy_dictionary(vocab_size=DEFAULT_TEST_VOCAB_SIZE):
dummy_dict = Dictionary()
# add dummy symbol to satisfy vocab size
for id, _ in enumerate(range(vocab_size)):
dummy_dict.add_symbol("{}".format(id), 1000)
return dummy_dict
def get_dummy_task_and_parser():
"""
Return a dummy task and argument parser, which can be used to
create a model/criterion.
"""
parser = argparse.ArgumentParser(
description="test_dummy_s2s_task", argument_default=argparse.SUPPRESS
)
DummyTask.add_args(parser)
args = parser.parse_args([])
task = DummyTask.setup_task(args)
return task, parser
def _test_save_and_load(scripted_module):
with tempfile.NamedTemporaryFile() as f:
scripted_module.save(f.name)
torch.jit.load(f.name)
class TestExportModels(unittest.TestCase):
def test_export_multihead_attention(self):
module = multihead_attention.MultiheadAttention(embed_dim=8, num_heads=2)
scripted = torch.jit.script(module)
_test_save_and_load(scripted)
def test_incremental_state_multihead_attention(self):
module1 = multihead_attention.MultiheadAttention(embed_dim=8, num_heads=2)
module1 = torch.jit.script(module1)
module2 = multihead_attention.MultiheadAttention(embed_dim=8, num_heads=2)
module2 = torch.jit.script(module2)
state = {}
state = module1.set_incremental_state(state, "key", {"a": torch.tensor([1])})
state = module2.set_incremental_state(state, "key", {"a": torch.tensor([2])})
v1 = module1.get_incremental_state(state, "key")["a"]
v2 = module2.get_incremental_state(state, "key")["a"]
self.assertEqual(v1, 1)
self.assertEqual(v2, 2)
def test_positional_embedding(self):
module = sinusoidal_positional_embedding.SinusoidalPositionalEmbedding(
embedding_dim=8, padding_idx=1
)
scripted = torch.jit.script(module)
_test_save_and_load(scripted)
@unittest.skipIf(
torch.__version__ < "1.6.0", "Targeting OSS scriptability for the 1.6 release"
)
def test_export_transformer(self):
task, parser = get_dummy_task_and_parser()
TransformerModel.add_args(parser)
args = parser.parse_args([])
model = TransformerModel.build_model(args, task)
scripted = torch.jit.script(model)
_test_save_and_load(scripted)
@unittest.skipIf(
torch.__version__ < "1.6.0", "Targeting OSS scriptability for the 1.6 release"
)
def test_export_transformer_no_token_pos_emb(self):
task, parser = get_dummy_task_and_parser()
TransformerModel.add_args(parser)
args = parser.parse_args([])
args.no_token_positional_embeddings = True
model = TransformerModel.build_model(args, task)
scripted = torch.jit.script(model)
_test_save_and_load(scripted)
if __name__ == "__main__":
unittest.main()
| EXA-1-master | exa/models/unilm-master/edgelm/tests/test_export.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import torch
import torch.nn as nn
from fairseq.modules.checkpoint_activations import checkpoint_wrapper
from torch.utils.checkpoint import checkpoint
class Model(nn.Module):
def __init__(
self, use_pytorch_checkpoint=False, use_fairseq_checkpoint=False, **kwargs
):
super().__init__()
torch.manual_seed(0)
self.use_pytorch_checkpoint = use_pytorch_checkpoint
self.ffn = nn.Sequential(
nn.Linear(32, 128),
# add a Dropout layer to test RNG save/restore
nn.Dropout(p=0.5),
nn.Linear(128, 32),
)
if use_fairseq_checkpoint:
self.ffn = checkpoint_wrapper(self.ffn, **kwargs)
self.out = nn.Linear(32, 1)
def forward(self, x):
if self.use_pytorch_checkpoint:
x = checkpoint(self.ffn, x)
else:
x = self.ffn(x)
return self.out(x)
class TestActivationCheckpointing(unittest.TestCase):
def _test_checkpoint_wrapper(self, device, log_memory_usage=False):
def get_loss_and_gnorm(model):
torch.manual_seed(1)
input = torch.rand(2, 16, 32).requires_grad_(True).to(device)
model.zero_grad()
loss = model(input).sum()
loss.backward()
gnorm = torch.norm(
torch.stack([torch.norm(p.grad.detach()) for p in model.parameters()])
)
return {"loss": loss, "gnorm": gnorm}
model = Model().to(device)
no_cpt = get_loss_and_gnorm(model)
model = Model(use_pytorch_checkpoint=True).to(device)
pyt_cpt = get_loss_and_gnorm(model)
torch.testing.assert_allclose(no_cpt["loss"], pyt_cpt["loss"])
torch.testing.assert_allclose(no_cpt["gnorm"], pyt_cpt["gnorm"])
model = Model(use_fairseq_checkpoint=True).to(device)
fairseq_cpt = get_loss_and_gnorm(model)
torch.testing.assert_allclose(no_cpt["loss"], fairseq_cpt["loss"])
torch.testing.assert_allclose(no_cpt["gnorm"], fairseq_cpt["gnorm"])
model = Model(use_fairseq_checkpoint=True, offload_to_cpu=True).to(device)
fairseq_cpt_offload = get_loss_and_gnorm(model)
torch.testing.assert_allclose(no_cpt["loss"], fairseq_cpt_offload["loss"])
torch.testing.assert_allclose(no_cpt["gnorm"], fairseq_cpt_offload["gnorm"])
def test_checkpoint_wrapper_cpu(self):
self._test_checkpoint_wrapper(device=torch.device("cpu"))
@unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU")
def test_checkpoint_wrapper_cuda(self):
self._test_checkpoint_wrapper(device=torch.device("cuda"))
if __name__ == "__main__":
unittest.main()
| EXA-1-master | exa/models/unilm-master/edgelm/tests/test_activation_checkpointing.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import unittest
from collections import OrderedDict
import numpy as np
import torch
from fairseq.data import LanguagePairDataset, TokenBlockDataset
from fairseq.data.multi_corpus_sampled_dataset import MultiCorpusSampledDataset
from tests.test_train import mock_dict
class TestMultiCorpusSampledDataset(unittest.TestCase):
def setUp(self):
d = mock_dict()
tokens_1 = torch.LongTensor([1]).view(1, -1)
tokens_ds1 = TokenBlockDataset(
tokens_1,
sizes=[tokens_1.size(-1)],
block_size=1,
pad=0,
eos=1,
include_targets=False,
)
self.dataset_1 = LanguagePairDataset(
tokens_ds1, tokens_ds1.sizes, d, shuffle=False
)
tokens_2 = torch.LongTensor([2]).view(1, -1)
tokens_ds2 = TokenBlockDataset(
tokens_2,
sizes=[tokens_2.size(-1)],
block_size=1,
pad=0,
eos=1,
include_targets=False,
)
self.dataset_2 = LanguagePairDataset(
tokens_ds2, tokens_ds2.sizes, d, shuffle=False
)
def _test_sample_helper(
self,
expected_sample_from_first_ds_percentage,
num_samples=1000,
sampling_func=None,
):
# To make sure test is not flaky
np.random.seed(0)
if sampling_func is None:
m = MultiCorpusSampledDataset(
OrderedDict({0: self.dataset_1, 1: self.dataset_2}),
)
else:
m = MultiCorpusSampledDataset(
OrderedDict({0: self.dataset_1, 1: self.dataset_2}),
sampling_func=sampling_func,
)
m.ordered_indices()
count_sample_from_first_dataset = 0
for _ in range(num_samples):
if m.collater([m[0], m[1]])["net_input"]["src_tokens"][0] == 1:
count_sample_from_first_dataset += 1
sample_from_first_ds_percentage = (
1.0 * count_sample_from_first_dataset / num_samples
)
self.assertLess(
abs(
sample_from_first_ds_percentage
- expected_sample_from_first_ds_percentage
),
0.01,
)
def test_multi_corpus_sampled_dataset_uniform_sample(self):
self._test_sample_helper(expected_sample_from_first_ds_percentage=0.5)
def test_multi_corpus_sampled_dataset_weighted_sample(self):
def naive_weighted_sample(weights):
def f(l):
v = np.random.random()
agg = 0
for i, weight in enumerate(weights):
agg += weight
if agg > v:
return i
return f
self._test_sample_helper(
expected_sample_from_first_ds_percentage=0.9,
sampling_func=naive_weighted_sample(weights=[0.9, 0.1]),
)
| EXA-1-master | exa/models/unilm-master/edgelm/tests/test_multi_corpus_sampled_dataset.py |
EXA-1-master | exa/models/unilm-master/edgelm/tests/gpu/__init__.py |
|
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import unittest
from copy import deepcopy
from dataclasses import dataclass
from typing import Optional
import torch
from fairseq.models.ema import EMA
class DummyModule(torch.nn.Module):
def __init__(self) -> None:
"""LightningModule for testing purposes
Args:
epoch_min_loss_override (int, optional): Pass in an epoch that will be set to the minimum
validation loss for testing purposes (zero based). If None this is ignored. Defaults to None.
"""
super().__init__()
self.layer = torch.nn.Linear(in_features=32, out_features=2)
self.another_layer = torch.nn.Linear(in_features=2, out_features=2)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.layer(x)
return self.another_layer(x)
@dataclass
class EMAConfig(object):
ema_decay: float = 0.99
ema_start_update: int = 0
ema_fp32: bool = False
ema_seed_model: Optional[str] = None
@unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU")
class TestEMAGPU(unittest.TestCase):
def assertTorchAllClose(self, x, y, atol=1e-8, rtol=1e-5, msg=None):
diff = x.float() - y.float()
diff_norm = torch.norm(diff)
other_norm = torch.norm(y.float())
if msg is None:
msg = "|input - other| > {} + {} * |other|".format(
atol, rtol
)
self.assertLessEqual(
diff_norm,
atol + rtol * other_norm,
msg=msg,
)
def test_ema(self):
model = DummyModule().cuda()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
state = deepcopy(model.state_dict())
config = EMAConfig()
ema = EMA(model, config)
# set decay
ema._set_decay(config.ema_decay)
self.assertEqual(ema.get_decay(), config.ema_decay)
# get model
self.assertEqual(ema.get_model(), ema.model)
# Since fp32 params is not used, it should be of size 0
self.assertEqual(len(ema.fp32_params), 0)
# EMA step
x = torch.randn(32).cuda()
y = model(x)
loss = y.sum()
loss.backward()
optimizer.step()
ema.step(model)
ema_state_dict = ema.get_model().state_dict()
for key, param in model.state_dict().items():
prev_param = state[key]
ema_param = ema_state_dict[key]
if "version" in key:
# Do not decay a model.version pytorch param
continue
self.assertTorchAllClose(
ema_param,
config.ema_decay * prev_param + (1 - config.ema_decay) * param,
)
# Since fp32 params is not used, it should be of size 0
self.assertEqual(len(ema.fp32_params), 0)
# Load EMA into model
model2 = DummyModule().cuda()
ema.reverse(model2)
for key, param in model2.state_dict().items():
ema_param = ema_state_dict[key]
self.assertTrue(
torch.allclose(ema_param, param)
)
def test_ema_fp32(self):
model = DummyModule().cuda().half()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
state = deepcopy(model.state_dict())
config = EMAConfig(ema_fp32=True)
ema = EMA(model, config)
x = torch.randn(32).cuda()
y = model(x.half())
loss = y.sum()
loss.backward()
optimizer.step()
ema.step(model)
for key, param in model.state_dict().items():
prev_param = state[key]
ema_param = ema.get_model().state_dict()[key]
if "version" in key:
# Do not decay a model.version pytorch param
continue
self.assertIn(key, ema.fp32_params)
# EMA update is done in fp32, and hence the EMA param must be
# closer to the EMA update done in fp32 than in fp16.
self.assertLessEqual(
torch.norm(
ema_param.float() -
(config.ema_decay * prev_param.float() + (1 - config.ema_decay) * param.float()).half().float()
),
torch.norm(
ema_param.float() -
(config.ema_decay * prev_param + (1 - config.ema_decay) * param).float()
),
)
self.assertTorchAllClose(
ema_param,
(config.ema_decay * prev_param.float() + (1 - config.ema_decay) * param.float()).half(),
)
def test_ema_fp16(self):
model = DummyModule().cuda().half()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
state = deepcopy(model.state_dict())
config = EMAConfig(ema_fp32=False)
ema = EMA(model, config)
# Since fp32 params is not used, it should be of size 0
self.assertEqual(len(ema.fp32_params), 0)
x = torch.randn(32).cuda()
y = model(x.half())
loss = y.sum()
loss.backward()
optimizer.step()
ema.step(model)
for key, param in model.state_dict().items():
prev_param = state[key]
ema_param = ema.get_model().state_dict()[key]
if "version" in key:
# Do not decay a model.version pytorch param
continue
# EMA update is done in fp16, and hence the EMA param must be
# closer to the EMA update done in fp16 than in fp32.
self.assertLessEqual(
torch.norm(
ema_param.float() -
(config.ema_decay * prev_param + (1 - config.ema_decay) * param).float()
),
torch.norm(
ema_param.float() -
(config.ema_decay * prev_param.float() + (1 - config.ema_decay) * param.float()).half().float()
),
)
self.assertTorchAllClose(
ema_param,
config.ema_decay * prev_param + (1 - config.ema_decay) * param,
)
# Since fp32 params is not used, it should be of size 0
self.assertEqual(len(ema.fp32_params), 0)
if __name__ == "__main__":
unittest.main()
| EXA-1-master | exa/models/unilm-master/edgelm/tests/gpu/test_ema_gpu.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import contextlib
import logging
import json
import os
import tempfile
import unittest
from io import StringIO
import torch
from fairseq import options
from fairseq_cli import train
from tests.utils import (
create_dummy_data,
generate_main,
preprocess_lm_data,
preprocess_translation_data,
train_translation_model,
)
@unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU")
class TestTranslationGPU(unittest.TestCase):
def setUp(self):
logging.disable(logging.CRITICAL)
def tearDown(self):
logging.disable(logging.NOTSET)
def test_fp16_multigpu(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_fp16") as data_dir:
log = os.path.join(data_dir, "train.log")
create_dummy_data(data_dir)
preprocess_translation_data(data_dir)
train_translation_model(
data_dir,
"fconv_iwslt_de_en",
["--fp16", "--log-file", log],
world_size=min(torch.cuda.device_count(), 2),
)
generate_main(data_dir)
assert os.path.exists(log)
@staticmethod
def parse_logs(logfile):
logs = []
for ln in open(logfile, "r").readlines():
try:
logs.append(json.loads(ln))
except json.JSONDecodeError:
continue
return logs
def test_resume_training_fsdp(self):
self._test_resume_training(["--ddp-backend", "fully_sharded"])
def test_resume_training_fsdp_sharded_state(self):
self._test_resume_training(["--ddp-backend", "fully_sharded", "--use-sharded-state"])
def test_resume_training_noc10d(self):
self._test_resume_training([])
def _test_resume_training(self, extra_clargs, arch="fconv_iwslt_de_en"):
flags = [
"--fp16",
"--log-format",
"json",
"--max-update",
"10",
"--save-interval-updates",
"2",
"--log-interval",
"1",
] + extra_clargs
world_size = min(torch.cuda.device_count(), 2)
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_fp16") as data_dir:
log = os.path.join(data_dir, "train.log")
create_dummy_data(data_dir)
preprocess_translation_data(data_dir)
train_translation_model(
data_dir, arch, flags + ["--log-file", log], world_size=world_size,
)
log2 = os.path.join(data_dir, "resume.log")
restore_file = os.path.join(data_dir, "checkpoint_1_2.pt")
train_translation_model(
data_dir,
arch,
flags + ["--log-file", log2, "--restore-file", restore_file],
world_size=world_size,
)
l1 = self.parse_logs(log)
l2 = self.parse_logs(log2)
assert int(l2[0]["num_updates"]) == 3, f"{l1}\n\n {l2}"
for k in [
"train_loss",
"train_num_updates",
"train_ppl",
"train_gnorm",
]:
from_scratch, resumed = l1[-1][k], l2[-1][k]
assert (
from_scratch == resumed
), f"difference at {k} {from_scratch} != {resumed}"
def test_memory_efficient_fp16(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_memory_efficient_fp16") as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir)
train_translation_model(
data_dir, "fconv_iwslt_de_en", ["--memory-efficient-fp16"]
)
generate_main(data_dir)
def test_transformer_fp16(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_transformer") as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir)
train_translation_model(
data_dir,
"transformer_iwslt_de_en",
[
"--encoder-layers",
"2",
"--decoder-layers",
"2",
"--encoder-embed-dim",
"64",
"--decoder-embed-dim",
"64",
"--fp16",
],
run_validation=True,
)
generate_main(data_dir)
@unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU")
def test_amp(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_amp") as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir)
train_translation_model(data_dir, "fconv_iwslt_de_en", ["--amp"])
generate_main(data_dir)
@unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU")
def test_transformer_amp(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_transformer") as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir)
train_translation_model(
data_dir,
"transformer_iwslt_de_en",
[
"--encoder-layers",
"2",
"--decoder-layers",
"2",
"--encoder-embed-dim",
"64",
"--decoder-embed-dim",
"64",
"--amp",
],
run_validation=True,
)
generate_main(data_dir)
@unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU")
def test_levenshtein_transformer(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory(
"test_levenshtein_transformer"
) as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir, ["--joined-dictionary"])
train_translation_model(
data_dir,
"levenshtein_transformer",
[
"--apply-bert-init",
"--early-exit",
"6,6,6",
"--criterion",
"nat_loss",
],
task="translation_lev",
)
gen_config = [
"--task",
"translation_lev",
"--iter-decode-max-iter",
"9",
"--iter-decode-eos-penalty",
"0",
"--print-step",
]
# non-ensemble generation
generate_main(data_dir, gen_config)
# ensemble generation
generate_main(
data_dir,
gen_config,
path=os.pathsep.join(
[
os.path.join(data_dir, "checkpoint_last.pt"),
os.path.join(data_dir, "checkpoint_last.pt"),
]
),
)
def test_fsdp_checkpoint_generate(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_fsdp_sharded") as data_dir:
log = os.path.join(data_dir, "train.log")
create_dummy_data(data_dir)
preprocess_translation_data(data_dir)
world_size = min(torch.cuda.device_count(), 2)
train_translation_model(
data_dir,
"fconv_iwslt_de_en",
["--log-file", log, "--ddp-backend", "fully_sharded"],
world_size=world_size,
)
generate_main(data_dir)
assert os.path.exists(log)
def test_fsdp_sharded_checkpoint_generate(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_fsdp_sharded") as data_dir:
log = os.path.join(data_dir, "train.log")
create_dummy_data(data_dir)
preprocess_translation_data(data_dir)
world_size = min(torch.cuda.device_count(), 2)
train_translation_model(
data_dir,
"fconv_iwslt_de_en",
["--log-file", log, "--ddp-backend", "fully_sharded", "--use-sharded-state"],
world_size=world_size,
)
generate_main(data_dir, ["--checkpoint-shard-count", str(world_size)])
assert os.path.exists(log)
def _quantize_language_model(data_dir, arch, extra_flags=None, run_validation=False):
train_parser = options.get_training_parser()
train_args = options.parse_args_and_arch(
train_parser,
[
"--task",
"language_modeling",
data_dir,
"--arch",
arch,
"--optimizer",
"adam",
"--lr",
"0.0001",
"--criterion",
"adaptive_loss",
"--adaptive-softmax-cutoff",
"5,10,15",
"--max-tokens",
"500",
"--tokens-per-sample",
"500",
"--save-dir",
data_dir,
"--max-epoch",
"1",
"--no-progress-bar",
"--distributed-world-size",
"1",
"--ddp-backend",
"no_c10d",
"--num-workers",
"0",
]
+ (extra_flags or []),
)
train.main(train_args)
# try scalar quantization
scalar_quant_train_parser = options.get_training_parser()
scalar_quant_train_args = options.parse_args_and_arch(
scalar_quant_train_parser,
[
"--task",
"language_modeling",
data_dir,
"--arch",
arch,
"--optimizer",
"adam",
"--lr",
"0.0001",
"--criterion",
"adaptive_loss",
"--adaptive-softmax-cutoff",
"5,10,15",
"--max-tokens",
"500",
"--tokens-per-sample",
"500",
"--save-dir",
data_dir,
"--max-update",
"3",
"--no-progress-bar",
"--distributed-world-size",
"1",
"--ddp-backend",
"no_c10d",
"--num-workers",
"0",
"--quant-noise-scalar",
"0.5",
]
+ (extra_flags or []),
)
train.main(scalar_quant_train_args)
# try iterative PQ quantization
quantize_parser = options.get_training_parser()
quantize_args = options.parse_args_and_arch(
quantize_parser,
[
"--task",
"language_modeling",
data_dir,
"--arch",
arch,
"--optimizer",
"adam",
"--lr",
"0.0001",
"--criterion",
"adaptive_loss",
"--adaptive-softmax-cutoff",
"5,10,15",
"--max-tokens",
"50",
"--tokens-per-sample",
"50",
"--max-update",
"6",
"--no-progress-bar",
"--distributed-world-size",
"1",
"--ddp-backend",
"no_c10d",
"--num-workers",
"0",
"--restore-file",
os.path.join(data_dir, "checkpoint_last.pt"),
"--reset-optimizer",
"--quantization-config-path",
os.path.join(
os.path.dirname(__file__), "transformer_quantization_config.yaml"
),
]
+ (extra_flags or []),
)
train.main(quantize_args)
@unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU")
class TestQuantization(unittest.TestCase):
def setUp(self):
logging.disable(logging.CRITICAL)
def tearDown(self):
logging.disable(logging.NOTSET)
def test_quantization(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_quantization") as data_dir:
create_dummy_data(data_dir)
preprocess_lm_data(data_dir)
# tests both scalar and iterative PQ quantization
_quantize_language_model(data_dir, "transformer_lm")
@unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU")
class TestOptimizersGPU(unittest.TestCase):
def setUp(self):
logging.disable(logging.CRITICAL)
def tearDown(self):
logging.disable(logging.NOTSET)
def test_flat_grads(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_flat_grads") as data_dir:
# Use just a bit of data and tiny model to keep this test runtime reasonable
create_dummy_data(data_dir, num_examples=10, maxlen=5)
preprocess_translation_data(data_dir)
with self.assertRaises(RuntimeError):
# adafactor isn't compatible with flat grads, which
# are used by default with --fp16
train_translation_model(
data_dir,
"lstm",
[
"--required-batch-size-multiple",
"1",
"--encoder-layers",
"1",
"--encoder-hidden-size",
"32",
"--decoder-layers",
"1",
"--optimizer",
"adafactor",
"--fp16",
],
)
# but it should pass once we set --fp16-no-flatten-grads
train_translation_model(
data_dir,
"lstm",
[
"--required-batch-size-multiple",
"1",
"--encoder-layers",
"1",
"--encoder-hidden-size",
"32",
"--decoder-layers",
"1",
"--optimizer",
"adafactor",
"--fp16",
"--fp16-no-flatten-grads",
],
)
if __name__ == "__main__":
unittest.main()
| EXA-1-master | exa/models/unilm-master/edgelm/tests/gpu/test_binaries_gpu.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import torch
from torch import nn
from fairseq.distributed import ModuleProxyWrapper
from .utils import objects_are_equal
class MockDDPWrapper(nn.Module):
"""A simple wrapper with an interface similar to DistributedDataParallel."""
def __init__(self, module):
super().__init__()
self.module = module
def forward(self, x):
return self.module(x)
class Model(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(5, 10)
self.xyz = "hello"
def forward(self, x):
return self.linear(x)
def get_xyz(self):
return self.xyz
class TestModuleProxyWrapper(unittest.TestCase):
def _get_module(self):
module = Model()
wrapped_module = MockDDPWrapper(module)
wrapped_module = ModuleProxyWrapper(wrapped_module)
return wrapped_module, module
def test_getattr_forwarding(self):
wrapped_module, module = self._get_module()
assert module.xyz == "hello"
assert module.get_xyz() == "hello"
assert wrapped_module.xyz == "hello"
wrapped_module.xyz = "world"
assert wrapped_module.xyz == "world"
assert module.get_xyz() == "hello"
def test_state_dict(self):
wrapped_module, module = self._get_module()
assert objects_are_equal(wrapped_module.state_dict(), module.state_dict())
def test_load_state_dict(self):
wrapped_module, module = self._get_module()
wrapped_module.load_state_dict(module.state_dict())
input = torch.rand(4, 5)
torch.testing.assert_allclose(wrapped_module(input), module(input))
def test_forward(self):
wrapped_module, module = self._get_module()
input = torch.rand(4, 5)
torch.testing.assert_allclose(wrapped_module(input), module(input))
if __name__ == "__main__":
unittest.main()
| EXA-1-master | exa/models/unilm-master/edgelm/tests/distributed/test_module_proxy_wrapper.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import functools
import random
import unittest
from multiprocessing import Manager
import torch
import torch.nn as nn
from fairseq import optim
from fairseq.distributed import utils as distributed_utils
from omegaconf import OmegaConf
class Model(nn.Module):
def __init__(self, input_size, output_size):
super(Model, self).__init__()
self.fc = nn.Linear(input_size, output_size)
def forward(self, input):
output = self.fc(input)
return output
def setup_model_loss_criterion(cfg, args, rank, is_cuda):
"""
setup model, criterion and optimizer based on input args
"""
args.distributed_rank = rank
cfg.distributed_training.distributed_rank = args.distributed_rank
if cfg.distributed_training.distributed_world_size > 1:
distributed_utils.distributed_init(cfg)
torch.manual_seed(1)
model = Model(args.input_size, args.nb_classes)
loss_fn = nn.CrossEntropyLoss()
if is_cuda:
model = model.cuda()
loss_fn = loss_fn.cuda()
optimizer = optim.sgd.SGD(args, model.parameters())
optimizer = optim.FairseqBMUF(
cfg=cfg.bmuf,
optimizer=optimizer
)
return model, loss_fn, optimizer
def train_step(input, target, model, loss_fn, optimizer, **unused):
"""Do forward, backward and parameter update."""
model.train()
output = model(input)
loss = loss_fn(output, target)
optimizer.backward(loss)
optimizer.step()
def single_gpu_training(cfg, args, rank, iterations, shared_results):
is_cuda = torch.cuda.is_available()
if is_cuda:
torch.cuda.set_device(rank)
model, loss_fn, optimizer = setup_model_loss_criterion(cfg, args, rank, is_cuda)
for _ in range(iterations):
input = torch.randn(1, args.input_size)
target = torch.empty(args.batch_size, dtype=torch.long).random_(args.nb_classes)
if is_cuda:
input = input.cuda()
target = target.cuda()
train_step(input, target, model, loss_fn, optimizer)
results = []
for param in model.parameters():
if len(results) == 0:
results = param.flatten().cpu().data
else:
results = torch.cat((results, param.flatten().cpu().data), 0)
shared_results[rank] = results
def setup_args():
args = argparse.Namespace()
args.global_sync_iter = 20
args.block_momentum = 0.875
args.block_lr = 0.5
args.input_size = 5
args.nb_classes = 2
args.batch_size = 1
args.lr = [1e-3]
args.momentum = 0
args.weight_decay = 0
args.warmup_iterations = 0
args.use_nbm = True
args.average_sync = True
args.global_sync_iter = 1
args.model_parallel_size = 1
args.distributed_backend = "gloo"
args.distributed_world_size = 2
port = random.randint(10000, 20000)
args.distributed_init_method = "tcp://localhost:{port}".format(port=port)
args.distributed_init_host = "localhost"
args.distributed_port = port + 1
args.local_world_size = args.distributed_world_size
cfg = OmegaConf.create()
cfg.optimization = OmegaConf.create()
cfg.common = OmegaConf.create()
cfg.distributed_training = OmegaConf.create()
cfg.dataset = OmegaConf.create()
cfg.bmuf = OmegaConf.create()
cfg.optimizer = OmegaConf.create()
cfg.bmuf.global_sync_iter = args.global_sync_iter
cfg.bmuf.block_momentum = args.block_momentum
cfg.bmuf.block_lr = args.block_lr
cfg.dataset.batch_size = args.batch_size
cfg.optimization.lr = args.lr
cfg.optimizer.momentum = args.momentum
cfg.optimizer.weight_decay = args.weight_decay
cfg.bmuf.warmup_iterations = args.warmup_iterations
cfg.bmuf.use_nbm = args.use_nbm
cfg.bmuf.average_sync = args.average_sync
cfg.common.model_parallel_size = args.model_parallel_size
cfg.distributed_training.distributed_backend = args.distributed_backend
cfg.distributed_training.distributed_world_size = args.distributed_world_size
cfg.bmuf.distributed_world_size = args.distributed_world_size
cfg.distributed_training.distributed_init_method = args.distributed_init_method
cfg.distributed_training.distributed_port = args.distributed_port
return cfg, args
@unittest.skipIf(torch.cuda.device_count() < 2, "test requires 2 GPUs")
class TestBMUF(unittest.TestCase):
def bmuf_process(self, cfg, args, iterations):
processes = []
results = Manager().dict()
torch.multiprocessing.spawn(
fn=functools.partial(single_gpu_training, cfg, args),
args=(iterations, results),
nprocs=args.distributed_world_size,
join=True,
)
return results
def test_bmuf_sync(self):
# Train model for 1 iteration and do bmuf sync without doing warmup
cfg, args = setup_args()
iterations = 1
results = self.bmuf_process(cfg, args, iterations)
# Make sure params in both machines are same
assert len(results) == 2
self.assertAlmostEqual(results[0], results[1])
def test_warmup_sync(self):
# Train model for 20 iteration and do warmup sync without doing bmuf sync
cfg, args = setup_args()
args.warmup_iterations = 20
cfg.bmuf.warmup_iterations = args.warmup_iterations
iterations = 20
results = self.bmuf_process(cfg, args, iterations)
# Make sure params in both machines are same
assert len(results) == 2
self.assertAlmostEqual(results[0], results[1])
def test_warmup_sync_bmuf_sync(self):
# Train model for 25 iteration and do warmup sync after 20 iteration
# and bmuf sync after 25 iteration
cfg, args = setup_args()
args.warmup_iterations = 20
args.global_sync_iter = 5
cfg.bmuf.warmup_iterations = args.warmup_iterations
cfg.bmuf.global_sync_iter = args.global_sync_iter
iterations = 25
results = self.bmuf_process(cfg, args, iterations)
# Make sure params in both machines are same
assert len(results) == 2
self.assertAlmostEqual(results[0], results[1])
def test_single_gpu_bmuf(self):
# Train model for 5 iterations and use GPU 1
cfg, args = setup_args()
args.distributed_world_size = 1
args.warmup_iterations = 5
cfg.distributed_training.distributed_world_size = args.distributed_world_size
cfg.bmuf.distributed_world_size = args.distributed_world_size
cfg.bmuf.warmup_iterations = args.warmup_iterations
iterations = 20
results = self.bmuf_process(cfg, args, iterations)
assert len(results) == 1
def assertAlmostEqual(self, t1, t2):
self.assertEqual(t1.size(), t2.size(), "size mismatch")
self.assertLess((t1 - t2).abs().max(), 1e-4)
if __name__ == "__main__":
unittest.main()
| EXA-1-master | exa/models/unilm-master/edgelm/tests/distributed/test_bmuf.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import functools
import sys
import unittest
import torch
from fairseq.distributed import utils as dist_utils
from .utils import objects_are_equal, spawn_and_init
class DistributedTest(unittest.TestCase):
def setUp(self):
if not torch.cuda.is_available():
raise unittest.SkipTest("CUDA not available, skipping test")
if sys.platform == "win32":
raise unittest.SkipTest("NCCL doesn't support Windows, skipping test")
if torch.cuda.device_count() < 2:
raise unittest.SkipTest("distributed tests require 2+ GPUs, skipping")
class TestBroadcastObject(DistributedTest):
def test_str(self):
spawn_and_init(
functools.partial(
TestBroadcastObject._test_broadcast_object, "hello world"
),
world_size=2,
)
def test_tensor(self):
spawn_and_init(
functools.partial(
TestBroadcastObject._test_broadcast_object,
torch.rand(5),
),
world_size=2,
)
def test_complex(self):
spawn_and_init(
functools.partial(
TestBroadcastObject._test_broadcast_object,
{
"a": "1",
"b": [2, torch.rand(2, 3), 3],
"c": (torch.rand(2, 3), 4),
"d": {5, torch.rand(5)},
"e": torch.rand(5),
"f": torch.rand(5).int().cuda(),
},
),
world_size=2,
)
@staticmethod
def _test_broadcast_object(ref_obj, rank, group):
obj = dist_utils.broadcast_object(
ref_obj if rank == 0 else None, src_rank=0, group=group
)
assert objects_are_equal(ref_obj, obj)
class TestAllGatherList(DistributedTest):
def test_str_equality(self):
spawn_and_init(
functools.partial(
TestAllGatherList._test_all_gather_list_equality,
"hello world",
),
world_size=2,
)
def test_tensor_equality(self):
spawn_and_init(
functools.partial(
TestAllGatherList._test_all_gather_list_equality,
torch.rand(5),
),
world_size=2,
)
def test_complex_equality(self):
spawn_and_init(
functools.partial(
TestAllGatherList._test_all_gather_list_equality,
{
"a": "1",
"b": [2, torch.rand(2, 3), 3],
"c": (torch.rand(2, 3), 4),
"d": {5, torch.rand(5)},
"e": torch.rand(5),
"f": torch.rand(5).int(),
},
),
world_size=2,
)
@staticmethod
def _test_all_gather_list_equality(ref_obj, rank, group):
objs = dist_utils.all_gather_list(ref_obj, group)
for obj in objs:
assert objects_are_equal(ref_obj, obj)
def test_rank_tensor(self):
spawn_and_init(
TestAllGatherList._test_all_gather_list_rank_tensor, world_size=2
)
@staticmethod
def _test_all_gather_list_rank_tensor(rank, group):
obj = torch.tensor([rank])
objs = dist_utils.all_gather_list(obj, group)
for i, obj in enumerate(objs):
assert obj.item() == i
if __name__ == "__main__":
unittest.main()
| EXA-1-master | exa/models/unilm-master/edgelm/tests/distributed/test_utils.py |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.