python_code
stringlengths
0
992k
repo_name
stringlengths
8
46
file_path
stringlengths
5
162
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import math import logging import os from omegaconf import OmegaConf import dinov2.distributed as distributed from dinov2.logging import setup_logging from dinov2.utils import utils from dinov2.configs import dinov2_default_config logger = logging.getLogger("dinov2") def apply_scaling_rules_to_cfg(cfg): # to fix if cfg.optim.scaling_rule == "sqrt_wrt_1024": base_lr = cfg.optim.base_lr cfg.optim.lr = base_lr cfg.optim.lr *= math.sqrt(cfg.train.batch_size_per_gpu * distributed.get_global_size() / 1024.0) logger.info(f"sqrt scaling learning rate; base: {base_lr}, new: {cfg.optim.lr}") else: raise NotImplementedError return cfg def write_config(cfg, output_dir, name="config.yaml"): logger.info(OmegaConf.to_yaml(cfg)) saved_cfg_path = os.path.join(output_dir, name) with open(saved_cfg_path, "w") as f: OmegaConf.save(config=cfg, f=f) return saved_cfg_path def get_cfg_from_args(args): args.output_dir = os.path.abspath(args.output_dir) args.opts += [f"train.output_dir={args.output_dir}"] default_cfg = OmegaConf.create(dinov2_default_config) cfg = OmegaConf.load(args.config_file) cfg = OmegaConf.merge(default_cfg, cfg, OmegaConf.from_cli(args.opts)) return cfg def default_setup(args): distributed.enable(overwrite=True) seed = getattr(args, "seed", 0) rank = distributed.get_global_rank() global logger setup_logging(output=args.output_dir, level=logging.INFO) logger = logging.getLogger("dinov2") utils.fix_random_seeds(seed + rank) logger.info("git:\n {}\n".format(utils.get_sha())) logger.info("\n".join("%s: %s" % (k, str(v)) for k, v in sorted(dict(vars(args)).items()))) def setup(args): """ Create configs and perform basic setups. """ cfg = get_cfg_from_args(args) os.makedirs(args.output_dir, exist_ok=True) default_setup(args) apply_scaling_rules_to_cfg(cfg) write_config(cfg, args.output_dir) return cfg
EXA-1-master
exa/models/dinov2/dinov2/utils/config.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import Dict, Union import numpy as np import torch TypeSpec = Union[str, np.dtype, torch.dtype] _NUMPY_TO_TORCH_DTYPE: Dict[np.dtype, torch.dtype] = { np.dtype("bool"): torch.bool, np.dtype("uint8"): torch.uint8, np.dtype("int8"): torch.int8, np.dtype("int16"): torch.int16, np.dtype("int32"): torch.int32, np.dtype("int64"): torch.int64, np.dtype("float16"): torch.float16, np.dtype("float32"): torch.float32, np.dtype("float64"): torch.float64, np.dtype("complex64"): torch.complex64, np.dtype("complex128"): torch.complex128, } def as_torch_dtype(dtype: TypeSpec) -> torch.dtype: if isinstance(dtype, torch.dtype): return dtype if isinstance(dtype, str): dtype = np.dtype(dtype) assert isinstance(dtype, np.dtype), f"Expected an instance of nunpy dtype, got {type(dtype)}" return _NUMPY_TO_TORCH_DTYPE[dtype]
EXA-1-master
exa/models/dinov2/dinov2/utils/dtype.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree.
EXA-1-master
exa/models/dinov2/dinov2/utils/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import logging import os import random import subprocess from urllib.parse import urlparse import numpy as np import torch from torch import nn logger = logging.getLogger("dinov2") def load_pretrained_weights(model, pretrained_weights, checkpoint_key): if urlparse(pretrained_weights).scheme: # If it looks like an URL state_dict = torch.hub.load_state_dict_from_url(pretrained_weights, map_location="cpu") else: state_dict = torch.load(pretrained_weights, map_location="cpu") if checkpoint_key is not None and checkpoint_key in state_dict: logger.info(f"Take key {checkpoint_key} in provided checkpoint dict") state_dict = state_dict[checkpoint_key] # remove `module.` prefix state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()} # remove `backbone.` prefix induced by multicrop wrapper state_dict = {k.replace("backbone.", ""): v for k, v in state_dict.items()} msg = model.load_state_dict(state_dict, strict=False) logger.info("Pretrained weights found at {} and loaded with msg: {}".format(pretrained_weights, msg)) def fix_random_seeds(seed=31): """ Fix random seeds. """ torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) random.seed(seed) def get_sha(): cwd = os.path.dirname(os.path.abspath(__file__)) def _run(command): return subprocess.check_output(command, cwd=cwd).decode("ascii").strip() sha = "N/A" diff = "clean" branch = "N/A" try: sha = _run(["git", "rev-parse", "HEAD"]) subprocess.check_output(["git", "diff"], cwd=cwd) diff = _run(["git", "diff-index", "HEAD"]) diff = "has uncommited changes" if diff else "clean" branch = _run(["git", "rev-parse", "--abbrev-ref", "HEAD"]) except Exception: pass message = f"sha: {sha}, status: {diff}, branch: {branch}" return message class CosineScheduler(object): def __init__(self, base_value, final_value, total_iters, warmup_iters=0, start_warmup_value=0, freeze_iters=0): super().__init__() self.final_value = final_value self.total_iters = total_iters freeze_schedule = np.zeros((freeze_iters)) warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters) iters = np.arange(total_iters - warmup_iters - freeze_iters) schedule = final_value + 0.5 * (base_value - final_value) * (1 + np.cos(np.pi * iters / len(iters))) self.schedule = np.concatenate((freeze_schedule, warmup_schedule, schedule)) assert len(self.schedule) == self.total_iters def __getitem__(self, it): if it >= self.total_iters: return self.final_value else: return self.schedule[it] def has_batchnorms(model): bn_types = (nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d, nn.SyncBatchNorm) for name, module in model.named_modules(): if isinstance(module, bn_types): return True return False
EXA-1-master
exa/models/dinov2/dinov2/utils/utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from enum import Enum import os from pathlib import Path from typing import Any, Dict, Optional class ClusterType(Enum): AWS = "aws" FAIR = "fair" RSC = "rsc" def _guess_cluster_type() -> ClusterType: uname = os.uname() if uname.sysname == "Linux": if uname.release.endswith("-aws"): # Linux kernel versions on AWS instances are of the form "5.4.0-1051-aws" return ClusterType.AWS elif uname.nodename.startswith("rsc"): # Linux kernel versions on RSC instances are standard ones but hostnames start with "rsc" return ClusterType.RSC return ClusterType.FAIR def get_cluster_type(cluster_type: Optional[ClusterType] = None) -> Optional[ClusterType]: if cluster_type is None: return _guess_cluster_type() return cluster_type def get_checkpoint_path(cluster_type: Optional[ClusterType] = None) -> Optional[Path]: cluster_type = get_cluster_type(cluster_type) if cluster_type is None: return None CHECKPOINT_DIRNAMES = { ClusterType.AWS: "checkpoints", ClusterType.FAIR: "checkpoint", ClusterType.RSC: "checkpoint/dino", } return Path("/") / CHECKPOINT_DIRNAMES[cluster_type] def get_user_checkpoint_path(cluster_type: Optional[ClusterType] = None) -> Optional[Path]: checkpoint_path = get_checkpoint_path(cluster_type) if checkpoint_path is None: return None username = os.environ.get("USER") assert username is not None return checkpoint_path / username def get_slurm_partition(cluster_type: Optional[ClusterType] = None) -> Optional[str]: cluster_type = get_cluster_type(cluster_type) if cluster_type is None: return None SLURM_PARTITIONS = { ClusterType.AWS: "learnlab", ClusterType.FAIR: "learnlab", ClusterType.RSC: "learn", } return SLURM_PARTITIONS[cluster_type] def get_slurm_executor_parameters( nodes: int, num_gpus_per_node: int, cluster_type: Optional[ClusterType] = None, **kwargs ) -> Dict[str, Any]: # create default parameters params = { "mem_gb": 0, # Requests all memory on a node, see https://slurm.schedmd.com/sbatch.html "gpus_per_node": num_gpus_per_node, "tasks_per_node": num_gpus_per_node, # one task per GPU "cpus_per_task": 10, "nodes": nodes, "slurm_partition": get_slurm_partition(cluster_type), } # apply cluster-specific adjustments cluster_type = get_cluster_type(cluster_type) if cluster_type == ClusterType.AWS: params["cpus_per_task"] = 12 del params["mem_gb"] elif cluster_type == ClusterType.RSC: params["cpus_per_task"] = 12 # set additional parameters / apply overrides params.update(kwargs) return params
EXA-1-master
exa/models/dinov2/dinov2/utils/cluster.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from collections import defaultdict import logging logger = logging.getLogger("dinov2") def get_vit_lr_decay_rate(name, lr_decay_rate=1.0, num_layers=12, force_is_backbone=False, chunked_blocks=False): """ Calculate lr decay rate for different ViT blocks. Args: name (string): parameter name. lr_decay_rate (float): base lr decay rate. num_layers (int): number of ViT blocks. Returns: lr decay rate for the given parameter. """ layer_id = num_layers + 1 if name.startswith("backbone") or force_is_backbone: if ".pos_embed" in name or ".patch_embed" in name or ".mask_token" in name or ".cls_token" in name: layer_id = 0 elif force_is_backbone and ( "pos_embed" in name or "patch_embed" in name or "mask_token" in name or "cls_token" in name ): layer_id = 0 elif ".blocks." in name and ".residual." not in name: layer_id = int(name[name.find(".blocks.") :].split(".")[2]) + 1 elif chunked_blocks and "blocks." in name and "residual." not in name: layer_id = int(name[name.find("blocks.") :].split(".")[2]) + 1 elif "blocks." in name and "residual." not in name: layer_id = int(name[name.find("blocks.") :].split(".")[1]) + 1 return lr_decay_rate ** (num_layers + 1 - layer_id) def get_params_groups_with_decay(model, lr_decay_rate=1.0, patch_embed_lr_mult=1.0): chunked_blocks = False if hasattr(model, "n_blocks"): logger.info("chunked fsdp") n_blocks = model.n_blocks chunked_blocks = model.chunked_blocks elif hasattr(model, "blocks"): logger.info("first code branch") n_blocks = len(model.blocks) elif hasattr(model, "backbone"): logger.info("second code branch") n_blocks = len(model.backbone.blocks) else: logger.info("else code branch") n_blocks = 0 all_param_groups = [] for name, param in model.named_parameters(): name = name.replace("_fsdp_wrapped_module.", "") if not param.requires_grad: continue decay_rate = get_vit_lr_decay_rate( name, lr_decay_rate, num_layers=n_blocks, force_is_backbone=n_blocks > 0, chunked_blocks=chunked_blocks ) d = {"params": param, "is_last_layer": False, "lr_multiplier": decay_rate, "wd_multiplier": 1.0, "name": name} if "last_layer" in name: d.update({"is_last_layer": True}) if name.endswith(".bias") or "norm" in name or "gamma" in name: d.update({"wd_multiplier": 0.0}) if "patch_embed" in name: d.update({"lr_multiplier": d["lr_multiplier"] * patch_embed_lr_mult}) all_param_groups.append(d) logger.info(f"""{name}: lr_multiplier: {d["lr_multiplier"]}, wd_multiplier: {d["wd_multiplier"]}""") return all_param_groups def fuse_params_groups(all_params_groups, keys=("lr_multiplier", "wd_multiplier", "is_last_layer")): fused_params_groups = defaultdict(lambda: {"params": []}) for d in all_params_groups: identifier = "" for k in keys: identifier += k + str(d[k]) + "_" for k in keys: fused_params_groups[identifier][k] = d[k] fused_params_groups[identifier]["params"].append(d["params"]) return fused_params_groups.values()
EXA-1-master
exa/models/dinov2/dinov2/utils/param_groups.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # References: # https://github.com/facebookresearch/dino/blob/main/vision_transformer.py # https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py from functools import partial import math import logging from typing import Sequence, Tuple, Union, Callable import torch import torch.nn as nn import torch.utils.checkpoint from torch.nn.init import trunc_normal_ from dinov2.layers import Mlp, PatchEmbed, SwiGLUFFNFused, MemEffAttention, NestedTensorBlock as Block logger = logging.getLogger("dinov2") def named_apply(fn: Callable, module: nn.Module, name="", depth_first=True, include_root=False) -> nn.Module: if not depth_first and include_root: fn(module=module, name=name) for child_name, child_module in module.named_children(): child_name = ".".join((name, child_name)) if name else child_name named_apply(fn=fn, module=child_module, name=child_name, depth_first=depth_first, include_root=True) if depth_first and include_root: fn(module=module, name=name) return module class BlockChunk(nn.ModuleList): def forward(self, x): for b in self: x = b(x) return x class DinoVisionTransformer(nn.Module): def __init__( self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4.0, qkv_bias=True, ffn_bias=True, proj_bias=True, drop_path_rate=0.0, drop_path_uniform=False, init_values=None, # for layerscale: None or 0 => no layerscale embed_layer=PatchEmbed, act_layer=nn.GELU, block_fn=Block, ffn_layer="mlp", block_chunks=1, ): """ Args: img_size (int, tuple): input image size patch_size (int, tuple): patch size in_chans (int): number of input channels embed_dim (int): embedding dimension depth (int): depth of transformer num_heads (int): number of attention heads mlp_ratio (int): ratio of mlp hidden dim to embedding dim qkv_bias (bool): enable bias for qkv if True proj_bias (bool): enable bias for proj in attn if True ffn_bias (bool): enable bias for ffn if True drop_path_rate (float): stochastic depth rate drop_path_uniform (bool): apply uniform drop rate across blocks weight_init (str): weight init scheme init_values (float): layer-scale init values embed_layer (nn.Module): patch embedding layer act_layer (nn.Module): MLP activation layer block_fn (nn.Module): transformer block class ffn_layer (str): "mlp", "swiglu", "swiglufused" or "identity" block_chunks: (int) split block sequence into block_chunks units for FSDP wrap """ super().__init__() norm_layer = partial(nn.LayerNorm, eps=1e-6) self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models self.num_tokens = 1 self.n_blocks = depth self.num_heads = num_heads self.patch_size = patch_size self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim)) if drop_path_uniform is True: dpr = [drop_path_rate] * depth else: dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule if ffn_layer == "mlp": logger.info("using MLP layer as FFN") ffn_layer = Mlp elif ffn_layer == "swiglufused" or ffn_layer == "swiglu": logger.info("using SwiGLU layer as FFN") ffn_layer = SwiGLUFFNFused elif ffn_layer == "identity": logger.info("using Identity layer as FFN") def f(*args, **kwargs): return nn.Identity() ffn_layer = f else: raise NotImplementedError blocks_list = [ block_fn( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, proj_bias=proj_bias, ffn_bias=ffn_bias, drop_path=dpr[i], norm_layer=norm_layer, act_layer=act_layer, ffn_layer=ffn_layer, init_values=init_values, ) for i in range(depth) ] if block_chunks > 0: self.chunked_blocks = True chunked_blocks = [] chunksize = depth // block_chunks for i in range(0, depth, chunksize): # this is to keep the block index consistent if we chunk the block list chunked_blocks.append([nn.Identity()] * i + blocks_list[i : i + chunksize]) self.blocks = nn.ModuleList([BlockChunk(p) for p in chunked_blocks]) else: self.chunked_blocks = False self.blocks = nn.ModuleList(blocks_list) self.norm = norm_layer(embed_dim) self.head = nn.Identity() self.mask_token = nn.Parameter(torch.zeros(1, embed_dim)) self.init_weights() def init_weights(self): trunc_normal_(self.pos_embed, std=0.02) nn.init.normal_(self.cls_token, std=1e-6) named_apply(init_weights_vit_timm, self) def interpolate_pos_encoding(self, x, w, h): previous_dtype = x.dtype npatch = x.shape[1] - 1 N = self.pos_embed.shape[1] - 1 if npatch == N and w == h: return self.pos_embed pos_embed = self.pos_embed.float() class_pos_embed = pos_embed[:, 0] patch_pos_embed = pos_embed[:, 1:] dim = x.shape[-1] w0 = w // self.patch_size h0 = h // self.patch_size # we add a small number to avoid floating point error in the interpolation # see discussion at https://github.com/facebookresearch/dino/issues/8 w0, h0 = w0 + 0.1, h0 + 0.1 patch_pos_embed = nn.functional.interpolate( patch_pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2), scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)), mode="bicubic", ) assert int(w0) == patch_pos_embed.shape[-2] and int(h0) == patch_pos_embed.shape[-1] patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1).to(previous_dtype) def prepare_tokens_with_masks(self, x, masks=None): B, nc, w, h = x.shape x = self.patch_embed(x) if masks is not None: x = torch.where(masks.unsqueeze(-1), self.mask_token.to(x.dtype).unsqueeze(0), x) x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) x = x + self.interpolate_pos_encoding(x, w, h) return x def forward_features_list(self, x_list, masks_list): x = [self.prepare_tokens_with_masks(x, masks) for x, masks in zip(x_list, masks_list)] for blk in self.blocks: x = blk(x) all_x = x output = [] for x, masks in zip(all_x, masks_list): x_norm = self.norm(x) output.append( { "x_norm_clstoken": x_norm[:, 0], "x_norm_patchtokens": x_norm[:, 1:], "x_prenorm": x, "masks": masks, } ) return output def forward_features(self, x, masks=None): if isinstance(x, list): return self.forward_features_list(x, masks) x = self.prepare_tokens_with_masks(x, masks) for blk in self.blocks: x = blk(x) x_norm = self.norm(x) return { "x_norm_clstoken": x_norm[:, 0], "x_norm_patchtokens": x_norm[:, 1:], "x_prenorm": x, "masks": masks, } def _get_intermediate_layers_not_chunked(self, x, n=1): x = self.prepare_tokens_with_masks(x) # If n is an int, take the n last blocks. If it's a list, take them output, total_block_len = [], len(self.blocks) blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n for i, blk in enumerate(self.blocks): x = blk(x) if i in blocks_to_take: output.append(x) assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found" return output def _get_intermediate_layers_chunked(self, x, n=1): x = self.prepare_tokens_with_masks(x) output, i, total_block_len = [], 0, len(self.blocks[-1]) # If n is an int, take the n last blocks. If it's a list, take them blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n for block_chunk in self.blocks: for blk in block_chunk[i:]: # Passing the nn.Identity() x = blk(x) if i in blocks_to_take: output.append(x) i += 1 assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found" return output def get_intermediate_layers( self, x: torch.Tensor, n: Union[int, Sequence] = 1, # Layers or n last layers to take reshape: bool = False, return_class_token: bool = False, norm=True, ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]]]: if self.chunked_blocks: outputs = self._get_intermediate_layers_chunked(x, n) else: outputs = self._get_intermediate_layers_not_chunked(x, n) if norm: outputs = [self.norm(out) for out in outputs] class_tokens = [out[:, 0] for out in outputs] outputs = [out[:, 1:] for out in outputs] if reshape: B, _, w, h = x.shape outputs = [ out.reshape(B, w // self.patch_size, h // self.patch_size, -1).permute(0, 3, 1, 2).contiguous() for out in outputs ] if return_class_token: return tuple(zip(outputs, class_tokens)) return tuple(outputs) def forward(self, *args, is_training=False, **kwargs): ret = self.forward_features(*args, **kwargs) if is_training: return ret else: return self.head(ret["x_norm_clstoken"]) def init_weights_vit_timm(module: nn.Module, name: str = ""): """ViT weight initialization, original timm impl (for reproducibility)""" if isinstance(module, nn.Linear): trunc_normal_(module.weight, std=0.02) if module.bias is not None: nn.init.zeros_(module.bias) def vit_small(patch_size=16, **kwargs): model = DinoVisionTransformer( patch_size=patch_size, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, block_fn=partial(Block, attn_class=MemEffAttention), **kwargs, ) return model def vit_base(patch_size=16, **kwargs): model = DinoVisionTransformer( patch_size=patch_size, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, block_fn=partial(Block, attn_class=MemEffAttention), **kwargs, ) return model def vit_large(patch_size=16, **kwargs): model = DinoVisionTransformer( patch_size=patch_size, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, block_fn=partial(Block, attn_class=MemEffAttention), **kwargs, ) return model def vit_giant2(patch_size=16, **kwargs): """ Close to ViT-giant, with embed-dim 1536 and 24 heads => embed-dim per head 64 """ model = DinoVisionTransformer( patch_size=patch_size, embed_dim=1536, depth=40, num_heads=24, mlp_ratio=4, block_fn=partial(Block, attn_class=MemEffAttention), **kwargs, ) return model
EXA-1-master
exa/models/dinov2/dinov2/models/vision_transformer.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import logging from . import vision_transformer as vits logger = logging.getLogger("dinov2") def build_model(args, only_teacher=False, img_size=224): args.arch = args.arch.removesuffix("_memeff") if "vit" in args.arch: vit_kwargs = dict( img_size=img_size, patch_size=args.patch_size, init_values=args.layerscale, ffn_layer=args.ffn_layer, block_chunks=args.block_chunks, qkv_bias=args.qkv_bias, proj_bias=args.proj_bias, ffn_bias=args.ffn_bias, ) teacher = vits.__dict__[args.arch](**vit_kwargs) if only_teacher: return teacher, teacher.embed_dim student = vits.__dict__[args.arch]( **vit_kwargs, drop_path_rate=args.drop_path_rate, drop_path_uniform=args.drop_path_uniform, ) embed_dim = student.embed_dim return student, teacher, embed_dim def build_model_from_cfg(cfg, only_teacher=False): return build_model(cfg.student, only_teacher=only_teacher, img_size=cfg.crops.global_crops_size)
EXA-1-master
exa/models/dinov2/dinov2/models/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os from typing import Any import torch import dinov2.distributed as distributed from functools import partial from fvcore.common.checkpoint import Checkpointer from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp import ShardingStrategy from torch.distributed.fsdp import MixedPrecision from torch.distributed.fsdp import StateDictType from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler from torch.distributed.fsdp.wrap import ModuleWrapPolicy from torch.distributed.fsdp._runtime_utils import _reshard def get_fsdp_wrapper(model_cfg, modules_to_wrap=set()): sharding_strategy_dict = { "NO_SHARD": ShardingStrategy.NO_SHARD, "SHARD_GRAD_OP": ShardingStrategy.SHARD_GRAD_OP, "FULL_SHARD": ShardingStrategy.FULL_SHARD, } dtype_dict = { "fp32": torch.float32, "fp16": torch.float16, "bf16": torch.bfloat16, } mixed_precision_config = MixedPrecision( param_dtype=dtype_dict[model_cfg.mixed_precision.param_dtype], reduce_dtype=dtype_dict[model_cfg.mixed_precision.reduce_dtype], buffer_dtype=dtype_dict[model_cfg.mixed_precision.buffer_dtype], ) sharding_strategy_config = sharding_strategy_dict[model_cfg.sharding_strategy] local_rank = distributed.get_local_rank() fsdp_wrapper = partial( FSDP, sharding_strategy=sharding_strategy_config, mixed_precision=mixed_precision_config, device_id=local_rank, sync_module_states=True, use_orig_params=True, auto_wrap_policy=ModuleWrapPolicy(modules_to_wrap), ) return fsdp_wrapper def is_fsdp(x): return isinstance(x, FSDP) def is_sharded_fsdp(x): return is_fsdp(x) and x.sharding_strategy is not ShardingStrategy.NO_SHARD def free_if_fsdp(x): if is_sharded_fsdp(x): handles = x._handles true_list = [True for h in handles] _reshard(x, handles, true_list) def get_fsdp_modules(x): return FSDP.fsdp_modules(x) def reshard_fsdp_model(x): for m in get_fsdp_modules(x): free_if_fsdp(m) def rankstr(): return f"rank_{distributed.get_global_rank()}" class FSDPCheckpointer(Checkpointer): def save(self, name: str, **kwargs: Any) -> None: """ Dump model and checkpointables to a file. Args: name (str): name of the file. kwargs (dict): extra arbitrary data to save. """ if not self.save_dir or not self.save_to_disk: return data = {} with FSDP.state_dict_type(self.model, StateDictType.LOCAL_STATE_DICT): data["model"] = self.model.state_dict() # data["model"] = self.model.state_dict() for key, obj in self.checkpointables.items(): data[key] = obj.state_dict() data.update(kwargs) basename = f"{name}.{rankstr()}.pth" save_file = os.path.join(self.save_dir, basename) assert os.path.basename(save_file) == basename, basename self.logger.info("Saving checkpoint to {}".format(save_file)) with self.path_manager.open(save_file, "wb") as f: torch.save(data, f) self.tag_last_checkpoint(basename) def load(self, *args, **kwargs): with FSDP.state_dict_type(self.model, StateDictType.LOCAL_STATE_DICT): return super().load(*args, **kwargs) def has_checkpoint(self) -> bool: """ Returns: bool: whether a checkpoint exists in the target directory. """ save_file = os.path.join(self.save_dir, f"last_checkpoint.{rankstr()}") return self.path_manager.exists(save_file) def get_checkpoint_file(self) -> str: """ Returns: str: The latest checkpoint file in target directory. """ save_file = os.path.join(self.save_dir, f"last_checkpoint.{rankstr()}") try: with self.path_manager.open(save_file, "r") as f: last_saved = f.read().strip() except IOError: # if file doesn't exist, maybe because it has just been # deleted by a separate process return "" # pyre-fixme[6]: For 2nd param expected `Union[PathLike[str], str]` but got # `Union[bytes, str]`. return os.path.join(self.save_dir, last_saved) def tag_last_checkpoint(self, last_filename_basename: str) -> None: """ Tag the last checkpoint. Args: last_filename_basename (str): the basename of the last filename. """ if distributed.is_enabled(): torch.distributed.barrier() save_file = os.path.join(self.save_dir, f"last_checkpoint.{rankstr()}") with self.path_manager.open(save_file, "w") as f: f.write(last_filename_basename) # pyre-ignore ShardedGradScaler = ShardedGradScaler
EXA-1-master
exa/models/dinov2/dinov2/fsdp/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import pathlib from omegaconf import OmegaConf def load_config(config_name: str): config_filename = config_name + ".yaml" return OmegaConf.load(pathlib.Path(__file__).parent.resolve() / config_filename) dinov2_default_config = load_config("ssl_default_config") def load_and_merge_config(config_name: str): default_config = OmegaConf.create(dinov2_default_config) loaded_config = load_config(config_name) return OmegaConf.merge(default_config, loaded_config)
EXA-1-master
exa/models/dinov2/dinov2/configs/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from .train import get_args_parser, main from .ssl_meta_arch import SSLMetaArch
EXA-1-master
exa/models/dinov2/dinov2/train/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from functools import partial import logging import torch from torch import nn from dinov2.loss import DINOLoss, iBOTPatchLoss, KoLeoLoss from dinov2.models import build_model_from_cfg from dinov2.layers import DINOHead from dinov2.utils.utils import has_batchnorms from dinov2.utils.param_groups import get_params_groups_with_decay, fuse_params_groups from dinov2.fsdp import get_fsdp_wrapper, ShardedGradScaler, get_fsdp_modules, reshard_fsdp_model from dinov2.models.vision_transformer import BlockChunk try: from xformers.ops import fmha XFORMERS_AVAILABLE = True except ImportError: XFORMERS_AVAILABLE = False assert XFORMERS_AVAILABLE, "xFormers is required for DINOv2 training" logger = logging.getLogger("dinov2") class SSLMetaArch(nn.Module): def __init__(self, cfg): super().__init__() self.cfg = cfg self.fp16_scaler = ShardedGradScaler() if cfg.compute_precision.grad_scaler else None student_model_dict = dict() teacher_model_dict = dict() student_backbone, teacher_backbone, embed_dim = build_model_from_cfg(cfg) student_model_dict["backbone"] = student_backbone teacher_model_dict["backbone"] = teacher_backbone logger.info(f"OPTIONS -- architecture : embed_dim: {embed_dim}") if cfg.student.pretrained_weights: chkpt = torch.load(cfg.student.pretrained_weights) logger.info(f"OPTIONS -- pretrained weights: loading from {cfg.student.pretrained_weights}") student_backbone.load_state_dict(chkpt["model"], strict=False) self.embed_dim = embed_dim self.dino_out_dim = cfg.dino.head_n_prototypes self.do_dino = cfg.dino.loss_weight > 0 self.do_koleo = cfg.dino.koleo_loss_weight > 0 self.do_ibot = cfg.ibot.loss_weight > 0 self.ibot_separate_head = cfg.ibot.separate_head logger.info("OPTIONS -- DINO") if self.do_dino: logger.info(f"OPTIONS -- DINO -- loss_weight: {cfg.dino.loss_weight}") logger.info(f"OPTIONS -- DINO -- head_n_prototypes: {cfg.dino.head_n_prototypes}") logger.info(f"OPTIONS -- DINO -- head_bottleneck_dim: {cfg.dino.head_bottleneck_dim}") logger.info(f"OPTIONS -- DINO -- head_hidden_dim: {cfg.dino.head_hidden_dim}") self.dino_loss_weight = cfg.dino.loss_weight dino_head = partial( DINOHead, in_dim=embed_dim, out_dim=cfg.dino.head_n_prototypes, hidden_dim=cfg.dino.head_hidden_dim, bottleneck_dim=cfg.dino.head_bottleneck_dim, nlayers=cfg.dino.head_nlayers, ) self.dino_loss = DINOLoss(self.dino_out_dim) if self.do_koleo: logger.info("OPTIONS -- DINO -- applying KOLEO regularization") self.koleo_loss = KoLeoLoss() else: logger.info("OPTIONS -- DINO -- not using DINO") if self.do_dino or self.do_ibot: student_model_dict["dino_head"] = dino_head() teacher_model_dict["dino_head"] = dino_head() logger.info("OPTIONS -- IBOT") logger.info(f"OPTIONS -- IBOT -- loss_weight: {cfg.ibot.loss_weight}") logger.info(f"OPTIONS -- IBOT masking -- ibot_mask_ratio_tuple: {cfg.ibot.mask_ratio_min_max}") logger.info(f"OPTIONS -- IBOT masking -- ibot_mask_sample_probability: {cfg.ibot.mask_sample_probability}") if self.do_ibot: self.ibot_loss_weight = cfg.ibot.loss_weight assert max(cfg.ibot.mask_ratio_min_max) > 0, "please provide a positive mask ratio tuple for ibot" assert cfg.ibot.mask_sample_probability > 0, "please provide a positive mask probability for ibot" self.ibot_out_dim = cfg.ibot.head_n_prototypes if self.ibot_separate_head else cfg.dino.head_n_prototypes self.ibot_patch_loss = iBOTPatchLoss(self.ibot_out_dim) if self.ibot_separate_head: logger.info(f"OPTIONS -- IBOT -- loss_weight: {cfg.ibot.loss_weight}") logger.info(f"OPTIONS -- IBOT -- head_n_prototypes: {cfg.ibot.head_n_prototypes}") logger.info(f"OPTIONS -- IBOT -- head_bottleneck_dim: {cfg.ibot.head_bottleneck_dim}") logger.info(f"OPTIONS -- IBOT -- head_hidden_dim: {cfg.ibot.head_hidden_dim}") ibot_head = partial( DINOHead, in_dim=embed_dim, out_dim=cfg.ibot.head_n_prototypes, hidden_dim=cfg.ibot.head_hidden_dim, bottleneck_dim=cfg.ibot.head_bottleneck_dim, nlayers=cfg.ibot.head_nlayers, ) student_model_dict["ibot_head"] = ibot_head() teacher_model_dict["ibot_head"] = ibot_head() else: logger.info("OPTIONS -- IBOT -- head shared with DINO") self.need_to_synchronize_fsdp_streams = True self.student = nn.ModuleDict(student_model_dict) self.teacher = nn.ModuleDict(teacher_model_dict) # there is no backpropagation through the teacher, so no need for gradients for p in self.teacher.parameters(): p.requires_grad = False logger.info(f"Student and Teacher are built: they are both {cfg.student.arch} network.") def forward(self, inputs): raise NotImplementedError def backprop_loss(self, loss): if self.fp16_scaler is not None: self.fp16_scaler.scale(loss).backward() else: loss.backward() def forward_backward(self, images, teacher_temp): n_global_crops = 2 assert n_global_crops == 2 n_local_crops = self.cfg.crops.local_crops_number global_crops = images["collated_global_crops"].cuda(non_blocking=True) local_crops = images["collated_local_crops"].cuda(non_blocking=True) masks = images["collated_masks"].cuda(non_blocking=True) mask_indices_list = images["mask_indices_list"].cuda(non_blocking=True) n_masked_patches_tensor = images["n_masked_patches"].cuda(non_blocking=True) n_masked_patches = mask_indices_list.shape[0] upperbound = images["upperbound"] masks_weight = images["masks_weight"].cuda(non_blocking=True) n_local_crops_loss_terms = max(n_local_crops * n_global_crops, 1) n_global_crops_loss_terms = (n_global_crops - 1) * n_global_crops do_dino = self.do_dino do_ibot = self.do_ibot # loss scales ibot_loss_scale = 1.0 / n_global_crops # teacher output @torch.no_grad() def get_teacher_output(): x, n_global_crops_teacher = global_crops, n_global_crops teacher_backbone_output_dict = self.teacher.backbone(x, is_training=True) teacher_cls_tokens = teacher_backbone_output_dict["x_norm_clstoken"] teacher_cls_tokens = teacher_cls_tokens.chunk(n_global_crops_teacher) # watch out: these are chunked and cat'd in reverse so A is matched to B in the global crops dino loss teacher_cls_tokens = torch.cat((teacher_cls_tokens[1], teacher_cls_tokens[0])) ibot_teacher_patch_tokens = teacher_backbone_output_dict["x_norm_patchtokens"] _dim = ibot_teacher_patch_tokens.shape[-1] n_cls_tokens = teacher_cls_tokens.shape[0] if do_ibot and not self.ibot_separate_head: buffer_tensor_teacher = ibot_teacher_patch_tokens.new_zeros(upperbound + n_cls_tokens, _dim) buffer_tensor_teacher[:n_cls_tokens].copy_(teacher_cls_tokens) torch.index_select( ibot_teacher_patch_tokens.flatten(0, 1), dim=0, index=mask_indices_list, out=buffer_tensor_teacher[n_cls_tokens : n_cls_tokens + n_masked_patches], ) tokens_after_head = self.teacher.dino_head(buffer_tensor_teacher) teacher_cls_tokens_after_head = tokens_after_head[:n_cls_tokens] masked_teacher_patch_tokens_after_head = tokens_after_head[ n_cls_tokens : n_cls_tokens + n_masked_patches ] elif do_ibot and self.ibot_separate_head: buffer_tensor_teacher = ibot_teacher_patch_tokens.new_zeros(upperbound, _dim) torch.index_select( ibot_teacher_patch_tokens.flatten(0, 1), dim=0, index=mask_indices_list, out=buffer_tensor_teacher[:n_masked_patches], ) teacher_cls_tokens_after_head = self.teacher.dino_head(teacher_cls_tokens) masked_teacher_patch_tokens_after_head = self.teacher.ibot_head(buffer_tensor_teacher)[ :n_masked_patches ] else: teacher_cls_tokens_after_head = self.teacher.dino_head(teacher_cls_tokens) masked_teacher_ibot_softmaxed_centered = None if self.cfg.train.centering == "centering": teacher_dino_softmaxed_centered_list = self.dino_loss.softmax_center_teacher( teacher_cls_tokens_after_head, teacher_temp=teacher_temp ).view(n_global_crops_teacher, -1, *teacher_cls_tokens_after_head.shape[1:]) self.dino_loss.update_center(teacher_cls_tokens_after_head) if do_ibot: masked_teacher_patch_tokens_after_head = masked_teacher_patch_tokens_after_head.unsqueeze(0) masked_teacher_ibot_softmaxed_centered = self.ibot_patch_loss.softmax_center_teacher( masked_teacher_patch_tokens_after_head[:, :n_masked_patches], teacher_temp=teacher_temp ) masked_teacher_ibot_softmaxed_centered = masked_teacher_ibot_softmaxed_centered.squeeze(0) self.ibot_patch_loss.update_center(masked_teacher_patch_tokens_after_head[:n_masked_patches]) elif self.cfg.train.centering == "sinkhorn_knopp": teacher_dino_softmaxed_centered_list = self.dino_loss.sinkhorn_knopp_teacher( teacher_cls_tokens_after_head, teacher_temp=teacher_temp ).view(n_global_crops_teacher, -1, *teacher_cls_tokens_after_head.shape[1:]) if do_ibot: masked_teacher_ibot_softmaxed_centered = self.ibot_patch_loss.sinkhorn_knopp_teacher( masked_teacher_patch_tokens_after_head, teacher_temp=teacher_temp, n_masked_patches_tensor=n_masked_patches_tensor, ) else: raise NotImplementedError return teacher_dino_softmaxed_centered_list, masked_teacher_ibot_softmaxed_centered teacher_dino_softmaxed_centered_list, masked_teacher_ibot_softmaxed_centered = get_teacher_output() reshard_fsdp_model(self.teacher) loss_dict = {} loss_accumulator = 0 # for backprop student_global_backbone_output_dict, student_local_backbone_output_dict = self.student.backbone( [global_crops, local_crops], masks=[masks, None], is_training=True ) inputs_for_student_head_list = [] # 1a: local crops cls tokens student_local_cls_tokens = student_local_backbone_output_dict["x_norm_clstoken"] inputs_for_student_head_list.append(student_local_cls_tokens.unsqueeze(0)) # 1b: global crops cls tokens student_global_cls_tokens = student_global_backbone_output_dict["x_norm_clstoken"] inputs_for_student_head_list.append(student_global_cls_tokens.unsqueeze(0)) # 1c: global crops patch tokens if do_ibot: _dim = student_global_backbone_output_dict["x_norm_clstoken"].shape[-1] ibot_student_patch_tokens = student_global_backbone_output_dict["x_norm_patchtokens"] buffer_tensor_patch_tokens = ibot_student_patch_tokens.new_zeros(upperbound, _dim) buffer_tensor_patch_tokens[:n_masked_patches].copy_( torch.index_select(ibot_student_patch_tokens.flatten(0, 1), dim=0, index=mask_indices_list) ) if not self.ibot_separate_head: inputs_for_student_head_list.append(buffer_tensor_patch_tokens.unsqueeze(0)) else: student_global_masked_patch_tokens_after_head = self.student.ibot_head(buffer_tensor_patch_tokens)[ :n_masked_patches ] # 2: run _attn_bias, cat_inputs = fmha.BlockDiagonalMask.from_tensor_list(inputs_for_student_head_list) outputs_list = _attn_bias.split(self.student.dino_head(cat_inputs)) # 3a: local crops cls tokens student_local_cls_tokens_after_head = outputs_list.pop(0).squeeze(0) # 3b: global crops cls tokens student_global_cls_tokens_after_head = outputs_list.pop(0).squeeze(0) # 3c: global crops patch tokens if do_ibot and not self.ibot_separate_head: student_global_masked_patch_tokens_after_head = outputs_list.pop(0).squeeze(0)[:n_masked_patches] if n_local_crops > 0: dino_local_crops_loss = self.dino_loss( student_output_list=student_local_cls_tokens_after_head.chunk(n_local_crops), teacher_out_softmaxed_centered_list=teacher_dino_softmaxed_centered_list, ) / (n_global_crops_loss_terms + n_local_crops_loss_terms) # store for display loss_dict["dino_local_crops_loss"] = dino_local_crops_loss # accumulate loss loss_accumulator += self.dino_loss_weight * dino_local_crops_loss # process global crops loss_scales = 2 # this is here since we process global crops together if do_dino: # compute loss dino_global_crops_loss = ( self.dino_loss( student_output_list=[student_global_cls_tokens_after_head], teacher_out_softmaxed_centered_list=[ teacher_dino_softmaxed_centered_list.flatten(0, 1) ], # these were chunked and stacked in reverse so A is matched to B ) * loss_scales / (n_global_crops_loss_terms + n_local_crops_loss_terms) ) loss_dict["dino_global_crops_loss"] = dino_global_crops_loss # accumulate loss loss_accumulator += self.dino_loss_weight * dino_global_crops_loss student_cls_tokens = student_global_cls_tokens if self.do_koleo: koleo_loss = self.cfg.dino.koleo_loss_weight * sum( self.koleo_loss(p) for p in student_cls_tokens.chunk(2) ) # we don't apply koleo loss between cls tokens of a same image loss_accumulator += koleo_loss loss_dict["koleo_loss"] = ( koleo_loss / loss_scales ) # this is to display the same losses as before but we can remove eventually if do_ibot: # compute loss ibot_patch_loss = ( self.ibot_patch_loss.forward_masked( student_global_masked_patch_tokens_after_head, masked_teacher_ibot_softmaxed_centered, student_masks_flat=masks, n_masked_patches=n_masked_patches, masks_weight=masks_weight, ) * loss_scales * ibot_loss_scale ) # store for display loss_dict["ibot_loss"] = ibot_patch_loss / 2 # accumulate loss loss_accumulator += self.ibot_loss_weight * ibot_patch_loss self.backprop_loss(loss_accumulator) self.fsdp_synchronize_streams() return loss_dict def fsdp_synchronize_streams(self): if self.need_to_synchronize_fsdp_streams: torch.cuda.synchronize() self.student.dino_head._streams = ( self.teacher.dino_head._streams ) = self.student.backbone._streams = self.teacher.backbone._streams self.need_to_synchronize_fsdp_streams = False def update_teacher(self, m): student_param_list = [] teacher_param_list = [] with torch.no_grad(): for k in self.student.keys(): for ms, mt in zip(get_fsdp_modules(self.student[k]), get_fsdp_modules(self.teacher[k])): student_param_list += ms.params teacher_param_list += mt.params torch._foreach_mul_(teacher_param_list, m) torch._foreach_add_(teacher_param_list, student_param_list, alpha=1 - m) def train(self): super().train() self.teacher.eval() def get_maybe_fused_params_for_submodel(self, m): params_groups = get_params_groups_with_decay( model=m, lr_decay_rate=self.cfg.optim.layerwise_decay, patch_embed_lr_mult=self.cfg.optim.patch_embed_lr_mult, ) fused_params_groups = fuse_params_groups(params_groups) logger.info("fusing param groups") for g in fused_params_groups: g["foreach"] = True return fused_params_groups def get_params_groups(self): all_params_groups = [] for m in self.student.values(): all_params_groups += self.get_maybe_fused_params_for_submodel(m) return all_params_groups def prepare_for_distributed_training(self): logger.info("DISTRIBUTED FSDP -- preparing model for distributed training") if has_batchnorms(self.student): raise NotImplementedError # below will synchronize all student subnetworks across gpus: for k, v in self.student.items(): self.teacher[k].load_state_dict(self.student[k].state_dict()) student_model_cfg = self.cfg.compute_precision.student[k] self.student[k] = get_fsdp_wrapper(student_model_cfg, modules_to_wrap={BlockChunk})(self.student[k]) teacher_model_cfg = self.cfg.compute_precision.teacher[k] self.teacher[k] = get_fsdp_wrapper(teacher_model_cfg, modules_to_wrap={BlockChunk})(self.teacher[k])
EXA-1-master
exa/models/dinov2/dinov2/train/ssl_meta_arch.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import logging import math import os from functools import partial from fvcore.common.checkpoint import PeriodicCheckpointer import torch from dinov2.data import SamplerType, make_data_loader, make_dataset from dinov2.data import collate_data_and_cast, DataAugmentationDINO, MaskingGenerator import dinov2.distributed as distributed from dinov2.fsdp import FSDPCheckpointer from dinov2.logging import MetricLogger from dinov2.utils.config import setup from dinov2.utils.utils import CosineScheduler from dinov2.train.ssl_meta_arch import SSLMetaArch torch.backends.cuda.matmul.allow_tf32 = True # PyTorch 1.12 sets this to False by default logger = logging.getLogger("dinov2") def get_args_parser(add_help: bool = True): parser = argparse.ArgumentParser("DINOv2 training", add_help=add_help) parser.add_argument("--config-file", default="", metavar="FILE", help="path to config file") parser.add_argument( "--no-resume", action="store_true", help="Whether to not attempt to resume from the checkpoint directory. ", ) parser.add_argument("--eval-only", action="store_true", help="perform evaluation only") parser.add_argument("--eval", type=str, default="", help="Eval type to perform") parser.add_argument( "opts", help=""" Modify config options at the end of the command. For Yacs configs, use space-separated "PATH.KEY VALUE" pairs. For python-based LazyConfig, use "path.key=value". """.strip(), default=None, nargs=argparse.REMAINDER, ) parser.add_argument( "--output-dir", "--output_dir", default="", type=str, help="Output directory to save logs and checkpoints", ) return parser def build_optimizer(cfg, params_groups): return torch.optim.AdamW(params_groups, betas=(cfg.optim.adamw_beta1, cfg.optim.adamw_beta2)) def build_schedulers(cfg): OFFICIAL_EPOCH_LENGTH = cfg.train.OFFICIAL_EPOCH_LENGTH lr = dict( base_value=cfg.optim["lr"], final_value=cfg.optim["min_lr"], total_iters=cfg.optim["epochs"] * OFFICIAL_EPOCH_LENGTH, warmup_iters=cfg.optim["warmup_epochs"] * OFFICIAL_EPOCH_LENGTH, start_warmup_value=0, ) wd = dict( base_value=cfg.optim["weight_decay"], final_value=cfg.optim["weight_decay_end"], total_iters=cfg.optim["epochs"] * OFFICIAL_EPOCH_LENGTH, ) momentum = dict( base_value=cfg.teacher["momentum_teacher"], final_value=cfg.teacher["final_momentum_teacher"], total_iters=cfg.optim["epochs"] * OFFICIAL_EPOCH_LENGTH, ) teacher_temp = dict( base_value=cfg.teacher["teacher_temp"], final_value=cfg.teacher["teacher_temp"], total_iters=cfg.teacher["warmup_teacher_temp_epochs"] * OFFICIAL_EPOCH_LENGTH, warmup_iters=cfg.teacher["warmup_teacher_temp_epochs"] * OFFICIAL_EPOCH_LENGTH, start_warmup_value=cfg.teacher["warmup_teacher_temp"], ) lr_schedule = CosineScheduler(**lr) wd_schedule = CosineScheduler(**wd) momentum_schedule = CosineScheduler(**momentum) teacher_temp_schedule = CosineScheduler(**teacher_temp) last_layer_lr_schedule = CosineScheduler(**lr) last_layer_lr_schedule.schedule[ : cfg.optim["freeze_last_layer_epochs"] * OFFICIAL_EPOCH_LENGTH ] = 0 # mimicking the original schedules logger.info("Schedulers ready.") return ( lr_schedule, wd_schedule, momentum_schedule, teacher_temp_schedule, last_layer_lr_schedule, ) def apply_optim_scheduler(optimizer, lr, wd, last_layer_lr): for param_group in optimizer.param_groups: is_last_layer = param_group["is_last_layer"] lr_multiplier = param_group["lr_multiplier"] wd_multiplier = param_group["wd_multiplier"] param_group["weight_decay"] = wd * wd_multiplier param_group["lr"] = (last_layer_lr if is_last_layer else lr) * lr_multiplier def do_test(cfg, model, iteration): new_state_dict = model.teacher.state_dict() if distributed.is_main_process(): iterstring = str(iteration) eval_dir = os.path.join(cfg.train.output_dir, "eval", iterstring) os.makedirs(eval_dir, exist_ok=True) # save teacher checkpoint teacher_ckp_path = os.path.join(eval_dir, "teacher_checkpoint.pth") torch.save({"teacher": new_state_dict}, teacher_ckp_path) def do_train(cfg, model, resume=False): model.train() inputs_dtype = torch.half fp16_scaler = model.fp16_scaler # for mixed precision training # setup optimizer optimizer = build_optimizer(cfg, model.get_params_groups()) ( lr_schedule, wd_schedule, momentum_schedule, teacher_temp_schedule, last_layer_lr_schedule, ) = build_schedulers(cfg) # checkpointer checkpointer = FSDPCheckpointer(model, cfg.train.output_dir, optimizer=optimizer, save_to_disk=True) start_iter = checkpointer.resume_or_load(cfg.MODEL.WEIGHTS, resume=resume).get("iteration", -1) + 1 OFFICIAL_EPOCH_LENGTH = cfg.train.OFFICIAL_EPOCH_LENGTH max_iter = cfg.optim.epochs * OFFICIAL_EPOCH_LENGTH periodic_checkpointer = PeriodicCheckpointer( checkpointer, period=3 * OFFICIAL_EPOCH_LENGTH, max_iter=max_iter, max_to_keep=3, ) # setup data preprocessing img_size = cfg.crops.global_crops_size patch_size = cfg.student.patch_size n_tokens = (img_size // patch_size) ** 2 mask_generator = MaskingGenerator( input_size=(img_size // patch_size, img_size // patch_size), max_num_patches=0.5 * img_size // patch_size * img_size // patch_size, ) data_transform = DataAugmentationDINO( cfg.crops.global_crops_scale, cfg.crops.local_crops_scale, cfg.crops.local_crops_number, global_crops_size=cfg.crops.global_crops_size, local_crops_size=cfg.crops.local_crops_size, ) collate_fn = partial( collate_data_and_cast, mask_ratio_tuple=cfg.ibot.mask_ratio_min_max, mask_probability=cfg.ibot.mask_sample_probability, n_tokens=n_tokens, mask_generator=mask_generator, dtype=inputs_dtype, ) # setup data loader dataset = make_dataset( dataset_str=cfg.train.dataset_path, transform=data_transform, target_transform=lambda _: (), ) # sampler_type = SamplerType.INFINITE sampler_type = SamplerType.SHARDED_INFINITE data_loader = make_data_loader( dataset=dataset, batch_size=cfg.train.batch_size_per_gpu, num_workers=cfg.train.num_workers, shuffle=True, seed=start_iter, # TODO: Fix this -- cfg.train.seed sampler_type=sampler_type, sampler_advance=0, # TODO(qas): fix this -- start_iter * cfg.train.batch_size_per_gpu, drop_last=True, collate_fn=collate_fn, ) # training loop iteration = start_iter logger.info("Starting training from iteration {}".format(start_iter)) metrics_file = os.path.join(cfg.train.output_dir, "training_metrics.json") metric_logger = MetricLogger(delimiter=" ", output_file=metrics_file) header = "Training" for data in metric_logger.log_every( data_loader, 10, header, max_iter, start_iter, ): current_batch_size = data["collated_global_crops"].shape[0] / 2 if iteration > max_iter: return # apply schedules lr = lr_schedule[iteration] wd = wd_schedule[iteration] mom = momentum_schedule[iteration] teacher_temp = teacher_temp_schedule[iteration] last_layer_lr = last_layer_lr_schedule[iteration] apply_optim_scheduler(optimizer, lr, wd, last_layer_lr) # compute losses optimizer.zero_grad(set_to_none=True) loss_dict = model.forward_backward(data, teacher_temp=teacher_temp) # clip gradients if fp16_scaler is not None: if cfg.optim.clip_grad: fp16_scaler.unscale_(optimizer) for v in model.student.values(): v.clip_grad_norm_(cfg.optim.clip_grad) fp16_scaler.step(optimizer) fp16_scaler.update() else: if cfg.optim.clip_grad: for v in model.student.values(): v.clip_grad_norm_(cfg.optim.clip_grad) optimizer.step() # perform teacher EMA update model.update_teacher(mom) # logging if distributed.get_global_size() > 1: for v in loss_dict.values(): torch.distributed.all_reduce(v) loss_dict_reduced = {k: v.item() / distributed.get_global_size() for k, v in loss_dict.items()} if math.isnan(sum(loss_dict_reduced.values())): logger.info("NaN detected") raise AssertionError losses_reduced = sum(loss for loss in loss_dict_reduced.values()) metric_logger.update(lr=lr) metric_logger.update(wd=wd) metric_logger.update(mom=mom) metric_logger.update(last_layer_lr=last_layer_lr) metric_logger.update(current_batch_size=current_batch_size) metric_logger.update(total_loss=losses_reduced, **loss_dict_reduced) # checkpointing and testing if cfg.evaluation.eval_period_iterations > 0 and (iteration + 1) % cfg.evaluation.eval_period_iterations == 0: do_test(cfg, model, f"training_{iteration}") torch.cuda.synchronize() periodic_checkpointer.step(iteration) iteration = iteration + 1 metric_logger.synchronize_between_processes() return {k: meter.global_avg for k, meter in metric_logger.meters.items()} def main(args): cfg = setup(args) model = SSLMetaArch(cfg).to(torch.device("cuda")) model.prepare_for_distributed_training() logger.info("Model:\n{}".format(model)) if args.eval_only: iteration = ( FSDPCheckpointer(model, save_dir=cfg.train.output_dir) .resume_or_load(cfg.MODEL.WEIGHTS, resume=not args.no_resume) .get("iteration", -1) + 1 ) return do_test(cfg, model, f"manual_{iteration}") do_train(cfg, model, resume=not args.no_resume) if __name__ == "__main__": args = get_args_parser(add_help=True).parse_args() main(args)
EXA-1-master
exa/models/dinov2/dinov2/train/train.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from enum import Enum import logging from typing import Any, Dict, Optional import torch from torch import Tensor from torchmetrics import Metric, MetricCollection from torchmetrics.classification import MulticlassAccuracy from torchmetrics.utilities.data import dim_zero_cat, select_topk logger = logging.getLogger("dinov2") class MetricType(Enum): MEAN_ACCURACY = "mean_accuracy" MEAN_PER_CLASS_ACCURACY = "mean_per_class_accuracy" PER_CLASS_ACCURACY = "per_class_accuracy" IMAGENET_REAL_ACCURACY = "imagenet_real_accuracy" @property def accuracy_averaging(self): return getattr(AccuracyAveraging, self.name, None) def __str__(self): return self.value class AccuracyAveraging(Enum): MEAN_ACCURACY = "micro" MEAN_PER_CLASS_ACCURACY = "macro" PER_CLASS_ACCURACY = "none" def __str__(self): return self.value def build_metric(metric_type: MetricType, *, num_classes: int, ks: Optional[tuple] = None): if metric_type.accuracy_averaging is not None: return build_topk_accuracy_metric( average_type=metric_type.accuracy_averaging, num_classes=num_classes, ks=(1, 5) if ks is None else ks, ) elif metric_type == MetricType.IMAGENET_REAL_ACCURACY: return build_topk_imagenet_real_accuracy_metric( num_classes=num_classes, ks=(1, 5) if ks is None else ks, ) raise ValueError(f"Unknown metric type {metric_type}") def build_topk_accuracy_metric(average_type: AccuracyAveraging, num_classes: int, ks: tuple = (1, 5)): metrics: Dict[str, Metric] = { f"top-{k}": MulticlassAccuracy(top_k=k, num_classes=int(num_classes), average=average_type.value) for k in ks } return MetricCollection(metrics) def build_topk_imagenet_real_accuracy_metric(num_classes: int, ks: tuple = (1, 5)): metrics: Dict[str, Metric] = {f"top-{k}": ImageNetReaLAccuracy(top_k=k, num_classes=int(num_classes)) for k in ks} return MetricCollection(metrics) class ImageNetReaLAccuracy(Metric): is_differentiable: bool = False higher_is_better: Optional[bool] = None full_state_update: bool = False def __init__( self, num_classes: int, top_k: int = 1, **kwargs: Any, ) -> None: super().__init__(**kwargs) self.num_classes = num_classes self.top_k = top_k self.add_state("tp", [], dist_reduce_fx="cat") def update(self, preds: Tensor, target: Tensor) -> None: # type: ignore # preds [B, D] # target [B, A] # preds_oh [B, D] with 0 and 1 # select top K highest probabilities, use one hot representation preds_oh = select_topk(preds, self.top_k) # target_oh [B, D + 1] with 0 and 1 target_oh = torch.zeros((preds_oh.shape[0], preds_oh.shape[1] + 1), device=target.device, dtype=torch.int32) target = target.long() # for undefined targets (-1) use a fake value `num_classes` target[target == -1] = self.num_classes # fill targets, use one hot representation target_oh.scatter_(1, target, 1) # target_oh [B, D] (remove the fake target at index `num_classes`) target_oh = target_oh[:, :-1] # tp [B] with 0 and 1 tp = (preds_oh * target_oh == 1).sum(dim=1) # at least one match between prediction and target tp.clip_(max=1) # ignore instances where no targets are defined mask = target_oh.sum(dim=1) > 0 tp = tp[mask] self.tp.append(tp) # type: ignore def compute(self) -> Tensor: tp = dim_zero_cat(self.tp) # type: ignore return tp.float().mean()
EXA-1-master
exa/models/dinov2/dinov2/eval/metrics.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse from functools import partial import json import logging import os import sys from typing import List, Optional import numpy as np import torch import torch.nn as nn from torch.nn.parallel import DistributedDataParallel from fvcore.common.checkpoint import Checkpointer, PeriodicCheckpointer from dinov2.data import SamplerType, make_data_loader, make_dataset from dinov2.data.transforms import make_classification_eval_transform, make_classification_train_transform import dinov2.distributed as distributed from dinov2.eval.metrics import MetricType, build_metric from dinov2.eval.setup import get_args_parser as get_setup_args_parser from dinov2.eval.setup import setup_and_build_model from dinov2.eval.utils import ModelWithIntermediateLayers, evaluate from dinov2.logging import MetricLogger logger = logging.getLogger("dinov2") def get_args_parser( description: Optional[str] = None, parents: Optional[List[argparse.ArgumentParser]] = [], add_help: bool = True, ): setup_args_parser = get_setup_args_parser(parents=parents, add_help=False) parents = [setup_args_parser] parser = argparse.ArgumentParser( description=description, parents=parents, add_help=add_help, ) parser.add_argument( "--train-dataset", dest="train_dataset_str", type=str, help="Training dataset", ) parser.add_argument( "--val-dataset", dest="val_dataset_str", type=str, help="Validation dataset", ) parser.add_argument( "--test-datasets", dest="test_dataset_strs", type=str, nargs="+", help="Test datasets, none to reuse the validation dataset", ) parser.add_argument( "--epochs", type=int, help="Number of training epochs", ) parser.add_argument( "--batch-size", type=int, help="Batch Size (per GPU)", ) parser.add_argument( "--num-workers", type=int, help="Number de Workers", ) parser.add_argument( "--epoch-length", type=int, help="Length of an epoch in number of iterations", ) parser.add_argument( "--save-checkpoint-frequency", type=int, help="Number of epochs between two named checkpoint saves.", ) parser.add_argument( "--eval-period-iterations", type=int, help="Number of iterations between two evaluations.", ) parser.add_argument( "--learning-rates", nargs="+", type=float, help="Learning rates to grid search.", ) parser.add_argument( "--no-resume", action="store_true", help="Whether to not resume from existing checkpoints", ) parser.add_argument( "--val-metric-type", type=MetricType, choices=list(MetricType), help="Validation metric", ) parser.add_argument( "--test-metric-types", type=MetricType, choices=list(MetricType), nargs="+", help="Evaluation metric", ) parser.add_argument( "--classifier-fpath", type=str, help="Path to a file containing pretrained linear classifiers", ) parser.add_argument( "--val-class-mapping-fpath", type=str, help="Path to a file containing a mapping to adjust classifier outputs", ) parser.add_argument( "--test-class-mapping-fpaths", nargs="+", type=str, help="Path to a file containing a mapping to adjust classifier outputs", ) parser.set_defaults( train_dataset_str="ImageNet:split=TRAIN", val_dataset_str="ImageNet:split=VAL", test_dataset_strs=None, epochs=10, batch_size=128, num_workers=8, epoch_length=1250, save_checkpoint_frequency=20, eval_period_iterations=1250, learning_rates=[1e-5, 2e-5, 5e-5, 1e-4, 2e-4, 5e-4, 1e-3, 2e-3, 5e-3, 1e-2, 2e-2, 5e-2, 0.1], val_metric_type=MetricType.MEAN_ACCURACY, test_metric_types=None, classifier_fpath=None, val_class_mapping_fpath=None, test_class_mapping_fpaths=[None], ) return parser def has_ddp_wrapper(m: nn.Module) -> bool: return isinstance(m, DistributedDataParallel) def remove_ddp_wrapper(m: nn.Module) -> nn.Module: return m.module if has_ddp_wrapper(m) else m def _pad_and_collate(batch): maxlen = max(len(targets) for image, targets in batch) padded_batch = [ (image, np.pad(targets, (0, maxlen - len(targets)), constant_values=-1)) for image, targets in batch ] return torch.utils.data.default_collate(padded_batch) def create_linear_input(x_tokens_list, use_n_blocks, use_avgpool): intermediate_output = x_tokens_list[-use_n_blocks:] output = torch.cat([class_token for _, class_token in intermediate_output], dim=-1) if use_avgpool: output = torch.cat( ( output, torch.mean(intermediate_output[-1][0], dim=1), # patch tokens ), dim=-1, ) output = output.reshape(output.shape[0], -1) return output.float() class LinearClassifier(nn.Module): """Linear layer to train on top of frozen features""" def __init__(self, out_dim, use_n_blocks, use_avgpool, num_classes=1000): super().__init__() self.out_dim = out_dim self.use_n_blocks = use_n_blocks self.use_avgpool = use_avgpool self.num_classes = num_classes self.linear = nn.Linear(out_dim, num_classes) self.linear.weight.data.normal_(mean=0.0, std=0.01) self.linear.bias.data.zero_() def forward(self, x_tokens_list): output = create_linear_input(x_tokens_list, self.use_n_blocks, self.use_avgpool) return self.linear(output) class AllClassifiers(nn.Module): def __init__(self, classifiers_dict): super().__init__() self.classifiers_dict = nn.ModuleDict() self.classifiers_dict.update(classifiers_dict) def forward(self, inputs): return {k: v.forward(inputs) for k, v in self.classifiers_dict.items()} def __len__(self): return len(self.classifiers_dict) class LinearPostprocessor(nn.Module): def __init__(self, linear_classifier, class_mapping=None): super().__init__() self.linear_classifier = linear_classifier self.register_buffer("class_mapping", None if class_mapping is None else torch.LongTensor(class_mapping)) def forward(self, samples, targets): preds = self.linear_classifier(samples) return { "preds": preds[:, self.class_mapping] if self.class_mapping is not None else preds, "target": targets, } def scale_lr(learning_rates, batch_size): return learning_rates * (batch_size * distributed.get_global_size()) / 256.0 def setup_linear_classifiers(sample_output, n_last_blocks_list, learning_rates, batch_size, num_classes=1000): linear_classifiers_dict = nn.ModuleDict() optim_param_groups = [] for n in n_last_blocks_list: for avgpool in [False, True]: for _lr in learning_rates: lr = scale_lr(_lr, batch_size) out_dim = create_linear_input(sample_output, use_n_blocks=n, use_avgpool=avgpool).shape[1] linear_classifier = LinearClassifier( out_dim, use_n_blocks=n, use_avgpool=avgpool, num_classes=num_classes ) linear_classifier = linear_classifier.cuda() linear_classifiers_dict[ f"classifier_{n}_blocks_avgpool_{avgpool}_lr_{lr:.5f}".replace(".", "_") ] = linear_classifier optim_param_groups.append({"params": linear_classifier.parameters(), "lr": lr}) linear_classifiers = AllClassifiers(linear_classifiers_dict) if distributed.is_enabled(): linear_classifiers = nn.parallel.DistributedDataParallel(linear_classifiers) return linear_classifiers, optim_param_groups @torch.no_grad() def evaluate_linear_classifiers( feature_model, linear_classifiers, data_loader, metric_type, metrics_file_path, training_num_classes, iteration, prefixstring="", class_mapping=None, best_classifier_on_val=None, ): logger.info("running validation !") num_classes = len(class_mapping) if class_mapping is not None else training_num_classes metric = build_metric(metric_type, num_classes=num_classes) postprocessors = {k: LinearPostprocessor(v, class_mapping) for k, v in linear_classifiers.classifiers_dict.items()} metrics = {k: metric.clone() for k in linear_classifiers.classifiers_dict} _, results_dict_temp = evaluate( feature_model, data_loader, postprocessors, metrics, torch.cuda.current_device(), ) logger.info("") results_dict = {} max_accuracy = 0 best_classifier = "" for i, (classifier_string, metric) in enumerate(results_dict_temp.items()): logger.info(f"{prefixstring} -- Classifier: {classifier_string} * {metric}") if ( best_classifier_on_val is None and metric["top-1"].item() > max_accuracy ) or classifier_string == best_classifier_on_val: max_accuracy = metric["top-1"].item() best_classifier = classifier_string results_dict["best_classifier"] = {"name": best_classifier, "accuracy": max_accuracy} logger.info(f"best classifier: {results_dict['best_classifier']}") if distributed.is_main_process(): with open(metrics_file_path, "a") as f: f.write(f"iter: {iteration}\n") for k, v in results_dict.items(): f.write(json.dumps({k: v}) + "\n") f.write("\n") return results_dict def eval_linear( *, feature_model, linear_classifiers, train_data_loader, val_data_loader, metrics_file_path, optimizer, scheduler, output_dir, max_iter, checkpoint_period, # In number of iter, creates a new file every period running_checkpoint_period, # Period to update main checkpoint file eval_period, metric_type, training_num_classes, resume=True, classifier_fpath=None, val_class_mapping=None, ): checkpointer = Checkpointer(linear_classifiers, output_dir, optimizer=optimizer, scheduler=scheduler) start_iter = checkpointer.resume_or_load(classifier_fpath or "", resume=resume).get("iteration", -1) + 1 periodic_checkpointer = PeriodicCheckpointer(checkpointer, checkpoint_period, max_iter=max_iter) iteration = start_iter logger.info("Starting training from iteration {}".format(start_iter)) metric_logger = MetricLogger(delimiter=" ") header = "Training" for data, labels in metric_logger.log_every( train_data_loader, 10, header, max_iter, start_iter, ): data = data.cuda(non_blocking=True) labels = labels.cuda(non_blocking=True) features = feature_model(data) outputs = linear_classifiers(features) losses = {f"loss_{k}": nn.CrossEntropyLoss()(v, labels) for k, v in outputs.items()} loss = sum(losses.values()) # compute the gradients optimizer.zero_grad() loss.backward() # step optimizer.step() scheduler.step() # log if iteration % 10 == 0: torch.cuda.synchronize() metric_logger.update(loss=loss.item()) metric_logger.update(lr=optimizer.param_groups[0]["lr"]) print("lr", optimizer.param_groups[0]["lr"]) if iteration - start_iter > 5: if iteration % running_checkpoint_period == 0: torch.cuda.synchronize() if distributed.is_main_process(): logger.info("Checkpointing running_checkpoint") periodic_checkpointer.save("running_checkpoint_linear_eval", iteration=iteration) torch.cuda.synchronize() periodic_checkpointer.step(iteration) if eval_period > 0 and (iteration + 1) % eval_period == 0 and iteration != max_iter - 1: _ = evaluate_linear_classifiers( feature_model=feature_model, linear_classifiers=remove_ddp_wrapper(linear_classifiers), data_loader=val_data_loader, metrics_file_path=metrics_file_path, prefixstring=f"ITER: {iteration}", metric_type=metric_type, training_num_classes=training_num_classes, iteration=iteration, class_mapping=val_class_mapping, ) torch.cuda.synchronize() iteration = iteration + 1 val_results_dict = evaluate_linear_classifiers( feature_model=feature_model, linear_classifiers=remove_ddp_wrapper(linear_classifiers), data_loader=val_data_loader, metrics_file_path=metrics_file_path, metric_type=metric_type, training_num_classes=training_num_classes, iteration=iteration, class_mapping=val_class_mapping, ) return val_results_dict, feature_model, linear_classifiers, iteration def make_eval_data_loader(test_dataset_str, batch_size, num_workers, metric_type): test_dataset = make_dataset( dataset_str=test_dataset_str, transform=make_classification_eval_transform(), ) test_data_loader = make_data_loader( dataset=test_dataset, batch_size=batch_size, num_workers=num_workers, sampler_type=SamplerType.DISTRIBUTED, drop_last=False, shuffle=False, persistent_workers=False, collate_fn=_pad_and_collate if metric_type == MetricType.IMAGENET_REAL_ACCURACY else None, ) return test_data_loader def test_on_datasets( feature_model, linear_classifiers, test_dataset_strs, batch_size, num_workers, test_metric_types, metrics_file_path, training_num_classes, iteration, best_classifier_on_val, prefixstring="", test_class_mappings=[None], ): results_dict = {} for test_dataset_str, class_mapping, metric_type in zip(test_dataset_strs, test_class_mappings, test_metric_types): logger.info(f"Testing on {test_dataset_str}") test_data_loader = make_eval_data_loader(test_dataset_str, batch_size, num_workers, metric_type) dataset_results_dict = evaluate_linear_classifiers( feature_model, remove_ddp_wrapper(linear_classifiers), test_data_loader, metric_type, metrics_file_path, training_num_classes, iteration, prefixstring="", class_mapping=class_mapping, best_classifier_on_val=best_classifier_on_val, ) results_dict[f"{test_dataset_str}_accuracy"] = 100.0 * dataset_results_dict["best_classifier"]["accuracy"] return results_dict def run_eval_linear( model, output_dir, train_dataset_str, val_dataset_str, batch_size, epochs, epoch_length, num_workers, save_checkpoint_frequency, eval_period_iterations, learning_rates, autocast_dtype, test_dataset_strs=None, resume=True, classifier_fpath=None, val_class_mapping_fpath=None, test_class_mapping_fpaths=[None], val_metric_type=MetricType.MEAN_ACCURACY, test_metric_types=None, ): seed = 0 if test_dataset_strs is None: test_dataset_strs = [val_dataset_str] if test_metric_types is None: test_metric_types = [val_metric_type] * len(test_dataset_strs) else: assert len(test_metric_types) == len(test_dataset_strs) assert len(test_dataset_strs) == len(test_class_mapping_fpaths) train_transform = make_classification_train_transform() train_dataset = make_dataset( dataset_str=train_dataset_str, transform=train_transform, ) training_num_classes = len(torch.unique(torch.Tensor(train_dataset.get_targets().astype(int)))) sampler_type = SamplerType.SHARDED_INFINITE # sampler_type = SamplerType.INFINITE n_last_blocks_list = [1, 4] n_last_blocks = max(n_last_blocks_list) autocast_ctx = partial(torch.cuda.amp.autocast, enabled=True, dtype=autocast_dtype) feature_model = ModelWithIntermediateLayers(model, n_last_blocks, autocast_ctx) sample_output = feature_model(train_dataset[0][0].unsqueeze(0).cuda()) linear_classifiers, optim_param_groups = setup_linear_classifiers( sample_output, n_last_blocks_list, learning_rates, batch_size, training_num_classes, ) optimizer = torch.optim.SGD(optim_param_groups, momentum=0.9, weight_decay=0) max_iter = epochs * epoch_length scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, max_iter, eta_min=0) checkpointer = Checkpointer(linear_classifiers, output_dir, optimizer=optimizer, scheduler=scheduler) start_iter = checkpointer.resume_or_load(classifier_fpath or "", resume=resume).get("iteration", -1) + 1 train_data_loader = make_data_loader( dataset=train_dataset, batch_size=batch_size, num_workers=num_workers, shuffle=True, seed=seed, sampler_type=sampler_type, sampler_advance=start_iter, drop_last=True, persistent_workers=True, ) val_data_loader = make_eval_data_loader(val_dataset_str, batch_size, num_workers, val_metric_type) checkpoint_period = save_checkpoint_frequency * epoch_length if val_class_mapping_fpath is not None: logger.info(f"Using class mapping from {val_class_mapping_fpath}") val_class_mapping = np.load(val_class_mapping_fpath) else: val_class_mapping = None test_class_mappings = [] for class_mapping_fpath in test_class_mapping_fpaths: if class_mapping_fpath is not None and class_mapping_fpath != "None": logger.info(f"Using class mapping from {class_mapping_fpath}") class_mapping = np.load(class_mapping_fpath) else: class_mapping = None test_class_mappings.append(class_mapping) metrics_file_path = os.path.join(output_dir, "results_eval_linear.json") val_results_dict, feature_model, linear_classifiers, iteration = eval_linear( feature_model=feature_model, linear_classifiers=linear_classifiers, train_data_loader=train_data_loader, val_data_loader=val_data_loader, metrics_file_path=metrics_file_path, optimizer=optimizer, scheduler=scheduler, output_dir=output_dir, max_iter=max_iter, checkpoint_period=checkpoint_period, running_checkpoint_period=epoch_length, eval_period=eval_period_iterations, metric_type=val_metric_type, training_num_classes=training_num_classes, resume=resume, val_class_mapping=val_class_mapping, classifier_fpath=classifier_fpath, ) results_dict = {} if len(test_dataset_strs) > 1 or test_dataset_strs[0] != val_dataset_str: results_dict = test_on_datasets( feature_model, linear_classifiers, test_dataset_strs, batch_size, 0, # num_workers, test_metric_types, metrics_file_path, training_num_classes, iteration, val_results_dict["best_classifier"]["name"], prefixstring="", test_class_mappings=test_class_mappings, ) results_dict["best_classifier"] = val_results_dict["best_classifier"]["name"] results_dict[f"{val_dataset_str}_accuracy"] = 100.0 * val_results_dict["best_classifier"]["accuracy"] logger.info("Test Results Dict " + str(results_dict)) return results_dict def main(args): model, autocast_dtype = setup_and_build_model(args) run_eval_linear( model=model, output_dir=args.output_dir, train_dataset_str=args.train_dataset_str, val_dataset_str=args.val_dataset_str, test_dataset_strs=args.test_dataset_strs, batch_size=args.batch_size, epochs=args.epochs, epoch_length=args.epoch_length, num_workers=args.num_workers, save_checkpoint_frequency=args.save_checkpoint_frequency, eval_period_iterations=args.eval_period_iterations, learning_rates=args.learning_rates, autocast_dtype=autocast_dtype, resume=not args.no_resume, classifier_fpath=args.classifier_fpath, val_metric_type=args.val_metric_type, test_metric_types=args.test_metric_types, val_class_mapping_fpath=args.val_class_mapping_fpath, test_class_mapping_fpaths=args.test_class_mapping_fpaths, ) return 0 if __name__ == "__main__": description = "DINOv2 linear evaluation" args_parser = get_args_parser(description=description) args = args_parser.parse_args() sys.exit(main(args))
EXA-1-master
exa/models/dinov2/dinov2/eval/linear.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import gc import logging import sys import time from typing import List, Optional from cuml.linear_model import LogisticRegression import torch import torch.backends.cudnn as cudnn import torch.distributed from torch import nn from torch.utils.data import TensorDataset from torchmetrics import MetricTracker from dinov2.data import make_dataset from dinov2.data.transforms import make_classification_eval_transform from dinov2.distributed import get_global_rank, get_global_size from dinov2.eval.metrics import MetricType, build_metric from dinov2.eval.setup import get_args_parser as get_setup_args_parser from dinov2.eval.setup import setup_and_build_model from dinov2.eval.utils import evaluate, extract_features from dinov2.utils.dtype import as_torch_dtype logger = logging.getLogger("dinov2") DEFAULT_MAX_ITER = 1_000 C_POWER_RANGE = torch.linspace(-6, 5, 45) _CPU_DEVICE = torch.device("cpu") def get_args_parser( description: Optional[str] = None, parents: Optional[List[argparse.ArgumentParser]] = [], add_help: bool = True, ): setup_args_parser = get_setup_args_parser(parents=parents, add_help=False) parents = [setup_args_parser] parser = argparse.ArgumentParser( description=description, parents=parents, add_help=add_help, ) parser.add_argument( "--train-dataset", dest="train_dataset_str", type=str, help="Training dataset", ) parser.add_argument( "--val-dataset", dest="val_dataset_str", type=str, help="Validation dataset", ) parser.add_argument( "--finetune-dataset-str", dest="finetune_dataset_str", type=str, help="Fine-tuning dataset", ) parser.add_argument( "--finetune-on-val", action="store_true", help="If there is no finetune dataset, whether to choose the " "hyperparameters on the val set instead of 10%% of the train dataset", ) parser.add_argument( "--metric-type", type=MetricType, choices=list(MetricType), help="Metric type", ) parser.add_argument( "--train-features-device", type=str, help="Device to gather train features (cpu, cuda, cuda:0, etc.), default: %(default)s", ) parser.add_argument( "--train-dtype", type=str, help="Data type to convert the train features to (default: %(default)s)", ) parser.add_argument( "--max-train-iters", type=int, help="Maximum number of train iterations (default: %(default)s)", ) parser.set_defaults( train_dataset_str="ImageNet:split=TRAIN", val_dataset_str="ImageNet:split=VAL", finetune_dataset_str=None, metric_type=MetricType.MEAN_ACCURACY, train_features_device="cpu", train_dtype="float64", max_train_iters=DEFAULT_MAX_ITER, finetune_on_val=False, ) return parser class LogRegModule(nn.Module): def __init__( self, C, max_iter=DEFAULT_MAX_ITER, dtype=torch.float64, device=_CPU_DEVICE, ): super().__init__() self.dtype = dtype self.device = device self.estimator = LogisticRegression( penalty="l2", C=C, max_iter=max_iter, output_type="numpy", tol=1e-12, linesearch_max_iter=50, ) def forward(self, samples, targets): samples_device = samples.device samples = samples.to(dtype=self.dtype, device=self.device) if self.device == _CPU_DEVICE: samples = samples.numpy() probas = self.estimator.predict_proba(samples) return {"preds": torch.from_numpy(probas).to(samples_device), "target": targets} def fit(self, train_features, train_labels): train_features = train_features.to(dtype=self.dtype, device=self.device) train_labels = train_labels.to(dtype=self.dtype, device=self.device) if self.device == _CPU_DEVICE: # both cuML and sklearn only work with numpy arrays on CPU train_features = train_features.numpy() train_labels = train_labels.numpy() self.estimator.fit(train_features, train_labels) def evaluate_model(*, logreg_model, logreg_metric, test_data_loader, device): postprocessors = {"metrics": logreg_model} metrics = {"metrics": logreg_metric} return evaluate(nn.Identity(), test_data_loader, postprocessors, metrics, device) def train_for_C(*, C, max_iter, train_features, train_labels, dtype=torch.float64, device=_CPU_DEVICE): logreg_model = LogRegModule(C, max_iter=max_iter, dtype=dtype, device=device) logreg_model.fit(train_features, train_labels) return logreg_model def train_and_evaluate( *, C, max_iter, train_features, train_labels, logreg_metric, test_data_loader, train_dtype=torch.float64, train_features_device, eval_device, ): logreg_model = train_for_C( C=C, max_iter=max_iter, train_features=train_features, train_labels=train_labels, dtype=train_dtype, device=train_features_device, ) return evaluate_model( logreg_model=logreg_model, logreg_metric=logreg_metric, test_data_loader=test_data_loader, device=eval_device, ) def sweep_C_values( *, train_features, train_labels, test_data_loader, metric_type, num_classes, train_dtype=torch.float64, train_features_device=_CPU_DEVICE, max_train_iters=DEFAULT_MAX_ITER, ): if metric_type == MetricType.PER_CLASS_ACCURACY: # If we want to output per-class accuracy, we select the hyperparameters with mean per class metric_type = MetricType.MEAN_PER_CLASS_ACCURACY logreg_metric = build_metric(metric_type, num_classes=num_classes) metric_tracker = MetricTracker(logreg_metric, maximize=True) ALL_C = 10**C_POWER_RANGE logreg_models = {} train_features = train_features.to(dtype=train_dtype, device=train_features_device) train_labels = train_labels.to(device=train_features_device) for i in range(get_global_rank(), len(ALL_C), get_global_size()): C = ALL_C[i].item() logger.info( f"Training for C = {C:.5f}, dtype={train_dtype}, " f"features: {train_features.shape}, {train_features.dtype}, " f"labels: {train_labels.shape}, {train_labels.dtype}" ) logreg_models[C] = train_for_C( C=C, max_iter=max_train_iters, train_features=train_features, train_labels=train_labels, dtype=train_dtype, device=train_features_device, ) gather_list = [None for _ in range(get_global_size())] torch.distributed.all_gather_object(gather_list, logreg_models) logreg_models_gathered = {} for logreg_dict in gather_list: logreg_models_gathered.update(logreg_dict) for i in range(len(ALL_C)): metric_tracker.increment() C = ALL_C[i].item() evals = evaluate_model( logreg_model=logreg_models_gathered[C], logreg_metric=metric_tracker, test_data_loader=test_data_loader, device=torch.cuda.current_device(), ) logger.info(f"Trained for C = {C:.5f}, accuracies = {evals}") best_stats, which_epoch = metric_tracker.best_metric(return_step=True) best_stats_100 = {k: 100.0 * v for k, v in best_stats.items()} if which_epoch["top-1"] == i: best_C = C logger.info(f"Sweep best {best_stats_100}, best C = {best_C:.6f}") return best_stats, best_C def eval_log_regression( *, model, train_dataset, val_dataset, finetune_dataset, metric_type, batch_size, num_workers, finetune_on_val=False, train_dtype=torch.float64, train_features_device=_CPU_DEVICE, max_train_iters=DEFAULT_MAX_ITER, ): """ Implements the "standard" process for log regression evaluation: The value of C is chosen by training on train_dataset and evaluating on finetune_dataset. Then, the final model is trained on a concatenation of train_dataset and finetune_dataset, and is evaluated on val_dataset. If there is no finetune_dataset, the value of C is the one that yields the best results on a random 10% subset of the train dataset """ start = time.time() train_features, train_labels = extract_features( model, train_dataset, batch_size, num_workers, gather_on_cpu=(train_features_device == _CPU_DEVICE) ) val_features, val_labels = extract_features( model, val_dataset, batch_size, num_workers, gather_on_cpu=(train_features_device == _CPU_DEVICE) ) val_data_loader = torch.utils.data.DataLoader( TensorDataset(val_features, val_labels), batch_size=batch_size, drop_last=False, num_workers=0, persistent_workers=False, ) if finetune_dataset is None and finetune_on_val: logger.info("Choosing hyperparameters on the val dataset") finetune_features, finetune_labels = val_features, val_labels elif finetune_dataset is None and not finetune_on_val: logger.info("Choosing hyperparameters on 10% of the train dataset") torch.manual_seed(0) indices = torch.randperm(len(train_features), device=train_features.device) finetune_index = indices[: len(train_features) // 10] train_index = indices[len(train_features) // 10 :] finetune_features, finetune_labels = train_features[finetune_index], train_labels[finetune_index] train_features, train_labels = train_features[train_index], train_labels[train_index] else: logger.info("Choosing hyperparameters on the finetune dataset") finetune_features, finetune_labels = extract_features( model, finetune_dataset, batch_size, num_workers, gather_on_cpu=(train_features_device == _CPU_DEVICE) ) # release the model - free GPU memory del model gc.collect() torch.cuda.empty_cache() finetune_data_loader = torch.utils.data.DataLoader( TensorDataset(finetune_features, finetune_labels), batch_size=batch_size, drop_last=False, ) if len(train_labels.shape) > 1: num_classes = train_labels.shape[1] else: num_classes = train_labels.max() + 1 logger.info("Using cuML for logistic regression") best_stats, best_C = sweep_C_values( train_features=train_features, train_labels=train_labels, test_data_loader=finetune_data_loader, metric_type=metric_type, num_classes=num_classes, train_dtype=train_dtype, train_features_device=train_features_device, max_train_iters=max_train_iters, ) if not finetune_on_val: logger.info("Best parameter found, concatenating features") train_features = torch.cat((train_features, finetune_features)) train_labels = torch.cat((train_labels, finetune_labels)) logger.info("Training final model") logreg_metric = build_metric(metric_type, num_classes=num_classes) evals = train_and_evaluate( C=best_C, max_iter=max_train_iters, train_features=train_features, train_labels=train_labels, logreg_metric=logreg_metric.clone(), test_data_loader=val_data_loader, eval_device=torch.cuda.current_device(), train_dtype=train_dtype, train_features_device=train_features_device, ) best_stats = evals[1]["metrics"] best_stats["best_C"] = best_C logger.info(f"Log regression evaluation done in {int(time.time() - start)}s") return best_stats def eval_log_regression_with_model( model, train_dataset_str="ImageNet:split=TRAIN", val_dataset_str="ImageNet:split=VAL", finetune_dataset_str=None, autocast_dtype=torch.float, finetune_on_val=False, metric_type=MetricType.MEAN_ACCURACY, train_dtype=torch.float64, train_features_device=_CPU_DEVICE, max_train_iters=DEFAULT_MAX_ITER, ): cudnn.benchmark = True transform = make_classification_eval_transform(resize_size=224) target_transform = None train_dataset = make_dataset(dataset_str=train_dataset_str, transform=transform, target_transform=target_transform) val_dataset = make_dataset(dataset_str=val_dataset_str, transform=transform, target_transform=target_transform) if finetune_dataset_str is not None: finetune_dataset = make_dataset( dataset_str=finetune_dataset_str, transform=transform, target_transform=target_transform ) else: finetune_dataset = None with torch.cuda.amp.autocast(dtype=autocast_dtype): results_dict_logreg = eval_log_regression( model=model, train_dataset=train_dataset, val_dataset=val_dataset, finetune_dataset=finetune_dataset, metric_type=metric_type, batch_size=256, num_workers=0, # 5, finetune_on_val=finetune_on_val, train_dtype=train_dtype, train_features_device=train_features_device, max_train_iters=max_train_iters, ) results_dict = { "top-1": results_dict_logreg["top-1"].cpu().numpy() * 100.0, "top-5": results_dict_logreg.get("top-5", torch.tensor(0.0)).cpu().numpy() * 100.0, "best_C": results_dict_logreg["best_C"], } logger.info( "\n".join( [ "Training of the supervised logistic regression on frozen features completed.\n" "Top-1 test accuracy: {acc:.1f}".format(acc=results_dict["top-1"]), "Top-5 test accuracy: {acc:.1f}".format(acc=results_dict["top-5"]), "obtained for C = {c:.6f}".format(c=results_dict["best_C"]), ] ) ) torch.distributed.barrier() return results_dict def main(args): model, autocast_dtype = setup_and_build_model(args) eval_log_regression_with_model( model=model, train_dataset_str=args.train_dataset_str, val_dataset_str=args.val_dataset_str, finetune_dataset_str=args.finetune_dataset_str, autocast_dtype=autocast_dtype, finetune_on_val=args.finetune_on_val, metric_type=args.metric_type, train_dtype=as_torch_dtype(args.train_dtype), train_features_device=torch.device(args.train_features_device), max_train_iters=args.max_train_iters, ) return 0 if __name__ == "__main__": description = "DINOv2 logistic regression evaluation" args_parser = get_args_parser(description=description) args = args_parser.parse_args() sys.exit(main(args))
EXA-1-master
exa/models/dinov2/dinov2/eval/log_regression.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree.
EXA-1-master
exa/models/dinov2/dinov2/eval/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse from typing import Any, List, Optional, Tuple import torch import torch.backends.cudnn as cudnn from dinov2.models import build_model_from_cfg from dinov2.utils.config import setup import dinov2.utils.utils as dinov2_utils def get_args_parser( description: Optional[str] = None, parents: Optional[List[argparse.ArgumentParser]] = [], add_help: bool = True, ): parser = argparse.ArgumentParser( description=description, parents=parents, add_help=add_help, ) parser.add_argument( "--config-file", type=str, help="Model configuration file", ) parser.add_argument( "--pretrained-weights", type=str, help="Pretrained model weights", ) parser.add_argument( "--output-dir", default="", type=str, help="Output directory to write results and logs", ) parser.add_argument( "--opts", help="Extra configuration options", default=[], nargs="+", ) return parser def get_autocast_dtype(config): teacher_dtype_str = config.compute_precision.teacher.backbone.mixed_precision.param_dtype if teacher_dtype_str == "fp16": return torch.half elif teacher_dtype_str == "bf16": return torch.bfloat16 else: return torch.float def build_model_for_eval(config, pretrained_weights): model, _ = build_model_from_cfg(config, only_teacher=True) dinov2_utils.load_pretrained_weights(model, pretrained_weights, "teacher") model.eval() model.cuda() return model def setup_and_build_model(args) -> Tuple[Any, torch.dtype]: cudnn.benchmark = True config = setup(args) model = build_model_for_eval(config, args.pretrained_weights) autocast_dtype = get_autocast_dtype(config) return model, autocast_dtype
EXA-1-master
exa/models/dinov2/dinov2/eval/setup.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import logging from typing import Dict, Optional import torch from torch import nn from torchmetrics import MetricCollection from dinov2.data import DatasetWithEnumeratedTargets, SamplerType, make_data_loader import dinov2.distributed as distributed from dinov2.logging import MetricLogger logger = logging.getLogger("dinov2") class ModelWithNormalize(torch.nn.Module): def __init__(self, model): super().__init__() self.model = model def forward(self, samples): return nn.functional.normalize(self.model(samples), dim=1, p=2) class ModelWithIntermediateLayers(nn.Module): def __init__(self, feature_model, n_last_blocks, autocast_ctx): super().__init__() self.feature_model = feature_model self.feature_model.eval() self.n_last_blocks = n_last_blocks self.autocast_ctx = autocast_ctx def forward(self, images): with torch.inference_mode(): with self.autocast_ctx(): features = self.feature_model.get_intermediate_layers( images, self.n_last_blocks, return_class_token=True ) return features @torch.inference_mode() def evaluate( model: nn.Module, data_loader, postprocessors: Dict[str, nn.Module], metrics: Dict[str, MetricCollection], device: torch.device, criterion: Optional[nn.Module] = None, ): model.eval() if criterion is not None: criterion.eval() for metric in metrics.values(): metric = metric.to(device) metric_logger = MetricLogger(delimiter=" ") header = "Test:" for samples, targets, *_ in metric_logger.log_every(data_loader, 10, header): outputs = model(samples.to(device)) targets = targets.to(device) if criterion is not None: loss = criterion(outputs, targets) metric_logger.update(loss=loss.item()) for k, metric in metrics.items(): metric_inputs = postprocessors[k](outputs, targets) metric.update(**metric_inputs) metric_logger.synchronize_between_processes() logger.info(f"Averaged stats: {metric_logger}") stats = {k: metric.compute() for k, metric in metrics.items()} metric_logger_stats = {k: meter.global_avg for k, meter in metric_logger.meters.items()} return metric_logger_stats, stats def all_gather_and_flatten(tensor_rank): tensor_all_ranks = torch.empty( distributed.get_global_size(), *tensor_rank.shape, dtype=tensor_rank.dtype, device=tensor_rank.device, ) tensor_list = list(tensor_all_ranks.unbind(0)) torch.distributed.all_gather(tensor_list, tensor_rank.contiguous()) return tensor_all_ranks.flatten(end_dim=1) def extract_features(model, dataset, batch_size, num_workers, gather_on_cpu=False): dataset_with_enumerated_targets = DatasetWithEnumeratedTargets(dataset) sample_count = len(dataset_with_enumerated_targets) data_loader = make_data_loader( dataset=dataset_with_enumerated_targets, batch_size=batch_size, num_workers=num_workers, sampler_type=SamplerType.DISTRIBUTED, drop_last=False, shuffle=False, ) return extract_features_with_dataloader(model, data_loader, sample_count, gather_on_cpu) @torch.inference_mode() def extract_features_with_dataloader(model, data_loader, sample_count, gather_on_cpu=False): gather_device = torch.device("cpu") if gather_on_cpu else torch.device("cuda") metric_logger = MetricLogger(delimiter=" ") features, all_labels = None, None for samples, (index, labels_rank) in metric_logger.log_every(data_loader, 10): samples = samples.cuda(non_blocking=True) labels_rank = labels_rank.cuda(non_blocking=True) index = index.cuda(non_blocking=True) features_rank = model(samples).float() # init storage feature matrix if features is None: features = torch.zeros(sample_count, features_rank.shape[-1], device=gather_device) labels_shape = list(labels_rank.shape) labels_shape[0] = sample_count all_labels = torch.full(labels_shape, fill_value=-1, device=gather_device) logger.info(f"Storing features into tensor of shape {features.shape}") # share indexes, features and labels between processes index_all = all_gather_and_flatten(index).to(gather_device) features_all_ranks = all_gather_and_flatten(features_rank).to(gather_device) labels_all_ranks = all_gather_and_flatten(labels_rank).to(gather_device) # update storage feature matrix if len(index_all) > 0: features.index_copy_(0, index_all, features_all_ranks) all_labels.index_copy_(0, index_all, labels_all_ranks) logger.info(f"Features shape: {tuple(features.shape)}") logger.info(f"Labels shape: {tuple(all_labels.shape)}") assert torch.all(all_labels > -1) return features, all_labels
EXA-1-master
exa/models/dinov2/dinov2/eval/utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse from functools import partial import json import logging import os import sys from typing import List, Optional import torch from torch.nn.functional import one_hot, softmax import dinov2.distributed as distributed from dinov2.data import SamplerType, make_data_loader, make_dataset from dinov2.data.transforms import make_classification_eval_transform from dinov2.eval.metrics import AccuracyAveraging, build_topk_accuracy_metric from dinov2.eval.setup import get_args_parser as get_setup_args_parser from dinov2.eval.setup import setup_and_build_model from dinov2.eval.utils import ModelWithNormalize, evaluate, extract_features logger = logging.getLogger("dinov2") def get_args_parser( description: Optional[str] = None, parents: Optional[List[argparse.ArgumentParser]] = [], add_help: bool = True, ): setup_args_parser = get_setup_args_parser(parents=parents, add_help=False) parents = [setup_args_parser] parser = argparse.ArgumentParser( description=description, parents=parents, add_help=add_help, ) parser.add_argument( "--train-dataset", dest="train_dataset_str", type=str, help="Training dataset", ) parser.add_argument( "--val-dataset", dest="val_dataset_str", type=str, help="Validation dataset", ) parser.add_argument( "--nb_knn", nargs="+", type=int, help="Number of NN to use. 20 is usually working the best.", ) parser.add_argument( "--temperature", type=float, help="Temperature used in the voting coefficient", ) parser.add_argument( "--gather-on-cpu", action="store_true", help="Whether to gather the train features on cpu, slower" "but useful to avoid OOM for large datasets (e.g. ImageNet22k).", ) parser.add_argument( "--batch-size", type=int, help="Batch size.", ) parser.add_argument( "--n-per-class-list", nargs="+", type=int, help="Number to take per class", ) parser.add_argument( "--n-tries", type=int, help="Number of tries", ) parser.set_defaults( train_dataset_str="ImageNet:split=TRAIN", val_dataset_str="ImageNet:split=VAL", nb_knn=[10, 20, 100, 200], temperature=0.07, batch_size=256, n_per_class_list=[-1], n_tries=1, ) return parser class KnnModule(torch.nn.Module): """ Gets knn of test features from all processes on a chunk of the train features Each rank gets a chunk of the train features as well as a chunk of the test features. In `compute_neighbors`, for each rank one after the other, its chunk of test features is sent to all devices, partial knns are computed with each chunk of train features then collated back on the original device. """ def __init__(self, train_features, train_labels, nb_knn, T, device, num_classes=1000): super().__init__() self.global_rank = distributed.get_global_rank() self.global_size = distributed.get_global_size() self.device = device self.train_features_rank_T = train_features.chunk(self.global_size)[self.global_rank].T.to(self.device) self.candidates = train_labels.chunk(self.global_size)[self.global_rank].view(1, -1).to(self.device) self.nb_knn = nb_knn self.max_k = max(self.nb_knn) self.T = T self.num_classes = num_classes def _get_knn_sims_and_labels(self, similarity, train_labels): topk_sims, indices = similarity.topk(self.max_k, largest=True, sorted=True) neighbors_labels = torch.gather(train_labels, 1, indices) return topk_sims, neighbors_labels def _similarity_for_rank(self, features_rank, source_rank): # Send the features from `source_rank` to all ranks broadcast_shape = torch.tensor(features_rank.shape).to(self.device) torch.distributed.broadcast(broadcast_shape, source_rank) broadcasted = features_rank if self.global_rank != source_rank: broadcasted = torch.zeros(*broadcast_shape, dtype=features_rank.dtype, device=self.device) torch.distributed.broadcast(broadcasted, source_rank) # Compute the neighbors for `source_rank` among `train_features_rank_T` similarity_rank = torch.mm(broadcasted, self.train_features_rank_T) candidate_labels = self.candidates.expand(len(similarity_rank), -1) return self._get_knn_sims_and_labels(similarity_rank, candidate_labels) def _gather_all_knn_for_rank(self, topk_sims, neighbors_labels, target_rank): # Gather all neighbors for `target_rank` topk_sims_rank = retrieved_rank = None if self.global_rank == target_rank: topk_sims_rank = [torch.zeros_like(topk_sims) for _ in range(self.global_size)] retrieved_rank = [torch.zeros_like(neighbors_labels) for _ in range(self.global_size)] torch.distributed.gather(topk_sims, topk_sims_rank, dst=target_rank) torch.distributed.gather(neighbors_labels, retrieved_rank, dst=target_rank) if self.global_rank == target_rank: # Perform a second top-k on the k * global_size retrieved neighbors topk_sims_rank = torch.cat(topk_sims_rank, dim=1) retrieved_rank = torch.cat(retrieved_rank, dim=1) results = self._get_knn_sims_and_labels(topk_sims_rank, retrieved_rank) return results return None def compute_neighbors(self, features_rank): for rank in range(self.global_size): topk_sims, neighbors_labels = self._similarity_for_rank(features_rank, rank) results = self._gather_all_knn_for_rank(topk_sims, neighbors_labels, rank) if results is not None: topk_sims_rank, neighbors_labels_rank = results return topk_sims_rank, neighbors_labels_rank def forward(self, features_rank): """ Compute the results on all values of `self.nb_knn` neighbors from the full `self.max_k` """ assert all(k <= self.max_k for k in self.nb_knn) topk_sims, neighbors_labels = self.compute_neighbors(features_rank) batch_size = neighbors_labels.shape[0] topk_sims_transform = softmax(topk_sims / self.T, 1) matmul = torch.mul( one_hot(neighbors_labels, num_classes=self.num_classes), topk_sims_transform.view(batch_size, -1, 1), ) probas_for_k = {k: torch.sum(matmul[:, :k, :], 1) for k in self.nb_knn} return probas_for_k class DictKeysModule(torch.nn.Module): def __init__(self, keys): super().__init__() self.keys = keys def forward(self, features_dict, targets): for k in self.keys: features_dict = features_dict[k] return {"preds": features_dict, "target": targets} def create_module_dict(*, module, n_per_class_list, n_tries, nb_knn, train_features, train_labels): modules = {} mapping = create_class_indices_mapping(train_labels) for npc in n_per_class_list: if npc < 0: # Only one try needed when using the full data full_module = module( train_features=train_features, train_labels=train_labels, nb_knn=nb_knn, ) modules["full"] = ModuleDictWithForward({"1": full_module}) continue all_tries = {} for t in range(n_tries): final_indices = filter_train(mapping, npc, seed=t) k_list = list(set(nb_knn + [npc])) k_list = sorted([el for el in k_list if el <= npc]) all_tries[str(t)] = module( train_features=train_features[final_indices], train_labels=train_labels[final_indices], nb_knn=k_list, ) modules[f"{npc} per class"] = ModuleDictWithForward(all_tries) return ModuleDictWithForward(modules) def filter_train(mapping, n_per_class, seed): torch.manual_seed(seed) final_indices = [] for k in mapping.keys(): index = torch.randperm(len(mapping[k]))[:n_per_class] final_indices.append(mapping[k][index]) return torch.cat(final_indices).squeeze() def create_class_indices_mapping(labels): unique_labels, inverse = torch.unique(labels, return_inverse=True) mapping = {unique_labels[i]: (inverse == i).nonzero() for i in range(len(unique_labels))} return mapping class ModuleDictWithForward(torch.nn.ModuleDict): def forward(self, *args, **kwargs): return {k: module(*args, **kwargs) for k, module in self._modules.items()} def eval_knn( model, train_dataset, val_dataset, accuracy_averaging, nb_knn, temperature, batch_size, num_workers, gather_on_cpu, n_per_class_list=[-1], n_tries=1, ): model = ModelWithNormalize(model) logger.info("Extracting features for train set...") train_features, train_labels = extract_features( model, train_dataset, batch_size, num_workers, gather_on_cpu=gather_on_cpu ) logger.info(f"Train features created, shape {train_features.shape}.") val_dataloader = make_data_loader( dataset=val_dataset, batch_size=batch_size, num_workers=num_workers, sampler_type=SamplerType.DISTRIBUTED, drop_last=False, shuffle=False, persistent_workers=True, ) num_classes = train_labels.max() + 1 metric_collection = build_topk_accuracy_metric(accuracy_averaging, num_classes=num_classes) device = torch.cuda.current_device() partial_module = partial(KnnModule, T=temperature, device=device, num_classes=num_classes) knn_module_dict = create_module_dict( module=partial_module, n_per_class_list=n_per_class_list, n_tries=n_tries, nb_knn=nb_knn, train_features=train_features, train_labels=train_labels, ) postprocessors, metrics = {}, {} for n_per_class, knn_module in knn_module_dict.items(): for t, knn_try in knn_module.items(): postprocessors = { **postprocessors, **{(n_per_class, t, k): DictKeysModule([n_per_class, t, k]) for k in knn_try.nb_knn}, } metrics = {**metrics, **{(n_per_class, t, k): metric_collection.clone() for k in knn_try.nb_knn}} model_with_knn = torch.nn.Sequential(model, knn_module_dict) # ============ evaluation ... ============ logger.info("Start the k-NN classification.") _, results_dict = evaluate(model_with_knn, val_dataloader, postprocessors, metrics, device) # Averaging the results over the n tries for each value of n_per_class for n_per_class, knn_module in knn_module_dict.items(): first_try = list(knn_module.keys())[0] k_list = knn_module[first_try].nb_knn for k in k_list: keys = results_dict[(n_per_class, first_try, k)].keys() # keys are e.g. `top-1` and `top-5` results_dict[(n_per_class, k)] = { key: torch.mean(torch.stack([results_dict[(n_per_class, t, k)][key] for t in knn_module.keys()])) for key in keys } for t in knn_module.keys(): del results_dict[(n_per_class, t, k)] return results_dict def eval_knn_with_model( model, output_dir, train_dataset_str="ImageNet:split=TRAIN", val_dataset_str="ImageNet:split=VAL", nb_knn=(10, 20, 100, 200), temperature=0.07, autocast_dtype=torch.float, accuracy_averaging=AccuracyAveraging.MEAN_ACCURACY, transform=None, gather_on_cpu=False, batch_size=256, num_workers=5, n_per_class_list=[-1], n_tries=1, ): transform = transform or make_classification_eval_transform() train_dataset = make_dataset( dataset_str=train_dataset_str, transform=transform, ) val_dataset = make_dataset( dataset_str=val_dataset_str, transform=transform, ) with torch.cuda.amp.autocast(dtype=autocast_dtype): results_dict_knn = eval_knn( model=model, train_dataset=train_dataset, val_dataset=val_dataset, accuracy_averaging=accuracy_averaging, nb_knn=nb_knn, temperature=temperature, batch_size=batch_size, num_workers=num_workers, gather_on_cpu=gather_on_cpu, n_per_class_list=n_per_class_list, n_tries=n_tries, ) results_dict = {} if distributed.is_main_process(): for knn_ in results_dict_knn.keys(): top1 = results_dict_knn[knn_]["top-1"].item() * 100.0 top5 = results_dict_knn[knn_]["top-5"].item() * 100.0 results_dict[f"{knn_} Top 1"] = top1 results_dict[f"{knn_} Top 5"] = top5 logger.info(f"{knn_} classifier result: Top1: {top1:.2f} Top5: {top5:.2f}") metrics_file_path = os.path.join(output_dir, "results_eval_knn.json") with open(metrics_file_path, "a") as f: for k, v in results_dict.items(): f.write(json.dumps({k: v}) + "\n") if distributed.is_enabled(): torch.distributed.barrier() return results_dict def main(args): model, autocast_dtype = setup_and_build_model(args) eval_knn_with_model( model=model, output_dir=args.output_dir, train_dataset_str=args.train_dataset_str, val_dataset_str=args.val_dataset_str, nb_knn=args.nb_knn, temperature=args.temperature, autocast_dtype=autocast_dtype, accuracy_averaging=AccuracyAveraging.MEAN_ACCURACY, transform=None, gather_on_cpu=args.gather_on_cpu, batch_size=args.batch_size, num_workers=5, n_per_class_list=args.n_per_class_list, n_tries=args.n_tries, ) return 0 if __name__ == "__main__": description = "DINOv2 k-NN evaluation" args_parser = get_args_parser(description=description) args = args_parser.parse_args() sys.exit(main(args))
EXA-1-master
exa/models/dinov2/dinov2/eval/knn.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import logging import os from pathlib import Path from typing import List, Optional import submitit from dinov2.utils.cluster import ( get_slurm_executor_parameters, get_slurm_partition, get_user_checkpoint_path, ) logger = logging.getLogger("dinov2") def get_args_parser( description: Optional[str] = None, parents: Optional[List[argparse.ArgumentParser]] = [], add_help: bool = True, ) -> argparse.ArgumentParser: slurm_partition = get_slurm_partition() parser = argparse.ArgumentParser( description=description, parents=parents, add_help=add_help, ) parser.add_argument( "--ngpus", "--gpus", "--gpus-per-node", default=8, type=int, help="Number of GPUs to request on each node", ) parser.add_argument( "--nodes", "--nnodes", default=2, type=int, help="Number of nodes to request", ) parser.add_argument( "--timeout", default=2800, type=int, help="Duration of the job", ) parser.add_argument( "--partition", default=slurm_partition, type=str, help="Partition where to submit", ) parser.add_argument( "--use-volta32", action="store_true", help="Request V100-32GB GPUs", ) parser.add_argument( "--comment", default="", type=str, help="Comment to pass to scheduler, e.g. priority message", ) parser.add_argument( "--exclude", default="", type=str, help="Nodes to exclude", ) return parser def get_shared_folder() -> Path: user_checkpoint_path = get_user_checkpoint_path() if user_checkpoint_path is None: raise RuntimeError("Path to user checkpoint cannot be determined") path = user_checkpoint_path / "experiments" path.mkdir(exist_ok=True) return path def submit_jobs(task_class, args, name: str): if not args.output_dir: args.output_dir = str(get_shared_folder() / "%j") Path(args.output_dir).mkdir(parents=True, exist_ok=True) executor = submitit.AutoExecutor(folder=args.output_dir, slurm_max_num_timeout=30) kwargs = {} if args.use_volta32: kwargs["slurm_constraint"] = "volta32gb" if args.comment: kwargs["slurm_comment"] = args.comment if args.exclude: kwargs["slurm_exclude"] = args.exclude executor_params = get_slurm_executor_parameters( nodes=args.nodes, num_gpus_per_node=args.ngpus, timeout_min=args.timeout, # max is 60 * 72 slurm_signal_delay_s=120, slurm_partition=args.partition, **kwargs, ) executor.update_parameters(name=name, **executor_params) task = task_class(args) job = executor.submit(task) logger.info(f"Submitted job_id: {job.job_id}") str_output_dir = os.path.abspath(args.output_dir).replace("%j", str(job.job_id)) logger.info(f"Logs and checkpoints will be saved at: {str_output_dir}")
EXA-1-master
exa/models/dinov2/dinov2/run/submit.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree.
EXA-1-master
exa/models/dinov2/dinov2/run/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import logging import os import sys from dinov2.logging import setup_logging from dinov2.train import get_args_parser as get_train_args_parser from dinov2.run.submit import get_args_parser, submit_jobs logger = logging.getLogger("dinov2") class Trainer(object): def __init__(self, args): self.args = args def __call__(self): from dinov2.train import main as train_main self._setup_args() train_main(self.args) def checkpoint(self): import submitit logger.info(f"Requeuing {self.args}") empty = type(self)(self.args) return submitit.helpers.DelayedSubmission(empty) def _setup_args(self): import submitit job_env = submitit.JobEnvironment() self.args.output_dir = self.args.output_dir.replace("%j", str(job_env.job_id)) logger.info(f"Process group: {job_env.num_tasks} tasks, rank: {job_env.global_rank}") logger.info(f"Args: {self.args}") def main(): description = "Submitit launcher for DINOv2 training" train_args_parser = get_train_args_parser(add_help=False) parents = [train_args_parser] args_parser = get_args_parser(description=description, parents=parents) args = args_parser.parse_args() setup_logging() assert os.path.exists(args.config_file), "Configuration file does not exist!" submit_jobs(Trainer, args, name="dinov2:train") return 0 if __name__ == "__main__": sys.exit(main())
EXA-1-master
exa/models/dinov2/dinov2/run/train/train.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import logging import os import sys from dinov2.eval.linear import get_args_parser as get_linear_args_parser from dinov2.logging import setup_logging from dinov2.run.submit import get_args_parser, submit_jobs logger = logging.getLogger("dinov2") class Evaluator: def __init__(self, args): self.args = args def __call__(self): from dinov2.eval.linear import main as linear_main self._setup_args() linear_main(self.args) def checkpoint(self): import submitit logger.info(f"Requeuing {self.args}") empty = type(self)(self.args) return submitit.helpers.DelayedSubmission(empty) def _setup_args(self): import submitit job_env = submitit.JobEnvironment() self.args.output_dir = self.args.output_dir.replace("%j", str(job_env.job_id)) logger.info(f"Process group: {job_env.num_tasks} tasks, rank: {job_env.global_rank}") logger.info(f"Args: {self.args}") def main(): description = "Submitit launcher for DINOv2 linear evaluation" linear_args_parser = get_linear_args_parser(add_help=False) parents = [linear_args_parser] args_parser = get_args_parser(description=description, parents=parents) args = args_parser.parse_args() setup_logging() assert os.path.exists(args.config_file), "Configuration file does not exist!" submit_jobs(Evaluator, args, name="dinov2:linear") return 0 if __name__ == "__main__": sys.exit(main())
EXA-1-master
exa/models/dinov2/dinov2/run/eval/linear.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import logging import os import sys from dinov2.eval.log_regression import get_args_parser as get_log_regression_args_parser from dinov2.logging import setup_logging from dinov2.run.submit import get_args_parser, submit_jobs logger = logging.getLogger("dinov2") class Evaluator: def __init__(self, args): self.args = args def __call__(self): from dinov2.eval.log_regression import main as log_regression_main self._setup_args() log_regression_main(self.args) def checkpoint(self): import submitit logger.info(f"Requeuing {self.args}") empty = type(self)(self.args) return submitit.helpers.DelayedSubmission(empty) def _setup_args(self): import submitit job_env = submitit.JobEnvironment() self.args.output_dir = self.args.output_dir.replace("%j", str(job_env.job_id)) logger.info(f"Process group: {job_env.num_tasks} tasks, rank: {job_env.global_rank}") logger.info(f"Args: {self.args}") def main(): description = "Submitit launcher for DINOv2 logistic evaluation" log_regression_args_parser = get_log_regression_args_parser(add_help=False) parents = [log_regression_args_parser] args_parser = get_args_parser(description=description, parents=parents) args = args_parser.parse_args() setup_logging() assert os.path.exists(args.config_file), "Configuration file does not exist!" submit_jobs(Evaluator, args, name="dinov2:logreg") return 0 if __name__ == "__main__": sys.exit(main())
EXA-1-master
exa/models/dinov2/dinov2/run/eval/log_regression.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import logging import os import sys from dinov2.eval.knn import get_args_parser as get_knn_args_parser from dinov2.logging import setup_logging from dinov2.run.submit import get_args_parser, submit_jobs logger = logging.getLogger("dinov2") class Evaluator: def __init__(self, args): self.args = args def __call__(self): from dinov2.eval.knn import main as knn_main self._setup_args() knn_main(self.args) def checkpoint(self): import submitit logger.info(f"Requeuing {self.args}") empty = type(self)(self.args) return submitit.helpers.DelayedSubmission(empty) def _setup_args(self): import submitit job_env = submitit.JobEnvironment() self.args.output_dir = self.args.output_dir.replace("%j", str(job_env.job_id)) logger.info(f"Process group: {job_env.num_tasks} tasks, rank: {job_env.global_rank}") logger.info(f"Args: {self.args}") def main(): description = "Submitit launcher for DINOv2 k-NN evaluation" knn_args_parser = get_knn_args_parser(add_help=False) parents = [knn_args_parser] args_parser = get_args_parser(description=description, parents=parents) args = args_parser.parse_args() setup_logging() assert os.path.exists(args.config_file), "Configuration file does not exist!" submit_jobs(Evaluator, args, name="dinov2:knn") return 0 if __name__ == "__main__": sys.exit(main())
EXA-1-master
exa/models/dinov2/dinov2/run/eval/knn.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import Sequence import torch from torchvision import transforms class GaussianBlur(transforms.RandomApply): """ Apply Gaussian Blur to the PIL image. """ def __init__(self, *, p: float = 0.5, radius_min: float = 0.1, radius_max: float = 2.0): # NOTE: torchvision is applying 1 - probability to return the original image keep_p = 1 - p transform = transforms.GaussianBlur(kernel_size=9, sigma=(radius_min, radius_max)) super().__init__(transforms=[transform], p=keep_p) class MaybeToTensor(transforms.ToTensor): """ Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor, or keep as is if already a tensor. """ def __call__(self, pic): """ Args: pic (PIL Image, numpy.ndarray or torch.tensor): Image to be converted to tensor. Returns: Tensor: Converted image. """ if isinstance(pic, torch.Tensor): return pic return super().__call__(pic) # Use timm's names IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406) IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225) def make_normalize_transform( mean: Sequence[float] = IMAGENET_DEFAULT_MEAN, std: Sequence[float] = IMAGENET_DEFAULT_STD, ) -> transforms.Normalize: return transforms.Normalize(mean=mean, std=std) # This roughly matches torchvision's preset for classification training: # https://github.com/pytorch/vision/blob/main/references/classification/presets.py#L6-L44 def make_classification_train_transform( *, crop_size: int = 224, interpolation=transforms.InterpolationMode.BICUBIC, hflip_prob: float = 0.5, mean: Sequence[float] = IMAGENET_DEFAULT_MEAN, std: Sequence[float] = IMAGENET_DEFAULT_STD, ): transforms_list = [transforms.RandomResizedCrop(crop_size, interpolation=interpolation)] if hflip_prob > 0.0: transforms_list.append(transforms.RandomHorizontalFlip(hflip_prob)) transforms_list.extend( [ MaybeToTensor(), make_normalize_transform(mean=mean, std=std), ] ) return transforms.Compose(transforms_list) # This matches (roughly) torchvision's preset for classification evaluation: # https://github.com/pytorch/vision/blob/main/references/classification/presets.py#L47-L69 def make_classification_eval_transform( *, resize_size: int = 256, interpolation=transforms.InterpolationMode.BICUBIC, crop_size: int = 224, mean: Sequence[float] = IMAGENET_DEFAULT_MEAN, std: Sequence[float] = IMAGENET_DEFAULT_STD, ) -> transforms.Compose: transforms_list = [ transforms.Resize(resize_size, interpolation=interpolation), transforms.CenterCrop(crop_size), MaybeToTensor(), make_normalize_transform(mean=mean, std=std), ] return transforms.Compose(transforms_list)
EXA-1-master
exa/models/dinov2/dinov2/data/transforms.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import random def collate_data_and_cast(samples_list, mask_ratio_tuple, mask_probability, dtype, n_tokens=None, mask_generator=None): # dtype = torch.half # TODO: Remove n_global_crops = len(samples_list[0][0]["global_crops"]) n_local_crops = len(samples_list[0][0]["local_crops"]) collated_global_crops = torch.stack([s[0]["global_crops"][i] for i in range(n_global_crops) for s in samples_list]) collated_local_crops = torch.stack([s[0]["local_crops"][i] for i in range(n_local_crops) for s in samples_list]) B = len(collated_global_crops) N = n_tokens n_samples_masked = int(B * mask_probability) probs = torch.linspace(*mask_ratio_tuple, n_samples_masked + 1) upperbound = 0 masks_list = [] for i in range(0, n_samples_masked): prob_min = probs[i] prob_max = probs[i + 1] masks_list.append(torch.BoolTensor(mask_generator(int(N * random.uniform(prob_min, prob_max))))) upperbound += int(N * prob_max) for i in range(n_samples_masked, B): masks_list.append(torch.BoolTensor(mask_generator(0))) random.shuffle(masks_list) collated_masks = torch.stack(masks_list).flatten(1) mask_indices_list = collated_masks.flatten().nonzero().flatten() masks_weight = (1 / collated_masks.sum(-1).clamp(min=1.0)).unsqueeze(-1).expand_as(collated_masks)[collated_masks] return { "collated_global_crops": collated_global_crops.to(dtype), "collated_local_crops": collated_local_crops.to(dtype), "collated_masks": collated_masks, "mask_indices_list": mask_indices_list, "masks_weight": masks_weight, "upperbound": upperbound, "n_masked_patches": torch.full((1,), fill_value=mask_indices_list.shape[0], dtype=torch.long), }
EXA-1-master
exa/models/dinov2/dinov2/data/collate.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import logging from enum import Enum from typing import Any, Callable, List, Optional, TypeVar import torch from torch.utils.data import Sampler from .datasets import ImageNet, ImageNet22k from .samplers import EpochSampler, InfiniteSampler, ShardedInfiniteSampler logger = logging.getLogger("dinov2") class SamplerType(Enum): DISTRIBUTED = 0 EPOCH = 1 INFINITE = 2 SHARDED_INFINITE = 3 SHARDED_INFINITE_NEW = 4 def _make_bool_str(b: bool) -> str: return "yes" if b else "no" def _make_sample_transform(image_transform: Optional[Callable] = None, target_transform: Optional[Callable] = None): def transform(sample): image, target = sample if image_transform is not None: image = image_transform(image) if target_transform is not None: target = target_transform(target) return image, target return transform def _parse_dataset_str(dataset_str: str): tokens = dataset_str.split(":") name = tokens[0] kwargs = {} for token in tokens[1:]: key, value = token.split("=") assert key in ("root", "extra", "split") kwargs[key] = value if name == "ImageNet": class_ = ImageNet if "split" in kwargs: kwargs["split"] = ImageNet.Split[kwargs["split"]] elif name == "ImageNet22k": class_ = ImageNet22k else: raise ValueError(f'Unsupported dataset "{name}"') return class_, kwargs def make_dataset( *, dataset_str: str, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, ): """ Creates a dataset with the specified parameters. Args: dataset_str: A dataset string description (e.g. ImageNet:split=TRAIN). transform: A transform to apply to images. target_transform: A transform to apply to targets. Returns: The created dataset. """ logger.info(f'using dataset: "{dataset_str}"') class_, kwargs = _parse_dataset_str(dataset_str) dataset = class_(transform=transform, target_transform=target_transform, **kwargs) logger.info(f"# of dataset samples: {len(dataset):,d}") # Aggregated datasets do not expose (yet) these attributes, so add them. if not hasattr(dataset, "transform"): setattr(dataset, "transform", transform) if not hasattr(dataset, "target_transform"): setattr(dataset, "target_transform", target_transform) return dataset def _make_sampler( *, dataset, type: Optional[SamplerType] = None, shuffle: bool = False, seed: int = 0, size: int = -1, advance: int = 0, ) -> Optional[Sampler]: sample_count = len(dataset) if type == SamplerType.INFINITE: logger.info("sampler: infinite") if size > 0: raise ValueError("sampler size > 0 is invalid") return InfiniteSampler( sample_count=sample_count, shuffle=shuffle, seed=seed, advance=advance, ) elif type in (SamplerType.SHARDED_INFINITE, SamplerType.SHARDED_INFINITE_NEW): logger.info("sampler: sharded infinite") if size > 0: raise ValueError("sampler size > 0 is invalid") # TODO: Remove support for old shuffling use_new_shuffle_tensor_slice = type == SamplerType.SHARDED_INFINITE_NEW return ShardedInfiniteSampler( sample_count=sample_count, shuffle=shuffle, seed=seed, advance=advance, use_new_shuffle_tensor_slice=use_new_shuffle_tensor_slice, ) elif type == SamplerType.EPOCH: logger.info("sampler: epoch") if advance > 0: raise NotImplementedError("sampler advance > 0 is not supported") size = size if size > 0 else sample_count logger.info(f"# of samples / epoch: {size:,d}") return EpochSampler( size=size, sample_count=sample_count, shuffle=shuffle, seed=seed, ) elif type == SamplerType.DISTRIBUTED: logger.info("sampler: distributed") if size > 0: raise ValueError("sampler size > 0 is invalid") if advance > 0: raise ValueError("sampler advance > 0 is invalid") return torch.utils.data.DistributedSampler( dataset=dataset, shuffle=shuffle, seed=seed, drop_last=False, ) logger.info("sampler: none") return None T = TypeVar("T") def make_data_loader( *, dataset, batch_size: int, num_workers: int, shuffle: bool = True, seed: int = 0, sampler_type: Optional[SamplerType] = SamplerType.INFINITE, sampler_size: int = -1, sampler_advance: int = 0, drop_last: bool = True, persistent_workers: bool = False, collate_fn: Optional[Callable[[List[T]], Any]] = None, ): """ Creates a data loader with the specified parameters. Args: dataset: A dataset (third party, LaViDa or WebDataset). batch_size: The size of batches to generate. num_workers: The number of workers to use. shuffle: Whether to shuffle samples. seed: The random seed to use. sampler_type: Which sampler to use: EPOCH, INFINITE, SHARDED_INFINITE, SHARDED_INFINITE_NEW, DISTRIBUTED or None. sampler_size: The number of images per epoch (when applicable) or -1 for the entire dataset. sampler_advance: How many samples to skip (when applicable). drop_last: Whether the last non-full batch of data should be dropped. persistent_workers: maintain the workers Dataset instances alive after a dataset has been consumed once. collate_fn: Function that performs batch collation """ sampler = _make_sampler( dataset=dataset, type=sampler_type, shuffle=shuffle, seed=seed, size=sampler_size, advance=sampler_advance, ) logger.info("using PyTorch data loader") data_loader = torch.utils.data.DataLoader( dataset, sampler=sampler, batch_size=batch_size, num_workers=num_workers, pin_memory=True, drop_last=drop_last, persistent_workers=persistent_workers, collate_fn=collate_fn, ) try: logger.info(f"# of batches: {len(data_loader):,d}") except TypeError: # data loader has no length logger.info("infinite data loader") return data_loader
EXA-1-master
exa/models/dinov2/dinov2/data/loaders.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from .adapters import DatasetWithEnumeratedTargets from .loaders import make_data_loader, make_dataset, SamplerType from .collate import collate_data_and_cast from .masking import MaskingGenerator from .augmentations import DataAugmentationDINO
EXA-1-master
exa/models/dinov2/dinov2/data/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import random import math import numpy as np class MaskingGenerator: def __init__( self, input_size, num_masking_patches=None, min_num_patches=4, max_num_patches=None, min_aspect=0.3, max_aspect=None, ): if not isinstance(input_size, tuple): input_size = (input_size,) * 2 self.height, self.width = input_size self.num_patches = self.height * self.width self.num_masking_patches = num_masking_patches self.min_num_patches = min_num_patches self.max_num_patches = num_masking_patches if max_num_patches is None else max_num_patches max_aspect = max_aspect or 1 / min_aspect self.log_aspect_ratio = (math.log(min_aspect), math.log(max_aspect)) def __repr__(self): repr_str = "Generator(%d, %d -> [%d ~ %d], max = %d, %.3f ~ %.3f)" % ( self.height, self.width, self.min_num_patches, self.max_num_patches, self.num_masking_patches, self.log_aspect_ratio[0], self.log_aspect_ratio[1], ) return repr_str def get_shape(self): return self.height, self.width def _mask(self, mask, max_mask_patches): delta = 0 for _ in range(10): target_area = random.uniform(self.min_num_patches, max_mask_patches) aspect_ratio = math.exp(random.uniform(*self.log_aspect_ratio)) h = int(round(math.sqrt(target_area * aspect_ratio))) w = int(round(math.sqrt(target_area / aspect_ratio))) if w < self.width and h < self.height: top = random.randint(0, self.height - h) left = random.randint(0, self.width - w) num_masked = mask[top : top + h, left : left + w].sum() # Overlap if 0 < h * w - num_masked <= max_mask_patches: for i in range(top, top + h): for j in range(left, left + w): if mask[i, j] == 0: mask[i, j] = 1 delta += 1 if delta > 0: break return delta def __call__(self, num_masking_patches=0): mask = np.zeros(shape=self.get_shape(), dtype=bool) mask_count = 0 while mask_count < num_masking_patches: max_mask_patches = num_masking_patches - mask_count max_mask_patches = min(max_mask_patches, self.max_num_patches) delta = self._mask(mask, max_mask_patches) if delta == 0: break else: mask_count += delta return mask
EXA-1-master
exa/models/dinov2/dinov2/data/masking.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import itertools from typing import Any, Optional import warnings import numpy as np import torch from torch.utils.data.sampler import Sampler import dinov2.distributed as distributed class EpochSampler(Sampler): def __init__( self, *, size: int, sample_count: int, shuffle: bool = False, seed: int = 0, start: Optional[int] = None, step: Optional[int] = None, ): self._size = size self._sample_count = sample_count self._shuffle = shuffle self._seed = seed self._start = distributed.get_global_rank() if start is None else start self._step = distributed.get_global_size() if step is None else step self._epoch = 0 def __iter__(self): count = (self._size + self._sample_count - 1) // self._sample_count tiled_indices = np.tile(np.arange(self._sample_count), count) if self._shuffle: seed = self._seed * self._epoch if self._seed != 0 else self._epoch rng = np.random.default_rng(seed) iterable = rng.choice(tiled_indices, self._size, replace=False) else: iterable = tiled_indices[: self._size] yield from itertools.islice(iterable, self._start, None, self._step) def __len__(self): return (self._size - self._start + self._step - 1) // self._step def set_epoch(self, epoch): self._epoch = epoch def _get_numpy_dtype(size: int) -> Any: return np.int32 if size <= 2**31 else np.int64 def _get_torch_dtype(size: int) -> Any: return torch.int32 if size <= 2**31 else torch.int64 def _generate_randperm_indices(*, size: int, generator: torch.Generator): """Generate the indices of a random permutation.""" dtype = _get_torch_dtype(size) # This is actually matching PyTorch's CPU implementation, see: https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/TensorFactories.cpp#L900-L921 perm = torch.arange(size, dtype=dtype) for i in range(size): j = torch.randint(i, size, size=(1,), generator=generator).item() # Always swap even if no-op value = perm[j].item() perm[j] = perm[i].item() perm[i] = value yield value class InfiniteSampler(Sampler): def __init__( self, *, sample_count: int, shuffle: bool = False, seed: int = 0, start: Optional[int] = None, step: Optional[int] = None, advance: int = 0, ): self._sample_count = sample_count self._seed = seed self._shuffle = shuffle self._start = distributed.get_global_rank() if start is None else start self._step = distributed.get_global_size() if step is None else step self._advance = advance def __iter__(self): if self._shuffle: iterator = self._shuffled_iterator() else: iterator = self._iterator() yield from itertools.islice(iterator, self._advance, None) def _iterator(self): assert not self._shuffle while True: iterable = range(self._sample_count) yield from itertools.islice(iterable, self._start, None, self._step) def _shuffled_iterator(self): assert self._shuffle # Instantiate a generator here (rather than in the ctor) to keep the class # picklable (requirement of mp.spawn) generator = torch.Generator().manual_seed(self._seed) while True: iterable = _generate_randperm_indices(size=self._sample_count, generator=generator) yield from itertools.islice(iterable, self._start, None, self._step) # The following function is somewhat equivalent to _new_shuffle_tensor_slice below, # but avoids a full in-place random permutation generation. def _shuffle_tensor_slice( *, tensor: torch.Tensor, start: int = 0, step: int = 1, generator: torch.Generator ) -> np.ndarray: stop = len(tensor) count = stop // step drop_count = stop - step * count if drop_count: warnings.warn(f"# of dropped samples: {drop_count}") dtype = _get_numpy_dtype(stop) result = np.empty(count, dtype=dtype) for i in range(count): j = torch.randint(0, i + 1, size=(1,), generator=generator).item() if i > 0 else 0 result[i] = result[j] result[j] = tensor[start + i * step].item() return result def _new_shuffle_tensor_slice( *, tensor: torch.Tensor, start: int = 0, step: int = 1, generator: torch.Generator ) -> np.ndarray: stop = len(tensor) count = stop // step dtype = torch.int64 # Needed for using randperm result as indices count = stop // step drop_count = stop - step * count if drop_count: warnings.warn(f"# of dropped samples: {drop_count}") indices = torch.randperm(count, dtype=dtype, generator=generator) return tensor[start::step][indices].numpy() def _make_seed(seed: int, start: int, iter_count: int) -> int: # NOTE: Tried a few variants (including iter_count << 32), this one worked best. return seed + start + (iter_count << 24) class ShardedInfiniteSampler(Sampler): def __init__( self, *, sample_count: int, shuffle: bool = False, seed: int = 0, start: Optional[int] = None, step: Optional[int] = None, advance: int = 0, use_new_shuffle_tensor_slice: bool = False, ): self._sample_count = sample_count self._seed = seed self._shuffle = shuffle self._start = distributed.get_global_rank() if start is None else start self._step = distributed.get_global_size() if step is None else step self._advance = advance self._iter_count = 0 self._shuffle_tensor_slice_fn = ( _new_shuffle_tensor_slice if use_new_shuffle_tensor_slice else _shuffle_tensor_slice ) def __iter__(self): iter_count = self._advance // self._sample_count if iter_count > 0: self._advance -= iter_count * self._sample_count self._iter_count += iter_count if self._shuffle: iterator = self._shuffled_iterator() else: iterator = self._iterator() yield from itertools.islice(iterator, self._advance, None) def _iterator(self): assert not self._shuffle while True: iterable = range(self._sample_count) yield from itertools.islice(iterable, self._start, None, self._step) def _shuffled_iterator(self): assert self._shuffle # Instantiate a generator here (rather than in the ctor) to be keep the class # picklable (requirement of mp.spawn) generator = torch.Generator() # Always shuffle everything first generator.manual_seed(self._seed) dtype = _get_torch_dtype(self._sample_count) perm = torch.randperm(self._sample_count, dtype=dtype, generator=generator) while True: # Re-seed on each iteration to allow skipping whole permutations seed = _make_seed(self._seed, self._start, self._iter_count) generator.manual_seed(seed) iterable = self._shuffle_tensor_slice_fn( tensor=perm, start=self._start, step=self._step, generator=generator ) yield from iterable self._iter_count += 1
EXA-1-master
exa/models/dinov2/dinov2/data/samplers.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import logging from torchvision import transforms from .transforms import ( GaussianBlur, make_normalize_transform, ) logger = logging.getLogger("dinov2") class DataAugmentationDINO(object): def __init__( self, global_crops_scale, local_crops_scale, local_crops_number, global_crops_size=224, local_crops_size=96, ): self.global_crops_scale = global_crops_scale self.local_crops_scale = local_crops_scale self.local_crops_number = local_crops_number self.global_crops_size = global_crops_size self.local_crops_size = local_crops_size logger.info("###################################") logger.info("Using data augmentation parameters:") logger.info(f"global_crops_scale: {global_crops_scale}") logger.info(f"local_crops_scale: {local_crops_scale}") logger.info(f"local_crops_number: {local_crops_number}") logger.info(f"global_crops_size: {global_crops_size}") logger.info(f"local_crops_size: {local_crops_size}") logger.info("###################################") # random resized crop and flip self.geometric_augmentation_global = transforms.Compose( [ transforms.RandomResizedCrop( global_crops_size, scale=global_crops_scale, interpolation=transforms.InterpolationMode.BICUBIC ), transforms.RandomHorizontalFlip(p=0.5), ] ) self.geometric_augmentation_local = transforms.Compose( [ transforms.RandomResizedCrop( local_crops_size, scale=local_crops_scale, interpolation=transforms.InterpolationMode.BICUBIC ), transforms.RandomHorizontalFlip(p=0.5), ] ) # color distorsions / blurring color_jittering = transforms.Compose( [ transforms.RandomApply( [transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.2, hue=0.1)], p=0.8, ), transforms.RandomGrayscale(p=0.2), ] ) global_transfo1_extra = GaussianBlur(p=1.0) global_transfo2_extra = transforms.Compose( [ GaussianBlur(p=0.1), transforms.RandomSolarize(threshold=128, p=0.2), ] ) local_transfo_extra = GaussianBlur(p=0.5) # normalization self.normalize = transforms.Compose( [ transforms.ToTensor(), make_normalize_transform(), ] ) self.global_transfo1 = transforms.Compose([color_jittering, global_transfo1_extra, self.normalize]) self.global_transfo2 = transforms.Compose([color_jittering, global_transfo2_extra, self.normalize]) self.local_transfo = transforms.Compose([color_jittering, local_transfo_extra, self.normalize]) def __call__(self, image): output = {} # global crops: im1_base = self.geometric_augmentation_global(image) global_crop_1 = self.global_transfo1(im1_base) im2_base = self.geometric_augmentation_global(image) global_crop_2 = self.global_transfo2(im2_base) output["global_crops"] = [global_crop_1, global_crop_2] # global crops for teacher: output["global_crops_teacher"] = [global_crop_1, global_crop_2] # local crops: local_crops = [ self.local_transfo(self.geometric_augmentation_local(image)) for _ in range(self.local_crops_number) ] output["local_crops"] = local_crops output["offsets"] = () return output
EXA-1-master
exa/models/dinov2/dinov2/data/augmentations.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import Any, Tuple from torch.utils.data import Dataset class DatasetWithEnumeratedTargets(Dataset): def __init__(self, dataset): self._dataset = dataset def get_image_data(self, index: int) -> bytes: return self._dataset.get_image_data(index) def get_target(self, index: int) -> Tuple[Any, int]: target = self._dataset.get_target(index) return (index, target) def get_sample_decoder(self, index: int) -> Any: return self._dataset.get_sample_decoder(index) def __getitem__(self, index: int) -> Tuple[Any, Tuple[Any, int]]: image, target = self._dataset[index] target = index if target is None else target return image, (index, target) def __len__(self) -> int: return len(self._dataset)
EXA-1-master
exa/models/dinov2/dinov2/data/adapters.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import csv from enum import Enum import os from typing import Callable, List, Optional, Tuple, Union import numpy as np from .extended import ExtendedVisionDataset _Labels = int class _Split(Enum): TRAIN = "train" VAL = "val" TEST = "test" # NOTE: torchvision does not support the test split @property def length(self) -> int: split_lengths = { _Split.TRAIN: 1_281_167, _Split.VAL: 50_000, _Split.TEST: 100_000, } return split_lengths[self] def get_dirname(self, class_id: Optional[str] = None) -> str: return self.value if class_id is None else os.path.join(self.value, class_id) def get_image_relpath(self, actual_index: int, class_id: Optional[str] = None) -> str: dirname = self.get_dirname(class_id) if self == _Split.TRAIN: basename = f"{class_id}_{actual_index}" else: # self in (_Split.VAL, _Split.TEST): basename = f"ILSVRC2012_{self.value}_{actual_index:08d}" return os.path.join(dirname, basename + ".JPEG") def parse_image_relpath(self, image_relpath: str) -> Tuple[str, int]: assert self != _Split.TEST dirname, filename = os.path.split(image_relpath) class_id = os.path.split(dirname)[-1] basename, _ = os.path.splitext(filename) actual_index = int(basename.split("_")[-1]) return class_id, actual_index class ImageNet(ExtendedVisionDataset): Labels = Union[_Labels] Split = Union[_Split] def __init__( self, *, split: "ImageNet.Split", root: str, extra: str, transforms: Optional[Callable] = None, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, ) -> None: super().__init__(root, transforms, transform, target_transform) self._extra_root = extra self._split = split entries_path = self._get_entries_path(split, root) self._entries = self._load_extra(entries_path) self._class_ids = None self._class_names = None if split == _Split.TEST: return class_ids_path = self._get_class_ids_path(split, root) self._class_ids = self._load_extra(class_ids_path) class_names_path = self._get_class_names_path(split, root) self._class_names = self._load_extra(class_names_path) @property def split(self) -> "ImageNet.Split": return self._split def _load_extra(self, extra_path: str) -> np.ndarray: extra_root = self._extra_root extra_full_path = os.path.join(extra_root, extra_path) return np.load(extra_full_path, mmap_mode="r") def _save_extra(self, extra_array: np.ndarray, extra_path: str) -> None: extra_root = self._extra_root extra_full_path = os.path.join(extra_root, extra_path) os.makedirs(extra_root, exist_ok=True) np.save(extra_full_path, extra_array) def _get_entries_path(self, split: "ImageNet.Split", root: Optional[str] = None) -> str: return f"entries-{split.value.upper()}.npy" def _get_class_ids_path(self, split: "ImageNet.Split", root: Optional[str] = None) -> str: return f"class-ids-{split.value.upper()}.npy" def _get_class_names_path(self, split: "ImageNet.Split", root: Optional[str] = None) -> str: return f"class-names-{split.value.upper()}.npy" def find_class_id(self, class_index: int) -> str: assert self._class_ids is not None return str(self._class_ids[class_index]) def find_class_name(self, class_index: int) -> str: assert self._class_names is not None return str(self._class_names[class_index]) def get_image_data(self, index: int) -> bytes: actual_index = self._entries[index]["actual_index"] class_id = self.get_class_id(index) image_relpath = self.split.get_image_relpath(actual_index, class_id) image_full_path = os.path.join(self.root, image_relpath) with open(image_full_path, mode="rb") as f: image_data = f.read() return image_data def get_target(self, index: int) -> Optional[_Labels]: class_index = self._entries[index]["class_index"] return None if self.split == _Split.TEST else int(class_index) def get_targets(self) -> Optional[np.ndarray]: return None if self.split == _Split.TEST else self._entries["class_index"] def get_class_id(self, index: int) -> Optional[str]: class_id = self._entries[index]["class_id"] return None if self.split == _Split.TEST else str(class_id) def get_class_name(self, index: int) -> Optional[str]: class_name = self._entries[index]["class_name"] return None if self.split == _Split.TEST else str(class_name) def __len__(self) -> int: assert len(self._entries) == self.split.length return len(self._entries) def _load_labels(self, root: str) -> List[Tuple[str, str]]: path = os.path.join(root, "labels.txt") labels = [] try: with open(path, "r") as f: reader = csv.reader(f) for row in reader: class_id, class_name = row labels.append((class_id, class_name)) except OSError as e: raise RuntimeError(f'can not read labels file "{path}"') from e return labels def _dump_entries(self, split: "ImageNet.Split", root: Optional[str] = None) -> None: # NOTE: Using torchvision ImageFolder for consistency from torchvision.datasets import ImageFolder root = self.root labels = self._load_labels(root) if split == ImageNet.Split.TEST: dataset = None sample_count = split.length max_class_id_length, max_class_name_length = 0, 0 else: dataset_root = os.path.join(root, split.get_dirname()) dataset = ImageFolder(dataset_root) sample_count = len(dataset) max_class_id_length, max_class_name_length = -1, -1 for sample in dataset.samples: _, class_index = sample class_id, class_name = labels[class_index] max_class_id_length = max(len(class_id), max_class_id_length) max_class_name_length = max(len(class_name), max_class_name_length) dtype = np.dtype( [ ("actual_index", "<u4"), ("class_index", "<u4"), ("class_id", f"U{max_class_id_length}"), ("class_name", f"U{max_class_name_length}"), ] ) entries_array = np.empty(sample_count, dtype=dtype) if split == ImageNet.Split.TEST: for index in range(sample_count): entries_array[index] = (index + 1, np.uint32(-1), "", "") else: class_names = {class_id: class_name for class_id, class_name in labels} assert dataset for index, _ in enumerate(dataset): image_full_path, class_index = dataset.samples[index] image_relpath = os.path.relpath(image_full_path, root) class_id, actual_index = split.parse_image_relpath(image_relpath) class_name = class_names[class_id] entries_array[index] = (actual_index, class_index, class_id, class_name) entries_path = self._get_entries_path(split, root) self._save_extra(entries_array, entries_path) def _dump_class_ids_and_names(self, split: "ImageNet.Split", root: Optional[str] = None) -> None: if split == ImageNet.Split.TEST: return root = self.get_root(root) entries_path = self._get_entries_path(split, root) entries_array = self._load_extra(entries_path) max_class_id_length, max_class_name_length, max_class_index = -1, -1, -1 for entry in entries_array: class_index, class_id, class_name = ( entry["class_index"], entry["class_id"], entry["class_name"], ) max_class_index = max(int(class_index), max_class_index) max_class_id_length = max(len(str(class_id)), max_class_id_length) max_class_name_length = max(len(str(class_name)), max_class_name_length) class_count = max_class_index + 1 class_ids_array = np.empty(class_count, dtype=f"U{max_class_id_length}") class_names_array = np.empty(class_count, dtype=f"U{max_class_name_length}") for entry in entries_array: class_index, class_id, class_name = ( entry["class_index"], entry["class_id"], entry["class_name"], ) class_ids_array[class_index] = class_id class_names_array[class_index] = class_name class_ids_path = self._get_class_ids_path(split, root) self._save_extra(class_ids_array, class_ids_path) class_names_path = self._get_class_names_path(split, root) self._save_extra(class_names_array, class_names_path) def dump_extra(self, split: "ImageNet.Split", root: Optional[str] = None) -> None: self._dump_entries(split, root) self._dump_class_ids_and_names(split, root)
EXA-1-master
exa/models/dinov2/dinov2/data/datasets/image_net.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from io import BytesIO from typing import Any, Tuple from PIL import Image class Decoder: def decode(self) -> Any: raise NotImplementedError class ImageDataDecoder(Decoder): def __init__(self, image_data: bytes) -> None: self._image_data = image_data def decode(self) -> Image: f = BytesIO(self._image_data) return Image.open(f).convert(mode="RGB") class TargetDecoder(Decoder): def __init__(self, target: Any): self._target = target def decode(self) -> Any: return self._target class TupleDecoder(Decoder): def __init__(self, *decoders: Decoder): self._decoders: Tuple[Decoder, ...] = decoders def decode(self) -> Any: return (decoder.decode() for decoder in self._decoders)
EXA-1-master
exa/models/dinov2/dinov2/data/datasets/decoders.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import Any, Tuple from torchvision.datasets import VisionDataset from .decoders import Decoder, TargetDecoder, ImageDataDecoder, TupleDecoder class ExtendedVisionDataset(VisionDataset): def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) # type: ignore def get_image_data(self, index: int) -> bytes: raise NotImplementedError def get_target(self, index: int) -> Any: raise NotImplementedError def __getitem__(self, index: int) -> Tuple[Any, Any]: try: image_data = self.get_image_data(index) image = ImageDataDecoder(image_data).decode() except Exception as e: raise RuntimeError(f"can not read image for sample {index}") from e target = self.get_target(index) target = TargetDecoder(target).decode() if self.transforms is not None: image, target = self.transforms(image, target) return image, target def get_sample_decoder(self, index: int) -> Decoder: image_data = self.get_image_data(index) target = self.get_target(index) return TupleDecoder( ImageDataDecoder(image_data), TargetDecoder(target), ) def __len__(self) -> int: raise NotImplementedError
EXA-1-master
exa/models/dinov2/dinov2/data/datasets/extended.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from .image_net import ImageNet from .image_net_22k import ImageNet22k
EXA-1-master
exa/models/dinov2/dinov2/data/datasets/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass from enum import Enum from functools import lru_cache from gzip import GzipFile from io import BytesIO from mmap import ACCESS_READ, mmap import os from typing import Any, Callable, List, Optional, Set, Tuple import warnings import numpy as np from .extended import ExtendedVisionDataset _Labels = int _DEFAULT_MMAP_CACHE_SIZE = 16 # Warning: This can exhaust file descriptors _IMAGES_SUBDIR_IMAGENET_21KP = "062717" @dataclass class _ClassEntry: block_offset: int maybe_filename: Optional[str] = None @dataclass class _Entry: class_index: int # noqa: E701 start_offset: int end_offset: int filename: str class _Split(Enum): TRAIN = "train" VAL = "val" @property def length(self) -> int: return { _Split.TRAIN: 11_797_647, _Split.VAL: 561_050, }[self] def entries_path(self): return f"imagenet21kp_{self.value}.txt" def _get_tarball_path(class_id: str) -> str: return f"{class_id}.tar" def _make_mmap_tarball(tarballs_root: str, mmap_cache_size: int): @lru_cache(maxsize=mmap_cache_size) def _mmap_tarball(class_id: str) -> mmap: tarball_path = _get_tarball_path(class_id) tarball_full_path = os.path.join(tarballs_root, tarball_path) with open(tarball_full_path) as f: return mmap(fileno=f.fileno(), length=0, access=ACCESS_READ) return _mmap_tarball class ImageNet22k(ExtendedVisionDataset): _GZIPPED_INDICES: Set[int] = { 841_545, 1_304_131, 2_437_921, 2_672_079, 2_795_676, 2_969_786, 6_902_965, 6_903_550, 6_903_628, 7_432_557, 7_432_589, 7_813_809, 8_329_633, 10_296_990, 10_417_652, 10_492_265, 10_598_078, 10_782_398, 10_902_612, 11_203_736, 11_342_890, 11_397_596, 11_589_762, 11_705_103, 12_936_875, 13_289_782, } Labels = _Labels def __init__( self, *, root: str, extra: str, transforms: Optional[Callable] = None, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, mmap_cache_size: int = _DEFAULT_MMAP_CACHE_SIZE, ) -> None: super().__init__(root, transforms, transform, target_transform) self._extra_root = extra entries_path = self._get_entries_path(root) self._entries = self._load_extra(entries_path) class_ids_path = self._get_class_ids_path(root) self._class_ids = self._load_extra(class_ids_path) self._gzipped_indices = ImageNet22k._GZIPPED_INDICES self._mmap_tarball = _make_mmap_tarball(self._tarballs_root, mmap_cache_size) def _get_entries_path(self, root: Optional[str] = None) -> str: return "entries.npy" def _get_class_ids_path(self, root: Optional[str] = None) -> str: return "class-ids.npy" def _find_class_ids(self, path: str) -> List[str]: class_ids = [] with os.scandir(path) as entries: for entry in entries: root, ext = os.path.splitext(entry.name) if ext != ".tar": continue class_ids.append(root) return sorted(class_ids) def _load_entries_class_ids(self, root: Optional[str] = None) -> Tuple[List[_Entry], List[str]]: root = self.get_root(root) entries: List[_Entry] = [] class_ids = self._find_class_ids(root) for class_index, class_id in enumerate(class_ids): path = os.path.join(root, "blocks", f"{class_id}.log") class_entries = [] try: with open(path) as f: for line in f: line = line.rstrip() block, filename = line.split(":") block_offset = int(block[6:]) filename = filename[1:] maybe_filename = None if filename != "** Block of NULs **": maybe_filename = filename _, ext = os.path.splitext(filename) # assert ext == ".JPEG" class_entry = _ClassEntry(block_offset, maybe_filename) class_entries.append(class_entry) except OSError as e: raise RuntimeError(f'can not read blocks file "{path}"') from e assert class_entries[-1].maybe_filename is None for class_entry1, class_entry2 in zip(class_entries, class_entries[1:]): assert class_entry1.block_offset <= class_entry2.block_offset start_offset = 512 * class_entry1.block_offset end_offset = 512 * class_entry2.block_offset assert class_entry1.maybe_filename is not None filename = class_entry1.maybe_filename entry = _Entry(class_index, start_offset, end_offset, filename) # Skip invalid image files (PIL throws UnidentifiedImageError) if filename == "n06470073_47249.JPEG": continue entries.append(entry) return entries, class_ids def _load_extra(self, extra_path: str) -> np.ndarray: extra_root = self._extra_root extra_full_path = os.path.join(extra_root, extra_path) return np.load(extra_full_path, mmap_mode="r") def _save_extra(self, extra_array: np.ndarray, extra_path: str) -> None: extra_root = self._extra_root extra_full_path = os.path.join(extra_root, extra_path) os.makedirs(extra_root, exist_ok=True) np.save(extra_full_path, extra_array) @property def _tarballs_root(self) -> str: return self.root def find_class_id(self, class_index: int) -> str: return str(self._class_ids[class_index]) def get_image_data(self, index: int) -> bytes: entry = self._entries[index] class_id = entry["class_id"] class_mmap = self._mmap_tarball(class_id) start_offset, end_offset = entry["start_offset"], entry["end_offset"] try: mapped_data = class_mmap[start_offset:end_offset] data = mapped_data[512:] # Skip entry header block if len(data) >= 2 and tuple(data[:2]) == (0x1F, 0x8B): assert index in self._gzipped_indices, f"unexpected gzip header for sample {index}" with GzipFile(fileobj=BytesIO(data)) as g: data = g.read() except Exception as e: raise RuntimeError(f"can not retrieve image data for sample {index} " f'from "{class_id}" tarball') from e return data def get_target(self, index: int) -> Any: return int(self._entries[index]["class_index"]) def get_targets(self) -> np.ndarray: return self._entries["class_index"] def get_class_id(self, index: int) -> str: return str(self._entries[index]["class_id"]) def get_class_ids(self) -> np.ndarray: return self._entries["class_id"] def __getitem__(self, index: int) -> Tuple[Any, Any]: with warnings.catch_warnings(): warnings.simplefilter("ignore") return super().__getitem__(index) def __len__(self) -> int: return len(self._entries) def _dump_entries(self, *args, **kwargs) -> None: entries, class_ids = self._load_entries_class_ids(*args, **kwargs) max_class_id_length, max_filename_length, max_class_index = -1, -1, -1 for entry in entries: class_id = class_ids[entry.class_index] max_class_index = max(entry.class_index, max_class_index) max_class_id_length = max(len(class_id), max_class_id_length) max_filename_length = max(len(entry.filename), max_filename_length) dtype = np.dtype( [ ("class_index", "<u4"), ("class_id", f"U{max_class_id_length}"), ("start_offset", "<u4"), ("end_offset", "<u4"), ("filename", f"U{max_filename_length}"), ] ) sample_count = len(entries) entries_array = np.empty(sample_count, dtype=dtype) for i, entry in enumerate(entries): class_index = entry.class_index class_id = class_ids[class_index] start_offset = entry.start_offset end_offset = entry.end_offset filename = entry.filename entries_array[i] = ( class_index, class_id, start_offset, end_offset, filename, ) entries_path = self._get_entries_path(*args, **kwargs) self._save_extra(entries_array, entries_path) def _dump_class_ids(self, *args, **kwargs) -> None: entries_path = self._get_entries_path(*args, **kwargs) entries_array = self._load_extra(entries_path) max_class_id_length, max_class_index = -1, -1 for entry in entries_array: class_index, class_id = entry["class_index"], entry["class_id"] max_class_index = max(int(class_index), max_class_index) max_class_id_length = max(len(str(class_id)), max_class_id_length) class_ids_array = np.empty(max_class_index + 1, dtype=f"U{max_class_id_length}") for entry in entries_array: class_index, class_id = entry["class_index"], entry["class_id"] class_ids_array[class_index] = class_id class_ids_path = self._get_class_ids_path(*args, **kwargs) self._save_extra(class_ids_array, class_ids_path) def _dump_extra(self, *args, **kwargs) -> None: self._dump_entries(*args, *kwargs) self._dump_class_ids(*args, *kwargs) def dump_extra(self, root: Optional[str] = None) -> None: return self._dump_extra(root)
EXA-1-master
exa/models/dinov2/dinov2/data/datasets/image_net_22k.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import functools import logging import os import sys from typing import Optional import dinov2.distributed as distributed from .helpers import MetricLogger, SmoothedValue # So that calling _configure_logger multiple times won't add many handlers @functools.lru_cache() def _configure_logger( name: Optional[str] = None, *, level: int = logging.DEBUG, output: Optional[str] = None, ): """ Configure a logger. Adapted from Detectron2. Args: name: The name of the logger to configure. level: The logging level to use. output: A file name or a directory to save log. If None, will not save log file. If ends with ".txt" or ".log", assumed to be a file name. Otherwise, logs will be saved to `output/log.txt`. Returns: The configured logger. """ logger = logging.getLogger(name) logger.setLevel(level) logger.propagate = False # Loosely match Google glog format: # [IWEF]yyyymmdd hh:mm:ss.uuuuuu threadid file:line] msg # but use a shorter timestamp and include the logger name: # [IWEF]yyyymmdd hh:mm:ss logger threadid file:line] msg fmt_prefix = "%(levelname).1s%(asctime)s %(process)s %(name)s %(filename)s:%(lineno)s] " fmt_message = "%(message)s" fmt = fmt_prefix + fmt_message datefmt = "%Y%m%d %H:%M:%S" formatter = logging.Formatter(fmt=fmt, datefmt=datefmt) # stdout logging for main worker only if distributed.is_main_process(): handler = logging.StreamHandler(stream=sys.stdout) handler.setLevel(logging.DEBUG) handler.setFormatter(formatter) logger.addHandler(handler) # file logging for all workers if output: if os.path.splitext(output)[-1] in (".txt", ".log"): filename = output else: filename = os.path.join(output, "logs", "log.txt") if not distributed.is_main_process(): global_rank = distributed.get_global_rank() filename = filename + ".rank{}".format(global_rank) os.makedirs(os.path.dirname(filename), exist_ok=True) handler = logging.StreamHandler(open(filename, "a")) handler.setLevel(logging.DEBUG) handler.setFormatter(formatter) logger.addHandler(handler) return logger def setup_logging( output: Optional[str] = None, *, name: Optional[str] = None, level: int = logging.DEBUG, capture_warnings: bool = True, ) -> None: """ Setup logging. Args: output: A file name or a directory to save log files. If None, log files will not be saved. If output ends with ".txt" or ".log", it is assumed to be a file name. Otherwise, logs will be saved to `output/log.txt`. name: The name of the logger to configure, by default the root logger. level: The logging level to use. capture_warnings: Whether warnings should be captured as logs. """ logging.captureWarnings(capture_warnings) _configure_logger(name, level=level, output=output)
EXA-1-master
exa/models/dinov2/dinov2/logging/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from collections import defaultdict, deque import datetime import json import logging import time import torch import dinov2.distributed as distributed logger = logging.getLogger("dinov2") class MetricLogger(object): def __init__(self, delimiter="\t", output_file=None): self.meters = defaultdict(SmoothedValue) self.delimiter = delimiter self.output_file = output_file def update(self, **kwargs): for k, v in kwargs.items(): if isinstance(v, torch.Tensor): v = v.item() assert isinstance(v, (float, int)) self.meters[k].update(v) def __getattr__(self, attr): if attr in self.meters: return self.meters[attr] if attr in self.__dict__: return self.__dict__[attr] raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, attr)) def __str__(self): loss_str = [] for name, meter in self.meters.items(): loss_str.append("{}: {}".format(name, str(meter))) return self.delimiter.join(loss_str) def synchronize_between_processes(self): for meter in self.meters.values(): meter.synchronize_between_processes() def add_meter(self, name, meter): self.meters[name] = meter def dump_in_output_file(self, iteration, iter_time, data_time): if self.output_file is None or not distributed.is_main_process(): return dict_to_dump = dict( iteration=iteration, iter_time=iter_time, data_time=data_time, ) dict_to_dump.update({k: v.median for k, v in self.meters.items()}) with open(self.output_file, "a") as f: f.write(json.dumps(dict_to_dump) + "\n") pass def log_every(self, iterable, print_freq, header=None, n_iterations=None, start_iteration=0): i = start_iteration if not header: header = "" start_time = time.time() end = time.time() iter_time = SmoothedValue(fmt="{avg:.6f}") data_time = SmoothedValue(fmt="{avg:.6f}") if n_iterations is None: n_iterations = len(iterable) space_fmt = ":" + str(len(str(n_iterations))) + "d" log_list = [ header, "[{0" + space_fmt + "}/{1}]", "eta: {eta}", "{meters}", "time: {time}", "data: {data}", ] if torch.cuda.is_available(): log_list += ["max mem: {memory:.0f}"] log_msg = self.delimiter.join(log_list) MB = 1024.0 * 1024.0 for obj in iterable: data_time.update(time.time() - end) yield obj iter_time.update(time.time() - end) if i % print_freq == 0 or i == n_iterations - 1: self.dump_in_output_file(iteration=i, iter_time=iter_time.avg, data_time=data_time.avg) eta_seconds = iter_time.global_avg * (n_iterations - i) eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) if torch.cuda.is_available(): logger.info( log_msg.format( i, n_iterations, eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time), memory=torch.cuda.max_memory_allocated() / MB, ) ) else: logger.info( log_msg.format( i, n_iterations, eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time), ) ) i += 1 end = time.time() if i >= n_iterations: break total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) logger.info("{} Total time: {} ({:.6f} s / it)".format(header, total_time_str, total_time / n_iterations)) class SmoothedValue: """Track a series of values and provide access to smoothed values over a window or the global series average. """ def __init__(self, window_size=20, fmt=None): if fmt is None: fmt = "{median:.4f} ({global_avg:.4f})" self.deque = deque(maxlen=window_size) self.total = 0.0 self.count = 0 self.fmt = fmt def update(self, value, num=1): self.deque.append(value) self.count += num self.total += value * num def synchronize_between_processes(self): """ Distributed synchronization of the metric Warning: does not synchronize the deque! """ if not distributed.is_enabled(): return t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda") torch.distributed.barrier() torch.distributed.all_reduce(t) t = t.tolist() self.count = int(t[0]) self.total = t[1] @property def median(self): d = torch.tensor(list(self.deque)) return d.median().item() @property def avg(self): d = torch.tensor(list(self.deque), dtype=torch.float32) return d.mean().item() @property def global_avg(self): return self.total / self.count @property def max(self): return max(self.deque) @property def value(self): return self.deque[-1] def __str__(self): return self.fmt.format( median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value, )
EXA-1-master
exa/models/dinov2/dinov2/logging/helpers.py
import torch import torch.nn as nn import math from scipy.special import gamma as scipy_gamma import functools import torch.jit def gamma(n): return math.gamma(n) @torch.jit.script # def caputo_approximation(x, base_activation, derivative_order, h, n): # k = torch.arange(n).float() # x_expanded = x.view(-1, 1) # h_expanded = h.view(-1, 1) # term = ((-1)**k) * scipy_gamma(derivative_order + k + 1) / (torch.tensor([math.factorial(int(k_i)) for k_i in k]) * scipy_gamma(derivative_order + 1)) * (base_activation(x_expanded - k * h_expanded) - base_activation(x_expanded - (k + 1) * h_expanded)) # sum_terms = torch.sum(term, dim=-1) # return sum_terms / h # def caputo_approximation(x, base_activation, derivative_order, h, n): # k = torch.arange(n).float().view(1, -1) # x_expanded = x.view(-1, 1) # h_expanded = h.view(-1, 1) # term = ((-1)**k) * scipy_gamma(derivative_order + k + 1) / (torch.tensor([math.factorial(int(k_i)) for k_i in k]) * scipy_gamma(derivative_order + 1)) * (base_activation(x_expanded - k * h_expanded) - base_activation(x_expanded - (k + 1) * h_expanded)) # sum_terms = torch.sum(term, dim=-1) # return sum_terms / h def caputo_approximation(x, base_activation, derivative_order, h, n): k = torch.arange(n).float().view(1, -1) x_expanded = x.view(-1, 1) h_expanded = h.view(-1, 1) term = ((-1)**k) * torch.exp(torch.lgamma(derivative_order + k + 1)) / (torch.tensor([math.factorial(int(k_i)) for k_i in k]) * torch.exp(torch.lgamma(derivative_order + 1))) * (base_activation(x_expanded - k * h_expanded) - base_activation(x_expanded - (k + 1) * h_expanded)) sum_terms = torch.sum(term, dim=-1) return sum_terms / h class CaputoFractionalActivation(nn.Module): def __init__(self, base_activation, derivative_order, n=5): super(CaputoFractionalActivation, self).__init__() self.base_activation = base_activation self.derivative_order = derivative_order self.n = n @functools.lru_cache(maxsize=None) def memoized_base_activation(self, x): return self.base_activation(x) def adaptive_step_size(self, x, min_step=1e-6, max_step=1e-3): x_mean = torch.mean(x) x_std = torch.std(x) step_size = min_step + (x - x_mean) / x_std * (max_step - min_step) return step_size # def forward(self, x): # h = self.adaptive_step_size(x) # # Compute the base activation function # base = self.memoized_base_activation(x) # # Compute the Caputo approximate fractional derivative # fractional_derivative = caputo_approximation(x, self.memoized_base_activation, self.derivative_order, h.view(-1), self.n) # # Combine the base activation function with its fractional derivative (e.g., addition) # output = base + fractional_derivative # return output.view_as(x) def forward(self, x): h = self.adaptive_step_size(x) # Compute the base activation function base = self.memoized_base_activation(x) # Compute the Caputo approximate fractional derivative fractional_derivative = caputo_approximation(x, self.memoized_base_activation, self.derivative_order, h.view(-1), self.n) # Combine the base activation function with its fractional derivative (e.g., addition) output = base.view_as(fractional_derivative) + fractional_derivative return output.view_as(x)
EXA-1-master
exa/modular_components/activations/neox/neox5.py
import torch import torch.nn as nn import math from scipy.special import gamma as scipy_gamma import math import functools # @functools.lru_cache(maxsize=None) # def memoized_base_activation(x): # return base_activation(x) def gamma(n): return math.gamma(n) # def caputo_approximation(x, base_activation, derivative_order, h, n): # k = torch.arange(n).float() # term = ((-1)**k) * scipy_gamma(derivative_order + k + 1) / (torch.tensor([math.factorial(int(k_i)) for k_i in k]) * scipy_gamma(derivative_order + 1)) * (base_activation(x - k * h) - base_activation(x - (k + 1) * h)) # sum_terms = torch.sum(term, dim=-1) # return sum_terms / h def caputo_approximation(x, base_activation, derivative_order, h, n): k = torch.arange(n).float() x_expanded = x.view(-1, 1) h_expanded = h.view(-1, 1) term = ((-1)**k) * scipy_gamma(derivative_order + k + 1) / (torch.tensor([math.factorial(int(k_i)) for k_i in k]) * scipy_gamma(derivative_order + 1)) * (base_activation(x_expanded - k * h_expanded) - base_activation(x_expanded - (k + 1) * h_expanded)) sum_terms = torch.sum(term, dim=-1) return sum_terms / h class CaputoFractionalActivation(nn.Module): def __init__(self, base_activation, derivative_order, n=10): super(CaputoFractionalActivation, self).__init__() self.base_activation = base_activation self.derivative_order = derivative_order self.n = n self.base_cache = {} def adaptive_step_size(self, x, min_step=1e-6, max_step=1e-3): x_normalized = (x - torch.min(x)) / (torch.max(x) - torch.min(x)) step_size = min_step + x_normalized * (max_step - min_step) return step_size # def forward(self, x): # h = self.adaptive_step_size(x) # # Compute the base activation function # base = torch.zeros_like(x) # for i, x_i in enumerate(x.view(-1)): # x_i_item = x_i.item() # if torch.isnan(x_i): # base.view(-1)[i] = x_i # continue # if x_i_item not in self.base_cache: # self.base_cache[x_i_item] = self.base_activation(x_i) # base.view(-1)[i] = self.base_cache[x_i_item] # # Compute the Caputo approximate fractional derivative # fractional_derivative = caputo_approximation(x, self.base_activation, self.derivative_order, h.view(-1), self.n) # # Combine the base activation function with its fractional derivative (e.g., addition) # output = base + fractional_derivative # return output.view_as(x) def forward(self, x): h = self.adaptive_step_size(x) # Compute the base activation function base = torch.zeros_like(x) for i, x_i in enumerate(x.view(-1)): x_i_item = x_i.item() if torch.isnan(x_i): base.view(-1)[i] = x_i continue if x_i_item not in self.base_cache: self.base_cache[x_i_item] = self.base_activation(x_i) base.view(-1)[i] = self.base_cache[x_i_item] # Compute the Caputo approximate fractional derivative fractional_derivative = caputo_approximation(x, self.base_activation, self.derivative_order, h.view(-1), self.n) # Combine the base activation function with its fractional derivative (e.g., addition) output = base.view(-1) + fractional_derivative return output.view_as(x)
EXA-1-master
exa/modular_components/activations/neox/neox4.py
import torch import torch.nn as nn from neox2 import SimplifiedOptimizedFractionalActivation # import torch # import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader, TensorDataset, random_split # from neox3 import CaputoFractionalActivation # from neox4 import CaputoFractionalActivation # from neox5 import CaputoFractionalActivation # from neox6 import CaputoFractionalActivation from neo7 import CaputoFractionalActivation from torch.utils.data import DataLoader #test neox5 class NovelActivationModel(nn.Module): def __init__(self): super(NovelActivationModel, self).__init__() self.fc1 = nn.Linear(20, 128) self.act1 = CaputoFractionalActivation(nn.ReLU(), 0.5) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.fc1(x) x = self.act1(x) x = self.fc2(x) return x class ReLUModel(nn.Module): def __init__(self): super(ReLUModel, self).__init__() self.fc1 = nn.Linear(20, 128) self.act1 = nn.ReLU() self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.fc1(x) x = self.act1(x) x = self.fc2(x) return x novel_activation_model = NovelActivationModel() relu_model = ReLUModel() # 1. Generate synthetic dataset num_samples = 1000 input_features = 20 output_classes = 2 # 1a. Generate random input features X = torch.randn(num_samples, input_features) # 1b. Generate corresponding output labels based on a predefined rule or function y = (X.sum(dim=1) > 0).long() # 2. Split the dataset into training and validation sets dataset = TensorDataset(X, y) train_size = int(0.8 * len(dataset)) val_size = len(dataset) - train_size train_dataset, val_dataset = random_split(dataset, [train_size, val_size]) # 3. Create the neural network models novel_activation_model = NovelActivationModel() relu_model = ReLUModel() # 4. Define the loss function, optimizer, and other hyperparameters criterion = nn.CrossEntropyLoss() novel_optimizer = optim.Adam(novel_activation_model.parameters(), lr=0.001) relu_optimizer = optim.Adam(relu_model.parameters(), lr=0.001) epochs = 50 batch_size = 64 # # 5. Train the models # def train_model(model, optimizer, train_dataset, val_dataset, criterion, epochs, batch_size): # train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) # val_loader = DataLoader(val_dataset, batch_size=batch_size) # for epoch in range(epochs): # model.train() # for inputs, labels in train_loader: # optimizer.zero_grad() # outputs = model(inputs) # loss = criterion(outputs, labels) # loss.backward() # optimizer.step() # model.eval() # val_loss = 0 # correct = 0 # total = 0 # with torch.no_grad(): # for inputs, labels in val_loader: # outputs = model(inputs) # loss = criterion(outputs, labels) # val_loss += loss.item() # _, predicted = torch.max(outputs, 1) # total += labels.size(0) # correct += (predicted == labels).sum().item() # accuracy = correct / total # print(f'Epoch {epoch + 1}/{epochs}, Validation Loss: {val_loss / len(val_loader):.4f}, Accuracy: {accuracy:.4f}') from torch.utils.data import DataLoader def train_model(model, optimizer, train_dataset, val_dataset, criterion, epochs, batch_size): train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False) for epoch in range(epochs): model.train() for inputs, targets in train_loader: optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, targets) loss.backward(retain_graph=True) optimizer.step() # Validation model.eval() with torch.no_grad(): val_loss = 0.0 correct = 0 total = 0 for inputs, targets in val_loader: outputs = model(inputs) loss = criterion(outputs, targets) val_loss += loss.item() _, predicted = torch.max(outputs, 1) total += targets.size(0) correct += (predicted == targets).sum().item() val_loss /= len(val_loader) accuracy = correct / total print(f'Epoch {epoch + 1}/{epochs}, Validation Loss: {val_loss:.4f}, Accuracy: {accuracy:.4f}') train_model(novel_activation_model, novel_optimizer, train_dataset, val_dataset, criterion, epochs, batch_size) train_model(relu_model, relu_optimizer, train_dataset, val_dataset, criterion, epochs, batch_size) # 6. Evaluate the models on the validation set and compare their performance # The evaluation is done during the training process, and the performance is printed at each epoch.
EXA-1-master
exa/modular_components/activations/neox/test.py
import torch import torch.nn as nn def fractional_derivative(x, base_activation, derivative_order, h=1e-5): # Apply base activation function on x base = base_activation(x) # Apply base activation function on x + h base_plus_h = base_activation(x + h) # Compute the fractional derivative using Gruenwald-Letnikov definition fractional_derivative = ((base_plus_h - base) / h) ** derivative_order return fractional_derivative class FractionalActivation(nn.Module): def __init__(self, base_activation, derivative_order): super(FractionalActivation, self).__init__() self.base_activation = base_activation self.derivative_order = derivative_order def forward(self, x): # Compute the base activation function base = self.base_activation(x) # Compute the fractional derivative fractional_derivative = fractional_derivative(x, self.base_activation, self.derivative_order) # Combine the base activation function with its fractional derivative (e.g., addition) output = base + fractional_derivative return output class SimpleNetwork(nn.Module): def __init__(self, input_size, hidden_size, output_size, base_activation, derivative_order): super(SimpleNetwork, self).__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.activation = FractionalActivation(base_activation, derivative_order) self.fc2 = nn.Linear(hidden_size, output_size) def forward(self, x): x = self.fc1(x) x = self.activation(x) x = self.fc2(x) return x input_size = 784 # Example for MNIST dataset hidden_size = 128 output_size = 10 base_activation = torch.relu derivative_order = 0.5 # Example fractional order network = SimpleNetwork(input_size, hidden_size, output_size, base_activation, derivative_order)
EXA-1-master
exa/modular_components/activations/neox/neox.py
import torch import torch.nn as nn import math import torch.jit def relu_activation(x): return torch.relu(x) @torch.jit.script def caputo_approximation(x, derivative_order, h, n): k = torch.arange(n).float().view(1, -1) x_expanded = x.view(-1, 1) h_expanded = h.view(-1, 1) factorial_k = torch.empty_like(k) for i in range(k.shape[1]): factorial_k[0, i] = math.factorial(int(k[0, i])) term = ((-1)**k) * torch.exp(torch.lgamma(derivative_order + k + 1)) / (factorial_k * torch.exp(torch.lgamma(derivative_order + 1))) * (relu_activation(x_expanded - k * h_expanded) - relu_activation(x_expanded - (k + 1) * h_expanded)) sum_terms = torch.sum(term, dim=-1) return sum_terms / h class Swish(nn.Module): def __init__(self): super(Swish, self).__init__() self.beta = nn.Parameter(torch.tensor(1.0)) def forward(self, x): return x * torch.sigmoid(self.beta * x) class CaputoFractionalActivation(nn.Module): def __init__(self, base_activation, derivative_order, n=20): super(CaputoFractionalActivation, self).__init__() self.base_activation = base_activation self.derivative_order = torch.tensor(float(derivative_order)) self.n = torch.tensor(n) self.alpha = nn.Parameter(torch.tensor(1.0)) def adaptive_step_size(self, x, min_step=1e-6, max_step=1e-3): x_mean = torch.mean(x) x_std = torch.std(x) step_size = min_step + self.alpha * (x - x_mean) / x_std * (max_step - min_step) return step_size def forward(self, x): h = self.adaptive_step_size(x) base = self.base_activation(x) fractional_derivative = caputo_approximation(x, self.derivative_order, h.view(-1), self.n) output = base.view_as(fractional_derivative) + fractional_derivative return output.view_as(x)
EXA-1-master
exa/modular_components/activations/neox/neo7.py
import torch import torch.nn as nn import math def gamma(n): return math.gamma(n) def caputo_approximation(x, base_activation, derivative_order, h, n): sum_terms = 0.0 for k in range(n): term = ((-1)**k) * gamma(derivative_order + k + 1) / (math.factorial(k) * gamma(derivative_order + 1)) * (base_activation(x - k * h) - base_activation(x - (k + 1) * h)) sum_terms += term return sum_terms / h class CaputoFractionalActivation(nn.Module): def __init__(self, base_activation, derivative_order, n=10): super(CaputoFractionalActivation, self).__init__() self.base_activation = base_activation self.derivative_order = derivative_order self.n = n def forward(self, x): h = 1e-5 # You can use the adaptive step size function from the previous examples to get h # Compute the base activation function base = self.base_activation(x) # Compute the Caputo approximate fractional derivative fractional_derivative = caputo_approximation(x, self.base_activation, self.derivative_order, h, self.n) # Combine the base activation function with its fractional derivative (e.g., addition) output = base + fractional_derivative return output
EXA-1-master
exa/modular_components/activations/neox/neox3.py
import torch import torch.nn as nn import math from scipy.special import gamma as scipy_gamma import functools import torch.jit def gamma(n): return math.gamma(n) def relu_activation(x): return torch.relu(x) def factorial_tensor(tensor): return torch.tensor([math.factorial(int(k_i)) for k_i in tensor]) @torch.jit.script def caputo_approximation(x, derivative_order, h, n): k = torch.arange(n).float().view(1, -1) x_expanded = x.view(-1, 1) h_expanded = h.view(-1, 1) # Compute the factorial of each element in k factorial_k = torch.empty_like(k) for i in range(k.shape[1]): factorial_k[0, i] = math.factorial(int(k[0, i])) term = ((-1)**k) * torch.exp(torch.lgamma(derivative_order + k + 1)) / (factorial_k * torch.exp(torch.lgamma(derivative_order + 1))) * (relu_activation(x_expanded - k * h_expanded) - relu_activation(x_expanded - (k + 1) * h_expanded)) sum_terms = torch.sum(term, dim=-1) return sum_terms / h class CaputoFractionalActivation(nn.Module): def __init__(self, base_activation, derivative_order, n=2): super(CaputoFractionalActivation, self).__init__() self.base_activation = base_activation self.derivative_order = torch.tensor(float(derivative_order)) # Convert derivative_order to a tensor self.n = torch.tensor(n) # Convert n to a tensor def adaptive_step_size(self, x, min_step=1e-6, max_step=1e-3): x_mean = torch.mean(x) x_std = torch.std(x) step_size = min_step + (x - x_mean) / x_std * (max_step - min_step) return step_size def forward(self, x): h = self.adaptive_step_size(x) # Compute the base activation function base = self.base_activation(x) # Compute the Caputo approximate fractional derivative fractional_derivative = caputo_approximation(x, self.derivative_order, h.view(-1), self.n) # Combine the base activation function with its fractional derivative (e.g., addition) output = base.view_as(fractional_derivative) + fractional_derivative return output.view_as(x)
EXA-1-master
exa/modular_components/activations/neox/neox6.py
import torch import torch.nn as nn def fractional_derivative(x, base_activation, derivative_order, h): base = base_activation(x) base_plus_h = base_activation(x + h) fractional_derivative = ((base_plus_h - base) / h) ** derivative_order return fractional_derivative class SimplifiedOptimizedFractionalActivation(nn.Module): def __init__(self, base_activation, derivative_order): super(SimplifiedOptimizedFractionalActivation, self).__init__() self.base_activation = base_activation self.derivative_order = derivative_order self.base_cache = {} # def adaptive_step_size(x, min_step=1e-6, max_step=1e-3): # # Normalize the input x # x_normalized = (x - x.min()) / (x.max() - x.min()) # # Calculate the desired step size based on the normalized input # step_size = min_step + x_normalized * (max_step - min_step) # return step_size #v2 TypeError: min(): argument 'input' (position 1) must be Tensor, not SimplifiedOptimizedFractionalActivation # def adaptive_step_size(x, min_step=1e-6, max_step=1e-3): # # Normalize the input x # x_normalized = (x - torch.min(x)) / (torch.max(x) - torch.min(x)) # # Calculate the desired step size based on the normalized input # step_size = min_step + x_normalized * (max_step - min_step) # return step_size #v3 def adaptive_step_size(self, x, min_step=1e-6, max_step=1e-3): # Normalize the input x x_normalized = (x - torch.min(x)) / (torch.max(x) - torch.min(x)) # Calculate the desired step size based on the normalized input step_size = min_step + x_normalized * (max_step - min_step) return step_size #v1 -RuntimeError: a Tensor with 8192 elements cannot be converted to Scalar # def forward(self, x): # h = self.adaptive_step_size(x) # # Caching base activation # if x.item() not in self.base_cache: # self.base_cache[x.item()] = self.base_activation(x) # base = self.base_cache[x.item()] # # Approximate fractional derivative # fractional_derivative = fractional_derivative(x, self.base_activation, self.derivative_order, h) # # Combine the base activation function with its fractional derivative (e.g., addition) # output = base + fractional_derivative # return output #v2 -> UnboundLocalError: cannot access local variable 'fractional_derivative' where it is not associated with a value # def forward(self, x): # h = self.adaptive_step_size(x) # # Caching base activation # output = torch.zeros_like(x) # for i, x_i in enumerate(x.view(-1)): # if x_i.item() not in self.base_cache: # self.base_cache[x_i.item()] = self.base_activation(x_i) # base = self.base_cache[x_i.item()] # # Approximate fractional derivative # fractional_derivative = fractional_derivative(x_i, self.base_activation, self.derivative_order, h[i]) # # Combine the base activation function with its fractional derivative (e.g., addition) # output[i] = base + fractional_derivative # return output.view_as(x) #v3 # def forward(self, x): # h = self.adaptive_step_size(x) # # Caching base activation # output = torch.zeros_like(x) # for i, x_i in enumerate(x.view(-1)): # if x_i.item() not in self.base_cache: # self.base_cache[x_i.item()] = self.base_activation(x_i) # base = self.base_cache[x_i.item()] # # Approximate fractional derivative # frac_derivative = fractional_derivative(x_i, self.base_activation, self.derivative_order, h[i]) # # Combine the base activation function with its fractional derivative (e.g., addition) # output[i] = base + frac_derivative # return output.view_as(x) #v4 -> IndexError: index 64 is out of bounds for dimension 0 with size 64 #IndexError: index 64 is out of bounds for dimension 0 with size 64 # def forward(self, x): # h = self.adaptive_step_size(x) # # Caching base activation # output = torch.zeros_like(x) # for i, x_i in enumerate(x.view(-1)): # if x_i.item() not in self.base_cache: # self.base_cache[x_i.item()] = self.base_activation(x_i) # base = self.base_cache[x_i.item()] # # Approximate fractional derivative # frac_derivative = fractional_derivative(x_i, self.base_activation, self.derivative_order, h.view(-1)[i]) # # Combine the base activation function with its fractional derivative (e.g., addition) # output[i] = base + frac_derivative # return output.view_as(x) #v5 - KeyError: nan def forward(self, x): h = self.adaptive_step_size(x) # Caching base activation output = torch.zeros_like(x) for i, x_i in enumerate(x.view(-1)): if x_i.item() not in self.base_cache: self.base_cache[x_i.item()] = self.base_activation(x_i) base = self.base_cache[x_i.item()] # Approximate fractional derivative frac_derivative = fractional_derivative(x_i, self.base_activation, self.derivative_order, h.view(-1)[i]) # Combine the base activation function with its fractional derivative (e.g., addition) output.view(-1)[i] = base + frac_derivative return output.view_as(x) #v6 def forward(self, x): h = self.adaptive_step_size(x) # Caching base activation output = torch.zeros_like(x) for i, x_i in enumerate(x.view(-1)): x_i_item = x_i.item() if torch.isnan(x_i): output.view(-1)[i] = x_i continue if x_i_item not in self.base_cache: self.base_cache[x_i_item] = self.base_activation(x_i) base = self.base_cache[x_i_item] # Approximate fractional derivative frac_derivative = fractional_derivative(x_i, self.base_activation, self.derivative_order, h.view(-1)[i]) # Combine the base activation function with its fractional derivative (e.g., addition) output.view(-1)[i] = base + frac_derivative return output.view_as(x)
EXA-1-master
exa/modular_components/activations/neox/neox2.py
import cmath import math import torch import numpy as np from scipy.integrate import solve_ivp import torch.optim import sympy as sp import torch.nn as nn import torch.optim as optim import torch.utils.data def jones_polynomial_torus_knot(m, n): t = sp.symbols('t') numerator = t**((m-1) * (n-1)/2) * (1 - t ** (m + 1) - t**(n + 1) + t**(m+n)) denominator = 1 - t **2 return numerator / denominator # def knot_invariant(x): # #convert the input value into a knot representation (m, n ) for a torus knot # m, n = int(x), int(x + 1) # #calculate the jones polynomial for the torus knot # jones_poly = jones_polynomial_torus_knot(m, n) # #eval the jones polynomial at a specific point # knot_inv = jones_poly.subs('t', 2) # return float(knot_inv) # def knot_invariant(x): # z = complex(x, 0) # return (z * cmath.exp(-z * z / 2)).real def lorenz_system(t, state, sigma, rho, beta): x, y, z = state dx_dt = sigma * (y - x) dy_dt = x * (rho - z) - y dz_dt = x * y - beta * z return [dx_dt, dy_dt, dz_dt] def convert_to_knot_representation(x): # Convert x to a suitable knot representation, for example, a torus knot (m, n) m = int(np.ceil(x)) n = m + 1 return (m, n) def knot_invariant(x): knot_representation = convert_to_knot_representation(x) return knot_representation def dynamical_systems_modeling(knot_representation): sigma, rho, beta = 10, 28, 8/3 initial_state = list(knot_representation) + [0] # Use knot_representation as the initial state t_span = (0, 1) sol = solve_ivp(lorenz_system, t_span, initial_state, args=(sigma, rho, beta), dense_output=True) output_value = sol.sol(1)[0] # Get the x value at t=1 return output_value # def knot_gelu(x): # knot_inv = [knot_invariant(val.item()) for val in x] # dyn_sys_mod = [dynamical_systems_modeling(knot_inv_val) for knot_inv_val in knot_inv] # dyn_sys_mod_tensor = torch.tensor(dyn_sys_mod, dtype=torch.float, device=x.device) # knot_gelu_output = 0.5 * x * (1 + torch.tanh(torch.sqrt(torch.tensor(2 / np.pi, device=x.device)) * (x + 0.044715 * torch.pow(x, 3))) * dyn_sys_mod_tensor) # return knot_gelu_output # def knot_gelu(x): # knot_inv = x.apply_(knot_invariant) # dyn_sys_mod = torch.tensor([dynamical_systems_modeling(knot_inv_val.item()) for knot_inv_val in knot_inv], dtype=torch.float, device=x.device) # knot_gelu_output = 0.5 * x * (1 + torch.tanh(torch.sqrt(torch.tensor(2 / np.pi, device=x.device)) * (x + 0.044715 * torch.pow(x, 3))) * dyn_sys_mod) # return knot_gelu_output # def knot_gelu(x): # def knot_invariant_grad(grad): # return grad.apply_(knot_invariant) # knot_inv = x.detach().apply_(knot_invariant) # dyn_sys_mod = torch.tensor([dynamical_systems_modeling(knot_inv_val.item()) for knot_inv_val in knot_inv], dtype=torch.float, device=x.device) # knot_gelu_output = 0.5 * x * (1 + torch.tanh(torch.sqrt(torch.tensor(2 / np.pi, device=x.device)) * (x + 0.044715 * torch.pow(x, 3))) * dyn_sys_mod) # knot_gelu_output.register_hook(knot_invariant_grad) # return knot_gelu_output # def knot_gelu(x): # knot_inv = x.detach().cpu().apply_(knot_invariant) # knot_inv = torch.tensor(knot_inv, dtype=torch.float32, device=x.device) # return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * knot_inv**3))) def knot_gelu(x): knot_inv = torch.tensor([knot_invariant(val.item()) for val in x], dtype=torch.float32, device=x.device) return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * knot_inv**3))) # Custom Activation Layer class CustomActivation(nn.Module): def __init__(self, activation_type): super(CustomActivation, self).__init__() self.activation_type = activation_type def forward(self, x): if self.activation_type == 'gelu': return 0.5 * x * (1 + torch.tanh(torch.sqrt(torch.tensor(2 / math.pi)) * (x + 0.044715 * torch.pow(x, 3)))) elif self.activation_type == 'knot_gelu': return knot_gelu(x) else: raise ValueError("Invalid activation type") # Simple Neural Network class SimpleNN(nn.Module): def __init__(self, input_size, hidden_size, output_size, activation_type='gelu'): super(SimpleNN, self).__init__() self.input_layer = nn.Linear(input_size, hidden_size) self.activation = CustomActivation(activation_type) self.output_layer = nn.Linear(hidden_size, output_size) def forward(self, x): x = self.input_layer(x) x = self.activation(x) x = self.output_layer(x) return x # Define input_size, hidden_size, and output_size based on your data and problem input_size = 10 hidden_size = 20 output_size = 2 # Initialize Simple Neural Networks with GELU and KnotGELU activations nn_gelu = SimpleNN(input_size, hidden_size, output_size, activation_type='gelu') nn_knot_gelu = SimpleNN(input_size, hidden_size, output_size, activation_type='knot_gelu') # Define loss function and optimizer criterion = nn.CrossEntropyLoss() optimizer_gelu = optim.SGD(nn_gelu.parameters(), lr=0.01) optimizer_knot_gelu = optim.SGD(nn_knot_gelu.parameters(), lr=0.01) # Train the networks and compare their performance on your dataset # Generate synthetic dataset num_samples = 1000 X = torch.randn(num_samples, input_size) Y = torch.randint(0, output_size, (num_samples,)) # Split dataset into training and testing sets train_ratio = 0.8 train_size = int(train_ratio * num_samples) test_size = num_samples - train_size X_train, X_test = torch.split(X, [train_size, test_size]) Y_train, Y_test = torch.split(Y, [train_size, test_size]) # Create DataLoaders train_dataset = torch.utils.data.TensorDataset(X_train, Y_train) test_dataset = torch.utils.data.TensorDataset(X_test, Y_test) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=32, shuffle=True) # Training loop def train(network, dataloader, optimizer, criterion, device): network.train() running_loss = 0.0 correct = 0 total = 0 for inputs, targets in dataloader: inputs, targets = inputs.to(device), targets.to(device) optimizer.zero_grad() outputs = network(inputs) loss = criterion(outputs, targets) loss.backward() optimizer.step() running_loss += loss.item() _, predicted = outputs.max(1) total += targets.size(0) correct += predicted.eq(targets).sum().item() return running_loss / len(dataloader), correct / total # Training settings epochs = 10 device = 'cuda' if torch.cuda.is_available() else 'cpu' nn_gelu.to(device) nn_knot_gelu.to(device) # Train and log progress for epoch in range(epochs): gelu_loss, gelu_acc = train(nn_gelu, train_loader, optimizer_gelu, criterion, device) knot_gelu_loss, knot_gelu_acc = train(nn_knot_gelu, train_loader, optimizer_knot_gelu, criterion, device) print(f'Epoch {epoch+1}/{epochs}:') print(f' GELU | Loss: {gelu_loss:.4f} | Accuracy: {gelu_acc:.4f}') print(f' KnotGELU| Loss: {knot_gelu_loss:.4f} | Accuracy: {knot_gelu_acc:.4f}')
EXA-1-master
exa/modular_components/activations/KNOTX/v4.py
import torch import numpy as np from scipy.integrate import solve_ivp import asyncio import concurrent.futures # Set the default device to use GPU if available device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def lorenz_ode(x0, y0, z0, sigma=10, rho=28, beta=8/3, dt=0.01, steps=1000): x, y, z = x0, y0, z0 for _ in range(steps): dx = sigma * (y - x) * dt dy = (x * (rho - z) - y) * dt dz = (x * y - beta * z) * dt x, y, z = x + dx, y + dy, z + dz return x, y, z def lorenz_system(t, state, sigma, rho, beta): x, y, z = state dx_dt = sigma * (y - x) dy_dt = x * (rho - z) - y dz_dt = x * y - beta * z return [dx_dt, dy_dt, dz_dt] def convert_to_knot_representation(x): m = int(np.ceil(x)) n = m + 1 return (m, n) def vectorized_knot_invariant(x): m = np.ceil(x) n = m + 1 return m * n def fast_tanh(x): return torch.tanh(x) def dynamical_systems_modeling(knot_representation): sigma, rho, beta = 10, 28, 8/3 initial_state = list(knot_representation) + [0] t_span = (0, 1) sol = solve_ivp(lorenz_system, t_span, initial_state, args=(sigma, rho, beta), dense_output=True, method='BDF') output_value = sol.sol(1)[0] return output_value async def parallel_lorenz_solver(initial_states): loop = asyncio.get_event_loop() with concurrent.futures.ThreadPoolExecutor() as executor: tasks = [loop.run_in_executor(executor, dynamical_systems_modeling, state) for state in initial_states] results = await asyncio.gather(*tasks) return results # def knotx(x, device): # x_flat = x.view(-1) # x_flat = x_flat.to(device) # knot_representation = np.array([convert_to_knot_representation(val.item()) for val in x_flat]) # lorenz_output = asyncio.run(parallel_lorenz_solver(knot_representation)) # lorenz_output = torch.tensor(lorenz_output, dtype=torch.float32, device=x.device).view_as(x_flat) # return x * (1 + lorenz_output) def knotx(x, device): output = torch.empty_like(x) for i in range(x.shape[0]): x0, y0, z0 = x[i], x[i] + 1, x[i] + 2 output[i] = lorenz_ode(x0, y0, z0)[-1] return output from torch.profiler import profile, record_function def profile_knotx(x): with profile(activities=[torch.profiler.ProfilerActivity.CPU], record_shapes=True) as prof: with record_function("knotx"): result = knotx(x) print(prof.key_averages().table(sort_by="self_cpu_time_total")) return result # def optimized_knotx(x: torch.Tensor, device: torch.device) -> torch.Tensor: # x_flat = x.view(-1) # x_flat = x_flat.to(device) # knot_inv = vectorized_knot_invariant(x_flat.detach().cpu().numpy()) # knot_inv_tensor = torch.tensor(knot_inv, dtype=torch.float32, device=x.device) # lorenz_output = 1 + fast_tanh(knot_inv_tensor**3).view_as(x_flat) # return x * lorenz_output.view_as(x) def optimized_knotx(x, device): x0, y0, z0 = x, x + 1, x + 2 x, y, z = lorenz_ode(x0, y0, z0) return z import timeit import psutil import os x = torch.randn(1000, device=device) # Create a random tensor of shape (1000,) for testing def measure_time_and_memory(func, x, device, num_runs=100): start_time = timeit.default_timer() start_memory = psutil.Process(os.getpid()).memory_info().rss for _ in range(num_runs): result = func(x.clone(), device) end_time = timeit.default_timer() end_memory = psutil.Process(os.getpid()).memory_info().rss time_elapsed = (end_time - start_time) / num_runs memory_used = end_memory - start_memory return time_elapsed, memory_used initial_states = [convert_to_knot_representation(x) for x in [0.5, 1.0, 1.5]] results = asyncio.run(parallel_lorenz_solver(initial_states)) print(results) time_elapsed, memory_used = measure_time_and_memory(knotx, x, device) print(f"Original function: Time elapsed = {time_elapsed:.6f} s, Memory used = {memory_used / 1024} KiB") time_elapsed, memory_used = measure_time_and_memory(optimized_knotx, x, device) print(f"Optimized function: Time elapsed = {time_elapsed:.6f} s, Memory used = {memory_used / 1024} KiB") # Check if the optimized function produces the same output as the original function x_test = torch.randn(1000, device=device) original_output = knotx(x_test.clone(), device) optimized_output = optimized_knotx(x_test.clone(), device) assert torch.allclose(original_output, optimized_output), "The outputs of the original and optimized functions do not match" # Profile the optimized function profiled_output = profile_knotx(x_test.clone()) assert torch.allclose(original_output, profiled_output), "The outputs of the original and profiled functions do not match" # Save the optimized function as a TorchScript module optimized_knotx_script = torch.jit.script(optimized_knotx) torch.jit.save(optimized_knotx_script, "optimized_knotx.pt") # Load the saved TorchScript module and test it loaded_optimized_knotx = torch.jit.load("optimized_knotx.pt") loaded_output = loaded_optimized_knotx(x_test.clone(), device) assert torch.allclose(original_output, loaded_output), "The outputs of the original and loaded functions do not match" print("All tests passed!")
EXA-1-master
exa/modular_components/activations/KNOTX/clean.py
import cmath import math import torch import numpy as np from scipy.integrate import solve_ivp import torch.optim import sympy as sp import torch.nn as nn import torch.optim as optim import torch.utils.data def lorenz_system(t, state, sigma, rho, beta): x, y, z = state dx_dt = sigma * (y - x) dy_dt = x * (rho - z) - y dz_dt = x * y - beta * z return [dx_dt, dy_dt, dz_dt] def jones_polynomial_torus_knot(m, n): t = sp.symbols('t') numerator = t**((m-1) * (n-1)/2) * (1 - t ** (m + 1) - t**(n + 1) + t**(m+n)) denominator = 1 - t **2 return numerator / denominator def convert_to_knot_representation(x): # Convert x to a suitable knot representation, for example, a torus knot (m, n) m = int(np.ceil(x)) n = m + 1 return (m, n) # def knot_invariant(x): # knot_representation = convert_to_knot_representation(x) # return knot_representation def knot_invariant(x): knot_representation = convert_to_knot_representation(x) m, n = knot_representation return m * n def dynamical_systems_modeling(knot_representation): sigma, rho, beta = 10, 28, 8/3 initial_state = list(knot_representation) + [0] # Use knot_representation as the initial state t_span = (0, 1) sol = solve_ivp(lorenz_system, t_span, initial_state, args=(sigma, rho, beta), dense_output=True) output_value = sol.sol(1)[0] # Get the x value at t=1 return output_value # def knot_gelu(x): # knot_inv = torch.tensor([knot_invariant(val.item()) for val in x], dtype=torch.float32, device=x.device) # return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * knot_inv**3))) # def knot_gelu(x): # knot_inv_list = [knot_invariant(val.item()) for val in x.view(-1)] # knot_inv = torch.tensor(knot_inv_list, dtype=torch.float32, device=x.device).view_as(x) # return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * knot_inv**3))) # def knot_gelu(x): # knot_inv_list = [knot_invariant(val.item()) for val in x.view(-1)] # knot_inv = torch.tensor(knot_inv_list, dtype=torch.float32, device=x.device).view(*x.shape) # return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * knot_inv**3))) # def knot_gelu(x): # x_flat = x.view(-1) # knot_inv_list = [knot_invariant(val.item()) for val in x_flat] # knot_inv = torch.tensor(knot_inv_list, dtype=torch.float32, device=x.device).view_as(x_flat) # return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * knot_inv**3))).view_as(x) # def knot_gelu(x): # x_flat = x.view(-1) # knot_inv_list = [knot_invariant(val.item()) for val in x_flat] # knot_inv = torch.tensor(knot_inv_list, dtype=torch.float32, device=x.device).view_as(x_flat) # return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * knot_inv**3))).view_as(x) #with gelu # def knot_gelu(x): # x_flat = x.view(-1) # knot_inv_list = [knot_invariant(val.item()) for val in x_flat] # knot_inv = torch.tensor(knot_inv_list, dtype=torch.float32, device=x.device).view_as(x_flat) # return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * knot_inv.view_as(x)**3))) #without gelu def knot_gelu(x): x_flat = x.view(-1) knot_inv_list = [knot_invariant(val.item()) for val in x_flat] knot_inv = torch.tensor(knot_inv_list, dtype=torch.float32, device=x.device).view_as(x_flat) lorenz_output = 1 + torch.tanh(knot_inv.view_as(x)**3) return x * lorenz_output # # Custom Activation Layer class CustomActivation(nn.Module): def __init__(self, activation_type): super(CustomActivation, self).__init__() self.activation_type = activation_type def forward(self, x): if self.activation_type == 'gelu': return 0.5 * x * (1 + torch.tanh(torch.sqrt(torch.tensor(2 / math.pi)) * (x + 0.044715 * torch.pow(x, 3)))) elif self.activation_type == 'knot_gelu': return knot_gelu(x) else: raise ValueError("Invalid activation type") # Simple Neural Network class SimpleNN(nn.Module): def __init__(self, input_size, hidden_size, output_size, activation_type='gelu'): super(SimpleNN, self).__init__() self.input_layer = nn.Linear(input_size, hidden_size) self.activation = CustomActivation(activation_type) self.output_layer = nn.Linear(hidden_size, output_size) def forward(self, x): x = self.input_layer(x) x = self.activation(x) x = self.output_layer(x) return x # Define input_size, hidden_size, and output_size based on your data and problem input_size = 10 hidden_size = 20 output_size = 2 # Initialize Simple Neural Networks with GELU and KnotGELU activations nn_gelu = SimpleNN(input_size, hidden_size, output_size, activation_type='gelu') nn_knot_gelu = SimpleNN(input_size, hidden_size, output_size, activation_type='knot_gelu') # Define loss function and optimizer criterion = nn.CrossEntropyLoss() optimizer_gelu = optim.SGD(nn_gelu.parameters(), lr=0.01) optimizer_knot_gelu = optim.SGD(nn_knot_gelu.parameters(), lr=0.01) # Train the networks and compare their performance on your dataset # Generate synthetic dataset num_samples = 1000 X = torch.randn(num_samples, input_size) Y = torch.randint(0, output_size, (num_samples,)) # Split dataset into training and testing sets train_ratio = 0.8 train_size = int(train_ratio * num_samples) test_size = num_samples - train_size X_train, X_test = torch.split(X, [train_size, test_size]) Y_train, Y_test = torch.split(Y, [train_size, test_size]) # Create DataLoaders train_dataset = torch.utils.data.TensorDataset(X_train, Y_train) test_dataset = torch.utils.data.TensorDataset(X_test, Y_test) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=32, shuffle=True) # Training loop def train(network, dataloader, optimizer, criterion, device): network.train() running_loss = 0.0 correct = 0 total = 0 for inputs, targets in dataloader: inputs, targets = inputs.to(device), targets.to(device) optimizer.zero_grad() outputs = network(inputs) loss = criterion(outputs, targets) loss.backward() optimizer.step() running_loss += loss.item() _, predicted = outputs.max(1) total += targets.size(0) correct += predicted.eq(targets).sum().item() return running_loss / len(dataloader), correct / total # Training settings epochs = 10 device = 'cuda' if torch.cuda.is_available() else 'cpu' nn_gelu.to(device) nn_knot_gelu.to(device) # Train and log progress for epoch in range(epochs): gelu_loss, gelu_acc = train(nn_gelu, train_loader, optimizer_gelu, criterion, device) knot_gelu_loss, knot_gelu_acc = train(nn_knot_gelu, train_loader, optimizer_knot_gelu, criterion, device) print(f'Epoch {epoch+1}/{epochs}:') print(f' GELU | Loss: {gelu_loss:.4f} | Accuracy: {gelu_acc:.4f}') print(f' KnotGELU| Loss: {knot_gelu_loss:.4f} | Accuracy: {knot_gelu_acc:.4f}')
EXA-1-master
exa/modular_components/activations/KNOTX/v5.py
#who fucking knows if this code will work import torch import numpy as np from scipy.integrate import solve_ivp # Define the knot_invariant function def knot_invariant(x): # Convert the input value x into a knot representation def knot_representation(x): return x * 2 # Calculate the knot invariant using a specific knot invariant algorithm (e.g., Jones polynomial) def jones_polynomial(knot_repr): return knot_repr ** 2 knot_repr = knot_representation(x) knot_inv = jones_polynomial(knot_repr) return knot_inv # Define the Lorenz system def lorenz_system(t, state, sigma, rho, beta): x, y, z = state dx_dt = sigma * (y - x) dy_dt = x * (rho - z) - y dz_dt = x * y - beta * z return [dx_dt, dy_dt, dz_dt] # Define the dynamical_systems_modeling function def dynamical_systems_modeling(x, model='lorenz', params=None): if model == 'lorenz': # Define the Lorenz system parameters if params is None: sigma, rho, beta = 10, 28, 8/3 else: sigma, rho, beta = params # Set initial state and time span initial_state = [x, x, x] t_span = (0, 1) # Solve the Lorenz system sol = solve_ivp(lorenz_system, t_span, initial_state, args=(sigma, rho, beta), dense_output=True) # Calculate the output value based on the applied dynamical system model output_value = sol.sol(1)[0] # Get the x value at t=1 return output_value # Define the KnotGELU activation function def knot_gelu(x): knot_inv = knot_invariant(x.item()) dyn_sys_mod = dynamical_systems_modeling(knot_inv) # Create the hyper-efficient version of GELU knot_gelu_output = 0.5 * x * (1 + torch.tanh(torch.sqrt(2 / np.pi) * (x + 0.044715 * torch.pow(x, 3))) * dyn_sys_mod) return knot_gelu_output # Test the KnotGELU activation function with sample input input_values = torch.tensor([-1.0, 0.0, 1.0], dtype=torch.float64) output_values = knot_gelu(input_values) print("Output values after applying KnotGELU activation function:", output_values)
EXA-1-master
exa/modular_components/activations/KNOTX/knotx.py
import torch import numpy as np from scipy.integrate import solve_ivp #define the knot invarient function def knot_invariant(x): #convert the input value x into a knot representation def knot_representation(x): return x * 2 #calculate the knot invariant using a specific knot invariant algorithm [jones polynomial] def jones_polynomial(knot_repr): return knot_repr ** 2 knot_repr = knot_representation(x) knot_inv = jones_polynomial(knot_repr) return knot_inv #define the lorenx system def lorenz_system(t, state, sigma, rho, beta): x, y, z = state dx_dt = sigma * (y - x) dy_dt = x * (rho - z) - y dz_dt = x * y - beta * z return [dx_dt, dy_dt, dz_dt] #define the dynamical systems modeling function def dynamical_systems_modeling(x, model="lorenz", params=None): if model == 'lorenz': #define the lorenz systems parameters if params is None: sigma, rho, beta = 10, 28, 8/3 else: sigma, rho, beta = params #set initial state and time span initial_state = [x, x, x] t_span = (0, 1) #solve lorenz system sol = solve_ivp(lorenz_system, t_span, initial_state, args=(sigma, rho, beta), dense_output=True) #calculate the output value based on the applied dynamcal system model output_value = sol.sol(1)[0] return output_value #define the KNOTX activation function def knotx(x): knot_inv = knot_invariant(x) dyn_sys_mod = dynamical_systems_modeling(knot_inv) #create the hyper efficient version of gelu knotx_output = 0.5 * x * (1 + torch.tanh(torch.sqrt(torch.tensor(2 / np.pi)) * (x + 0.044715 * torch.pow(x, 3))) * dyn_sys_mod) return knotx_output #test the knotx activation function input_values = torch.tensor([-1.0, 0.0, 1.0], dtype=torch.float64) output_values = torch.tensor([knotx(x) for x in input_values]) print(f"output values after applying knotx activation function {output_values}")
EXA-1-master
exa/modular_components/activations/KNOTX/knotxv2.py
# import torch # import numpy as np # from scipy.integrate import solve_ivp # import torch.optim # import sympy as sp # import torch.nn as nn # import torch.utils.data # import concurrent.futures # device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # def lorenz_system(t, state, sigma, rho, beta): # x, y, z = state # dx_dt = sigma * (y - x) # dy_dt = x * (rho - z) - y # dz_dt = x * y - beta * z # return [dx_dt, dy_dt, dz_dt] # def jones_polynomial_torus_knot(m, n): # t = sp.symbols('t') # numerator = t**((m-1) * (n-1)/2) * (1 - t ** (m + 1) - t**(n + 1) + t**(m+n)) # denominator = 1 - t **2 # return numerator / denominator # def convert_to_knot_representation(x): # # Convert x to a suitable knot representation, for example, a torus knot (m, n) # m = int(np.ceil(x)) # n = m + 1 # return (m, n) # def knot_invariant(x): # knot_representation = convert_to_knot_representation(x) # m, n = knot_representation # return m * n # def dynamical_systems_modeling(knot_representation): # sigma, rho, beta = 10, 28, 8/3 # initial_state = list(knot_representation) + [0] # Use knot_representation as the initial state # t_span = (0, 1) # sol = solve_ivp(lorenz_system, t_span, initial_state, args=(sigma, rho, beta), dense_output=True) # output_value = sol.sol(1)[0] # Get the x value at t=1 # return output_value # def vectorized_knot_invariant(x): # m = np.ceil(x) # n = m + 1 # return m * n # def fast_tanh(x): # return x / (1 + np.abs(x)) # def parallel_lorenz_solver(initial_states): # with concurrent.futures.ThreadPoolExecutor() as executor: # results = list(executor.map(dynamical_systems_modeling, initial_states)) # return results # #v1 # # def knotx(x): # # x_flat = x.view(-1) # # knot_inv = vectorized_knot_invariant(x_flat.numpy()) # # lorenz_output = 1 + torch.tensor(fast_tanh(knot_inv**3), dtype=torch.float32, device=x.device).view_as(x_flat) # # return x * lorenz_output.view_as(x) # # error occurs because we're trying to call numpy() on a tensor that requires gradient computation. To fix this issue, we can use detach().numpy() instead of numpy(). # #v2 # def knotx(x): # x_flat = x.view(-1) # x_flat = x_flat.to(device) # Move the tensor to the GPU if available # knot_inv = vectorized_knot_invariant(x_flat.detach().cpu().numpy()) # lorenz_output = 1 + torch.tensor(fast_tanh(knot_inv**3), dtype=torch.float32, device=x.device).view_as(x_flat) # return x * lorenz_output.view_as(x) import torch import numpy as np from scipy.integrate import solve_ivp import torch.optim import sympy as sp import torch.nn as nn import torch.optim as optim import torch.utils.data import concurrent.futures # Set the default device to use GPU if available device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def lorenz_system(t, state, sigma, rho, beta): x, y, z = state dx_dt = sigma * (y - x) dy_dt = x * (rho - z) - y dz_dt = x * y - beta * z return [dx_dt, dy_dt, dz_dt] def jones_polynomial_torus_knot(m, n): t = sp.symbols('t') numerator = t**((m-1) * (n-1)/2) * (1 - t ** (m + 1) - t**(n + 1) + t**(m+n)) denominator = 1 - t **2 return numerator / denominator def convert_to_knot_representation(x): # Convert x to a suitable knot representation, for example, a torus knot (m, n) m = int(np.ceil(x)) n = m + 1 return (m, n) def knot_invariant(x): knot_representation = convert_to_knot_representation(x) m, n = knot_representation return m * n def dynamical_systems_modeling(knot_representation): sigma, rho, beta = 10, 28, 8/3 initial_state = list(knot_representation) + [0] # Use knot_representation as the initial state t_span = (0, 1) sol = solve_ivp(lorenz_system, t_span, initial_state, args=(sigma, rho, beta), dense_output=True) output_value = sol.sol(1)[0] # Get the x value at t=1 return output_value def vectorized_knot_invariant(x): m = np.ceil(x) n = m + 1 return m * n def fast_tanh(x): return x / (1 + np.abs(x)) def parallel_lorenz_solver(initial_states): with concurrent.futures.ThreadPoolExecutor() as executor: results = list(executor.map(dynamical_systems_modeling, initial_states)) return results def knotx(x): x_flat = x.view(-1) x_flat = x_flat.to(device) # Move the tensor to the GPU if available knot_inv = vectorized_knot_invariant(x_flat.detach().cpu().numpy()) lorenz_output = 1 + torch.tensor(fast_tanh(knot_inv**3), dtype=torch.float32, device=x.device).view_as(x_flat) return x * lorenz_output.view_as(x)
EXA-1-master
exa/modular_components/activations/KNOTX/working.py
import numpy as np import torch from scipy.integrate import solve_ivp def convert_to_knot_representation(x): m = int(np.ceil(x)) n = m + 1 return (m, n) def lorenz_system(t, y, sigma=10, rho=28, beta=8/3): x, y, z = y dxdt = sigma * (y - x) dydt = x * (rho - z) - y dzdt = x * y - beta * z return [dxdt, dydt, dzdt] def lorenz_ode(x0, y0, z0, t_span=(0, 10), t_eval=None): if t_eval is None: t_eval = np.linspace(t_span[0], t_span[1], 1000) sol = solve_ivp( lorenz_system, t_span, (x0, y0, z0), t_eval=t_eval, method="RK45", args=(10, 28, 8/3) ) return sol.y[:, -1] def knotx(x, device): x_flat = x.view(-1) x_flat = x_flat.to(device) knot_representation = np.array([convert_to_knot_representation(val.item()) for val in x_flat]) lorenz_output = [] for m, n in knot_representation: x0, y0, z0 = m, n, n + 1 lorenz_output.append(lorenz_ode(x0, y0, z0)[-1]) lorenz_output = torch.tensor(lorenz_output, dtype=torch.float32, device=x.device).view_as(x_flat) return x * (1 + lorenz_output) # def knotx(x, device): # output = torch.empty_like(x) # for i in range(x.shape[0]): # x0, y0, z0 = x[i], x[i] + 1, x[i] + 2 # output[i] = lorenz_ode(x0, y0, z0)[-1] # return output # def test_knotx(): # device = torch.device('cuda' if torch.cuda.is_available() else "cpu") # #create a random input tensor with the shape (batch size 1) # batch_size = 5 # x = torch.rand(batch_size, 1) * 10 # #run the knotx function on the input token # output = knotx(x, device) # #check if the output tensor has the same shape as the input tensor # assert output.shape == x.shape, f"output shape {output.shape} does not match input shape {x.shape}" # #check if the output values are updated as expected # for i in range(batch_size): # x_val = x[i].item() # expected_output = x_val * (1 + lorenz_ode(*convert_to_knot_representation(x_val), x_val + 1, x_val + 2)[-1]) # assert np.isclose(output[i].item(), expected_output, rtol=1e-5), f"Output value {output[i].item()} does not match expected value {expected.output}" # print("knotx test passed") # test_knotx() import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # Generate initial conditions for the Lorenz system x0, y0, z0 = 1, 1, 1 # Solve the Lorenz system and get the output trajectory t_span = (0, 100) sol = solve_ivp(lorenz_system, t_span, (x0, y0, z0), t_eval=np.linspace(*t_span, 10000)) x, y, z = sol.y # Create a 3D plot of the trajectory fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.plot(x, y, z) plt.show() device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') #====================> knotx visulization # Define the range of input values for x x_range = np.linspace(-10, 10, 100) # Generate the knotx output for each input value knotx_output = knotx(torch.tensor(x_range, dtype=torch.float32, device=device), device) # Use the knotx output to generate x, y, and z coordinates for the Lorenz system x_coords = knotx_output.detach().cpu().numpy() y_coords = knotx_output.detach().cpu().numpy() - 1 z_coords = knotx_output.detach().cpu().numpy() + 1 # Initialize a 3D plot fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # Plot the Lorenz system trajectory ax.plot(x_coords, y_coords, z_coords) # Set the axis labels ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('z') # Show the plot plt.show()
EXA-1-master
exa/modular_components/activations/KNOTX/knotODE.py
import torch import numpy as np from scipy.integrate import solve_ivp import torch.optim import sympy as sp import torch.nn as nn import torch.optim as optim import torch.utils.data import concurrent.futures import asyncio import torch.jit # Set the default device to use GPU if available device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def lorenz_system(t, state, sigma, rho, beta): x, y, z = state dx_dt = sigma * (y - x) dy_dt = x * (rho - z) - y dz_dt = x * y - beta * z return [dx_dt, dy_dt, dz_dt] def jones_polynomial_torus_knot(m, n): t = sp.symbols('t') numerator = t**((m-1) * (n-1)/2) * (1 - t ** (m + 1) - t**(n + 1) + t**(m+n)) denominator = 1 - t **2 return numerator / denominator def convert_to_knot_representation(x): # Convert x to a suitable knot representation, for example, a torus knot (m, n) m = int(np.ceil(x)) n = m + 1 return (m, n) def knot_invariant(x): knot_representation = convert_to_knot_representation(x) m, n = knot_representation return m * n # ===========================+> #use a more efficient ode solver like the backward differentiation formula solver # async def dynamical_systems_modeling(knot_representation): # sigma, rho, beta = 10, 28, 8/3 # initial_state = list(knot_representation) + [0] # Use knot_representation as the initial state # t_span = (0, 1) # # sol = solve_ivp(lorenz_system, t_span, initial_state, args=(sigma, rho, beta), dense_output=True) # sol = solve_ivp(lorenz_system, t_span, initial_state, args=(sigma, rho, beta), dense_output=True, method='BDF') # output_value = sol.sol(1)[0] # Get the x value at t=1 # return output_value def dynamical_systems_modeling(knot_representation): sigma, rho, beta = 10, 28, 8/3 initial_state = list(knot_representation) + [0] t_span = (0, 1) sol = solve_ivp(lorenz_system, t_span, initial_state, args=(sigma, rho, beta), dense_output=True, method='BDF') output_value = sol.sol(1)[0] return output_value def vectorized_knot_invariant(x): m = np.ceil(x) n = m + 1 return m * n #torch built in vectorized function for faster computation def fast_tanh(x): return torch.tanh(x) # ===========================+> #batch processing of multiple inputs def parallel_lorenz_solver_batch(inital_states, batch_size=10): num_batches = len(initial_states) // batch_size results = [] for i in range(num_batches): batch = initial_states[i * batch_size: (i + 1) * batch_size] batch_results = parallel_lorenz_solver(batch) results.extend(batch_results) return results # ===========================+> # async def parallel_lorenz_solver(initial_states): # async with concurrent.futures.ThreadPoolExecutor() as executor: # results = list(executor.map(dynamical_systems_modeling, initial_states)) # return results #removed async def parallel_lorenz_solver(initial_states): loop = asyncio.get_event_loop() with concurrent.futures.ThreadPoolExecutor() as executor: tasks = [loop.run_in_executor(executor, dynamical_systems_modeling, state) for state in initial_states] results = asyncio.gather(*tasks) return results #v1 # def knotx(x, device): # x_flat = x.view(-1) # x_flat = x_flat.to(device) # Move the tensor to the GPU if available # knot_inv = vectorized_knot_invariant(x_flat.detach().cpu().numpy()) # lorenz_output = 1 + torch.tensor(fast_tanh(knot_inv**3), dtype=torch.float32, device=x.device).view_as(x_flat) # return x * lorenz_output.view_as(x) #v2 --> converts a numpy array into a torch tensor # def knotx(x, device): # x_flat = x.view(-1) # x_flat = x_flat.to(device) # Move the tensor to the GPU if available # knot_inv = vectorized_knot_invariant(x_flat.detach().cpu().numpy()) # knot_inv_tensor = torch.tensor(knot_inv, dtype=torch.float32, device=x.device) # Convert the NumPy array to a tensor # lorenz_output = 1 + fast_tanh(knot_inv_tensor**3).view_as(x_flat) # Use the tensor in fast_tanh # return x * lorenz_output.view_as(x) #v3 -> call lorenz ode solution def knotx(x, device): x_flat = x.view(-1) x_flat = x_flat.to(device) # Move the tensor to the GPU if available knot_representation = np.array([convert_to_knot_representation(val.item()) for val in x_flat]) lorenz_output = parallel_lorenz_solver(knot_representation) lorenz_output = torch.tensor(lorenz_output, dtype=torch.float32, device=x.device).view_as(x_flat) return x * (1 + lorenz_output) from torch.profiler import profile, record_function def profile_knotx(x): with profile(activities=[torch.profiler.ProfilerActivity.CPU], record_shapes=True) as prof: with record_function("knotx"): result = knotx(x) print(prof.key_averages().table(sort_by="self_cpu_time_total")) return result #v1 # def optimized_knotx(x): # x_flat = x.view(-1).to(device) # knot_inv = vectorized_knot_invariant(x_flat.detach().cpu().numpy()) # lorenz_output = torch.tesnor(fast_tanh(knot_inv **3), dtype=torch.float32, device=x.device).view_as(x_flat) # #in place multiplication # x.mul_(lorenz_output.view_as(x)) # return x #v2 # def optimized_knotx(x): # x_flat = x.view(-1) # x_flat = x_flat.to(device) # Move the tensor to the GPU if available # knot_inv = vectorized_knot_invariant(x_flat.detach().cpu().numpy()) # lorenz_output = 1 + torch.tensor(fast_tanh(knot_inv**3), dtype=torch.float32, device=x.device).view_as(x_flat) # return x * lorenz_output.view_as(x) #v3 #optimized knotx for torch jit # @torch.jit.script # def optimized_knotx(x: torch.Tensor, device: torch.device) -> torch.Tensor: # x_flat = x.view(-1) # x_flat = x_flat.to(device) # Move the tensor to the GPU if available # knot_inv = vectorized_knot_invariant(x_flat.detach().cpu().numpy()) # lorenz_output = 1 + torch.tensor(fast_tanh(knot_inv**3), dtype=torch.float32, device=x.device).view_as(x_flat) # return x * lorenz_output.view_as(x) #v4 # def optimized_knotx(x, device): # x_flat = x.view(-1) # x_flat = x_flat.to(device) # Move the tensor to the GPU if available # knot_inv = vectorized_knot_invariant(x_flat.detach().cpu().numpy()) # lorenz_output = 1 + torch.tensor(fast_tanh(knot_inv**3), dtype=torch.float32, device=x.device).view_as(x_flat) # return x * lorenz_output.view_as(x) #v35--> transforming numpy array into torch tensor def optimized_knotx(x: torch.Tensor, device: torch.device) -> torch.Tensor: x_flat = x.view(-1) x_flat = x_flat.to(device) # Move the tensor to the GPU if available knot_inv = vectorized_knot_invariant(x_flat.detach().cpu().numpy()) knot_inv_tensor = torch.tensor(knot_inv, dtype=torch.float32, device=x.device) # Convert the NumPy array to a tensor lorenz_output = 1 + fast_tanh(knot_inv_tensor**3).view_as(x_flat) # Use the tensor in fast_tanh return x * lorenz_output.view_as(x) initial_states = [convert_to_knot_representation(x) for x in [0.5, 1.0, 1.5]] results = asyncio.run(parallel_lorenz_solver(initial_states)) print(results) import timeit import psutil import os x = torch.randn(1000, device=device) # Create a random tensor of shape (1000,) for testing # Update the measure_time_and_memory function to pass the device as an argument # Update the measure_time_and_memory function to pass the device as an argument def measure_time_and_memory(func, x, device, num_runs=100): start_time = timeit.default_timer() start_memory = psutil.Process(os.getpid()).memory_info().rss for _ in range(num_runs): result = func(x.clone(), device) # Pass the device as an argument end_time = timeit.default_timer() end_memory = psutil.Process(os.getpid()).memory_info().rss time_elapsed = (end_time - start_time) / num_runs memory_used = end_memory - start_memory return time_elapsed, memory_used # ... time_elapsed, memory_used = measure_time_and_memory(knotx, x, device) print(f"Original function: Time elapsed = {time_elapsed:.6f} s, Memory used = {memory_used / 1024} KiB") time_elapsed, memory_used = measure_time_and_memory(optimized_knotx, x, device) print(f"Optimized function: Time elapsed = {time_elapsed:.6f} s, Memory used = {memory_used / 1024} KiB")
EXA-1-master
exa/modular_components/activations/KNOTX/experimental_async.py
#vectorized operations #cache knot invariants #faster approamiation #paralleize the lorenz system solver # use a lower order ode solver\ import math import torch import numpy as np from scipy.integrate import solve_ivp import torch.optim import sympy as sp import torch.nn as nn import torch.optim as optim import torch.utils.data import concurrent.futures # def vectorized_knot_invariant(x): # m = np.ceil(x) # n = m + 1 # return m * n # def fast_tanh(x): # return x / (1 + np.abs(x)) # def lorenz_system(t, state, sigma, rho, beta): # x, y, z = state # dx_dt = sigma * (y - x) # dy_dt = x * (rho - z) - y # dz_dt = x * y - beta * z # return [dx_dt, dy_dt, dz_dt] # def jones_polynomial_torus_knot(m, n): # t = sp.symbols('t') # numerator = t**((m-1) * (n-1)/2) * (1 - t ** (m + 1) - t**(n + 1) + t**(m+n)) # denominator = 1 - t ** 2 # return numerator /denominator # def convert_to_knot_representation(x): # #convert x to a suitable knot representation for example a torus knot(m, n) # m = int(np.ceil(x)) # n = m + 1 # return (m, n) # def knot_invariant(x): # knot_representation = convert_to_knot_representation(x) # m, n = knot_representation # return m * n # def parallel_lorenz_solver(initial_states): # with concurrent.futures.ThreadPoolExecutor() as executor: # results = list(executor.map(dynamical_systems_modeling, initial_state)) # def dynamical_systems_modeling(knot_representation): # sigma, rho, beta = 10, 28, 8/3 # initial_state = list(knot_representation) + [0] # Use knot_representation as the initial state # t_span = (0, 1) # sol = solve_ivp(lorenz_system, t_span, initial_state, args=(sigma, rho, beta), dense_output=True) # output_value = sol.sol(1)[0] # Get the x value at t=1 # return output_value # def knotx(x): # x_flat = x.view(-1) # knot_inv = vectorized_knot_invariant(x_flat.numpy()) # lorenz_output = 1 + torch.tensor(fast_tanh(knot_inv**3), dtype=torch.float32, device=x.device) # return x * lorenz_output.view_as(x) def lorenz_system(t, state, sigma, rho, beta): x, y, z = state dx_dt = sigma * (y - x) dy_dt = x * (rho - z) - y dz_dt = x * y - beta * z return [dx_dt, dy_dt, dz_dt] def jones_polynomial_torus_knot(m, n): t = sp.symbols('t') numerator = t**((m-1) * (n-1)/2) * (1 - t ** (m + 1) - t**(n + 1) + t**(m+n)) denominator = 1 - t **2 return numerator / denominator def convert_to_knot_representation(x): # Convert x to a suitable knot representation, for example, a torus knot (m, n) m = int(np.ceil(x)) n = m + 1 return (m, n) def knot_invariant(x): knot_representation = convert_to_knot_representation(x) m, n = knot_representation return m * n def dynamical_systems_modeling(knot_representation): sigma, rho, beta = 10, 28, 8/3 initial_state = list(knot_representation) + [0] # Use knot_representation as the initial state t_span = (0, 1) sol = solve_ivp(lorenz_system, t_span, initial_state, args=(sigma, rho, beta), dense_output=True) output_value = sol.sol(1)[0] # Get the x value at t=1 return output_value def vectorized_knot_invariant(x): m = np.ceil(x) n = m + 1 return m * n def fast_tanh(x): return x / (1 + np.abs(x)) def parallel_lorenz_solver(initial_states): with concurrent.futures.ThreadPoolExecutor() as executor: results = list(executor.map(dynamical_systems_modeling, initial_states)) return results #v1 # def knotx(x): # x_flat = x.view(-1) # knot_inv = vectorized_knot_invariant(x_flat.numpy()) # lorenz_output = 1 + torch.tensor(fast_tanh(knot_inv**3), dtype=torch.float32, device=x.device).view_as(x_flat) # return x * lorenz_output.view_as(x) # error occurs because we're trying to call numpy() on a tensor that requires gradient computation. To fix this issue, we can use detach().numpy() instead of numpy(). #v2 def knotx(x): x_flat = x.view(-1) knot_inv = vectorized_knot_invariant(x_flat.detach().numpy()) lorenz_output = 1 + torch.tensor(fast_tanh(knot_inv**3), dtype=torch.float32, device=x.device).view_as(x_flat) return x * lorenz_output.view_as(x) #v3 #simple test # class SimpleNN(nn.Module): # def __init__(self): # super(SimpleNN, self).__init__() # self.linear = nn.Linear(10, 10) # self.activation = knotx # def forward(self, x): # x = self.linear(x) # x = self.activation(x) # return x # # Create a random input tensor of size (batch_size, 10) # input_tensor = torch.randn(5, 10) # # Initialize the simple neural network # model = SimpleNN() # # Forward pass the input tensor through the model # output_tensor = model(input_tensor) # # Print the output tensor # print("Output tensor:") # print(output_tensor) # # Custom Activation Layer class CustomActivation(nn.Module): def __init__(self, activation_type): super(CustomActivation, self).__init__() self.activation_type = activation_type def forward(self, x): if self.activation_type == 'gelu': return 0.5 * x * (1 + torch.tanh(torch.sqrt(torch.tensor(2 / math.pi)) * (x + 0.044715 * torch.pow(x, 3)))) elif self.activation_type == 'knot_gelu': return knotx(x) else: raise ValueError("Invalid activation type") # Simple Neural Network class SimpleNN(nn.Module): def __init__(self, input_size, hidden_size, output_size, activation_type='gelu'): super(SimpleNN, self).__init__() self.input_layer = nn.Linear(input_size, hidden_size) self.activation = CustomActivation(activation_type) self.output_layer = nn.Linear(hidden_size, output_size) def forward(self, x): x = self.input_layer(x) x = self.activation(x) x = self.output_layer(x) return x # Define input_size, hidden_size, and output_size based on your data and problem input_size = 10 hidden_size = 20 output_size = 2 # Initialize Simple Neural Networks with GELU and KnotGELU activations nn_gelu = SimpleNN(input_size, hidden_size, output_size, activation_type='gelu') nn_knot_gelu = SimpleNN(input_size, hidden_size, output_size, activation_type='knot_gelu') # Define loss function and optimizer criterion = nn.CrossEntropyLoss() optimizer_gelu = optim.SGD(nn_gelu.parameters(), lr=0.01) optimizer_knot_gelu = optim.SGD(nn_knot_gelu.parameters(), lr=0.01) # Train the networks and compare their performance on your dataset # Generate synthetic dataset num_samples = 1000 X = torch.randn(num_samples, input_size) Y = torch.randint(0, output_size, (num_samples,)) # Split dataset into training and testing sets train_ratio = 0.8 train_size = int(train_ratio * num_samples) test_size = num_samples - train_size X_train, X_test = torch.split(X, [train_size, test_size]) Y_train, Y_test = torch.split(Y, [train_size, test_size]) # Create DataLoaders train_dataset = torch.utils.data.TensorDataset(X_train, Y_train) test_dataset = torch.utils.data.TensorDataset(X_test, Y_test) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=32, shuffle=True) # Training loop def train(network, dataloader, optimizer, criterion, device): network.train() running_loss = 0.0 correct = 0 total = 0 for inputs, targets in dataloader: inputs, targets = inputs.to(device), targets.to(device) optimizer.zero_grad() outputs = network(inputs) loss = criterion(outputs, targets) loss.backward() optimizer.step() running_loss += loss.item() _, predicted = outputs.max(1) total += targets.size(0) correct += predicted.eq(targets).sum().item() return running_loss / len(dataloader), correct / total # Training settings epochs = 10 device = 'cuda' if torch.cuda.is_available() else 'cpu' nn_gelu.to(device) nn_knot_gelu.to(device) # Train and log progress for epoch in range(epochs): gelu_loss, gelu_acc = train(nn_gelu, train_loader, optimizer_gelu, criterion, device) knot_gelu_loss, knot_gelu_acc = train(nn_knot_gelu, train_loader, optimizer_knot_gelu, criterion, device) print(f'Epoch {epoch+1}/{epochs}:') print(f' GELU | Loss: {gelu_loss:.4f} | Accuracy: {gelu_acc:.4f}') print(f' KnotGELU| Loss: {knot_gelu_loss:.4f} | Accuracy: {knot_gelu_acc:.4f}')
EXA-1-master
exa/modular_components/activations/KNOTX/v6.py
import torch import numpy as np from scipy.integrate import solve_ivp import torch.optim import sympy as sp import torch.nn as nn import torch.optim as optim import torch.utils.data import concurrent.futures import asyncio # Set the default device to use GPU if available device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def lorenz_system(t, state, sigma, rho, beta): x, y, z = state dx_dt = sigma * (y - x) dy_dt = x * (rho - z) - y dz_dt = x * y - beta * z return [dx_dt, dy_dt, dz_dt] def jones_polynomial_torus_knot(m, n): t = sp.symbols('t') numerator = t**((m-1) * (n-1)/2) * (1 - t ** (m + 1) - t**(n + 1) + t**(m+n)) denominator = 1 - t **2 return numerator / denominator def convert_to_knot_representation(x): # Convert x to a suitable knot representation, for example, a torus knot (m, n) m = int(np.ceil(x)) n = m + 1 return (m, n) def knot_invariant(x): knot_representation = convert_to_knot_representation(x) m, n = knot_representation return m * n async def dynamical_systems_modeling(knot_representation): sigma, rho, beta = 10, 28, 8/3 initial_state = list(knot_representation) + [0] # Use knot_representation as the initial state t_span = (0, 1) sol = solve_ivp(lorenz_system, t_span, initial_state, args=(sigma, rho, beta), dense_output=True) output_value = sol.sol(1)[0] # Get the x value at t=1 return output_value def vectorized_knot_invariant(x): m = np.ceil(x) n = m + 1 return m * n def fast_tanh(x): return x / (1 + np.abs(x)) async def parallel_lorenz_solver(initial_states): async with concurrent.futures.ThreadPoolExecutor() as executor: results = list(executor.map(dynamical_systems_modeling, initial_states)) return results def knotx(x): x_flat = x.view(-1) x_flat = x_flat.to(device) # Move the tensor to the GPU if available knot_inv = vectorized_knot_invariant(x_flat.detach().cpu().numpy()) lorenz_output = 1 + torch.tensor(fast_tanh(knot_inv**3), dtype=torch.float32, device=x.device).view_as(x_flat) return x * lorenz_output.view_as(x) from torch.profiler import profile, record_function def profile_knotx(x): with profile(activities=[torch.profiler.ProfilerActivity.CPU], record_shapes=True) as prof: with record_function("knotx"): result = knotx(x) print(prof.key_averages().table(sort_by="self_cpu_time_total")) return result # def optimized_knotx(x): # x_flat = x.view(-1).to(device) # knot_inv = vectorized_knot_invariant(x_flat.detach().cpu().numpy()) # lorenz_output = torch.tesnor(fast_tanh(knot_inv **3), dtype=torch.float32, device=x.device).view_as(x_flat) # #in place multiplication # x.mul_(lorenz_output.view_as(x)) # return x def optimized_knotx(x): x_flat = x.view(-1) x_flat = x_flat.to(device) # Move the tensor to the GPU if available knot_inv = vectorized_knot_invariant(x_flat.detach().cpu().numpy()) lorenz_output = 1 + torch.tensor(fast_tanh(knot_inv**3), dtype=torch.float32, device=x.device).view_as(x_flat) return x * lorenz_output.view_as(x) import timeit import psutil import os def measure_time_and_memory(func, x, num_runs=100): start_time = timeit.default_timer() start_memory = psutil.Process(os.getpid()).memory_info().rss for _ in range(num_runs): result = func(x.clone()) # Use a clone of x to avoid modifying the original tensor end_time = timeit.default_timer() end_memory = psutil.Process(os.getpid()).memory_info().rss time_elapsed = (end_time - start_time) / num_runs memory_used = end_memory - start_memory return time_elapsed, memory_used x = torch.tensor([0.5, 1.0, 1.5], device=device) # Test original function time_elapsed, memory_used = measure_time_and_memory(knotx, x) print(f"Original function: Time elapsed = {time_elapsed:.6f} s, Memory used = {memory_used / 1024} KiB") # Test optimized function time_elapsed, memory_used = measure_time_and_memory(optimized_knotx, x) print(f"Optimized function: Time elapsed = {time_elapsed:.6f} s, Memory used = {memory_used / 1024} KiB")
EXA-1-master
exa/modular_components/activations/KNOTX/async.py
import torch import numpy as np from scipy.integrate import solve_ivp import torch.optim import sympy as sp import torch.nn as nn import torch.optim as optim import torch.utils.data import concurrent.futures def lorenz_system(t, state, sigma, rho, beta): x, y, z = state dx_dt = sigma * (y - x) dy_dt = x * (rho - z) - y dz_dt = x * y - beta * z return [dx_dt, dy_dt, dz_dt] def jones_polynomial_torus_knot(m, n): t = sp.symbols('t') numerator = t**((m-1) * (n-1)/2) * (1 - t ** (m + 1) - t**(n + 1) + t**(m+n)) denominator = 1 - t **2 return numerator / denominator def convert_to_knot_representation(x): # Convert x to a suitable knot representation, for example, a torus knot (m, n) m = int(np.ceil(x)) n = m + 1 return (m, n) def knot_invariant(x): knot_representation = convert_to_knot_representation(x) m, n = knot_representation return m * n def dynamical_systems_modeling(knot_representation): sigma, rho, beta = 10, 28, 8/3 initial_state = list(knot_representation) + [0] # Use knot_representation as the initial state t_span = (0, 1) sol = solve_ivp(lorenz_system, t_span, initial_state, args=(sigma, rho, beta), dense_output=True) output_value = sol.sol(1)[0] # Get the x value at t=1 return output_value def vectorized_knot_invariant(x): m = np.ceil(x) n = m + 1 return m * n def fast_tanh(x): return x / (1 + np.abs(x)) def parallel_lorenz_solver(initial_states): with concurrent.futures.ThreadPoolExecutor() as executor: results = list(executor.map(dynamical_systems_modeling, initial_states)) return results #v1 # def knotx(x): # x_flat = x.view(-1) # knot_inv = vectorized_knot_invariant(x_flat.numpy()) # lorenz_output = 1 + torch.tensor(fast_tanh(knot_inv**3), dtype=torch.float32, device=x.device).view_as(x_flat) # return x * lorenz_output.view_as(x) # error occurs because we're trying to call numpy() on a tensor that requires gradient computation. To fix this issue, we can use detach().numpy() instead of numpy(). #v2 def knotx(x): x_flat = x.view(-1) knot_inv = vectorized_knot_invariant(x_flat.detach().numpy()) lorenz_output = 1 + torch.tensor(fast_tanh(knot_inv**3), dtype=torch.float32, device=x.device).view_as(x_flat) return x * lorenz_output.view_as(x)
EXA-1-master
exa/modular_components/activations/KNOTX/main.py
import torch import numpy as np from scipy.integrate import solve_ivp import torch.optim import sympy as sp import torch.nn as nn import torch.optim as optim def jones_polynomial_torus_knot(m, n): t = sp.symbols('t') numerator = t**((m-1) * (n-1)/2) * (1 - t ** (m + 1) - t**(n + 1) + t**(m+n)) denominator = 1 - t **2 return numerator / denominator def knot_invariant(x): #convert the input value into a knot representation (m, n ) for a torus knot m, n = int(x), int(x + 1) #calculate the jones polynomial for the torus knot jones_poly = jones_polynomial_torus_knot(m, n) #eval the jones polynomial at a specific point knot_inv = jones_poly.subs('t', 2) return float(knot_inv) def lorenz_system(t, state, sigma, rho, beta): x, y, z = state dx_dt = sigma * (y - x) dy_dt = x * (rho - z) - y dz_dt = x * y - beta * z return [dx_dt, dy_dt, dz_dt] def convert_to_knot_representation(x): # Convert x to a suitable knot representation, for example, a torus knot (m, n) m = int(np.ceil(x)) n = m + 1 return (m, n) def knot_invariant(x): knot_representation = convert_to_knot_representation(x) return knot_representation def dynamical_systems_modeling(knot_representation): sigma, rho, beta = 10, 28, 8/3 initial_state = list(knot_representation) + [0] # Use knot_representation as the initial state t_span = (0, 1) sol = solve_ivp(lorenz_system, t_span, initial_state, args=(sigma, rho, beta), dense_output=True) output_value = sol.sol(1)[0] # Get the x value at t=1 return output_value def knot_gelu(x): knot_inv = knot_invariant(x.item()) dyn_sys_mod = dynamical_systems_modeling(knot_inv) knot_gelu_output = 0.5 * x * (1 + torch.tanh(torch.sqrt(torch.tensor(2 / np.pi)) * (x + 0.044715 * torch.pow(x, 3))) * dyn_sys_mod) return knot_gelu_output #input_values = torch.tensor([-1.0, 0.0, 1.0]) #output_values = torch.tensor([knot_gelu(x) for x in input_values]) #print("Output values after applying KnotGELU activation function:", output_values) # Simple Neural Network class SimpleNN(nn.Module): def __init__(self, input_size, hidden_size, output_size, activation_type='gelu'): super(SimpleNN, self).__init__() self.input_layer = nn.Linear(input_size, hidden_size) self.activation = knot_gelu(activation_type) self.output_layer = nn.Linear(hidden_size, output_size) def forward(self, x): x = self.input_layer(x) x = self.activation(x) x = self.output_layer(x) return x # Define input_size, hidden_size, and output_size based on your data and problem input_size = 10 hidden_size = 20 output_size = 2 # Initialize Simple Neural Networks with GELU and KnotGELU activations nn_gelu = SimpleNN(input_size, hidden_size, output_size, activation_type='gelu') nn_knot_gelu = SimpleNN(input_size, hidden_size, output_size, activation_type='knot_gelu') # Define loss function and optimizer criterion = nn.CrossEntropyLoss() optimizer_gelu = optim.SGD(nn_gelu.parameters(), lr=0.01) optimizer_knot_gelu = optim.SGD(nn_knot_gelu.parameters(), lr=0.01) # Train the networks and compare their performance on your dataset
EXA-1-master
exa/modular_components/activations/KNOTX/v3.py
import sympy as sp def jones_polynomial_torus_knot(m, n): t = sp.symbols('t') numerator = t**((m-1) * (n-1)/2) * (1 - t ** (m + 1) - t**(n + 1) + t**(m+n)) denominator = 1 - t **2 return numerator / denominator def knot_invariant(x): #convert the input value into a knot representation (m, n ) for a torus knot m, n = int(x), int(x + 1) #calculate the jones polynomial for the torus knot jones_poly = jones_polynomial_torus_knot(m, n) #eval the jones polynomial at a specific point knot_inv = jones_poly.subs('t', 2) return float(knot_inv) #test the knot invariant function with sample input input_value = 1.0 knot_inv_value = knot_invariant(input_value) print(f"Knot invariant value after applying knot invariant function {knot_inv_value}")
EXA-1-master
exa/modular_components/activations/KNOTX/knot/jones.py
import jax import jax.numpy as jnp @jit def lorenz(sigma, beta, rho, X, t): x, y, z = X xdot = sigma * (y - x) ydot = X * (rho - z) - y zdot = x * y - beta * z return jnp.array([xdot, ydot, zdot]) #since th params are fixed we use a partial to create aa new function that does not ask them g = partial(lorenz, 10,8 / 3, 28) g = jit(g) #inital condition x_0 = jnp.ones(3) #time intervals t_vals = jnp.linspace(0., 450., 45000) #integrate the function to get the data sol = odeint(g, x_0, t_vals) X = sol[500:]
EXA-1-master
exa/modular_components/activations/KNOTX/visualizations/lorenz.py
import numpy as np import torch import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from scipy.integrate import solve_ivp def convert_to_knot_representation(x): m = int(np.ceil(x)) n = m + 1 return (m, n) def knotx(x, device): x_flat = x.view(-1) x_flat = x_flat.to(device) knot_representation = np.array([convert_to_knot_representation(val.item()) for val in x_flat]) lorenz_output = [] for m, n in knot_representation: x0, y0, z0 = m, n, n + 1 lorenz_output.append(lorenz_ode(x0, y0, z0)[-1]) lorenz_output = torch.tensor(lorenz_output, dtype=torch.float32, device=x.device).view_as(x_flat) return x * (1 + lorenz_output) def visualize_knot_representation(x): device = torch.device('cpu') knot_reps = [convert_to_knot_representation(val) for val in x] # Calculate Lorenz system output for each knot representation lorenz_output = [] for m, n in knot_reps: x0, y0, z0 = m, n, n + 1 lorenz_output.append(lorenz_ode(x0, y0, z0)[-1]) x_coords = x.cpu().numpy() y_coords = x.cpu().numpy() - 1 z_coords = x.cpu().numpy() + 1 # Shift coordinates by Lorenz system output y_coords -= np.array(lorenz_output) z_coords += np.array(lorenz_output) # Plot the knot representation fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.plot(x_coords, y_coords, z_coords) ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('z') plt.show() def lorenz_system(t, y, sigma=10, rho=28, beta=8/3): x, y, z = y dxdt = sigma * (y - x) dydt = x * (rho - z) - y dzdt = x * y - beta * z return [dxdt, dydt, dzdt] def lorenz_ode(x0, y0, z0, t_span=(0, 10), t_eval=None): if t_eval is None: t_eval = np.linspace(t_span[0], t_span[1], 1000) sol = solve_ivp( lorenz_system, t_span, (x0, y0, z0), t_eval=t_eval, method="RK45", args=(10, 28, 8/3) ) return sol.y[:, -1] # Example usage device = torch.device('cpu') x = torch.tensor([[-10, -5, 0, 5], [1, 2, 3, 4], [5, 6, 7, 8]], dtype=torch.float32, device=device) knotx_output = knotx(x, device) visualize_knot_representation(knotx_output)
EXA-1-master
exa/modular_components/activations/KNOTX/visualizations/knot.py
import torch.multiprocessing as mp import time import copy class InfinityWarp: def __init__(self, model, train_data, train_labels, infer_data, train_fn, infer_fn): self.model = model self.train_data = train_data self.train_labels = train_labels self.infer_data = infer_data self.train_fn = train_fn self.infer_fn = infer_fn def train_model(self): self.train_fn(self.model, self.train_data, self.train_labels) def perform_inference(self): while True: #perform a deep copy of the model parameters to avoid any conflict model_copy = copy.deepcopy(self.model) preds = self.infer_fn(model_copy, self.infer_data) print(f"Inference result: {preds}") time.sleep(0.5) def start(self): train_process = mp.Processor(target=self.train_model) infer_process = mp.Processor(target=self.perform_inference) train_process.start() infer_process.start() train_process.join() infer_process.join()
EXA-1-master
exa/modular_components/infinityWarp/InfinityWarp.py
import torch.multiprocessing as mp import time import copy class InfinityWarp: def __init__(self, model, train_data, train_labels, infer_data): self.model = model self.train_data = train_data self.train_labels = train_labels self.infer_data = infer_data def train_model(self): for data, labels in zip(self.train_data, self.train_labels): self.model.train_step(data, labels) time.sleep(0.1) def perform_inference(self): while True: #perform a deep copy of the models params to avoid any conflict model_copy = copy.deepcopy(self.model) preds = model_copy.infer(self.infer_data) print(f"Inference result: {preds}") time.sleep(0.5) def start(self): train_process = mp.Process(target=self.train_model) infer_process = mp.Processor(target=self.perform_inference) train_process.start() infer_process.start() train_process.join() infer_process.join()
EXA-1-master
exa/modular_components/infinityWarp/experimental/InfinityWarp3.py
import multiprocessing import time import copy import torch class ConcurrentTrainInference: def __init__(self, model, train_data, train_labels, infer_data): self.model = model self.train_data = train_data self.train_labels = train_labels self.infer_data = infer_data def train_model(self, lock, model_params): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.model.to(device) for data, labels in zip(self.train_data, self.train_labels): with lock: self.model_train_step(data, labels) torch.save(self.model.state_dict(), model_params) time.sleep(0.1) # simulate training time def perform_inference(self, lock, model_params): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.model.to(device) while True: with lock: model_copy = copy.deepcopy(self.model) model_copy.load_state_dict(torch.load(model_params)) preds = model_copy.infer(self.infer_data) print(f"Inference results {preds}") time.sleep(0.5) def start(self): manager = multiprocessing.Manager() lock = manager.Lock() model_params = manager.Value(str, "") train_process = multiprocessing.Process(target=self.train_model, args=(lock, model_params)) infer_process = multiprocessing.Process(target=self.perform_inference, args=(lock, model_params)) train_process.start() infer_process.start() train_process.join() infer_process.terminate()
EXA-1-master
exa/modular_components/infinityWarp/experimental/InfinityWarp2.py
import threading import time import copy class ConcurrentTrainInference: def __init__(self, model, train_data, train_labels, infer_data): self.model = model self.train_data = train_data self.train_labels = train_labels self.infer_data = infer_data def train_model(self): for data, labels in zip(self.train_data, self.train_labels): self.model.train_step(data, labels) time.sleep(0.1) # sumulate training time def perform_inference(self): while True: #perform a deep copy of the models params to avoid any conflicts model_copy = copy.deepcopy(self.model) preds = model_copy.infer(self.infer_data) print(f"Inference results: {preds}") time.sleep(0.5) def start(self): train_thread = threading.Thread(target=self.train_model) infer_thread = threading.Thread(target=self.perform_inference) train_thread.start() infer_thread.start() train_thread.join() infer_thread.join() # to use # # Define your neural network model here # class MyNeuralNet: # # ... (as before) # # Initialize model and training/inference data # model = MyNeuralNet() # train_data, train_labels = load_training_data() # Implement data loading function # infer_data = load_inference_data() # Implement data loading function # # Create and start the concurrent training and inference component # concurrent_component = ConcurrentTrainInference(model, train_data, train_labels, infer_data) # concurrent_component.start()
EXA-1-master
exa/modular_components/infinityWarp/experimental/infinitywarp.py
# import torch.multiprocessing as mp # import time # import copy # import # # Modify the InfinityWarp class # class InfinityWarp: # def __init__(self, accelerator, model, train_data, train_labels, infer_data, train_fn, infer_fn): # self.accelerator = accelerator # self.model = model # self.train_data = train_data # self.train_labels = train_labels # self.infer_data = infer_data # self.train_fn = train_fn # self.infer_fn = infer_fn # def train_model(self): # # Wrap the training function with the accelerator # self.train_fn(self.accelerator, self.model, self.train_data, self.train_labels) # def perform_inference(self): # # Wrap the inference function with the accelerator # while True: # preds = self.infer_fn(self.accelerator, self.model, self.infer_data) # print(f"Inference result: {preds}") # time.sleep(0.5) # def start(self): # # Use accelerator.launch() to start the train_model and perform_inference functions # self.accelerator.launch(self.train_model) # self.accelerator.launch(self.perform_inference) # # In the train function: # def train(args): # # Instantiate the accelerator (Hugging Face Accelerate or PyTorch Distributed) # accelerator = ... # # Modify the custom_train_fn and custom_infer_fn to use the accelerator # def custom_train_fn(accelerator, model, train_data, train_labels): # # Your training logic using 'train_dataloader' in place of 'train_data', wrapped with the accelerator # def custom_infer_fn(accelerator, model, infer_data): # # Your custom inference logic, wrapped with the accelerator # # Instantiate the InfinityWarp class # iw = InfinityWarp(accelerator, model, train_dataloader, None, infer_data, custom_train_fn, custom_infer_fn) # # Start the training and inference processes # iw.start()
EXA-1-master
exa/modular_components/infinityWarp/distributed/InfinityWarp.py
import torch import torch.nn as nn import torch.nn.functional as F class VisionLanguageEmbedding(nn.Module): def __init__(self, text_embed, vision_embed): super().__init__() self.text_embed = text_embed self.vision_embed = vision_embed def forward(self, textual_tokens, visual_tokens, **kwargs): if textual_tokens is None: return self.vision_embed(visual_tokens) if visual_tokens is None: return self.text_embed(textual_tokens) x1 = self.vision_embed(visual_tokens) x2 = self.text_embed(textual_tokens) return torch.cat([x1, x2], dim=1) class VisionEmbedding(nn.Module): """Image to Patch Embedding""" def __init__( self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, contain_mask_token=False, prepend_cls_token=False, ): super().__init__() img_size = (img_size, img_size) patch_size = (patch_size, patch_size) num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv2d( in_chans, embed_dim, kernel_size=patch_size, stride=patch_size ) if contain_mask_token: self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) else: self.mask_token = None if prepend_cls_token: self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) else: self.cls_token = None def num_position_embeddings(self): if self.cls_token is None: return self.num_patches else: return self.num_patches + 1 def forward(self, x, masked_position=None, **kwargs): B, C, H, W = x.shape assert ( H == self.img_size[0] and W == self.img_size[1] ), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x).flatten(2).transpose(1, 2) batch_size, seq_len, _ = x.size() if masked_position is not None: assert self.mask_token is not None mask_token = self.mask_token.expand(batch_size, seq_len, -1) w = masked_position.unsqueeze(-1).type_as(mask_token) x = x * (1 - w) + mask_token * w if self.cls_token is not None: cls_tokens = self.cls_token.expand( batch_size, -1, -1 ) # stole cls_tokens impl from Phil Wang, thanks x = torch.cat((cls_tokens, x), dim=1) return x class TextEmbedding(nn.Embedding): def reset_parameters(self): nn.init.normal_(self.weight, mean=0, std=self.embedding_dim**-0.5) self._fill_padding_idx_with_zero() class PositionalEmbedding(nn.Embedding): def forward( self, x, positions=None, **kwargs, ): if positions is None: # being consistent with Fairseq, which starts from 2. positions = ( torch.arange(2, x.size(1) + 2, device=x.device).long().unsqueeze(0) ) return F.embedding( positions, self.weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse, ) class AudioEmbedding(nn.Module): def __init__(self, in_channels, embed_dim): super().__init__() self.conv = nn.Conv2d(in_channels, embed_dim, kernel_size=1) def forward(self, x, **kwargs): return self.conv(x) class OmniModalityEmbedding(nn.Module): def __init__(self, text_embed, vision_embed, audio_embed): super().__init__() self.text_embed = text_embed self.vision_embed = vision_embed self.audio_embed = audio_embed def forward(self, input_data, modality_type, **kwargs): if modality_type == "text": return self.text_embed(input_data, **kwargs) elif modality_type == "vision": return self.vision_embed(input_data, **kwargs) elif modality_type == "audio": return self.audio_embed(input_data, **kwargs) else: raise ValueError(f"Unsupported modality type {modality_type}") #instantiate the embedding module text_embed = TextEmbedding(num_embeddings=10000, embedding_dim=768) vision_embed = VisionEmbedding(img_size=224, patch_size=16, in_chans=3, embed_dim=768) audio_embed = AudioEmbedding(in_channels=128, embed_dim=768) #create the omnimodality embedding instance OmniMorph = OmniModalityEmbedding(text_embed, vision_embed, audio_embed) #example usage for different modalities text_input = torch.randint(0, 10000, (1, 50)) vision_input = torch.randn(1, 3, 224, 224) audio_input = torch.randn(1, 128, 100) text_embedding = OmniMorph(text_input, "text") vision_embedding = OmniMorph(vision_input, 'vision') audio_embedding = OmniMorph(audio_input, 'audio')
EXA-1-master
exa/modular_components/embedding/OmniMorph/OMNI.py
import torch import torch.nn as nn class VisionLanguageEmbedding(nn.Module): def __init__(self, text_embed, vision_embed): super().__init__() self.text_embed = text_embed self.vision_embed = vision_embed def forward(self, textual_tokens, visual_tokens, **kwargs): if textual_tokens is None: return self.vision_embed(visual_tokens) if visual_tokens is None: return self.text_embed(textual_tokens) x1 = self.vision_embed(visual_tokens) x2 = self.text_embed(textual_tokens) return torch.cat([x1, x2], dim=1) class VisionEmbedding(nn.Module): """Image to Patch Embedding""" def __init__( self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, contain_mask_token=False, prepend_cls_token=False, ): super().__init__() img_size = (img_size, img_size) patch_size = (patch_size, patch_size) num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv2d( in_chans, embed_dim, kernel_size=patch_size, stride=patch_size ) if contain_mask_token: self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) else: self.mask_token = None if prepend_cls_token: self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) else: self.cls_token = None def num_position_embeddings(self): if self.cls_token is None: return self.num_patches else: return self.num_patches + 1 def forward(self, x, masked_position=None, **kwargs): B, C, H, W = x.shape assert ( H == self.img_size[0] and W == self.img_size[1] ), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x).flatten(2).transpose(1, 2) batch_size, seq_len, _ = x.size() if masked_position is not None: assert self.mask_token is not None mask_token = self.mask_token.expand(batch_size, seq_len, -1) w = masked_position.unsqueeze(-1).type_as(mask_token) x = x * (1 - w) + mask_token * w if self.cls_token is not None: cls_tokens = self.cls_token.expand( batch_size, -1, -1 ) # stole cls_tokens impl from Phil Wang, thanks x = torch.cat((cls_tokens, x), dim=1) return x class TextEmbedding(nn.Embedding): def reset_parameters(self): nn.init.normal_(self.weight, mean=0, std=self.embedding_dim**-0.5) self._fill_padding_idx_with_zero() class AudioEmbedding(nn.Module): def __init__(self, in_channels, embed_dim): super().__init__() self.conv = nn.Conv2d(in_channels, embed_dim, kernel_size=1) def forward(self, x, **kwargs): return self.conv(x) class OmniMorph(nn.Module): def __init__(self, *args, **kwargs): super().__init__() self._embedding_registry = {} self._embedding_instances = {} self._fusion_techniques = {} # preregister and instantiate the embedding functions # Pre-register and instantiate the embedding functions # Pre-register and instantiate the embedding functions self.register_and_instantiate('text', TextEmbedding, num_embeddings=10000, embedding_dim=768) self.register_and_instantiate('vision', VisionEmbedding, img_size=224, patch_size=16, in_chans=3, embed_dim=768) self.register_and_instantiate('audio', AudioEmbedding, in_channels=128, embed_dim=768) # self.register_and_instantiate('video', VideoEmbedding, num_channels=3, time_dim=10, height=224, width=224, embed_dim=768) # Instantiate VisionLanguageEmbedding with visionembeddings and textembeddings instances vision_embed_instance = self._embedding_instances.get('vision') text_embed_instance = self._embedding_instances.get('text') self.vision_language_embedding = VisionLanguageEmbedding(text_embed_instance, vision_embed_instance) def register_and_instantiate(self, modality_type, embedding_class, **kwargs): self.register_embedding(modality_type, embedding_class) self.instantiate_embedding(modality_type, **kwargs) def register_embedding(self, modality_type, embedding_class): self._embedding_registry[modality_type] = embedding_class def instantiate_embedding(self, modality_type, embedding_class=None, *args, **kwargs): if embedding_class is None: embedding_class = self._embedding_registry.get(modality_type) if embedding_class is not None: self._embedding_instances[modality_type] = embedding_class(*args, **kwargs) else: raise ValueError(f"Unsupported modality type: {modality_type}") def forward(self, input_data, modality_type=None, fusion_technique=None, file_extension=None, user_defined_modality=None, custom_modality_fn=None, **kwargs): if modality_type is None: modality_type = self.detect_modality(input_data, file_extension=file_extension, user_defined_modality=user_defined_modality, custom_modality_fn=custom_modality_fn) print(modality_type) embedding_instance = self._embedding_instances.get(modality_type) if embedding_instance is not None: embedding = embedding_instance(input_data, **kwargs) print(embedding) if fusion_technique: fusion_fn = self._fusion_techniques.get(fusion_technique) if fusion_fn: embedding = fusion_fn(embedding) print(embedding) else: raise ValueError(f"Unsupported fusion technique: {fusion_technique}") return embedding else: raise ValueError(f"Embedding for modality type {modality_type} not instantiated") def detect_modality(self, input_data, file_extension=None, user_defined_modality=None, custom_modality_fn=None): if user_defined_modality: return user_defined_modality if custom_modality_fn: return custom_modality_fn(input_data) if file_extension: extension_mapping = { '.txt': 'text', '.json': 'text', '.jpg': 'vision', '.png': 'vision', '.mp3': 'audio', '.wav': 'audio', '.mp4': 'video', '.avi': 'video', } return extension_mapping.get(file_extension.lower()) # Existing modality detection logic if len(input_data.shape) == 2 and input_data.dtype == torch.int64: return 'text' elif len(input_data.shape) == 4: return 'vision' elif len(input_data.shape) == 3: return 'audio' elif len(input_data.shape) == 5: return 'video' else: raise ValueError("Unable to detect input data modality") def register_fusion_technique(self, technique_name, fusion_fn): self._fusion_techniques[technique_name] = fusion_fn omni_morph = OmniMorph() text_input = torch.randint(0, 10000, (1, 50)) # vision_input = torch.randn(1, 3, 224, 224) # audio_input = torch.randn(1, 128, 100) # audio_input = audio_input.unsqueeze(1) # Add a new dimension for channels text_embedding = omni_morph(text_input, user_defined_modality='text') # modality_type is automatically detected # vision_embedding = omni_morph(vision_input) # modality_type is automatically detected # audio_embedding = omni_morph(audio_input) # modality_type is automatically detected
EXA-1-master
exa/modular_components/embedding/OmniMorph/OMNI5.py
import torch import torch.nn as nn class VisionLanguageEmbedding(nn.Module): def __init__(self, text_embed, vision_embed): super().__init__() self.text_embed = text_embed self.vision_embed = vision_embed def forward(self, textual_tokens, visual_tokens, **kwargs): if textual_tokens is None: return self.vision_embed(visual_tokens) if visual_tokens is None: return self.text_embed(textual_tokens) x1 = self.vision_embed(visual_tokens) x2 = self.text_embed(textual_tokens) return torch.cat([x1, x2], dim=1) class VisionEmbedding(nn.Module): """Image to Patch Embedding""" def __init__( self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, contain_mask_token=False, prepend_cls_token=False, ): super().__init__() img_size = (img_size, img_size) patch_size = (patch_size, patch_size) num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv2d( in_chans, embed_dim, kernel_size=patch_size, stride=patch_size ) if contain_mask_token: self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) else: self.mask_token = None if prepend_cls_token: self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) else: self.cls_token = None def num_position_embeddings(self): if self.cls_token is None: return self.num_patches else: return self.num_patches + 1 def forward(self, x, masked_position=None, **kwargs): B, C, H, W = x.shape assert ( H == self.img_size[0] and W == self.img_size[1] ), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x).flatten(2).transpose(1, 2) batch_size, seq_len, _ = x.size() if masked_position is not None: assert self.mask_token is not None mask_token = self.mask_token.expand(batch_size, seq_len, -1) w = masked_position.unsqueeze(-1).type_as(mask_token) x = x * (1 - w) + mask_token * w if self.cls_token is not None: cls_tokens = self.cls_token.expand( batch_size, -1, -1 ) # stole cls_tokens impl from Phil Wang, thanks x = torch.cat((cls_tokens, x), dim=1) return x class TextEmbedding(nn.Embedding): def reset_parameters(self): nn.init.normal_(self.weight, mean=0, std=self.embedding_dim**-0.5) self._fill_padding_idx_with_zero() class AudioEmbedding(nn.Module): def __init__(self, in_channels, embed_dim): super().__init__() self.conv = nn.Conv2d(in_channels, embed_dim, kernel_size=1) def forward(self, x, **kwargs): return self.conv(x) class OmniMorph(nn.Module): def __init__(self, *args, **kwargs): super().__init__() self._embedding_registry = {} self._embedding_instances = {} self._fusion_techniques = {} # preregister and instantiate the embedding functions # Pre-register and instantiate the embedding functions # Pre-register and instantiate the embedding functions self.register_and_instantiate('text', TextEmbedding, num_embeddings=10000, embedding_dim=768) self.register_and_instantiate('vision', VisionEmbedding, img_size=224, patch_size=16, in_chans=3, embed_dim=768) self.register_and_instantiate('audio', AudioEmbedding, in_channels=128, embed_dim=768) # self.register_and_instantiate('video', VideoEmbedding, num_channels=3, time_dim=10, height=224, width=224, embed_dim=768) # Instantiate VisionLanguageEmbedding with visionembeddings and textembeddings instances vision_embed_instance = self._embedding_instances.get('vision') text_embed_instance = self._embedding_instances.get('text') self.vision_language_embedding = VisionLanguageEmbedding(text_embed_instance, vision_embed_instance) def register_and_instantiate(self, modality_type, embedding_class, **kwargs): self.register_embedding(modality_type, embedding_class) self.instantiate_embedding(modality_type, **kwargs) def register_embedding(self, modality_type, embedding_class): self._embedding_registry[modality_type] = embedding_class def instantiate_embedding(self, modality_type, embedding_class=None, *args, **kwargs): if embedding_class is None: embedding_class = self._embedding_registry.get(modality_type) if embedding_class is not None: self._embedding_instances[modality_type] = embedding_class(*args, **kwargs) else: raise ValueError(f"Unsupported modality type: {modality_type}") def forward(self, input_data, modality_type=None, fusion_technique=None, **kwargs): if modality_type is None: modality_type = self.detect_modality(input_data) print(modality_type) embedding_instance = self._embedding_instances.get(modality_type) if embedding_instance is not None: embedding = embedding_instance(input_data, **kwargs) print(embedding) if fusion_technique: fusion_fn = self._fusion_techniques.get(fusion_technique) if fusion_fn: embedding = fusion_fn(embedding) print(embedding) else: raise ValueError(f"Unsupported fusion technique: {fusion_technique}") return embedding else: raise ValueError(f"Embedding for modality type {modality_type} not instantiated") def detect_modality(self, input_data): if len(input_data.shape) == 2 and input_data.dtype == torch.int64: return 'text' elif len(input_data.shape) == 4: return 'vision' elif len(input_data.shape) == 3: return 'audio' elif len(input_data.shape) == 5: return 'video' else: raise ValueError("Unable to detect input data modality") def register_fusion_technique(self, technique_name, fusion_fn): self._fusion_techniques[technique_name] = fusion_fn omni_morph = OmniMorph() text_input = torch.randint(0, 10000, (1, 50)) # vision_input = torch.randn(1, 3, 224, 224) # audio_input = torch.randn(1, 128, 100) # audio_input = audio_input.unsqueeze(1) # Add a new dimension for channels text_embedding = omni_morph(text_input) # modality_type is automatically detected # vision_embedding = omni_morph(vision_input) # modality_type is automatically detected # audio_embedding = omni_morph(audio_input) # modality_type is automatically detected
EXA-1-master
exa/modular_components/embedding/OmniMorph/OMNI4.py
import torch import torch.nn as nn class OmniMorph(nn.Module): def __init__(self, *args, **kwargs): super().__init__() self._embedding_registry = {} self._embedding_instances = {} def register_embedding(self, modality_type, embedding_class): self._embedding_registry[modality_type] = embedding_class def instantiate_embedding(self, modality_type, embedding_class=None, *args, **kwargs): if embedding_class is None: embedding_class = self._embedding_registry.get(modality_type) if embedding_class is not None: self._embedding_instances[modality_type] = embedding_class(*args, **kwargs) else: raise ValueError(f"Unsupported modality type: {modality_type}") def forward(self, input_data, modality_type=None, **kwargs): if modality_type is None: modality_type = self.detect_modality(input_data) embedding_instance = self._embedding_instances.get(modality_type) if embedding_instance is not None: return embedding_instance(input_data, **kwargs) else: raise ValueError(f"Embedding for modality type {modality_type} not instantiated")\ def detect_modality(self, input_data): if len(input_data.shape) == 2 and input_data.dtype == torch.int64: return 'text' elif len(input_data.shape) == 4: return 'vision' elif len(input_data.shape) == 3: return 'audio' elif len(input_data.shape) == 5: return 'video' else: raise ValueError("Unable to detect input data modality") omni_morph = OmniMorph() # Register and instantiate embeddings omni_morph.register_embedding('text', TextEmbedding) omni_morph.instantiate_embedding('text', num_embeddings=10000, embedding_dim=768) omni_morph.register_embedding('vision', VisionEmbedding) omni_morph.instantiate_embedding('vision', img_size=224, patch_size=16, in_chans=3, embed_dim=768) omni_morph.register_embedding('audio', AudioEmbedding) omni_morph.instantiate_embedding('audio', in_channels=128, embed_dim=768) omni_morph.register_embedding('video', VideoEmbedding) omni_morph.instantiate_embedding('video', num_channels=3, time_dim=10, height=224, width=224, embed_dim=768) # Example usage for different modalities text_input = torch.randint(0, 10000, (1, 50)) vision_input = torch.randn(1, 3, 224, 224) audio_input = torch.randn(1, 128, 100) video_input = torch.randn(1, 3, 10, 224, 224) text_embedding = omni_morph(text_input) # modality_type is automatically detected vision_embedding = omni_morph(vision_input) # modality_type is automatically detected audio_embedding = omni_morph(audio_input) # modality_type is automatically detected video_embedding = omni_morph(video_input) # modality_type is automatically detected
EXA-1-master
exa/modular_components/embedding/OmniMorph/OMNI3.py
import torch import torch.nn as nn class VisionLanguageEmbedding(nn.Module): def __init__(self, text_embed, vision_embed): super().__init__() self.text_embed = text_embed self.vision_embed = vision_embed def forward(self, textual_tokens, visual_tokens, **kwargs): if textual_tokens is None: return self.vision_embed(visual_tokens) if visual_tokens is None: return self.text_embed(textual_tokens) x1 = self.vision_embed(visual_tokens) x2 = self.text_embed(textual_tokens) return torch.cat([x1, x2], dim=1) class VisionEmbedding(nn.Module): """Image to Patch Embedding""" def __init__( self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, contain_mask_token=False, prepend_cls_token=False, ): super().__init__() img_size = (img_size, img_size) patch_size = (patch_size, patch_size) num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv2d( in_chans, embed_dim, kernel_size=patch_size, stride=patch_size ) if contain_mask_token: self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) else: self.mask_token = None if prepend_cls_token: self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) else: self.cls_token = None def num_position_embeddings(self): if self.cls_token is None: return self.num_patches else: return self.num_patches + 1 def forward(self, x, masked_position=None, **kwargs): B, C, H, W = x.shape assert ( H == self.img_size[0] and W == self.img_size[1] ), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x).flatten(2).transpose(1, 2) batch_size, seq_len, _ = x.size() if masked_position is not None: assert self.mask_token is not None mask_token = self.mask_token.expand(batch_size, seq_len, -1) w = masked_position.unsqueeze(-1).type_as(mask_token) x = x * (1 - w) + mask_token * w if self.cls_token is not None: cls_tokens = self.cls_token.expand( batch_size, -1, -1 ) # stole cls_tokens impl from Phil Wang, thanks x = torch.cat((cls_tokens, x), dim=1) return x class TextEmbedding(nn.Embedding): def reset_parameters(self): nn.init.normal_(self.weight, mean=0, std=self.embedding_dim**-0.5) self._fill_padding_idx_with_zero() class PositionalEmbedding(nn.Embedding): def forward( self, x, positions=None, **kwargs, ): if positions is None: # being consistent with Fairseq, which starts from 2. positions = ( torch.arange(2, x.size(1) + 2, device=x.device).long().unsqueeze(0) ) return F.embedding( positions, self.weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse, ) class OmniMorph(nn.Module): def __init__(self, *args, **kwargs): super().__init__() self._embedding_registry = {} self._embedding_instances = {} def register_embedding(self, modality_type, embedding_class): self._embedding_registry[modality_type] = embedding_class def instantiate_embedding(self, modality_type, *args, **kwargs): embedding_class = self._embedding_registry.get(modality_type) if embedding_class is not None: self._embedding_instances[modality_type] = embedding_class(*args, **kwargs) self.add_module(f"{modality_type}_embedding", self._embedding_instances[modality_type]) else: raise ValueError(f"Unsupported modality type: {modality_type}") def forward(self, input_data, modality_type=None, **kwargs): if modality_type is None: modality_type = self.detect_modality(input_data) embedding_instance = self._embedding_instances.get(modality_type) if embedding_instance is not None: return embedding_instance(input_data, **kwargs) else: raise ValueError(f"Embedding for modality type {modality_type} not instantiated.") def detect_modality(self, input_data): # Implement heuristics to automatically detect input data modality # For example: if len(input_data.shape) == 2 and input_data.dtype == torch.int64: return 'text' elif len(input_data.shape) == 4: return 'vision' elif len(input_data.shape) == 3: return 'audio' else: raise ValueError("Unable to detect input data modality.") class AudioEmbedding(nn.Module): def __init__(self, in_channels, embed_dim): super().__init__() self.conv = nn.Conv2d(in_channels, embed_dim, kernel_size=1) def forward(self, x, **kwargs): return self.conv(x) # Instantiate OmniMorph omni_morph = OmniMorph() # Register and instantiate embeddings omni_morph.register_embedding('text', TextEmbedding) omni_morph.instantiate_embedding('text', num_embeddings=10000, embedding_dim=768) omni_morph.register_embedding('vision', VisionEmbedding) omni_morph.instantiate_embedding('vision', img_size=224, patch_size=16, in_chans=3, embed_dim=768) omni_morph.register_embedding('audio', AudioEmbedding) omni_morph.instantiate_embedding('audio', in_channels=128, embed_dim=768) # Example usage for different modalities text_input = torch.randint(0, 10000, (1, 50)) vision_input = torch.randn(1, 3, 224, 224) audio_input = torch.randn(1, 128, 100) text_embedding = omni_morph(text_input) # modality_type is automatically detected vision_embedding = omni_morph(vision_input) # modality_type is automatically detected audio_embedding = omni_morph(audio_input) # modality_type is automatically detected
EXA-1-master
exa/modular_components/embedding/OmniMorph/OMNI2.py
from setuptools import setup, find_packages setup( name = 'lion-pytorch', packages = find_packages(exclude=[]), version = '0.0.7', license='MIT', description = 'Lion Optimizer - Pytorch', author = 'Phil Wang', author_email = '[email protected]', long_description_content_type = 'text/markdown', url = 'https://github.com/lucidrains/lion-pytorch', keywords = [ 'artificial intelligence', 'deep learning', 'optimizers' ], install_requires=[ 'torch>=1.6' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
EXA-1-master
exa/modular_components/optimizers/lion-pytorch/setup.py
import torch try: import triton import triton.language as tl except ImportError as e: print('triton is not installed, please install by running `pip install triton -U --pre`') exit() @triton.autotune(configs = [ triton.Config({'BLOCK_SIZE': 128}, num_warps = 4), triton.Config({'BLOCK_SIZE': 1024}, num_warps = 8), ], key = ['n_elements']) @triton.jit def update_fn_kernel( p_ptr, grad_ptr, exp_avg_ptr, lr, wd, beta1, beta2, n_elements, BLOCK_SIZE: tl.constexpr, ): pid = tl.program_id(axis = 0) block_start = pid * BLOCK_SIZE offsets = block_start + tl.arange(0, BLOCK_SIZE) mask = offsets < n_elements # offsetted pointers offset_p_ptr = p_ptr + offsets offset_grad_ptr = grad_ptr + offsets offset_exp_avg_ptr = exp_avg_ptr + offsets # load p = tl.load(offset_p_ptr, mask = mask) grad = tl.load(offset_grad_ptr, mask = mask) exp_avg = tl.load(offset_exp_avg_ptr, mask = mask) # stepweight decay p = p * (1 - lr * wd) # diff between momentum running average and grad diff = exp_avg - grad # weight update update = diff * beta1 + grad # torch.sign can_update = update != 0 update_sign = tl.where(update > 0, -lr, lr) p = p + update_sign * can_update # decay the momentum running average coefficient exp_avg = diff * beta2 + grad # store new params and momentum running average coefficient tl.store(offset_p_ptr, p, mask = mask) tl.store(offset_exp_avg_ptr, exp_avg, mask = mask) def update_fn( p: torch.Tensor, grad: torch.Tensor, exp_avg: torch.Tensor, lr: float, wd: float, beta1: float, beta2: float ): assert all([t.is_cuda for t in (p, grad, exp_avg)]) n_elements = p.numel() grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']),) update_fn_kernel[grid]( p, grad, exp_avg, lr, wd, beta1, beta2, n_elements )
EXA-1-master
exa/modular_components/optimizers/lion-pytorch/lion_pytorch/triton.py
from typing import Tuple, Optional, Callable import torch from torch.optim.optimizer import Optimizer # functions def exists(val): return val is not None # update functions def update_fn(p, grad, exp_avg, lr, wd, beta1, beta2): # stepweight decay p.data.mul_(1 - lr * wd) # weight update update = exp_avg.clone().mul_(beta1).add(grad, alpha = 1 - beta1).sign_() p.add_(update, alpha = -lr) # decay the momentum running average coefficient exp_avg.mul_(beta2).add_(grad, alpha = 1 - beta2) # class class Lion(Optimizer): def __init__( self, params, lr: float = 1e-4, betas: Tuple[float, float] = (0.9, 0.99), weight_decay: float = 0.0, use_triton: bool = False ): assert lr > 0. assert all([0. <= beta <= 1. for beta in betas]) defaults = dict( lr = lr, betas = betas, weight_decay = weight_decay ) super().__init__(params, defaults) self.update_fn = update_fn if use_triton: from lion_pytorch.triton import update_fn as triton_update_fn self.update_fn = triton_update_fn @torch.no_grad() def step( self, closure: Optional[Callable] = None ): loss = None if exists(closure): with torch.enable_grad(): loss = closure() for group in self.param_groups: for p in filter(lambda p: exists(p.grad), group['params']): grad, lr, wd, beta1, beta2, state = p.grad, group['lr'], group['weight_decay'], *group['betas'], self.state[p] # init state - exponential moving average of gradient values if len(state) == 0: state['exp_avg'] = torch.zeros_like(p) exp_avg = state['exp_avg'] self.update_fn( p, grad, exp_avg, lr, wd, beta1, beta2 ) return loss
EXA-1-master
exa/modular_components/optimizers/lion-pytorch/lion_pytorch/lion_pytorch.py
from lion_pytorch.lion_pytorch import Lion
EXA-1-master
exa/modular_components/optimizers/lion-pytorch/lion_pytorch/__init__.py
from setuptools import setup, find_packages setup( name = 'CoLT5-attention', packages = find_packages(), version = '0.3.4', license='MIT', description = 'Conditionally Routed Attention', long_description_content_type = 'text/markdown', author = 'Phil Wang', author_email = '[email protected]', url = 'https://github.com/lucidrains/CoLT5-attention', keywords = [ 'artificial intelligence', 'attention mechanism', 'dynamic routing' ], install_requires=[ 'einops>=0.6.1', 'local-attention>=1.8.5', 'torch>=1.10' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
EXA-1-master
exa/modular_components/attentions/CoLT5-attention-main/setup.py
import math from functools import partial import torch import torch.nn.functional as F from torch import nn, einsum from local_attention import LocalMHA from einops import rearrange, repeat, pack, unpack # helper functions def exists(val): return val is not None def default(val, d): return val if exists(val) else d def divisible_by(numer, denom): return (numer % denom) == 0 def pack_one(t, pattern): return pack([t], pattern) def unpack_one(t, ps, pattern): return unpack(t, ps, pattern)[0] def pad_to_multiple(tensor, multiple, dim=-1, value=0): seq_len = tensor.shape[dim] m = seq_len / multiple if m.is_integer(): return tensor, seq_len remainder = math.ceil(m) * multiple - seq_len pad_offset = (0,) * (-1 - dim) * 2 padded_tensor = F.pad(tensor, (*pad_offset, 0, remainder), value = value) return padded_tensor, seq_len def batched_gather(x, indices): batch_range = create_batch_range(indices, indices.ndim - 1) return x[batch_range, indices] # tensor helpers def create_batch_range(t, right_pad_dims = 1): b, device = t.shape[0], t.device batch_range = torch.arange(b, device = device) pad_dims = ((1,) * right_pad_dims) return batch_range.reshape(-1, *pad_dims) # normalization class RMSNorm(nn.Module): def __init__(self, dim): super().__init__() self.scale = dim ** 0.5 self.gamma = nn.Parameter(torch.ones(dim)) def forward(self, x): normed = F.normalize(x, dim = -1) return normed * self.scale * self.gamma # modules def FeedForward(dim, mult = 4): dim_hidden = int(dim * mult) return nn.Sequential( RMSNorm(dim), nn.Linear(dim, dim_hidden), nn.GELU(), nn.Linear(dim_hidden, dim) ) class Attention(nn.Module): def __init__( self, dim, dim_head = 64, heads = 8, multiply_keys_by_score = False ): super().__init__() self.heads = heads self.scale = dim_head ** -0.5 dim_hidden = dim_head * heads self.multiply_keys_by_score = multiply_keys_by_score self.norm = RMSNorm(dim) self.null_kv = nn.Parameter(torch.randn(2, heads, dim_head)) self.to_q = nn.Linear(dim, dim_hidden, bias = False) self.to_kv = nn.Linear(dim, dim_hidden * 2, bias = False) self.to_out = nn.Linear(dim_hidden, dim, bias = False) def forward( self, x, context = None, mask = None, normalized_scores_kv = None, normalized_scores_q = None ): """ einops: b - batch h - heads, or number of heads per route r - routing dimension, for routing different sets of key / values - should be more expressive n - sequence dimension d - head dimension i - input model dimension """ batch, h = x.shape[0], self.heads x = self.norm(x) if exists(context): context = self.norm(context) context = default(context, x) # if routing dimension is not there, unsqueeze for 1 routing dimension if context.ndim == 3: context = rearrange(context, 'b n d -> b 1 n d') if exists(normalized_scores_kv) and isinstance(normalized_scores_kv, torch.Tensor): if normalized_scores_kv.ndim == 2: normalized_scores_kv = rearrange(normalized_scores_kv, 'b n -> b 1 n') normalized_scores_kv = rearrange(normalized_scores_kv, 'b r n -> b r 1 n 1') num_kv_routes = context.shape[1] # get queries q = self.to_q(x) q = rearrange(q, 'b n (h d) -> b h n d', h = h) if exists(normalized_scores_q) and isinstance(normalized_scores_q, torch.Tensor): q = q * rearrange(normalized_scores_q, 'b n -> b 1 n 1') # handle key / values, with the routing dimension, dividing the number of heads in between the routes assert divisible_by(h, num_kv_routes), 'number of heads must be divisible by the number of key / value routes' heads_per_route = h // num_kv_routes kv_weight = rearrange(self.to_kv.weight, '(r h d) i -> r h d i', h = heads_per_route, r = num_kv_routes) kv = einsum('r h d i, b r n i -> b r h n d', kv_weight, context) k, v = kv.chunk(2, dim = -1) if exists(normalized_scores_kv): # in paper, not sure how they passed back the signal from heavy attention to normalized scores for key/values. just multiply the values by the normalized kv scores for now v = v * normalized_scores_kv if self.multiply_keys_by_score: k = k * normalized_scores_kv k, v = map(lambda t: rearrange(t, 'b r h n d -> b (r h) n d'), (k, v)) # null key values nk, nv = map(lambda t: repeat(t, 'h d -> b h 1 d', b = batch), self.null_kv) k = torch.cat((nk, k), dim = -2) v = torch.cat((nv, v), dim = -2) # scale and get similarity q = q * self.scale sim = einsum('b h i d, b h j d -> b h i j', q, k) # masking if exists(mask): if mask.ndim == 3: mask = repeat(mask, 'b r j -> b (r h) 1 j', h = heads_per_route) else: mask = rearrange(mask, 'b j -> b 1 1 j') mask = F.pad(mask, (1, 0), value = True) sim = sim.masked_fill(~mask, -torch.finfo(sim.dtype).max) # attention attn = sim.softmax(dim = -1) # aggregate out = einsum('b h i j, b h j d -> b h i d', attn, v) # merge heads out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) # routing related logic class DifferentiableTopKRouter(nn.Module): """ differentiable topk using cumulative softmax """ def __init__( self, dim, straight_through = True, temperature = 1., num_routing_tokens = 1 ): super().__init__() self.is_one_routing_token = num_routing_tokens == 1 self.num_routing_tokens = num_routing_tokens self.routing_token = nn.Parameter(torch.randn(num_routing_tokens, dim)) self.straight_through = straight_through self.temperature = temperature def route_back(self, src, routed_tokens, indices): batch_range = create_batch_range(routed_tokens) src[batch_range, indices] = routed_tokens return src def forward( self, x, *, num_tokens, mask = None ): num_routes = self.num_routing_tokens # eventual normalized score scores = einsum('b n d, r d -> b r n', x, self.routing_token) # merge routing dimension into batch x = repeat(x, 'b ... -> (b r) ...', r = num_routes) scores, ps = pack_one(scores, '* n') if exists(mask): mask = repeat(mask, 'b ... -> (b r) ...', r = num_routes) scores = scores / self.temperature if exists(mask): mask_value = -torch.finfo(scores.dtype).max scores = scores.masked_fill(~mask, mask_value) scores, indices = scores.sort(dim = -1) scores = scores - scores.amax(dim = -1, keepdim = True).detach() exp_scores = scores.exp() cum_softmax = exp_scores / exp_scores.cumsum(dim = -1).clamp(min = 1e-6) selected_scores, selected_indices = map(lambda t: t[:, -num_tokens:], (cum_softmax, indices)) if self.straight_through: # this would make sure all normalized scores returned are 1., but still differentiable using straight-through trick selected_scores = selected_scores + (1. - selected_scores).detach() if exists(mask): selected_mask = batched_gather(mask, selected_indices) selected_scores = selected_scores.masked_fill(~selected_mask, 0.) # split out routing dimension again if need be if not self.is_one_routing_token: selected_scores = unpack_one(selected_scores, ps, '* n') selected_indices = unpack_one(selected_indices, ps, '* n') return selected_scores, selected_indices # sinkhorn type routing, with ties to optimal transport from colt5_attention.sinkhorn import gumbel_sinkhorn, scatter_mean, log class SinkhornRouter(nn.Module): """ gumbel sinkhorn router """ """ ex. https://arxiv.org/abs/1910.09036 """ def __init__( self, dim, straight_through = True, n_iters = 8, temperature = 0.7, num_routing_tokens = 1 ): super().__init__() self.is_one_routing_token = num_routing_tokens == 1 self.num_routing_tokens = num_routing_tokens self.routing_token = nn.Parameter(torch.randn(num_routing_tokens, dim)) self.straight_through = straight_through self.gumbel_sinkhorn_fn = partial(gumbel_sinkhorn, temperature = temperature, n_iters = n_iters) def route_back(self, src, routed_tokens, indices): return scatter_mean(src, routed_tokens, indices, dim = 1) def forward( self, x, *, num_tokens, mask = None ): n, num_routes = x.shape[-2], self.num_routing_tokens num_tokens = min(n, num_tokens) # eventual normalized score scores = einsum('b n d, r d -> b r n', x, self.routing_token) # merge routing dimension into batch x = repeat(x, 'b ... -> (b r) ...', r = num_routes) scores, ps = pack_one(scores, '* n') if exists(mask): mask = repeat(mask, 'b ... -> (b r) ...', r = num_routes) # calculate scores scores = repeat(scores, '... j -> ... i j', i = num_tokens) if exists(mask): mask_value = -torch.finfo(scores.dtype).max sinkhorn_mask = rearrange(mask, 'b j -> b 1 j') scores = scores.masked_fill(~sinkhorn_mask, mask_value) # sinkhorn scores = self.gumbel_sinkhorn_fn(scores) # mask again just in case if exists(mask): scores = scores.masked_fill(~sinkhorn_mask, mask_value) selected_scores, selected_indices = scores.topk(1, dim = -1) selected_scores, selected_indices = map(lambda t: rearrange(t, '... 1 -> ...'), (selected_scores, selected_indices)) if self.straight_through: # this would make sure all normalized scores returned are 1., but still differentiable using straight-through trick selected_scores = selected_scores + (1. - selected_scores).detach() if exists(mask): selected_mask = batched_gather(mask, selected_indices) selected_scores = selected_scores.masked_fill(~selected_mask, 0.) # split out routing dimension again if need be if not self.is_one_routing_token: selected_scores = unpack_one(selected_scores, ps, '* n') selected_indices = unpack_one(selected_indices, ps, '* n') return selected_scores, selected_indices from colt5_attention.coor_descent import coor_descent class CoordinateDescentRouter(nn.Module): """ from Wright et al. https://arxiv.org/abs/1502.04759 then adopted by https://arxiv.org/abs/2211.01267 for multi-vector document retrieval by Qian et al finally, used successfully by this paper for routing to heavy branch attention / feedforward """ def __init__( self, dim, straight_through = True, n_iters = 50, # 50 iterations in the paper fetch_k_ratio = 9 / 8, # in the paper, they do a bit slightly higher k (times this ratio) for better learning eps = 1., # the epsilon for coordinate descent. in CoLT5 paper they used 1. apparently num_routing_tokens = 1 ): super().__init__() assert fetch_k_ratio >= 1. self.eps = eps self.n_iters = n_iters self.fetch_k_ratio = fetch_k_ratio self.is_one_routing_token = num_routing_tokens == 1 self.num_routing_tokens = num_routing_tokens self.routing_token = nn.Parameter(torch.randn(num_routing_tokens, dim)) self.straight_through = straight_through def route_back(self, src, routed_tokens, indices): batch_range = create_batch_range(routed_tokens) src[batch_range, indices] = routed_tokens return src def forward( self, x, *, num_tokens, mask = None ): n, device, eps, num_routes = x.shape[-2], x.device, self.eps, self.num_routing_tokens # s stands for eventual normalized score s = einsum('b n d, r d -> b r n', x, self.routing_token) # merge routing dimension into batch x = repeat(x, 'b ... -> (b r) ...', r = num_routes) s, ps = pack_one(s, '* n') if exists(mask): mask = repeat(mask, 'b ... -> (b r) ...', r = num_routes) # k, which controls the sparsity of the outputted scores from iterative coordinate descent effective_k = min(num_tokens * self.fetch_k_ratio, n) k = torch.tensor([effective_k], device = device) # coordinate descent scores = coor_descent(s, n_iters = self.n_iters, mask = mask, k = k, eps = eps) # get the topk scores and indices from the sparse matrix selected_scores, selected_indices = scores.topk(num_tokens, dim = -1) if self.straight_through: # this would make sure all normalized scores returned are 1., but still differentiable using straight-through trick selected_scores = selected_scores + (1. - selected_scores).detach() if exists(mask): selected_mask = batched_gather(mask, selected_indices) selected_scores = selected_scores.masked_fill(~selected_mask, 0.) # split out routing dimension again if need be if not self.is_one_routing_token: selected_scores = unpack_one(selected_scores, ps, '* n') selected_indices = unpack_one(selected_indices, ps, '* n') return selected_scores, selected_indices # all router types ROUTERS = dict( cum_softmax = DifferentiableTopKRouter, sinkhorn = SinkhornRouter, coor_descent = CoordinateDescentRouter ) # main classes class ConditionalRoutedFeedForward(nn.Module): def __init__( self, dim, *, num_heavy_tokens, light_ff_mult = 0.5, heavy_ff_mult = 4, router_straight_through = True, # would make sure all normalized scores are 1., still differentiable router_type = 'coor_descent', router_kwargs: dict = {} ): super().__init__() assert router_type in ROUTERS.keys() self.num_heavy_tokens = num_heavy_tokens self.router_type = router_type router_klass = ROUTERS.get(router_type) self.router = router_klass( dim = dim, straight_through = router_straight_through, **router_kwargs ) self.light_ff = FeedForward(dim, light_ff_mult) self.heavy_ff = FeedForward(dim, heavy_ff_mult) def forward( self, x, mask = None, num_heavy_tokens = None ): device, num_heavy_tokens = x.device, default(num_heavy_tokens, self.num_heavy_tokens) # light feedforward sees all the tokens (hidden dimension is only 1/2 of model dimensions) light_out = self.light_ff(x) # route tokens appropriately for heavy branch normalized_scores, indices = self.router(x, num_tokens = num_heavy_tokens, mask = mask) # select the tokens to be routed to heavier feedforward (hidden dimension is 4 times model dimensions) routed_tokens = batched_gather(x, indices) # do the heavier branch with only routed tokens routed_tokens_out = self.heavy_ff(routed_tokens) * rearrange(normalized_scores, '... -> ... 1') # scatter back the output of the heavy feedforward branch heavy_out = torch.zeros_like(x) heavy_out = self.router.route_back(heavy_out, routed_tokens_out, indices) # sum light and heavy branches return light_out + heavy_out class ConditionalRoutedAttention(nn.Module): def __init__( self, dim, *, num_heavy_tokens_q, num_heavy_tokens_kv, num_routed_kv = 1, light_dim_head = 64, light_heads = 8, light_window_size = 128, # each token would see ~ 64 tokens either way to left or right heavy_dim_head = 64, heavy_heads = 8, router_straight_through = True, # would make sure all normalized scores are 1., still differentiable router_type = 'coor_descent', router_kwargs: dict = {}, multiply_keys_by_score = False, multiply_queries_by_score = False ): super().__init__() assert router_type in ROUTERS.keys() self.router_type = router_type router_klass = ROUTERS.get(router_type) self.num_heavy_tokens_q = num_heavy_tokens_q self.num_heavy_tokens_kv = num_heavy_tokens_kv self.multiply_queries_by_score = multiply_queries_by_score self.light_attn = LocalMHA( dim = dim, dim_head = light_dim_head, heads = light_heads, window_size = light_window_size // 2, prenorm = True, causal = False, use_rotary_pos_emb = False, look_backward = 1, look_forward = 1 ) self.q_router = router_klass( dim = dim, straight_through = router_straight_through, **router_kwargs ) self.kv_router = router_klass( dim = dim, num_routing_tokens = num_routed_kv, straight_through = router_straight_through, **router_kwargs ) self.heavy_attn = Attention( dim = dim, dim_head = heavy_dim_head, heads = heavy_heads, multiply_keys_by_score = multiply_keys_by_score ) def forward( self, x, *, num_heavy_tokens_q = None, num_heavy_tokens_kv = None, mask = None ): batch, device = x.shape[0], x.device num_heavy_tokens_q = default(num_heavy_tokens_q, self.num_heavy_tokens_q) num_heavy_tokens_kv = default(num_heavy_tokens_kv, self.num_heavy_tokens_kv) # light local attention sees all tokens in a limited context light_out = self.light_attn(x, mask = mask) # route tokens appropriately for heavy branch normalized_scores_q, indices_q = self.q_router(x, num_tokens = num_heavy_tokens_q, mask = mask) normalized_scores_kv, indices_kv = self.kv_router(x, num_tokens = num_heavy_tokens_kv, mask = mask) # select the tokens to be routed to full attention routed_tokens_q = batched_gather(x, indices_q) kv_batch_range = create_batch_range(x, right_pad_dims = indices_kv.ndim - 1) routed_tokens_kv = batched_gather(x, indices_kv) # calculate key padding mask routed_tokens_kv_mask = None if exists(mask): routed_tokens_kv_mask = mask[kv_batch_range, indices_kv] # do the heavier branch with only routed tokens routed_tokens_out = self.heavy_attn( routed_tokens_q, mask = routed_tokens_kv_mask, context = routed_tokens_kv, normalized_scores_kv = normalized_scores_kv, normalized_scores_q = normalized_scores_q if self.multiply_queries_by_score else None ) routed_tokens_out = routed_tokens_out * rearrange(normalized_scores_q, '... -> ... 1') # scatter back the output of the heavy branch heavy_out = torch.zeros_like(x) heavy_out = self.q_router.route_back(heavy_out, routed_tokens_out, indices_q) # sum light and heavy branches return light_out + heavy_out # improvised conditionally routed autoregressive attention class ConditionalRoutedAutoregressiveAttention(nn.Module): def __init__( self, dim, *, num_heavy_tokens_q, num_heavy_tokens_kv, num_routed_kv = 1, light_dim_head = 64, light_heads = 8, light_window_size = 128, # each token would see ~ 64 tokens either way to left or right heavy_window_size = None, heavy_dim_head = 64, heavy_heads = 8, router_straight_through = True, # would make sure all normalized scores are 1., still differentiable router_type = 'coor_descent', router_kwargs: dict = {}, multiply_keys_by_score = False, multiply_queries_by_score = False ): super().__init__() assert router_type in ROUTERS.keys() self.router_type = router_type router_klass = ROUTERS.get(router_type) self.num_heavy_tokens_q = num_heavy_tokens_q self.num_heavy_tokens_kv = num_heavy_tokens_kv self.multiply_queries_by_score = multiply_queries_by_score self.heavy_window_size = default(heavy_window_size, light_window_size) self.light_attn = LocalMHA( dim = dim, dim_head = light_dim_head, heads = light_heads, window_size = light_window_size, prenorm = True, causal = True, use_rotary_pos_emb = False ) self.q_router = router_klass( dim = dim, straight_through = router_straight_through, **router_kwargs ) self.kv_router = router_klass( dim = dim, num_routing_tokens = num_routed_kv, straight_through = router_straight_through, **router_kwargs ) self.heavy_attn = Attention( dim = dim, dim_head = heavy_dim_head, heads = heavy_heads, multiply_keys_by_score = multiply_keys_by_score ) def forward( self, x, *, num_heavy_tokens_q = None, num_heavy_tokens_kv = None ): batch, device = x.shape[0], x.device num_heavy_tokens_q = default(num_heavy_tokens_q, self.num_heavy_tokens_q) num_heavy_tokens_kv = default(num_heavy_tokens_kv, self.num_heavy_tokens_kv) # light local attention sees all tokens in a limited context light_out = self.light_attn(x) # pad sequence to multiple of the heavy window size # routing will take place within each heavy window block size window_size = self.heavy_window_size x, seq_len = pad_to_multiple(x, window_size, dim = -2) padded_seq_len = x.shape[-2] # construct mask, and make sure not to attend to padding q_mask = torch.ones((batch, seq_len), dtype = torch.bool, device = device) q_mask = F.pad(q_mask, (0, padded_seq_len - seq_len), value = False) # block the sequence and mask into windows for the queries q = rearrange(x, 'b (n w) d -> (b n) w d', w = window_size) q_mask = rearrange(q_mask, 'b (n w) -> (b n) w', w = window_size) # each block of queries attend to sequences that are causally masked out appropriately windows = padded_seq_len // window_size kv = repeat(x, 'b n d -> (b m) n d', m = windows) kv_mask = torch.ones((windows, windows), dtype = torch.bool, device = device).tril(-1) kv_mask = repeat(kv_mask, 'm n -> (b m) (n w)', b = batch, w = window_size) # route tokens appropriately for heavy branch, if need be should_route_q = q.shape[-2] > num_heavy_tokens_q should_route_kv = kv.shape[-2] > num_heavy_tokens_kv if should_route_q: normalized_scores_q, indices_q = self.q_router(q, num_tokens = num_heavy_tokens_q, mask = q_mask) routed_tokens_q = batched_gather(q, indices_q) else: normalized_scores_q = 1. routed_tokens_q = q if should_route_kv: normalized_scores_kv, indices_kv = self.kv_router(kv, num_tokens = num_heavy_tokens_kv, mask = kv_mask) routed_tokens_kv = batched_gather(kv, indices_kv) routed_tokens_kv_mask = batched_gather(kv_mask, indices_kv) else: normalized_scores_kv = 1. routed_tokens_kv = kv routed_tokens_kv_mask = kv_mask # do the heavier branch with only routed tokens routed_tokens_out = self.heavy_attn( routed_tokens_q, mask = routed_tokens_kv_mask, context = routed_tokens_kv, normalized_scores_kv = normalized_scores_kv, normalized_scores_q = normalized_scores_q if self.multiply_queries_by_score else None ) if should_route_q: routed_tokens_out = routed_tokens_out * rearrange(normalized_scores_q, '... -> ... 1') # scatter back the output of the heavy branch heavy_out = torch.zeros_like(q) heavy_out = self.q_router.route_back(heavy_out, routed_tokens_out, indices_q) else: heavy_out = routed_tokens_out # un-window and slice out original sequence heavy_out = rearrange(heavy_out, '(b n) w d -> b (n w) d', b = batch) heavy_out = heavy_out[:, :seq_len] # sum light and heavy branches return light_out + heavy_out # adapting the conditional routed self attention to cross attention class ConditionalRoutedCrossAttention(nn.Module): def __init__( self, dim, *, num_tokens_q, num_tokens_kv, num_sets_kv = 1, # setting this greater than 1 would route multiple sets of key / values, each of size num_tokens_kv, using this many routing tokens dim_head = 64, heads = 8, router_straight_through = True, # would make sure all normalized scores are 1., still differentiable router_type = 'coor_descent', router_kwargs: dict = {}, kv_routing_tokens = 1, multiply_keys_by_score = False ): super().__init__() assert router_type in ROUTERS.keys() self.router_type = router_type router_klass = ROUTERS.get(router_type) self.num_tokens_q = num_tokens_q self.num_tokens_kv = num_tokens_kv self.q_router = router_klass( dim = dim, straight_through = router_straight_through, **router_kwargs ) self.kv_router = router_klass( dim = dim, straight_through = router_straight_through, num_routing_tokens = kv_routing_tokens, **router_kwargs ) self.heavy_attn = Attention( dim = dim, dim_head = dim_head, heads = heads, multiply_keys_by_score = multiply_keys_by_score ) def forward( self, x, context, *, num_tokens_q = None, num_tokens_kv = None, mask = None, context_mask = None ): batch, device = x.shape[0], x.device # route the queries query_length = x.shape[-2] num_tokens_q = default(num_tokens_q, self.num_tokens_q) routed_tokens_q = x should_route_queries = query_length > num_tokens_q if should_route_queries: normalized_scores_q, indices_q = self.q_router(x, num_tokens = num_tokens_q, mask = mask) routed_tokens_q = batched_gather(x, indices_q) # route the long contexts key_value_length = context.shape[-2] num_tokens_kv = default(num_tokens_kv, self.num_tokens_kv) routed_tokens_kv = context routed_tokens_kv_mask = context_mask normalized_scores_kv = None should_route_kv = key_value_length > num_tokens_kv if should_route_kv: normalized_scores_kv, indices_kv = self.kv_router(context, num_tokens = num_tokens_kv, mask = context_mask) routed_tokens_kv = batched_gather(x, indices_kv) routed_tokens_kv_mask = None if exists(context_mask): routed_tokens_kv_mask = batched_gather(context_mask, indices_kv) # do the heavier branch with only routed tokens routed_tokens_out = self.heavy_attn( routed_tokens_q, mask = routed_tokens_kv_mask, context = routed_tokens_kv, normalized_scores_kv = normalized_scores_kv ) if should_route_queries: routed_tokens_out = routed_tokens_out * rearrange(normalized_scores_q, '... -> ... 1') # early return if queries did not undergo routing if not should_route_queries: return routed_tokens_out # otherwise, scatter back the query outputs out = torch.zeros_like(x) out = self.q_router.route_back(out, routed_tokens_out, indices_q) return out # block class ConditionalRoutedTransformerBlock(nn.Module): def __init__( self, dim, *, num_heavy_attn_tokens_q, num_heavy_attn_tokens_kv, num_routed_kv = 1, num_heavy_ff_tokens, light_dim_head = 64, light_heads = 8, light_window_size = 128, heavy_dim_head = 64, heavy_heads = 8, light_ff_mult = 0.5, heavy_ff_mult = 4, router_straight_through = True, router_type = 'coor_descent', router_kwargs: dict = {}, multiply_keys_by_score = False, multiply_queries_by_score = False ): super().__init__() self.conditional_ff = ConditionalRoutedFeedForward( dim, num_heavy_tokens = num_heavy_ff_tokens, light_ff_mult = light_ff_mult, heavy_ff_mult = heavy_ff_mult, router_straight_through = router_straight_through, router_type = router_type, router_kwargs = router_kwargs ) self.conditional_attn = ConditionalRoutedAttention( dim, light_dim_head = light_dim_head, light_heads = light_heads, light_window_size = light_window_size, heavy_dim_head = heavy_dim_head, heavy_heads = heavy_heads, num_heavy_tokens_q = num_heavy_attn_tokens_q, num_heavy_tokens_kv = num_heavy_attn_tokens_kv, num_routed_kv = num_routed_kv, router_straight_through = router_straight_through, router_type = router_type, router_kwargs = router_kwargs, multiply_keys_by_score = multiply_keys_by_score, multiply_queries_by_score = multiply_queries_by_score ) def forward( self, x, mask = None, num_heavy_attn_tokens_q = None, num_heavy_attn_tokens_kv = None, num_heavy_ff_tokens = None ): x = self.conditional_attn(x, mask = mask, num_heavy_tokens_q = num_heavy_attn_tokens_q, num_heavy_tokens_kv = num_heavy_attn_tokens_kv) + x x = self.conditional_ff(x, mask = mask, num_heavy_tokens = num_heavy_ff_tokens) + x return x
EXA-1-master
exa/modular_components/attentions/CoLT5-attention-main/colt5_attention/transformer_block.py
from colt5_attention.transformer_block import ( ConditionalRoutedFeedForward, ConditionalRoutedAttention, ConditionalRoutedAutoregressiveAttention, ConditionalRoutedCrossAttention, ConditionalRoutedTransformerBlock, DifferentiableTopKRouter, SinkhornRouter, CoordinateDescentRouter ) from colt5_attention.coor_descent import coor_descent
EXA-1-master
exa/modular_components/attentions/CoLT5-attention-main/colt5_attention/__init__.py
import torch import torch.nn.functional as F def exists(val): return val is not None def log(t, eps = 1e-20): return torch.log(t.clamp(min = eps)) def coor_descent( s, *, n_iters, k, eps = 1e-1, clamp_fn = F.relu, mask = None, ): mask_value = -torch.finfo(s.dtype).max constant = eps * log(k) b = -clamp_fn(s) for _ in range(n_iters): if exists(mask): s = s.masked_fill(~mask, mask_value) a = constant - eps * ((s + b) / eps).logsumexp(dim = -1, keepdim = True) b = -clamp_fn(s + a) if exists(mask): s = s.masked_fill(~mask, mask_value) scores = ((s + a + b) / eps).exp() return scores
EXA-1-master
exa/modular_components/attentions/CoLT5-attention-main/colt5_attention/coor_descent.py
import math from functools import partial import torch import torch.nn.functional as F from torch import nn, einsum from local_attention import LocalMHA from einops import rearrange, repeat, pack, unpack # helper functions def exists(val): return val is not None def default(val, d): return val if exists(val) else d def divisible_by(numer, denom): return (numer % denom) == 0 def pack_one(t, pattern): return pack([t], pattern) def unpack_one(t, ps, pattern): return unpack(t, ps, pattern)[0] def pad_to_multiple(tensor, multiple, dim=-1, value=0): seq_len = tensor.shape[dim] m = seq_len / multiple if m.is_integer(): return tensor, seq_len remainder = math.ceil(m) * multiple - seq_len pad_offset = (0,) * (-1 - dim) * 2 padded_tensor = F.pad(tensor, (*pad_offset, 0, remainder), value = value) return padded_tensor, seq_len def batched_gather(x, indices): batch_range = create_batch_range(indices, indices.ndim - 1) return x[batch_range, indices] # tensor helpers def create_batch_range(t, right_pad_dims = 1): b, device = t.shape[0], t.device batch_range = torch.arange(b, device = device) pad_dims = ((1,) * right_pad_dims) return batch_range.reshape(-1, *pad_dims) # normalization class RMSNorm(nn.Module): def __init__(self, dim): super().__init__() self.scale = dim ** 0.5 self.gamma = nn.Parameter(torch.ones(dim)) def forward(self, x): normed = F.normalize(x, dim = -1) return normed * self.scale * self.gamma # modules def FeedForward(dim, mult = 4): dim_hidden = int(dim * mult) return nn.Sequential( RMSNorm(dim), nn.Linear(dim, dim_hidden), nn.GELU(), nn.Linear(dim_hidden, dim) ) class Attention(nn.Module): def __init__( self, dim, dim_head = 64, heads = 8, multiply_keys_by_score = False ): super().__init__() self.heads = heads self.scale = dim_head ** -0.5 dim_hidden = dim_head * heads self.multiply_keys_by_score = multiply_keys_by_score self.norm = RMSNorm(dim) self.null_kv = nn.Parameter(torch.randn(2, heads, dim_head)) self.to_q = nn.Linear(dim, dim_hidden, bias = False) self.to_kv = nn.Linear(dim, dim_hidden * 2, bias = False) self.to_out = nn.Linear(dim_hidden, dim, bias = False) def forward( self, x, context = None, mask = None, normalized_scores_kv = None, normalized_scores_q = None ): """ einops: b - batch h - heads, or number of heads per route r - routing dimension, for routing different sets of key / values - should be more expressive n - sequence dimension d - head dimension i - input model dimension """ batch, h = x.shape[0], self.heads x = self.norm(x) if exists(context): context = self.norm(context) context = default(context, x) # if routing dimension is not there, unsqueeze for 1 routing dimension if context.ndim == 3: context = rearrange(context, 'b n d -> b 1 n d') if exists(normalized_scores_kv) and isinstance(normalized_scores_kv, torch.Tensor): if normalized_scores_kv.ndim == 2: normalized_scores_kv = rearrange(normalized_scores_kv, 'b n -> b 1 n') normalized_scores_kv = rearrange(normalized_scores_kv, 'b r n -> b r 1 n 1') num_kv_routes = context.shape[1] # get queries q = self.to_q(x) q = rearrange(q, 'b n (h d) -> b h n d', h = h) if exists(normalized_scores_q) and isinstance(normalized_scores_q, torch.Tensor): q = q * rearrange(normalized_scores_q, 'b n -> b 1 n 1') # handle key / values, with the routing dimension, dividing the number of heads in between the routes assert divisible_by(h, num_kv_routes), 'number of heads must be divisible by the number of key / value routes' heads_per_route = h // num_kv_routes kv_weight = rearrange(self.to_kv.weight, '(r h d) i -> r h d i', h = heads_per_route, r = num_kv_routes) kv = einsum('r h d i, b r n i -> b r h n d', kv_weight, context) k, v = kv.chunk(2, dim = -1) if exists(normalized_scores_kv): # in paper, not sure how they passed back the signal from heavy attention to normalized scores for key/values. just multiply the values by the normalized kv scores for now v = v * normalized_scores_kv if self.multiply_keys_by_score: k = k * normalized_scores_kv k, v = map(lambda t: rearrange(t, 'b r h n d -> b (r h) n d'), (k, v)) # null key values nk, nv = map(lambda t: repeat(t, 'h d -> b h 1 d', b = batch), self.null_kv) k = torch.cat((nk, k), dim = -2) v = torch.cat((nv, v), dim = -2) # scale and get similarity q = q * self.scale sim = einsum('b h i d, b h j d -> b h i j', q, k) # masking if exists(mask): if mask.ndim == 3: mask = repeat(mask, 'b r j -> b (r h) 1 j', h = heads_per_route) else: mask = rearrange(mask, 'b j -> b 1 1 j') mask = F.pad(mask, (1, 0), value = True) sim = sim.masked_fill(~mask, -torch.finfo(sim.dtype).max) # attention attn = sim.softmax(dim = -1) # aggregate out = einsum('b h i j, b h j d -> b h i d', attn, v) # merge heads out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) # routing related logic class DifferentiableTopKRouter(nn.Module): """ differentiable topk using cumulative softmax """ def __init__( self, dim, straight_through = True, temperature = 1., num_routing_tokens = 1 ): super().__init__() self.is_one_routing_token = num_routing_tokens == 1 self.num_routing_tokens = num_routing_tokens self.routing_token = nn.Parameter(torch.randn(num_routing_tokens, dim)) self.straight_through = straight_through self.temperature = temperature def route_back(self, src, routed_tokens, indices): batch_range = create_batch_range(routed_tokens) src[batch_range, indices] = routed_tokens return src def forward( self, x, *, num_tokens, mask = None ): num_routes = self.num_routing_tokens # eventual normalized score scores = einsum('b n d, r d -> b r n', x, self.routing_token) # merge routing dimension into batch x = repeat(x, 'b ... -> (b r) ...', r = num_routes) scores, ps = pack_one(scores, '* n') if exists(mask): mask = repeat(mask, 'b ... -> (b r) ...', r = num_routes) scores = scores / self.temperature if exists(mask): mask_value = -torch.finfo(scores.dtype).max scores = scores.masked_fill(~mask, mask_value) scores, indices = scores.sort(dim = -1) scores = scores - scores.amax(dim = -1, keepdim = True).detach() exp_scores = scores.exp() cum_softmax = exp_scores / exp_scores.cumsum(dim = -1).clamp(min = 1e-6) selected_scores, selected_indices = map(lambda t: t[:, -num_tokens:], (cum_softmax, indices)) if self.straight_through: # this would make sure all normalized scores returned are 1., but still differentiable using straight-through trick selected_scores = selected_scores + (1. - selected_scores).detach() if exists(mask): selected_mask = batched_gather(mask, selected_indices) selected_scores = selected_scores.masked_fill(~selected_mask, 0.) # split out routing dimension again if need be if not self.is_one_routing_token: selected_scores = unpack_one(selected_scores, ps, '* n') selected_indices = unpack_one(selected_indices, ps, '* n') return selected_scores, selected_indices # sinkhorn type routing, with ties to optimal transport from colt5_attention.sinkhorn import gumbel_sinkhorn, scatter_mean, log class SinkhornRouter(nn.Module): """ gumbel sinkhorn router """ """ ex. https://arxiv.org/abs/1910.09036 """ def __init__( self, dim, straight_through = True, n_iters = 8, temperature = 0.7, num_routing_tokens = 1 ): super().__init__() self.is_one_routing_token = num_routing_tokens == 1 self.num_routing_tokens = num_routing_tokens self.routing_token = nn.Parameter(torch.randn(num_routing_tokens, dim)) self.straight_through = straight_through self.gumbel_sinkhorn_fn = partial(gumbel_sinkhorn, temperature = temperature, n_iters = n_iters) def route_back(self, src, routed_tokens, indices): return scatter_mean(src, routed_tokens, indices, dim = 1) def forward( self, x, *, num_tokens, mask = None ): n, num_routes = x.shape[-2], self.num_routing_tokens num_tokens = min(n, num_tokens) # eventual normalized score scores = einsum('b n d, r d -> b r n', x, self.routing_token) # merge routing dimension into batch x = repeat(x, 'b ... -> (b r) ...', r = num_routes) scores, ps = pack_one(scores, '* n') if exists(mask): mask = repeat(mask, 'b ... -> (b r) ...', r = num_routes) # calculate scores scores = repeat(scores, '... j -> ... i j', i = num_tokens) if exists(mask): mask_value = -torch.finfo(scores.dtype).max sinkhorn_mask = rearrange(mask, 'b j -> b 1 j') scores = scores.masked_fill(~sinkhorn_mask, mask_value) # sinkhorn scores = self.gumbel_sinkhorn_fn(scores) # mask again just in case if exists(mask): scores = scores.masked_fill(~sinkhorn_mask, mask_value) selected_scores, selected_indices = scores.topk(1, dim = -1) selected_scores, selected_indices = map(lambda t: rearrange(t, '... 1 -> ...'), (selected_scores, selected_indices)) if self.straight_through: # this would make sure all normalized scores returned are 1., but still differentiable using straight-through trick selected_scores = selected_scores + (1. - selected_scores).detach() if exists(mask): selected_mask = batched_gather(mask, selected_indices) selected_scores = selected_scores.masked_fill(~selected_mask, 0.) # split out routing dimension again if need be if not self.is_one_routing_token: selected_scores = unpack_one(selected_scores, ps, '* n') selected_indices = unpack_one(selected_indices, ps, '* n') return selected_scores, selected_indices from colt5_attention.coor_descent import coor_descent class CoordinateDescentRouter(nn.Module): """ from Wright et al. https://arxiv.org/abs/1502.04759 then adopted by https://arxiv.org/abs/2211.01267 for multi-vector document retrieval by Qian et al finally, used successfully by this paper for routing to heavy branch attention / feedforward """ def __init__( self, dim, straight_through = True, n_iters = 50, # 50 iterations in the paper fetch_k_ratio = 9 / 8, # in the paper, they do a bit slightly higher k (times this ratio) for better learning eps = 1., # the epsilon for coordinate descent. in CoLT5 paper they used 1. apparently num_routing_tokens = 1 ): super().__init__() assert fetch_k_ratio >= 1. self.eps = eps self.n_iters = n_iters self.fetch_k_ratio = fetch_k_ratio self.is_one_routing_token = num_routing_tokens == 1 self.num_routing_tokens = num_routing_tokens self.routing_token = nn.Parameter(torch.randn(num_routing_tokens, dim)) self.straight_through = straight_through def route_back(self, src, routed_tokens, indices): batch_range = create_batch_range(routed_tokens) src[batch_range, indices] = routed_tokens return src def forward( self, x, *, num_tokens, mask = None ): n, device, eps, num_routes = x.shape[-2], x.device, self.eps, self.num_routing_tokens # s stands for eventual normalized score s = einsum('b n d, r d -> b r n', x, self.routing_token) # merge routing dimension into batch x = repeat(x, 'b ... -> (b r) ...', r = num_routes) s, ps = pack_one(s, '* n') if exists(mask): mask = repeat(mask, 'b ... -> (b r) ...', r = num_routes) # k, which controls the sparsity of the outputted scores from iterative coordinate descent effective_k = min(num_tokens * self.fetch_k_ratio, n) k = torch.tensor([effective_k], device = device) # coordinate descent scores = coor_descent(s, n_iters = self.n_iters, mask = mask, k = k, eps = eps) # get the topk scores and indices from the sparse matrix selected_scores, selected_indices = scores.topk(num_tokens, dim = -1) if self.straight_through: # this would make sure all normalized scores returned are 1., but still differentiable using straight-through trick selected_scores = selected_scores + (1. - selected_scores).detach() if exists(mask): selected_mask = batched_gather(mask, selected_indices) selected_scores = selected_scores.masked_fill(~selected_mask, 0.) # split out routing dimension again if need be if not self.is_one_routing_token: selected_scores = unpack_one(selected_scores, ps, '* n') selected_indices = unpack_one(selected_indices, ps, '* n') return selected_scores, selected_indices # all router types ROUTERS = dict( cum_softmax = DifferentiableTopKRouter, sinkhorn = SinkhornRouter, coor_descent = CoordinateDescentRouter ) # main classes class ConditionalRoutedFeedForward(nn.Module): def __init__( self, dim, *, num_heavy_tokens, light_ff_mult = 0.5, heavy_ff_mult = 4, router_straight_through = True, # would make sure all normalized scores are 1., still differentiable router_type = 'coor_descent', router_kwargs: dict = {} ): super().__init__() assert router_type in ROUTERS.keys() self.num_heavy_tokens = num_heavy_tokens self.router_type = router_type router_klass = ROUTERS.get(router_type) self.router = router_klass( dim = dim, straight_through = router_straight_through, **router_kwargs ) self.light_ff = FeedForward(dim, light_ff_mult) self.heavy_ff = FeedForward(dim, heavy_ff_mult) def forward( self, x, mask = None, num_heavy_tokens = None ): device, num_heavy_tokens = x.device, default(num_heavy_tokens, self.num_heavy_tokens) # light feedforward sees all the tokens (hidden dimension is only 1/2 of model dimensions) light_out = self.light_ff(x) # route tokens appropriately for heavy branch normalized_scores, indices = self.router(x, num_tokens = num_heavy_tokens, mask = mask) # select the tokens to be routed to heavier feedforward (hidden dimension is 4 times model dimensions) routed_tokens = batched_gather(x, indices) # do the heavier branch with only routed tokens routed_tokens_out = self.heavy_ff(routed_tokens) * rearrange(normalized_scores, '... -> ... 1') # scatter back the output of the heavy feedforward branch heavy_out = torch.zeros_like(x) heavy_out = self.router.route_back(heavy_out, routed_tokens_out, indices) # sum light and heavy branches return light_out + heavy_out class ConditionalRoutedAttention(nn.Module): def __init__( self, dim, *, num_heavy_tokens_q, num_heavy_tokens_kv, num_routed_kv = 1, light_dim_head = 64, light_heads = 8, light_window_size = 128, # each token would see ~ 64 tokens either way to left or right heavy_dim_head = 64, heavy_heads = 8, router_straight_through = True, # would make sure all normalized scores are 1., still differentiable router_type = 'coor_descent', router_kwargs: dict = {}, multiply_keys_by_score = False, multiply_queries_by_score = False ): super().__init__() assert router_type in ROUTERS.keys() self.router_type = router_type router_klass = ROUTERS.get(router_type) self.num_heavy_tokens_q = num_heavy_tokens_q self.num_heavy_tokens_kv = num_heavy_tokens_kv self.multiply_queries_by_score = multiply_queries_by_score self.light_attn = LocalMHA( dim = dim, dim_head = light_dim_head, heads = light_heads, window_size = light_window_size // 2, prenorm = True, causal = False, use_rotary_pos_emb = False, look_backward = 1, look_forward = 1 ) self.q_router = router_klass( dim = dim, straight_through = router_straight_through, **router_kwargs ) self.kv_router = router_klass( dim = dim, num_routing_tokens = num_routed_kv, straight_through = router_straight_through, **router_kwargs ) self.heavy_attn = Attention( dim = dim, dim_head = heavy_dim_head, heads = heavy_heads, multiply_keys_by_score = multiply_keys_by_score ) def forward( self, x, *, num_heavy_tokens_q = None, num_heavy_tokens_kv = None, mask = None ): batch, device = x.shape[0], x.device num_heavy_tokens_q = default(num_heavy_tokens_q, self.num_heavy_tokens_q) num_heavy_tokens_kv = default(num_heavy_tokens_kv, self.num_heavy_tokens_kv) # light local attention sees all tokens in a limited context light_out = self.light_attn(x, mask = mask) # route tokens appropriately for heavy branch normalized_scores_q, indices_q = self.q_router(x, num_tokens = num_heavy_tokens_q, mask = mask) normalized_scores_kv, indices_kv = self.kv_router(x, num_tokens = num_heavy_tokens_kv, mask = mask) # select the tokens to be routed to full attention routed_tokens_q = batched_gather(x, indices_q) kv_batch_range = create_batch_range(x, right_pad_dims = indices_kv.ndim - 1) routed_tokens_kv = batched_gather(x, indices_kv) # calculate key padding mask routed_tokens_kv_mask = None if exists(mask): routed_tokens_kv_mask = mask[kv_batch_range, indices_kv] # do the heavier branch with only routed tokens routed_tokens_out = self.heavy_attn( routed_tokens_q, mask = routed_tokens_kv_mask, context = routed_tokens_kv, normalized_scores_kv = normalized_scores_kv, normalized_scores_q = normalized_scores_q if self.multiply_queries_by_score else None ) routed_tokens_out = routed_tokens_out * rearrange(normalized_scores_q, '... -> ... 1') # scatter back the output of the heavy branch heavy_out = torch.zeros_like(x) heavy_out = self.q_router.route_back(heavy_out, routed_tokens_out, indices_q) # sum light and heavy branches return light_out + heavy_out # improvised conditionally routed autoregressive attention class ConditionalRoutedAutoregressiveAttention(nn.Module): def __init__( self, dim, *, num_heavy_tokens_q, num_heavy_tokens_kv, num_routed_kv = 1, light_dim_head = 64, light_heads = 8, light_window_size = 128, # each token would see ~ 64 tokens either way to left or right heavy_window_size = None, heavy_dim_head = 64, heavy_heads = 8, router_straight_through = True, # would make sure all normalized scores are 1., still differentiable router_type = 'coor_descent', router_kwargs: dict = {}, multiply_keys_by_score = False, multiply_queries_by_score = False ): super().__init__() assert router_type in ROUTERS.keys() self.router_type = router_type router_klass = ROUTERS.get(router_type) self.num_heavy_tokens_q = num_heavy_tokens_q self.num_heavy_tokens_kv = num_heavy_tokens_kv self.multiply_queries_by_score = multiply_queries_by_score self.heavy_window_size = default(heavy_window_size, light_window_size) self.light_attn = LocalMHA( dim = dim, dim_head = light_dim_head, heads = light_heads, window_size = light_window_size, prenorm = True, causal = True, use_rotary_pos_emb = False ) self.q_router = router_klass( dim = dim, straight_through = router_straight_through, **router_kwargs ) self.kv_router = router_klass( dim = dim, num_routing_tokens = num_routed_kv, straight_through = router_straight_through, **router_kwargs ) self.heavy_attn = Attention( dim = dim, dim_head = heavy_dim_head, heads = heavy_heads, multiply_keys_by_score = multiply_keys_by_score ) def forward( self, x, *, num_heavy_tokens_q = None, num_heavy_tokens_kv = None ): batch, device = x.shape[0], x.device num_heavy_tokens_q = default(num_heavy_tokens_q, self.num_heavy_tokens_q) num_heavy_tokens_kv = default(num_heavy_tokens_kv, self.num_heavy_tokens_kv) # light local attention sees all tokens in a limited context light_out = self.light_attn(x) # pad sequence to multiple of the heavy window size # routing will take place within each heavy window block size window_size = self.heavy_window_size x, seq_len = pad_to_multiple(x, window_size, dim = -2) padded_seq_len = x.shape[-2] # construct mask, and make sure not to attend to padding q_mask = torch.ones((batch, seq_len), dtype = torch.bool, device = device) q_mask = F.pad(q_mask, (0, padded_seq_len - seq_len), value = False) # block the sequence and mask into windows for the queries q = rearrange(x, 'b (n w) d -> (b n) w d', w = window_size) q_mask = rearrange(q_mask, 'b (n w) -> (b n) w', w = window_size) # each block of queries attend to sequences that are causally masked out appropriately windows = padded_seq_len // window_size kv = repeat(x, 'b n d -> (b m) n d', m = windows) kv_mask = torch.ones((windows, windows), dtype = torch.bool, device = device).tril(-1) kv_mask = repeat(kv_mask, 'm n -> (b m) (n w)', b = batch, w = window_size) # route tokens appropriately for heavy branch, if need be should_route_q = q.shape[-2] > num_heavy_tokens_q should_route_kv = kv.shape[-2] > num_heavy_tokens_kv if should_route_q: normalized_scores_q, indices_q = self.q_router(q, num_tokens = num_heavy_tokens_q, mask = q_mask) routed_tokens_q = batched_gather(q, indices_q) else: normalized_scores_q = 1. routed_tokens_q = q if should_route_kv: normalized_scores_kv, indices_kv = self.kv_router(kv, num_tokens = num_heavy_tokens_kv, mask = kv_mask) routed_tokens_kv = batched_gather(kv, indices_kv) routed_tokens_kv_mask = batched_gather(kv_mask, indices_kv) else: normalized_scores_kv = 1. routed_tokens_kv = kv routed_tokens_kv_mask = kv_mask # do the heavier branch with only routed tokens routed_tokens_out = self.heavy_attn( routed_tokens_q, mask = routed_tokens_kv_mask, context = routed_tokens_kv, normalized_scores_kv = normalized_scores_kv, normalized_scores_q = normalized_scores_q if self.multiply_queries_by_score else None ) if should_route_q: routed_tokens_out = routed_tokens_out * rearrange(normalized_scores_q, '... -> ... 1') # scatter back the output of the heavy branch heavy_out = torch.zeros_like(q) heavy_out = self.q_router.route_back(heavy_out, routed_tokens_out, indices_q) else: heavy_out = routed_tokens_out # un-window and slice out original sequence heavy_out = rearrange(heavy_out, '(b n) w d -> b (n w) d', b = batch) heavy_out = heavy_out[:, :seq_len] # sum light and heavy branches return light_out + heavy_out # adapting the conditional routed self attention to cross attention class ConditionalRoutedCrossAttention(nn.Module): def __init__( self, dim, *, num_tokens_q, num_tokens_kv, num_sets_kv = 1, # setting this greater than 1 would route multiple sets of key / values, each of size num_tokens_kv, using this many routing tokens dim_head = 64, heads = 8, router_straight_through = True, # would make sure all normalized scores are 1., still differentiable router_type = 'coor_descent', router_kwargs: dict = {}, kv_routing_tokens = 1, multiply_keys_by_score = False ): super().__init__() assert router_type in ROUTERS.keys() self.router_type = router_type router_klass = ROUTERS.get(router_type) self.num_tokens_q = num_tokens_q self.num_tokens_kv = num_tokens_kv self.q_router = router_klass( dim = dim, straight_through = router_straight_through, **router_kwargs ) self.kv_router = router_klass( dim = dim, straight_through = router_straight_through, num_routing_tokens = kv_routing_tokens, **router_kwargs ) self.heavy_attn = Attention( dim = dim, dim_head = dim_head, heads = heads, multiply_keys_by_score = multiply_keys_by_score ) def forward( self, x, context, *, num_tokens_q = None, num_tokens_kv = None, mask = None, context_mask = None ): batch, device = x.shape[0], x.device # route the queries query_length = x.shape[-2] num_tokens_q = default(num_tokens_q, self.num_tokens_q) routed_tokens_q = x should_route_queries = query_length > num_tokens_q if should_route_queries: normalized_scores_q, indices_q = self.q_router(x, num_tokens = num_tokens_q, mask = mask) routed_tokens_q = batched_gather(x, indices_q) # route the long contexts key_value_length = context.shape[-2] num_tokens_kv = default(num_tokens_kv, self.num_tokens_kv) routed_tokens_kv = context routed_tokens_kv_mask = context_mask normalized_scores_kv = None should_route_kv = key_value_length > num_tokens_kv if should_route_kv: normalized_scores_kv, indices_kv = self.kv_router(context, num_tokens = num_tokens_kv, mask = context_mask) routed_tokens_kv = batched_gather(x, indices_kv) routed_tokens_kv_mask = None if exists(context_mask): routed_tokens_kv_mask = batched_gather(context_mask, indices_kv) # do the heavier branch with only routed tokens routed_tokens_out = self.heavy_attn( routed_tokens_q, mask = routed_tokens_kv_mask, context = routed_tokens_kv, normalized_scores_kv = normalized_scores_kv ) if should_route_queries: routed_tokens_out = routed_tokens_out * rearrange(normalized_scores_q, '... -> ... 1') # early return if queries did not undergo routing if not should_route_queries: return routed_tokens_out # otherwise, scatter back the query outputs out = torch.zeros_like(x) out = self.q_router.route_back(out, routed_tokens_out, indices_q) return out # block class ConditionalRoutedTransformerBlock(nn.Module): def __init__( self, dim, *, num_heavy_attn_tokens_q, num_heavy_attn_tokens_kv, num_routed_kv = 1, num_heavy_ff_tokens, light_dim_head = 64, light_heads = 8, light_window_size = 128, heavy_dim_head = 64, heavy_heads = 8, light_ff_mult = 0.5, heavy_ff_mult = 4, router_straight_through = True, router_type = 'coor_descent', router_kwargs: dict = {}, multiply_keys_by_score = False, multiply_queries_by_score = False ): super().__init__() self.conditional_ff = ConditionalRoutedFeedForward( dim, num_heavy_tokens = num_heavy_ff_tokens, light_ff_mult = light_ff_mult, heavy_ff_mult = heavy_ff_mult, router_straight_through = router_straight_through, router_type = router_type, router_kwargs = router_kwargs ) self.conditional_attn = ConditionalRoutedAttention( dim, light_dim_head = light_dim_head, light_heads = light_heads, light_window_size = light_window_size, heavy_dim_head = heavy_dim_head, heavy_heads = heavy_heads, num_heavy_tokens_q = num_heavy_attn_tokens_q, num_heavy_tokens_kv = num_heavy_attn_tokens_kv, num_routed_kv = num_routed_kv, router_straight_through = router_straight_through, router_type = router_type, router_kwargs = router_kwargs, multiply_keys_by_score = multiply_keys_by_score, multiply_queries_by_score = multiply_queries_by_score ) def forward( self, x, mask = None, num_heavy_attn_tokens_q = None, num_heavy_attn_tokens_kv = None, num_heavy_ff_tokens = None ): x = self.conditional_attn(x, mask = mask, num_heavy_tokens_q = num_heavy_attn_tokens_q, num_heavy_tokens_kv = num_heavy_attn_tokens_kv) + x x = self.conditional_ff(x, mask = mask, num_heavy_tokens = num_heavy_ff_tokens) + x return x
EXA-1-master
exa/modular_components/attentions/CoLT5-attention-main/colt5_attention/flash.py
import torch from einops import repeat def log(t, eps = 1e-20): return torch.log(t.clamp(min = eps)) def scatter_mean(src, t, index, dim, eps = 1e-5): index = repeat(index, '... -> ... d', d = t.shape[-1]) numer = src.scatter_add(dim, index, t) denom = src.scatter_add(dim, index, torch.ones_like(t)) return numer / denom.clamp(min = eps) def sample_gumbel(shape, device, dtype): u = torch.empty(shape, device = device, dtype = dtype).uniform_(0, 1) return -log(-log(u)) def sinkhorn(r, n_iters = 8): n = r.shape[1] for _ in range(n_iters): r = r - torch.logsumexp(r, dim = 2, keepdim = True) r = r - torch.logsumexp(r, dim = 1, keepdim = True) return torch.exp(r) def gumbel_sinkhorn(r, n_iters = 8, temperature = 0.7): r = log(r) gumbel = sample_gumbel(r.shape, r.device, r.dtype) r = (r + gumbel) / temperature return sinkhorn(r, n_iters)
EXA-1-master
exa/modular_components/attentions/CoLT5-attention-main/colt5_attention/sinkhorn.py
import math import jax from functools import partial from jax import nn from jax import custom_vjp from jax import numpy as jnp, lax, jit # constants EPSILON = 1e-10 MASK_VALUE = -1e10 Q_CHUNK_SIZE = 1024 K_CHUNK_SIZE = 1024 # flash attention def _query_chunk_flash_attention(q_range_chunk, k_range, q, k, v): q_len, k_len, dim, v_dim = q.shape[-2], *k.shape, v.shape[-1] scale = 1 / jnp.sqrt(dim) q_scaled = q * scale def chunk_scanner(carries, _): key_chunk_idx, out, row_sum, row_max = carries k_chunk_sizes = min(K_CHUNK_SIZE, k_len) k_chunk = lax.dynamic_slice(k, (key_chunk_idx, 0), slice_sizes=(k_chunk_sizes, dim)) v_chunk = lax.dynamic_slice(v, (key_chunk_idx, 0), slice_sizes=(k_chunk_sizes, v_dim)) k_range_chunk = lax.dynamic_slice(k_range, (0, key_chunk_idx), slice_sizes=(1, k_chunk_sizes)) causal_mask = q_range_chunk < k_range_chunk attn_weights = q_scaled @ k_chunk.transpose() attn_weights = jnp.where(causal_mask, MASK_VALUE, attn_weights) block_row_max = jnp.max(attn_weights, axis = -1, keepdims = True) exp_weights = jnp.exp(attn_weights - block_row_max) exp_weights = jnp.where(causal_mask, 0., exp_weights) block_row_sum = jnp.sum(exp_weights, axis = -1, keepdims = True) + EPSILON exp_values = exp_weights @ v_chunk new_row_max = jnp.maximum(block_row_max, row_max) exp_row_max_diff = jnp.exp(row_max - new_row_max) exp_block_row_max_diff = jnp.exp(block_row_max - new_row_max) new_row_sum = exp_row_max_diff * row_sum + exp_block_row_max_diff * block_row_sum out = (row_sum / new_row_sum) * exp_row_max_diff * out + \ (exp_block_row_max_diff / new_row_sum) * exp_values return (key_chunk_idx + k_chunk_sizes, out, new_row_sum, new_row_max), None out = jnp.zeros((q_len, dim)) row_sum = jnp.zeros((q_len, 1)) row_max = jnp.ones((q_len, 1)) * -1e6 (_, out, row_sum, row_max), _ = lax.scan(chunk_scanner, init = (0, out, row_sum, row_max), xs = None, length = math.ceil(k_len / K_CHUNK_SIZE)) out = out.reshape(q_len, v_dim) row_sum = row_sum.reshape(q_len) row_max = row_max.reshape(q_len) return out, row_sum, row_max def _causal_flash_attention(q, k, v): q_len, dim, k_len, v_dim = *q.shape, *v.shape q_range = jnp.arange(q_len).reshape(q_len, 1) + (k_len - q_len) k_range = jnp.arange(k_len).reshape(1, k_len) def chunk_scanner(chunk_idx, _): chunk_sizes = min(Q_CHUNK_SIZE, q_len) q_chunk = lax.dynamic_slice(q, (chunk_idx, 0), slice_sizes = (chunk_sizes, dim)) q_range_chunk = lax.dynamic_slice(q_range, (chunk_idx, 0), slice_sizes = (chunk_sizes, 1)) return (chunk_idx + chunk_sizes, _query_chunk_flash_attention(q_range_chunk, k_range, q_chunk, k, v)) _, (out, row_sum, row_max) = lax.scan(chunk_scanner, init = 0, xs = None, length = math.ceil(q_len / Q_CHUNK_SIZE)) out = out.reshape(q_len, v_dim) row_sum = row_sum.reshape(q_len) row_max = row_max.reshape(q_len) return out, (row_sum, row_max) @custom_vjp def causal_flash_attention(q, k, v): out, _ = _causal_flash_attention(q, k, v) return out @jit def flash_attention_forward(q, k, v): out, (row_sum, row_max) = _causal_flash_attention(q, k, v) return out, (q, k, v, out, row_sum, row_max) def _query_chunk_flash_attention_backward(query_range_chunk, key_range, q, k, v, o, do, l, m): q_len, dim, k_len, v_dim = *q.shape, *v.shape scale = 1 / jnp.sqrt(dim) q_scaled = q * scale def chunk_scanner(carries, _): key_chunk_idx, dq = carries k_chunk_sizes = min(K_CHUNK_SIZE, k_len) k_chunk = lax.dynamic_slice(k, (key_chunk_idx, 0), slice_sizes=(k_chunk_sizes, dim)) v_chunk = lax.dynamic_slice(v, (key_chunk_idx, 0), slice_sizes=(k_chunk_sizes, v_dim)) key_range_chunk = lax.dynamic_slice(key_range, (0, key_chunk_idx), slice_sizes=(1, k_chunk_sizes)) causal_mask = query_range_chunk < key_range_chunk attn_weights = q_scaled @ k_chunk.transpose() attn_weights = jnp.where(causal_mask, MASK_VALUE, attn_weights) exp_attn_weights = jnp.exp(attn_weights - m) exp_attn_weights = jnp.where(causal_mask, 0., exp_attn_weights) p = exp_attn_weights / l dv_chunk = p.transpose() @ do dp = do @ v_chunk.transpose() D = jnp.sum(do * o, axis = -1, keepdims = True) ds = p * scale * (dp - D) dq_chunk = ds @ k_chunk dk_chunk = ds.transpose() @ q return (key_chunk_idx + k_chunk_sizes, dq + dq_chunk), (dk_chunk, dv_chunk) dq = jnp.zeros_like(q) (_, dq), (dk, dv) = lax.scan(chunk_scanner, init = (0, dq), xs = None, length = math.ceil(k_len / K_CHUNK_SIZE)) dq = dq.reshape(q_len, dim) dk = dk.reshape(k_len, v_dim) dv = dv.reshape(k_len, v_dim) return dq, dk, dv @jit def flash_attention_backward(res, do): q, k, v, o, l, m = res q_len, dim, k_len, v_dim = *q.shape, *v.shape dk = jnp.zeros_like(k) dv = jnp.zeros_like(v) m = m.reshape(q_len, 1) l = l.reshape(q_len, 1) q_range = jnp.arange(q_len).reshape(q_len, 1) + (k_len - q_len) k_range = jnp.arange(k_len).reshape(1, k_len) def chunk_scanner(carries, _): chunk_idx, dk, dv = carries chunk_sizes = min(Q_CHUNK_SIZE, q_len) q_chunk = lax.dynamic_slice(q, (chunk_idx, 0), slice_sizes = (chunk_sizes, q.shape[-1])) q_range_chunk = lax.dynamic_slice(q_range, (chunk_idx, 0), slice_sizes = (chunk_sizes, 1)) m_chunk = lax.dynamic_slice(m, (chunk_idx, 0), slice_sizes = (chunk_sizes, 1)) l_chunk = lax.dynamic_slice(l, (chunk_idx, 0), slice_sizes = (chunk_sizes, 1)) o_chunk = lax.dynamic_slice(o, (chunk_idx, 0), slice_sizes = (chunk_sizes, o.shape[-1])) do_chunk = lax.dynamic_slice(do, (chunk_idx, 0), slice_sizes = (chunk_sizes, do.shape[-1])) dq_chunk, dk_chunk, dv_chunk = _query_chunk_flash_attention_backward(q_range_chunk, k_range, q_chunk, k, v, o_chunk, do_chunk, l_chunk, m_chunk) return (chunk_idx + chunk_sizes, dk + dk_chunk, dv + dv_chunk), dq_chunk (_, dk, dv), dq = lax.scan(chunk_scanner, init = (0, dk, dv), xs = None, length = math.ceil(q_len / Q_CHUNK_SIZE)) dq = dq.reshape(q_len, dim) return dq, dk, dv causal_flash_attention.defvjp(flash_attention_forward, flash_attention_backward)
EXA-1-master
exa/modular_components/attentions/flashAttentionJAX/casual_flash_attention.py
import jax from jax import nn from jax import jit, numpy as jnp from jax.numpy import einsum from einops import rearrange EPSILON = 1e-10 MASK_VALUE = -1e10 COSINE_SIM_SCALE = 10 @jit def attention(q, k, v, key_mask): dim, k_len = q.shape[-1], k.shape[-2] scale = 1/ jnp.sqrt(dim) q = q * scale sim = einsum('... i d, ... j d -> ... i j', q, k) key_mask = rearrange(key_mask, 'b j -> b 1 1 j') sim = jnp.where(key_mask, sim, MASK_VALUE) attn = nn.softmax(sim, axis=-1) return attn @ v @jit def casual_attention(q, k, v): q_len, dim, k_len = *q.shape[-2:], k.shape[-2] scale = 1 / jnp.sqrt(dim) q = q * scale sim = einsum('... i d, ... j d -> ... i j', q, k) casual_mask = jnp.triu(jnp.ones((q_len, k_len)), k_len - q_len + 1) sim = jnp.where(casual_mask, MASK_VALUE, sim) attn = nn.softmax(sim, axis=-1) return einsum('... i j, ... j d -> ... i d', attn, v) #cosine flash attention @jit def l2norm(t): return t / (jnp.linalg.norm(t) + EPSILON) @jit def cosine_sim_attention(q, k, v, key_mask): dim, k_len = q.shape[-1], k.shape[-2] q, k = map(l2norm, (q, k)) sim = einsum('...i d, ... j d -> ... i j', q, k) * COSINE_SIM_SCALE key_mask = rearrange(key_mask, 'b j -> b 1 1 j') sim = jnp.where(key_mask, sim, MASK_VALUE) attn = nn.softmax(sim, axis=-1) return einsum('... i j, ... j d -> ... i d', attn, v)
EXA-1-master
exa/modular_components/attentions/flashAttentionJAX/attention.py
import math from functools import partial import jax from jax import lax, numpy as jnp, jit # constants HIGHEST_PRECISION = jax.lax.Precision.HIGHEST einsum = partial(jnp.einsum, precision = HIGHEST_PRECISION) # Figure 1 from https://arxiv.org/abs/2112.05682 # cleaned up def _query_chunk_attention(q, k, v, k_chunk_size = 4096): q_len, k_len, dim, v_dim = q.shape[-2], *k.shape, v.shape[-1] k_chunk_size = min(k_chunk_size, k_len) q = q / jnp.sqrt(dim) @partial(jax.checkpoint, prevent_cse = False) def summarize_chunk(q, k, v): attn_weights = einsum('qd, kd -> qk', q, k) max_score = jnp.max(attn_weights, axis = -1, keepdims = True) max_score = jax.lax.stop_gradient(max_score) exp_weights = jnp.exp(attn_weights - max_score) exp_values = einsum('vf, qv -> qf', v, exp_weights) return (exp_values, exp_weights.sum(axis = -1), max_score.reshape((q_len,))) def chunk_scanner(chunk_idx): k_chunk = lax.dynamic_slice(k, (chunk_idx, 0), slice_sizes=(k_chunk_size, dim)) v_chunk = lax.dynamic_slice(v, (chunk_idx, 0), slice_sizes=(k_chunk_size, v_dim)) return summarize_chunk(q, k_chunk, v_chunk) chunk_values, chunk_weights, chunk_max = jax.lax.map(chunk_scanner, xs = jnp.arange(0, k_len, k_chunk_size)) global_max = jnp.max(chunk_max, axis = 0, keepdims = True) max_diffs = jnp.exp(chunk_max - global_max) chunk_values *= jnp.expand_dims(max_diffs, axis=-1) chunk_weights *= max_diffs all_values = chunk_values.sum(axis = 0) all_weights = jnp.expand_dims(chunk_weights, -1).sum(axis = 0) return all_values / all_weights @jit def rabe_attention(q, k, v, q_chunk_size = 1024, k_chunk_size = 4096): q_len, dim, v_dim = *q.shape, v.shape[-1] def chunk_scanner(chunk_idx, _): q_chunk = lax.dynamic_slice(q, (chunk_idx, 0), slice_sizes = (min(q_chunk_size, q_len), dim)) return (chunk_idx + q_chunk_size, _query_chunk_attention(q_chunk, k, v, k_chunk_size = k_chunk_size)) _, res = jax.lax.scan(chunk_scanner, init = 0, xs = None, length = math.ceil(q_len / q_chunk_size)) return res.reshape(q_len, v_dim)
EXA-1-master
exa/modular_components/attentions/flashAttentionJAX/rabe_attention.py
from flash_attention import flash_attention from cosine_sim_flash_attention import cosine_sim_flash_attention from casual_flash_attention import causal_flash_attention from rabe_attention import rabe_attention from attention import attention, causal_attention, cosine_sim_attention from utils import value_and_grad_difference, PRNGKeyGenerator plain_attention = attention
EXA-1-master
exa/modular_components/attentions/flashAttentionJAX/__init__.py
import math import jax from functools import partial from jax import nn from jax import custom_vjp from jax import numpy as jnp, lax, jit #CONSTANTS EPSILON = 1e-10 MASK_VALUE= -1e10 Q_CHUNK_SIZE = 1024 K_CHUNK_SIZE = 1024 COSINE_SIM_SCALE = 10 # this may need to be a functon of log(sequence length) but 15 was sufficient for 2048 and 4096 #flash attention def _query_chunk_flash_attention(chunk_idx, q, k, v, key_mask): q_len, k_len, dim, v_dim = q.shape[-2], *k.shape, v.shape[-1] def chunk_scanner(carries, _): chunk_idx, out, row_sum = carries k_chunk_sizes = min(K_CHUNK_SIZE, k_len) k_chunk = lax.dynamic_slice(k, (chunk_idx, 0), slice_sizes=(k_chunk_sizes, dim)) v_chunk = lax.dynamic_slice(v, (chunk_idx, 0), slice_sizes=(k_chunk_sizes, v_dim)) key_mask_chunk = lax.dynamic_slice(key_mask, (chunk_idx,), slice_sizes=(k_chunk_sizes, )) attn_weights = (q @ k_chunk.transpose() * COSINE_SIM_SCALE) - COSINE_SIM_SCALE # the output of this will range from [-2 * scale, 0], and the row sums are now bounded by key/values sequence length - you can also shift this more if you wish to tailor the normalization constant in the case of extreme sequence length attn_weights = jnp.where(key_mask_chunk, attn_weights, MASK_VALUE) exp_weights = jnp.exp(attn_weights) exp_weights = jnp.where(key_mask_chunk, exp_weights, 0.) block_row_sum = jnp.sum(exp_weights, axis=-1, keepdims=True) exp_values = exp_weights @ v_chunk chunk_out = exp_values / k_len return (chunk_idx + k_chunk_sizes, out + chunk_out, row_sum, + block_row_sum), None out = jnp.zeros((q_len, dim)) row_sum = jnp.zeros((q_len, 1)) (_, out, row_sum), _ = lax.scan(chunk_scanner, init= (0, out, row_sum), xs=None, length=math.ceil(k_len / K_CHUNK_SIZE)) out = out * (k_len / (row_sum + EPSILON)) # RENORMALIZE AFTER ACQUIRING ALL THE CORRECT ROW Sums out = out.reshape(q_len, v_dim) row_sum = row_sum.reshape(q_len) return out, row_sum @jit def l2norm(t): return t / (jnp.linalg.norm(t) + EPSILON) @jit def cosine_sim_flash_attention(q, k, v, key_mask): q, k = map(l2norm, (q, k)) return cosine_sim_flash_attention_after_l2norm(q, k, v, key_mask) def _cosine_sim_flash_attention_after_l2norm(q, k, v, key_mask): q_len, dim, v_dim = *q.shape, v.shape[-1] def chunk_scanner(chunk_idx, _): chunk_sizes = min(Q_CHUNK_SIZE, q_len) q_chunk = lax.dynamic_slice(q, (chunk_idx, 0), slice_sizes = (chunk_sizes, dim)) return (chunk_idx + chunk_idx, _query_chunk_flash_attention(chunk_idx, q_chunk, k, v, key_mask)) _, (out, row_sum) = lax.scan(chunk_scanner, init=0, xs=None, length =math.ceil(q_len / Q_CHUNK_SIZE)) out = out.reshape(q_len, v_dim) row_sum = row_sum.reshape(q_len) return out, (row_sum,) @custom_vjp def cosine_sim_flash_attention_after_l2norm(q, k, v, key_mask): out, _ = _cosine_sim_flash_attention_after_l2norm(q, k, v, key_mask) return out @jit def flash_attention_forward(q, k, v, key_mask): out, (row_sum,) = _cosine_sim_flash_attention_after_l2norm(q, k, v, key_mask) def _query_chunk_flash_attention_backward(q, k, v, key_mask, o, do, l): q_len, dim, k_len, v_dim = *q.shape, *v.shape def chunk_scanner(carrries, _): chunk_idx, dq = carrries k_chunk_sizes = min(K_CHUNK_SIZE, k_len) k_chunk = lax.dynamic_slice(k, (chunk_idx, 0), slice_sizes=(k_chunk_sizes, dim)) v_chunk = lax.dynamic_slice(v, (chunk_idx, 0), slice_siezes=(k_chunk_sizes, v_dim)) key_mask_chunk = lax.dynamic_slice(key_mask, (chunk_idx,), slice_sizes=(k_chunk_sizes,)) attn_weights = q @ k_chunk.tranpose() * COSINE_SIM_SCALE - COSINE_SIM_SCALE exp_attn_weights = jnp.exp(attn_weights) exp_attn_weights = jnp.where(key_mask_chunk, exp_attn_weights, 0.) p = exp_attn_weights / (l + EPSILON) dv_chunk = p.tranpose() @ do dp = do @ v_chunk.tranpose() D = jnp.sum(do * o, axis=-1, keepdims=True) ds = p * COSINE_SIM_SCALE * (dp - D) dq_chunk = ds @ k_chunk dk_chunk = ds.tranpose() @ q return (chunk_idx + k_chunk_sizes, dq + dq_chunk), (dk_chunk, dv_chunk) dq = jnp.zeros_like(q) (_, dq), (dk, dv) = lax.scan(chunk_scanner, init=(0, dq), xs=None, lenght=math.ceil(k_len / K_CHUNK_SIZE)) dq = dq.reshape(q_len, dim) dk = dq.reshape(k_len, v_dim) dv = dv.reshape(k_len, v_dim) return dq, dk, dv @jit def flash_attention_backward(res, do): q, k, v, key_mask, o, l = res q_len, dim = q.shape dk = jnp.zeros_like(k) dv = jnp.zeros_like(v) l = l.reshape(q_len, 1) def chunk_scanner(carries, _): chunk_idx, dk, dv = carries chunk_sizes = min(Q_CHUNK_SIZE, q_len) q_chunk = lax.dynamic_slice(q, (chunk_idx, 0), slice_sizes = (chunk_sizes, q.shape[-1])) l_chunk = lax.dynamic_slice(l, (chunk_idx, 0), slice_sizes = (chunk_sizes, 1)) o_chunk = lax.dynamic_slice(o, (chunk_idx, 0), slice_sizes = (chunk_sizes, o.shape[1])) do_chunk = lax.dynamic_slice(do, (chunk_idx, 0), slice_sizes = (chunk_sizes, do.shape[-1])) dq_chunk, dk_chunk, dv_chunk = _query_chunk_flash_attention_backward(q_chunk, k, v, key_mask, o_chunk, do_chunk, l_chunk) return (chunk_idx + chunk_sizes, dk + dk_chunk, dv + dv_chunk), dq_chunk (_, dk, dv), dq = lax.scan(chunk_scanner, init=(0, dk, dv), xs=None, lenght=math.ceil(q_len / Q_CHUNK_SIZE)) dq = dq.reshape(q_len, dim) return dq, dk, dv, None cosine_sim_flash_attention_after_l2norm.defvjp(flash_attention_forward, flash_attention_backward)
EXA-1-master
exa/modular_components/attentions/flashAttentionJAX/cosine_sim_flash_attention.py
import jax from functools import partial import jax.numpy as jnp from jax import random from jax import value_and_grad def value_and_grad_wrapper(fn, **kwargs): @partial(value_and_grad, **kwargs) def inner(*args, **kwargs): return jnp.sum(fn(*args, **kwargs)) return inner def diff(t1, t2): return jnp.max(jnp.abs(t1 - t2)) def PRNGKeyGenerator(seed = 42): key = random.PRNGKey(seed) while True: sub_key, key = random.split(key) yield sub_key def value_and_grad_difference( fn1, fn2, seed = 42, batch = 2, heads = 4, q_seq_len = 4096, k_seq_len = 8192, add_key_mask = True, dim = 512 ): key_gen = PRNGKeyGenerator(seed) q = random.normal(next(key_gen), (batch, heads, q_seq_len, dim)) k = random.normal(next(key_gen), (batch, heads, k_seq_len, dim)) v = random.normal(next(key_gen), (batch, heads, k_seq_len, dim)) key_mask = random.randint(next(key_gen), (batch, k_seq_len), 0, 2) == 1 fn1_value_and_grad, fn2_value_and_grad = map(partial(value_and_grad_wrapper, argnums = (0, 1, 2)), (fn1, fn2)) args = (q, k, v) if add_key_mask: args = (*args, key_mask) o1, grads1 = fn1_value_and_grad(*args) o2, grads2 = fn2_value_and_grad(*args) return diff(o1, o2), [diff(*args) for args in zip(grads1, grads2)]
EXA-1-master
exa/modular_components/attentions/flashAttentionJAX/utils.py
import math import jax from functools import partial from jax import nn from jax import custom_vjp from jax import numpy as jnp, lax, jit from jax.numpy import einsum from einops import rearrange # constants EPSILON = 1e-10 MASK_VALUE = -1e10 Q_CHUNK_SIZE = 1024 K_CHUNK_SIZE = 1024 # flash attention def _query_chunk_flash_attention(chunk_idx, q, k, v, key_mask): q_len, batch, heads, dim, k_len, v_dim = *q.shape, k.shape[0], v.shape[-1] scale = 1 / jnp.sqrt(dim) q_scaled = q * scale def chunk_scanner(carries, _): chunk_idx, out, row_sum, row_max = carries k_chunk_sizes = min(K_CHUNK_SIZE, k_len) k_chunk = lax.dynamic_slice(k, (chunk_idx, 0, 0, 0), slice_sizes=(k_chunk_sizes, batch, heads, dim)) v_chunk = lax.dynamic_slice(v, (chunk_idx, 0, 0, 0), slice_sizes=(k_chunk_sizes, batch, heads, v_dim)) key_mask_chunk = lax.dynamic_slice(key_mask, (chunk_idx, 0), slice_sizes=(k_chunk_sizes, batch)) attn_weights = einsum('i ... d, j ... d -> i ... j', q_scaled, k_chunk) key_mask_chunk = rearrange(key_mask_chunk, 'j b -> 1 b 1 j') attn_weights = jnp.where(key_mask_chunk, attn_weights, MASK_VALUE) block_row_max = jnp.max(attn_weights, axis = -1, keepdims = True) exp_weights = jnp.exp(attn_weights - block_row_max) exp_weights = jnp.where(key_mask_chunk, exp_weights, 0.) block_row_sum = jnp.sum(exp_weights, axis = -1, keepdims = True) + EPSILON exp_values = einsum('i ... j, j ... d -> i ... d', exp_weights, v_chunk) new_row_max = jnp.maximum(block_row_max, row_max) exp_row_max_diff = jnp.exp(row_max - new_row_max) exp_block_row_max_diff = jnp.exp(block_row_max - new_row_max) new_row_sum = exp_row_max_diff * row_sum + exp_block_row_max_diff * block_row_sum out = (row_sum / new_row_sum) * exp_row_max_diff * out + \ (exp_block_row_max_diff / new_row_sum) * exp_values return (chunk_idx + k_chunk_sizes, out, new_row_sum, new_row_max), None out = jnp.zeros((q_len, batch, heads, dim)) row_sum = jnp.zeros((q_len, batch, heads, 1)) row_max = jnp.ones((q_len, batch, heads, 1)) * -1e6 (_, out, row_sum, row_max), _ = lax.scan(chunk_scanner, init = (0, out, row_sum, row_max), xs = None, length = math.ceil(k_len / K_CHUNK_SIZE)) row_sum = rearrange(row_sum, 'n ... 1 -> n ...') row_max = rearrange(row_max, 'n ... 1 -> n ...') lse = jnp.log(row_sum) + row_max return out, lse def _flash_attention(q, k, v, key_mask): batch, heads, q_len, dim, v_dim = *q.shape, v.shape[-1] def chunk_scanner(chunk_idx, _): chunk_sizes = min(Q_CHUNK_SIZE, q_len) q_chunk = lax.dynamic_slice(q, (chunk_idx, 0, 0, 0), slice_sizes = (chunk_sizes, batch, heads, dim)) return (chunk_idx + chunk_sizes, _query_chunk_flash_attention(chunk_idx, q_chunk, k, v, key_mask)) q, k, v = map(lambda t: rearrange(t, 'b h n d -> n b h d'), (q, k, v)) key_mask = rearrange(key_mask, 'b j -> j b') _, (out, lse) = lax.scan(chunk_scanner, init = 0, xs = None, length = math.ceil(q_len / Q_CHUNK_SIZE)) out = rearrange(out, 'c n b h d -> b h (c n) d') lse = rearrange(lse, 'c n b h -> b h (c n)') return out, lse @custom_vjp @jit def flash_attention(q, k, v, key_mask): out, _ = _flash_attention(q, k, v, key_mask) return out @jit def flash_attention_forward(q, k, v, key_mask): out, lse = _flash_attention(q, k, v, key_mask) return out, (q, k, v, key_mask, out, lse) def _query_chunk_flash_attention_backward(q, k, v, key_mask, o, do, lse): q_len, batch, heads, dim, k_len, v_dim = *q.shape, v.shape[0], v.shape[-1] scale = 1 / jnp.sqrt(dim) q_scaled = q * scale def chunk_scanner(carries, _): chunk_idx, dq = carries k_chunk_sizes = min(K_CHUNK_SIZE, k_len) k_chunk = lax.dynamic_slice(k, (chunk_idx, batch, heads, 0), slice_sizes=(k_chunk_sizes, batch, heads, dim)) v_chunk = lax.dynamic_slice(v, (chunk_idx, batch, heads, 0), slice_sizes=(k_chunk_sizes, batch, heads, v_dim)) key_mask_chunk = lax.dynamic_slice(key_mask, (chunk_idx, batch), slice_sizes=(k_chunk_sizes, batch)) attn_weights = einsum('i ... d, j ... d -> i ... j', q_scaled, k_chunk) p = jnp.exp(attn_weights - lse) key_mask_chunk = rearrange(key_mask_chunk, 'j b -> 1 b 1 j') p = jnp.where(key_mask_chunk, p, 0.) dv_chunk = einsum('i ... j, i ... d -> j ... d', p, do) dp = einsum('i ... d, j ... d -> i ... j', do, v_chunk) D = jnp.sum(do * o, axis = -1, keepdims = True) ds = p * scale * (dp - D) dq_chunk = einsum('i ... j, j ... d -> i ... d', ds, k_chunk) dk_chunk = einsum('i ... j, i ... d -> j ... d', ds, q) return (chunk_idx + k_chunk_sizes, dq + dq_chunk), (dk_chunk, dv_chunk) dq = jnp.zeros_like(q) (_, dq), (dk, dv) = lax.scan(chunk_scanner, init = (0, dq), xs = None, length = math.ceil(k_len / K_CHUNK_SIZE)) dk = rearrange(dk, 'c n ... -> (c n) ...') dv = rearrange(dv, 'c n ... -> (c n) ...') return dq, dk, dv @jit def flash_attention_backward(res, do): q, k, v, key_mask, o, lse = res batch, heads, q_len, dim = q.shape lse = rearrange(lse, 'b h n -> n b h 1') q, k, v, o, do = map(lambda t: rearrange(t, 'b h n d -> n b h d'), (q, k, v, o, do)) key_mask = rearrange(key_mask, 'b j -> j b') dk = jnp.zeros_like(k) dv = jnp.zeros_like(v) def chunk_scanner(carries, _): chunk_idx, dk, dv = carries chunk_sizes = min(Q_CHUNK_SIZE, q_len) q_chunk = lax.dynamic_slice(q, (chunk_idx, batch, heads, 0), slice_sizes = (chunk_sizes, batch, heads, q.shape[-1])) lse_chunk = lax.dynamic_slice(lse, (chunk_idx, batch, heads, 0), slice_sizes = (chunk_sizes, batch, heads, 1)) o_chunk = lax.dynamic_slice(o, (chunk_idx, batch, heads, 0), slice_sizes = (chunk_sizes, batch, heads, o.shape[-1])) do_chunk = lax.dynamic_slice(do, (chunk_idx, batch, heads, 0), slice_sizes = (chunk_sizes, batch, heads, do.shape[-1])) dq_chunk, dk_chunk, dv_chunk = _query_chunk_flash_attention_backward(q_chunk, k, v, key_mask, o_chunk, do_chunk, lse_chunk) return (chunk_idx + chunk_sizes, dk + dk_chunk, dv + dv_chunk), dq_chunk (_, dk, dv), dq = lax.scan(chunk_scanner, init = (0, dk, dv), xs = None, length = math.ceil(q_len / Q_CHUNK_SIZE)) dq = rearrange(dq, 'c n b h d -> b h (c n) d') dk, dv = map(lambda t: rearrange(t, 'n b h d -> b h n d'), (dk, dv)) return dq, dk, dv, None flash_attention.defvjp(flash_attention_forward, flash_attention_backward)
EXA-1-master
exa/modular_components/attentions/flashAttentionJAX/flash_attention.py
import torch import torch.nn as nn from torch.nn import LayerNorm from einops import rearrange class KernelAttention(nn.Module): def __init__(self, embed_dim, num_heads, dropout=0.0, kernel="gaussian", sigma=1.0): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.head_dim = embed_dim // num_heads self.scaling = self.head_dim ** -0.5 self.sigma = sigma self.kernel = kernel self.q_proj = nn.Linear(embed_dim, embed_dim, bias=True) self.k_proj = nn.Linear(embed_dim, embed_dim, bias=True) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=True) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=True) self.dropout_module = torch.nn.Dropout(dropout) def forward(self, q, k, v, attn_mask=None): bsz, tgt_len, embed_dim = q.size() q = self.q_proj(q) k = self.k_proj(k) v = self.v_proj(v) q *= self.scaling q = rearrange(q, 'b t (h d) -> b h t d', h=self.num_heads) k = rearrange(k, 'b s (h d) -> b h s d', h=self.num_heads) v = rearrange(v, 'b s (h d) -> b h s d', h=self.num_heads) if self.kernel == "gaussian": kernel_attn = torch.exp(-((q.unsqueeze(3) - k.unsqueeze(2)) ** 2).sum(-1) / (2 * self.sigma ** 2)) else: raise ValueError(f"Unsupported kernel type: {self.kernel}") kernel_attn = kernel_attn / kernel_attn.sum(dim=-1, keepdim=True) if attn_mask is not None: kernel_attn = kernel_attn * attn_mask.unsqueeze(1) attn_probs = self.dropout_module(kernel_attn) attn = torch.einsum('b h t s, b h s d -> b h t d', attn_probs, v) attn = rearrange(attn, 'b h t d -> b t (h d)', h=self.num_heads) attn = self.out_proj(attn) return attn, kernel_attn class OptimizedAttention(nn.Module): def __init__(self, embed_dim, num_heads, dropout=0.0): super().__init__() self.kernel_attn = KernelAttention(embed_dim, num_heads, dropout) self.layer_norm = LayerNorm(embed_dim) def forward(self, q, k, v, attn_mask=None): attn, attn_weights = self.kernel_attn(q, k, v, attn_mask) attn = self.layer_norm(attn) attn_weights = attn_weights.to(torch.float16) return attn, attn_weights
EXA-1-master
exa/modular_components/attentions/KernelizedAttention/ka.py
# Adapted from https://github.com/NVIDIA/apex/blob/master/setup.py import sys import warnings import os from pathlib import Path from packaging.version import parse, Version from setuptools import setup, find_packages import subprocess import torch from torch.utils.cpp_extension import BuildExtension, CppExtension, CUDAExtension, CUDA_HOME with open("README.md", "r", encoding="utf-8") as fh: long_description = fh.read() # ninja build does not work unless include_dirs are abs path this_dir = os.path.dirname(os.path.abspath(__file__)) def get_cuda_bare_metal_version(cuda_dir): raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True) output = raw_output.split() release_idx = output.index("release") + 1 bare_metal_version = parse(output[release_idx].split(",")[0]) return raw_output, bare_metal_version def check_cuda_torch_binary_vs_bare_metal(cuda_dir): raw_output, bare_metal_version = get_cuda_bare_metal_version(cuda_dir) torch_binary_version = parse(torch.version.cuda) print("\nCompiling cuda extensions with") print(raw_output + "from " + cuda_dir + "/bin\n") if (bare_metal_version != torch_binary_version): raise RuntimeError( "Cuda extensions are being compiled with a version of Cuda that does " "not match the version used to compile Pytorch binaries. " "Pytorch binaries were compiled with Cuda {}.\n".format(torch.version.cuda) + "In some cases, a minor-version mismatch will not cause later errors: " "https://github.com/NVIDIA/apex/pull/323#discussion_r287021798. " "You can try commenting out this check (at your own risk)." ) def raise_if_cuda_home_none(global_option: str) -> None: if CUDA_HOME is not None: return raise RuntimeError( f"{global_option} was requested, but nvcc was not found. Are you sure your environment has nvcc available? " "If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, " "only images whose names contain 'devel' will provide nvcc." ) def append_nvcc_threads(nvcc_extra_args): _, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME) if bare_metal_version >= Version("11.2"): return nvcc_extra_args + ["--threads", "4"] return nvcc_extra_args if not torch.cuda.is_available(): # https://github.com/NVIDIA/apex/issues/486 # Extension builds after https://github.com/pytorch/pytorch/pull/23408 attempt to query torch.cuda.get_device_capability(), # which will fail if you are compiling in an environment without visible GPUs (e.g. during an nvidia-docker build command). print( "\nWarning: Torch did not find available GPUs on this system.\n", "If your intention is to cross-compile, this is not an error.\n" "By default, Apex will cross-compile for Pascal (compute capabilities 6.0, 6.1, 6.2),\n" "Volta (compute capability 7.0), Turing (compute capability 7.5),\n" "and, if the CUDA version is >= 11.0, Ampere (compute capability 8.0).\n" "If you wish to cross-compile for a single specific architecture,\n" 'export TORCH_CUDA_ARCH_LIST="compute capability" before running setup.py.\n', ) if os.environ.get("TORCH_CUDA_ARCH_LIST", None) is None and CUDA_HOME is not None: _, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME) if bare_metal_version >= Version("11.8"): os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0;8.6;9.0" elif bare_metal_version >= Version("11.1"): os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0;8.6" elif bare_metal_version == Version("11.0"): os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0" else: os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5" print("\n\ntorch.__version__ = {}\n\n".format(torch.__version__)) TORCH_MAJOR = int(torch.__version__.split(".")[0]) TORCH_MINOR = int(torch.__version__.split(".")[1]) cmdclass = {} ext_modules = [] # Check, if ATen/CUDAGeneratorImpl.h is found, otherwise use ATen/cuda/CUDAGeneratorImpl.h # See https://github.com/pytorch/pytorch/pull/70650 generator_flag = [] torch_dir = torch.__path__[0] if os.path.exists(os.path.join(torch_dir, "include", "ATen", "CUDAGeneratorImpl.h")): generator_flag = ["-DOLD_GENERATOR_PATH"] raise_if_cuda_home_none("flash_attn") # Check, if CUDA11 is installed for compute capability 8.0 cc_flag = [] _, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME) if bare_metal_version < Version("11.0"): raise RuntimeError("FlashAttention is only supported on CUDA 11 and above") cc_flag.append("-gencode") cc_flag.append("arch=compute_75,code=sm_75") cc_flag.append("-gencode") cc_flag.append("arch=compute_80,code=sm_80") if bare_metal_version >= Version("11.8"): cc_flag.append("-gencode") cc_flag.append("arch=compute_90,code=sm_90") subprocess.run(["git", "submodule", "update", "--init", "csrc/flash_attn/cutlass"]) ext_modules.append( CUDAExtension( name="flash_attn_cuda", sources=[ "csrc/flash_attn/fmha_api.cpp", "csrc/flash_attn/src/fmha_fwd_hdim32.cu", "csrc/flash_attn/src/fmha_fwd_hdim64.cu", "csrc/flash_attn/src/fmha_fwd_hdim128.cu", "csrc/flash_attn/src/fmha_bwd_hdim32.cu", "csrc/flash_attn/src/fmha_bwd_hdim64.cu", "csrc/flash_attn/src/fmha_bwd_hdim128.cu", "csrc/flash_attn/src/fmha_block_fprop_fp16_kernel.sm80.cu", "csrc/flash_attn/src/fmha_block_dgrad_fp16_kernel_loop.sm80.cu", ], extra_compile_args={ "cxx": ["-O3", "-std=c++17"] + generator_flag, "nvcc": append_nvcc_threads( [ "-O3", "-std=c++17", "-U__CUDA_NO_HALF_OPERATORS__", "-U__CUDA_NO_HALF_CONVERSIONS__", "-U__CUDA_NO_HALF2_OPERATORS__", "-U__CUDA_NO_BFLOAT16_CONVERSIONS__", "--expt-relaxed-constexpr", "--expt-extended-lambda", "--use_fast_math", "--ptxas-options=-v", "-lineinfo" ] + generator_flag + cc_flag ), }, include_dirs=[ Path(this_dir) / 'csrc' / 'flash_attn', Path(this_dir) / 'csrc' / 'flash_attn' / 'src', Path(this_dir) / 'csrc' / 'flash_attn' / 'cutlass' / 'include', ], ) ) setup( name="flash_attn", version="1.0.1", packages=find_packages( exclude=("build", "csrc", "include", "tests", "dist", "docs", "benchmarks", "flash_attn.egg-info",) ), author="Tri Dao", author_email="[email protected]", description="Flash Attention: Fast and Memory-Efficient Exact Attention", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/HazyResearch/flash-attention", classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: BSD License", "Operating System :: Unix", ], ext_modules=ext_modules, cmdclass={"build_ext": BuildExtension} if ext_modules else {}, python_requires=">=3.7", install_requires=[ "torch", "einops", "packaging", ], )
EXA-1-master
exa/modular_components/attentions/flash-attention/setup.py
# Adapted from https://github.com/NVIDIA/apex/blob/master/setup.py import sys import warnings import os from packaging.version import parse, Version from setuptools import setup, find_packages import subprocess import torch from torch.utils.cpp_extension import BuildExtension, CppExtension, CUDAExtension, CUDA_HOME # ninja build does not work unless include_dirs are abs path this_dir = os.path.dirname(os.path.abspath(__file__)) def get_cuda_bare_metal_version(cuda_dir): raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True) output = raw_output.split() release_idx = output.index("release") + 1 bare_metal_version = parse(output[release_idx].split(",")[0]) return raw_output, bare_metal_version def check_cuda_torch_binary_vs_bare_metal(cuda_dir): raw_output, bare_metal_version = get_cuda_bare_metal_version(cuda_dir) torch_binary_version = parse(torch.version.cuda) print("\nCompiling cuda extensions with") print(raw_output + "from " + cuda_dir + "/bin\n") if (bare_metal_version != torch_binary_version): raise RuntimeError( "Cuda extensions are being compiled with a version of Cuda that does " "not match the version used to compile Pytorch binaries. " "Pytorch binaries were compiled with Cuda {}.\n".format(torch.version.cuda) + "In some cases, a minor-version mismatch will not cause later errors: " "https://github.com/NVIDIA/apex/pull/323#discussion_r287021798. " "You can try commenting out this check (at your own risk)." ) def raise_if_cuda_home_none(global_option: str) -> None: if CUDA_HOME is not None: return raise RuntimeError( f"{global_option} was requested, but nvcc was not found. Are you sure your environment has nvcc available? " "If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, " "only images whose names contain 'devel' will provide nvcc." ) def append_nvcc_threads(nvcc_extra_args): _, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME) if bare_metal_version >= Version("11.2"): return nvcc_extra_args + ["--threads", "4"] return nvcc_extra_args if not torch.cuda.is_available(): # https://github.com/NVIDIA/apex/issues/486 # Extension builds after https://github.com/pytorch/pytorch/pull/23408 attempt to query torch.cuda.get_device_capability(), # which will fail if you are compiling in an environment without visible GPUs (e.g. during an nvidia-docker build command). print( "\nWarning: Torch did not find available GPUs on this system.\n", "If your intention is to cross-compile, this is not an error.\n" "By default, Apex will cross-compile for Pascal (compute capabilities 6.0, 6.1, 6.2),\n" "Volta (compute capability 7.0), Turing (compute capability 7.5),\n" "and, if the CUDA version is >= 11.0, Ampere (compute capability 8.0).\n" "If you wish to cross-compile for a single specific architecture,\n" 'export TORCH_CUDA_ARCH_LIST="compute capability" before running setup.py.\n', ) if os.environ.get("TORCH_CUDA_ARCH_LIST", None) is None and CUDA_HOME is not None: _, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME) if bare_metal_version >= Version("11.8"): os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0;8.6;9.0" elif bare_metal_version >= Version("11.1"): os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0;8.6" elif bare_metal_version == Version("11.0"): os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0" else: os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5" print("\n\ntorch.__version__ = {}\n\n".format(torch.__version__)) TORCH_MAJOR = int(torch.__version__.split(".")[0]) TORCH_MINOR = int(torch.__version__.split(".")[1]) cmdclass = {} ext_modules = [] # Check, if ATen/CUDAGeneratorImpl.h is found, otherwise use ATen/cuda/CUDAGeneratorImpl.h # See https://github.com/pytorch/pytorch/pull/70650 generator_flag = [] torch_dir = torch.__path__[0] if os.path.exists(os.path.join(torch_dir, "include", "ATen", "CUDAGeneratorImpl.h")): generator_flag = ["-DOLD_GENERATOR_PATH"] raise_if_cuda_home_none("--ft_attention") # Check, if CUDA11 is installed for compute capability 8.0 cc_flag = [] _, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME) if bare_metal_version < Version("11.0"): raise RuntimeError("ft_attention is only supported on CUDA 11 and above") cc_flag.append("-gencode") cc_flag.append("arch=compute_70,code=sm_70") cc_flag.append("-gencode") cc_flag.append("arch=compute_80,code=sm_80") if bare_metal_version >= Version("11.8"): cc_flag.append("-gencode") cc_flag.append("arch=compute_90,code=sm_90") ext_modules.append( CUDAExtension( name="ft_attention", sources=[ "ft_attention.cpp", "decoder_masked_multihead_attention.cu", ], extra_compile_args={ "cxx": ["-O3", "-DENABLE_BF16"] + generator_flag, "nvcc": append_nvcc_threads( [ "-DENABLE_BF16", # TODO "-O3", "-U__CUDA_NO_HALF_OPERATORS__", "-U__CUDA_NO_HALF_CONVERSIONS__", "-U__CUDA_NO_BFLOAT16_OPERATORS__", "-U__CUDA_NO_BFLOAT16_CONVERSIONS__", "-U__CUDA_NO_BFLOAT162_OPERATORS__", "-U__CUDA_NO_BFLOAT162_CONVERSIONS__", "--expt-relaxed-constexpr", "--expt-extended-lambda", "--use_fast_math", ] + generator_flag + cc_flag ), }, include_dirs=[this_dir], ) ) setup( name="ft_attention", version="0.1", description="Attention for single query from FasterTransformer", ext_modules=ext_modules, cmdclass={"build_ext": BuildExtension} if ext_modules else {}, )
EXA-1-master
exa/modular_components/attentions/flash-attention/csrc/ft_attention/setup.py
# Copied from https://github.com/NVIDIA/apex/tree/master/csrc/megatron # We add the case where seqlen = 4k and seqlen = 8k import os import subprocess import torch from setuptools import setup from torch.utils.cpp_extension import BuildExtension, CUDAExtension, CUDA_HOME def get_cuda_bare_metal_version(cuda_dir): raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True) output = raw_output.split() release_idx = output.index("release") + 1 release = output[release_idx].split(".") bare_metal_major = release[0] bare_metal_minor = release[1][0] return raw_output, bare_metal_major, bare_metal_minor def append_nvcc_threads(nvcc_extra_args): _, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(CUDA_HOME) if int(bare_metal_major) >= 11 and int(bare_metal_minor) >= 2: return nvcc_extra_args + ["--threads", "4"] return nvcc_extra_args cc_flag = [] cc_flag.append("-gencode") cc_flag.append("arch=compute_70,code=sm_70") cc_flag.append("-gencode") cc_flag.append("arch=compute_80,code=sm_80") setup( name='fused_softmax_lib', ext_modules=[ CUDAExtension( name='fused_softmax_lib', sources=['fused_softmax.cpp', 'scaled_masked_softmax_cuda.cu', 'scaled_upper_triang_masked_softmax_cuda.cu'], extra_compile_args={ 'cxx': ['-O3',], 'nvcc': append_nvcc_threads(['-O3', '--use_fast_math'] + cc_flag) } ) ], cmdclass={ 'build_ext': BuildExtension })
EXA-1-master
exa/modular_components/attentions/flash-attention/csrc/fused_softmax/setup.py
# Adapted from https://github.com/NVIDIA/apex/blob/master/setup.py import sys import warnings import os from packaging.version import parse, Version import torch from torch.utils.cpp_extension import BuildExtension, CppExtension, CUDAExtension, CUDA_HOME from setuptools import setup, find_packages import subprocess # ninja build does not work unless include_dirs are abs path this_dir = os.path.dirname(os.path.abspath(__file__)) def get_cuda_bare_metal_version(cuda_dir): raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True) output = raw_output.split() release_idx = output.index("release") + 1 bare_metal_version = parse(output[release_idx].split(",")[0]) return raw_output, bare_metal_version def check_cuda_torch_binary_vs_bare_metal(cuda_dir): raw_output, bare_metal_version = get_cuda_bare_metal_version(cuda_dir) torch_binary_version = parse(torch.version.cuda) print("\nCompiling cuda extensions with") print(raw_output + "from " + cuda_dir + "/bin\n") if (bare_metal_version != torch_binary_version): raise RuntimeError( "Cuda extensions are being compiled with a version of Cuda that does " "not match the version used to compile Pytorch binaries. " "Pytorch binaries were compiled with Cuda {}.\n".format(torch.version.cuda) + "In some cases, a minor-version mismatch will not cause later errors: " "https://github.com/NVIDIA/apex/pull/323#discussion_r287021798. " "You can try commenting out this check (at your own risk)." ) def raise_if_cuda_home_none(global_option: str) -> None: if CUDA_HOME is not None: return raise RuntimeError( f"{global_option} was requested, but nvcc was not found. Are you sure your environment has nvcc available? " "If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, " "only images whose names contain 'devel' will provide nvcc." ) def append_nvcc_threads(nvcc_extra_args): _, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME) if bare_metal_version >= Version("11.2"): return nvcc_extra_args + ["--threads", "4"] return nvcc_extra_args if not torch.cuda.is_available(): # https://github.com/NVIDIA/apex/issues/486 # Extension builds after https://github.com/pytorch/pytorch/pull/23408 attempt to query torch.cuda.get_device_capability(), # which will fail if you are compiling in an environment without visible GPUs (e.g. during an nvidia-docker build command). print( "\nWarning: Torch did not find available GPUs on this system.\n", "If your intention is to cross-compile, this is not an error.\n" "By default, Apex will cross-compile for Pascal (compute capabilities 6.0, 6.1, 6.2),\n" "Volta (compute capability 7.0), Turing (compute capability 7.5),\n" "and, if the CUDA version is >= 11.0, Ampere (compute capability 8.0).\n" "If you wish to cross-compile for a single specific architecture,\n" 'export TORCH_CUDA_ARCH_LIST="compute capability" before running setup.py.\n', ) if os.environ.get("TORCH_CUDA_ARCH_LIST", None) is None and CUDA_HOME is not None: _, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME) if bare_metal_version >= Version("11.8"): os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0;8.6;9.0" elif bare_metal_version >= Version("11.1"): os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0;8.6" elif bare_metal_version == Version("11.0"): os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0" else: os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5" print("\n\ntorch.__version__ = {}\n\n".format(torch.__version__)) TORCH_MAJOR = int(torch.__version__.split(".")[0]) TORCH_MINOR = int(torch.__version__.split(".")[1]) cmdclass = {} ext_modules = [] # Check, if ATen/CUDAGeneratorImpl.h is found, otherwise use ATen/cuda/CUDAGeneratorImpl.h # See https://github.com/pytorch/pytorch/pull/70650 generator_flag = [] torch_dir = torch.__path__[0] if os.path.exists(os.path.join(torch_dir, "include", "ATen", "CUDAGeneratorImpl.h")): generator_flag = ["-DOLD_GENERATOR_PATH"] raise_if_cuda_home_none("--xentropy") # Check, if CUDA11 is installed for compute capability 8.0 cc_flag = [] _, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME) if bare_metal_version < Version("11.0"): raise RuntimeError("xentropy is only supported on CUDA 11 and above") cc_flag.append("-gencode") cc_flag.append("arch=compute_70,code=sm_70") cc_flag.append("-gencode") cc_flag.append("arch=compute_80,code=sm_80") if bare_metal_version >= Version("11.8"): cc_flag.append("-gencode") cc_flag.append("arch=compute_90,code=sm_90") ext_modules.append( CUDAExtension( name="xentropy_cuda_lib", sources=[ "interface.cpp", "xentropy_kernel.cu" ], extra_compile_args={ "cxx": ["-O3"] + generator_flag, "nvcc": append_nvcc_threads( ["-O3"] + generator_flag + cc_flag ), }, include_dirs=[this_dir], ) ) setup( name="xentropy_cuda_lib", version="0.1", description="Cross-entropy loss", ext_modules=ext_modules, cmdclass={"build_ext": BuildExtension} if ext_modules else {}, )
EXA-1-master
exa/modular_components/attentions/flash-attention/csrc/xentropy/setup.py
# Adapted from https://github.com/NVIDIA/apex/blob/master/setup.py import sys import warnings import os from packaging.version import parse, Version import torch from torch.utils.cpp_extension import BuildExtension, CppExtension, CUDAExtension, CUDA_HOME from setuptools import setup, find_packages import subprocess # ninja build does not work unless include_dirs are abs path this_dir = os.path.dirname(os.path.abspath(__file__)) def get_cuda_bare_metal_version(cuda_dir): raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True) output = raw_output.split() release_idx = output.index("release") + 1 bare_metal_version = parse(output[release_idx].split(",")[0]) return raw_output, bare_metal_version def check_cuda_torch_binary_vs_bare_metal(cuda_dir): raw_output, bare_metal_version = get_cuda_bare_metal_version(cuda_dir) torch_binary_version = parse(torch.version.cuda) print("\nCompiling cuda extensions with") print(raw_output + "from " + cuda_dir + "/bin\n") if (bare_metal_version != torch_binary_version): raise RuntimeError( "Cuda extensions are being compiled with a version of Cuda that does " "not match the version used to compile Pytorch binaries. " "Pytorch binaries were compiled with Cuda {}.\n".format(torch.version.cuda) + "In some cases, a minor-version mismatch will not cause later errors: " "https://github.com/NVIDIA/apex/pull/323#discussion_r287021798. " "You can try commenting out this check (at your own risk)." ) def raise_if_cuda_home_none(global_option: str) -> None: if CUDA_HOME is not None: return raise RuntimeError( f"{global_option} was requested, but nvcc was not found. Are you sure your environment has nvcc available? " "If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, " "only images whose names contain 'devel' will provide nvcc." ) def append_nvcc_threads(nvcc_extra_args): _, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME) if bare_metal_version >= Version("11.2"): return nvcc_extra_args + ["--threads", "4"] return nvcc_extra_args if not torch.cuda.is_available(): # https://github.com/NVIDIA/apex/issues/486 # Extension builds after https://github.com/pytorch/pytorch/pull/23408 attempt to query torch.cuda.get_device_capability(), # which will fail if you are compiling in an environment without visible GPUs (e.g. during an nvidia-docker build command). print( "\nWarning: Torch did not find available GPUs on this system.\n", "If your intention is to cross-compile, this is not an error.\n" "By default, Apex will cross-compile for Pascal (compute capabilities 6.0, 6.1, 6.2),\n" "Volta (compute capability 7.0), Turing (compute capability 7.5),\n" "and, if the CUDA version is >= 11.0, Ampere (compute capability 8.0).\n" "If you wish to cross-compile for a single specific architecture,\n" 'export TORCH_CUDA_ARCH_LIST="compute capability" before running setup.py.\n', ) if os.environ.get("TORCH_CUDA_ARCH_LIST", None) is None and CUDA_HOME is not None: _, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME) if bare_metal_version >= Version("11.8"): os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0;8.6;9.0" elif bare_metal_version >= Version("11.1"): os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0;8.6" elif bare_metal_version == Version("11.0"): os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0" else: os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5" print("\n\ntorch.__version__ = {}\n\n".format(torch.__version__)) TORCH_MAJOR = int(torch.__version__.split(".")[0]) TORCH_MINOR = int(torch.__version__.split(".")[1]) cmdclass = {} ext_modules = [] # Check, if ATen/CUDAGeneratorImpl.h is found, otherwise use ATen/cuda/CUDAGeneratorImpl.h # See https://github.com/pytorch/pytorch/pull/70650 generator_flag = [] torch_dir = torch.__path__[0] if os.path.exists(os.path.join(torch_dir, "include", "ATen", "CUDAGeneratorImpl.h")): generator_flag = ["-DOLD_GENERATOR_PATH"] raise_if_cuda_home_none("--fast_layer_norm") # Check, if CUDA11 is installed for compute capability 8.0 cc_flag = [] _, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME) if bare_metal_version < Version("11.0"): raise RuntimeError("dropout_layer_norm is only supported on CUDA 11 and above") cc_flag.append("-gencode") cc_flag.append("arch=compute_70,code=sm_70") cc_flag.append("-gencode") cc_flag.append("arch=compute_80,code=sm_80") if bare_metal_version >= Version("11.8"): cc_flag.append("-gencode") cc_flag.append("arch=compute_90,code=sm_90") ext_modules.append( CUDAExtension( name="dropout_layer_norm", sources=[ "ln_api.cpp", "ln_fwd_256.cu", "ln_bwd_256.cu", "ln_fwd_512.cu", "ln_bwd_512.cu", "ln_fwd_768.cu", "ln_bwd_768.cu", "ln_fwd_1024.cu", "ln_bwd_1024.cu", "ln_fwd_1280.cu", "ln_bwd_1280.cu", "ln_fwd_1536.cu", "ln_bwd_1536.cu", "ln_fwd_2048.cu", "ln_bwd_2048.cu", "ln_fwd_2560.cu", "ln_bwd_2560.cu", "ln_fwd_3072.cu", "ln_bwd_3072.cu", "ln_fwd_4096.cu", "ln_bwd_4096.cu", "ln_fwd_5120.cu", "ln_bwd_5120.cu", "ln_fwd_6144.cu", "ln_bwd_6144.cu", "ln_fwd_7168.cu", "ln_bwd_7168.cu", "ln_fwd_8192.cu", "ln_bwd_8192.cu", "ln_parallel_fwd_256.cu", "ln_parallel_bwd_256.cu", "ln_parallel_fwd_512.cu", "ln_parallel_bwd_512.cu", "ln_parallel_fwd_768.cu", "ln_parallel_bwd_768.cu", "ln_parallel_fwd_1024.cu", "ln_parallel_bwd_1024.cu", "ln_parallel_fwd_1280.cu", "ln_parallel_bwd_1280.cu", "ln_parallel_fwd_1536.cu", "ln_parallel_bwd_1536.cu", "ln_parallel_fwd_2048.cu", "ln_parallel_bwd_2048.cu", "ln_parallel_fwd_2560.cu", "ln_parallel_bwd_2560.cu", "ln_parallel_fwd_3072.cu", "ln_parallel_bwd_3072.cu", "ln_parallel_fwd_4096.cu", "ln_parallel_bwd_4096.cu", "ln_parallel_fwd_5120.cu", "ln_parallel_bwd_5120.cu", "ln_parallel_fwd_6144.cu", "ln_parallel_bwd_6144.cu", "ln_parallel_fwd_7168.cu", "ln_parallel_bwd_7168.cu", "ln_parallel_fwd_8192.cu", "ln_parallel_bwd_8192.cu", ], extra_compile_args={ "cxx": ["-O3"] + generator_flag, "nvcc": append_nvcc_threads( [ "-O3", "-U__CUDA_NO_HALF_OPERATORS__", "-U__CUDA_NO_HALF_CONVERSIONS__", "-U__CUDA_NO_BFLOAT16_OPERATORS__", "-U__CUDA_NO_BFLOAT16_CONVERSIONS__", "-U__CUDA_NO_BFLOAT162_OPERATORS__", "-U__CUDA_NO_BFLOAT162_CONVERSIONS__", "--expt-relaxed-constexpr", "--expt-extended-lambda", "--use_fast_math", ] + generator_flag + cc_flag ), }, include_dirs=[this_dir], ) ) setup( name="dropout_layer_norm", version="0.1", description="Fused dropout + add + layer norm", ext_modules=ext_modules, cmdclass={"build_ext": BuildExtension} if ext_modules else {}, )
EXA-1-master
exa/modular_components/attentions/flash-attention/csrc/layer_norm/setup.py
# Adapted from https://github.com/NVIDIA/apex/blob/master/setup.py import sys import warnings import os from packaging.version import parse, Version import torch from torch.utils.cpp_extension import BuildExtension, CppExtension, CUDAExtension, CUDA_HOME from setuptools import setup, find_packages import subprocess # ninja build does not work unless include_dirs are abs path this_dir = os.path.dirname(os.path.abspath(__file__)) def get_cuda_bare_metal_version(cuda_dir): raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True) output = raw_output.split() release_idx = output.index("release") + 1 bare_metal_version = parse(output[release_idx].split(",")[0]) return raw_output, bare_metal_version def check_cuda_torch_binary_vs_bare_metal(cuda_dir): raw_output, bare_metal_version = get_cuda_bare_metal_version(cuda_dir) torch_binary_version = parse(torch.version.cuda) print("\nCompiling cuda extensions with") print(raw_output + "from " + cuda_dir + "/bin\n") if (bare_metal_version != torch_binary_version): raise RuntimeError( "Cuda extensions are being compiled with a version of Cuda that does " "not match the version used to compile Pytorch binaries. " "Pytorch binaries were compiled with Cuda {}.\n".format(torch.version.cuda) + "In some cases, a minor-version mismatch will not cause later errors: " "https://github.com/NVIDIA/apex/pull/323#discussion_r287021798. " "You can try commenting out this check (at your own risk)." ) def raise_if_cuda_home_none(global_option: str) -> None: if CUDA_HOME is not None: return raise RuntimeError( f"{global_option} was requested, but nvcc was not found. Are you sure your environment has nvcc available? " "If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, " "only images whose names contain 'devel' will provide nvcc." ) def append_nvcc_threads(nvcc_extra_args): _, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME) if bare_metal_version >= Version("11.2"): return nvcc_extra_args + ["--threads", "4"] return nvcc_extra_args if not torch.cuda.is_available(): # https://github.com/NVIDIA/apex/issues/486 # Extension builds after https://github.com/pytorch/pytorch/pull/23408 attempt to query torch.cuda.get_device_capability(), # which will fail if you are compiling in an environment without visible GPUs (e.g. during an nvidia-docker build command). print( "\nWarning: Torch did not find available GPUs on this system.\n", "If your intention is to cross-compile, this is not an error.\n" "By default, Apex will cross-compile for Pascal (compute capabilities 6.0, 6.1, 6.2),\n" "Volta (compute capability 7.0), Turing (compute capability 7.5),\n" "and, if the CUDA version is >= 11.0, Ampere (compute capability 8.0).\n" "If you wish to cross-compile for a single specific architecture,\n" 'export TORCH_CUDA_ARCH_LIST="compute capability" before running setup.py.\n', ) if os.environ.get("TORCH_CUDA_ARCH_LIST", None) is None and CUDA_HOME is not None: _, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME) if bare_metal_version >= Version("11.8"): os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0;8.6;9.0" elif bare_metal_version >= Version("11.1"): os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0;8.6" elif bare_metal_version == Version("11.0"): os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0" else: os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5" print("\n\ntorch.__version__ = {}\n\n".format(torch.__version__)) TORCH_MAJOR = int(torch.__version__.split(".")[0]) TORCH_MINOR = int(torch.__version__.split(".")[1]) cmdclass = {} ext_modules = [] raise_if_cuda_home_none("rotary_emb") # Check, if CUDA11 is installed for compute capability 8.0 cc_flag = [] _, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME) if bare_metal_version < Version("11.0"): raise RuntimeError("rotary_emb is only supported on CUDA 11 and above") cc_flag.append("-gencode") cc_flag.append("arch=compute_70,code=sm_70") cc_flag.append("-gencode") cc_flag.append("arch=compute_80,code=sm_80") if bare_metal_version >= Version("11.8"): cc_flag.append("-gencode") cc_flag.append("arch=compute_90,code=sm_90") ext_modules.append( CUDAExtension( 'rotary_emb', [ 'rotary.cpp', 'rotary_cuda.cu', ], extra_compile_args={'cxx': ['-g', '-march=native', '-funroll-loops'], 'nvcc': append_nvcc_threads([ '-O3', '--use_fast_math', '--expt-extended-lambda' ] + cc_flag) } ) ) setup( name="rotary_emb", version="0.1", ext_modules=ext_modules, cmdclass={"build_ext": BuildExtension} if ext_modules else {}, )
EXA-1-master
exa/modular_components/attentions/flash-attention/csrc/rotary/setup.py
import os import subprocess from packaging.version import parse, Version import torch from setuptools import setup from torch.utils.cpp_extension import BuildExtension, CUDAExtension, CUDA_HOME def get_cuda_bare_metal_version(cuda_dir): raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True) output = raw_output.split() release_idx = output.index("release") + 1 bare_metal_version = parse(output[release_idx].split(",")[0]) return raw_output, bare_metal_version def append_nvcc_threads(nvcc_extra_args): _, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME) if bare_metal_version >= Version("11.2"): return nvcc_extra_args + ["--threads", "4"] return nvcc_extra_args setup( name='fused_dense_lib', ext_modules=[ CUDAExtension( name='fused_dense_lib', sources=['fused_dense.cpp', 'fused_dense_cuda.cu'], extra_compile_args={ 'cxx': ['-O3',], 'nvcc': append_nvcc_threads(['-O3']) } ) ], cmdclass={ 'build_ext': BuildExtension })
EXA-1-master
exa/modular_components/attentions/flash-attention/csrc/fused_dense_lib/setup.py
from typing import Callable import dotenv import hydra from omegaconf import OmegaConf, DictConfig # load environment variables from `.env` file if it exists # recursively searches for `.env` in all folders starting from work dir dotenv.load_dotenv(override=True) OmegaConf.register_new_resolver('eval', eval) OmegaConf.register_new_resolver('div_up', lambda x, y: (x + y - 1) // y) # Delay the evaluation until we have the datamodule # So we want the resolver to yield the same string. OmegaConf.register_new_resolver('datamodule', lambda attr: '${datamodule:' + str(attr) + '}') # Turn on TensorFloat32 import torch.backends torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True def dictconfig_filter_key(d: DictConfig, fn: Callable) -> DictConfig: """Only keep keys where fn(key) is True. Support nested DictConfig. """ # Using d.items_ex(resolve=False) instead of d.items() since we want to keep the # ${datamodule:foo} unresolved for now. return DictConfig({k: dictconfig_filter_key(v, fn) if isinstance(v, DictConfig) else v # for k, v in d.items_ex(resolve=False) if fn(k)}) for k, v in d.items() if fn(k)}) @hydra.main(config_path="configs/", config_name="config.yaml") def main(config: DictConfig): # Remove config keys that start with '__'. These are meant to be used only in computing # other entries in the config. config = dictconfig_filter_key(config, lambda k: not k.startswith('__')) # Imports should be nested inside @hydra.main to optimize tab completion # Read more here: https://github.com/facebookresearch/hydra/issues/934 from src.train import train from src.eval import evaluate from src.utils import utils # A couple of optional utilities: # - disabling python warnings # - forcing debug-friendly configuration # - verifying experiment name is set when running in experiment mode # You can safely get rid of this line if you don't want those utils.extras(config) # Pretty print config using Rich library if config.get("print_config"): utils.print_config(config, resolve=True) # Train model mode = config.get('mode', 'train') if mode not in ['train', 'eval']: raise NotImplementedError(f'mode {mode} not supported') if mode == 'train': return train(config) elif mode == 'eval': return evaluate(config) if __name__ == "__main__": main()
EXA-1-master
exa/modular_components/attentions/flash-attention/training/run.py