python_code
stringlengths
0
992k
repo_name
stringlengths
8
46
file_path
stringlengths
5
162
import hashlib import os import urllib import warnings from typing import Any, Union, List from pkg_resources import packaging import torch from PIL import Image from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize from tqdm import tqdm from .model import build_model from .simple_tokenizer import SimpleTokenizer as _Tokenizer try: from torchvision.transforms import InterpolationMode BICUBIC = InterpolationMode.BICUBIC except ImportError: BICUBIC = Image.BICUBIC if packaging.version.parse(torch.__version__) < packaging.version.parse("1.7.1"): warnings.warn("PyTorch version 1.7.1 or higher is recommended") __all__ = ["available_models", "load", "tokenize"] _tokenizer = _Tokenizer() _MODELS = { "ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt", "ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt", "ViT-L/14": "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt", } def _download(url: str, root: str): os.makedirs(root, exist_ok=True) filename = os.path.basename(url) expected_sha256 = url.split("/")[-2] download_target = os.path.join(root, filename) if os.path.exists(download_target) and not os.path.isfile(download_target): raise RuntimeError(f"{download_target} exists and is not a regular file") if os.path.isfile(download_target): if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256: return download_target else: warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file") with urllib.request.urlopen(url) as source, open(download_target, "wb") as output: with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True, unit_divisor=1024) as loop: while True: buffer = source.read(8192) if not buffer: break output.write(buffer) loop.update(len(buffer)) if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256: raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match") return download_target def _convert_image_to_rgb(image): return image.convert("RGB") def _transform(n_px): return Compose([ Resize(n_px, interpolation=BICUBIC), CenterCrop(n_px), _convert_image_to_rgb, ToTensor(), Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), ]) def available_models() -> List[str]: """Returns the names of available CLIP models""" return list(_MODELS.keys()) def load( name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", jit: bool = False, download_root: str = None, # evl n_layers=12, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.0, 0.0, 0.0, 0.0], cls_dropout=0.5, t_size=8, spatial_size=14, use_t_conv=True, use_image_attnmap=True, use_t_pos_embed=True, dropout=0.0, no_pretrain=False, init_zero=True, mergeclip=False, mergeweight=0.5, use_capdecoder=False, clip_state_dict=None, ): """Load a CLIP model Parameters ---------- name : str A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict device : Union[str, torch.device] The device to put the loaded model jit : bool Whether to load the optimized JIT model or more hackable non-JIT model (default). download_root: str path to download the model files; by default, it uses "~/.cache/clip" Returns ------- model : torch.nn.Module The CLIP model preprocess : Callable[[PIL.Image], torch.Tensor] A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input """ if name in _MODELS: model_path = _download(_MODELS[name], download_root or os.path.expanduser("~/.cache/clip")) elif os.path.isfile(name): model_path = name else: raise RuntimeError(f"Model {name} not found; available models = {available_models()}") ''' with open(model_path, 'rb') as opened_file: try: # loading JIT archive model = torch.jit.load(opened_file, map_location=device if jit else "cpu").eval() state_dict = None except RuntimeError: # loading saved state dict if jit: warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead") jit = False state_dict = torch.load(model_path, map_location="cpu") ''' init_state_dict = torch.load(model_path, map_location='cpu')['state_dict'] state_dict = {} for k, v in init_state_dict.items(): k = k.replace('clip.','') state_dict[k] = v if not jit: model = build_model( state_dict or model.state_dict(), n_layers=n_layers, n_dim=n_dim, n_head=n_head, mlp_factor=mlp_factor, drop_path_rate=drop_path_rate, mlp_dropout=mlp_dropout, cls_dropout=cls_dropout, t_size=t_size, spatial_size=spatial_size, use_t_conv=use_t_conv, use_image_attnmap=use_image_attnmap, use_t_pos_embed=use_t_pos_embed, no_pretrain=no_pretrain, init_zero=init_zero, mergeclip=mergeclip, mergeweight=mergeweight, use_capdecoder=use_capdecoder, clip_state_dict=clip_state_dict, ).to(device) if str(device) == "cpu": model.float() return model, _transform(model.visual.input_resolution) # patch the device names device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[]) device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1] def patch_device(module): try: graphs = [module.graph] if hasattr(module, "graph") else [] except RuntimeError: graphs = [] if hasattr(module, "forward1"): graphs.append(module.forward1.graph) for graph in graphs: for node in graph.findAllNodes("prim::Constant"): if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"): node.copyAttributes(device_node) model.apply(patch_device) patch_device(model.encode_image) patch_device(model.encode_text) # patch dtype to float32 on CPU if str(device) == "cpu": float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[]) float_input = list(float_holder.graph.findNode("aten::to").inputs())[1] float_node = float_input.node() def patch_float(module): try: graphs = [module.graph] if hasattr(module, "graph") else [] except RuntimeError: graphs = [] if hasattr(module, "forward1"): graphs.append(module.forward1.graph) for graph in graphs: for node in graph.findAllNodes("aten::to"): inputs = list(node.inputs()) for i in [1, 2]: # dtype can be the second or third argument to aten::to() if inputs[i].node()["value"] == 5: inputs[i].node().copyAttributes(float_node) model.apply(patch_float) patch_float(model.encode_image) patch_float(model.encode_text) model.float() return model, _transform(model.input_resolution.item()) def tokenize(texts: Union[str, List[str]], context_length: int = 77, truncate: bool = False, return_special_tokens_mask: bool = False) -> Union[torch.IntTensor, torch.LongTensor, torch.BoolTensor]: """ Returns the tokenized representation of given input string(s) Parameters ---------- texts : Union[str, List[str]] An input string or a list of input strings to tokenize context_length : int The context length to use; all CLIP models use 77 as the context length truncate: bool Whether to truncate the text in case its encoding is longer than the context length Returns ------- A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]. We return LongTensor when torch version is <1.8.0, since older index_select requires indices to be long. """ if isinstance(texts, str): texts = [texts] sot_token = _tokenizer.encoder["<|startoftext|>"] eot_token = _tokenizer.encoder["<|endoftext|>"] all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts] if packaging.version.parse(torch.__version__) < packaging.version.parse("1.8.0"): result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) else: result = torch.zeros(len(all_tokens), context_length, dtype=torch.int) special_tokens_mask = torch.zeros(len(all_tokens), context_length, dtype=torch.bool) for i, tokens in enumerate(all_tokens): if len(tokens) > context_length: if truncate: tokens = tokens[:context_length] tokens[-1] = eot_token else: raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}") result[i, :len(tokens)] = torch.tensor(tokens) special_tokens_mask[i, len(tokens):] = 1 if return_special_tokens_mask: return result, special_tokens_mask return result
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_evl/clip.py
import gzip import html import os from functools import lru_cache import ftfy import regex as re @lru_cache() def default_bpe(): return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz") @lru_cache() def bytes_to_unicode(): """ Returns list of utf-8 byte and a corresponding list of unicode strings. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a signficant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. And avoids mapping to whitespace/control characters the bpe code barfs on. """ bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8+n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs def basic_clean(text): text = ftfy.fix_text(text) text = html.unescape(html.unescape(text)) return text.strip() def whitespace_clean(text): text = re.sub(r'\s+', ' ', text) text = text.strip() return text class SimpleTokenizer(object): def __init__(self, bpe_path: str = default_bpe()): self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} merges = gzip.open(bpe_path).read().decode("utf-8").split('\n') merges = merges[1:49152-256-2+1] merges = [tuple(merge.split()) for merge in merges] vocab = list(bytes_to_unicode().values()) vocab = vocab + [v+'</w>' for v in vocab] for merge in merges: vocab.append(''.join(merge)) vocab.extend(['<|startoftext|>', '<|endoftext|>']) self.encoder = dict(zip(vocab, range(len(vocab)))) self.decoder = {v: k for k, v in self.encoder.items()} self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'} self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE) def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token[:-1]) + ( token[-1] + '</w>',) pairs = get_pairs(word) if not pairs: return token+'</w>' while True: bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf'))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) new_word.extend(word[i:j]) i = j except: new_word.extend(word[i:]) break if word[i] == first and i < len(word)-1 and word[i+1] == second: new_word.append(first+second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = ' '.join(word) self.cache[token] = word return word def encode(self, text): bpe_tokens = [] text = whitespace_clean(basic_clean(text)).lower() for token in re.findall(self.pat, text): token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')) return bpe_tokens def decode(self, tokens): text = ''.join([self.decoder[token] for token in tokens]) text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ') return text
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_evl/simple_tokenizer.py
#!/usr/bin/env python import warnings from typing import Tuple, Optional import torch from torch import Tensor from torch.nn.modules.linear import Linear from torch.nn.init import xavier_uniform_ from torch.nn.init import constant_ from torch.nn.init import xavier_normal_ from torch.nn.parameter import Parameter from torch.nn.modules.module import Module from .attention_module import multi_head_attention_forward class _LinearWithBias(Linear): bias: Tensor def __init__(self, in_features: int, out_features: int) -> None: super().__init__(in_features, out_features, bias=True) class MultiheadAttention(Module): r"""Allows the model to jointly attend to information from different representation subspaces. See reference: Attention Is All You Need .. math:: \text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O \text{where} head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) Args: embed_dim: total dimension of the model. num_heads: parallel attention heads. dropout: a Dropout layer on attn_output_weights. Default: 0.0. bias: add bias as module parameter. Default: True. add_bias_kv: add bias to the key and value sequences at dim=0. add_zero_attn: add a new batch of zeros to the key and value sequences at dim=1. kdim: total number of features in key. Default: None. vdim: total number of features in value. Default: None. Note: if kdim and vdim are None, they will be set to embed_dim such that query, key, and value have the same number of features. Examples:: >>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads) >>> attn_output, attn_output_weights = multihead_attn(query, key, value) """ bias_k: Optional[torch.Tensor] bias_v: Optional[torch.Tensor] def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None): super(MultiheadAttention, self).__init__() self.embed_dim = embed_dim self.kdim = kdim if kdim is not None else embed_dim self.vdim = vdim if vdim is not None else embed_dim self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" if self._qkv_same_embed_dim is False: self.q_proj_weight = Parameter(torch.Tensor(embed_dim, embed_dim)) self.k_proj_weight = Parameter(torch.Tensor(embed_dim, self.kdim)) self.v_proj_weight = Parameter(torch.Tensor(embed_dim, self.vdim)) self.register_parameter('in_proj_weight', None) else: self.in_proj_weight = Parameter(torch.empty(3 * embed_dim, embed_dim)) self.register_parameter('q_proj_weight', None) self.register_parameter('k_proj_weight', None) self.register_parameter('v_proj_weight', None) if bias: self.in_proj_bias = Parameter(torch.empty(3 * embed_dim)) else: self.register_parameter('in_proj_bias', None) self.out_proj = _LinearWithBias(embed_dim, embed_dim) if add_bias_kv: self.bias_k = Parameter(torch.empty(1, 1, embed_dim)) self.bias_v = Parameter(torch.empty(1, 1, embed_dim)) else: self.bias_k = self.bias_v = None self.add_zero_attn = add_zero_attn self._reset_parameters() def _reset_parameters(self): if self._qkv_same_embed_dim: xavier_uniform_(self.in_proj_weight) else: xavier_uniform_(self.q_proj_weight) xavier_uniform_(self.k_proj_weight) xavier_uniform_(self.v_proj_weight) if self.in_proj_bias is not None: constant_(self.in_proj_bias, 0.) constant_(self.out_proj.bias, 0.) if self.bias_k is not None: xavier_normal_(self.bias_k) if self.bias_v is not None: xavier_normal_(self.bias_v) def __setstate__(self, state): # Support loading old MultiheadAttention checkpoints generated by v1.1.0 if '_qkv_same_embed_dim' not in state: state['_qkv_same_embed_dim'] = True super(MultiheadAttention, self).__setstate__(state) def forward(self, query, key, value, key_padding_mask=None, need_weights=True, attn_mask=None, return_qk=False): # type: (Tensor, Tensor, Tensor, Optional[Tensor], bool, Optional[Tensor], bool) -> Tuple[Tensor, Optional[Tensor]] r""" Args: query, key, value: map a query and a set of key-value pairs to an output. See "Attention Is All You Need" for more details. key_padding_mask: if provided, specified padding elements in the key will be ignored by the attention. When given a binary mask and a value is True, the corresponding value on the attention layer will be ignored. When given a byte mask and a value is non-zero, the corresponding value on the attention layer will be ignored need_weights: output attn_output_weights. attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all the batches while a 3D mask allows to specify a different mask for the entries of each batch. Shape: - Inputs: - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is the embedding dimension. - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. If a ByteTensor is provided, the non-zero positions will be ignored while the position with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length. 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. attn_mask ensure that position i is allowed to attend the unmasked positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor is provided, it will be added to the attention weight. - return_qk: whether return Q and K. - Outputs: - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - attn_output_weights: :math:`(N, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. """ if return_qk: if not self._qkv_same_embed_dim: q, k, attn_output, attn_output_weights = multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, use_separate_proj_weight=True, q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight, v_proj_weight=self.v_proj_weight, return_qk=True) else: q, k, attn_output, attn_output_weights = multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, return_qk=True) return q, k, attn_output, attn_output_weights else: if not self._qkv_same_embed_dim: return multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, use_separate_proj_weight=True, q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight, v_proj_weight=self.v_proj_weight) else: return multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask)
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_evl/evl_utils/attention.py
#!/usr/bin/env python from collections import OrderedDict from timm.models.layers import trunc_normal_, DropPath import torch import torch.nn as nn import torch.nn.functional as F class QuickGELU(nn.Module): def forward(self, x: torch.Tensor): return x * torch.sigmoid(1.702 * x) def conv_1x1x1(inp, oup, groups=1): return nn.Conv3d(inp, oup, (1, 1, 1), (1, 1, 1), (0, 0, 0), groups=groups) def conv_3x3x3(inp, oup, groups=1): return nn.Conv3d(inp, oup, (3, 3, 3), (1, 1, 1), (1, 1, 1), groups=groups) def conv_1x3x3(inp, oup, groups=1): return nn.Conv3d(inp, oup, (1, 3, 3), (1, 1, 1), (0, 1, 1), groups=groups) def bn_3d(dim): return nn.BatchNorm3d(dim) class STM(nn.Module): def __init__(self, n_dim, reduction=4): super(STM, self).__init__() reduced_c = n_dim // reduction self.reduce = nn.Sequential( nn.Conv2d(n_dim, reduced_c, kernel_size=1, bias=False), nn.BatchNorm2d(reduced_c) ) self.shift = nn.Conv2d(reduced_c, reduced_c, kernel_size=3, padding=1, groups=reduced_c, bias=False) self.recover = nn.Sequential( nn.Conv2d(reduced_c, n_dim, kernel_size=1, bias=False), nn.BatchNorm2d(n_dim) ) self.pad = (0, 0, 0, 0, 0, 0, 0, 1) def forward(self, x): # x: [L, N, T, C] cls_token, x = x[:1], x[1:] L, N, T, C = x.shape H = W = int(L**0.5) fea = x.permute(1, 2, 3, 0).reshape(N*T, C, H, W) bottleneck = self.reduce(fea) # NT, C//r, H, W # t feature reshape_bottleneck = bottleneck.view((-1, T) + bottleneck.size()[1:]) # N, T, C//r, H, W t_fea, __ = reshape_bottleneck.split([T-1, 1], dim=1) # N, T-1, C//r, H, W # apply transformation conv to t+1 feature conv_bottleneck = self.shift(bottleneck) # NT, C//r, H, W # reshape fea: N, T, C//r, H, W reshape_conv_bottleneck = conv_bottleneck.view((-1, T) + conv_bottleneck.size()[1:]) __, tPlusone_fea = reshape_conv_bottleneck.split([1, T-1], dim=1) # N, T-1, C//r, H, W # motion fea = t+1_fea - t_fea # pad the last timestamp diff_fea = tPlusone_fea - t_fea # N, T-1, C//r, H, W # pad = (0,0,0,0,0,0,0,1) diff_fea_pluszero = F.pad(diff_fea, self.pad, mode="constant", value=0) # N, T, C//r, H, W diff_fea_pluszero = diff_fea_pluszero.view((-1,) + diff_fea_pluszero.size()[2:]) # NT, C//r, H, W y = self.recover(diff_fea_pluszero) # NT, C, H, W # reshape y = y.reshape(N, T, C, L).permute(3, 0, 1, 2) y = torch.cat([cls_token, y], dim=0) return y class DSTM(nn.Module): def __init__(self, n_dim, reduction=4): super(DSTM, self).__init__() reduced_c = n_dim // reduction self.reduce = nn.Sequential( nn.Conv2d(n_dim, reduced_c, kernel_size=1, bias=False), nn.BatchNorm2d(reduced_c) ) # DW(T+1) - T self.shift_pre = nn.Conv2d(reduced_c, reduced_c, kernel_size=3, padding=1, groups=reduced_c, bias=False) self.recover_pre = nn.Sequential( nn.Conv2d(reduced_c, n_dim, kernel_size=1, bias=False), nn.BatchNorm2d(n_dim) ) self.pad_pre = (0, 0, 0, 0, 0, 0, 0, 1) # DW(T-1) - T self.shift_back = nn.Conv2d(reduced_c, reduced_c, kernel_size=3, padding=1, groups=reduced_c, bias=False) self.recover_back = nn.Sequential( nn.Conv2d(reduced_c, n_dim, kernel_size=1, bias=False), nn.BatchNorm2d(n_dim) ) self.pad_back = (0, 0, 0, 0, 0, 0, 0, 1) def forward(self, x): # x: [L, N, T, C] cls_token, x = x[:1], x[1:] L, N, T, C = x.shape H = W = int(L**0.5) fea = x.permute(1, 2, 3, 0).reshape(N*T, C, H, W) bottleneck = self.reduce(fea) # NT, C//r, H, W # t feature reshape_bottleneck = bottleneck.view((-1, T) + bottleneck.size()[1:]) # N, T, C//r, H, W pre_t_fea, __ = reshape_bottleneck.split([T-1, 1], dim=1) # N, T-1, C//r, H, W back_t_fea, __ = reshape_bottleneck.split([1, T-1], dim=1) # N, T-1, C//r, H, W # apply transformation conv to t+1/t-1 feature pre_conv_bottleneck = self.shift_pre(bottleneck) # NT, C//r, H, W back_conv_bottleneck = self.shift_back(bottleneck) # NT, C//r, H, W # reshape fea: N, T, C//r, H, W pre_reshape_conv_bottleneck = pre_conv_bottleneck.view((-1, T) + pre_conv_bottleneck.size()[1:]) back_reshape_conv_bottleneck = back_conv_bottleneck.view((-1, T) + back_conv_bottleneck.size()[1:]) __, tPlusone_fea = pre_reshape_conv_bottleneck.split([1, T-1], dim=1) # N, T-1, C//r, H, W tMinusone_fea, _ = back_reshape_conv_bottleneck.split([T-1, 1], dim=1) # N, T-1, C//r, H, W # pre_fea = t+1_fea - t_fea # back_fea = t-1_fea - t_fea pre_diff_fea = tPlusone_fea - pre_t_fea # N, T-1, C//r, H, W back_diff_fea = tMinusone_fea - back_t_fea # N, T-1, C//r, H, W # pad the last/first timestamp pre_diff_fea_pluszero = F.pad(pre_diff_fea, self.pad_pre, mode="constant", value=0) # N, T, C//r, H, W pre_diff_fea_pluszero = pre_diff_fea_pluszero.view((-1,) + pre_diff_fea_pluszero.size()[2:]) # NT, C//r, H, W back_diff_fea_pluszero = F.pad(back_diff_fea, self.pad_back, mode="constant", value=0) # N, T, C//r, H, W back_diff_fea_pluszero = back_diff_fea_pluszero.view((-1,) + back_diff_fea_pluszero.size()[2:]) # NT, C//r, H, W # recover channel pre_y = self.recover_pre(pre_diff_fea_pluszero) # NT, C, H, W back_y = self.recover_back(back_diff_fea_pluszero) # NT, C, H, W # reshape y = (pre_y + back_y).reshape(N, T, C, L).permute(3, 0, 1, 2) # cat cls_token y = torch.cat([cls_token, y], dim=0) return y class TDN(nn.Module): def __init__(self, channel, n_segment=8, index=1, reduction=4): super(TDN, self).__init__() self.channel = channel self.reduction = reduction self.n_segment = n_segment self.stride = 2**(index-1) self.conv1 = nn.Conv2d(in_channels=self.channel, out_channels=self.channel//self.reduction, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(num_features=self.channel//self.reduction) self.conv2 = nn.Conv2d(in_channels=self.channel//self.reduction, out_channels=self.channel//self.reduction, kernel_size=3, padding=1, groups=self.channel//self.reduction, bias=False) self.avg_pool_forward2 = nn.AvgPool2d(kernel_size=2, stride=2) self.avg_pool_forward4 = nn.AvgPool2d(kernel_size=4, stride=4) self.sigmoid_forward = nn.Sigmoid() self.avg_pool_backward2 = nn.AvgPool2d(kernel_size=2, stride=2)#nn.AdaptiveMaxPool2d(1) self.avg_pool_backward4 = nn.AvgPool2d(kernel_size=4, stride=4) self.sigmoid_backward = nn.Sigmoid() self.pad1_forward = (0, 0, 0, 0, 0, 0, 0, 1) self.pad1_backward = (0, 0, 0, 0, 0, 0, 1, 0) self.conv3 = nn.Conv2d(in_channels=self.channel//self.reduction, out_channels=self.channel, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(num_features=self.channel) self.conv3_smallscale2 = nn.Conv2d(in_channels=self.channel//self.reduction, out_channels=self.channel//self.reduction,padding=1, kernel_size=3, bias=False) self.bn3_smallscale2 = nn.BatchNorm2d(num_features=self.channel//self.reduction) self.conv3_smallscale4 = nn.Conv2d(in_channels = self.channel//self.reduction, out_channels=self.channel//self.reduction,padding=1, kernel_size=3, bias=False) self.bn3_smallscale4 = nn.BatchNorm2d(num_features=self.channel//self.reduction) def spatial_pool(self, x): nt, channel, height, width = x.size() input_x = x # [N, C, H * W] input_x = input_x.view(nt, channel, height * width) # [N, 1, C, H * W] input_x = input_x.unsqueeze(1) # [N, 1, H, W] context_mask = self.conv_mask(x) # [N, 1, H * W] context_mask = context_mask.view(nt, 1, height * width) # [N, 1, H * W] context_mask = self.softmax(context_mask) context_mask = context_mask.view(nt,1,height,width) return context_mask def forward(self, x): # x: [L, N, T, C] cls_token, x = x[:1], x[1:] L, N, T, C = x.shape H = W = int(L**0.5) fea = x.permute(1, 2, 3, 0).reshape(N*T, C, H, W) bottleneck = self.conv1(fea) # nt, c//r, h, w bottleneck = self.bn1(bottleneck) # nt, c//r, h, w reshape_bottleneck = bottleneck.view((-1, self.n_segment) + bottleneck.size()[1:]) # n, t, c//r, h, w t_fea_forward, _ = reshape_bottleneck.split([self.n_segment -1, 1], dim=1) # n, t-1, c//r, h, w _, t_fea_backward = reshape_bottleneck.split([1, self.n_segment -1], dim=1) # n, t-1, c//r, h, w conv_bottleneck = self.conv2(bottleneck) # nt, c//r, h, w reshape_conv_bottleneck = conv_bottleneck.view((-1, self.n_segment) + conv_bottleneck.size()[1:]) # n, t, c//r, h, w _, tPlusone_fea_forward = reshape_conv_bottleneck.split([1, self.n_segment-1], dim=1) # n, t-1, c//r, h, w tPlusone_fea_backward ,_ = reshape_conv_bottleneck.split([self.n_segment-1, 1], dim=1) # n, t-1, c//r, h, w diff_fea_forward = tPlusone_fea_forward - t_fea_forward # n, t-1, c//r, h, w diff_fea_backward = tPlusone_fea_backward - t_fea_backward# n, t-1, c//r, h, w diff_fea_pluszero_forward = F.pad(diff_fea_forward, self.pad1_forward, mode="constant", value=0) # n, t, c//r, h, w diff_fea_pluszero_forward = diff_fea_pluszero_forward.view((-1,) + diff_fea_pluszero_forward.size()[2:]) #nt, c//r, h, w diff_fea_pluszero_backward = F.pad(diff_fea_backward, self.pad1_backward, mode="constant", value=0) # n, t, c//r, h, w diff_fea_pluszero_backward = diff_fea_pluszero_backward.view((-1,) + diff_fea_pluszero_backward.size()[2:]) #nt, c//r, h, w y_forward_smallscale2 = self.avg_pool_forward2(diff_fea_pluszero_forward) # nt, c//r, 1, 1 y_backward_smallscale2 = self.avg_pool_backward2(diff_fea_pluszero_backward) # nt, c//r, 1, 1 y_forward_smallscale4 = diff_fea_pluszero_forward y_backward_smallscale4 = diff_fea_pluszero_backward y_forward_smallscale2 = self.bn3_smallscale2(self.conv3_smallscale2(y_forward_smallscale2)) y_backward_smallscale2 = self.bn3_smallscale2(self.conv3_smallscale2(y_backward_smallscale2)) y_forward_smallscale4 = self.bn3_smallscale4(self.conv3_smallscale4(y_forward_smallscale4)) y_backward_smallscale4 = self.bn3_smallscale4(self.conv3_smallscale4(y_backward_smallscale4)) y_forward_smallscale2 = F.interpolate(y_forward_smallscale2, diff_fea_pluszero_forward.size()[2:]) y_backward_smallscale2 = F.interpolate(y_backward_smallscale2, diff_fea_pluszero_backward.size()[2:]) y_forward = self.bn3(self.conv3(1.0/3.0*diff_fea_pluszero_forward + 1.0/3.0*y_forward_smallscale2 + 1.0/3.0*y_forward_smallscale4))# nt, c, 1, 1 y_backward = self.bn3(self.conv3(1.0/3.0*diff_fea_pluszero_backward + 1.0/3.0*y_backward_smallscale2 + 1.0/3.0*y_backward_smallscale4)) # nt, c, 1, 1 y_forward = self.sigmoid_forward(y_forward) - 0.5 y_backward = self.sigmoid_backward(y_backward) - 0.5 y = 0.5 * y_forward + 0.5 * y_backward attn = fea * y x = x + attn.reshape(N, T, C, L).permute(3, 0, 1, 2) x = torch.cat([cls_token, x], dim=0) return x class CMlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = conv_1x1x1(in_features, hidden_features) self.act = act_layer() self.fc2 = conv_1x1x1(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class CBlock(nn.Module): def __init__(self, dim, mlp_ratio=4., dropout=0., drop_path=0., uni_type='3d', add_ffn=True): super().__init__() self.norm1 = bn_3d(dim) self.conv1 = conv_1x1x1(dim, dim, 1) self.conv2 = conv_1x1x1(dim, dim, 1) if uni_type == '3d': print('Use 3d conv for local MHRA') self.attn = conv_3x3x3(dim, dim, groups=dim) else: print('Use 2d conv for local MHRA') self.attn = conv_1x3x3(dim, dim, groups=dim) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.add_ffn = add_ffn if add_ffn: print('Add FFN in local MHRA') self.norm2 = bn_3d(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = CMlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=nn.GELU, drop=dropout) print('Init zero') nn.init.constant_(self.conv2.weight, 0.) nn.init.constant_(self.conv2.bias, 0.) if add_ffn: nn.init.constant_(self.mlp.fc2.weight, 0.) nn.init.constant_(self.mlp.fc2.bias, 0.) def forward(self, x): x = x + self.drop_path(self.conv2(self.attn(self.conv1(self.norm1(x))))) if self.add_ffn: x = x + self.drop_path(self.mlp(self.norm2(x))) return x class ResidualDecoderBlock(nn.Module): def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None, mlp_factor: float = 4.0, dropout: float = 0.0, drop_path: float = 0.0): super().__init__() self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() print(f'Drop path rate: {drop_path}') self.attn = nn.MultiheadAttention(d_model, n_head) self.ln_1 = nn.LayerNorm(d_model) d_mlp = round(mlp_factor * d_model) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, d_mlp)), ("gelu", QuickGELU()), ("dropout", nn.Dropout(dropout)), ("c_proj", nn.Linear(d_mlp, d_model)) ])) self.ln_2 = nn.LayerNorm(d_model) self.ln_3 = nn.LayerNorm(d_model) self.attn_mask = attn_mask nn.init.xavier_uniform_(self.attn.in_proj_weight) # nn.init.xavier_uniform_(self.attn.out_proj.weight) nn.init.constant_(self.attn.out_proj.weight, 0.) nn.init.constant_(self.attn.out_proj.bias, 0.) nn.init.xavier_uniform_(self.mlp[0].weight) # nn.init.xavier_uniform_(self.mlp[-1].weight) nn.init.constant_(self.mlp[-1].weight, 0.) nn.init.constant_(self.mlp[-1].bias, 0.) def attention(self, x: torch.Tensor, y: torch.Tensor): #self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None # return self.attn(x, y, y, need_weights=False, attn_mask=self.attn_mask)[0] assert self.attn_mask is None # not implemented # manual forward to add position information d_model = self.ln_1.weight.size(0) q = (x @ self.attn.in_proj_weight[:d_model].T) + self.attn.in_proj_bias[:d_model] k = (y @ self.attn.in_proj_weight[d_model:-d_model].T) + self.attn.in_proj_bias[d_model:-d_model] v = (y @ self.attn.in_proj_weight[-d_model:].T) + self.attn.in_proj_bias[-d_model:] Tx, Ty, N = q.size(0), k.size(0), q.size(1) q = q.view(Tx, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3) k = k.view(Ty, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3) v = v.view(Ty, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3) aff = (q @ k.transpose(-2, -1) / (self.attn.head_dim ** 0.5)) aff = aff.softmax(dim=-1) out = aff @ v out = out.permute(2, 0, 1, 3).flatten(2) out = self.attn.out_proj(out) return out def forward(self, x: torch.Tensor, y: torch.Tensor): x = x + self.drop_path(self.attention(self.ln_1(x), self.ln_3(y))) x = x + self.drop_path(self.mlp(self.ln_2(x))) return x class TransformerDecoder_uniformer_diff_conv_balance(nn.Module): def __init__(self, n_layers=4, uni_layer=4, uni_type='3d', add_ffn=True, t_conv_type='1d', pre_prompt=True, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, t_size=8, spatial_size=14, balance=0., use_t_conv=True, after_me=True, before_me=False, me_type='dstm', me_reduction=4, use_t_pos_embed=True, num_classes=400): super().__init__() n_layers += uni_layer dpr = [x.item() for x in torch.linspace(0, drop_path_rate, n_layers)] self.uni_layer = uni_layer self.uni_dec = nn.ModuleList([ CBlock(n_dim, mlp_ratio=mlp_factor, dropout=mlp_dropout[i], drop_path=dpr[i], uni_type=uni_type, add_ffn=add_ffn) for i in range(uni_layer) ]) self.dec = nn.ModuleList([ ResidualDecoderBlock(n_dim, n_head, mlp_factor=mlp_factor, dropout=mlp_dropout[i], drop_path=dpr[i]) for i in range(n_layers) ]) self.proj = nn.Sequential( nn.LayerNorm(n_dim), nn.Dropout(cls_dropout), nn.Linear(n_dim, num_classes), ) self.pre_prompt = pre_prompt if pre_prompt: print('Add pre prompt') self.pre_temporal_cls_token = nn.Parameter(torch.zeros(n_dim)) self.temporal_cls_token = nn.Parameter(torch.zeros(n_dim)) if use_t_conv: self.t_conv_type = t_conv_type if t_conv_type == '1d': print('Use 1d t_conv for CPE') self.tconv = nn.ModuleList([ nn.Conv1d(n_dim, n_dim, kernel_size=3, stride=1, padding=1, bias=True, groups=n_dim) for i in range(n_layers) ]) for m in self.tconv: nn.init.constant_(m.bias, 0.) m.weight.data[...] = torch.Tensor([0, 1, 0]) else: print('Use 3d t_conv for CPE') self.tconv = nn.ModuleList([ nn.Conv3d(n_dim, n_dim, kernel_size=3, stride=1, padding=1, bias=True, groups=n_dim) for i in range(n_layers) ]) for m in self.tconv: nn.init.constant_(m.bias, 0.) else: self.tconv = None self.before_me = before_me self.after_me = after_me if before_me or after_me: assert before_me != after_me print(f'Use {me_type} attention, Before {before_me}, After {after_me}') if me_type == 'stm': me_op = STM elif me_type == 'dstm': me_op = DSTM elif me_type == 'tdn': me_op = TDN self.me = nn.ModuleList([me_op(n_dim, reduction=me_reduction) for i in range(n_layers)]) if use_t_pos_embed: self.pemb_t = nn.Parameter(torch.zeros([n_layers, t_size, n_dim])) else: self.pemb_t = None print(F'Balnce weight {balance}') self.balance = nn.Parameter(torch.ones((n_dim)) * balance) self.sigmoid = nn.Sigmoid() def forward(self, clip_feats_all, mode='video'): # clip_feats_all = clip_feats_all[-len(self.dec):] # only return n_layers features, save memory clip_feats = [x for x in clip_feats_all] if self.after_me: origin_clip_feats = [x for x in clip_feats_all] L, N, T, C = clip_feats[0].size() x = self.temporal_cls_token.view(1, 1, -1).repeat(1, N, 1) for i in range(len(clip_feats)): if self.before_me: # contain residual clip_feats[i] = self.me[i](clip_feats[i]) if self.tconv is not None: L, N, T, C = clip_feats[i].shape if self.t_conv_type == '1d': clip_feats[i] = clip_feats[i].permute(0, 1, 3, 2).flatten(0, 1) # L * N, C, T clip_feats[i] = self.tconv[i](clip_feats[i]).permute(0, 2, 1).contiguous().view(L, N, T, C) else: H = W = int((L - 1) ** 0.5) _, tmp_feats = clip_feats[i][:1], clip_feats[i][1:] tmp_feats = tmp_feats.permute(1, 3, 2, 0).reshape(N, C, T, H, W) tmp_feats = self.tconv[i](tmp_feats).view(N, C, T, L - 1).permute(3, 0, 2, 1) clip_feats[i][1:] = clip_feats[i][1:] + tmp_feats if self.pemb_t is not None and mode == 'video': clip_feats[i] = clip_feats[i] + self.pemb_t[i] if self.after_me: clip_feats[i] = clip_feats[i] + self.me[i](origin_clip_feats[i]) if i < self.uni_layer: # L, N, T, C L, N, T, C = clip_feats[i].shape H = W = int((L - 1) ** 0.5) _, tmp_feats = clip_feats[i][:1], clip_feats[i][1:] tmp_feats = tmp_feats.permute(1, 3, 2, 0).reshape(N, C, T, H, W) tmp_feats = self.uni_dec[i](tmp_feats).view(N, C, T, L - 1).permute(3, 0, 2, 1) clip_feats[i][1:] = clip_feats[i][1:] + tmp_feats clip_feats[i] = clip_feats[i].permute(2, 0, 1, 3).flatten(0, 1) # T * L, N, C if self.pre_prompt: pre_x = self.pre_temporal_cls_token.view(1, 1, -1).repeat(1, N, 1) for i in range(len(self.dec)): if i < self.uni_layer: pre_x = self.dec[i](pre_x, clip_feats[i]) elif i == self.uni_layer: clip_feats[i] = torch.cat([pre_x, clip_feats[i]], dim=0) x = self.dec[i](x, clip_feats[i]) else: x = self.dec[i](x, clip_feats[i]) else: for i in range(len(self.dec)): x = self.dec[i](x, clip_feats[i]) # real residual # L, N, T, C residual = clip_feats_all[-1][0].mean(1) weight = self.sigmoid(self.balance) return self.proj((1 - weight) * x[0, :, :] + weight * residual) if __name__ == '__main__': model = TransformerDecoder_uniformer_diff_conv_balance() # construct a fake input to demonstrate input tensor shape L, N, T, C = 197, 1, 8, 768 # num_image_tokens, video_batch_size, t_size, feature_dim # we use intermediate feature maps from multiple blocks, so input features should be a list input_features = [] for i in range(8): # vit-b has 12 blocks # every item in input_features contains features maps from a single block # every item is a tuple containing 3 feature maps: # (1) block output features (i.e. after mlp) with shape L, N, T, C # (2) projected query features with shape L, N, T, C # (3) projected key features with shape L, N, T, C input_features.append( tuple(torch.zeros([L, N, T, C]) for _ in range(3))) # some small optimizations: # (1) We only decode from the last $n$ blocks so it's good as long as the last $n$ items of input_features is valid and all previous items can be filled with None to save memory. By default $n=4$. # (2) projected query/key features are optional. If you are using an uncompatible image backbone without query/key (e.g. CNN), you can fill the position with None (i.e. the tuple should be (Tensor, None, None) and set use_image_attnmap=False when constructing the model. print(model) print(model(input_features).shape) # should be N, 400
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_evl/evl_utils/evl_module_uniformer_diff_conv_balance.py
#!/usr/bin/env python import os from collections import OrderedDict from timm.models.layers import DropPath import torch from torch import nn import torch.nn.functional as F import torch.utils.checkpoint as checkpoint from .attention import MultiheadAttention import logging logger = logging.getLogger(__name__) MODEL_PATH = '/mnt/lustre/share_data/likunchang.vendor/model' _MODELS = { "ViT-B/32": os.path.join(MODEL_PATH, "vit_b32.pth"), "ViT-B/16": os.path.join(MODEL_PATH, "vit_b16.pth"), "ViT-L/14": os.path.join(MODEL_PATH, "vit_l14.pth"), "ViT-L/14_336": os.path.join(MODEL_PATH, "vit_l14_336.pth"), } def conv_1x1x1(inp, oup, groups=1): return nn.Conv3d(inp, oup, (1, 1, 1), (1, 1, 1), (0, 0, 0), groups=groups) def conv_3x3x3(inp, oup, groups=1): return nn.Conv3d(inp, oup, (3, 3, 3), (1, 1, 1), (1, 1, 1), groups=groups) def conv_1x3x3(inp, oup, groups=1): return nn.Conv3d(inp, oup, (1, 3, 3), (1, 1, 1), (0, 1, 1), groups=groups) def bn_3d(dim): return nn.BatchNorm3d(dim) class LayerNorm(nn.LayerNorm): """Subclass torch's LayerNorm to handle fp16.""" def forward(self, x): orig_type = x.dtype ret = super().forward(x.type(torch.float32)) return ret.type(orig_type) class QuickGELU(nn.Module): def forward(self, x): return x * torch.sigmoid(1.702 * x) class ResidualAttentionBlock(nn.Module): def __init__( self, d_model, n_head, attn_mask=None, drop_path=0.0, ): super().__init__() self.n_head = n_head self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() logger.info(f'Drop path rate: {drop_path}') # spatial self.attn = MultiheadAttention(d_model, n_head) self.ln_1 = LayerNorm(d_model) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()), ("c_proj", nn.Linear(d_model * 4, d_model)) ])) self.ln_2 = LayerNorm(d_model) self.attn_mask = attn_mask def attention(self, x): self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] def forward(self, x, T=8, use_checkpoint=False): # x: 1+HW, NT, C # MHSA if use_checkpoint: attn_out = checkpoint.checkpoint(self.attention, self.ln_1(x)) x = x + self.drop_path(attn_out) else: x = x + self.drop_path(self.attention(self.ln_1(x))) # FFN if use_checkpoint: mlp_out = checkpoint.checkpoint(self.mlp, self.ln_2(x)) x = x + self.drop_path(mlp_out) else: x = x + self.drop_path(self.mlp(self.ln_2(x))) return x class Extractor(nn.Module): def __init__( self, d_model, n_head, attn_mask=None, mlp_factor=4.0, dropout=0.0, drop_path=0.0, ): super().__init__() self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() logger.info(f'Drop path rate: {drop_path}') self.attn = nn.MultiheadAttention(d_model, n_head) self.ln_1 = nn.LayerNorm(d_model) d_mlp = round(mlp_factor * d_model) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, d_mlp)), ("gelu", QuickGELU()), ("dropout", nn.Dropout(dropout)), ("c_proj", nn.Linear(d_mlp, d_model)) ])) self.ln_2 = nn.LayerNorm(d_model) self.ln_3 = nn.LayerNorm(d_model) self.attn_mask = attn_mask # zero init nn.init.xavier_uniform_(self.attn.in_proj_weight) nn.init.constant_(self.attn.out_proj.weight, 0.) nn.init.constant_(self.attn.out_proj.bias, 0.) nn.init.xavier_uniform_(self.mlp[0].weight) nn.init.constant_(self.mlp[-1].weight, 0.) nn.init.constant_(self.mlp[-1].bias, 0.) def attention(self, x: torch.Tensor, y: torch.Tensor): #self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None # return self.attn(x, y, y, need_weights=False, attn_mask=self.attn_mask)[0] assert self.attn_mask is None # not implemented # manual forward to add position information d_model = self.ln_1.weight.size(0) q = (x @ self.attn.in_proj_weight[:d_model].T) + self.attn.in_proj_bias[:d_model] k = (y @ self.attn.in_proj_weight[d_model:-d_model].T) + self.attn.in_proj_bias[d_model:-d_model] v = (y @ self.attn.in_proj_weight[-d_model:].T) + self.attn.in_proj_bias[-d_model:] Tx, Ty, N = q.size(0), k.size(0), q.size(1) q = q.view(Tx, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3) k = k.view(Ty, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3) v = v.view(Ty, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3) aff = (q @ k.transpose(-2, -1) / (self.attn.head_dim ** 0.5)) aff = aff.softmax(dim=-1) out = aff @ v out = out.permute(2, 0, 1, 3).flatten(2) out = self.attn.out_proj(out) return out def forward(self, x: torch.Tensor, y: torch.Tensor): x = x + self.drop_path(self.attention(self.ln_1(x), self.ln_3(y))) x = x + self.drop_path(self.mlp(self.ln_2(x))) return x class Transformer(nn.Module): def __init__( self, width, layers, heads, attn_mask=None, backbone_drop_path_rate=0., use_checkpoint=False, checkpoint_num=[0], t_size=8, return_list=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], n_layers=12, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, num_classes=400, ): super().__init__() self.T = t_size self.return_list = return_list # Backbone b_dpr = [x.item() for x in torch.linspace(0, backbone_drop_path_rate, layers)] self.resblocks = nn.ModuleList([ ResidualAttentionBlock( width, heads, attn_mask, drop_path=b_dpr[i], ) for i in range(layers) ]) # checkpoint self.use_checkpoint = use_checkpoint self.checkpoint_num = checkpoint_num logger.info(f'Use checkpoint: {self.use_checkpoint}') logger.info(f'Checkpoint number: {self.checkpoint_num}') # Extractor assert n_layers == len(return_list) self.temporal_cls_token = nn.Parameter(torch.zeros(1, 1, n_dim)) self.dpe = nn.ModuleList([ nn.Conv3d(n_dim, n_dim, kernel_size=3, stride=1, padding=1, bias=True, groups=n_dim) for i in range(n_layers) ]) for m in self.dpe: nn.init.constant_(m.bias, 0.) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, n_layers)] self.dec = nn.ModuleList([ Extractor( n_dim, n_head, mlp_factor=mlp_factor, dropout=mlp_dropout[i], drop_path=dpr[i], ) for i in range(n_layers) ]) # # projection # self.proj = nn.Sequential( # nn.LayerNorm(n_dim), # nn.Dropout(cls_dropout), # nn.Linear(n_dim, num_classes), # ) self.balance = nn.Parameter(torch.zeros((n_dim))) self.sigmoid = nn.Sigmoid() def forward(self, x, mode='video', return_all_feats=False): if mode == 'video': T_down = self.T else: T_down = 1 L, NT, C = x.shape N = NT // T_down H = W = int((L - 1) ** 0.5) cls_token = self.temporal_cls_token.repeat(1, N, 1) j = -1 for i, resblock in enumerate(self.resblocks): if self.use_checkpoint and i < self.checkpoint_num[0]: x = resblock(x, self.T, use_checkpoint=True) else: x = resblock(x, T_down) if i in self.return_list: j += 1 tmp_x = x.clone() tmp_x = tmp_x.view(L, N, T_down, C) # dpe _, tmp_feats = tmp_x[:1], tmp_x[1:] tmp_feats = tmp_feats.permute(1, 3, 2, 0).reshape(N, C, T_down, H, W) tmp_feats = self.dpe[j](tmp_feats).view(N, C, T_down, L - 1).permute(3, 0, 2, 1) tmp_x[1:] = tmp_x[1:] + tmp_feats # enhancer tmp_x = tmp_x.permute(2, 0, 1, 3).flatten(0, 1) # T * L, N, C cls_token = self.dec[j](cls_token, tmp_x) weight = self.sigmoid(self.balance) residual = x.view(L, N, T_down, C)[0].mean(1) # L, N, T, C # return self.proj((1 - weight) * cls_token[0, :, :] + weight * residual) feats = (1 - weight) * cls_token[0, :, :] + weight * residual if return_all_feats: return feats, x.view(L, N, T_down, C) return feats class VisionTransformer(nn.Module): def __init__( self, # backbone input_resolution, patch_size, width, layers, heads, output_dim, backbone_drop_path_rate=0., use_checkpoint=False, checkpoint_num=[0], t_size=8, # extractor return_list=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], n_layers=12, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, num_classes=400, ): super().__init__() self.input_resolution = input_resolution self.output_dim = output_dim self.conv1 = nn.Conv3d(3, width, (1, patch_size, patch_size), (1, patch_size, patch_size), (0, 0, 0), bias=False) scale = width ** -0.5 self.class_embedding = nn.Parameter(scale * torch.randn(width)) self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width)) self.ln_pre = LayerNorm(width) self.transformer = Transformer( width, layers, heads, backbone_drop_path_rate=backbone_drop_path_rate, use_checkpoint=use_checkpoint, checkpoint_num=checkpoint_num, t_size=t_size, return_list=return_list, n_layers=n_layers, n_dim=n_dim, n_head=n_head, mlp_factor=mlp_factor, drop_path_rate=drop_path_rate, mlp_dropout=mlp_dropout, cls_dropout=cls_dropout, num_classes=num_classes, ) def forward(self, x, mode='video', return_all_feats=False): x = self.conv1(x) # shape = [*, width, grid, grid] N, C, T, H, W = x.shape x = x.permute(0, 2, 3, 4, 1).reshape(N * T, H * W, C) x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width] x = x + self.positional_embedding.to(x.dtype) x = self.ln_pre(x) x = x.permute(1, 0, 2) # NLD -> LND out = self.transformer(x, mode=mode, return_all_feats=return_all_feats) return out def inflate_weight(weight_2d, time_dim, center=True): if center: weight_3d = torch.zeros(*weight_2d.shape) weight_3d = weight_3d.unsqueeze(2).repeat(1, 1, time_dim, 1, 1) middle_idx = time_dim // 2 weight_3d[:, :, middle_idx, :, :] = weight_2d else: weight_3d = weight_2d.unsqueeze(2).repeat(1, 1, time_dim, 1, 1) weight_3d = weight_3d / time_dim return weight_3d def load_state_dict(model, state_dict): state_dict_3d = model.state_dict() for k in state_dict.keys(): if state_dict[k].shape != state_dict_3d[k].shape: if len(state_dict_3d[k].shape) <= 2: logger.info(f'Ignore: {k}') continue logger.info(f'Inflate: {k}, {state_dict[k].shape} => {state_dict_3d[k].shape}') time_dim = state_dict_3d[k].shape[2] state_dict[k] = inflate_weight(state_dict[k], time_dim) model.load_state_dict(state_dict, strict=False) def vit_only_global_b32( pretrained=True, use_checkpoint=False, checkpoint_num=[0], t_size=16, backbone_drop_path_rate=0., return_list=[8, 9, 10, 11], n_layers=4, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, num_classes=400, ): model = VisionTransformer( input_resolution=224, patch_size=32, width=768, layers=12, heads=12, output_dim=512, use_checkpoint=use_checkpoint, checkpoint_num=checkpoint_num, t_size=t_size, backbone_drop_path_rate=backbone_drop_path_rate, return_list=return_list, n_layers=n_layers, n_dim=n_dim, n_head=n_head, mlp_factor=mlp_factor, drop_path_rate=drop_path_rate, mlp_dropout=mlp_dropout, cls_dropout=cls_dropout, num_classes=num_classes, ) if pretrained: logger.info('load pretrained weights') state_dict = torch.load(_MODELS["ViT-B/32"], map_location='cpu') load_state_dict(model, state_dict) return model.eval() def vit_only_global_b16( pretrained=True, use_checkpoint=False, checkpoint_num=[0], t_size=16, backbone_drop_path_rate=0., return_list=[8, 9, 10, 11], n_layers=4, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, num_classes=400, ): model = VisionTransformer( input_resolution=224, patch_size=16, width=768, layers=12, heads=12, output_dim=512, use_checkpoint=use_checkpoint, checkpoint_num=checkpoint_num, t_size=t_size, backbone_drop_path_rate=backbone_drop_path_rate, return_list=return_list, n_layers=n_layers, n_dim=n_dim, n_head=n_head, mlp_factor=mlp_factor, drop_path_rate=drop_path_rate, mlp_dropout=mlp_dropout, cls_dropout=cls_dropout, num_classes=num_classes, ) if pretrained: logger.info('load pretrained weights') state_dict = torch.load(_MODELS["ViT-B/16"], map_location='cpu') load_state_dict(model, state_dict) return model.eval() def vit_only_global_l14( pretrained=True, use_checkpoint=False, checkpoint_num=[0], t_size=16, backbone_drop_path_rate=0., return_list=[20, 21, 22, 23], n_layers=4, n_dim=1024, n_head=16, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, num_classes=400, ): model = VisionTransformer( input_resolution=224, patch_size=14, width=1024, layers=24, heads=16, output_dim=768, use_checkpoint=use_checkpoint, checkpoint_num=checkpoint_num, t_size=t_size, backbone_drop_path_rate=backbone_drop_path_rate, return_list=return_list, n_layers=n_layers, n_dim=n_dim, n_head=n_head, mlp_factor=mlp_factor, drop_path_rate=drop_path_rate, mlp_dropout=mlp_dropout, cls_dropout=cls_dropout, num_classes=num_classes, ) if pretrained: logger.info('load pretrained weights') state_dict = torch.load(_MODELS["ViT-L/14"], map_location='cpu') load_state_dict(model, state_dict) return model.eval() def vit_only_global_l14_336( pretrained=True, use_checkpoint=False, checkpoint_num=[0], t_size=16, backbone_drop_path_rate=0., return_list=[20, 21, 22, 23], n_layers=4, n_dim=1024, n_head=16, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, num_classes=400, ): model = VisionTransformer( input_resolution=336, patch_size=14, width=1024, layers=24, heads=16, output_dim=768, use_checkpoint=use_checkpoint, checkpoint_num=checkpoint_num, t_size=t_size, backbone_drop_path_rate=backbone_drop_path_rate, return_list=return_list, n_layers=n_layers, n_dim=n_dim, n_head=n_head, mlp_factor=mlp_factor, drop_path_rate=drop_path_rate, mlp_dropout=mlp_dropout, cls_dropout=cls_dropout, num_classes=num_classes, ) if pretrained: logger.info('load pretrained weights') state_dict = torch.load(_MODELS["ViT-L/14_336"], map_location='cpu') load_state_dict(model, state_dict) return model.eval() if __name__ == '__main__': import time from fvcore.nn import FlopCountAnalysis from fvcore.nn import flop_count_table import numpy as np seed = 4217 np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) num_frames = 8 model = vit_only_global_l14( pretrained=False, t_size=num_frames, backbone_drop_path_rate=0.2, drop_path_rate=0.4, use_checkpoint=True, checkpoint_num=[0], ) flops = FlopCountAnalysis(model, torch.rand(1, 3, num_frames, 224, 224)) s = time.time() logger.info(flop_count_table(flops, max_depth=1)) logger.info(time.time()-s)
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_evl/evl_utils/clip_vit_only_global.py
#!/usr/bin/env python import os from collections import OrderedDict from timm.models.layers import DropPath import torch from torch import nn import torch.utils.checkpoint as checkpoint from .attention import MultiheadAttention MODEL_PATH = '/mnt/lustre/share_data/likunchang.vendor/model' _MODELS = { "ViT-B/32": os.path.join(MODEL_PATH, "vit_b32.pth"), "ViT-B/16": os.path.join(MODEL_PATH, "vit_b16.pth"), "ViT-L/14": os.path.join(MODEL_PATH, "vit_l14.pth"), "ViT-L/14_336": os.path.join(MODEL_PATH, "vit_l14_336.pth"), } class LayerNorm(nn.LayerNorm): """Subclass torch's LayerNorm to handle fp16.""" def forward(self, x): orig_type = x.dtype ret = super().forward(x.type(torch.float32)) return ret.type(orig_type) class QuickGELU(nn.Module): def forward(self, x): return x * torch.sigmoid(1.702 * x) class ResidualAttentionBlock(nn.Module): def __init__(self, d_model, n_head, attn_mask=None, drop_path=0.0): super().__init__() self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() print(f'Drop path rate: {drop_path}') self.attn = MultiheadAttention(d_model, n_head) self.ln_1 = LayerNorm(d_model) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()), ("c_proj", nn.Linear(d_model * 4, d_model)) ])) self.ln_2 = LayerNorm(d_model) self.attn_mask = attn_mask def attention(self, x, return_qk=False): if return_qk: self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None q, k, attn_output, _ = self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask, return_qk=True) return q, k, attn_output else: self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] def forward(self, x, return_qk=False): if return_qk: q, k, attn_output = self.attention(self.ln_1(x), return_qk=True) x = x + self.drop_path(attn_output) x = x + self.drop_path(self.mlp(self.ln_2(x))) return x, q, k else: x = x + self.drop_path(self.attention(self.ln_1(x))) x = x + self.drop_path(self.mlp(self.ln_2(x))) return x class Transformer(nn.Module): def __init__(self, width, layers, heads, attn_mask=None, drop_path_rate=0.): super().__init__() self.width = width self.layers = layers dpr = [x.item() for x in torch.linspace(0, drop_path_rate, layers)] self.resblocks = nn.ModuleList([ ResidualAttentionBlock(width, heads, attn_mask, drop_path=dpr[i]) for i in range(layers) ]) def forward(self, x, return_num=4, T=8): features = [] for i, resblock in enumerate(self.resblocks): x = resblock(x) if i >= self.layers - return_num: L, NT, C = x.shape N = NT // T features.append(x.view(L, N, T, C)) return features class VisionTransformer(nn.Module): def __init__( self, input_resolution, patch_size, width, layers, heads, output_dim, drop_path_rate=0., ): super().__init__() self.input_resolution = input_resolution self.output_dim = output_dim self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False) scale = width ** -0.5 self.class_embedding = nn.Parameter(scale * torch.randn(width)) self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width)) self.ln_pre = LayerNorm(width) self.transformer = Transformer(width, layers, heads, drop_path_rate=drop_path_rate) def forward(self, x, return_num=4, return_qk=True): N, C, T, H, W = x.shape x = x.permute(0, 2, 1, 3, 4).reshape(N * T, C, H, W) x = self.conv1(x) # shape = [*, width, grid, grid] x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width] x = x + self.positional_embedding.to(x.dtype) x = self.ln_pre(x) x = x.permute(1, 0, 2) # NLD -> LND features = self.transformer( x, return_num=return_num, T=T, ) return features def vit_b32(pretrained=True, drop_path_rate=0.): model = VisionTransformer( input_resolution=224, patch_size=32, width=768, layers=12, heads=12, output_dim=512, drop_path_rate=drop_path_rate ) if pretrained: print('load pretrained weights') state_dict = torch.load(_MODELS["ViT-B/32"], map_location='cpu') model.load_state_dict(state_dict) return model.eval() def vit_b16(pretrained=True, drop_path_rate=0.): model = VisionTransformer( input_resolution=224, patch_size=16, width=768, layers=12, heads=12, output_dim=512, drop_path_rate=drop_path_rate ) if pretrained: print('load pretrained weights') state_dict = torch.load(_MODELS["ViT-B/16"], map_location='cpu') model.load_state_dict(state_dict) return model.eval() def vit_l14(pretrained=True, drop_path_rate=0.): model = VisionTransformer( input_resolution=224, patch_size=14, width=1024, layers=24, heads=16, output_dim=768, drop_path_rate=drop_path_rate ) if pretrained: print('load pretrained weights') state_dict = torch.load(_MODELS["ViT-L/14"], map_location='cpu') model.load_state_dict(state_dict) return model.eval() def vit_l14_336(pretrained=True, drop_path_rate=0.): model = VisionTransformer( input_resolution=336, patch_size=14, width=1024, layers=24, heads=16, output_dim=768, drop_path_rate=drop_path_rate ) if pretrained: print('load pretrained weights') state_dict = torch.load(_MODELS["ViT-L/14_336"], map_location='cpu') model.load_state_dict(state_dict) return model.eval() if __name__ == '__main__': import time from fvcore.nn import FlopCountAnalysis from fvcore.nn import flop_count_table model = vit_b32(pretrained=True) flops = FlopCountAnalysis(model, torch.rand(1, 3, 8, 224, 224)) s = time.time() print(flop_count_table(flops, max_depth=1)) print(time.time()-s)
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_evl/evl_utils/clip_vit.py
from .evl_module import TransformerDecoder from .evl_module_uniformer_diff_conv_balance import TransformerDecoder_uniformer_diff_conv_balance from .clip_vit import vit_b32, vit_b16, vit_l14, vit_l14_336 from .clip_vit_2plus1d import vit_2plus1d_b32, vit_2plus1d_b16, vit_2plus1d_l14, vit_2plus1d_l14_336 from .clip_vit_2plus1d_dw_bias import vit_2plus1d_dw_bias_b32, vit_2plus1d_dw_bias_b16, vit_2plus1d_dw_bias_l14, vit_2plus1d_dw_bias_l14_336 from .clip_vit_fusion import vit_fusion_b32, vit_fusion_b16, vit_fusion_l14, vit_fusion_l14_336 from .clip_vit_only_global import vit_only_global_b32, vit_only_global_b16, vit_only_global_l14, vit_only_global_l14_336
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_evl/evl_utils/__init__.py
r"""Functional interface""" import warnings import math import torch from torch import _VF from torch._jit_internal import Optional, Tuple from torch.overrides import has_torch_function, handle_torch_function from torch.nn.functional import _pad, linear, softmax, dropout Tensor = torch.Tensor pad = _pad def multi_head_attention_forward(query: Tensor, key: Tensor, value: Tensor, embed_dim_to_check: int, num_heads: int, in_proj_weight: Tensor, in_proj_bias: Tensor, bias_k: Optional[Tensor], bias_v: Optional[Tensor], add_zero_attn: bool, dropout_p: float, out_proj_weight: Tensor, out_proj_bias: Tensor, training: bool = True, key_padding_mask: Optional[Tensor] = None, need_weights: bool = True, attn_mask: Optional[Tensor] = None, use_separate_proj_weight: bool = False, q_proj_weight: Optional[Tensor] = None, k_proj_weight: Optional[Tensor] = None, v_proj_weight: Optional[Tensor] = None, static_k: Optional[Tensor] = None, static_v: Optional[Tensor] = None, return_qk: bool = False ) -> Tuple[Tensor, Optional[Tensor]]: r""" Args: query, key, value: map a query and a set of key-value pairs to an output. See "Attention Is All You Need" for more details. embed_dim_to_check: total dimension of the model. num_heads: parallel attention heads. in_proj_weight, in_proj_bias: input projection weight and bias. bias_k, bias_v: bias of the key and value sequences to be added at dim=0. add_zero_attn: add a new batch of zeros to the key and value sequences at dim=1. dropout_p: probability of an element to be zeroed. out_proj_weight, out_proj_bias: the output projection weight and bias. training: apply dropout if is ``True``. key_padding_mask: if provided, specified padding elements in the key will be ignored by the attention. This is an binary mask. When the value is True, the corresponding value on the attention layer will be filled with -inf. need_weights: output attn_output_weights. attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all the batches while a 3D mask allows to specify a different mask for the entries of each batch. use_separate_proj_weight: the function accept the proj. weights for query, key, and value in different forms. If false, in_proj_weight will be used, which is a combination of q_proj_weight, k_proj_weight, v_proj_weight. q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias. static_k, static_v: static key and value used for attention operators. Shape: Inputs: - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is the embedding dimension. - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions will be unchanged. If a BoolTensor is provided, the positions with the value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length. 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor is provided, it will be added to the attention weight. - static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. E/num_heads is the head dimension. - static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. E/num_heads is the head dimension. - return_qk: whether return Q and K. Outputs: - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - attn_output_weights: :math:`(N, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. """ if not torch.jit.is_scripting(): tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v, out_proj_weight, out_proj_bias) if any([type(t) is not Tensor for t in tens_ops]) and has_torch_function(tens_ops): return handle_torch_function( multi_head_attention_forward, tens_ops, query, key, value, embed_dim_to_check, num_heads, in_proj_weight, in_proj_bias, bias_k, bias_v, add_zero_attn, dropout_p, out_proj_weight, out_proj_bias, training=training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, use_separate_proj_weight=use_separate_proj_weight, q_proj_weight=q_proj_weight, k_proj_weight=k_proj_weight, v_proj_weight=v_proj_weight, static_k=static_k, static_v=static_v) tgt_len, bsz, embed_dim = query.size() assert embed_dim == embed_dim_to_check # allow MHA to have different sizes for the feature dimension assert key.size(0) == value.size(0) and key.size(1) == value.size(1) head_dim = embed_dim // num_heads assert head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads" scaling = float(head_dim) ** -0.5 if not use_separate_proj_weight: if torch.equal(query, key) and torch.equal(key, value): # self-attention q, k, v = linear(query, in_proj_weight, in_proj_bias).chunk(3, dim=-1) elif torch.equal(key, value): # encoder-decoder attention # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = 0 _end = embed_dim _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] q = linear(query, _w, _b) if key is None: assert value is None k = None v = None else: # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = embed_dim _end = None _w = in_proj_weight[_start:, :] if _b is not None: _b = _b[_start:] k, v = linear(key, _w, _b).chunk(2, dim=-1) else: # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = 0 _end = embed_dim _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] q = linear(query, _w, _b) # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = embed_dim _end = embed_dim * 2 _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] k = linear(key, _w, _b) # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = embed_dim * 2 _end = None _w = in_proj_weight[_start:, :] if _b is not None: _b = _b[_start:] v = linear(value, _w, _b) else: q_proj_weight_non_opt = torch.jit._unwrap_optional(q_proj_weight) len1, len2 = q_proj_weight_non_opt.size() assert len1 == embed_dim and len2 == query.size(-1) k_proj_weight_non_opt = torch.jit._unwrap_optional(k_proj_weight) len1, len2 = k_proj_weight_non_opt.size() assert len1 == embed_dim and len2 == key.size(-1) v_proj_weight_non_opt = torch.jit._unwrap_optional(v_proj_weight) len1, len2 = v_proj_weight_non_opt.size() assert len1 == embed_dim and len2 == value.size(-1) if in_proj_bias is not None: q = linear(query, q_proj_weight_non_opt, in_proj_bias[0:embed_dim]) k = linear(key, k_proj_weight_non_opt, in_proj_bias[embed_dim:(embed_dim * 2)]) v = linear(value, v_proj_weight_non_opt, in_proj_bias[(embed_dim * 2):]) else: q = linear(query, q_proj_weight_non_opt, in_proj_bias) k = linear(key, k_proj_weight_non_opt, in_proj_bias) v = linear(value, v_proj_weight_non_opt, in_proj_bias) q = q * scaling if attn_mask is not None: assert attn_mask.dtype == torch.float32 or attn_mask.dtype == torch.float64 or \ attn_mask.dtype == torch.float16 or attn_mask.dtype == torch.uint8 or attn_mask.dtype == torch.bool, \ 'Only float, byte, and bool types are supported for attn_mask, not {}'.format(attn_mask.dtype) if attn_mask.dtype == torch.uint8: warnings.warn("Byte tensor for attn_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.") attn_mask = attn_mask.to(torch.bool) if attn_mask.dim() == 2: attn_mask = attn_mask.unsqueeze(0) if list(attn_mask.size()) != [1, query.size(0), key.size(0)]: raise RuntimeError('The size of the 2D attn_mask is not correct.') elif attn_mask.dim() == 3: if list(attn_mask.size()) != [bsz * num_heads, query.size(0), key.size(0)]: raise RuntimeError('The size of the 3D attn_mask is not correct.') else: raise RuntimeError("attn_mask's dimension {} is not supported".format(attn_mask.dim())) # attn_mask's dim is 3 now. # convert ByteTensor key_padding_mask to bool if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8: warnings.warn("Byte tensor for key_padding_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.") key_padding_mask = key_padding_mask.to(torch.bool) if bias_k is not None and bias_v is not None: if static_k is None and static_v is None: k = torch.cat([k, bias_k.repeat(1, bsz, 1)]) v = torch.cat([v, bias_v.repeat(1, bsz, 1)]) if attn_mask is not None: attn_mask = pad(attn_mask, (0, 1)) if key_padding_mask is not None: key_padding_mask = pad(key_padding_mask, (0, 1)) else: assert static_k is None, "bias cannot be added to static key." assert static_v is None, "bias cannot be added to static value." else: assert bias_k is None assert bias_v is None # L, N, E if return_qk: return_q = q.clone() / scaling return_k = k.clone() q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1) if k is not None: k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1) if v is not None: v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1) if static_k is not None: assert static_k.size(0) == bsz * num_heads assert static_k.size(2) == head_dim k = static_k if static_v is not None: assert static_v.size(0) == bsz * num_heads assert static_v.size(2) == head_dim v = static_v src_len = k.size(1) if key_padding_mask is not None: assert key_padding_mask.size(0) == bsz assert key_padding_mask.size(1) == src_len if add_zero_attn: src_len += 1 k = torch.cat([k, torch.zeros((k.size(0), 1) + k.size()[2:], dtype=k.dtype, device=k.device)], dim=1) v = torch.cat([v, torch.zeros((v.size(0), 1) + v.size()[2:], dtype=v.dtype, device=v.device)], dim=1) if attn_mask is not None: attn_mask = pad(attn_mask, (0, 1)) if key_padding_mask is not None: key_padding_mask = pad(key_padding_mask, (0, 1)) attn_output_weights = torch.bmm(q, k.transpose(1, 2)) assert list(attn_output_weights.size()) == [bsz * num_heads, tgt_len, src_len] if attn_mask is not None: if attn_mask.dtype == torch.bool: attn_output_weights.masked_fill_(attn_mask, float('-inf')) else: attn_output_weights += attn_mask if key_padding_mask is not None: attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) attn_output_weights = attn_output_weights.masked_fill( key_padding_mask.unsqueeze(1).unsqueeze(2), float('-inf'), ) attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, src_len) attn_output_weights = softmax( attn_output_weights, dim=-1) attn_output_weights = dropout(attn_output_weights, p=dropout_p, training=training) attn_output = torch.bmm(attn_output_weights, v) assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim] attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) attn_output = linear(attn_output, out_proj_weight, out_proj_bias) if return_qk: if need_weights: # average attention weights over heads attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) return return_q, return_k, attn_output, attn_output_weights.sum(dim=1) / num_heads else: return return_q, return_k, attn_output, None else: if need_weights: # average attention weights over heads attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) return attn_output, attn_output_weights.sum(dim=1) / num_heads else: return attn_output, None
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_evl/evl_utils/attention_module.py
import os from collections import OrderedDict from timm.models.layers import DropPath import torch from torch import nn from einops import rearrange from .attention import MultiheadAttention MODEL_PATH = '/mnt/lustre/share_data/likunchang.vendor/model' _MODELS = { "ViT-B/32": os.path.join(MODEL_PATH, "vit_b32.pth"), "ViT-B/16": os.path.join(MODEL_PATH, "vit_b16.pth"), "ViT-L/14": os.path.join(MODEL_PATH, "vit_l14.pth"), "ViT-L/14_336": os.path.join(MODEL_PATH, "vit_l14_336.pth"), } class LayerNorm(nn.LayerNorm): """Subclass torch's LayerNorm to handle fp16.""" def forward(self, x): orig_type = x.dtype ret = super().forward(x.type(torch.float32)) return ret.type(orig_type) class QuickGELU(nn.Module): def forward(self, x): return x * torch.sigmoid(1.702 * x) class ResidualAttentionBlock(nn.Module): def __init__(self, d_model, n_head, attn_mask=None, drop_path=0.0): super().__init__() self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() print(f'Drop path rate: {drop_path}') # temporal self.attn_t = MultiheadAttention(d_model, n_head) self.ln_t = LayerNorm(d_model) # spatial self.attn = MultiheadAttention(d_model, n_head) self.ln_1 = LayerNorm(d_model) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()), ("c_proj", nn.Linear(d_model * 4, d_model)) ])) self.ln_2 = LayerNorm(d_model) self.attn_mask = attn_mask # init zero print('Init zero for (2+1)d') nn.init.constant_(self.attn_t.in_proj_weight, 0) nn.init.constant_(self.attn_t.in_proj_bias, 0) nn.init.constant_(self.attn_t.out_proj.weight, 1) nn.init.constant_(self.attn_t.out_proj.bias, 0) def attention(self, x): self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] def attention_temporal(self, x): self.attn_mask = None return self.attn_t(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] def forward(self, x, T=8): # temporal # x: 1+HWT, N, C xt = x[1:, :, :] _, N, C = xt.shape xt = rearrange(xt, '(l t) n c -> t (n l) c', n=N, t=T) res_temporal = self.attention_temporal(self.ln_t(xt)) res_temporal = rearrange(res_temporal, 't (n l) c -> (l t) n c', n=N, t=T) xt = x[1:, :, :] + self.drop_path(res_temporal) # spatial init_cls_token = x[:1, :, :] cls_token = init_cls_token.repeat(1, T, 1).view(1, T*N, C) xs = rearrange(xt, '(l t) n c -> l (t n) c', n=N, t=T) xs = torch.cat((cls_token, xs), 0) res_spatial = self.attention(self.ln_1(xs)) # Taking care of CLS token cls_token = res_spatial[0, :, :] cls_token = rearrange(cls_token, '(t n) c -> t n c', n=N) cls_token = torch.mean(cls_token, 0, True) # averaging for every frame res_spatial = res_spatial[1:, :, :] res_spatial = rearrange(res_spatial, 'l (t n) c -> (l t) n c', n=N) x = x + self.drop_path(torch.cat((cls_token, res_spatial), 0)) x = x + self.drop_path(self.mlp(self.ln_2(x))) return x class Transformer(nn.Module): def __init__(self, width, layers, heads, attn_mask=None, drop_path_rate=0.): super().__init__() self.width = width self.layers = layers dpr = [x.item() for x in torch.linspace(0, drop_path_rate, layers)] self.resblocks = nn.ModuleList([ ResidualAttentionBlock(width, heads, attn_mask, drop_path=dpr[i]) for i in range(layers) ]) def forward(self, x, return_num=4, T=8): features = [] for i, resblock in enumerate(self.resblocks): x = resblock(x, T=T) if i >= self.layers - return_num: # LT + 1, N, C LT, N, C = x.shape L = (LT - 1) // T cls_x, tmp_x = x[:1], x[1:] cls_x = cls_x.unsqueeze(2).repeat(1, 1, T, 1) tmp_x = tmp_x.reshape(L, T, N, C).permute(0, 2, 1, 3) # L, N, T, C tmp_x = torch.cat([cls_x, tmp_x], dim=0 )# L + 1, N, T, C features.append(tmp_x) return features class VisionTransformer(nn.Module): def __init__( self, input_resolution, patch_size, width, layers, heads, output_dim, num_frames=8, drop_path_rate=0., ): super().__init__() self.input_resolution = input_resolution self.output_dim = output_dim self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False) scale = width ** -0.5 self.class_embedding = nn.Parameter(scale * torch.randn(width)) self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width)) self.temporal_positional_embedding = nn.Parameter(torch.zeros(1, num_frames, width)) self.ln_pre = LayerNorm(width) self.transformer = Transformer(width, layers, heads, drop_path_rate=drop_path_rate) def forward(self, x, return_num=4): N, C, T, H, W = x.shape x = x.permute(0, 2, 1, 3, 4).reshape(N * T, C, H, W) x = self.conv1(x) # shape = [*, width, grid, grid] x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width] x = x + self.positional_embedding.to(x.dtype) cls_tokens = x[:N, :1, :] x = x[:, 1:] x = rearrange(x, '(b t) n c -> (b n) t c', b=N, t=T) x = x + self.temporal_positional_embedding x = rearrange(x, '(b n) t c -> b (n t) c', b=N, t=T) x = torch.cat((cls_tokens, x), dim=1) x = self.ln_pre(x) x = x.permute(1, 0, 2) # NLD -> LND features = self.transformer( x, return_num=return_num, T=T, ) return features def vit_2plus1d_b32(pretrained=True, num_frames=8, drop_path_rate=0.): model = VisionTransformer( input_resolution=224, patch_size=32, width=768, layers=12, heads=12, output_dim=512, num_frames=num_frames, drop_path_rate=drop_path_rate ) if pretrained: print('load pretrained weights') state_dict = torch.load(_MODELS["ViT-B/32"], map_location='cpu') model.load_state_dict(state_dict, strict=False) return model.eval() def vit_2plus1d_b16(pretrained=True, num_frames=8, drop_path_rate=0.): model = VisionTransformer( input_resolution=224, patch_size=16, width=768, layers=12, heads=12, output_dim=512, num_frames=num_frames, drop_path_rate=drop_path_rate, ) if pretrained: print('load pretrained weights') state_dict = torch.load(_MODELS["ViT-B/16"], map_location='cpu') model.load_state_dict(state_dict, strict=False) return model.eval() def vit_2plus1d_l14(pretrained=True, num_frames=8, drop_path_rate=0.): model = VisionTransformer( input_resolution=224, patch_size=14, width=1024, layers=24, heads=16, output_dim=768, num_frames=num_frames, drop_path_rate=drop_path_rate ) if pretrained: print('load pretrained weights') state_dict = torch.load(_MODELS["ViT-L/14"], map_location='cpu') model.load_state_dict(state_dict, strict=False) return model.eval() def vit_2plus1d_l14_336(pretrained=True, num_frames=8, drop_path_rate=0.): model = VisionTransformer( input_resolution=336, patch_size=14, width=1024, layers=24, heads=16, output_dim=768, num_frames=num_frames, drop_path_rate=drop_path_rate ) if pretrained: print('load pretrained weights') state_dict = torch.load(_MODELS["ViT-L/14_336"], map_location='cpu') model.load_state_dict(state_dict, strict=False) return model.eval() if __name__ == '__main__': import time from fvcore.nn import FlopCountAnalysis from fvcore.nn import flop_count_table model = vit_2plus1d_b32(pretrained=True) flops = FlopCountAnalysis(model, torch.rand(1, 3, 8, 224, 224)) s = time.time() print(flop_count_table(flops, max_depth=1)) print(time.time()-s)
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_evl/evl_utils/clip_vit_2plus1d.py
#!/usr/bin/env python import os from collections import OrderedDict from timm.models.layers import DropPath import torch from torch import nn import torch.nn.functional as F import torch.utils.checkpoint as checkpoint from .attention import MultiheadAttention from ipdb import set_trace MODEL_PATH = '/mnt/lustre/share_data/likunchang.vendor/model' _MODELS = { "ViT-B/32": os.path.join(MODEL_PATH, "vit_b32.pth"), "ViT-B/16": os.path.join(MODEL_PATH, "vit_b16.pth"), "ViT-L/14": os.path.join(MODEL_PATH, "vit_l14.pth"), "ViT-L/14_336": os.path.join(MODEL_PATH, "vit_l14_336.pth"), } def conv_1x1x1(inp, oup, groups=1): return nn.Conv3d(inp, oup, (1, 1, 1), (1, 1, 1), (0, 0, 0), groups=groups) def conv_3x3x3(inp, oup, groups=1): return nn.Conv3d(inp, oup, (3, 3, 3), (1, 1, 1), (1, 1, 1), groups=groups) def conv_1x3x3(inp, oup, groups=1): return nn.Conv3d(inp, oup, (1, 3, 3), (1, 1, 1), (0, 1, 1), groups=groups) def bn_3d(dim): return nn.BatchNorm3d(dim) class LayerNorm(nn.LayerNorm): """Subclass torch's LayerNorm to handle fp16.""" def forward(self, x): orig_type = x.dtype ret = super().forward(x.type(torch.float32)) return ret.type(orig_type) class QuickGELU(nn.Module): def forward(self, x): return x * torch.sigmoid(1.702 * x) class Local_MHRA(nn.Module): def __init__(self, d_model, dw_reduction=1.5, pos_kernel_size=3): super().__init__() padding = pos_kernel_size // 2 re_d_model = int(d_model // dw_reduction) self.pos_embed = nn.Sequential( nn.BatchNorm3d(d_model), nn.Conv3d(d_model, re_d_model, kernel_size=1, stride=1, padding=0), nn.Conv3d(re_d_model, re_d_model, kernel_size=(pos_kernel_size, 1, 1), stride=(1, 1, 1), padding=(padding, 0, 0), groups=re_d_model), nn.Conv3d(re_d_model, d_model, kernel_size=1, stride=1, padding=0), ) # init zero print('Init zero for Conv in pos_emb') nn.init.constant_(self.pos_embed[3].weight, 0) nn.init.constant_(self.pos_embed[3].bias, 0) def forward(self, x): return self.pos_embed(x) class ResidualAttentionBlock(nn.Module): def __init__( self, d_model, n_head, attn_mask=None, drop_path=0.0, dw_reduction=1.5, ): super().__init__() self.n_head = n_head self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() print(f'Drop path rate: {drop_path}') self.lmhra1 = Local_MHRA(d_model, dw_reduction=dw_reduction) self.lmhra2 = Local_MHRA(d_model, dw_reduction=dw_reduction) # spatial self.attn = MultiheadAttention(d_model, n_head) self.ln_1 = LayerNorm(d_model) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()), ("c_proj", nn.Linear(d_model * 4, d_model)) ])) self.ln_2 = LayerNorm(d_model) self.attn_mask = attn_mask def attention(self, x): self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] def forward(self, x, T=8): # x: 1+HW, NT, C # Local MHRA tmp_x = x[1:, :, :] L, NT, C = tmp_x.shape N = NT // T H = W = int(L ** 0.5) tmp_x = tmp_x.view(H, W, N, T, C).permute(2, 4, 3, 0, 1).contiguous() tmp_x = tmp_x + self.drop_path(self.lmhra1(tmp_x)) tmp_x = tmp_x.view(N, C, T, L).permute(3, 0, 2, 1).contiguous().view(L, NT, C) x = torch.cat([x[:1, :, :], tmp_x], dim=0) # MHSA x = x + self.drop_path(self.attention(self.ln_1(x))) # Local MHRA tmp_x = x[1:, :, :] tmp_x = tmp_x.view(H, W, N, T, C).permute(2, 4, 3, 0, 1).contiguous() tmp_x = tmp_x + self.drop_path(self.lmhra2(tmp_x)) tmp_x = tmp_x.view(N, C, T, L).permute(3, 0, 2, 1).contiguous().view(L, NT, C) x = torch.cat([x[:1, :, :], tmp_x], dim=0) # FFN x = x + self.drop_path(self.mlp(self.ln_2(x))) return x class Extractor(nn.Module): def __init__( self, d_model, n_head, attn_mask=None, mlp_factor=4.0, dropout=0.0, drop_path=0.0, ): super().__init__() self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() print(f'Drop path rate: {drop_path}') self.attn = nn.MultiheadAttention(d_model, n_head) self.ln_1 = nn.LayerNorm(d_model) d_mlp = round(mlp_factor * d_model) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, d_mlp)), ("gelu", QuickGELU()), ("dropout", nn.Dropout(dropout)), ("c_proj", nn.Linear(d_mlp, d_model)) ])) self.ln_2 = nn.LayerNorm(d_model) self.ln_3 = nn.LayerNorm(d_model) self.attn_mask = attn_mask # zero init nn.init.xavier_uniform_(self.attn.in_proj_weight) nn.init.constant_(self.attn.out_proj.weight, 0.) nn.init.constant_(self.attn.out_proj.bias, 0.) nn.init.xavier_uniform_(self.mlp[0].weight) nn.init.constant_(self.mlp[-1].weight, 0.) nn.init.constant_(self.mlp[-1].bias, 0.) def attention(self, x: torch.Tensor, y: torch.Tensor): #self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None # return self.attn(x, y, y, need_weights=False, attn_mask=self.attn_mask)[0] assert self.attn_mask is None # not implemented # manual forward to add position information d_model = self.ln_1.weight.size(0) q = (x @ self.attn.in_proj_weight[:d_model].T) + self.attn.in_proj_bias[:d_model] k = (y @ self.attn.in_proj_weight[d_model:-d_model].T) + self.attn.in_proj_bias[d_model:-d_model] v = (y @ self.attn.in_proj_weight[-d_model:].T) + self.attn.in_proj_bias[-d_model:] Tx, Ty, N = q.size(0), k.size(0), q.size(1) q = q.view(Tx, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3) k = k.view(Ty, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3) v = v.view(Ty, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3) aff = (q @ k.transpose(-2, -1) / (self.attn.head_dim ** 0.5)) aff = aff.softmax(dim=-1) out = aff @ v out = out.permute(2, 0, 1, 3).flatten(2) out = self.attn.out_proj(out) return out def forward(self, x: torch.Tensor, y: torch.Tensor): x = x + self.drop_path(self.attention(self.ln_1(x), self.ln_3(y))) x = x + self.drop_path(self.mlp(self.ln_2(x))) return x class Transformer(nn.Module): def __init__( self, width, layers, heads, attn_mask=None, backbone_drop_path_rate=0., t_size=8, dw_reduction=2, return_list=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], n_layers=12, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, num_classes=400, ): super().__init__() self.T = t_size self.return_list = return_list # Backbone b_dpr = [x.item() for x in torch.linspace(0, backbone_drop_path_rate, layers)] self.resblocks = nn.ModuleList([ ResidualAttentionBlock( width, heads, attn_mask, drop_path=b_dpr[i], dw_reduction=dw_reduction, ) for i in range(layers) ]) # Extractor assert n_layers == len(return_list) self.temporal_cls_token = nn.Parameter(torch.zeros(1, 1, n_dim)) self.dpe = nn.ModuleList([ nn.Conv3d(n_dim, n_dim, kernel_size=3, stride=1, padding=1, bias=True, groups=n_dim) for i in range(n_layers) ]) for m in self.dpe: nn.init.constant_(m.bias, 0.) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, n_layers)] self.dec = nn.ModuleList([ Extractor( n_dim, n_head, mlp_factor=mlp_factor, dropout=mlp_dropout[i], drop_path=dpr[i], ) for i in range(n_layers) ]) # # projection # self.proj = nn.Sequential( # nn.LayerNorm(n_dim), # nn.Dropout(cls_dropout), # nn.Linear(n_dim, num_classes), # ) self.balance = nn.Parameter(torch.zeros((n_dim))) self.sigmoid = nn.Sigmoid() def forward(self, x, mode='video', return_all_feats=False): if mode == 'video': T_down = self.T else: T_down = 1 L, NT, C = x.shape N = NT // T_down H = W = int((L - 1) ** 0.5) assert H * W == L - 1 cls_token = self.temporal_cls_token.repeat(1, N, 1) j = -1 for i, resblock in enumerate(self.resblocks): x = resblock(x, T_down) if i in self.return_list: j += 1 tmp_x = x.clone() tmp_x = tmp_x.view(L, N, T_down, C) # dpe _, tmp_feats = tmp_x[:1], tmp_x[1:] tmp_feats = tmp_feats.permute(1, 3, 2, 0).reshape(N, C, T_down, H, W) tmp_feats = self.dpe[j](tmp_feats).view(N, C, T_down, L - 1).permute(3, 0, 2, 1) tmp_x[1:] = tmp_x[1:] + tmp_feats # enhancer tmp_x = tmp_x.permute(2, 0, 1, 3).flatten(0, 1) # T * L, N, C cls_token = self.dec[j](cls_token, tmp_x) weight = self.sigmoid(self.balance) residual = x.view(L, N, T_down, C)[0].mean(1) # L, N, T, C # return self.proj((1 - weight) * cls_token[0, :, :] + weight * residual) feats = (1 - weight) * cls_token[0, :, :] + weight * residual if return_all_feats: return feats, x.view(L, N, T_down, C) return feats class VisionTransformer(nn.Module): def __init__( self, # backbone input_resolution, patch_size, width, layers, heads, output_dim, backbone_drop_path_rate=0., t_size=8, kernel_size=3, dw_reduction=1.5, # extractor return_list=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], n_layers=12, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, num_classes=400, ): super().__init__() self.input_resolution = input_resolution self.output_dim = output_dim padding = (kernel_size - 1) // 2 self.conv1 = nn.Conv3d(3, width, (kernel_size, patch_size, patch_size), (2, patch_size, patch_size), (padding, 0, 0), bias=False) scale = width ** -0.5 self.class_embedding = nn.Parameter(scale * torch.randn(width)) self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width)) self.ln_pre = LayerNorm(width) self.transformer = Transformer( width, layers, heads, dw_reduction=dw_reduction, backbone_drop_path_rate=backbone_drop_path_rate, t_size=t_size // 2, return_list=return_list, n_layers=n_layers, n_dim=n_dim, n_head=n_head, mlp_factor=mlp_factor, drop_path_rate=drop_path_rate, mlp_dropout=mlp_dropout, cls_dropout=cls_dropout, num_classes=num_classes, ) def forward(self, x, mode='video', return_all_feats=False): # taken from https://github.com/facebookresearch/omnivore/blob/main/omnivore/models/swin_transformer_3d.py#L703 if mode == 'image': # for image, stride 2 # ! Use replicate here x = F.pad(x, (0, 0, 0, 0, 0, 1), mode="replicate") x = self.conv1(x) # shape = [*, width, grid, grid] N, C, T, H, W = x.shape x = x.permute(0, 2, 3, 4, 1).reshape(N * T, H * W, C) x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width] x = x + self.positional_embedding.to(x.dtype) x = self.ln_pre(x) x = x.permute(1, 0, 2) # NLD -> LND out = self.transformer(x, mode=mode, return_all_feats=return_all_feats) return out def inflate_weight(weight_2d, time_dim, center=True): if center: weight_3d = torch.zeros(*weight_2d.shape) weight_3d = weight_3d.unsqueeze(2).repeat(1, 1, time_dim, 1, 1) middle_idx = time_dim // 2 weight_3d[:, :, middle_idx, :, :] = weight_2d else: weight_3d = weight_2d.unsqueeze(2).repeat(1, 1, time_dim, 1, 1) weight_3d = weight_3d / time_dim return weight_3d def load_state_dict(model, state_dict): state_dict_3d = model.state_dict() for k in state_dict.keys(): if state_dict[k].shape != state_dict_3d[k].shape: if len(state_dict_3d[k].shape) <= 2: print(f'Ignore: {k}') continue print(f'Inflate: {k}, {state_dict[k].shape} => {state_dict_3d[k].shape}') time_dim = state_dict_3d[k].shape[2] state_dict[k] = inflate_weight(state_dict[k], time_dim) model.load_state_dict(state_dict, strict=False) def clip_load_state_dict(model, state_dict): state_dict_3d = model.state_dict() for k in state_dict.keys(): # print(k, k in state_dict_3d, k in state_dict) if k in state_dict and k in state_dict_3d and state_dict[k].shape != state_dict_3d[k].shape: if len(state_dict_3d[k].shape) <= 2: print(f'Ignore: {k}') continue print(f'Inflate: {k}, {state_dict[k].shape} => {state_dict_3d[k].shape}') time_dim = state_dict_3d[k].shape[2] state_dict[k] = inflate_weight(state_dict[k], time_dim) model.load_state_dict(state_dict, strict=False) def vit_fusion_b32( pretrained=True, t_size=16, dw_reduction=1.5, backbone_drop_path_rate=0., return_list=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], n_layers=12, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, num_classes=400, ): model = VisionTransformer( input_resolution=224, patch_size=32, width=768, layers=12, heads=12, output_dim=512, t_size=t_size, dw_reduction=dw_reduction, backbone_drop_path_rate=backbone_drop_path_rate, return_list=return_list, n_layers=n_layers, n_dim=n_dim, n_head=n_head, mlp_factor=mlp_factor, drop_path_rate=drop_path_rate, mlp_dropout=mlp_dropout, cls_dropout=cls_dropout, num_classes=num_classes, ) if pretrained: print('load pretrained weights') state_dict = torch.load(_MODELS["ViT-B/32"], map_location='cpu') load_state_dict(model, state_dict) return model.eval() def vit_fusion_b16( pretrained=True, t_size=16, dw_reduction=1.5, backbone_drop_path_rate=0., return_list=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], n_layers=12, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, num_classes=400, ): model = VisionTransformer( input_resolution=224, patch_size=16, width=768, layers=12, heads=12, output_dim=512, t_size=t_size, dw_reduction=dw_reduction, backbone_drop_path_rate=backbone_drop_path_rate, return_list=return_list, n_layers=n_layers, n_dim=n_dim, n_head=n_head, mlp_factor=mlp_factor, drop_path_rate=drop_path_rate, mlp_dropout=mlp_dropout, cls_dropout=cls_dropout, num_classes=num_classes, ) if pretrained: print('load pretrained weights') state_dict = torch.load(_MODELS["ViT-B/16"], map_location='cpu') load_state_dict(model, state_dict) return model.eval() def vit_fusion_l14( pretrained=True, t_size=16, dw_reduction=1.5, backbone_drop_path_rate=0., return_list=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], n_layers=12, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, num_classes=400, ): model = VisionTransformer( input_resolution=224, patch_size=14, width=1024, layers=24, heads=16, output_dim=768, t_size=t_size, dw_reduction=dw_reduction, backbone_drop_path_rate=backbone_drop_path_rate, return_list=return_list, n_layers=n_layers, n_dim=n_dim, n_head=n_head, mlp_factor=mlp_factor, drop_path_rate=drop_path_rate, mlp_dropout=mlp_dropout, cls_dropout=cls_dropout, num_classes=num_classes, ) if pretrained: print('load pretrained weights') state_dict = torch.load(_MODELS["ViT-L/14"], map_location='cpu') load_state_dict(model, state_dict) return model.eval() def vit_fusion_l14_336( pretrained=True, t_size=16, dw_reduction=1.5, backbone_drop_path_rate=0., return_list=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], n_layers=12, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, num_classes=400, ): model = VisionTransformer( input_resolution=336, patch_size=14, width=1024, layers=24, heads=16, output_dim=768, t_size=t_size, dw_reduction=dw_reduction, backbone_drop_path_rate=backbone_drop_path_rate, return_list=return_list, n_layers=n_layers, n_dim=n_dim, n_head=n_head, mlp_factor=mlp_factor, drop_path_rate=drop_path_rate, mlp_dropout=mlp_dropout, cls_dropout=cls_dropout, num_classes=num_classes, ) if pretrained: print('load pretrained weights') state_dict = torch.load(_MODELS["ViT-L/14_336"], map_location='cpu') load_state_dict(model, state_dict) return model.eval() if __name__ == '__main__': import time from fvcore.nn import FlopCountAnalysis from fvcore.nn import flop_count_table import numpy as np seed = 4217 np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) num_frames = 16 model = vit_fusion_b16( pretrained=False, t_size=num_frames, backbone_drop_path_rate=0.2, drop_path_rate=0.4, dw_reduction=1.5, ) flops = FlopCountAnalysis(model, torch.rand(1, 3, num_frames, 224, 224)) s = time.time() print(flop_count_table(flops, max_depth=1)) print(time.time()-s)
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_evl/evl_utils/clip_vit_fusion.py
import warnings from typing import Tuple, Optional import torch from torch import Tensor from torch.nn.modules.linear import Linear from torch.nn.init import xavier_uniform_ from torch.nn.init import constant_ from torch.nn.init import xavier_normal_ from torch.nn.parameter import Parameter from torch.nn.modules.module import Module from .attention_module_bias import multi_head_attention_forward class _LinearWithBias(Linear): bias: Tensor def __init__(self, in_features: int, out_features: int) -> None: super().__init__(in_features, out_features, bias=True) class MultiheadAttention(Module): r"""Allows the model to jointly attend to information from different representation subspaces. See reference: Attention Is All You Need .. math:: \text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O \text{where} head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) Args: embed_dim: total dimension of the model. num_heads: parallel attention heads. dropout: a Dropout layer on attn_output_weights. Default: 0.0. bias: add bias as module parameter. Default: True. add_bias_kv: add bias to the key and value sequences at dim=0. add_zero_attn: add a new batch of zeros to the key and value sequences at dim=1. kdim: total number of features in key. Default: None. vdim: total number of features in value. Default: None. Note: if kdim and vdim are None, they will be set to embed_dim such that query, key, and value have the same number of features. Examples:: >>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads) >>> attn_output, attn_output_weights = multihead_attn(query, key, value) """ bias_k: Optional[torch.Tensor] bias_v: Optional[torch.Tensor] def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None): super(MultiheadAttention, self).__init__() self.embed_dim = embed_dim self.kdim = kdim if kdim is not None else embed_dim self.vdim = vdim if vdim is not None else embed_dim self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" if self._qkv_same_embed_dim is False: self.q_proj_weight = Parameter(torch.Tensor(embed_dim, embed_dim)) self.k_proj_weight = Parameter(torch.Tensor(embed_dim, self.kdim)) self.v_proj_weight = Parameter(torch.Tensor(embed_dim, self.vdim)) self.register_parameter('in_proj_weight', None) else: self.in_proj_weight = Parameter(torch.empty(3 * embed_dim, embed_dim)) self.register_parameter('q_proj_weight', None) self.register_parameter('k_proj_weight', None) self.register_parameter('v_proj_weight', None) if bias: self.in_proj_bias = Parameter(torch.empty(3 * embed_dim)) else: self.register_parameter('in_proj_bias', None) self.out_proj = _LinearWithBias(embed_dim, embed_dim) if add_bias_kv: self.bias_k = Parameter(torch.empty(1, 1, embed_dim)) self.bias_v = Parameter(torch.empty(1, 1, embed_dim)) else: self.bias_k = self.bias_v = None self.add_zero_attn = add_zero_attn self._reset_parameters() def _reset_parameters(self): if self._qkv_same_embed_dim: xavier_uniform_(self.in_proj_weight) else: xavier_uniform_(self.q_proj_weight) xavier_uniform_(self.k_proj_weight) xavier_uniform_(self.v_proj_weight) if self.in_proj_bias is not None: constant_(self.in_proj_bias, 0.) constant_(self.out_proj.bias, 0.) if self.bias_k is not None: xavier_normal_(self.bias_k) if self.bias_v is not None: xavier_normal_(self.bias_v) def __setstate__(self, state): # Support loading old MultiheadAttention checkpoints generated by v1.1.0 if '_qkv_same_embed_dim' not in state: state['_qkv_same_embed_dim'] = True super(MultiheadAttention, self).__setstate__(state) def forward(self, query, key, value, key_padding_mask=None, need_weights=True, attn_mask=None, return_qk=False, rpb=None): # type: (Tensor, Tensor, Tensor, Optional[Tensor], bool, Optional[Tensor], bool, Optional[Tensor]) -> Tuple[Tensor, Optional[Tensor]] r""" Args: query, key, value: map a query and a set of key-value pairs to an output. See "Attention Is All You Need" for more details. key_padding_mask: if provided, specified padding elements in the key will be ignored by the attention. When given a binary mask and a value is True, the corresponding value on the attention layer will be ignored. When given a byte mask and a value is non-zero, the corresponding value on the attention layer will be ignored need_weights: output attn_output_weights. attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all the batches while a 3D mask allows to specify a different mask for the entries of each batch. Shape: - Inputs: - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is the embedding dimension. - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. If a ByteTensor is provided, the non-zero positions will be ignored while the position with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length. 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. attn_mask ensure that position i is allowed to attend the unmasked positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor is provided, it will be added to the attention weight. - return_qk: whether return Q and K. - Outputs: - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - attn_output_weights: :math:`(N, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. """ if return_qk: if not self._qkv_same_embed_dim: q, k, attn_output, attn_output_weights = multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, use_separate_proj_weight=True, q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight, v_proj_weight=self.v_proj_weight, return_qk=True, rpb=rpb) else: q, k, attn_output, attn_output_weights = multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, return_qk=True, rpb=rpb) return q, k, attn_output, attn_output_weights else: if not self._qkv_same_embed_dim: return multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, use_separate_proj_weight=True, q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight, v_proj_weight=self.v_proj_weight, rpb=rpb) else: return multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, rpb=rpb)
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_evl/evl_utils/attention_bias.py
r"""Functional interface""" import warnings import math import torch from torch import _VF from torch._jit_internal import Optional, Tuple from torch.overrides import has_torch_function, handle_torch_function from torch.nn.functional import _pad, linear, softmax, dropout Tensor = torch.Tensor pad = _pad def multi_head_attention_forward(query: Tensor, key: Tensor, value: Tensor, embed_dim_to_check: int, num_heads: int, in_proj_weight: Tensor, in_proj_bias: Tensor, bias_k: Optional[Tensor], bias_v: Optional[Tensor], add_zero_attn: bool, dropout_p: float, out_proj_weight: Tensor, out_proj_bias: Tensor, training: bool = True, key_padding_mask: Optional[Tensor] = None, need_weights: bool = True, attn_mask: Optional[Tensor] = None, use_separate_proj_weight: bool = False, q_proj_weight: Optional[Tensor] = None, k_proj_weight: Optional[Tensor] = None, v_proj_weight: Optional[Tensor] = None, static_k: Optional[Tensor] = None, static_v: Optional[Tensor] = None, return_qk: bool = False, rpb: Tensor = None, ) -> Tuple[Tensor, Optional[Tensor]]: r""" Args: query, key, value: map a query and a set of key-value pairs to an output. See "Attention Is All You Need" for more details. embed_dim_to_check: total dimension of the model. num_heads: parallel attention heads. in_proj_weight, in_proj_bias: input projection weight and bias. bias_k, bias_v: bias of the key and value sequences to be added at dim=0. add_zero_attn: add a new batch of zeros to the key and value sequences at dim=1. dropout_p: probability of an element to be zeroed. out_proj_weight, out_proj_bias: the output projection weight and bias. training: apply dropout if is ``True``. key_padding_mask: if provided, specified padding elements in the key will be ignored by the attention. This is an binary mask. When the value is True, the corresponding value on the attention layer will be filled with -inf. need_weights: output attn_output_weights. attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all the batches while a 3D mask allows to specify a different mask for the entries of each batch. use_separate_proj_weight: the function accept the proj. weights for query, key, and value in different forms. If false, in_proj_weight will be used, which is a combination of q_proj_weight, k_proj_weight, v_proj_weight. q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias. static_k, static_v: static key and value used for attention operators. Shape: Inputs: - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is the embedding dimension. - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions will be unchanged. If a BoolTensor is provided, the positions with the value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length. 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor is provided, it will be added to the attention weight. - static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. E/num_heads is the head dimension. - static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. E/num_heads is the head dimension. - return_qk: whether return Q and K. - rpb: relative postion bias Outputs: - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - attn_output_weights: :math:`(N, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. """ if not torch.jit.is_scripting(): tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v, out_proj_weight, out_proj_bias) if any([type(t) is not Tensor for t in tens_ops]) and has_torch_function(tens_ops): return handle_torch_function( multi_head_attention_forward, tens_ops, query, key, value, embed_dim_to_check, num_heads, in_proj_weight, in_proj_bias, bias_k, bias_v, add_zero_attn, dropout_p, out_proj_weight, out_proj_bias, training=training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, use_separate_proj_weight=use_separate_proj_weight, q_proj_weight=q_proj_weight, k_proj_weight=k_proj_weight, v_proj_weight=v_proj_weight, static_k=static_k, static_v=static_v) tgt_len, bsz, embed_dim = query.size() assert embed_dim == embed_dim_to_check # allow MHA to have different sizes for the feature dimension assert key.size(0) == value.size(0) and key.size(1) == value.size(1) head_dim = embed_dim // num_heads assert head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads" scaling = float(head_dim) ** -0.5 if not use_separate_proj_weight: if torch.equal(query, key) and torch.equal(key, value): # self-attention q, k, v = linear(query, in_proj_weight, in_proj_bias).chunk(3, dim=-1) elif torch.equal(key, value): # encoder-decoder attention # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = 0 _end = embed_dim _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] q = linear(query, _w, _b) if key is None: assert value is None k = None v = None else: # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = embed_dim _end = None _w = in_proj_weight[_start:, :] if _b is not None: _b = _b[_start:] k, v = linear(key, _w, _b).chunk(2, dim=-1) else: # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = 0 _end = embed_dim _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] q = linear(query, _w, _b) # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = embed_dim _end = embed_dim * 2 _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] k = linear(key, _w, _b) # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = embed_dim * 2 _end = None _w = in_proj_weight[_start:, :] if _b is not None: _b = _b[_start:] v = linear(value, _w, _b) else: q_proj_weight_non_opt = torch.jit._unwrap_optional(q_proj_weight) len1, len2 = q_proj_weight_non_opt.size() assert len1 == embed_dim and len2 == query.size(-1) k_proj_weight_non_opt = torch.jit._unwrap_optional(k_proj_weight) len1, len2 = k_proj_weight_non_opt.size() assert len1 == embed_dim and len2 == key.size(-1) v_proj_weight_non_opt = torch.jit._unwrap_optional(v_proj_weight) len1, len2 = v_proj_weight_non_opt.size() assert len1 == embed_dim and len2 == value.size(-1) if in_proj_bias is not None: q = linear(query, q_proj_weight_non_opt, in_proj_bias[0:embed_dim]) k = linear(key, k_proj_weight_non_opt, in_proj_bias[embed_dim:(embed_dim * 2)]) v = linear(value, v_proj_weight_non_opt, in_proj_bias[(embed_dim * 2):]) else: q = linear(query, q_proj_weight_non_opt, in_proj_bias) k = linear(key, k_proj_weight_non_opt, in_proj_bias) v = linear(value, v_proj_weight_non_opt, in_proj_bias) q = q * scaling if attn_mask is not None: assert attn_mask.dtype == torch.float32 or attn_mask.dtype == torch.float64 or \ attn_mask.dtype == torch.float16 or attn_mask.dtype == torch.uint8 or attn_mask.dtype == torch.bool, \ 'Only float, byte, and bool types are supported for attn_mask, not {}'.format(attn_mask.dtype) if attn_mask.dtype == torch.uint8: warnings.warn("Byte tensor for attn_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.") attn_mask = attn_mask.to(torch.bool) if attn_mask.dim() == 2: attn_mask = attn_mask.unsqueeze(0) if list(attn_mask.size()) != [1, query.size(0), key.size(0)]: raise RuntimeError('The size of the 2D attn_mask is not correct.') elif attn_mask.dim() == 3: if list(attn_mask.size()) != [bsz * num_heads, query.size(0), key.size(0)]: raise RuntimeError('The size of the 3D attn_mask is not correct.') else: raise RuntimeError("attn_mask's dimension {} is not supported".format(attn_mask.dim())) # attn_mask's dim is 3 now. # convert ByteTensor key_padding_mask to bool if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8: warnings.warn("Byte tensor for key_padding_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.") key_padding_mask = key_padding_mask.to(torch.bool) if bias_k is not None and bias_v is not None: if static_k is None and static_v is None: k = torch.cat([k, bias_k.repeat(1, bsz, 1)]) v = torch.cat([v, bias_v.repeat(1, bsz, 1)]) if attn_mask is not None: attn_mask = pad(attn_mask, (0, 1)) if key_padding_mask is not None: key_padding_mask = pad(key_padding_mask, (0, 1)) else: assert static_k is None, "bias cannot be added to static key." assert static_v is None, "bias cannot be added to static value." else: assert bias_k is None assert bias_v is None # L, N, E if return_qk: return_q = q.clone() / scaling return_k = k.clone() q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1) if k is not None: k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1) if v is not None: v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1) if static_k is not None: assert static_k.size(0) == bsz * num_heads assert static_k.size(2) == head_dim k = static_k if static_v is not None: assert static_v.size(0) == bsz * num_heads assert static_v.size(2) == head_dim v = static_v src_len = k.size(1) if key_padding_mask is not None: assert key_padding_mask.size(0) == bsz assert key_padding_mask.size(1) == src_len if add_zero_attn: src_len += 1 k = torch.cat([k, torch.zeros((k.size(0), 1) + k.size()[2:], dtype=k.dtype, device=k.device)], dim=1) v = torch.cat([v, torch.zeros((v.size(0), 1) + v.size()[2:], dtype=v.dtype, device=v.device)], dim=1) if attn_mask is not None: attn_mask = pad(attn_mask, (0, 1)) if key_padding_mask is not None: key_padding_mask = pad(key_padding_mask, (0, 1)) attn_output_weights = torch.bmm(q, k.transpose(1, 2)) assert list(attn_output_weights.size()) == [bsz * num_heads, tgt_len, src_len] if attn_mask is not None: if attn_mask.dtype == torch.bool: attn_output_weights.masked_fill_(attn_mask, float('-inf')) else: attn_output_weights += attn_mask if key_padding_mask is not None: attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) attn_output_weights = attn_output_weights.masked_fill( key_padding_mask.unsqueeze(1).unsqueeze(2), float('-inf'), ) attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, src_len) if rpb is not None: attn_output_weights = attn_output_weights + rpb attn_output_weights = softmax(attn_output_weights, dim=-1) attn_output_weights = dropout(attn_output_weights, p=dropout_p, training=training) attn_output = torch.bmm(attn_output_weights, v) assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim] attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) attn_output = linear(attn_output, out_proj_weight, out_proj_bias) if return_qk: if need_weights: # average attention weights over heads attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) return return_q, return_k, attn_output, attn_output_weights.sum(dim=1) / num_heads else: return return_q, return_k, attn_output, None else: if need_weights: # average attention weights over heads attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) return attn_output, attn_output_weights.sum(dim=1) / num_heads else: return attn_output, None
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_evl/evl_utils/attention_module_bias.py
import os from collections import OrderedDict from timm.models.layers import DropPath import torch from torch import nn from einops import rearrange import torch.utils.checkpoint as checkpoint from .attention_bias import MultiheadAttention MODEL_PATH = '/mnt/lustre/share_data/likunchang.vendor/model' _MODELS = { "ViT-B/32": os.path.join(MODEL_PATH, "vit_b32.pth"), "ViT-B/16": os.path.join(MODEL_PATH, "vit_b16.pth"), "ViT-L/14": os.path.join(MODEL_PATH, "vit_l14.pth"), "ViT-L/14_336": os.path.join(MODEL_PATH, "vit_l14_336.pth"), } class LayerNorm(nn.LayerNorm): """Subclass torch's LayerNorm to handle fp16.""" def forward(self, x): orig_type = x.dtype ret = super().forward(x.type(torch.float32)) return ret.type(orig_type) class QuickGELU(nn.Module): def forward(self, x): return x * torch.sigmoid(1.702 * x) class ResidualAttentionBlock(nn.Module): def __init__(self, d_model, n_head, attn_mask=None, drop_path=0.0, t_size=8, spatial_size=7): super().__init__() self.n_head = n_head self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() print(f'Drop path rate: {drop_path}') print(f'Add RPB: t_size {t_size}, spatial_size {spatial_size}') self.pos_embed = nn.Conv3d(d_model, d_model, kernel_size=3, stride=1, padding=1, groups=d_model) # temporal self.attn_t = MultiheadAttention(d_model, n_head) self.ln_t = LayerNorm(d_model) self.rpb_t = nn.Parameter(torch.zeros([t_size * 2 - 1, n_head])) idx_tensor_t = torch.zeros([t_size, t_size], dtype=torch.long) for q in range(t_size): for k in range(t_size): offs = q - k + t_size - 1 idx_tensor_t[q, k] = offs self.idx_tensor_t = idx_tensor_t # spatial self.attn = MultiheadAttention(d_model, n_head) self.rpb = nn.Parameter(torch.zeros([(spatial_size * 2 - 1) ** 2, n_head])) self.ln_1 = LayerNorm(d_model) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()), ("c_proj", nn.Linear(d_model * 4, d_model)) ])) self.ln_2 = LayerNorm(d_model) self.attn_mask = attn_mask idx_tensor = torch.zeros([spatial_size ** 2, spatial_size ** 2], dtype=torch.long) for q in range(spatial_size ** 2): qi, qj = q // spatial_size, q % spatial_size for k in range(spatial_size ** 2): ki, kj = k // spatial_size, k % spatial_size i_offs = qi - ki + spatial_size - 1 j_offs = qj - kj + spatial_size - 1 idx_tensor[q, k] = i_offs * (spatial_size * 2 - 1) + j_offs self.idx_tensor = idx_tensor # init zero print('Init zero for (2+1)d') nn.init.constant_(self.pos_embed.weight, 0) nn.init.constant_(self.pos_embed.bias, 0) nn.init.constant_(self.attn_t.in_proj_weight, 0) nn.init.constant_(self.attn_t.in_proj_bias, 0) nn.init.constant_(self.attn_t.out_proj.weight, 1) nn.init.constant_(self.attn_t.out_proj.bias, 0) def attention(self, x, rpb=None): self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask, rpb=rpb)[0] def attention_temporal(self, x, rpb=None): self.attn_mask = None return self.attn_t(x, x, x, need_weights=False, attn_mask=self.attn_mask, rpb=rpb)[0] def forward(self, x, T=8, mode='video'): # temporal # x: 1+HWT, N, C # pos_emb tmp_x = x[1:, :, :] LT, N, C = tmp_x.shape L = LT // T H = W = int(L ** 0.5) tmp_x = tmp_x.view(H, W, T, N, C).permute(3, 4, 2, 0, 1) tmp_x = tmp_x + self.pos_embed(tmp_x) tmp_x = tmp_x.view(N, C, T, L).permute(3, 2, 0, 1).view(LT, N, C) x[1:, :, :] = tmp_x xt = x[1:, :, :] _, N, C = xt.shape xt = rearrange(xt, '(l t) n c -> t (n l) c', n=N, t=T) # no rpb_t for image if mode == 'image': rpb_t = None else: # rpb_t: T, T, H => B*H, T, T self.idx_tensor_t = self.idx_tensor_t.to(xt.device) rpb_t = self.rpb_t[self.idx_tensor_t].permute(2, 0, 1).repeat(N*L, 1, 1) res_temporal = self.attention_temporal(self.ln_t(xt), rpb=rpb_t) res_temporal = rearrange(res_temporal, 't (n l) c -> (l t) n c', n=N, t=T) xt = x[1:, :, :] + self.drop_path(res_temporal) # spatial init_cls_token = x[:1, :, :] cls_token = init_cls_token.repeat(1, T, 1).view(1, T*N, C) xs = rearrange(xt, '(l t) n c -> l (t n) c', n=N, t=T) xs = torch.cat((cls_token, xs), 0) # rpb: L, L, H => B*H, L+1, L+1 rpb = torch.zeros((self.n_head, L+1, L+1), device=xs.device, dtype=xs.dtype) self.idx_tensor = self.idx_tensor.to(xs.device) rpb[:, 1:, 1:] = self.rpb[self.idx_tensor].permute(2, 0, 1) rpb = rpb.repeat(T*N, 1, 1) res_spatial = self.attention(self.ln_1(xs), rpb=rpb) # Taking care of CLS token cls_token = res_spatial[0, :, :] cls_token = rearrange(cls_token, '(t n) c -> t n c', n=N) cls_token = torch.mean(cls_token, 0, True) # averaging for every frame res_spatial = res_spatial[1:, :, :] res_spatial = rearrange(res_spatial, 'l (t n) c -> (l t) n c', n=N) x = x + self.drop_path(torch.cat((cls_token, res_spatial), 0)) x = x + self.drop_path(self.mlp(self.ln_2(x))) return x class Transformer(nn.Module): def __init__(self, width, layers, heads, attn_mask=None, drop_path_rate=0., t_size=8, spatial_size=7): super().__init__() self.width = width self.layers = layers dpr = [x.item() for x in torch.linspace(0, drop_path_rate, layers)] self.resblocks = nn.ModuleList([ ResidualAttentionBlock(width, heads, attn_mask, drop_path=dpr[i], t_size=t_size, spatial_size=spatial_size) for i in range(layers) ]) def forward(self, x, return_num=4, T=8, mode='video'): features = [] for i, resblock in enumerate(self.resblocks): x = resblock(x, T=T, mode=mode) if i >= self.layers - return_num: # LT + 1, N, C LT, N, C = x.shape L = (LT - 1) // T cls_x, tmp_x = x[:1], x[1:] cls_x = cls_x.unsqueeze(2).repeat(1, 1, T, 1) tmp_x = tmp_x.reshape(L, T, N, C).permute(0, 2, 1, 3) # L, N, T, C tmp_x = torch.cat([cls_x, tmp_x], dim=0 )# L + 1, N, T, C features.append(tmp_x) return features class VisionTransformer(nn.Module): def __init__( self, input_resolution, patch_size, width, layers, heads, output_dim, num_frames=8, drop_path_rate=0., t_size=8, spatial_size=7 ): super().__init__() self.input_resolution = input_resolution self.output_dim = output_dim self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False) scale = width ** -0.5 self.class_embedding = nn.Parameter(scale * torch.randn(width)) self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width)) self.temporal_positional_embedding = nn.Parameter(torch.zeros(1, num_frames, width)) self.ln_pre = LayerNorm(width) self.transformer = Transformer(width, layers, heads, drop_path_rate=drop_path_rate, t_size=t_size, spatial_size=spatial_size) def forward(self, x, return_num=4, mode='video'): if len(x.size()) == 5: N, C, T, H, W = x.shape x = x.permute(0, 2, 1, 3, 4).reshape(N * T, C, H, W) x = self.conv1(x) # shape = [*, width, grid, grid] x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width] x = x + self.positional_embedding.to(x.dtype) cls_tokens = x[:N, :1, :] x = x[:, 1:] # add temporal position embedding for video if mode == 'video': x = rearrange(x, '(b t) n c -> (b n) t c', b=N, t=T) x = x + self.temporal_positional_embedding x = rearrange(x, '(b n) t c -> b (n t) c', b=N, t=T) else: pass x = torch.cat((cls_tokens, x), dim=1) x = self.ln_pre(x) x = x.permute(1, 0, 2) # NLD -> LND features = self.transformer( x, return_num=return_num, T=T, mode=mode ) return features def vit_2plus1d_dw_bias_b32(pretrained=True, num_frames=8, drop_path_rate=0., t_size=8): model = VisionTransformer( input_resolution=224, patch_size=32, width=768, layers=12, heads=12, output_dim=512, num_frames=num_frames, drop_path_rate=drop_path_rate, t_size=t_size, ) if pretrained: print('load pretrained weights') state_dict = torch.load(_MODELS["ViT-B/32"], map_location='cpu') model.load_state_dict(state_dict, strict=False) return model.eval() def vit_2plus1d_dw_bias_b16(pretrained=True, num_frames=8, drop_path_rate=0., t_size=8): model = VisionTransformer( input_resolution=224, patch_size=16, width=768, layers=12, heads=12, output_dim=512, num_frames=num_frames, drop_path_rate=drop_path_rate, t_size=t_size, spatial_size=14, ) if pretrained: print('load pretrained weights') state_dict = torch.load(_MODELS["ViT-B/16"], map_location='cpu') model.load_state_dict(state_dict, strict=False) return model.eval() def vit_2plus1d_dw_bias_l14(pretrained=True, num_frames=8, drop_path_rate=0., t_size=8): model = VisionTransformer( input_resolution=224, patch_size=14, width=1024, layers=24, heads=16, output_dim=768, num_frames=num_frames, drop_path_rate=drop_path_rate, t_size=t_size, ) if pretrained: print('load pretrained weights') state_dict = torch.load(_MODELS["ViT-L/14"], map_location='cpu') model.load_state_dict(state_dict, strict=False) return model.eval() def vit_2plus1d_dw_bias_l14_336(pretrained=True, num_frames=8, drop_path_rate=0., t_size=8): model = VisionTransformer( input_resolution=336, patch_size=14, width=1024, layers=24, heads=16, output_dim=768, num_frames=num_frames, drop_path_rate=drop_path_rate, t_size=t_size, ) if pretrained: print('load pretrained weights') state_dict = torch.load(_MODELS["ViT-L/14_336"], map_location='cpu') model.load_state_dict(state_dict, strict=False) return model.eval() if __name__ == '__main__': import time from fvcore.nn import FlopCountAnalysis from fvcore.nn import flop_count_table model = vit_2plus1d_dw_bias_b32(pretrained=True) flops = FlopCountAnalysis(model, torch.rand(4, 3, 8, 224, 224)) s = time.time() print(flop_count_table(flops, max_depth=1)) print(time.time()-s)
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_evl/evl_utils/clip_vit_2plus1d_dw_bias.py
#!/usr/bin/env python from collections import OrderedDict from timm.models.layers import DropPath import torch import torch.nn as nn import torch.nn.functional as F class QuickGELU(nn.Module): def forward(self, x: torch.Tensor): return x * torch.sigmoid(1.702 * x) class ResidualDecoderBlock(nn.Module): def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None, mlp_factor: float = 4.0, dropout: float = 0.0, drop_path: float = 0.0): super().__init__() self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() print(f'Drop path rate: {drop_path}') self.attn = nn.MultiheadAttention(d_model, n_head) self.ln_1 = nn.LayerNorm(d_model) d_mlp = round(mlp_factor * d_model) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, d_mlp)), ("gelu", QuickGELU()), ("dropout", nn.Dropout(dropout)), ("c_proj", nn.Linear(d_mlp, d_model)) ])) self.ln_2 = nn.LayerNorm(d_model) self.ln_3 = nn.LayerNorm(d_model) self.attn_mask = attn_mask nn.init.xavier_uniform_(self.attn.in_proj_weight) nn.init.xavier_uniform_(self.attn.out_proj.weight) nn.init.xavier_uniform_(self.mlp[0].weight) nn.init.xavier_uniform_(self.mlp[-1].weight) def attention(self, x: torch.Tensor, y: torch.Tensor): #self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None # return self.attn(x, y, y, need_weights=False, attn_mask=self.attn_mask)[0] assert self.attn_mask is None # not implemented # manual forward to add position information d_model = self.ln_1.weight.size(0) q = (x @ self.attn.in_proj_weight[:d_model].T) + self.attn.in_proj_bias[:d_model] k = (y @ self.attn.in_proj_weight[d_model:-d_model].T) + self.attn.in_proj_bias[d_model:-d_model] v = (y @ self.attn.in_proj_weight[-d_model:].T) + self.attn.in_proj_bias[-d_model:] Tx, Ty, N = q.size(0), k.size(0), q.size(1) q = q.view(Tx, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3) k = k.view(Ty, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3) v = v.view(Ty, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3) aff = (q @ k.transpose(-2, -1) / (self.attn.head_dim ** 0.5)) aff = aff.softmax(dim=-1) out = aff @ v out = out.permute(2, 0, 1, 3).flatten(2) out = self.attn.out_proj(out) return out def forward(self, x: torch.Tensor, y: torch.Tensor): x = x + self.drop_path(self.attention(self.ln_1(x), self.ln_3(y))) x = x + self.drop_path(self.mlp(self.ln_2(x))) return x class TransformerDecoder(nn.Module): def __init__(self, n_layers=4, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, t_size=8, use_t_conv=True, use_t_pos_embed=True, num_classes=400, add_residual=False, ): super().__init__() dpr = [x.item() for x in torch.linspace(0, drop_path_rate, n_layers)] self.dec = nn.ModuleList([ ResidualDecoderBlock(n_dim, n_head, mlp_factor=mlp_factor, dropout=mlp_dropout[i], drop_path=dpr[i]) for i in range(n_layers) ]) self.proj = nn.Sequential( nn.LayerNorm(n_dim), nn.Dropout(cls_dropout), nn.Linear(n_dim, num_classes), ) self.temporal_cls_token = nn.Parameter(torch.zeros(n_dim)) self.add_residual = add_residual print(f'Add residual {add_residual}') if use_t_conv: self.tconv = nn.ModuleList([ nn.Conv1d(n_dim, n_dim, kernel_size=3, stride=1, padding=1, bias=True, groups=n_dim) for i in range(n_layers) ]) for m in self.tconv: nn.init.constant_(m.bias, 0.) m.weight.data[...] = torch.Tensor([0, 1, 0]) else: self.tconv = None if use_t_pos_embed: self.pemb_t = nn.Parameter(torch.zeros([n_layers, t_size, n_dim])) else: self.pemb_t = None self.t_size = t_size def forward(self, clip_feats_all): # clip_feats_all = clip_feats_all[-len(self.dec):] # only return n_layers features, save memory clip_feats = [x for x in clip_feats_all] L, N, T, C = clip_feats[0].size() x = self.temporal_cls_token.view(1, 1, -1).repeat(1, N, 1) for i in range(len(clip_feats)): if self.tconv is not None: L, N, T, C = clip_feats[i].shape clip_feats[i] = clip_feats[i].permute(0, 1, 3, 2).flatten(0, 1) # L * N, C, T clip_feats[i] = self.tconv[i](clip_feats[i]).permute(0, 2, 1).contiguous().view(L, N, T, C) if self.pemb_t is not None: clip_feats[i] = clip_feats[i] + self.pemb_t[i] clip_feats[i] = clip_feats[i].permute(2, 0, 1, 3).flatten(0, 1) # T * L, N, C for i in range(len(self.dec)): x = self.dec[i](x, clip_feats[i]) if self.add_residual: residual = clip_feats_all[-1][0].mean(1) return self.proj(x[0, :, :] + residual) else: return self.proj(x[0, :, :]) if __name__ == '__main__': model = TransformerDecoder() # construct a fake input to demonstrate input tensor shape L, N, T, C = 197, 1, 8, 768 # num_image_tokens, video_batch_size, t_size, feature_dim # we use intermediate feature maps from multiple blocks, so input features should be a list input_features = [] for i in range(4): # vit-b has 12 blocks # every item in input_features contains features maps from a single block # every item is a tuple containing 3 feature maps: # (1) block output features (i.e. after mlp) with shape L, N, T, C # (2) projected query features with shape L, N, T, C # (3) projected key features with shape L, N, T, C input_features.append( torch.zeros([L, N, T, C])) # some small optimizations: # (1) We only decode from the last $n$ blocks so it's good as long as the last $n$ items of input_features is valid and all previous items can be filled with None to save memory. By default $n=4$. # (2) projected query/key features are optional. If you are using an uncompatible image backbone without query/key (e.g. CNN), you can fill the position with None (i.e. the tuple should be (Tensor, None, None) and set use_image_attnmap=False when constructing the model. print(model(input_features).shape) # should be N, 400
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_evl/evl_utils/evl_module.py
from .clip import *
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_kc/__init__.py
from collections import OrderedDict from typing import Tuple, Union import numpy as np import torch import torch.nn.functional as F from torch import nn from einops import rearrange from . import evl_utils from .evl_utils import TransformerDecoder_uniformer_diff_conv_balance class LayerNorm(nn.LayerNorm): """Subclass torch's LayerNorm to handle fp16.""" def forward(self, x: torch.Tensor): orig_type = x.dtype ret = super().forward(x.type(torch.float32)) return ret.type(orig_type) class QuickGELU(nn.Module): def forward(self, x: torch.Tensor): return x * torch.sigmoid(1.702 * x) class ResidualAttentionBlock(nn.Module): def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None): super().__init__() self.attn = nn.MultiheadAttention(d_model, n_head) self.ln_1 = LayerNorm(d_model) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()), ("c_proj", nn.Linear(d_model * 4, d_model)) ])) self.ln_2 = LayerNorm(d_model) self.attn_mask = attn_mask def attention(self, x: torch.Tensor): self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] def forward(self, x: torch.Tensor): x = x + self.attention(self.ln_1(x)) x = x + self.mlp(self.ln_2(x)) return x class Transformer(nn.Module): def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None): super().__init__() self.width = width self.layers = layers self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)]) def forward(self, x: torch.Tensor): return self.resblocks(x) class CLIP(nn.Module): def __init__(self, embed_dim: int, # vision image_resolution: int, vision_layers: Union[Tuple[int, int, int, int], int], vision_width: int, vision_patch_size: int, # text context_length: int, vocab_size: int, transformer_width: int, transformer_heads: int, transformer_layers: int, # evl n_layers=4, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, t_size=8, spatial_size=14, use_t_conv=True, use_image_attnmap=True, use_t_pos_embed=True, backbone='vit_2plus1d_dw_bias_b16', uni_layer=0, uni_type='2d', add_ffn=False, t_conv_type='3d', pre_prompt=False, balance=0., after_me=True, before_me=False, me_type='stm', me_reduction=4, ): super().__init__() # All assertions is for adhoc clip_kc and should be removed # assert vision_layers == 12, vision_layers assert image_resolution == 224, image_resolution # assert vision_patch_size == 32, vision_patch_size assert vision_width == n_dim, (vision_width, n_dim) self.vision_width = n_dim self.context_length = context_length vision_heads = vision_width // 64 self.visual = evl_utils.__dict__[backbone](pretrained=False) self.evl = TransformerDecoder_uniformer_diff_conv_balance( n_layers=n_layers, n_dim=n_dim, n_head=n_head, mlp_factor=mlp_factor, drop_path_rate=drop_path_rate, mlp_dropout=mlp_dropout, cls_dropout=cls_dropout, t_size=t_size, use_t_conv=use_t_conv, use_t_pos_embed=use_t_pos_embed, uni_layer=uni_layer, uni_type=uni_type, add_ffn=add_ffn, t_conv_type=t_conv_type, pre_prompt=pre_prompt, balance=balance, after_me=after_me, before_me=before_me, me_type=me_type, me_reduction=me_reduction, ) self.visual_ln_post = nn.LayerNorm(n_dim) scale = n_dim ** -0.5 self.visual_proj = nn.Parameter(scale * torch.randn(n_dim, embed_dim)) self.return_qk = use_image_attnmap self.return_num = n_layers self.transformer = Transformer( width=transformer_width, layers=transformer_layers, heads=transformer_heads, attn_mask=self.build_attention_mask() ) self.vocab_size = vocab_size self.token_embedding = nn.Embedding(vocab_size, transformer_width) self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width)) self.ln_final = LayerNorm(transformer_width) self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim)) self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) self.embed_dim = embed_dim # We seperate the mask embedding to load pretrained model self.mask_embedding = nn.Parameter(torch.empty(1, 1, transformer_width)) self.initialize_parameters() def initialize_parameters(self): nn.init.normal_(self.token_embedding.weight, std=0.02) nn.init.normal_(self.positional_embedding, std=0.01) nn.init.normal_(self.mask_embedding, std=0.02) proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5) attn_std = self.transformer.width ** -0.5 fc_std = (2 * self.transformer.width) ** -0.5 for block in self.transformer.resblocks: nn.init.normal_(block.attn.in_proj_weight, std=attn_std) nn.init.normal_(block.attn.out_proj.weight, std=proj_std) nn.init.normal_(block.mlp.c_fc.weight, std=fc_std) nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) if self.text_projection is not None: nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5) nn.init.constant_(self.visual_ln_post.weight, 1.0) nn.init.constant_(self.visual_ln_post.bias, 0.0) def build_attention_mask(self): # lazily create causal attention mask, with full attention between the vision tokens # pytorch uses additive attention mask; fill with -inf mask = torch.empty(self.context_length, self.context_length) mask.fill_(float("-inf")) mask.triu_(1) # zero out the lower diagonal return mask @property def dtype(self): return self.visual.conv1.weight.dtype def encode_video(self, video, return_all_feats=False): if len(video.size()) == 4: #[bs * T, C, H, W] #set_trace() frames = 8 video = rearrange(video, '(b t) c h w -> b t c h w', b=int(video.size(0)/frames), t=frames) video = rearrange(video, 'b t c h w -> b c t h w') # video: [N, C, T, H, W] features = self.visual(video, return_num=self.return_num) x = self.visual_ln_post(self.evl(features)) x = x @ self.visual_proj if return_all_feats: return x, features[-1] # [N, T, C], [L, N, T, C] return x def encode_text(self, text, masked_indices=None, return_all_feats=False): x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model] if masked_indices is not None: x[masked_indices] = self.mask_embedding x = x + self.positional_embedding.type(self.dtype) x = x.permute(1, 0, 2) # NLD -> LND x = self.transformer(x) x = x.permute(1, 0, 2) # LND -> NLD x = self.ln_final(x).type(self.dtype) # x.shape = [batch_size, n_ctx, transformer.width] # take features from the eot embedding (eot_token is the highest number in each sequence) feats = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection if return_all_feats: return feats, x return feats def forward(self, video, text): video_features = self.encode_video(video) text_features = self.encode_text(text) # normalized features video_features = video_features / video_features.norm(dim=1, keepdim=True) text_features = text_features / text_features.norm(dim=1, keepdim=True) # cosine similarity as logits logit_scale = self.logit_scale.exp() logits_per_video= logit_scale * video_features @ text_features.t() logits_per_text = logits_per_video.t() # shape = [global_batch_size, global_batch_size] return logits_per_video, logits_per_text def convert_weights(model: nn.Module): """Convert applicable model parameters to fp16""" def _convert_weights_to_fp16(l): if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)): l.weight.data = l.weight.data.half() if l.bias is not None: l.bias.data = l.bias.data.half() if isinstance(l, nn.MultiheadAttention): for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]: tensor = getattr(l, attr) if tensor is not None: tensor.data = tensor.data.half() for name in ["text_projection", "proj"]: if hasattr(l, name) and not isinstance(l, TransformerDecoder_uniformer_diff_conv_balance): attr = getattr(l, name) if attr is not None: attr.data = attr.data.half() model.apply(_convert_weights_to_fp16) def build_model( state_dict: dict, # evl n_layers=4, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, t_size=8, spatial_size=14, use_t_conv=True, use_image_attnmap=True, use_t_pos_embed=True, no_pretrain=False, ): vit = "visual.proj" in state_dict or "visual.positional_embedding" in state_dict if "visual.proj" in state_dict: state_dict["visual_proj"] = state_dict["visual.proj"] state_dict["visual_ln_post.weight"] = state_dict["visual.ln_post.weight"] state_dict["visual_ln_post.bias"] = state_dict["visual.ln_post.bias"] del state_dict["visual.proj"], state_dict["visual.ln_post.weight"], state_dict["visual.ln_post.bias"] # new_state_dict = OrderedDict() # for k, v in state_dict.items(): # if k.startswith("backbone."): # k = k.replace("backbone.", "visual.") # new_state_dict[k] = v # state_dict = new_state_dict if vit: vision_width = state_dict["visual.conv1.weight"].shape[0] vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")]) vision_patch_size = state_dict["visual.conv1.weight"].shape[-1] grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5) image_resolution = vision_patch_size * grid_size else: counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]] vision_layers = tuple(counts) vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0] output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5) vision_patch_size = None assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0] image_resolution = output_width * 32 # embed_dim = 512 # context_length = 77 # vocab_size = 49408 # transformer_width = 512 # transformer_layers = 12 embed_dim = state_dict["text_projection"].shape[1] context_length = state_dict["positional_embedding"].shape[0] vocab_size = state_dict["token_embedding.weight"].shape[0] transformer_width = state_dict["ln_final.weight"].shape[0] transformer_heads = transformer_width // 64 transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks"))) vision_width = state_dict["visual_proj"].shape[0] n_dim = vision_width if vision_width == 768: backbone = "vit_2plus1d_dw_bias_b16" n_head = 12 elif vision_width == 1024: backbone = "vit_2plus1d_dw_bias_l14" n_head = 16 else: raise NotImplementedError model = CLIP( embed_dim, image_resolution, vision_layers, vision_width, vision_patch_size, context_length, vocab_size, transformer_width, transformer_heads, transformer_layers, n_layers=n_layers, n_dim=n_dim, n_head=n_head, mlp_factor=mlp_factor, drop_path_rate=drop_path_rate, mlp_dropout=mlp_dropout, cls_dropout=cls_dropout, t_size=t_size, spatial_size=spatial_size, use_t_conv=use_t_conv, use_image_attnmap=use_image_attnmap, use_t_pos_embed=use_t_pos_embed, backbone=backbone ) for key in ["input_resolution", "context_length", "vocab_size"]: if key in state_dict: del state_dict[key] # convert_weights(model) # strict=False, for parameters of decoder # assert False, (len(model.state_dict()), len(state_dict)) if not no_pretrain: model.load_state_dict(state_dict, strict=False) return model.eval()
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_kc/model.py
import os import time import torch import torch.nn as nn from fvcore.nn import FlopCountAnalysis from fvcore.nn import flop_count_table import evl_utils from evl_utils import TransformerDecoder_uniformer_diff_conv_balance PATH_PREFIX = '/mnt/lustre/share_data/likunchang.vendor/code/EVL/clip_kc/model' class EVL(nn.Module): def __init__(self, backbone='vit_b16', n_layers=12, n_dim=1024, n_head=16, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, t_size=32, use_t_conv=True, use_t_pos_embed=True, uni_layer=4, uni_type='3d', add_ffn=True, t_conv_type='1d', pre_prompt=True, balance=0., after_me=True, before_me=False, me_type='dstm', me_reduction=4, num_classes=400, ): super().__init__() # pre-trained from CLIP self.backbone = evl_utils.__dict__[backbone](pretrained=False) self.evl = TransformerDecoder_uniformer_diff_conv_balance( n_layers=n_layers, n_dim=n_dim, n_head=n_head, mlp_factor=mlp_factor, drop_path_rate=drop_path_rate, mlp_dropout=mlp_dropout, cls_dropout=cls_dropout, t_size=t_size, use_t_conv=use_t_conv, use_t_pos_embed=use_t_pos_embed, uni_layer=uni_layer, uni_type=uni_type, add_ffn=add_ffn, t_conv_type=t_conv_type, pre_prompt=pre_prompt, balance=balance, after_me=after_me, before_me=before_me, me_type=me_type, me_reduction=me_reduction, num_classes=num_classes ) self.return_num = n_layers def forward(self, x): features = self.backbone(x, return_num=self.return_num) output = self.evl(features) return output def cal_flops(model, frame=8, size=224): flops = FlopCountAnalysis(model, torch.rand(1, 3, frame, size, size)) s = time.time() print(flop_count_table(flops, max_depth=1)) print(time.time()-s) def vit_2plus1d_diff_b_sparse8(pretrained=True): # 8x224x224 # k400 1x1: 82.5 model = EVL( backbone='vit_2plus1d_dw_bias_b16', n_layers=12, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, t_size=8, use_t_conv=True, use_t_pos_embed=True, uni_layer=0, uni_type='2d', add_ffn=False, t_conv_type='3d', pre_prompt=False, balance=0., after_me=True, before_me=False, me_type='stm', me_reduction=4, num_classes=400, ) if pretrained: pretrained_path = os.path.join(PATH_PREFIX, 'vit_2plus1d_diff_b_sparse8.pyth') print(f'lodel model from: {pretrained_path}') state_dict = torch.load(pretrained_path, map_location='cpu') model.load_state_dict(state_dict) return model if __name__ == '__main__': model = vit_2plus1d_diff_b_sparse8() cal_flops(model, frame=8, size=224)
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_kc/model_no_freeze_diff.py
import os import time import torch import torch.nn as nn from fvcore.nn import FlopCountAnalysis from fvcore.nn import flop_count_table import evl_utils from evl_utils import TransformerDecoder PATH_PREFIX = '/mnt/lustre/share_data/likunchang.vendor/code/EVL/clip_kc/model' class EVL(nn.Module): def __init__(self, backbone='vit_l14_336', n_layers=4, n_dim=1024, n_head=16, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, t_size=32, use_t_conv=True, use_t_pos_embed=True, num_classes=400 ): super().__init__() # pre-trained from CLIP self.backbone = evl_utils.__dict__[backbone](pretrained=False) self.evl = TransformerDecoder( n_layers=n_layers, n_dim=n_dim, n_head=n_head, mlp_factor=mlp_factor, drop_path_rate=drop_path_rate, mlp_dropout=mlp_dropout, cls_dropout=cls_dropout, t_size=t_size, use_t_conv=use_t_conv, use_t_pos_embed=use_t_pos_embed, num_classes=num_classes, ) self.return_num = n_layers def forward(self, x): features = self.backbone(x, return_num=self.return_num) output = self.evl(features) return output def cal_flops(model, frame=8, size=224): flops = FlopCountAnalysis(model, torch.rand(1, 3, frame, size, size)) s = time.time() print(flop_count_table(flops, max_depth=1)) print(time.time()-s) def vit_l_sparse16(pretrained=True): # 16x224x224 # k400 1x1: 86.5 model = EVL( backbone='vit_l14', n_layers=4, n_dim=1024, n_head=16, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, t_size=32, use_t_conv=True, use_t_pos_embed=True, num_classes=400 ) if pretrained: pretrained_path = os.path.join(PATH_PREFIX, 'vit_l_sparse16.pyth') print(f'lodel model from: {pretrained_path}') state_dict = torch.load(pretrained_path, map_location='cpu') model.load_state_dict(state_dict) return model def vit_l_sparse32(pretrained=True): # 32x224x224 # k400 1x1: 87.0 model = EVL( backbone='vit_l14', n_layers=4, n_dim=1024, n_head=16, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, t_size=32, use_t_conv=True, use_t_pos_embed=True, num_classes=400 ) if pretrained: pretrained_path = os.path.join(PATH_PREFIX, 'vit_l_sparse32.pyth') print(f'lodel model from: {pretrained_path}') state_dict = torch.load(pretrained_path, map_location='cpu') model.load_state_dict(state_dict) return model def vit_l336_sparse32(pretrained=True): # 32x336x336 # k400 1x1: 87.4 model = EVL( backbone='vit_l14_336', n_layers=4, n_dim=1024, n_head=16, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, t_size=32, use_t_conv=True, use_t_pos_embed=True, num_classes=400 ) if pretrained: pretrained_path = os.path.join(PATH_PREFIX, 'vit_l336_sparse32.pyth') print(f'lodel model from: {pretrained_path}') state_dict = torch.load(pretrained_path, map_location='cpu') model.load_state_dict(state_dict) return model if __name__ == '__main__': model = vit_l_sparse16() cal_flops(model, frame=16, size=224) # model = vit_l_sparse32() # cal_flops(model, frame=32, size=224) # model = vit_l336_sparse32() # cal_flops(model, frame=32, size=336)
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_kc/model_freeze.py
import os import time import torch import torch.nn as nn from fvcore.nn import FlopCountAnalysis from fvcore.nn import flop_count_table import evl_utils from evl_utils import TransformerDecoder PATH_PREFIX = '/mnt/lustre/share_data/likunchang.vendor/code/EVL/clip_kc/model' class EVL(nn.Module): def __init__(self, backbone='vit_l14_336', n_layers=4, n_dim=1024, n_head=16, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, t_size=32, use_t_conv=True, use_t_pos_embed=True, num_classes=400, add_residual=False, ): super().__init__() # pre-trained from CLIP self.backbone = evl_utils.__dict__[backbone](pretrained=False) self.evl = TransformerDecoder( n_layers=n_layers, n_dim=n_dim, n_head=n_head, mlp_factor=mlp_factor, drop_path_rate=drop_path_rate, mlp_dropout=mlp_dropout, cls_dropout=cls_dropout, t_size=t_size, use_t_conv=use_t_conv, use_t_pos_embed=use_t_pos_embed, num_classes=num_classes, add_residual=add_residual ) self.return_num = n_layers def forward(self, x): features = self.backbone(x, return_num=self.return_num) output = self.evl(features) return output def cal_flops(model, frame=8, size=224): flops = FlopCountAnalysis(model, torch.rand(1, 3, frame, size, size)) s = time.time() print(flop_count_table(flops, max_depth=1)) print(time.time()-s) def vit_b_sparse8(pretrained=True): # 8x224x224 # k400 1x1: 82.4 model = EVL( backbone='vit_b16', n_layers=4, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, t_size=8, use_t_conv=True, use_t_pos_embed=True, num_classes=400, add_residual=True, ) if pretrained: pretrained_path = os.path.join(PATH_PREFIX, 'vit_b_sparse8.pyth') print(f'lodel model from: {pretrained_path}') state_dict = torch.load(pretrained_path, map_location='cpu') model.load_state_dict(state_dict) return model def vit_2plus1d_b_sparse8(pretrained=True): # 8x224x224 # k400 1x1: 82.5 model = EVL( backbone='vit_2plus1d_b16', n_layers=4, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, t_size=8, use_t_conv=True, use_t_pos_embed=True, num_classes=400, add_residual=True, ) if pretrained: pretrained_path = os.path.join(PATH_PREFIX, 'vit_2plus1d_b_sparse8.pyth') print(f'lodel model from: {pretrained_path}') state_dict = torch.load(pretrained_path, map_location='cpu') model.load_state_dict(state_dict) return model if __name__ == '__main__': # model = vit_b_sparse8() # cal_flops(model, frame=8, size=224) model = vit_2plus1d_b_sparse8() cal_flops(model, frame=8, size=224)
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_kc/model_no_freeze.py
import hashlib import os import urllib import warnings from typing import Any, Union, List from pkg_resources import packaging import torch from PIL import Image from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize from tqdm import tqdm from ipdb import set_trace from .model import build_model from .simple_tokenizer import SimpleTokenizer as _Tokenizer try: from torchvision.transforms import InterpolationMode BICUBIC = InterpolationMode.BICUBIC except ImportError: BICUBIC = Image.BICUBIC if packaging.version.parse(torch.__version__) < packaging.version.parse("1.7.1"): warnings.warn("PyTorch version 1.7.1 or higher is recommended") __all__ = ["available_models", "load", "tokenize"] _tokenizer = _Tokenizer() _MODELS = { "ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt", "ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt", "ViT-L/14": "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt", } def _download(url: str, root: str): os.makedirs(root, exist_ok=True) filename = os.path.basename(url) expected_sha256 = url.split("/")[-2] download_target = os.path.join(root, filename) if os.path.exists(download_target) and not os.path.isfile(download_target): raise RuntimeError(f"{download_target} exists and is not a regular file") if os.path.isfile(download_target): if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256: return download_target else: warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file") with urllib.request.urlopen(url) as source, open(download_target, "wb") as output: with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True, unit_divisor=1024) as loop: while True: buffer = source.read(8192) if not buffer: break output.write(buffer) loop.update(len(buffer)) if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256: raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match") return download_target def _convert_image_to_rgb(image): return image.convert("RGB") def _transform(n_px): return Compose([ Resize(n_px, interpolation=BICUBIC), CenterCrop(n_px), _convert_image_to_rgb, ToTensor(), Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), ]) def available_models() -> List[str]: """Returns the names of available CLIP models""" return list(_MODELS.keys()) def load( name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", jit: bool = False, download_root: str = None, # evl n_layers=12, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, t_size=8, spatial_size=14, use_t_conv=True, use_image_attnmap=True, use_t_pos_embed=True, dropout=0.0, no_pretrain=False, ): """Load a CLIP model Parameters ---------- name : str A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict device : Union[str, torch.device] The device to put the loaded model jit : bool Whether to load the optimized JIT model or more hackable non-JIT model (default). download_root: str path to download the model files; by default, it uses "~/.cache/clip" Returns ------- model : torch.nn.Module The CLIP model preprocess : Callable[[PIL.Image], torch.Tensor] A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input """ if name in _MODELS: model_path = _download(_MODELS[name], download_root or os.path.expanduser("~/.cache/clip")) elif os.path.isfile(name): model_path = name else: raise RuntimeError(f"Model {name} not found; available models = {available_models()}") ''' with open(model_path, 'rb') as opened_file: try: # loading JIT archive model = torch.jit.load(opened_file, map_location=device if jit else "cpu").eval() state_dict = None except RuntimeError: # loading saved state dict if jit: warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead") jit = False state_dict = torch.load(model_path, map_location="cpu") ''' init_state_dict = torch.load(model_path, map_location='cpu')['state_dict'] state_dict = {} for k, v in init_state_dict.items(): k = k.replace('clip.','') state_dict[k] = v #set_trace() if not jit: model = build_model( state_dict or model.state_dict(), n_layers=n_layers, n_dim=n_dim, n_head=n_head, mlp_factor=mlp_factor, drop_path_rate=drop_path_rate, mlp_dropout=mlp_dropout, cls_dropout=cls_dropout, t_size=t_size, spatial_size=spatial_size, use_t_conv=use_t_conv, use_image_attnmap=use_image_attnmap, use_t_pos_embed=use_t_pos_embed, no_pretrain=no_pretrain ).to(device) if str(device) == "cpu": model.float() return model, _transform(model.visual.input_resolution) # patch the device names device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[]) device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1] def patch_device(module): try: graphs = [module.graph] if hasattr(module, "graph") else [] except RuntimeError: graphs = [] if hasattr(module, "forward1"): graphs.append(module.forward1.graph) for graph in graphs: for node in graph.findAllNodes("prim::Constant"): if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"): node.copyAttributes(device_node) model.apply(patch_device) patch_device(model.encode_image) patch_device(model.encode_text) # patch dtype to float32 on CPU if str(device) == "cpu": float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[]) float_input = list(float_holder.graph.findNode("aten::to").inputs())[1] float_node = float_input.node() def patch_float(module): try: graphs = [module.graph] if hasattr(module, "graph") else [] except RuntimeError: graphs = [] if hasattr(module, "forward1"): graphs.append(module.forward1.graph) for graph in graphs: for node in graph.findAllNodes("aten::to"): inputs = list(node.inputs()) for i in [1, 2]: # dtype can be the second or third argument to aten::to() if inputs[i].node()["value"] == 5: inputs[i].node().copyAttributes(float_node) model.apply(patch_float) patch_float(model.encode_image) patch_float(model.encode_text) model.float() return model, _transform(model.input_resolution.item()) def tokenize(texts: Union[str, List[str]], context_length: int = 77, truncate: bool = False, return_special_tokens_mask: bool = False) -> Union[torch.IntTensor, torch.LongTensor, torch.BoolTensor]: """ Returns the tokenized representation of given input string(s) Parameters ---------- texts : Union[str, List[str]] An input string or a list of input strings to tokenize context_length : int The context length to use; all CLIP models use 77 as the context length truncate: bool Whether to truncate the text in case its encoding is longer than the context length Returns ------- A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]. We return LongTensor when torch version is <1.8.0, since older index_select requires indices to be long. """ if isinstance(texts, str): texts = [texts] sot_token = _tokenizer.encoder["<|startoftext|>"] eot_token = _tokenizer.encoder["<|endoftext|>"] all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts] if packaging.version.parse(torch.__version__) < packaging.version.parse("1.8.0"): result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) else: result = torch.zeros(len(all_tokens), context_length, dtype=torch.int) special_tokens_mask = torch.zeros(len(all_tokens), context_length, dtype=torch.bool) for i, tokens in enumerate(all_tokens): if len(tokens) > context_length: if truncate: tokens = tokens[:context_length] tokens[-1] = eot_token else: raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}") result[i, :len(tokens)] = torch.tensor(tokens) special_tokens_mask[i, len(tokens):] = 1 if return_special_tokens_mask: return result, special_tokens_mask return result
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_kc/clip.py
import gzip import html import os from functools import lru_cache import ftfy import regex as re @lru_cache() def default_bpe(): return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz") @lru_cache() def bytes_to_unicode(): """ Returns list of utf-8 byte and a corresponding list of unicode strings. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a signficant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. And avoids mapping to whitespace/control characters the bpe code barfs on. """ bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8+n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs def basic_clean(text): text = ftfy.fix_text(text) text = html.unescape(html.unescape(text)) return text.strip() def whitespace_clean(text): text = re.sub(r'\s+', ' ', text) text = text.strip() return text class SimpleTokenizer(object): def __init__(self, bpe_path: str = default_bpe()): self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} merges = gzip.open(bpe_path).read().decode("utf-8").split('\n') merges = merges[1:49152-256-2+1] merges = [tuple(merge.split()) for merge in merges] vocab = list(bytes_to_unicode().values()) vocab = vocab + [v+'</w>' for v in vocab] for merge in merges: vocab.append(''.join(merge)) vocab.extend(['<|startoftext|>', '<|endoftext|>']) self.encoder = dict(zip(vocab, range(len(vocab)))) self.decoder = {v: k for k, v in self.encoder.items()} self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'} self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE) def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token[:-1]) + ( token[-1] + '</w>',) pairs = get_pairs(word) if not pairs: return token+'</w>' while True: bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf'))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) new_word.extend(word[i:j]) i = j except: new_word.extend(word[i:]) break if word[i] == first and i < len(word)-1 and word[i+1] == second: new_word.append(first+second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = ' '.join(word) self.cache[token] = word return word def encode(self, text): bpe_tokens = [] text = whitespace_clean(basic_clean(text)).lower() for token in re.findall(self.pat, text): token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')) return bpe_tokens def decode(self, tokens): text = ''.join([self.decoder[token] for token in tokens]) text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ') return text
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_kc/simple_tokenizer.py
#!/usr/bin/env python import warnings from typing import Tuple, Optional import torch from torch import Tensor from torch.nn.modules.linear import Linear from torch.nn.init import xavier_uniform_ from torch.nn.init import constant_ from torch.nn.init import xavier_normal_ from torch.nn.parameter import Parameter from torch.nn.modules.module import Module from .attention_module import multi_head_attention_forward class _LinearWithBias(Linear): bias: Tensor def __init__(self, in_features: int, out_features: int) -> None: super().__init__(in_features, out_features, bias=True) class MultiheadAttention(Module): r"""Allows the model to jointly attend to information from different representation subspaces. See reference: Attention Is All You Need .. math:: \text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O \text{where} head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) Args: embed_dim: total dimension of the model. num_heads: parallel attention heads. dropout: a Dropout layer on attn_output_weights. Default: 0.0. bias: add bias as module parameter. Default: True. add_bias_kv: add bias to the key and value sequences at dim=0. add_zero_attn: add a new batch of zeros to the key and value sequences at dim=1. kdim: total number of features in key. Default: None. vdim: total number of features in value. Default: None. Note: if kdim and vdim are None, they will be set to embed_dim such that query, key, and value have the same number of features. Examples:: >>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads) >>> attn_output, attn_output_weights = multihead_attn(query, key, value) """ bias_k: Optional[torch.Tensor] bias_v: Optional[torch.Tensor] def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None): super(MultiheadAttention, self).__init__() self.embed_dim = embed_dim self.kdim = kdim if kdim is not None else embed_dim self.vdim = vdim if vdim is not None else embed_dim self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" if self._qkv_same_embed_dim is False: self.q_proj_weight = Parameter(torch.Tensor(embed_dim, embed_dim)) self.k_proj_weight = Parameter(torch.Tensor(embed_dim, self.kdim)) self.v_proj_weight = Parameter(torch.Tensor(embed_dim, self.vdim)) self.register_parameter('in_proj_weight', None) else: self.in_proj_weight = Parameter(torch.empty(3 * embed_dim, embed_dim)) self.register_parameter('q_proj_weight', None) self.register_parameter('k_proj_weight', None) self.register_parameter('v_proj_weight', None) if bias: self.in_proj_bias = Parameter(torch.empty(3 * embed_dim)) else: self.register_parameter('in_proj_bias', None) self.out_proj = _LinearWithBias(embed_dim, embed_dim) if add_bias_kv: self.bias_k = Parameter(torch.empty(1, 1, embed_dim)) self.bias_v = Parameter(torch.empty(1, 1, embed_dim)) else: self.bias_k = self.bias_v = None self.add_zero_attn = add_zero_attn self._reset_parameters() def _reset_parameters(self): if self._qkv_same_embed_dim: xavier_uniform_(self.in_proj_weight) else: xavier_uniform_(self.q_proj_weight) xavier_uniform_(self.k_proj_weight) xavier_uniform_(self.v_proj_weight) if self.in_proj_bias is not None: constant_(self.in_proj_bias, 0.) constant_(self.out_proj.bias, 0.) if self.bias_k is not None: xavier_normal_(self.bias_k) if self.bias_v is not None: xavier_normal_(self.bias_v) def __setstate__(self, state): # Support loading old MultiheadAttention checkpoints generated by v1.1.0 if '_qkv_same_embed_dim' not in state: state['_qkv_same_embed_dim'] = True super(MultiheadAttention, self).__setstate__(state) def forward(self, query, key, value, key_padding_mask=None, need_weights=True, attn_mask=None, return_qk=False): # type: (Tensor, Tensor, Tensor, Optional[Tensor], bool, Optional[Tensor], bool) -> Tuple[Tensor, Optional[Tensor]] r""" Args: query, key, value: map a query and a set of key-value pairs to an output. See "Attention Is All You Need" for more details. key_padding_mask: if provided, specified padding elements in the key will be ignored by the attention. When given a binary mask and a value is True, the corresponding value on the attention layer will be ignored. When given a byte mask and a value is non-zero, the corresponding value on the attention layer will be ignored need_weights: output attn_output_weights. attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all the batches while a 3D mask allows to specify a different mask for the entries of each batch. Shape: - Inputs: - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is the embedding dimension. - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. If a ByteTensor is provided, the non-zero positions will be ignored while the position with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length. 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. attn_mask ensure that position i is allowed to attend the unmasked positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor is provided, it will be added to the attention weight. - return_qk: whether return Q and K. - Outputs: - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - attn_output_weights: :math:`(N, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. """ if return_qk: if not self._qkv_same_embed_dim: q, k, attn_output, attn_output_weights = multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, use_separate_proj_weight=True, q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight, v_proj_weight=self.v_proj_weight, return_qk=True) else: q, k, attn_output, attn_output_weights = multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, return_qk=True) return q, k, attn_output, attn_output_weights else: if not self._qkv_same_embed_dim: return multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, use_separate_proj_weight=True, q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight, v_proj_weight=self.v_proj_weight) else: return multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask)
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_kc/evl_utils/attention.py
#!/usr/bin/env python from collections import OrderedDict from timm.models.layers import trunc_normal_, DropPath import torch import torch.nn as nn import torch.nn.functional as F class QuickGELU(nn.Module): def forward(self, x: torch.Tensor): return x * torch.sigmoid(1.702 * x) def conv_1x1x1(inp, oup, groups=1): return nn.Conv3d(inp, oup, (1, 1, 1), (1, 1, 1), (0, 0, 0), groups=groups) def conv_3x3x3(inp, oup, groups=1): return nn.Conv3d(inp, oup, (3, 3, 3), (1, 1, 1), (1, 1, 1), groups=groups) def conv_1x3x3(inp, oup, groups=1): return nn.Conv3d(inp, oup, (1, 3, 3), (1, 1, 1), (0, 1, 1), groups=groups) def bn_3d(dim): return nn.BatchNorm3d(dim) class STM(nn.Module): def __init__(self, n_dim, reduction=4): super(STM, self).__init__() reduced_c = n_dim // reduction self.reduce = nn.Sequential( nn.Conv2d(n_dim, reduced_c, kernel_size=1, bias=False), nn.BatchNorm2d(reduced_c) ) self.shift = nn.Conv2d(reduced_c, reduced_c, kernel_size=3, padding=1, groups=reduced_c, bias=False) self.recover = nn.Sequential( nn.Conv2d(reduced_c, n_dim, kernel_size=1, bias=False), nn.BatchNorm2d(n_dim) ) self.pad = (0, 0, 0, 0, 0, 0, 0, 1) def forward(self, x): # x: [L, N, T, C] cls_token, x = x[:1], x[1:] L, N, T, C = x.shape H = W = int(L**0.5) fea = x.permute(1, 2, 3, 0).reshape(N*T, C, H, W) bottleneck = self.reduce(fea) # NT, C//r, H, W # t feature reshape_bottleneck = bottleneck.view((-1, T) + bottleneck.size()[1:]) # N, T, C//r, H, W t_fea, __ = reshape_bottleneck.split([T-1, 1], dim=1) # N, T-1, C//r, H, W # apply transformation conv to t+1 feature conv_bottleneck = self.shift(bottleneck) # NT, C//r, H, W # reshape fea: N, T, C//r, H, W reshape_conv_bottleneck = conv_bottleneck.view((-1, T) + conv_bottleneck.size()[1:]) __, tPlusone_fea = reshape_conv_bottleneck.split([1, T-1], dim=1) # N, T-1, C//r, H, W # motion fea = t+1_fea - t_fea # pad the last timestamp diff_fea = tPlusone_fea - t_fea # N, T-1, C//r, H, W # pad = (0,0,0,0,0,0,0,1) diff_fea_pluszero = F.pad(diff_fea, self.pad, mode="constant", value=0) # N, T, C//r, H, W diff_fea_pluszero = diff_fea_pluszero.view((-1,) + diff_fea_pluszero.size()[2:]) # NT, C//r, H, W y = self.recover(diff_fea_pluszero) # NT, C, H, W # reshape y = y.reshape(N, T, C, L).permute(3, 0, 1, 2) y = torch.cat([cls_token, y], dim=0) return y class DSTM(nn.Module): def __init__(self, n_dim, reduction=4): super(DSTM, self).__init__() reduced_c = n_dim // reduction self.reduce = nn.Sequential( nn.Conv2d(n_dim, reduced_c, kernel_size=1, bias=False), nn.BatchNorm2d(reduced_c) ) # DW(T+1) - T self.shift_pre = nn.Conv2d(reduced_c, reduced_c, kernel_size=3, padding=1, groups=reduced_c, bias=False) self.recover_pre = nn.Sequential( nn.Conv2d(reduced_c, n_dim, kernel_size=1, bias=False), nn.BatchNorm2d(n_dim) ) self.pad_pre = (0, 0, 0, 0, 0, 0, 0, 1) # DW(T-1) - T self.shift_back = nn.Conv2d(reduced_c, reduced_c, kernel_size=3, padding=1, groups=reduced_c, bias=False) self.recover_back = nn.Sequential( nn.Conv2d(reduced_c, n_dim, kernel_size=1, bias=False), nn.BatchNorm2d(n_dim) ) self.pad_back = (0, 0, 0, 0, 0, 0, 0, 1) def forward(self, x): # x: [L, N, T, C] cls_token, x = x[:1], x[1:] L, N, T, C = x.shape H = W = int(L**0.5) fea = x.permute(1, 2, 3, 0).reshape(N*T, C, H, W) bottleneck = self.reduce(fea) # NT, C//r, H, W # t feature reshape_bottleneck = bottleneck.view((-1, T) + bottleneck.size()[1:]) # N, T, C//r, H, W pre_t_fea, __ = reshape_bottleneck.split([T-1, 1], dim=1) # N, T-1, C//r, H, W back_t_fea, __ = reshape_bottleneck.split([1, T-1], dim=1) # N, T-1, C//r, H, W # apply transformation conv to t+1/t-1 feature pre_conv_bottleneck = self.shift_pre(bottleneck) # NT, C//r, H, W back_conv_bottleneck = self.shift_back(bottleneck) # NT, C//r, H, W # reshape fea: N, T, C//r, H, W pre_reshape_conv_bottleneck = pre_conv_bottleneck.view((-1, T) + pre_conv_bottleneck.size()[1:]) back_reshape_conv_bottleneck = back_conv_bottleneck.view((-1, T) + back_conv_bottleneck.size()[1:]) __, tPlusone_fea = pre_reshape_conv_bottleneck.split([1, T-1], dim=1) # N, T-1, C//r, H, W tMinusone_fea, _ = back_reshape_conv_bottleneck.split([T-1, 1], dim=1) # N, T-1, C//r, H, W # pre_fea = t+1_fea - t_fea # back_fea = t-1_fea - t_fea pre_diff_fea = tPlusone_fea - pre_t_fea # N, T-1, C//r, H, W back_diff_fea = tMinusone_fea - back_t_fea # N, T-1, C//r, H, W # pad the last/first timestamp pre_diff_fea_pluszero = F.pad(pre_diff_fea, self.pad_pre, mode="constant", value=0) # N, T, C//r, H, W pre_diff_fea_pluszero = pre_diff_fea_pluszero.view((-1,) + pre_diff_fea_pluszero.size()[2:]) # NT, C//r, H, W back_diff_fea_pluszero = F.pad(back_diff_fea, self.pad_back, mode="constant", value=0) # N, T, C//r, H, W back_diff_fea_pluszero = back_diff_fea_pluszero.view((-1,) + back_diff_fea_pluszero.size()[2:]) # NT, C//r, H, W # recover channel pre_y = self.recover_pre(pre_diff_fea_pluszero) # NT, C, H, W back_y = self.recover_back(back_diff_fea_pluszero) # NT, C, H, W # reshape y = (pre_y + back_y).reshape(N, T, C, L).permute(3, 0, 1, 2) # cat cls_token y = torch.cat([cls_token, y], dim=0) return y class TDN(nn.Module): def __init__(self, channel, n_segment=8, index=1, reduction=4): super(TDN, self).__init__() self.channel = channel self.reduction = reduction self.n_segment = n_segment self.stride = 2**(index-1) self.conv1 = nn.Conv2d(in_channels=self.channel, out_channels=self.channel//self.reduction, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(num_features=self.channel//self.reduction) self.conv2 = nn.Conv2d(in_channels=self.channel//self.reduction, out_channels=self.channel//self.reduction, kernel_size=3, padding=1, groups=self.channel//self.reduction, bias=False) self.avg_pool_forward2 = nn.AvgPool2d(kernel_size=2, stride=2) self.avg_pool_forward4 = nn.AvgPool2d(kernel_size=4, stride=4) self.sigmoid_forward = nn.Sigmoid() self.avg_pool_backward2 = nn.AvgPool2d(kernel_size=2, stride=2)#nn.AdaptiveMaxPool2d(1) self.avg_pool_backward4 = nn.AvgPool2d(kernel_size=4, stride=4) self.sigmoid_backward = nn.Sigmoid() self.pad1_forward = (0, 0, 0, 0, 0, 0, 0, 1) self.pad1_backward = (0, 0, 0, 0, 0, 0, 1, 0) self.conv3 = nn.Conv2d(in_channels=self.channel//self.reduction, out_channels=self.channel, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(num_features=self.channel) self.conv3_smallscale2 = nn.Conv2d(in_channels=self.channel//self.reduction, out_channels=self.channel//self.reduction,padding=1, kernel_size=3, bias=False) self.bn3_smallscale2 = nn.BatchNorm2d(num_features=self.channel//self.reduction) self.conv3_smallscale4 = nn.Conv2d(in_channels = self.channel//self.reduction, out_channels=self.channel//self.reduction,padding=1, kernel_size=3, bias=False) self.bn3_smallscale4 = nn.BatchNorm2d(num_features=self.channel//self.reduction) def spatial_pool(self, x): nt, channel, height, width = x.size() input_x = x # [N, C, H * W] input_x = input_x.view(nt, channel, height * width) # [N, 1, C, H * W] input_x = input_x.unsqueeze(1) # [N, 1, H, W] context_mask = self.conv_mask(x) # [N, 1, H * W] context_mask = context_mask.view(nt, 1, height * width) # [N, 1, H * W] context_mask = self.softmax(context_mask) context_mask = context_mask.view(nt,1,height,width) return context_mask def forward(self, x): # x: [L, N, T, C] cls_token, x = x[:1], x[1:] L, N, T, C = x.shape H = W = int(L**0.5) fea = x.permute(1, 2, 3, 0).reshape(N*T, C, H, W) bottleneck = self.conv1(fea) # nt, c//r, h, w bottleneck = self.bn1(bottleneck) # nt, c//r, h, w reshape_bottleneck = bottleneck.view((-1, self.n_segment) + bottleneck.size()[1:]) # n, t, c//r, h, w t_fea_forward, _ = reshape_bottleneck.split([self.n_segment -1, 1], dim=1) # n, t-1, c//r, h, w _, t_fea_backward = reshape_bottleneck.split([1, self.n_segment -1], dim=1) # n, t-1, c//r, h, w conv_bottleneck = self.conv2(bottleneck) # nt, c//r, h, w reshape_conv_bottleneck = conv_bottleneck.view((-1, self.n_segment) + conv_bottleneck.size()[1:]) # n, t, c//r, h, w _, tPlusone_fea_forward = reshape_conv_bottleneck.split([1, self.n_segment-1], dim=1) # n, t-1, c//r, h, w tPlusone_fea_backward ,_ = reshape_conv_bottleneck.split([self.n_segment-1, 1], dim=1) # n, t-1, c//r, h, w diff_fea_forward = tPlusone_fea_forward - t_fea_forward # n, t-1, c//r, h, w diff_fea_backward = tPlusone_fea_backward - t_fea_backward# n, t-1, c//r, h, w diff_fea_pluszero_forward = F.pad(diff_fea_forward, self.pad1_forward, mode="constant", value=0) # n, t, c//r, h, w diff_fea_pluszero_forward = diff_fea_pluszero_forward.view((-1,) + diff_fea_pluszero_forward.size()[2:]) #nt, c//r, h, w diff_fea_pluszero_backward = F.pad(diff_fea_backward, self.pad1_backward, mode="constant", value=0) # n, t, c//r, h, w diff_fea_pluszero_backward = diff_fea_pluszero_backward.view((-1,) + diff_fea_pluszero_backward.size()[2:]) #nt, c//r, h, w y_forward_smallscale2 = self.avg_pool_forward2(diff_fea_pluszero_forward) # nt, c//r, 1, 1 y_backward_smallscale2 = self.avg_pool_backward2(diff_fea_pluszero_backward) # nt, c//r, 1, 1 y_forward_smallscale4 = diff_fea_pluszero_forward y_backward_smallscale4 = diff_fea_pluszero_backward y_forward_smallscale2 = self.bn3_smallscale2(self.conv3_smallscale2(y_forward_smallscale2)) y_backward_smallscale2 = self.bn3_smallscale2(self.conv3_smallscale2(y_backward_smallscale2)) y_forward_smallscale4 = self.bn3_smallscale4(self.conv3_smallscale4(y_forward_smallscale4)) y_backward_smallscale4 = self.bn3_smallscale4(self.conv3_smallscale4(y_backward_smallscale4)) y_forward_smallscale2 = F.interpolate(y_forward_smallscale2, diff_fea_pluszero_forward.size()[2:]) y_backward_smallscale2 = F.interpolate(y_backward_smallscale2, diff_fea_pluszero_backward.size()[2:]) y_forward = self.bn3(self.conv3(1.0/3.0*diff_fea_pluszero_forward + 1.0/3.0*y_forward_smallscale2 + 1.0/3.0*y_forward_smallscale4))# nt, c, 1, 1 y_backward = self.bn3(self.conv3(1.0/3.0*diff_fea_pluszero_backward + 1.0/3.0*y_backward_smallscale2 + 1.0/3.0*y_backward_smallscale4)) # nt, c, 1, 1 y_forward = self.sigmoid_forward(y_forward) - 0.5 y_backward = self.sigmoid_backward(y_backward) - 0.5 y = 0.5 * y_forward + 0.5 * y_backward attn = fea * y x = x + attn.reshape(N, T, C, L).permute(3, 0, 1, 2) x = torch.cat([cls_token, x], dim=0) return x class CMlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = conv_1x1x1(in_features, hidden_features) self.act = act_layer() self.fc2 = conv_1x1x1(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class CBlock(nn.Module): def __init__(self, dim, mlp_ratio=4., dropout=0., drop_path=0., uni_type='3d', add_ffn=True): super().__init__() self.norm1 = bn_3d(dim) self.conv1 = conv_1x1x1(dim, dim, 1) self.conv2 = conv_1x1x1(dim, dim, 1) if uni_type == '3d': print('Use 3d conv for local MHRA') self.attn = conv_3x3x3(dim, dim, groups=dim) else: print('Use 2d conv for local MHRA') self.attn = conv_1x3x3(dim, dim, groups=dim) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.add_ffn = add_ffn if add_ffn: print('Add FFN in local MHRA') self.norm2 = bn_3d(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = CMlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=nn.GELU, drop=dropout) print('Init zero') nn.init.constant_(self.conv2.weight, 0.) nn.init.constant_(self.conv2.bias, 0.) if add_ffn: nn.init.constant_(self.mlp.fc2.weight, 0.) nn.init.constant_(self.mlp.fc2.bias, 0.) def forward(self, x): x = x + self.drop_path(self.conv2(self.attn(self.conv1(self.norm1(x))))) if self.add_ffn: x = x + self.drop_path(self.mlp(self.norm2(x))) return x class ResidualDecoderBlock(nn.Module): def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None, mlp_factor: float = 4.0, dropout: float = 0.0, drop_path: float = 0.0): super().__init__() self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() print(f'Drop path rate: {drop_path}') self.attn = nn.MultiheadAttention(d_model, n_head) self.ln_1 = nn.LayerNorm(d_model) d_mlp = round(mlp_factor * d_model) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, d_mlp)), ("gelu", QuickGELU()), ("dropout", nn.Dropout(dropout)), ("c_proj", nn.Linear(d_mlp, d_model)) ])) self.ln_2 = nn.LayerNorm(d_model) self.ln_3 = nn.LayerNorm(d_model) self.attn_mask = attn_mask nn.init.xavier_uniform_(self.attn.in_proj_weight) # nn.init.xavier_uniform_(self.attn.out_proj.weight) nn.init.constant_(self.attn.out_proj.weight, 0.) nn.init.constant_(self.attn.out_proj.bias, 0.) nn.init.xavier_uniform_(self.mlp[0].weight) # nn.init.xavier_uniform_(self.mlp[-1].weight) nn.init.constant_(self.mlp[-1].weight, 0.) nn.init.constant_(self.mlp[-1].bias, 0.) def attention(self, x: torch.Tensor, y: torch.Tensor): #self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None # return self.attn(x, y, y, need_weights=False, attn_mask=self.attn_mask)[0] assert self.attn_mask is None # not implemented # manual forward to add position information d_model = self.ln_1.weight.size(0) q = (x @ self.attn.in_proj_weight[:d_model].T) + self.attn.in_proj_bias[:d_model] k = (y @ self.attn.in_proj_weight[d_model:-d_model].T) + self.attn.in_proj_bias[d_model:-d_model] v = (y @ self.attn.in_proj_weight[-d_model:].T) + self.attn.in_proj_bias[-d_model:] Tx, Ty, N = q.size(0), k.size(0), q.size(1) q = q.view(Tx, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3) k = k.view(Ty, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3) v = v.view(Ty, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3) aff = (q @ k.transpose(-2, -1) / (self.attn.head_dim ** 0.5)) aff = aff.softmax(dim=-1) out = aff @ v out = out.permute(2, 0, 1, 3).flatten(2) out = self.attn.out_proj(out) return out def forward(self, x: torch.Tensor, y: torch.Tensor): x = x + self.drop_path(self.attention(self.ln_1(x), self.ln_3(y))) x = x + self.drop_path(self.mlp(self.ln_2(x))) return x class TransformerDecoder_uniformer_diff_conv_balance(nn.Module): def __init__(self, n_layers=4, uni_layer=4, uni_type='3d', add_ffn=True, t_conv_type='1d', pre_prompt=True, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, t_size=8, spatial_size=14, balance=0., use_t_conv=True, after_me=True, before_me=False, me_type='dstm', me_reduction=4, use_t_pos_embed=True, num_classes=400): super().__init__() n_layers += uni_layer dpr = [x.item() for x in torch.linspace(0, drop_path_rate, n_layers)] self.uni_layer = uni_layer self.uni_dec = nn.ModuleList([ CBlock(n_dim, mlp_ratio=mlp_factor, dropout=mlp_dropout[i], drop_path=dpr[i], uni_type=uni_type, add_ffn=add_ffn) for i in range(uni_layer) ]) self.dec = nn.ModuleList([ ResidualDecoderBlock(n_dim, n_head, mlp_factor=mlp_factor, dropout=mlp_dropout[i], drop_path=dpr[i]) for i in range(n_layers) ]) self.pre_prompt = pre_prompt if pre_prompt: print('Add pre prompt') self.pre_temporal_cls_token = nn.Parameter(torch.zeros(n_dim)) self.temporal_cls_token = nn.Parameter(torch.zeros(n_dim)) if use_t_conv: self.t_conv_type = t_conv_type if t_conv_type == '1d': print('Use 1d t_conv for CPE') self.tconv = nn.ModuleList([ nn.Conv1d(n_dim, n_dim, kernel_size=3, stride=1, padding=1, bias=True, groups=n_dim) for i in range(n_layers) ]) for m in self.tconv: nn.init.constant_(m.bias, 0.) m.weight.data[...] = torch.Tensor([0, 1, 0]) else: print('Use 3d t_conv for CPE') self.tconv = nn.ModuleList([ nn.Conv3d(n_dim, n_dim, kernel_size=3, stride=1, padding=1, bias=True, groups=n_dim) for i in range(n_layers) ]) for m in self.tconv: nn.init.constant_(m.bias, 0.) else: self.tconv = None self.before_me = before_me self.after_me = after_me if before_me or after_me: assert before_me != after_me print(f'Use {me_type} attention, Before {before_me}, After {after_me}') if me_type == 'stm': me_op = STM elif me_type == 'dstm': me_op = DSTM elif me_type == 'tdn': me_op = TDN self.me = nn.ModuleList([me_op(n_dim, reduction=me_reduction) for i in range(n_layers)]) if use_t_pos_embed: self.pemb_t = nn.Parameter(torch.zeros([n_layers, t_size, n_dim])) else: self.pemb_t = None print(F'Balnce weight {balance}') self.balance = nn.Parameter(torch.ones((n_dim)) * balance) self.sigmoid = nn.Sigmoid() def forward(self, clip_feats_all): # clip_feats_all = clip_feats_all[-len(self.dec):] # only return n_layers features, save memory clip_feats = [x for x in clip_feats_all] if self.after_me: origin_clip_feats = [x for x in clip_feats_all] L, N, T, C = clip_feats[0].size() x = self.temporal_cls_token.view(1, 1, -1).repeat(1, N, 1) for i in range(len(clip_feats)): if self.before_me: # contain residual clip_feats[i] = self.me[i](clip_feats[i]) if self.tconv is not None: L, N, T, C = clip_feats[i].shape if self.t_conv_type == '1d': clip_feats[i] = clip_feats[i].permute(0, 1, 3, 2).flatten(0, 1) # L * N, C, T clip_feats[i] = self.tconv[i](clip_feats[i]).permute(0, 2, 1).contiguous().view(L, N, T, C) else: H = W = int((L - 1) ** 0.5) _, tmp_feats = clip_feats[i][:1], clip_feats[i][1:] tmp_feats = tmp_feats.permute(1, 3, 2, 0).reshape(N, C, T, H, W) tmp_feats = self.tconv[i](tmp_feats).view(N, C, T, L - 1).permute(3, 0, 2, 1) clip_feats[i][1:] = clip_feats[i][1:] + tmp_feats if self.pemb_t is not None: clip_feats[i] = clip_feats[i] + self.pemb_t[i] if self.after_me: clip_feats[i] = clip_feats[i] + self.me[i](origin_clip_feats[i]) if i < self.uni_layer: # L, N, T, C L, N, T, C = clip_feats[i].shape H = W = int((L - 1) ** 0.5) _, tmp_feats = clip_feats[i][:1], clip_feats[i][1:] tmp_feats = tmp_feats.permute(1, 3, 2, 0).reshape(N, C, T, H, W) tmp_feats = self.uni_dec[i](tmp_feats).view(N, C, T, L - 1).permute(3, 0, 2, 1) clip_feats[i][1:] = clip_feats[i][1:] + tmp_feats clip_feats[i] = clip_feats[i].permute(2, 0, 1, 3).flatten(0, 1) # T * L, N, C if self.pre_prompt: pre_x = self.pre_temporal_cls_token.view(1, 1, -1).repeat(1, N, 1) for i in range(len(self.dec)): if i < self.uni_layer: pre_x = self.dec[i](pre_x, clip_feats[i]) elif i == self.uni_layer: clip_feats[i] = torch.cat([pre_x, clip_feats[i]], dim=0) x = self.dec[i](x, clip_feats[i]) else: x = self.dec[i](x, clip_feats[i]) else: for i in range(len(self.dec)): x = self.dec[i](x, clip_feats[i]) # real residual # L, N, T, C residual = clip_feats_all[-1][0].mean(1) weight = self.sigmoid(self.balance) # return self.proj((1 - weight) * x[0, :, :] + weight * residual) return (1 - weight) * x[0, :, :] + weight * residual if __name__ == '__main__': model = TransformerDecoder_uniformer_diff_conv_balance() # construct a fake input to demonstrate input tensor shape L, N, T, C = 197, 1, 8, 768 # num_image_tokens, video_batch_size, t_size, feature_dim # we use intermediate feature maps from multiple blocks, so input features should be a list input_features = [] for i in range(8): # vit-b has 12 blocks # every item in input_features contains features maps from a single block # every item is a tuple containing 3 feature maps: # (1) block output features (i.e. after mlp) with shape L, N, T, C # (2) projected query features with shape L, N, T, C # (3) projected key features with shape L, N, T, C input_features.append( tuple(torch.zeros([L, N, T, C]) for _ in range(3))) # some small optimizations: # (1) We only decode from the last $n$ blocks so it's good as long as the last $n$ items of input_features is valid and all previous items can be filled with None to save memory. By default $n=4$. # (2) projected query/key features are optional. If you are using an uncompatible image backbone without query/key (e.g. CNN), you can fill the position with None (i.e. the tuple should be (Tensor, None, None) and set use_image_attnmap=False when constructing the model. print(model) print(model(input_features).shape) # should be N, 400
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_kc/evl_utils/evl_module_uniformer_diff_conv_balance.py
#!/usr/bin/env python import os from collections import OrderedDict from timm.models.layers import DropPath import torch from torch import nn import torch.utils.checkpoint as checkpoint from .attention import MultiheadAttention MODEL_PATH = '/mnt/lustre/share_data/likunchang.vendor/model' _MODELS = { "ViT-B/32": os.path.join(MODEL_PATH, "vit_b32.pth"), "ViT-B/16": os.path.join(MODEL_PATH, "vit_b16.pth"), "ViT-L/14": os.path.join(MODEL_PATH, "vit_l14.pth"), "ViT-L/14_336": os.path.join(MODEL_PATH, "vit_l14_336.pth"), } class LayerNorm(nn.LayerNorm): """Subclass torch's LayerNorm to handle fp16.""" def forward(self, x): orig_type = x.dtype ret = super().forward(x.type(torch.float32)) return ret.type(orig_type) class QuickGELU(nn.Module): def forward(self, x): return x * torch.sigmoid(1.702 * x) class ResidualAttentionBlock(nn.Module): def __init__(self, d_model, n_head, attn_mask=None, drop_path=0.0): super().__init__() self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() print(f'Drop path rate: {drop_path}') self.attn = MultiheadAttention(d_model, n_head) self.ln_1 = LayerNorm(d_model) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()), ("c_proj", nn.Linear(d_model * 4, d_model)) ])) self.ln_2 = LayerNorm(d_model) self.attn_mask = attn_mask def attention(self, x, return_qk=False): if return_qk: self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None q, k, attn_output, _ = self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask, return_qk=True) return q, k, attn_output else: self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] def forward(self, x, return_qk=False): if return_qk: q, k, attn_output = self.attention(self.ln_1(x), return_qk=True) x = x + self.drop_path(attn_output) x = x + self.drop_path(self.mlp(self.ln_2(x))) return x, q, k else: x = x + self.drop_path(self.attention(self.ln_1(x))) x = x + self.drop_path(self.mlp(self.ln_2(x))) return x class Transformer(nn.Module): def __init__(self, width, layers, heads, attn_mask=None, drop_path_rate=0.): super().__init__() self.width = width self.layers = layers dpr = [x.item() for x in torch.linspace(0, drop_path_rate, layers)] self.resblocks = nn.ModuleList([ ResidualAttentionBlock(width, heads, attn_mask, drop_path=dpr[i]) for i in range(layers) ]) def forward(self, x, return_num=4, T=8): features = [] for i, resblock in enumerate(self.resblocks): x = resblock(x) if i >= self.layers - return_num: L, NT, C = x.shape N = NT // T features.append(x.view(L, N, T, C)) return features class VisionTransformer(nn.Module): def __init__( self, input_resolution, patch_size, width, layers, heads, output_dim, drop_path_rate=0., ): super().__init__() self.input_resolution = input_resolution self.output_dim = output_dim self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False) scale = width ** -0.5 self.class_embedding = nn.Parameter(scale * torch.randn(width)) self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width)) self.ln_pre = LayerNorm(width) self.transformer = Transformer(width, layers, heads, drop_path_rate=drop_path_rate) def forward(self, x, return_num=4, return_qk=True): N, C, T, H, W = x.shape x = x.permute(0, 2, 1, 3, 4).reshape(N * T, C, H, W) x = self.conv1(x) # shape = [*, width, grid, grid] x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width] x = x + self.positional_embedding.to(x.dtype) x = self.ln_pre(x) x = x.permute(1, 0, 2) # NLD -> LND features = self.transformer( x, return_num=return_num, T=T, ) return features def vit_b32(pretrained=True, drop_path_rate=0.): model = VisionTransformer( input_resolution=224, patch_size=32, width=768, layers=12, heads=12, output_dim=512, drop_path_rate=drop_path_rate ) if pretrained: print('load pretrained weights') state_dict = torch.load(_MODELS["ViT-B/32"], map_location='cpu') model.load_state_dict(state_dict) return model.eval() def vit_b16(pretrained=True, drop_path_rate=0.): model = VisionTransformer( input_resolution=224, patch_size=16, width=768, layers=12, heads=12, output_dim=512, drop_path_rate=drop_path_rate ) if pretrained: print('load pretrained weights') state_dict = torch.load(_MODELS["ViT-B/16"], map_location='cpu') model.load_state_dict(state_dict) return model.eval() def vit_l14(pretrained=True, drop_path_rate=0.): model = VisionTransformer( input_resolution=224, patch_size=14, width=1024, layers=24, heads=16, output_dim=768, drop_path_rate=drop_path_rate ) if pretrained: print('load pretrained weights') state_dict = torch.load(_MODELS["ViT-L/14"], map_location='cpu') model.load_state_dict(state_dict) return model.eval() def vit_l14_336(pretrained=True, drop_path_rate=0.): model = VisionTransformer( input_resolution=336, patch_size=14, width=1024, layers=24, heads=16, output_dim=768, drop_path_rate=drop_path_rate ) if pretrained: print('load pretrained weights') state_dict = torch.load(_MODELS["ViT-L/14_336"], map_location='cpu') model.load_state_dict(state_dict) return model.eval() if __name__ == '__main__': import time from fvcore.nn import FlopCountAnalysis from fvcore.nn import flop_count_table model = vit_b32(pretrained=True) flops = FlopCountAnalysis(model, torch.rand(1, 3, 8, 224, 224)) s = time.time() print(flop_count_table(flops, max_depth=1)) print(time.time()-s)
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_kc/evl_utils/clip_vit.py
from .evl_module import TransformerDecoder from .evl_module_uniformer_diff_conv_balance import TransformerDecoder_uniformer_diff_conv_balance from .clip_vit import vit_b32, vit_b16, vit_l14, vit_l14_336 from .clip_vit_2plus1d import vit_2plus1d_b32, vit_2plus1d_b16, vit_2plus1d_l14, vit_2plus1d_l14_336 from .clip_vit_2plus1d_dw_bias import vit_2plus1d_dw_bias_b32, vit_2plus1d_dw_bias_b16, vit_2plus1d_dw_bias_l14, vit_2plus1d_dw_bias_l14_336
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_kc/evl_utils/__init__.py
r"""Functional interface""" import warnings import math import torch from torch import _VF from torch._jit_internal import Optional, Tuple from torch.overrides import has_torch_function, handle_torch_function from torch.nn.functional import _pad, linear, softmax, dropout Tensor = torch.Tensor pad = _pad def multi_head_attention_forward(query: Tensor, key: Tensor, value: Tensor, embed_dim_to_check: int, num_heads: int, in_proj_weight: Tensor, in_proj_bias: Tensor, bias_k: Optional[Tensor], bias_v: Optional[Tensor], add_zero_attn: bool, dropout_p: float, out_proj_weight: Tensor, out_proj_bias: Tensor, training: bool = True, key_padding_mask: Optional[Tensor] = None, need_weights: bool = True, attn_mask: Optional[Tensor] = None, use_separate_proj_weight: bool = False, q_proj_weight: Optional[Tensor] = None, k_proj_weight: Optional[Tensor] = None, v_proj_weight: Optional[Tensor] = None, static_k: Optional[Tensor] = None, static_v: Optional[Tensor] = None, return_qk: bool = False ) -> Tuple[Tensor, Optional[Tensor]]: r""" Args: query, key, value: map a query and a set of key-value pairs to an output. See "Attention Is All You Need" for more details. embed_dim_to_check: total dimension of the model. num_heads: parallel attention heads. in_proj_weight, in_proj_bias: input projection weight and bias. bias_k, bias_v: bias of the key and value sequences to be added at dim=0. add_zero_attn: add a new batch of zeros to the key and value sequences at dim=1. dropout_p: probability of an element to be zeroed. out_proj_weight, out_proj_bias: the output projection weight and bias. training: apply dropout if is ``True``. key_padding_mask: if provided, specified padding elements in the key will be ignored by the attention. This is an binary mask. When the value is True, the corresponding value on the attention layer will be filled with -inf. need_weights: output attn_output_weights. attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all the batches while a 3D mask allows to specify a different mask for the entries of each batch. use_separate_proj_weight: the function accept the proj. weights for query, key, and value in different forms. If false, in_proj_weight will be used, which is a combination of q_proj_weight, k_proj_weight, v_proj_weight. q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias. static_k, static_v: static key and value used for attention operators. Shape: Inputs: - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is the embedding dimension. - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions will be unchanged. If a BoolTensor is provided, the positions with the value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length. 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor is provided, it will be added to the attention weight. - static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. E/num_heads is the head dimension. - static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. E/num_heads is the head dimension. - return_qk: whether return Q and K. Outputs: - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - attn_output_weights: :math:`(N, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. """ if not torch.jit.is_scripting(): tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v, out_proj_weight, out_proj_bias) if any([type(t) is not Tensor for t in tens_ops]) and has_torch_function(tens_ops): return handle_torch_function( multi_head_attention_forward, tens_ops, query, key, value, embed_dim_to_check, num_heads, in_proj_weight, in_proj_bias, bias_k, bias_v, add_zero_attn, dropout_p, out_proj_weight, out_proj_bias, training=training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, use_separate_proj_weight=use_separate_proj_weight, q_proj_weight=q_proj_weight, k_proj_weight=k_proj_weight, v_proj_weight=v_proj_weight, static_k=static_k, static_v=static_v) tgt_len, bsz, embed_dim = query.size() assert embed_dim == embed_dim_to_check # allow MHA to have different sizes for the feature dimension assert key.size(0) == value.size(0) and key.size(1) == value.size(1) head_dim = embed_dim // num_heads assert head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads" scaling = float(head_dim) ** -0.5 if not use_separate_proj_weight: if torch.equal(query, key) and torch.equal(key, value): # self-attention q, k, v = linear(query, in_proj_weight, in_proj_bias).chunk(3, dim=-1) elif torch.equal(key, value): # encoder-decoder attention # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = 0 _end = embed_dim _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] q = linear(query, _w, _b) if key is None: assert value is None k = None v = None else: # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = embed_dim _end = None _w = in_proj_weight[_start:, :] if _b is not None: _b = _b[_start:] k, v = linear(key, _w, _b).chunk(2, dim=-1) else: # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = 0 _end = embed_dim _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] q = linear(query, _w, _b) # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = embed_dim _end = embed_dim * 2 _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] k = linear(key, _w, _b) # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = embed_dim * 2 _end = None _w = in_proj_weight[_start:, :] if _b is not None: _b = _b[_start:] v = linear(value, _w, _b) else: q_proj_weight_non_opt = torch.jit._unwrap_optional(q_proj_weight) len1, len2 = q_proj_weight_non_opt.size() assert len1 == embed_dim and len2 == query.size(-1) k_proj_weight_non_opt = torch.jit._unwrap_optional(k_proj_weight) len1, len2 = k_proj_weight_non_opt.size() assert len1 == embed_dim and len2 == key.size(-1) v_proj_weight_non_opt = torch.jit._unwrap_optional(v_proj_weight) len1, len2 = v_proj_weight_non_opt.size() assert len1 == embed_dim and len2 == value.size(-1) if in_proj_bias is not None: q = linear(query, q_proj_weight_non_opt, in_proj_bias[0:embed_dim]) k = linear(key, k_proj_weight_non_opt, in_proj_bias[embed_dim:(embed_dim * 2)]) v = linear(value, v_proj_weight_non_opt, in_proj_bias[(embed_dim * 2):]) else: q = linear(query, q_proj_weight_non_opt, in_proj_bias) k = linear(key, k_proj_weight_non_opt, in_proj_bias) v = linear(value, v_proj_weight_non_opt, in_proj_bias) q = q * scaling if attn_mask is not None: assert attn_mask.dtype == torch.float32 or attn_mask.dtype == torch.float64 or \ attn_mask.dtype == torch.float16 or attn_mask.dtype == torch.uint8 or attn_mask.dtype == torch.bool, \ 'Only float, byte, and bool types are supported for attn_mask, not {}'.format(attn_mask.dtype) if attn_mask.dtype == torch.uint8: warnings.warn("Byte tensor for attn_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.") attn_mask = attn_mask.to(torch.bool) if attn_mask.dim() == 2: attn_mask = attn_mask.unsqueeze(0) if list(attn_mask.size()) != [1, query.size(0), key.size(0)]: raise RuntimeError('The size of the 2D attn_mask is not correct.') elif attn_mask.dim() == 3: if list(attn_mask.size()) != [bsz * num_heads, query.size(0), key.size(0)]: raise RuntimeError('The size of the 3D attn_mask is not correct.') else: raise RuntimeError("attn_mask's dimension {} is not supported".format(attn_mask.dim())) # attn_mask's dim is 3 now. # convert ByteTensor key_padding_mask to bool if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8: warnings.warn("Byte tensor for key_padding_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.") key_padding_mask = key_padding_mask.to(torch.bool) if bias_k is not None and bias_v is not None: if static_k is None and static_v is None: k = torch.cat([k, bias_k.repeat(1, bsz, 1)]) v = torch.cat([v, bias_v.repeat(1, bsz, 1)]) if attn_mask is not None: attn_mask = pad(attn_mask, (0, 1)) if key_padding_mask is not None: key_padding_mask = pad(key_padding_mask, (0, 1)) else: assert static_k is None, "bias cannot be added to static key." assert static_v is None, "bias cannot be added to static value." else: assert bias_k is None assert bias_v is None # L, N, E if return_qk: return_q = q.clone() / scaling return_k = k.clone() q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1) if k is not None: k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1) if v is not None: v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1) if static_k is not None: assert static_k.size(0) == bsz * num_heads assert static_k.size(2) == head_dim k = static_k if static_v is not None: assert static_v.size(0) == bsz * num_heads assert static_v.size(2) == head_dim v = static_v src_len = k.size(1) if key_padding_mask is not None: assert key_padding_mask.size(0) == bsz assert key_padding_mask.size(1) == src_len if add_zero_attn: src_len += 1 k = torch.cat([k, torch.zeros((k.size(0), 1) + k.size()[2:], dtype=k.dtype, device=k.device)], dim=1) v = torch.cat([v, torch.zeros((v.size(0), 1) + v.size()[2:], dtype=v.dtype, device=v.device)], dim=1) if attn_mask is not None: attn_mask = pad(attn_mask, (0, 1)) if key_padding_mask is not None: key_padding_mask = pad(key_padding_mask, (0, 1)) attn_output_weights = torch.bmm(q, k.transpose(1, 2)) assert list(attn_output_weights.size()) == [bsz * num_heads, tgt_len, src_len] if attn_mask is not None: if attn_mask.dtype == torch.bool: attn_output_weights.masked_fill_(attn_mask, float('-inf')) else: attn_output_weights += attn_mask if key_padding_mask is not None: attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) attn_output_weights = attn_output_weights.masked_fill( key_padding_mask.unsqueeze(1).unsqueeze(2), float('-inf'), ) attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, src_len) attn_output_weights = softmax( attn_output_weights, dim=-1) attn_output_weights = dropout(attn_output_weights, p=dropout_p, training=training) attn_output = torch.bmm(attn_output_weights, v) assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim] attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) attn_output = linear(attn_output, out_proj_weight, out_proj_bias) if return_qk: if need_weights: # average attention weights over heads attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) return return_q, return_k, attn_output, attn_output_weights.sum(dim=1) / num_heads else: return return_q, return_k, attn_output, None else: if need_weights: # average attention weights over heads attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) return attn_output, attn_output_weights.sum(dim=1) / num_heads else: return attn_output, None
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_kc/evl_utils/attention_module.py
import os from collections import OrderedDict from timm.models.layers import DropPath import torch from torch import nn from einops import rearrange from .attention import MultiheadAttention MODEL_PATH = '/mnt/lustre/share_data/likunchang.vendor/model' _MODELS = { "ViT-B/32": os.path.join(MODEL_PATH, "vit_b32.pth"), "ViT-B/16": os.path.join(MODEL_PATH, "vit_b16.pth"), "ViT-L/14": os.path.join(MODEL_PATH, "vit_l14.pth"), "ViT-L/14_336": os.path.join(MODEL_PATH, "vit_l14_336.pth"), } class LayerNorm(nn.LayerNorm): """Subclass torch's LayerNorm to handle fp16.""" def forward(self, x): orig_type = x.dtype ret = super().forward(x.type(torch.float32)) return ret.type(orig_type) class QuickGELU(nn.Module): def forward(self, x): return x * torch.sigmoid(1.702 * x) class ResidualAttentionBlock(nn.Module): def __init__(self, d_model, n_head, attn_mask=None, drop_path=0.0): super().__init__() self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() print(f'Drop path rate: {drop_path}') # temporal self.attn_t = MultiheadAttention(d_model, n_head) self.ln_t = LayerNorm(d_model) # spatial self.attn = MultiheadAttention(d_model, n_head) self.ln_1 = LayerNorm(d_model) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()), ("c_proj", nn.Linear(d_model * 4, d_model)) ])) self.ln_2 = LayerNorm(d_model) self.attn_mask = attn_mask # init zero print('Init zero for (2+1)d') nn.init.constant_(self.attn_t.in_proj_weight, 0) nn.init.constant_(self.attn_t.in_proj_bias, 0) nn.init.constant_(self.attn_t.out_proj.weight, 1) nn.init.constant_(self.attn_t.out_proj.bias, 0) def attention(self, x): self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] def attention_temporal(self, x): self.attn_mask = None return self.attn_t(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] def forward(self, x, T=8): # temporal # x: 1+HWT, N, C xt = x[1:, :, :] _, N, C = xt.shape xt = rearrange(xt, '(l t) n c -> t (n l) c', n=N, t=T) res_temporal = self.attention_temporal(self.ln_t(xt)) res_temporal = rearrange(res_temporal, 't (n l) c -> (l t) n c', n=N, t=T) xt = x[1:, :, :] + self.drop_path(res_temporal) # spatial init_cls_token = x[:1, :, :] cls_token = init_cls_token.repeat(1, T, 1).view(1, T*N, C) xs = rearrange(xt, '(l t) n c -> l (t n) c', n=N, t=T) xs = torch.cat((cls_token, xs), 0) res_spatial = self.attention(self.ln_1(xs)) # Taking care of CLS token cls_token = res_spatial[0, :, :] cls_token = rearrange(cls_token, '(t n) c -> t n c', n=N) cls_token = torch.mean(cls_token, 0, True) # averaging for every frame res_spatial = res_spatial[1:, :, :] res_spatial = rearrange(res_spatial, 'l (t n) c -> (l t) n c', n=N) x = x + self.drop_path(torch.cat((cls_token, res_spatial), 0)) x = x + self.drop_path(self.mlp(self.ln_2(x))) return x class Transformer(nn.Module): def __init__(self, width, layers, heads, attn_mask=None, drop_path_rate=0.): super().__init__() self.width = width self.layers = layers dpr = [x.item() for x in torch.linspace(0, drop_path_rate, layers)] self.resblocks = nn.ModuleList([ ResidualAttentionBlock(width, heads, attn_mask, drop_path=dpr[i]) for i in range(layers) ]) def forward(self, x, return_num=4, T=8): features = [] for i, resblock in enumerate(self.resblocks): x = resblock(x, T=T) if i >= self.layers - return_num: # LT + 1, N, C LT, N, C = x.shape L = (LT - 1) // T cls_x, tmp_x = x[:1], x[1:] cls_x = cls_x.unsqueeze(2).repeat(1, 1, T, 1) tmp_x = tmp_x.reshape(L, T, N, C).permute(0, 2, 1, 3) # L, N, T, C tmp_x = torch.cat([cls_x, tmp_x], dim=0 )# L + 1, N, T, C features.append(tmp_x) return features class VisionTransformer(nn.Module): def __init__( self, input_resolution, patch_size, width, layers, heads, output_dim, num_frames=8, drop_path_rate=0., ): super().__init__() self.input_resolution = input_resolution self.output_dim = output_dim self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False) scale = width ** -0.5 self.class_embedding = nn.Parameter(scale * torch.randn(width)) self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width)) self.temporal_positional_embedding = nn.Parameter(torch.zeros(1, num_frames, width)) self.ln_pre = LayerNorm(width) self.transformer = Transformer(width, layers, heads, drop_path_rate=drop_path_rate) def forward(self, x, return_num=4): N, C, T, H, W = x.shape x = x.permute(0, 2, 1, 3, 4).reshape(N * T, C, H, W) x = self.conv1(x) # shape = [*, width, grid, grid] x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width] x = x + self.positional_embedding.to(x.dtype) cls_tokens = x[:N, :1, :] x = x[:, 1:] x = rearrange(x, '(b t) n c -> (b n) t c', b=N, t=T) x = x + self.temporal_positional_embedding x = rearrange(x, '(b n) t c -> b (n t) c', b=N, t=T) x = torch.cat((cls_tokens, x), dim=1) x = self.ln_pre(x) x = x.permute(1, 0, 2) # NLD -> LND features = self.transformer( x, return_num=return_num, T=T, ) return features def vit_2plus1d_b32(pretrained=True, num_frames=8, drop_path_rate=0.): model = VisionTransformer( input_resolution=224, patch_size=32, width=768, layers=12, heads=12, output_dim=512, num_frames=num_frames, drop_path_rate=drop_path_rate ) if pretrained: print('load pretrained weights') state_dict = torch.load(_MODELS["ViT-B/32"], map_location='cpu') model.load_state_dict(state_dict, strict=False) return model.eval() def vit_2plus1d_b16(pretrained=True, num_frames=8, drop_path_rate=0.): model = VisionTransformer( input_resolution=224, patch_size=16, width=768, layers=12, heads=12, output_dim=512, num_frames=num_frames, drop_path_rate=drop_path_rate, ) if pretrained: print('load pretrained weights') state_dict = torch.load(_MODELS["ViT-B/16"], map_location='cpu') model.load_state_dict(state_dict, strict=False) return model.eval() def vit_2plus1d_l14(pretrained=True, num_frames=8, drop_path_rate=0.): model = VisionTransformer( input_resolution=224, patch_size=14, width=1024, layers=24, heads=16, output_dim=768, num_frames=num_frames, drop_path_rate=drop_path_rate ) if pretrained: print('load pretrained weights') state_dict = torch.load(_MODELS["ViT-L/14"], map_location='cpu') model.load_state_dict(state_dict, strict=False) return model.eval() def vit_2plus1d_l14_336(pretrained=True, num_frames=8, drop_path_rate=0.): model = VisionTransformer( input_resolution=336, patch_size=14, width=1024, layers=24, heads=16, output_dim=768, num_frames=num_frames, drop_path_rate=drop_path_rate ) if pretrained: print('load pretrained weights') state_dict = torch.load(_MODELS["ViT-L/14_336"], map_location='cpu') model.load_state_dict(state_dict, strict=False) return model.eval() if __name__ == '__main__': import time from fvcore.nn import FlopCountAnalysis from fvcore.nn import flop_count_table model = vit_2plus1d_b32(pretrained=True) flops = FlopCountAnalysis(model, torch.rand(1, 3, 8, 224, 224)) s = time.time() print(flop_count_table(flops, max_depth=1)) print(time.time()-s)
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_kc/evl_utils/clip_vit_2plus1d.py
import warnings from typing import Tuple, Optional import torch from torch import Tensor from torch.nn.modules.linear import Linear from torch.nn.init import xavier_uniform_ from torch.nn.init import constant_ from torch.nn.init import xavier_normal_ from torch.nn.parameter import Parameter from torch.nn.modules.module import Module from .attention_module_bias import multi_head_attention_forward class _LinearWithBias(Linear): bias: Tensor def __init__(self, in_features: int, out_features: int) -> None: super().__init__(in_features, out_features, bias=True) class MultiheadAttention(Module): r"""Allows the model to jointly attend to information from different representation subspaces. See reference: Attention Is All You Need .. math:: \text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O \text{where} head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) Args: embed_dim: total dimension of the model. num_heads: parallel attention heads. dropout: a Dropout layer on attn_output_weights. Default: 0.0. bias: add bias as module parameter. Default: True. add_bias_kv: add bias to the key and value sequences at dim=0. add_zero_attn: add a new batch of zeros to the key and value sequences at dim=1. kdim: total number of features in key. Default: None. vdim: total number of features in value. Default: None. Note: if kdim and vdim are None, they will be set to embed_dim such that query, key, and value have the same number of features. Examples:: >>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads) >>> attn_output, attn_output_weights = multihead_attn(query, key, value) """ bias_k: Optional[torch.Tensor] bias_v: Optional[torch.Tensor] def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None): super(MultiheadAttention, self).__init__() self.embed_dim = embed_dim self.kdim = kdim if kdim is not None else embed_dim self.vdim = vdim if vdim is not None else embed_dim self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" if self._qkv_same_embed_dim is False: self.q_proj_weight = Parameter(torch.Tensor(embed_dim, embed_dim)) self.k_proj_weight = Parameter(torch.Tensor(embed_dim, self.kdim)) self.v_proj_weight = Parameter(torch.Tensor(embed_dim, self.vdim)) self.register_parameter('in_proj_weight', None) else: self.in_proj_weight = Parameter(torch.empty(3 * embed_dim, embed_dim)) self.register_parameter('q_proj_weight', None) self.register_parameter('k_proj_weight', None) self.register_parameter('v_proj_weight', None) if bias: self.in_proj_bias = Parameter(torch.empty(3 * embed_dim)) else: self.register_parameter('in_proj_bias', None) self.out_proj = _LinearWithBias(embed_dim, embed_dim) if add_bias_kv: self.bias_k = Parameter(torch.empty(1, 1, embed_dim)) self.bias_v = Parameter(torch.empty(1, 1, embed_dim)) else: self.bias_k = self.bias_v = None self.add_zero_attn = add_zero_attn self._reset_parameters() def _reset_parameters(self): if self._qkv_same_embed_dim: xavier_uniform_(self.in_proj_weight) else: xavier_uniform_(self.q_proj_weight) xavier_uniform_(self.k_proj_weight) xavier_uniform_(self.v_proj_weight) if self.in_proj_bias is not None: constant_(self.in_proj_bias, 0.) constant_(self.out_proj.bias, 0.) if self.bias_k is not None: xavier_normal_(self.bias_k) if self.bias_v is not None: xavier_normal_(self.bias_v) def __setstate__(self, state): # Support loading old MultiheadAttention checkpoints generated by v1.1.0 if '_qkv_same_embed_dim' not in state: state['_qkv_same_embed_dim'] = True super(MultiheadAttention, self).__setstate__(state) def forward(self, query, key, value, key_padding_mask=None, need_weights=True, attn_mask=None, return_qk=False, rpb=None): # type: (Tensor, Tensor, Tensor, Optional[Tensor], bool, Optional[Tensor], bool, Optional[Tensor]) -> Tuple[Tensor, Optional[Tensor]] r""" Args: query, key, value: map a query and a set of key-value pairs to an output. See "Attention Is All You Need" for more details. key_padding_mask: if provided, specified padding elements in the key will be ignored by the attention. When given a binary mask and a value is True, the corresponding value on the attention layer will be ignored. When given a byte mask and a value is non-zero, the corresponding value on the attention layer will be ignored need_weights: output attn_output_weights. attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all the batches while a 3D mask allows to specify a different mask for the entries of each batch. Shape: - Inputs: - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is the embedding dimension. - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. If a ByteTensor is provided, the non-zero positions will be ignored while the position with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length. 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. attn_mask ensure that position i is allowed to attend the unmasked positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor is provided, it will be added to the attention weight. - return_qk: whether return Q and K. - Outputs: - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - attn_output_weights: :math:`(N, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. """ if return_qk: if not self._qkv_same_embed_dim: q, k, attn_output, attn_output_weights = multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, use_separate_proj_weight=True, q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight, v_proj_weight=self.v_proj_weight, return_qk=True, rpb=rpb) else: q, k, attn_output, attn_output_weights = multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, return_qk=True, rpb=rpb) return q, k, attn_output, attn_output_weights else: if not self._qkv_same_embed_dim: return multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, use_separate_proj_weight=True, q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight, v_proj_weight=self.v_proj_weight, rpb=rpb) else: return multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, rpb=rpb)
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_kc/evl_utils/attention_bias.py
r"""Functional interface""" import warnings import math import torch from torch import _VF from torch._jit_internal import Optional, Tuple from torch.overrides import has_torch_function, handle_torch_function from torch.nn.functional import _pad, linear, softmax, dropout Tensor = torch.Tensor pad = _pad def multi_head_attention_forward(query: Tensor, key: Tensor, value: Tensor, embed_dim_to_check: int, num_heads: int, in_proj_weight: Tensor, in_proj_bias: Tensor, bias_k: Optional[Tensor], bias_v: Optional[Tensor], add_zero_attn: bool, dropout_p: float, out_proj_weight: Tensor, out_proj_bias: Tensor, training: bool = True, key_padding_mask: Optional[Tensor] = None, need_weights: bool = True, attn_mask: Optional[Tensor] = None, use_separate_proj_weight: bool = False, q_proj_weight: Optional[Tensor] = None, k_proj_weight: Optional[Tensor] = None, v_proj_weight: Optional[Tensor] = None, static_k: Optional[Tensor] = None, static_v: Optional[Tensor] = None, return_qk: bool = False, rpb: Tensor = None, ) -> Tuple[Tensor, Optional[Tensor]]: r""" Args: query, key, value: map a query and a set of key-value pairs to an output. See "Attention Is All You Need" for more details. embed_dim_to_check: total dimension of the model. num_heads: parallel attention heads. in_proj_weight, in_proj_bias: input projection weight and bias. bias_k, bias_v: bias of the key and value sequences to be added at dim=0. add_zero_attn: add a new batch of zeros to the key and value sequences at dim=1. dropout_p: probability of an element to be zeroed. out_proj_weight, out_proj_bias: the output projection weight and bias. training: apply dropout if is ``True``. key_padding_mask: if provided, specified padding elements in the key will be ignored by the attention. This is an binary mask. When the value is True, the corresponding value on the attention layer will be filled with -inf. need_weights: output attn_output_weights. attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all the batches while a 3D mask allows to specify a different mask for the entries of each batch. use_separate_proj_weight: the function accept the proj. weights for query, key, and value in different forms. If false, in_proj_weight will be used, which is a combination of q_proj_weight, k_proj_weight, v_proj_weight. q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias. static_k, static_v: static key and value used for attention operators. Shape: Inputs: - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is the embedding dimension. - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions will be unchanged. If a BoolTensor is provided, the positions with the value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length. 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor is provided, it will be added to the attention weight. - static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. E/num_heads is the head dimension. - static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. E/num_heads is the head dimension. - return_qk: whether return Q and K. - rpb: relative postion bias Outputs: - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - attn_output_weights: :math:`(N, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. """ if not torch.jit.is_scripting(): tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v, out_proj_weight, out_proj_bias) if any([type(t) is not Tensor for t in tens_ops]) and has_torch_function(tens_ops): return handle_torch_function( multi_head_attention_forward, tens_ops, query, key, value, embed_dim_to_check, num_heads, in_proj_weight, in_proj_bias, bias_k, bias_v, add_zero_attn, dropout_p, out_proj_weight, out_proj_bias, training=training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, use_separate_proj_weight=use_separate_proj_weight, q_proj_weight=q_proj_weight, k_proj_weight=k_proj_weight, v_proj_weight=v_proj_weight, static_k=static_k, static_v=static_v) tgt_len, bsz, embed_dim = query.size() assert embed_dim == embed_dim_to_check # allow MHA to have different sizes for the feature dimension assert key.size(0) == value.size(0) and key.size(1) == value.size(1) head_dim = embed_dim // num_heads assert head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads" scaling = float(head_dim) ** -0.5 if not use_separate_proj_weight: if torch.equal(query, key) and torch.equal(key, value): # self-attention q, k, v = linear(query, in_proj_weight, in_proj_bias).chunk(3, dim=-1) elif torch.equal(key, value): # encoder-decoder attention # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = 0 _end = embed_dim _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] q = linear(query, _w, _b) if key is None: assert value is None k = None v = None else: # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = embed_dim _end = None _w = in_proj_weight[_start:, :] if _b is not None: _b = _b[_start:] k, v = linear(key, _w, _b).chunk(2, dim=-1) else: # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = 0 _end = embed_dim _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] q = linear(query, _w, _b) # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = embed_dim _end = embed_dim * 2 _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] k = linear(key, _w, _b) # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = embed_dim * 2 _end = None _w = in_proj_weight[_start:, :] if _b is not None: _b = _b[_start:] v = linear(value, _w, _b) else: q_proj_weight_non_opt = torch.jit._unwrap_optional(q_proj_weight) len1, len2 = q_proj_weight_non_opt.size() assert len1 == embed_dim and len2 == query.size(-1) k_proj_weight_non_opt = torch.jit._unwrap_optional(k_proj_weight) len1, len2 = k_proj_weight_non_opt.size() assert len1 == embed_dim and len2 == key.size(-1) v_proj_weight_non_opt = torch.jit._unwrap_optional(v_proj_weight) len1, len2 = v_proj_weight_non_opt.size() assert len1 == embed_dim and len2 == value.size(-1) if in_proj_bias is not None: q = linear(query, q_proj_weight_non_opt, in_proj_bias[0:embed_dim]) k = linear(key, k_proj_weight_non_opt, in_proj_bias[embed_dim:(embed_dim * 2)]) v = linear(value, v_proj_weight_non_opt, in_proj_bias[(embed_dim * 2):]) else: q = linear(query, q_proj_weight_non_opt, in_proj_bias) k = linear(key, k_proj_weight_non_opt, in_proj_bias) v = linear(value, v_proj_weight_non_opt, in_proj_bias) q = q * scaling if attn_mask is not None: assert attn_mask.dtype == torch.float32 or attn_mask.dtype == torch.float64 or \ attn_mask.dtype == torch.float16 or attn_mask.dtype == torch.uint8 or attn_mask.dtype == torch.bool, \ 'Only float, byte, and bool types are supported for attn_mask, not {}'.format(attn_mask.dtype) if attn_mask.dtype == torch.uint8: warnings.warn("Byte tensor for attn_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.") attn_mask = attn_mask.to(torch.bool) if attn_mask.dim() == 2: attn_mask = attn_mask.unsqueeze(0) if list(attn_mask.size()) != [1, query.size(0), key.size(0)]: raise RuntimeError('The size of the 2D attn_mask is not correct.') elif attn_mask.dim() == 3: if list(attn_mask.size()) != [bsz * num_heads, query.size(0), key.size(0)]: raise RuntimeError('The size of the 3D attn_mask is not correct.') else: raise RuntimeError("attn_mask's dimension {} is not supported".format(attn_mask.dim())) # attn_mask's dim is 3 now. # convert ByteTensor key_padding_mask to bool if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8: warnings.warn("Byte tensor for key_padding_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.") key_padding_mask = key_padding_mask.to(torch.bool) if bias_k is not None and bias_v is not None: if static_k is None and static_v is None: k = torch.cat([k, bias_k.repeat(1, bsz, 1)]) v = torch.cat([v, bias_v.repeat(1, bsz, 1)]) if attn_mask is not None: attn_mask = pad(attn_mask, (0, 1)) if key_padding_mask is not None: key_padding_mask = pad(key_padding_mask, (0, 1)) else: assert static_k is None, "bias cannot be added to static key." assert static_v is None, "bias cannot be added to static value." else: assert bias_k is None assert bias_v is None # L, N, E if return_qk: return_q = q.clone() / scaling return_k = k.clone() q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1) if k is not None: k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1) if v is not None: v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1) if static_k is not None: assert static_k.size(0) == bsz * num_heads assert static_k.size(2) == head_dim k = static_k if static_v is not None: assert static_v.size(0) == bsz * num_heads assert static_v.size(2) == head_dim v = static_v src_len = k.size(1) if key_padding_mask is not None: assert key_padding_mask.size(0) == bsz assert key_padding_mask.size(1) == src_len if add_zero_attn: src_len += 1 k = torch.cat([k, torch.zeros((k.size(0), 1) + k.size()[2:], dtype=k.dtype, device=k.device)], dim=1) v = torch.cat([v, torch.zeros((v.size(0), 1) + v.size()[2:], dtype=v.dtype, device=v.device)], dim=1) if attn_mask is not None: attn_mask = pad(attn_mask, (0, 1)) if key_padding_mask is not None: key_padding_mask = pad(key_padding_mask, (0, 1)) attn_output_weights = torch.bmm(q, k.transpose(1, 2)) assert list(attn_output_weights.size()) == [bsz * num_heads, tgt_len, src_len] if attn_mask is not None: if attn_mask.dtype == torch.bool: attn_output_weights.masked_fill_(attn_mask, float('-inf')) else: attn_output_weights += attn_mask if key_padding_mask is not None: attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) attn_output_weights = attn_output_weights.masked_fill( key_padding_mask.unsqueeze(1).unsqueeze(2), float('-inf'), ) attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, src_len) if rpb is not None: attn_output_weights = attn_output_weights + rpb attn_output_weights = softmax(attn_output_weights, dim=-1) attn_output_weights = dropout(attn_output_weights, p=dropout_p, training=training) attn_output = torch.bmm(attn_output_weights, v) assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim] attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) attn_output = linear(attn_output, out_proj_weight, out_proj_bias) if return_qk: if need_weights: # average attention weights over heads attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) return return_q, return_k, attn_output, attn_output_weights.sum(dim=1) / num_heads else: return return_q, return_k, attn_output, None else: if need_weights: # average attention weights over heads attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) return attn_output, attn_output_weights.sum(dim=1) / num_heads else: return attn_output, None
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_kc/evl_utils/attention_module_bias.py
import os from collections import OrderedDict from timm.models.layers import DropPath import torch from torch import nn from einops import rearrange import torch.utils.checkpoint as checkpoint from .attention_bias import MultiheadAttention MODEL_PATH = '/mnt/lustre/share_data/likunchang.vendor/model' _MODELS = { "ViT-B/32": os.path.join(MODEL_PATH, "vit_b32.pth"), "ViT-B/16": os.path.join(MODEL_PATH, "vit_b16.pth"), "ViT-L/14": os.path.join(MODEL_PATH, "vit_l14.pth"), "ViT-L/14_336": os.path.join(MODEL_PATH, "vit_l14_336.pth"), } class LayerNorm(nn.LayerNorm): """Subclass torch's LayerNorm to handle fp16.""" def forward(self, x): orig_type = x.dtype ret = super().forward(x.type(torch.float32)) return ret.type(orig_type) class QuickGELU(nn.Module): def forward(self, x): return x * torch.sigmoid(1.702 * x) class ResidualAttentionBlock(nn.Module): def __init__(self, d_model, n_head, attn_mask=None, drop_path=0.0, t_size=8, spatial_size=7): super().__init__() self.n_head = n_head self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() print(f'Drop path rate: {drop_path}') print(f'Add RPB: t_size {t_size}, spatial_size {spatial_size}') self.pos_embed = nn.Conv3d(d_model, d_model, kernel_size=3, stride=1, padding=1, groups=d_model) # temporal self.attn_t = MultiheadAttention(d_model, n_head) self.ln_t = LayerNorm(d_model) self.rpb_t = nn.Parameter(torch.zeros([t_size * 2 - 1, n_head])) idx_tensor_t = torch.zeros([t_size, t_size], dtype=torch.long) for q in range(t_size): for k in range(t_size): offs = q - k + t_size - 1 idx_tensor_t[q, k] = offs self.idx_tensor_t = idx_tensor_t # spatial self.attn = MultiheadAttention(d_model, n_head) self.rpb = nn.Parameter(torch.zeros([(spatial_size * 2 - 1) ** 2, n_head])) self.ln_1 = LayerNorm(d_model) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()), ("c_proj", nn.Linear(d_model * 4, d_model)) ])) self.ln_2 = LayerNorm(d_model) self.attn_mask = attn_mask idx_tensor = torch.zeros([spatial_size ** 2, spatial_size ** 2], dtype=torch.long) for q in range(spatial_size ** 2): qi, qj = q // spatial_size, q % spatial_size for k in range(spatial_size ** 2): ki, kj = k // spatial_size, k % spatial_size i_offs = qi - ki + spatial_size - 1 j_offs = qj - kj + spatial_size - 1 idx_tensor[q, k] = i_offs * (spatial_size * 2 - 1) + j_offs self.idx_tensor = idx_tensor # init zero print('Init zero for (2+1)d') nn.init.constant_(self.pos_embed.weight, 0) nn.init.constant_(self.pos_embed.bias, 0) nn.init.constant_(self.attn_t.in_proj_weight, 0) nn.init.constant_(self.attn_t.in_proj_bias, 0) nn.init.constant_(self.attn_t.out_proj.weight, 1) nn.init.constant_(self.attn_t.out_proj.bias, 0) def attention(self, x, rpb=None): self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask, rpb=rpb)[0] def attention_temporal(self, x, rpb=None): self.attn_mask = None return self.attn_t(x, x, x, need_weights=False, attn_mask=self.attn_mask, rpb=rpb)[0] def forward(self, x, T=8): # temporal # x: 1+HWT, N, C # pos_emb tmp_x = x[1:, :, :] LT, N, C = tmp_x.shape L = LT // T H = W = int(L ** 0.5) tmp_x = tmp_x.view(H, W, T, N, C).permute(3, 4, 2, 0, 1) tmp_x = tmp_x + self.pos_embed(tmp_x) tmp_x = tmp_x.view(N, C, T, L).permute(3, 2, 0, 1).view(LT, N, C) x[1:, :, :] = tmp_x xt = x[1:, :, :] _, N, C = xt.shape xt = rearrange(xt, '(l t) n c -> t (n l) c', n=N, t=T) # rpb_t: T, T, H => B*H, T, T self.idx_tensor_t = self.idx_tensor_t.to(xt.device) rpb_t = self.rpb_t[self.idx_tensor_t].permute(2, 0, 1).repeat(N*L, 1, 1) res_temporal = self.attention_temporal(self.ln_t(xt), rpb=rpb_t) res_temporal = rearrange(res_temporal, 't (n l) c -> (l t) n c', n=N, t=T) xt = x[1:, :, :] + self.drop_path(res_temporal) # spatial init_cls_token = x[:1, :, :] cls_token = init_cls_token.repeat(1, T, 1).view(1, T*N, C) xs = rearrange(xt, '(l t) n c -> l (t n) c', n=N, t=T) xs = torch.cat((cls_token, xs), 0) # rpb: L, L, H => B*H, L+1, L+1 rpb = torch.zeros((self.n_head, L+1, L+1), device=xs.device, dtype=xs.dtype) self.idx_tensor = self.idx_tensor.to(xs.device) rpb[:, 1:, 1:] = self.rpb[self.idx_tensor].permute(2, 0, 1) rpb = rpb.repeat(T*N, 1, 1) res_spatial = self.attention(self.ln_1(xs), rpb=rpb) # Taking care of CLS token cls_token = res_spatial[0, :, :] cls_token = rearrange(cls_token, '(t n) c -> t n c', n=N) cls_token = torch.mean(cls_token, 0, True) # averaging for every frame res_spatial = res_spatial[1:, :, :] res_spatial = rearrange(res_spatial, 'l (t n) c -> (l t) n c', n=N) x = x + self.drop_path(torch.cat((cls_token, res_spatial), 0)) x = x + self.drop_path(self.mlp(self.ln_2(x))) return x class Transformer(nn.Module): def __init__(self, width, layers, heads, attn_mask=None, drop_path_rate=0., t_size=8, spatial_size=7): super().__init__() self.width = width self.layers = layers dpr = [x.item() for x in torch.linspace(0, drop_path_rate, layers)] self.resblocks = nn.ModuleList([ ResidualAttentionBlock(width, heads, attn_mask, drop_path=dpr[i], t_size=t_size, spatial_size=spatial_size) for i in range(layers) ]) def forward(self, x, return_num=4, T=8): features = [] for i, resblock in enumerate(self.resblocks): x = resblock(x, T=T) if i >= self.layers - return_num: # LT + 1, N, C LT, N, C = x.shape L = (LT - 1) // T cls_x, tmp_x = x[:1], x[1:] cls_x = cls_x.unsqueeze(2).repeat(1, 1, T, 1) tmp_x = tmp_x.reshape(L, T, N, C).permute(0, 2, 1, 3) # L, N, T, C tmp_x = torch.cat([cls_x, tmp_x], dim=0 )# L + 1, N, T, C features.append(tmp_x) return features class VisionTransformer(nn.Module): def __init__( self, input_resolution, patch_size, width, layers, heads, output_dim, num_frames=8, drop_path_rate=0., t_size=8, spatial_size=7 ): super().__init__() self.input_resolution = input_resolution self.output_dim = output_dim self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False) scale = width ** -0.5 self.class_embedding = nn.Parameter(scale * torch.randn(width)) self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width)) self.temporal_positional_embedding = nn.Parameter(torch.zeros(1, num_frames, width)) self.ln_pre = LayerNorm(width) self.transformer = Transformer(width, layers, heads, drop_path_rate=drop_path_rate, t_size=t_size, spatial_size=spatial_size) def forward(self, x, return_num=4): N, C, T, H, W = x.shape x = x.permute(0, 2, 1, 3, 4).reshape(N * T, C, H, W) x = self.conv1(x) # shape = [*, width, grid, grid] x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width] x = x + self.positional_embedding.to(x.dtype) cls_tokens = x[:N, :1, :] x = x[:, 1:] x = rearrange(x, '(b t) n c -> (b n) t c', b=N, t=T) x = x + self.temporal_positional_embedding x = rearrange(x, '(b n) t c -> b (n t) c', b=N, t=T) x = torch.cat((cls_tokens, x), dim=1) x = self.ln_pre(x) x = x.permute(1, 0, 2) # NLD -> LND features = self.transformer( x, return_num=return_num, T=T, ) return features def vit_2plus1d_dw_bias_b32(pretrained=True, num_frames=8, drop_path_rate=0.): model = VisionTransformer( input_resolution=224, patch_size=32, width=768, layers=12, heads=12, output_dim=512, num_frames=num_frames, drop_path_rate=drop_path_rate ) if pretrained: print('load pretrained weights') state_dict = torch.load(_MODELS["ViT-B/32"], map_location='cpu') model.load_state_dict(state_dict, strict=False) return model.eval() def vit_2plus1d_dw_bias_b16( pretrained=True, num_frames=8, drop_path_rate=0., t_size=8 ): model = VisionTransformer( input_resolution=224, patch_size=16, width=768, layers=12, heads=12, output_dim=512, num_frames=num_frames, drop_path_rate=drop_path_rate, t_size=t_size, spatial_size=14 ) if pretrained: print('load pretrained weights') state_dict = torch.load(_MODELS["ViT-B/16"], map_location='cpu') model.load_state_dict(state_dict, strict=False) return model.eval() def vit_2plus1d_dw_bias_l14(pretrained=True, num_frames=8, drop_path_rate=0.): model = VisionTransformer( input_resolution=224, patch_size=14, width=1024, layers=24, heads=16, output_dim=768, num_frames=num_frames, drop_path_rate=drop_path_rate ) if pretrained: print('load pretrained weights') state_dict = torch.load(_MODELS["ViT-L/14"], map_location='cpu') model.load_state_dict(state_dict, strict=False) return model.eval() def vit_2plus1d_dw_bias_l14_336(pretrained=True, num_frames=8, drop_path_rate=0.): model = VisionTransformer( input_resolution=336, patch_size=14, width=1024, layers=24, heads=16, output_dim=768, num_frames=num_frames, drop_path_rate=drop_path_rate ) if pretrained: print('load pretrained weights') state_dict = torch.load(_MODELS["ViT-L/14_336"], map_location='cpu') model.load_state_dict(state_dict, strict=False) return model.eval() if __name__ == '__main__': import time from fvcore.nn import FlopCountAnalysis from fvcore.nn import flop_count_table model = vit_2plus1d_dw_bias_b32(pretrained=True) flops = FlopCountAnalysis(model, torch.rand(4, 3, 8, 224, 224)) s = time.time() print(flop_count_table(flops, max_depth=1)) print(time.time()-s)
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_kc/evl_utils/clip_vit_2plus1d_dw_bias.py
#!/usr/bin/env python from collections import OrderedDict from timm.models.layers import DropPath import torch import torch.nn as nn import torch.nn.functional as F class QuickGELU(nn.Module): def forward(self, x: torch.Tensor): return x * torch.sigmoid(1.702 * x) class ResidualDecoderBlock(nn.Module): def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None, mlp_factor: float = 4.0, dropout: float = 0.0, drop_path: float = 0.0): super().__init__() self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() print(f'Drop path rate: {drop_path}') self.attn = nn.MultiheadAttention(d_model, n_head) self.ln_1 = nn.LayerNorm(d_model) d_mlp = round(mlp_factor * d_model) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, d_mlp)), ("gelu", QuickGELU()), ("dropout", nn.Dropout(dropout)), ("c_proj", nn.Linear(d_mlp, d_model)) ])) self.ln_2 = nn.LayerNorm(d_model) self.ln_3 = nn.LayerNorm(d_model) self.attn_mask = attn_mask nn.init.xavier_uniform_(self.attn.in_proj_weight) nn.init.xavier_uniform_(self.attn.out_proj.weight) nn.init.xavier_uniform_(self.mlp[0].weight) nn.init.xavier_uniform_(self.mlp[-1].weight) def attention(self, x: torch.Tensor, y: torch.Tensor): #self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None # return self.attn(x, y, y, need_weights=False, attn_mask=self.attn_mask)[0] assert self.attn_mask is None # not implemented # manual forward to add position information d_model = self.ln_1.weight.size(0) q = (x @ self.attn.in_proj_weight[:d_model].T) + self.attn.in_proj_bias[:d_model] k = (y @ self.attn.in_proj_weight[d_model:-d_model].T) + self.attn.in_proj_bias[d_model:-d_model] v = (y @ self.attn.in_proj_weight[-d_model:].T) + self.attn.in_proj_bias[-d_model:] Tx, Ty, N = q.size(0), k.size(0), q.size(1) q = q.view(Tx, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3) k = k.view(Ty, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3) v = v.view(Ty, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3) aff = (q @ k.transpose(-2, -1) / (self.attn.head_dim ** 0.5)) aff = aff.softmax(dim=-1) out = aff @ v out = out.permute(2, 0, 1, 3).flatten(2) out = self.attn.out_proj(out) return out def forward(self, x: torch.Tensor, y: torch.Tensor): x = x + self.drop_path(self.attention(self.ln_1(x), self.ln_3(y))) x = x + self.drop_path(self.mlp(self.ln_2(x))) return x class TransformerDecoder(nn.Module): def __init__(self, n_layers=4, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, t_size=8, use_t_conv=True, use_t_pos_embed=True, num_classes=400, add_residual=False, ): super().__init__() dpr = [x.item() for x in torch.linspace(0, drop_path_rate, n_layers)] self.dec = nn.ModuleList([ ResidualDecoderBlock(n_dim, n_head, mlp_factor=mlp_factor, dropout=mlp_dropout[i], drop_path=dpr[i]) for i in range(n_layers) ]) self.proj = nn.Sequential( nn.LayerNorm(n_dim), nn.Dropout(cls_dropout), nn.Linear(n_dim, num_classes), ) self.temporal_cls_token = nn.Parameter(torch.zeros(n_dim)) self.add_residual = add_residual print(f'Add residual {add_residual}') if use_t_conv: self.tconv = nn.ModuleList([ nn.Conv1d(n_dim, n_dim, kernel_size=3, stride=1, padding=1, bias=True, groups=n_dim) for i in range(n_layers) ]) for m in self.tconv: nn.init.constant_(m.bias, 0.) m.weight.data[...] = torch.Tensor([0, 1, 0]) else: self.tconv = None if use_t_pos_embed: self.pemb_t = nn.Parameter(torch.zeros([n_layers, t_size, n_dim])) else: self.pemb_t = None self.t_size = t_size def forward(self, clip_feats_all): # clip_feats_all = clip_feats_all[-len(self.dec):] # only return n_layers features, save memory clip_feats = [x for x in clip_feats_all] L, N, T, C = clip_feats[0].size() x = self.temporal_cls_token.view(1, 1, -1).repeat(1, N, 1) for i in range(len(clip_feats)): if self.tconv is not None: L, N, T, C = clip_feats[i].shape clip_feats[i] = clip_feats[i].permute(0, 1, 3, 2).flatten(0, 1) # L * N, C, T clip_feats[i] = self.tconv[i](clip_feats[i]).permute(0, 2, 1).contiguous().view(L, N, T, C) if self.pemb_t is not None: clip_feats[i] = clip_feats[i] + self.pemb_t[i] clip_feats[i] = clip_feats[i].permute(2, 0, 1, 3).flatten(0, 1) # T * L, N, C for i in range(len(self.dec)): x = self.dec[i](x, clip_feats[i]) if self.add_residual: residual = clip_feats_all[-1][0].mean(1) return self.proj(x[0, :, :] + residual) else: return self.proj(x[0, :, :]) if __name__ == '__main__': model = TransformerDecoder() # construct a fake input to demonstrate input tensor shape L, N, T, C = 197, 1, 8, 768 # num_image_tokens, video_batch_size, t_size, feature_dim # we use intermediate feature maps from multiple blocks, so input features should be a list input_features = [] for i in range(4): # vit-b has 12 blocks # every item in input_features contains features maps from a single block # every item is a tuple containing 3 feature maps: # (1) block output features (i.e. after mlp) with shape L, N, T, C # (2) projected query features with shape L, N, T, C # (3) projected key features with shape L, N, T, C input_features.append( torch.zeros([L, N, T, C])) # some small optimizations: # (1) We only decode from the last $n$ blocks so it's good as long as the last $n$ items of input_features is valid and all previous items can be filled with None to save memory. By default $n=4$. # (2) projected query/key features are optional. If you are using an uncompatible image backbone without query/key (e.g. CNN), you can fill the position with None (i.e. the tuple should be (Tensor, None, None) and set use_image_attnmap=False when constructing the model. print(model(input_features).shape) # should be N, 400
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_kc/evl_utils/evl_module.py
import os import time import torch import torch.nn as nn # from fvcore.nn import FlopCountAnalysis # from fvcore.nn import flop_count_table from modules.clip_kc_new import evl_utils PATH_PREFIX = '/mnt/lustre/share_data/likunchang.vendor/code/EVL/clip_kc/model' class EVL(nn.Module): def __init__(self, backbone='vit_b16', t_size=16, backbone_drop_path_rate=0., return_list=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], n_layers=12, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, num_classes=174, ): super().__init__() # pre-trained from CLIP self.backbone = evl_utils.__dict__[backbone]( pretrained=False, t_size=t_size, backbone_drop_path_rate=backbone_drop_path_rate, return_list=return_list, n_layers=n_layers, n_dim=n_dim, n_head=n_head, mlp_factor=mlp_factor, drop_path_rate=drop_path_rate, mlp_dropout=mlp_dropout, cls_dropout=cls_dropout, num_classes=num_classes, ) def forward(self, x, mode='video'): output = self.backbone(x, mode=mode) return output def cal_flops(model, frame=8, size=224): flops = FlopCountAnalysis(model, torch.rand(1, 3, frame, size, size)) s = time.time() print(flop_count_table(flops, max_depth=1)) print(time.time()-s) def vit_only_global_b_sparse8_k400(pretrained=True): model = EVL( backbone='vit_only_global_b16', t_size=8, backbone_drop_path_rate=0., return_list=[8, 9, 10, 11], n_layers=4, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, num_classes=400, ) # if pretrained: # pretrained_path = os.path.join(PATH_PREFIX, 'fuck.pyth') # print(f'lodel model from: {pretrained_path}') # state_dict = torch.load(pretrained_path, map_location='cpu') # model.load_state_dict(state_dict) return model def vit_only_global_l_sparse8_k400(pretrained=True): model = EVL( backbone='vit_only_global_l14', t_size=8, backbone_drop_path_rate=0., return_list=[20, 21, 22, 23], n_layers=4, n_dim=1024, n_head=16, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, num_classes=400, ) # if pretrained: # pretrained_path = os.path.join(PATH_PREFIX, 'fuck.pyth') # print(f'lodel model from: {pretrained_path}') # state_dict = torch.load(pretrained_path, map_location='cpu') # model.load_state_dict(state_dict) return model if __name__ == '__main__': model = vit_only_global_l_sparse8_k400() # cal_flops(model, frame=1, size=224) cal_flops(model, frame=8, size=224)
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_kc_new/model_no_freeze_only_global.py
import os import time import torch import torch.nn as nn from fvcore.nn import FlopCountAnalysis from fvcore.nn import flop_count_table from . import evl_utils PATH_PREFIX = '/mnt/lustre/share_data/likunchang.vendor/code/EVL/clip_kc/model' class EVL(nn.Module): def __init__(self, backbone='vit_b16', t_size=16, dw_reduction=1.5, backbone_drop_path_rate=0., return_list=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], n_layers=12, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, num_classes=174, ): super().__init__() # pre-trained from CLIP self.backbone = evl_utils.__dict__[backbone]( pretrained=False, t_size=t_size, dw_reduction=dw_reduction, backbone_drop_path_rate=backbone_drop_path_rate, return_list=return_list, n_layers=n_layers, n_dim=n_dim, n_head=n_head, mlp_factor=mlp_factor, drop_path_rate=drop_path_rate, mlp_dropout=mlp_dropout, cls_dropout=cls_dropout, num_classes=num_classes, ) def forward(self, x, mode='video'): output = self.backbone(x, mode=mode) return output def cal_flops(model, frame=8, size=224): flops = FlopCountAnalysis(model, torch.rand(1, 3, frame, size, size)) s = time.time() print(flop_count_table(flops, max_depth=1)) print(time.time()-s) def vit_fusion_b_sparse16_k400(pretrained=True): model = EVL( backbone='vit_fusion_b16', t_size=16, dw_reduction=1.5, backbone_drop_path_rate=0., return_list=[8, 9, 10, 11], n_layers=4, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, num_classes=400, ) # if pretrained: # pretrained_path = os.path.join(PATH_PREFIX, 'fuck.pyth') # print(f'lodel model from: {pretrained_path}') # state_dict = torch.load(pretrained_path, map_location='cpu') # model.load_state_dict(state_dict) return model def vit_fusion_b_sparse16_sthsth(pretrained=True): model = EVL( backbone='vit_fusion_b16', t_size=16, dw_reduction=1.5, backbone_drop_path_rate=0., return_list=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], n_layers=12, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, num_classes=174, ) # if pretrained: # pretrained_path = os.path.join(PATH_PREFIX, 'fuck.pyth') # print(f'lodel model from: {pretrained_path}') # state_dict = torch.load(pretrained_path, map_location='cpu') # model.load_state_dict(state_dict) return model if __name__ == '__main__': model = vit_fusion_b_sparse16_k400() # cal_flops(model, frame=1, size=224) cal_flops(model, frame=16, size=224)
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_kc_new/model_no_freeze_uniformer.py
from .clip import * from .evl_utils import *
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_kc_new/__init__.py
from collections import OrderedDict from typing import Tuple, Union import numpy as np import torch import torch.nn.functional as F from torch import nn from . import evl_utils from .evl_utils import TransformerDecoder_uniformer_diff_conv_balance from einops import rearrange from ipdb import set_trace from copy import deepcopy # from .clip_decoders import CaptionDecoder class LayerNorm(nn.LayerNorm): """Subclass torch's LayerNorm to handle fp16.""" def forward(self, x: torch.Tensor): orig_type = x.dtype ret = super().forward(x.type(torch.float32)) return ret.type(orig_type) class QuickGELU(nn.Module): def forward(self, x: torch.Tensor): return x * torch.sigmoid(1.702 * x) class ResidualAttentionBlock(nn.Module): def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None): super().__init__() self.attn = nn.MultiheadAttention(d_model, n_head) self.ln_1 = LayerNorm(d_model) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()), ("c_proj", nn.Linear(d_model * 4, d_model)) ])) self.ln_2 = LayerNorm(d_model) self.attn_mask = attn_mask def attention(self, x: torch.Tensor): self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] def forward(self, x: torch.Tensor): x = x + self.attention(self.ln_1(x)) x = x + self.mlp(self.ln_2(x)) return x class Transformer(nn.Module): def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None): super().__init__() self.width = width self.layers = layers self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)]) def forward(self, x: torch.Tensor): # if self.use_checkpoint and self.checkpoint_num[1] > 0: # segments = min(len(self.resblocks), self.checkpoint_num[1]) # return checkpoint_sequential(self.resblocks, segments, x) # else: return self.resblocks(x) class CLIP(nn.Module): def __init__(self, embed_dim: int, # vision image_resolution: int, vision_layers: Union[Tuple[int, int, int, int], int], vision_width: int, vision_patch_size: int, # text context_length: int, vocab_size: int, transformer_width: int, transformer_heads: int, transformer_layers: int, # evl n_layers=4, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, t_size=8, spatial_size=14, use_t_conv=True, use_image_attnmap=True, use_t_pos_embed=True, backbone='vit_2plus1d_dw_bias_b16', uni_layer=0, uni_type='2d', add_ffn=False, t_conv_type='3d', pre_prompt=False, balance=0., after_me=True, before_me=False, me_type='stm', me_reduction=4, init_zero=True, return_list=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], use_capdecoder=False, ): super().__init__() # All assertions is for adhoc clip_kc and should be removed # assert vision_layers == 12, vision_layers assert image_resolution == 224, image_resolution # assert vision_patch_size == 32, vision_patch_size assert vision_width == n_dim, (vision_width, n_dim) self.vision_width = n_dim self.context_length = context_length vision_heads = vision_width // 64 self.visual = evl_utils.__dict__[backbone]( pretrained=False, t_size=t_size, mlp_dropout=mlp_dropout, cls_dropout=cls_dropout, n_dim=n_dim, n_head=n_head, return_list=return_list, drop_path_rate=drop_path_rate, backbone_drop_path_rate=drop_path_rate) # self.evl = TransformerDecoder_uniformer_diff_conv_balance( # n_layers=n_layers, n_dim=n_dim, n_head=n_head, # mlp_factor=mlp_factor, drop_path_rate=drop_path_rate, # mlp_dropout=mlp_dropout, cls_dropout=cls_dropout, t_size=t_size, # use_t_conv=use_t_conv, use_t_pos_embed=use_t_pos_embed, # uni_layer=uni_layer, uni_type=uni_type, add_ffn=add_ffn, t_conv_type=t_conv_type, # pre_prompt=pre_prompt, balance=balance, # after_me=after_me, before_me=before_me, # me_type=me_type, me_reduction=me_reduction, # init_zero=init_zero, # ) self.visual_ln_post = nn.LayerNorm(n_dim) scale = n_dim ** -0.5 self.visual_proj = nn.Parameter(scale * torch.randn(n_dim, embed_dim)) self.return_qk = use_image_attnmap self.return_num = n_layers self.transformer = Transformer( width=transformer_width, layers=transformer_layers, heads=transformer_heads, attn_mask=self.build_attention_mask(), ) self.vocab_size = vocab_size self.token_embedding = nn.Embedding(vocab_size, transformer_width) self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width)) self.ln_final = LayerNorm(transformer_width) self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim)) self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) self.embed_dim = embed_dim # We seperate the mask embedding to load pretrained model self.text_mask_embedding = nn.Parameter(torch.empty(1, 1, transformer_width)) # # To keep the num_embeddings unchanged, we add this to embedded text # self.eot_token_embedding = nn.Parameter(torch.empty(1, transformer_width)) self.initialize_parameters() def initialize_parameters(self): nn.init.normal_(self.token_embedding.weight, std=0.02) nn.init.normal_(self.positional_embedding, std=0.01) nn.init.normal_(self.text_mask_embedding, std=0.02) # nn.init.constant_(self.eot_token_embedding, 0.0) proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5) attn_std = self.transformer.width ** -0.5 fc_std = (2 * self.transformer.width) ** -0.5 for block in self.transformer.resblocks: nn.init.normal_(block.attn.in_proj_weight, std=attn_std) nn.init.normal_(block.attn.out_proj.weight, std=proj_std) nn.init.normal_(block.mlp.c_fc.weight, std=fc_std) nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) if self.text_projection is not None: nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5) nn.init.constant_(self.visual_ln_post.weight, 1.0) nn.init.constant_(self.visual_ln_post.bias, 0.0) def build_attention_mask(self): # lazily create causal attention mask, with full attention between the vision tokens # pytorch uses additive attention mask; fill with -inf mask = torch.empty(self.context_length, self.context_length) mask.fill_(float("-inf")) mask.triu_(1) # zero out the lower diagonal return mask @property def dtype(self): return self.visual.conv1.weight.dtype def encode_video(self, video, return_all_feats=False, masked_indices=None, mode="video"): # video: [N, C, T, H, W] feats = self.visual(video, return_all_feats=return_all_feats, mode=mode) if return_all_feats: x, feats = feats x = self.visual_ln_post(x) if self.visual_proj is not None: x = x @ self.visual_proj if return_all_feats: return x, feats # [N, C], [L, N, T, C] return x def encode_text(self, text, masked_indices=None, return_all_feats=False): # assert (text.max(dim=-1)[0] + 1 == self.token_embedding.num_embeddings).all(), \ # "The last token of each sentence should be eot_token, check the input" x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model] # x[torch.arange(x.shape[0]), text.argmax(dim=-1)] += self.eot_token_embedding if masked_indices is not None: x[masked_indices] = self.text_mask_embedding x = x + self.positional_embedding.type(self.dtype) x = x.permute(1, 0, 2) # NLD -> LND x = self.transformer(x) x = x.permute(1, 0, 2) # LND -> NLD x = self.ln_final(x).type(self.dtype) # x.shape = [batch_size, n_ctx, transformer.width] # take features from the eot embedding (eot_token is the highest number in each sequence) feats = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] if self.text_projection is not None: feats = feats @ self.text_projection if return_all_feats: return feats, x return feats def forward(self, video, text): video_features = self.encode_video(video) text_features = self.encode_text(text) # normalized features video_features = video_features / video_features.norm(dim=1, keepdim=True) text_features = text_features / text_features.norm(dim=1, keepdim=True) # cosine similarity as logits logit_scale = self.logit_scale.exp() logits_per_video= logit_scale * video_features @ text_features.t() logits_per_text = logits_per_video.t() # shape = [global_batch_size, global_batch_size] return logits_per_video, logits_per_text def convert_weights(model: nn.Module): """Convert applicable model parameters to fp16""" def _convert_weights_to_fp16(l): if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)): l.weight.data = l.weight.data.half() if l.bias is not None: l.bias.data = l.bias.data.half() if isinstance(l, nn.MultiheadAttention): for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]: tensor = getattr(l, attr) if tensor is not None: tensor.data = tensor.data.half() for name in ["text_projection", "proj"]: if hasattr(l, name) and not isinstance(l, TransformerDecoder_uniformer_diff_conv_balance): attr = getattr(l, name) if attr is not None: attr.data = attr.data.half() model.apply(_convert_weights_to_fp16) def interpolate_temporal_pos_embed(pos_embed, T): # [1, t, d] -> [1, d, t] pos_embed = pos_embed.transpose(-2, -1) # [1, d, t] -> [1, d, T] pos_embed = F.interpolate(pos_embed, size=(T), mode='linear') # [1, d, T] -> [1, T, d] return pos_embed.transpose(-2, -1) def interploate_rpb(rpb, T): t1 = T * 2 - 1 rpb = rpb.transpose(0, 1).unsqueeze(0) rpb = F.interpolate(rpb, size=(t1), mode='linear') return rpb.squeeze(0).transpose(0, 1) def build_model( state_dict: dict, # evl n_layers=4, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, t_size=8, spatial_size=14, use_t_conv=True, use_image_attnmap=True, use_t_pos_embed=True, no_pretrain=False, init_zero=True, mergeclip=False, mergeweight=0.5, use_capdecoder=False, clip_state_dict=None, ): vit = "visual.proj" in state_dict or "visual.positional_embedding" in state_dict if "visual.proj" in state_dict: state_dict["visual_proj"] = state_dict["visual.proj"] state_dict["visual_ln_post.weight"] = state_dict["visual.ln_post.weight"] state_dict["visual_ln_post.bias"] = state_dict["visual.ln_post.bias"] del state_dict["visual.proj"], state_dict["visual.ln_post.weight"], state_dict["visual.ln_post.bias"] # new_state_dict = OrderedDict() # for k, v in state_dict.items(): # if k.startswith("backbone."): # k = k.replace("backbone.", "visual.") # new_state_dict[k] = v # state_dict = new_state_dict if vit: vision_width = state_dict["visual.conv1.weight"].shape[0] vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")]) vision_patch_size = state_dict["visual.conv1.weight"].shape[-1] grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5) image_resolution = vision_patch_size * grid_size else: counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]] vision_layers = tuple(counts) vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0] output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5) vision_patch_size = None assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0] image_resolution = output_width * 32 # embed_dim = 512 # context_length = 77 # vocab_size = 49408 # transformer_width = 512 # transformer_layers = 12 embed_dim = state_dict["text_projection"].shape[1] context_length = state_dict["positional_embedding"].shape[0] vocab_size = state_dict["token_embedding.weight"].shape[0] transformer_width = state_dict["ln_final.weight"].shape[0] transformer_heads = transformer_width // 64 transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks"))) ########### add this ############ # for k, v in state_dict.items(): # print(k, v.shape) ################################################ vision_width = state_dict["visual_proj"].shape[0] n_dim = vision_width if vision_width == 768: backbone = "vit_only_global_b16" n_head = 12 return_list = [8, 9, 10, 11] # comment this as we always use vit-L/14 # elif vision_width == 1024 and state_dict["input_resolution"] == 224: elif vision_width == 1024: backbone = "vit_only_global_l14" n_head = 16 return_list = [20, 21, 22, 23] elif vision_width == 1024 and state_dict["input_resolution"] == 336: backbone = "vit_only_global_l14_336" n_head = 16 return_list = [20, 21, 22, 23] else: raise NotImplementedError model = CLIP( embed_dim, image_resolution, vision_layers, vision_width, vision_patch_size, context_length, vocab_size, transformer_width, transformer_heads, transformer_layers, n_layers=n_layers, n_dim=n_dim, n_head=n_head, mlp_factor=mlp_factor, drop_path_rate=drop_path_rate, mlp_dropout=mlp_dropout, cls_dropout=cls_dropout, t_size=t_size, spatial_size=spatial_size, use_t_conv=use_t_conv, use_image_attnmap=use_image_attnmap, use_t_pos_embed=use_t_pos_embed, backbone=backbone, init_zero=init_zero, return_list=return_list, ) for key in ["input_resolution", "context_length", "vocab_size"]: if key in state_dict: del state_dict[key] # convert_weights(model) temporal_key = 'visual.temporal_positional_embedding' temporal_key2 = 'evl.pemb_t' if temporal_key in state_dict and t_size != state_dict[temporal_key].size(1): state_dict[temporal_key] = interpolate_temporal_pos_embed(state_dict[temporal_key], t_size) state_dict[temporal_key2] = interpolate_temporal_pos_embed(state_dict[temporal_key2], t_size) for kk, vv in state_dict.items(): if 'rpb_t' in kk: size_old = state_dict[kk].shape state_dict[kk] = interploate_rpb(vv, t_size) size_new = state_dict[kk].shape print('Interpolating' ,kk, size_old, '-->', size_new) # set_trace() # print('$' * 100) # for k, v in model.state_dict().items(): # print(k, v.shape) if mergeclip: assert 0.0 <= mergeweight <= 1.0 assert clip_state_dict is not None clip_sd = {k: v.cpu() for k, v in clip_state_dict.items()} for key in ["input_resolution", "context_length", "vocab_size"]: if key in clip_sd: del clip_sd[key] ## trick: use this func to transfer 2d clip weights to 3d, and mark back evl_utils.clip_vit_fusion.clip_load_state_dict(model, clip_sd) loaded_dict = model.state_dict() clip_sd_new = {k: v.cpu() for k, v in loaded_dict.items() if k in clip_sd} # set_trace() new_sd = deepcopy(state_dict) for k in new_sd: if k not in clip_sd_new: continue if any(x in k for x in clip_sd_new.keys()): print('merging: ', k, '\t', clip_sd_new[k].shape, state_dict[k].shape) new_sd[k] = clip_sd_new[k] * mergeweight + state_dict[k] * (1.0 - mergeweight) ############## only merge the clip text features, this is for ActivityNet ########### # if 'visual' in k: # new_sd[k] = clip_sd[k] # else: # new_sd[k] = clip_sd[k] * mergeweight + state_dict[k] * (1.0 - mergeweight) ################################################################################ ############## only merge the clip visual features, this is for MSVD ########### # if 'visual' in k: # new_sd[k] = clip_sd[k] * mergeweight + state_dict[k] * (1.0 - mergeweight) # else: # new_sd[k] = clip_sd[k] ################################################################################ state_dict = new_sd # print('$' * 100) # for k, v in state_dict.items(): # print(k, v.shape) if not no_pretrain: # msg = evl_utils.clip_vit_fusion.clip_load_state_dict(model, state_dict) msg = model.load_state_dict(state_dict, strict=False) print(msg) return model.eval()
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_kc_new/model.py
import os import time import torch import torch.nn as nn from fvcore.nn import FlopCountAnalysis from fvcore.nn import flop_count_table import evl_utils from evl_utils import TransformerDecoder_uniformer_diff_conv_balance PATH_PREFIX = '/mnt/lustre/share_data/likunchang.vendor/code/EVL/clip_kc/model' class EVL(nn.Module): def __init__(self, backbone='vit_b16', n_layers=12, n_dim=1024, n_head=16, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, num_frames=8, t_size=8, use_t_conv=True, use_t_pos_embed=True, uni_layer=4, uni_type='3d', add_ffn=True, t_conv_type='1d', pre_prompt=True, balance=0., after_me=True, before_me=False, me_type='dstm', me_reduction=4, num_classes=400, ): super().__init__() # pre-trained from CLIP self.backbone = evl_utils.__dict__[backbone](pretrained=False, num_frames=num_frames, t_size=t_size) self.evl = TransformerDecoder_uniformer_diff_conv_balance( n_layers=n_layers, n_dim=n_dim, n_head=n_head, mlp_factor=mlp_factor, drop_path_rate=drop_path_rate, mlp_dropout=mlp_dropout, cls_dropout=cls_dropout, t_size=t_size, use_t_conv=use_t_conv, use_t_pos_embed=use_t_pos_embed, uni_layer=uni_layer, uni_type=uni_type, add_ffn=add_ffn, t_conv_type=t_conv_type, pre_prompt=pre_prompt, balance=balance, after_me=after_me, before_me=before_me, me_type=me_type, me_reduction=me_reduction, num_classes=num_classes ) self.return_num = n_layers def forward(self, x, mode='image'): features = self.backbone(x, return_num=self.return_num, mode=mode) output = self.evl(features, mode=mode) return output def cal_flops(model, frame=8, size=224): flops = FlopCountAnalysis(model, torch.rand(1, 3, frame, size, size)) s = time.time() print(flop_count_table(flops, max_depth=1)) print(time.time()-s) def vit_2plus1d_diff_b_sparse8(pretrained=True): # 8x224x224 # k400 1x1: 82.5 model = EVL( backbone='vit_2plus1d_dw_bias_b16', n_layers=12, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, num_frames=8, t_size=8, use_t_conv=True, use_t_pos_embed=True, uni_layer=0, uni_type='2d', add_ffn=False, t_conv_type='3d', pre_prompt=False, balance=0., after_me=True, before_me=False, me_type='stm', me_reduction=4, num_classes=400, ) # if pretrained: # pretrained_path = os.path.join(PATH_PREFIX, 'vit_2plus1d_diff_b_sparse8.pyth') # print(f'lodel model from: {pretrained_path}') # state_dict = torch.load(pretrained_path, map_location='cpu') # model.load_state_dict(state_dict) return model if __name__ == '__main__': model = vit_2plus1d_diff_b_sparse8() cal_flops(model, frame=1, size=224)
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_kc_new/model_no_freeze_diff.py
import os import time import torch import torch.nn as nn from fvcore.nn import FlopCountAnalysis from fvcore.nn import flop_count_table import evl_utils from evl_utils import TransformerDecoder PATH_PREFIX = '/mnt/lustre/share_data/likunchang.vendor/code/EVL/clip_kc/model' class EVL(nn.Module): def __init__(self, backbone='vit_l14_336', n_layers=4, n_dim=1024, n_head=16, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, t_size=32, use_t_conv=True, use_t_pos_embed=True, num_classes=400 ): super().__init__() # pre-trained from CLIP self.backbone = evl_utils.__dict__[backbone](pretrained=False) self.evl = TransformerDecoder( n_layers=n_layers, n_dim=n_dim, n_head=n_head, mlp_factor=mlp_factor, drop_path_rate=drop_path_rate, mlp_dropout=mlp_dropout, cls_dropout=cls_dropout, t_size=t_size, use_t_conv=use_t_conv, use_t_pos_embed=use_t_pos_embed, num_classes=num_classes, ) self.return_num = n_layers def forward(self, x): features = self.backbone(x, return_num=self.return_num) output = self.evl(features) return output def cal_flops(model, frame=8, size=224): flops = FlopCountAnalysis(model, torch.rand(1, 3, frame, size, size)) s = time.time() print(flop_count_table(flops, max_depth=1)) print(time.time()-s) def vit_l_sparse16(pretrained=True): # 16x224x224 # k400 1x1: 86.5 model = EVL( backbone='vit_l14', n_layers=4, n_dim=1024, n_head=16, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, t_size=32, use_t_conv=True, use_t_pos_embed=True, num_classes=400 ) if pretrained: pretrained_path = os.path.join(PATH_PREFIX, 'vit_l_sparse16.pyth') print(f'lodel model from: {pretrained_path}') state_dict = torch.load(pretrained_path, map_location='cpu') model.load_state_dict(state_dict) return model def vit_l_sparse32(pretrained=True): # 32x224x224 # k400 1x1: 87.0 model = EVL( backbone='vit_l14', n_layers=4, n_dim=1024, n_head=16, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, t_size=32, use_t_conv=True, use_t_pos_embed=True, num_classes=400 ) if pretrained: pretrained_path = os.path.join(PATH_PREFIX, 'vit_l_sparse32.pyth') print(f'lodel model from: {pretrained_path}') state_dict = torch.load(pretrained_path, map_location='cpu') model.load_state_dict(state_dict) return model def vit_l336_sparse32(pretrained=True): # 32x336x336 # k400 1x1: 87.4 model = EVL( backbone='vit_l14_336', n_layers=4, n_dim=1024, n_head=16, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, t_size=32, use_t_conv=True, use_t_pos_embed=True, num_classes=400 ) if pretrained: pretrained_path = os.path.join(PATH_PREFIX, 'vit_l336_sparse32.pyth') print(f'lodel model from: {pretrained_path}') state_dict = torch.load(pretrained_path, map_location='cpu') model.load_state_dict(state_dict) return model if __name__ == '__main__': model = vit_l_sparse16() cal_flops(model, frame=16, size=224) # model = vit_l_sparse32() # cal_flops(model, frame=32, size=224) # model = vit_l336_sparse32() # cal_flops(model, frame=32, size=336)
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_kc_new/model_freeze.py
import os import time import torch import torch.nn as nn from fvcore.nn import FlopCountAnalysis from fvcore.nn import flop_count_table import evl_utils from evl_utils import TransformerDecoder PATH_PREFIX = '/mnt/lustre/share_data/likunchang.vendor/code/EVL/clip_kc/model' class EVL(nn.Module): def __init__(self, backbone='vit_l14_336', n_layers=4, n_dim=1024, n_head=16, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, t_size=32, use_t_conv=True, use_t_pos_embed=True, num_classes=400, add_residual=False, ): super().__init__() # pre-trained from CLIP self.backbone = evl_utils.__dict__[backbone](pretrained=False) self.evl = TransformerDecoder( n_layers=n_layers, n_dim=n_dim, n_head=n_head, mlp_factor=mlp_factor, drop_path_rate=drop_path_rate, mlp_dropout=mlp_dropout, cls_dropout=cls_dropout, t_size=t_size, use_t_conv=use_t_conv, use_t_pos_embed=use_t_pos_embed, num_classes=num_classes, add_residual=add_residual ) self.return_num = n_layers def forward(self, x): features = self.backbone(x, return_num=self.return_num) output = self.evl(features) return output def cal_flops(model, frame=8, size=224): flops = FlopCountAnalysis(model, torch.rand(1, 3, frame, size, size)) s = time.time() print(flop_count_table(flops, max_depth=1)) print(time.time()-s) def vit_b_sparse8(pretrained=True): # 8x224x224 # k400 1x1: 82.4 model = EVL( backbone='vit_b16', n_layers=4, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, t_size=8, use_t_conv=True, use_t_pos_embed=True, num_classes=400, add_residual=True, ) if pretrained: pretrained_path = os.path.join(PATH_PREFIX, 'vit_b_sparse8.pyth') print(f'lodel model from: {pretrained_path}') state_dict = torch.load(pretrained_path, map_location='cpu') model.load_state_dict(state_dict) return model def vit_2plus1d_b_sparse8(pretrained=True): # 8x224x224 # k400 1x1: 82.5 model = EVL( backbone='vit_2plus1d_b16', n_layers=4, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, t_size=8, use_t_conv=True, use_t_pos_embed=True, num_classes=400, add_residual=True, ) if pretrained: pretrained_path = os.path.join(PATH_PREFIX, 'vit_2plus1d_b_sparse8.pyth') print(f'lodel model from: {pretrained_path}') state_dict = torch.load(pretrained_path, map_location='cpu') model.load_state_dict(state_dict) return model if __name__ == '__main__': # model = vit_b_sparse8() # cal_flops(model, frame=8, size=224) model = vit_2plus1d_b_sparse8() cal_flops(model, frame=8, size=224)
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_kc_new/model_no_freeze.py
import hashlib import os import urllib import warnings from typing import Any, Union, List from pkg_resources import packaging import torch from PIL import Image from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize from tqdm import tqdm from .model import build_model from .simple_tokenizer import SimpleTokenizer as _Tokenizer try: from torchvision.transforms import InterpolationMode BICUBIC = InterpolationMode.BICUBIC except ImportError: BICUBIC = Image.BICUBIC if packaging.version.parse(torch.__version__) < packaging.version.parse("1.7.1"): warnings.warn("PyTorch version 1.7.1 or higher is recommended") __all__ = ["available_models", "load", "tokenize"] _tokenizer = _Tokenizer() _MODELS = { "ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt", "ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt", "ViT-L/14": "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt", } def _download(url: str, root: str): os.makedirs(root, exist_ok=True) filename = os.path.basename(url) expected_sha256 = url.split("/")[-2] download_target = os.path.join(root, filename) if os.path.exists(download_target) and not os.path.isfile(download_target): raise RuntimeError(f"{download_target} exists and is not a regular file") if os.path.isfile(download_target): if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256: return download_target else: warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file") with urllib.request.urlopen(url) as source, open(download_target, "wb") as output: with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True, unit_divisor=1024) as loop: while True: buffer = source.read(8192) if not buffer: break output.write(buffer) loop.update(len(buffer)) if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256: raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match") return download_target def _convert_image_to_rgb(image): return image.convert("RGB") def _transform(n_px): return Compose([ Resize(n_px, interpolation=BICUBIC), CenterCrop(n_px), _convert_image_to_rgb, ToTensor(), Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), ]) def available_models() -> List[str]: """Returns the names of available CLIP models""" return list(_MODELS.keys()) def load( name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", jit: bool = False, download_root: str = None, # evl n_layers=12, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.0, 0.0, 0.0, 0.0], cls_dropout=0.5, t_size=8, spatial_size=14, use_t_conv=True, use_image_attnmap=True, use_t_pos_embed=True, dropout=0.0, no_pretrain=False, init_zero=True, mergeclip=False, mergeweight=0.5, use_capdecoder=False, clip_state_dict=None, ): """Load a CLIP model Parameters ---------- name : str A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict device : Union[str, torch.device] The device to put the loaded model jit : bool Whether to load the optimized JIT model or more hackable non-JIT model (default). download_root: str path to download the model files; by default, it uses "~/.cache/clip" Returns ------- model : torch.nn.Module The CLIP model preprocess : Callable[[PIL.Image], torch.Tensor] A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input """ if name in _MODELS: model_path = _download(_MODELS[name], download_root or os.path.expanduser("~/.cache/clip")) elif os.path.isfile(name): model_path = name else: raise RuntimeError(f"Model {name} not found; available models = {available_models()}") ''' with open(model_path, 'rb') as opened_file: try: # loading JIT archive model = torch.jit.load(opened_file, map_location=device if jit else "cpu").eval() state_dict = None except RuntimeError: # loading saved state dict if jit: warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead") jit = False state_dict = torch.load(model_path, map_location="cpu") ''' init_state_dict = torch.load(model_path, map_location='cpu')['state_dict'] state_dict = {} for k, v in init_state_dict.items(): k = k.replace('clip.','') state_dict[k] = v if not jit: model = build_model( state_dict or model.state_dict(), n_layers=n_layers, n_dim=n_dim, n_head=n_head, mlp_factor=mlp_factor, drop_path_rate=drop_path_rate, mlp_dropout=mlp_dropout, cls_dropout=cls_dropout, t_size=t_size, spatial_size=spatial_size, use_t_conv=use_t_conv, use_image_attnmap=use_image_attnmap, use_t_pos_embed=use_t_pos_embed, no_pretrain=no_pretrain, init_zero=init_zero, mergeclip=mergeclip, mergeweight=mergeweight, use_capdecoder=use_capdecoder, clip_state_dict=clip_state_dict, ).to(device) if str(device) == "cpu": model.float() return model, _transform(model.visual.input_resolution) # patch the device names device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[]) device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1] def patch_device(module): try: graphs = [module.graph] if hasattr(module, "graph") else [] except RuntimeError: graphs = [] if hasattr(module, "forward1"): graphs.append(module.forward1.graph) for graph in graphs: for node in graph.findAllNodes("prim::Constant"): if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"): node.copyAttributes(device_node) model.apply(patch_device) patch_device(model.encode_image) patch_device(model.encode_text) # patch dtype to float32 on CPU if str(device) == "cpu": float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[]) float_input = list(float_holder.graph.findNode("aten::to").inputs())[1] float_node = float_input.node() def patch_float(module): try: graphs = [module.graph] if hasattr(module, "graph") else [] except RuntimeError: graphs = [] if hasattr(module, "forward1"): graphs.append(module.forward1.graph) for graph in graphs: for node in graph.findAllNodes("aten::to"): inputs = list(node.inputs()) for i in [1, 2]: # dtype can be the second or third argument to aten::to() if inputs[i].node()["value"] == 5: inputs[i].node().copyAttributes(float_node) model.apply(patch_float) patch_float(model.encode_image) patch_float(model.encode_text) model.float() return model, _transform(model.input_resolution.item()) def tokenize(texts: Union[str, List[str]], context_length: int = 77, truncate: bool = False, return_special_tokens_mask: bool = False) -> Union[torch.IntTensor, torch.LongTensor, torch.BoolTensor]: """ Returns the tokenized representation of given input string(s) Parameters ---------- texts : Union[str, List[str]] An input string or a list of input strings to tokenize context_length : int The context length to use; all CLIP models use 77 as the context length truncate: bool Whether to truncate the text in case its encoding is longer than the context length Returns ------- A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]. We return LongTensor when torch version is <1.8.0, since older index_select requires indices to be long. """ if isinstance(texts, str): texts = [texts] sot_token = _tokenizer.encoder["<|startoftext|>"] eot_token = _tokenizer.encoder["<|endoftext|>"] all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts] if packaging.version.parse(torch.__version__) < packaging.version.parse("1.8.0"): result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) else: result = torch.zeros(len(all_tokens), context_length, dtype=torch.int) special_tokens_mask = torch.zeros(len(all_tokens), context_length, dtype=torch.bool) for i, tokens in enumerate(all_tokens): if len(tokens) > context_length: if truncate: tokens = tokens[:context_length] tokens[-1] = eot_token else: raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}") result[i, :len(tokens)] = torch.tensor(tokens) special_tokens_mask[i, len(tokens):] = 1 if return_special_tokens_mask: return result, special_tokens_mask return result
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_kc_new/clip.py
import gzip import html import os from functools import lru_cache import ftfy import regex as re @lru_cache() def default_bpe(): return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz") @lru_cache() def bytes_to_unicode(): """ Returns list of utf-8 byte and a corresponding list of unicode strings. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a signficant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. And avoids mapping to whitespace/control characters the bpe code barfs on. """ bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8+n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs def basic_clean(text): text = ftfy.fix_text(text) text = html.unescape(html.unescape(text)) return text.strip() def whitespace_clean(text): text = re.sub(r'\s+', ' ', text) text = text.strip() return text class SimpleTokenizer(object): def __init__(self, bpe_path: str = default_bpe()): self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} merges = gzip.open(bpe_path).read().decode("utf-8").split('\n') merges = merges[1:49152-256-2+1] merges = [tuple(merge.split()) for merge in merges] vocab = list(bytes_to_unicode().values()) vocab = vocab + [v+'</w>' for v in vocab] for merge in merges: vocab.append(''.join(merge)) vocab.extend(['<|startoftext|>', '<|endoftext|>']) self.encoder = dict(zip(vocab, range(len(vocab)))) self.decoder = {v: k for k, v in self.encoder.items()} self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'} self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE) def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token[:-1]) + ( token[-1] + '</w>',) pairs = get_pairs(word) if not pairs: return token+'</w>' while True: bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf'))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) new_word.extend(word[i:j]) i = j except: new_word.extend(word[i:]) break if word[i] == first and i < len(word)-1 and word[i+1] == second: new_word.append(first+second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = ' '.join(word) self.cache[token] = word return word def encode(self, text): bpe_tokens = [] text = whitespace_clean(basic_clean(text)).lower() for token in re.findall(self.pat, text): token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')) return bpe_tokens def decode(self, tokens): text = ''.join([self.decoder[token] for token in tokens]) text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ') return text
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_kc_new/simple_tokenizer.py
#!/usr/bin/env python import warnings from typing import Tuple, Optional import torch from torch import Tensor from torch.nn.modules.linear import Linear from torch.nn.init import xavier_uniform_ from torch.nn.init import constant_ from torch.nn.init import xavier_normal_ from torch.nn.parameter import Parameter from torch.nn.modules.module import Module from .attention_module import multi_head_attention_forward class _LinearWithBias(Linear): bias: Tensor def __init__(self, in_features: int, out_features: int) -> None: super().__init__(in_features, out_features, bias=True) class MultiheadAttention(Module): r"""Allows the model to jointly attend to information from different representation subspaces. See reference: Attention Is All You Need .. math:: \text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O \text{where} head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) Args: embed_dim: total dimension of the model. num_heads: parallel attention heads. dropout: a Dropout layer on attn_output_weights. Default: 0.0. bias: add bias as module parameter. Default: True. add_bias_kv: add bias to the key and value sequences at dim=0. add_zero_attn: add a new batch of zeros to the key and value sequences at dim=1. kdim: total number of features in key. Default: None. vdim: total number of features in value. Default: None. Note: if kdim and vdim are None, they will be set to embed_dim such that query, key, and value have the same number of features. Examples:: >>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads) >>> attn_output, attn_output_weights = multihead_attn(query, key, value) """ bias_k: Optional[torch.Tensor] bias_v: Optional[torch.Tensor] def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None): super(MultiheadAttention, self).__init__() self.embed_dim = embed_dim self.kdim = kdim if kdim is not None else embed_dim self.vdim = vdim if vdim is not None else embed_dim self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" if self._qkv_same_embed_dim is False: self.q_proj_weight = Parameter(torch.Tensor(embed_dim, embed_dim)) self.k_proj_weight = Parameter(torch.Tensor(embed_dim, self.kdim)) self.v_proj_weight = Parameter(torch.Tensor(embed_dim, self.vdim)) self.register_parameter('in_proj_weight', None) else: self.in_proj_weight = Parameter(torch.empty(3 * embed_dim, embed_dim)) self.register_parameter('q_proj_weight', None) self.register_parameter('k_proj_weight', None) self.register_parameter('v_proj_weight', None) if bias: self.in_proj_bias = Parameter(torch.empty(3 * embed_dim)) else: self.register_parameter('in_proj_bias', None) self.out_proj = _LinearWithBias(embed_dim, embed_dim) if add_bias_kv: self.bias_k = Parameter(torch.empty(1, 1, embed_dim)) self.bias_v = Parameter(torch.empty(1, 1, embed_dim)) else: self.bias_k = self.bias_v = None self.add_zero_attn = add_zero_attn self._reset_parameters() def _reset_parameters(self): if self._qkv_same_embed_dim: xavier_uniform_(self.in_proj_weight) else: xavier_uniform_(self.q_proj_weight) xavier_uniform_(self.k_proj_weight) xavier_uniform_(self.v_proj_weight) if self.in_proj_bias is not None: constant_(self.in_proj_bias, 0.) constant_(self.out_proj.bias, 0.) if self.bias_k is not None: xavier_normal_(self.bias_k) if self.bias_v is not None: xavier_normal_(self.bias_v) def __setstate__(self, state): # Support loading old MultiheadAttention checkpoints generated by v1.1.0 if '_qkv_same_embed_dim' not in state: state['_qkv_same_embed_dim'] = True super(MultiheadAttention, self).__setstate__(state) def forward(self, query, key, value, key_padding_mask=None, need_weights=True, attn_mask=None, return_qk=False): # type: (Tensor, Tensor, Tensor, Optional[Tensor], bool, Optional[Tensor], bool) -> Tuple[Tensor, Optional[Tensor]] r""" Args: query, key, value: map a query and a set of key-value pairs to an output. See "Attention Is All You Need" for more details. key_padding_mask: if provided, specified padding elements in the key will be ignored by the attention. When given a binary mask and a value is True, the corresponding value on the attention layer will be ignored. When given a byte mask and a value is non-zero, the corresponding value on the attention layer will be ignored need_weights: output attn_output_weights. attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all the batches while a 3D mask allows to specify a different mask for the entries of each batch. Shape: - Inputs: - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is the embedding dimension. - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. If a ByteTensor is provided, the non-zero positions will be ignored while the position with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length. 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. attn_mask ensure that position i is allowed to attend the unmasked positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor is provided, it will be added to the attention weight. - return_qk: whether return Q and K. - Outputs: - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - attn_output_weights: :math:`(N, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. """ if return_qk: if not self._qkv_same_embed_dim: q, k, attn_output, attn_output_weights = multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, use_separate_proj_weight=True, q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight, v_proj_weight=self.v_proj_weight, return_qk=True) else: q, k, attn_output, attn_output_weights = multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, return_qk=True) return q, k, attn_output, attn_output_weights else: if not self._qkv_same_embed_dim: return multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, use_separate_proj_weight=True, q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight, v_proj_weight=self.v_proj_weight) else: return multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask)
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_kc_new/evl_utils/attention.py
#!/usr/bin/env python from collections import OrderedDict from timm.models.layers import trunc_normal_, DropPath import torch import torch.nn as nn import torch.nn.functional as F class QuickGELU(nn.Module): def forward(self, x: torch.Tensor): return x * torch.sigmoid(1.702 * x) def conv_1x1x1(inp, oup, groups=1): return nn.Conv3d(inp, oup, (1, 1, 1), (1, 1, 1), (0, 0, 0), groups=groups) def conv_3x3x3(inp, oup, groups=1): return nn.Conv3d(inp, oup, (3, 3, 3), (1, 1, 1), (1, 1, 1), groups=groups) def conv_1x3x3(inp, oup, groups=1): return nn.Conv3d(inp, oup, (1, 3, 3), (1, 1, 1), (0, 1, 1), groups=groups) def bn_3d(dim): return nn.BatchNorm3d(dim) class STM(nn.Module): def __init__(self, n_dim, reduction=4): super(STM, self).__init__() reduced_c = n_dim // reduction self.reduce = nn.Sequential( nn.Conv2d(n_dim, reduced_c, kernel_size=1, bias=False), nn.BatchNorm2d(reduced_c) ) self.shift = nn.Conv2d(reduced_c, reduced_c, kernel_size=3, padding=1, groups=reduced_c, bias=False) self.recover = nn.Sequential( nn.Conv2d(reduced_c, n_dim, kernel_size=1, bias=False), nn.BatchNorm2d(n_dim) ) self.pad = (0, 0, 0, 0, 0, 0, 0, 1) def forward(self, x): # x: [L, N, T, C] cls_token, x = x[:1], x[1:] L, N, T, C = x.shape H = W = int(L**0.5) fea = x.permute(1, 2, 3, 0).reshape(N*T, C, H, W) bottleneck = self.reduce(fea) # NT, C//r, H, W # t feature reshape_bottleneck = bottleneck.view((-1, T) + bottleneck.size()[1:]) # N, T, C//r, H, W t_fea, __ = reshape_bottleneck.split([T-1, 1], dim=1) # N, T-1, C//r, H, W # apply transformation conv to t+1 feature conv_bottleneck = self.shift(bottleneck) # NT, C//r, H, W # reshape fea: N, T, C//r, H, W reshape_conv_bottleneck = conv_bottleneck.view((-1, T) + conv_bottleneck.size()[1:]) __, tPlusone_fea = reshape_conv_bottleneck.split([1, T-1], dim=1) # N, T-1, C//r, H, W # motion fea = t+1_fea - t_fea # pad the last timestamp diff_fea = tPlusone_fea - t_fea # N, T-1, C//r, H, W # pad = (0,0,0,0,0,0,0,1) diff_fea_pluszero = F.pad(diff_fea, self.pad, mode="constant", value=0) # N, T, C//r, H, W diff_fea_pluszero = diff_fea_pluszero.view((-1,) + diff_fea_pluszero.size()[2:]) # NT, C//r, H, W y = self.recover(diff_fea_pluszero) # NT, C, H, W # reshape y = y.reshape(N, T, C, L).permute(3, 0, 1, 2) y = torch.cat([cls_token, y], dim=0) return y class DSTM(nn.Module): def __init__(self, n_dim, reduction=4): super(DSTM, self).__init__() reduced_c = n_dim // reduction self.reduce = nn.Sequential( nn.Conv2d(n_dim, reduced_c, kernel_size=1, bias=False), nn.BatchNorm2d(reduced_c) ) # DW(T+1) - T self.shift_pre = nn.Conv2d(reduced_c, reduced_c, kernel_size=3, padding=1, groups=reduced_c, bias=False) self.recover_pre = nn.Sequential( nn.Conv2d(reduced_c, n_dim, kernel_size=1, bias=False), nn.BatchNorm2d(n_dim) ) self.pad_pre = (0, 0, 0, 0, 0, 0, 0, 1) # DW(T-1) - T self.shift_back = nn.Conv2d(reduced_c, reduced_c, kernel_size=3, padding=1, groups=reduced_c, bias=False) self.recover_back = nn.Sequential( nn.Conv2d(reduced_c, n_dim, kernel_size=1, bias=False), nn.BatchNorm2d(n_dim) ) self.pad_back = (0, 0, 0, 0, 0, 0, 0, 1) def forward(self, x): # x: [L, N, T, C] cls_token, x = x[:1], x[1:] L, N, T, C = x.shape H = W = int(L**0.5) fea = x.permute(1, 2, 3, 0).reshape(N*T, C, H, W) bottleneck = self.reduce(fea) # NT, C//r, H, W # t feature reshape_bottleneck = bottleneck.view((-1, T) + bottleneck.size()[1:]) # N, T, C//r, H, W pre_t_fea, __ = reshape_bottleneck.split([T-1, 1], dim=1) # N, T-1, C//r, H, W back_t_fea, __ = reshape_bottleneck.split([1, T-1], dim=1) # N, T-1, C//r, H, W # apply transformation conv to t+1/t-1 feature pre_conv_bottleneck = self.shift_pre(bottleneck) # NT, C//r, H, W back_conv_bottleneck = self.shift_back(bottleneck) # NT, C//r, H, W # reshape fea: N, T, C//r, H, W pre_reshape_conv_bottleneck = pre_conv_bottleneck.view((-1, T) + pre_conv_bottleneck.size()[1:]) back_reshape_conv_bottleneck = back_conv_bottleneck.view((-1, T) + back_conv_bottleneck.size()[1:]) __, tPlusone_fea = pre_reshape_conv_bottleneck.split([1, T-1], dim=1) # N, T-1, C//r, H, W tMinusone_fea, _ = back_reshape_conv_bottleneck.split([T-1, 1], dim=1) # N, T-1, C//r, H, W # pre_fea = t+1_fea - t_fea # back_fea = t-1_fea - t_fea pre_diff_fea = tPlusone_fea - pre_t_fea # N, T-1, C//r, H, W back_diff_fea = tMinusone_fea - back_t_fea # N, T-1, C//r, H, W # pad the last/first timestamp pre_diff_fea_pluszero = F.pad(pre_diff_fea, self.pad_pre, mode="constant", value=0) # N, T, C//r, H, W pre_diff_fea_pluszero = pre_diff_fea_pluszero.view((-1,) + pre_diff_fea_pluszero.size()[2:]) # NT, C//r, H, W back_diff_fea_pluszero = F.pad(back_diff_fea, self.pad_back, mode="constant", value=0) # N, T, C//r, H, W back_diff_fea_pluszero = back_diff_fea_pluszero.view((-1,) + back_diff_fea_pluszero.size()[2:]) # NT, C//r, H, W # recover channel pre_y = self.recover_pre(pre_diff_fea_pluszero) # NT, C, H, W back_y = self.recover_back(back_diff_fea_pluszero) # NT, C, H, W # reshape y = (pre_y + back_y).reshape(N, T, C, L).permute(3, 0, 1, 2) # cat cls_token y = torch.cat([cls_token, y], dim=0) return y class TDN(nn.Module): def __init__(self, channel, n_segment=8, index=1, reduction=4): super(TDN, self).__init__() self.channel = channel self.reduction = reduction self.n_segment = n_segment self.stride = 2**(index-1) self.conv1 = nn.Conv2d(in_channels=self.channel, out_channels=self.channel//self.reduction, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(num_features=self.channel//self.reduction) self.conv2 = nn.Conv2d(in_channels=self.channel//self.reduction, out_channels=self.channel//self.reduction, kernel_size=3, padding=1, groups=self.channel//self.reduction, bias=False) self.avg_pool_forward2 = nn.AvgPool2d(kernel_size=2, stride=2) self.avg_pool_forward4 = nn.AvgPool2d(kernel_size=4, stride=4) self.sigmoid_forward = nn.Sigmoid() self.avg_pool_backward2 = nn.AvgPool2d(kernel_size=2, stride=2)#nn.AdaptiveMaxPool2d(1) self.avg_pool_backward4 = nn.AvgPool2d(kernel_size=4, stride=4) self.sigmoid_backward = nn.Sigmoid() self.pad1_forward = (0, 0, 0, 0, 0, 0, 0, 1) self.pad1_backward = (0, 0, 0, 0, 0, 0, 1, 0) self.conv3 = nn.Conv2d(in_channels=self.channel//self.reduction, out_channels=self.channel, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(num_features=self.channel) self.conv3_smallscale2 = nn.Conv2d(in_channels=self.channel//self.reduction, out_channels=self.channel//self.reduction,padding=1, kernel_size=3, bias=False) self.bn3_smallscale2 = nn.BatchNorm2d(num_features=self.channel//self.reduction) self.conv3_smallscale4 = nn.Conv2d(in_channels = self.channel//self.reduction, out_channels=self.channel//self.reduction,padding=1, kernel_size=3, bias=False) self.bn3_smallscale4 = nn.BatchNorm2d(num_features=self.channel//self.reduction) def spatial_pool(self, x): nt, channel, height, width = x.size() input_x = x # [N, C, H * W] input_x = input_x.view(nt, channel, height * width) # [N, 1, C, H * W] input_x = input_x.unsqueeze(1) # [N, 1, H, W] context_mask = self.conv_mask(x) # [N, 1, H * W] context_mask = context_mask.view(nt, 1, height * width) # [N, 1, H * W] context_mask = self.softmax(context_mask) context_mask = context_mask.view(nt,1,height,width) return context_mask def forward(self, x): # x: [L, N, T, C] cls_token, x = x[:1], x[1:] L, N, T, C = x.shape H = W = int(L**0.5) fea = x.permute(1, 2, 3, 0).reshape(N*T, C, H, W) bottleneck = self.conv1(fea) # nt, c//r, h, w bottleneck = self.bn1(bottleneck) # nt, c//r, h, w reshape_bottleneck = bottleneck.view((-1, self.n_segment) + bottleneck.size()[1:]) # n, t, c//r, h, w t_fea_forward, _ = reshape_bottleneck.split([self.n_segment -1, 1], dim=1) # n, t-1, c//r, h, w _, t_fea_backward = reshape_bottleneck.split([1, self.n_segment -1], dim=1) # n, t-1, c//r, h, w conv_bottleneck = self.conv2(bottleneck) # nt, c//r, h, w reshape_conv_bottleneck = conv_bottleneck.view((-1, self.n_segment) + conv_bottleneck.size()[1:]) # n, t, c//r, h, w _, tPlusone_fea_forward = reshape_conv_bottleneck.split([1, self.n_segment-1], dim=1) # n, t-1, c//r, h, w tPlusone_fea_backward ,_ = reshape_conv_bottleneck.split([self.n_segment-1, 1], dim=1) # n, t-1, c//r, h, w diff_fea_forward = tPlusone_fea_forward - t_fea_forward # n, t-1, c//r, h, w diff_fea_backward = tPlusone_fea_backward - t_fea_backward# n, t-1, c//r, h, w diff_fea_pluszero_forward = F.pad(diff_fea_forward, self.pad1_forward, mode="constant", value=0) # n, t, c//r, h, w diff_fea_pluszero_forward = diff_fea_pluszero_forward.view((-1,) + diff_fea_pluszero_forward.size()[2:]) #nt, c//r, h, w diff_fea_pluszero_backward = F.pad(diff_fea_backward, self.pad1_backward, mode="constant", value=0) # n, t, c//r, h, w diff_fea_pluszero_backward = diff_fea_pluszero_backward.view((-1,) + diff_fea_pluszero_backward.size()[2:]) #nt, c//r, h, w y_forward_smallscale2 = self.avg_pool_forward2(diff_fea_pluszero_forward) # nt, c//r, 1, 1 y_backward_smallscale2 = self.avg_pool_backward2(diff_fea_pluszero_backward) # nt, c//r, 1, 1 y_forward_smallscale4 = diff_fea_pluszero_forward y_backward_smallscale4 = diff_fea_pluszero_backward y_forward_smallscale2 = self.bn3_smallscale2(self.conv3_smallscale2(y_forward_smallscale2)) y_backward_smallscale2 = self.bn3_smallscale2(self.conv3_smallscale2(y_backward_smallscale2)) y_forward_smallscale4 = self.bn3_smallscale4(self.conv3_smallscale4(y_forward_smallscale4)) y_backward_smallscale4 = self.bn3_smallscale4(self.conv3_smallscale4(y_backward_smallscale4)) y_forward_smallscale2 = F.interpolate(y_forward_smallscale2, diff_fea_pluszero_forward.size()[2:]) y_backward_smallscale2 = F.interpolate(y_backward_smallscale2, diff_fea_pluszero_backward.size()[2:]) y_forward = self.bn3(self.conv3(1.0/3.0*diff_fea_pluszero_forward + 1.0/3.0*y_forward_smallscale2 + 1.0/3.0*y_forward_smallscale4))# nt, c, 1, 1 y_backward = self.bn3(self.conv3(1.0/3.0*diff_fea_pluszero_backward + 1.0/3.0*y_backward_smallscale2 + 1.0/3.0*y_backward_smallscale4)) # nt, c, 1, 1 y_forward = self.sigmoid_forward(y_forward) - 0.5 y_backward = self.sigmoid_backward(y_backward) - 0.5 y = 0.5 * y_forward + 0.5 * y_backward attn = fea * y x = x + attn.reshape(N, T, C, L).permute(3, 0, 1, 2) x = torch.cat([cls_token, x], dim=0) return x class CMlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = conv_1x1x1(in_features, hidden_features) self.act = act_layer() self.fc2 = conv_1x1x1(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class CBlock(nn.Module): def __init__(self, dim, mlp_ratio=4., dropout=0., drop_path=0., uni_type='3d', add_ffn=True): super().__init__() self.norm1 = bn_3d(dim) self.conv1 = conv_1x1x1(dim, dim, 1) self.conv2 = conv_1x1x1(dim, dim, 1) if uni_type == '3d': print('Use 3d conv for local MHRA') self.attn = conv_3x3x3(dim, dim, groups=dim) else: print('Use 2d conv for local MHRA') self.attn = conv_1x3x3(dim, dim, groups=dim) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.add_ffn = add_ffn if add_ffn: print('Add FFN in local MHRA') self.norm2 = bn_3d(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = CMlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=nn.GELU, drop=dropout) print('Init zero') nn.init.constant_(self.conv2.weight, 0.) nn.init.constant_(self.conv2.bias, 0.) if add_ffn: nn.init.constant_(self.mlp.fc2.weight, 0.) nn.init.constant_(self.mlp.fc2.bias, 0.) def forward(self, x): x = x + self.drop_path(self.conv2(self.attn(self.conv1(self.norm1(x))))) if self.add_ffn: x = x + self.drop_path(self.mlp(self.norm2(x))) return x class ResidualDecoderBlock(nn.Module): def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None, mlp_factor: float = 4.0, dropout: float = 0.0, drop_path: float = 0.0): super().__init__() self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() print(f'Drop path rate: {drop_path}') self.attn = nn.MultiheadAttention(d_model, n_head) self.ln_1 = nn.LayerNorm(d_model) d_mlp = round(mlp_factor * d_model) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, d_mlp)), ("gelu", QuickGELU()), ("dropout", nn.Dropout(dropout)), ("c_proj", nn.Linear(d_mlp, d_model)) ])) self.ln_2 = nn.LayerNorm(d_model) self.ln_3 = nn.LayerNorm(d_model) self.attn_mask = attn_mask nn.init.xavier_uniform_(self.attn.in_proj_weight) # nn.init.xavier_uniform_(self.attn.out_proj.weight) nn.init.constant_(self.attn.out_proj.weight, 0.) nn.init.constant_(self.attn.out_proj.bias, 0.) nn.init.xavier_uniform_(self.mlp[0].weight) # nn.init.xavier_uniform_(self.mlp[-1].weight) nn.init.constant_(self.mlp[-1].weight, 0.) nn.init.constant_(self.mlp[-1].bias, 0.) def attention(self, x: torch.Tensor, y: torch.Tensor): #self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None # return self.attn(x, y, y, need_weights=False, attn_mask=self.attn_mask)[0] assert self.attn_mask is None # not implemented # manual forward to add position information d_model = self.ln_1.weight.size(0) q = (x @ self.attn.in_proj_weight[:d_model].T) + self.attn.in_proj_bias[:d_model] k = (y @ self.attn.in_proj_weight[d_model:-d_model].T) + self.attn.in_proj_bias[d_model:-d_model] v = (y @ self.attn.in_proj_weight[-d_model:].T) + self.attn.in_proj_bias[-d_model:] Tx, Ty, N = q.size(0), k.size(0), q.size(1) q = q.view(Tx, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3) k = k.view(Ty, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3) v = v.view(Ty, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3) aff = (q @ k.transpose(-2, -1) / (self.attn.head_dim ** 0.5)) aff = aff.softmax(dim=-1) out = aff @ v out = out.permute(2, 0, 1, 3).flatten(2) out = self.attn.out_proj(out) return out def forward(self, x: torch.Tensor, y: torch.Tensor): x = x + self.drop_path(self.attention(self.ln_1(x), self.ln_3(y))) x = x + self.drop_path(self.mlp(self.ln_2(x))) return x class TransformerDecoder_uniformer_diff_conv_balance(nn.Module): def __init__(self, n_layers=4, uni_layer=4, uni_type='3d', add_ffn=True, t_conv_type='1d', pre_prompt=True, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, t_size=8, spatial_size=14, balance=0., use_t_conv=True, after_me=True, before_me=False, me_type='dstm', me_reduction=4, use_t_pos_embed=True, num_classes=400): super().__init__() n_layers += uni_layer dpr = [x.item() for x in torch.linspace(0, drop_path_rate, n_layers)] self.uni_layer = uni_layer self.uni_dec = nn.ModuleList([ CBlock(n_dim, mlp_ratio=mlp_factor, dropout=mlp_dropout[i], drop_path=dpr[i], uni_type=uni_type, add_ffn=add_ffn) for i in range(uni_layer) ]) self.dec = nn.ModuleList([ ResidualDecoderBlock(n_dim, n_head, mlp_factor=mlp_factor, dropout=mlp_dropout[i], drop_path=dpr[i]) for i in range(n_layers) ]) self.proj = nn.Sequential( nn.LayerNorm(n_dim), nn.Dropout(cls_dropout), nn.Linear(n_dim, num_classes), ) self.pre_prompt = pre_prompt if pre_prompt: print('Add pre prompt') self.pre_temporal_cls_token = nn.Parameter(torch.zeros(n_dim)) self.temporal_cls_token = nn.Parameter(torch.zeros(n_dim)) if use_t_conv: self.t_conv_type = t_conv_type if t_conv_type == '1d': print('Use 1d t_conv for CPE') self.tconv = nn.ModuleList([ nn.Conv1d(n_dim, n_dim, kernel_size=3, stride=1, padding=1, bias=True, groups=n_dim) for i in range(n_layers) ]) for m in self.tconv: nn.init.constant_(m.bias, 0.) m.weight.data[...] = torch.Tensor([0, 1, 0]) else: print('Use 3d t_conv for CPE') self.tconv = nn.ModuleList([ nn.Conv3d(n_dim, n_dim, kernel_size=3, stride=1, padding=1, bias=True, groups=n_dim) for i in range(n_layers) ]) for m in self.tconv: nn.init.constant_(m.bias, 0.) else: self.tconv = None self.before_me = before_me self.after_me = after_me if before_me or after_me: assert before_me != after_me print(f'Use {me_type} attention, Before {before_me}, After {after_me}') if me_type == 'stm': me_op = STM elif me_type == 'dstm': me_op = DSTM elif me_type == 'tdn': me_op = TDN self.me = nn.ModuleList([me_op(n_dim, reduction=me_reduction) for i in range(n_layers)]) if use_t_pos_embed: self.pemb_t = nn.Parameter(torch.zeros([n_layers, t_size, n_dim])) else: self.pemb_t = None print(F'Balnce weight {balance}') self.balance = nn.Parameter(torch.ones((n_dim)) * balance) self.sigmoid = nn.Sigmoid() def forward(self, clip_feats_all, mode='video'): # clip_feats_all = clip_feats_all[-len(self.dec):] # only return n_layers features, save memory clip_feats = [x for x in clip_feats_all] if self.after_me: origin_clip_feats = [x for x in clip_feats_all] L, N, T, C = clip_feats[0].size() x = self.temporal_cls_token.view(1, 1, -1).repeat(1, N, 1) for i in range(len(clip_feats)): if self.before_me: # contain residual clip_feats[i] = self.me[i](clip_feats[i]) if self.tconv is not None: L, N, T, C = clip_feats[i].shape if self.t_conv_type == '1d': clip_feats[i] = clip_feats[i].permute(0, 1, 3, 2).flatten(0, 1) # L * N, C, T clip_feats[i] = self.tconv[i](clip_feats[i]).permute(0, 2, 1).contiguous().view(L, N, T, C) else: H = W = int((L - 1) ** 0.5) _, tmp_feats = clip_feats[i][:1], clip_feats[i][1:] tmp_feats = tmp_feats.permute(1, 3, 2, 0).reshape(N, C, T, H, W) tmp_feats = self.tconv[i](tmp_feats).view(N, C, T, L - 1).permute(3, 0, 2, 1) clip_feats[i][1:] = clip_feats[i][1:] + tmp_feats if self.pemb_t is not None and mode == 'video': clip_feats[i] = clip_feats[i] + self.pemb_t[i] if self.after_me: clip_feats[i] = clip_feats[i] + self.me[i](origin_clip_feats[i]) if i < self.uni_layer: # L, N, T, C L, N, T, C = clip_feats[i].shape H = W = int((L - 1) ** 0.5) _, tmp_feats = clip_feats[i][:1], clip_feats[i][1:] tmp_feats = tmp_feats.permute(1, 3, 2, 0).reshape(N, C, T, H, W) tmp_feats = self.uni_dec[i](tmp_feats).view(N, C, T, L - 1).permute(3, 0, 2, 1) clip_feats[i][1:] = clip_feats[i][1:] + tmp_feats clip_feats[i] = clip_feats[i].permute(2, 0, 1, 3).flatten(0, 1) # T * L, N, C if self.pre_prompt: pre_x = self.pre_temporal_cls_token.view(1, 1, -1).repeat(1, N, 1) for i in range(len(self.dec)): if i < self.uni_layer: pre_x = self.dec[i](pre_x, clip_feats[i]) elif i == self.uni_layer: clip_feats[i] = torch.cat([pre_x, clip_feats[i]], dim=0) x = self.dec[i](x, clip_feats[i]) else: x = self.dec[i](x, clip_feats[i]) else: for i in range(len(self.dec)): x = self.dec[i](x, clip_feats[i]) # real residual # L, N, T, C residual = clip_feats_all[-1][0].mean(1) weight = self.sigmoid(self.balance) return self.proj((1 - weight) * x[0, :, :] + weight * residual) if __name__ == '__main__': model = TransformerDecoder_uniformer_diff_conv_balance() # construct a fake input to demonstrate input tensor shape L, N, T, C = 197, 1, 8, 768 # num_image_tokens, video_batch_size, t_size, feature_dim # we use intermediate feature maps from multiple blocks, so input features should be a list input_features = [] for i in range(8): # vit-b has 12 blocks # every item in input_features contains features maps from a single block # every item is a tuple containing 3 feature maps: # (1) block output features (i.e. after mlp) with shape L, N, T, C # (2) projected query features with shape L, N, T, C # (3) projected key features with shape L, N, T, C input_features.append( tuple(torch.zeros([L, N, T, C]) for _ in range(3))) # some small optimizations: # (1) We only decode from the last $n$ blocks so it's good as long as the last $n$ items of input_features is valid and all previous items can be filled with None to save memory. By default $n=4$. # (2) projected query/key features are optional. If you are using an uncompatible image backbone without query/key (e.g. CNN), you can fill the position with None (i.e. the tuple should be (Tensor, None, None) and set use_image_attnmap=False when constructing the model. print(model) print(model(input_features).shape) # should be N, 400
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_kc_new/evl_utils/evl_module_uniformer_diff_conv_balance.py
#!/usr/bin/env python import os from collections import OrderedDict from timm.models.layers import DropPath import torch from torch import nn import torch.nn.functional as F import torch.utils.checkpoint as checkpoint from .attention import MultiheadAttention import logging logger = logging.getLogger(__name__) MODEL_PATH = '/mnt/lustre/share_data/likunchang.vendor/model' _MODELS = { "ViT-B/32": os.path.join(MODEL_PATH, "vit_b32.pth"), "ViT-B/16": os.path.join(MODEL_PATH, "vit_b16.pth"), "ViT-L/14": os.path.join(MODEL_PATH, "vit_l14.pth"), "ViT-L/14_336": os.path.join(MODEL_PATH, "vit_l14_336.pth"), } def conv_1x1x1(inp, oup, groups=1): return nn.Conv3d(inp, oup, (1, 1, 1), (1, 1, 1), (0, 0, 0), groups=groups) def conv_3x3x3(inp, oup, groups=1): return nn.Conv3d(inp, oup, (3, 3, 3), (1, 1, 1), (1, 1, 1), groups=groups) def conv_1x3x3(inp, oup, groups=1): return nn.Conv3d(inp, oup, (1, 3, 3), (1, 1, 1), (0, 1, 1), groups=groups) def bn_3d(dim): return nn.BatchNorm3d(dim) class LayerNorm(nn.LayerNorm): """Subclass torch's LayerNorm to handle fp16.""" def forward(self, x): orig_type = x.dtype ret = super().forward(x.type(torch.float32)) return ret.type(orig_type) class QuickGELU(nn.Module): def forward(self, x): return x * torch.sigmoid(1.702 * x) class ResidualAttentionBlock(nn.Module): def __init__( self, d_model, n_head, attn_mask=None, drop_path=0.0, ): super().__init__() self.n_head = n_head self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() logger.info(f'Drop path rate: {drop_path}') # spatial self.attn = MultiheadAttention(d_model, n_head) self.ln_1 = LayerNorm(d_model) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()), ("c_proj", nn.Linear(d_model * 4, d_model)) ])) self.ln_2 = LayerNorm(d_model) self.attn_mask = attn_mask def attention(self, x): self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] def forward(self, x, T=8, use_checkpoint=False): # x: 1+HW, NT, C # MHSA if use_checkpoint: attn_out = checkpoint.checkpoint(self.attention, self.ln_1(x)) x = x + self.drop_path(attn_out) else: x = x + self.drop_path(self.attention(self.ln_1(x))) # FFN if use_checkpoint: mlp_out = checkpoint.checkpoint(self.mlp, self.ln_2(x)) x = x + self.drop_path(mlp_out) else: x = x + self.drop_path(self.mlp(self.ln_2(x))) return x class Extractor(nn.Module): def __init__( self, d_model, n_head, attn_mask=None, mlp_factor=4.0, dropout=0.0, drop_path=0.0, ): super().__init__() self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() logger.info(f'Drop path rate: {drop_path}') self.attn = nn.MultiheadAttention(d_model, n_head) self.ln_1 = nn.LayerNorm(d_model) d_mlp = round(mlp_factor * d_model) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, d_mlp)), ("gelu", QuickGELU()), ("dropout", nn.Dropout(dropout)), ("c_proj", nn.Linear(d_mlp, d_model)) ])) self.ln_2 = nn.LayerNorm(d_model) self.ln_3 = nn.LayerNorm(d_model) self.attn_mask = attn_mask # zero init nn.init.xavier_uniform_(self.attn.in_proj_weight) nn.init.constant_(self.attn.out_proj.weight, 0.) nn.init.constant_(self.attn.out_proj.bias, 0.) nn.init.xavier_uniform_(self.mlp[0].weight) nn.init.constant_(self.mlp[-1].weight, 0.) nn.init.constant_(self.mlp[-1].bias, 0.) def attention(self, x: torch.Tensor, y: torch.Tensor): #self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None # return self.attn(x, y, y, need_weights=False, attn_mask=self.attn_mask)[0] assert self.attn_mask is None # not implemented # manual forward to add position information d_model = self.ln_1.weight.size(0) q = (x @ self.attn.in_proj_weight[:d_model].T) + self.attn.in_proj_bias[:d_model] k = (y @ self.attn.in_proj_weight[d_model:-d_model].T) + self.attn.in_proj_bias[d_model:-d_model] v = (y @ self.attn.in_proj_weight[-d_model:].T) + self.attn.in_proj_bias[-d_model:] Tx, Ty, N = q.size(0), k.size(0), q.size(1) q = q.view(Tx, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3) k = k.view(Ty, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3) v = v.view(Ty, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3) aff = (q @ k.transpose(-2, -1) / (self.attn.head_dim ** 0.5)) aff = aff.softmax(dim=-1) out = aff @ v out = out.permute(2, 0, 1, 3).flatten(2) out = self.attn.out_proj(out) return out def forward(self, x: torch.Tensor, y: torch.Tensor): x = x + self.drop_path(self.attention(self.ln_1(x), self.ln_3(y))) x = x + self.drop_path(self.mlp(self.ln_2(x))) return x class Transformer(nn.Module): def __init__( self, width, layers, heads, attn_mask=None, backbone_drop_path_rate=0., use_checkpoint=False, checkpoint_num=[0], t_size=8, return_list=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], n_layers=12, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, num_classes=400, ): super().__init__() self.T = t_size self.return_list = return_list # Backbone b_dpr = [x.item() for x in torch.linspace(0, backbone_drop_path_rate, layers)] self.resblocks = nn.ModuleList([ ResidualAttentionBlock( width, heads, attn_mask, drop_path=b_dpr[i], ) for i in range(layers) ]) # checkpoint self.use_checkpoint = use_checkpoint self.checkpoint_num = checkpoint_num logger.info(f'Use checkpoint: {self.use_checkpoint}') logger.info(f'Checkpoint number: {self.checkpoint_num}') # Extractor assert n_layers == len(return_list) self.temporal_cls_token = nn.Parameter(torch.zeros(1, 1, n_dim)) self.dpe = nn.ModuleList([ nn.Conv3d(n_dim, n_dim, kernel_size=3, stride=1, padding=1, bias=True, groups=n_dim) for i in range(n_layers) ]) for m in self.dpe: nn.init.constant_(m.bias, 0.) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, n_layers)] self.dec = nn.ModuleList([ Extractor( n_dim, n_head, mlp_factor=mlp_factor, dropout=mlp_dropout[i], drop_path=dpr[i], ) for i in range(n_layers) ]) # # projection # self.proj = nn.Sequential( # nn.LayerNorm(n_dim), # nn.Dropout(cls_dropout), # nn.Linear(n_dim, num_classes), # ) self.balance = nn.Parameter(torch.zeros((n_dim))) self.sigmoid = nn.Sigmoid() def forward(self, x, mode='video', return_all_feats=False): if mode == 'video': T_down = self.T else: T_down = 1 L, NT, C = x.shape N = NT // T_down H = W = int((L - 1) ** 0.5) cls_token = self.temporal_cls_token.repeat(1, N, 1) j = -1 for i, resblock in enumerate(self.resblocks): if self.use_checkpoint and i < self.checkpoint_num[0]: x = resblock(x, self.T, use_checkpoint=True) else: x = resblock(x, T_down) if i in self.return_list: j += 1 tmp_x = x.clone() tmp_x = tmp_x.view(L, N, T_down, C) # dpe _, tmp_feats = tmp_x[:1], tmp_x[1:] tmp_feats = tmp_feats.permute(1, 3, 2, 0).reshape(N, C, T_down, H, W) tmp_feats = self.dpe[j](tmp_feats).view(N, C, T_down, L - 1).permute(3, 0, 2, 1) tmp_x[1:] = tmp_x[1:] + tmp_feats # enhancer tmp_x = tmp_x.permute(2, 0, 1, 3).flatten(0, 1) # T * L, N, C cls_token = self.dec[j](cls_token, tmp_x) weight = self.sigmoid(self.balance) residual = x.view(L, N, T_down, C)[0].mean(1) # L, N, T, C # return self.proj((1 - weight) * cls_token[0, :, :] + weight * residual) feats = (1 - weight) * cls_token[0, :, :] + weight * residual if return_all_feats: return feats, x.view(L, N, T_down, C) return feats class VisionTransformer(nn.Module): def __init__( self, # backbone input_resolution, patch_size, width, layers, heads, output_dim, backbone_drop_path_rate=0., use_checkpoint=False, checkpoint_num=[0], t_size=8, # extractor return_list=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], n_layers=12, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, num_classes=400, ): super().__init__() self.input_resolution = input_resolution self.output_dim = output_dim self.conv1 = nn.Conv3d(3, width, (1, patch_size, patch_size), (1, patch_size, patch_size), (0, 0, 0), bias=False) scale = width ** -0.5 self.class_embedding = nn.Parameter(scale * torch.randn(width)) self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width)) self.ln_pre = LayerNorm(width) self.transformer = Transformer( width, layers, heads, backbone_drop_path_rate=backbone_drop_path_rate, use_checkpoint=use_checkpoint, checkpoint_num=checkpoint_num, t_size=t_size, return_list=return_list, n_layers=n_layers, n_dim=n_dim, n_head=n_head, mlp_factor=mlp_factor, drop_path_rate=drop_path_rate, mlp_dropout=mlp_dropout, cls_dropout=cls_dropout, num_classes=num_classes, ) def forward(self, x, mode='video', return_all_feats=False): x = self.conv1(x) # shape = [*, width, grid, grid] N, C, T, H, W = x.shape x = x.permute(0, 2, 3, 4, 1).reshape(N * T, H * W, C) x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width] x = x + self.positional_embedding.to(x.dtype) x = self.ln_pre(x) x = x.permute(1, 0, 2) # NLD -> LND out = self.transformer(x, mode=mode, return_all_feats=return_all_feats) return out def inflate_weight(weight_2d, time_dim, center=True): if center: weight_3d = torch.zeros(*weight_2d.shape) weight_3d = weight_3d.unsqueeze(2).repeat(1, 1, time_dim, 1, 1) middle_idx = time_dim // 2 weight_3d[:, :, middle_idx, :, :] = weight_2d else: weight_3d = weight_2d.unsqueeze(2).repeat(1, 1, time_dim, 1, 1) weight_3d = weight_3d / time_dim return weight_3d def load_state_dict(model, state_dict): state_dict_3d = model.state_dict() for k in state_dict.keys(): if state_dict[k].shape != state_dict_3d[k].shape: if len(state_dict_3d[k].shape) <= 2: logger.info(f'Ignore: {k}') continue logger.info(f'Inflate: {k}, {state_dict[k].shape} => {state_dict_3d[k].shape}') time_dim = state_dict_3d[k].shape[2] state_dict[k] = inflate_weight(state_dict[k], time_dim) model.load_state_dict(state_dict, strict=False) def vit_only_global_b32( pretrained=True, use_checkpoint=False, checkpoint_num=[0], t_size=16, backbone_drop_path_rate=0., return_list=[8, 9, 10, 11], n_layers=4, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, num_classes=400, ): model = VisionTransformer( input_resolution=224, patch_size=32, width=768, layers=12, heads=12, output_dim=512, use_checkpoint=use_checkpoint, checkpoint_num=checkpoint_num, t_size=t_size, backbone_drop_path_rate=backbone_drop_path_rate, return_list=return_list, n_layers=n_layers, n_dim=n_dim, n_head=n_head, mlp_factor=mlp_factor, drop_path_rate=drop_path_rate, mlp_dropout=mlp_dropout, cls_dropout=cls_dropout, num_classes=num_classes, ) if pretrained: logger.info('load pretrained weights') state_dict = torch.load(_MODELS["ViT-B/32"], map_location='cpu') load_state_dict(model, state_dict) return model.eval() def vit_only_global_b16( pretrained=True, use_checkpoint=False, checkpoint_num=[0], t_size=16, backbone_drop_path_rate=0., return_list=[8, 9, 10, 11], n_layers=4, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, num_classes=400, ): model = VisionTransformer( input_resolution=224, patch_size=16, width=768, layers=12, heads=12, output_dim=512, use_checkpoint=use_checkpoint, checkpoint_num=checkpoint_num, t_size=t_size, backbone_drop_path_rate=backbone_drop_path_rate, return_list=return_list, n_layers=n_layers, n_dim=n_dim, n_head=n_head, mlp_factor=mlp_factor, drop_path_rate=drop_path_rate, mlp_dropout=mlp_dropout, cls_dropout=cls_dropout, num_classes=num_classes, ) if pretrained: logger.info('load pretrained weights') state_dict = torch.load(_MODELS["ViT-B/16"], map_location='cpu') load_state_dict(model, state_dict) return model.eval() def vit_only_global_l14( pretrained=True, use_checkpoint=False, checkpoint_num=[0], t_size=16, backbone_drop_path_rate=0., return_list=[20, 21, 22, 23], n_layers=4, n_dim=1024, n_head=16, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, num_classes=400, ): model = VisionTransformer( input_resolution=224, patch_size=14, width=1024, layers=24, heads=16, output_dim=768, use_checkpoint=use_checkpoint, checkpoint_num=checkpoint_num, t_size=t_size, backbone_drop_path_rate=backbone_drop_path_rate, return_list=return_list, n_layers=n_layers, n_dim=n_dim, n_head=n_head, mlp_factor=mlp_factor, drop_path_rate=drop_path_rate, mlp_dropout=mlp_dropout, cls_dropout=cls_dropout, num_classes=num_classes, ) if pretrained: logger.info('load pretrained weights') state_dict = torch.load(_MODELS["ViT-L/14"], map_location='cpu') load_state_dict(model, state_dict) return model.eval() def vit_only_global_l14_336( pretrained=True, use_checkpoint=False, checkpoint_num=[0], t_size=16, backbone_drop_path_rate=0., return_list=[20, 21, 22, 23], n_layers=4, n_dim=1024, n_head=16, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, num_classes=400, ): model = VisionTransformer( input_resolution=336, patch_size=14, width=1024, layers=24, heads=16, output_dim=768, use_checkpoint=use_checkpoint, checkpoint_num=checkpoint_num, t_size=t_size, backbone_drop_path_rate=backbone_drop_path_rate, return_list=return_list, n_layers=n_layers, n_dim=n_dim, n_head=n_head, mlp_factor=mlp_factor, drop_path_rate=drop_path_rate, mlp_dropout=mlp_dropout, cls_dropout=cls_dropout, num_classes=num_classes, ) if pretrained: logger.info('load pretrained weights') state_dict = torch.load(_MODELS["ViT-L/14_336"], map_location='cpu') load_state_dict(model, state_dict) return model.eval() if __name__ == '__main__': import time from fvcore.nn import FlopCountAnalysis from fvcore.nn import flop_count_table import numpy as np seed = 4217 np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) num_frames = 8 model = vit_only_global_l14( pretrained=False, t_size=num_frames, backbone_drop_path_rate=0.2, drop_path_rate=0.4, use_checkpoint=True, checkpoint_num=[0], ) flops = FlopCountAnalysis(model, torch.rand(1, 3, num_frames, 224, 224)) s = time.time() logger.info(flop_count_table(flops, max_depth=1)) logger.info(time.time()-s)
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_kc_new/evl_utils/clip_vit_only_global.py
#!/usr/bin/env python import os from collections import OrderedDict from timm.models.layers import DropPath import torch from torch import nn import torch.utils.checkpoint as checkpoint from .attention import MultiheadAttention MODEL_PATH = '/mnt/lustre/share_data/likunchang.vendor/model' _MODELS = { "ViT-B/32": os.path.join(MODEL_PATH, "vit_b32.pth"), "ViT-B/16": os.path.join(MODEL_PATH, "vit_b16.pth"), "ViT-L/14": os.path.join(MODEL_PATH, "vit_l14.pth"), "ViT-L/14_336": os.path.join(MODEL_PATH, "vit_l14_336.pth"), } class LayerNorm(nn.LayerNorm): """Subclass torch's LayerNorm to handle fp16.""" def forward(self, x): orig_type = x.dtype ret = super().forward(x.type(torch.float32)) return ret.type(orig_type) class QuickGELU(nn.Module): def forward(self, x): return x * torch.sigmoid(1.702 * x) class ResidualAttentionBlock(nn.Module): def __init__(self, d_model, n_head, attn_mask=None, drop_path=0.0): super().__init__() self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() print(f'Drop path rate: {drop_path}') self.attn = MultiheadAttention(d_model, n_head) self.ln_1 = LayerNorm(d_model) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()), ("c_proj", nn.Linear(d_model * 4, d_model)) ])) self.ln_2 = LayerNorm(d_model) self.attn_mask = attn_mask def attention(self, x, return_qk=False): if return_qk: self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None q, k, attn_output, _ = self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask, return_qk=True) return q, k, attn_output else: self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] def forward(self, x, return_qk=False): if return_qk: q, k, attn_output = self.attention(self.ln_1(x), return_qk=True) x = x + self.drop_path(attn_output) x = x + self.drop_path(self.mlp(self.ln_2(x))) return x, q, k else: x = x + self.drop_path(self.attention(self.ln_1(x))) x = x + self.drop_path(self.mlp(self.ln_2(x))) return x class Transformer(nn.Module): def __init__(self, width, layers, heads, attn_mask=None, drop_path_rate=0.): super().__init__() self.width = width self.layers = layers dpr = [x.item() for x in torch.linspace(0, drop_path_rate, layers)] self.resblocks = nn.ModuleList([ ResidualAttentionBlock(width, heads, attn_mask, drop_path=dpr[i]) for i in range(layers) ]) def forward(self, x, return_num=4, T=8): features = [] for i, resblock in enumerate(self.resblocks): x = resblock(x) if i >= self.layers - return_num: L, NT, C = x.shape N = NT // T features.append(x.view(L, N, T, C)) return features class VisionTransformer(nn.Module): def __init__( self, input_resolution, patch_size, width, layers, heads, output_dim, drop_path_rate=0., ): super().__init__() self.input_resolution = input_resolution self.output_dim = output_dim self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False) scale = width ** -0.5 self.class_embedding = nn.Parameter(scale * torch.randn(width)) self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width)) self.ln_pre = LayerNorm(width) self.transformer = Transformer(width, layers, heads, drop_path_rate=drop_path_rate) def forward(self, x, return_num=4, return_qk=True): N, C, T, H, W = x.shape x = x.permute(0, 2, 1, 3, 4).reshape(N * T, C, H, W) x = self.conv1(x) # shape = [*, width, grid, grid] x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width] x = x + self.positional_embedding.to(x.dtype) x = self.ln_pre(x) x = x.permute(1, 0, 2) # NLD -> LND features = self.transformer( x, return_num=return_num, T=T, ) return features def vit_b32(pretrained=True, drop_path_rate=0.): model = VisionTransformer( input_resolution=224, patch_size=32, width=768, layers=12, heads=12, output_dim=512, drop_path_rate=drop_path_rate ) if pretrained: print('load pretrained weights') state_dict = torch.load(_MODELS["ViT-B/32"], map_location='cpu') model.load_state_dict(state_dict) return model.eval() def vit_b16(pretrained=True, drop_path_rate=0.): model = VisionTransformer( input_resolution=224, patch_size=16, width=768, layers=12, heads=12, output_dim=512, drop_path_rate=drop_path_rate ) if pretrained: print('load pretrained weights') state_dict = torch.load(_MODELS["ViT-B/16"], map_location='cpu') model.load_state_dict(state_dict) return model.eval() def vit_l14(pretrained=True, drop_path_rate=0.): model = VisionTransformer( input_resolution=224, patch_size=14, width=1024, layers=24, heads=16, output_dim=768, drop_path_rate=drop_path_rate ) if pretrained: print('load pretrained weights') state_dict = torch.load(_MODELS["ViT-L/14"], map_location='cpu') model.load_state_dict(state_dict) return model.eval() def vit_l14_336(pretrained=True, drop_path_rate=0.): model = VisionTransformer( input_resolution=336, patch_size=14, width=1024, layers=24, heads=16, output_dim=768, drop_path_rate=drop_path_rate ) if pretrained: print('load pretrained weights') state_dict = torch.load(_MODELS["ViT-L/14_336"], map_location='cpu') model.load_state_dict(state_dict) return model.eval() if __name__ == '__main__': import time from fvcore.nn import FlopCountAnalysis from fvcore.nn import flop_count_table model = vit_b32(pretrained=True) flops = FlopCountAnalysis(model, torch.rand(1, 3, 8, 224, 224)) s = time.time() print(flop_count_table(flops, max_depth=1)) print(time.time()-s)
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_kc_new/evl_utils/clip_vit.py
from .evl_module import TransformerDecoder from .evl_module_uniformer_diff_conv_balance import TransformerDecoder_uniformer_diff_conv_balance from .clip_vit import vit_b32, vit_b16, vit_l14, vit_l14_336 from .clip_vit_2plus1d import vit_2plus1d_b32, vit_2plus1d_b16, vit_2plus1d_l14, vit_2plus1d_l14_336 from .clip_vit_2plus1d_dw_bias import vit_2plus1d_dw_bias_b32, vit_2plus1d_dw_bias_b16, vit_2plus1d_dw_bias_l14, vit_2plus1d_dw_bias_l14_336 from .clip_vit_fusion import vit_fusion_b32, vit_fusion_b16, vit_fusion_l14, vit_fusion_l14_336 from .clip_vit_only_global import vit_only_global_b32, vit_only_global_b16, vit_only_global_l14, vit_only_global_l14_336
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_kc_new/evl_utils/__init__.py
r"""Functional interface""" import warnings import math import torch from torch import _VF from torch._jit_internal import Optional, Tuple from torch.overrides import has_torch_function, handle_torch_function from torch.nn.functional import _pad, linear, softmax, dropout Tensor = torch.Tensor pad = _pad def multi_head_attention_forward(query: Tensor, key: Tensor, value: Tensor, embed_dim_to_check: int, num_heads: int, in_proj_weight: Tensor, in_proj_bias: Tensor, bias_k: Optional[Tensor], bias_v: Optional[Tensor], add_zero_attn: bool, dropout_p: float, out_proj_weight: Tensor, out_proj_bias: Tensor, training: bool = True, key_padding_mask: Optional[Tensor] = None, need_weights: bool = True, attn_mask: Optional[Tensor] = None, use_separate_proj_weight: bool = False, q_proj_weight: Optional[Tensor] = None, k_proj_weight: Optional[Tensor] = None, v_proj_weight: Optional[Tensor] = None, static_k: Optional[Tensor] = None, static_v: Optional[Tensor] = None, return_qk: bool = False ) -> Tuple[Tensor, Optional[Tensor]]: r""" Args: query, key, value: map a query and a set of key-value pairs to an output. See "Attention Is All You Need" for more details. embed_dim_to_check: total dimension of the model. num_heads: parallel attention heads. in_proj_weight, in_proj_bias: input projection weight and bias. bias_k, bias_v: bias of the key and value sequences to be added at dim=0. add_zero_attn: add a new batch of zeros to the key and value sequences at dim=1. dropout_p: probability of an element to be zeroed. out_proj_weight, out_proj_bias: the output projection weight and bias. training: apply dropout if is ``True``. key_padding_mask: if provided, specified padding elements in the key will be ignored by the attention. This is an binary mask. When the value is True, the corresponding value on the attention layer will be filled with -inf. need_weights: output attn_output_weights. attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all the batches while a 3D mask allows to specify a different mask for the entries of each batch. use_separate_proj_weight: the function accept the proj. weights for query, key, and value in different forms. If false, in_proj_weight will be used, which is a combination of q_proj_weight, k_proj_weight, v_proj_weight. q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias. static_k, static_v: static key and value used for attention operators. Shape: Inputs: - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is the embedding dimension. - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions will be unchanged. If a BoolTensor is provided, the positions with the value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length. 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor is provided, it will be added to the attention weight. - static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. E/num_heads is the head dimension. - static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. E/num_heads is the head dimension. - return_qk: whether return Q and K. Outputs: - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - attn_output_weights: :math:`(N, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. """ if not torch.jit.is_scripting(): tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v, out_proj_weight, out_proj_bias) if any([type(t) is not Tensor for t in tens_ops]) and has_torch_function(tens_ops): return handle_torch_function( multi_head_attention_forward, tens_ops, query, key, value, embed_dim_to_check, num_heads, in_proj_weight, in_proj_bias, bias_k, bias_v, add_zero_attn, dropout_p, out_proj_weight, out_proj_bias, training=training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, use_separate_proj_weight=use_separate_proj_weight, q_proj_weight=q_proj_weight, k_proj_weight=k_proj_weight, v_proj_weight=v_proj_weight, static_k=static_k, static_v=static_v) tgt_len, bsz, embed_dim = query.size() assert embed_dim == embed_dim_to_check # allow MHA to have different sizes for the feature dimension assert key.size(0) == value.size(0) and key.size(1) == value.size(1) head_dim = embed_dim // num_heads assert head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads" scaling = float(head_dim) ** -0.5 if not use_separate_proj_weight: if torch.equal(query, key) and torch.equal(key, value): # self-attention q, k, v = linear(query, in_proj_weight, in_proj_bias).chunk(3, dim=-1) elif torch.equal(key, value): # encoder-decoder attention # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = 0 _end = embed_dim _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] q = linear(query, _w, _b) if key is None: assert value is None k = None v = None else: # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = embed_dim _end = None _w = in_proj_weight[_start:, :] if _b is not None: _b = _b[_start:] k, v = linear(key, _w, _b).chunk(2, dim=-1) else: # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = 0 _end = embed_dim _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] q = linear(query, _w, _b) # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = embed_dim _end = embed_dim * 2 _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] k = linear(key, _w, _b) # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = embed_dim * 2 _end = None _w = in_proj_weight[_start:, :] if _b is not None: _b = _b[_start:] v = linear(value, _w, _b) else: q_proj_weight_non_opt = torch.jit._unwrap_optional(q_proj_weight) len1, len2 = q_proj_weight_non_opt.size() assert len1 == embed_dim and len2 == query.size(-1) k_proj_weight_non_opt = torch.jit._unwrap_optional(k_proj_weight) len1, len2 = k_proj_weight_non_opt.size() assert len1 == embed_dim and len2 == key.size(-1) v_proj_weight_non_opt = torch.jit._unwrap_optional(v_proj_weight) len1, len2 = v_proj_weight_non_opt.size() assert len1 == embed_dim and len2 == value.size(-1) if in_proj_bias is not None: q = linear(query, q_proj_weight_non_opt, in_proj_bias[0:embed_dim]) k = linear(key, k_proj_weight_non_opt, in_proj_bias[embed_dim:(embed_dim * 2)]) v = linear(value, v_proj_weight_non_opt, in_proj_bias[(embed_dim * 2):]) else: q = linear(query, q_proj_weight_non_opt, in_proj_bias) k = linear(key, k_proj_weight_non_opt, in_proj_bias) v = linear(value, v_proj_weight_non_opt, in_proj_bias) q = q * scaling if attn_mask is not None: assert attn_mask.dtype == torch.float32 or attn_mask.dtype == torch.float64 or \ attn_mask.dtype == torch.float16 or attn_mask.dtype == torch.uint8 or attn_mask.dtype == torch.bool, \ 'Only float, byte, and bool types are supported for attn_mask, not {}'.format(attn_mask.dtype) if attn_mask.dtype == torch.uint8: warnings.warn("Byte tensor for attn_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.") attn_mask = attn_mask.to(torch.bool) if attn_mask.dim() == 2: attn_mask = attn_mask.unsqueeze(0) if list(attn_mask.size()) != [1, query.size(0), key.size(0)]: raise RuntimeError('The size of the 2D attn_mask is not correct.') elif attn_mask.dim() == 3: if list(attn_mask.size()) != [bsz * num_heads, query.size(0), key.size(0)]: raise RuntimeError('The size of the 3D attn_mask is not correct.') else: raise RuntimeError("attn_mask's dimension {} is not supported".format(attn_mask.dim())) # attn_mask's dim is 3 now. # convert ByteTensor key_padding_mask to bool if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8: warnings.warn("Byte tensor for key_padding_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.") key_padding_mask = key_padding_mask.to(torch.bool) if bias_k is not None and bias_v is not None: if static_k is None and static_v is None: k = torch.cat([k, bias_k.repeat(1, bsz, 1)]) v = torch.cat([v, bias_v.repeat(1, bsz, 1)]) if attn_mask is not None: attn_mask = pad(attn_mask, (0, 1)) if key_padding_mask is not None: key_padding_mask = pad(key_padding_mask, (0, 1)) else: assert static_k is None, "bias cannot be added to static key." assert static_v is None, "bias cannot be added to static value." else: assert bias_k is None assert bias_v is None # L, N, E if return_qk: return_q = q.clone() / scaling return_k = k.clone() q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1) if k is not None: k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1) if v is not None: v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1) if static_k is not None: assert static_k.size(0) == bsz * num_heads assert static_k.size(2) == head_dim k = static_k if static_v is not None: assert static_v.size(0) == bsz * num_heads assert static_v.size(2) == head_dim v = static_v src_len = k.size(1) if key_padding_mask is not None: assert key_padding_mask.size(0) == bsz assert key_padding_mask.size(1) == src_len if add_zero_attn: src_len += 1 k = torch.cat([k, torch.zeros((k.size(0), 1) + k.size()[2:], dtype=k.dtype, device=k.device)], dim=1) v = torch.cat([v, torch.zeros((v.size(0), 1) + v.size()[2:], dtype=v.dtype, device=v.device)], dim=1) if attn_mask is not None: attn_mask = pad(attn_mask, (0, 1)) if key_padding_mask is not None: key_padding_mask = pad(key_padding_mask, (0, 1)) attn_output_weights = torch.bmm(q, k.transpose(1, 2)) assert list(attn_output_weights.size()) == [bsz * num_heads, tgt_len, src_len] if attn_mask is not None: if attn_mask.dtype == torch.bool: attn_output_weights.masked_fill_(attn_mask, float('-inf')) else: attn_output_weights += attn_mask if key_padding_mask is not None: attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) attn_output_weights = attn_output_weights.masked_fill( key_padding_mask.unsqueeze(1).unsqueeze(2), float('-inf'), ) attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, src_len) attn_output_weights = softmax( attn_output_weights, dim=-1) attn_output_weights = dropout(attn_output_weights, p=dropout_p, training=training) attn_output = torch.bmm(attn_output_weights, v) assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim] attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) attn_output = linear(attn_output, out_proj_weight, out_proj_bias) if return_qk: if need_weights: # average attention weights over heads attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) return return_q, return_k, attn_output, attn_output_weights.sum(dim=1) / num_heads else: return return_q, return_k, attn_output, None else: if need_weights: # average attention weights over heads attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) return attn_output, attn_output_weights.sum(dim=1) / num_heads else: return attn_output, None
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_kc_new/evl_utils/attention_module.py
import os from collections import OrderedDict from timm.models.layers import DropPath import torch from torch import nn from einops import rearrange from .attention import MultiheadAttention MODEL_PATH = '/mnt/lustre/share_data/likunchang.vendor/model' _MODELS = { "ViT-B/32": os.path.join(MODEL_PATH, "vit_b32.pth"), "ViT-B/16": os.path.join(MODEL_PATH, "vit_b16.pth"), "ViT-L/14": os.path.join(MODEL_PATH, "vit_l14.pth"), "ViT-L/14_336": os.path.join(MODEL_PATH, "vit_l14_336.pth"), } class LayerNorm(nn.LayerNorm): """Subclass torch's LayerNorm to handle fp16.""" def forward(self, x): orig_type = x.dtype ret = super().forward(x.type(torch.float32)) return ret.type(orig_type) class QuickGELU(nn.Module): def forward(self, x): return x * torch.sigmoid(1.702 * x) class ResidualAttentionBlock(nn.Module): def __init__(self, d_model, n_head, attn_mask=None, drop_path=0.0): super().__init__() self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() print(f'Drop path rate: {drop_path}') # temporal self.attn_t = MultiheadAttention(d_model, n_head) self.ln_t = LayerNorm(d_model) # spatial self.attn = MultiheadAttention(d_model, n_head) self.ln_1 = LayerNorm(d_model) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()), ("c_proj", nn.Linear(d_model * 4, d_model)) ])) self.ln_2 = LayerNorm(d_model) self.attn_mask = attn_mask # init zero print('Init zero for (2+1)d') nn.init.constant_(self.attn_t.in_proj_weight, 0) nn.init.constant_(self.attn_t.in_proj_bias, 0) nn.init.constant_(self.attn_t.out_proj.weight, 1) nn.init.constant_(self.attn_t.out_proj.bias, 0) def attention(self, x): self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] def attention_temporal(self, x): self.attn_mask = None return self.attn_t(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] def forward(self, x, T=8): # temporal # x: 1+HWT, N, C xt = x[1:, :, :] _, N, C = xt.shape xt = rearrange(xt, '(l t) n c -> t (n l) c', n=N, t=T) res_temporal = self.attention_temporal(self.ln_t(xt)) res_temporal = rearrange(res_temporal, 't (n l) c -> (l t) n c', n=N, t=T) xt = x[1:, :, :] + self.drop_path(res_temporal) # spatial init_cls_token = x[:1, :, :] cls_token = init_cls_token.repeat(1, T, 1).view(1, T*N, C) xs = rearrange(xt, '(l t) n c -> l (t n) c', n=N, t=T) xs = torch.cat((cls_token, xs), 0) res_spatial = self.attention(self.ln_1(xs)) # Taking care of CLS token cls_token = res_spatial[0, :, :] cls_token = rearrange(cls_token, '(t n) c -> t n c', n=N) cls_token = torch.mean(cls_token, 0, True) # averaging for every frame res_spatial = res_spatial[1:, :, :] res_spatial = rearrange(res_spatial, 'l (t n) c -> (l t) n c', n=N) x = x + self.drop_path(torch.cat((cls_token, res_spatial), 0)) x = x + self.drop_path(self.mlp(self.ln_2(x))) return x class Transformer(nn.Module): def __init__(self, width, layers, heads, attn_mask=None, drop_path_rate=0.): super().__init__() self.width = width self.layers = layers dpr = [x.item() for x in torch.linspace(0, drop_path_rate, layers)] self.resblocks = nn.ModuleList([ ResidualAttentionBlock(width, heads, attn_mask, drop_path=dpr[i]) for i in range(layers) ]) def forward(self, x, return_num=4, T=8): features = [] for i, resblock in enumerate(self.resblocks): x = resblock(x, T=T) if i >= self.layers - return_num: # LT + 1, N, C LT, N, C = x.shape L = (LT - 1) // T cls_x, tmp_x = x[:1], x[1:] cls_x = cls_x.unsqueeze(2).repeat(1, 1, T, 1) tmp_x = tmp_x.reshape(L, T, N, C).permute(0, 2, 1, 3) # L, N, T, C tmp_x = torch.cat([cls_x, tmp_x], dim=0 )# L + 1, N, T, C features.append(tmp_x) return features class VisionTransformer(nn.Module): def __init__( self, input_resolution, patch_size, width, layers, heads, output_dim, num_frames=8, drop_path_rate=0., ): super().__init__() self.input_resolution = input_resolution self.output_dim = output_dim self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False) scale = width ** -0.5 self.class_embedding = nn.Parameter(scale * torch.randn(width)) self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width)) self.temporal_positional_embedding = nn.Parameter(torch.zeros(1, num_frames, width)) self.ln_pre = LayerNorm(width) self.transformer = Transformer(width, layers, heads, drop_path_rate=drop_path_rate) def forward(self, x, return_num=4): N, C, T, H, W = x.shape x = x.permute(0, 2, 1, 3, 4).reshape(N * T, C, H, W) x = self.conv1(x) # shape = [*, width, grid, grid] x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width] x = x + self.positional_embedding.to(x.dtype) cls_tokens = x[:N, :1, :] x = x[:, 1:] x = rearrange(x, '(b t) n c -> (b n) t c', b=N, t=T) x = x + self.temporal_positional_embedding x = rearrange(x, '(b n) t c -> b (n t) c', b=N, t=T) x = torch.cat((cls_tokens, x), dim=1) x = self.ln_pre(x) x = x.permute(1, 0, 2) # NLD -> LND features = self.transformer( x, return_num=return_num, T=T, ) return features def vit_2plus1d_b32(pretrained=True, num_frames=8, drop_path_rate=0.): model = VisionTransformer( input_resolution=224, patch_size=32, width=768, layers=12, heads=12, output_dim=512, num_frames=num_frames, drop_path_rate=drop_path_rate ) if pretrained: print('load pretrained weights') state_dict = torch.load(_MODELS["ViT-B/32"], map_location='cpu') model.load_state_dict(state_dict, strict=False) return model.eval() def vit_2plus1d_b16(pretrained=True, num_frames=8, drop_path_rate=0.): model = VisionTransformer( input_resolution=224, patch_size=16, width=768, layers=12, heads=12, output_dim=512, num_frames=num_frames, drop_path_rate=drop_path_rate, ) if pretrained: print('load pretrained weights') state_dict = torch.load(_MODELS["ViT-B/16"], map_location='cpu') model.load_state_dict(state_dict, strict=False) return model.eval() def vit_2plus1d_l14(pretrained=True, num_frames=8, drop_path_rate=0.): model = VisionTransformer( input_resolution=224, patch_size=14, width=1024, layers=24, heads=16, output_dim=768, num_frames=num_frames, drop_path_rate=drop_path_rate ) if pretrained: print('load pretrained weights') state_dict = torch.load(_MODELS["ViT-L/14"], map_location='cpu') model.load_state_dict(state_dict, strict=False) return model.eval() def vit_2plus1d_l14_336(pretrained=True, num_frames=8, drop_path_rate=0.): model = VisionTransformer( input_resolution=336, patch_size=14, width=1024, layers=24, heads=16, output_dim=768, num_frames=num_frames, drop_path_rate=drop_path_rate ) if pretrained: print('load pretrained weights') state_dict = torch.load(_MODELS["ViT-L/14_336"], map_location='cpu') model.load_state_dict(state_dict, strict=False) return model.eval() if __name__ == '__main__': import time from fvcore.nn import FlopCountAnalysis from fvcore.nn import flop_count_table model = vit_2plus1d_b32(pretrained=True) flops = FlopCountAnalysis(model, torch.rand(1, 3, 8, 224, 224)) s = time.time() print(flop_count_table(flops, max_depth=1)) print(time.time()-s)
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_kc_new/evl_utils/clip_vit_2plus1d.py
#!/usr/bin/env python import os from collections import OrderedDict from timm.models.layers import DropPath import torch from torch import nn import torch.nn.functional as F import torch.utils.checkpoint as checkpoint from .attention import MultiheadAttention from ipdb import set_trace MODEL_PATH = '/mnt/lustre/share_data/likunchang.vendor/model' _MODELS = { "ViT-B/32": os.path.join(MODEL_PATH, "vit_b32.pth"), "ViT-B/16": os.path.join(MODEL_PATH, "vit_b16.pth"), "ViT-L/14": os.path.join(MODEL_PATH, "vit_l14.pth"), "ViT-L/14_336": os.path.join(MODEL_PATH, "vit_l14_336.pth"), } def conv_1x1x1(inp, oup, groups=1): return nn.Conv3d(inp, oup, (1, 1, 1), (1, 1, 1), (0, 0, 0), groups=groups) def conv_3x3x3(inp, oup, groups=1): return nn.Conv3d(inp, oup, (3, 3, 3), (1, 1, 1), (1, 1, 1), groups=groups) def conv_1x3x3(inp, oup, groups=1): return nn.Conv3d(inp, oup, (1, 3, 3), (1, 1, 1), (0, 1, 1), groups=groups) def bn_3d(dim): return nn.BatchNorm3d(dim) class LayerNorm(nn.LayerNorm): """Subclass torch's LayerNorm to handle fp16.""" def forward(self, x): orig_type = x.dtype ret = super().forward(x.type(torch.float32)) return ret.type(orig_type) class QuickGELU(nn.Module): def forward(self, x): return x * torch.sigmoid(1.702 * x) class Local_MHRA(nn.Module): def __init__(self, d_model, dw_reduction=1.5, pos_kernel_size=3): super().__init__() padding = pos_kernel_size // 2 re_d_model = int(d_model // dw_reduction) self.pos_embed = nn.Sequential( nn.BatchNorm3d(d_model), nn.Conv3d(d_model, re_d_model, kernel_size=1, stride=1, padding=0), nn.Conv3d(re_d_model, re_d_model, kernel_size=(pos_kernel_size, 1, 1), stride=(1, 1, 1), padding=(padding, 0, 0), groups=re_d_model), nn.Conv3d(re_d_model, d_model, kernel_size=1, stride=1, padding=0), ) # init zero print('Init zero for Conv in pos_emb') nn.init.constant_(self.pos_embed[3].weight, 0) nn.init.constant_(self.pos_embed[3].bias, 0) def forward(self, x): return self.pos_embed(x) class ResidualAttentionBlock(nn.Module): def __init__( self, d_model, n_head, attn_mask=None, drop_path=0.0, dw_reduction=1.5, ): super().__init__() self.n_head = n_head self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() print(f'Drop path rate: {drop_path}') self.lmhra1 = Local_MHRA(d_model, dw_reduction=dw_reduction) self.lmhra2 = Local_MHRA(d_model, dw_reduction=dw_reduction) # spatial self.attn = MultiheadAttention(d_model, n_head) self.ln_1 = LayerNorm(d_model) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()), ("c_proj", nn.Linear(d_model * 4, d_model)) ])) self.ln_2 = LayerNorm(d_model) self.attn_mask = attn_mask def attention(self, x): self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] def forward(self, x, T=8): # x: 1+HW, NT, C # Local MHRA tmp_x = x[1:, :, :] L, NT, C = tmp_x.shape N = NT // T H = W = int(L ** 0.5) tmp_x = tmp_x.view(H, W, N, T, C).permute(2, 4, 3, 0, 1).contiguous() tmp_x = tmp_x + self.drop_path(self.lmhra1(tmp_x)) tmp_x = tmp_x.view(N, C, T, L).permute(3, 0, 2, 1).contiguous().view(L, NT, C) x = torch.cat([x[:1, :, :], tmp_x], dim=0) # MHSA x = x + self.drop_path(self.attention(self.ln_1(x))) # Local MHRA tmp_x = x[1:, :, :] tmp_x = tmp_x.view(H, W, N, T, C).permute(2, 4, 3, 0, 1).contiguous() tmp_x = tmp_x + self.drop_path(self.lmhra2(tmp_x)) tmp_x = tmp_x.view(N, C, T, L).permute(3, 0, 2, 1).contiguous().view(L, NT, C) x = torch.cat([x[:1, :, :], tmp_x], dim=0) # FFN x = x + self.drop_path(self.mlp(self.ln_2(x))) return x class Extractor(nn.Module): def __init__( self, d_model, n_head, attn_mask=None, mlp_factor=4.0, dropout=0.0, drop_path=0.0, ): super().__init__() self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() print(f'Drop path rate: {drop_path}') self.attn = nn.MultiheadAttention(d_model, n_head) self.ln_1 = nn.LayerNorm(d_model) d_mlp = round(mlp_factor * d_model) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, d_mlp)), ("gelu", QuickGELU()), ("dropout", nn.Dropout(dropout)), ("c_proj", nn.Linear(d_mlp, d_model)) ])) self.ln_2 = nn.LayerNorm(d_model) self.ln_3 = nn.LayerNorm(d_model) self.attn_mask = attn_mask # zero init nn.init.xavier_uniform_(self.attn.in_proj_weight) nn.init.constant_(self.attn.out_proj.weight, 0.) nn.init.constant_(self.attn.out_proj.bias, 0.) nn.init.xavier_uniform_(self.mlp[0].weight) nn.init.constant_(self.mlp[-1].weight, 0.) nn.init.constant_(self.mlp[-1].bias, 0.) def attention(self, x: torch.Tensor, y: torch.Tensor): #self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None # return self.attn(x, y, y, need_weights=False, attn_mask=self.attn_mask)[0] assert self.attn_mask is None # not implemented # manual forward to add position information d_model = self.ln_1.weight.size(0) q = (x @ self.attn.in_proj_weight[:d_model].T) + self.attn.in_proj_bias[:d_model] k = (y @ self.attn.in_proj_weight[d_model:-d_model].T) + self.attn.in_proj_bias[d_model:-d_model] v = (y @ self.attn.in_proj_weight[-d_model:].T) + self.attn.in_proj_bias[-d_model:] Tx, Ty, N = q.size(0), k.size(0), q.size(1) q = q.view(Tx, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3) k = k.view(Ty, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3) v = v.view(Ty, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3) aff = (q @ k.transpose(-2, -1) / (self.attn.head_dim ** 0.5)) aff = aff.softmax(dim=-1) out = aff @ v out = out.permute(2, 0, 1, 3).flatten(2) out = self.attn.out_proj(out) return out def forward(self, x: torch.Tensor, y: torch.Tensor): x = x + self.drop_path(self.attention(self.ln_1(x), self.ln_3(y))) x = x + self.drop_path(self.mlp(self.ln_2(x))) return x class Transformer(nn.Module): def __init__( self, width, layers, heads, attn_mask=None, backbone_drop_path_rate=0., t_size=8, dw_reduction=2, return_list=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], n_layers=12, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, num_classes=400, ): super().__init__() self.T = t_size self.return_list = return_list # Backbone b_dpr = [x.item() for x in torch.linspace(0, backbone_drop_path_rate, layers)] self.resblocks = nn.ModuleList([ ResidualAttentionBlock( width, heads, attn_mask, drop_path=b_dpr[i], dw_reduction=dw_reduction, ) for i in range(layers) ]) # Extractor assert n_layers == len(return_list) self.temporal_cls_token = nn.Parameter(torch.zeros(1, 1, n_dim)) self.dpe = nn.ModuleList([ nn.Conv3d(n_dim, n_dim, kernel_size=3, stride=1, padding=1, bias=True, groups=n_dim) for i in range(n_layers) ]) for m in self.dpe: nn.init.constant_(m.bias, 0.) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, n_layers)] self.dec = nn.ModuleList([ Extractor( n_dim, n_head, mlp_factor=mlp_factor, dropout=mlp_dropout[i], drop_path=dpr[i], ) for i in range(n_layers) ]) # # projection # self.proj = nn.Sequential( # nn.LayerNorm(n_dim), # nn.Dropout(cls_dropout), # nn.Linear(n_dim, num_classes), # ) self.balance = nn.Parameter(torch.zeros((n_dim))) self.sigmoid = nn.Sigmoid() def forward(self, x, mode='video', return_all_feats=False): if mode == 'video': T_down = self.T else: T_down = 1 L, NT, C = x.shape N = NT // T_down H = W = int((L - 1) ** 0.5) assert H * W == L - 1 cls_token = self.temporal_cls_token.repeat(1, N, 1) j = -1 for i, resblock in enumerate(self.resblocks): x = resblock(x, T_down) if i in self.return_list: j += 1 tmp_x = x.clone() tmp_x = tmp_x.view(L, N, T_down, C) # dpe _, tmp_feats = tmp_x[:1], tmp_x[1:] tmp_feats = tmp_feats.permute(1, 3, 2, 0).reshape(N, C, T_down, H, W) tmp_feats = self.dpe[j](tmp_feats).view(N, C, T_down, L - 1).permute(3, 0, 2, 1) tmp_x[1:] = tmp_x[1:] + tmp_feats # enhancer tmp_x = tmp_x.permute(2, 0, 1, 3).flatten(0, 1) # T * L, N, C cls_token = self.dec[j](cls_token, tmp_x) weight = self.sigmoid(self.balance) residual = x.view(L, N, T_down, C)[0].mean(1) # L, N, T, C # return self.proj((1 - weight) * cls_token[0, :, :] + weight * residual) feats = (1 - weight) * cls_token[0, :, :] + weight * residual if return_all_feats: return feats, x.view(L, N, T_down, C) return feats class VisionTransformer(nn.Module): def __init__( self, # backbone input_resolution, patch_size, width, layers, heads, output_dim, backbone_drop_path_rate=0., t_size=8, kernel_size=3, dw_reduction=1.5, # extractor return_list=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], n_layers=12, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, num_classes=400, ): super().__init__() self.input_resolution = input_resolution self.output_dim = output_dim padding = (kernel_size - 1) // 2 self.conv1 = nn.Conv3d(3, width, (kernel_size, patch_size, patch_size), (2, patch_size, patch_size), (padding, 0, 0), bias=False) scale = width ** -0.5 self.class_embedding = nn.Parameter(scale * torch.randn(width)) self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width)) self.ln_pre = LayerNorm(width) self.transformer = Transformer( width, layers, heads, dw_reduction=dw_reduction, backbone_drop_path_rate=backbone_drop_path_rate, t_size=t_size // 2, return_list=return_list, n_layers=n_layers, n_dim=n_dim, n_head=n_head, mlp_factor=mlp_factor, drop_path_rate=drop_path_rate, mlp_dropout=mlp_dropout, cls_dropout=cls_dropout, num_classes=num_classes, ) def forward(self, x, mode='video', return_all_feats=False): # taken from https://github.com/facebookresearch/omnivore/blob/main/omnivore/models/swin_transformer_3d.py#L703 if mode == 'image': # for image, stride 2 # ! Use replicate here x = F.pad(x, (0, 0, 0, 0, 0, 1), mode="replicate") x = self.conv1(x) # shape = [*, width, grid, grid] N, C, T, H, W = x.shape x = x.permute(0, 2, 3, 4, 1).reshape(N * T, H * W, C) x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width] x = x + self.positional_embedding.to(x.dtype) x = self.ln_pre(x) x = x.permute(1, 0, 2) # NLD -> LND out = self.transformer(x, mode=mode, return_all_feats=return_all_feats) return out def inflate_weight(weight_2d, time_dim, center=True): if center: weight_3d = torch.zeros(*weight_2d.shape) weight_3d = weight_3d.unsqueeze(2).repeat(1, 1, time_dim, 1, 1) middle_idx = time_dim // 2 weight_3d[:, :, middle_idx, :, :] = weight_2d else: weight_3d = weight_2d.unsqueeze(2).repeat(1, 1, time_dim, 1, 1) weight_3d = weight_3d / time_dim return weight_3d def load_state_dict(model, state_dict): state_dict_3d = model.state_dict() for k in state_dict.keys(): if state_dict[k].shape != state_dict_3d[k].shape: if len(state_dict_3d[k].shape) <= 2: print(f'Ignore: {k}') continue print(f'Inflate: {k}, {state_dict[k].shape} => {state_dict_3d[k].shape}') time_dim = state_dict_3d[k].shape[2] state_dict[k] = inflate_weight(state_dict[k], time_dim) model.load_state_dict(state_dict, strict=False) def clip_load_state_dict(model, state_dict): state_dict_3d = model.state_dict() for k in state_dict.keys(): # print(k, k in state_dict_3d, k in state_dict) if k in state_dict and k in state_dict_3d and state_dict[k].shape != state_dict_3d[k].shape: if len(state_dict_3d[k].shape) <= 2: print(f'Ignore: {k}') continue print(f'Inflate: {k}, {state_dict[k].shape} => {state_dict_3d[k].shape}') time_dim = state_dict_3d[k].shape[2] state_dict[k] = inflate_weight(state_dict[k], time_dim) model.load_state_dict(state_dict, strict=False) def vit_fusion_b32( pretrained=True, t_size=16, dw_reduction=1.5, backbone_drop_path_rate=0., return_list=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], n_layers=12, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, num_classes=400, ): model = VisionTransformer( input_resolution=224, patch_size=32, width=768, layers=12, heads=12, output_dim=512, t_size=t_size, dw_reduction=dw_reduction, backbone_drop_path_rate=backbone_drop_path_rate, return_list=return_list, n_layers=n_layers, n_dim=n_dim, n_head=n_head, mlp_factor=mlp_factor, drop_path_rate=drop_path_rate, mlp_dropout=mlp_dropout, cls_dropout=cls_dropout, num_classes=num_classes, ) if pretrained: print('load pretrained weights') state_dict = torch.load(_MODELS["ViT-B/32"], map_location='cpu') load_state_dict(model, state_dict) return model.eval() def vit_fusion_b16( pretrained=True, t_size=16, dw_reduction=1.5, backbone_drop_path_rate=0., return_list=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], n_layers=12, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, num_classes=400, ): model = VisionTransformer( input_resolution=224, patch_size=16, width=768, layers=12, heads=12, output_dim=512, t_size=t_size, dw_reduction=dw_reduction, backbone_drop_path_rate=backbone_drop_path_rate, return_list=return_list, n_layers=n_layers, n_dim=n_dim, n_head=n_head, mlp_factor=mlp_factor, drop_path_rate=drop_path_rate, mlp_dropout=mlp_dropout, cls_dropout=cls_dropout, num_classes=num_classes, ) if pretrained: print('load pretrained weights') state_dict = torch.load(_MODELS["ViT-B/16"], map_location='cpu') load_state_dict(model, state_dict) return model.eval() def vit_fusion_l14( pretrained=True, t_size=16, dw_reduction=1.5, backbone_drop_path_rate=0., return_list=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], n_layers=12, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, num_classes=400, ): model = VisionTransformer( input_resolution=224, patch_size=14, width=1024, layers=24, heads=16, output_dim=768, t_size=t_size, dw_reduction=dw_reduction, backbone_drop_path_rate=backbone_drop_path_rate, return_list=return_list, n_layers=n_layers, n_dim=n_dim, n_head=n_head, mlp_factor=mlp_factor, drop_path_rate=drop_path_rate, mlp_dropout=mlp_dropout, cls_dropout=cls_dropout, num_classes=num_classes, ) if pretrained: print('load pretrained weights') state_dict = torch.load(_MODELS["ViT-L/14"], map_location='cpu') load_state_dict(model, state_dict) return model.eval() def vit_fusion_l14_336( pretrained=True, t_size=16, dw_reduction=1.5, backbone_drop_path_rate=0., return_list=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], n_layers=12, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, num_classes=400, ): model = VisionTransformer( input_resolution=336, patch_size=14, width=1024, layers=24, heads=16, output_dim=768, t_size=t_size, dw_reduction=dw_reduction, backbone_drop_path_rate=backbone_drop_path_rate, return_list=return_list, n_layers=n_layers, n_dim=n_dim, n_head=n_head, mlp_factor=mlp_factor, drop_path_rate=drop_path_rate, mlp_dropout=mlp_dropout, cls_dropout=cls_dropout, num_classes=num_classes, ) if pretrained: print('load pretrained weights') state_dict = torch.load(_MODELS["ViT-L/14_336"], map_location='cpu') load_state_dict(model, state_dict) return model.eval() if __name__ == '__main__': import time from fvcore.nn import FlopCountAnalysis from fvcore.nn import flop_count_table import numpy as np seed = 4217 np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) num_frames = 16 model = vit_fusion_b16( pretrained=False, t_size=num_frames, backbone_drop_path_rate=0.2, drop_path_rate=0.4, dw_reduction=1.5, ) flops = FlopCountAnalysis(model, torch.rand(1, 3, num_frames, 224, 224)) s = time.time() print(flop_count_table(flops, max_depth=1)) print(time.time()-s)
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_kc_new/evl_utils/clip_vit_fusion.py
import warnings from typing import Tuple, Optional import torch from torch import Tensor from torch.nn.modules.linear import Linear from torch.nn.init import xavier_uniform_ from torch.nn.init import constant_ from torch.nn.init import xavier_normal_ from torch.nn.parameter import Parameter from torch.nn.modules.module import Module from .attention_module_bias import multi_head_attention_forward class _LinearWithBias(Linear): bias: Tensor def __init__(self, in_features: int, out_features: int) -> None: super().__init__(in_features, out_features, bias=True) class MultiheadAttention(Module): r"""Allows the model to jointly attend to information from different representation subspaces. See reference: Attention Is All You Need .. math:: \text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O \text{where} head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) Args: embed_dim: total dimension of the model. num_heads: parallel attention heads. dropout: a Dropout layer on attn_output_weights. Default: 0.0. bias: add bias as module parameter. Default: True. add_bias_kv: add bias to the key and value sequences at dim=0. add_zero_attn: add a new batch of zeros to the key and value sequences at dim=1. kdim: total number of features in key. Default: None. vdim: total number of features in value. Default: None. Note: if kdim and vdim are None, they will be set to embed_dim such that query, key, and value have the same number of features. Examples:: >>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads) >>> attn_output, attn_output_weights = multihead_attn(query, key, value) """ bias_k: Optional[torch.Tensor] bias_v: Optional[torch.Tensor] def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None): super(MultiheadAttention, self).__init__() self.embed_dim = embed_dim self.kdim = kdim if kdim is not None else embed_dim self.vdim = vdim if vdim is not None else embed_dim self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" if self._qkv_same_embed_dim is False: self.q_proj_weight = Parameter(torch.Tensor(embed_dim, embed_dim)) self.k_proj_weight = Parameter(torch.Tensor(embed_dim, self.kdim)) self.v_proj_weight = Parameter(torch.Tensor(embed_dim, self.vdim)) self.register_parameter('in_proj_weight', None) else: self.in_proj_weight = Parameter(torch.empty(3 * embed_dim, embed_dim)) self.register_parameter('q_proj_weight', None) self.register_parameter('k_proj_weight', None) self.register_parameter('v_proj_weight', None) if bias: self.in_proj_bias = Parameter(torch.empty(3 * embed_dim)) else: self.register_parameter('in_proj_bias', None) self.out_proj = _LinearWithBias(embed_dim, embed_dim) if add_bias_kv: self.bias_k = Parameter(torch.empty(1, 1, embed_dim)) self.bias_v = Parameter(torch.empty(1, 1, embed_dim)) else: self.bias_k = self.bias_v = None self.add_zero_attn = add_zero_attn self._reset_parameters() def _reset_parameters(self): if self._qkv_same_embed_dim: xavier_uniform_(self.in_proj_weight) else: xavier_uniform_(self.q_proj_weight) xavier_uniform_(self.k_proj_weight) xavier_uniform_(self.v_proj_weight) if self.in_proj_bias is not None: constant_(self.in_proj_bias, 0.) constant_(self.out_proj.bias, 0.) if self.bias_k is not None: xavier_normal_(self.bias_k) if self.bias_v is not None: xavier_normal_(self.bias_v) def __setstate__(self, state): # Support loading old MultiheadAttention checkpoints generated by v1.1.0 if '_qkv_same_embed_dim' not in state: state['_qkv_same_embed_dim'] = True super(MultiheadAttention, self).__setstate__(state) def forward(self, query, key, value, key_padding_mask=None, need_weights=True, attn_mask=None, return_qk=False, rpb=None): # type: (Tensor, Tensor, Tensor, Optional[Tensor], bool, Optional[Tensor], bool, Optional[Tensor]) -> Tuple[Tensor, Optional[Tensor]] r""" Args: query, key, value: map a query and a set of key-value pairs to an output. See "Attention Is All You Need" for more details. key_padding_mask: if provided, specified padding elements in the key will be ignored by the attention. When given a binary mask and a value is True, the corresponding value on the attention layer will be ignored. When given a byte mask and a value is non-zero, the corresponding value on the attention layer will be ignored need_weights: output attn_output_weights. attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all the batches while a 3D mask allows to specify a different mask for the entries of each batch. Shape: - Inputs: - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is the embedding dimension. - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. If a ByteTensor is provided, the non-zero positions will be ignored while the position with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length. 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. attn_mask ensure that position i is allowed to attend the unmasked positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor is provided, it will be added to the attention weight. - return_qk: whether return Q and K. - Outputs: - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - attn_output_weights: :math:`(N, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. """ if return_qk: if not self._qkv_same_embed_dim: q, k, attn_output, attn_output_weights = multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, use_separate_proj_weight=True, q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight, v_proj_weight=self.v_proj_weight, return_qk=True, rpb=rpb) else: q, k, attn_output, attn_output_weights = multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, return_qk=True, rpb=rpb) return q, k, attn_output, attn_output_weights else: if not self._qkv_same_embed_dim: return multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, use_separate_proj_weight=True, q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight, v_proj_weight=self.v_proj_weight, rpb=rpb) else: return multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, rpb=rpb)
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_kc_new/evl_utils/attention_bias.py
r"""Functional interface""" import warnings import math import torch from torch import _VF from torch._jit_internal import Optional, Tuple from torch.overrides import has_torch_function, handle_torch_function from torch.nn.functional import _pad, linear, softmax, dropout Tensor = torch.Tensor pad = _pad def multi_head_attention_forward(query: Tensor, key: Tensor, value: Tensor, embed_dim_to_check: int, num_heads: int, in_proj_weight: Tensor, in_proj_bias: Tensor, bias_k: Optional[Tensor], bias_v: Optional[Tensor], add_zero_attn: bool, dropout_p: float, out_proj_weight: Tensor, out_proj_bias: Tensor, training: bool = True, key_padding_mask: Optional[Tensor] = None, need_weights: bool = True, attn_mask: Optional[Tensor] = None, use_separate_proj_weight: bool = False, q_proj_weight: Optional[Tensor] = None, k_proj_weight: Optional[Tensor] = None, v_proj_weight: Optional[Tensor] = None, static_k: Optional[Tensor] = None, static_v: Optional[Tensor] = None, return_qk: bool = False, rpb: Tensor = None, ) -> Tuple[Tensor, Optional[Tensor]]: r""" Args: query, key, value: map a query and a set of key-value pairs to an output. See "Attention Is All You Need" for more details. embed_dim_to_check: total dimension of the model. num_heads: parallel attention heads. in_proj_weight, in_proj_bias: input projection weight and bias. bias_k, bias_v: bias of the key and value sequences to be added at dim=0. add_zero_attn: add a new batch of zeros to the key and value sequences at dim=1. dropout_p: probability of an element to be zeroed. out_proj_weight, out_proj_bias: the output projection weight and bias. training: apply dropout if is ``True``. key_padding_mask: if provided, specified padding elements in the key will be ignored by the attention. This is an binary mask. When the value is True, the corresponding value on the attention layer will be filled with -inf. need_weights: output attn_output_weights. attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all the batches while a 3D mask allows to specify a different mask for the entries of each batch. use_separate_proj_weight: the function accept the proj. weights for query, key, and value in different forms. If false, in_proj_weight will be used, which is a combination of q_proj_weight, k_proj_weight, v_proj_weight. q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias. static_k, static_v: static key and value used for attention operators. Shape: Inputs: - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is the embedding dimension. - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions will be unchanged. If a BoolTensor is provided, the positions with the value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length. 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor is provided, it will be added to the attention weight. - static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. E/num_heads is the head dimension. - static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. E/num_heads is the head dimension. - return_qk: whether return Q and K. - rpb: relative postion bias Outputs: - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - attn_output_weights: :math:`(N, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. """ if not torch.jit.is_scripting(): tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v, out_proj_weight, out_proj_bias) if any([type(t) is not Tensor for t in tens_ops]) and has_torch_function(tens_ops): return handle_torch_function( multi_head_attention_forward, tens_ops, query, key, value, embed_dim_to_check, num_heads, in_proj_weight, in_proj_bias, bias_k, bias_v, add_zero_attn, dropout_p, out_proj_weight, out_proj_bias, training=training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, use_separate_proj_weight=use_separate_proj_weight, q_proj_weight=q_proj_weight, k_proj_weight=k_proj_weight, v_proj_weight=v_proj_weight, static_k=static_k, static_v=static_v) tgt_len, bsz, embed_dim = query.size() assert embed_dim == embed_dim_to_check # allow MHA to have different sizes for the feature dimension assert key.size(0) == value.size(0) and key.size(1) == value.size(1) head_dim = embed_dim // num_heads assert head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads" scaling = float(head_dim) ** -0.5 if not use_separate_proj_weight: if torch.equal(query, key) and torch.equal(key, value): # self-attention q, k, v = linear(query, in_proj_weight, in_proj_bias).chunk(3, dim=-1) elif torch.equal(key, value): # encoder-decoder attention # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = 0 _end = embed_dim _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] q = linear(query, _w, _b) if key is None: assert value is None k = None v = None else: # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = embed_dim _end = None _w = in_proj_weight[_start:, :] if _b is not None: _b = _b[_start:] k, v = linear(key, _w, _b).chunk(2, dim=-1) else: # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = 0 _end = embed_dim _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] q = linear(query, _w, _b) # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = embed_dim _end = embed_dim * 2 _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] k = linear(key, _w, _b) # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = embed_dim * 2 _end = None _w = in_proj_weight[_start:, :] if _b is not None: _b = _b[_start:] v = linear(value, _w, _b) else: q_proj_weight_non_opt = torch.jit._unwrap_optional(q_proj_weight) len1, len2 = q_proj_weight_non_opt.size() assert len1 == embed_dim and len2 == query.size(-1) k_proj_weight_non_opt = torch.jit._unwrap_optional(k_proj_weight) len1, len2 = k_proj_weight_non_opt.size() assert len1 == embed_dim and len2 == key.size(-1) v_proj_weight_non_opt = torch.jit._unwrap_optional(v_proj_weight) len1, len2 = v_proj_weight_non_opt.size() assert len1 == embed_dim and len2 == value.size(-1) if in_proj_bias is not None: q = linear(query, q_proj_weight_non_opt, in_proj_bias[0:embed_dim]) k = linear(key, k_proj_weight_non_opt, in_proj_bias[embed_dim:(embed_dim * 2)]) v = linear(value, v_proj_weight_non_opt, in_proj_bias[(embed_dim * 2):]) else: q = linear(query, q_proj_weight_non_opt, in_proj_bias) k = linear(key, k_proj_weight_non_opt, in_proj_bias) v = linear(value, v_proj_weight_non_opt, in_proj_bias) q = q * scaling if attn_mask is not None: assert attn_mask.dtype == torch.float32 or attn_mask.dtype == torch.float64 or \ attn_mask.dtype == torch.float16 or attn_mask.dtype == torch.uint8 or attn_mask.dtype == torch.bool, \ 'Only float, byte, and bool types are supported for attn_mask, not {}'.format(attn_mask.dtype) if attn_mask.dtype == torch.uint8: warnings.warn("Byte tensor for attn_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.") attn_mask = attn_mask.to(torch.bool) if attn_mask.dim() == 2: attn_mask = attn_mask.unsqueeze(0) if list(attn_mask.size()) != [1, query.size(0), key.size(0)]: raise RuntimeError('The size of the 2D attn_mask is not correct.') elif attn_mask.dim() == 3: if list(attn_mask.size()) != [bsz * num_heads, query.size(0), key.size(0)]: raise RuntimeError('The size of the 3D attn_mask is not correct.') else: raise RuntimeError("attn_mask's dimension {} is not supported".format(attn_mask.dim())) # attn_mask's dim is 3 now. # convert ByteTensor key_padding_mask to bool if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8: warnings.warn("Byte tensor for key_padding_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.") key_padding_mask = key_padding_mask.to(torch.bool) if bias_k is not None and bias_v is not None: if static_k is None and static_v is None: k = torch.cat([k, bias_k.repeat(1, bsz, 1)]) v = torch.cat([v, bias_v.repeat(1, bsz, 1)]) if attn_mask is not None: attn_mask = pad(attn_mask, (0, 1)) if key_padding_mask is not None: key_padding_mask = pad(key_padding_mask, (0, 1)) else: assert static_k is None, "bias cannot be added to static key." assert static_v is None, "bias cannot be added to static value." else: assert bias_k is None assert bias_v is None # L, N, E if return_qk: return_q = q.clone() / scaling return_k = k.clone() q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1) if k is not None: k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1) if v is not None: v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1) if static_k is not None: assert static_k.size(0) == bsz * num_heads assert static_k.size(2) == head_dim k = static_k if static_v is not None: assert static_v.size(0) == bsz * num_heads assert static_v.size(2) == head_dim v = static_v src_len = k.size(1) if key_padding_mask is not None: assert key_padding_mask.size(0) == bsz assert key_padding_mask.size(1) == src_len if add_zero_attn: src_len += 1 k = torch.cat([k, torch.zeros((k.size(0), 1) + k.size()[2:], dtype=k.dtype, device=k.device)], dim=1) v = torch.cat([v, torch.zeros((v.size(0), 1) + v.size()[2:], dtype=v.dtype, device=v.device)], dim=1) if attn_mask is not None: attn_mask = pad(attn_mask, (0, 1)) if key_padding_mask is not None: key_padding_mask = pad(key_padding_mask, (0, 1)) attn_output_weights = torch.bmm(q, k.transpose(1, 2)) assert list(attn_output_weights.size()) == [bsz * num_heads, tgt_len, src_len] if attn_mask is not None: if attn_mask.dtype == torch.bool: attn_output_weights.masked_fill_(attn_mask, float('-inf')) else: attn_output_weights += attn_mask if key_padding_mask is not None: attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) attn_output_weights = attn_output_weights.masked_fill( key_padding_mask.unsqueeze(1).unsqueeze(2), float('-inf'), ) attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, src_len) if rpb is not None: attn_output_weights = attn_output_weights + rpb attn_output_weights = softmax(attn_output_weights, dim=-1) attn_output_weights = dropout(attn_output_weights, p=dropout_p, training=training) attn_output = torch.bmm(attn_output_weights, v) assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim] attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) attn_output = linear(attn_output, out_proj_weight, out_proj_bias) if return_qk: if need_weights: # average attention weights over heads attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) return return_q, return_k, attn_output, attn_output_weights.sum(dim=1) / num_heads else: return return_q, return_k, attn_output, None else: if need_weights: # average attention weights over heads attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) return attn_output, attn_output_weights.sum(dim=1) / num_heads else: return attn_output, None
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_kc_new/evl_utils/attention_module_bias.py
import os from collections import OrderedDict from timm.models.layers import DropPath import torch from torch import nn from einops import rearrange import torch.utils.checkpoint as checkpoint from .attention_bias import MultiheadAttention MODEL_PATH = '/mnt/lustre/share_data/likunchang.vendor/model' _MODELS = { "ViT-B/32": os.path.join(MODEL_PATH, "vit_b32.pth"), "ViT-B/16": os.path.join(MODEL_PATH, "vit_b16.pth"), "ViT-L/14": os.path.join(MODEL_PATH, "vit_l14.pth"), "ViT-L/14_336": os.path.join(MODEL_PATH, "vit_l14_336.pth"), } class LayerNorm(nn.LayerNorm): """Subclass torch's LayerNorm to handle fp16.""" def forward(self, x): orig_type = x.dtype ret = super().forward(x.type(torch.float32)) return ret.type(orig_type) class QuickGELU(nn.Module): def forward(self, x): return x * torch.sigmoid(1.702 * x) class ResidualAttentionBlock(nn.Module): def __init__(self, d_model, n_head, attn_mask=None, drop_path=0.0, t_size=8, spatial_size=7): super().__init__() self.n_head = n_head self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() print(f'Drop path rate: {drop_path}') print(f'Add RPB: t_size {t_size}, spatial_size {spatial_size}') self.pos_embed = nn.Conv3d(d_model, d_model, kernel_size=3, stride=1, padding=1, groups=d_model) # temporal self.attn_t = MultiheadAttention(d_model, n_head) self.ln_t = LayerNorm(d_model) self.rpb_t = nn.Parameter(torch.zeros([t_size * 2 - 1, n_head])) idx_tensor_t = torch.zeros([t_size, t_size], dtype=torch.long) for q in range(t_size): for k in range(t_size): offs = q - k + t_size - 1 idx_tensor_t[q, k] = offs self.idx_tensor_t = idx_tensor_t # spatial self.attn = MultiheadAttention(d_model, n_head) self.rpb = nn.Parameter(torch.zeros([(spatial_size * 2 - 1) ** 2, n_head])) self.ln_1 = LayerNorm(d_model) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()), ("c_proj", nn.Linear(d_model * 4, d_model)) ])) self.ln_2 = LayerNorm(d_model) self.attn_mask = attn_mask idx_tensor = torch.zeros([spatial_size ** 2, spatial_size ** 2], dtype=torch.long) for q in range(spatial_size ** 2): qi, qj = q // spatial_size, q % spatial_size for k in range(spatial_size ** 2): ki, kj = k // spatial_size, k % spatial_size i_offs = qi - ki + spatial_size - 1 j_offs = qj - kj + spatial_size - 1 idx_tensor[q, k] = i_offs * (spatial_size * 2 - 1) + j_offs self.idx_tensor = idx_tensor # init zero print('Init zero for (2+1)d') nn.init.constant_(self.pos_embed.weight, 0) nn.init.constant_(self.pos_embed.bias, 0) nn.init.constant_(self.attn_t.in_proj_weight, 0) nn.init.constant_(self.attn_t.in_proj_bias, 0) nn.init.constant_(self.attn_t.out_proj.weight, 1) nn.init.constant_(self.attn_t.out_proj.bias, 0) def attention(self, x, rpb=None): self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask, rpb=rpb)[0] def attention_temporal(self, x, rpb=None): self.attn_mask = None return self.attn_t(x, x, x, need_weights=False, attn_mask=self.attn_mask, rpb=rpb)[0] def forward(self, x, T=8, mode='video'): # temporal # x: 1+HWT, N, C # pos_emb tmp_x = x[1:, :, :] LT, N, C = tmp_x.shape L = LT // T H = W = int(L ** 0.5) tmp_x = tmp_x.view(H, W, T, N, C).permute(3, 4, 2, 0, 1) tmp_x = tmp_x + self.pos_embed(tmp_x) tmp_x = tmp_x.view(N, C, T, L).permute(3, 2, 0, 1).view(LT, N, C) x[1:, :, :] = tmp_x xt = x[1:, :, :] _, N, C = xt.shape xt = rearrange(xt, '(l t) n c -> t (n l) c', n=N, t=T) # no rpb_t for image if mode == 'image': rpb_t = None else: # rpb_t: T, T, H => B*H, T, T self.idx_tensor_t = self.idx_tensor_t.to(xt.device) rpb_t = self.rpb_t[self.idx_tensor_t].permute(2, 0, 1).repeat(N*L, 1, 1) res_temporal = self.attention_temporal(self.ln_t(xt), rpb=rpb_t) res_temporal = rearrange(res_temporal, 't (n l) c -> (l t) n c', n=N, t=T) xt = x[1:, :, :] + self.drop_path(res_temporal) # spatial init_cls_token = x[:1, :, :] cls_token = init_cls_token.repeat(1, T, 1).view(1, T*N, C) xs = rearrange(xt, '(l t) n c -> l (t n) c', n=N, t=T) xs = torch.cat((cls_token, xs), 0) # rpb: L, L, H => B*H, L+1, L+1 rpb = torch.zeros((self.n_head, L+1, L+1), device=xs.device, dtype=xs.dtype) self.idx_tensor = self.idx_tensor.to(xs.device) rpb[:, 1:, 1:] = self.rpb[self.idx_tensor].permute(2, 0, 1) rpb = rpb.repeat(T*N, 1, 1) res_spatial = self.attention(self.ln_1(xs), rpb=rpb) # Taking care of CLS token cls_token = res_spatial[0, :, :] cls_token = rearrange(cls_token, '(t n) c -> t n c', n=N) cls_token = torch.mean(cls_token, 0, True) # averaging for every frame res_spatial = res_spatial[1:, :, :] res_spatial = rearrange(res_spatial, 'l (t n) c -> (l t) n c', n=N) x = x + self.drop_path(torch.cat((cls_token, res_spatial), 0)) x = x + self.drop_path(self.mlp(self.ln_2(x))) return x class Transformer(nn.Module): def __init__(self, width, layers, heads, attn_mask=None, drop_path_rate=0., t_size=8, spatial_size=7): super().__init__() self.width = width self.layers = layers dpr = [x.item() for x in torch.linspace(0, drop_path_rate, layers)] self.resblocks = nn.ModuleList([ ResidualAttentionBlock(width, heads, attn_mask, drop_path=dpr[i], t_size=t_size, spatial_size=spatial_size) for i in range(layers) ]) def forward(self, x, return_num=4, T=8, mode='video'): features = [] for i, resblock in enumerate(self.resblocks): x = resblock(x, T=T, mode=mode) if i >= self.layers - return_num: # LT + 1, N, C LT, N, C = x.shape L = (LT - 1) // T cls_x, tmp_x = x[:1], x[1:] cls_x = cls_x.unsqueeze(2).repeat(1, 1, T, 1) tmp_x = tmp_x.reshape(L, T, N, C).permute(0, 2, 1, 3) # L, N, T, C tmp_x = torch.cat([cls_x, tmp_x], dim=0 )# L + 1, N, T, C features.append(tmp_x) return features class VisionTransformer(nn.Module): def __init__( self, input_resolution, patch_size, width, layers, heads, output_dim, num_frames=8, drop_path_rate=0., t_size=8, spatial_size=7 ): super().__init__() self.input_resolution = input_resolution self.output_dim = output_dim self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False) scale = width ** -0.5 self.class_embedding = nn.Parameter(scale * torch.randn(width)) self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width)) self.temporal_positional_embedding = nn.Parameter(torch.zeros(1, num_frames, width)) self.ln_pre = LayerNorm(width) self.transformer = Transformer(width, layers, heads, drop_path_rate=drop_path_rate, t_size=t_size, spatial_size=spatial_size) def forward(self, x, return_num=4, mode='video'): if len(x.size()) == 5: N, C, T, H, W = x.shape x = x.permute(0, 2, 1, 3, 4).reshape(N * T, C, H, W) x = self.conv1(x) # shape = [*, width, grid, grid] x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width] x = x + self.positional_embedding.to(x.dtype) cls_tokens = x[:N, :1, :] x = x[:, 1:] # add temporal position embedding for video if mode == 'video': x = rearrange(x, '(b t) n c -> (b n) t c', b=N, t=T) x = x + self.temporal_positional_embedding x = rearrange(x, '(b n) t c -> b (n t) c', b=N, t=T) else: pass x = torch.cat((cls_tokens, x), dim=1) x = self.ln_pre(x) x = x.permute(1, 0, 2) # NLD -> LND features = self.transformer( x, return_num=return_num, T=T, mode=mode ) return features def vit_2plus1d_dw_bias_b32(pretrained=True, num_frames=8, drop_path_rate=0., t_size=8): model = VisionTransformer( input_resolution=224, patch_size=32, width=768, layers=12, heads=12, output_dim=512, num_frames=num_frames, drop_path_rate=drop_path_rate, t_size=t_size, ) if pretrained: print('load pretrained weights') state_dict = torch.load(_MODELS["ViT-B/32"], map_location='cpu') model.load_state_dict(state_dict, strict=False) return model.eval() def vit_2plus1d_dw_bias_b16(pretrained=True, num_frames=8, drop_path_rate=0., t_size=8): model = VisionTransformer( input_resolution=224, patch_size=16, width=768, layers=12, heads=12, output_dim=512, num_frames=num_frames, drop_path_rate=drop_path_rate, t_size=t_size, spatial_size=14, ) if pretrained: print('load pretrained weights') state_dict = torch.load(_MODELS["ViT-B/16"], map_location='cpu') model.load_state_dict(state_dict, strict=False) return model.eval() def vit_2plus1d_dw_bias_l14(pretrained=True, num_frames=8, drop_path_rate=0., t_size=8): model = VisionTransformer( input_resolution=224, patch_size=14, width=1024, layers=24, heads=16, output_dim=768, num_frames=num_frames, drop_path_rate=drop_path_rate, t_size=t_size, ) if pretrained: print('load pretrained weights') state_dict = torch.load(_MODELS["ViT-L/14"], map_location='cpu') model.load_state_dict(state_dict, strict=False) return model.eval() def vit_2plus1d_dw_bias_l14_336(pretrained=True, num_frames=8, drop_path_rate=0., t_size=8): model = VisionTransformer( input_resolution=336, patch_size=14, width=1024, layers=24, heads=16, output_dim=768, num_frames=num_frames, drop_path_rate=drop_path_rate, t_size=t_size, ) if pretrained: print('load pretrained weights') state_dict = torch.load(_MODELS["ViT-L/14_336"], map_location='cpu') model.load_state_dict(state_dict, strict=False) return model.eval() if __name__ == '__main__': import time from fvcore.nn import FlopCountAnalysis from fvcore.nn import flop_count_table model = vit_2plus1d_dw_bias_b32(pretrained=True) flops = FlopCountAnalysis(model, torch.rand(4, 3, 8, 224, 224)) s = time.time() print(flop_count_table(flops, max_depth=1)) print(time.time()-s)
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_kc_new/evl_utils/clip_vit_2plus1d_dw_bias.py
#!/usr/bin/env python from collections import OrderedDict from timm.models.layers import DropPath import torch import torch.nn as nn import torch.nn.functional as F class QuickGELU(nn.Module): def forward(self, x: torch.Tensor): return x * torch.sigmoid(1.702 * x) class ResidualDecoderBlock(nn.Module): def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None, mlp_factor: float = 4.0, dropout: float = 0.0, drop_path: float = 0.0): super().__init__() self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() print(f'Drop path rate: {drop_path}') self.attn = nn.MultiheadAttention(d_model, n_head) self.ln_1 = nn.LayerNorm(d_model) d_mlp = round(mlp_factor * d_model) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, d_mlp)), ("gelu", QuickGELU()), ("dropout", nn.Dropout(dropout)), ("c_proj", nn.Linear(d_mlp, d_model)) ])) self.ln_2 = nn.LayerNorm(d_model) self.ln_3 = nn.LayerNorm(d_model) self.attn_mask = attn_mask nn.init.xavier_uniform_(self.attn.in_proj_weight) nn.init.xavier_uniform_(self.attn.out_proj.weight) nn.init.xavier_uniform_(self.mlp[0].weight) nn.init.xavier_uniform_(self.mlp[-1].weight) def attention(self, x: torch.Tensor, y: torch.Tensor): #self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None # return self.attn(x, y, y, need_weights=False, attn_mask=self.attn_mask)[0] assert self.attn_mask is None # not implemented # manual forward to add position information d_model = self.ln_1.weight.size(0) q = (x @ self.attn.in_proj_weight[:d_model].T) + self.attn.in_proj_bias[:d_model] k = (y @ self.attn.in_proj_weight[d_model:-d_model].T) + self.attn.in_proj_bias[d_model:-d_model] v = (y @ self.attn.in_proj_weight[-d_model:].T) + self.attn.in_proj_bias[-d_model:] Tx, Ty, N = q.size(0), k.size(0), q.size(1) q = q.view(Tx, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3) k = k.view(Ty, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3) v = v.view(Ty, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3) aff = (q @ k.transpose(-2, -1) / (self.attn.head_dim ** 0.5)) aff = aff.softmax(dim=-1) out = aff @ v out = out.permute(2, 0, 1, 3).flatten(2) out = self.attn.out_proj(out) return out def forward(self, x: torch.Tensor, y: torch.Tensor): x = x + self.drop_path(self.attention(self.ln_1(x), self.ln_3(y))) x = x + self.drop_path(self.mlp(self.ln_2(x))) return x class TransformerDecoder(nn.Module): def __init__(self, n_layers=4, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, t_size=8, use_t_conv=True, use_t_pos_embed=True, num_classes=400, add_residual=False, ): super().__init__() dpr = [x.item() for x in torch.linspace(0, drop_path_rate, n_layers)] self.dec = nn.ModuleList([ ResidualDecoderBlock(n_dim, n_head, mlp_factor=mlp_factor, dropout=mlp_dropout[i], drop_path=dpr[i]) for i in range(n_layers) ]) self.proj = nn.Sequential( nn.LayerNorm(n_dim), nn.Dropout(cls_dropout), nn.Linear(n_dim, num_classes), ) self.temporal_cls_token = nn.Parameter(torch.zeros(n_dim)) self.add_residual = add_residual print(f'Add residual {add_residual}') if use_t_conv: self.tconv = nn.ModuleList([ nn.Conv1d(n_dim, n_dim, kernel_size=3, stride=1, padding=1, bias=True, groups=n_dim) for i in range(n_layers) ]) for m in self.tconv: nn.init.constant_(m.bias, 0.) m.weight.data[...] = torch.Tensor([0, 1, 0]) else: self.tconv = None if use_t_pos_embed: self.pemb_t = nn.Parameter(torch.zeros([n_layers, t_size, n_dim])) else: self.pemb_t = None self.t_size = t_size def forward(self, clip_feats_all): # clip_feats_all = clip_feats_all[-len(self.dec):] # only return n_layers features, save memory clip_feats = [x for x in clip_feats_all] L, N, T, C = clip_feats[0].size() x = self.temporal_cls_token.view(1, 1, -1).repeat(1, N, 1) for i in range(len(clip_feats)): if self.tconv is not None: L, N, T, C = clip_feats[i].shape clip_feats[i] = clip_feats[i].permute(0, 1, 3, 2).flatten(0, 1) # L * N, C, T clip_feats[i] = self.tconv[i](clip_feats[i]).permute(0, 2, 1).contiguous().view(L, N, T, C) if self.pemb_t is not None: clip_feats[i] = clip_feats[i] + self.pemb_t[i] clip_feats[i] = clip_feats[i].permute(2, 0, 1, 3).flatten(0, 1) # T * L, N, C for i in range(len(self.dec)): x = self.dec[i](x, clip_feats[i]) if self.add_residual: residual = clip_feats_all[-1][0].mean(1) return self.proj(x[0, :, :] + residual) else: return self.proj(x[0, :, :]) if __name__ == '__main__': model = TransformerDecoder() # construct a fake input to demonstrate input tensor shape L, N, T, C = 197, 1, 8, 768 # num_image_tokens, video_batch_size, t_size, feature_dim # we use intermediate feature maps from multiple blocks, so input features should be a list input_features = [] for i in range(4): # vit-b has 12 blocks # every item in input_features contains features maps from a single block # every item is a tuple containing 3 feature maps: # (1) block output features (i.e. after mlp) with shape L, N, T, C # (2) projected query features with shape L, N, T, C # (3) projected key features with shape L, N, T, C input_features.append( torch.zeros([L, N, T, C])) # some small optimizations: # (1) We only decode from the last $n$ blocks so it's good as long as the last $n$ items of input_features is valid and all previous items can be filled with None to save memory. By default $n=4$. # (2) projected query/key features are optional. If you are using an uncompatible image backbone without query/key (e.g. CNN), you can fill the position with None (i.e. the tuple should be (Tensor, None, None) and set use_image_attnmap=False when constructing the model. print(model(input_features).shape) # should be N, 400
InternVideo-main
Downstream/Video-Text-Retrieval/modules/clip_kc_new/evl_utils/evl_module.py
import warnings from sklearn import ensemble # This ignore the scheduler warning, see https://github.com/Lightning-AI/lightning/issues/5558 warnings.filterwarnings("ignore", "Detected call of", UserWarning) import os import copy import pytorch_lightning as pl from CoTrain.config import ex from CoTrain.modules import CoTrainTransformerSS, CLIP from CoTrain.datamodules.video.multitask_datamodule import MTDataModule import datetime from pytorch_lightning.utilities.cloud_io import get_filesystem from pytorch_lightning.utilities.cloud_io import load as pl_load import torch import numpy as np from pytorch_lightning.strategies import DDPStrategy torch.manual_seed(0) class CustomDDPStrategy(DDPStrategy): def configure_ddp(self): super().configure_ddp() self._model._set_static_graph() # THIS IS THE MAGIC LINE def deterministic_index_select(x, dim, indices): """ input_tensor: Tensor dim: dim indices: 1D tensor """ tensor_transpose = torch.transpose(x, 0, dim) return tensor_transpose[indices].transpose(dim, 0) @ex.automain def main(_config): _config = copy.deepcopy(_config) pl.seed_everything(_config["seed"]) dm = MTDataModule(_config, dist=True) if not _config["clip"]: model = CoTrainTransformerSS(_config) else: model = CLIP(_config) # assert False, [n for n, p in model.named_parameters() if p.requires_grad][:10] exp_name = f'{_config["exp_name"]}' os.makedirs(_config["log_dir"], exist_ok=True) checkpoint_callback = pl.callbacks.ModelCheckpoint( save_top_k=_config["save_top_k"], # every_n_epochs=_config["save_checkpoints_interval"], every_n_train_steps=_config["val_check_interval"], verbose=True, monitor="contrastive/train/loss", mode="min", save_last=_config["save_last"], dirpath=_config["model_dir"], ) now = datetime.datetime.now() if not isinstance(_config["load_path"], str): instance_name = f'{exp_name}_seed{_config["seed"]}_from_multiple' else: instance_name = f'{exp_name}_seed{_config["seed"]}_from_{"_".join(_config["load_path"].split("/")[-2:])[:-5]}' logger = pl.loggers.TensorBoardLogger( _config["log_dir"], name=instance_name, version="version_0", ) lr_callback = pl.callbacks.LearningRateMonitor(logging_interval="step") summary_callback = pl.callbacks.ModelSummary(max_depth=1) callbacks = [checkpoint_callback, lr_callback, summary_callback] num_gpus = ( _config["num_gpus"] if isinstance(_config["num_gpus"], int) else len(_config["num_gpus"]) ) # print all config at the begin print('='*70+'Config: '+'='*70) print(instance_name) print(_config) print('='*150) # notice _config["batch_size"] should be max length for all machines, eg. at least 1024 grad_steps = _config["batch_size"] // ( _config["per_gpu_batchsize"] * num_gpus * _config["num_nodes"] ) assert grad_steps > 0, (_config["batch_size"], _config["per_gpu_batchsize"]) if not _config["clip_use_checkpoint"]: # assert not _config["clip_use_checkpoint"], "Do not use gradient accumulation and checkpoint at the same time" if _config["loss_names"]["openend_vqa"] >= 1: find_unused_paramters = True else: find_unused_paramters = False strategy = DDPStrategy(find_unused_parameters=find_unused_paramters) else: assert grad_steps == 1 strategy = CustomDDPStrategy() max_steps = _config["max_steps"] if _config["max_steps"] is not None else None resume_ckpt = _config["resume_from"] if max_steps == None: max_steps = -1 trainer = pl.Trainer( devices=_config["num_gpus"], num_nodes=_config["num_nodes"], precision=_config["precision"], accelerator="gpu", benchmark=True, deterministic=False, max_epochs=_config["max_epoch"] if max_steps == -1 else 100, max_steps=max_steps, callbacks=callbacks, logger=logger, # prepare_data_per_node=False, replace_sampler_ddp=False, accumulate_grad_batches=grad_steps, log_every_n_steps=10, fast_dev_run=_config["fast_dev_run"], val_check_interval=_config["val_check_interval"], strategy=strategy, # show_progress_bar=False, # progress_bar_refresh_rate=0 ) fs = get_filesystem(resume_ckpt) if fs.exists(resume_ckpt): with fs.open(resume_ckpt, "rb") as f: ckpt = torch.load(f, map_location='cpu') # This hacks pl wrong steps for logger global_step_offset = ckpt["global_step"] trainer.fit_loop.epoch_loop._batches_that_stepped = global_step_offset del ckpt pass else: resume_ckpt = None print("accumulate grad batches is: ", trainer.accumulate_grad_batches) if not _config["test_only"]: with torch.autograd.set_detect_anomaly(True): trainer.fit(model, datamodule=dm, ckpt_path=resume_ckpt) else: trainer.test(model, datamodule=dm, ckpt_path=resume_ckpt)
InternVideo-main
Downstream/multi-modalities-downstream/run.py
from sacred import Experiment ex = Experiment("CoTrain", save_git_info=False) def _loss_names(d): ret = { # pretrain "vtm": 0, "mlm": 0, "mpp": 0, "vtc": 0, "vcop": 0, "dino": 0, # downstream "vqa": 0, "openend_vqa": 0, "mc_vqa": 0, "nlvr2": 0, "irtr": 0, "multiple_choice": 0, 'vcr_q2a': 0, 'zs_classify': 0, 'contrastive': 0, 'cap': 0, 'mim': 0, } ret.update(d) return ret @ex.config def config(): exp_name = "CoTrain" seed = 0 video_datasets = ["wevid", "howto100m", "yttemporal"] image_datasets = ["cc3m", "cc12m"] val_datasets = [] loss_names = _loss_names({"vtm": 1, "mlm": 1}) val_loss_names = _loss_names({}) batch_size = 4096 # 128 x 32 # this is a desired batch size; pl trainer will accumulate gradients when per step batch is smaller. linear_evaluation = False draw_false_image = 1 # video setting train_transform_keys = ["pixelbert"] val_transform_keys = ["pixelbert"] image_size = 224 # 384/224 patch_size = 16 # 16/32 max_image_len = -1 draw_false_video = 1 video_only = False num_frames = 3 # input video frames # Text Setting vqav2_label_size = 3129 msrvttqa_label_size = 1501 max_text_len = 40 # original: 40, 200: for long sentences/paragraph tokenizer = "pretrained/bert-base-uncased" vocab_size = 30522 whole_word_masking = False mlm_prob = 0.15 draw_false_text = 0 draw_options_text = 0 # Transformer Setting vit = "vit_base_patch16_224" # "vit_base_patch32_384" / "vit_base_patch16_224" hidden_size = 768 num_heads = 12 num_layers = 12 mlp_ratio = 4 drop_rate = 0.1 shared_embedding_dim = 512 # add for contrastive learning 512/256 # model_temporal_frames = 4 # add for model define, may not consistent with input data save_checkpoints_interval = 1 # save each 5 epochs # Optimizer Setting optim_type = "adamw" learning_rate = 1e-4 weight_decay = 0.01 decay_power = 1 max_epoch = 100 max_steps = 25000 warmup_steps = 2500 end_lr = 0 lr_mult = 1 # multiply lr for downstream heads backend = 'a100' # gpu: a100/v100/others # Downstream Setting get_recall_metric = False get_ind_recall_metric = False retrieval_views = 3 # how many views for retrieval # PL Trainer Setting resume_from = None fast_dev_run = False val_check_interval = 1.0 test_only = False # below params varies with the environment data_root = "" log_dir = "result" per_gpu_batchsize = 0 # you should define this manually with per_gpu_batch_size=# num_gpus = 1 num_nodes = 1 load_path = "" num_workers = 16 # 0 will not lead to unstable memory usage but slow training ? precision = 16 model_dir = None # clip related settings clip = "" clip_type = "ori" # In ["evl", "ori"] clip_freeze = False clip_freeze_text = False clip_dpr = 0.0 prompt_type = "all" clip_lr_mult = 1 clip_no_pretrain = False clip_grad_unfreeze_int = 0 # <= 0 for nothing clip_evl_dropout = 0.5 mim_prob = 0.90 clip_mlm_decoder_n_layers = 4 clip_mim_decoder_n_layers = 4 clip_mim_decoder_width = 512 clip_cap_decoder_n_layers = 4 clip_init_zero = True clip_qa_type = "vtc" # vtc for contrastive, cap for caption head, both for both clip_mc_type = "vtc" # vtc for contrastive, cap for caption head, both for both # weight = clip_weight * clip_wiseft_coef + load_path * (1 - clip_wiseft_coef), <= 0 for not using clip_wiseft_coef = -1.0 clip_mmt = False clip_alt_data = False image_data_mult = 1 clip_cls_dropout = 0.5 save_last = True save_top_k = 1 clip_use_checkpoint = False clip_checkpoint_num = [0, 0, 0] clip_momentum_ckpt = 1 clip_momentum_interval = 1 # Named configs for "environment" which define gpus and nodes, and paths @ex.named_config def env_dandelin(): data_root = "/data2/dsets/dataset" log_dir = "/data2/CoTrain/result" num_gpus = 8 num_nodes = 1 # ================================ begin: pretrain ====================== @ex.named_config def task_mlm_vtm_cotrain(): exp_name = "mlm_vtm" video_datasets = ["webvid"] # "howto100m", image_datasets = ["cc3m"] loss_names = _loss_names({"vtm": 1, "mlm": 1}) batch_size = 2048 max_epoch = 30 max_image_len = -1 val_check_interval = 1.0 save_checkpoints_interval = 3 # save each 5 epochs @ex.named_config def task_mlm_vtm_cotrain_seven(): exp_name = "mlm_vtm" video_datasets = ["webvid", 'yttemporal', "howto100m"] # 'yttemporal', "howto100m", image_datasets = ["cc3m", "cc12m", "vg", 'coco'] # , "vg", 'coco' loss_names = _loss_names({"vtm": 1, "mlm": 1}) batch_size = 2048 max_epoch = 30 max_image_len = -1 val_check_interval = 1.0 save_checkpoints_interval = 1 # save each 5 epochs @ex.named_config def task_mlm_vtm_vcop_cotrain(): exp_name = "mlm_vtm" video_datasets = ["howto100m", "webvid"] image_datasets = ["cc3m"] loss_names = _loss_names({"vtm": 1, "mlm": 1, "vcop": 1}) batch_size = 2048 max_epoch = 30 max_image_len = -1 val_check_interval = 1.0 save_checkpoints_interval = 5 # save each 5 epochs @ex.named_config def task_mlm_vtm_dino_cotrain(): exp_name = "mlm_vtm_dino_1f" video_datasets = ["webvid"] # "howto100m", image_datasets = ["cc3m"] loss_names = _loss_names({"vtm": 1, "mlm": 1, "dino": 1}) # already include dino train_transform_keys = ["pixelbert_randaug"] val_transform_keys = ["pixelbert_randaug"] batch_size = 1024 max_epoch = 100 max_image_len = -1 val_check_interval = 1.0 save_checkpoints_interval = 1 # save each 5 epochs # ================================ end: pretrain ====================== # ================================ begin: finetune ====================== # ========== begin: multiple choice ================ # = for lsmdc multiple choice @ex.named_config def task_finetune_lsmdcchoice(): exp_name = "finetune_lsmdc_choice" video_datasets = ["lsmdc_choice"] image_datasets = [] loss_names = _loss_names({"multiple_choice": 1}) batch_size = 256 max_epoch = 20 max_steps = None warmup_steps = 0.1 draw_false_text = 5 # 5 choices learning_rate = 1e-5 val_check_interval = 0.5 lr_mult = 10 # = for msrvtt multiple choice @ex.named_config def task_finetune_msrvttchoice(): exp_name = "finetune_msrvtt_choice" video_datasets = ["msrvtt_choice"] image_datasets = [] loss_names = _loss_names({"multiple_choice": 1}) batch_size = 256 max_epoch = 10 max_steps = None warmup_steps = 0.1 draw_false_text = 5 # 5 choices learning_rate = 1e-4 val_check_interval = 0.5 lr_mult = 10 # ========== end: multiple choice ================ # ind itc # ========== begin: retrieval ================ @ex.named_config def task_finetune_vtc_irtr_msrvtt(): exp_name = "finetune_vtc_irtr_msrvtt" video_datasets = ["msrvtt"] image_datasets = [] train_transform_keys = ["pixelbert_randaug"] loss_names = _loss_names({"vtc": 1}) batch_size = 1024 max_epoch = 50 max_steps = None warmup_steps = 0.1 # 0.1/0.3 retrieval_views = 1 # use 5 views get_recall_metric = False get_ind_recall_metric = True draw_false_text = 15 learning_rate = 6e-4 # 1/3e-4 # ========== end: retrieval ================ # ========== begin: vqa ================ # for msvd qa @ex.named_config def task_finetune_msvdqa(): exp_name = "finetune_msvd_qa" video_datasets = ["msvdqa"] image_datasets = [] loss_names = _loss_names({"openend_vqa": 1}) # msvd have same number of answers with msrvtt batch_size = 512 msrvttqa_label_size = 1001 # vqa voculbary length 1000 + 1 background max_epoch = 20 max_steps = None warmup_steps = 0.1 draw_false_image = 0 learning_rate = 1e-4 # 1e-4 val_check_interval = 1.0 lr_mult = 10 # = add by for msrvtt qa @ex.named_config def task_finetune_msrvttqa(): exp_name = "finetune_msrvtt_qa" video_datasets = ["msrvttqa"] image_datasets = [] loss_names = _loss_names({"openend_vqa": 1}) batch_size = 512 msrvttqa_label_size = 1501 # 1501 / 4540 max_epoch = 20 max_steps = None warmup_steps = 0.1 # 0.1 draw_false_image = 1 draw_false_text = 1 learning_rate = 1e-4 # 1e-4 normal val_check_interval = 1.0 lr_mult = 10 # = for tgif qa on frameqa @ex.named_config def task_finetune_tgifqa(): exp_name = "finetune_tgif_qa" video_datasets = ["tgif"] image_datasets = [] loss_names = _loss_names({"openend_vqa": 1}) batch_size = 512 msrvttqa_label_size = 1541 # vqa voculbary length 1540 + 1 background max_epoch = 20 max_steps = None warmup_steps = 0.1 draw_false_image = 0 learning_rate = 1e-4 # 1e-4 val_check_interval = 1.0 lr_mult = 10 # = for tgif qa on action/trans @ex.named_config def task_finetune_tgif_action_trans(): exp_name = "finetune_tgif_action_trans" video_datasets = ["tgifqa"] image_datasets = [] loss_names = _loss_names({"mc_vqa": 1}) batch_size = 512 max_epoch = 100 max_steps = None warmup_steps = 0.1 draw_false_image = 0 draw_options_text = 5 # 5 choices learning_rate = 1e-4 # 1e-4 val_check_interval = 1.0 lr_mult = 10 # ========== end: vqa ================ # Task5: ===================== action recognition ===================== @ex.named_config def task_finetune_action_recognition_hmdb51(): exp_name = "finetune_action_recognition_hmdb51" video_datasets = ["hmdb51"] image_datasets = [] loss_names = _loss_names({"openend_vqa": 1}) # have msrvttqa_label_size = 52 # 51 + 1 batch_size = 256 max_epoch = 50 max_steps = None warmup_steps = 0.1 draw_false_text = 15 learning_rate = 1e-4 @ex.named_config def task_finetune_action_recognition_k400(): exp_name = "finetune_action_recognition_k400" video_datasets = ["k400"] image_datasets = [] loss_names = _loss_names({"openend_vqa": 1}) # have msrvttqa_label_size = 401 # 400 + 1 batch_size = 256 max_epoch = 50 max_steps = None warmup_steps = 0.1 draw_false_text = 15 learning_rate = 3e-4 val_check_interval = 1.0 # end: ===================== action recognition ===================== # ================================ end: finetune ====================== @ex.named_config def step25k(): max_epoch = 100 max_steps = 25000 @ex.named_config def step50k(): max_epoch = 100 max_steps = 50000 @ex.named_config def step100k(): max_epoch = 100 max_steps = 100000 @ex.named_config def step200k(): max_epoch = 200 max_steps = 200000 @ex.named_config def step400k(): max_epoch = 400 max_steps = 400000 @ex.named_config def epoch1(): max_epoch = 1 max_steps = None @ex.named_config def vit32_base(): vit = "vit_base_patch32_384" patch_size = 32 hidden_size = 768 num_heads = 12 num_layers = 12 # ============================= begin: clip_kc pretrain =================== # = for msrvtt multiple choice @ex.named_config def clip_kc_finetune_msrvttchoice(): exp_name = "clip_kc_finetune_msrvtt_choice" video_datasets = ["msrvtt_choice"] image_datasets = [] loss_names = _loss_names({"multiple_choice": 1}) batch_size = 512 max_epoch = 10 max_steps = None warmup_steps = 0.1 draw_false_text = 5 # 5 choices learning_rate = 1e-4 val_check_interval = 0.5 lr_mult = 10 max_text_len = 77 clip = "/mnt/lustre/share_data/likunchang.vendor/code/EVL/ViT-B-16.pt" clip_type = "kc" @ex.named_config def clip_kc_contrastive_howto_cc3m_choice(): exp_name = "clip_kc_contrastive_howto_cc3m_choice" video_datasets = ["howto100m"] image_datasets = ["cc3m"] train_transform_keys = ["open_clip"] val_transform_keys = ["open_clip"] loss_names = _loss_names({"contrastive": 1}) batch_size = 1024 max_epoch = 10 max_text_len = 77 clip = "/mnt/lustre/share_data/likunchang.vendor/code/EVL/ViT-B-16.pt" clip_type = "kc" vocab_size = 49408 draw_false_text = 5 val_datasets = ["msrvtt_choice", "lsmdc"] val_loss_names = _loss_names({"multiple_choice": 1}) @ex.named_config def clip_kc_contrastive_2plus3_choice(): exp_name = "clip_kc_contrastive_2plus3_choice" video_datasets = ["webvid", "howto100m"] image_datasets = ["cc3m", "cc12m", "yfcc15m"] train_transform_keys = ["open_clip"] val_transform_keys = ["open_clip"] loss_names = _loss_names({"contrastive": 1}) batch_size = 1024 max_epoch = 10 max_text_len = 77 clip = "/mnt/lustre/share_data/likunchang.vendor/code/EVL/ViT-B-16.pt" clip_type = "kc" vocab_size = 49408 draw_false_text = 5 val_datasets = ["msrvtt_choice", "lsmdc_choice"] val_loss_names = _loss_names({"multiple_choice": 1}) @ex.named_config def clip_kc_contrastive_3plus4_choice(): exp_name = "clip_kc_contrastive_3plus4_choice" video_datasets = ["webvid", "howto100m", "webvid10m"] image_datasets = ["cc3m", "cc12m", "yfcc15m", "laion400m"] train_transform_keys = ["open_clip"] val_transform_keys = ["open_clip"] loss_names = _loss_names({"contrastive": 1}) batch_size = 1024 max_epoch = 10 max_text_len = 77 clip = "/mnt/lustre/share_data/likunchang.vendor/code/EVL/ViT-B-16.pt" clip_type = "kc" vocab_size = 49408 draw_false_text = 5 val_datasets = ["msrvtt_choice", "lsmdc_choice"] val_loss_names = _loss_names({"multiple_choice": 1}) @ex.named_config def clip_kc_contrastive_cap_3plus4_choice(): exp_name = "clip_kc_contrastive_3plus4_choice" video_datasets = ["webvid", "howto100m", "webvid10m"] image_datasets = ["cc3m", "cc12m", "yfcc15m", "laion400m"] train_transform_keys = ["open_clip"] val_transform_keys = ["open_clip"] loss_names = _loss_names({"contrastive": 1, "cap": 1}) batch_size = 1024 max_epoch = 10 max_text_len = 77 clip = "/mnt/lustre/share_data/likunchang.vendor/code/EVL/ViT-B-16.pt" clip_type = "kc" vocab_size = 49408 draw_false_text = 5 val_datasets = ["msrvtt_choice", "lsmdc_choice"] val_loss_names = _loss_names({"multiple_choice": 1}) @ex.named_config def clip_kc_new_B16_vtc_cap_3plusM_choice(): exp_name = "clip_kc_new_L14_vtc_cap_3plusM_choice" video_datasets = ["webvid", "howto100m", "webvid10m"] image_datasets = ["mix100m"] train_transform_keys = ["open_clip"] val_transform_keys = ["open_clip"] loss_names = _loss_names({"contrastive": 1, "cap": 1}) per_gpu_batchsize = 32 num_frames = 8 max_epoch = 10 max_text_len = 77 learning_rate = 1e-4 clip = "/mnt/lustre/share_data/likunchang.vendor/code/EVL/ViT-B-16.pt" clip_type = "kc_new" vocab_size = 49408 draw_false_text = 5 val_datasets = ["msrvtt_choice", "lsmdc_choice"] decay_power = "cosine" clip_lr_mult = 0.1 weight_decay = 0.2 clip_evl_dropout = 0.0 clip_cap_decoder_n_layers = 6 warmup_steps = 4000 clip_alt_data = True image_data_mult = 6 val_loss_names = _loss_names({"multiple_choice": 1}) @ex.named_config def clip_kc_new_L14_vtc_cap_3plusM_choice(): exp_name = "clip_kc_new_L14_vtc_cap_3plusM_choice" video_datasets = ["webvid", "howto100m", "webvid10m"] image_datasets = ["mix100m"] train_transform_keys = ["open_clip"] val_transform_keys = ["open_clip"] loss_names = _loss_names({"contrastive": 1, "cap": 1}) per_gpu_batchsize = 14 num_frames = 8 max_epoch = 10 max_text_len = 77 learning_rate = 8e-5 clip = "/mnt/lustre/share_data/likunchang.vendor/code/EVL/ViT-L-14.pt" clip_type = "kc_new" vocab_size = 49408 draw_false_text = 5 val_datasets = ["msrvtt_choice", "lsmdc_choice"] decay_power = "cosine" clip_lr_mult = 0.1 weight_decay = 0.2 clip_evl_dropout = 0.0 clip_cap_decoder_n_layers = 6 warmup_steps = 4000 clip_alt_data = True image_data_mult = 6 val_loss_names = _loss_names({"multiple_choice": 1}) @ex.named_config def clip_kc_new_L14_336_vtc_cap_4plusM_choice(): exp_name = "clip_kc_new_L14_336_vtc_cap_4plusM_choice" video_datasets = ["webvid", "howto100m", "webvid10m", "youtube"] image_datasets = ["mix100m"] train_transform_keys = ["open_clip"] val_transform_keys = ["open_clip"] loss_names = _loss_names({"contrastive": 1, "cap": 1}) image_size = 336 per_gpu_batchsize = 24 clip_use_checkpoint = True clip_checkpoint_num = [23, 100, 100] num_frames = 8 max_epoch = 2 max_steps = None max_text_len = 77 learning_rate = 4e-6 clip = "/mnt/lustre/share_data/likunchang.vendor/code/EVL/ViT-L-14-336px.pt" clip_type = "kc_new" vocab_size = 49408 draw_false_text = 5 val_datasets = ["msrvtt_choice", "lsmdc_choice"] decay_power = "cosine" weight_decay = 0.2 clip_evl_dropout = 0.0 clip_cap_decoder_n_layers = 6 warmup_steps = 2000 clip_alt_data = True image_data_mult = 6 val_loss_names = _loss_names({"multiple_choice": 1}) # ============================== end: clip_kc pretrain ==================== @ex.named_config def clip_finetune_msrvttqa(): exp_name = "clip_finetune_msrvtt_qa" video_datasets = ["msrvttqa"] image_datasets = [] loss_names = _loss_names({"openend_vqa": 1}) batch_size = 512 msrvttqa_label_size = 1501 # 1501 / 4540 max_epoch = 20 max_steps = None warmup_steps = 0.1 # 0.1 draw_false_image = 1 draw_false_text = 1 learning_rate = 1e-4 # 1e-4 normal val_check_interval = 1.0 lr_mult = 10 max_text_len = 77 clip = "/mnt/lustre/share_data/likunchang.vendor/code/EVL/ViT-B-16.pt" clip_type = "ori" @ex.named_config def clip_finetune_tgifqa(): exp_name = "clip_finetune_tgif_qa" video_datasets = ["tgif"] image_datasets = [] loss_names = _loss_names({"openend_vqa": 1}) batch_size = 512 msrvttqa_label_size = 1541 # vqa voculbary length 1540 + 1 background max_epoch = 20 max_steps = None warmup_steps = 0.1 draw_false_image = 0 learning_rate = 1e-4 # 1e-4 val_check_interval = 1.0 lr_mult = 10 max_text_len = 77 clip = "/mnt/lustre/share_data/likunchang.vendor/code/EVL/ViT-B-16.pt" clip_type = "ori" @ex.named_config def clip_finetune_msvdqa(): exp_name = "clip_finetune_msvd_qa" video_datasets = ["msvdqa"] image_datasets = [] loss_names = _loss_names({"openend_vqa": 1}) # msvd have same number of answers with msrvtt batch_size = 512 msrvttqa_label_size = 1001 # vqa voculbary length 1000 + 1 background max_epoch = 20 max_steps = None warmup_steps = 0.1 draw_false_image = 0 learning_rate = 1e-4 # 1e-4 val_check_interval = 1.0 lr_mult = 10 max_text_len = 77 clip = "/mnt/lustre/share_data/likunchang.vendor/code/EVL/ViT-B-16.pt" clip_type = "ori" @ex.named_config def clip_finetune_zs_k400(): exp_name = "clip_finetune_zs_k400" video_datasets = ["k400_video"] image_datasets = [] loss_names = _loss_names({"zs_classify": 1}) batch_size = 256 test_only = True max_text_len = 77 clip = "/mnt/lustre/share_data/likunchang.vendor/code/EVL/ViT-B-16.pt" clip_type = "ori" # ============================== end: clip_kc pretrain ==================== @ex.named_config def clip_vtc_choice(): exp_name = "clip_vtc_choice" video_datasets = ["webvid10m"] image_datasets = [] train_transform_keys = ["open_clip"] val_transform_keys = ["open_clip"] val_datasets = ["msrvtt_choice", "lsmdc_choice"] loss_names = _loss_names({"contrastive": 1}) per_gpu_batchsize = 24 num_frames = 16 max_epoch = 10 max_text_len = 77 learning_rate = 1e-4 clip = "/mnt/petrelfs/share_data/liyizhuo/pretrained/clip_pretrained_models/ViT-B-16.pt" clip_type = "ori" vocab_size = 49408 draw_false_video = 0 draw_false_text = 5 decay_power = "cosine" weight_decay = 0.2 warmup_steps = 4000 val_loss_names = _loss_names({"multiple_choice": 1}) @ex.named_config def clip_vtc_mim_choice(): exp_name = "clip_vtc_mim_choice" video_datasets = ["webvid10m"] image_datasets = [] train_transform_keys = ["open_clip"] val_transform_keys = ["open_clip"] val_datasets = ["msrvtt_choice", "lsmdc_choice"] loss_names = _loss_names({"contrastive": 1, "mim": 1}) per_gpu_batchsize = 128 num_frames = 16 max_epoch = 10 max_text_len = 77 learning_rate = 1e-4 clip = "/mnt/petrelfs/share_data/liyizhuo/pretrained/clip_pretrained_models/ViT-B-16.pt" clip_type = "ori" vocab_size = 49408 draw_false_video = 0 draw_false_text = 5 decay_power = "cosine" weight_decay = 0.2 warmup_steps = 4000 val_loss_names = _loss_names({"multiple_choice": 1}) mim_prob = 0.90 clip_mim_decoder_n_layers = 1 @ex.named_config def clip_vtc_mim_mlm_choice(): exp_name = "clip_vtc_mim_mlm_choice" video_datasets = ["webvid10m"] image_datasets = [] train_transform_keys = ["open_clip"] val_transform_keys = ["open_clip"] val_datasets = ["msrvtt_choice", "lsmdc_choice"] loss_names = _loss_names({"contrastive": 1, "mim": 1, "mlm": 1}) per_gpu_batchsize = 128 num_frames = 16 max_epoch = 10 max_text_len = 77 learning_rate = 1e-4 clip = "/mnt/petrelfs/share_data/liyizhuo/pretrained/clip_pretrained_models/ViT-B-16.pt" clip_type = "ori" vocab_size = 49408 draw_false_video = 0 draw_false_text = 5 decay_power = "cosine" weight_decay = 0.2 warmup_steps = 4000 val_loss_names = _loss_names({"multiple_choice": 1}) mim_prob = 0.90 clip_mim_decoder_n_layers = 1 @ex.named_config def clip_vtc_mlm_choice(): exp_name = "clip_vtc_mlm_choice" video_datasets = ["webvid10m"] image_datasets = [] train_transform_keys = ["open_clip"] val_transform_keys = ["open_clip"] val_datasets = ["msrvtt_choice", "lsmdc_choice"] loss_names = _loss_names({"contrastive": 1, "mlm": 1}) per_gpu_batchsize = 128 num_frames = 16 max_epoch = 10 max_text_len = 77 learning_rate = 1e-4 clip = "/mnt/petrelfs/share_data/liyizhuo/pretrained/clip_pretrained_models/ViT-B-16.pt" clip_type = "ori" vocab_size = 49408 draw_false_video = 0 draw_false_text = 5 decay_power = "cosine" weight_decay = 0.2 warmup_steps = 4000 val_loss_names = _loss_names({"multiple_choice": 1}) # = for msrvtt multiple choice @ex.named_config def clip_finetune_msrvttchoice(): exp_name = "clip_finetune_msrvtt_choice" video_datasets = ["webvid10m"] val_datasets = ["msrvtt_choice", "lsmdc_choice"] image_datasets = [] loss_names = _loss_names({"multiple_choice": 1}) num_frames = 16 batch_size = 512 max_epoch = 10 warmup_steps = 0.1 draw_false_text = 5 # 5 choices learning_rate = 1e-4 val_check_interval = 0.5 max_text_len = 77 clip = "/mnt/petrelfs/share_data/liyizhuo/pretrained/clip_pretrained_models/ViT-B-16.pt" clip_type = "ori" # ============================== end: clip_kc new nc pretrain ==================== @ex.named_config def clip_kc_nc_vtc_choice(): exp_name = "clip_kc_nc_vtc_choice" video_datasets = ["webvid10m"] image_datasets = [] train_transform_keys = ["open_clip"] val_transform_keys = ["open_clip"] val_datasets = ["msrvtt_choice", "lsmdc_choice"] loss_names = _loss_names({"contrastive": 1}) num_frames = 8 max_epoch = 10 max_text_len = 77 learning_rate = 1e-5 clip = "/mnt/petrelfs/share_data/liyizhuo/pretrained/clip_pretrained_models/ViT-B-16.pt" clip_type = "kc_new" vocab_size = 49408 draw_false_video = 0 draw_false_text = 5 decay_power = "cosine" weight_decay = 0.2 warmup_steps = 4000 clip_freeze_text = True val_loss_names = _loss_names({"multiple_choice": 1}) per_gpu_batchsize = 32 batch_size = 256 @ex.named_config def clip_kc_nc_vtc_mim_nd_choice(): exp_name = "clip_kc_nc_vtc_mim_nd_choice" video_datasets = ["webvid10m"] image_datasets = [] train_transform_keys = ["open_clip"] val_transform_keys = ["open_clip"] val_datasets = ["msrvtt_choice", "lsmdc_choice"] loss_names = _loss_names({"contrastive": 1, "mim": 1}) num_frames = 8 max_epoch = 10 max_text_len = 77 learning_rate = 1e-5 clip = "/mnt/petrelfs/share_data/liyizhuo/pretrained/clip_pretrained_models/ViT-B-16.pt" clip_type = "kc_new" vocab_size = 49408 draw_false_video = 0 draw_false_text = 5 decay_power = "cosine" weight_decay = 0.2 warmup_steps = 4000 clip_freeze_text = True mim_prob = 0.90 val_loss_names = _loss_names({"multiple_choice": 1}) per_gpu_batchsize = 32 batch_size = 256 clip_mim_decoder_n_layers = 0 @ex.named_config def clip_kc_nc_vtc_mlm_choice(): exp_name = "clip_kc_nc_vtc_mlm_choice" video_datasets = ["webvid10m"] image_datasets = [] train_transform_keys = ["open_clip"] val_transform_keys = ["open_clip"] val_datasets = ["msrvtt_choice", "lsmdc_choice"] loss_names = _loss_names({"contrastive": 1, "mlm": 1}) num_frames = 8 max_epoch = 10 max_text_len = 77 learning_rate = 1e-5 clip = "/mnt/petrelfs/share_data/liyizhuo/pretrained/clip_pretrained_models/ViT-B-16.pt" clip_type = "kc_new" vocab_size = 49408 draw_false_video = 0 draw_false_text = 5 decay_power = "cosine" weight_decay = 0.2 warmup_steps = 4000 clip_freeze_text = True val_loss_names = _loss_names({"multiple_choice": 1}) per_gpu_batchsize = 32 batch_size = 256 clip_mim_decoder_n_layers = 0 @ex.named_config def clip_kc_nc_vtc_mim_nd_mlm_choice(): exp_name = "clip_kc_nc_vtc_mim_nd_mlm_choice" video_datasets = ["webvid10m"] image_datasets = [] train_transform_keys = ["open_clip"] val_transform_keys = ["open_clip"] val_datasets = ["msrvtt_choice", "lsmdc_choice"] loss_names = _loss_names({"contrastive": 1, "mlm": 1, "mim": 1}) num_frames = 8 max_epoch = 10 max_text_len = 77 learning_rate = 1e-5 clip = "/mnt/petrelfs/share_data/liyizhuo/pretrained/clip_pretrained_models/ViT-B-16.pt" clip_type = "kc_new" vocab_size = 49408 draw_false_video = 0 draw_false_text = 5 decay_power = "cosine" weight_decay = 0.2 warmup_steps = 4000 clip_freeze_text = True val_loss_names = _loss_names({"multiple_choice": 1}) per_gpu_batchsize = 128 batch_size = 1024 clip_mim_decoder_n_layers = 0 # = for msrvtt multiple choice @ex.named_config def clip_kc_nc_finetune_msrvttchoice(): exp_name = "clip_kc_nc_finetune_msrvttchoice" video_datasets=["msrvtt_choice", "lsmdc_choice"] image_datasets = [] loss_names = _loss_names({"multiple_choice": 1}) num_frames = 8 batch_size = 512 max_epoch = 10 warmup_steps = 0.1 draw_false_text = 5 # 5 choices learning_rate = 1e-4 val_check_interval = 0.5 max_text_len = 77 clip = "/mnt/petrelfs/share_data/liyizhuo/pretrained/clip_pretrained_models/ViT-B-16.pt" clip_type = "kc_new" test_only = True
InternVideo-main
Downstream/multi-modalities-downstream/CoTrain/config.py
InternVideo-main
Downstream/multi-modalities-downstream/CoTrain/__init__.py
try: from petrel_client.client import Client client = Client() # Disable boto logger import logging logging.getLogger('boto3').setLevel(logging.WARNING) logging.getLogger('botocore').setLevel(logging.WARNING) logging.getLogger('nose').setLevel(logging.WARNING) except: client = None # == pretrain data # = image from .image.vg_caption_dataset import VisualGenomeCaptionDataset from .image.coco_caption_karpathy_dataset import CocoCaptionKarpathyDataset from .image.sbu_caption_dataset import SBUCaptionDataset from .image.cc3m import CC3MDataset from .image.cc12m import CC12MDataset from .image.yfcc15m import YFCC15MDataset from .image.laion400m import LAION400MDataset from .image.conceptual_caption_dataset import ConceptualCaptionDataset from .image.mix100m import MIX100MDataset # = video from .video.webvid import WEBVIDDataset from .video.webvid10m import WEBVID10MDataset from .video.howto100m import HT100MDataset from .video.youtube import YOUTUBEDataset from .video.yttemporal import YTTemporalDataset # == downstream data # = image from .image.f30k_caption_karpathy_dataset import F30KCaptionKarpathyDataset from .image.vqav2_dataset import VQAv2Dataset from .image.nlvr2_dataset import NLVR2Dataset from .image.vcr import VCRDataset # = video from .video.msrvtt import MSRVTTDataset from .video.msrvttqa import MSRVTTQADataset from .video.msrvtt_choice import MSRVTTChoiceDataset from .video.msvd import MSVDDataset from .video.lsmdc_dataset import LSMDCDataset from .video.msvdqa import MSVDQADataset from .video.ego4d import Ego4DDataset from .video.tvqa import TVQADataset from .video.lsmdc_choice import LSMDCChoiceDataset from .video.ego4d_choice import EGO4DChoiceDataset from .video.tgif import TGIFDataset from .video.tgifqa import TGIFQADataset from .video.didemo import DIDEMODataset from .video.hmdb51 import HMDB51Dataset from .video.ucf101 import UCF101Dataset from .video.k400 import K400Dataset from .video.activitynet import ActivityNetDataset from .video.k400_video import K400VideoDataset
InternVideo-main
Downstream/multi-modalities-downstream/CoTrain/datasets/__init__.py
from .video_base_dataset import BaseDataset, read_large_frames_decord, get_video_len import os import pandas as pd class EGO4DChoiceDataset(BaseDataset): def __init__(self, *args, split="", **kwargs): assert split in ["train", "val", "test"] self.split = split if self.split == "train": Exception("no train data provided") self.metadata = None self.ans_lab_dict = None if split == "train": names = ["ego4d_choice_train"] elif split == "val": names = ["ego4d_choice_val"] elif split == "test": names = ["ego4d_choice_test"] # vqav2_test-dev for test-dev super().__init__( *args, **kwargs, names=names, text_column_name="unknown", remove_duplicate=False, ) self._load_metadata() def _load_metadata(self): metadata_dir = './meta_data/ego4d' split_files = { 'train': 'mc_val.csv', # no train and test available, only for zero-shot testing 'val': 'mc_val.csv', 'test': 'mc_val.csv' } target_split_fp = split_files[self.split] self.metadata = pd.read_csv(os.path.join(metadata_dir, target_split_fp), sep=',', header=0, on_bad_lines='skip') def _get_video_path(self, sample): rel_video_fp = eval(sample["question"])[0] + '.mp4' full_video_fp = os.path.join(self.data_dir, 'videos', rel_video_fp) if not os.path.exists(full_video_fp): Exception(IOError) return full_video_fp, rel_video_fp def get_raw_video(self, sample): abs_fp, rel_fp = self._get_video_path(sample) frame_loc = eval(sample["question"])[1] frame_end = get_video_len(abs_fp) imgs = read_large_frames_decord(abs_fp, frame_loc, frame_end, self.num_frames, mode=self.split) if imgs is None: raise Exception("Invalid video!", rel_fp) else: return imgs def get_text(self, sample): texts = [] for answer in eval(sample["answers"]): text = answer[-1] encoding = self.tokenizer( text, padding="max_length", truncation=True, max_length=self.max_text_len, return_special_tokens_mask=True, ) texts.append((text, encoding)) return texts def get_answer_label(self, sample): gt_text = eval(sample["question"])[-1] answer_label = 0 for index, answer in enumerate(eval(sample["answers"])): if answer[-1] == gt_text: answer_label = index return answer_label def __getitem__(self, index): sample = self.metadata.iloc[index] # print(sample) video_tensor = self.get_video(sample) # index, question_index = self.index_mapper[index] qid = index answer = self.get_answer_label(sample) ret = { "video": video_tensor, "vid_index": index, "cap_index": index, "raw_index": index, 'answer': answer } texts = self.get_text(sample) ret["text"] = texts[0] # print(len(texts)) for i in range(self.draw_false_text - 1): ret.update({f"false_text_{i}": texts[i+1]}) return ret def __len__(self): return len(self.metadata)
InternVideo-main
Downstream/multi-modalities-downstream/CoTrain/datasets/video/ego4d_choice.py
import numpy as np from .video_base_dataset import BaseDataset, read_frames_gif import os import json import pandas as pd import random # 2022.1.28 read gif is too slow, may be need to speedup by convert gif -> video # https://stackify.dev/833655-python-convert-gif-to-videomp4 class TGIFDataset(BaseDataset): def __init__(self, *args, split="", **kwargs): assert split in ["train", "val", "test"] self.split = split self.metadata = None self.ans_lab_dict = None if split == "train": names = ["tgif_train"] elif split == "val": names = ["tgif_val"] elif split == "test": names = ["tgif_test"] super().__init__( *args, **kwargs, names=names, text_column_name="questions", remove_duplicate=False, ) # self.num_frames = 4 self._load_metadata() self.data_dir = "/mnt/lustre/share_data/heyinan/data/tgif" # TODO: Remove this piece of shit def _load_metadata(self): metadata_dir = './meta_data/tgif' split_files = { 'train': 'frameqa_train.jsonl', 'val': 'frameqa_test.jsonl', # frameqa_val.jsonl 'test': 'frameqa_test.jsonl' } target_split_fp = split_files[self.split] answer_fp = os.path.join(metadata_dir, 'frameqa_trainval_ans2label.json') # answer_fp = os.path.join(metadata_dir, 'msrvtt_qa_ans2label.json') with open(answer_fp, 'r') as JSON: self.ans_lab_dict = json.load(JSON) # path_or_buf=os.path.join(metadata_dir, target_split_fp) metadata = pd.read_json(os.path.join(metadata_dir, target_split_fp), lines=True) self.metadata = metadata def _get_video_path(self, sample): return os.path.join(self.data_dir, 'gifs', sample['gif_name']) + '.gif', sample['gif_name'] + '.gif' def get_raw_video(self, sample): abs_fp, rel_fp = self._get_video_path(sample) imgs, idxs, vlen = read_frames_gif(abs_fp, self.num_frames, mode=self.split) if imgs is None: raise Exception("Invalid img!", rel_fp) else: return imgs def get_text(self, sample): text = sample['question'] encoding = self.tokenizer( text, padding="max_length", truncation=True, max_length=self.max_text_len, return_special_tokens_mask=True, ) return (text, encoding) def get_answer_label(self, sample): text = sample['answer'] ans_total_len = len(self.ans_lab_dict) + 1 # one additional class try: ans_label = self.ans_lab_dict[text] # except KeyError: ans_label = -100 # ignore classes # ans_label = 1500 # other classes scores = np.zeros(ans_total_len).astype(int) scores[ans_label] = 1 return text, ans_label, scores # return text, ans_label_vector, scores def __getitem__(self, index): result = None while result is None: sample = self.metadata.iloc[index] try: video_tensor = self.get_video(sample) text = self.get_text(sample) # index, question_index = self.index_mapper[index] qid = index result = True except Exception as e: gif_name = sample["gif_name"] print(f"Error while read file idx {gif_name}") assert self.split != "test" index = random.randint(0, len(self.metadata) - 1) if self.split != "test": answers, labels, scores = self.get_answer_label(sample) else: answers = list() labels = list() scores = list() return { "video": video_tensor, "text": text, "vqa_answer": answers, "vqa_labels": labels, "vqa_scores": scores, "qid": qid, } def __len__(self): return len(self.metadata)
InternVideo-main
Downstream/multi-modalities-downstream/CoTrain/datasets/video/tgif.py
from .video_base_dataset import BaseDataset, sample_frames, video_clip_reader, clean_subtitles, align_using_dtw import torch as th import pandas as pd import os import numpy as np import random import ffmpeg import json import ftfy class YTTemporalDataset(BaseDataset): """YTTemporal Video-Text loader.""" def __init__(self, *args, split="", **kwargs): assert split in ["train", "val", "test"] self.split = split if split == "train": names = ["yttemporal_train"] elif split == "val": names = ["yttemporal_val"] elif split == "test": names = ["yttemporal_test"] super().__init__(*args, **kwargs, names=names, text_column_name="caption") self.metadata = None self._load_metadata() self.min_time = 4.0 self.size = 224 self.fps = 2 self.num_sec = self.num_frames / float(self.fps) self.crop_only = True if self.split == 'train': self.center_crop = False else: self.center_crop = True self.benchmark = False self.num_candidates = 1 self.random_flip = True self._load_metadata() def _load_metadata(self): metadata_dir = './meta_data/yttemporal' split_files = { 'train': 'train_success_2000000.csv', # _1000000 'val': 'val_success.csv', # there is no test 'test': 'val_success.csv' } target_split_fp = split_files[self.split] metadata = pd.read_csv(os.path.join(metadata_dir, target_split_fp), sep='\t') self.metadata = metadata["Name"] def read_frames_ffmpeg(self, video_path, start, end): start_seek = start cmd = ( ffmpeg .input(video_path, ss=start_seek, t=end-start + 0.01) .filter('fps', fps=self.fps) ) if self.center_crop: aw, ah = 0.5, 0.5 else: aw, ah = random.uniform(0, 1), random.uniform(0, 1) if self.crop_only: cmd = ( cmd.crop('(iw - {})*{}'.format(self.size, aw), '(ih - {})*{}'.format(self.size, ah), str(self.size), str(self.size)) ) else: cmd = ( cmd.crop('(iw - min(iw,ih))*{}'.format(aw), '(ih - min(iw,ih))*{}'.format(ah), 'min(iw,ih)', 'min(iw,ih)') .filter('scale', self.size, self.size) ) if self.random_flip and random.uniform(0, 1) > 0.5: cmd = cmd.hflip() out, _ = ( cmd.output('pipe:', format='rawvideo', pix_fmt='rgb24') .run(capture_stdout=True, quiet=True) ) video = np.frombuffer(out, np.uint8).reshape([-1, self.size, self.size, 3]) video_tensor = th.from_numpy(np.copy(video)) video_tensor = video_tensor.permute(3, 0, 1, 2) + 0.01 # print(video_tensor.size()) # print(video_tensor) if video_tensor.shape[1] < self.num_frames: zeros = th.ones((3, self.num_frames - video_tensor.shape[1], self.size, self.size), dtype=th.uint8) video_tensor = th.cat((video_tensor, zeros), axis=1) # # uniform n frames # frame_indexs = sample_frames(self.num_frames, video_tensor.size(1)) # out_tensors = th.ones((3, self.num_frames, self.size, self.size), dtype=th.uint8) # for i in range(self.num_frames): # out_tensors[:, i] = video_tensor[:, frame_indexs[i]] # print(out_tensors) # return out_tensors return video_tensor[:, :self.num_frames] # # sample fix number of words # def get_caption(self, caption_csv, words_len=32): # with open(caption_csv, 'r') as f: # cap = json.load(f) # # random choice words_len words # video_len = int(cap["info"]["duration"]) # all_text = cap["subtitles"] # [{'word': 'hey', 'time': 0.0}, {'word': 'guys', 'time': 0.149}] # word_count = len(all_text) # # # clean noisy asr text # all_text = clean_subtitles(all_text) # vtt = pd.DataFrame(all_text) # denoised_word_by_word = [] # for x in cap['denoised']: # # Ftfy just in case # cleanasr = ftfy.ftfy(x['cleanasr']) # denoised_word_by_word += cleanasr.split(' ') # # Align # vtt['denoised'] = align_using_dtw(vtt['word'], denoised_word_by_word) # max_word = min(word_count - 1, words_len) # begin_word_index = random.randint(0, word_count - max_word) # text = "" # for i in range(max_word): # text += vtt['denoised'][begin_word_index + i] + ' ' # start = float(all_text[begin_word_index]['time']) # end = float(all_text[min(word_count-1, begin_word_index + max_word)]['time']) # # print(text, start, end) # return text, start, end, video_len # sample fix video length def get_caption(self, caption_csv): with open(caption_csv, 'r') as f: cap = json.load(f) # random choice 10s-15s video clips video_len = int(cap["info"]["duration"]) start = random.randint(0, max(1, video_len-15)) + random.random() clip_len = random.randint(10, 15) end = min(video_len-1, start + clip_len) all_text = cap["subtitles"] # [{'word': 'hey', 'time': 0.0}, {'word': 'guys', 'time': 0.149}] # clean noisy asr text all_text = clean_subtitles(all_text) vtt = pd.DataFrame(all_text) denoised_word_by_word = [] for x in cap['denoised']: # Ftfy just in case cleanasr = ftfy.ftfy(x['cleanasr']) denoised_word_by_word += cleanasr.split(' ') # Align vtt['denoised'] = align_using_dtw(vtt['word'], denoised_word_by_word) text = "" origin_text = "" for index, item in enumerate(all_text): if float(item['time']) > start and float(item['time']) < end: text += vtt['denoised'][index] + " " origin_text += item['word'] + " " # print(text) # print(origin_text) if len(text) < 10: Exception(IndexError) if end - start < self.min_time: diff = self.min_time - end + start start = max(0, start - diff / 2) end = start + self.min_time return text, start, end, video_len def get_text(self, sample): caption_csv = self.get_caption_path(sample) text, start, end, duration = self.get_caption(caption_csv) # print(text, start, end) # print(text) # TODO: May need to be improved for edge cases. encoding = self.tokenizer( text, padding="max_length", truncation=True, max_length=self.max_text_len, return_special_tokens_mask=True, ) return {"text": (text, encoding)}, start, end, duration def get_caption_path(self, sample): # YTTemporal/videos/subset_87/data/xx.mp4 -> YTTemporal/videos/subset_87/annotations/xx.csv return os.path.join(self.data_dir, 'videos', sample.split('/')[0], 'annotations', sample.split('/')[-1][:-4] + '.json') def get_false_text(self, rep): random_index = random.randint(0, len(self.metadata) - 1) sample = self.metadata.iloc[random_index] caption_csv = self.get_caption_path(sample) text, start, end = self.get_caption(caption_csv) encoding = self.tokenizer( text, # padding="max_length", truncation=True, max_length=self.max_text_len, return_special_tokens_mask=True, ) return {f"false_text_{rep}": (text, encoding)} def _get_video_path(self, sample): rel_video_fp = sample full_video_fp = os.path.join(self.data_dir, 'videos', rel_video_fp) return full_video_fp, rel_video_fp def get_raw_video(self, sample, begin, end, duration): abs_fp, rel_fp = self._get_video_path(sample) # print(abs_fp, rel_fp) # imgs = self.read_frames_ffmpeg(abs_fp, begin, end).permute(1, 0, 2, 3) videos = video_clip_reader(abs_fp, begin, end, duration, self.num_frames) if videos.size(0) != self.num_frames: raise Exception("video length not enough!", rel_fp) if videos is None: raise Exception("Invalid img!", rel_fp) else: return videos def get_video(self, sample, start, end, duration): videos = self.get_raw_video(sample, start, end, duration) videos_tensor = self.video_aug(videos, self.video_transform) return videos_tensor def get_false_video(self, rep): random_index = random.randint(0, len(self.metadata) - 1) sample = self.metadata.iloc[random_index] caption_csv = self.get_caption_path(sample) _, start, end, duration = self.get_caption(caption_csv) videos = self.get_raw_video(sample, start, end, duration) videos_tensor = self.video_aug(videos, self.video_transform) return {f"false_video_{rep}": videos_tensor} def get_suite(self, index): result = None max_try = 5 try_time = 0 while result is None: try_time += 1 sample = self.metadata.iloc[index] # try: ret = dict() text, start, end, duration = self.get_text(sample) ret.update(text) videos_tensor = self.get_video(sample, start, end, duration) # print(imgs_tensor.size()) ret.update({ "video": videos_tensor, "vid_index": index, "cap_index": index, "raw_index": index, }) ret.update({"replica": True if ret["cap_index"] > 0 else False}) for i in range(self.draw_false_video): ret.update(self.get_false_video(i)) for i in range(self.draw_false_text): ret.update(self.get_false_text(i)) result = True # except Exception as e: # # print(f"Error while read file idx {sample} in {self.names[0]} -> {e}") # index = random.randint(0, len(self.metadata) - 1) if try_time > max_try: print(f"Exceed max time Error while read file idx {sample} in {self.names[0]}") return ret def __len__(self): return len(self.metadata) def __getitem__(self, index): return self.get_suite(index)
InternVideo-main
Downstream/multi-modalities-downstream/CoTrain/datasets/video/yttemporal.py
import numpy as np from .video_base_dataset import BaseDataset import os import json import pandas as pd class MSRVTTQADataset(BaseDataset): def __init__(self, *args, split="", **kwargs): assert split in ["train", "val", "test"] # if split == "test": # split = "val" self.split = split self.metadata = None self.ans_lab_dict = None if split == "train": names = ["msrvtt_qa_train"] # names = ["msrvtt_qa_train", "msrvtt_qa_val"] elif split == "val": names = ["msrvtt_qa_test"] # ["msrvtt_qa_val"] elif split == "test": names = ["msrvtt_qa_test"] # vqav2_test-dev for test-dev super().__init__( *args, **kwargs, names=names, text_column_name="questions", remove_duplicate=False, ) self.names = names # self.num_frames = 4 self._load_metadata() def _load_metadata(self): metadata_dir = './meta_data/msrvtt' split_files = { 'train': 'msrvtt_qa_train.jsonl', 'val': 'msrvtt_qa_test.jsonl', 'test': 'msrvtt_qa_test.jsonl' } answer_fp = os.path.join(metadata_dir, 'msrvtt_train_ans2label.json') # 1500 in total (all classes in train) # answer_fp = os.path.join(metadata_dir, 'msrvtt_qa_ans2label.json') # 4539 in total (all classes in train+val+test) answer_clip_id = os.path.join(metadata_dir, 'msrvtt_clip_id.json') with open(answer_fp, 'r') as JSON: self.ans_lab_dict = json.load(JSON) with open(answer_clip_id, 'r') as JSON: self.ans_clip_id = json.load(JSON) for name in self.names: split = name.split('_')[-1] target_split_fp = split_files[split] # path_or_buf=os.path.join(metadata_dir, target_split_fp) metadata = pd.read_json(os.path.join(metadata_dir, target_split_fp), lines=True) if self.metadata is None: self.metadata = metadata else: self.metadata.update(metadata) print("total {} samples for {}".format(len(self.metadata), self.names)) # data1.update(data2) def get_text(self, sample): text = sample['question'] encoding = self.tokenizer( text, padding="max_length", truncation=True, max_length=self.max_text_len, return_special_tokens_mask=True, ) return (text, encoding) def get_answer_label(self, sample): text = sample['answer'] ans_total_len = len(self.ans_lab_dict) + 1 # one additional class try: ans_label = self.ans_lab_dict[text] # except KeyError: ans_label = -100 # ignore classes # ans_label = 1500 # other classes scores = np.zeros(ans_total_len).astype(int) scores[ans_label] = 1 return text, ans_label, scores # return text, ans_label_vector, scores def __getitem__(self, index): sample = self.metadata.iloc[index] video_tensor = self.get_video(sample) text = self.get_text(sample) # index, question_index = self.index_mapper[index] qid = index if self.split != "test": answers, labels, scores = self.get_answer_label(sample) else: answers = list() labels = list() scores = list() answers, labels, scores = self.get_answer_label(sample) return { "video": video_tensor, "text": text, "vqa_answer": answers, "vqa_labels": labels, "vqa_scores": scores, "qid": qid, "ans_clip_id": self.ans_clip_id, } def __len__(self): return len(self.metadata)
InternVideo-main
Downstream/multi-modalities-downstream/CoTrain/datasets/video/msrvttqa.py
from .video_base_dataset import BaseDataset import torch as th import pandas as pd import os import numpy as np import random import ffmpeg import io import decord decord.bridge.set_bridge('torch') from CoTrain.datasets import client class HT100MDataset(BaseDataset): """HowTo100M Video-Text loader.""" def __init__(self, *args, split="", **kwargs): assert split in ["train", "val", "test"] self.split = split if split == "train": names = ["howto100m_train"] elif split == "val": names = ["howto100m_val"] elif split == "test": names = ["howto100m_test"] super().__init__(*args, **kwargs, names=names, text_column_name="caption") self.metadata = None self._load_metadata() # for howto100 self.min_time = 4.0 self.size = 256 self.fps = 2 self.num_sec = self.num_frames / float(self.fps) self.crop_only = True if self.split == 'train': self.center_crop = False else: self.center_crop = True self.benchmark = False self.num_candidates = 1 self.random_flip = True if "s3://" in self.data_dir: # Read from local self.caption_dir = os.path.join("./meta_data/howto100m", 'howto100m_csv') # self.caption_dir = os.path.join("./meta_data/howto100m", 'howto100m_csv') else: self.caption_dir = os.path.join(self.data_dir, 'howto100m_csv') print(names, ": ", len(self.metadata), "samples in total.") def _load_metadata(self): metadata_dir = './meta_data/howto100m_our' split_files = { 'train': 'ht100_videos_split.csv', 'val': 'ht100_videos_split_val.csv', # there is no test 'test': 'ht100_videos_split_val.csv' } target_split_fp = split_files[self.split] metadata = pd.read_csv(os.path.join(metadata_dir, target_split_fp), sep='\t') self.metadata = metadata["Name"] def read_frames_ffmpeg(self, video_path, start, end): start_seek = random.randint(int(start), int(max(start, end - self.num_sec))) cmd = ( ffmpeg .input(video_path, ss=start_seek, t=self.num_sec + 0.01) .filter('fps', fps=self.fps) ) if self.center_crop: aw, ah = 0.5, 0.5 else: aw, ah = random.uniform(0, 1), random.uniform(0, 1) if self.crop_only: cmd = ( cmd.crop('(iw - {})*{}'.format(self.size, aw), '(ih - {})*{}'.format(self.size, ah), str(self.size), str(self.size)) ) else: cmd = ( cmd.crop('(iw - min(iw,ih))*{}'.format(aw), '(ih - min(iw,ih))*{}'.format(ah), 'min(iw,ih)', 'min(iw,ih)') .filter('scale', self.size, self.size) ) if self.random_flip and random.uniform(0, 1) > 0.5: cmd = cmd.hflip() out, _ = ( cmd.output('pipe:', format='rawvideo', pix_fmt='rgb24').run(capture_stdout=True, quiet=True) ) # print(np.frombuffer(out, np.uint8).shape) video = np.frombuffer(out, np.uint8).reshape([-1, self.size, self.size, 3]) video_tensor = th.from_numpy(np.copy(video)) video_tensor = video_tensor.permute(3, 0, 1, 2) + 0.01 # prevent all dark vide if video_tensor.shape[1] < self.num_frames: zeros = th.ones((3, self.num_frames - video_tensor.shape[1], self.size, self.size), dtype=th.uint8) video_tensor = th.cat((video_tensor, zeros), axis=1) return video_tensor[:, :self.num_frames] def read_frames_decord(self, video_path, start, end): # Build Decord conntainer video_bytes = client.get(video_path) assert video_bytes is not None, "Get video failed from {}".format(video_path) if isinstance(video_bytes, bytes): video_bytes = io.BytesIO(video_bytes) container = decord.VideoReader(video_bytes, ctx=decord.cpu(0)) real_fps = container.get_avg_fps() start_frame, end_frame = real_fps * start, real_fps * end num_real_frames = self.num_frames / self.fps * real_fps start_seek = random.randint(int(start_frame), int(max(start_frame, end_frame - num_real_frames))) indexes = np.linspace(start_seek, start_seek + num_real_frames, self.num_frames, endpoint=False, dtype=int) indexes = [x for x in indexes if x < len(container)] assert len(indexes) > 0, "Failed to decode from {}".format(video_path) frames = container.get_batch(indexes) # [T, H, W, C] _, H, W, _ = frames.shape assert self.crop_only if self.center_crop: aw, ah = 0.5, 0.5 else: aw, ah = random.uniform(0, 1), random.uniform(0, 1) top = int((H - self.size) * ah) left = int((W - self.size) * aw) bottom, right = top + self.size, left + self.size frames = frames[:, top:bottom, left:right, :] if self.random_flip and random.uniform(0, 1) > 0.5: frames = frames.flip([-2]) video_tensor = frames.permute(3, 0, 1, 2) + 0.01 # prevent all dark vide if video_tensor.shape[1] < self.num_frames: zeros = th.ones((3, self.num_frames - video_tensor.shape[1], self.size, self.size), dtype=th.uint8) video_tensor = th.cat((video_tensor, zeros), axis=1) # assert False, (video_tensor.min(), video_tensor.max()) # assert False, video_tensor.shape return video_tensor[:, :self.num_frames] # time consuming > load video, where is the csv file? (cfs->ceph) def get_caption(self, caption): cap = pd.read_csv(caption) ind = random.randint(0, len(cap) - 1) text = cap['text'].values[ind] start, end = cap['start'].values[ind], cap['end'].values[ind] if end - start < self.min_time: diff = self.min_time - end + start start = max(0, start - diff / 2) end = start + self.min_time return text, start, end def get_text(self, sample): caption_csv = self.get_caption_path(sample) text, start, end = self.get_caption(caption_csv) # print(text) # TODO: May need to be improved for edge cases. encoding = self.tokenizer( text, padding="max_length", truncation=True, max_length=self.max_text_len, return_special_tokens_mask=True, ) return {"text": (text, encoding)}, int(start), int(end) def get_caption_path(self, sample): # example xx/xx/xx.mp4 -> xx.csv return os.path.join(self.caption_dir, sample.split('/')[-1].split('.')[0] + '.csv') def get_false_text(self, rep): random_index = random.randint(0, len(self.metadata) - 1) sample = self.metadata.iloc[random_index] caption_csv = self.get_caption_path(sample) text, start, end = self.get_caption(caption_csv) encoding = self.tokenizer( text, truncation=True, max_length=self.max_text_len, return_special_tokens_mask=True, ) return {f"false_text_{rep}": (text, encoding)} def _get_video_path(self, sample): rel_video_fp = sample if "s3://" in self.data_dir: rel_video_fp = sample.split("/")[-1] rel_video_fp = rel_video_fp.split(".")[0] + ".mp4" # All video on ceph is mp4 full_video_fp = os.path.join(self.data_dir, rel_video_fp) return full_video_fp, rel_video_fp def get_raw_video(self, sample, begin, end): abs_fp, rel_fp = self._get_video_path(sample) if "s3://" in abs_fp: videos = self.read_frames_decord(abs_fp, begin, end).permute(1, 0, 2, 3) else: videos = self.read_frames_ffmpeg(abs_fp, begin, end).permute(1, 0, 2, 3) if videos is None: raise Exception("Invalid img!", rel_fp) else: return videos def get_video(self, sample, start, end): videos = self.get_raw_video(sample, start, end) videos_tensor = self.video_aug(videos, self.video_transform, byte=True) return videos_tensor def get_false_video(self, rep): random_index = random.randint(0, len(self.metadata) - 1) sample = self.metadata.iloc[random_index] caption_csv = self.get_caption_path(sample) _, start, end = self.get_caption(caption_csv) videos = self.get_raw_video(sample, start, end) videos_tensor = self.video_aug(videos, self.video_transform, byte=True) return {f"false_video_{rep}": videos_tensor} def get_suite(self, index): result = None max_try = 10 try_time = 0 while result is None: try_time += 1 sample = self.metadata.iloc[index] try: ret = dict() text, start, end = self.get_text(sample) ret.update(text) videos_tensor = self.get_video(sample, start, end) ret.update({ "video": videos_tensor, "vid_index": index, "cap_index": index, "raw_index": index, }) ret.update({"replica": True if ret["cap_index"] > 0 else False}) for i in range(self.draw_false_video): ret.update(self.get_false_video(i)) for i in range(self.draw_false_text): ret.update(self.get_false_text(i)) result = True except Exception as e: index = random.randint(0, len(self.metadata) - 1) exc = e if try_time > max_try: print(f"Exceed max time Error while read file idx {sample} in {self.names[0]} with error {exc}") try_time = 0 return ret def __len__(self): return len(self.metadata) def __getitem__(self, index): return self.get_suite(index)
InternVideo-main
Downstream/multi-modalities-downstream/CoTrain/datasets/video/howto100m.py
from .video_base_dataset import BaseDataset import os import pandas as pd import cv2 import torch from CoTrain.datasets.video.video_base_dataset import sample_frames # each sample: https://tvqa.cs.unc.edu/download_tvqa_plus.html # { # "answer_idx": "1", # "qid": 134094, # "ts": [5.99, 11.98], # "a1": "Howard is talking to Raj and Leonard", # "a0": "Howard is talking to Bernadette", # "a3": "Howard is talking to Leonard and Penny", # "a2": "Howard is talking to Sheldon , and Raj", # "q": "Who is Howard talking to when he is in the lab room ?", # "vid_name": "s05e02_seg02_clip_00", # "a4": "Howard is talking to Penny and Bernadette", # "bbox": { # "14": [ # { # "img_id": 14, # "top": 153, # "label": "Howard", # "width": 180, # "height": 207, # "left": 339 # }, # { # "img_id": 14, # "top": 6, # "label": "lab", # "width": 637, # "height": 354, # "left": 3 # }, # ... # ], # "20": [ ... ], # "26": [ ... ], # "32": [ ... ], # "38": [ ... ] # } # } class TVQAPLUSDataset(BaseDataset): def __init__(self, *args, split="", **kwargs): assert split in ["train", "val", "test"] self.split = split self.metadata = None self._load_metadata() if split == "train": names = ["tvqaplus_train"] elif split == "val": names = ["tvqaplus_val"] elif split == "test": names = ["tvqaplus_test"] super().__init__(*args, **kwargs, names=names, text_column_name="caption") # for appear objects self.only_use_relevant_dets = True if self.only_use_relevant_dets: self.relevant_dets = [] # resort the detection numbers self.relevant_dets_classes = [] def _load_metadata(self): # download specific metadata_dir = './meta_data/tvqa' split_files = { 'train': 'tvqa_plus_train.jsonl', 'val': 'tvqa_plus_val.jsonl', 'test': 'tvqa_plus_test_public.jsonl' # no GT label for test set } target_split_fp = split_files[self.split] metadata = pd.read_json(os.path.join(metadata_dir, target_split_fp), lines=True) self.metadata = metadata def _get_image_path(self, sample): rel_fp = sample['vid_name'] return os.path.join(self.data_dir, rel_fp), rel_fp def _get_caption(self, sample): return sample[0] # tvqaplus provide sampled frames (3 fps) # To Do: considering sample one frame with bounding box def get_raw_video(self, sample): abs_fp, rel_fp = self._get_image_path(sample) [beg_time, end_time] = sample['ts'] clip_len = int((float(end_time) - float(beg_time)) * 3) rel_frame_index = sample_frames(self.num_frames, clip_len) # sample N frames here frames = [] for index in rel_frame_index: img = cv2.imread(abs_fp + '{}.jpg'.format(index)) frame = torch.from_numpy(img).byte() frame = frame.permute(2, 0, 1) frames.append(frame) frames = torch.stack(frames).permute(1, 0, 2, 3) return frames def get_text(self, sample): question = self.get_question(sample) qa_texts = [] # 5 choices for i in range(5): raw_text = question + "[SEP]" + sample["a{}".format(i)] qa_encoding = self.tokenizer( raw_text, padding="max_length", truncation=True, max_length=self.max_text_len, return_special_tokens_mask=True, ) qa_texts.append((raw_text, qa_encoding)) return qa_texts def get_answer_label(self, sample): answer = int(sample['answer_idx']) return answer def get_question(self, sample): return sample["q"] def __len__(self): return len(self.metadata) def __getitem__(self, index): sample = self.metadata.iloc[index] self.relevant_dets = [] # initalize self.relevant_dets_classes = [] answer = self.get_answer_label(sample) ret = { "vid_index": index, "cap_index": index, "raw_index": index, 'answer': answer } qa_texts = self.get_text(sample) ret["text"] = qa_texts[0] for i in range(self.draw_options_text - 1): ret.update({f"options_text_{i}": qa_texts[i+1]}) video_tensor = self.get_video(sample) ret["video"] = video_tensor return ret
InternVideo-main
Downstream/multi-modalities-downstream/CoTrain/datasets/video/tvqaplus.py
from .video_base_dataset import BaseDataset import random import os import pandas as pd class LSMDCDataset(BaseDataset): def __init__(self, *args, split="", **kwargs): assert split in ["train", "val", "test"] self.split = split self.metadata = None if split == "train": names = ["lsmdc_train"] elif split == "val": names = ["lsmdc_val"] elif split == "test": names = ["lsmdc_test"] self._load_metadata() # self.num_frames = kwargs['num_frames'] super().__init__(*args, **kwargs, names=names, text_column_name="caption") def _load_metadata(self): metadata_dir = './meta_data/lsmdc' split_files = { 'train': 'LSMDC16_annos_training.csv', 'val': 'LSMDC16_challenge_1000_publictect.csv', # LSMDC16_annos_val.csv 'test': 'LSMDC16_challenge_1000_publictect.csv' } target_split_fp = split_files[self.split] metadata = pd.read_csv(os.path.join(metadata_dir, target_split_fp), sep='\t', header=None, error_bad_lines=False) self.metadata = metadata print("load split {}, {} samples".format(self.split, len(metadata))) def _get_video_path(self, sample): # e.g. 3009_BATTLE_LOS_ANGELES_00.03.07.170-00.03.09.675 -> 3009_BATTLE_LOS_ANGELES/3009_BATTLE_LOS_ANGELES_00.03.07.170-00.03.09.675 sub_dir = '_'.join(sample[0].split('_')[:-1]) rel_video_fp = sample[0] + '.avi' full_video_fp = os.path.join(self.data_dir, sub_dir, rel_video_fp) return full_video_fp, rel_video_fp def _get_caption(self, sample): if self.split == 'train': words = sample[0].split(',') num_word = len(words) index = random.randint(0, num_word - 1) caption = words[index] else: # caption = sample[0] words = sample[0].split(',') num_word = len(words) index = random.randint(0, num_word - 1) caption = words[index] return caption
InternVideo-main
Downstream/multi-modalities-downstream/CoTrain/datasets/video/lsmdc_dataset.py
from .video_base_dataset import BaseDataset import torch as th import pandas as pd import os import numpy as np import random import ffmpeg import io import decord import re decord.bridge.set_bridge('torch') from CoTrain.datasets import client class YOUTUBEDataset(BaseDataset): """Youtube Video-Text loader.""" def __init__(self, *args, split="", **kwargs): assert split in ["train", "val", "test"] self.split = split if split == "train": names = ["youtube_train"] elif split == "val": names = ["youtube_val"] elif split == "test": names = ["youtube_test"] super().__init__(*args, **kwargs, names=names, text_column_name="caption") self.metadata = None self._load_metadata() # for howto100 self.min_time = 4.0 self.size = 256 self.fps = 2 self.num_sec = self.num_frames / float(self.fps) self.crop_only = True if self.split == 'train': self.center_crop = False else: self.center_crop = True self.benchmark = False self.num_candidates = 1 self.random_flip = True self.data_dir = "s3://youtubeBucket/videos/" self.caption_dir = "s3://liyizhuo/youtubeProcessed/" # TODO: Remove this piece of shit print(names, ": ", len(self.metadata), "samples in total.") def _load_metadata(self): metadata_dir = './meta_data/youtube' split_files = { 'train': 'youtube_train.csv', 'val': 'youtube_val.csv', # there is no test 'test': 'youtube_val.csv' } target_split_fp = split_files[self.split] metadata = pd.read_csv(os.path.join(metadata_dir, target_split_fp), sep='\t') self.metadata = metadata["Name"] def read_frames_ffmpeg(self, video_path, start, end): start_seek = random.randint(int(start), int(max(start, end - self.num_sec))) cmd = ( ffmpeg .input(video_path, ss=start_seek, t=self.num_sec + 0.01) .filter('fps', fps=self.fps) ) if self.center_crop: aw, ah = 0.5, 0.5 else: aw, ah = random.uniform(0, 1), random.uniform(0, 1) if self.crop_only: cmd = ( cmd.crop('(iw - {})*{}'.format(self.size, aw), '(ih - {})*{}'.format(self.size, ah), str(self.size), str(self.size)) ) else: cmd = ( cmd.crop('(iw - min(iw,ih))*{}'.format(aw), '(ih - min(iw,ih))*{}'.format(ah), 'min(iw,ih)', 'min(iw,ih)') .filter('scale', self.size, self.size) ) if self.random_flip and random.uniform(0, 1) > 0.5: cmd = cmd.hflip() out, _ = ( cmd.output('pipe:', format='rawvideo', pix_fmt='rgb24').run(capture_stdout=True, quiet=True) ) # print(np.frombuffer(out, np.uint8).shape) video = np.frombuffer(out, np.uint8).reshape([-1, self.size, self.size, 3]) video_tensor = th.from_numpy(np.copy(video)) video_tensor = video_tensor.permute(3, 0, 1, 2) + 0.01 # prevent all dark vide if video_tensor.shape[1] < self.num_frames: zeros = th.ones((3, self.num_frames - video_tensor.shape[1], self.size, self.size), dtype=th.uint8) video_tensor = th.cat((video_tensor, zeros), axis=1) return video_tensor[:, :self.num_frames] def read_frames_decord(self, video_path, start, end): # Build Decord conntainer video_bytes = client.get(video_path) assert video_bytes is not None, "Get video failed from {}".format(video_path) if isinstance(video_bytes, bytes): video_bytes = io.BytesIO(video_bytes) container = decord.VideoReader(video_bytes, ctx=decord.cpu(0)) real_fps = container.get_avg_fps() start_frame, end_frame = real_fps * start, real_fps * end num_real_frames = self.num_frames / self.fps * real_fps start_seek = random.randint(int(start_frame), int(max(start_frame, end_frame - num_real_frames))) indexes = np.linspace(start_seek, start_seek + num_real_frames, self.num_frames, endpoint=False, dtype=int) indexes = [x for x in indexes if x < len(container)] assert len(indexes) > 0, "Failed to decode from {}".format(video_path) frames = container.get_batch(indexes) # [T, H, W, C] _, H, W, _ = frames.shape assert self.crop_only if self.center_crop: aw, ah = 0.5, 0.5 else: aw, ah = random.uniform(0, 1), random.uniform(0, 1) top = int((H - self.size) * ah) left = int((W - self.size) * aw) bottom, right = top + self.size, left + self.size frames = frames[:, top:bottom, left:right, :] if self.random_flip and random.uniform(0, 1) > 0.5: frames = frames.flip([-2]) video_tensor = frames.permute(3, 0, 1, 2) + 0.01 # prevent all dark vide if video_tensor.shape[1] < self.num_frames: zeros = th.ones((3, self.num_frames - video_tensor.shape[1], self.size, self.size), dtype=th.uint8) video_tensor = th.cat((video_tensor, zeros), axis=1) # assert False, (video_tensor.min(), video_tensor.max()) # assert False, video_tensor.shape return video_tensor[:, :self.num_frames] # time consuming > load video, where is the csv file? (cfs->ceph) def get_caption(self, caption): lines = client.get(caption).decode().split("\n") ind = random.randint(0, len(lines) - 1) line = lines[ind + 1].split(",") start, end = float(line[0]), float(line[1]) text = ",".join(line[2:]) # text = cap['text'].values[ind] # start, end = cap['start'].values[ind], cap['end'].values[ind] if end - start < self.min_time: diff = self.min_time - end + start start = max(0, start - diff / 2) end = start + self.min_time return text, start, end def get_text(self, sample): caption_csv = self.get_caption_path(sample) text, start, end = self.get_caption(caption_csv) # print(text) # TODO: May need to be improved for edge cases. encoding = self.tokenizer( text, padding="max_length", truncation=True, max_length=self.max_text_len, return_special_tokens_mask=True, ) return {"text": (text, encoding)}, int(start), int(end) def get_caption_path(self, sample): # example xx/xx/xx.mp4 -> xx.csv return os.path.join(self.caption_dir, sample.split('.')[0] + '.csv') def get_false_text(self, rep): random_index = random.randint(0, len(self.metadata) - 1) sample = self.metadata.iloc[random_index] caption_csv = self.get_caption_path(sample) text, start, end = self.get_caption(caption_csv) encoding = self.tokenizer( text, truncation=True, max_length=self.max_text_len, return_special_tokens_mask=True, ) return {f"false_text_{rep}": (text, encoding)} def _get_video_path(self, sample): rel_video_fp = sample if "s3://" in self.data_dir: rel_video_fp = sample.strip() full_video_fp = os.path.join(self.data_dir, rel_video_fp) return full_video_fp, rel_video_fp def get_raw_video(self, sample, begin, end): abs_fp, rel_fp = self._get_video_path(sample) if "s3://" in abs_fp: videos = self.read_frames_decord(abs_fp, begin, end).permute(1, 0, 2, 3) else: videos = self.read_frames_ffmpeg(abs_fp, begin, end).permute(1, 0, 2, 3) if videos is None: raise Exception("Invalid img!", rel_fp) else: return videos def get_video(self, sample, start, end): videos = self.get_raw_video(sample, start, end) videos_tensor = self.video_aug(videos, self.video_transform, byte=True) return videos_tensor def get_false_video(self, rep): random_index = random.randint(0, len(self.metadata) - 1) sample = self.metadata.iloc[random_index] caption_csv = self.get_caption_path(sample) _, start, end = self.get_caption(caption_csv) videos = self.get_raw_video(sample, start, end) videos_tensor = self.video_aug(videos, self.video_transform, byte=True) return {f"false_video_{rep}": videos_tensor} def get_suite(self, index): result = None max_try = 10 try_time = 0 while result is None: try_time += 1 sample = self.metadata.iloc[index] try: ret = dict() text, start, end = self.get_text(sample) ret.update(text) videos_tensor = self.get_video(sample, start, end) ret.update({ "video": videos_tensor, "vid_index": index, "cap_index": index, "raw_index": index, }) ret.update({"replica": True if ret["cap_index"] > 0 else False}) for i in range(self.draw_false_video): ret.update(self.get_false_video(i)) for i in range(self.draw_false_text): ret.update(self.get_false_text(i)) result = True except Exception as e: index = random.randint(0, len(self.metadata) - 1) exc = e if try_time > max_try: print(f"Exceed max time Error while read file idx {sample} in {self.names[0]} with error {exc}") try_time = 0 return ret def __len__(self): return len(self.metadata) def __getitem__(self, index): return self.get_suite(index)
InternVideo-main
Downstream/multi-modalities-downstream/CoTrain/datasets/video/youtube.py
import numpy as np from .video_base_dataset import BaseDataset import os import json import pandas as pd class ACTIVITYNETQADataset(BaseDataset): def __init__(self, *args, split="", **kwargs): assert split in ["train", "val", "test"] # if split == "test": # split = "val" self.split = split self.metadata = None self.ans_lab_dict = None if split == "train": names = ["activitynet_qa_train"] # names = ["msrvtt_qa_train", "msrvtt_qa_val"] elif split == "val": names = ["activitynet_qa_test"] # ["msrvtt_qa_val"] elif split == "test": names = ["activitynet_qa_test"] # vqav2_test-dev for test-dev super().__init__( *args, **kwargs, names=names, text_column_name="questions", remove_duplicate=False, ) self.names = names # self.num_frames = 4 self._load_metadata() def _load_metadata(self): metadata_dir = './meta_data/activitynet_qa' split_files = { 'train': 'msrvtt_qa_train.jsonl', 'val': 'msrvtt_qa_test.jsonl', 'test': 'msrvtt_qa_test.jsonl' } answer_fp = os.path.join(metadata_dir, 'msrvtt_train_ans2label.json') # 1500 in total (all classes in train) # answer_fp = os.path.join(metadata_dir, 'msrvtt_qa_ans2label.json') # 4539 in total (all classes in train+val+test) answer_clip_id = os.path.join(metadata_dir, 'msrvtt_clip_id.json') with open(answer_fp, 'r') as JSON: self.ans_lab_dict = json.load(JSON) with open(answer_clip_id, 'r') as JSON: self.ans_clip_id = json.load(JSON) for name in self.names: split = name.split('_')[-1] target_split_fp = split_files[split] # path_or_buf=os.path.join(metadata_dir, target_split_fp) metadata = pd.read_json(os.path.join(metadata_dir, target_split_fp), lines=True) if self.metadata is None: self.metadata = metadata else: self.metadata.update(metadata) print("total {} samples for {}".format(len(self.metadata), self.names)) # data1.update(data2) def get_text(self, sample): text = sample['question'] encoding = self.tokenizer( text, padding="max_length", truncation=True, max_length=self.max_text_len, return_special_tokens_mask=True, ) return (text, encoding) def get_answer_label(self, sample): text = sample['answer'] ans_total_len = len(self.ans_lab_dict) + 1 # one additional class try: ans_label = self.ans_lab_dict[text] # except KeyError: ans_label = -100 # ignore classes # ans_label = 1500 # other classes scores = np.zeros(ans_total_len).astype(int) scores[ans_label] = 1 return text, ans_label, scores # return text, ans_label_vector, scores def __getitem__(self, index): sample = self.metadata.iloc[index] video_tensor = self.get_video(sample) text = self.get_text(sample) # index, question_index = self.index_mapper[index] qid = index if self.split != "test": answers, labels, scores = self.get_answer_label(sample) else: answers = list() labels = list() scores = list() answers, labels, scores = self.get_answer_label(sample) return { "video": video_tensor, "text": text, "vqa_answer": answers, "vqa_labels": labels, "vqa_scores": scores, "qid": qid, "ans_clip_id": self.ans_clip_id, } def __len__(self): return len(self.metadata)
InternVideo-main
Downstream/multi-modalities-downstream/CoTrain/datasets/video/activitynetqa.py
from .video_base_dataset import BaseDataset, read_frames_decord import random import os import pandas as pd from .pack_meta import pack_metadata, unpack_metadata class WEBVID10MDataset(BaseDataset): def __init__(self, *args, split="", **kwargs): assert split in ["train", "val", "test"] self.split = split self.metadata = None self.cut = "jsfusion" if split == "train": names = ["webvid10m_train"] elif split == "val": names = ["webvid10m_val"] elif split == "test": names = ["webvid10m_val"] self._load_metadata() print(names, ": ", len(self.metadata), "samples in total.") super().__init__(*args, **kwargs, names=names, text_column_name="caption") if "s3://" in self.data_dir: self.data_dir = "s3://video_pub_new/WebVid10M/" def _load_metadata(self): metadata_dir = '/mnt/cache/share_data/DSK_datasets/webvid/' split_files = { 'train': 'results_10M_train.csv', 'val': 'results_10M_val.csv', # there is no test 'test': 'results_10M_val.csv' } target_split_fp = split_files[self.split] metadata = pd.read_csv(os.path.join(metadata_dir, target_split_fp)) metadata = metadata[["name", "page_dir", "videoid"]] # metadata = metadata[:102400] self.metadata = pack_metadata(self, metadata) def _get_video_path(self, sample): rel_video_fp = os.path.join(str(sample[1]), str(sample[2]) + '.mp4') if "s3://" in self.data_dir: full_video_fp = os.path.join(self.data_dir, rel_video_fp) else: full_video_fp = os.path.join(self.data_dir, self.split, rel_video_fp) return full_video_fp, rel_video_fp def _get_caption(self, sample): return sample[0] def get_raw_video(self, sample): abs_fp, rel_fp = self._get_video_path(sample) videos, idxs, vlen = read_frames_decord(abs_fp, self.num_frames, mode=self.split) if videos is None: raise Exception("Invalid video!", rel_fp) else: return videos def get_video(self, index, sample): videos = self.get_raw_video(sample) videos_tensor = self.video_aug(videos, self.video_transform) return { "video": videos_tensor, "vid_index": index, "cap_index": index, "raw_index": index, } def get_false_video(self, rep): random_index = random.randint(0, len(self.metadata) - 1) sample = unpack_metadata(self, random_index) # can be different augmentation videos = self.get_raw_video(sample) videos_tensor = self.video_aug(videos, self.video_transform) return {f"false_video_{rep}": videos_tensor} def get_text(self, raw_index, sample): text = sample[0] # print(text) encoding = self.tokenizer( text, padding="max_length", truncation=True, max_length=self.max_text_len, return_special_tokens_mask=True, ) # print(encoding.size()) return { "text": (text, encoding), "vid_index": raw_index, "cap_index": raw_index, "raw_index": raw_index, } def get_false_text(self, rep): random_index = random.randint(0, len(self.metadata) - 1) sample = unpack_metadata(self, random_index) text = sample[0] encoding = self.tokenizer( text, # padding="max_length", truncation=True, max_length=self.max_text_len, return_special_tokens_mask=True, ) return {f"false_text_{rep}": (text, encoding)} def get_suite(self, index): result = None max_try = 10 try_time = 0 while result is None: try_time += 1 sample = unpack_metadata(self, index) try: ret = dict() ret.update(self.get_video(index, sample)) if not self.video_only: txt = self.get_text(index, sample) ret.update({"replica": True if txt["cap_index"] > 0 else False}) ret.update(txt) for i in range(self.draw_false_video): ret.update(self.get_false_video(i)) for i in range(self.draw_false_text): ret.update(self.get_false_text(i)) result = True except Exception as e: index = random.randint(0, len(self.metadata) - 1) exc = e if try_time > max_try: print(f"Exceed max time Error while read file idx {sample} in {self.names[0]} with error {exc}") try_time=0 return ret def __len__(self): return len(self.metadata) def __getitem__(self, index): return self.get_suite(index)
InternVideo-main
Downstream/multi-modalities-downstream/CoTrain/datasets/video/webvid10m.py
from .video_base_dataset import BaseDataset import random import os import pandas as pd class MSVDDataset(BaseDataset): def __init__(self, *args, split="", **kwargs): assert split in ["train", "val", "test"] self.split = split self.metadata = None if split == "train": names = ["msvd_train"] elif split == "val": names = ["msvd_val"] elif split == "test": names = ["msvd_test"] self._load_metadata() # self.num_frames = kwargs['num_frames'] super().__init__(*args, **kwargs, names=names, text_column_name="caption") def _load_metadata(self): metadata_dir = './meta_data/msvd' split_files = { 'train': 'MSVD_train.tsv', 'val': 'MSVD_test.tsv', # MSVD_val.tsv 'test': 'MSVD_test.tsv' } target_split_fp = split_files[self.split] metadata = pd.read_csv(os.path.join(metadata_dir, target_split_fp), sep='\t') self.metadata = metadata print("load split {}, {} samples".format(self.split, len(metadata))) def _get_video_path(self, sample): rel_video_fp = sample[1] + '.avi' full_video_fp = os.path.join(self.data_dir, 'YouTubeClips', rel_video_fp) return full_video_fp, rel_video_fp def _get_caption(self, sample): if self.split == 'train': words = sample[0].split(',') num_word = len(words) index = random.randint(0, num_word - 1) caption = words[index] else: # caption = sample[0] words = sample[0].split(',') num_word = len(words) index = random.randint(0, num_word - 1) caption = words[index] return caption
InternVideo-main
Downstream/multi-modalities-downstream/CoTrain/datasets/video/msvd.py
import pandas as pd import numpy as np from typing import Union SEP = "<<<sep>>>" class DummyMeta(object): def __init__(self, l): self._len = l def __len__(self): return self._len def string_to_sequence(s: Union[str, list], dtype=np.int32) -> np.ndarray: if isinstance(s, list): assert not any(SEP in x for x in s) s = SEP.join(s) return np.array([ord(c) for c in s], dtype=dtype) def sequence_to_string(seq: np.ndarray) -> Union[str, list]: s = ''.join([chr(c) for c in seq]) if SEP in s: return s.split(SEP) return s def pack_sequences(seqs: Union[np.ndarray, list]) -> (np.ndarray, np.ndarray): values = np.concatenate(seqs, axis=0) offsets = np.cumsum([len(s) for s in seqs]) return values, offsets def unpack_sequence(values: np.ndarray, offsets: np.ndarray, index: int) -> np.ndarray: off1 = offsets[index] if index > 0: off0 = offsets[index - 1] elif index == 0: off0 = 0 else: raise ValueError(index) return values[off0:off1] def pack_metadata(obj: object, df: pd.DataFrame): assert not hasattr(obj, "metadata_keys") assert not hasattr(obj, "metadata_is_str") df = df.dropna() metadata_keys = list(df.columns) metadata_is_str = {c: df[c].dtype == pd.StringDtype for c in df.columns} for c in df.columns: if df[c].dtype == pd.StringDtype: assert not hasattr(obj, "metadata_{}_v".format(c)) assert not hasattr(obj, "metadata_{}_o".format(c)) seq_v, seq_o = pack_sequences([string_to_sequence(s) for s in df[c]]) setattr(obj, "metadata_{}_v".format(c), seq_v) setattr(obj, "metadata_{}_o".format(c), seq_o) else: assert not hasattr(obj, "metadata_{}".format(c)) seq = df[c].to_numpy() setattr(obj, "metadata_{}".format(c), seq) setattr(obj, "metadata_keys", metadata_keys) setattr(obj, "metadata_is_str", metadata_is_str) return DummyMeta(len(df)) def unpack_metadata(obj: object, i: int): ret = [] for c in getattr(obj, "metadata_keys"): if not getattr(obj, "metadata_is_str")[c]: ret.append(getattr(obj, "metadata_{}".format(c))[i]) else: ret.append( sequence_to_string( unpack_sequence( getattr(obj, "metadata_{}_v".format(c)), getattr(obj, "metadata_{}_o".format(c)), i, ) ) ) return pd.Series(dict(zip(obj.metadata_keys, ret)))
InternVideo-main
Downstream/multi-modalities-downstream/CoTrain/datasets/video/pack_meta.py
from .video_base_dataset import BaseDataset import os import pandas as pd import random from .pack_meta import pack_metadata, unpack_metadata class LSMDCChoiceDataset(BaseDataset): def __init__(self, *args, split="", **kwargs): assert split in ["train", "val", "test"] self.split = split self.metadata = None self.ans_lab_dict = None if split == "train": names = ["lsmdc_choice_train"] elif split == "val": names = ["lsmdc_choice_val"] elif split == "test": names = ["lsmdc_choice_test"] # vqav2_test-dev for test-dev super().__init__( *args, **kwargs, names=names, text_column_name="unknown", remove_duplicate=False, ) self._load_metadata() if "s3://" in self.data_dir: # Remove this fucking auto dir name self.data_dir = os.path.dirname(self.data_dir) # Add the real path self.data_dir = os.path.join(self.data_dir, "LSMDC") def _load_metadata(self): metadata_dir = './meta_data/lsmdc' split_files = { 'train': 'LSMDC16_multiple_choice_train.csv', 'val': 'LSMDC16_multiple_choice_test_randomized.csv', # 'LSMDC16_multiple_choice_valid.csv', 'test': 'LSMDC16_multiple_choice_test_randomized.csv' } target_split_fp = split_files[self.split] print(os.path.join(metadata_dir, target_split_fp)) metadata = pd.read_csv(os.path.join(metadata_dir, target_split_fp), sep='\t', header=None, on_bad_lines='skip') datalist = [] data_to_ignore = [ "3056_PUBLIC_ENEMIES_01.24.29.351-01.24.32.274", "3035_INSIDE_MAN_02.02.18.839-02.02.25.201", "3064_SPARKLE_2012_00.14.12.000-00.14.22.429", ] for raw_id in range(len(metadata)): raw_d = metadata.iloc[raw_id] video_fp = raw_d[0] # 3001_21_JUMP_STREET_00.03.07.077-00.03.07.559 if video_fp.strip() in data_to_ignore: continue sub_path = video_fp.split('.')[0] # 3001_21_JUMP_STREET_00 remove = sub_path.split('_')[-1] # 00 sub_path = sub_path.replace('_'+remove,'/') # 3001_21_JUMP_STREET/ rel_video_fp = sub_path + video_fp + '.avi' # options = [raw_d[idx] for idx in range(5, 10)] d = dict( id=video_fp, vid_id=rel_video_fp, answer=raw_d[10] - 1 if self.split in ['val', 'test'] else 0, options=options, ) datalist.append(d) self.metadata = pack_metadata(self, pd.DataFrame(datalist)) print("load split {}, {} samples".format(self.split, len(self.metadata))) def _get_video_path(self, sample): rel_video_fp = sample['vid_id'] full_video_fp = os.path.join(self.data_dir, rel_video_fp) # print(full_video_fp) # assert os.path.exists(full_video_fp) return full_video_fp, rel_video_fp def get_text(self, sample): texts = [] for text in sample['options']: encoding = self.tokenizer( text, padding="max_length", truncation=True, max_length=self.max_text_len, return_special_tokens_mask=True, ) texts.append((text, encoding)) return texts def get_answer_label(self, sample): answer = sample['answer'] return answer def __getitem__(self, index): result = False while not result: try: sample = unpack_metadata(self, index) video_tensor = self.get_video(sample) qid = index answer = self.get_answer_label(sample) ret = { "video": video_tensor, "vid_index": index, "cap_index": index, "raw_index": index, 'answer': answer } texts = self.get_text(sample) ret["text"] = texts[0] for i in range(self.draw_false_text - 1): ret.update({f"false_text_{i}": texts[i+1]}) result = True except Exception as e: print(f"Error while read file idx {sample['vid_id']} in {self.names[0]} -> {e}") index = random.randint(0, len(self.metadata) - 1) return ret def __len__(self): return len(self.metadata)
InternVideo-main
Downstream/multi-modalities-downstream/CoTrain/datasets/video/lsmdc_choice.py
import random import torch import io import os import cv2 import numpy as np from PIL import Image from CoTrain.transforms import keys_to_transforms import decord from decord import cpu import imageio # add for ytt asr clean import ftfy import regex as re import demoji import editdistance import tslearn.metrics import string from CoTrain.transforms.video.videoaug import VideoTransform, video_aug from CoTrain.datasets import client import CoTrain.modules.InternVideo as internvideo class BaseDataset(torch.utils.data.Dataset): def __init__( self, data_dir: str, transform_keys: list, image_size: int, names: list, text_column_name: str = "", remove_duplicate=True, max_text_len=40, draw_false_image=0, draw_false_video=0, draw_false_text=0, image_only=False, video_only=False, num_frames=1, draw_options_text=0, backend='v100' ): """ data_dir : where dataset file *.arrow lives; existence should be guaranteed via DataModule.prepare_data transform_keys : keys for generating augmented views of videos text_column_name : pyarrow table column name that has list of strings as elements """ assert len(transform_keys) >= 1 super().__init__() self.transforms = keys_to_transforms(transform_keys, size=image_size) self.text_column_name = text_column_name self.names = names self.max_text_len = max_text_len self.draw_false_video = draw_false_video self.draw_false_text = draw_false_text self.video_only = video_only self.data_dir = data_dir if len(names) != 0: dataset_name = names[0].split('_')[0] if dataset_name in ['tgif', 'tgifqa']: dataset_name = 'tgif' self.data_dir = os.path.join(self.data_dir, dataset_name) # e.g. webvid_train -> webvid split_name = dataset_name if torch.distributed.get_rank() == 0: print('*'*100) print("video datasets: {}".format(names)) self.draw_options_text = draw_options_text self.num_frames = num_frames if torch.distributed.get_rank() == 0: print("# frames for base dataset is: {}".format(self.num_frames)) if split_name in ['msrvtt', 'cc3m', 'webvid', 'msvd', 'vcr', 'howto100m', 'ego4d', 'yttemporal', 'tgif', 'hmdb51', 'k400']: if torch.distributed.get_rank() == 0: print("no arrow available for {}, load from disk".format(names[0])) else: print("not support video dataset") self.video_transform = VideoTransform(mode=self.split, crop_size=image_size, backend=backend) self.video_aug = video_aug @property def corpus(self): return [text for texts in self.all_texts for text in texts] def __len__(self): return len(self.metadata) def __getitem__(self, index): return self.get_suite(index) def get_raw_image(self, index, image_key="image"): index, caption_index = self.index_mapper[index] image_bytes = io.BytesIO(self.table[image_key][index].as_py()) image_bytes.seek(0) return Image.open(image_bytes).convert("RGB") def _get_video_path(self, sample): if self.names[0] in ['msrvtt_train', 'msrvtt_test', 'msrvtt_val']: return os.path.join(self.data_dir, 'videos', 'all', sample.name + '.mp4'), sample.name + '.mp4' else: return os.path.join(self.data_dir, 'videos', 'all', str(sample['video_id']) + '.mp4'), str(sample['video_id']) + '.mp4' def get_raw_video(self, sample): abs_fp, rel_fp = self._get_video_path(sample) imgs, idxs, vlen = read_frames_decord(abs_fp, self.num_frames, mode=self.split) if imgs is None: raise Exception("Invalid img!", rel_fp) else: return imgs def get_video(self, sample): videos = self.get_raw_video(sample) videos_tensor = self.video_aug(videos, self.video_transform) return videos_tensor def get_false_video(self, rep): random_index = random.randint(0, len(self.metadata) - 1) sample = self.metadata.iloc[random_index] videos = self.get_raw_video(sample) videos_tensor = self.video_aug(videos, self.video_transform) return {f"false_video_{rep}": videos_tensor} def _get_caption(self, sample): if self.names[0] in ['msrvtt_train']: caption = random.choice(sample['captions']) else: caption = sample['captions'][0] return caption def get_text(self, raw_index, sample): text = self._get_caption(sample) encoding = self.tokenizer( text, padding="max_length", truncation=True, max_length=self.max_text_len, return_special_tokens_mask=True, ) # print(encoding.size()) return { "text": (text, encoding), "vid_index": raw_index, "cap_index": raw_index, "raw_index": raw_index, } def get_false_text(self, rep): random_index = random.randint(0, len(self.metadata) - 1) sample = self.metadata.iloc[random_index] text = self._get_caption(sample) encoding = self.tokenizer( text, # padding="max_length", truncation=True, max_length=self.max_text_len, return_special_tokens_mask=True, ) return {f"false_text_{rep}": (text, encoding)} def get_suite(self, index): result = None while result is None: # retry_times += 1 sample = self.metadata.iloc[index] # print(sample[1]) try: video_tensor = self.get_video(sample) ret = { "video": video_tensor, "vid_index": index, "cap_index": index, "raw_index": index, } if not self.video_only: txt = self.get_text(index, sample) ret.update({"replica": True if txt["cap_index"] > 0 else False}) ret.update(txt) for i in range(self.draw_false_video): ret.update(self.get_false_video(i)) for i in range(self.draw_false_text): ret.update(self.get_false_text(i)) result = True except Exception as e: print(f"Error while read file idx {sample.name} in {self.names[0]} -> {e}") index = random.randint(0, len(self.metadata) - 1) return ret def collate(self, batch, mlm_collator): batch_size = len(batch) keys = set([key for b in batch for key in b.keys()]) dict_batch = {k: [dic[k] if k in dic else None for dic in batch] for k in keys} video_keys = [k for k in list(dict_batch.keys()) if "video" in k] video_sizes = list() # global & local video for video_key in video_keys: video_sizes += [ii.shape for i in dict_batch[video_key] if i is not None for ii in i] # print(global_video_sizes, local_video_sizes) for size in video_sizes: # print(size) assert ( len(size) == 4 ), f"Collate error, an video should be in shape of (T, N, H, W), instead of given {size}" if len(video_keys) != 0: global_max_height = max([i[2] for i in video_sizes]) global_max_width = max([i[3] for i in video_sizes]) global_min_height = min([i[2] for i in video_sizes]) global_min_width = min([i[3] for i in video_sizes]) for video_key in video_keys: video = dict_batch[video_key] view_size = len(video[0]) if (view_size == 1 and global_max_height == global_min_height and global_max_width == global_min_width): dict_batch[video_key] = [torch.stack([x[0] for x in video])] continue assert False, (view_size, global_max_height, global_min_height, global_max_width, global_min_width) new_videos = [ torch.zeros(batch_size, self.num_frames, 3, global_max_height, global_max_width) for _ in range(view_size) ] for bi in range(batch_size): orig_batch = video[bi] for vi in range(view_size): if orig_batch is None: # new_videos[vi][bi] = None # modify by alex continue else: orig = video[bi][vi] # print(orig.size()) new_videos[vi][bi, :, :, : orig.shape[-2], : orig.shape[-1]] = orig dict_batch[video_key] = new_videos txt_keys = [k for k in list(dict_batch.keys()) if "text" in k] # print(txt_keys) if len(txt_keys) != 0: texts = [[d[0] for d in dict_batch[txt_key]] for txt_key in txt_keys] encodings = [[d[1] for d in dict_batch[txt_key]] for txt_key in txt_keys] draw_text_len = len(encodings) flatten_encodings = [e for encoding in encodings for e in encoding] flatten_mlms = mlm_collator(flatten_encodings) for i, txt_key in enumerate(txt_keys): texts, encodings = ( [d[0] for d in dict_batch[txt_key]], [d[1] for d in dict_batch[txt_key]], ) mlm_ids, mlm_labels = ( flatten_mlms["input_ids"][batch_size * (i) : batch_size * (i + 1)], flatten_mlms["labels"][batch_size * (i) : batch_size * (i + 1)], ) input_ids = torch.zeros_like(mlm_ids) attention_mask = torch.zeros_like(mlm_ids) for _i, encoding in enumerate(encodings): _input_ids, _attention_mask = ( torch.tensor(encoding["input_ids"]), torch.tensor(encoding["attention_mask"]), ) input_ids[_i, : len(_input_ids)] = _input_ids attention_mask[_i, : len(_attention_mask)] = _attention_mask dict_batch[txt_key] = texts dict_batch[f"{txt_key}_ids"] = input_ids dict_batch[f"{txt_key}_labels"] = torch.full_like(input_ids, -100) dict_batch[f"{txt_key}_ids_mlm"] = mlm_ids dict_batch[f"{txt_key}_labels_mlm"] = mlm_labels dict_batch[f"{txt_key}_masks"] = attention_mask clip_text_ids, clip_special_tokens_mask = internvideo.tokenize( dict_batch["text"], truncate=True, return_special_tokens_mask=True) dict_batch["clip_text_ids"] = clip_text_ids dict_batch["clip_special_tokens_mask"] = clip_special_tokens_mask return dict_batch # def collate(self, batch, mlm_collator): # batch_size = len(batch) # keys = set([key for b in batch for key in b.keys()]) # dict_batch = {k: [dic[k] if k in dic else None for dic in batch] for k in keys} # # video_keys = [k for k in list(dict_batch.keys()) if "video" in k] # video_sizes = list() # # # global & local video # for video_key in video_keys: # video_sizes += [ii.shape for i in dict_batch[video_key][0] if i is not None for ii in i] # # print(global_video_sizes, local_video_sizes) # # for size in video_sizes: # # print(size) # assert ( # len(size) == 4 # ), f"Collate error, an video should be in shape of (T, N, H, W), instead of given {size}" # # if len(video_keys) != 0: # global_max_height = max([i[2] for i in video_sizes]) # global_max_width = max([i[3] for i in video_sizes]) # local_max_height = min([i[2] for i in video_sizes]) # local_max_width = min([i[3] for i in video_sizes]) # for video_key in video_keys: # video = dict_batch[video_key] # global_view_size = len(dict_batch[video_key][0][0]) # local_view_size = len(dict_batch[video_key][0][1]) # # print(global_view_size, local_view_size) # # new_videos = [ # [ # torch.zeros(batch_size, self.num_frames, 3, global_max_height, global_max_width) # for _ in range(global_view_size) # ], # [ # torch.zeros(batch_size, self.num_frames, 3, local_max_height, local_max_width) # for _ in range(local_view_size) # ] # ] # # print(len(img)) # for bi in range(batch_size): # orig_batch = video[bi] # for vi in range(global_view_size): # if orig_batch is None: # # new_videos[vi][bi] = None # # modify by alex # continue # else: # orig = video[bi][0][vi] # # print(orig.size()) # new_videos[0][vi][bi, :, :, : orig.shape[-2], : orig.shape[-1]] = orig # # for bi in range(batch_size): # orig_batch = video[bi] # for vi in range(local_view_size): # if orig_batch is None: # # new_videos[vi][bi] = None # # modify by alex # continue # else: # orig = video[bi][1][vi] # # print(orig.size()) # new_videos[1][vi][bi, :, :, : orig.shape[-2], : orig.shape[-1]] = orig # dict_batch[video_key] = new_videos # # txt_keys = [k for k in list(dict_batch.keys()) if "text" in k] # # print(txt_keys) # if len(txt_keys) != 0: # texts = [[d[0] for d in dict_batch[txt_key]] for txt_key in txt_keys] # encodings = [[d[1] for d in dict_batch[txt_key]] for txt_key in txt_keys] # draw_text_len = len(encodings) # flatten_encodings = [e for encoding in encodings for e in encoding] # flatten_mlms = mlm_collator(flatten_encodings) # # for i, txt_key in enumerate(txt_keys): # texts, encodings = ( # [d[0] for d in dict_batch[txt_key]], # [d[1] for d in dict_batch[txt_key]], # ) # # mlm_ids, mlm_labels = ( # flatten_mlms["input_ids"][batch_size * (i) : batch_size * (i + 1)], # flatten_mlms["labels"][batch_size * (i) : batch_size * (i + 1)], # ) # # input_ids = torch.zeros_like(mlm_ids) # attention_mask = torch.zeros_like(mlm_ids) # for _i, encoding in enumerate(encodings): # _input_ids, _attention_mask = ( # torch.tensor(encoding["input_ids"]), # torch.tensor(encoding["attention_mask"]), # ) # input_ids[_i, : len(_input_ids)] = _input_ids # attention_mask[_i, : len(_attention_mask)] = _attention_mask # # dict_batch[txt_key] = texts # dict_batch[f"{txt_key}_ids"] = input_ids # dict_batch[f"{txt_key}_labels"] = torch.full_like(input_ids, -100) # dict_batch[f"{txt_key}_ids_mlm"] = mlm_ids # dict_batch[f"{txt_key}_labels_mlm"] = mlm_labels # dict_batch[f"{txt_key}_masks"] = attention_mask # # return dict_batch def sample_frames(num_frames, vlen, sample='rand', fix_start=None): acc_samples = min(num_frames, vlen) intervals = np.linspace(start=0, stop=vlen, num=acc_samples + 1).astype(int) ranges = [] for idx, interv in enumerate(intervals[:-1]): ranges.append((interv, intervals[idx + 1] - 1)) if sample == 'rand': frame_idxs = [random.choice(range(x[0], x[1])) for x in ranges] elif fix_start is not None: frame_idxs = [x[0] + fix_start for x in ranges] elif sample == 'uniform': frame_idxs = [(x[0] + x[1]) // 2 for x in ranges] else: raise NotImplementedError return frame_idxs def read_frames_gif(video_path, num_frames, mode='train', fix_start=None): if mode == 'train': sample = 'rand' else: sample = 'uniform' gif = imageio.get_reader(video_path) vlen = len(gif) frame_idxs = sample_frames(num_frames, vlen, sample=sample, fix_start=fix_start) frames = [] for index, frame in enumerate(gif): # for index in frame_idxs: if index in frame_idxs: frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB) frame = torch.from_numpy(frame).byte() # # (H x W x C) to (C x H x W) frame = frame.permute(2, 0, 1) # frame = Image.fromarray(frame) frames.append(frame) frames = torch.stack(frames) # .float() / 255 # print(frames.size()) return frames, frame_idxs, vlen def read_frames_cv2(video_path, num_frames, sample='rand', fix_start=None): # print(video_path) cap = cv2.VideoCapture(video_path) assert (cap.isOpened()) # for decord # cap.set(3, 256) # cap.set(4, 256) vlen = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) # get indexes of sampled frames frame_idxs = sample_frames(num_frames, vlen, sample=sample, fix_start=fix_start) frames = [] success_idxs = [] for index in frame_idxs: cap.set(cv2.CAP_PROP_POS_FRAMES, index - 1) ret, frame = cap.read() if ret: frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) frame = torch.from_numpy(frame).byte() # # (H x W x C) to (C x H x W) frame = frame.permute(2, 0, 1) # frame = Image.fromarray(frame) frames.append(frame) success_idxs.append(index) else: pass # print(frame_idxs, ' fail ', index, f' (vlen {vlen})') # return frames tensor # convert cv to PIL # img = Image.fromarray(imgs[0]) frames = torch.stack(frames) # .float() / 255 # print(frames.size()) cap.release() return frames, success_idxs, vlen def read_frames_decord(video_path, num_frames, mode='train', fix_start=None): if "s3://" in video_path: video_bytes = client.get(video_path) assert video_bytes is not None, "Get video failed from {}".format(video_path) video_path = video_bytes if isinstance(video_path, bytes): # I really have no idea why I have to do this video_path = io.BytesIO(video_bytes) # print("video path: {}".format(video_path)) if mode in ['train']: sample = 'rand' else: sample = 'uniform' # video_reader = decord.VideoReader(video_path, width=512, height=512, num_threads=1, ctx=cpu(0)) video_reader = decord.VideoReader(video_path, width=256, height=256, num_threads=1, ctx=cpu(0)) # video_reader = decord.VideoReader(video_path, num_threads=1, ctx=cpu(0)) decord.bridge.set_bridge('torch') vlen = len(video_reader) frame_idxs = sample_frames(num_frames, vlen, sample=sample, fix_start=fix_start) frames = video_reader.get_batch(frame_idxs).byte() frames = frames.permute(0, 3, 1, 2).cpu() return frames, frame_idxs, vlen def read_frames_from_img_dir(video_path, num_frames, mode='train', fix_start=None, suffix='.jpg'): if mode in ['train', 'val']: sample = 'rand' else: sample = 'uniform' vlen = len(os.listdir(video_path)) frame_idxs = sample_frames(num_frames, vlen, sample=sample, fix_start=fix_start) frames = [] for idx in frame_idxs: frame = cv2.imread(os.path.join(video_path, string(idx).zfill(3) + suffix)) frame = torch.from_numpy(frame).byte() frame = frame.permute(2, 0, 1) frames.append(frame) frames = frames.permute(0, 3, 1, 2) return frames, frame_idxs, vlen def sample_frames_2(frame_loc, vlen, frame_end): assert frame_loc <= frame_end frame_idxs = [frame_loc] return frame_idxs def read_large_frames_decord(video_path, frame_loc, frame_end, num_frames, mode='train', fix_start=None): # print('*'*100) # print(mode) if mode == 'train': sample = 'rand' else: sample = 'uniform' # video_reader = decord.VideoReader(video_path, width=256, height=256, num_threads=1, ctx=cpu(0)) video_reader = decord.VideoReader(video_path, width=512, height=512, num_threads=1, ctx=cpu(0)) decord.bridge.set_bridge('torch') # vlen = len(video_reader) frame_idxs = sample_frames(num_frames, 120, sample=sample, fix_start=fix_start) for i in range(len(frame_idxs)): # if random.random() < 0.5: # frame_idxs[i] += frame_loc - 60 # else: # frame_idxs[i] += frame_loc frame_idxs[i] += frame_loc - 60 frame_idxs[i] = min(frame_idxs[i], frame_end-1) frame_idxs[i] = max(0, frame_idxs[i]) # print(frame_loc, frame_end, frame_idxs) frames = video_reader.get_batch(frame_idxs).byte() frames = frames.permute(0, 3, 1, 2) return frames def video_clip_reader(video_path, begin_time, end_time, duration, num_frames): cap = cv2.VideoCapture(video_path) # assert (cap.isOpened()) vlen = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) # print(video_path, begin_time, end_time, duration, num_frames, vlen) average_fps = vlen / duration clip_len = (end_time - begin_time) * average_fps frame_idxs = sample_frames(num_frames, int(clip_len), sample='rand') frames = [] success_idxs = [] rel_index = int(begin_time * average_fps) rel_index = max(rel_index, 0) rel_index = min(rel_index, vlen-1) for index in frame_idxs: cap.set(cv2.CAP_PROP_POS_FRAMES, rel_index+index) ret, frame = cap.read() if ret: frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) frame = torch.from_numpy(frame).byte() # # (H x W x C) to (C x H x W) frame = frame.permute(2, 0, 1) # frame = Image.fromarray(frame) frames.append(frame) success_idxs.append(index) else: pass # print(frame_idxs, ' fail ', index, f' (vlen {vlen})') frames = torch.stack(frames) cap.release() if frames.size(0) < num_frames: zeros = torch.ones((num_frames - frames.size(1), 3, frames.size(-2), frames.size(-1)), dtype=torch.uint8).byte() frames = torch.cat((frames, zeros), axis=1) if frames.size(0) != num_frames: Exception(RuntimeError) return frames def video_reader(video_path, frame_loc, frame_end, num_frames): cap = cv2.VideoCapture(video_path) assert (cap.isOpened()) vlen = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) # get indexes of sampled frames fps is 30, 4s frame_idxs = sample_frames(num_frames, 120, sample='rand') # frame_idxs = sample_frames_2(frame_loc, vlen, frame_end) frames = [] success_idxs = [] for index in frame_idxs: if random.random() < 0.5: rel_index = index + frame_loc - 120 else: rel_index = index + frame_loc rel_index = max(rel_index, 0) rel_index = min(rel_index, frame_end) cap.set(cv2.CAP_PROP_POS_FRAMES, rel_index) ret, frame = cap.read() if ret: frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) frame = torch.from_numpy(frame).byte() # # (H x W x C) to (C x H x W) frame = frame.permute(2, 0, 1) # frame = Image.fromarray(frame) frames.append(frame) success_idxs.append(index) else: pass # print(frame_idxs, ' fail ', index, f' (vlen {vlen})') frames = torch.stack(frames) cap.release() return frames def fast_decode(video_path, num_frames, mode='train', fix_start=None, fps=30): cap = cv2.VideoCapture(video_path) vlen = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) cap.release() max_len = vlen/30 num_sec = num_frames / float(fps) size = 224 crop_only = True random_flip = True start_seek = random.randint(0, int(max(max_len, max_len - num_sec))) cmd = ( ffmpeg .input(video_path, ss=start_seek, t=num_sec + 0.1) .filter('fps', fps=fps) ) if mode=='train': aw, ah = random.uniform(0, 1), random.uniform(0, 1) else: aw, ah = 0.5, 0.5 if crop_only: cmd = ( cmd.crop('(iw - {})*{}'.format(size, aw), '(ih - {})*{}'.format(size, ah), str(size), str(size)) ) else: cmd = ( cmd.crop('(iw - min(iw,ih))*{}'.format(aw), '(ih - min(iw,ih))*{}'.format(ah), 'min(iw,ih)', 'min(iw,ih)') .filter('scale', size, size) ) if random_flip and random.uniform(0, 1) > 0.5: cmd = cmd.hflip() out, _ = ( cmd.output('pipe:', format='rawvideo', pix_fmt='rgb24') .run(capture_stdout=True, quiet=True) ) video = np.frombuffer(out, np.uint8).reshape([-1, size, size, 3]) video = torch.from_numpy(video) video = video.permute(3, 0, 1, 2) return video, _, _ # 21 colormaps = [(255, 0, 0), (0, 255, 0), (0, 0, 255), (61, 145, 64), (127, 255, 212), (0, 201, 87), (218, 112, 214), (255, 0, 255), (112, 128, 105), (250, 235, 215), (240, 255, 255), (252, 230, 201), (255, 255, 0), (235, 142, 85), (255, 97, 0), (176, 224, 230), (65, 106, 225,), (0, 255, 255), (56, 94, 15), (8, 46, 84), (255, 192, 203)] # only_use_relevant_dets ? def color_img(im, object_meta, relevant_dets, only_use_relevant_dets=True): # mask detected region # only_use_relevant_dets: if true, we only mask regions that mentioned in question & answers # print(relevant_dets) if only_use_relevant_dets: boxes = [] for index in relevant_dets: boxes.append(object_meta['boxes'][index]) # print(object_meta['names'][index]) # object_index = relevant_dets else: boxes = object_meta['boxes'] # print(len(boxes)) # range(len(boxes)) for i in range(len(boxes)): if i > 20: break bbox = boxes[i] # white_rect = cv2.applyColorMap(white_rect, i) # only considering bounding box here (wo fine-grained segmentation) sub_img = im[int(bbox[1]):int(bbox[3]), int(bbox[0]):int(bbox[2])] white_rect = np.ones(sub_img.shape, dtype=np.uint8) * 255 white_rect[:, :, 0] = colormaps[i][0] white_rect[:, :, 1] = colormaps[i][1] white_rect[:, :, 2] = colormaps[i][2] res = cv2.addWeighted(sub_img, 0.7, white_rect, 0.3, 1.0) im[int(bbox[1]):int(bbox[3]), int(bbox[0]):int(bbox[2])] = res cv2.rectangle(im, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])), colormaps[i], 3) return im def get_video_len(video_src): cap = cv2.VideoCapture(video_src) vlen = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) cap.release() return vlen def align_using_dtw(input_asr, grover_output, radius_perc=0.1, radius_abs=32): """ :param input_asr: List of words :param grover_output: List of words also, could be different size :param radius_perc: Percent of input ASR :param radius_abs: Absolute ntokens :return: """ max_radius = int(max(len(input_asr) * radius_perc, radius_abs)) # sometimes grover just keeps going if len(grover_output) > len(input_asr): grover_output = grover_output[:len(input_asr) + max_radius] # DONT give the alignment freedom if it's at the end of a sequence to just "give up" by padding with zeros # Default value is high auto2other = np.zeros((len(input_asr), len(grover_output)), dtype=np.float32) + 9999.0 def _preprocess_text(x): return x.translate(str.maketrans('', '', string.punctuation)).strip().lower() input_asr_pre = [_preprocess_text(x) for x in input_asr] input_gro_pre = [_preprocess_text(x) for x in grover_output] for a_idx, a in enumerate(input_asr_pre): start = max(a_idx - max_radius, 0) end = min(a_idx + max_radius, len(input_gro_pre)) for o_idx in range(start, end): o = input_gro_pre[o_idx] auto2other[a_idx, o_idx] = editdistance.eval(a, o) idxs, score = tslearn.metrics.dtw_path_from_metric(auto2other, metric='precomputed') denoised_out = [[] for x in input_asr] has_seen = -1 for idx1, idx2 in idxs: if (idx1 >= len(input_asr)) or (idx2 >= len(grover_output)): break if idx2 > has_seen: # Basically don't add if it's a duplicate -- a grover output that matches to 2 things # This often leads to slightly weird results because we really should match the next thing, but we instead matched the first thing # e.g. # input_asr_pre = ['much', 'of', 'a', 'pancake', 'waffle', 'person', 'so', 'i', 'love', 'a'] # input_gro_pre = ['much', 'of', 'a', 'pancakewaffle', 'person', 'so', 'i', 'love', 'a', 'good'] # but we align pancakewaffle-> pancake and person -> waffle AND person -> person denoised_out[idx1].append(grover_output[idx2]) has_seen = idx2 return [' '.join(x) for x in denoised_out] def clean_subtitles(subtitle_dicts): """ :param subtitle_dicts: {'word': X, 'time': Y} :return: """ # Remove &gt;&gt; maybe using ftfy or something new_dicts = [] for x in subtitle_dicts: if x['word'].startswith('&') or x['word'].endswith(';'): continue fixed_word = ftfy.ftfy(x['word']) if len(fixed_word) == 0: continue x['word'] = fixed_word new_dicts.append(x) return new_dicts def clean_description(text): # Strip emojis first all_emojis = demoji.findall(text) for k, v in all_emojis.items(): text = text.replace(k, f'[{v}]'.replace(' ', '')) text = text.strip() # Remove URLs # https://stackoverflow.com/questions/11331982/how-to-remove-any-url-within-a-string-in-python/11332580 text = re.sub( r'''(?i)\b((?:https?://|www\d{0,3}[.]|[a-z0-9.\-]+[.][a-z]{2,4}/)(?:[^\s()<>]+|\(([^\s()<>]+|(\([^\s()<>]+\)))*\))+(?:\(([^\s()<>]+|(\([^\s()<>]+\)))*\)|[^\s`!()\[\]{};:'".,<>?«»“”‘’]))''', "%", text) text = re.sub(' +', ' ', text) # Probably should have done text = re.sub('\s*\n+', '\n', text) text = text.strip() return text
InternVideo-main
Downstream/multi-modalities-downstream/CoTrain/datasets/video/video_base_dataset.py
import numpy as np from .video_base_dataset import BaseDataset import os import random from CoTrain.transforms.video.videoaug import VideoTransform class K400Dataset(BaseDataset): def __init__(self, *args, split="", **kwargs): assert split in ["train", "val", "test"] self.split = split self.metadata = None self.ans_lab_dict = dict() if split == "train": names = ["k400_train"] elif split == "val": names = ["k400_val"] elif split == "test": names = ["k400_test"] super().__init__( *args, **kwargs, names=names, text_column_name="questions", remove_duplicate=False, ) self.video_transform = VideoTransform(mode=self.split) # train or val model self._load_metadata() def _load_metadata(self): metadata_dir = './meta_data/k400' split_files = { 'train': 'k400_train_tsm.list', 'val': 'k400_test_tsm.list', 'test': 'k400_test_tsm.list' } target_split_fp = split_files[self.split] with open(os.path.join(metadata_dir, target_split_fp)) as f: self.metadata = f.readlines() answer_fp = os.path.join(metadata_dir, 'kinetics_label_map.txt') count = 0 with open(answer_fp, 'r') as f: lines = f.readlines() for line in lines: self.ans_lab_dict[str(line.strip())] = count count += 1 def _get_video_path(self, sample): # find the name is os.listdir() e.g. abseiling/0wR5jVB-WPk.mp4 # /data/algceph/arcdata/Kinetics-400/train_zips/snowboarding/MCgJO4s1qBA_000129_000139.zip # -> snowboarding/MCgJO4s1qBA_000129_000139.mp4 if self.split == 'train': rel_path = sample[0][46:-4] + '.mp4' else: # val maybe mkv. webm etc. fake_path = sample[0][44:-4] sub_dir, video_name = fake_path.split('/') rel_path = sub_dir for video in os.listdir(os.path.join(self.data_dir, self.split, sub_dir)): if video_name in video: rel_path = os.path.join(rel_path, video) break full_path = os.path.join(self.data_dir, self.split, rel_path) # print(full_path) return full_path, rel_path def get_text(self, sample): text = "A persion is doing [MASK]" encoding = self.tokenizer( text, padding="max_length", truncation=True, max_length=self.max_text_len, return_special_tokens_mask=True, ) return (text, encoding) def get_answer_label(self, sample): text = "None" # print(len(self.ans_lab_dict)) ans_total_len = len(self.ans_lab_dict) + 1 # one additional class ans_label = int(sample[1]) scores = np.zeros(ans_total_len).astype(int) scores[ans_label] = 1 return text, ans_label, scores def __getitem__(self, index): result = None while result is None: sample = self.metadata[index].split('\t') try: video_tensor = self.get_video(sample) text = self.get_text(sample) qid = index if self.split != "test": answers, labels, scores = self.get_answer_label(sample) else: answers = list() labels = list() scores = list() result = True except Exception as e: print(f"Error while read file idx {sample[0]} -> {e}") index = random.randint(0, len(self.metadata) - 1) return { "video": video_tensor, "text": text, "vqa_answer": answers, "vqa_labels": labels, "vqa_scores": scores, "qid": qid, } def __len__(self): return len(self.metadata)
InternVideo-main
Downstream/multi-modalities-downstream/CoTrain/datasets/video/k400.py
import numpy as np from .video_base_dataset import BaseDataset import os import json import pandas as pd class MSVDQADataset(BaseDataset): def __init__(self, *args, split="", **kwargs): assert split in ["train", "val", "test"] self.split = split self.metadata = None self.ans_lab_dict = None if split == "train": names = ["msvd_qa_train"] elif split == "val": names = ["msvd_qa_test"] # test: directly output test result # ["msvd_qa_val"] elif split == "test": names = ["msvd_qa_test"] # vqav2_test-dev for test-dev super().__init__( *args, **kwargs, names=names, text_column_name="questions", remove_duplicate=False, ) self._load_metadata() self.data_dir = "s3://video_pub/MSVD/" # TODO: Remove this piece of shit def _load_metadata(self): metadata_dir = './meta_data/msvd' split_files = { 'train': 'msvd_train_qa_encode.json', 'val': 'msvd_val_qa_encode.json', 'test': 'msvd_test_qa_encode.json' } # read ans dict self.ans_lab_dict = {} answer_fp = os.path.join(metadata_dir, 'msvd_answer_set.txt') answer_clip_id = os.path.join(metadata_dir, 'msvd_clip_id.json') self.youtube_mapping_dict = dict() with open(os.path.join(metadata_dir, 'msvd_youtube_mapping.txt')) as f: lines = f.readlines() for line in lines: info = line.strip().split(' ') self.youtube_mapping_dict[info[1]] = info[0] with open(answer_fp, 'r') as f: lines = f.readlines() count = 0 for line in lines: self.ans_lab_dict[str(line.strip())] = count count += 1 with open(answer_clip_id, 'r') as JSON: self.ans_clip_id = json.load(JSON) for name in self.names: split = name.split('_')[-1] target_split_fp = split_files[split] metadata = pd.read_json(os.path.join(metadata_dir, target_split_fp), lines=True) if self.metadata is None: self.metadata = metadata else: self.metadata.update(metadata) print("total {} samples for {}".format(sum(1 for line in self.metadata), self.names)) def _get_video_path(self, sample): rel_video_fp = self.youtube_mapping_dict['vid' + str(sample["video_id"])] + '.avi' # print(rel_video_fp) full_video_fp = os.path.join(self.data_dir, 'MSVD_Videos', rel_video_fp) return full_video_fp, rel_video_fp def get_text(self, sample): text = sample['question'] encoding = self.tokenizer( text, padding="max_length", truncation=True, max_length=self.max_text_len, return_special_tokens_mask=True, ) return (text, encoding) def get_answer_label(self, sample): text = sample['answer'] ans_total_len = len(self.ans_lab_dict) + 1 # one additional class try: ans_label = self.ans_lab_dict[text] # except KeyError: ans_label = -100 # ignore classes # ans_label = 1500 # other classes scores = np.zeros(ans_total_len).astype(int) scores[ans_label] = 1 return text, ans_label, scores # return text, ans_label_vector, scores def __getitem__(self, index): sample = self.metadata[index].iloc[0] video_tensor = self.get_video(sample) text = self.get_text(sample) # index, question_index = self.index_mapper[index] qid = index if self.split != "test": answers, labels, scores = self.get_answer_label(sample) else: answers = list() labels = list() scores = list() return { "video": video_tensor, "text": text, "vqa_answer": answers, "vqa_labels": labels, "vqa_scores": scores, "qid": qid, "ans_clip_id": self.ans_clip_id, } def __len__(self): return sum(1 for line in self.metadata) # count # json lines
InternVideo-main
Downstream/multi-modalities-downstream/CoTrain/datasets/video/msvdqa.py
InternVideo-main
Downstream/multi-modalities-downstream/CoTrain/datasets/video/__init__.py
from .video_base_dataset import BaseDataset import os import pandas as pd # some videos are missed, for better results, do IO exception. class DIDEMODataset(BaseDataset): def __init__(self, *args, split="", **kwargs): assert split in ["train", "val", "test"] self.split = split self.metadata = None if split == "train": names = ["didemo_train"] elif split == "val": names = ["didemo_val"] elif split == "test": names = ["didemo_val"] super().__init__(*args, **kwargs, names=names, text_column_name="caption") self._load_metadata() def _load_metadata(self): metadata_dir = './meta_data/didemo' split_files = { 'train': 'DiDeMo_train.tsv', 'val': 'DiDeMo_val.tsv', # there is no test 'test': 'DiDeMo_test.tsv' } target_split_fp = split_files[self.split] metadata = pd.read_csv(os.path.join(metadata_dir, target_split_fp), sep='\t') self.metadata = metadata print("load split {}, {} samples".format(self.split, len(metadata))) def _get_video_path(self, sample): rel_video_fp = sample[1] full_video_fp = os.path.join(self.data_dir, '', rel_video_fp) return full_video_fp, rel_video_fp def _get_caption(self, sample): return sample[0]
InternVideo-main
Downstream/multi-modalities-downstream/CoTrain/datasets/video/didemo.py
from .video_base_dataset import BaseDataset, read_frames_gif import random import os import pandas as pd # action and transition: { # "gif_name": "tumblr_nk172bbdPI1u1lr18o1_250", # "question": "What does the butterfly do 10 or more than 10 times ?", # "options": ["stuff marshmallow", "holds a phone towards face", # "fall over", "talk", "flap wings"], # "answer": 4 # } class TGIFQADataset(BaseDataset): def __init__(self, *args, split="", **kwargs): assert split in ["train", "val", "test"] self.split = split self.data_split = "action" # transition/action self.metadata = None self._load_metadata() if split == "train": names = ["tgifqa_train"] elif split == "val": names = ["tgifqa_val"] elif split == "test": names = ["tgifqa_test"] super().__init__(*args, **kwargs, names=names, text_column_name="caption") # for appear objects self.only_use_relevant_dets = True if self.only_use_relevant_dets: self.relevant_dets = [] # resort the detection numbers self.relevant_dets_classes = [] self.fps = 3 # tgif sample 3 frames per second self.data_dir = "/mnt/lustre/share_data/heyinan/data/tgif" # TODO: Remove this piece of shit def _load_metadata(self): # download specific metadata_dir = './meta_data/tgif' if self.data_split == "action": split_files = { 'train': 'action_train.jsonl', 'val': 'action_test.jsonl', # action_val.jsonl 'test': 'action_test.jsonl' # no GT label for test set } elif self.data_split == "transition": split_files = { 'train': 'transition_train.jsonl', 'val': 'transition_test.jsonl', # transition_val.jsonl 'test': 'transition_test.jsonl' # no GT label for test set } else: Exception("not support split") target_split_fp = split_files[self.split] metadata = pd.read_json(os.path.join(metadata_dir, target_split_fp), lines=True) self.metadata = metadata # def _get_image_path(self, sample): # # for example: tvqa/frames/raw_frames/frames_hq/met_frames/met_s06e22_seg01_clip_02 # dir_name = sample['vid_name'].split('_')[0] # if dir_name not in ['bbt', 'castle', 'friends', 'grey', 'house', 'met']: # dir_name = 'bbt' # rel_fp = os.path.join('frames/raw_frames/frames_hq/', dir_name + '_frames', sample['vid_name']) # return os.path.join(self.data_dir, rel_fp), rel_fp def _get_caption(self, sample): return sample[0] def _get_video_path(self, sample): return os.path.join(self.data_dir, 'gifs', sample['gif_name']) + '.gif', sample['gif_name'] + '.gif' def get_raw_video(self, sample): abs_fp, rel_fp = self._get_video_path(sample) imgs, idxs, vlen = read_frames_gif(abs_fp, self.num_frames, mode=self.split) if imgs is None: raise Exception("Invalid img!", rel_fp) else: return imgs def get_text(self, sample): question = self.get_question(sample) qa_texts = [] # 5 choices # ClipBERT: " ", Ours: [SEP] options = " ".join(sample["options"][i] for i in range(5)) for i in range(5): raw_text = question + "Options: " + options + "Answer: " + sample["options"][i] # raw_text = question + "[SEP]" + sample["options"][i] # print(raw_text) qa_encoding = self.tokenizer( raw_text, padding="max_length", truncation=True, max_length=self.max_text_len, return_special_tokens_mask=True, ) qa_texts.append((raw_text, qa_encoding)) return qa_texts def get_answer_label(self, sample): answer = int(sample['answer']) return answer def get_question(self, sample): return sample["question"] def __len__(self): return len(self.metadata) def __getitem__(self, index): result = None while result is None: sample = self.metadata.iloc[index] try: self.relevant_dets = [] # initalize self.relevant_dets_classes = [] answer = self.get_answer_label(sample) ret = { "vid_index": index, "cap_index": index, "raw_index": index, 'answer': answer } qa_texts = self.get_text(sample) ret["text"] = qa_texts[0] for i in range(self.draw_options_text - 1): ret.update({f"options_text_{i}": qa_texts[i+1]}) video_tensor = self.get_video(sample) ret["image"] = video_tensor result = True except Exception as e: print(f"Error while read file idx {sample.name} in {self.names[0]} -> {e}") print("time stamp is: {}".format(sample['ts'])) index = random.randint(0, len(self.metadata) - 1) return ret
InternVideo-main
Downstream/multi-modalities-downstream/CoTrain/datasets/video/tgifqa.py
import numpy as np from .video_base_dataset import BaseDataset import os class UCF101Dataset(BaseDataset): def __init__(self, *args, split="", **kwargs): assert split in ["train", "val", "test"] self.split = split self.metadata = None self.ans_lab_dict = dict() if split == "train": names = ["ucf101_train"] elif split == "val": names = ["ucf101_val"] elif split == "test": names = ["ucf101_test"] super().__init__( *args, **kwargs, names=names, text_column_name="questions", remove_duplicate=False, ) self._load_metadata() def _load_metadata(self): metadata_dir = './meta_data/ucf101' split_files = { 'train': 'hmdb51_rgb_train_split_1.txt', 'val': 'hmdb51_rgb_val_split_1.txt', 'test': 'hmdb51_rgb_val_split_1.txt' } target_split_fp = split_files[self.split] self.metadata = [x.strip().split(' ') for x in open(os.path.join(metadata_dir, target_split_fp))] answer_fp = os.path.join(metadata_dir, 'hmdb51_classInd.txt') with open(answer_fp, 'r') as f: lines = f.readlines() for line in lines: self.ans_lab_dict[str(int(line.strip().split(' ')[0]) - 1)] = line.strip().split(' ')[1] def _get_video_path(self, sample): # self.ans_lab_dict[sample[2]], return os.path.join(self.data_dir, sample[0].split('/')[-1]) + '.avi', sample[0].split('/')[-1] + '.avi' def get_text(self, sample): text = "A person is doing [MASK]" encoding = self.tokenizer( text, padding="max_length", truncation=True, max_length=self.max_text_len, return_special_tokens_mask=True, ) return (text, encoding) def get_answer_label(self, sample): text = "None" ans_total_len = len(self.ans_lab_dict) + 1 # one additional class ans_label = int(sample[2]) scores = np.zeros(ans_total_len).astype(int) scores[ans_label] = 1 return text, ans_label, scores # return text, ans_label_vector, scores def __getitem__(self, index): sample = self.metadata[index] # .split(' ') video_tensor = self.get_video(sample) text = self.get_text(sample) qid = index if self.split != "test": answers, labels, scores = self.get_answer_label(sample) else: answers = list() labels = list() scores = list() return { "video": video_tensor, "text": text, "vqa_answer": answers, "vqa_labels": labels, "vqa_scores": scores, "qid": qid, } def __len__(self): return len(self.metadata)
InternVideo-main
Downstream/multi-modalities-downstream/CoTrain/datasets/video/ucf101.py
from .video_base_dataset import BaseDataset import random import os import pandas as pd import cv2 import torch from CoTrain.datasets.video.video_base_dataset import sample_frames # each sample: https://tvqa.cs.unc.edu/download_tvqa.html # { # "a0": "A martini glass", # "a1": "Nachos", # "a2": "Her purse", # "a3": "Marshall's book", # "a4": "A beer bottle", # "answer_idx": 4, # "q": "What is Robin holding in her hand when she is talking to Ted about Zoey?", # "qid": 7, # "ts": "1.21-8.49", # "vid_name": "met_s06e22_seg01_clip_02", # "show_name": # } class TVQADataset(BaseDataset): def __init__(self, *args, split="", **kwargs): assert split in ["train", "val", "test"] self.split = split self.metadata = None self._load_metadata() if split == "train": names = ["tvqa_train"] elif split == "val": names = ["tvqa_val"] elif split == "test": names = ["tvqa_test"] super().__init__(*args, **kwargs, names=names, text_column_name="caption") # for appear objects self.only_use_relevant_dets = True if self.only_use_relevant_dets: self.relevant_dets = [] # resort the detection numbers self.relevant_dets_classes = [] self.fps = 3 # tvqa sample 3 frames per second def _load_metadata(self): # download specific metadata_dir = './meta_data/tvqa' split_files = { 'train': 'tvqa_train.jsonl', 'val': 'tvqa_val.jsonl', 'test': 'tvqa_test_public.jsonl' # no GT label for test set } target_split_fp = split_files[self.split] metadata = pd.read_json(os.path.join(metadata_dir, target_split_fp), lines=True) self.metadata = metadata def _get_image_path(self, sample): # for example: tvqa/frames/raw_frames/frames_hq/met_frames/met_s06e22_seg01_clip_02 dir_name = sample['vid_name'].split('_')[0] if dir_name not in ['bbt', 'castle', 'friends', 'grey', 'house', 'met']: dir_name = 'bbt' rel_fp = os.path.join('frames/raw_frames/frames_hq/', dir_name + '_frames', sample['vid_name']) return os.path.join(self.data_dir, rel_fp), rel_fp def _get_caption(self, sample): return sample[0] # need to speed up def _get_video_len(self, dir): return len(os.listdir(dir)) # tvqa provide sampled frames def get_raw_video(self, sample): abs_fp, rel_fp = self._get_image_path(sample) [beg_time, end_time] = sample['ts'].split('-') clip_len = int((float(end_time) - float(beg_time)) * self.fps) # try: # clip_len = int((float(end_time) - float(beg_time)) * self.fps) # except ValueError: # clip_len = 1 # prevent short than 1 second clip_len = max(clip_len, 2*self.num_frames) rel_frame_index = sample_frames(self.num_frames, clip_len) begin_frame_index = max(1, int(float(beg_time) * self.fps)) video_len = self._get_video_len(abs_fp) # sample N frames here frames = [] for index in rel_frame_index: abs_index = begin_frame_index + index abs_index = min(video_len, abs_index) image_rel_path = f'{abs_index:05}' img = cv2.imread(os.path.join(abs_fp, '{}.jpg'.format(image_rel_path))) # print(img) # print(os.path.join(abs_fp, '{}.jpg'.format(image_rel_path))) if img is None: print(sample['vid_name']) print(os.path.join(abs_fp, '{}.jpg'.format(image_rel_path))) frame = torch.from_numpy(img).byte() frame = frame.permute(2, 0, 1) frames.append(frame) frames = torch.stack(frames).permute(1, 0, 2, 3) return frames def get_text(self, sample): question = self.get_question(sample) qa_texts = [] # 5 choices # ClipBERT: " ", Ours: [SEP] # if the length suppress than 40 ? options = " ".join(sample["a{}".format(i)] for i in range(5)) for i in range(5): raw_text = question + "Options: " + options + "Answer: " + sample["a{}".format(i)] # raw_text = question + "[SEP]" + sample["a{}".format(i)] # print(raw_text) qa_encoding = self.tokenizer( raw_text, padding="max_length", truncation=True, max_length=self.max_text_len, return_special_tokens_mask=True, ) qa_texts.append((raw_text, qa_encoding)) return qa_texts def get_answer_label(self, sample): answer = int(sample['answer_idx']) return answer def get_question(self, sample): return sample["q"] def __len__(self): return len(self.metadata) def __getitem__(self, index): result = None while result is None: sample = self.metadata.iloc[index] try: self.relevant_dets = [] # initalize self.relevant_dets_classes = [] answer = self.get_answer_label(sample) ret = { "vid_index": index, "cap_index": index, "raw_index": index, 'answer': answer } qa_texts = self.get_text(sample) ret["text"] = qa_texts[0] for i in range(self.draw_options_text - 1): ret.update({f"options_text_{i}": qa_texts[i+1]}) video_tensor = self.get_video(sample) ret["image"] = video_tensor result = True except Exception as e: print(f"Error while read file idx {sample.name} in {self.names[0]} -> {e}") print("time stamp is: {}".format(sample['ts'])) index = random.randint(0, len(self.metadata) - 1) return ret
InternVideo-main
Downstream/multi-modalities-downstream/CoTrain/datasets/video/tvqa.py
from .video_base_dataset import BaseDataset, read_frames_decord import random import os import pandas as pd class WEBVIDDataset(BaseDataset): def __init__(self, *args, split="", **kwargs): assert split in ["train", "val", "test"] self.split = split self.metadata = None self.cut = "jsfusion" if split == "train": names = ["webvid_train"] elif split == "val": names = ["webvid_val"] elif split == "test": names = ["webvid_val"] self._load_metadata() print(names, ": ", len(self.metadata), "samples in total.") super().__init__(*args, **kwargs, names=names, text_column_name="caption") if "s3://" in self.data_dir: # Remove this fucking auto dir name self.data_dir = os.path.dirname(self.data_dir) # Add the real path self.data_dir = os.path.join(self.data_dir, "WebVid2M") def _load_metadata(self): metadata_dir = './meta_data/webvid' split_files = { 'train': 'webvid_training_success_full.tsv', 'val': 'webvid_validation_success_full.tsv', # there is no test 'test': 'webvid_validation_success_full.tsv' } target_split_fp = split_files[self.split] metadata = pd.read_csv(os.path.join(metadata_dir, target_split_fp), sep='\t') self.metadata = metadata def _get_video_path(self, sample): rel_video_fp = sample[1] + '.mp4' if "s3://" in self.data_dir: full_video_fp = os.path.join(self.data_dir, rel_video_fp) else: full_video_fp = os.path.join(self.data_dir, self.split, rel_video_fp) return full_video_fp, rel_video_fp def _get_caption(self, sample): return sample[0] def get_raw_video(self, sample): abs_fp, rel_fp = self._get_video_path(sample) videos, idxs, vlen = read_frames_decord(abs_fp, self.num_frames, mode=self.split) if videos is None: raise Exception("Invalid video!", rel_fp) else: return videos def get_video(self, index, sample): videos = self.get_raw_video(sample) videos_tensor = self.video_aug(videos, self.video_transform) return { "video": videos_tensor, "vid_index": index, "cap_index": index, "raw_index": index, } def get_false_video(self, rep): random_index = random.randint(0, len(self.metadata) - 1) sample = self.metadata.iloc[random_index] # can be different augmentation videos = self.get_raw_video(sample) videos_tensor = self.video_aug(videos, self.video_transform) return {f"false_video_{rep}": videos_tensor} def get_text(self, raw_index, sample): text = sample[0] # print(text) encoding = self.tokenizer( text, padding="max_length", truncation=True, max_length=self.max_text_len, return_special_tokens_mask=True, ) # print(encoding.size()) return { "text": (text, encoding), "vid_index": raw_index, "cap_index": raw_index, "raw_index": raw_index, } def get_false_text(self, rep): random_index = random.randint(0, len(self.metadata) - 1) sample = self.metadata.iloc[random_index] text = sample[0] encoding = self.tokenizer( text, # padding="max_length", truncation=True, max_length=self.max_text_len, return_special_tokens_mask=True, ) return {f"false_text_{rep}": (text, encoding)} def get_suite(self, index): result = None max_try = 10 try_time = 0 while result is None: try_time += 1 sample = self.metadata.iloc[index] try: ret = dict() ret.update(self.get_video(index, sample)) if not self.video_only: txt = self.get_text(index, sample) ret.update({"replica": True if txt["cap_index"] > 0 else False}) ret.update(txt) for i in range(self.draw_false_video): ret.update(self.get_false_video(i)) for i in range(self.draw_false_text): ret.update(self.get_false_text(i)) result = True except Exception as e: index = random.randint(0, len(self.metadata) - 1) exc = e if try_time > max_try: print(f"Exceed max time Error while read file idx {sample} in {self.names[0]} with error {exc}") try_time=0 return ret def __len__(self): return len(self.metadata) def __getitem__(self, index): return self.get_suite(index)
InternVideo-main
Downstream/multi-modalities-downstream/CoTrain/datasets/video/webvid_old.py
from .video_base_dataset import BaseDataset import torch as th import os import numpy as np import random import ffmpeg import json from transforms.video.videoaug import VideoTransform import subprocess # {'timestamp_sec': 221.29666, 'narration_text': '#C C walks on the ground'} class Ego4DDataset(BaseDataset): """EGO4D Video-Text loader.""" def __init__(self, *args, split="", **kwargs): # def __init__( # self, # csv, # video_root='', # caption_root='', # min_time=4.0, # fps=16, # num_frames=16, # size=224, # crop_only=False, # center_crop=True, # benchmark=False, # token_to_word_path='data/dict.npy', # max_words=20, # num_candidates=1, # random_left_right_flip=False, # ): # """ # Args: # """ assert split in ["train", "val", "test"] self.split = split if split == "train": names = ["ego4d_train"] elif split == "val": names = ["ego4d_val"] elif split == "test": names = ["ego4d_test"] super().__init__(*args, **kwargs, names=names, text_column_name="caption") self._load_metadata() # for howto100 self.min_time = 2.0 self.size = 224 self.fps = 5 self.num_sec = self.video_num_frames / float(self.fps) self.crop_only = False self.center_crop = False self.benchmark = False self.num_candidates = 1 self.random_flip = True # print(self.data_dir) # for howto caption dir self._load_metadata() # print(kwargs) # self.num_frames = kwargs['num_frames'] self.video_transform = VideoTransform(mode=self.split, num_frames=self.num_frames) # train or val model def _load_metadata(self): metadata_dir = './meta_data' split_files = { 'train': 'ego4d/narration.json', 'val': 'ego4d/narration.json', # there is no test 'test': 'ego4d/narration.json' } target_split_fp = split_files[self.split] with open(os.path.join(metadata_dir, target_split_fp), 'r') as jsonfile: metadata = json.load(jsonfile) # metadata = pd.read_csv(os.path.join(metadata_dir, target_split_fp), sep='\t') self.metadata = metadata self.meta_keys = list(metadata.keys()) def __len__(self): return len(self.meta_keys) def get_video_len(self, video_path): duration = subprocess.check_output( ['ffprobe', '-i', video_path, '-show_entries', 'format=duration', '-v', 'quiet', '-of', 'csv=%s' % ("p=0")]) # print("ffmpeg duration is: {}".format(duration)) duration = float(str(duration)[2:-3]) # b'1027.806000\n' -> 1027.806 return duration def read_frames_ffmpeg(self, video_path, center, video_len): if center > video_len: center = video_len - 2 * self.num_sec start = int(max(0, center-self.min_time)) end = int(min(video_len, center+self.min_time)) start_seek = random.randint(start, int(max(start, end - self.num_sec))) # video is too short if video_len < 1: start_seek = 0 if start_seek + self.num_sec + 0.1 > video_len: start_seek = video_len - self.num_sec - 0.1 start_seek = max(start_seek, 0) cmd = ( ffmpeg .input(video_path, ss=start_seek, t=self.num_sec + 0.01) .filter('fps', fps=self.fps) ) if self.center_crop: aw, ah = 0.5, 0.5 else: aw, ah = random.uniform(0, 1), random.uniform(0, 1) if self.crop_only: cmd = ( cmd.crop('(iw - {})*{}'.format(self.size, aw), '(ih - {})*{}'.format(self.size, ah), str(self.size), str(self.size)) ) else: cmd = ( cmd.crop('(iw - min(iw,ih))*{}'.format(aw), '(ih - min(iw,ih))*{}'.format(ah), 'min(iw,ih)', 'min(iw,ih)') .filter('scale', self.size, self.size) ) if self.random_flip and random.uniform(0, 1) > 0.5: cmd = cmd.hflip() out, _ = ( cmd.output('pipe:', format='rawvideo', pix_fmt='rgb24') .run(capture_stdout=True, quiet=True) ) video = np.frombuffer(out, np.uint8).reshape([-1, self.size, self.size, 3]) video_tensor = th.from_numpy(np.copy(video)) video_tensor = video_tensor.permute(3, 0, 1, 2) + 0.01 if video_tensor.size()[1] != self.num_frames: print(video_tensor.size(), start, end, start_seek, video_len) # print("video length: {}".format(self.get_video_len_from_timestammp())) # add gausian noise here to prevent all blank boxez if video_tensor.shape[1] < self.num_frames: zeros = th.ones((3, self.num_frames - video_tensor.shape[1], self.size, self.size), dtype=th.uint8) video_tensor = th.cat((video_tensor, zeros), axis=1) return video_tensor[:, :self.num_frames] def _zero_pad_tensor_token(self, tensor, size): if len(tensor) >= size: return tensor[:size] else: zero = th.zeros(size - len(tensor)).long() return th.cat((tensor, zero), dim=0) def get_text(self, sample, index): text = sample['narration_text'] # TODO: May need to be improved for edge cases. encoding = self.tokenizer( text, padding="max_length", truncation=True, max_length=self.max_text_len, return_special_tokens_mask=True, ) return { "text": (text, encoding), "img_index": index, "cap_index": index, "raw_index": index, } def get_false_text(self, rep): random_index = random.randint(0, len(self.metadata) - 1) # two annotations if random.random() < 0.5: meta = self.metadata[self.meta_keys[random_index]]['narration_pass_1'] else: meta = self.metadata[self.meta_keys[random_index]]['narration_pass_2'] sample = meta[random.randint(0, len(meta) - 1)] # random choice one sample text = sample['narration_text'] encoding = self.tokenizer( text, # padding="max_length", truncation=True, max_length=self.max_text_len, return_special_tokens_mask=True, ) return {f"false_text_{rep}": (text, encoding)} def _get_video_path(self, sample): rel_video_fp = sample["video_path"] + '.mp4' full_video_fp = os.path.join(self.data_dir, rel_video_fp) if not os.path.exists(full_video_fp): Exception(IOError) return full_video_fp, rel_video_fp def get_raw_video(self, sample): abs_fp, rel_fp = self._get_video_path(sample) # in four seconds # print(sample) sample["video_len"] = self.get_video_len(abs_fp) center = sample['timestamp_sec'] imgs = self.read_frames_ffmpeg(abs_fp, center, sample["video_len"]).permute(1, 0, 2, 3) # print(imgs.size()) if imgs is None: raise Exception("Invalid video!", rel_fp) else: return imgs def get_video(self, sample): imgs_tensor = self.get_raw_video(sample) return imgs_tensor def get_false_video(self, rep): random_index = random.randint(0, len(self.metadata) - 1) # two annotations if random.random() < 0.5: meta = self.metadata[self.meta_keys[random_index]]['narration_pass_1'] else: meta = self.metadata[self.meta_keys[random_index]]['narration_pass_2'] if len(meta) < 1: return self.get_false_video(rep) sample = meta[random.randint(0, len(meta) - 1)] # random choice one sample sample["video_path"] = self.meta_keys[random_index] # video path imgs_tensor = self.get_raw_video(sample) return {f"false_image_{rep}": imgs_tensor} def get_suite(self, index): result = None while result is None: # two annotations try: if random.random() < 0.5: meta = self.metadata[self.meta_keys[index]]['narration_pass_1'] else: meta = self.metadata[self.meta_keys[index]]['narration_pass_2'] if len(meta) < 2: random_index = random.randint(0, len(self.metadata) - 1) return self.get_suite(random_index) sample = meta[random.randint(0, len(meta)-1)] # random choice one sample sample["video_path"] = self.meta_keys[index] # video path # print(sample) ret = dict() text = self.get_text(sample, index) ret.update({"replica": True if text["cap_index"] > 0 else False}) ret.update(text) imgs_tensor = self.get_video(sample) # print(imgs_tensor.size()) ret.update({ "image": imgs_tensor, "img_index": index, "cap_index": index, "raw_index": index, }) ret.update({"replica": True if ret["cap_index"] > 0 else False}) for i in range(self.draw_false_image): ret.update(self.get_false_video(i)) for i in range(self.draw_false_text): ret.update(self.get_false_text(i)) result = True except Exception as e: # print(e) index = random.randint(0, len(self.metadata) - 1) return ret def __len__(self): return len(self.metadata) def __getitem__(self, index): return self.get_suite(index)
InternVideo-main
Downstream/multi-modalities-downstream/CoTrain/datasets/video/ego4d_v2.py
from docutils import DataError from importlib_metadata import metadata from .video_base_dataset import BaseDataset, read_frames_decord import os import pandas as pd class K400VideoDataset(BaseDataset): def __init__(self, *args, split="", **kwargs): assert split in ["train", "val", "test"] self.split = split if self.split == "train": Exception("no train data provided") self.metadata = None self.ans_texts = dict() if split == "train": names = ["k400_video_train"] elif split == "val": names = ["k400_video_val"] elif split == "test": names = ["k400_video_test"] # vqav2_test-dev for test-dev super().__init__( *args, **kwargs, names=names, text_column_name="unknown", remove_duplicate=False, ) self._load_metadata() self.data_dir = "s3://video_pub/K400_videos" # TODO: Remove this piece of shit def _load_metadata(self): metadata_dir = './meta_data/k400' split_files = { 'train': 'k400_test_tsm.list', 'val': 'k400_test_tsm.list', 'test': 'k400_test_tsm.list', } target_split_fp = split_files[self.split] with open(os.path.join(metadata_dir, target_split_fp)) as f: self.metadata = f.readlines() self.metadata = [x.strip() for x in self.metadata] self.metadata = [x.split("\t") for x in self.metadata] self.metadata = [[x[0].split("/")[-1][:11], int(x[1])] for x in self.metadata] def _build_ans(self): metadata_dir = './meta_data/k400' answer_fp = os.path.join(metadata_dir, 'kinetics_label_map.txt') ans_texts = open(answer_fp).readlines() assert len(set(ans_texts)) == 400 ans_texts = [x.strip() for x in ans_texts] ans_texts = ["A person is doing {}".format(x) for x in ans_texts] ans_texts = [ ( x, self.tokenizer( x, padding="max_length", truncation=True, max_length=self.max_text_len, return_special_tokens_mask=True, ), ) for x in ans_texts ] self.ans_texts = {"text": ans_texts[0]} self.ans_texts.update( { "false_text_{}".format(i): ans_texts[i + 1] for i in range(len(ans_texts) - 1) } ) @staticmethod def classes(): metadata_dir = './meta_data/k400' answer_fp = os.path.join(metadata_dir, 'kinetics_label_map.txt') ans_texts = open(answer_fp).readlines() assert len(set(ans_texts)) == 400 ans_texts = [x.strip() for x in ans_texts] return ans_texts def _get_video_path(self, sample): rel_video_fp = sample[0] + '.mp4' if "s3://" in self.data_dir: full_video_fp = os.path.join(self.data_dir, rel_video_fp) else: full_video_fp = os.path.join(self.data_dir, self.split, rel_video_fp) return full_video_fp, rel_video_fp def get_raw_video(self, sample): abs_fp, rel_fp = self._get_video_path(sample) videos, idxs, vlen = read_frames_decord(abs_fp, self.num_frames, mode=self.split) if videos is None: raise Exception("Invalid img!", rel_fp) else: return videos def get_video(self, sample): videos = self.get_raw_video(sample) videos_tensor = self.video_aug(videos, self.video_transform) return videos_tensor def __getitem__(self, index): ret = None max_try = 10 try_time = 0 while ret is None: try_time += 1 try: sample = self.metadata[index] image_tensor = self.get_video(sample) answer = sample[1] ret = { "video": image_tensor, "img_index": index, 'answer': answer, } except Exception as e: index = (index + 1) % len(self.metadata) exc = e if try_time > max_try: raise DataError( f"Exceed max time Error while read file idx {sample[0]} with error {exc}" ) return ret def __len__(self): return len(self.metadata)
InternVideo-main
Downstream/multi-modalities-downstream/CoTrain/datasets/video/k400_video.py
from .video_base_dataset import BaseDataset import random import os import pandas as pd import json import numpy as np class MSRVTTDataset(BaseDataset): def __init__(self, *args, split="", **kwargs): assert split in ["train", "val", "test"] self.split = split self.metadata = None self.cut = "jsfusion" if split == "train": names = ["msrvtt_train"] elif split == "val": names = ["msrvtt_val"] elif split == "test": names = ["msrvtt_val"] super().__init__(*args, **kwargs, names=names, text_column_name="caption") self._load_metadata() def _load_metadata(self): json_fp = os.path.join(self.data_dir, 'annotation', 'MSR_VTT.json') with open(json_fp, 'r') as fid: data = json.load(fid) df = pd.DataFrame(data['annotations']) split_dir = os.path.join(self.data_dir, 'high-quality', 'structured-symlinks') js_test_cap_idx_path = None challenge_splits = {"val", "public_server_val", "public_server_test"} if self.cut == "miech": # 7k train_list_path = "train_list_miech.txt" test_list_path = "test_list_miech.txt" # 1k elif self.cut == "jsfusion": # 9k train_list_path = "train_list_jsfusion.txt" test_list_path = "val_list_jsfusion.txt" # 1k js_test_cap_idx_path = "jsfusion_val_caption_idx.pkl" elif self.cut in {"full-val", "full-test"}: train_list_path = "train_list_full.txt" if self.cut == "full-val": test_list_path = "val_list_full.txt" else: test_list_path = "test_list_full.txt" elif self.cut in challenge_splits: train_list_path = "train_list.txt" if self.cut == "val": test_list_path = f"{self.cut}_list.txt" else: test_list_path = f"{self.cut}.txt" else: msg = "unrecognised MSRVTT split: {}" raise ValueError(msg.format(self.cut)) train_df = pd.read_csv(os.path.join(split_dir, train_list_path), names=['videoid']) test_df = pd.read_csv(os.path.join(split_dir, test_list_path), names=['videoid']) self.split_sizes = {'train': len(train_df), 'val': len(test_df), 'test': len(test_df)} if self.split == 'train': df = df[df['image_id'].isin(train_df['videoid'])] else: df = df[df['image_id'].isin(test_df['videoid'])] self.metadata = df.groupby(['image_id'])['caption'].apply(list) if js_test_cap_idx_path is not None and self.split != 'train': caps = pd.Series(np.load(os.path.join(split_dir, js_test_cap_idx_path), allow_pickle=True)) new_res = pd.DataFrame({'caps': self.metadata, 'cap_idx': caps}) new_res['test_caps'] = new_res.apply(lambda x: [x['caps'][x['cap_idx']]], axis=1) self.metadata = new_res['test_caps'] self.metadata = pd.DataFrame({'captions': self.metadata}) print("load split {}, {} samples".format(self.split, len(self.metadata))) # random choice or fixed? def _get_caption(self, sample): caption_sample = "rand" if self.split in ['train', 'val'] and caption_sample == "rand": caption = random.choice(sample['captions']) else: caption = sample['captions'][0] return caption
InternVideo-main
Downstream/multi-modalities-downstream/CoTrain/datasets/video/msrvtt.py
import numpy as np from .video_base_dataset import BaseDataset import os class HMDB51Dataset(BaseDataset): def __init__(self, *args, split="", **kwargs): assert split in ["train", "val", "test"] self.split = split self.metadata = None self.ans_lab_dict = dict() if split == "train": names = ["hmdb51_train"] elif split == "val": names = ["hmdb51_val"] elif split == "test": names = ["hmdb51_test"] super().__init__( *args, **kwargs, names=names, text_column_name="questions", remove_duplicate=False, ) self._load_metadata() def _load_metadata(self): metadata_dir = './meta_data/hmdb51' split_files = { 'train': 'hmdb51_rgb_train_split_1.txt', 'val': 'hmdb51_rgb_val_split_1.txt', 'test': 'hmdb51_rgb_val_split_1.txt' } target_split_fp = split_files[self.split] self.metadata = [x.strip().split(' ') for x in open(os.path.join(metadata_dir, target_split_fp))] answer_fp = os.path.join(metadata_dir, 'hmdb51_classInd.txt') with open(answer_fp, 'r') as f: lines = f.readlines() for line in lines: self.ans_lab_dict[str(int(line.strip().split(' ')[0]) - 1)] = line.strip().split(' ')[1] def _get_video_path(self, sample): # self.ans_lab_dict[sample[2]], return os.path.join(self.data_dir, sample[0].split('/')[-1]) + '.avi', sample[0].split('/')[-1] + '.avi' def get_text(self, sample): text = "A person is doing [MASK]" encoding = self.tokenizer( text, padding="max_length", truncation=True, max_length=self.max_text_len, return_special_tokens_mask=True, ) return (text, encoding) def get_answer_label(self, sample): text = "None" ans_total_len = len(self.ans_lab_dict) + 1 # one additional class ans_label = int(sample[2]) scores = np.zeros(ans_total_len).astype(int) scores[ans_label] = 1 return text, ans_label, scores # return text, ans_label_vector, scores def __getitem__(self, index): sample = self.metadata[index] # .split(' ') video_tensor = self.get_video(sample) text = self.get_text(sample) qid = index if self.split != "test": answers, labels, scores = self.get_answer_label(sample) else: answers = list() labels = list() scores = list() return { "video": video_tensor, "text": text, "vqa_answer": answers, "vqa_labels": labels, "vqa_scores": scores, "qid": qid, } def __len__(self): return len(self.metadata)
InternVideo-main
Downstream/multi-modalities-downstream/CoTrain/datasets/video/hmdb51.py
from .video_base_dataset import BaseDataset import os import pandas as pd from .pack_meta import pack_metadata, unpack_metadata class MSRVTTChoiceDataset(BaseDataset): def __init__(self, *args, split="", **kwargs): assert split in ["train", "val", "test"] self.split = split if self.split == "train": Exception("no train data provided") self.metadata = None self.ans_lab_dict = None if split == "train": names = ["msrvtt_choice_train"] elif split == "val": names = ["msrvtt_choice_val"] elif split == "test": names = ["msrvtt_choice_test"] # vqav2_test-dev for test-dev # Since the data is distribued like everywhere # We manully change data_dir args = ("./meta_data", *args[1:]) super().__init__( *args, **kwargs, names=names, text_column_name="unknown", remove_duplicate=False, ) self._load_metadata() def _load_metadata(self): metadata_dir = './meta_data/msrvtt' split_files = { 'train': 'msrvtt_mc_test.jsonl', # no train and test available, only for zero-shot 'val': 'msrvtt_mc_test.jsonl', 'test': 'msrvtt_mc_test.jsonl' } target_split_fp = split_files[self.split] metadata = pd.read_json(os.path.join(metadata_dir, target_split_fp), lines=True) self.metadata = pack_metadata(self, metadata) def _get_video_path(self, sample): return os.path.join(self.data_dir, 'videos', 'all', sample['clip_name'] + '.mp4'), sample['clip_name'] + '.mp4' def get_text(self, sample): texts = [] for text in sample['options']: encoding = self.tokenizer( text, padding="max_length", truncation=True, max_length=self.max_text_len, return_special_tokens_mask=True, ) texts.append((text, encoding)) return texts def get_answer_label(self, sample): answer = sample['answer'] return answer def __getitem__(self, index): sample = unpack_metadata(self, index) video_tensor = self.get_video(sample) # index, question_index = self.index_mapper[index] qid = index answer = self.get_answer_label(sample) ret = { "video": video_tensor, "vid_index": index, "cap_index": index, "raw_index": index, 'answer': answer } texts = self.get_text(sample) ret["text"] = texts[0] # print(len(texts)) for i in range(self.draw_false_text - 1): ret.update({f"false_text_{i}": texts[i+1]}) # for i in range(self.draw_false_text-1): # ret[f"false_text_{i}"] = texts[i+1] # print(ret.keys()) return ret def __len__(self): return len(self.metadata)
InternVideo-main
Downstream/multi-modalities-downstream/CoTrain/datasets/video/msrvtt_choice.py
from .video_base_dataset import BaseDataset, read_large_frames_decord import pandas as pd import os # {'timestamp_sec': 221.29666, 'narration_text': '#C C walks on the ground'} class Ego4DDataset(BaseDataset): """EGO4D Video-Text loader.""" def __init__(self, *args, split="", **kwargs): assert split in ["train", "val", "test"] self.split = split if split == "train": names = ["ego4d_train"] elif split == "val": names = ["ego4d_val"] elif split == "test": names = ["ego4d_test"] super().__init__(*args, **kwargs, names=names, text_column_name="caption") self._load_metadata() def _load_metadata(self): metadata_dir = './meta_data/ego4d' split_files = { 'train': 'ego4d_train_subset.csv', 'val': 'ego4d_val_ts_clean.csv', 'test': 'ego4d_val_ts_clean.csv' # there is no test } target_split_fp = split_files[self.split] self.metadata = pd.read_csv(os.path.join(metadata_dir, target_split_fp), sep='\t', header=None, error_bad_lines=False) def _get_video_path(self, sample): rel_video_fp = sample[0] + '.mp4' full_video_fp = os.path.join(self.data_dir, 'videos', rel_video_fp) if not os.path.exists(full_video_fp): Exception(IOError) return full_video_fp, rel_video_fp def _get_caption(self, sample): return sample[6] def get_raw_video(self, sample): abs_fp, rel_fp = self._get_video_path(sample) # if int(sample[2]) > 600: # raise Exception("Video is longer than 10m!", rel_fp) frame_end, frame_loc = int(sample[3]), int(sample[5]) # imgs = video_reader(abs_fp, frame_loc, frame_end, self.num_frames) imgs = read_large_frames_decord(abs_fp, frame_loc, frame_end, self.num_frames) if imgs is None: raise Exception("Invalid video!", rel_fp) else: return imgs
InternVideo-main
Downstream/multi-modalities-downstream/CoTrain/datasets/video/ego4d.py
from .video_base_dataset import BaseDataset, read_frames_decord import random import os import pandas as pd from .pack_meta import pack_metadata, unpack_metadata class WEBVIDDataset(BaseDataset): def __init__(self, *args, split="", **kwargs): assert split in ["train", "val", "test"] self.split = split self.metadata = None self.cut = "jsfusion" if split == "train": names = ["webvid_train"] elif split == "val": names = ["webvid_val"] elif split == "test": names = ["webvid_val"] self._load_metadata() print(names, ": ", len(self.metadata), "samples in total.") super().__init__(*args, **kwargs, names=names, text_column_name="caption") if "s3://" in self.data_dir: self.data_dir = "s3://video_pub/WebVid2M/" def _load_metadata(self): metadata_dir = '/mnt/cache/share_data/DSK_datasets/webvid/' split_files = { 'train': 'results_2M_train.csv', 'val': 'results_2M_val.csv', # there is no test 'test': 'results_2M_val.csv' } target_split_fp = split_files[self.split] metadata = pd.read_csv(os.path.join(metadata_dir, target_split_fp)) metadata = metadata[["name", "page_dir", "videoid"]] self.metadata = pack_metadata(self, metadata) def _get_video_path(self, sample): rel_video_fp = os.path.join(str(sample[1]), str(sample[2]) + '.mp4') if "s3://" in self.data_dir: full_video_fp = os.path.join(self.data_dir, rel_video_fp) else: full_video_fp = os.path.join(self.data_dir, self.split, rel_video_fp) return full_video_fp, rel_video_fp def _get_caption(self, sample): return sample[0] def get_raw_video(self, sample): abs_fp, rel_fp = self._get_video_path(sample) videos, idxs, vlen = read_frames_decord(abs_fp, self.num_frames, mode=self.split) if videos is None: raise Exception("Invalid video!", rel_fp) else: return videos def get_video(self, index, sample): videos = self.get_raw_video(sample) videos_tensor = self.video_aug(videos, self.video_transform) return { "video": videos_tensor, "vid_index": index, "cap_index": index, "raw_index": index, } def get_false_video(self, rep): random_index = random.randint(0, len(self.metadata) - 1) sample = unpack_metadata(self, random_index) # can be different augmentation videos = self.get_raw_video(sample) videos_tensor = self.video_aug(videos, self.video_transform) return {f"false_video_{rep}": videos_tensor} def get_text(self, raw_index, sample): text = sample[0] # print(text) encoding = self.tokenizer( text, padding="max_length", truncation=True, max_length=self.max_text_len, return_special_tokens_mask=True, ) # print(encoding.size()) return { "text": (text, encoding), "vid_index": raw_index, "cap_index": raw_index, "raw_index": raw_index, } def get_false_text(self, rep): random_index = random.randint(0, len(self.metadata) - 1) sample = unpack_metadata(self, random_index) text = sample[0] encoding = self.tokenizer( text, # padding="max_length", truncation=True, max_length=self.max_text_len, return_special_tokens_mask=True, ) return {f"false_text_{rep}": (text, encoding)} def get_suite(self, index): result = None max_try = 10 try_time = 0 while result is None: try_time += 1 sample = unpack_metadata(self, index) try: ret = dict() ret.update(self.get_video(index, sample)) if not self.video_only: txt = self.get_text(index, sample) ret.update({"replica": True if txt["cap_index"] > 0 else False}) ret.update(txt) for i in range(self.draw_false_video): ret.update(self.get_false_video(i)) for i in range(self.draw_false_text): ret.update(self.get_false_text(i)) result = True except Exception as e: index = random.randint(0, len(self.metadata) - 1) exc = e if try_time > max_try: print(f"Exceed max time Error while read file idx {sample} in {self.names[0]} with error {exc}") try_time=0 return ret def __len__(self): return len(self.metadata) def __getitem__(self, index): return self.get_suite(index)
InternVideo-main
Downstream/multi-modalities-downstream/CoTrain/datasets/video/webvid.py
from .video_base_dataset import BaseDataset, read_frames_from_img_dir import random import os import pandas as pd class ActivityNetDataset(BaseDataset): def __init__(self, *args, split="", **kwargs): assert split in ["train", "val", "test"] self.split = split self.metadata = None if split == "train": names = ["activitynet_train"] elif split == "val": names = ["activitynet_val"] elif split == "test": names = ["activitynet_val"] self._load_metadata() super().__init__(*args, **kwargs, names=names, text_column_name="caption") def _load_metadata(self): metadata_dir = './meta_data/activitynet' split_files = { 'train': 'train.jsonl', 'val': 'val1.jsonl', 'test': 'val2.jsonl' } target_split_fp = split_files[self.split] metadata = pd.read_json(os.path.join(metadata_dir, target_split_fp), lines=True) self.metadata = metadata def _get_video_path(self, sample): rel_video_fp = sample['clip_name'] full_video_fp = os.path.join(self.data_dir, 'activitynet_frames', rel_video_fp) return full_video_fp, rel_video_fp def get_raw_video(self, sample): abs_fp, rel_fp = self._get_video_path(sample) imgs, idxs, vlen = read_frames_from_img_dir(abs_fp, self.num_frames, mode=self.split) if imgs is None: raise Exception("Invalid img!", rel_fp) else: return imgs def get_video(self, index, sample, image_key="image"): videos = self.get_raw_video(sample) videos_tensor = self.video_aug(videos, self.video_transform) return { "video": videos_tensor, "vid_index": index, "cap_index": index, "raw_index": index, } def get_false_video(self, rep, image_key="image"): random_index = random.randint(0, len(self.metadata) - 1) sample = self.metadata.iloc[random_index] videos = self.get_raw_video(sample) videos_tensor = self.video_aug(videos, self.video_transform) return {f"false_video_{rep}": videos_tensor} def get_text(self, raw_index, sample): text = sample['caption'] # print(text) encoding = self.tokenizer( text, padding="max_length", truncation=True, max_length=self.max_text_len, return_special_tokens_mask=True, ) # print(encoding.size()) return { "text": (text, encoding), "img_index": raw_index, "cap_index": raw_index, "raw_index": raw_index, } def get_false_text(self, rep): random_index = random.randint(0, len(self.metadata) - 1) sample = self.metadata.iloc[random_index] text = sample['caption'] encoding = self.tokenizer( text, # padding="max_length", truncation=True, max_length=self.max_text_len, return_special_tokens_mask=True, ) return {f"false_text_{rep}": (text, encoding)} def get_suite(self, index): result = None while result is None: sample = self.metadata.iloc[index] try: ret = dict() ret.update(self.get_video(index, sample)) if not self.image_only: txt = self.get_text(index, sample) ret.update({"replica": True if txt["cap_index"] > 0 else False}) ret.update(txt) for i in range(self.draw_false_image): ret.update(self.get_false_video(i)) for i in range(self.draw_false_text): ret.update(self.get_false_text(i)) result = True except Exception as e: print(f"Error while read file idx {sample.name} in {self.names[0]} -> {e}") index = random.randint(0, len(self.metadata) - 1) return ret def __len__(self): return len(self.metadata) def __getitem__(self, index): return self.get_suite(index)
InternVideo-main
Downstream/multi-modalities-downstream/CoTrain/datasets/video/activitynet.py
from .base_dataset import BaseDataset class F30KCaptionKarpathyDataset(BaseDataset): def __init__(self, *args, split="", **kwargs): assert split in ["train", "val", "test"] if split == "train": names = ["f30k_caption_karpathy_train", "f30k_caption_karpathy_val"] elif split == "val": names = ["f30k_caption_karpathy_test"] elif split == "test": names = ["f30k_caption_karpathy_test"] super().__init__(*args, **kwargs, names=names, text_column_name="caption") def __getitem__(self, index): return self.get_suite(index)
InternVideo-main
Downstream/multi-modalities-downstream/CoTrain/datasets/image/f30k_caption_karpathy_dataset.py
from .base_dataset import BaseDataset class VisualGenomeCaptionDataset(BaseDataset): def __init__(self, *args, split="", **kwargs): assert split in ["train", "val", "test"] if split == "test": split = "val" if split == "train": names = ["vg_train"] elif split == "val": names = [] elif split == "test": names = [] super().__init__(*args, **kwargs, names=names, text_column_name="caption") def __getitem__(self, index): return self.get_suite(index)
InternVideo-main
Downstream/multi-modalities-downstream/CoTrain/datasets/image/vg_caption_dataset.py
import json from .base_dataset import BaseDataset import random import os import pandas as pd import io from PIL import Image from CoTrain.datasets import client class LAION400MDataset(BaseDataset): def __init__(self, *args, split="", **kwargs): assert split in ["train", "val", "test"] self.split = split self.metadata = None self._load_metadata() if split == "train": names = ["laion400m_train"] elif split == "val": names = ["laion400m_val"] elif split == "test": names = ["laion400m_val"] print(names, ": ", len(self.metadata), "samples in total.") super().__init__(*args, **kwargs, names=names, text_column_name="caption") self.data_dir = "" def _load_metadata(self): file_path = "/mnt/lustre/share_data/liyizhuo.vendor/datasets/LAION-400M-partial-meta.json" if self.split == "train": self.metadata = [json.loads(x) for x in open(file_path).readlines()[:-10]] else: self.metadata = [json.loads(x) for x in open(file_path).readlines()[-10:]] self.metadata = [(x['caption'], x['filename']) for x in self.metadata] def _get_image_path(self, sample): # print(sample[1]) # rel_fp = str(sample[1]).split('/')[-1] # print(os.path.join(self.data_dir, rel_fp)) rel_fp = sample[1] return os.path.join(self.data_dir, rel_fp), rel_fp def _get_caption(self, sample): return sample[0] def get_raw_image(self, sample): # print(sample) abs_fp, rel_fp = self._get_image_path(sample) if "s3://" in abs_fp: img_bytes = client.get(abs_fp) assert img_bytes is not None, "Get image failed from {}".format(img_bytes) img = Image.open(io.BytesIO(img_bytes)).convert("RGB") else: img = Image.open(abs_fp).convert("RGB") if img is None: raise Exception("Invalid img!", rel_fp) else: return img def _get_object_path(self, sample): """ get the object npy path Args: sample (dict): Returns: abs path """ rel_object_fp = os.path.join(sample[1], '1.npz') full_object_fp = os.path.join(self.object_dir, self.split, rel_object_fp) return os.path.join(self.split, rel_object_fp), full_object_fp def get_image(self, index, sample, image_key="image"): image = self.get_raw_image(sample) image_tensor = self.image_aug(image, self.transforms) # image_tensor = [tr(image).unsqueeze(0) for tr in self.transforms] return { "video": image_tensor, "vid_index": sample[1], "cap_index": index, "raw_index": index, } def get_false_image(self, rep, image_key="image"): random_index = random.randint(0, len(self.metadata) - 1) sample = self.metadata[random_index] image = self.get_raw_image(sample) #image_tensor = [tr(image).unsqueeze(0) for tr in self.transforms] image_tensor = self.image_aug(image, self.transforms) return {f"false_video_{rep}": image_tensor} def get_text(self, raw_index, sample): text = sample[0] encoding = self.tokenizer( text, padding="max_length", truncation=True, max_length=self.max_text_len, return_special_tokens_mask=True, ) return { "text": (text, encoding), "vid_index": sample[1], "cap_index": raw_index, "raw_index": raw_index, } def get_false_text(self, rep): random_index = random.randint(0, len(self.metadata) - 1) sample = self.metadata[random_index] text = sample[0] encoding = self.tokenizer( text, truncation=True, max_length=self.max_text_len, return_special_tokens_mask=True, ) return {f"false_text_{rep}": (text, encoding)} def get_suite(self, index): result = None # print(self.draw_false_image) # 1 while result is None: sample = self.metadata[index] # print(sample) try: ret = dict() ret.update(self.get_image(index, sample)) if not self.image_only: txt = self.get_text(index, sample) ret.update({"replica": True if txt["cap_index"] > 0 else False}) ret.update(txt) for i in range(self.draw_false_image): ret.update(self.get_false_image(i)) for i in range(self.draw_false_text): ret.update(self.get_false_text(i)) result = True except Exception as e: print(f"Error while read file idx {sample[1]} in {self.names[0]} -> {e}") index = random.randint(0, len(self.metadata) - 1) # ret["image"] = ret["image"].unsqueeze(1) return ret def __len__(self): return len(self.metadata) def __getitem__(self, index): return self.get_suite(index)
InternVideo-main
Downstream/multi-modalities-downstream/CoTrain/datasets/image/laion400m.py
import random import torch import io import pyarrow as pa import os import cv2 import numpy as np from PIL import Image from CoTrain.transforms import keys_to_transforms import decord from CoTrain.transforms.image.imageaug import image_aug import CoTrain.modules.InternVideo as internvideo class BaseDataset(torch.utils.data.Dataset): def __init__( self, data_dir: str, transform_keys: list, image_size: int, names: list, text_column_name: str = "", remove_duplicate=True, max_text_len=40, draw_false_image=0, draw_false_video=0, draw_false_text=0, image_only=False, num_frames=1, draw_options_text=0, backend='v100' ): """ data_dir : where dataset file *.arrow lives; existence should be guaranteed via DataModule.prepare_data transform_keys : keys for generating augmented views of images text_column_name : pyarrow table column name that has list of strings as elements """ assert len(transform_keys) >= 1 super().__init__() self.transforms = keys_to_transforms(transform_keys, size=image_size, mode=self.split) self.image_aug = image_aug self.text_column_name = text_column_name self.names = names self.max_text_len = max_text_len self.draw_false_image = draw_false_image self.draw_false_text = draw_false_text self.image_only = image_only self.data_dir = data_dir self.draw_options_text = draw_options_text if torch.distributed.get_rank() == 0: print('*'*100) print("image sub datasets: {}".format(names)) # print(names) split_name = None if len(names) != 0: self.data_dir = os.path.join(self.data_dir, names[0].split('_')[0]) # e.g. coco_train -> coco split_name = names[0].split('_')[0] if torch.distributed.get_rank() == 0: print(self.data_dir) if split_name and split_name in ['msrvtt', 'cc3m', 'vcr', 'cc12m', 'yfcc15m', 'laion400m', 'mix100m']: if torch.distributed.get_rank() == 0: print("no arrow available for {}, load from disk".format(names[0])) else: if len(names) != 0: tables = [ pa.ipc.RecordBatchFileReader( pa.memory_map(f"{self.data_dir}/{name}.arrow", "r") ).read_all() for name in names if os.path.isfile(f"{self.data_dir}/{name}.arrow") ] # print(names, tables) self.table_names = list() for i, name in enumerate(names): self.table_names += [name] * len(tables[i]) self.table = pa.concat_tables(tables, promote=True) if text_column_name != "": self.text_column_name = text_column_name self.all_texts = self.table[text_column_name].to_pandas().tolist() self.all_texts = ( [list(set(texts)) for texts in self.all_texts] if remove_duplicate else self.all_texts ) else: self.all_texts = list() else: self.all_texts = list() self.index_mapper = dict() if text_column_name != "" and not self.image_only: j = 0 for i, texts in enumerate(self.all_texts): for _j in range(len(texts)): self.index_mapper[j] = (i, _j) j += 1 else: for i in range(len(self.table)): self.index_mapper[i] = (i, None) # # if len(names) != 0: # tables = [ # pa.ipc.RecordBatchFileReader( # pa.memory_map(f"{data_dir}/{name}.arrow", "r") # ).read_all() # for name in names # if os.path.isfile(f"{data_dir}/{name}.arrow") # ] # # self.table_names = list() # for i, name in enumerate(names): # self.table_names += [name] * len(tables[i]) # # self.table = pa.concat_tables(tables, promote=True) # if text_column_name != "": # self.text_column_name = text_column_name # self.all_texts = self.table[text_column_name].to_pandas().tolist() # self.all_texts = ( # [list(set(texts)) for texts in self.all_texts] # if remove_duplicate # else self.all_texts # ) # else: # self.all_texts = list() # else: # self.all_texts = list() # # self.index_mapper = dict() # # if text_column_name != "" and not self.image_only: # j = 0 # for i, texts in enumerate(self.all_texts): # for _j in range(len(texts)): # self.index_mapper[j] = (i, _j) # j += 1 # else: # for i in range(len(self.table)): # self.index_mapper[i] = (i, None) @property def corpus(self): return [text for texts in self.all_texts for text in texts] def __len__(self): return len(self.index_mapper) def get_raw_image(self, index, image_key="image"): index, caption_index = self.index_mapper[index] image_bytes = io.BytesIO(self.table[image_key][index].as_py()) image_bytes.seek(0) return Image.open(image_bytes).convert("RGB") def get_image(self, index, image_key="image"): image = self.get_raw_image(index, image_key=image_key) # image_tensor = [tr(image).unsqueeze(0) for tr in self.transforms] image_tensor = self.image_aug(image, self.transforms) return { "video": image_tensor, "vid_index": self.index_mapper[index][0], "cap_index": self.index_mapper[index][1], "raw_index": index, } def get_false_image(self, rep, image_key="image"): random_index = random.randint(0, len(self.index_mapper) - 1) image = self.get_raw_image(random_index, image_key=image_key) # image_tensor = [tr(image).unsqueeze(0) for tr in self.transforms] image_tensor = self.image_aug(image, self.transforms) return {f"false_video_{rep}": image_tensor} def get_text(self, raw_index): index, caption_index = self.index_mapper[raw_index] text = self.all_texts[index][caption_index] encoding = self.tokenizer( text, padding="max_length", truncation=True, max_length=self.max_text_len, return_special_tokens_mask=True, ) return { "text": (text, encoding), "vid_index": index, "cap_index": caption_index, "raw_index": raw_index, } def get_false_text(self, rep): random_index = random.randint(0, len(self.index_mapper) - 1) index, caption_index = self.index_mapper[random_index] text = self.all_texts[index][caption_index] encoding = self.tokenizer( text, truncation=True, max_length=self.max_text_len, return_special_tokens_mask=True, ) return {f"false_text_{rep}": (text, encoding)} def get_suite(self, index): result = None while result is None: try: ret = dict() ret.update(self.get_image(index)) if not self.image_only: txt = self.get_text(index) ret.update({"replica": True if txt["cap_index"] > 0 else False}) ret.update(txt) for i in range(self.draw_false_image): ret.update(self.get_false_image(i)) for i in range(self.draw_false_text): ret.update(self.get_false_text(i)) result = True except Exception as e: print(f"Error while read file idx {index} in {self.names[0]} -> {e}") index = random.randint(0, len(self.index_mapper) - 1) return ret def collate(self, batch, mlm_collator): batch_size = len(batch) keys = set([key for b in batch for key in b.keys()]) dict_batch = {k: [dic[k] if k in dic else None for dic in batch] for k in keys} # print(dict_batch) img_keys = [k for k in list(dict_batch.keys()) if "video" in k] img_sizes = list() for img_key in img_keys: img_sizes += [ii.shape for i in dict_batch[img_key] if i is not None for ii in i] for size in img_sizes: assert ( len(size) == 4 ), f"Collate error, an image should be in shape of (N, 3, H, W), instead of given {size}" if len(img_keys) != 0: global_max_height = max([i[2] for i in img_sizes]) global_max_width = max([i[3] for i in img_sizes]) for img_key in img_keys: img = dict_batch[img_key] view_size = len(dict_batch[img_key][0]) new_images = [ torch.zeros(batch_size, 1, 3, global_max_height, global_max_width) for _ in range(view_size) ] # print(len(img)) for bi in range(batch_size): orig_batch = img[bi] for vi in range(view_size): if orig_batch is None: continue else: orig = img[bi][vi] new_images[vi][bi, :, :, : orig.shape[2], : orig.shape[3]] = orig dict_batch[img_key] = new_images txt_keys = [k for k in list(dict_batch.keys()) if "text" in k] if len(txt_keys) != 0: texts = [[d[0] for d in dict_batch[txt_key]] for txt_key in txt_keys] encodings = [[d[1] for d in dict_batch[txt_key]] for txt_key in txt_keys] draw_text_len = len(encodings) flatten_encodings = [e for encoding in encodings for e in encoding] flatten_mlms = mlm_collator(flatten_encodings) for i, txt_key in enumerate(txt_keys): texts, encodings = ( [d[0] for d in dict_batch[txt_key]], [d[1] for d in dict_batch[txt_key]], ) mlm_ids, mlm_labels = ( flatten_mlms["input_ids"][batch_size * (i) : batch_size * (i + 1)], flatten_mlms["labels"][batch_size * (i) : batch_size * (i + 1)], ) input_ids = torch.zeros_like(mlm_ids) attention_mask = torch.zeros_like(mlm_ids) for _i, encoding in enumerate(encodings): _input_ids, _attention_mask = ( torch.tensor(encoding["input_ids"]), torch.tensor(encoding["attention_mask"]), ) input_ids[_i, : len(_input_ids)] = _input_ids attention_mask[_i, : len(_attention_mask)] = _attention_mask dict_batch[txt_key] = texts dict_batch[f"{txt_key}_ids"] = input_ids dict_batch[f"{txt_key}_labels"] = torch.full_like(input_ids, -100) dict_batch[f"{txt_key}_ids_mlm"] = mlm_ids dict_batch[f"{txt_key}_labels_mlm"] = mlm_labels dict_batch[f"{txt_key}_masks"] = attention_mask clip_text_ids, clip_special_tokens_mask = internvideo.tokenize( dict_batch["text"], truncate=True, return_special_tokens_mask=True) dict_batch["clip_text_ids"] = clip_text_ids dict_batch["clip_special_tokens_mask"] = clip_special_tokens_mask return dict_batch # def collate(self, batch, mlm_collator): # batch_size = len(batch) # keys = set([key for b in batch for key in b.keys()]) # dict_batch = {k: [dic[k] if k in dic else None for dic in batch] for k in keys} # # print(dict_batch) # # img_keys = [k for k in list(dict_batch.keys()) if "video" in k] # img_sizes = list() # # for img_key in img_keys: # img_sizes += [ii.shape for i in dict_batch[img_key][0] if i is not None for ii in i] # # for size in img_sizes: # assert ( # len(size) == 4 # ), f"Collate error, an image should be in shape of (N, 3, H, W), instead of given {size}" # # if len(img_keys) != 0: # global_max_height = max([i[2] for i in img_sizes]) # global_max_width = max([i[3] for i in img_sizes]) # local_max_height = min([i[2] for i in img_sizes]) # local_max_width = min([i[3] for i in img_sizes]) # for img_key in img_keys: # img = dict_batch[img_key] # global_view_size = len(dict_batch[img_key][0][0]) # local_view_size = len(dict_batch[img_key][0][1]) # # for image, padding one time dimension # new_images = [ # [ # torch.zeros(batch_size, 1, 3, global_max_height, global_max_width) # for _ in range(global_view_size) # ], # [ # torch.zeros(batch_size, 1, 3, local_max_height, local_max_width) # for _ in range(local_view_size) # ] # ] # # print(len(img)) # for bi in range(batch_size): # orig_batch = img[bi] # for vi in range(global_view_size): # if orig_batch is None: # continue # else: # orig = img[bi][0][vi] # new_images[0][vi][bi, :, :, : orig.shape[2], : orig.shape[3]] = orig # # for bi in range(batch_size): # orig_batch = img[bi] # for vi in range(local_view_size): # if orig_batch is None: # continue # else: # orig = img[bi][1][vi] # new_images[1][vi][bi, :, :, : orig.shape[2], : orig.shape[3]] = orig # # dict_batch[img_key] = new_images # # txt_keys = [k for k in list(dict_batch.keys()) if "text" in k] # # if len(txt_keys) != 0: # texts = [[d[0] for d in dict_batch[txt_key]] for txt_key in txt_keys] # encodings = [[d[1] for d in dict_batch[txt_key]] for txt_key in txt_keys] # draw_text_len = len(encodings) # flatten_encodings = [e for encoding in encodings for e in encoding] # flatten_mlms = mlm_collator(flatten_encodings) # # for i, txt_key in enumerate(txt_keys): # texts, encodings = ( # [d[0] for d in dict_batch[txt_key]], # [d[1] for d in dict_batch[txt_key]], # ) # # mlm_ids, mlm_labels = ( # flatten_mlms["input_ids"][batch_size * (i) : batch_size * (i + 1)], # flatten_mlms["labels"][batch_size * (i) : batch_size * (i + 1)], # ) # # input_ids = torch.zeros_like(mlm_ids) # attention_mask = torch.zeros_like(mlm_ids) # for _i, encoding in enumerate(encodings): # _input_ids, _attention_mask = ( # torch.tensor(encoding["input_ids"]), # torch.tensor(encoding["attention_mask"]), # ) # input_ids[_i, : len(_input_ids)] = _input_ids # attention_mask[_i, : len(_attention_mask)] = _attention_mask # # dict_batch[txt_key] = texts # dict_batch[f"{txt_key}_ids"] = input_ids # dict_batch[f"{txt_key}_labels"] = torch.full_like(input_ids, -100) # dict_batch[f"{txt_key}_ids_mlm"] = mlm_ids # dict_batch[f"{txt_key}_labels_mlm"] = mlm_labels # dict_batch[f"{txt_key}_masks"] = attention_mask # # return dict_batch def sample_frames(num_frames, vlen, sample='rand', fix_start=None): acc_samples = min(num_frames, vlen) intervals = np.linspace(start=0, stop=vlen, num=acc_samples + 1).astype(int) ranges = [] for idx, interv in enumerate(intervals[:-1]): ranges.append((interv, intervals[idx + 1] - 1)) if sample == 'rand': frame_idxs = [random.choice(range(x[0], x[1])) for x in ranges] elif fix_start is not None: frame_idxs = [x[0] + fix_start for x in ranges] elif sample == 'uniform': frame_idxs = [(x[0] + x[1]) // 2 for x in ranges] else: raise NotImplementedError return frame_idxs def read_frames_cv2(video_path, num_frames, sample='rand', fix_start=None): cap = cv2.VideoCapture(video_path) assert (cap.isOpened()) vlen = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) # get indexes of sampled frames frame_idxs = sample_frames(num_frames, vlen, sample=sample, fix_start=fix_start) frames = [] success_idxs = [] for index in frame_idxs: cap.set(cv2.CAP_PROP_POS_FRAMES, index - 1) ret, frame = cap.read() if ret: frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) frame = torch.from_numpy(frame).byte() # # (H x W x C) to (C x H x W) frame = frame.permute(2, 0, 1) frames.append(frame) success_idxs.append(index) else: pass # print(frame_idxs, ' fail ', index, f' (vlen {vlen})') # return frames tensor frames = torch.stack(frames) # .float() / 255 # print(frames.size()) cap.release() return frames, success_idxs, vlen def read_frames_decord(video_path, num_frames, sample='rand', fix_start=None): video_reader = decord.VideoReader(video_path, num_threads=1) vlen = len(video_reader) frame_idxs = sample_frames(num_frames, vlen, sample=sample, fix_start=fix_start) frames = video_reader.get_batch(frame_idxs) frames = frames.float() / 255 frames = frames.permute(0, 3, 1, 2) return frames, frame_idxs, vlen
InternVideo-main
Downstream/multi-modalities-downstream/CoTrain/datasets/image/base_dataset.py
from .base_dataset import BaseDataset class CocoCaptionKarpathyDataset(BaseDataset): def __init__(self, *args, split="", **kwargs): assert split in ["train", "val", "test"] self.split = split if split == "train": names = ["coco_caption_karpathy_train"] # , "coco_caption_karpathy_restval" elif split == "val": names = ["coco_caption_karpathy_val"] # names = ["coco_caption_karpathy_test"] # names = [] # for fast train elif split == "test": names = ["coco_caption_karpathy_test"] # names = [] super().__init__(*args, **kwargs, names=names, text_column_name="caption") def __getitem__(self, index): suite = self.get_suite(index) if "test" in self.split: _index, _question_index = self.index_mapper[index] iid = self.table["image_id"][_index].as_py() iid = int(iid.split(".")[0].split("_")[-1]) suite.update({"iid": iid}) return suite
InternVideo-main
Downstream/multi-modalities-downstream/CoTrain/datasets/image/coco_caption_karpathy_dataset.py
import json from .base_dataset import BaseDataset import random import os import pandas as pd import io from PIL import Image from CoTrain.datasets import client class YFCC15MDataset(BaseDataset): def __init__(self, *args, split="", **kwargs): assert split in ["train", "val", "test"] self.split = split self.metadata = None self._load_metadata() if split == "train": names = ["yfcc15m_train"] elif split == "val": names = ["yfcc15m_val"] elif split == "test": names = ["yfcc15m_val"] print(names, ": ", len(self.metadata), "samples in total.") super().__init__(*args, **kwargs, names=names, text_column_name="caption") self.data_dir = "s3://GCC/yfcc100m-part/data/" def _load_metadata(self): file_path = "/mnt/cache/share_data/DSK_datasets/yfcc15m/yfcc15m_clean.json" if self.split == "train": self.metadata = [json.loads(x) for x in open(file_path).readlines()[:-10]] else: self.metadata = [json.loads(x) for x in open(file_path).readlines()[-10:]] self.metadata = [(x['caption'], x['filename']) for x in self.metadata] def _get_image_path(self, sample): # print(sample[1]) # rel_fp = str(sample[1]).split('/')[-1] # print(os.path.join(self.data_dir, rel_fp)) rel_fp = sample[1] return os.path.join(self.data_dir, rel_fp), rel_fp def _get_caption(self, sample): return sample[0] def get_raw_image(self, sample): # print(sample) abs_fp, rel_fp = self._get_image_path(sample) if "s3://" in abs_fp: img_bytes = client.get(abs_fp) assert img_bytes is not None, "Get image failed from {}".format(img_bytes) img = Image.open(io.BytesIO(img_bytes)).convert("RGB") else: img = Image.open(abs_fp).convert("RGB") if img is None: raise Exception("Invalid img!", rel_fp) else: return img def _get_object_path(self, sample): """ get the object npy path Args: sample (dict): Returns: abs path """ rel_object_fp = os.path.join(sample[1], '1.npz') full_object_fp = os.path.join(self.object_dir, self.split, rel_object_fp) return os.path.join(self.split, rel_object_fp), full_object_fp def get_image(self, index, sample, image_key="image"): image = self.get_raw_image(sample) image_tensor = self.image_aug(image, self.transforms) # image_tensor = [tr(image).unsqueeze(0) for tr in self.transforms] return { "video": image_tensor, "vid_index": sample[1], "cap_index": index, "raw_index": index, } def get_false_image(self, rep, image_key="image"): random_index = random.randint(0, len(self.metadata) - 1) sample = self.metadata[random_index] image = self.get_raw_image(sample) #image_tensor = [tr(image).unsqueeze(0) for tr in self.transforms] image_tensor = self.image_aug(image, self.transforms) return {f"false_video_{rep}": image_tensor} def get_text(self, raw_index, sample): text = sample[0] encoding = self.tokenizer( text, padding="max_length", truncation=True, max_length=self.max_text_len, return_special_tokens_mask=True, ) return { "text": (text, encoding), "vid_index": sample[1], "cap_index": raw_index, "raw_index": raw_index, } def get_false_text(self, rep): random_index = random.randint(0, len(self.metadata) - 1) sample = self.metadata[random_index] text = sample[0] encoding = self.tokenizer( text, truncation=True, max_length=self.max_text_len, return_special_tokens_mask=True, ) return {f"false_text_{rep}": (text, encoding)} def get_suite(self, index): result = None # print(self.draw_false_image) # 1 while result is None: sample = self.metadata[index] # print(sample) try: ret = dict() ret.update(self.get_image(index, sample)) if not self.image_only: txt = self.get_text(index, sample) ret.update({"replica": True if txt["cap_index"] > 0 else False}) ret.update(txt) for i in range(self.draw_false_image): ret.update(self.get_false_image(i)) for i in range(self.draw_false_text): ret.update(self.get_false_text(i)) result = True except Exception as e: print(f"Error while read file idx {sample[1]} in {self.names[0]} -> {e}") index = random.randint(0, len(self.metadata) - 1) # ret["image"] = ret["image"].unsqueeze(1) return ret def __len__(self): return len(self.metadata) def __getitem__(self, index): return self.get_suite(index)
InternVideo-main
Downstream/multi-modalities-downstream/CoTrain/datasets/image/yfcc15m.py
InternVideo-main
Downstream/multi-modalities-downstream/CoTrain/datasets/image/__init__.py
from glob import glob from .base_dataset import BaseDataset class SBUCaptionDataset(BaseDataset): def __init__(self, *args, split="", **kwargs): assert split in ["train", "val", "test"] if split == "test": split = "val" if split == "train": names = [f"sbu_{i}" for i in range(9)] elif split == "val": names = [] super().__init__(*args, **kwargs, names=names, text_column_name="caption") def __getitem__(self, index): return self.get_suite(index)
InternVideo-main
Downstream/multi-modalities-downstream/CoTrain/datasets/image/sbu_caption_dataset.py
from CoTrain.datasets.video.video_base_dataset import BaseDataset, color_img import random import os import pandas as pd import cv2 from CoTrain.transforms.video.videoaug import VideoTransform import torch ## from https://github.com/rowanz/r2c/blob/master/dataloaders/vcr.py # Here's an example jsonl # { # "movie": "3015_CHARLIE_ST_CLOUD", # "objects": ["person", "person", "person", "car"], # "interesting_scores": [0], # "answer_likelihood": "possible", # "img_fn": "lsmdc_3015_CHARLIE_ST_CLOUD/[email protected]", # "metadata_fn": "lsmdc_3015_CHARLIE_ST_CLOUD/[email protected]", # "answer_orig": "No she does not", # "question_orig": "Does 3 feel comfortable?", # "rationale_orig": "She is standing with her arms crossed and looks disturbed", # "question": ["Does", [2], "feel", "comfortable", "?"], # "answer_match_iter": [3, 0, 2, 1], # "answer_sources": [3287, 0, 10184, 2260], # "answer_choices": [ # ["Yes", "because", "the", "person", "sitting", "next", "to", "her", "is", "smiling", "."], # ["No", "she", "does", "not", "."], # ["Yes", ",", "she", "is", "wearing", "something", "with", "thin", "straps", "."], # ["Yes", ",", "she", "is", "cold", "."]], # "answer_label": 1, # "rationale_choices": [ # ["There", "is", "snow", "on", "the", "ground", ",", "and", # "she", "is", "wearing", "a", "coat", "and", "hate", "."], # ["She", "is", "standing", "with", "her", "arms", "crossed", "and", "looks", "disturbed", "."], # ["She", "is", "sitting", "very", "rigidly", "and", "tensely", "on", "the", "edge", "of", "the", # "bed", ".", "her", "posture", "is", "not", "relaxed", "and", "her", "face", "looks", "serious", "."], # [[2], "is", "laying", "in", "bed", "but", "not", "sleeping", ".", # "she", "looks", "sad", "and", "is", "curled", "into", "a", "ball", "."]], # "rationale_sources": [1921, 0, 9750, 25743], # "rationale_match_iter": [3, 0, 2, 1], # "rationale_label": 1, # "img_id": "train-0", # "question_number": 0, # "annot_id": "train-0", # "match_fold": "train-0", # "match_index": 0, # } class VCRDataset(BaseDataset): def __init__(self, *args, split="", **kwargs): assert split in ["train", "val", "test"] self.split = split self.metadata = None self._load_metadata() if split == "train": names = ["vcr_train"] elif split == "val": names = ["vcr_val"] elif split == "test": names = ["vcr_test"] super().__init__(*args, **kwargs, names=names, text_column_name="caption") self.video_transform = VideoTransform(mode=split, num_frames=self.num_frames) # train or val model # for appear objects self.only_use_relevant_dets = True if self.only_use_relevant_dets: self.relevant_dets = [] # resort the detection numbers self.relevant_dets_classes = [] def _load_metadata(self): # download specific metadata_dir = './meta_data/vcr1annots' split_files = { 'train': 'train.jsonl', 'val': 'val.jsonl', # there is no test 'test': 'test.jsonl' } target_split_fp = split_files[self.split] metadata = pd.read_json(os.path.join(metadata_dir, target_split_fp), lines=True) self.metadata = metadata def _get_image_path(self, sample): # print(sample.keys()) # print(sample['img_fn']) # VCR/vcr1images rel_fp = sample['img_fn'] return os.path.join(self.data_dir, 'vcr1images', rel_fp), rel_fp def get_objects(self, sample): metadata2 = pd.read_json(os.path.join(self.data_dir, 'vcr1images', sample['metadata_fn']), lines=True) object_meta = metadata2.iloc[0] return object_meta def _get_caption(self, sample): return sample[0] # def _get_objects(self, sample): # metadata2 = pd.read_json(os.path.join(self.data_dir, # sample['metadata_fn']), lines=True) # sample = metadata2.iloc[0] # return sample['boxes'] def get_raw_image(self, sample, object_meta, img_color_mask=True): # print(sample) abs_fp, rel_fp = self._get_image_path(sample) # img = Image.open(abs_fp) img = cv2.imread(abs_fp) # add bbox annotation here if img_color_mask: img = color_img(img, object_meta, self.relevant_dets, self.only_use_relevant_dets) if img is None: raise Exception("Invalid img!", rel_fp) else: return img def get_image(self, index, sample, object_meta, image_key="image"): frames = [] image = self.get_raw_image(sample, object_meta) frame = torch.from_numpy(image).byte() frame = frame.permute(2, 0, 1) frames.append(frame) frames = torch.stack(frames).permute(1, 0, 2, 3) # print(frames.size()) image_tensor = [self.video_transform(frames).permute(1, 0, 2, 3)] # to tchw # image = self.get_raw_image(sample) # image_tensor = [tr(image) for tr in self.transforms] # print(image_tensor.size()) # image_tensor.unsqueeze(0) return image_tensor def get_false_image(self, rep, image_key="image"): random_index = random.randint(0, len(self.metadata) - 1) sample = self.metadata.iloc[random_index] image = self.get_raw_image(sample) image_tensor = [tr(image) for tr in self.transforms] return {f"false_image_{rep}": image_tensor} # def get_text(self, sample, object_meta): # question = self.get_question(sample, object_meta) # texts = [] # for answer in sample['answer_choices']: # raw_text = question + '[SEP]' # for word in answer: # if isinstance(word, list): # for object_idx in word: # self.relevant_dets.add(object_idx) # rel_object_idx = object_idx # if self.only_use_relevant_dets: # rel_object_idx = len(self.relevant_dets) - 1 # begin from 0 # raw_text += ' ' + object_meta['names'][object_idx] + ' ' + str(rel_object_idx) # else: # raw_text += ' ' + word # # for index in range(len(answer)): # # raw_text += ' ' + str(answer[index]) # print(raw_text) # encoding = self.tokenizer( # raw_text, # padding="max_length", # truncation=True, # max_length=self.max_text_len, # return_special_tokens_mask=True, # ) # texts.append((raw_text, encoding)) # return texts def update_rele_det(self, sample, object_meta, index): text = [] for i in range(len(sample['question'])): text.append(sample['question'][i]) for i in range(len(sample['answer_choices'])): for j in range(len(sample['answer_choices'][i])): text.append(sample['answer_choices'][i][j]) for i in range(len(sample['rationale_choices'])): for j in range(len(sample['rationale_choices'][i])): text.append(sample['rationale_choices'][i][j]) # update relevant detes for word in text: if isinstance(word, list): for object_idx in word: # self.relevant_dets.add(object_idx) if object_idx not in self.relevant_dets: self.relevant_dets.append(object_idx) for object in self.relevant_dets: self.relevant_dets_classes.append(object_meta['names'][object]) # print(index, text) # print(index, self.relevant_dets) # print(index, self.relevant_dets_classes) # return text def get_text(self, sample, object_meta, index): # detect all object index and sort these items if self.only_use_relevant_dets: self.update_rele_det(sample, object_meta, index) question = self.get_question(sample, object_meta) qa_texts = [] # image size: 384 x 384 # prompt: [START] + "answer_question:" # prompt: [START] + ' provide rationale:'), # add all text tokens into this model. for answer in sample['answer_choices']: raw_text = question + 'answer question: ' for word in answer: if isinstance(word, list): for object_idx in word: raw_text += ' ' + object_meta['names'][object_idx] + ' ' # rename the object index, for example if self.only_use_relevant_dets: raw_text += str(self.relevant_dets.index(object_idx)) else: raw_text += str(object_idx) else: raw_text += ' ' + word raw_text += '[END]' # print(index, raw_text) qa_encoding = self.tokenizer( raw_text, padding="max_length", truncation=True, max_length=self.max_text_len, return_special_tokens_mask=True, ) qa_texts.append((raw_text, qa_encoding)) gt_ans = sample['answer_choices'][sample['answer_label']] gt_ans_text = "" for word in gt_ans: if isinstance(word, list): for object_idx in word: gt_ans_text += ' ' + object_meta['names'][object_idx] + ' ' # rename the object index, for example if self.only_use_relevant_dets: gt_ans_text += str(self.relevant_dets.index(object_idx)) else: gt_ans_text += str(object_idx) else: gt_ans_text += ' ' + word qar_texts = [] for reason in sample['rationale_choices']: raw_text = question + gt_ans_text + 'provide rationale: ' for word in reason: if isinstance(word, list): for object_idx in word: raw_text += ' ' + object_meta['names'][object_idx] + ' ' if self.only_use_relevant_dets: raw_text += str(self.relevant_dets.index(object_idx)) else: raw_text += str(object_idx) else: raw_text += ' ' + word # print(index, raw_text) raw_text += '[END]' encoding = self.tokenizer( raw_text, padding="max_length", truncation=True, max_length=self.max_text_len, return_special_tokens_mask=True, ) qar_texts.append((raw_text, encoding)) return [qa_texts, qar_texts] # # def get_qar(self, sample, object_meta): # question = self.get_question(sample, object_meta) + '[SEP]' # '[MIDDLE]' # gt_ans = sample['answer_choices'][sample['answer_label']] # gt_ans_text = "" # # for index in range(len(gt_ans)): # # gt_ans_text += ' ' + str(gt_ans[index]) # for word in gt_ans: # if isinstance(word, list): # for object_idx in word: # self.relevant_dets.add(object_idx) # rel_object_idx = object_idx # if self.only_use_relevant_dets: # rel_object_idx = len(self.relevant_dets) - 1 # begin from 0 # print(object_idx, rel_object_idx) # gt_ans_text += ' ' + object_meta['names'][object_idx] + ' ' + str(rel_object_idx) # else: # gt_ans_text += ' ' + word # texts = [] # for reason in sample['rationale_choices']: # raw_text = question + gt_ans_text + '[SEP]' # for word in reason: # if isinstance(word, list): # for object_idx in word: # self.relevant_dets.add(object_idx) # rel_object_idx = object_idx # if self.only_use_relevant_dets: # rel_object_idx = len(self.relevant_dets) - 1 # begin from 0 # raw_text += ' ' + object_meta['names'][object_idx] + ' ' + str(rel_object_idx) # else: # raw_text += ' ' + word # print(raw_text) # # for index in range(len(reason)): # # raw_text += ' ' + str(reason[index]) # # self.relevant_dets.append(object_idx) # # print(raw_text) # encoding = self.tokenizer( # raw_text, # padding="max_length", # truncation=True, # max_length=self.max_text_len, # return_special_tokens_mask=True, # ) # texts.append((raw_text, encoding)) # return texts def get_answer_label(self, sample): answer = int(sample['answer_label']) return answer def get_reason_answer_label(self, sample): answer = int(sample['rationale_label']) return answer def get_question(self, sample, object_meta): raw_text = "" for index in range(len(sample['question'])): if isinstance(sample['question'][index], list): for object_idx in sample['question'][index]: raw_text += ' ' + object_meta['names'][object_idx] + ' ' if self.only_use_relevant_dets: raw_text += str(self.relevant_dets.index(object_idx)) else: raw_text += str(object_idx) else: raw_text += ' ' + str(sample['question'][index]) return raw_text def __len__(self): return len(self.metadata) def __getitem__(self, index): sample = self.metadata.iloc[index] object_meta = self.get_objects(sample) self.relevant_dets = [] # initalize self.relevant_dets_classes = [] answer = self.get_answer_label(sample) reason_answer = self.get_reason_answer_label(sample) ret = { "img_index": index, "cap_index": index, "raw_index": index, 'answer': answer, 'reason_answer': reason_answer } # texts = self.get_text(sample, object_meta) # qar_texts = self.get_qar(sample, object_meta) [qa_texts, qar_texts] = self.get_text(sample, object_meta, index) ret["text"] = qa_texts[0] # print(texts[0]) # update other answers as false text for i in range(self.draw_options_text - 1): ret.update({f"options_text_{i}": qa_texts[i+1]}) for j in range(self.draw_options_text): ret.update({f"qar_text_{j}": qar_texts[j]}) # print(ret.keys()) image_tensor = self.get_image(index, sample, object_meta) ret["image"] = image_tensor return ret
InternVideo-main
Downstream/multi-modalities-downstream/CoTrain/datasets/image/vcr.py
from .base_dataset import BaseDataset import sys import random class NLVR2Dataset(BaseDataset): def __init__(self, *args, split="", **kwargs): assert split in ["train", "val", "test"] self.split = split if split == "train": names = ["nlvr2_train"] elif split == "val": names = ["nlvr2_dev", "nlvr2_test1"] elif split == "test": names = ["nlvr2_dev", "nlvr2_test1"] super().__init__( *args, **kwargs, names=names, text_column_name="questions", remove_duplicate=False, ) def __getitem__(self, index): result = None while result is None: try: image_tensor_0 = self.get_image(index, image_key="image_0")["image"] image_tensor_1 = self.get_image(index, image_key="image_1")["image"] text = self.get_text(index)["text"] result = True except: print( f"error while read file idx {index} in {self.names[0]}", file=sys.stderr, ) index = random.randint(0, len(self.index_mapper) - 1) index, question_index = self.index_mapper[index] answers = self.table["answers"][index][question_index].as_py() answers = answers == "True" return { "image_0": image_tensor_0, "image_1": image_tensor_1, "text": text, "answers": answers, "table_name": self.table_names[index], }
InternVideo-main
Downstream/multi-modalities-downstream/CoTrain/datasets/image/nlvr2_dataset.py
import json from .base_dataset import BaseDataset import random import os import pandas as pd import io from PIL import Image from CoTrain.datasets import client class CC12MDataset(BaseDataset): def __init__(self, *args, split="", **kwargs): assert split in ["train", "val", "test"] self.split = split self.metadata = None self._load_metadata() if split == "train": names = ["cc12m_train"] elif split == "val": names = ["cc12m_val"] elif split == "test": names = ["cc12m_val"] print(names, ": ", len(self.metadata), "samples in total.") super().__init__(*args, **kwargs, names=names, text_column_name="caption") self.data_dir = "s3://GCC/GCC12m/" def _load_metadata(self): # download specific # metadata_dir = './meta_data/cc12m' # split_files = { # 'train': 'train.tsv', # 'val': 'val.tsv', # 'test': 'test.tsv' # } # target_split_fp = split_files[self.split] # metadata = pd.read_csv(os.path.join(metadata_dir, target_split_fp), sep='\t') # self.metadata = metadata file_path = "/mnt/cache/share_data/DSK_datasets/cc12m/cc12m_clean.json" if self.split == "train": self.metadata = [json.loads(x) for x in open(file_path).readlines()[:-10]] else: self.metadata = [json.loads(x) for x in open(file_path).readlines()[-10:]] self.metadata = [(x['caption'], x['filename']) for x in self.metadata] def _get_image_path(self, sample): # print(sample[1]) # rel_fp = str(sample[1]).split('/')[-1] # print(os.path.join(self.data_dir, rel_fp)) rel_fp = sample[1] return os.path.join(self.data_dir, rel_fp), rel_fp def _get_caption(self, sample): return sample[0] def get_raw_image(self, sample): # print(sample) abs_fp, rel_fp = self._get_image_path(sample) if "s3://" in abs_fp: img_bytes = client.get(abs_fp) assert img_bytes is not None, "Get image failed from {}".format(img_bytes) img = Image.open(io.BytesIO(img_bytes)).convert("RGB") else: img = Image.open(abs_fp).convert("RGB") if img is None: raise Exception("Invalid img!", rel_fp) else: return img def _get_object_path(self, sample): """ get the object npy path Args: sample (dict): Returns: abs path """ rel_object_fp = os.path.join(sample[1], '1.npz') full_object_fp = os.path.join(self.object_dir, self.split, rel_object_fp) return os.path.join(self.split, rel_object_fp), full_object_fp def get_image(self, index, sample, image_key="image"): image = self.get_raw_image(sample) image_tensor = self.image_aug(image, self.transforms) # image_tensor = [tr(image).unsqueeze(0) for tr in self.transforms] return { "video": image_tensor, "vid_index": sample[1], "cap_index": index, "raw_index": index, } def get_false_image(self, rep, image_key="image"): random_index = random.randint(0, len(self.metadata) - 1) sample = self.metadata[random_index] image = self.get_raw_image(sample) #image_tensor = [tr(image).unsqueeze(0) for tr in self.transforms] image_tensor = self.image_aug(image, self.transforms) return {f"false_video_{rep}": image_tensor} def get_text(self, raw_index, sample): text = sample[0] encoding = self.tokenizer( text, padding="max_length", truncation=True, max_length=self.max_text_len, return_special_tokens_mask=True, ) return { "text": (text, encoding), "vid_index": sample[1], "cap_index": raw_index, "raw_index": raw_index, } def get_false_text(self, rep): random_index = random.randint(0, len(self.metadata) - 1) sample = self.metadata[random_index] text = sample[0] encoding = self.tokenizer( text, truncation=True, max_length=self.max_text_len, return_special_tokens_mask=True, ) return {f"false_text_{rep}": (text, encoding)} def get_suite(self, index): result = None # print(self.draw_false_image) # 1 while result is None: sample = self.metadata[index] # print(sample) try: ret = dict() ret.update(self.get_image(index, sample)) if not self.image_only: txt = self.get_text(index, sample) ret.update({"replica": True if txt["cap_index"] > 0 else False}) ret.update(txt) for i in range(self.draw_false_image): ret.update(self.get_false_image(i)) for i in range(self.draw_false_text): ret.update(self.get_false_text(i)) result = True except Exception as e: print(f"Error while read file idx {sample[1]} in {self.names[0]} -> {e}") index = random.randint(0, len(self.metadata) - 1) # ret["image"] = ret["image"].unsqueeze(1) return ret def __len__(self): return len(self.metadata) def __getitem__(self, index): return self.get_suite(index)
InternVideo-main
Downstream/multi-modalities-downstream/CoTrain/datasets/image/cc12m.py
from .base_dataset import BaseDataset class VQAv2Dataset(BaseDataset): def __init__(self, *args, split="", **kwargs): assert split in ["train", "val", "test"] self.split = split if split == "train": names = ["vqav2_train", "vqav2_trainable_val"] elif split == "val": names = ["vqav2_rest_val"] elif split == "test": names = ["vqav2_test"] # vqav2_test-dev for test-dev super().__init__( *args, **kwargs, names=names, text_column_name="questions", remove_duplicate=False, ) def __getitem__(self, index): image_tensor = self.get_image(index)["image"] text = self.get_text(index)["text"] index, question_index = self.index_mapper[index] qid = self.table["question_id"][index][question_index].as_py() if self.split != "test": answers = self.table["answers"][index][question_index].as_py() labels = self.table["answer_labels"][index][question_index].as_py() scores = self.table["answer_scores"][index][question_index].as_py() else: answers = list() labels = list() scores = list() return { "image": image_tensor, "text": text, "vqa_answer": answers, "vqa_labels": labels, "vqa_scores": scores, "qid": qid, }
InternVideo-main
Downstream/multi-modalities-downstream/CoTrain/datasets/image/vqav2_dataset.py
import json from .base_dataset import BaseDataset import random import os import pandas as pd import numpy as np import io import torch from PIL import Image from CoTrain.datasets import client import CoTrain.modules.dist_utils as du class MIX100MDataset(BaseDataset): def __init__(self, *args, split="", **kwargs): assert split in ["train", "val", "test"] self.split = split self.metadata = None self.world_size = du.get_world_size() self.rank = du.get_rank() self._load_metadata() if split == "train": names = ["mix100m_train"] elif split == "val": names = ["mix100m_val"] elif split == "test": names = ["mix100m_val"] print(names, ": ", len(self.metadata), "samples in total.") super().__init__(*args, **kwargs, names=names, text_column_name="caption") self.data_dir = "" def _load_metadata(self): if self.split != "train": file_path = "/mnt/lustre/share_data/liyizhuo/datasets/fake_mix100m_val.json" self.metadata = [json.loads(x) for x in open(file_path).readlines()] self.metadata = [ (" ".join(x["caption"]), os.path.join(x["image_root"], x["filename"])) for x in self.metadata ] return None meta_root = ( "s3://liyizhuo/datasets/shlab_softmax_100m_10000/" ) file_list = [os.path.join(meta_root, f"{i}".zfill(5) + ".json") for i in range(10)] ranked_meta = [[] for _ in range(self.world_size)] ranked_num = [0 for _ in range(self.world_size)] import time start_time = time.time() count = 0 for seed_num, each_meta_file in enumerate(file_list): f = client.get(each_meta_file).decode().strip().split("\n") np.random.seed(seed_num) random_ranks = np.random.randint(0, self.world_size, size=(len(f), )) for i, line in enumerate(f): count += 1 if self.rank == random_ranks[i]: info = json.loads(line.encode("UTF-8")) info = ( " ".join(info["caption"]), os.path.join(info["image_root"], info["filename"]), ) ranked_meta[self.rank].append(info) ranked_num[self.rank] += 1 if count % 1000000 == 0 and self.rank == 0: print( "-------------------------------------------------------------- every 1M time:", (time.time() - start_time), "{}M".format(count / 1000000), ) del f self.metadata = ranked_meta[self.rank] num = ranked_num[self.rank] # balance data length in each subprocess ranked_num = du.all_gather(num) du.synchronize() max_num = max(ranked_num) if max_num > num: diff = max_num - num self.metadata.extend(random.sample(self.metadata, diff)) num = len(self.metadata) assert num == max_num def _get_image_path(self, sample): # print(sample[1]) # rel_fp = str(sample[1]).split('/')[-1] # print(os.path.join(self.data_dir, rel_fp)) rel_fp = sample[1] return os.path.join(self.data_dir, rel_fp), rel_fp def _get_caption(self, sample): return sample[0] def get_raw_image(self, sample): # print(sample) abs_fp, rel_fp = self._get_image_path(sample) if "s3://" in abs_fp: img_bytes = client.get(abs_fp) assert img_bytes is not None, "Get image failed from {}".format(img_bytes) img = Image.open(io.BytesIO(img_bytes)).convert("RGB") else: img = Image.open(abs_fp).convert("RGB") if img is None: raise Exception("Invalid img!", rel_fp) else: return img def _get_object_path(self, sample): """ get the object npy path Args: sample (dict): Returns: abs path """ rel_object_fp = os.path.join(sample[1], "1.npz") full_object_fp = os.path.join(self.object_dir, self.split, rel_object_fp) return os.path.join(self.split, rel_object_fp), full_object_fp def get_image(self, index, sample, image_key="image"): image = self.get_raw_image(sample) image_tensor = self.image_aug(image, self.transforms) # image_tensor = [tr(image).unsqueeze(0) for tr in self.transforms] return { "video": image_tensor, "vid_index": sample[1], "cap_index": index, "raw_index": index, } def get_false_image(self, rep, image_key="image"): random_index = random.randint(0, len(self.metadata) - 1) sample = self.metadata[random_index] image = self.get_raw_image(sample) # image_tensor = [tr(image).unsqueeze(0) for tr in self.transforms] image_tensor = self.image_aug(image, self.transforms) return {f"false_video_{rep}": image_tensor} def get_text(self, raw_index, sample): text = sample[0] encoding = self.tokenizer( text, padding="max_length", truncation=True, max_length=self.max_text_len, return_special_tokens_mask=True, ) return { "text": (text, encoding), "vid_index": sample[1], "cap_index": raw_index, "raw_index": raw_index, } def get_false_text(self, rep): random_index = random.randint(0, len(self.metadata) - 1) sample = self.metadata[random_index] text = sample[0] encoding = self.tokenizer( text, truncation=True, max_length=self.max_text_len, return_special_tokens_mask=True, ) return {f"false_text_{rep}": (text, encoding)} def get_suite(self, index): index %= len(self.metadata) result = None # print(self.draw_false_image) # 1 while result is None: sample = self.metadata[index] # print(sample) try: ret = dict() ret.update(self.get_image(index, sample)) if not self.image_only: txt = self.get_text(index, sample) ret.update({"replica": True if txt["cap_index"] > 0 else False}) ret.update(txt) for i in range(self.draw_false_image): ret.update(self.get_false_image(i)) for i in range(self.draw_false_text): ret.update(self.get_false_text(i)) result = True except Exception as e: print( f"Error while read file idx {sample[1]} in {self.names[0]} -> {e}" ) index = random.randint(0, len(self.metadata) - 1) # ret["image"] = ret["image"].unsqueeze(1) return ret def __len__(self): return len(self.metadata) * self.world_size def __getitem__(self, index): return self.get_suite(index)
InternVideo-main
Downstream/multi-modalities-downstream/CoTrain/datasets/image/mix100m.py
from glob import glob from .base_dataset import BaseDataset class ConceptualCaptionDataset(BaseDataset): def __init__(self, *args, split="", **kwargs): assert split in ["train", "val", "test"] if split == "test": split = "val" if split == "train": names = [f"conceptual_caption_train_{i}" for i in range(30)] elif split == "val": names = ["conceptual_caption_val_0"] super().__init__(*args, **kwargs, names=names, text_column_name="caption") def __getitem__(self, index): return self.get_suite(index)
InternVideo-main
Downstream/multi-modalities-downstream/CoTrain/datasets/image/conceptual_caption_dataset.py