python_code
stringlengths
0
992k
repo_name
stringlengths
8
46
file_path
stringlengths
5
162
import argparse import mlflow import torch from aml import CropSegChipsDataModule from models import ModelPlusSigmoid, SegmentationModel from pytorch_lightning import Trainer def parse_args(): # setup arg parser parser = argparse.ArgumentParser() # add arguments parser.add_argument("--dataset", type=str) parser.add_argument("--onnx_model_path", type=str) parser.add_argument("--model_dir", type=str, default="./") parser.add_argument("--ndvi_stack_bands", type=int, default=37) parser.add_argument("--batch_size", type=int, default=16) parser.add_argument("--max_epochs", type=int, default=10) parser.add_argument("--learning_rate", type=float, default=0.001) parser.add_argument("--weight_decay", type=float, default=0.001) parser.add_argument("--num_workers", type=int, default=4) parser.add_argument("--num_gpus", type=int, default=1) # parse args args = parser.parse_args() # return args return args def main(args: argparse.Namespace): # Setup DataLoader data = CropSegChipsDataModule( data_dir=args.dataset, batch_size=args.batch_size, num_workers=args.num_workers ) data.setup() # Setup Segmentation Model model = SegmentationModel( lr=args.learning_rate, weight_decay=args.weight_decay, in_channels=args.ndvi_stack_bands, num_epochs=args.max_epochs, classes=1, ) # Enables logging mlflow.pytorch.autolog(log_models=False) # Train trainer = Trainer(max_epochs=args.max_epochs, accelerator="gpu", devices=args.num_gpus) trainer.fit(model, data) # Signature batch = next(iter(data.train_dataloader())) ndvi_batch = batch["image"] ndvi_sample = ndvi_batch[0:1, :, :, :].numpy() # Set model to inference mode before exporting to ONNX trace_model = ModelPlusSigmoid(model).eval() dummy_input = torch.randn( args.batch_size, args.ndvi_stack_bands, ndvi_sample.shape[-2], ndvi_sample.shape[-1] ) # Export the model torch.onnx.export( trace_model, dummy_input, # model example input args.onnx_model_path, # where to save the model (can be a file or file-like object) export_params=True, # store the trained parameter weights inside the model file do_constant_folding=True, # whether to execute constant folding for optimization opset_version=11, input_names=["ndvi_stack"], # the model's input names output_names=["seg_map"], # the model's output names dynamic_axes={ "ndvi_stack": {0: "batch_size"}, # variable length axes "seg_map": {0: "batch_size"}, }, ) # Stop Logging mlflow.end_run() if __name__ == "__main__": # parse args args = parse_args() # run main function main(args)
EXA-1-master
exa/libraries/farmvibes-ai-main/notebooks/crop_segmentation/notebook_lib/aml_train_script.py
from itertools import chain CROP_INDICES = [e for e in chain(range(1, 81), range(196, 256))] # 24 - Winter Wheat: 1127411 # 36 - Alfalfa: 877421 # 43 - Potatoes: 497398 # 37 - Other Hay/Non Alfalfa: 460732 # 68 - Apples: 416528 # 1 - Corn: 396329 # 23 - Spring Wheat: 150973 # 69 - Grapes: 124028 # 42 - Dry Beans: 118422 # 59 - Sod/Grass Seed: 115036 # 12 - Sweet Corn: 100565 WINTER_WHEAT_INDEX = [24] ALFALFA_INDEX = [36] POTATO_INDEX = [43] OTHER_HAY_INDEX = [37] APPELS_INDEX = [68] CORN_INDEX = [1] SPRING_WHEAT_INDEX = [23] GRAPES_INDEX = [69] DRY_BEANS_INDEX = [42] SOD_INDEX = [59] SWEET_CORN_INDEX = [12]
EXA-1-master
exa/libraries/farmvibes-ai-main/notebooks/crop_segmentation/notebook_lib/constants.py
import json from itertools import groupby from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, cast import numpy as np import rasterio import rasterio.merge import torch from rasterio.crs import CRS from rasterio.errors import RasterioIOError from rasterio.vrt import WarpedVRT from rasterio.windows import from_bounds from rtree.index import Index, Property from torch import Tensor from torchgeo.datasets import BoundingBox, RasterDataset from vibe_core.data import Raster from vibe_core.data.rasters import CategoricalRaster class NDVIDataset(RasterDataset): #: Color map for the dataset, used for plotting cmap: Dict[int, Tuple[int, int, int, int]] = {} def __init__( self, ndvi_rasters: List[Raster], stack_n_bands: int = 37, crs: Optional[CRS] = None, res: Optional[float] = None, transforms: Optional[Callable[[Dict[str, Any]], Dict[str, Any]]] = None, cache: bool = True, ) -> None: """Initialize a new Dataset instance. Args: ndvi_rasters: list of Rasters output by TerraVibes workflow stack_n_bands: number of bands of the ndvi stack (available rasters will be temporally sampled to compose a stack with this number of bands) crs: :term:`coordinate reference system (CRS)` to warp to (defaults to the CRS of the first file found) res: resolution of the dataset in units of CRS (defaults to the resolution of the first file found) transforms: a function/transform that takes an input sample and returns a transformed version cache: if True, cache file handle to speed up repeated sampling Raises: FileNotFoundError: if no files are found in ``root`` """ if stack_n_bands > len(ndvi_rasters): raise ValueError( f"Number of NDVI rasters must be >= stack_n_bands, found {len(ndvi_rasters)}" ) self.transforms = transforms # Create an R-tree to index the dataset self.index = Index(interleaved=False, properties=Property(dimension=3)) self.index_size = 0 # Sort raster by date self.ndvi_rasters = sorted(ndvi_rasters, key=lambda x: x.time_range[0]) self.stack_n_bands = stack_n_bands self.cache = cache # Read color map vis_asset = self.ndvi_rasters[0].visualization_asset with open(vis_asset.local_path) as mtdt: metadata = json.load(mtdt) self.cmap = metadata["colormap"] # Build the index, temporally sampling rasters for year, grouped_rasters in groupby(self.ndvi_rasters, lambda x: x.time_range[0].year): # Group rasters by year and find unique dates (might have multiple rasters for a date) rasters = list(grouped_rasters) unique_dates = set([raster.time_range[0] for raster in rasters]) n_unique_dates = len(unique_dates) # Raise exception if we cannot build a stack if n_unique_dates < self.stack_n_bands: raise ValueError( f"{n_unique_dates} unique dates for {year}, " f"expected at least {self.stack_n_bands}" ) # Define sampling interval for dates selected_date_idxs = np.round( np.linspace(0, n_unique_dates - 1, self.stack_n_bands) ).astype(int) selected_rasters = [rasters[idx] for idx in selected_date_idxs] # Loop through the selected rasters for raster in selected_rasters: try: self._add_raster_to_index(raster) except RasterioIOError: # Skip files that rasterio is unable to read continue if self.index_size == 0: raise FileNotFoundError( f"Couldn't read {self.__class__.__name__} data from ndvi_rasters" ) def _add_raster_to_index(self, raster: Raster): filepath = raster.raster_asset.local_path with rasterio.open(filepath) as src: crs = src.crs res = src.res[0] with WarpedVRT(src, crs=crs) as vrt: minx, miny, maxx, maxy = vrt.bounds start_date, end_date = raster.time_range coords = ( minx, maxx, miny, maxy, start_date.timestamp(), end_date.timestamp(), ) self.index.insert(self.index_size, coords, filepath) self.index_size += 1 self._crs = cast(CRS, crs) self.res = cast(float, res) def __getitem__(self, query: BoundingBox) -> Dict[str, Any]: """Retrieve image/mask and metadata indexed by query. Args: query: (minx, maxx, miny, maxy, mint, maxt) coordinates to index Returns: sample of image/mask and metadata at that index Raises: IndexError: if query is not found in the index """ hit_samples = [hit for hit in self.index.intersection(tuple(query), objects=True)] if not hit_samples: raise IndexError(f"query: {query} not found in index with bounds: {self.bounds}") filepaths: List[str] = [hit.object for hit in hit_samples] # type:ignore maxt_timestamp = [hit.bounds[-1] for hit in hit_samples] # type:ignore data_list: List[Tensor] = [] spatial_merge_list: List[str] = [] merge_timestamp = maxt_timestamp[0] for filepath, ts in zip(filepaths, maxt_timestamp): # if date matches the merge_timestamp, add the raster to be merged if ts == merge_timestamp: spatial_merge_list.append(filepath) merge_timestamp = ts else: # date changed, merge rasters and add new raster to the list data_list.append(self._spatial_merge_files(spatial_merge_list, query)) spatial_merge_list = [filepath] merge_timestamp = ts # merge the remaining rasters data_list.append(self._spatial_merge_files(spatial_merge_list, query)) # Stack ndvi rasters in the channel dimension data = torch.cat(data_list, dim=0) sample = {"image": data, "crs": self.crs, "bbox": query} if self.transforms is not None: sample = self.transforms(sample) return sample def _spatial_merge_files(self, filepaths: Sequence[str], query: BoundingBox) -> Tensor: """Load and spatially merge one or more files. Args: filepaths: one or more files to load and merge query: (minx, maxx, miny, maxy, mint, maxt) coordinates to index Returns: image/mask at that index """ if self.cache: vrt_fhs = [self._cached_load_warp_file(fp) for fp in filepaths] else: vrt_fhs = [self._load_warp_file(fp) for fp in filepaths] bounds = (query.minx, query.miny, query.maxx, query.maxy) if len(vrt_fhs) == 1: src = vrt_fhs[0] out_width = int(round((query.maxx - query.minx) / self.res)) out_height = int(round((query.maxy - query.miny) / self.res)) out_shape = (src.count, out_height, out_width) dest = src.read(out_shape=out_shape, window=from_bounds(*bounds, src.transform)) else: dest, _ = rasterio.merge.merge(vrt_fhs, bounds, self.res) # fix numpy dtypes which are not supported by pytorch tensors if dest.dtype == np.uint16: dest = dest.astype(np.int32) elif dest.dtype == np.uint32: dest = dest.astype(np.int64) tensor = torch.tensor(dest) return tensor class CDLMask(RasterDataset): """ Binary mask dataset based on the choice of a CDL index subset to serve as a positive indices. """ is_image = False def __init__( self, cdl_rasters: List[CategoricalRaster], positive_indices: Sequence[int], crs: Optional[CRS] = None, res: Optional[float] = None, transforms: Optional[Callable[[Dict[str, Any]], Dict[str, Any]]] = None, cache: bool = True, ): """Initialize a new Dataset instance. Args: cdl_rasters: list of Rasters output by TerraVibes workflow positive_indices: crop indices to consider as the positive label crs: :term:`coordinate reference system (CRS)` to warp to (defaults to the CRS of the first file found) res: resolution of the dataset in units of CRS (defaults to the resolution of the first file found) transforms: a function/transform that takes an input sample and returns a transformed version cache: if True, cache file handle to speed up repeated sampling Raises: FileNotFoundError: if no files are found in ``root`` """ self.positive_indices = torch.as_tensor(positive_indices) self.transforms = transforms self.cdl_rasters = sorted(cdl_rasters, key=lambda x: x.time_range[0]) self.cache = cache # Read color map vis_asset = self.cdl_rasters[0].visualization_asset with open(vis_asset.local_path) as mtdt: metadata = json.load(mtdt) self.cmap = metadata["colormap"] # Create an R-tree to index the dataset self.index = Index(interleaved=False, properties=Property(dimension=3)) # Populate the dataset index sample_idx = 0 for raster in self.cdl_rasters: filepath = raster.raster_asset.local_path try: with rasterio.open(filepath) as src: crs = src.crs res = src.res[0] with WarpedVRT(src, crs=crs) as vrt: minx, miny, maxx, maxy = vrt.bounds except RasterioIOError: # Skip files that rasterio is unable to read continue else: start_date, end_date = raster.time_range coords = ( minx, maxx, miny, maxy, start_date.timestamp(), end_date.timestamp(), ) self.index.insert(sample_idx, coords, filepath) sample_idx += 1 if sample_idx == 0: raise FileNotFoundError( f"Couldn't read {self.__class__.__name__} data from ndvi_rasters" ) self._crs = cast(CRS, crs) self.res = cast(float, res) def __getitem__(self, query: BoundingBox) -> Dict[str, Any]: sample = super().__getitem__(query) sample["mask"] = torch.isin(sample["mask"], self.positive_indices).to(torch.float32) return sample
EXA-1-master
exa/libraries/farmvibes-ai-main/notebooks/crop_segmentation/notebook_lib/datasets.py
EXA-1-master
exa/libraries/farmvibes-ai-main/notebooks/crop_segmentation/notebook_lib/__init__.py
import glob import os from typing import Optional import pytorch_lightning as pl import torch from torch.utils.data import DataLoader, Dataset # Python 3.8 does not support subscripted generics for classes not in typing class CropSegChipDataset(Dataset): # type: ignore """ Dataset for AML training/inference for NDVI and CDL chips/patches stored locally. """ def __init__(self, data_dir: str): self.data_dir = data_dir self.ndvi_paths = glob.glob(os.path.join(self.data_dir, "ndvi", "*.pt")) self.cdl_paths = [path.replace("ndvi", "cdl") for path in self.ndvi_paths] def __getitem__(self, index: int): ndvi = torch.load(self.ndvi_paths[index]) cdl = torch.load(self.cdl_paths[index]) sample = {"image": ndvi, "mask": cdl} return sample def __len__(self): return len(self.ndvi_paths) class CropSegChipsDataModule(pl.LightningDataModule): def __init__( self, data_dir: str, batch_size: int = 16, num_workers: int = 4, ): """ Init a Crop Segmentation Data Module instance for pre-generated chips Args: data_dir: dir with train and val folders where respective ndvi and cdl maps are stored (e.g., aml/dataset) batch_size: how many samples are fed to the network in a single batch. num_workers: how many worker processes to use in the data loader. """ super().__init__() self.data_dir = data_dir self.batch_size = batch_size self.num_workers = num_workers def prepare_data(self) -> None: # Skipping prepare_data as data is already downloaded pass def setup(self, stage: Optional[str] = None): train_dir = os.path.join(self.data_dir, "train") self.train_dataset = CropSegChipDataset(train_dir) val_dir = os.path.join(self.data_dir, "val") self.val_dataset = CropSegChipDataset(val_dir) def _get_dataloader( self, dataset: CropSegChipDataset, shuffle: bool ) -> DataLoader: # type: ignore return DataLoader( dataset, batch_size=self.batch_size, shuffle=shuffle, num_workers=self.num_workers, prefetch_factor=5 if self.num_workers else 2, ) def train_dataloader(self) -> DataLoader: # type: ignore return self._get_dataloader(self.train_dataset, shuffle=True) def val_dataloader(self) -> DataLoader: # type: ignore return self._get_dataloader(self.val_dataset, shuffle=False) def test_dataloader(self) -> DataLoader: # type: ignore return self.val_dataloader() def predict_dataloader(self) -> DataLoader: # type: ignore return self.val_dataloader()
EXA-1-master
exa/libraries/farmvibes-ai-main/notebooks/crop_segmentation/notebook_lib/aml.py
import io from datetime import datetime import matplotlib.pyplot as plt from IPython.display import Image, display from shapely import geometry as shpg from torchgeo.datasets import BoundingBox def bbox_to_shapely(bbox: BoundingBox) -> shpg.Polygon: """ Convert from torchgeo's BoundingBox to a shapely polygon """ return shpg.box(bbox.minx, bbox.miny, bbox.maxx, bbox.maxy) def format_timestamp(timestamp: float) -> str: return datetime.fromtimestamp(timestamp).strftime("%Y/%m/%d") def lw_plot(): """ Compress images to make notebook smaller """ iobytes = io.BytesIO() plt.savefig(iobytes, format="jpg", bbox_inches="tight") plt.close() iobytes.seek(0) display(Image(data=iobytes.read()))
EXA-1-master
exa/libraries/farmvibes-ai-main/notebooks/crop_segmentation/notebook_lib/utils.py
import os from datetime import datetime from math import ceil, log10 from typing import Any, Iterator, List, Optional, Tuple import pytorch_lightning as pl from torch import save as torch_save from torch.utils.data import DataLoader from torchgeo.datasets import BoundingBox, GeoDataset from torchgeo.datasets.utils import stack_samples from torchgeo.samplers import GridGeoSampler, RandomGeoSampler from torchgeo.samplers.single import GeoSampler from tqdm import tqdm from vibe_core.data import CategoricalRaster, Raster from .constants import CROP_INDICES from .datasets import CDLMask, NDVIDataset def save_chips_locally(dataloader: DataLoader, output_dir: str) -> None: # type: ignore ndvi_path = os.path.join(output_dir, "ndvi") os.makedirs(ndvi_path, exist_ok=True) cdl_path = os.path.join(output_dir, "cdl") os.makedirs(cdl_path, exist_ok=True) batch = next(iter(dataloader)) batch_size = batch["image"].size(0) zfill = ceil(log10(len(dataloader) * batch_size)) sample_idx = 1 for batch in tqdm(dataloader): ndvi_batch, cdl_batch = batch["image"], batch["mask"] zfill = ceil(log10(len(dataloader) * ndvi_batch.size(0))) for i in range(ndvi_batch.size(0)): torch_save( ndvi_batch[i, :, :, :].clone(), os.path.join(ndvi_path, f"{sample_idx + i:0>{zfill}}.pt"), ) torch_save( cdl_batch[i, :, :, :].clone(), os.path.join(cdl_path, f"{sample_idx + i:0>{zfill}}.pt"), ) sample_idx += ndvi_batch.size(0) def year_bbox(bbox: BoundingBox) -> BoundingBox: """Method that set the bounding box's mint and maxt to comprise the whole year """ year = datetime.fromtimestamp(bbox.mint).year bounding_box = BoundingBox( minx=bbox.minx, maxx=bbox.maxx, miny=bbox.miny, maxy=bbox.maxy, mint=datetime(year, 1, 1).timestamp(), maxt=datetime(year + 1, 1, 1).timestamp() - 1, ) return bounding_box class YearRandomGeoSampler(RandomGeoSampler): """Samples elements from a region of interest randomly. The main difference to RandomGeoSampler is that we explicitly alter the time range to fetch all samples from a single year. This is required for sampling a stacked NDVI from NDVIDataset """ def __iter__(self) -> Iterator[BoundingBox]: for bbox in super().__iter__(): yield year_bbox(bbox) class YearGridGeoSampler(GridGeoSampler): """Samples elements in a grid-like fashion. The main difference to GridGeoSampler is that we explicitly alter the time range to fetch all samples from a single year. This is required for sampling a stacked NDVI from NDVIDataset """ def __iter__(self) -> Iterator[BoundingBox]: for bbox in super().__iter__(): yield year_bbox(bbox) class CropSegDataModule(pl.LightningDataModule): def __init__( self, ndvi_rasters: List[Raster], cdl_rasters: List[CategoricalRaster], ndvi_stack_bands: int = 37, img_size: Tuple[int, int] = (256, 256), epoch_size: int = 1024, batch_size: int = 16, num_workers: int = 4, val_ratio: float = 0.2, positive_indices: List[int] = CROP_INDICES, train_years: List[int] = [2020], val_years: List[int] = [2020], ): """ Init a CropSegDataModule instance Args: ndvi_rasters: NDVI rasters generated by TerraVibes workflow cdl_rasters: CDL maps downloaded by TerraVibes workflow ndvi_stack_bands: how many daily NDVI maps will be stacked as training input. img_size: tuple that defines the size of each chip that is fed to the network. epoch_size: how many samples are sampled during training for one epoch. batch_size: how many samples are fed to the network in a single batch. num_workers: how many worker processes to use in the data loader. val_ratio: how much of the data to separate for validation. positive_indices: which CDL indices are considered as positive samples. Crop types with a minimum of 1e5 pixels in the RoI are available in the module `notebook_lib.constants`. You can combine multiple constants by adding them (e.g., `constants.POTATO_INDEX + constants.CORN_INDEX`) train_years: years used for training. val_years: years used for validation. """ super().__init__() self.ndvi_rasters = ndvi_rasters self.cdl_rasters = cdl_rasters self.img_size = img_size self.batch_size = batch_size self.num_workers = num_workers self.epoch_size = epoch_size self.val_ratio = val_ratio self.positive_indices = positive_indices self.train_years = train_years self.val_years = val_years self.years = list(set(self.train_years) | set(self.val_years)) self.ndvi_stack_bands = ndvi_stack_bands def prepare_data(self) -> None: # Skipping prepare_data as TerraVibes has already downloaded it pass def setup(self, stage: Optional[str] = None): input_dataset = NDVIDataset( self.ndvi_rasters, self.ndvi_stack_bands, ) target_dataset = CDLMask( self.cdl_rasters, positive_indices=self.positive_indices, ) self.train_dataset = input_dataset & target_dataset # Intersection dataset # Use the same dataset for training and validation, use different RoIs self.val_dataset = self.train_dataset self.test_dataset = self.train_dataset def _get_dataloader( self, dataset: GeoDataset, sampler: GeoSampler ) -> DataLoader: # type: ignore return DataLoader( dataset, batch_size=self.batch_size, sampler=sampler, num_workers=self.num_workers, prefetch_factor=5 if self.num_workers else 2, collate_fn=stack_samples, ) def _get_split_roi(self, ref_dataset: GeoDataset): minx, maxx, miny, maxy, _, _ = ref_dataset.bounds width = ref_dataset.bounds.maxx - ref_dataset.bounds.minx height = ref_dataset.bounds.maxy - ref_dataset.bounds.miny if height > width: train_x = maxx val_x = minx train_y = maxy - self.val_ratio * height val_y = maxy - self.val_ratio * height else: train_x = maxx - self.val_ratio * width val_x = maxx - self.val_ratio * width train_y = maxy val_y = miny train_mint = datetime(min(self.train_years), 1, 1).timestamp() train_maxt = datetime(max(self.train_years) + 1, 1, 1).timestamp() - 1 val_mint = datetime(min(self.val_years), 1, 1).timestamp() val_maxt = datetime(max(self.val_years) + 1, 1, 1).timestamp() - 1 train_roi = BoundingBox(minx, train_x, miny, train_y, train_mint, train_maxt) val_roi = BoundingBox(val_x, maxx, val_y, maxy, val_mint, val_maxt) return train_roi, val_roi def train_dataloader(self) -> DataLoader: # type: ignore # Use the first dataset as index source train_roi, _ = self._get_split_roi(self.train_dataset) sampler = YearRandomGeoSampler( self.train_dataset, size=self.img_size, length=self.epoch_size, roi=train_roi, ) return self._get_dataloader(self.train_dataset, sampler) def val_dataloader(self) -> DataLoader: # type: ignore _, val_roi = self._get_split_roi(self.val_dataset) sampler = YearGridGeoSampler( self.val_dataset, size=self.img_size, stride=self.img_size, roi=val_roi, ) return self._get_dataloader(self.val_dataset, sampler) def test_dataloader(self) -> DataLoader: # type: ignore return self.val_dataloader() def predict_dataloader(self) -> DataLoader: # type: ignore return self.val_dataloader() def on_before_batch_transfer(self, batch: Any, dataloader_idx: int): batch["bbox"] = [(a for a in b) for b in batch["bbox"]] return batch
EXA-1-master
exa/libraries/farmvibes-ai-main/notebooks/crop_segmentation/notebook_lib/modules.py
EXA-1-master
exa/libraries/farmvibes-ai-main/notebooks/deepmc/__init__.py
from torch import nn, Tensor class TimeDistributed(nn.Module): def __init__(self, module: nn.Module, batch_first: bool = False): super().__init__() self.module = module self.batch_first = batch_first def forward(self, x: Tensor): if len(x.size()) <= 2: return self.module(x) # Squash samples and timesteps into a single axis # COMMENT: Can use rearrange here :) x_reshape = x.contiguous().view(-1, x.size(-1)) # (samples * timesteps, input_size) y = self.module(x_reshape) # We have to reshape Y if self.batch_first: y = y.contiguous().view(x.size(0), -1, y.size(-1)) # (samples, timesteps, output_size) else: y = y.view(-1, x.size(1), y.size(-1)) # (timesteps, samples, output_size) return y
EXA-1-master
exa/libraries/farmvibes-ai-main/notebooks/deepmc/notebook_lib/time.py
from keras.layers import BatchNormalization, Dense, Input from keras.models import Sequential from keras.utils.vis_utils import plot_model def simple_mixture_model(inshape: int): model = Sequential() model.add(Input(shape=(inshape,))) model.add(Dense(inshape * 2, activation="relu")) model.add(BatchNormalization()) model.add(Dense(inshape * 4, activation="relu")) model.add(BatchNormalization()) model.add(Dense(inshape)) model.compile(loss="mae", optimizer="adam") return model def fit_model(model, train_X, train_y, test_X, test_y, batch_size: int): batch_size = batch_size validation_data = (test_X, test_y) # fit network history = model.fit( train_X, train_y, epochs=20, batch_size=batch_size, validation_data=validation_data, verbose=1, ) return model, history
EXA-1-master
exa/libraries/farmvibes-ai-main/notebooks/deepmc/notebook_lib/post_models.py
import time from datetime import datetime, timedelta from typing import Any, Dict, List, Tuple, cast import numpy as np import pandas as pd from shapely.geometry import Point from vibe_core.client import FarmvibesAiClient, get_default_vibe_client from vibe_core.datamodel import RunConfigUser, RunConfig from vibe_core.datamodel import SpatioTemporalJson class Forecast: def __init__( self, workflow_name: str, geometry: Point, time_range: Tuple[datetime, datetime], parameters: List[Dict[str, str]], date_column: str = "date", ): self.client: FarmvibesAiClient = get_default_vibe_client() self.workflow_name = workflow_name self.geometry = geometry self.parameters = parameters self.time_range = time_range self.date_column = date_column def submit_download_request(self): """ Submit request to worker to download forecast data """ run_list = [] for parameter in self.parameters: run_name = f"forecast_{parameter['weather_type']}" run = self.client.run( workflow=self.workflow_name, name=run_name, geometry=self.geometry, time_range=self.time_range, parameters=parameter, ) try: run.block_until_complete(5) except RuntimeError: print(run) run_list.append( { "id": run.id, "weather_type": parameter["weather_type"], } ) return run_list def get_run_status(self, run_list: List[Dict[str, str]]): all_done = True out_ = [] for run_item in run_list: o = self.client.describe_run(run_item["id"]) print(f"Execution status for {run_item['weather_type']}: {o.details.status}") if o.details.status == "done": out_.append(o) else: all_done = False if o.details.status == "failed": print(o.details) return all_done, out_ def get_all_assets(self, details: RunConfigUser): asset_files = [] output = details.output["weather_forecast"] record: Dict[str, Any] for record in cast(List[Dict[str, Any]], output): for _, value in record["assets"].items(): asset_files.append(value["href"]) df_assets = [pd.read_csv(f, index_col=False) for f in asset_files] df_out = pd.concat(df_assets) df_out = self.clean_forecast_data(forecast_df=df_out, run_details=details) return df_out def get_downloaded_data(self, run_list: List[Dict[str, str]], offset_hours: int = 0): """ check the download status. If status is done, fetch the downloaded data """ forecast_dataset = pd.DataFrame() status = False out_ = [] while status is False: status, out_ = self.get_run_status(run_list) time.sleep(10) if status: for detail in out_: df = self.get_all_assets(detail) # Offset from UTC to specified timezone df.index = df.index + pd.offsets.Hour(offset_hours) if not df.empty: forecast_dataset = pd.concat([forecast_dataset, df], axis=1) return forecast_dataset def clean_forecast_data( self, forecast_df: pd.DataFrame, run_details: RunConfig, ): df = forecast_df[self.date_column] assert isinstance(run_details.user_input, SpatioTemporalJson) start_date: datetime = run_details.user_input.start_date end_date: datetime = run_details.user_input.end_date # derive forecast data forecast_df.drop(columns=[self.date_column], inplace=True) a = forecast_df.values.tolist() o = pd.DataFrame([a]) o = o.T df_date = pd.DataFrame( data=pd.date_range(start_date, end_date + timedelta(days=1), freq="h"), columns=[self.date_column], ) # derive hours hours = [f"{str(i)}:00:00" for i in range(24)] list_hours = [hours for _ in range(forecast_df.shape[0])] assert run_details.parameters is not None, "Parameters are not defined" # transform forecast data with date and time df = pd.DataFrame( data={ self.date_column: df.values, "time": list_hours, run_details.parameters["weather_type"]: o[0], } ) df = df.explode(column=["time", run_details.parameters["weather_type"]]) df[self.date_column] = df[self.date_column].astype(str) + " " + df["time"] df[self.date_column] = pd.to_datetime(df[self.date_column].values) df.drop(columns=["time"], inplace=True) df = pd.merge(df_date, df, how="left", left_on=self.date_column, right_on=self.date_column) df.reset_index() df.set_index(self.date_column, inplace=True) df.sort_index(ascending=True, inplace=True) df[run_details.parameters["weather_type"]] = df[ run_details.parameters["weather_type"] ].values.astype(np.float32) # rename columns with suffix forecast df.rename( columns={ run_details.parameters[ "weather_type" ]: f"{run_details.parameters['weather_type']}_forecast" }, inplace=True, ) # interpolate to derive missing data df = df.interpolate(method="from_derivatives") assert df is not None, "Interpolation deleted all data" df = df.dropna() return df
EXA-1-master
exa/libraries/farmvibes-ai-main/notebooks/deepmc/notebook_lib/forecast.py
from typing import Any, Tuple, Union, List import torch import torch.nn.functional as F from einops.layers.torch import Rearrange from notebook_lib.encoder import Encoder from notebook_lib.locally_connected import LocallyConnected1d from torch import nn class MyLSTM(nn.LSTM): def forward(self, *args: Any, **kwargs: Any): return super().forward(*args, **kwargs)[0] class DeepMCModel(nn.Module): def __init__( self, first_channels: int, # 3 rest_channels: int, # 1 first_encoder_channels: int, # 3 rest_encoder_channels: Tuple[int, int, int], # [4, 8, 16] sequence_length: int, # 24 kernel_size: int, # 2 num_inputs: int, # 6 encoder_layers: int = 2, encoder_features: int = 4, encoder_heads: int = 4, encoder_ff_features: int = 16, encoder_dropout: float = 0.1, decoder_features: Tuple[int, int] = (20, 16), dropout: float = 0.2, batch_first: bool = True, return_sequence: bool = True, ): super(DeepMCModel, self).__init__() self.return_sequence = return_sequence self.num_inputs = num_inputs out_seq_len = sequence_length - kernel_size + 1 self.encoders = nn.ModuleList( [ nn.Sequential( Rearrange("b l d -> b d l"), LocallyConnected1d( in_channels=first_channels, out_channels=first_encoder_channels, seq_len=sequence_length, kernel_size=kernel_size, ), nn.BatchNorm1d(first_encoder_channels), Rearrange("b d l -> b l d"), Encoder( in_features=first_encoder_channels, num_layers=encoder_layers, d_model=encoder_features, num_heads=encoder_heads, d_ff=encoder_ff_features, max_seq_len=out_seq_len, dropout=encoder_dropout, ), nn.Flatten(), ) ] ) re1, re2, re3 = rest_encoder_channels for _ in range(num_inputs - 1): self.encoders.append( nn.Sequential( Rearrange("b l d -> b d l"), LocallyConnected1d( in_channels=rest_channels, out_channels=re1, seq_len=sequence_length, kernel_size=kernel_size, ), nn.ReLU(), nn.BatchNorm1d(re1), LocallyConnected1d( in_channels=re1, out_channels=re2, seq_len=out_seq_len, kernel_size=kernel_size, ), nn.ReLU(), nn.BatchNorm1d(re2), Rearrange("b d l -> b l d"), nn.Dropout(dropout), MyLSTM( input_size=re2, hidden_size=re3, num_layers=1, batch_first=batch_first, ), # nn.ReLU(), # Do ReLU outside the model ) ) dec_input_features = out_seq_len * encoder_features + (self.num_inputs - 1) * re3 df1, df2 = decoder_features self.decoder = nn.Sequential( nn.BatchNorm1d(dec_input_features), Rearrange("b d -> b 1 d"), MyLSTM(input_size=dec_input_features, hidden_size=df1, batch_first=batch_first), Rearrange("b 1 d -> b d"), nn.ReLU(), nn.BatchNorm1d(df1), nn.Linear(df1, df2), nn.ReLU(), nn.Linear(df2, 1), ) def forward(self, x: Union[torch.Tensor, List[torch.Tensor]]): sliced_encoders = nn.ModuleList(list(self.encoders)[1:]) x = [self.encoders[0](x[0])] + [ F.relu(encoder(xi)[:, -1]) for encoder, xi in zip(sliced_encoders, x[1:]) ] x = torch.cat(x, dim=1) x = self.decoder(x) return x class DeepMCPostModel(nn.Module): def __init__( self, first_in_features: int, first_out_features: int = 48, second_out_features: int = 96, out_features: int = 24, ) -> None: super(DeepMCPostModel, self).__init__() self.model = nn.Sequential( nn.Linear(in_features=first_in_features, out_features=first_out_features), nn.ReLU(), nn.BatchNorm1d(first_out_features), nn.Linear(in_features=first_out_features, out_features=second_out_features), nn.ReLU(), nn.BatchNorm1d(second_out_features), nn.Linear(in_features=second_out_features, out_features=out_features), ) def forward(self, x: torch.Tensor): y_pred = self.model(x) return y_pred
EXA-1-master
exa/libraries/farmvibes-ai-main/notebooks/deepmc/notebook_lib/models.py
from math import ceil from typing import Any, Optional, Tuple from numpy._typing import NDArray import numpy as np import pandas as pd import pywt from sklearn.preprocessing import StandardScaler class Preprocess: def __init__( self, train_scaler: StandardScaler, output_scaler: StandardScaler, is_training: bool, is_validation: bool = False, ts_lookahead: int = 24, ts_lookback: int = 24, chunk_size: int = 528, wavelet: str = "bior3.5", mode: str = "periodic", level: int = 5, relevant: bool = False, ): self.train_scaler = train_scaler self.output_scaler = output_scaler self.trunc = chunk_size self.ts_lookback = ts_lookback self.wavelet = wavelet self.mode = mode self.level = level self.is_training = is_training self.ts_lookahead = ts_lookahead self.is_validation = is_validation self.relevant = relevant def wavelet_transform_predict(self, df_in: pd.DataFrame, predict: str) -> NDArray[Any]: i = 1 start = i end = start t_test_X = [] test_df = pd.DataFrame( self.train_scaler.transform(df_in), columns=df_in.columns, index=df_in.index ) # convert input data to wavelet while end < test_df.shape[0]: start = i end = start + self.trunc i = i + 1 chunkdataDF = test_df.iloc[start:end] test_uX, _ = self.convert_df_wavelet_input(data_df=chunkdataDF, predict=predict) t_test_X.append(test_uX) test_X = t_test_X[0].copy() for i in range(1, len(t_test_X)): for j in range(len(t_test_X[i])): test_X[j] = np.append(test_X[j], t_test_X[i][j], axis=0) return test_X def wavelet_transform_train( self, train_df: pd.DataFrame, test_df: pd.DataFrame, out_feature: str ) -> Tuple[NDArray[Any], ...]: t_train_X, t_train_y = self.prepare_wavelet_data(train_df, out_feature=out_feature) t_test_X, t_test_y = self.prepare_wavelet_data(test_df, out_feature=out_feature) train_X = t_train_X[0].copy() train_y = t_train_y[0].copy() for i in range(1, len(t_train_X)): train_y = np.append(train_y, t_train_y[i], axis=0) for j in range(len(t_train_X[i])): train_X[j] = np.append(train_X[j], t_train_X[i][j], axis=0) test_X = t_test_X[0].copy() test_y = t_test_y[0].copy() for i in range(1, len(t_test_X)): test_y = np.append(test_y, t_test_y[i], axis=0) for j in range(len(t_test_X[i])): test_X[j] = np.append(test_X[j], t_test_X[i][j], axis=0) return train_X, train_y, test_X, test_y def prepare_wavelet_data(self, data_df: pd.DataFrame, out_feature: str): i = 0 start = i * self.trunc end = start t_data_x = [] t_data_y = [] while end < data_df.shape[0]: start = i end = start + self.trunc i = i + 1 o_data_df = data_df.iloc[start:end] data_ux, data_uy = self.convert_df_wavelet_input( o_data_df, predict=out_feature, ) t_data_x.append(data_ux) t_data_y.append(data_uy) return t_data_x, t_data_y def dl_preprocess_data( self, df: pd.DataFrame, predict: str, per_split: float = 0.8, training: bool = False, ) -> Tuple[NDArray, Optional[NDArray], Optional[NDArray], Optional[NDArray]]: # type: ignore """ merge chunk of data as single entity Args: df: lookback input data chunk based on number of models predict: feature to predict per_split: percentage data split Returns: data as single entity """ n_in = self.ts_lookback scaled_df = df data = scaled_df.values.astype(float) if training: n_out = self.ts_lookahead label_df = df.copy() for column in label_df: if column != predict: label_df.drop(columns=column, inplace=True) label_data = label_df.values # label_data = label_df.values X, y = list(), list() in_start = 0 # step over the entire history one time step at a time # reshape input to be 3D [samples, timesteps, features] for _ in range(len(data)): # define the end of the input sequence in_end = in_start + n_in out_end = in_end + n_out # ensure we have enough data for this instance if out_end <= len(data): X.append(data[in_start:in_end, :]) y.append(label_data[in_end:out_end, :]) # move along one time step in_start += 1 X = np.array(X) y = np.array(y) if self.is_validation is True: n_train_split = ceil(len(data) * per_split) train_X, train_y = X[:n_train_split, :, :], y[:n_train_split, :, :] test_X, test_y = X[n_train_split:, :], y[n_train_split:, :] return train_X, train_y, test_X, test_y else: return X, y, None, None else: X = list() in_start = 0 for _ in range(len(data) - n_in + 1): in_end = in_start + n_in if in_end <= len(data): X.append(data[in_start:in_end, :]) in_start += 1 X = np.array(X) return X, None, None, None def convert_df_wavelet_input(self, data_df: pd.DataFrame, predict: str): if self.relevant: return self.convert_df_wavelet_input_relevant(data_df, predict) else: return self.convert_df_wavelet_input_not_relevant(data_df, predict) def convert_df_wavelet_input_not_relevant(self, data_df: pd.DataFrame, predict: str): level = self.level rd = list() N = data_df.shape[0] test_X = list() if self.is_training: test_y = self.dl_preprocess_data( data_df.iloc[-self.ts_lookback - self.ts_lookahead :], predict=predict, training=self.is_training, )[1] assert test_y is not None test_y = test_y[[-1], :, :] data_df = data_df.iloc[: -self.ts_lookahead] else: test_y = [] wp5 = pywt.wavedec(data=data_df[predict], wavelet=self.wavelet, mode=self.mode, level=level) N = data_df.shape[0] for i in range(1, level + 1): rd.append(pywt.waverec(wp5[:-i] + [None] * i, wavelet=self.wavelet, mode=self.mode)[:N]) t_test_X = self.dl_preprocess_data(data_df.iloc[-self.ts_lookback :], predict=predict)[0] test_X.append(t_test_X[[-1], :, :]) wpt_df = data_df[[]].copy() for i in range(0, level): wpt_df[predict] = rd[i][:] t_test_X = self.dl_preprocess_data(wpt_df.iloc[-self.ts_lookback :], predict=predict)[0] test_X.append(t_test_X[[-1], :, :]) return test_X, test_y def convert_df_wavelet_input_relevant(self, data_df: pd.DataFrame, predict: str): rd = list() test_X = list() if self.is_training: test_y = self.dl_preprocess_data( data_df.iloc[-self.ts_lookback - self.ts_lookahead :], predict=predict, training=self.is_training, )[1] assert test_y is not None test_y = test_y[[-1], :, :] else: test_y = [] data_df = data_df.iloc[: -self.ts_lookahead] t_test_X = self.dl_preprocess_data(data_df.iloc[-self.ts_lookback :], predict=predict)[0] data = data_df[predict] data = data.append(data_df[predict + "_forecast"].iloc[-self.ts_lookback :]).values wp5 = pywt.wavedec(data=data, wavelet=self.wavelet, mode=self.mode, level=self.level) N = data.shape[0] for i in range(1, self.level + 1): rd.append( pywt.waverec(wp5[:-i] + [None] * i, wavelet=self.wavelet, mode=self.mode)[: N - 24] ) test_X.append(t_test_X[[-1], :, :]) wpt_df = data_df[[]].copy() for i in range(0, self.level): wpt_df[predict] = rd[i] t_test_X = self.dl_preprocess_data(wpt_df.iloc[-self.ts_lookback :], predict=predict)[0] test_X.append(t_test_X[[-1], :, :]) return test_X, test_y
EXA-1-master
exa/libraries/farmvibes-ai-main/notebooks/deepmc/notebook_lib/preprocess.py
EXA-1-master
exa/libraries/farmvibes-ai-main/notebooks/deepmc/notebook_lib/__init__.py
from typing import Optional from torch import nn, Tensor from notebook_lib.helpers import point_wise_feed_forward_network, positional_encoding from notebook_lib.transform import MultiHeadAttention class EncoderLayer(nn.Module): def __init__(self, d_model: int, num_heads: int, d_ff: int, rate: float): super().__init__() self.mha = MultiHeadAttention(d_model, num_heads) self.ffn = point_wise_feed_forward_network( in_features=d_model, out_features=d_model, d_ff=d_ff ) self.layernorm1 = nn.LayerNorm(d_model, eps=1e-6) self.layernorm2 = nn.LayerNorm(d_model, eps=1e-6) self.dropout1 = nn.Dropout(rate) self.dropout2 = nn.Dropout(rate) def forward(self, x: Tensor, mask: Tensor): attn_output = self.mha(x, x, x, mask) # (batch_size, input_seq_len, d_model) attn_output = self.dropout1(attn_output) out1 = self.layernorm1(x + attn_output) # (batch_size, input_seq_len, d_model) ffn_output = self.ffn(out1) # (batch_size, input_seq_len, d_model) ffn_output = self.dropout2(ffn_output) out2 = self.layernorm2( out1 + ffn_output ) # (batch_size, input_seq_len, d_model) return out2 class Encoder(nn.Sequential): def __init__( self, in_features: int, num_layers: int, d_model: int, num_heads: int, d_ff: int, max_seq_len: int, dropout: float = 0.1, ): super().__init__() self.d_model = d_model self.num_layers = num_layers self.embedding = nn.Sequential(nn.Linear(in_features, self.d_model), nn.ReLU()) self.pos_encoding = positional_encoding(max_seq_len, d_model) self.enc_layers = nn.ModuleList( [EncoderLayer(d_model, num_heads, d_ff, dropout) for _ in range(num_layers)] ) self.dropout = nn.Dropout(dropout) def forward(self, x: Tensor, mask: Optional[Tensor] = None): seq_len = x.size(1) # adding embedding and position encoding. x = self.embedding(x) # (batch_size, input_seq_len, d_model) x = x * self.d_model**0.5 x = x + self.pos_encoding[:, :seq_len, :] x = self.dropout(x) for enc_layer in self.enc_layers: x = enc_layer(x, mask) return x # (batch_size, input_seq_len, d_model)
EXA-1-master
exa/libraries/farmvibes-ai-main/notebooks/deepmc/notebook_lib/encoder.py
import os import pickle from datetime import datetime, timedelta from typing import Any, List, cast import numpy as np import onnxruntime import pandas as pd from numpy._typing import NDArray from .preprocess import Preprocess MODEL_SUFFIX = "deepmc." class InferenceWeather: def __init__( self, root_path: str, data_export_path: str, station_name: str, predicts: List[str], total_models: int = 24, feed_interval_minutes: int = 60, chunk_size: int = 528, ts_lookback: int = 24, date_attribute: str = "date", wavelet: str = "bior3.5", mode: str = "periodic", level: int = 5, relevant: bool = False, ): if relevant: self.relevant_text = "relevant" else: self.relevant_text = "not-relevant" self.total_models = total_models self.ts_lookahead = total_models self.feed_interval = feed_interval_minutes self.date_attribute = date_attribute self.root_path = root_path self.model_path = self.root_path + f"{station_name}/{self.relevant_text}/model_%s/" self.post_model_path = self.model_path + "post/" self.ts_lookback = ts_lookback self.chunk_size = chunk_size self.wavelet = wavelet self.mode = mode self.level = level self.data_export_path = data_export_path self.predicts = predicts self.onnx_file = os.path.join(self.model_path, "export.onnx") self.post_onnx_file = os.path.join(self.post_model_path, "export.onnx") self.relevant = relevant def inference( self, input_df: pd.DataFrame, start_datetime: datetime, ): cols = self.predicts.copy() cols.append(self.date_attribute) df_out = pd.DataFrame(columns=cols) df_in_1 = input_df[(input_df.index <= start_datetime)].tail( self.chunk_size + self.total_models ) if df_in_1.shape[0] < self.chunk_size: raise RuntimeError( f"Forecast not done between {start_datetime.strftime('%m/%d/%Y, %H:%M:%S')}," " since number of input data points less than chunk size" ) df_out = pd.DataFrame(columns=self.predicts) df_out = self.run_predict( df_in=df_in_1, df_out=df_out, ) return df_out def inference_historical( self, input_df: pd.DataFrame, start_datetime: datetime, end_datetime: datetime, ): cols = self.predicts.copy() cols.append(self.date_attribute) df_out = pd.DataFrame(columns=cols) df_in = input_df[(input_df.index > (start_datetime - timedelta(hours=(self.chunk_size))))] if df_in.shape[0] < self.chunk_size: raise RuntimeError( f"Forecast not done between {start_datetime.strftime('%m/%d/%Y, %H:%M:%S')}" f" and {end_datetime.strftime('%m/%d/%Y, %H:%M:%S')}, since number of input data" " points less than chunk size", ) y_datetime_out = input_df.index[ (input_df.index >= start_datetime) & (input_df.index <= end_datetime) ] df_all_predict = pd.DataFrame() # df_out = pd.DataFrame(columns=self.predicts) for predict in self.predicts: input_order_df = df_in[df_in.columns].copy() out_feature_df = input_order_df[predict] input_order_df.drop(columns=[predict], inplace=True) input_order_df[predict] = out_feature_df df_out = self.run_individual_predict_historical( df_in=input_order_df, df_out=cast(pd.DatetimeIndex, y_datetime_out), predict=predict, ) df_all_predict = pd.concat([df_all_predict, df_out], axis=1) df_all_predict = df_all_predict.loc[:, ~df_all_predict.columns.duplicated()] # type: ignore return df_all_predict def predict( self, path: str, predict: str, model_idx: int, inputs: NDArray[Any], is_post: bool = False ): path = path % (predict, model_idx) session = onnxruntime.InferenceSession(path, None) if not is_post: in_ = { out.name: inputs[i].astype(np.float32) for i, out in enumerate(session.get_inputs()) } else: in_ = { out.name: inputs.astype(np.float32) for i, out in enumerate(session.get_inputs()) } result = session.run(None, input_feed=in_)[0] return result def run_individual_predict( self, df_in: pd.DataFrame, predict: str, ): df_predict = pd.DataFrame(columns=[predict, self.date_attribute]) interval = self.feed_interval start_date: datetime = cast(datetime, df_in.index[-1]) with open(self.data_export_path % (predict, self.relevant_text), "rb") as f: train_scaler, output_scaler = pickle.load(f)[4:6] preprocess = Preprocess( train_scaler=train_scaler, output_scaler=output_scaler, is_training=False, ts_lookahead=self.ts_lookahead, ts_lookback=self.ts_lookback, chunk_size=self.chunk_size, wavelet=self.wavelet, mode=self.mode, level=self.level, relevant=self.relevant, ) test_X = preprocess.wavelet_transform_predict(df_in=df_in, predict=predict) time_arr = [] post_yhat = np.empty([1, self.ts_lookahead, self.ts_lookahead]) for idx in range(0, self.total_models): out_x = self.predict(path=self.onnx_file, predict=predict, model_idx=idx, inputs=test_X) out_x = preprocess.dl_preprocess_data(pd.DataFrame(out_x), predict=predict)[0] out_x = out_x.transpose((0, 2, 1)) out_x = self.predict( path=self.post_onnx_file, predict=predict, model_idx=idx, inputs=out_x ) post_yhat[:, :, idx] = out_x hours_added = timedelta(minutes=interval) _date = start_date + hours_added time_arr.append(_date) interval += self.feed_interval yhat_final = [] init_start = 0 end = post_yhat.shape[0] for i in range(init_start, end, self.total_models): for j in range(self.total_models): yhat_final.append(post_yhat[i, -1, j]) yhat_final = output_scaler.inverse_transform(np.expand_dims(yhat_final, axis=1))[:, 0] df_predict = pd.DataFrame(data=list(zip(time_arr, yhat_final)), columns=["date", predict]) return df_predict def run_predict( self, df_in: pd.DataFrame, df_out: pd.DataFrame, ): df_all_predict = pd.DataFrame() df_in.sort_values(by=[self.date_attribute], ascending=True, inplace=True) for predict in self.predicts: input_order_df = df_in[df_in.columns].copy() out_feature_df = input_order_df[predict] input_order_df.drop(columns=[predict], inplace=True) input_order_df[predict] = out_feature_df df_predict = self.run_individual_predict( df_in=df_in, predict=predict, ) if df_predict is not None: if df_all_predict.empty: df_all_predict[predict] = df_predict[predict] df_all_predict[self.date_attribute] = df_predict[self.date_attribute] else: df_all_predict = pd.concat([df_all_predict, df_predict], axis=1) df_all_predict = df_all_predict.loc[:, list(~df_all_predict.columns.duplicated())] df_out = pd.concat([df_out, df_all_predict], ignore_index=True) df_out.reset_index(drop=True, inplace=True) return df_out def run_individual_predict_historical( self, df_in: pd.DataFrame, df_out: pd.DatetimeIndex, predict: str, ): df_predict = pd.DataFrame(columns=[predict, self.date_attribute]) with open(self.data_export_path % (predict, self.relevant_text), "rb") as f: train_scaler, output_scaler = pickle.load(f)[4:6] preprocess = Preprocess( train_scaler=train_scaler, output_scaler=output_scaler, is_training=True, ts_lookahead=self.ts_lookahead, ts_lookback=self.ts_lookback, chunk_size=self.chunk_size, wavelet=self.wavelet, mode=self.mode, level=self.level, relevant=self.relevant, ) inshape = self.total_models test_X = preprocess.wavelet_transform_predict(df_in=df_in, predict=predict) post_yhat = np.empty([test_X[0].shape[0] + 1 - inshape, inshape, self.total_models]) for idx in range(0, self.total_models): out_x = self.predict(path=self.onnx_file, predict=predict, model_idx=idx, inputs=test_X) out_x = preprocess.dl_preprocess_data(pd.DataFrame(out_x), predict=predict)[0] out_x = out_x[..., 0] out_x = self.predict( path=self.post_onnx_file, predict=predict, model_idx=idx, inputs=out_x, is_post=True, ) post_yhat[:, :, idx] = out_x yhat_final = [] init_start = 0 end = post_yhat.shape[0] for i in range(init_start, end, self.total_models): for j in range(self.total_models): yhat_final.append(post_yhat[i, -1, j]) yhat_final = output_scaler.inverse_transform(np.expand_dims(yhat_final, axis=1))[:, 0] df_predict = pd.DataFrame(data=list(zip(df_out, yhat_final)), columns=["date", predict]) return df_predict
EXA-1-master
exa/libraries/farmvibes-ai-main/notebooks/deepmc/notebook_lib/prediction.py
from datetime import datetime, timedelta from typing import Any, Dict, List import numpy as np import pandas as pd from numpy._typing import NDArray from pandas.tseries.offsets import DateOffset from sklearn.preprocessing import StandardScaler def get_csv_data( path: str, date_attribute: str = "date", columns_rename: Dict[str, str] = {}, frequency: str = "60min", ): """ Read data from CSV file using Pandas python package. """ data_df = pd.read_csv(path) data_df[date_attribute] = pd.to_datetime(data_df[date_attribute]) if columns_rename: data_df.rename(columns=columns_rename, inplace=True) # apply index on date data_df.reset_index(drop=True, inplace=True) data_df.set_index(date_attribute, inplace=True) data_df.sort_index(ascending=True, inplace=True) # interpolate to derive missing data data_df = data_df.interpolate(method="from_derivatives") assert data_df is not None, "Interpolate deleted all data" data_df = data_df.dropna() # Group rows by frequency, requires date attribute indexed to execute this data_df = data_df.fillna(method="ffill") data_df = data_df.fillna(method="bfill") data_df = data_df.groupby(pd.Grouper(freq=frequency)).mean() data_df = data_df.fillna(method="ffill") data_df = data_df.fillna(method="bfill") return data_df def hour_round(t: datetime): # Rounds to nearest hour by adding a timedelta hour if minute >= 30 return t.replace(second=0, microsecond=0, minute=0, hour=t.hour) + timedelta( hours=t.minute // 30 ) def get_split_scaled_data(data: pd.DataFrame, out_feature: str, split_ratio: float = 0.92): split = int(split_ratio * data.shape[0]) train_data = data.iloc[:split] test_data = data.iloc[split:] output_scaler = StandardScaler() output_scaler.fit_transform(np.expand_dims(data[out_feature].values, axis=1)) # type: ignore train_scaler = StandardScaler() train_scale_df = pd.DataFrame( train_scaler.fit_transform(train_data), columns=train_data.columns, index=train_data.index ) test_scale_df = pd.DataFrame( train_scaler.transform(test_data), columns=test_data.columns, index=test_data.index ) return train_scaler, output_scaler, train_scale_df, test_scale_df def shift_index(ds_df: pd.DataFrame, freq_minutes: int, num_indices: int, dateColumn: str = "date"): ds_df[dateColumn] = ds_df.index.shift(-num_indices, freq=DateOffset(minutes=freq_minutes)) ds_df = ds_df.reset_index(drop=True) ds_df = ds_df.set_index(dateColumn) return ds_df def clean_relevant_data( actual_df: pd.DataFrame, forecast_df: pd.DataFrame, out_variables: List[str], freq_hours: int, num_of_indices: int, ): base_data_df = actual_df.copy() current_ws_df = forecast_df.add_suffix("Current") base_data_df = base_data_df.join(current_ws_df) shift_forecast_df = shift_index(forecast_df, freq_hours * 60, num_of_indices) base_data_df = base_data_df.join(shift_forecast_df) base_data_df = base_data_df[out_variables] base_data_df = base_data_df.interpolate(method="from_derivatives") assert base_data_df is not None, "Interpolate deleted all data" base_data_df = base_data_df.dropna() return base_data_df def smooth(y: NDArray[Any], box_pts: int): box = np.ones(box_pts) / box_pts y_smooth = np.convolve(y, box, mode="same") return y_smooth
EXA-1-master
exa/libraries/farmvibes-ai-main/notebooks/deepmc/notebook_lib/utils.py
from torch import Tensor import torch.nn as nn from einops import rearrange from notebook_lib.helpers import attn class MultiHeadAttention(nn.Module): def __init__(self, d_model: int, num_heads: int): super().__init__() self.num_heads = num_heads self.d_model = d_model assert d_model % self.num_heads == 0 self.d_head = d_model // self.num_heads self.scale = self.d_head ** -0.5 self.wq = nn.Linear(d_model, d_model) self.wk = nn.Linear(d_model, d_model) self.wv = nn.Linear(d_model, d_model) self.dense = nn.Linear(d_model, d_model) def forward(self, v: Tensor, k: Tensor, q: Tensor, mask: Tensor): # (batch_size, seq_len, d_model) q = self.wq(q) k = self.wq(k) v = self.wq(v) # (batch_size, num_heads, seq_len_q, depth) q, k, v = (rearrange(x, "b l (h d) -> (b h) l d", h=self.num_heads) for x in (q, k, v)) q *= self.scale # scaled_attention.shape == (batch_size, num_heads, seq_len_q, depth) # attention_weights.shape == (batch_size, num_heads, seq_len_q, seq_len_k) scaled_attention = attn(q, k, v, mask) concat_attention = rearrange(scaled_attention, "(b h) l d -> b l (h d)", h=self.num_heads) output = self.dense(concat_attention) # (batch_size, seq_len_q, d_model) return output
EXA-1-master
exa/libraries/farmvibes-ai-main/notebooks/deepmc/notebook_lib/transform.py
import os import pickle import shutil from typing import Any, List, Tuple, Union import numpy as np import pandas as pd import pytorch_lightning as pl import torch from notebook_lib.models import DeepMCModel, DeepMCPostModel from notebook_lib.modules import DeepMCPostTrain, DeepMCTrain from numpy._typing import NDArray from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint from torch import Tensor from torch.utils.data import DataLoader, TensorDataset from . import utils from .preprocess import Preprocess MODEL_SUFFIX = "deepmc." class ModelTrainWeather: def __init__( self, root_path: str, data_export_path: str, station_name: str, train_features: List[str], out_features: List[str], chunk_size: int = 528, ts_lookback: int = 24, total_models: int = 24, is_validation: bool = False, wavelet: str = "bior3.5", mode: str = "periodic", level: int = 5, batch_size: int = 256, relevant: bool = False, ): if relevant: self.relevant_text = "relevant" else: self.relevant_text = "not-relevant" self.total_models = total_models self.root_path = root_path self.data_export_path = data_export_path self.path_to_station = os.path.join(self.root_path, station_name, self.relevant_text, "") self.model_path = os.path.join(self.path_to_station, "model_%s", "") self.post_model_path = os.path.join(self.model_path, "post", "") self.train_features = train_features self.out_features = out_features self.ts_lookback = ts_lookback self.is_validation = is_validation self.ts_lookahead = total_models self.chunk_size = chunk_size self.wavelet = wavelet self.mode = mode self.level = level self.batch_size = batch_size self.relevant = relevant def train_model( self, input_df: pd.DataFrame, start: int = 0, end: int = -1, epochs: int = 20, ): end = self.total_models if end == -1 else end for out_feature in self.out_features: if not os.path.exists(self.path_to_station % out_feature): os.makedirs(self.path_to_station % out_feature, exist_ok=True) input_order_df = input_df[self.train_features].copy() out_feature_df = input_order_df[out_feature] input_order_df.drop(columns=[out_feature], inplace=True) input_order_df[out_feature] = out_feature_df # data preprocessing (train_scaler, output_scaler, train_df, test_df,) = utils.get_split_scaled_data( data=input_order_df, out_feature=out_feature, split_ratio=0.92 ) if os.path.exists(self.data_export_path % (out_feature, self.relevant_text)): with open(self.data_export_path % (out_feature, self.relevant_text), "rb") as f: ( train_X, train_y, test_X, test_y, train_scaler, output_scaler, ) = pickle.load(f) self.preprocess = Preprocess( train_scaler=train_scaler, output_scaler=output_scaler, is_training=True, is_validation=self.is_validation, ts_lookahead=self.ts_lookahead, ts_lookback=self.ts_lookback, chunk_size=self.chunk_size, wavelet=self.wavelet, mode=self.mode, level=self.level, relevant=self.relevant, ) else: self.preprocess = Preprocess( train_scaler=train_scaler, output_scaler=output_scaler, is_training=True, is_validation=self.is_validation, ts_lookahead=self.ts_lookahead, ts_lookback=self.ts_lookback, chunk_size=self.chunk_size, wavelet=self.wavelet, mode=self.mode, level=self.level, relevant=self.relevant, ) ( train_X, train_y, test_X, test_y, ) = self.preprocess.wavelet_transform_train(train_df, test_df, out_feature) with open(self.data_export_path % (out_feature, self.relevant_text), "wb") as f: pickle.dump( [train_X, train_y, test_X, test_y, train_scaler, output_scaler], f, ) self.train_models( train_X=train_X, # type: ignore train_y=train_y, # type: ignore test_X=test_X, # type: ignore test_y=test_y, # type: ignore epochs=epochs, out_feature=out_feature, start=start, end=end, ) def train_models( self, train_X: List[NDArray[Any]], train_y: List[NDArray[Any]], test_X: List[NDArray[Any]], test_y: List[NDArray[Any]], epochs: int, out_feature: str, start: int, end: int, ): first_channels = train_X[0].shape[2] rest_channels = train_X[1].shape[2] first_encoder_channels = 3 rest_encoder_channels = (4, 8, 16) sequence_length = train_X[0].shape[1] kernel_size = 2 num_inputs = len(train_X) for i in range(start, end): train_inputs = [ torch.from_numpy(x.astype(np.float32)) for x in (*train_X, train_y[:, i]) # type: ignore ] train_dataset = TensorDataset(*train_inputs) train_loader = DataLoader(train_dataset, batch_size=self.batch_size, shuffle=True) val_inputs = [ torch.from_numpy(x.astype(np.float32)) for x in (*test_X, test_y[:, i]) # type: ignore ] val_dataset = TensorDataset(*val_inputs) val_loader = DataLoader(val_dataset, batch_size=self.batch_size) m = DeepMCTrain( first_channels=first_channels, rest_channels=rest_channels, first_encoder_channels=first_encoder_channels, rest_encoder_channels=rest_encoder_channels, sequence_length=sequence_length, kernel_size=kernel_size, num_inputs=num_inputs, ) model_path = self.model_path % (out_feature, str(i)) if os.path.exists(model_path): shutil.rmtree(model_path, ignore_errors=True) os.makedirs(model_path, exist_ok=True) t_obj = pl.Trainer( logger=True, max_epochs=epochs, callbacks=[ LearningRateMonitor(), ModelCheckpoint( monitor="val_loss/total", save_last=True, dirpath=model_path, ), ], num_processes=1, ) t_obj.fit(m, train_loader, val_loader) self.export_to_onnx(file_path=model_path, model=m.deepmc, inputs=train_inputs) self.post_model( m.deepmc, train_X=train_X, train_y=train_y, test_X=test_X, test_y=test_y, out_feature=out_feature, model_index=i, epochs=epochs, ) def export_to_onnx( self, file_path: str, model: Union[DeepMCModel, DeepMCPostModel], inputs: Union[List[Tensor], Tensor], ): batch_axes = {f"tensor.{str(i)}": {0: "batch_size"} for i in range(len(inputs))} onnx_output_path = os.path.join(file_path, "export.onnx") if os.path.exists(onnx_output_path): os.remove(onnx_output_path) # Export the model torch.onnx.export( model, inputs, onnx_output_path, input_names=list(batch_axes.keys()), dynamic_axes=batch_axes, ) def get_dataloader( self, gt: NDArray[Any], target: NDArray[Any], o_feature: str ) -> Tuple[DataLoader[Any], List[Tensor]]: o_x = self.preprocess.dl_preprocess_data(pd.DataFrame(gt), o_feature)[0][:, :, 0].astype( np.float32 ) o_y = self.preprocess.dl_preprocess_data(pd.DataFrame(target), o_feature)[0][ :, :, 0 ].astype(np.float32) o_inputs = [torch.from_numpy(x.astype(np.float32)) for x in (o_x, o_y)] o_dataset = TensorDataset(*o_inputs) o_loader = DataLoader(o_dataset, batch_size=self.batch_size, shuffle=True) return o_loader, o_inputs def post_model( self, m: DeepMCModel, train_X: List[NDArray[Any]], train_y: List[NDArray[Any]], test_X: List[NDArray[Any]], test_y: List[NDArray[Any]], out_feature: str, model_index: int, epochs: int, ): m.eval() def xf(a: List[NDArray[Any]]) -> List[Tensor]: return [torch.from_numpy(x.astype(np.float32)) for x in a] train_yhat = m(xf(train_X)).detach().numpy()[:, 0] test_yhat = m(xf(test_X)).detach().numpy()[:, 0] post_model_path = self.post_model_path % (out_feature, str(model_index)) if not os.path.exists(post_model_path): os.mkdir(post_model_path) train_dataloader, _ = self.get_dataloader( gt=train_y[:, model_index, 0], target=train_yhat, o_feature=out_feature # type: ignore ) val_dataloader, val_inputs = self.get_dataloader( gt=test_y[:, model_index, 0], target=test_yhat, o_feature=out_feature # type: ignore ) p_m = DeepMCPostTrain(first_in_features=self.total_models) t_obj = pl.Trainer( logger=True, max_epochs=epochs, callbacks=[ LearningRateMonitor(), ModelCheckpoint( monitor="val_loss/total", save_last=True, dirpath=post_model_path, ), ], num_processes=1, ) t_obj.fit(p_m, train_dataloaders=train_dataloader, val_dataloaders=val_dataloader) self.export_to_onnx(file_path=post_model_path, model=p_m.deepmc, inputs=torch.rand((1, 24)))
EXA-1-master
exa/libraries/farmvibes-ai-main/notebooks/deepmc/notebook_lib/train.py
from typing import Optional, Tuple, Union, cast import torch from einops import rearrange from torch import nn from torch.nn import functional as F from torch.nn.parameter import Parameter from torch.types import _dtype from unfoldNd.utils import _get_conv, _get_kernel_size_numel, _tuple def _make_weight( in_channels: int, kernel_size: Tuple[int, ...], device: Optional[str], dtype: Optional[_dtype], ) -> torch.Tensor: """Create one-hot convolution kernel. ``kernel_size`` must be an ``N``-tuple. Details: Let ``T`` denote the one-hot weight, then ``T[c * i, 0, j] = δᵢⱼ ∀ c = 1, ... C_in`` (``j`` is a group index of the ``Kᵢ``). This can be done by building diagonals ``D[i, j] = δᵢⱼ``, reshaping them into ``[∏ᵢ Kᵢ, 1, K]``, and repeat them ``C_in`` times along the leading dimension. Returns: torch.Tensor : A tensor of shape ``[ C_in * ∏ᵢ Kᵢ, 1, K]`` where ``K = (K₁, K₂, ..., Kₙ)`` is the kernel size. Filter groups are one-hot such that they effectively extract one element of the patch the kernel currently overlaps with. """ kernel_size_numel = _get_kernel_size_numel(kernel_size) repeat = [in_channels, 1] + [1 for _ in kernel_size] return ( torch.eye(kernel_size_numel, device=device, dtype=dtype) # type: ignore .reshape((kernel_size_numel, 1, *kernel_size)) .repeat(*repeat) ) class Unfold1d(torch.nn.Module): """Extracts sliding local blocks from a batched input tensor. Also known as im2col. PyTorch module that accepts 3d, 4d, and 5d tensors. Acts like ``torch.nn.Unfold`` for a 4d input. Uses one-hot convolution under the hood. See docs at https://pytorch.org/docs/stable/generated/torch.nn.Unfold.html. """ def __init__( self, in_channels: int, kernel_size: Union[int, Tuple[int, ...]], dilation: int = 1, padding: int = 0, stride: int = 1, device: Optional[str] = None, dtype: Optional[_dtype] = None, ): super().__init__() self.in_channels = in_channels self.kernel_size = kernel_size self.dilation = dilation self.padding = padding self.stride = stride # get convolution operation N = 1 self._conv = _get_conv(N) # prepare one-hot convolution kernel kernel_size = _tuple(kernel_size, N) self.kernel_size_numel = _get_kernel_size_numel(kernel_size) self.weight = _make_weight(in_channels, cast(Tuple[int, ...], kernel_size), device, dtype) def forward(self, input: torch.Tensor): batch_size = input.shape[0] unfold = self._conv( input, self.weight, bias=None, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.in_channels, ) return unfold.reshape(batch_size, self.in_channels * self.kernel_size_numel, -1) class LocallyConnected1d(nn.Module): def __init__( self, in_channels: int, out_channels: int, seq_len: int, kernel_size: int, stride: int = 1, padding: Union[int, Tuple[int, int]] = 0, bias: bool = True, device: Optional[str] = None, dtype: Optional[_dtype] = None, ): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.seq_len = seq_len self.kernel_size = kernel_size self.stride = stride self.padding = (padding, padding) if isinstance(padding, int) else padding out_seq_len = (seq_len + sum(self.padding) - (kernel_size - 1) - 1) // stride + 1 self.unfold = Unfold1d(self.in_channels, self.kernel_size, stride=stride) self.weight = Parameter( torch.empty( # Pyright mistakenly thinks that the type of size is int (in_channels, out_channels, kernel_size, out_seq_len), # type: ignore device=device, dtype=dtype, # type: ignore ) ) if bias: self.bias = Parameter((torch.empty(out_channels, out_seq_len))) else: self.register_parameter("bias", None) self.reset_parameters() def reset_parameters(self): # Do normal initialization for now, but can use something smarter nn.init.normal_(self.weight, std=0.1) if self.bias is not None: nn.init.normal_(self.bias, std=0.1) def forward(self, x: torch.Tensor): x = F.pad(x, self.padding) x = self.unfold(x) x = rearrange(x, "b (i k) l -> b i l k", i=self.in_channels) x = torch.einsum("b i l k, i o k l -> bol", x, self.weight) if self.bias is not None: x = x + self.bias return x
EXA-1-master
exa/libraries/farmvibes-ai-main/notebooks/deepmc/notebook_lib/locally_connected.py
from typing import Tuple import pytorch_lightning as pl import torch from notebook_lib.models import DeepMCModel, DeepMCPostModel from torch import Tensor, nn class DeepMCTrain(pl.LightningModule): def __init__( self, first_channels: int, rest_channels: int, first_encoder_channels: int, rest_encoder_channels: Tuple[int, int, int], sequence_length: int, kernel_size: int, num_inputs: int, encoder_layers: int = 2, encoder_models: int = 4, encoder_heads: int = 4, encoder_ff_features: int = 16, encoder_lr: float = 0.1, dropout: float = 0.2, batch_first: bool = True, return_sequence: bool = True, ): super().__init__() self.deepmc = DeepMCModel( first_channels=first_channels, rest_channels=rest_channels, first_encoder_channels=first_encoder_channels, rest_encoder_channels=rest_encoder_channels, sequence_length=sequence_length, kernel_size=kernel_size, num_inputs=num_inputs, encoder_layers=encoder_layers, encoder_features=encoder_models, encoder_heads=encoder_heads, encoder_ff_features=encoder_ff_features, encoder_dropout=encoder_lr, dropout=dropout, batch_first=batch_first, return_sequence=return_sequence, ) self.loss = nn.MSELoss(reduction="sum") def forward(self, x: Tensor): y = self.deepmc(x) return y def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), lr=0.002, eps=1e-07) return optimizer def training_step(self, train_batch: Tensor, _): x, y = train_batch[:6], train_batch[6] y_hat = self.deepmc(x) loss = self.loss(y_hat, y) self.log("train_loss/total", loss) return loss def validation_step(self, validation_batch: Tensor, _): x, y = validation_batch[:6], validation_batch[6] y_hat = self.deepmc(x) loss = self.loss(y_hat, y) self.log("val_loss/total", loss, on_epoch=True) return loss class DeepMCPostTrain(pl.LightningModule): def __init__( self, first_in_features: int, first_out_features: int = 48, second_out_features: int = 96, out_features: int = 24, ): super().__init__() self.deepmc = DeepMCPostModel( first_in_features=first_in_features, first_out_features=first_out_features, second_out_features=second_out_features, out_features=out_features, ) self.loss = nn.L1Loss(reduction="sum") def forward(self, x: Tensor): y = self.deepmc(x) return y def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), lr=0.001) return optimizer def training_step(self, batch: Tensor, _): x, y = batch y_hat = self.deepmc(x) loss = self.loss(y_hat, y) self.log("train_loss/total", loss) return loss def validation_step(self, batch: Tensor, _): x, y = batch y_hat = self.deepmc(x) loss = self.loss(y_hat, y) self.log("val_loss/total", loss, on_epoch=True) return loss
EXA-1-master
exa/libraries/farmvibes-ai-main/notebooks/deepmc/notebook_lib/modules.py
import numpy as np import tensorflow as tf def get_angles(pos, i, d_model): angle_rates = 1 / np.power(10000, (2 * (i // 2)) / np.float32(d_model)) return pos * angle_rates def positional_encoding(position, d_model): angle_rads = get_angles( np.arange(position)[:, np.newaxis], np.arange(d_model)[np.newaxis, :], d_model ) # apply sin to even indices in the array; 2i angle_rads[:, 0::2] = np.sin(angle_rads[:, 0::2]) # apply cos to odd indices in the array; 2i+1 angle_rads[:, 1::2] = np.cos(angle_rads[:, 1::2]) pos_encoding = angle_rads[np.newaxis, ...] return tf.cast(pos_encoding, dtype=tf.float32) # create mask for padding, 0 --> 1 (mask) def create_padding_mask(seq): seq = tf.cast(tf.math.equal(seq, 0), tf.float32) # add extra dimensions to add the padding # to the attention logits. return seq[:, tf.newaxis, tf.newaxis, :] # (batch_size, 1, 1, seq_len) def create_look_ahead_mask(size): mask = 1 - tf.linalg.band_part(tf.ones((size, size)), -1, 0) return mask # (seq_len, seq_len) def scaled_dot_product_attention(q, k, v, mask): """Calculate the attention weights. q, k, v must have matching leading dimensions. k, v must have matching penultimate dimension, i.e.: seq_len_k = seq_len_v. The mask has different shapes depending on its type(padding or look ahead) but it must be broadcastable for addition. Args: q: query shape == (..., seq_len_q, depth) k: key shape == (..., seq_len_k, depth) v: value shape == (..., seq_len_v, depth_v) mask: Float tensor with shape broadcastable to (..., seq_len_q, seq_len_k). Defaults to None. Returns: output, attention_weights """ matmul_qk = tf.matmul(q, k, transpose_b=True) # (..., seq_len_q, seq_len_k) # scale matmul_qk dk = tf.cast(tf.shape(k)[-1], tf.float32) scaled_attention_logits = matmul_qk / tf.math.sqrt(dk) # add the mask to the scaled tensor. if mask is not None: scaled_attention_logits += mask * -1e9 # softmax is normalized on the last axis (seq_len_k) so that the scores # add up to 1. attention_weights = tf.nn.softmax( scaled_attention_logits, axis=-1 ) # (..., seq_len_q, seq_len_k) output = tf.matmul(attention_weights, v) # (..., seq_len_q, depth_v) return output, attention_weights def print_out(q, k, v): temp_out, temp_attn = scaled_dot_product_attention(q, k, v, None) print("Attention weights are:") print(temp_attn) print("Output is:") print(temp_out) """ - Q (query), K (key) and V (value) are split into multiple heads (num_heads) - each tuple (q, k, v) are fed to scaled_dot_product_attention - all attention outputs are concatenated """ class MultiHeadAttention(tf.keras.layers.Layer): def __init__(self, d_model, num_heads): super(MultiHeadAttention, self).__init__() self.num_heads = num_heads self.d_model = d_model assert d_model % self.num_heads == 0 self.depth = d_model // self.num_heads self.wq = tf.keras.layers.Dense(d_model) self.wk = tf.keras.layers.Dense(d_model) self.wv = tf.keras.layers.Dense(d_model) self.dense = tf.keras.layers.Dense(d_model) def split_heads(self, x, batch_size): """Split the last dimension into (num_heads, depth). Transpose the result such that the shape is (batch_size, num_heads, seq_len, depth) """ x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth)) return tf.transpose(x, perm=[0, 2, 1, 3]) def call(self, v, k, q, mask): batch_size = tf.shape(q)[0] q = self.wq(q) # (batch_size, seq_len, d_model) k = self.wk(k) # (batch_size, seq_len, d_model) v = self.wv(v) # (batch_size, seq_len, d_model) q = self.split_heads(q, batch_size) # (batch_size, num_heads, seq_len_q, depth) k = self.split_heads(k, batch_size) # (batch_size, num_heads, seq_len_k, depth) v = self.split_heads(v, batch_size) # (batch_size, num_heads, seq_len_v, depth) scaled_attention, attention_weights = scaled_dot_product_attention(q, k, v, mask) scaled_attention = tf.transpose( scaled_attention, perm=[0, 2, 1, 3] ) # (batch_size, seq_len_q, num_heads, depth) concat_attention = tf.reshape( scaled_attention, (batch_size, -1, self.d_model) ) # (batch_size, seq_len_q, d_model) output = self.dense(concat_attention) # (batch_size, seq_len_q, d_model) return output, attention_weights def point_wise_feed_forward_network(d_model, dff): return tf.keras.Sequential( [ tf.keras.layers.Dense(dff, activation="relu"), # (batch_size, seq_len, dff) tf.keras.layers.Dense(d_model), # (batch_size, seq_len, d_model) ] ) class EncoderLayer(tf.keras.layers.Layer): def __init__(self, d_model, num_heads, dff, rate=0.1): super(EncoderLayer, self).__init__() self.mha = MultiHeadAttention(d_model, num_heads) self.ffn = point_wise_feed_forward_network(d_model, dff) self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6) self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6) self.dropout1 = tf.keras.layers.Dropout(rate) self.dropout2 = tf.keras.layers.Dropout(rate) def call(self, x, training, mask): attn_output, _ = self.mha(x, x, x, mask) # (batch_size, input_seq_len, d_model) attn_output = self.dropout1(attn_output, training=training) out1 = self.layernorm1(x + attn_output) # (batch_size, input_seq_len, d_model) ffn_output = self.ffn(out1) # (batch_size, input_seq_len, d_model) ffn_output = self.dropout2(ffn_output, training=training) out2 = self.layernorm2(out1 + ffn_output) # (batch_size, input_seq_len, d_model) return out2 class DecoderLayer(tf.keras.layers.Layer): def __init__(self, d_model, num_heads, dff, rate=0.1): super(DecoderLayer, self).__init__() self.mha1 = MultiHeadAttention(d_model, num_heads) self.mha2 = MultiHeadAttention(d_model, num_heads) self.ffn = point_wise_feed_forward_network(d_model, dff) self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6) self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6) self.layernorm3 = tf.keras.layers.LayerNormalization(epsilon=1e-6) self.dropout1 = tf.keras.layers.Dropout(rate) self.dropout2 = tf.keras.layers.Dropout(rate) self.dropout3 = tf.keras.layers.Dropout(rate) def call(self, x, enc_output, training, look_ahead_mask, padding_mask): # enc_output.shape == (batch_size, input_seq_len, d_model) attn1, attn_weights_block1 = self.mha1( x, x, x, look_ahead_mask ) # (batch_size, target_seq_len, d_model) attn1 = self.dropout1(attn1, training=training) out1 = self.layernorm1(attn1 + x) attn2, attn_weights_block2 = self.mha2( enc_output, enc_output, out1, padding_mask ) # (batch_size, target_seq_len, d_model) attn2 = self.dropout2(attn2, training=training) out2 = self.layernorm2(attn2 + out1) # (batch_size, target_seq_len, d_model) ffn_output = self.ffn(out2) # (batch_size, target_seq_len, d_model) ffn_output = self.dropout3(ffn_output, training=training) out3 = self.layernorm3(ffn_output + out2) # (batch_size, target_seq_len, d_model) return out3, attn_weights_block1, attn_weights_block2 class Encoder(tf.keras.layers.Layer): def __init__(self, num_layers, d_model, num_heads, dff, maximum_position_encoding, rate=0.1): super(Encoder, self).__init__() self.d_model = d_model self.num_layers = num_layers self.embedding = tf.keras.layers.Dense(d_model, activation="relu") self.pos_encoding = positional_encoding(maximum_position_encoding, self.d_model) self.enc_layers = [EncoderLayer(d_model, num_heads, dff, rate) for _ in range(num_layers)] self.dropout = tf.keras.layers.Dropout(rate) def call(self, x, training, mask): seq_len = tf.shape(x)[1] # print("Encoder:", x.shape) # adding embedding and position encoding. x = self.embedding(x) # (batch_size, input_seq_len, d_model) x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32)) x += self.pos_encoding[:, :seq_len, :] x = self.dropout(x, training=training) for i in range(self.num_layers): x = self.enc_layers[i](x, training, mask) return x # (batch_size, input_seq_len, d_model) class Decoder(tf.keras.layers.Layer): def __init__(self, num_layers, d_model, num_heads, dff, maximum_position_encoding, rate=0.1): super(Decoder, self).__init__() self.d_model = d_model self.num_layers = num_layers self.embedding = tf.keras.layers.Dense(d_model, activation="relu") self.pos_encoding = positional_encoding(maximum_position_encoding, d_model) self.dec_layers = [DecoderLayer(d_model, num_heads, dff, rate) for _ in range(num_layers)] self.dropout = tf.keras.layers.Dropout(rate) def call(self, x, enc_output, training, look_ahead_mask, padding_mask): seq_len = tf.shape(x)[1] attention_weights = {} x = self.embedding(x) # (batch_size, target_seq_len, d_model) x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32)) x += self.pos_encoding[:, :seq_len, :] x = self.dropout(x, training=training) for i in range(self.num_layers): x, block1, block2 = self.dec_layers[i]( x, enc_output, training, look_ahead_mask, padding_mask ) attention_weights["decoder_layer{}_block1".format(i + 1)] = block1 attention_weights["decoder_layer{}_block2".format(i + 1)] = block2 return x, attention_weights class Transformer(tf.keras.Model): def __init__( self, num_layers, d_model, num_heads, dff, target_vocab_size, pe_input, pe_target, rate=0.1 ): super(Transformer, self).__init__() self.encoder = Encoder(num_layers, d_model, num_heads, dff, pe_input, rate) self.decoder = Decoder(num_layers, d_model, num_heads, dff, pe_target, rate) self.final_layer = tf.keras.layers.Dense(target_vocab_size) def call(self, inp, tar, training, enc_padding_mask, look_ahead_mask, dec_padding_mask): enc_output = self.encoder( inp, training, enc_padding_mask ) # (batch_size, inp_seq_len, d_model) # dec_output.shape == (batch_size, tar_seq_len, d_model) dec_output, attention_weights = self.decoder( tar, enc_output, training, look_ahead_mask, dec_padding_mask ) final_output = self.final_layer(dec_output) # (batch_size, tar_seq_len, target_vocab_size) return final_output, attention_weights class GLU(tf.keras.layers.Layer): def __init__(self, input_channel, output_channel): super(GLU, self).__init__() self.linear_left = tf.keras.layers.Dense(output_channel) self.linear_right = tf.keras.layers.Dense(output_channel) def call(self, x): return tf.math.multiply( self.linear_left(x), tf.keras.activations.sigmoid(self.linear_right(x)) ) class FFT(tf.keras.layers.Layer): def __init__(self, time_step, order, output_channel): super(FFT, self).__init__() self.time_step = time_step self.order = order self.output_channel = output_channel self.GLUs = [] # nn.ModuleList() for i in range(3): if i == 0: self.GLUs.append( GLU(self.time_step * self.order, self.time_step * self.output_channel) ) self.GLUs.append( GLU(self.time_step * self.order, self.time_step * self.output_channel) ) elif i == 1: self.GLUs.append( GLU(self.time_step * self.output_channel, self.time_step * self.output_channel) ) self.GLUs.append( GLU(self.time_step * self.output_channel, self.time_step * self.output_channel) ) else: self.GLUs.append( GLU(self.time_step * self.output_channel, self.time_step * self.output_channel) ) self.GLUs.append( GLU(self.time_step * self.output_channel, self.time_step * self.output_channel) ) def call(self, x): # x should be (b, seq_len, units) x = tf.keras.layers.Permute((2, 1))(x) ffted = tf.signal.fft(tf.cast(x, dtype=tf.complex64)) # (b, units, seq_len) real = tf.math.real(ffted) # [b, units, seq_len] img = tf.math.imag(ffted) for i in range(3): real = self.GLUs[i * 2](real) img = self.GLUs[2 * i + 1](img) time_step_as_inner = tf.dtypes.complex(real, img) iffted = tf.signal.ifft(time_step_as_inner) # [b, k, node_cnt, 48] iffted = tf.cast(iffted, dtype=tf.float32) iffted = tf.keras.layers.Permute((2, 1))(iffted) return iffted
EXA-1-master
exa/libraries/farmvibes-ai-main/notebooks/deepmc/notebook_lib/transformer_models_ts.py
from typing import Optional import numpy as np import torch import torch.nn as nn from numpy._typing import NDArray from torch import Tensor from torch.nn import Sequential # Python 3.8 and subscripted generics require type: ignore def get_angles(pos: NDArray, i: NDArray, d_model: int): # type: ignore angle_rates = 1 / np.power(10000, (2 * (i // 2)) / np.float32(d_model)) return pos * angle_rates def positional_encoding(position: int, d_model: int) -> Tensor: angle_rads = get_angles( np.arange(position)[:, np.newaxis], np.arange(d_model)[np.newaxis, :], d_model ) # apply sin to even indices in the array; 2i angle_rads[:, 0::2] = np.sin(angle_rads[:, 0::2]) # apply cos to odd indices in the array; 2i+1 angle_rads[:, 1::2] = np.cos(angle_rads[:, 1::2]) pos_encoding = angle_rads[np.newaxis, ...] return torch.tensor(pos_encoding, dtype=torch.float32) def attn( q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, mask: Optional[torch.Tensor] = None ) -> Tensor: sim = torch.einsum("b i d, b j d -> b i j", q, k) if mask is not None: max_neg_value = -torch.finfo(sim.dtype).max sim.masked_fill_(~mask, max_neg_value) attn = sim.softmax(dim=-1) out = torch.einsum("b i j, b j d -> b i d", attn, v) return out def point_wise_feed_forward_network(in_features: int, out_features: int, d_ff: int) -> Sequential: return Sequential( nn.Linear(in_features, d_ff), nn.ReLU(), nn.Linear(d_ff, out_features), )
EXA-1-master
exa/libraries/farmvibes-ai-main/notebooks/deepmc/notebook_lib/helpers.py
EXA-1-master
exa/libraries/farmvibes-ai-main/notebooks/weed_detection/__init__.py
EXA-1-master
exa/libraries/farmvibes-ai-main/notebooks/heatmaps/notebook_lib/__init__.py
import re from datetime import datetime from typing import Any, Dict, List, Tuple, Union, cast from zipfile import ZipFile import geopandas as gpd import pandas as pd from geopandas import GeoSeries from matplotlib import pyplot as plt from shapely import geometry as shpg from vibe_core.client import get_default_vibe_client from vibe_core.data import ExternalReferenceList, Raster from vibe_core.data.core_types import BaseVibeDict, DataVibe def view_output(archive_path: str, title: str): all = [] column_name = "layer" match_str = "cluster(.*).shp" z = ZipFile(archive_path) output_shapes = [ o for o in z.namelist() if o.endswith(".shp") and o != "cluster0.shp" and o != "cluster0.0.shp" ] for o in output_shapes: f = gpd.read_file(archive_path + "!" + o) f[column_name] = cast("re.Match[str]", re.search(match_str, o)).group(1) all.append(f) all = pd.concat(all) all[column_name] = all[column_name].astype(float) _, ax = plt.subplots(figsize=(7, 6)) all.plot(ax=ax, column=column_name, legend=True, cmap="viridis") plt.axis("off") plt.title(title) def create_heatmap( imagery: Raster, geojson_url: str, farm_boundary: str, parameters: Dict[str, Any] ): now = datetime.now() # create id geom_url_hash = str(hash(geojson_url)) # read farm boundary data_frame = gpd.read_file(farm_boundary) geometry = shpg.mapping(data_frame["geometry"][0]) # submit request to farmVibes cluster sample_inputs = ExternalReferenceList( id=geom_url_hash, time_range=(now, now), geometry=geometry, assets=[], urls=[geojson_url] ) inputs = {"input_raster": imagery, "input_samples": sample_inputs} workflow = "farm_ai/agriculture/heatmap_sensor" name = "heatmap_example" out = submit_inputs_request(inputs, parameters, workflow, name) dv = cast(List[DataVibe], out["result"])[0] asset = dv.assets[0] return asset.path_or_url def submit_inputs_request( inputs: Union[Dict[str, Any], ExternalReferenceList], parameters: Dict[str, Any], workflow: str, name: str, ) -> BaseVibeDict: client = get_default_vibe_client() run = client.run( workflow=workflow, name=name, input_data=inputs, parameters=parameters, ) # display execution results run.monitor(refresh_time_s=5) if run.status == "done": assert run.output, "No output found in completed run" return run.output else: raise Exception(client.describe_run(run.id)) def get_raster_from_cluster( farm_boundary: str, time_range: Tuple[datetime, datetime], sr_id: int = 32611 ) -> Union[Raster, None]: client = get_default_vibe_client() # read farm boundary data_frame = gpd.read_file(farm_boundary) geometry = GeoSeries([data_frame["geometry"][0]], crs=sr_id).to_crs(4326)[0] run = client.run( workflow="data_ingestion/sentinel2/preprocess_s2", name="image_example", geometry=geometry, # type: ignore time_range=time_range, ) # display execution results run.monitor(refresh_time_s=5) if run.status == "done": assert run.output, "No output found in completed run" return run.output["raster"][0] # type: ignore else: raise Exception(client.describe_run(run.id)) def get_raster_from_external(imagery_url: str, farm_boundary: str, sr_id: int = 32611) -> Raster: url_hash = str(hash(imagery_url)) now = datetime.now() # read farm boundary data_frame = gpd.read_file(farm_boundary) geometry = GeoSeries([data_frame["geometry"][0]], crs=sr_id).to_crs(4326)[0] geometry = shpg.mapping(geometry) inputs = ExternalReferenceList( id=url_hash, time_range=(now, now), geometry=geometry, assets=[], urls=[imagery_url] ) out = submit_inputs_request( inputs=inputs, parameters={}, workflow="data_ingestion/user_data/ingest_raster", name="image_example", ) return cast(List[Raster], out["raster"])[0]
EXA-1-master
exa/libraries/farmvibes-ai-main/notebooks/heatmaps/notebook_lib/utils.py
from setuptools import setup if __name__ == "__main__": setup()
EXA-1-master
exa/libraries/farmvibes-ai-main/src/vibe_core/setup.py
from dataclasses import dataclass from datetime import datetime from typing import Any, Dict, List, Tuple, cast import pytest from shapely import geometry as shpg from vibe_core.data import CategoricalRaster, Raster, RasterSequence from vibe_core.data.core_types import BaseVibe, DataVibe, DataVibeType, TimeSeries from vibe_core.data.utils import ( StacConverter, get_most_specific_type, serialize_input, serialize_stac, ) @dataclass class BaseTest(BaseVibe): int_field: int str_field: str def serialize_vibe(vibe: BaseVibe): converter = StacConverter() return serialize_stac(converter.to_stac_item(vibe)) @pytest.fixture def input_pair(request: pytest.FixtureRequest): param: str = request.param # type:ignore if param == "base": x = BaseTest(0, "string") return x, serialize_vibe(x) now = datetime.now() geom = shpg.mapping(shpg.box(0, 0, 1, 1)) kwargs = {"id": "1", "time_range": (now, now), "geometry": geom, "assets": []} if param == "vibe": x = DataVibe(**kwargs) elif param == "raster": x = Raster(**kwargs, bands={}) else: raise ValueError(f"Unrecognized parameter {param}") return x, serialize_vibe(x) @pytest.mark.parametrize("repeats", (1, 10)) @pytest.mark.parametrize("input_pair", ("base", "vibe", "raster"), indirect=True) def test_serialize_basevibe(input_pair: Tuple[BaseVibe, Dict[str, Any]], repeats: int): input, serial = input_pair assert serialize_input(input) == serial input_list = [input for _ in range(repeats)] serial_list = [serial for _ in range(repeats)] assert serialize_input(input_list) == serial_list assert serialize_input({"item": input, "list": input_list}) == { "item": serial, "list": serial_list, } def test_get_most_specific_type(): assert get_most_specific_type([DataVibe, DataVibe]) is DataVibe assert get_most_specific_type([DataVibe, TimeSeries]) is TimeSeries assert get_most_specific_type([DataVibe, Raster]) is Raster assert get_most_specific_type([CategoricalRaster, Raster]) is CategoricalRaster assert get_most_specific_type([DataVibe, Raster, CategoricalRaster]) is CategoricalRaster def test_most_specific_type_incompatible_fails(): with pytest.raises(ValueError): get_most_specific_type([DataVibe, Raster, TimeSeries]) with pytest.raises(ValueError): get_most_specific_type([Raster, TimeSeries]) with pytest.raises(ValueError): get_most_specific_type([RasterSequence, CategoricalRaster]) def test_most_specific_type_container(): assert get_most_specific_type(cast(List[DataVibeType], [DataVibe, List[DataVibe]])) is DataVibe assert ( get_most_specific_type(cast(List[DataVibeType], [List[DataVibe], List[DataVibe]])) is List[DataVibe] ) assert ( get_most_specific_type(cast(List[DataVibeType], [List[CategoricalRaster], Raster])) is CategoricalRaster ) assert ( get_most_specific_type(cast(List[DataVibeType], [List[CategoricalRaster], List[Raster]])) is List[CategoricalRaster] ) @pytest.mark.parametrize("input_pair", ("base", "vibe", "raster"), indirect=True) def test_serialize_deserialize_stac(input_pair: Tuple[BaseVibe, Dict[str, Any]]): input, serial = input_pair converter = StacConverter() serialized = converter.to_stac_item(input) output = converter.from_stac_item(serialized) assert input == output assert serial == serialize_stac(serialized)
EXA-1-master
exa/libraries/farmvibes-ai-main/src/vibe_core/tests/test_utils.py
from vibe_core.data import data_registry, DataVibe def test_register_type(): class InternalFakeType(DataVibe): pass assert data_registry.retrieve("InternalFakeType") == InternalFakeType
EXA-1-master
exa/libraries/farmvibes-ai-main/src/vibe_core/tests/test_register.py
import json from typing import Any, Dict, List, cast from urllib.parse import urljoin import msal import requests from requests.exceptions import HTTPError class ADMAgClient: """Client for Azure Data Manager for Agriculture (ADMAg) API. :param base_url: The base URL for the ADMAg API. :param api_version: The API version to be used. :param client_id: The client ID. :param client_secret: The client secret. :param authority: The URI of the identity provider. :param default_scope: The scope of the access request. """ DEFAULT_TIMEOUT = 120 """Default timeout for requests.""" NEXT_PAGES_LIMIT = 100000 """Maximum number of pages to retrieve in a single request.""" CONTENT_TAG = "value" """Tag for the content of the response.""" LINK_TAG = "nextLink" """Tag for the next link of the response.""" def __init__( self, base_url: str, api_version: str, client_id: str, client_secret: str, authority: str, default_scope: str, ): self.token = self.get_token( client_id=client_id, client_secret=client_secret, authority=authority, default_scope=default_scope, ) self.api_version = api_version self.base_url = base_url self.session = requests.Session() self.session.headers.update(self.header()) def get_token(self, client_id: str, client_secret: str, authority: str, default_scope: str): """ Generates the ADMAg access token to be used before each call. :param client_id: The client ID. :param client_secret: The client secret. :param authority: The URI of the identity provider. :param default_scope: The scope of the access request. :return: The access token as a string. :raises Exception: If error retrieving token. """ app = msal.ConfidentialClientApplication( client_id=client_id, client_credential=client_secret, authority=authority ) # Initialize the token to access admag resources # default value is none, if token for application is alread initialized app.acquire_token_silent(scopes=[default_scope], account=None) token_result = cast(Dict[str, Any], app.acquire_token_for_client(scopes=default_scope)) if "access_token" in token_result: return token_result["access_token"] else: message = { "error": token_result.get("error"), "description": token_result.get("error_description"), "correlationId": token_result.get("correlation_id"), } raise Exception(message) def header(self) -> Dict[str, str]: """Generates a header containing authorization for ADMAg API requests. :return: A dictionary containing the header for the API requests. """ header: Dict[str, str] = { "Authorization": "Bearer " + self.token, "Content-Type": "application/merge-patch+json", } return header def _request(self, method: str, endpoint: str, *args: Any, **kwargs: Any): response = self.session.request(method, urljoin(self.base_url, endpoint), *args, **kwargs) try: r = json.loads(response.text) except json.JSONDecodeError: r = response.text try: response.raise_for_status() except HTTPError as e: error_message = r.get("message", "") if isinstance(r, dict) else r msg = f"{e}. {error_message}" raise HTTPError(msg, response=e.response) return cast(Any, r) def _get(self, endpoint: str, params: Dict[str, Any] = {}): request_params = {"api-version": self.api_version} request_params.update(params) response = self._request( "GET", endpoint, params=request_params, timeout=self.DEFAULT_TIMEOUT, ) visited_next_links = set() if self.CONTENT_TAG in response: composed_response = {self.CONTENT_TAG: response[self.CONTENT_TAG]} next_link = "" if self.LINK_TAG not in response else response[self.LINK_TAG] next_link_index = 0 while next_link: if next_link in visited_next_links: raise RuntimeError(f"Repeated nextLink {next_link} in ADMAg get request") if next_link_index >= self.NEXT_PAGES_LIMIT: raise RuntimeError(f"Next pages limit {self.NEXT_PAGES_LIMIT} exceded") tmp_response = self._request( "GET", next_link, timeout=self.DEFAULT_TIMEOUT, ) if self.CONTENT_TAG in tmp_response: composed_response[self.CONTENT_TAG].extend(tmp_response[self.CONTENT_TAG]) visited_next_links.add(next_link) next_link_index = next_link_index + 1 next_link = "" if self.LINK_TAG not in tmp_response else tmp_response[self.LINK_TAG] response = composed_response return response def get_seasonal_fields(self, farmer_id: str, params: Dict[str, Any] = {}): """Retrieves the seasonal fields for a given farmer. :param farmer_id: The ID of the farmer. :param params: Additional parameters to be passed to the request. Defaults to {}. :return: The information for each seasonal fields. """ endpoint = f"/farmers/{farmer_id}/seasonal-fields" request_params = {"api-version": self.api_version} request_params.update(params) return self._get( endpoint=endpoint, params=request_params, ) def get_field(self, farmer_id: str, field_id: str): """ Retrieves the field information for a given farmer and field. :param farmer_id: The ID of the farmer. :param field_id: The ID of the field. :return: The field information. """ endpoint = f"/farmers/{farmer_id}/fields/{field_id}" return self._get(endpoint) def get_seasonal_field(self, farmer_id: str, seasonal_field_id: str): """Retrieves the information of a seasonal field for a given farmer. :param farmer_id: The ID of the farmer. :param seasonal_field_id: The ID of the seasonal field. :return: The seasonal field information. """ endpoint = f"/farmers/{farmer_id}/seasonal-fields/{seasonal_field_id}" return self._get(endpoint) def get_boundary(self, farmer_id: str, boundary_id: str): """Retrieves the information of a boundary for a given farmer. :param farmer_id: The ID of the farmer. :param boundary_id: The ID of the boundary. :return: The boundary information. """ endpoint = f"farmers/{farmer_id}/boundaries/{boundary_id}" return self._get(endpoint) def get_season(self, season_id: str): """Retrieves season information with a given id. :param season_id: The id of the season to retrieve. :return: The season data. """ endpoint = f"/seasons/{season_id}" return self._get(endpoint) def get_operation_info( self, farmer_id: str, associated_boundary_ids: List[str], operation_name: str, min_start_operation: str, max_end_operation: str, sources: List[str] = [], ): """ Retrieves the information of a specified operation for a given farmer. This method will return information about the specified operation name, in the specified time range, for the given farmer and associated boundary IDs. :param farmer_id: The ID of the farmer. :param associated_boundary_ids: The IDs of the boundaries associated to the operation. :param operation_name: The name of the operation. :param min_start_operation: The minimum start date of the operation. :param max_end_operation: The maximum end date of the operation. :param sources: (optional) The sources of the operation. :return: The operation information. """ endpoint = f"/farmers/{farmer_id}/{operation_name}" params = { "api-version": self.api_version, "associatedBoundaryIds": associated_boundary_ids, "minOperationStartDateTime": min_start_operation, "maxOperationEndDateTime": max_end_operation, } if sources: params["sources"] = sources return self._get(endpoint, params=params) def get_harvest_info( self, farmer_id: str, associated_boundary_ids: List[str], min_start_operation: str, max_end_operation: str, ): """Retrieves the harvest information for a given farmer. This method will return the harvest information for a given farmer, associated with the provided boundary ids, between the start and end operation dates specified. :param farmer_id: ID of the farmer. :param associated_boundary_ids: List of associated boundary IDs. :param min_start_operation: The minimum start date of the operation. :param max_end_operation: The maximum end date of the operation. :return: Dictionary with harvest information. """ return self.get_operation_info( farmer_id=farmer_id, associated_boundary_ids=associated_boundary_ids, operation_name="harvest-data", min_start_operation=min_start_operation, max_end_operation=max_end_operation, ) def get_fertilizer_info( self, farmer_id: str, associated_boundary_ids: List[str], min_start_operation: str, max_end_operation: str, ): """Retrieves the fertilizer information for a given farmer. This method will return the fertilizer information for a given farmer, associated with the provided boundary ids, between the start and end operation dates specified. :param farmer_id: ID of the farmer. :param associated_boundary_ids: List of associated boundary IDs. :param min_start_operation: The minimum start date of the operation. :param max_end_operation: The maximum end date of the operation. :return: Dictionary with fertilizer information. """ return self.get_operation_info( farmer_id=farmer_id, associated_boundary_ids=associated_boundary_ids, operation_name="application-data", min_start_operation=min_start_operation, max_end_operation=max_end_operation, sources=["Fertilizer"], ) def get_organic_amendments_info( self, farmer_id: str, associated_boundary_ids: List[str], min_start_operation: str, max_end_operation: str, ): """Retrieves the organic amendments information for a given farmer. This method will return the organic amendments information for a given farmer, associated with the provided boundary ids, between the start and end operation dates specified. :param farmer_id: ID of the farmer. :param associated_boundary_ids: List of associated boundary IDs. :param min_start_operation: The minimum start date of the operation. :param max_end_operation: The maximum end date of the operation. :return: Dictionary with organic amendments information. """ return self.get_operation_info( farmer_id=farmer_id, associated_boundary_ids=associated_boundary_ids, operation_name="application-data", min_start_operation=min_start_operation, max_end_operation=max_end_operation, sources=["Omad"], ) def get_tillage_info( self, farmer_id: str, associated_boundary_ids: List[str], min_start_operation: str, max_end_operation: str, ): """Retrieves the tillage information for a given farmer. This method will return the tillage information for a given farmer, associated with the provided boundary ids, between the start and end operation dates specified. :param farmer_id: ID of the farmer. :param associated_boundary_ids: List of associated boundary IDs. :param min_start_operation: The minimum start date of the operation. :param max_end_operation: The maximum end date of the operation. :return: Dictionary with tillage information. """ return self.get_operation_info( farmer_id=farmer_id, associated_boundary_ids=associated_boundary_ids, operation_name="tillage-data", min_start_operation=min_start_operation, max_end_operation=max_end_operation, )
EXA-1-master
exa/libraries/farmvibes-ai-main/src/vibe_core/vibe_core/admag_client.py
from datetime import datetime from typing import Any, Dict, List, Optional, Tuple, Union from collections import Counter from dateutil.tz import tzlocal from dateutil.tz.tz import tzfile from rich.console import Console from rich.highlighter import NullHighlighter from rich.live import Live from rich.markup import escape from rich.padding import Padding from rich.table import Table from rich.progress_bar import ProgressBar from vibe_core.datamodel import RunDetails, RunStatus, TaskDescription LEFT_BORDER_PADDING = (0, 0, 0, 4) CONSOLE_WIDTH = 100 STATUS_STR_MAP = { RunStatus.pending: "[yellow]pending[/]", RunStatus.running: "[cyan]running[/]", RunStatus.failed: "[red]failed[/]", RunStatus.done: "[green]done[/]", RunStatus.queued: "[yellow]queued[/]", RunStatus.cancelled: "[yellow]cancelled[/]", RunStatus.cancelling: "[yellow]cancelling[/]", } FETCHING_INFO_STR = ":hourglass_not_done: [yellow]Fetching information...[/]" def strftimedelta(start: datetime, end: datetime) -> str: """Returns the time delta between two datetimes as a string in the format 'HH:MM:SS'. :param start: Start datetime object. :param end: End datetime object. :return: The timedelta formatted as a 'HH:MM:SS' string. """ tdelta = end - start hours, rem = divmod(int(tdelta.total_seconds()), 3600) minutes, seconds = divmod(rem, 60) return f"{hours:02d}:{minutes:02d}:{seconds:02d}" def format_typing(type_dict: Dict[str, str]) -> Dict[str, str]: """Formats the types in a type dictionary. This function takes a dictionary with type strings and formats it, replacing the "typing." prefix in the values with an empty string. :param type_dict: The type dictionary to format. :return: The formatted dictionary. """ return {k: v.replace("typing.", "") for k, v in type_dict.items()} class VibeWorkflowDocumenter: """Documenter class for :class:`VibeWorkflow` objects. This class implements the logic for printing/formatting information about workflows, including formatting the text elements and adding styling tags. It contains the methods to print out a description of the workflow with its sources, sinks and parameters. :param name: The name of the workflow. :param sources: Dictionary with source names and types. :param sinks: Dictionary with sink names and types. :param parameters: Dictionary with parameter names and default values. :param description: A :class:`TaskDescription` object containing the short and long description of the workflow. """ TITLE_STR = "[bold green]Workflow:[/] [bold underline dodger_blue2]{}[/]" DESCRIPTION_SECTION_STR = "\n[bold green]Description:[/]" DESCRIPTION_STR = "{short_description} {long_description}" ITEM_SECTION_STR = "\n[bold green]{}:[/]" ITEM_STR = "- [bold]{name}[/]{additional_info}{description}" def __init__( self, name: str, sources: Dict[str, str], sinks: Dict[str, str], parameters: Dict[str, Any], description: TaskDescription, ): self.wf_name = name self.parameters = parameters self.description = description self.sources = format_typing(sources) self.sinks = format_typing(sinks) self.console = Console(width=CONSOLE_WIDTH, highlighter=NullHighlighter()) self.console.clear() @property def formatted_parameters(self) -> Dict[str, str]: """Returns a dictionary of workflow's parameters with their default values. :return: A dictionary containing the formatted parameters and default values. """ return { param_name: "default: task defined" if isinstance(param_value, list) else f"default: {param_value}" for param_name, param_value in self.parameters.items() } def _print_header(self): self.console.print(self.TITLE_STR.format(self.wf_name)) self.console.print(self.DESCRIPTION_SECTION_STR) desc = escape( self.DESCRIPTION_STR.format( short_description=self.description.short_description, long_description=self.description.long_description, ) ) desc = Padding(desc, LEFT_BORDER_PADDING) self.console.print(desc) def _print_sources(self, section_name: str = "Sources"): self._print_items_description(self.description.inputs, section_name, self.sources) def _print_sinks(self, section_name: str = "Sinks"): self._print_items_description(self.description.outputs, section_name, self.sinks) def _print_parameters(self, section_name: str = "Parameters"): if self.parameters: desc = { k: v if not isinstance(v, list) else "" for k, v in self.description.parameters.items() } self._print_items_description(desc, section_name, self.formatted_parameters) def _print_tasks(self, section_name: str = "Tasks"): task_dict = {task_name: "" for task_name in self.description.task_descriptions.keys()} self._print_items_description(self.description.task_descriptions, section_name, task_dict) def _print_items_description( self, description_dict: Dict[str, str], section_name: str, additional_info: Dict[str, str] = {}, ): self.console.print(self.ITEM_SECTION_STR.format(section_name)) for item_name, item_info in additional_info.items(): item_description = description_dict.get(item_name, "") item_description = f": {item_description}" if item_description else "" item_info = f" ([blue]{escape(item_info)}[/])" if item_info else "" item_doc = self.ITEM_STR.format( name=item_name, additional_info=item_info, description=escape(item_description) ).strip(":") item_doc = Padding(item_doc, LEFT_BORDER_PADDING) self.console.print(item_doc) def print_documentation(self): """Prints the full documentation of the workflow. This method prints the header of the documentation, the sources, the sinks, the parameters and the tasks provided in the parsed workflow yaml file. """ self._print_header() self._print_sources() self._print_sinks() self._print_parameters() self._print_tasks() class VibeWorkflowRunMonitor: """Class that abstracts the formatting of workflow run status :param api_time_zone: The time zone of the API server. :param detailed_task_info: If True, detailed information about task progress will be included in the output (defaults to False). """ TITLE_STR = ( "[not italic]:earth_americas: " "FarmVibes.AI :earth_africa: " "[dodger_blue3]{}[/] :earth_asia: \n" "Run name: [dodger_blue3]{}[/]\n" "Run id: [dark_green]{}[/]\n" "Run status: {}\n" "Run duration: [dodger_blue3]{}[/][/]" ) WARNING_HEADER_STR = "\n[yellow]:warning: Warnings :warning:[/]" WARNING_STR = "\n{}\n[yellow]:warning: :warning: :warning:[/]" TABLE_FIELDS = [ "Task Name", "Status", "Start Time", "End Time", "Duration", ] SIMPLE_COMLUMN_NAME = "Progress" DETAILED_COLUMN_NAME = "Subtasks\n([green]D[/]/[blue]R[/]/[yellow]Q[/]/[yellow]P[/]/[red]F[/])" TIME_FORMAT = "%Y/%m/%d %H:%M:%S" TIME_FORMAT_WITH_TZ = "%Y/%m/%d %H:%M:%S %Z" PBAR_WIDTH = 20 def __init__(self, api_time_zone: tzfile, detailed_task_info: bool = False): self.api_tz = api_time_zone self.detailed_task_info = detailed_task_info self.column_names = self.TABLE_FIELDS + [ self.DETAILED_COLUMN_NAME if self.detailed_task_info else self.SIMPLE_COMLUMN_NAME ] self.client_tz = tzlocal() self._populate_table() console = Console() console.clear() self.live_context = Live(self.table, console=console, screen=False, auto_refresh=False) def _get_time_str(self, time: Optional[datetime]) -> str: if time is None: return "N/A".center(len(self.TIME_FORMAT), " ") return ( time.replace(tzinfo=self.api_tz) .astimezone(tz=self.client_tz) .strftime(self.TIME_FORMAT) ) def _render_subtask_info(self, task_info: RunDetails) -> Union[Table, str]: if task_info.subtasks is None: return "-" counts = Counter([RunStatus(r["status"]) for r in task_info.subtasks]) if self.detailed_task_info: # Let's just print out informative text return ( f"[green]{counts[RunStatus.done]}[/]/[blue]{counts[RunStatus.running]}[/]/" f"[yellow]{counts[RunStatus.queued]}[/]/" f"[yellow]{counts[RunStatus.pending]}[/]/[red]{counts[RunStatus.failed]}[/]" ) # Let's render a nice looking progress bar total = sum(counts.values()) subtasks = Table( "bar", "text", show_edge=False, show_footer=False, show_header=False, show_lines=False, box=None, # Remove line between columns ) subtasks.add_row( ProgressBar(total=total, completed=counts[RunStatus.done], width=self.PBAR_WIDTH), f"{counts[RunStatus.done]}/{total}", ) return subtasks def _add_row(self, task_name: str, task_info: RunDetails): start_time_str = self._get_time_str(task_info.start_time) end_time_str = self._get_time_str(task_info.end_time) duration = strftimedelta( self.time_or_now(task_info.start_time), self.time_or_now(task_info.end_time) ) subtasks = self._render_subtask_info(task_info) self.table.add_row( task_name, STATUS_STR_MAP[task_info.status], start_time_str, end_time_str, duration, subtasks, ) def _init_table(self, monitored_warnings: List[Union[str, Warning]] = []): """Creates a new table and populate with wf-agnostic info""" current_time_caption = warnings_caption = "" self.table = Table(show_footer=False) for col_name in self.column_names: self.table.add_column(col_name) # Build current time caption current_time_caption = ( f"Last update: {datetime.now(tz=self.client_tz).strftime(self.TIME_FORMAT_WITH_TZ)}" ) # Build monitored warnings caption if monitored_warnings: warnings_caption = "".join( [self.WARNING_HEADER_STR] + [self.WARNING_STR.format(w) for w in monitored_warnings] ) self.table.caption = current_time_caption + warnings_caption def time_or_now(self, time: Optional[datetime]) -> datetime: """ Converts a given datetime object to the client's timezone. If no datetime object is provided, the current time is used. :param time: Datetime object to convert to the client's timezone. :return: The datetime object converted to the client's timezone. """ return ( time.replace(tzinfo=self.api_tz).astimezone(tz=self.client_tz) if time is not None else datetime.now(tz=self.client_tz) ) def _get_run_duration( self, sorted_tasks: List[Tuple[str, RunDetails]], run_status: RunStatus ) -> str: run_duration: str = ":hourglass_not_done:" if sorted_tasks: # Get the start time from the first submitted task run_start_time = self.time_or_now(sorted_tasks[-1][1].submission_time) # Get the end time of the last task (if finished) or current time otherwise run_end_time = ( self.time_or_now(sorted_tasks[0][1].end_time) if RunStatus.finished(run_status) else datetime.now(tz=self.client_tz) ) run_duration = strftimedelta(start=run_start_time, end=run_end_time) return run_duration def _populate_table( self, wf_name: Union[str, Dict[str, Any]] = ":hourglass_not_done:", run_name: str = ":hourglass_not_done:", run_id: str = ":hourglass_not_done:", run_status: RunStatus = RunStatus.pending, wf_tasks: Optional[Dict[str, RunDetails]] = None, monitored_warnings: List[Union[str, Warning]] = [], ): """Method that creates a new table with updated task info""" run_duration: str = ":hourglass_not_done:" # Create new table self._init_table(monitored_warnings) # Populate Rows if wf_tasks is None: self.table.add_row(FETCHING_INFO_STR) else: # Sort tasks by reversed submission/start/end time (running tasks will be on top) sorted_tasks = sorted( wf_tasks.items(), key=lambda t: ( self.time_or_now(t[1].submission_time), self.time_or_now(t[1].start_time), self.time_or_now(t[1].end_time), ), reverse=True, ) # Add each task to the table for task_name, task_info in sorted_tasks: self._add_row(task_name, task_info) # Compute run duration run_duration = self._get_run_duration(sorted_tasks, run_status) # Populate Header # Do not print the whole dict definition if it is a custom workflow wf_name = f"Custom: '{wf_name['name']}'" if isinstance(wf_name, dict) else wf_name self.table.title = self.TITLE_STR.format( wf_name, run_name, run_id, STATUS_STR_MAP[run_status], run_duration ) def update_run_status( self, wf_name: Union[str, Dict[str, Any]], run_name: str, run_id: str, run_status: RunStatus, wf_tasks: Dict[str, RunDetails], monitored_warnings: List[Union[str, Warning]], ): """Updates the monitor table. This method will update the monitor table with the latest information about the workflow run, individual task status and monitored warnings. :param wf_name: Name of the workflow being executed. It can be a string or a custom workflow definition (as a dict). :param run_name: Name of the workflow run. :param run_id: Id of the workflow run. :param run_status: Status of the run. :param wf_tasks: Dictionary containing the details of each task in the workflow. :param monitored_warnings: List of monitored warnings. """ self._populate_table(wf_name, run_name, run_id, run_status, wf_tasks, monitored_warnings) self.live_context.update(self.table, refresh=True)
EXA-1-master
exa/libraries/farmvibes-ai-main/src/vibe_core/vibe_core/monitor.py
import json import os import time import warnings from abc import ABC, abstractmethod from dataclasses import asdict from datetime import datetime from typing import Any, Dict, List, Optional, Tuple, TypeVar, Union, cast, overload from urllib.parse import urljoin import requests import yaml from dateutil.parser import ParserError, parse from dateutil.tz import tzlocal from dateutil.tz.tz import tzfile from requests.exceptions import HTTPError from shapely import geometry as shpg from shapely.geometry.base import BaseGeometry from vibe_core.data import BaseVibeDict, StacConverter from vibe_core.data.core_types import BaseVibe from vibe_core.data.json_converter import dump_to_json from vibe_core.data.utils import deserialize_stac, serialize_input from vibe_core.datamodel import ( RunConfigInput, RunConfigUser, RunDetails, RunStatus, SpatioTemporalJson, TaskDescription, ) from vibe_core.monitor import VibeWorkflowDocumenter, VibeWorkflowRunMonitor from vibe_core.utils import ensure_list, format_double_escaped FALLBACK_SERVICE_URL = "http://192.168.49.2:30000/" """Fallback URL for FarmVibes.AI service. :meta hide-value: """ XDG_CONFIG_HOME = os.environ.get("XDG_CONFIG_HOME", os.path.expanduser("~/.config")) """Path to configuration file for FarmVibes.AI service. :meta hide-value: """ FARMVIBES_AI_SERVICE_URL_PATH = os.path.join(XDG_CONFIG_HOME, "farmvibes-ai", "service_url") """Path to the local service URL file. :meta hide-value: """ FARMVIBES_AI_REMOTE_SERVICE_URL_PATH = os.path.join( XDG_CONFIG_HOME, "farmvibes-ai", "remote_service_url" ) """Path to the local remote service URL file. :meta hide-value: """ DISK_FREE_THRESHOLD_BYTES = 50 * 1024 * 1024 * 1024 # 50 GiB """Threshold for disk space in bytes.""" TASK_SORT_KEY = "submission_time" """Key for sorting tasks.""" T = TypeVar("T", bound=BaseVibe, covariant=True) InputData = Union[Dict[str, Union[T, List[T]]], List[T], T] class WorkflowRun(ABC): """An abstract base class for workflow runs.""" @property @abstractmethod def status(self) -> str: """Gets the status of the workflow run. :return: The status of the workflow run as a string. :raises NotImplementedError: If the method is not implemented by a subclass. """ raise NotImplementedError @property @abstractmethod def output(self) -> BaseVibeDict: """Gets the output of the workflow run. :return: The output of the workflow run as a :class:`vibe_core.data.BaseVibeDict`. :raises NotImplementedError: If the method is not implemented by a subclass. """ raise NotImplementedError class Client(ABC): """An abstract base class for clients.""" @abstractmethod def list_workflows(self) -> List[str]: """Lists all available workflows. :return: A list of workflow names. :raises NotImplementedError: If the method is not implemented by a subclass. """ raise NotImplementedError @abstractmethod def run( self, workflow: str, geometry: BaseGeometry, time_range: Tuple[datetime, datetime], ) -> WorkflowRun: """Runs a workflow. :param workflow: The name of the workflow to run. :param geometry: The geometry to run the workflow on. :param time_range: The time range to run the workflow on. :return: A :class:`WorkflowRun` object. :raises NotImplementedError: If the method is not implemented by a subclass. """ raise NotImplementedError class FarmvibesAiClient(Client): """A client for the FarmVibes.AI service. :param baseurl: The base URL of the FarmVibes.AI service. """ default_headers: Dict[str, str] = { "Accept": "application/json", "Content-Type": "application/json", } """The default headers to use for requests to the FarmVibes.AI service.""" def __init__(self, baseurl: str): self.baseurl = baseurl self.session = requests.Session() self.session.headers.update(self.default_headers) def _request(self, method: str, endpoint: str, *args: Any, **kwargs: Any): """Sends a request to the FarmVibes.AI service and handle errors. :param method: The HTTP method to use (e.g., 'GET' or 'POST'). :param endpoint: The endpoint to request. :param args: Positional arguments to pass to :meth:`requests.Session.request`. :param kwargs: Keyword arguments to pass to :meth:`requests.Session.request`. :return: The response from the FarmVibes.AI service. """ response = self.session.request(method, urljoin(self.baseurl, endpoint), *args, **kwargs) try: r = json.loads(response.text) except json.JSONDecodeError: r = response.text try: response.raise_for_status() except HTTPError as e: error_message = r.get("message", "") if isinstance(r, dict) else r msg = f"{e}. {error_message}" raise HTTPError(msg, response=e.response) return cast(Any, r) def _form_payload( self, workflow: Union[str, Dict[str, Any]], parameters: Optional[Dict[str, Any]], geometry: Optional[BaseGeometry], time_range: Optional[Tuple[datetime, datetime]], input_data: Optional[InputData[T]], run_name: str, ) -> Dict[str, Any]: """Forms a payload dictionary for submitting a workflow run. :param workflow: The name of the workflow to run or a dict containing the workflow definition. :param parameters: A dict of optional parameters to pass to the workflow. The keys and values depend on the specific workflow definition. :param geometry: The geometry to use for the input data. It must be a valid shapely geometry object (e.g., Point or Polygon). It will be converted to GeoJSON format internally. Alternatively it can be None if input_data is provided instead. .. note:: Either `geometry` and `time_range` or `input_data` must be provided. .. warning:: Providing both `geometry` and `input_data` will result in an error. :param time_range: The time range to use for the input data. It must be a tuple of two datetime objects representing the start and end dates. Alternatively it can be None if input_data is provided instead. .. note:: Either `geometry` and `time_range` or `input_data` must be provided. .. warning:: Providing both `time_range` and `input_data` will result in an error. :param input_data: The input data to use for the workflow run. It must be an instance of InputData or one of its subclasses (e.g., SpatioTemporalJson or SpatioTemporalRaster). Alternatively it can be None if geometry and time_range are provided instead. .. note:: Either `geometry` and `time_range` or `input_data` must be provided. .. warning:: Providing both `input_data` and either `geometry` or `time_range` will result in an error. :param run_name: The name to assign to the workflow run. :return: A dict containing the payload for submitting a workflow run. The keys are 'run_name', 'workflow', 'parameters', and 'user_input'. """ if input_data is not None: user_input = serialize_input(input_data) elif geometry is None or time_range is None: raise ValueError("Either `input_data` or `geometry` and `time_range` are required") else: geojson = { "features": [{"geometry": None, "type": "Feature"}], "type": "FeatureCollection", } geojson["features"][0]["geometry"] = shpg.mapping(geometry) user_input = SpatioTemporalJson(time_range[0], time_range[1], geojson) return asdict(RunConfigInput(run_name, workflow, parameters, user_input)) def verify_disk_space(self): """Verifies that there is enough disk space available for the cache. This method checks the system metrics returned by the FarmVibes.AI service and compares the disk free space with a predefined threshold. If the disk free space is below the threshold, a warning message is displayed to the user, suggesting to clear the cache. .. note:: The disk free space threshold is defined by :const:`DISK_FREE_THRESHOLD_BYTES`. :raises: :exc:`RuntimeWarning` if the disk space is low. """ metrics = self.get_system_metrics() df = cast(Optional[int], metrics.get("disk_free", None)) if df is not None and df < DISK_FREE_THRESHOLD_BYTES: warnings.warn( "The FarmVibes.AI cache is running low on disk space " f"and only has {df / 1024 / 1024 / 1024} GiB left. " "Please consider clearing the cache to free up space and " "to avoid potential failures.", category=RuntimeWarning, ) def list_workflows(self) -> List[str]: """Lists all available workflows on the FarmVibes.AI service. This method returns a list of workflow names that can be used to submit workflow runs or to get more details about a specific workflow. :return: A list of workflow names. """ return self._request("GET", "v0/workflows") def describe_workflow(self, workflow_name: str) -> Dict[str, Any]: """Describes a workflow. This method returns a dictionary containing the description of a workflow, such as its inputs, outputs, parameters and tasks. .. note:: The description is returned as a :class:`TaskDescription` object, which is a dataclass that represents the structure and properties of a workflow. :param workflow_name: The name of the workflow to describe. It must be one of the names returned by list_workflows(). :return: A dictionary containing the workflow description. The keys are 'name', 'description', 'inputs', 'outputs' and 'parameters'. """ desc = self._request("GET", f"v0/workflows/{workflow_name}?return_format=description") desc["description"] = TaskDescription(**desc["description"]) return desc def get_system_metrics(self) -> Dict[str, Union[int, float, Tuple[float, ...]]]: """Gets system metrics from the FarmVibes.AI service. This method returns a dictionary containing various system metrics, such as CPU usage, memory usage and disk space. :return: A dictionary containing system metrics. """ return self._request("GET", "v0/system-metrics") def get_workflow_yaml(self, workflow_name: str) -> str: """Gets the YAML definition of a workflow. This method returns a string containing the YAML definition of a workflow. The YAML definition specifies the name and operations of the workflow in a human-readable format. :param workflow_name: The name of the workflow. It must be one of the names returned by list_workflows(). :return: The YAML definition of the workflow. """ yaml_content = self._request("GET", f"v0/workflows/{workflow_name}?return_format=yaml") return yaml.dump(yaml_content, default_flow_style=False, default_style="", sort_keys=False) def cancel_run(self, run_id: str) -> str: """Cancels a workflow run. This method sends a request to the FarmVibes.AI service to cancel a workflow run that is in progress or pending. If the cancellation is successful, the workflow run status will be set to 'cancelled'. .. note:: The cancellation may take some time to take effect depending on the state of the workflow run and the service availability. .. warning:: A workflow run that is already completed or failed cannot be cancelled. :param run_id: The ID of the workflow run to cancel. :return: The message from the FarmVibes.AI service indicating whether the cancellation was successful or not. """ return self._request("POST", f"v0/runs/{run_id}/cancel")["message"] def describe_run(self, run_id: str) -> RunConfigUser: """Describes a workflow run. This method returns a RunConfigUser object containing the description of a workflow run, such as its name, status, inputs and outputs. :param run_id: The ID of the workflow run to describe. :return: A :class:`RunConfigUser` object containing the workflow run description. """ response = self._request("GET", f"v0/runs/{run_id}") try: run = RunConfigUser(**response) for v in run.task_details.values(): if v.subtasks is not None: v.subtasks = [RunDetails(**i) for i in v.subtasks] except Exception as e: raise RuntimeError(f"Failed to parse description for run {run_id}: {e}") from e return run def document_workflow(self, workflow_name: str) -> None: """Prints the documentation of a workflow. This method prints a formatted documentation of a workflow, including its name, description, inputs, outputs and parameters. .. note:: The documentation is printed to stdout and can be redirected to other outputs if needed. :param workflow_name: The name of the workflow to document. """ wf_dict = self.describe_workflow(workflow_name) documenter = VibeWorkflowDocumenter( name=workflow_name, sources=wf_dict["inputs"], sinks=wf_dict["outputs"], parameters=wf_dict["parameters"], description=wf_dict["description"], ) documenter.print_documentation() def list_runs( self, ids: Optional[Union[str, List[str]]] = None, fields: Optional[Union[str, List[str]]] = None, ): """Lists workflow runs on the FarmVibes.AI service. :param ids: The IDs of the workflow runs to list. If None, all workflow runs will be listed. :param fields: The fields to return for each workflow run. If None, all fields will be returned. :return: A list of workflow runs. Each run is represented by a dictionary with keys corresponding to the requested fields and values containing the field values. """ ids = [f"ids={id}" for id in ensure_list(ids)] if ids is not None else [] fields = [f"fields={field}" for field in ensure_list(fields)] if fields is not None else [] query_str = "&".join(ids + fields) return self._request("GET", f"v0/runs?{query_str}") def get_run_by_id(self, id: str) -> "VibeWorkflowRun": """Gets a workflow run by ID. This method returns a :class:`VibeWorkflowRun` object containing the details of a workflow run by its ID. :param id: The ID of the workflow run to get. :return: A :class:`VibeWorkflowRun` object. """ fields = ["id", "name", "workflow", "parameters"] run = self.list_runs(id, fields=fields)[0] return VibeWorkflowRun(*(run[f] for f in fields), self) # type: ignore def get_api_time_zone(self) -> tzfile: """Gets the time zone of the FarmVibes.AI REST-API. This method returns a tzfile object representing the time zone of the FarmVibes.AI REST-API. The time zone is determined by parsing the 'date' header from the response of a GET request to the base URL of the service. If the 'date' header is missing or invalid, a warning is issued and the client time zone is used instead. .. note:: The tzfile object is a subclass of datetime.tzinfo that represents a time zone using an Olson database file. :return: The time zone of the FarmVibes.AI REST-API as a tzfile object. """ tz = tzlocal() response = self.session.request("GET", self.baseurl) try: dt = parse(response.headers["date"]) tz = dt.tzinfo if dt.tzinfo is not None else tzlocal() except KeyError: warnings.warn( "Could not determine the time zone of the FarmVibes.AI REST-API. " "'date' header is missing from the response. " "Using the client time zone instead.", category=RuntimeWarning, ) except ParserError: warnings.warn( "Could not determine the time zone of the FarmVibes.AI REST-API. " "Unable to parse the 'date' header from the response. " "Using the client time zone instead.", category=RuntimeWarning, ) return cast(tzfile, tz) @overload def run( self, workflow: Union[str, Dict[str, Any]], name: str, *, geometry: BaseGeometry, time_range: Tuple[datetime, datetime], parameters: Optional[Dict[str, Any]] = None, ) -> "VibeWorkflowRun": ... @overload def run( self, workflow: Union[str, Dict[str, Any]], name: str, *, input_data: InputData[T], parameters: Optional[Dict[str, Any]] = None, ) -> "VibeWorkflowRun": ... def run( self, workflow: Union[str, Dict[str, Any]], name: str, *, geometry: Optional[BaseGeometry] = None, time_range: Optional[Tuple[datetime, datetime]] = None, input_data: Optional[InputData[T]] = None, parameters: Optional[Dict[str, Any]] = None, ) -> "VibeWorkflowRun": """Runs a workflow. This method instantiates a workflow run using the provided data and parameters. :param workflow: The name of the workflow to run or a dict containing the workflow definition. :param name: The name to assign to the workflow run. :param geometry: The geometry to use for the input data. It must be a valid shapely geometry object (e.g., Point or Polygon). It will be converted to GeoJSON format internally. Alternatively it can be None if input_data is provided instead. .. note:: Either `geometry` and `time_range` or `input_data` must be provided. .. warning:: Providing both `geometry` and `input_data` will result in an error. :param time_range: The time range to use for the input data. It must be a tuple of two datetime objects representing the start and end dates. Alternatively it can be None if input_data is provided instead. .. note:: Either `geometry` and `time_range` or `input_data` must be provided. .. warning:: Providing both `time_range` and `input_data` will result in an error. :param input_data: The input data to use for the workflow run. It must be an instance of InputData or one of its subclasses (e.g., SpatioTemporalJson or SpatioTemporalRaster). Alternatively it can be None if geometry and time_range are provided instead. .. note:: Either `geometry` and `time_range` or `input_data` must be provided. .. warning:: Providing both `input_data` and either `geometry` or `time_range` will result in an error. :param parameters: A dict of optional parameters to pass to the workflow. The keys and values depend on the specific workflow definition. :return: A :class:`VibeWorkflowRun` object. """ self.verify_disk_space() payload = dump_to_json( self._form_payload(workflow, parameters, geometry, time_range, input_data, name), ) response = self._request("POST", "v0/runs", data=payload) return self.get_run_by_id(response["id"]) def resubmit_run(self, run_id: str) -> "VibeWorkflowRun": """ Resubmits a workflow run with the given run ID. :param run_id: The ID of the workflow run to resubmit. :return: The resubmitted workflow run. """ self.verify_disk_space() response = self._request("POST", f"v0/runs/{run_id}/resubmit") return self.get_run_by_id(response["id"]) class VibeWorkflowRun(WorkflowRun): """Represents a workflow run in FarmVibes.AI. :param id: The ID of the workflow run. :param name: The name of the workflow run. :param workflow: The name of the workflow associated to the run. :param parameters: The parameters associated to the workflow run, as a dict. The keys and values depend on the specific workflow definition. :param client: An instance of the :class:`FarmVibesAiClient` class. """ wait_s = 10 def __init__( self, id: str, name: str, workflow: str, parameters: Dict[str, Any], client: FarmvibesAiClient, ): self.id = id self.name = name self.workflow = workflow self.parameters = parameters self.client = client self._status = RunStatus.pending self._reason = "" self._output = None self._task_details = None def _convert_output(self, output: Dict[str, Any]) -> BaseVibeDict: """Converts the output of the workflow run to a :class:`BaseVibeDict`. This method takes the output of the workflow run as a dictionary and converts each value to a DataVibe object using a StacConverter object. It returns a new dictionary with the same keys and converted values. :param output: The output of the workflow run. It is a dictionary with key-value pairs where each value is a STAC item in JSON format. :return: The converted output of the workflow run. It is a dictionary with key-value pairs where each value is a BaseVibe object that represents a geospatial data asset. """ converter = StacConverter() return {k: converter.from_stac_item(deserialize_stac(v)) for k, v in output.items()} def _convert_task_details(self, details: Dict[str, Any]) -> Dict[str, RunDetails]: """Converts the task details of the workflow run to a :class:`RunDetails` dictionary. This method takes the task details of the workflow run as a dictionary and converts each value to a RunDetails object using keyword arguments. It returns a new dictionary with the same keys and converted values. The keys are sorted by their corresponding start time or end time if available. :param details: The task details of the workflow run. :return: The converted task details of the workflow run. """ return { k: RunDetails(**v) for k, v in sorted( details.items(), key=lambda x: cast( datetime, parse(x[1][TASK_SORT_KEY]) if x[1][TASK_SORT_KEY] else datetime.now() ), ) } @property def status(self) -> RunStatus: """Gets the status of the workflow run.""" if not RunStatus.finished(self._status): self._status = RunStatus(self.client.list_runs(self.id)[0]["details.status"]) return self._status @property def task_details(self) -> Dict[str, RunDetails]: """Gets the task details of the workflow run.""" if self._task_details is not None: return self._task_details status = self.status task_details = self._convert_task_details( self.client.list_runs(ids=self.id, fields="task_details")[0]["task_details"] ) if RunStatus.finished(status): self._task_details = task_details return task_details @property def task_status(self) -> Dict[str, str]: """Gets the task status of the workflow run.""" details = self.task_details return {k: v.status for k, v in details.items()} @property def output(self) -> Optional[BaseVibeDict]: """Gets the output of the workflow run.""" if self._output is not None: return self._output run = self.client.describe_run(self.id) self._status = run.details.status if self._status != RunStatus.done: return None self._output = self._convert_output(run.output) return self._output @property def reason(self) -> Optional[str]: """Gets the reason of the workflow run. The reason is a string that describes the status of the workflow run. In case of failure, it also contains the reason of the failure. """ status = self.status if status == RunStatus.done: self._reason = "Workflow run was successful." elif status in [RunStatus.cancelled, RunStatus.cancelling]: self._reason = f"Workflow run {status}." elif status in [RunStatus.running, RunStatus.pending]: self._reason = ( f"Workflow run is {status}. " f"Check {self.__class__.__name__}.monitor() for task updates." ) else: # RunStatus.failed run = self.client.list_runs(self.id, "details.reason")[0] self._reason = format_double_escaped(run["details.reason"]) return self._reason def cancel(self) -> "VibeWorkflowRun": """Cancels the workflow run. :return: The workflow run. """ self.client.cancel_run(self.id) self.status return self def resubmit(self) -> "VibeWorkflowRun": """ Resubmits the current workflow run. :return: The resubmitted workflow run instance. """ return self.client.resubmit_run(self.id) def block_until_complete(self, timeout_s: Optional[int] = None) -> "VibeWorkflowRun": """Blocks until the workflow run execution completes or fails, with an optional timeout in seconds. :param timeout_s: Optional timeout in seconds to wait for the workflow to complete. If not provided, the method will wait indefinitely. :raises RuntimeError: If the run does not complete before timeout_s. :return: The workflow run object. """ time_start = time.time() while self.status not in (RunStatus.done, RunStatus.failed): time.sleep(self.wait_s) if timeout_s is not None and (time.time() - time_start) > timeout_s: raise RuntimeError( f"Timeout of {timeout_s}s reached while waiting for workflow completion" ) return self def monitor( self, refresh_time_s: int = 1, refresh_warnings_time_min: int = 5, timeout_min: Optional[int] = None, detailed_task_info: bool = False, ): """Monitors the workflow run. This method will block and print the status of the run each refresh_time_s seconds, until the workflow run finishes or it reaches timeout_min minutes. It will also print warnings every refresh_warnings_time_min minutes. :param refresh_time_s: Refresh interval in seconds (defaults to 1 second). :param refresh_warnings_time_min: Refresh interval in minutes for updating the warning messages (defaults to 5 minutes). :param timeout_min: The maximum time to monitor the workflow run, in minutes. If not provided, the method will monitor indefinitely. :param detailed_task_info: If True, detailed information about task progress will be included in the output (defaults to False). """ with warnings.catch_warnings(record=True) as monitored_warnings: monitor = VibeWorkflowRunMonitor( api_time_zone=self.client.get_api_time_zone(), detailed_task_info=detailed_task_info, ) stop_monitoring = False time_start = last_warning_refresh = time.time() with monitor.live_context: while not stop_monitoring: monitor.update_run_status( self.workflow, self.name, self.id, self.status, self.task_details, [w.message for w in monitored_warnings], ) time.sleep(refresh_time_s) curent_time = time.time() # Check for warnings every refresh_warnings_time_min minutes if (curent_time - last_warning_refresh) / 60.0 > refresh_warnings_time_min: self.client.verify_disk_space() last_warning_refresh = curent_time # Check for timeout did_timeout = ( timeout_min is not None and (curent_time - time_start) / 60.0 > timeout_min ) stop_monitoring = RunStatus.finished(self.status) or did_timeout # Update one last time to make sure we have the latest state monitor.update_run_status( self.workflow, self.name, self.id, self.status, self.task_details, [w.message for w in monitored_warnings], ) def __repr__(self): """Gets the string representation of the workflow run. :return: The string representation of the workflow run. """ return ( f"'{self.__class__.__name__}'(id='{self.id}', name='{self.name}'," f" workflow='{self.workflow}', status='{self.status}')" ) def get_local_service_url() -> str: """Retrieves the local service URL used to submit workflow runs to the FarmVibes.AI service. This function attempts to read the service URL from a file, and if that fails, it will return a fallback URL. :return: The local service URL. """ try: with open(FARMVIBES_AI_SERVICE_URL_PATH, "r") as fp: return fp.read().strip() except FileNotFoundError: return FALLBACK_SERVICE_URL def get_remote_service_url() -> str: """Gets the remote service URL. :return: The remote service URL. """ try: with open(FARMVIBES_AI_REMOTE_SERVICE_URL_PATH, "r") as fp: return fp.read().strip() except FileNotFoundError as e: print(e) raise def get_default_vibe_client(url: str = "", connect_remote: bool = False): """Gets the default vibe client. :param url: The URL. :param connect_remote: Whether to connect remotely. :return: The vibe client. """ if not url: url = get_remote_service_url() if connect_remote else get_local_service_url() return FarmvibesAiClient(url)
EXA-1-master
exa/libraries/farmvibes-ai-main/src/vibe_core/vibe_core/client.py
import logging import mimetypes import os from typing import Any import requests from requests.adapters import HTTPAdapter from urllib3.util import Retry CHUNK_SIZE = 1024 * 1024 # 1MB chunks """Size of the chunks to read from the server per request.""" REQUEST_RETRIES = 5 """Number of retries to perform when a request fails.""" REQUEST_BACKOFF = 0.3 """Back-off factor to apply between retries.""" CONNECT_TIMEOUT_S = 30 """Time in seconds to wait for connection to the server before aborting.""" READ_TIMEOUT_S = 30 """Time in seconds for each chunk read from the server.""" LOGGER = logging.getLogger(__name__) def retry_session() -> requests.Session: """Creates a session with retry support. This method creates a requests.Session object with retry support configured to retry failed requests up to :const:`REQUEST_RETRIES` times with a :const:`REQUEST_BACKOFF` time back-off factor. :return: A configured requests.Session object """ session = requests.Session() retry = Retry( total=REQUEST_RETRIES, read=REQUEST_RETRIES, connect=REQUEST_RETRIES, backoff_factor=REQUEST_BACKOFF, ) # Had to ignore the type as urlib is loaded dinamically # details here (https://github.com/microsoft/pylance-release/issues/597) adapter = HTTPAdapter(max_retries=retry) # type: ignore session.mount("http://", adapter) session.mount("https://", adapter) return session def build_file_path(dir_name: str, file_name: str, type: str = "") -> str: """ Builds the full file path by combining the directory name, file name and optional type to infer the file extension. :param dir_name: Name of the directory. :param file_name: Name of the file. :param type: Type of the file (default is empty). :return: The full file path. """ extension = mimetypes.guess_extension(type) if not extension: LOGGER.info(f"File extension could no be inferred with type {type}. Using no extension.") extension = "" file_path = os.path.join(dir_name, f"{file_name}{extension}") return file_path def download_file( url: str, file_path: str, chunk_size: int = CHUNK_SIZE, connect_timeout: float = CONNECT_TIMEOUT_S, read_timeout: float = READ_TIMEOUT_S, # applies per chunk **kwargs: Any, ) -> str: """Downloads a file from a given URL to the given file path. The download is done using a retry session, to handle connection errors. :param url: URL of the file to download. :param file_path: Path where the file will be saved. :param chunk_size: Amount of data to read from the server per request (defaults to :const:`CHUNK_SIZE`). :param connect_timeout: Time in seconds to wait for connection to the server before aborting (defaults to :const:`CONNECT_TIMEOUT_S`). :param read_timeout: Time in seconds for each chunk read from the server (defaults to :const:`READ_TIMEOUT_S`). :param kwargs: Additional keyword arguments to be passed to the request library call. :return: Path of the saved file. """ session = retry_session() try: with session.get(url, stream=True, timeout=(connect_timeout, read_timeout), **kwargs) as r: r.raise_for_status() with open(file_path, "wb") as f: for chunk in r.iter_content(chunk_size=chunk_size): f.write(chunk) return file_path except requests.ConnectionError: LOGGER.exception(f"Connection error when downloading remote asset {url}") raise except requests.HTTPError as err: LOGGER.exception( f"HTTP error (code {err.response.status_code}) when downloading remote asset {url}" ) raise def verify_url( url: str, connect_timeout: float = CONNECT_TIMEOUT_S, **kwargs: Any, ) -> bool: """Verifies the validity of a given URL. This method attempts to connect to the specified url and verifies that it does not raise any HTTP or Connection errors. :param url: The URL to check. :param connect_timeout: Timeout when attempting to connect to the specified url. Defaults to the value of :const:`CONNECT_TIMEOUT_S`. :param kwargs: Additional keyword arguments to pass to the requests.get call. :return: True if the URL is valid, False otherwise. """ status = True session = retry_session() try: with session.get(url, stream=True, timeout=connect_timeout, **kwargs) as r: r.raise_for_status() except requests.ConnectionError: LOGGER.warning(f"Connection error when verifying remote asset {url}") status = False except requests.HTTPError as err: LOGGER.warning( f"HTTP error (code {err.response.status_code}) when verifying remote asset {url}" ) status = False return status
EXA-1-master
exa/libraries/farmvibes-ai-main/src/vibe_core/vibe_core/file_downloader.py
import codecs import json import zlib from dataclasses import asdict, dataclass, field from datetime import datetime from enum import auto from typing import Any, Dict, Final, List, Optional, Union, cast from uuid import UUID from dateutil.parser import parse from strenum import StrEnum from .data.core_types import OpIOType from .data.json_converter import dump_to_json SUMMARY_DEFAULT_FIELDS: Final[List[str]] = ["id", "workflow", "name", "details.status"] @dataclass class Message: """Dataclass that represents an API message.""" message: str """The message.""" id: Optional[str] = None """The id of the message.""" location: Optional[str] = None """The location of the message.""" @dataclass class Region: """Dataclass that represents a region.""" name: str """The name of the region.""" geojson: Dict[str, Any] = field(default_factory=dict) """The geojson of the region.""" @dataclass class SpatioTemporalJson: """Dataclass that represents a spatio temporal json.""" start_date: datetime """The start date of the spatio temporal json.""" end_date: datetime """The end date of the spatio temporal json.""" geojson: Dict[str, Any] """The geojson of the spatio temporal json.""" def __post_init__(self): for attr in ("start_date", "end_date"): if isinstance(some_date := getattr(self, attr), str): setattr(self, attr, parse(some_date)) @dataclass class RunBase: """Base dataclass for a run.""" name: str """The name of the run.""" workflow: Union[str, Dict[str, Any]] """The workflow of the run.""" parameters: Optional[Dict[str, Any]] """The parameters of the run.""" def __post_init__(self): if isinstance(self.workflow, str): try: self.workflow = json.loads(self.workflow) except json.decoder.JSONDecodeError: pass @dataclass class RunConfigInput(RunBase): """Dataclass that represents a run config input.""" user_input: Union[SpatioTemporalJson, Dict[str, Any], List[Any]] """The user input of the run config (usually a region/geometry and time range).""" def __post_init__(self): super().__post_init__() if isinstance(self.user_input, dict): try: self.user_input = SpatioTemporalJson(**self.user_input) except TypeError: # We need this because of BaseVibe. pass class RunStatus(StrEnum): """Enum that represents the status of a run.""" pending = auto() """The run is pending""" queued = auto() """The run is queued.""" running = auto() """The run is running.""" failed = auto() """The run has failed.""" done = auto() """The run is done.""" cancelled = auto() """The run is cancelled.""" cancelling = auto() """The run is cancelling.""" @staticmethod def finished(status: "RunStatus"): """Checks if a run has finished. This method checks if a run status is either :attr:`vibe_core.datamodel.RunStatus.done`, :attr:`vibe_core.datamodel.RunStatus.cancelled`, or :attr:`vibe_core.datamodel.RunStatus.failed`. :param status: The status to check. :return: Whether the run has finished. """ return status in (RunStatus.done, RunStatus.cancelled, RunStatus.failed) @dataclass class RunDetails: """Dataclass that encapsulates the details of a run.""" start_time: Optional[datetime] = None """The start time of the run.""" submission_time: Optional[datetime] = None """The submission time of the run.""" end_time: Optional[datetime] = None """The end time of the run.""" reason: Optional[str] = None """A description of the reason for the status of the run.""" status: RunStatus = RunStatus.pending # type: ignore """The status of the run.""" subtasks: Optional[List[Any]] = None """Details about the subtasks of the run.""" def __post_init__(self): for time_field in ("start_time", "submission_time", "end_time"): attr = cast(Union[str, datetime, None], getattr(self, time_field)) if isinstance(attr, str): setattr(self, time_field, parse(attr)) @dataclass class RunConfig(RunConfigInput): """Dataclass that represents a run config.""" id: UUID """The id of the run config.""" details: RunDetails """The details of the run config.""" task_details: Dict[str, RunDetails] """The details of the tasks of the run config.""" spatio_temporal_json: Optional[SpatioTemporalJson] """The spatio temporal json of the run config.""" output: str = "" """The output of the run.""" def set_output(self, value: OpIOType): # pydantic won't let us use a property setter """Sets the output of the run config. :param value: The value to set the output to. """ self.output = encode(dump_to_json(value)) def __post_init__(self): if isinstance(self.details, dict): self.details = RunDetails(**self.details) if self.spatio_temporal_json is not None and isinstance(self.spatio_temporal_json, dict): try: self.spatio_temporal_json = SpatioTemporalJson(**self.spatio_temporal_json) except TypeError: pass for k, v in self.task_details.items(): if isinstance(v, dict): self.task_details[k] = RunDetails(**v) super().__post_init__() class RunConfigUser(RunConfig): """Dataclass that represents a run config for the user.""" output: OpIOType """The output of the run.""" @classmethod def from_runconfig(cls, run_config: RunConfig): """Creates a :class:`RunConfigUser` from a :class:`RunConfig`. :param run_config: The run config to create the user run config from. :return: The user run config. """ rundict = asdict(run_config) output = rundict.pop("output") rcu = cls(**rundict) rcu.output = json.loads(decode(output)) if output else {} return rcu @staticmethod def finished(status: "RunStatus"): """Checks if a run has finished. This method checks if a given status is either :attr:`vibe_core.datamodel.RunStatus.done`, :attr:`vibe_core.datamodel.RunStatus.cancelled`, or :attr:`vibe_core.datamodel.RunStatus.failed`. :param status: The status to check. :return: Whether the run has finished. """ return status in (RunStatus.done, RunStatus.cancelled, RunStatus.failed) @dataclass class TaskDescription: """Dataclass that represents a task description.""" inputs: Dict[str, str] = field(default_factory=dict) """The inputs of the task.""" outputs: Dict[str, str] = field(default_factory=dict) """The outputs of the task.""" parameters: Dict[str, str] = field(default_factory=dict) """The task parameters.""" task_descriptions: Dict[str, str] = field(default_factory=dict) """The descriptions of subtasks.""" short_description: str = "" """The short description of the task.""" long_description: str = "" """The long description of the task.""" def encode(data: str) -> str: """Encodes a string using zlib and base64 encoding. This function compresses the data string with zlib and then encodes it into a base64 string. :param data: The string to be encoded. :return: The encoded string. """ return codecs.encode(zlib.compress(data.encode("utf-8")), "base64").decode("utf-8") # JSON 😞 def decode(data: str) -> str: """Decodes the given data using zlib and base64 encodings. :param data: The string to decode. :return: The decoded string. """ return zlib.decompress(codecs.decode(data.encode("utf-8"), "base64")).decode("utf-8") # JSON 😞
EXA-1-master
exa/libraries/farmvibes-ai-main/src/vibe_core/vibe_core/datamodel.py
from .client import Client, FarmvibesAiClient __all__ = ["Client", "FarmvibesAiClient"]
EXA-1-master
exa/libraries/farmvibes-ai-main/src/vibe_core/vibe_core/__init__.py
from dataclasses import dataclass from typing import Any, Dict, List, Tuple, TypeVar, Union from vibe_core.data.core_types import OpIOType T = TypeVar("T") @dataclass class MermaidVerticesMap: """ A map of vertices for a mermaid diagram extracted from a WorkflowSpec. Each entry maps the source/sink/task name to the vertex label. """ sources: Dict[str, str] """Source map.""" sinks: Dict[str, str] """Sink map.""" tasks: Dict[str, str] """Task map.""" def ensure_list(input: Union[List[T], T]) -> List[T]: """Ensures that the given input is a list. If the input is a single item, it is wrapped in a list. :param input: List or single item to be wrapped in a list. :return: A list containing the input item. """ if isinstance(input, list): return input return [input] def get_input_ids(input: OpIOType) -> Dict[str, Union[str, List[str]]]: """Retrieve the IDs from an input OpIOType object. This method will extract the IDs from an OpIOType object and return them as a dictionary, where the keys are the names of the inputs and values are either strings or lists of strings. :param input: The input object. :return: A dictionary with the IDs of the input object. """ return { k: [vv.get("id", "NO-ID") for vv in v] if isinstance(v, list) else v.get("id", "NO-ID") for k, v in input.items() } def rename_keys(x: Dict[str, Any], key_dict: Dict[str, str]): """Renames the keys of a dictionary. This utility function takes a dictionary `x` and a dictionary `key_dict` mapping old keys to their new names, and returns a copy of `x` with the keys renamed. :param x: The dictionary with the keys to be renamed. :param key_dict: Dictionary mapping old keys to their new names. :return: A copy of x with the keys renamed. """ renamed = x.copy() for old_key, new_key in key_dict.items(): if old_key in x: renamed[new_key] = x[old_key] del renamed[old_key] return renamed def format_double_escaped(s: str): """Encodes and decodes a double escaped input string. Useful for formatting status/reason strings of VibeWorkflowRun. :param s: Input string to be processed. :return: Formatted string. """ return s.encode("raw_unicode_escape").decode("unicode-escape") def build_mermaid_edge( origin: Tuple[str, str], destination: Tuple[str, str], vertices_origin: Dict[str, str], vertices_destination: Dict[str, str], ) -> str: """Builds a mermaid edge from a pair of vertices. :param origin: A pair of source/sink/task and port names. :param destination: A pair of source/sink/task and port names. :param vertices_origin: The vertex map to retrieve the mermaid vertex label for the origin. :param vertices_destination: The vertex map to retrieve the mermaid vertex label for the destination. :return: The mermaid edge string. """ origin_vertex, origin_port = origin destination_vertex, destination_port = destination separator = "/" if origin_port and destination_port else "" if origin_port == destination_port: port_map = origin_port else: port_map = f"{origin_port}{separator}{destination_port}" return ( f"{vertices_origin[origin_vertex]} " f"-- {port_map} --> " f"{vertices_destination[destination_vertex]}" ) def draw_mermaid_diagram(vertices: MermaidVerticesMap, edges: List[str]) -> str: """Draws a mermaid diagram from a set of vertices and edges. :param vertices: A map of vertices for a mermaid diagram extracted from a WorkflowSpec. :param edges: A list of edges already formated with mermaid syntax. :return: The mermaid diagram string. """ diagram = ( "graph TD\n" + "\n".join( [f" {source}" for source in vertices.sources.values()] + [f" {sink}" for sink in vertices.sinks.values()] + [f" {task}" for task in vertices.tasks.values()] ) + "\n" + "\n".join([f" {edge}" for edge in edges]) ) return diagram
EXA-1-master
exa/libraries/farmvibes-ai-main/src/vibe_core/vibe_core/utils.py
import json import logging import logging.handlers import os from logging import Filter, LogRecord, getLogger from platform import node from typing import Dict, List, Optional LOG_FORMAT = "[%(asctime)s] [%(hostname)s] %(levelname)s [%(name)s:%(lineno)s] %(message)s" """The default log format.""" JSON_FORMAT = ( '{"app_id": "%(app)s", "instance": "%(hostname)s", "level": "%(levelname)s", ' '"msg": %(json_message)s, "scope": "%(name)s", "time": "%(asctime)s", "type": "log", ' '"ver": "dev"}' ) """JSON log format.""" DEFAULT_LOGGER_LEVELS: Dict[str, str] = { "gdal": "INFO", "rasterio": "INFO", "urllib3": "INFO", "urllib3.connectionpool": "DEBUG", "fiona": "INFO", "werkzeug": "INFO", "azure": "WARNING", "matplotlib": "INFO", "uvicorn": "WARNING", } """The default log levels for the different loggers.""" class HostnameFilter(Filter): """Filter class to add hostname field to the log record.""" hostname = node() def filter(self, record: LogRecord): """Adds a hostname field to the log record with the value of the node() function from the platform module. :param record: The log record to be filtered. :return: True """ record.hostname = self.hostname return True class AppFilter(Filter): """Filter class to add app field to the log record. :param app: The name of the application. """ def __init__(self, app: str): super().__init__() self.app = app def filter(self, record: LogRecord): """Adds an app field to the log record with the value of the app attribute. :param record: The log record to be filtered. :return: True """ record.app = self.app return True class JsonMessageFilter(Filter): """Log filter to convert messages to JSON.""" def filter(self, record: LogRecord): """Converts the message of the log record to JSON. :param record: The log record to be filtered. :return: True """ record.json_message = json.dumps(record.getMessage()) return True def change_logger_level(loggername: str, level: str): """Sets the default log level for a logger. :param loggername: The name of the logger for which to set the log level. :param level: The desired log level (e.g. INFO, DEBUG, WARNING). """ logger = getLogger(loggername) logger.setLevel(level) for handler in logger.handlers: handler.setLevel(level) def configure_logging( default_level: Optional[str] = None, logdir: Optional[str] = None, logfile: str = f"{node()}.log", json: bool = True, appname: str = "", ): """Configures logging for the calling process. This method will create a logger and set its level to the given default_level argument. It will also create a StreamHandler and FileHandler if the logdir argument is provided, with the respective logfile name. It will add filters for the application name, hostname and json message, and set the formatter to JSON_FORMAT if json is True, or LOG_FORMAT otherwise. :param default_level: Default log level (defaults to 'DEBUG'). :param logdir: Path to the directory where the log file will be stored. If not provided, no FileHandler will be added. :param logfile: Name of the log file (defaults to '{node()}.log'). :param json: Flag to enable or disable JSON format (defaults to True). :param appname: Application name to be filtered (defaults to ""). """ handlers: List[logging.Handler] = [logging.StreamHandler()] default_level = "INFO" if default_level is None else default_level if logdir: os.makedirs(logdir, exist_ok=True) logfile = os.path.join(logdir, logfile) handlers.append(logging.FileHandler(logfile)) logger = logging.getLogger() for handler in handlers: handler.addFilter(AppFilter(appname)) handler.addFilter(HostnameFilter()) handler.addFilter(JsonMessageFilter()) handler.setFormatter(logging.Formatter(JSON_FORMAT if json else LOG_FORMAT)) logger.addHandler(handler) logger.setLevel(default_level) for logger_name, level in DEFAULT_LOGGER_LEVELS.items(): change_logger_level(logger_name, level)
EXA-1-master
exa/libraries/farmvibes-ai-main/src/vibe_core/vibe_core/logconfig.py
import os from urllib.parse import unquote, urlparse from urllib.request import url2pathname def is_local(url: str): """Checks if uri refers to a local file. :param url: The URL to check. :return: True if the URL refers to a local file, False otherwise. """ url_parsed = urlparse(url) return url_parsed.scheme in ("file", "") # Possibly a local file def local_uri_to_path(uri: str) -> str: """ Maps 'file://' urls to paths. If the input is already a path, leave it as is. :param uri: The URI to convert. :raises ValueError: If the URI is not local. :return: The path corresponding to the URI. """ if not is_local(uri): raise ValueError(f"Cannot convert remote URI {uri} to path") parsed = urlparse(uri) if parsed.scheme == "": # Assume it is a path return uri host = "{0}{0}{mnt}{0}".format(os.path.sep, mnt=parsed.netloc) return os.path.normpath(os.path.join(host, url2pathname(unquote(parsed.path)))) def uri_to_filename(uri: str) -> str: """Parses the filename from an URI. :param uri: The URI to convert. :return: The filename associated with the URI. """ parsed_source_url = urlparse(uri) source_path = unquote(parsed_source_url.path) return os.path.basename(source_path)
EXA-1-master
exa/libraries/farmvibes-ai-main/src/vibe_core/vibe_core/uri.py
import os from typing import Any, Dict import yaml def write_yaml(path: str, contents: Dict[str, Any]): """Writes contents to a YAML file, creating the parent directory if it doesn't exist yet. :param path: The path of the file to write. :param contents: The contents to write to the file. """ parent = os.path.dirname(path) if not os.path.exists(parent): os.makedirs(parent) with open(path, "w") as fp: yaml.dump(contents, fp) # type: ignore def write_file(path: str, contents: str): """ Writes contents to a file at the given path, creating the parent directory if it doesn't exist yet. :param path: The file path to write to. :param contents: The contents to write in the file. """ parent = os.path.dirname(path) if not os.path.exists(parent): os.makedirs(parent) with open(path, "w") as fp: fp.write(contents)
EXA-1-master
exa/libraries/farmvibes-ai-main/src/vibe_core/vibe_core/file_utils.py
import logging from datetime import datetime, timezone from shapely.geometry import Polygon from vibe_core.client import FarmvibesAiClient, get_default_vibe_client def main(): logging.basicConfig(level=logging.INFO) LOGGER = logging.getLogger(__name__) polygon_coords = [ (-88.062073563448919, 37.081397673802059), (-88.026349330507315, 37.085463858128762), (-88.026349330507315, 37.085463858128762), (-88.012445388773259, 37.069230099135126), (-88.035931592028305, 37.048441375086092), (-88.068120429075847, 37.058833638440767), (-88.062073563448919, 37.081397673802059), ] polygon = Polygon(polygon_coords) start_date = datetime(year=2021, month=2, day=1, tzinfo=timezone.utc) end_date = datetime(year=2021, month=2, day=11, tzinfo=timezone.utc) client: FarmvibesAiClient = get_default_vibe_client() LOGGER.info(f"Successfully obtained a FarmVibes.AI client (addr={client.baseurl})") LOGGER.info(f"available workflows: {client.list_workflows()}") LOGGER.info("Running helloworld workflow...") run = client.run( "helloworld", "test_hello", geometry=polygon, time_range=(start_date, end_date) ) try: run.block_until_complete(30) LOGGER.info(f"Successfully executed helloworld workflow. Result {run}") except RuntimeError as e: LOGGER.error(f"Failed to execute workflow. Reason: {e}") raise if __name__ == "__main__": main()
EXA-1-master
exa/libraries/farmvibes-ai-main/src/vibe_core/vibe_core/farmvibes_ai_hello_world.py
EXA-1-master
exa/libraries/farmvibes-ai-main/src/vibe_core/vibe_core/testing/__init__.py
from dataclasses import fields from typing import List import numpy as np import rasterio from shapely import geometry as shpg from vibe_core.data import DataVibe IGNORE_FIELDS = ["id", "assets"] RTOL = 1e-5 ATOL = 1e-8 SHAPE_TOL = 1e-6 def assert_all_fields_close( x: DataVibe, y: DataVibe, ignore_fields: List[str] = IGNORE_FIELDS ) -> None: compare_fields = [f.name for f in fields(x) if f.name not in ignore_fields] for f in compare_fields: x_f = getattr(x, f) y_f = getattr(y, f) if f == "geometry": # Option 1: Check if they are within each other with some tolerance # (x.within(y.buffer(1e-6)) & x.buffer(1e-6).contains(y)) # Option 2: Check per point equivalence with a tolerance assert shpg.shape(x_f).equals_exact( shpg.shape(y_f), SHAPE_TOL ), f"Geometries are not equal with tolerance {SHAPE_TOL}" else: assert x_f == y_f, f"Field {f} is different: {x_f} != {y_f}" def assert_all_close(x: DataVibe, y: DataVibe) -> None: assert type(x) == type(y), f"Data types are different: {type(x)} != {type(y)}" assert_all_fields_close(x, y) for a1, a2 in zip(x.assets, y.assets): assert a1.type == a2.type, f"Assets have different mimetypes: {a1.type} != {a2.type}" if a1.type == "image/tiff": with rasterio.open(a1.url) as src1: with rasterio.open(a2.url) as src2: assert src1.meta == src2.meta, "TIFF files have different metadata" ar1 = src1.read() ar2 = src2.read() assert np.allclose( ar1, ar2, rtol=RTOL, atol=ATOL, equal_nan=True ), f"Raster values are not all close with rtol={RTOL} and atol={ATOL}"
EXA-1-master
exa/libraries/farmvibes-ai-main/src/vibe_core/vibe_core/testing/comparison.py
from dataclasses import dataclass, field from typing import Dict, List, Tuple from shapely import geometry as shpg from .core_types import AssetVibe, DataSequence, DataVibe from .products import DemProduct, GNATSGOProduct, LandsatProduct, NaipProduct ChunkLimits = Tuple[int, int, int, int] """Type alias for chunk limits. Tuple of col_offset, row_offset, width, height.""" @dataclass class Raster(DataVibe): """Represents raster data in FarmVibes.AI.""" bands: Dict[str, int] """A dictionary with the name of each band and its index in the raster data.""" def __post_init__(self): super().__post_init__() self.quantification_value = 1 @property def raster_asset(self) -> AssetVibe: """Returns the raster asset from the list of assets. :raises ValueError: If the raster asset cannot be found in the asset list. :returns: The raster asset from the asset list. """ raster_asset = [a for a in self.assets if (a.type is not None) and ("image/" in a.type)] if raster_asset: return raster_asset[0] raise ValueError(f"Could not find raster asset in asset list: {self.assets}") @property def visualization_asset(self) -> AssetVibe: """Returns the visualization asset from the asset list. :raises ValueError: If the visualization asset cannot be found in the asset list. :returns: The visualization asset from the asset list. """ vis_asset = [a for a in self.assets if a.type == "application/json"] if vis_asset: return vis_asset[0] raise ValueError(f"Could not find visualization asset in asset list: {self.assets}") @dataclass class RasterSequence(DataSequence, Raster): """Represents a sequence of rasters""" def add_item(self, item: Raster): """Adds a raster to the sequence :param item: The raster to add to the sequence """ self.add_asset(item.raster_asset, item.time_range, shpg.shape(item.geometry)) @dataclass class RasterChunk(Raster): """Represents a chunk of a raster.""" chunk_pos: Tuple[int, int] """The position of the chunk in the raster data, as a tuple of (column, row) indices.""" num_chunks: Tuple[int, int] """The total number of chunks in the raster data, as a tuple of (number of columns, number of rows). """ limits: ChunkLimits """The limits of the chunk in the raster data, as a :const:`ChunkLimits` object. These are indices, not coordinates. """ write_rel_limits: ChunkLimits """The relative limits of the chunk in the raster data asset. These are non-overlapping indices that are used to write the chunk to the asset. """ @dataclass class CategoricalRaster(Raster): """Represents a categorical raster.""" categories: List[str] """The list of categories in the raster.""" @dataclass class CloudRaster(Raster): """Represents a cloud raster.""" bands: Dict[str, int] = field(init=False) """A dictionary with the name of each band and its index in the raster data.""" def __post_init__(self): super().__post_init__() self.bands = {"cloud": 0} @dataclass class RasterIlluminance(DataVibe): """Represents illuminance values for bands of a raster.""" illuminance: List[float] """The list of illuminance values for each band.""" @dataclass class DemRaster(Raster, DemProduct): """Represents a DEM raster.""" pass @dataclass class NaipRaster(Raster, NaipProduct): """Represents a NAIP raster.""" pass @dataclass class LandsatRaster(LandsatProduct, Raster): """Represents a Landsat raster.""" pass @dataclass class GNATSGORaster(Raster, GNATSGOProduct): """Represents a gNATSGO raster of a specific variable.""" variable: str """The variable represented in the raster."""
EXA-1-master
exa/libraries/farmvibes-ai-main/src/vibe_core/vibe_core/data/rasters.py
from dataclasses import dataclass from typing import Any, Dict, List from .core_types import BaseVibe, DataVibe @dataclass class ADMAgSeasonalFieldInput(BaseVibe): """ Represents an ADMAg Seasonal Field input. """ farmer_id: str """The ID of the farmer.""" seasonal_field_id: str """The ID of the seasonal field.""" boundary_id: str """The ID of the boundary.""" @dataclass class TillageInformation: """Represents a tillage operation in a field .""" start_date: str """The start date of the tillage operation.""" end_date: str """The end date of the tillage operation.""" implement: str """The implement used for the tillage operation.""" @dataclass class FertilizerInformation: """Represents fertilizer practices operation.""" start_date: str """The start date of the practice.""" end_date: str """The end date of the practice.""" application_type: str """The type of fertilizer application.""" total_nitrogen: float """The total amount of nitrogen applied.""" enhanced_efficiency_phosphorus: str """The type of enhanced efficiency phosphorus used.""" @dataclass class OrganicAmendmentInformation: """Represents an organic amendment practice operation.""" start_date: str """The start date of the organic amendment practice.""" end_date: str """The end date of the organic amendment practice.""" organic_amendment_type: str """The type of organic amendment applied.""" organic_amendment_amount: float """The amount of organic amendment applied.""" organic_amendment_percent_nitrogen: float """The percent nitrogen of the organic amendment.""" organic_amendment_carbon_nitrogen_ratio: float """The carbon to nitrogen ratio of the organic amendment.""" @dataclass class HarvestInformation: """Represents a harvest operation in a field.""" is_grain: bool """Whether the crop is a grain (True) or not (False).""" start_date: str """The start date of the harvest operation.""" end_date: str """The end date of the harvest operation.""" crop_yield: float """The yield of the crop, in kg/ha.""" stray_stover_hay_removal: float """The amount of stray stover or hay removed from the field after harvest, in kg/ha.""" @dataclass class SeasonalFieldInformation(DataVibe): """Represents seasonal field information for a farm.""" crop_name: str """The name of the crop grown in the seasonal field.""" crop_type: str """The type of the crop grown in the seasonal field.""" properties: Dict[str, Any] """A dictionary of additional properties for the seasonal field.""" fertilizers: List[FertilizerInformation] """A list of :class:`FertilizerInformation` objects representing the fertilizer practices in the seasonal field.""" harvests: List[HarvestInformation] """A list of :class:`HarvestInformation` objects representing the harvests for the seasonal field.""" tillages: List[TillageInformation] """A list of :class:`TillageInformation` objects representing the tillage operations for the seasonal field.""" organic_amendments: List[OrganicAmendmentInformation] """A list of :class:`OrganicAmendmentInformation` objects representing the organic amendments for the seasonal field."""
EXA-1-master
exa/libraries/farmvibes-ai-main/src/vibe_core/vibe_core/data/farm.py
import hashlib from dataclasses import dataclass from datetime import datetime from typing import Any, Dict, Tuple, Union from shapely import wkt from shapely.geometry import shape from .core_types import DataVibe def gen_forecast_time_hash_id( name: str, geometry: Dict[str, Any], publish_time: Union[str, datetime], time_range: Tuple[datetime, datetime], ): """Generates a SHA-256 hash ID for a forecast time, based on the input parameters. :param name: The name of the forecast. :param geometry: The geometry associated with the forecast, as a dictionary. :param publish_time: The time when the forecast was published, as a string or a datetime object. :param time_range: The time range of the forecast, as a tuple of two datetime objects. :return: The SHA-256 hash ID of the forecast time. """ if type(publish_time) is datetime: publish_time_str = publish_time.isoformat() else: publish_time_str = str(publish_time) return hashlib.sha256( ( name + wkt.dumps(shape(geometry)) + publish_time_str + time_range[0].isoformat() + time_range[1].isoformat() ).encode() ).hexdigest() @dataclass class GfsForecast(DataVibe): """Represents a Global Forecast System (GFS) forecast.""" publish_time: str """The publication time of the forecast in ISO format.""" @dataclass class WeatherVibe(DataVibe): """Represents weather data.""" pass
EXA-1-master
exa/libraries/farmvibes-ai-main/src/vibe_core/vibe_core/data/weather.py
from .airbus import AirbusPrice, AirbusProduct, AirbusRaster from .core_types import ( AssetVibe, BaseVibe, BaseVibeDict, BBox, DataSummaryStatistics, DataVibe, ExternalReference, ExternalReferenceList, FoodFeatures, FoodVibe, GeometryCollection, GHGFlux, GHGProtocolVibe, ProteinSequence, TimeRange, TimeSeries, TypeDictVibe, gen_guid, gen_hash_id, CarbonOffsetInfo, ) from .farm import ( ADMAgSeasonalFieldInput, FertilizerInformation, HarvestInformation, OrganicAmendmentInformation, SeasonalFieldInformation, TillageInformation, ) from .products import ( ChirpsProduct, ClimatologyLabProduct, DemProduct, Era5Product, GEDIProduct, GNATSGOProduct, LandsatProduct, ModisProduct, NaipProduct, ) from .rasters import ( CategoricalRaster, ChunkLimits, CloudRaster, DemRaster, GNATSGORaster, NaipRaster, Raster, RasterChunk, RasterIlluminance, RasterSequence, ) from .sentinel import ( DownloadedSentinel1Product, DownloadedSentinel2Product, S2ProcessingLevel, Sentinel1Product, Sentinel1Raster, Sentinel1RasterOrbitGroup, Sentinel2CloudMask, Sentinel2CloudMaskOrbitGroup, Sentinel2CloudProbability, Sentinel2Product, Sentinel2Raster, Sentinel2RasterOrbitGroup, SentinelProduct, SpaceEyeRaster, TiledSentinel1Product, ) from .utils import StacConverter from .weather import GfsForecast, gen_forecast_time_hash_id
EXA-1-master
exa/libraries/farmvibes-ai-main/src/vibe_core/vibe_core/data/__init__.py
import mimetypes from dataclasses import dataclass, field from typing import Dict, cast from .core_types import AssetVibe, DataVibe, gen_guid CDL_DOWNLOAD_URL = ( "https://www.nass.usda.gov/Research_and_Science/Cropland/Release/datasets/{}_30m_cdls.zip" ) """The base URL for downloading CropDataLayer data. :meta hide-value: """ @dataclass class DemProduct(DataVibe): """Represents metadata information about a Digital Elevation Map (DEM) tile. The :class:`DemProduct` type is the expected output of a list-like operator and the expected input type of a download-like operator. """ tile_id: str """The tile ID of the DEM tile.""" resolution: int """The resolution of the DEM tile.""" @dataclass class NaipProduct(DataVibe): """Represents metadata information about a National Agricultural Imagery Program (NAIP) tile. The :class:`NaipProduct` type is the expected output of a list-like operator and the type of a download-like operator. """ tile_id: str """The tile ID of the NAIP tile.""" year: int """The year of the NAIP tile.""" resolution: float """The resolution of the NAIP tile.""" @dataclass class LandsatProduct(DataVibe): """Represents metadata information about a Landsat tile.""" tile_id: str = "" """The tile ID of the Landsat tile.""" asset_map: Dict[str, str] = field(default_factory=dict) """A dictionary mapping band names to asset IDs.""" def add_downloaded_band(self, band_name: str, asset_path: str): """Adds a downloaded band to the asset map. :param band_name: The name of the band. :param asset_path: The path to the downloaded asset. """ band_guid = gen_guid() self.asset_map[band_name] = band_guid self.assets.append( AssetVibe(asset_path, cast(str, mimetypes.guess_type(asset_path)[0]), band_guid) ) def get_downloaded_band(self, band_name: str) -> AssetVibe: """Retrieves the downloaded band with the given name from the asset map. :param band_name: The name of the band to retrieve. :return: The downloaded band with the given name. :rtype: :class:`AssetVibe` :raises ValueError: If the band with the given name is not found or downloaded. """ try: band_guid = self.asset_map[band_name] except KeyError: raise ValueError(f"Band {band_name} not found or downloaded") return next((a for a in self.assets if a.id == band_guid)) @dataclass class ChirpsProduct(DataVibe): """Represents metadata information about a Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) product. """ url: str """The URL of the CHIRPS product.""" @dataclass class CDLProduct(DataVibe): """Represents metadata information about a Crop Data Layer (CDL) product.""" pass @dataclass class Era5Product(DataVibe): """Represents metadata information about an ERA5 product. :var item_id: The item ID of the ERA5 product. :var var: The variable of the ERA5 product. :var cds_request: A dictionary with the CDS request parameters. """ item_id: str var: str cds_request: Dict[str, Dict[str, str]] = field(default_factory=dict) @dataclass class ModisProduct(DataVibe): """Represents metadata information about a Moderate Resolution Imaging Spectroradiometer (MODIS) product. """ resolution: int """The resolution of the MODIS product.""" @dataclass class GEDIProduct(DataVibe): """Represents metadata information about a Global Ecosystem Dynamics Investigation (GEDI) product. """ product_name: str """The name of the GEDI product.""" start_orbit: int """The start orbit of the GEDI product.""" stop_orbit: int """The stop orbit of the GEDI product.""" processing_level: str """The processing level of the GEDI product.""" @dataclass class GNATSGOProduct(DataVibe): """Represents metadata information about a Gridded National Soil Survey Geographic Database (gNATSGO) product. """ pass @dataclass class ClimatologyLabProduct(DataVibe): """Represents metadata information about a Climatology Lab product.""" url: str """The URL of the Climatology Lab product.""" variable: str """The variable of the Climatology Lab product."""
EXA-1-master
exa/libraries/farmvibes-ai-main/src/vibe_core/vibe_core/data/products.py
import json from dataclasses import asdict, is_dataclass from datetime import datetime from typing import Any from pydantic.dataclasses import dataclass as pydataclass from pydantic.main import BaseModel class DataclassJSONEncoder(json.JSONEncoder): """ A class that extends the `json.JSONEncoder` class to support encoding of dataclasses and pydantic models. """ def default(self, obj: Any): """Encodes a dataclass or pydantic model to JSON. :param obj: The object to encode. :return: The JSON representation of the object. """ if is_dataclass(obj): cls = pydataclass(obj.__class__).__pydantic_model__ exclude = {"hash_id"} if hasattr(obj.__class__, "hash_id") else {} return json.loads(cls(**asdict(obj)).json(allow_nan=False, exclude=exclude)) if isinstance(obj, datetime): return obj.isoformat() if isinstance(obj, BaseModel): return json.loads(obj.json(allow_nan=False)) return super().default(obj) def dump_to_json(data: Any, **kwargs: Any) -> str: """Serializes an object to JSON using :class:`DataclassJSONEncoder`. :param data: The object to serialize to JSON. :param **kwargs: Additional keyword arguments to pass to the `json.dumps` method. :return: A JSON string representation of the object. """ return json.dumps( data, allow_nan=False, cls=DataclassJSONEncoder, **kwargs, )
EXA-1-master
exa/libraries/farmvibes-ai-main/src/vibe_core/vibe_core/data/json_converter.py
import hashlib import logging import re import uuid from dataclasses import asdict, dataclass, field, fields, is_dataclass from datetime import datetime, timezone from pathlib import Path from tempfile import TemporaryDirectory from typing import ( Any, Callable, ClassVar, Dict, List, Optional, Tuple, Type, Union, cast, get_args, get_origin, ) from pydantic.dataclasses import dataclass as pydataclass from pydantic.main import BaseModel, ModelMetaclass from shapely import geometry as shpg from shapely import wkt from shapely.geometry.base import BaseGeometry from ..file_downloader import build_file_path, download_file from ..uri import is_local from . import data_registry from .json_converter import dump_to_json FARMVIBES_AI_BASE_SCHEMA = "schema" FARMVIBES_AI_BASE_PYDANTIC_MODEL = "pydantic_model" LOGGER = logging.getLogger(__name__) BBox = Tuple[float, float, float, float] """Type alias for a bounding box, as a tuple of four floats (minx, miny, maxx, maxy).""" TimeRange = Tuple[datetime, datetime] """Type alias for a time range, as a tuple of two `datetime` objects (start, end).""" def gen_guid(): """ Generates a random UUID as a string. :return: A random UUID as a string. """ return str(uuid.uuid4()) def gen_hash_id( name: str, geometry: Union[BaseGeometry, Dict[str, Any]], time_range: Tuple[datetime, datetime] ): """ Generates a hash ID based on a name, a geometry, and a time range. :param name: The name associated with the hash ID. :param geometry: The geometry associated with the hash ID, either as a `BaseGeometry` object or as a dictionary. :param time_range: The time range associated with the hash ID, as a tuple of two `datetime` objects (start, end). :return: A hash ID as a hexadecimal string. """ return hashlib.sha256( ( name + wkt.dumps(shpg.shape(geometry)) + time_range[0].isoformat() + time_range[1].isoformat() ).encode() ).hexdigest() BaseVibeDict = Dict[str, Union["BaseVibe", List["BaseVibe"]]] BaseUnion = Union["BaseVibe", List["BaseVibe"]] DataVibeType = Union[Type["BaseVibe"], Type[List["BaseVibe"]]] InnerIOType = Union[List[Dict[str, Any]], Dict[str, Any]] OpIOType = Dict[str, InnerIOType] class TypeDictVibe(Dict[str, DataVibeType]): """ A dictionary subclass used for type validation in FarmVibes.AI. """ @classmethod def __get_validators__(cls): yield cls.validate @classmethod def validate(cls, v: Any) -> "BaseVibe": """ Validates a dictionary of values against FarmVibes.AI types. This method takes a dictionary of values as input and returns a :class:`BaseVibe` object. It validates each value in the dictionary against FarmVibes.AI types using the :class:`TypeParser` class. If a value is not a FarmVibes.AI type, a `ValueError` is raised. :param v: A dictionary of values to validate. :return: A :class:`BaseVibe` object. :raises ValueError: If a value in the dictionary is not a FarmVibes.AI type. """ try: for key in v: if isinstance(v[key], str): v[key] = TypeParser.parse(v[key]) elif isinstance(get_origin(v[key]), Type): args = get_args(v[key])[0] origin = get_origin(args) if origin is not None and issubclass(origin, List): base = get_args(args)[0] if issubclass(base, BaseVibe): continue elif issubclass(args, BaseVibe): continue else: raise ValueError(f"Value for key {key} is not a FarmVibes.AI type") return v except TypeError: raise ValueError class TypeParser: """ A class that provides a method for parsing type specifications in FarmVibes.AI. It is used to parse the type specifications of ports in :class:`BaseVibe` subclasses. """ logger: logging.Logger = logging.getLogger(f"{__name__}.TypeParser") """A logger for the class.""" type_pattern: "re.Pattern[str]" = re.compile(r"((\w+)\[)?(\w+)\]?") """A regular expression pattern to parse type specifications.""" inherit_pattern = re.compile(r"\s*\@INHERIT\((.*)\)\s*") """A regular expression pattern to parse type specifications that inherit from other ports.""" supported_container_types: List[str] = ["List"] """A list of supported container types.""" container_group: int = 1 """The group in the regular expression pattern that matches thecontainer type.""" type_group: int = 2 """The group in the regular expression pattern that matches the type.""" @classmethod def parse(cls, typespec: str) -> DataVibeType: """ Parses a type specification string and returns a :class:`BaseVibe` or a List[:class:`BaseVibe`]. It first checks if the type specification string includes inheritance, and if so, returns an :class:`UnresolvedDataVibe` object. Otherwise, it extracts the container and data IDs from the type specification string and retrieves the corresponding :class:`BaseVibe` subclass from the `data_registry`. If the container or data ID is not supported, a `ValueError` is raised. :param typespec: A string representing the type specification. :return: A :class:`BaseVibe` or a List[:class:`BaseVibe`] object. :raises ValueError: If the container ID is not supported or the data ID is not a :class:`BaseVibe` subclass. :raises KeyError: If the data ID is not found in the `data_registry`. """ inherit = cls.inherit_pattern.findall(typespec) if inherit: # What `parse` returns needs to be a Type, and not a class instance. Because of # that, we have to game the type system here, such that we output something that # is a valid DataVibeType, and that has the name of the port we are inheriting from. # So, by instantiating `UnresolvedDataVibe()`, which itself inherits from type, # we are creating a new Type[BaseVibe]. The line below, by the way, is equivalent # to `type(inherit[0][1], (), {})`, with the additional `Type[BaseVibe]` parent. inherit_type = UnresolvedDataVibe(inherit[0], (), {}) return cast(DataVibeType, inherit_type) typespec = typespec.replace("typing.", "").replace("vibe_core.data.", "") matches = cls.type_pattern.findall(typespec) containerid = matches[0][cls.container_group] dataid = matches[0][cls.type_group] if containerid and containerid not in cls.supported_container_types: raise ValueError(f"Operation uses unsupported container {containerid}") try: datavibe = data_registry.retrieve(dataid) if not issubclass(datavibe, BaseVibe): raise ValueError( f"Operation uses unsupported type {data_registry.get_name(datavibe)}" ) datavibe_list = List[datavibe] # type: ignore return datavibe_list if containerid else datavibe except KeyError: raise KeyError(f"Unable to find type {dataid}") @dataclass class AssetVibe: """Represents an asset in FarmVibes.AI.""" type: Optional[str] """An optional string representing the MIME type of the asset.""" id: str """A string representing the ID of the asset.""" path_or_url: str """A string representing the path or URL of the asset.""" _is_local: bool _local_path: Optional[str] def __init__(self, reference: str, type: Optional[str], id: str) -> None: self._is_local = is_local(reference) self._local_path = reference if self._is_local else None self.path_or_url = reference self.type = type self.id = id self._tmp_dir = TemporaryDirectory() if type is None: LOGGER.warning(f"Asset {self} created without defined mimetype") def __del__(self): try: self._tmp_dir.cleanup() except (AttributeError, FileNotFoundError): LOGGER.info(f"Unable to clean temporary directory related to VibeAsset {self.url}") @property def local_path(self) -> str: """ Returns the local path of the asset. If the asset is local, this method returns the local path of the asset. If the asset is remote, it downloads the asset to a temporary directory (if not previously downloaded) and returns the local path of the downloaded file. :return: The local path of the asset. """ if self._is_local: return cast(str, self._local_path) # This is a remote asset if self._local_path: # The download was previously done return self._local_path # The asset is remote and there is no previous download file_path = build_file_path( self._tmp_dir.name, gen_guid(), "" if self.type is None else self.type ) self._local_path = download_file(self.url, file_path) return self._local_path @property def url(self) -> str: """ Returns the URL of the asset. If the asset is local, this method returns the absolute URI of the local path. Otherwise, it returns the original path or URL of the asset. :return: The URL of the asset. """ if self._is_local: return Path(self.local_path).absolute().as_uri() return self.path_or_url @dataclass class BaseVibe: """ Represents a base class for FarmVibes.AI types. """ schema: ClassVar[Callable[[], Dict[str, Any]]] pydantic_model: ClassVar[Callable[[], ModelMetaclass]] def __init__(self): pass def __post_init__(self): if "id" not in [f.name for f in fields(self.__class__)]: self.id = self.hash_id @classmethod def from_dict(cls, data: Dict[str, Any]) -> "BaseVibe": """ A class method that creates a :class:`BaseVibe` object from a dictionary of values. This method takes a dictionary of values as input and returns a :class:`BaseVibe` object. If the class schema includes a bounding box (`bbox`) property, this method calculates the bounding box from the `geometry` property using the `shapely.geometry` library. If the `geometry` property is missing, a `ValueError` is raised. Otherwise, this method creates a new instance of the Pydantic model and returns it. :param data: A dictionary of values to create the :class:`BaseVibe` object from. :return: A :class:`BaseVibe` object. :raises ValueError: If the `geometry` property is missing and the class schema includes a `bbox` property. """ if "bbox" in cls.schema()["properties"]: try: data["bbox"] = shpg.shape(data["geometry"]).bounds except KeyError as e: raise ValueError(f"Geometry is missing from {data}") from e return cls.pydantic_model()(**data) @property def hash_id(self) -> str: """ Returns the hash ID of the object. If the class has an `id` attribute that is a non-empty string, this method returns it. Otherwise, it calculates the SHA-256 hash of the JSON representation of the object and returns the hexadecimal digest. :return: The hash ID of the object. """ if ( hasattr(self.__class__, "id") and isinstance(self.__class__.id, str) # type: ignore and self.id # type: ignore ): return self.id # type: ignore return hashlib.sha256(dump_to_json(self).encode()).hexdigest() def __init_subclass__(cls, **kwargs): # type: ignore super().__init_subclass__(**kwargs) @classmethod def schema(cls, *args, **kwargs): # type: ignore return cls.pydantic_model().schema(*args, **kwargs) @classmethod def pydantic_model(cls): # type: ignore if is_dataclass(cls): if issubclass(cls, DataVibe): @pydataclass class PydanticAssetVibe(AssetVibe): pass @pydataclass class Tmp(cls): assets: List[PydanticAssetVibe] class Config: underscore_attrs_are_private = True arbitrary_types_allowed = True Tmp.__name__ = cls.__name__ # Tmp in the repr would confuse users return Tmp.__pydantic_model__ # type: ignore return pydataclass(cls).__pydantic_model__ if issubclass(cls, BaseModel): return cls raise NotImplementedError(f"{cls.__name__} is not a dataclass") # type:ignore if not hasattr(cls, FARMVIBES_AI_BASE_SCHEMA): setattr(cls, FARMVIBES_AI_BASE_SCHEMA, schema) if not hasattr(cls, FARMVIBES_AI_BASE_PYDANTIC_MODEL): setattr(cls, FARMVIBES_AI_BASE_PYDANTIC_MODEL, pydantic_model) try: data_registry.retrieve(cls.__name__) except KeyError: data_registry.register_vibe_datatype(cls) class UnresolvedDataVibe(Type[BaseVibe], BaseVibe): # type: ignore """ Meta type that is equivalent to Python's `type` built-in. The output of this class is a new *type*, not a regular object. This is used internally by FarmVibes.AI and, in general, should never be instantiated. In fact, even if this is instantiated, there's nothing useful that could be done with an instance of this (which, again, is a new Type). """ def get_filtered_init_field_names(obj: Any, filter_fun: Callable[[Any], bool]): """ Returns a list of filtered field names for an object's `__init__` method. :param obj: The object to retrieve the field names from. :param filter_fun: A function that takes a field name as input and returns a boolean indicating whether the field should be included in the output list. :return: A list of filtered field names for the object's `__init__` method. """ src_fields = get_init_field_names(obj) return list(filter(filter_fun, src_fields)) def get_filtered_init_fields(obj: Any, filter_fun: Callable[[Any], bool]): """ Returns a dictionary of filtered fields for an object's `__init__` method. :param obj: The object to retrieve the field values from. :param filter_fun: A function that takes a field name as input and returns a boolean indicating whether the field should be included in the output dictionary. :return: A dictionary of filtered field names and values for the object's `__init__` method. """ field_names = get_filtered_init_field_names(obj, filter_fun) obj_dict = asdict(obj) return {f: obj_dict[f] for f in field_names} # TODO consider if we should consolidate geometry and datetime types. @dataclass class DataVibe(BaseVibe): """ Represents a data object in FarmVibes.AI. """ id: str """A string representing the unique identifier of the data object.""" time_range: TimeRange """A :const:`TimeRange` representing the timestamps of to the beginning and end of sample.""" bbox: BBox = field(init=False) """A :const:`BBox` representing the bounding box of the data object. This field is calculated from the `geometry` property using the `shapely.geometry` library. """ geometry: Dict[str, Any] """A dictionary representing the geometry of the data object.""" assets: List[AssetVibe] """A list of :class:`AssetVibe` objects of the assets associated with the data object.""" SKIP_FIELDS: ClassVar[Tuple[str, ...]] = ("id", "assets", "hash_id", "bbox") """A tuple containing the fields to skip when calculating the hash ID of the object.""" def __post_init__(self): self.bbox = shpg.shape(self.geometry).bounds # type: ignore self.time_range = ( self.time_range[0].astimezone(timezone.utc), self.time_range[1].astimezone(timezone.utc), ) super().__post_init__() # Type hint with class that we are defining? https://stackoverflow.com/a/35617812 @classmethod def clone_from(cls, src: "DataVibe", id: str, assets: List[AssetVibe], **kwargs: Any): """ Creates a new :class:`DataVibe` object with updated fields. This method takes a source :class:`DataVibe` object, a new `id` string, a list of new :class:`AssetVibe` objects, and any additional keyword arguments to update the fields of the source object. It returns a new :class:`DataVibe` object with the updated fields. :param cls: The class of the new :class:`DataVibe` object. :param src: The source :class:`DataVibe` object to clone. :param id: The new `id` string for the cloned object. :param assets: The new list of :class:`AssetVibe` objects for the cloned object. :param kwargs: Additional keyword arguments to update the fields of the cloned object. :return: A new :class:`DataVibe` object with the updated fields. """ valid_names = [f for f in get_init_field_names(cls) if f not in cls.SKIP_FIELDS] copy_args = get_filtered_init_fields(src, lambda x: x in valid_names) copy_args.update(kwargs) return cls(id=id, assets=assets, **copy_args) def get_init_field_names(obj: Type[BaseVibe]) -> List[str]: """ Returns a list of field names for an object's `__init__` method. :param obj: The :class:`BaseVibe` class to retrieve the field names from. :return: A list of field names for the class's `__init__` method. """ return [f.name for f in fields(obj) if f.init] @dataclass class TimeSeries(DataVibe): """Represents a time series data object in FarmVibes.AI.""" pass @dataclass class DataSummaryStatistics(DataVibe): """Represents a data summary statistics object in FarmVibes.AI.""" pass @dataclass class DataSequence(DataVibe): """Represents a sequence of data assets in FarmVibes.AI.""" idx: int = field(init=False) """Number of data objects in the sequence.""" asset_order: Dict[str, int] = field(default_factory=dict) """A dictionary mapping asset IDs to their order in the sequence.""" asset_time_range: Dict[str, TimeRange] = field(default_factory=dict) """A dictionary mapping asset IDs to their time range.""" asset_geometry: Dict[str, BaseGeometry] = field(default_factory=dict) """A dictionary mapping asset IDs to their geometry.""" def __post_init__(self): super().__post_init__() lens = [len(i) for i in (self.asset_order, self.asset_time_range, self.asset_geometry)] self.idx = lens[0] if not all(i == self.idx for i in lens): raise ValueError(f"Expected all asset maps to have the same length, found {lens}") def add_item(self, item: DataVibe): """ Adds an item to the sequence. :param item: The item to be added to the sequence. """ asset = item.assets[0] self.add_asset(asset, item.time_range, shpg.shape(item.geometry)) def add_asset(self, asset: AssetVibe, time_range: TimeRange, geometry: BaseGeometry): """ Adds an asset to the sequence. :param asset: The asset to add to the sequence. :param time_range: The time range of the asset. :param geometry: The geometry of the asset. """ self.assets.append(asset) self.asset_order[asset.id] = self.idx self.asset_time_range[asset.id] = time_range self.asset_geometry[asset.id] = geometry self.idx += 1 def get_ordered_assets(self, order_by: Optional[Dict[str, Any]] = None) -> List[AssetVibe]: """ Gets a list of assets in the sequence, ordered by the provided dictionary. :param order_by: A dictionary mapping asset IDs to their order in the sequence. If None, the assets will be ordered by their default order in the sequence. :return: A list of assets in the sequence, ordered by the provided dictionary. """ if order_by is None: order_by = self.asset_order return sorted(self.assets, key=lambda x: order_by[x.id]) @dataclass class ExternalReferenceList(DataVibe): """ Represents a list of external references in FarmVibes.AI. """ urls: List[str] """A list of URLs.""" @dataclass class ExternalReference(DataVibe): """ Represents a single external reference in FarmVibes.AI. """ url: str """The URL representing the external reference.""" @dataclass class GeometryCollection(DataVibe): """Represents a geometry collection in FarmVibes.AI.""" pass @dataclass class FoodVibe(BaseVibe): """ Represents a food object in FarmVibes.AI. """ dietary_fiber: float """The amount of dietary fiber in grams.""" magnesium: float """The amount of magnesium in milligrams.""" potassium: float """The amount of potassium in milligrams.""" manganese: float """The amount of manganese in milligrams.""" zinc: float """The amount of zinc in milligrams.""" iron: float """The amount of iron in milligrams.""" copper: float """The amount of copper in milligrams.""" protein: float """The amount of protein in grams.""" trp: float # Tryptophan content """The amount of tryptophan in grams.""" thr: float # Threonine content """The amount of threonine in grams.""" ile: float # Isoleucine content """The amount of isoleucine in grams.""" leu: float # Leucine content """The amount of leucine in grams.""" lys: float # Lysine content """The amount of lysine in grams.""" met: float # Methionine content """The amount of methionine in grams.""" cys: float # Cysteine content """The amount of cysteine in grams.""" phe: float # Phenylalanine content """The amount of phenylalanine in grams.""" tyr: float # Tyrosine content """The amount of tyrosine in grams.""" val: float # Valine content """The amount of valine in grams.""" arg: float # Arginine content """The amount of arginine in grams.""" his: float # Histidine content """The amount of histidine in grams.""" fasta_sequence: List[str] """A list with the amino acid sequence of the protein.""" protein_families: List[str] """A list with the protein families associated to the food.""" food_group: str """The food group the food belongs to.""" @dataclass class FoodFeatures(DataVibe): """Represents the features of a food in FarmVibes.AI.""" pass @dataclass class ProteinSequence(DataVibe): """Represents a protein sequence in FarmVibes.AI.""" pass @dataclass class CarbonOffsetInfo(DataVibe): """ Represents carbon offset information. """ carbon: str """The carbon offset.""" @dataclass class GHGFlux(DataVibe): """ Represents a greenhouse gas (GHG) flux in FarmVibes.AI. """ scope: str """The scope of the GHG flux.""" value: float """The value of the GHG flux.""" description: Optional[str] """An optional description of the GHG flux.""" @dataclass class GHGProtocolVibe(DataVibe): """ Represents the inputs to Green House Gas fluxes estimation workflows. This is a dataclass that has many attributes, due to the nature of the calculations proposed by the GHG protocol methodology. Not all attributes are required. Below we describe all of them, as well as the units they should be in. """ cultivation_area: float # hectares """The area of the field that is cultivated in hectares.""" total_yield: float # tonnes """The total yield of the field in tonnes.""" soil_texture_class: Optional[str] # sand / clay / silt """The texture class of the soil (one of the following: "sand", "clay", or "silt").""" soil_clay_content: Optional[float] """The clay content of the soil in percentage.""" practice_adoption_period: Optional[int] """The number of years that the practice has been adopted.""" burn_area: Optional[float] """The area of the field that is burned in hectares.""" soil_management_area: Optional[float] """The area of the field that is managed in hectares.""" # fertilizer application {{{ # Synthetic fertilizers {{{ urea_amount: Optional[float] = 0.0 # kg per hectare """The amount of urea applied to the field in kilograms per hectare.""" synthetic_fertilizer_amount: Optional[float] = 0.0 # kg per hectare - not urea """The amount of synthetic fertilizer applied to the field in kilograms per hectare.""" synthetic_fertilizer_nitrogen_ratio: Optional[float] = 0.0 # percentage """The nitrogen ratio of the synthetic fertilizer applied to the field in percentage.""" # }}} # Soil correction {{{ limestone_calcite_amount: Optional[float] = 0.0 # kg per hectare """The amount of limestone calcite applied to the field in kilograms per hectare.""" limestone_dolomite_amount: Optional[float] = 0.0 # kg per hectare """The amount of limestone dolomite applied to the field in kilograms per hectare.""" gypsum_amount: Optional[float] = 0.0 # kg per hectare """The amount of gypsum applied to the field in kilograms per hectare.""" # }}} # Organic fertilizers {{{ organic_compound_amount: Optional[float] = 0.0 # kg per hectare """The amount of organic compound applied to the field in kilograms per hectare.""" manure_amount: Optional[float] = 0.0 # kg per hectare """The amount of manure applied to the field in kilograms per hectare.""" manure_birds_amount: Optional[float] = 0.0 # kg per hectare """The amount of manure from birds applied to the field in kilograms per hectare.""" organic_other_amount: Optional[float] = 0.0 # kg per hectare """The amount of other organic fertilizer applied to the field in kilograms per hectare.""" dry_matter_amount: Optional[float] = 0.0 # kg per hectare / Rice """The amount of dry matter applied to the field in kilograms per hectare.""" is_dry_matter_fermented: Optional[bool] = False # Yes/No / Rice """Whether the dry matter is fermented.""" vinasse_amount: Optional[float] = 0.0 # m^3 per hectare / Sugarcane """The amount of vinasse applied to the field in cubic meters per hectare.""" filter_cake_amount: Optional[float] = 0.0 # kg per hectare / Sugarcane """The amount of filter cake applied to the field in kilograms per hectare.""" filter_cake_application_area: Optional[float] = 0.0 # hectares / Sugarcane """The area of the field that is applied with filter cake in hectares.""" # }}} # Green manure {{{ green_manure_amount: Optional[float] = 0.0 # kg per hectare """The amount of green manure applied to the field in kilograms per hectare.""" green_manure_grass_amount: Optional[float] = 0.0 """The amount of green manure grass applied to the field in kilograms per hectare.""" green_manure_legumes_amount: Optional[float] = 0.0 """The amount of green manure legumes applied to the field in kilograms per hectare.""" # }}} # }}} # Rice cultivation {{{ soil_preparation: Optional[str] = "" # early / conventional """Whether the soil uses "early" or "conventional" preparation.""" water_regime: Optional[str] = "" """The water regime of the field.""" # }}} # Internal fuel {{{ diesel_type: Optional[str] = "DIESEL" # diesel(_b2|_b5|_b6|_b7|_b8|_b9|_b10) """The type of diesel used in the field.""" diesel_amount: Optional[float] = 0.0 # liters """The amount of diesel used in mechanical operations in the field in liters per hectare.""" gasoline_amount: Optional[float] = 0.0 # liters """The amount of gasoline used in mechanical operations in the field in liters per hectare.""" ethanol_amount: Optional[float] = 0.0 # liters """The amount of ethanol used in mechanical operations in the field in liters per hectare.""" # }}} # Transport fuel {{{ transport_diesel_type: Optional[str] = "DIESEL" # diesel(_b2|_b5|_b6|_b7|_b8|_b9|_b10) """The type of diesel used in transporting produce from the farm to the market.""" transport_diesel_amount: Optional[float] = 0.0 # liters """Amount of diesel used in transporting produce from farm to market in liters per hectare.""" # }}} current_land_use: str = "conventional_crops" """The current land use of the field (can be one of the following: "conventional_crops", "direct_seeding", "sugarcane_with_burning", or "sugarcane_without_burning"). """ previous_land_use: str = "conventional_crops" """The previous land use of the field (can be one of the following: "conventional_crops", "direct_seeding", "sugarcane_with_burning", "native", "sugarcane_without_burning"). """ biome: str = "" """The biome of the field (can be one of the following "US_FOREST", "BRAZIL_AMAZON_FOREST", "BRAZIL_AMAZON_SAVANNA", "BRAZIL_CERRADO", "BRAZIL_PANTANAL", "BRAZIL_CAATINGA", "BRAZIL_MATA_ATLANTICA", or "BRAZIL_PAMPA"). """
EXA-1-master
exa/libraries/farmvibes-ai-main/src/vibe_core/vibe_core/data/core_types.py
import json from dataclasses import fields from datetime import datetime from typing import _type_repr # type: ignore from typing import ( Any, Callable, Dict, List, NamedTuple, Tuple, Type, TypeVar, Union, cast, get_args, get_origin, overload, ) from pydantic import BaseModel from pystac.asset import Asset from pystac.item import Item from shapely import geometry as shpg from . import data_registry from .core_types import ( AssetVibe, BaseVibe, DataVibe, DataVibeType, get_filtered_init_fields, get_init_field_names, ) T = TypeVar("T", bound=BaseVibe, covariant=True) V = TypeVar("V") class FieldConverter(NamedTuple): """A named tuple representing a field converter.""" serializer: Callable[[Any], Any] """Serializes a value.""" deserializer: Callable[[Any], Any] """A function that deserializes a value.""" def is_json_serializable(x: Any) -> bool: """Checks if a field is JSON serializable by Python's default serializer. :param x: The value to check. :return: True if the value is JSON serializable, False otherwise. """ try: json.dumps(x) return True except (TypeError, OverflowError): return False def to_isoformat(x: datetime) -> str: """Converts a datetime object to an ISO format string. :param x: The datetime object to convert. :return: The ISO format string. """ return x.isoformat() class StacConverter: """A class that converts :class:`BaseVibe` objects to STAC Items.""" field_converters = { shpg.base.BaseGeometry: FieldConverter(shpg.mapping, shpg.shape), datetime: FieldConverter(to_isoformat, datetime.fromisoformat), } """A dictionary mapping field types to field converters.""" VIBE_DATA_TYPE_FIELD = "terravibes_data_type" """The name of the field that contains the data type of the :class:`BaseVibe` object.""" BASEVIBE_FALLBACK_DATETIME = datetime(1970, 1, 1) """The fallback datetime to use for :class:`BaseVibe` objects.""" def __init__(self): pass def sanitize_properties(self, properties: Dict[Any, Any]) -> Dict[Any, Any]: """Sanitizes a dictionary of properties to ensure they are JSON serializable. :param properties: The dictionary of properties to sanitize. :return: The sanitized dictionary of properties. """ out = {} for k, v in properties.items(): if is_json_serializable(v): out[k] = v else: Warning(f"Field {k} is not JSON serializable, it will not be added to STAC item.") return out def _serialize_type(self, field_value: Any, field_type: Any) -> Any: converter = self.field_converters.get(field_type) if converter is None: if isinstance(field_value, BaseModel): # We have to do this, otherwise our sanitizer will filter out # this value return json.loads(field_value.json()) return field_value return converter.serializer(field_value) def _deserialize_type(self, field_value: Any, field_type: Any) -> Any: converter = self.field_converters.get(field_type) if converter is None: return field_value return converter.deserializer(field_value) def convert_field( self, field_value: Any, field_type: Any, converter: Callable[[Any, Any], Any] ) -> Any: """Converts a field value to a given type, using a converter function. :param field_value: The value of the field to convert. :param field_type: The type to convert the field value to. :param converter: The converter function to use. :return: The converted field value. """ t_origin = get_origin(field_type) t_args = get_args(field_type) if t_origin is list and len(t_args) == 1: return [self.convert_field(f, t_args[0], converter) for f in field_value] if t_origin is dict and t_args: return {k: self.convert_field(v, t_args[1], converter) for k, v in field_value.items()} if t_origin is tuple and t_args: if len(t_args) == 2 and t_args[1] == ...: return tuple(self.convert_field(f, t_args[0], converter) for f in field_value) return tuple( self.convert_field(f, ta, converter) if ta is datetime else f for f, ta in zip(field_value, t_args) ) return converter(field_value, field_type) def serialize_fields( self, field_values: Dict[str, Any], field_types: Dict[str, Any] ) -> Dict[str, Any]: """Serializes a dictionary of fields. :param field_values: The dictionary of field values to serialize. :param field_types: The dictionary of field types to serialize to. :return: The serialized dictionary of field values. """ return { k: self.convert_field(v, field_types[k], self._serialize_type) for k, v in field_values.items() } def deserialize_fields( self, field_values: Dict[str, Any], field_types: Dict[str, Any] ) -> Dict[str, Any]: """Deserializes a dictionary of fields. :param field_values: The dictionary of field values to deserialize. :param field_types: The dictionary of field types to deserialize to. :return: The deserialized dictionary of field values. """ return { k: self.convert_field(v, field_types[k], self._deserialize_type) for k, v in field_values.items() } @overload def to_stac_item(self, input: BaseVibe) -> Item: ... @overload def to_stac_item(self, input: List[BaseVibe]) -> List[Item]: ... def to_stac_item(self, input: Union[List[BaseVibe], BaseVibe]): """Converts a :class`BaseVibe` or a list of :class`BaseVibe` to a STAC item or a list of STAC items. :param input: The :class`BaseVibe` or list of :class`BaseVibe` to convert. :return: A STAC item or a list of STAC items. """ if isinstance(input, list): return [ self._to_stac_impl(i) if isinstance(i, DataVibe) else self._base_vibe_to_stac(i) for i in input ] if isinstance(input, DataVibe): return self._to_stac_impl(input) return self._base_vibe_to_stac(input) def _extract_properties(self, input: BaseVibe) -> Dict[str, Any]: # If this object inherits from BaseVibe but not from DataVibe, then the # base is BaseVibe. Otherwise, the base is DataVibe. # Whatever the base is, it is the input to `get_init_field_names` regular_fields = get_init_field_names( BaseVibe if not isinstance(input, DataVibe) else DataVibe ) properties = get_filtered_init_fields(input, lambda x: x not in regular_fields) property_types = {f.name: f.type for f in fields(input) if f.name in properties} properties = self.serialize_fields(properties, property_types) return properties def _base_vibe_to_stac(self, input: BaseVibe) -> Item: properties = self._extract_properties(input) properties = self.sanitize_properties(properties) extra_fields = {self.VIBE_DATA_TYPE_FIELD: data_registry.get_id(type(input))} item = Item( id=input.id, datetime=self.BASEVIBE_FALLBACK_DATETIME if not hasattr(input, "datetime") else input.datetime, # type: ignore bbox=None, geometry=None, properties=properties, extra_fields=extra_fields, ) return item def _to_stac_impl(self, input: DataVibe) -> Item: properties = self._extract_properties(input) properties["start_datetime"] = input.time_range[0].isoformat() properties["end_datetime"] = input.time_range[1].isoformat() extra_fields = {self.VIBE_DATA_TYPE_FIELD: data_registry.get_id(type(input))} properties = self.sanitize_properties(properties) item = Item( id=input.id, datetime=input.time_range[0], bbox=list(input.bbox), geometry=input.geometry, properties=properties, extra_fields=extra_fields, ) for asset in input.assets: item.add_asset( key=asset.id, asset=Asset(href=asset.path_or_url, media_type=asset.type), ) return item @overload def from_stac_item(self, input: Item) -> BaseVibe: ... @overload def from_stac_item(self, input: List[Item]) -> List[BaseVibe]: ... def from_stac_item(self, input: Union[Item, List[Item]]) -> Union[BaseVibe, List[BaseVibe]]: """Converts a STAC item or a list of STAC items to a :class`BaseVibe` or a list of :class`BaseVibe`. :param input: The STAC item or list of STAC items to convert. :return: A :class`BaseVibe` or a list of :class`BaseVibe`. """ if isinstance(input, list): return [self._from_stac_impl(i) for i in input] return self._from_stac_impl(input) def _from_stac_impl(self, input: Item) -> BaseVibe: # Figuring out type to create vibe_data_type = self.resolve_type(input) # Need to find the necessary arguments to the constructor of the type init_fields = list(get_init_field_names(vibe_data_type)) init_field_types = {f.name: f.type for f in fields(vibe_data_type) if f.name in init_fields} # Read properties from item stac into init fields in_props: Dict[str, Any] = input.properties # type: ignore data_kw = {f: in_props[f] for f in init_fields if f in in_props} data_kw = self.deserialize_fields(data_kw, init_field_types) data_kw.update(self._build_extra_kwargs(input, vibe_data_type)) # Creating actual object return vibe_data_type(**data_kw) def _build_extra_kwargs(self, input: Item, type: Type[BaseVibe]) -> Dict[str, Any]: # Adding DataVibe-specific fields - think of better mechanism to do this... data_kw = {} if issubclass(type, DataVibe): data_kw["id"] = input.id data_kw["time_range"] = convert_time_range(input) data_kw["geometry"] = input.geometry # type: ignore data_kw["assets"] = [ AssetVibe(reference=a.href, type=a.media_type, id=id) for id, a in input.assets.items() ] return data_kw def resolve_type(self, input: Item) -> Type[BaseVibe]: """Resolves the type of a :class`BaseVibe` object from a STAC item. :param input: The STAC item to resolve the type from. :return: The type of :class`BaseVibe`. """ extra_fields: Dict[str, Any] = input.extra_fields # type: ignore if self.VIBE_DATA_TYPE_FIELD not in extra_fields: return BaseVibe return cast( Type[BaseVibe], data_registry.retrieve(extra_fields[self.VIBE_DATA_TYPE_FIELD]), ) def convert_time_range(item: Item) -> Tuple[datetime, datetime]: """Converts the time range of a STAC item to a tuple of datetimes. :param item: The STAC item to convert the time range for. :return: A tuple of datetimes representing the start and end of the time range. """ conv_foo = datetime.fromisoformat props: Dict[str, Any] = item.properties # type: ignore if "start_datetime" in props and "end_datetime" in props: return ( conv_foo(props["start_datetime"]), conv_foo(props["end_datetime"]), ) assert item.datetime is not None return (item.datetime, item.datetime) @overload def serialize_stac(arg: Item) -> Dict[str, Any]: ... @overload def serialize_stac(arg: List[Item]) -> List[Dict[str, Any]]: ... def serialize_stac(arg: Union[Item, List[Item]]): """Serializes a STAC item or a list of STAC items to a dictionary or a list of dictionaries. :param arg: The STAC item or list of STAC items to serialize. :return: A dictionary or a list of dictionaries representing the STAC item or list of STAC items. """ if isinstance(arg, list): return [item.to_dict(include_self_link=False) for item in arg] return arg.to_dict(include_self_link=False) @overload def deserialize_stac(arg: Dict[str, Any]) -> Item: ... @overload def deserialize_stac(arg: List[Dict[str, Any]]) -> List[Item]: ... def deserialize_stac(arg: Union[List[Dict[str, Any]], Dict[str, Any]]): """Deserializes a dictionary or a list of dictionaries to a STAC item or a list of STAC items. :param arg: The dictionary or list of dictionaries to deserialize. :return: A STAC item or a list of STAC items. """ item_builder = Item.from_dict if isinstance(arg, list): return [item_builder(in_dict) for in_dict in arg] return item_builder(arg) @overload def serialize_input(input_data: BaseVibe) -> Dict[str, Any]: ... @overload def serialize_input(input_data: List[T]) -> List[Dict[str, Any]]: ... @overload def serialize_input( input_data: Dict[str, Union[T, List[T]]] ) -> Dict[str, Union[Dict[str, Any], List[Dict[str, Any]]]]: ... def serialize_input(input_data: Any) -> Any: """Serializes a single :class`BaseVibe` object, or a list or dictionary of them, to a STAC item or a list or dictionary of STAC items. :param input_data: The :class`BaseVibe` object or a list or dictionary of :class`BaseVibe` objects to serialize. :return: A list, a dictionary or a single STAC Item representing the :class`BaseVibe` object. :raises NotImplementedError: If the input data is not a :class`BaseVibe` object, or a list or dictionary of :class`BaseVibe`. """ # Dictionary where keys are workflow sources if isinstance(input_data, dict): return {k: serialize_input(v) for k, v in input_data.items()} # Input is a list of elements if isinstance(input_data, list): return [serialize_input(i) for i in input_data] if isinstance(input_data, BaseVibe): return serialize_stac(StacConverter().to_stac_item(input_data)) raise NotImplementedError(f"Unable to serialize {input_data.__class__} objects to JSON") def get_base_type(vibetype: DataVibeType) -> Type[BaseVibe]: """Determines the base type of a typing specification. :param vibetype: The type to determine the base type of. :return: The base type of vibetype. :raises ValueError: If the type hierarchy contains nested container types (e.g., List[List[:class:`DataVibe`]]). Doctests: >>> get_base_type(DataVibe) vibe_core.data.DataVibe >>> get_base_type([List[DataVibe]) vibe_core.data.DataVibe """ if not (is_container_type(vibetype) or isinstance(vibetype, type)): raise ValueError(f"Argument {vibetype} is not a type") if isinstance(vibetype, type): return cast(Type[T], vibetype) levels = 1 tmp = get_args(vibetype) while tmp is not None and is_container_type(tmp[0]): origin = get_origin(tmp[0]) if origin is None: raise AssertionError("Found a None type in the hierarchy") if not issubclass(origin, list): raise ValueError(f"Container type {origin.__name__} is not supported") tmp = get_args(tmp[0]) levels += 1 if levels > 1: raise ValueError("Nested container types are not supported") return tmp[0] def is_container_type(typeclass: Union[Type[V], List[Type[V]]]) -> bool: """Checks if a type is a container type. :param typeclass: The type to check. :return: True if the type is a container type, False otherwise. """ return bool(get_args(typeclass)) def is_vibe_list(typeclass: DataVibeType) -> bool: """Checks if a type is a list of :class`BaseVibe` objects. :param typeclass: The type to check. :return: True if the type is a list of :class`BaseVibe` objects, False otherwise. """ origin = get_origin(typeclass) return origin is not None and issubclass(origin, list) def get_most_specific_type(types: List[DataVibeType]) -> DataVibeType: """Determines the most specific type of a list of types. :param types: The list of types to determine the most specific type of. :return: The most specific type of types. :raises ValueError: If the types are not compatible. """ t_set = set(get_base_type(t) for t in types) for t in t_set: if all(issubclass(t, tt) for tt in t_set): break else: types_str = ", ".join([f"'{_type_repr(t)}'" for t in t_set]) raise ValueError(f"Types {types_str} are not compatible") if all(is_container_type(tt) for tt in types): return List[t] return t
EXA-1-master
exa/libraries/farmvibes-ai-main/src/vibe_core/vibe_core/data/utils.py
from dataclasses import dataclass from typing import Any, Dict from .core_types import DataVibe from .rasters import Raster @dataclass class AirbusProduct(DataVibe): """ Represents Airbus product metadata obtained from the search API. Contains no image assets. """ acquisition_id: str """The ID of the acquisition.""" extra_info: Dict[str, Any] """A dictionary with extra information about the product.""" @dataclass class AirbusPrice(DataVibe): """Represents the price of an Airbus product.""" price: float """The price of the product.""" @dataclass class AirbusRaster(Raster, AirbusProduct): """ Represents an Airbus raster product, downloaded with specific product type, radiometric processing, projection. """ pass
EXA-1-master
exa/libraries/farmvibes-ai-main/src/vibe_core/vibe_core/data/airbus.py
import warnings from typing import Any, Dict, Type, TypeVar, cast GenericTypeVibe = TypeVar("GenericTypeVibe", bound=Type[Any]) """Generic type for data registry.""" __DATA_REGISTRY: Dict[str, Type[Any]] = {} def register_vibe_datatype(classdef: GenericTypeVibe) -> GenericTypeVibe: """Registers a class as a data type in the FarmVibes.AI data registry. :param classdef: The class to register. :return: The class. """ id = get_name(classdef) if id in __DATA_REGISTRY: warnings.warn(f"Class {id} already registered.", DeprecationWarning, stacklevel=2) return cast(GenericTypeVibe, retrieve(id)) __DATA_REGISTRY[id] = classdef return cast(GenericTypeVibe, classdef) def retrieve(id: str) -> Type[Any]: """ Retrieves a registered data type from the FarmVibes.AI data registry. :param id: The ID of the data type to retrieve. :return: The registered data type. """ return __DATA_REGISTRY[id] def get_name(classdef: Type[Any]) -> str: """ Gets the name of a class. :param classdef: The class to get the name of. :return: The name of the class. """ return classdef.__name__ def get_id(classdef: Type[Any]) -> str: """ Gets the ID of a class. :param classdef: The class to get the ID of. :return: The ID of the class. """ id = get_name(classdef) return id
EXA-1-master
exa/libraries/farmvibes-ai-main/src/vibe_core/vibe_core/data/data_registry.py
import mimetypes from dataclasses import dataclass, field from datetime import datetime from enum import auto from typing import Any, Dict, List, Union from dateutil.parser import parse as parse_date from strenum import StrEnum from . import AssetVibe, DataVibe from .core_types import TimeRange, gen_guid from .rasters import CategoricalRaster, CloudRaster, Raster, RasterSequence class S2ProcessingLevel(StrEnum): """Enum for Sentinel 2 processing levels.""" L1C = auto() """Level 1C processing level.""" L2A = auto() """Level 2A processing level.""" def discriminator_date(product_name: str) -> datetime: """A function that extracts the date from a Sentinel-2 product name. :param product_name: The name of the Sentinel-2 product. :return: The date of the Sentinel-2 product as a datetime object. """ return parse_date(product_name.split("_")[-1]) # TODO: remove the generic dictionary for a list of actual information that we want to keep. # consider having two representations, one for Sentinel 1 another for Sentinel 2. @dataclass class SentinelProduct(DataVibe): """Represents a Sentinel product metadata (does not include the image data).""" product_name: str """The name of the Sentinel product.""" orbit_number: int """The orbit number of the Sentinel product.""" relative_orbit_number: int """The relative orbit number of the Sentinel product.""" orbit_direction: str """The orbit direction of the Sentinel product.""" platform: str """The platform of the Sentinel product.""" extra_info: Dict[str, Any] # Allows for generic information to be stored. """A dictionary with extra information about the Sentinel product.""" @dataclass class Sentinel1Product(SentinelProduct): """Represents a Sentinel-1 product metadata.""" sensor_mode: str """The sensor mode of the Sentinel-1 product.""" polarisation_mode: str """The polarisation mode of the Sentinel-1 product.""" @dataclass class Sentinel2Product(SentinelProduct): """Represents a Sentinel-2 product metadata.""" tile_id: str """The tile ID of the Sentinel-2 product.""" processing_level: str """The processing level of the Sentinel-2 product.""" @dataclass class CloudMask(CategoricalRaster, CloudRaster, Sentinel2Product): """Represents a cloud mask raster for a Sentinel-2 product.""" pass @dataclass class SentinelRaster(Raster, SentinelProduct): """Represents a raster for a Sentinel product.""" pass @dataclass class DownloadedSentinel2Product(Sentinel2Product): """Represents a downloaded Sentinel-2 product.""" CLOUD_MASK: str = "cloud_mask" """The key for the cloud mask asset in the asset map.""" asset_map: Dict[str, str] = field(default_factory=dict) """A dictionary mapping the band name to the asset ID.""" def add_downloaded_band(self, band_name: str, asset_path: str): """A method that adds a downloaded band to the asset map of the :class:`DownloadedSentinel2Product` object. :param band_name: The name of the band to add. :param asset_path: The path to the downloaded band file. :raises ValueError: If the file type is not supported (types other than TIFF or JP2). """ band_guid = gen_guid() # Double check mime type self.asset_map[band_name] = band_guid # Check if this is also true for L1A asset_type = mimetypes.guess_type(asset_path)[0] if asset_type is None or asset_type not in ["image/tiff", "image/jp2"]: raise ValueError( f"TIFF and JP2 files supported for Sentinel2 downloads. Found {asset_type}." ) self.assets.append(AssetVibe(asset_path, asset_type, band_guid)) def _lookup_asset(self, guid: str) -> AssetVibe: def id_eq(x: AssetVibe): return x.id == guid return list(filter(id_eq, self.assets))[0] def add_downloaded_cloudmask(self, asset_path: str): """A method that adds a downloaded cloud mask to the asset map of the :class:`DownloadedSentinel2Product` object. :param asset_path: The path to the downloaded cloud mask file. """ cloud_guid = gen_guid() # Double check mime type self.asset_map[self.CLOUD_MASK] = cloud_guid self.assets.append(AssetVibe(asset_path, "application/gml+xml", cloud_guid)) def get_downloaded_band(self, band_name: str) -> AssetVibe: """A method that returns the downloaded band asset for the given band name. :param band_name: The name of the band to return. :return: The downloaded band asset. """ guid = self.asset_map[band_name] return self._lookup_asset(guid) def get_downloaded_cloudmask(self) -> AssetVibe: """A method that retrieves the downloaded cloud mask asset. :return: The downloaded cloud mask asset. """ guid = self.asset_map[self.CLOUD_MASK] return self._lookup_asset(guid) @dataclass class DownloadedSentinel1Product(Sentinel1Product): """Represents a downloaded Sentinel-1 product.""" ZIP_FILE = "zip" """The key for the zip asset in the asset map.""" asset_map: Dict[str, str] = field(default_factory=dict) """A dictionary mapping the band name to the asset ID.""" def _lookup_asset(self, guid: str) -> AssetVibe: def id_eq(x: AssetVibe): return x.id == guid return list(filter(id_eq, self.assets))[0] def add_zip_asset(self, asset_path: str): """A method that adds a downloaded zip asset to the asset map of the :class:`DownloadedSentinel1Product` object. :param asset_path: The path to the downloaded zip file. """ zip_guid = gen_guid() # Double check mime type self.asset_map[self.ZIP_FILE] = zip_guid self.assets.append(AssetVibe(asset_path, "application/zip", zip_guid)) def get_zip_asset(self) -> AssetVibe: """A method that retrieves the downloaded zip asset. :return: The downloaded zip asset. """ guid = self.asset_map[self.ZIP_FILE] return self._lookup_asset(guid) @dataclass class Sentinel1Raster(Raster, Sentinel1Product): """Represents a raster for a Sentinel-1 product.""" tile_id: str """The tile ID of the raster.""" @dataclass class Sentinel2Raster(Raster, Sentinel2Product): """Represents a raster for a Sentinel-2 product.""" def __post_init__(self): super().__post_init__() self.quantification_value = 10000 @dataclass class Sentinel2CloudProbability(CloudRaster, Sentinel2Product): """Represents a cloud probability raster for a Sentinel-2 product.""" pass @dataclass class Sentinel2CloudMask(CloudMask, Sentinel2Product): """Represents a cloud mask raster for a Sentinel-2 product.""" pass class SpaceEyeRaster(Sentinel2Raster): """Represents a SpaceEye raster.""" pass @dataclass class TiledSentinel1Product(DownloadedSentinel1Product): """Represents a tiled Sentinel-1 product.""" tile_id: str = "" """The tile ID of the product.""" def __post_init__(self): if not self.tile_id: raise ValueError("tile_id is a mandatory argument even though it isn't.") return super().__post_init__() @dataclass class Sentinel1RasterOrbitGroup(Sentinel1Raster): """Represents a group of Sentinel-1 raster orbits.""" asset_map: Dict[str, str] = field(default_factory=dict) """A dictionary mapping the asset ID to the acquisition date.""" def add_raster(self, raster: Sentinel1Raster): """A method that adds a raster to the orbit group. :param raster: The raster to add to the orbit group. """ asset = raster.raster_asset self.asset_map[asset.id] = raster.time_range[0].isoformat() self.assets.append(raster.raster_asset) def get_ordered_assets(self) -> List[AssetVibe]: """A method that returns the assets in the orbit group in ascending order of acquisition date. :return: The list of sorted assets in the orbit group. """ return sorted(self.assets, key=lambda x: datetime.fromisoformat(self.asset_map[x.id])) @dataclass class Sentinel2RasterOrbitGroup(Sentinel2Raster): """Represents a group of Sentinel-2 raster orbits.""" asset_map: Dict[str, str] = field(default_factory=dict) """A dictionary mapping the asset ID to the acquisition date.""" def add_raster(self, raster: Sentinel2Raster): """A method that adds a raster to the orbit group. :param raster: The raster to add to the orbit group. """ asset = raster.raster_asset self.asset_map[asset.id] = discriminator_date(raster.product_name).isoformat() self.assets.append(raster.raster_asset) def get_ordered_assets(self) -> List[AssetVibe]: """A method that returns the assets in the orbit group in ascending order of acquisition date. :return: The list of sorted assets in the orbit group. """ return sorted( self.assets, key=lambda x: datetime.fromisoformat(self.asset_map[x.id]), reverse=True ) @dataclass class Sentinel2CloudMaskOrbitGroup(Sentinel2CloudMask): """Represents a group of Sentinel-2 cloud mask orbits.""" asset_map: Dict[str, str] = field(default_factory=dict) """A dictionary mapping the asset ID to the acquisition date.""" def add_raster(self, raster: Sentinel2CloudMask): """A method that adds a raster to the orbit group. :param raster: The raster to add to the orbit group. """ asset = raster.raster_asset self.asset_map[asset.id] = discriminator_date(raster.product_name).isoformat() self.assets.append(raster.raster_asset) def get_ordered_assets(self) -> List[AssetVibe]: """A method that returns the assets in the orbit group in ascending order of acquisition date. :return: The list of sorted assets in the orbit group. """ return sorted( self.assets, key=lambda x: datetime.fromisoformat(self.asset_map[x.id]), reverse=True ) @dataclass class TileSequence(RasterSequence): """Represents a sequence of rasters for a tile.""" write_time_range: TimeRange = field(default_factory=tuple) """The time range of the sequence.""" def __post_init__(self): super().__post_init__() if len(self.write_time_range) != 2: raise ValueError( "write_time_range must be a tuple of two datetime items," f"found {self.write_time_range=}" ) @dataclass class Sentinel1RasterTileSequence(TileSequence, Sentinel1Raster): """Represents a sequence of Sentinel-1 rasters for a tile.""" pass @dataclass class Sentinel2RasterTileSequence(TileSequence, Sentinel2Raster): """Represents a sequence of Sentinel-2 rasters for a tile.""" pass @dataclass class Sentinel2CloudMaskTileSequence(TileSequence, Sentinel2CloudMask): """Represents a sequence of Sentinel-2 cloud masks for a tile.""" pass @dataclass class SpaceEyeRasterSequence(TileSequence, SpaceEyeRaster): """Represents a sequence of SpaceEye rasters for a tile.""" pass TileData = Union[Sentinel1Raster, Sentinel2Raster, Sentinel2CloudMask] """ A type alias for any of the tile data classes (:class:`Sentinel1Raster`, :class:`Sentinel2Raster`, and :class:`Sentinel2CloudMask`). """ ListTileData = List[TileData] """A type alias for a list of :const:`TileData`.""" TileSequenceData = Union[ Sentinel1RasterTileSequence, Sentinel2RasterTileSequence, Sentinel2CloudMaskTileSequence, ] """ A type alias for any of the tile sequence data classes (:class:`Sentinel1RasterTileSequence`, :class:`Sentinel2RasterTileSequence`, and :class:`Sentinel2CloudMaskTileSequence`). """ Tile2Sequence = { Sentinel1Raster: Sentinel1RasterTileSequence, Sentinel2Raster: Sentinel2RasterTileSequence, Sentinel2CloudMask: Sentinel2CloudMaskTileSequence, } """A dictionary mapping the tile data classes to the tile sequence data classes.""" Sequence2Tile = { Sentinel1RasterTileSequence: Sentinel1Raster, Sentinel2RasterTileSequence: Sentinel2Raster, Sentinel2CloudMaskTileSequence: Sentinel2CloudMask, SpaceEyeRasterSequence: SpaceEyeRaster, } """A dictionary mapping tile sequence data classes to tile data classes."""
EXA-1-master
exa/libraries/farmvibes-ai-main/src/vibe_core/vibe_core/data/sentinel.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] from io import open from setuptools import find_packages, setup setup( name="torchscale", version="0.2.0", author="TorchScale Team", author_email="[email protected]", description="Transformers at any scale", long_description=open("README.md", "r", encoding="utf-8").read(), long_description_content_type="text/markdown", keywords="Transformers at any scale", license="MIT", url="https://github.com/microsoft/torchscale", packages=find_packages(exclude=["*.tests", "*.tests.*", "tests.*", "tests"]), install_requires=["torch>=1.8", "fairscale==0.4.0", "timm==0.4.12"], python_requires=">=3.8.0", classifiers=[ "Programming Language :: Python :: 3", ], )
EXA-1-master
exa/libraries/torchscale/setup.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details]
EXA-1-master
exa/libraries/torchscale/torchscale/__init__.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] import numpy as np import torch import torch.nn as nn def fixed_pos_embedding(x): seq_len, dim = x.shape inv_freq = 1.0 / (10000 ** (torch.arange(0, dim) / dim)) sinusoid_inp = ( torch.einsum("i , j -> i j", torch.arange(0, seq_len, dtype=torch.float), inv_freq).to(x) ) return torch.sin(sinusoid_inp), torch.cos(sinusoid_inp) def rotate_every_two(x): x1 = x[:, :, ::2] x2 = x[:, :, 1::2] x = torch.stack((-x2, x1), dim=-1) return x.flatten(-2) # in einsum notation: rearrange(x, '... d j -> ... (d j)')\ def duplicate_interleave(m): """ A simple version of `torch.repeat_interleave` for duplicating a matrix while interleaving the copy. """ dim0 = m.shape[0] m = m.view(-1, 1) # flatten the matrix m = m.repeat(1, 2) # repeat all elements into the 2nd dimension m = m.view(dim0, -1) # reshape into a matrix, interleaving the copy return m def apply_rotary_pos_emb(x, sin, cos, scale=1): sin, cos = map(lambda t: duplicate_interleave(t * scale), (sin, cos)) # einsum notation for lambda t: repeat(t[offset:x.shape[1]+offset,:], "n d -> () n () (d j)", j=2) return (x * cos) + (rotate_every_two(x) * sin) class XPOS(nn.Module): def __init__( self, head_dim, scale_base=512 ): super().__init__() self.head_dim = head_dim self.scale_base = scale_base self.register_buffer( "scale", (torch.arange(0, head_dim, 2) + 0.4 * head_dim) / (1.4 * head_dim) ) def forward(self, x, offset=0, downscale=False): length = x.shape[1] min_pos = -(length + offset) // 2 max_pos = length + offset + min_pos scale = self.scale ** torch.arange(min_pos, max_pos, 1).to(self.scale).div(self.scale_base)[:, None] sin, cos = fixed_pos_embedding(scale) if scale.shape[0] > length: scale = scale[-length:] sin = sin[-length:] cos = cos[-length:] if downscale: scale = 1 / scale x = apply_rotary_pos_emb(x, sin, cos, scale) return x
EXA-1-master
exa/libraries/torchscale/torchscale/component/xpos_relative_position.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] import copy import torch import torch.nn as nn def MultiwayWrapper(args, module, dim=1): if args.multiway: return MultiwayNetwork(module, dim=dim) return module def set_split_position(position): def apply_fn(module): if hasattr(module, "split_position"): module.split_position = position return apply_fn class MultiwayNetwork(nn.Module): def __init__(self, module, dim=1): super().__init__() self.dim = dim self.A = module self.B = copy.deepcopy(module) self.B.reset_parameters() self.split_position = -1 def forward(self, x, **kwargs): if self.split_position == -1: return self.A(x, **kwargs) if self.split_position == 0: return self.B(x, **kwargs) x1, x2 = torch.split( x, [self.split_position, x.size(self.dim) - self.split_position], dim=self.dim, ) # x1, x2 = x[:self.split_position], x[self.split_position:] y1, y2 = self.A(x1, **kwargs), self.B(x2, **kwargs) return torch.cat([y1, y2], dim=self.dim) class MutliwayEmbedding(MultiwayNetwork): def __init__(self, modules, dim=1): super(MultiwayNetwork, self).__init__() self.dim = dim assert len(modules) == 2 self.A = modules[0] self.B = modules[1] self.split_position = -1
EXA-1-master
exa/libraries/torchscale/torchscale/component/multiway_network.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] import math import torch import torch.nn.functional as F from torch import nn try: from apex.normalization import FusedLayerNorm as LayerNorm except ModuleNotFoundError: from torch.nn import LayerNorm from .multiway_network import MultiwayWrapper from .xpos_relative_position import XPOS class MultiheadAttention(nn.Module): def __init__( self, args, embed_dim, num_heads, dropout=0.0, self_attention=False, encoder_decoder_attention=False, subln=False, ): super().__init__() self.args = args self.embed_dim = embed_dim self.num_heads = num_heads self.head_dim = embed_dim // num_heads self.scaling = self.head_dim**-0.5 self.self_attention = self_attention self.encoder_decoder_attention = encoder_decoder_attention assert self.self_attention ^ self.encoder_decoder_attention self.k_proj = MultiwayWrapper(args, nn.Linear(embed_dim, embed_dim, bias=True)) self.v_proj = MultiwayWrapper(args, nn.Linear(embed_dim, embed_dim, bias=True)) self.q_proj = MultiwayWrapper(args, nn.Linear(embed_dim, embed_dim, bias=True)) self.out_proj = MultiwayWrapper( args, nn.Linear(embed_dim, embed_dim, bias=True) ) self.inner_attn_ln = ( MultiwayWrapper(args, LayerNorm(self.embed_dim, eps=args.layernorm_eps)) if subln and self.self_attention else None ) self.dropout_module = torch.nn.Dropout(dropout) self.xpos = ( XPOS(self.head_dim, args.xpos_scale_base) if args.xpos_rel_pos and self.self_attention else None ) def reset_parameters(self): nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2)) nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2)) nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2)) nn.init.xavier_uniform_(self.out_proj.weight) nn.init.constant_(self.out_proj.bias, 0.0) def forward( self, query, key, value, incremental_state=None, key_padding_mask=None, attn_mask=None, rel_pos=None, ): bsz, tgt_len, embed_dim = query.size() src_len = tgt_len assert embed_dim == self.embed_dim, f"query dim {embed_dim} != {self.embed_dim}" key_bsz, src_len, _ = key.size() assert key_bsz == bsz, f"{query.size(), key.size()}" assert value is not None assert bsz, src_len == value.shape[:2] q = self.q_proj(query) k = self.k_proj(key) v = self.v_proj(value) q *= self.scaling q = q.view(bsz, tgt_len, self.num_heads, self.head_dim).transpose(1, 2) k = k.view(bsz, src_len, self.num_heads, self.head_dim).transpose(1, 2) v = v.view(bsz, src_len, self.num_heads, self.head_dim).transpose(1, 2) q = q.reshape(bsz * self.num_heads, tgt_len, self.head_dim) k = k.reshape(bsz * self.num_heads, src_len, self.head_dim) v = v.reshape(bsz * self.num_heads, src_len, self.head_dim) if incremental_state is not None: if "prev_key" in incremental_state: prev_key = incremental_state["prev_key"].view( bsz * self.num_heads, -1, self.head_dim ) prev_value = incremental_state["prev_value"].view( bsz * self.num_heads, -1, self.head_dim ) k = torch.cat([prev_key, k], dim=1) v = torch.cat([prev_value, v], dim=1) incremental_state["prev_key"] = k.view( bsz, self.num_heads, -1, self.head_dim ) incremental_state["prev_value"] = v.view( bsz, self.num_heads, -1, self.head_dim ) src_len = k.size(1) if self.xpos is not None: if incremental_state is not None: offset = src_len - 1 else: offset = 0 k = self.xpos(k, offset=0, downscale=True) q = self.xpos(q, offset=offset, downscale=False) attn_weights = torch.bmm(q, k.transpose(1, 2)) if attn_mask is not None: attn_weights = torch.nan_to_num(attn_weights) attn_mask = attn_mask.unsqueeze(0) attn_weights += attn_mask if key_padding_mask is not None: attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.masked_fill( key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), float("-inf"), ) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if rel_pos is not None: rel_pos = rel_pos.view(attn_weights.size()) attn_weights = attn_weights + rel_pos attn_weights = F.softmax(attn_weights, dim=-1, dtype=torch.float32).type_as( attn_weights ) attn_probs = self.dropout_module(attn_weights) attn = torch.bmm(attn_probs, v) attn = attn.transpose(0, 1).reshape(tgt_len, bsz, embed_dim).transpose(0, 1) if self.inner_attn_ln is not None: attn = self.inner_attn_ln(attn) attn = self.out_proj(attn) attn_weights = attn_weights.view( bsz, self.num_heads, tgt_len, src_len ).transpose(1, 0) return attn, attn_weights
EXA-1-master
exa/libraries/torchscale/torchscale/component/multihead_attention.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] import math import torch import torch.nn as nn class RelativePositionBias(nn.Module): def __init__( self, bidirectional=True, num_buckets=32, max_distance=128, n_heads=12 ): super().__init__() self.bidirectional = bidirectional self.num_buckets = num_buckets self.max_distance = max_distance self.n_heads = n_heads self.relative_attention_bias = nn.Embedding(self.num_buckets, self.n_heads) @staticmethod def _relative_position_bucket( relative_position, bidirectional=True, num_buckets=32, max_distance=128 ): ret = 0 n = -relative_position if bidirectional: num_buckets //= 2 ret += (n < 0).to(torch.long) * num_buckets n = torch.abs(n) else: n = torch.max(n, torch.zeros_like(n)) max_exact = num_buckets // 2 is_small = n < max_exact val_if_large = max_exact + ( torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).to(torch.long) val_if_large = torch.min( val_if_large, torch.full_like(val_if_large, num_buckets - 1) ) ret += torch.where(is_small, n, val_if_large) return ret def compute_bias(self, qlen, klen, step=None): step = 0 if step is None else step context_position = torch.arange( step, step + qlen, dtype=torch.long, device=self.relative_attention_bias.weight.device, )[:, None] memory_position = torch.arange( klen, dtype=torch.long, device=self.relative_attention_bias.weight.device )[None, :] relative_position = memory_position - context_position # shape (qlen, klen) rp_bucket = self._relative_position_bucket( relative_position, # shape (qlen, klen) bidirectional=self.bidirectional, num_buckets=self.num_buckets, max_distance=self.max_distance, ) rp_bucket = rp_bucket.to(self.relative_attention_bias.weight.device) values = self.relative_attention_bias( rp_bucket ) # shape (qlen, klen, num_heads) values = values.permute([2, 0, 1]).unsqueeze( 0 ) # shape (1, num_heads, qlen, klen) return values def forward(self, batch_size, qlen, klen, step=None): # shape (batch * num_heads, qlen, klen) return ( self.compute_bias(qlen, klen, step) .repeat(batch_size, 1, 1, 1) .view(-1, qlen, klen) )
EXA-1-master
exa/libraries/torchscale/torchscale/component/relative_position_bias.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] import torch import torch.nn as nn import torch.nn.functional as F class VisionLanguageEmbedding(nn.Module): def __init__(self, text_embed, vision_embed): super().__init__() self.text_embed = text_embed self.vision_embed = vision_embed def forward(self, textual_tokens, visual_tokens, **kwargs): if textual_tokens is None: return self.vision_embed(visual_tokens) if visual_tokens is None: return self.text_embed(textual_tokens) x1 = self.vision_embed(visual_tokens) x2 = self.text_embed(textual_tokens) return torch.cat([x1, x2], dim=1) class VisionEmbedding(nn.Module): """Image to Patch Embedding""" def __init__( self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, contain_mask_token=False, prepend_cls_token=False, ): super().__init__() img_size = (img_size, img_size) patch_size = (patch_size, patch_size) num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv2d( in_chans, embed_dim, kernel_size=patch_size, stride=patch_size ) if contain_mask_token: self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) else: self.mask_token = None if prepend_cls_token: self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) else: self.cls_token = None def num_position_embeddings(self): if self.cls_token is None: return self.num_patches else: return self.num_patches + 1 def forward(self, x, masked_position=None, **kwargs): B, C, H, W = x.shape assert ( H == self.img_size[0] and W == self.img_size[1] ), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x).flatten(2).transpose(1, 2) batch_size, seq_len, _ = x.size() if masked_position is not None: assert self.mask_token is not None mask_token = self.mask_token.expand(batch_size, seq_len, -1) w = masked_position.unsqueeze(-1).type_as(mask_token) x = x * (1 - w) + mask_token * w if self.cls_token is not None: cls_tokens = self.cls_token.expand( batch_size, -1, -1 ) # stole cls_tokens impl from Phil Wang, thanks x = torch.cat((cls_tokens, x), dim=1) return x class TextEmbedding(nn.Embedding): def reset_parameters(self): nn.init.normal_(self.weight, mean=0, std=self.embedding_dim**-0.5) self._fill_padding_idx_with_zero() class PositionalEmbedding(nn.Embedding): def forward( self, x, positions=None, **kwargs, ): if positions is None: # being consistent with Fairseq, which starts from 2. positions = ( torch.arange(2, x.size(1) + 2, device=x.device).long().unsqueeze(0) ) return F.embedding( positions, self.weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse, )
EXA-1-master
exa/libraries/torchscale/torchscale/component/embedding.py
import math import torch import torch.nn.functional as F from torch import nn from torch.nn.functional import scaled_dot_product_attention as flash_attention try: from apex.normalization import FusedLayerNorm as LayerNorm except ModuleNotFoundError: from torch.nn import LayerNorm from .multiway_network import MultiwayWrapper from .xpos_relative_position import XPOS class MultiheadAttention(nn.Module): def __init__( self, args, embed_dim, num_heads, dropout=0.0, self_attention=False, encoder_decoder_attention=False, subln=False, use_flash=False, ): super().__init__() self.args = args self.embed_dim = embed_dim self.num_heads = num_heads self.head_dim = embed_dim // num_heads self.scaling = self.head_dim ** -0.5 self.self_attention = self_attention self.encoder_decoder_attention = encoder_decoder_attention assert self.self_attention ^ self.encoder_decoder_attention self.k_proj = MultiwayWrapper(args, nn.Linear(embed_dim, embed_dim, bias=True)) self.v_proj = MultiwayWrapper(args, nn.Linear(embed_dim, embed_dim, bias=True)) self.q_proj = MultiwayWrapper(args, nn.Linear(embed_dim, embed_dim, bias=True)) self.out_proj = MultiwayWrapper( args, nn.Linear(embed_dim, embed_dim, bias=True) ) self.inner_attn_ln = ( MultiwayWrapper(args, LayerNorm(self.embed_dim, eps=args.layernorm_eps)) if subln and self.self_attention else None ) self.dropout_module = torch.nn.Dropout(dropout) self.xpos = ( XPOS(self.head_dim, args.xpos_scale_base) if args.xpos_rel_pos and self.self_attention else None ) self.use_flash = use_flash def reset_parameters(self): nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2)) nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2)) nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2)) nn.init.xavier_uniform_(self.out_proj.weight) nn.init.constant_(self.out_proj.bias, 0.0) def flash_attn(self, q, k, v, mask=None): attn_output, attn_weights = flash_attention(q, k, v, mask=mask) attn_output = attn_output.transpose(0, 1).reshape(tgt_len, bsz, embed_dim).transpose(0, 1) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len).transpose(1, 0) return attn_output, attn_weights def forward( self, query, key, value, incremental_state=None, key_padding_mask=None, attn_mask=None, rel_pos=None, ): bsz, tgt_len, embed_dim = query.size() src_len = tgt_len assert embed_dim == self.embed_dim, f"query dim {embed_dim} != {self.embed_dim}" key_bsz, src_len, _ = key.size() assert key_bsz == bsz, f"{query.size(), key.size()}" assert value is not None assert bsz, src_len == value.shape[:2] q = self.q_proj(query) k = self.k_proj(key) v = self.v_proj(value) q *= self.scaling q = q.view(bsz, tgt_len, self.num_heads, self.head_dim).transpose(1, 2) k = k.view(bsz, src_len, self.num_heads, self.head_dim).transpose(1, 2) v = v.view(bsz, src_len, self.num_heads, self.head_dim).transpose(1, 2) q = q.reshape(bsz * self.num_heads, tgt_len, self.head_dim) k = k.reshape(bsz * self.num_heads, src_len, self.head_dim) v = v.reshape(bsz * self.num_heads, src_len, self.head_dim) if incremental_state is not None: if "prev_key" in incremental_state: prev_key = incremental_state["prev_key"].view( bsz * self.num_heads, -1, self.head_dim ) prev_value = incremental_state["prev_value"].view( bsz * self.num_heads, -1, self.head_dim ) k = torch.cat([prev_key, k], dim=1) v = torch.cat([prev_value, v], dim=1) incremental_state["prev_key"] = k.view( bsz, self.num_heads, -1, self.head_dim ) incremental_state["prev_value"] = v.view( bsz, self.num_heads, -1, self.head_dim ) src_len = k.size(1) if self.xpos is not None: if incremental_state is not None: offset = src_len - 1 else: offset = 0 k = self.xpos(k, offset=0, downscale=True) q = self.xpos(q, offset=offset, downscale=False) if self.use_flash: attn_output, attn_weights = self.flash_attn(q, k, v, mask=attn_mask) else: attn_weights = torch.bmm(q, k.transpose(1, 2)) if attn_mask is not None: attn_weights = torch.nan_to_num(attn_weights) attn_mask = attn_mask.unsqueeze(0) attn_weights += attn_mask if key_padding_mask is not None: attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.masked_fill( key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), float("-inf"), ) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if rel_pos is not None: rel_pos = rel_pos.view(attn_weights.size()) attn_weights = attn_weights + rel_pos attn_weights = F.softmax(attn_weights, dim=-1, dtype=torch.float32).type_as( attn_weights ) attn_probs = self.dropout_module(attn_weights) attn = torch.bmm(attn_probs, v) attn = attn.transpose(0, 1).reshape(tgt_len, bsz, embed_dim).transpose(0, 1) if self.inner_attn_ln is not None: attn = self.inner_attn_ln(attn) attn_output = self.out_proj(attn) attn_weights = attn_weights.view( bsz, self.num_heads, tgt_len, src_len ).transpose(1, 0) return attn_output, attn_weights
EXA-1-master
exa/libraries/torchscale/torchscale/component/new_multi.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] import torch.nn as nn from timm.models.layers import drop_path class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) def extra_repr(self): return "p={}".format(self.drop_prob)
EXA-1-master
exa/libraries/torchscale/torchscale/component/droppath.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details]
EXA-1-master
exa/libraries/torchscale/torchscale/component/__init__.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] import torch import torch.nn as nn import torch.nn.functional as F try: from apex.normalization import FusedLayerNorm as LayerNorm except ModuleNotFoundError: from torch.nn import LayerNorm class set_torch_seed(object): def __init__(self, seed): assert isinstance(seed, int) self.rng_state = self.get_rng_state() torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed(seed) def get_rng_state(self): state = {"torch_rng_state": torch.get_rng_state()} if torch.cuda.is_available(): state["cuda_rng_state"] = torch.cuda.get_rng_state() return state def set_rng_state(self, state): torch.set_rng_state(state["torch_rng_state"]) if torch.cuda.is_available(): torch.cuda.set_rng_state(state["cuda_rng_state"]) def __enter__(self): return self def __exit__(self, *exc): self.set_rng_state(self.rng_state) def make_experts(args, embed_dim, expert_ffn_dim): world_size = ( 1 if not torch.distributed.is_initialized() else torch.distributed.get_world_size() ) expert_list = [] ddp_rank = args.ddp_rank start_seed = torch.randint(1000000, (1,)).item() # at least as many experts than gpus if args.moe_expert_count >= world_size: assert ( args.moe_expert_count % world_size == 0 ), f"{args.moe_expert_count}, {world_size}" local_moe_expert_count = args.moe_expert_count // world_size for i in range(local_moe_expert_count): with set_torch_seed(start_seed + ddp_rank * local_moe_expert_count + i): expert_list.append( FeedForwardNetwork( embed_dim, expert_ffn_dim, args.activation_fn, args.dropout, args.activation_dropout, args.layernorm_eps, args.subln, ) ) else: assert ( world_size % args.moe_expert_count == 0 ), f"{world_size}, {args.moe_expert_count}" with set_torch_seed(start_seed + ddp_rank % args.moe_expert_count): expert_list.append( FeedForwardNetwork( embed_dim, expert_ffn_dim, args.activation_fn, args.dropout, args.activation_dropout, args.layernorm_eps, args.subln, ) ) experts = nn.ModuleList(expert_list) return experts def get_activation_fn(activation): if activation == "relu": return F.relu elif activation == "gelu": return F.gelu else: raise NotImplementedError class FeedForwardNetwork(nn.Module): def __init__( self, embed_dim, ffn_dim, activation_fn, dropout, activation_dropout, layernorm_eps, subln=False, ): super().__init__() self.embed_dim = embed_dim self.activation_fn = get_activation_fn(activation=str(activation_fn)) self.activation_dropout_module = torch.nn.Dropout(activation_dropout) self.dropout_module = torch.nn.Dropout(dropout) self.fc1 = nn.Linear(self.embed_dim, ffn_dim) self.fc2 = nn.Linear(ffn_dim, self.embed_dim) self.ffn_layernorm = LayerNorm(ffn_dim, eps=layernorm_eps) if subln else None def reset_parameters(self): self.fc1.reset_parameters() self.fc2.reset_parameters() if self.ffn_layernorm is not None: self.ffn_layernorm.reset_parameters() def forward(self, x): x_shape = x.shape x = x.reshape(-1, x.size(-1)) x = self.fc1(x) x = self.activation_fn(x.float()).type_as(x) x = self.activation_dropout_module(x) if self.ffn_layernorm is not None: x = self.ffn_layernorm(x) x = self.fc2(x) x = x.view(x_shape) x = self.dropout_module(x) return x
EXA-1-master
exa/libraries/torchscale/torchscale/component/feedforward_network.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details]
EXA-1-master
exa/libraries/torchscale/torchscale/component/xmoe/__init__.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. # NOTE: This is a mirror of the code in # https://github.com/facebookresearch/fairscale/tree/master/fairscale/nn/moe import logging import time from typing import Any, Tuple, cast import torch import torch.distributed as dist from torch import Tensor from torch.nn import Module, ModuleList try: from fairseq.modules.moe import MOELayer has_fairseq = True Base = MOELayer except ModuleNotFoundError: Base = Module has_fairseq = False try: # To enable Tutel MoE optimizations: # python3 -m pip install --user --upgrade git+https://github.com/microsoft/[email protected] from tutel import moe as tutel_moe has_tutel, fused_cumsum_sub_one = True, tutel_moe.fast_cumsum_sub_one except ModuleNotFoundError: has_tutel, fused_cumsum_sub_one = False, lambda mask: torch.cumsum(mask, dim=0) - 1 logger = logging.getLogger(__name__) # einsum dimensions: (g)roup, (s)equence, (e)xpert, (m)odel, (c)apacity # See https://arxiv.org/pdf/2006.16668.pdf for details. # Based on https://github.com/pytorch/pytorch/pull/40762 class _AllToAll(torch.autograd.Function): @staticmethod def forward(ctx: Any, group: dist.ProcessGroup, input: Tensor) -> Tensor: # type: ignore ctx.group = group input = input.contiguous() output = torch.empty_like(input) if torch.distributed.is_initialized(): dist.all_to_all_single(output, input, group=group) else: assert group is None output = input return output @staticmethod def backward(ctx: Any, *grad_output: Tensor) -> Tuple[None, Tensor]: return (None, _AllToAll.apply(ctx.group, *grad_output)) def _find_my_group_index(grouped_ranks): my_rank = dist.get_rank() for i, group in enumerate(grouped_ranks): if my_rank in group: return i raise RuntimeError def get_moe_group(moe_expert_count): if dist.is_initialized(): if not hasattr(get_moe_group, "_moe_groups"): world_size = dist.get_world_size() if world_size <= moe_expert_count: assert moe_expert_count % world_size == 0 moe_groups = [[i] for i in range(world_size)] else: assert world_size % moe_expert_count == 0 ranks_per_group = world_size // moe_expert_count moe_groups = [ [i + j * moe_expert_count for j in range(ranks_per_group)] for i in range(moe_expert_count) ] get_moe_group._moe_group_idx = moe_groups get_moe_group._moe_groups = [dist.new_group(g) for g in moe_groups] my_group_idx = _find_my_group_index(get_moe_group._moe_group_idx) return get_moe_group._moe_groups[my_group_idx] def get_all2all_group(moe_expert_count): if dist.is_initialized(): if not hasattr(get_all2all_group, "_all2all_groups"): world_size = dist.get_world_size() # more experts than world size if world_size <= moe_expert_count: assert moe_expert_count % world_size == 0 all2all_groups = [[i for i in range(world_size)]] # larger world than num experts else: assert world_size % moe_expert_count == 0 ranks_per_group = world_size // moe_expert_count all2all_groups = [ [i * moe_expert_count + j for j in range(moe_expert_count)] for i in range(ranks_per_group) ] get_all2all_group._all2all_group_idx = all2all_groups get_all2all_group._all2all_groups = [ dist.new_group(g) for g in all2all_groups ] my_group_idx = _find_my_group_index(get_all2all_group._all2all_group_idx) return get_all2all_group._all2all_groups[my_group_idx] class MOELayer(Base): """MOELayer module which implements MixtureOfExperts as described in Gshard_. :: gate = Top2Gate(model_dim, num_experts) moe = MOELayer(gate, expert) output = moe(input) l_aux = moe.l_aux .. Gshard_: https://arxiv.org/pdf/2006.16668.pdf Args: gate (torch.nn.Module): gate network expert (torch.nn.Module): expert network """ def __init__(self, gate, experts, args): if has_fairseq: super(Base, self).__init__() else: super().__init__() self.gate = gate if type(experts) == ModuleList: self.experts = cast(ModuleList, experts) else: self.experts = ModuleList([experts]) self.expert_group = get_moe_group(args.moe_expert_count) self.all2all_group = get_all2all_group(args.moe_expert_count) self.world_size = dist.get_world_size(group=self.expert_group) self.all2all_size = dist.get_world_size(group=self.all2all_group) for p in experts.parameters(): p.expert = True # type: ignore self.num_local_experts = len(self.experts) self.args = args self.in_generation = False self.a2a_cuda_event_intervals = [] self.a2a_cpu_time_ms = 0.0 def forward(self, *input: Tensor, input_padding_mask=None, **kwargs: Any) -> Tensor: assert len(input) == 1, "only single input Tensor supported" input = input[0] assert ( len(input.shape) == 3 ), "input Tensor must have dimensions: (s)equence, (t)oken, (m)odel" if input_padding_mask is not None: assert ( len(input_padding_mask.shape) == 2 ), "input Tensor must have dimensions: (s)equence, (t)oken" assert input_padding_mask.shape[0] == input.shape[0] assert input_padding_mask.shape[1] == input.shape[1] # assert input.shape[0] % len(self.experts) == 0, "num tokens must be order of number of local experts" # Implement Algorithm 2 from GShard paper. d_model = input.shape[2] # Pad to expected batch size input_shape = list(input.shape) expected_bsz = ( getattr(self.args, "batch_size", 0) if self.training else getattr(self.args, "batch_size_valid", 0) ) # This indicates that --batch-size or --max-sentences is not specified if expected_bsz is None: expected_bsz = 0 # Note: Padding is not necessary at generation time at present # because all DDP workers process the same batch. Also, batch size at generation time # can be different from that present in the checkpoint state if ( not self.in_generation and expected_bsz != 0 and input_shape[0] != expected_bsz ): logger.warning( f"padding batch with unexpected size {input_shape[0]} (expected: {expected_bsz})" ) assert input_shape[0] < expected_bsz, f"{input_shape[0]} < {expected_bsz}" padded_input = torch.zeros( (expected_bsz, input_shape[1], input_shape[2]), dtype=input.dtype, layout=input.layout, device=input.device, ) padded_input[: input_shape[0], :, :] = input input = padded_input padded_input_padding_mask = torch.ones( ( expected_bsz, input_shape[1], ), dtype=torch.bool, device=input.device, ) if input_padding_mask is not None: padded_input_padding_mask[: input_shape[0], :] = input_padding_mask else: padded_input_padding_mask[: input_shape[0], :] = False input_padding_mask = padded_input_padding_mask # Reshape into S tokens by dropping sequence dimension. reshaped_input = input.reshape(-1, d_model) reshaped_input_shape = reshaped_input.shape reshaped_input_padding_mask = ( input_padding_mask.reshape(-1) if input_padding_mask is not None else None ) # Doing padding here when --max-tokens is specified and not --batch-size or --max-sentences # Pro of --max-tokens: more flexible for MT variable sequence lengths # Con of --max-tokens: extra all-reduce needed to figure out optimal padding without running OOM if expected_bsz == 0: expected_dim = reshaped_input_shape[0] * torch.ones( (1,), dtype=torch.long, device=input.device ) dist.all_reduce(expected_dim, group=dist.group.WORLD, op=dist.ReduceOp.MAX) expected_dim = int(expected_dim.item()) padded_input = torch.zeros( (expected_dim, reshaped_input_shape[1]), dtype=input.dtype, layout=input.layout, device=input.device, ) padded_input[: reshaped_input_shape[0], :] = reshaped_input reshaped_input = padded_input padded_input_padding_mask = torch.ones( (expected_dim,), dtype=torch.bool, device=padded_input.device ) if reshaped_input_padding_mask is not None: padded_input_padding_mask[ : reshaped_input_shape[0] ] = reshaped_input_padding_mask else: padded_input_padding_mask[: reshaped_input_shape[0]] = False reshaped_input_padding_mask = padded_input_padding_mask if has_tutel: l_aux, self.metadata, C, E, indices_, locations_, gates_ = self.gate( reshaped_input, reshaped_input_padding_mask ) S, M = reshaped_input.size(0), reshaped_input.size(1) if not hasattr(self, "_tutel_dispatcher"): self._tutel_dispatcher = tutel_moe.fast_dispatcher( E, C, M, dispatch_dtype=reshaped_input.dtype ) self._tutel_dispatcher.update(indices_, locations_, gates_, capacity=C) dispatched_input = self._tutel_dispatcher.encode(reshaped_input) else: l_aux, combine_weights, dispatch_mask, self.metadata = self.gate( reshaped_input, reshaped_input_padding_mask ) dispatch_mask = dispatch_mask.to(input.dtype).permute( 1, 2, 0 ) # S,E,C -> E,C,S E, C, S = dispatch_mask.size() M = reshaped_input.size(1) assert reshaped_input.size() == (S, M) # einsum("sec,sm->ecm") dispatched_input = torch.mm( dispatch_mask.view(E * C, S), reshaped_input ) # -> (E*C),M if self.all2all_size > 1: dispatched_input = self.all_to_all_wrapper(dispatched_input) # Re-shape after all-to-all: ecm -> gecm dispatched_input = dispatched_input.reshape( self.all2all_size, self.num_local_experts, -1, d_model ) chunks = dispatched_input.chunk(self.num_local_experts, dim=1) expert_outputs = [] for chunk, expert in zip(chunks, self.experts): expert_outputs += [expert(chunk)] expert_output = torch.cat(expert_outputs, dim=1) if self.all2all_size > 1: expert_output = self.all_to_all_wrapper(expert_output) # Re-shape back: gecm -> ecm expert_output = expert_output.reshape( self.all2all_size * self.num_local_experts, -1, d_model ) if has_tutel: combined_output = self._tutel_dispatcher.decode( expert_output.view(E * C, M) ) else: # einsum("sec,ecm->sm") combined_output = combine_weights.view(S, E * C).mm( expert_output.view(E * C, M) ) # Remove padding here when --max-tokens is specified and not --batch-size or --max-sentences combined_output = combined_output[: reshaped_input_shape[0], :] combined_output = combined_output.reshape(input.shape) combined_output = combined_output[: input_shape[0], :, :] self.record_all_to_all_stats() return combined_output, l_aux def prepare_for_inference_(self): self.in_generation = True def all_to_all_wrapper(self, input: Tensor): dummy_a2a = getattr(self.args, "dummy_a2a", False) if dummy_a2a: input = input.contiguous() output = input.detach().clone() return input # always record times, since it is not a lot of overhead # if we do not log it we simply clear it off in record_all_to_all_stats cuda_start = torch.cuda.Event(enable_timing=True) cuda_end = torch.cuda.Event(enable_timing=True) cpu_start = time.time() * 1000 cuda_start.record() output = _AllToAll.apply(self.all2all_group, input) cuda_end.record() cpu_end = time.time() * 1000 self.a2a_cpu_time_ms += cpu_end - cpu_start self.a2a_cuda_event_intervals.append((cuda_start, cuda_end)) return output def record_all_to_all_stats(self): # controlled via an argument as we want to minimize any impact from torch.cuda.synchronize() record_a2a_perf_stats = getattr(self.args, "record_a2a_perf_stats", False) if record_a2a_perf_stats: torch.cuda.synchronize() self.metadata["all_to_all_cpu_time_ms"] = self.a2a_cpu_time_ms a2a_cuda_time_ms = 0.0 for ev_start, ev_end in self.a2a_cuda_event_intervals: a2a_cuda_time_ms += ev_start.elapsed_time(ev_end) self.metadata["all_to_all_cuda_time_ms"] = a2a_cuda_time_ms # reset stats self.a2a_cpu_time_ms = 0.0 self.a2a_cuda_event_intervals = []
EXA-1-master
exa/libraries/torchscale/torchscale/component/xmoe/moe_layer.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. # Implementation of Top2Gating described in https://arxiv.org/pdf/2006.16668.pdf # Code is inspired by Top2GatingOnLogits from lingvo: # https://github.com/tensorflow/lingvo/blob/21b8106c5f1d30a196c98eedc441d4fd70833b11/lingvo/core/moe_layers.py#L477 # NOTE: This is a mirror of the code in # https://github.com/facebookresearch/fairscale/tree/master/fairscale/nn/moe import math from typing import Callable, Dict, Optional, Tuple import torch import torch.nn.functional as F from torch import Tensor from .moe_layer import fused_cumsum_sub_one, has_tutel # use a fixed temperature to compute balance loss TEMPERATURE_FOR_L_UAX = 0.07 # maximum capacity of 1 expert as a fraction of number of tokens in the batch # Note: setting this to 1.0 causes inference to significantly slow down EVAL_CAPACITY_TOKEN_FRACTION = 0.25 # logging SAMPLE_FRACTION = 0.2 def top1gating( logits: torch.Tensor, input_mask: Optional[torch.Tensor] = None, use_fp32=False, capacity_factor=1.0, eval_mode=False, moe_eval_capacity_token_fraction=EVAL_CAPACITY_TOKEN_FRACTION, use_xmoe=False, gate_obj=None, ) -> Tuple[Tensor, Tensor, Tensor, Dict]: """Implements Top2Gating on logits.""" metadata = {} if use_fp32: orig_dtype = logits.dtype logits = logits.float() gates = F.softmax(logits, dim=1) metadata["entropy_gating"] = entropy(probs=gates).mean().detach() # gates has shape of SE num_tokens = gates.shape[0] num_experts = gates.shape[1] if moe_eval_capacity_token_fraction > 0.0 and eval_mode: capacity = math.ceil(moe_eval_capacity_token_fraction * num_tokens) else: # capacity = capacity_factor * S/E capacity = int(capacity_factor * math.ceil(num_tokens / num_experts)) # Create a mask for 1st's expert per token indices1_s = torch.argmax(gates, dim=1) mask1 = one_hot(indices1_s, num_classes=num_experts, unsqueeze_indices=True) if input_mask is not None and input_mask.any(): nonpadding = ~input_mask mask1 = mask1 * nonpadding.unsqueeze(-1).to(mask1.dtype) # for logging (percent of tokens routed to each expert) expert1_hist = ( 100 * torch.histc( (indices1_s.squeeze() + 1), bins=num_experts, min=1, max=num_experts ) / num_tokens ) metadata["unused_expert1_count"] = (expert1_hist == 0).sum() expert1_hist = ( torch.sort(expert1_hist, dim=0, descending=True).values + torch.finfo(torch.float32).tiny ) sample_count = max(math.ceil(num_experts * SAMPLE_FRACTION), 1) metadata["expert1_balance_top"] = expert1_hist[:sample_count].sum() metadata["expert1_balance_bottom"] = expert1_hist[-sample_count:].sum() gates1_s = (gates * mask1).sum(dim=1) # Compute locations in capacity buffer locations1 = fused_cumsum_sub_one(mask1) # Compute l_aux me = torch.mean(gates, dim=0) ce = torch.mean(mask1.to(gates.dtype), dim=0) l_aux = torch.mean(me * ce) l_aux = l_aux * num_experts * num_experts if has_tutel: locations1_s = torch.sum(locations1 * mask1, dim=1) return ( l_aux, metadata, capacity, num_experts, [ indices1_s, ], [ locations1_s, ], [ gates1_s, ], ) # Remove locations outside capacity from mask mask1 = mask1 * torch.lt(locations1, capacity) # Store the capacity location for each token locations1_s = torch.sum(locations1 * mask1, dim=1) # Calculate combine_weights and dispatch_mask gates1 = gates1_s.unsqueeze(-1) * mask1.to(gates1_s.dtype) # einsum("s,se->se") # locations1_sc = num_tokens * capacity locations1_sc = one_hot(locations1_s, num_classes=capacity, unsqueeze_indices=True) combine1_sec = torch.bmm( # einsum("se,sc->sec") gates1.unsqueeze(-1), locations1_sc.to(gates1.dtype).unsqueeze(1), ) dispatch_mask = combine1_sec.bool() if use_fp32: return l_aux, combine1_sec.to(orig_dtype), dispatch_mask, metadata else: return l_aux, combine1_sec, dispatch_mask, metadata class Top1Gate(torch.nn.Module): """Gate module which implements Top2Gating as described in Gshard_. :: gate = Top2Gate(model_dim, num_experts) l_aux, combine_weights, dispatch_mask = gate(input) .. Gshard_: https://arxiv.org/pdf/2006.16668.pdf Args: model_dim (int): size of model embedding dimension num_experts (ints): number of experts in model """ wg: torch.nn.Linear def __init__( self, model_dim: int, num_experts: int, use_fp32=False, input_noise_type=None, capacity_factor=1.0, moe_eval_capacity_token_fraction=EVAL_CAPACITY_TOKEN_FRACTION, use_xmoe=False, ) -> None: # TODO: merge this to top2gate.py # super().__init__() if not use_xmoe: self.wg = torch.nn.Linear(model_dim, num_experts, bias=False) else: self.wg_reduction = torch.nn.Linear(model_dim, 16, bias=False) wg = torch.empty(num_experts, 16) torch.nn.init.orthogonal_(wg, gain=0.32) self.register_parameter("wg", torch.nn.Parameter(wg)) self.use_xmoe = use_xmoe self.use_fp32 = use_fp32 self.input_noise_type = input_noise_type self.capacity_factor = capacity_factor self.moe_eval_capacity_token_fraction = moe_eval_capacity_token_fraction def forward(self, input, mask=None): # type: ignore if self.use_xmoe: input = self.wg_reduction(input) with torch.no_grad(): wg_norm = self.wg.norm(p=2.0, dim=1, keepdim=True) self.wg.mul_(1.5 / wg_norm) logits = self._cosine(input, self.wg) logits = self._make_finite(logits) else: logits = self.wg(input) return top1gating( logits, mask, use_fp32=self.use_fp32, capacity_factor=self.capacity_factor, eval_mode=not self.training, moe_eval_capacity_token_fraction=self.moe_eval_capacity_token_fraction, use_xmoe=self.use_xmoe, gate_obj=self, ) def _make_finite(self, scores): ok = scores.isfinite() if not ok.all(): # NaNs here can break the assignment algorithm scores[~ok] = scores[ok].min() return scores def _get_gating_temperature(self, eps=1e-4): if self.gating_t.data.item() < eps: return eps return self.gating_t def _cosine(self, mat1, mat2, eps=1e-4): assert mat1.dim() == 2 assert mat2.dim() == 2 # mat1 = F.normalize(mat1, p=2.0, dim=1, eps=eps) mat2 = F.normalize(mat2.float(), p=2.0, dim=1, eps=eps) return mat1.float().matmul(mat2.transpose(0, 1)).type_as(mat1) gumbel_map: Dict[torch.device, Callable] = {} def gumbel_rsample(shape: Tuple, device: torch.device) -> Tensor: gumbel = gumbel_map.get(device) if gumbel is None: one = torch.tensor(1.0, device=device) zero = torch.tensor(0.0, device=device) gumbel = torch.distributions.gumbel.Gumbel(zero, one).rsample # type: ignore gumbel_map[device] = gumbel return gumbel(shape) def one_hot(indices: torch.Tensor, num_classes: int, unsqueeze_indices=False) -> Tensor: if unsqueeze_indices: indices = indices.unsqueeze(-1) assert indices.shape[-1] == 1, "last dimension of indices must be have size 1" output = torch.zeros( indices.shape[:-1] + (num_classes,), device=indices.device, dtype=indices.dtype ) output.scatter_(len(output.shape) - 1, indices, 1) return output def entropy(probs): logits = torch.distributions.utils.probs_to_logits(probs) p_log_p = probs * logits return -p_log_p.sum(-1) def top2gating( logits: torch.Tensor, input_mask: Optional[torch.Tensor] = None, use_fp32=False, second_expert_policy="sampling", normalize_gate_prob_before_dropping=False, eval_mode=False, moe_eval_capacity_token_fraction=0.25, batch_prioritized_routing=False, ) -> Tuple[Tensor, Tensor, Tensor]: """Implements Top2Gating on logits.""" metadata = {} if use_fp32: orig_dtype = logits.dtype logits = logits.float() gates = F.softmax(logits, dim=1) metadata["entropy_gating"] = entropy(probs=gates).mean().detach() # gates has shape of SE num_tokens = gates.shape[0] num_experts = gates.shape[1] if moe_eval_capacity_token_fraction > 0.0 and eval_mode: capacity = math.ceil(moe_eval_capacity_token_fraction * num_tokens) else: # capacity = 2S/E capacity = 2 * math.ceil(num_tokens / num_experts) # Create a mask for 1st's expert per token indices1_s = torch.argmax(gates, dim=1, keepdim=True) mask1 = one_hot(indices1_s, num_experts) if second_expert_policy == "sampling": # Create a mask for 2nd's expert per token using Gumbel-max trick # https://timvieira.github.io/blog/post/2014/07/31/gumbel-max-trick/ logits_w_noise = logits + gumbel_rsample(logits.shape, device=logits.device) else: logits_w_noise = logits # Replace top-expert with min value logits_except1 = logits_w_noise.masked_fill(mask1.bool(), float("-inf")) indices2_s = torch.argmax(logits_except1, dim=1, keepdim=True) mask2 = one_hot(indices2_s, num_experts) gates1_s = (gates * mask1).sum(dim=1) gates2_s = (gates * mask2).sum(dim=1) if normalize_gate_prob_before_dropping: # Normalize gate probabilities denom_s = gates1_s + gates2_s # Avoid divide-by-zero denom_s = torch.clamp(denom_s, min=torch.finfo(denom_s.dtype).eps) gates1_s = gates1_s / denom_s gates2_s = gates2_s / denom_s if second_expert_policy == "random": sampled = (2 * gates2_s) > torch.rand_like(gates2_s) mask2 = mask2 * sampled.repeat(num_experts, 1).transpose(1, 0) # Compute locations in capacity buffer if input_mask is not None and input_mask.any(): nonpadding = ~input_mask mask1 = mask1 * nonpadding.unsqueeze(-1).to(mask1.dtype) mask2 = mask2 * nonpadding.unsqueeze(-1).to(mask1.dtype) if batch_prioritized_routing: # if batch_prioritized_routing: importance_scores = -1 * gates.max(dim=1)[0] sorted_mask1 = mask1[importance_scores.argsort(dim=0)] sorted_cumsum1 = fused_cumsum_sub_one(sorted_mask1) * sorted_mask1 importance_sorted_locations1 = sorted_cumsum1[ importance_scores.argsort(dim=0).argsort(dim=0) ] sorted_mask2 = mask2[importance_scores.argsort(dim=0)] sorted_cumsum2 = fused_cumsum_sub_one(sorted_mask2) * sorted_mask2 importance_sorted_locations2 = sorted_cumsum2[ importance_scores.argsort(dim=0).argsort(dim=0) ] importance_sorted_locations2 += torch.sum(mask1, dim=0, keepdim=True) locations1, locations2 = ( importance_sorted_locations1, importance_sorted_locations2, ) else: locations1 = fused_cumsum_sub_one(mask1) locations2 = fused_cumsum_sub_one(mask2) # Update 2nd's location by accounting for locations of 1st locations2 += torch.sum(mask1, dim=0, keepdim=True) # Compute l_aux me = torch.mean(gates, dim=0) ce = torch.mean(mask1.to(gates.dtype), dim=0) l_aux = torch.mean(me * ce) l_aux = l_aux * num_experts * num_experts # for logging purposes metadata["overflow_expert1"] = ( 100 * torch.sum(mask1 * torch.ge(locations1, capacity)) / torch.sum(mask1) ) metadata["overflow_expert2"] = ( 100 * torch.sum(mask2 * torch.ge(locations2, capacity)) / torch.sum(mask2) ) # Remove locations outside capacity from mask mask1_, mask2_ = mask1, mask2 mask1 = mask1 * torch.lt(locations1, capacity) mask2 = mask2 * torch.lt(locations2, capacity) # for logging (percent of tokens routed to each expert) expert1_hist = ( 100 * torch.histc( (indices1_s.squeeze() + 1), bins=num_experts, min=1, max=num_experts ) / num_tokens ) metadata["unused_expert1_count"] = (expert1_hist == 0).sum() expert1_hist = ( torch.sort(expert1_hist, dim=0, descending=True).values + torch.finfo(torch.float32).tiny ) expert2_hist = ( 100 * torch.histc( (indices2_s.squeeze() + 1), bins=num_experts, min=1, max=num_experts ) / num_tokens ) metadata["unused_expert2_count"] = (expert2_hist == 0).sum() expert2_hist = ( torch.sort(expert2_hist, dim=0, descending=True).values + torch.finfo(torch.float32).tiny ) sample_count = max(math.ceil(num_experts * SAMPLE_FRACTION), 1) metadata["expert1_balance_top"] = expert1_hist[:sample_count].sum() metadata["expert1_balance_bottom"] = expert1_hist[-sample_count:].sum() metadata["expert2_balance_top"] = expert2_hist[:sample_count].sum() metadata["expert2_balance_bottom"] = expert2_hist[-sample_count:].sum() if not normalize_gate_prob_before_dropping: # Normalize gate probabilities gates1_s = (gates * mask1).sum(dim=1) gates2_s = (gates * mask2).sum(dim=1) denom_s = gates1_s + gates2_s # Avoid divide-by-zero denom_s = torch.clamp(denom_s, min=torch.finfo(denom_s.dtype).eps) gates1_s /= denom_s gates2_s /= denom_s if has_tutel: locations1_s = torch.sum(locations1 * mask1_, dim=1) locations2_s = torch.sum(locations2 * mask2_, dim=1) return ( l_aux, metadata, capacity, num_experts, [indices1_s, indices2_s], [locations1_s, locations2_s], [gates1_s, gates2_s], ) # Store the capacity location for each token locations1_s = torch.sum(locations1 * mask1, dim=1) locations2_s = torch.sum(locations2 * mask2, dim=1) # Calculate combine_weights and dispatch_mask gates1 = gates1_s.unsqueeze(-1) * mask1.to(gates1_s.dtype) # einsum("s,se->se") gates2 = gates2_s.unsqueeze(-1) * mask2.to(gates2_s.dtype) # einsum("s,se->se") locations1_sc = one_hot(locations1_s, num_classes=capacity, unsqueeze_indices=True) locations2_sc = one_hot(locations2_s, num_classes=capacity, unsqueeze_indices=True) combine1_sec = torch.bmm( # einsum("se,sc->sec") gates1.unsqueeze(-1), locations1_sc.to(gates1.dtype).unsqueeze(1), ) combine2_sec = torch.bmm( # einsum("se,sc->sec") gates2.unsqueeze(-1), locations2_sc.to(gates2.dtype).unsqueeze(1), ) combine_weights = combine1_sec + combine2_sec dispatch_mask = combine_weights.bool() if use_fp32: return l_aux, combine_weights.to(orig_dtype), dispatch_mask, metadata else: return l_aux, combine_weights, dispatch_mask, metadata class Top2Gate(torch.nn.Module): """Gate module which implements Top2Gating as described in Gshard_. :: gate = Top2Gate(model_dim, num_experts) l_aux, combine_weights, dispatch_mask = gate(input) .. Gshard_: https://arxiv.org/pdf/2006.16668.pdf Args: model_dim (int): size of model embedding dimension num_experts (ints): number of experts in model """ wg: torch.nn.Linear def __init__( self, model_dim: int, num_experts: int, use_fp32=False, second_expert_policy="sampling", normalize_gate_prob_before_dropping=False, moe_eval_capacity_token_fraction=0.25, batch_prioritized_routing=False, use_xmoe=False, ) -> None: super().__init__() if not use_xmoe: self.wg = torch.nn.Linear(model_dim, num_experts, bias=False) else: self.wg_reduction = torch.nn.Linear(model_dim, 16, bias=False) wg = torch.empty(num_experts, 16) torch.nn.init.orthogonal_(wg, gain=0.32) self.register_parameter("wg", torch.nn.Parameter(wg)) self.use_fp32 = use_fp32 self.second_expert_policy = second_expert_policy self.normalize_gate_prob_before_dropping = normalize_gate_prob_before_dropping self.moe_eval_capacity_token_fraction = moe_eval_capacity_token_fraction self.batch_prioritized_routing = batch_prioritized_routing self.use_xmoe = use_xmoe def forward(self, input, mask=None): # type: ignore if self.use_xmoe: input = self.wg_reduction(input) with torch.no_grad(): wg_norm = self.wg.norm(p=2.0, dim=1, keepdim=True) self.wg.mul_(1.5 / wg_norm) logits = self._cosine(input, self.wg) logits = self._make_finite(logits) else: logits = self.wg(input) return top2gating( logits, mask, use_fp32=self.use_fp32, second_expert_policy=self.second_expert_policy, normalize_gate_prob_before_dropping=self.normalize_gate_prob_before_dropping, eval_mode=not self.training, moe_eval_capacity_token_fraction=self.moe_eval_capacity_token_fraction, batch_prioritized_routing=self.batch_prioritized_routing, ) def _cosine(self, mat1, mat2, eps=1e-4): assert mat1.dim() == 2 assert mat2.dim() == 2 # mat1 = F.normalize(mat1, p=2.0, dim=1, eps=eps) mat2 = F.normalize(mat2.float(), p=2.0, dim=1, eps=eps) return mat1.float().matmul(mat2.transpose(0, 1)).type_as(mat1) def _make_finite(self, scores): ok = scores.isfinite() if not ok.all(): # NaNs here can break the assignment algorithm scores[~ok] = scores[ok].min() return scores
EXA-1-master
exa/libraries/torchscale/torchscale/component/xmoe/routing.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] import math import numpy as np import torch import torch.nn as nn from fairscale.nn import checkpoint_wrapper, wrap from torchscale.architecture.utils import init_bert_params from torchscale.component.droppath import DropPath from torchscale.component.feedforward_network import FeedForwardNetwork, make_experts from torchscale.component.multihead_attention import MultiheadAttention from torchscale.component.relative_position_bias import RelativePositionBias from torchscale.component.xmoe.moe_layer import MOELayer from torchscale.component.xmoe.routing import Top1Gate, Top2Gate try: from apex.normalization import FusedLayerNorm as LayerNorm except ModuleNotFoundError: from torch.nn import LayerNorm class DecoderLayer(nn.Module): def __init__( self, args, depth, is_moe_layer=False, is_encoder_decoder=False, flash_attention=False ): super().__init__() self.args = args self.embed_dim = args.decoder_embed_dim self.dropout_module = torch.nn.Dropout(args.dropout) if args.drop_path_rate > 0: drop_path_prob = np.linspace(0, args.drop_path_rate, args.decoder_layers)[ depth ] self.drop_path = DropPath(drop_path_prob) else: self.drop_path = None self.self_attn = self.build_self_attention(self.embed_dim, args) self.normalize_before = args.decoder_normalize_before self.self_attn_layer_norm = LayerNorm(self.embed_dim, eps=args.layernorm_eps) if not is_encoder_decoder: self.encoder_attn = None self.encoder_attn_layer_norm = None else: self.encoder_attn = self.build_encoder_attention(self.embed_dim, args) self.encoder_attn_layer_norm = LayerNorm(self.embed_dim, eps=args.layernorm_eps) self.is_moe_layer = is_moe_layer self.ffn_dim = args.decoder_ffn_embed_dim if not self.is_moe_layer: self.ffn = self.build_ffn( self.embed_dim, self.args, ) else: if args.moe_top1_expert: gate = Top1Gate( self.embed_dim, args.moe_expert_count, use_fp32=args.moe_gating_use_fp32, moe_eval_capacity_token_fraction=args.moe_eval_capacity_token_fraction, use_xmoe=args.use_xmoe, ) else: gate = Top2Gate( self.embed_dim, args.moe_expert_count, args.moe_gating_use_fp32, args.moe_second_expert_policy, args.moe_normalize_gate_prob_before_dropping, args.moe_eval_capacity_token_fraction, use_xmoe=args.use_xmoe, ) experts = make_experts(args, self.embed_dim, self.ffn_dim) self.moe_layer = MOELayer(gate, experts, args) self.final_layer_norm = LayerNorm(self.embed_dim, eps=args.layernorm_eps) if args.deepnorm: if is_encoder_decoder: self.alpha = math.pow(3.0 * args.decoder_layers, 0.25) else: self.alpha = math.pow(2.0 * args.decoder_layers, 0.25) else: self.alpha = 1.0 def build_ffn(self, embed_dim, args): return FeedForwardNetwork( embed_dim, self.ffn_dim, args.activation_fn, args.dropout, args.activation_dropout, args.layernorm_eps, args.subln, ) def build_self_attention(self, embed_dim, args): return MultiheadAttention( args, embed_dim, args.decoder_attention_heads, dropout=args.attention_dropout, self_attention=True, encoder_decoder_attention=False, subln=args.subln, ) def build_encoder_attention(self, embed_dim, args): return MultiheadAttention( args, embed_dim, args.decoder_attention_heads, dropout=args.attention_dropout, self_attention=False, encoder_decoder_attention=True, subln=args.subln, ) def residual_connection(self, x, residual): return residual * self.alpha + x def forward( self, x, encoder_out=None, encoder_padding_mask=None, incremental_state=None, self_attn_mask=None, self_attn_padding_mask=None, self_attn_rel_pos=None, cross_attn_rel_pos=None, ): residual = x if self.normalize_before: x = self.self_attn_layer_norm(x) x, attn = self.self_attn( query=x, key=x, value=x, key_padding_mask=self_attn_padding_mask, incremental_state=incremental_state, attn_mask=self_attn_mask, rel_pos=self_attn_rel_pos, ) x = self.dropout_module(x) if self.drop_path is not None: x = self.drop_path(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.self_attn_layer_norm(x) if self.encoder_attn is not None and encoder_out is not None: residual = x if self.normalize_before: x = self.encoder_attn_layer_norm(x) x, attn = self.encoder_attn( query=x, key=encoder_out, value=encoder_out, key_padding_mask=encoder_padding_mask, incremental_state=None, rel_pos=cross_attn_rel_pos, ) x = self.dropout_module(x) if self.drop_path is not None: x = self.drop_path(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.encoder_attn_layer_norm(x) residual = x if self.normalize_before: x = self.final_layer_norm(x) if not self.is_moe_layer: x = self.ffn(x) l_aux = None else: x, l_aux = self.moe_layer(x) if self.drop_path is not None: x = self.drop_path(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.final_layer_norm(x) return x, attn, None, l_aux class Decoder(nn.Module): def __init__( self, args, embed_tokens=None, embed_positions=None, output_projection=None, is_encoder_decoder=False, **kwargs ): super().__init__(**kwargs) self.args = args self.dropout_module = torch.nn.Dropout(args.dropout) embed_dim = args.decoder_embed_dim self.embed_dim = embed_dim self.embed_scale = 1.0 if args.no_scale_embedding else math.sqrt(embed_dim) self.embed_tokens = embed_tokens self.embed_positions = embed_positions if ( output_projection is None and not args.no_output_layer and args.vocab_size > 0 ): self.output_projection = self.build_output_projection(args) else: self.output_projection = output_projection if args.layernorm_embedding: self.layernorm_embedding = LayerNorm(embed_dim, eps=args.layernorm_eps) else: self.layernorm_embedding = None self.layers = nn.ModuleList([]) moe_freq = args.moe_freq for i in range(args.decoder_layers): is_moe_layer = moe_freq != 0 and (i + 1) % moe_freq == 0 self.layers.append( self.build_decoder_layer( args, depth=i, is_moe_layer=is_moe_layer, is_encoder_decoder=is_encoder_decoder, ) ) self.num_layers = len(self.layers) if args.decoder_normalize_before: self.layer_norm = LayerNorm(embed_dim, eps=args.layernorm_eps) else: self.layer_norm = None self.self_attn_relative_position = None self.cross_attn_relative_position = None if args.rel_pos_buckets > 0 and args.max_rel_pos > 0: self.self_attn_relative_position = RelativePositionBias( num_buckets=args.rel_pos_buckets, max_distance=args.max_rel_pos, n_heads=args.decoder_attention_heads, ) if is_encoder_decoder: self.cross_attn_relative_position = RelativePositionBias( num_buckets=args.rel_pos_buckets, max_distance=args.max_rel_pos, n_heads=args.decoder_attention_heads, ) if args.bert_init: self.apply(init_bert_params) if args.deepnorm: if is_encoder_decoder: init_scale = math.pow(12.0 * args.decoder_layers, 0.25) else: init_scale = math.pow(8.0 * args.decoder_layers, 0.25) for name, p in self.named_parameters(): if ( "fc1" in name or "fc2" in name or "out_proj" in name or "v_proj" in name ): p.data.div_(init_scale) if args.subln: if is_encoder_decoder: init_scale = math.sqrt(math.log(args.decoder_layers * 3)) else: init_scale = math.sqrt(math.log(args.decoder_layers * 2)) for name, p in self.named_parameters(): if "encoder_attn" in name: continue if ( "fc1" in name or "fc2" in name or "out_proj" in name or "v_proj" in name ): p.data.mul_(init_scale) def build_output_projection( self, args, ): if args.share_decoder_input_output_embed: output_projection = torch.nn.Linear( self.embed_tokens.weight.shape[1], self.embed_tokens.weight.shape[0], bias=False, ) output_projection.weight = self.embed_tokens.weight else: output_projection = torch.nn.Linear( args.decoder_embed_dim, args.vocab_size, bias=False ) torch.nn.init.normal_( output_projection.weight, mean=0, std=args.decoder_embed_dim**-0.5 ) return output_projection def build_decoder_layer( self, args, depth, is_moe_layer=False, is_encoder_decoder=False ): layer = DecoderLayer( args, depth, is_moe_layer=is_moe_layer, is_encoder_decoder=is_encoder_decoder, ) if args.checkpoint_activations: layer = checkpoint_wrapper(layer) if args.fsdp: layer = wrap(layer) return layer def forward_embedding( self, tokens, token_embedding=None, incremental_state=None, ): positions = None if self.embed_positions is not None: positions = self.embed_positions( tokens, incremental_state=incremental_state ) if incremental_state is not None: tokens = tokens[:, -1:] if positions is not None: positions = positions[:, -1:] if token_embedding is None: token_embedding = self.embed_tokens(tokens) x = embed = self.embed_scale * token_embedding if positions is not None: x += positions if self.layernorm_embedding is not None: x = self.layernorm_embedding(x) x = self.dropout_module(x) return x, embed def forward( self, prev_output_tokens, self_attn_padding_mask=None, encoder_out=None, incremental_state=None, features_only=False, return_all_hiddens=False, token_embeddings=None, **kwargs ): # embed tokens and positions x, _ = self.forward_embedding( prev_output_tokens, token_embeddings, incremental_state ) # relative position self_attn_rel_pos_bias = None slen = prev_output_tokens.size(1) if self.self_attn_relative_position is not None: self_attn_rel_pos_bias = self.self_attn_relative_position( batch_size=x.size(0), qlen=slen, klen=slen ) if incremental_state is not None: self_attn_rel_pos_bias = self_attn_rel_pos_bias[-1:, :, :] cross_attn_rel_pos_bias = None if self.cross_attn_relative_position is not None: cross_attn_rel_pos_bias = self.cross_attn_relative_position( batch_size=x.size(0), qlen=slen, klen=encoder_out["encoder_out"].size(1), ) if incremental_state is not None: cross_attn_rel_pos_bias = cross_attn_rel_pos_bias[-1:, :, :] # decoder layers inner_states = [x] if encoder_out is None: l_aux = [] else: l_aux = encoder_out["l_aux"] if "l_aux" in encoder_out else [] for idx, layer in enumerate(self.layers): if incremental_state is None: self_attn_mask = torch.triu( torch.zeros([x.size(1), x.size(1)]) .float() .fill_(float("-inf")) .type_as(x), 1, ) else: self_attn_mask = None if idx not in incremental_state: incremental_state[idx] = {} x, layer_attn, _, l_aux_i = layer( x, encoder_out["encoder_out"] if encoder_out is not None else None, encoder_out["encoder_padding_mask"] if encoder_out is not None else None, incremental_state[idx] if incremental_state is not None else None, self_attn_mask=self_attn_mask, self_attn_padding_mask=self_attn_padding_mask, self_attn_rel_pos=self_attn_rel_pos_bias, cross_attn_rel_pos=cross_attn_rel_pos_bias, ) l_aux.append(l_aux_i) inner_states.append(x) if self.layer_norm is not None: x = self.layer_norm(x) if not features_only: x = self.output_layer(x) return x, { "inner_states": inner_states, "l_aux": l_aux, "attn": None, } def output_layer(self, features): return self.output_projection(features)
EXA-1-master
exa/libraries/torchscale/torchscale/architecture/decoder.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] class EncoderConfig(object): def __init__(self, **kwargs): self.encoder_embed_dim = kwargs.pop("encoder_embed_dim", 768) self.encoder_attention_heads = kwargs.pop("encoder_attention_heads", 12) self.encoder_ffn_embed_dim = kwargs.pop("encoder_ffn_embed_dim", 3072) self.encoder_layers = kwargs.pop("encoder_layers", 12) self.encoder_normalize_before = kwargs.pop("encoder_normalize_before", True) self.normalize_output = kwargs.pop("normalize_output", True) self.activation_fn = kwargs.pop("activation_fn", "gelu") self.dropout = kwargs.pop("dropout", 0.0) self.drop_path_rate = kwargs.pop("drop_path_rate", 0.0) self.attention_dropout = kwargs.pop("attention_dropout", 0.0) self.activation_dropout = kwargs.pop("activation_dropout", 0.0) self.no_scale_embedding = kwargs.pop("no_scale_embedding", True) self.layernorm_embedding = kwargs.pop("layernorm_embedding", False) self.moe_freq = kwargs.pop("moe_freq", 0) self.moe_top1_expert = kwargs.pop("moe_top1_expert", False) self.moe_expert_count = kwargs.pop("moe_expert_count", 0) self.moe_gating_use_fp32 = kwargs.pop("moe_gating_use_fp32", True) self.moe_eval_capacity_token_fraction = kwargs.pop( "moe_eval_capacity_token_fraction", 0.25 ) self.moe_second_expert_policy = kwargs.pop("moe_second_expert_policy", "random") self.moe_normalize_gate_prob_before_dropping = kwargs.pop( "moe_normalize_gate_prob_before_dropping", False ) self.use_xmoe = kwargs.pop("use_xmoe", False) self.rel_pos_buckets = kwargs.pop("rel_pos_buckets", 0) self.max_rel_pos = kwargs.pop("max_rel_pos", 0) self.deepnorm = kwargs.pop("deepnorm", False) self.subln = kwargs.pop("subln", True) self.bert_init = kwargs.pop("bert_init", False) self.multiway = kwargs.pop("multiway", False) self.share_encoder_input_output_embed = kwargs.pop( "share_encoder_input_output_embed", False ) self.max_source_positions = kwargs.pop("max_source_positions", 1024) self.no_output_layer = kwargs.pop("no_output_layer", False) self.layernorm_eps = kwargs.pop("layernorm_eps", 1e-5) # Text self.vocab_size = kwargs.pop("vocab_size", -1) # Vision self.img_size = kwargs.pop("img_size", 224) self.patch_size = kwargs.pop("patch_size", 16) self.in_chans = kwargs.pop("in_chans", 3) # Fairscale self.checkpoint_activations = kwargs.pop("checkpoint_activations", False) self.fsdp = kwargs.pop("fsdp", False) self.ddp_rank = kwargs.pop("ddp_rank", 0) self.xpos_rel_pos = kwargs.pop("xpos_rel_pos", False) self.xpos_scale_base = kwargs.pop("xpos_scale_base", 512) if self.deepnorm: self.encoder_normalize_before = False self.subln = False if self.subln: self.encoder_normalize_before = True self.deepnorm = False if self.use_xmoe: self.moe_normalize_gate_prob_before_dropping = True self.moe_second_expert_policy = "random" assert self.moe_freq > 0 and self.moe_expert_count > 0 def override(self, args): for hp in self.__dict__.keys(): if getattr(args, hp, None) is not None: self.__dict__[hp] = getattr(args, hp, None) class DecoderConfig(object): def __init__(self, **kwargs): self.decoder_embed_dim = kwargs.pop("decoder_embed_dim", 768) self.decoder_attention_heads = kwargs.pop("decoder_attention_heads", 12) self.decoder_ffn_embed_dim = kwargs.pop("decoder_ffn_embed_dim", 3072) self.decoder_layers = kwargs.pop("decoder_layers", 12) self.decoder_normalize_before = kwargs.pop("decoder_normalize_before", True) self.activation_fn = kwargs.pop("activation_fn", "gelu") self.dropout = kwargs.pop("dropout", 0.0) self.drop_path_rate = kwargs.pop("drop_path_rate", 0.0) self.attention_dropout = kwargs.pop("attention_dropout", 0.0) self.activation_dropout = kwargs.pop("activation_dropout", 0.0) self.no_scale_embedding = kwargs.pop("no_scale_embedding", True) self.layernorm_embedding = kwargs.pop("layernorm_embedding", False) self.moe_freq = kwargs.pop("moe_freq", 0) self.moe_top1_expert = kwargs.pop("moe_top1_expert", False) self.moe_expert_count = kwargs.pop("moe_expert_count", 0) self.moe_gating_use_fp32 = kwargs.pop("moe_gating_use_fp32", True) self.moe_eval_capacity_token_fraction = kwargs.pop( "moe_eval_capacity_token_fraction", 0.25 ) self.moe_second_expert_policy = kwargs.pop("moe_second_expert_policy", "random") self.moe_normalize_gate_prob_before_dropping = kwargs.pop( "moe_normalize_gate_prob_before_dropping", False ) self.use_xmoe = kwargs.pop("use_xmoe", False) self.rel_pos_buckets = kwargs.pop("rel_pos_buckets", 0) self.max_rel_pos = kwargs.pop("max_rel_pos", 0) self.deepnorm = kwargs.pop("deepnorm", False) self.subln = kwargs.pop("subln", True) self.bert_init = kwargs.pop("bert_init", False) self.multiway = kwargs.pop("multiway", False) self.share_decoder_input_output_embed = kwargs.pop( "share_decoder_input_output_embed", False ) self.max_target_positions = kwargs.pop("max_target_positions", 1024) self.no_output_layer = kwargs.pop("no_output_layer", False) self.layernorm_eps = kwargs.pop("layernorm_eps", 1e-5) # Text self.vocab_size = kwargs.pop("vocab_size", -1) # Fairscale self.checkpoint_activations = kwargs.pop("checkpoint_activations", False) self.fsdp = kwargs.pop("fsdp", False) self.ddp_rank = kwargs.pop("ddp_rank", 0) self.xpos_rel_pos = kwargs.pop("xpos_rel_pos", False) self.xpos_scale_base = kwargs.pop("xpos_scale_base", 512) if self.deepnorm: self.decoder_normalize_before = False self.subln = False if self.subln: self.decoder_normalize_before = True self.deepnorm = False if self.use_xmoe: self.moe_normalize_gate_prob_before_dropping = True self.moe_second_expert_policy = "random" assert self.moe_freq > 0 and self.moe_expert_count > 0 def override(self, args): for hp in self.__dict__.keys(): if getattr(args, hp, None) is not None: self.__dict__[hp] = getattr(args, hp, None) class EncoderDecoderConfig(object): def __init__(self, **kwargs): self.encoder_embed_dim = kwargs.pop("encoder_embed_dim", 768) self.encoder_attention_heads = kwargs.pop("encoder_attention_heads", 12) self.encoder_ffn_embed_dim = kwargs.pop("encoder_ffn_embed_dim", 3072) self.encoder_layers = kwargs.pop("encoder_layers", 12) self.encoder_normalize_before = kwargs.pop("encoder_normalize_before", True) self.decoder_embed_dim = kwargs.pop("decoder_embed_dim", 768) self.decoder_attention_heads = kwargs.pop("decoder_attention_heads", 12) self.decoder_ffn_embed_dim = kwargs.pop("decoder_ffn_embed_dim", 3072) self.decoder_layers = kwargs.pop("decoder_layers", 12) self.decoder_normalize_before = kwargs.pop("decoder_normalize_before", True) self.activation_fn = kwargs.pop("activation_fn", "gelu") self.dropout = kwargs.pop("dropout", 0.0) self.drop_path_rate = kwargs.pop("drop_path_rate", 0.0) self.attention_dropout = kwargs.pop("attention_dropout", 0.0) self.activation_dropout = kwargs.pop("activation_dropout", 0.0) self.no_scale_embedding = kwargs.pop("no_scale_embedding", True) self.layernorm_embedding = kwargs.pop("layernorm_embedding", False) self.moe_freq = kwargs.pop("moe_freq", 0) self.moe_top1_expert = kwargs.pop("moe_top1_expert", False) self.moe_expert_count = kwargs.pop("moe_expert_count", 0) self.moe_gating_use_fp32 = kwargs.pop("moe_gating_use_fp32", True) self.moe_eval_capacity_token_fraction = kwargs.pop( "moe_eval_capacity_token_fraction", 0.25 ) self.moe_second_expert_policy = kwargs.pop("moe_second_expert_policy", "random") self.moe_normalize_gate_prob_before_dropping = kwargs.pop( "moe_normalize_gate_prob_before_dropping", False ) self.use_xmoe = kwargs.pop("use_xmoe", False) self.rel_pos_buckets = kwargs.pop("rel_pos_buckets", 0) self.max_rel_pos = kwargs.pop("max_rel_pos", 0) self.deepnorm = kwargs.pop("deepnorm", False) self.subln = kwargs.pop("subln", True) self.bert_init = kwargs.pop("bert_init", False) self.multiway = kwargs.pop("multiway", False) self.share_all_embeddings = kwargs.pop("share_all_embeddings", False) self.share_decoder_input_output_embed = kwargs.pop( "share_decoder_input_output_embed", False ) self.max_source_positions = kwargs.pop("max_source_positions", 1024) self.max_target_positions = kwargs.pop("max_target_positions", 1024) self.no_output_layer = kwargs.pop("no_output_layer", False) self.layernorm_eps = kwargs.pop("layernorm_eps", 1e-5) # Text self.vocab_size = kwargs.pop("vocab_size", -1) # Fairscale self.checkpoint_activations = kwargs.pop("checkpoint_activations", False) self.fsdp = kwargs.pop("fsdp", False) self.ddp_rank = kwargs.pop("ddp_rank", 0) self.xpos_rel_pos = kwargs.pop("xpos_rel_pos", False) self.xpos_scale_base = kwargs.pop("xpos_scale_base", 512) if self.deepnorm: self.encoder_normalize_before = False self.decoder_normalize_before = False self.subln = False if self.subln: self.encoder_normalize_before = True self.decoder_normalize_before = True self.deepnorm = False if self.use_xmoe: self.moe_normalize_gate_prob_before_dropping = True self.moe_second_expert_policy = "random" assert self.moe_freq > 0 and self.moe_expert_count > 0 def override(self, args): for hp in self.__dict__.keys(): if getattr(args, hp, None) is not None: self.__dict__[hp] = getattr(args, hp, None)
EXA-1-master
exa/libraries/torchscale/torchscale/architecture/config.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] import torch.nn as nn from torchscale.architecture.decoder import Decoder from torchscale.architecture.encoder import Encoder class EncoderDecoder(nn.Module): def __init__( self, args, encoder_embed_tokens=None, encoder_embed_positions=None, decoder_embed_tokens=None, decoder_embed_positions=None, output_projection=None, **kwargs ): super().__init__() self.args = args if args.share_all_embeddings: args.share_decoder_input_output_embed = True self.encoder = Encoder( args, encoder_embed_tokens, encoder_embed_positions, is_encoder_decoder=True, **kwargs ) if args.share_all_embeddings and decoder_embed_tokens is None: decoder_embed_tokens = self.encoder.embed_tokens self.decoder = Decoder( args, decoder_embed_tokens, decoder_embed_positions, output_projection, is_encoder_decoder=True, **kwargs ) def forward( self, src_tokens, prev_output_tokens, return_all_hiddens=False, features_only=False, **kwargs ): encoder_out = self.encoder(src_tokens, return_all_hiddens=return_all_hiddens) decoder_out = self.decoder( prev_output_tokens, encoder_out=encoder_out, features_only=features_only, return_all_hiddens=return_all_hiddens, ) return decoder_out
EXA-1-master
exa/libraries/torchscale/torchscale/architecture/encoder_decoder.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details]
EXA-1-master
exa/libraries/torchscale/torchscale/architecture/__init__.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] import math import numpy as np import torch import torch.nn as nn from fairscale.nn import checkpoint_wrapper, wrap try: from apex.normalization import FusedLayerNorm as LayerNorm except ModuleNotFoundError: from torch.nn import LayerNorm from torchscale.architecture.utils import init_bert_params from torchscale.component.droppath import DropPath from torchscale.component.feedforward_network import FeedForwardNetwork, make_experts from torchscale.component.multihead_attention import MultiheadAttention from torchscale.component.multiway_network import MultiwayWrapper, set_split_position from torchscale.component.relative_position_bias import RelativePositionBias from torchscale.component.xmoe.moe_layer import MOELayer from torchscale.component.xmoe.routing import Top1Gate, Top2Gate class EncoderLayer(nn.Module): def __init__(self, args, depth, is_moe_layer=False, is_encoder_decoder=False): super().__init__() self.args = args self.embed_dim = args.encoder_embed_dim self.self_attn = self.build_self_attention(self.embed_dim, args) self.self_attn_layer_norm = MultiwayWrapper(args, LayerNorm(self.embed_dim, eps=args.layernorm_eps)) self.dropout_module = torch.nn.Dropout(args.dropout) if args.drop_path_rate > 0: drop_path_prob = np.linspace(0, args.drop_path_rate, args.encoder_layers)[ depth ] self.drop_path = DropPath(drop_path_prob) else: self.drop_path = None self.normalize_before = args.encoder_normalize_before self.is_moe_layer = is_moe_layer self.ffn_dim = args.encoder_ffn_embed_dim if not self.is_moe_layer: self.ffn = MultiwayWrapper( args, self.build_ffn( self.embed_dim, self.args, ), ) else: assert not self.args.multiway if args.moe_top1_expert: gate = Top1Gate( self.embed_dim, args.moe_expert_count, use_fp32=args.moe_gating_use_fp32, moe_eval_capacity_token_fraction=args.moe_eval_capacity_token_fraction, use_xmoe=args.use_xmoe, ) else: gate = Top2Gate( self.embed_dim, args.moe_expert_count, args.moe_gating_use_fp32, args.moe_second_expert_policy, args.moe_normalize_gate_prob_before_dropping, args.moe_eval_capacity_token_fraction, use_xmoe=args.use_xmoe, ) experts = make_experts(args, self.embed_dim, self.ffn_dim) self.moe_layer = MOELayer(gate, experts, args) self.final_layer_norm = MultiwayWrapper(args, LayerNorm(self.embed_dim, eps=args.layernorm_eps)) if args.deepnorm: if is_encoder_decoder: self.alpha = ( math.pow( math.pow(args.encoder_layers, 4) * args.decoder_layers, 0.0625 ) * 0.81 ) else: self.alpha = math.pow(2.0 * args.encoder_layers, 0.25) else: self.alpha = 1.0 def build_ffn(self, embed_dim, args): return FeedForwardNetwork( embed_dim, self.ffn_dim, args.activation_fn, args.dropout, args.activation_dropout, args.layernorm_eps, args.subln, ) def build_self_attention(self, embed_dim, args): return MultiheadAttention( args, embed_dim, args.encoder_attention_heads, dropout=args.attention_dropout, self_attention=True, encoder_decoder_attention=False, subln=args.subln, ) def residual_connection(self, x, residual): return residual * self.alpha + x def forward(self, x, encoder_padding_mask, attn_mask=None, rel_pos=None, multiway_split_position=None, incremental_state=None): if multiway_split_position is not None: assert self.args.multiway self.apply(set_split_position(multiway_split_position)) if attn_mask is not None: attn_mask = attn_mask.masked_fill(attn_mask.to(torch.bool), -1e8) residual = x if self.normalize_before: x = self.self_attn_layer_norm(x) x, _ = self.self_attn( query=x, key=x, value=x, key_padding_mask=encoder_padding_mask, attn_mask=attn_mask, rel_pos=rel_pos, incremental_state=incremental_state, ) x = self.dropout_module(x) if self.drop_path is not None: x = self.drop_path(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.self_attn_layer_norm(x) residual = x if self.normalize_before: x = self.final_layer_norm(x) if not self.is_moe_layer: x = self.ffn(x) l_aux = None else: x = x.transpose(0, 1) x, l_aux = self.moe_layer(x) x = x.transpose(0, 1) if self.drop_path is not None: x = self.drop_path(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.final_layer_norm(x) return x, l_aux class Encoder(nn.Module): def __init__( self, args, embed_tokens=None, embed_positions=None, output_projection=None, is_encoder_decoder=False, **kwargs ): self.args = args super().__init__(**kwargs) self.dropout_module = torch.nn.Dropout(args.dropout) embed_dim = args.encoder_embed_dim self.embed_scale = 1.0 if args.no_scale_embedding else math.sqrt(embed_dim) self.embed_tokens = embed_tokens self.embed_positions = embed_positions if ( output_projection is None and not is_encoder_decoder and not args.no_output_layer and args.vocab_size > 0 ): self.output_projection = self.build_output_projection(args) else: self.output_projection = output_projection if args.layernorm_embedding: self.layernorm_embedding = MultiwayWrapper( args, LayerNorm(embed_dim, eps=args.layernorm_eps), dim=1 ) else: self.layernorm_embedding = None self.layers = nn.ModuleList([]) moe_freq = args.moe_freq for i in range(args.encoder_layers): is_moe_layer = moe_freq != 0 and (i + 1) % moe_freq == 0 self.layers.append( self.build_encoder_layer( args, depth=i, is_moe_layer=is_moe_layer, is_encoder_decoder=is_encoder_decoder, ) ) self.num_layers = len(self.layers) if args.encoder_normalize_before and args.normalize_output: self.layer_norm = MultiwayWrapper(args, LayerNorm(embed_dim, eps=args.layernorm_eps)) else: self.layer_norm = None if args.rel_pos_buckets > 0 and args.max_rel_pos > 0: self.relative_position = RelativePositionBias( num_buckets=args.rel_pos_buckets, max_distance=args.max_rel_pos, n_heads=args.encoder_attention_heads, ) else: self.relative_position = None if args.bert_init: self.apply(init_bert_params) if args.deepnorm: if is_encoder_decoder: init_scale = ( math.pow( math.pow(args.encoder_layers, 4) * args.decoder_layers, 0.0625 ) / 1.15 ) else: init_scale = math.pow(8.0 * args.encoder_layers, 0.25) for name, p in self.named_parameters(): if ( "fc1" in name or "fc2" in name or "out_proj" in name or "v_proj" in name ): p.data.div_(init_scale) if args.subln: if is_encoder_decoder: init_scale = math.sqrt( math.log(3 * args.decoder_layers) * math.log(2 * args.encoder_layers) / 3 ) else: init_scale = math.sqrt(math.log(args.encoder_layers * 2)) for name, p in self.named_parameters(): if ( "fc1" in name or "fc2" in name or "out_proj" in name or "v_proj" in name ): p.data.mul_(init_scale) def build_output_projection( self, args, ): if args.share_encoder_input_output_embed: assert args.encoder_embedding_type == "language" output_projection = torch.nn.Linear( self.embed_tokens.weight.shape[1], self.embed_tokens.weight.shape[0], bias=False, ) output_projection.weight = self.embed_tokens.weight else: output_projection = torch.nn.Linear( args.encoder_embed_dim, args.vocab_size, bias=False ) torch.nn.init.normal_( output_projection.weight, mean=0, std=args.encoder_embed_dim**-0.5 ) return output_projection def build_encoder_layer( self, args, depth, is_moe_layer=False, is_encoder_decoder=False ): layer = EncoderLayer( args, depth, is_moe_layer=is_moe_layer, is_encoder_decoder=is_encoder_decoder, ) if args.checkpoint_activations: layer = checkpoint_wrapper(layer) if args.fsdp: layer = wrap(layer) return layer def forward_embedding( self, src_tokens, token_embedding=None, positions=None, ): if token_embedding is None: token_embedding = self.embed_tokens(src_tokens) x = embed = self.embed_scale * token_embedding if self.embed_positions is not None: if src_tokens is not None: x = embed + self.embed_positions(src_tokens, positions=positions) else: x = embed + self.embed_positions(x, positions=positions) if self.layernorm_embedding is not None: x = self.layernorm_embedding(x) x = self.dropout_module(x) return x, embed def forward( self, src_tokens, encoder_padding_mask=None, attn_mask=None, return_all_hiddens=False, token_embeddings=None, multiway_split_position=None, features_only=False, incremental_state=None, positions=None, **kwargs ): assert src_tokens is not None or token_embeddings is not None if encoder_padding_mask is None: if src_tokens is not None: encoder_padding_mask = torch.zeros_like( src_tokens, device=src_tokens.device ).bool() else: encoder_padding_mask = torch.zeros( [token_embeddings.size(0), token_embeddings.size(1)], device=token_embeddings.device, ).bool() if multiway_split_position is not None: assert self.args.multiway self.apply(set_split_position(multiway_split_position)) x, encoder_embedding = self.forward_embedding(src_tokens, token_embeddings, positions) x = x * (1 - encoder_padding_mask.unsqueeze(-1).type_as(x)) encoder_states = [] if return_all_hiddens: encoder_states.append(x) rel_pos_bias = None if self.relative_position is not None: rel_pos_bias = self.relative_position( batch_size=x.size(0), qlen=x.size(1), klen=x.size(1) ) # incremental_state is not None during inference if we use the bidirectional encoder as a generator as in s2s-ft (https://arxiv.org/abs/2110.13640) l_aux = [] for idx, layer in enumerate(self.layers): x, l_aux_i = layer( x, encoder_padding_mask=encoder_padding_mask if incremental_state is None else None, attn_mask=attn_mask, rel_pos=rel_pos_bias, multiway_split_position=multiway_split_position, incremental_state=incremental_state[idx] if incremental_state is not None else None, ) if return_all_hiddens: assert encoder_states is not None encoder_states.append(x) l_aux.append(l_aux_i) if self.layer_norm is not None: x = self.layer_norm(x) if not features_only and self.output_projection is not None: x = self.output_projection(x) return { "encoder_out": x, "encoder_embedding": encoder_embedding, "encoder_padding_mask": encoder_padding_mask, "encoder_states": encoder_states, "l_aux": l_aux, }
EXA-1-master
exa/libraries/torchscale/torchscale/architecture/encoder.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] import torch.nn as nn from torchscale.component.multihead_attention import MultiheadAttention from torchscale.component.multiway_network import MultiwayNetwork def init_bert_params(module): def normal_(data): data.copy_(data.cpu().normal_(mean=0.0, std=0.02).to(data.device)) if isinstance(module, nn.Linear): normal_(module.weight.data) if module.bias is not None: module.bias.data.zero_() if isinstance(module, nn.Embedding): normal_(module.weight.data) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() if isinstance(module, MultiheadAttention): if isinstance(module.q_proj, MultiwayNetwork): normal_(module.q_proj.A.weight.data) normal_(module.q_proj.B.weight.data) normal_(module.k_proj.A.weight.data) normal_(module.k_proj.B.weight.data) normal_(module.v_proj.A.weight.data) normal_(module.v_proj.B.weight.data) else: normal_(module.q_proj.weight.data) normal_(module.k_proj.weight.data) normal_(module.v_proj.weight.data)
EXA-1-master
exa/libraries/torchscale/torchscale/architecture/utils.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] import torch import torch.nn as nn from torchscale.architecture.encoder import Encoder from torchscale.component.embedding import ( PositionalEmbedding, TextEmbedding, VisionEmbedding, ) from torchscale.component.multiway_network import MutliwayEmbedding class BEiT3(nn.Module): def __init__(self, args, **kwargs): super().__init__() self.args = args assert args.multiway assert args.vocab_size > 0 assert not args.share_encoder_input_output_embed self.text_embed = TextEmbedding(args.vocab_size, args.encoder_embed_dim) self.vision_embed = VisionEmbedding( args.img_size, args.patch_size, args.in_chans, args.encoder_embed_dim, contain_mask_token=True, prepend_cls_token=True, ) # being consistent with Fairseq, which starts from 2 for position embedding embed_positions = MutliwayEmbedding( modules=[ PositionalEmbedding(self.vision_embed.num_position_embeddings() + 2, args.encoder_embed_dim), PositionalEmbedding(args.max_source_positions, args.encoder_embed_dim), ], dim=1, ) self.encoder = Encoder( args, embed_tokens=None, embed_positions=embed_positions, output_projection=None, is_encoder_decoder=False, ) def forward( self, textual_tokens=None, visual_tokens=None, text_padding_position=None, attn_mask=None, vision_masked_position=None, incremental_state=None, positions=None, ): assert textual_tokens is not None or visual_tokens is not None if textual_tokens is None: x = self.vision_embed(visual_tokens, vision_masked_position) encoder_padding_mask = None multiway_split_position = -1 elif visual_tokens is None: x = self.text_embed(textual_tokens) encoder_padding_mask = text_padding_position multiway_split_position = 0 else: x1 = self.vision_embed(visual_tokens, vision_masked_position) multiway_split_position = x1.size(1) x2 = self.text_embed(textual_tokens) x = torch.cat([x1, x2], dim=1) if text_padding_position is not None: encoder_padding_mask = torch.cat( [ torch.zeros(x1.shape[:-1]).to(x1.device).bool(), text_padding_position, ], dim=1, ) else: encoder_padding_mask = None encoder_out = self.encoder( src_tokens=None, encoder_padding_mask=encoder_padding_mask, attn_mask=attn_mask, token_embeddings=x, multiway_split_position=multiway_split_position, incremental_state=incremental_state, positions=positions, ) encoder_out["multiway_split_position"] = multiway_split_position return encoder_out
EXA-1-master
exa/libraries/torchscale/torchscale/model/BEiT3.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details]
EXA-1-master
exa/libraries/torchscale/torchscale/model/__init__.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] import pytest import torch from torchscale.architecture.config import DecoderConfig from torchscale.architecture.decoder import Decoder testcases = [ {}, {"vocab_size": 64000}, {"activation_fn": "relu"}, {"drop_path_rate": 0.1}, {"decoder_normalize_before": False}, {"no_scale_embedding": False}, {"layernorm_embedding": True}, {"rel_pos_buckets": 32, "max_rel_pos": 256}, {"deepnorm": True, "subln": False, "decoder_normalize_before": False}, {"bert_init": True}, {"multiway": True}, {"share_decoder_input_output_embed": True}, {"checkpoint_activations": True}, {"fsdp": True}, ] @pytest.mark.parametrize("args", testcases) def test_decoder(args): config = DecoderConfig(**args) model = Decoder(config) prev_output_tokens = torch.ones(2, 10) token_embeddings = torch.rand(2, 10, config.decoder_embed_dim) model( prev_output_tokens=prev_output_tokens, token_embeddings=token_embeddings, features_only=True, )
EXA-1-master
exa/libraries/torchscale/tests/test_decoder.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] import pytest import torch from torchscale.architecture.config import EncoderConfig from torchscale.architecture.encoder import Encoder testcases = [ {}, {"vocab_size": 64000}, {"activation_fn": "relu"}, {"drop_path_rate": 0.1}, {"encoder_normalize_before": False}, {"no_scale_embedding": False}, {"layernorm_embedding": True}, {"rel_pos_buckets": 32, "max_rel_pos": 256}, {"deepnorm": True, "subln": False, "encoder_normalize_before": False}, {"bert_init": True}, {"multiway": True}, {"share_encoder_input_output_embed": True}, {"checkpoint_activations": True}, {"fsdp": True}, ] @pytest.mark.parametrize("args", testcases) def test_encoder(args): config = EncoderConfig(**args) model = Encoder(config) token_embeddings = torch.rand(2, 10, config.encoder_embed_dim) model(src_tokens=None, token_embeddings=token_embeddings)
EXA-1-master
exa/libraries/torchscale/tests/test_encoder.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details]
EXA-1-master
exa/libraries/torchscale/tests/__init__.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] import pytest import torch from torchscale.architecture.config import EncoderDecoderConfig from torchscale.architecture.encoder_decoder import EncoderDecoder from torchscale.component.embedding import PositionalEmbedding, TextEmbedding testcases = [ {}, {"vocab_size": 64000}, {"activation_fn": "relu"}, {"drop_path_rate": 0.1}, {"encoder_normalize_before": False, "decoder_normalize_before": False}, {"no_scale_embedding": False}, {"layernorm_embedding": True}, {"rel_pos_buckets": 32, "max_rel_pos": 256}, { "deepnorm": True, "subln": False, "encoder_normalize_before": False, "decoder_normalize_before": False, }, {"bert_init": True}, {"multiway": True}, {"share_decoder_input_output_embed": True}, {"share_all_embeddings": True}, {"checkpoint_activations": True}, {"fsdp": True}, ] @pytest.mark.parametrize("args", testcases) def test_decoder(args): config = EncoderDecoderConfig(**args) model = EncoderDecoder( config, encoder_embed_tokens=TextEmbedding(64000, config.encoder_embed_dim), decoder_embed_tokens=TextEmbedding(64000, config.decoder_embed_dim), encoder_embed_positions=PositionalEmbedding( config.max_source_positions, config.encoder_embed_dim ), decoder_embed_positions=PositionalEmbedding( config.max_target_positions, config.decoder_embed_dim ), ) src_tokens = torch.ones(2, 20).long() prev_output_tokens = torch.ones(2, 10).long() model( src_tokens=src_tokens, prev_output_tokens=prev_output_tokens, features_only=True, )
EXA-1-master
exa/libraries/torchscale/tests/test_encoder_decoder.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details]
EXA-1-master
exa/libraries/torchscale/examples/__init__.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # flake8: noqa import models import tasks import criterions from fairseq_cli.generate import cli_main if __name__ == "__main__": cli_main()
EXA-1-master
exa/libraries/torchscale/examples/fairseq/generate.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details]
EXA-1-master
exa/libraries/torchscale/examples/fairseq/__init__.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # flake8: noqa import models import tasks import criterions from fairseq_cli.interactive import cli_main if __name__ == "__main__": cli_main()
EXA-1-master
exa/libraries/torchscale/examples/fairseq/interactive.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # flake8: noqa import models import tasks import criterions from fairseq_cli.train import cli_main if __name__ == "__main__": cli_main()
EXA-1-master
exa/libraries/torchscale/examples/fairseq/train.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] import json import logging import os from argparse import Namespace # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass, field import sentencepiece as spm from fairseq import utils from fairseq.data import Dictionary from fairseq.dataclass import ChoiceEnum, FairseqDataclass from fairseq.tasks import FairseqTask, register_task from omegaconf import II, MISSING from .data.mlm_loader import MLMLoader logger = logging.getLogger(__name__) SAMPLE_BREAK_MODE_CHOICES = ChoiceEnum(["none", "complete", "complete_doc", "eos"]) SHORTEN_METHOD_CHOICES = ChoiceEnum(["none", "truncate", "random_crop"]) @dataclass class PretrainingConfig(FairseqDataclass): data: str = field( default=MISSING, metadata={ "help": "colon separated path to data directories list, \ will be iterated upon during epochs in round-robin manner" }, ) sample_break_mode: SAMPLE_BREAK_MODE_CHOICES = field( default="complete", metadata={ "help": 'If omitted or "none", fills each sample with tokens-per-sample ' 'tokens. If set to "complete", splits samples only at the end ' "of sentence, but may include multiple sentences per sample. " '"complete_doc" is similar but respects doc boundaries. ' 'If set to "eos", includes only one sentence per sample.' }, ) tokens_per_sample: int = field( default=1024, metadata={"help": "max number of tokens per sample for LM dataset"}, ) mask_prob: float = field( default=0.15, metadata={"help": "probability of replacing a token with mask"}, ) leave_unmasked_prob: float = field( default=0.1, metadata={"help": "probability that a masked token is unmasked"}, ) random_token_prob: float = field( default=0.1, metadata={"help": "probability of replacing a token with a random token"}, ) freq_weighted_replacement: bool = field( default=False, metadata={"help": "sample random replacement words based on word frequencies"}, ) mask_whole_words: bool = field( default=False, metadata={"help": "mask whole words; you may also want to set --bpe"}, ) mask_multiple_length: int = field( default=1, metadata={"help": "repeat the mask indices multiple times"}, ) mask_stdev: float = field( default=0.0, metadata={"help": "stdev of the mask length"}, ) shorten_method: SHORTEN_METHOD_CHOICES = field( default="none", metadata={ "help": "if not none, shorten sequences that exceed --tokens-per-sample" }, ) shorten_data_split_list: str = field( default="", metadata={ "help": "comma-separated list of dataset splits to apply shortening to, " 'e.g., "train,valid" (default: all dataset splits)' }, ) seed: int = II("common.seed") span_length: float = field( default=3.0, metadata={"help": "average span length for masking"}, ) remove_source_sentinel: bool = field( default=False, metadata={"help": "remove the source sentinel for the span corruption task"}, ) remove_target_sentinel: bool = field( default=False, metadata={"help": "remove the target sentinel for the span corruption task"}, ) batch_read_ahead: int = field( default=100000, metadata={"help": "batch read ahead size for infinibatch"}, ) required_batch_size_multiple: int = II("dataset.required_batch_size_multiple") spm_model: str = field( default="", metadata={"help": "sentencepice model to tokenize the data"}, ) dict_file: str = field( default="", metadata={"help": ""}, ) pad_to_max_length: bool = field( default=False, ) @register_task("pretraining", dataclass=PretrainingConfig) class PLMTask(FairseqTask): def __init__(self, cfg, dictionary, tokenizer): super().__init__(cfg) self.cfg = cfg self.dictionary = dictionary self.tokenizer = tokenizer self.seed = cfg.seed self.mask_idx = dictionary.index("<mask>") @classmethod def setup_task(cls, cfg, **kwargs): paths = utils.split_paths(cfg.data) assert len(paths) > 0 if cfg.dict_file != "": dictionary = Dictionary.load(cfg.dict_file) else: dictionary = Dictionary.load(os.path.join(paths[0], "dict.txt")) # add mask token dictionary.add_symbol("<mask>") for i in range(100): dictionary.add_symbol(f"<mask_{i}>") dictionary.pad_to_multiple_(cfg.required_batch_size_multiple) logger.info("dictionary: {} types".format(len(dictionary))) # tokenizer = SentencepieceBPE(Namespace(sentencepiece_model=cfg.spm_model)) tokenizer = spm.SentencePieceProcessor() tokenizer.Load(cfg.spm_model) return cls(cfg, dictionary, tokenizer) def load_dataset(self, split, epoch=1, combine=False, **kwargs): self.datasets[split] = { "data": json.load(open(f"{self.cfg.data}/json/{split}.json")), "data_dir": self.cfg.data, "shuffle": True if split == "train" else False, } self.datasets[split] = Namespace(**self.datasets[split]) def dataset(self, split): if split not in self.datasets: raise KeyError("Dataset not loaded: " + split) return self.datasets[split] def get_batch_iterator( self, dataset, max_tokens=None, max_sentences=None, max_positions=None, ignore_invalid_inputs=False, required_batch_size_multiple=1, seed=1, num_shards=1, shard_id=0, num_workers=0, epoch=1, data_buffer_size=0, disable_iterator_cache=False, **kwargs, ): return MLMLoader( self.cfg, dataset, self.dictionary, self.tokenizer, max_tokens=max_tokens, max_sentences=max_sentences, max_positions=max_positions, ignore_invalid_inputs=ignore_invalid_inputs, required_batch_size_multiple=required_batch_size_multiple, seed=seed, num_shards=num_shards, shard_id=shard_id, ) @property def source_dictionary(self): return self.dictionary @property def target_dictionary(self): return self.dictionary
EXA-1-master
exa/libraries/torchscale/examples/fairseq/tasks/pretraining.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] import argparse import importlib import os # register dataclass TASK_DATACLASS_REGISTRY = {} TASK_REGISTRY = {} TASK_CLASS_NAMES = set() # automatically import any Python files in the tasks/ directory tasks_dir = os.path.dirname(__file__) for file in os.listdir(tasks_dir): path = os.path.join(tasks_dir, file) if ( not file.startswith("_") and not file.startswith(".") and (file.endswith(".py") or os.path.isdir(path)) ): task_name = file[: file.find(".py")] if file.endswith(".py") else file module = importlib.import_module("tasks." + task_name) # expose `task_parser` for sphinx if task_name in TASK_REGISTRY: parser = argparse.ArgumentParser(add_help=False) group_task = parser.add_argument_group("Task name") # fmt: off group_task.add_argument('--task', metavar=task_name, help='Enable this task with: ``--task=' + task_name + '``') # fmt: on group_args = parser.add_argument_group("Additional command-line arguments") TASK_REGISTRY[task_name].add_args(group_args) globals()[task_name + "_parser"] = parser
EXA-1-master
exa/libraries/torchscale/examples/fairseq/tasks/__init__.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] import torch from infinibatch.iterators import CheckpointableIterator from . import utils class BaseBatchGen(CheckpointableIterator): """ This is a base class for batch generators that use infinibatch """ def __init__(self): self._iter = None self.epoch = 1 self.next_epoch_idx = 1 self.sharded_checkpoint = True self.should_close_after_finished = True def _build_iter(self): """ Build infinibatch iterator and assign to self._iter """ raise NotImplementedError() def _move_to_tensor(self, batch): def to_tensor(x): return torch.tensor(x) return utils.apply_to_sample(to_tensor, batch) @property def iterator(self): if self._iter is None: raise NotImplementedError("_build_iter() must called first") return self._iter def __iter__(self): if self._iter is None: raise NotImplementedError("_build_iter() must called first") return self._iter def __next__(self): return next(self._iter) def setstate(self, value): self._iter.setstate(value) def getstate(self): return self._iter.getstate() def close(self): self._iter.close() def __len__(self) -> int: return 819200000 def next_epoch_itr( self, shuffle=True, fix_batches_to_gpus=False, set_dataset_epoch=True ): return self def end_of_epoch(self) -> bool: return False def state_dict(self): """Returns a dictionary containing a whole state of the iterator.""" return self.getstate() def load_state_dict(self, state_dict): """Copies the state of the iterator from the given *state_dict*.""" self.setstate(state_dict) @property def first_batch(self): return "DUMMY"
EXA-1-master
exa/libraries/torchscale/examples/fairseq/tasks/data/basic_loader.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details]
EXA-1-master
exa/libraries/torchscale/examples/fairseq/tasks/data/__init__.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] import collections from random import Random from typing import Dict, Iterable, Optional import numpy as np from infinibatch import iterators def apply_to_sample(f, sample): if hasattr(sample, "__len__") and len(sample) == 0: return {} def _apply(x): if isinstance(x, np.ndarray): return f(x) elif isinstance(x, collections.OrderedDict): # OrderedDict has attributes that needs to be preserved od = collections.OrderedDict( (key, _apply(value)) for key, value in x.items() ) od.__dict__ = x.__dict__ return od elif isinstance(x, dict): return {key: _apply(value) for key, value in x.items()} elif isinstance(x, list): return [_apply(x) for x in x] elif isinstance(x, tuple): return tuple(_apply(x) for x in x) elif isinstance(x, set): return {_apply(x) for x in x} else: return x return _apply(sample) class NativeCheckpointableIterator(iterators.CheckpointableIterator): def __init__(self, iterable: Iterable): self._input_iterable = iterable self.setstate(None) def getstate(self) -> Dict: return {"num_items_yielded": self._num_items_yielded} def setstate(self, checkpoint: Optional[Dict]): self._iterator = iter(self._input_iterable) self._num_items_yielded = ( iterators._advance_iterator(self._iterator, checkpoint["num_items_yielded"]) if checkpoint is not None else 0 ) def __next__(self): item = next(self._iterator) self._num_items_yielded += 1 return item def close(self): pass class WeightIterator(object): def __init__(self, weights, seed): self.weights = weights self.seed = seed self.control_index = list(range(len(weights))) self.setstate(None) def __iter__(self): return self def getstate(self): return {"random_state": self._random_state} def setstate(self, checkpoint): self._random_state = checkpoint["random_state"] if checkpoint else None self._random = ( None # this will trigger the lazy initialization in self.__next__ ) def __next__(self): if self._random is None: self._random = Random(self.seed) if self._random_state is not None: self._random.setstate(self._random_state) idx = self._random.choices(self.control_index, self.weights)[0] self._random_state = self._random.getstate() return idx def close(self): pass
EXA-1-master
exa/libraries/torchscale/examples/fairseq/tasks/data/utils.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] import copy import itertools import os import numpy as np from infinibatch import iterators from .basic_loader import BaseBatchGen from .utils import NativeCheckpointableIterator, WeightIterator class MLMLoader(BaseBatchGen): def __init__( self, args, dataset, dictionary, tokenizer, max_tokens=None, max_sentences=None, max_positions=None, ignore_invalid_inputs=False, required_batch_size_multiple=1, seed=1, num_shards=1, shard_id=0, ): super().__init__() self.args = args self.data = dataset.data self.data_dir = dataset.data_dir self.shuffle = dataset.shuffle self.dictionary = dictionary self.tokenizer = tokenizer self.max_tokens = max_tokens self.max_sentences = max_sentences self.max_positions = max_positions self.tokens_per_sample = args.tokens_per_sample self.sample_break_mode = args.sample_break_mode self.ignore_invalid_inputs = ignore_invalid_inputs self.required_batch_size_multiple = required_batch_size_multiple self.seed = str(seed) self.num_shards = num_shards self.shard_id = shard_id self.batch_read_ahead = args.batch_read_ahead self._build_iter() def _build_iter(self): tokenized_lines = self._multilingual_tokenize() self.padded_batches = self._batchify(tokenized_lines) prefetch_batches = iterators.PrefetchIterator( self.padded_batches, buffer_size=10000, buffer_in_main_process=True, log_empty_buffer_warning=True and self.shard_id == 0, ) prefetch_batches = iterators.MapIterator(prefetch_batches, self._move_to_tensor) self._iter = prefetch_batches def _multilingual_tokenize(self): multilingual_iters = [] weights = [] for data in self.data: multilingual_iters.append(self._tokenize(data)) if "weight" in data: weights.append(float(data["weight"])) else: weights.append(int(data["count"])) if len(multilingual_iters) == 1: return multilingual_iters[0] sampling_iterator = WeightIterator(weights) control_iterator = NativeCheckpointableIterator(sampling_iterator) tokenized_lines = iterators.MultiplexIterator( control_iterator, multilingual_iters ) return tokenized_lines def _tokenize(self, data): """ data: { 'source': list[Path], 'source_lang': str, 'count': int, 'weight': float, 'name': str, } """ dataset = list( zip( data["source"], itertools.repeat(data["source_lang"]), ) ) if self.shuffle: chunk_files = iterators.InfinitePermutationSourceIterator( dataset, seed=self.seed, shuffle=self.shuffle, num_instances=self.num_shards, instance_rank=self.shard_id, ) else: chunk_files = iterators.ChunkedSourceIterator( dataset, num_instances=self.num_shards, instance_rank=self.shard_id, ) tokenized_lines = iterators.SelectManyIterator( chunk_files, lambda files: self._read_from_files(*files) ) tokenized_lines = iterators.SamplingRandomMapIterator( tokenized_lines, self._prepare, self.seed ) return tokenized_lines def _batchify(self, lines): if self.max_sentences is not None: if self.batch_read_ahead > 0: lines = iterators.BlockwiseShuffleIterator( lines, self.batch_read_ahead, self.seed ) batches = iterators.FixedBatchIterator(lines, self.max_sentences) else: def dynamic_batch_size(sample): lengths = [len(x) for x in sample] batch_size = self.max_tokens // max(lengths) batch_size = ( batch_size // self.required_batch_size_multiple * self.required_batch_size_multiple ) return max(1, batch_size) batches = iterators.BucketedReadaheadBatchIterator( lines, read_ahead=self.batch_read_ahead, key=(lambda x: max(len(x[0]), len(x[1]))) if self.shuffle else None, batch_size=dynamic_batch_size, shuffle=self.shuffle, seed=self.seed, ) def collate(batch): batch_size = len(batch) mlm_source_max_length = max([len(x[0]) for x in batch]) mlm_target_max_length = max([len(x[1]) for x in batch]) s2s_source_max_length = max([len(x[2]) for x in batch]) s2s_target_max_length = max([len(x[3]) for x in batch]) if self.args.pad_to_max_length: mlm_source_max_length = self.args.tokens_per_sample mlm_target_max_length = self.args.tokens_per_sample mlm_source_ids = np.full( shape=(batch_size, mlm_source_max_length), dtype=np.int32, fill_value=self.dictionary.pad(), ) mlm_target_ids = np.full( shape=(batch_size, mlm_target_max_length), dtype=np.int32, fill_value=self.dictionary.pad(), ) s2s_source_ids = np.full( shape=(batch_size, s2s_source_max_length), dtype=np.int32, fill_value=self.dictionary.pad(), ) s2s_target_ids = np.full( shape=(batch_size, s2s_target_max_length - 1), dtype=np.int32, fill_value=self.dictionary.pad(), ) s2s_prev_input_ids = np.full( shape=(batch_size, s2s_target_max_length - 1), dtype=np.int32, fill_value=self.dictionary.pad(), ) for i, ( mlm_input_ids, mlm_label_ids, s2s_input_ids, s2s_label_ids, ) in enumerate(batch): mlm_source_ids[i, : len(mlm_input_ids)] = mlm_input_ids mlm_target_ids[i, : len(mlm_label_ids)] = mlm_label_ids s2s_source_ids[i, : len(s2s_input_ids)] = s2s_input_ids s2s_target_ids[i, : len(s2s_label_ids) - 1] = s2s_label_ids[1:] s2s_prev_input_ids[i, : len(s2s_label_ids) - 1] = s2s_label_ids[:-1] ret_batch = { "net_input": { "src_tokens": mlm_source_ids.astype(np.int64), }, "target": mlm_target_ids.astype(np.int64), "nsentences": batch_size, "ntokens": sum([len(x[0]) for x in batch]), } return ret_batch padded_batches = iterators.MapIterator(batches, collate) return padded_batches def _prepare(self, _random, doc): nonmasked_tokens, masked_tokens = self._mask_lm(_random, doc) nonnoise_spans, noise_spans = self._span_corruption(_random, doc) return nonmasked_tokens, masked_tokens, nonnoise_spans, noise_spans def _mask_lm(self, _random, doc): def mask_tokens(): return "<mask>" length = len(doc) mask_tokens_num = int(length * self.args.mask_prob) mask_tokens_num = min(max(mask_tokens_num, 1), length - 1) possible_mask_positions = _random.sample(range(length), k=mask_tokens_num) possible_mask_positions = sorted(possible_mask_positions) nonmasked_tokens = copy.deepcopy(doc) masked_tokens = [self.dictionary.pad() for _ in range(len(doc))] for position in possible_mask_positions: # masked_tokens.append(nonmasked_tokens[position]) masked_tokens[position] = nonmasked_tokens[position] nonmasked_tokens[position] = self.dictionary.indices[mask_tokens()] return nonmasked_tokens, masked_tokens def _span_corruption(self, _random, doc): def mask_tokens(i): return f"<mask_{i}>" length = len(doc) noise_tokens_num = int(length * self.args.mask_prob) noise_tokens_num = min(max(noise_tokens_num, 1), length - 1) noise_spans_num = int(noise_tokens_num / self.args.span_length) noise_spans_num = max(noise_spans_num, 1) nonnoise_tokens_num = length - noise_tokens_num if noise_spans_num == 1: noise_split_positions = [0, noise_tokens_num] else: possible_split_positions = list(range(1, noise_tokens_num)) _random.shuffle(possible_split_positions) noise_split_positions = sorted( possible_split_positions[: noise_spans_num - 1] ) noise_split_positions = [0] + noise_split_positions + [noise_tokens_num] possible_insert_positions = list(range(nonnoise_tokens_num)) _random.shuffle(possible_insert_positions) noise_insert_positions = sorted(possible_insert_positions[:noise_spans_num]) nonnoise_spans, noise_spans = [], [] last_end = 0 for i in range(noise_spans_num): start_pos = noise_insert_positions[i] + noise_split_positions[i] end_pos = noise_insert_positions[i] + noise_split_positions[i + 1] mask_id = self.dictionary.indices[mask_tokens(i)] if getattr(self.args, "remove_target_sentinel", False): noise_spans.append(doc[start_pos:end_pos]) else: noise_spans.append([mask_id] + doc[start_pos:end_pos]) if getattr(self.args, "remove_source_sentinel", False): nonnoise_spans.extend(doc[last_end:start_pos]) else: nonnoise_spans.extend(doc[last_end:start_pos] + [mask_id]) last_end = end_pos nonnoise_spans.extend(doc[last_end:]) noise_spans = sum(noise_spans, []) return nonnoise_spans, noise_spans def _read_from_files(self, source_file, source_lang): # data = [] file_path = os.path.join(self.data_dir, source_file) if not os.path.exists(file_path): print("| file {} not exists".format(file_path), flush=True) return iter([]) # skip bad file with open(file_path, "r", encoding="utf8") as f: lines = f.read().strip().split("\n") doc = [self.dictionary.bos()] for line in lines: if line == "": if self.sample_break_mode == "complete_doc": # data.append(doc) yield doc doc = [self.dictionary.bos()] continue tokenized_line = self.tokenizer.EncodeAsPieces(line) tokenized_id = [ self.dictionary.index(token) for token in tokenized_line ] + [self.dictionary.eos_index] if len(tokenized_id) > self.tokens_per_sample: continue if len(doc) + len(tokenized_id) > self.tokens_per_sample: # data.append(doc) yield doc doc = [self.dictionary.bos()] doc.extend(tokenized_id) if len(doc) > 1 and len(doc) <= self.tokens_per_sample: # data.append(doc) yield doc # return data
EXA-1-master
exa/libraries/torchscale/examples/fairseq/tasks/data/mlm_loader.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] import math import warnings import torch import torch.distributed as dist from fairseq.utils import multi_tensor_l2norm_available, multi_tensor_total_norm @torch.no_grad() def clip_grad_norm_( params, max_norm, moe_expert_count, aggregate_norm_fn=None ) -> torch.Tensor: def grad_exists(p): return p is not None and getattr(p, "grad", None) is not None if isinstance(params, torch.Tensor): params = [params] params = list(params) params = list(filter(grad_exists, params)) grads, expert_grads, base_expert_grads, sharded_grads = [], [], [], [] denom = math.sqrt(max(dist.get_global_world_size(), moe_expert_count)) for p in params: if hasattr(p, "expert"): expert_grads.append(p.grad.detach() / denom) elif hasattr(p, "base_expert"): base_expert_grads.append(p.grad.detach()) elif hasattr(p, "_is_sharded"): sharded_grads.append(p.grad.detach()) else: grads.append(p.grad.detach()) if len(grads) == 0: if len(params) > 0: total_norm = params[0].new_tensor(0.0) else: total_norm = torch.tensor(0.0) elif len(grads) == 1: total_norm = torch.norm(grads[0], p=2, dtype=torch.float32) else: if multi_tensor_l2norm_available: total_norm = multi_tensor_total_norm(grads) else: if torch.cuda.is_available(): warnings.warn( "amp_C fused kernels unavailable, disabling multi_tensor_l2norm; " "you may get better performance by installing NVIDIA's apex library" ) device = torch.cuda.current_device() elif grads[0].device.type == "xla": device = grads[0].device else: device = torch.device("cpu") total_norm = torch.norm( torch.stack( [torch.norm(g, p=2, dtype=torch.float32).to(device) for g in grads] ) ) # calculate split_norm and all_reduce with other workers norms = [total_norm] for split_grads in [expert_grads, sharded_grads]: if len(split_grads) == 0: continue split_norm = torch.norm( torch.stack([torch.norm(g, p=2, dtype=torch.float32) for g in split_grads]) ) if dist.is_initialized(): split_norm.pow_(2) dist.all_reduce(split_norm) split_norm.sqrt_() norms.append(split_norm) if len(norms) > 1: total_norm = torch.norm(torch.stack(norms)) if aggregate_norm_fn is not None: total_norm = aggregate_norm_fn(total_norm) if max_norm > 0: max_norm = float(max_norm) clip_coef = (max_norm / (total_norm + 1e-6)).clamp_(max=1) for g in grads + expert_grads + sharded_grads + base_expert_grads: g.mul_(clip_coef) return total_norm
EXA-1-master
exa/libraries/torchscale/examples/fairseq/utils/sparse_clip.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details]
EXA-1-master
exa/libraries/torchscale/examples/fairseq/utils/__init__.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging from dataclasses import dataclass, field from typing import Optional import torch from fairseq import distributed_utils, utils from fairseq.dataclass import ChoiceEnum, FairseqDataclass from fairseq.models import ( FairseqIncrementalDecoder, FairseqLanguageModel, register_model, register_model_architecture, ) from fairseq.models.transformer import DEFAULT_MIN_PARAMS_TO_WRAP, Embedding from fairseq.modules import PositionalEmbedding from omegaconf import II from torchscale.architecture.config import DecoderConfig from torchscale.architecture.decoder import Decoder DEFAULT_MAX_TARGET_POSITIONS = 1024 logger = logging.getLogger(__name__) @dataclass class LanguageConfig(FairseqDataclass): activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field( default="relu", metadata={"help": "activation function to use"} ) dropout: float = field(default=0.1, metadata={"help": "dropout probability"}) attention_dropout: float = field( default=0.0, metadata={"help": "dropout probability for attention weights"} ) activation_dropout: float = field( default=0.0, metadata={"help": "dropout probability after activation in FFN."} ) relu_dropout: float = field( default=0.0, metadata={"help": "dropout probability after activation in FFN."} ) decoder_embed_dim: int = field( default=512, metadata={"help": "decoder embedding dimension"} ) decoder_output_dim: int = field( default=512, metadata={"help": "decoder output dimension"} ) decoder_input_dim: int = field( default=512, metadata={"help": "decoder input dimension"} ) decoder_ffn_embed_dim: int = field( default=2048, metadata={"help": "decoder embedding dimension for FFN"} ) decoder_layers: int = field(default=6, metadata={"help": "num decoder layers"}) decoder_attention_heads: int = field( default=8, metadata={"help": "num decoder attention heads"} ) decoder_normalize_before: bool = field( default=False, metadata={"help": "apply layernorm before each decoder block"} ) no_token_positional_embeddings: bool = field( default=False, metadata={ "help": "if set, disables positional embeddings (outside self attention)" }, ) share_decoder_input_output_embed: bool = field( default=False, metadata={"help": "share decoder input and output embeddings"} ) decoder_learned_pos: bool = field( default=False, metadata={"help": "use learned positional embeddings in the decoder"}, ) layernorm_embedding: bool = field( default=False, metadata={"help": "add layernorm to embedding"} ) no_scale_embedding: bool = field( default=False, metadata={"help": "if True, dont scale embeddings"} ) checkpoint_activations: bool = field( default=False, metadata={"help": "checkpoint activations at each layer"} ) offload_activations: bool = field( default=False, metadata={"help": "move checkpointed activations to CPU after they are used."}, ) # config for Fully Sharded Data Parallel (FSDP) training min_params_to_wrap: int = field( default=DEFAULT_MIN_PARAMS_TO_WRAP, metadata={ "help": ( "minimum number of params for a layer to be wrapped with FSDP() when " "training with --ddp-backend=fully_sharded. Smaller values will " "improve memory efficiency, but may make torch.distributed " "communication less efficient due to smaller input sizes. This option " "is set to 0 (i.e., always wrap) when --checkpoint-activations or " "--offload-activations are passed." ) }, ) moe_freq: int = field( default=0, metadata={"help": "Frequency at which we insert MoE Transformer layers"}, ) moe_expert_count: int = field( default=0, metadata={"help": "Number of experts in each MoE Layer"} ) moe_gating_use_fp32: bool = field( default=False, metadata={"help": "Use FP32 computations in MoE top2 gating function"}, ) moe_second_expert_policy: str = field( default="sampling", metadata={"help": "policy for second expert, options: all/sampling/random"}, ) moe_normalize_gate_prob_before_dropping: bool = field( default=False, metadata={ "help": "whether to normalize gate probs before or after dropping experts for capacity and randomization" }, ) moe_expert_ffn_dim: Optional[int] = field( default=None, metadata={"help": "MoE expert FFN dimension"} ) moe_top1_expert: Optional[bool] = field( default=False, metadata={"help": "Use top1 gate instead of top2"} ) moe_eval_capacity_token_fraction: Optional[float] = field( default=0.25, metadata={ "help": ( "Default: 0.25, Fraction of tokens as capacity during validation, " "if set to negative, use same as training. range: (0.0, 1.0]." ) }, ) moe_normalize_expert_grad: Optional[str] = field( default="world_size", metadata={ "help": "Divide expert gradients by (1) 'world_size' (2) 'sqrt_world_size'" }, ) record_a2a_perf_stats: Optional[bool] = field( default=False, metadata={"help": "records all to all perf stats during distributed training"}, ) dummy_a2a: Optional[bool] = field( default=False, metadata={ "help": "By passes all to all during distributed training by returning the input buffer as output" }, ) moe_batch_prioritized_routing: Optional[bool] = field( default=False, metadata={ "help": "if true orders token by the gate prob before capacity dropping." }, ) use_xmoe: Optional[bool] = field( default=False, ) # options from other parts of the config add_bos_token: bool = II("task.add_bos_token") tokens_per_sample: int = II("task.tokens_per_sample") max_target_positions: Optional[int] = II("task.max_target_positions") tpu: bool = II("common.tpu") memory_efficient_fp16: bool = II("common.memory_efficient_fp16") fp16: bool = II("common.fp16") fp16_no_flatten_grads: bool = II("common.fp16_no_flatten_grads") ddp_backend: str = II("distributed_training.ddp_backend") world_size: int = II("distributed_training.distributed_world_size") distributed_rank: int = II("distributed_training.distributed_rank") ddp_rank: int = II("distributed_training.distributed_rank") deepnorm: Optional[bool] = field( default=False, ) subln: Optional[bool] = field( default=False, ) rel_pos_buckets: Optional[int] = field( default=0, ) max_rel_pos: Optional[int] = field( default=0, ) xpos_rel_pos: Optional[bool] = field( default=False, ) xpos_scale_base: Optional[int] = field( default=512, ) @register_model("lm", dataclass=LanguageConfig) class LanguageModel(FairseqLanguageModel): def __init__(self, args, decoder): self.args = args super().__init__(decoder) @classmethod def build_model(cls, args, task): if getattr(args, "max_target_positions", None) is None: args.max_target_positions = getattr( args, "tokens_per_sample", DEFAULT_MAX_TARGET_POSITIONS ) embed_tokens = cls.build_embedding( args, task.source_dictionary, args.decoder_embed_dim ) embed_positions = ( PositionalEmbedding( args.max_target_positions, args.decoder_embed_dim, task.dictionary.pad(), learned=args.decoder_learned_pos, ) if not args.no_token_positional_embeddings else None ) if args.share_decoder_input_output_embed: output_projection = torch.nn.Linear( embed_tokens.weight.shape[1], embed_tokens.weight.shape[0], bias=False, ) output_projection.weight = embed_tokens.weight else: output_projection = torch.nn.Linear( args.decoder_embed_dim, len(task.dictionary), bias=False ) torch.nn.init.normal_( output_projection.weight, mean=0, std=args.decoder_embed_dim**-0.5 ) if getattr(args, "moe_freq", 0) > 0 and ( getattr(args, "fp16", False) and not getattr(args, "memory_efficient_fp16", False) and getattr(args, "ddp_backend", None) != "fully_sharded" ): assert ( args.fp16_no_flatten_grads ), "If training moe models, set --fp16-no-flatten-grads to calculate correct gradnorm" args.ddp_rank = distributed_utils.get_data_parallel_rank() config = DecoderConfig() config.override(args) decoder = LMDecoder( config, embed_tokens, embed_positions, output_projection, is_encoder_decoder=False, dictionary=task.dictionary, ) return cls(args, decoder) @classmethod def build_embedding(cls, args, dictionary, embed_dim, path=None): return Embedding(len(dictionary), embed_dim, dictionary.pad()) class LMDecoder(Decoder, FairseqIncrementalDecoder): def forward(self, src_tokens, **kwargs): self_attn_padding_mask = src_tokens.eq(self.dictionary.pad()) return super().forward(src_tokens, self_attn_padding_mask, **kwargs) def max_positions(self): return self.embed_positions.max_positions def reorder_incremental_state_scripting( self, incremental_state, new_order, ): for module in incremental_state: for key in incremental_state[module]: result = incremental_state[module][key].index_select(0, new_order) incremental_state[module][key] = result @register_model_architecture("lm", "lm_base") def base_lm_architecture(args): # backward compatibility for older model checkpoints if hasattr(args, "no_tie_adaptive_proj"): # previous models defined --no-tie-adaptive-proj, so use the existence of # that option to determine if this is an "old" model checkpoint args.no_decoder_final_norm = True # old models always set this to True if args.no_tie_adaptive_proj is False: args.tie_adaptive_proj = True if hasattr(args, "decoder_final_norm"): args.no_decoder_final_norm = not args.decoder_final_norm args.dropout = getattr(args, "dropout", 0.1) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 2048) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.adaptive_softmax_factor = getattr(args, "adaptive_softmax_factor", 4) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) args.activation_fn = getattr(args, "activation_fn", "relu") args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0) args.decoder_layers_to_keep = getattr(args, "decoder_layers_to_keep", None) args.base_layers = getattr(args, "base_layers", 0) args.base_sublayers = getattr(args, "base_sublayers", 1) args.base_shuffle = getattr(args, "base_shuffle", False) args.add_bos_token = getattr(args, "add_bos_token", False) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.character_embeddings = getattr(args, "character_embeddings", False) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) # Model training is not stable without this args.decoder_normalize_before = True args.no_decoder_final_norm = getattr(args, "no_decoder_final_norm", False) args.adaptive_input = getattr(args, "adaptive_input", False) args.adaptive_input_factor = getattr(args, "adaptive_input_factor", 4) args.adaptive_input_cutoff = getattr(args, "adaptive_input_cutoff", None) args.tie_adaptive_weights = getattr(args, "tie_adaptive_weights", False) args.tie_adaptive_proj = getattr(args, "tie_adaptive_proj", False) args.no_scale_embedding = getattr(args, "no_scale_embedding", False) args.layernorm_embedding = getattr(args, "layernorm_embedding", False) args.checkpoint_activations = getattr(args, "checkpoint_activations", False) args.offload_activations = getattr(args, "offload_activations", False) if args.offload_activations: args.checkpoint_activations = True
EXA-1-master
exa/libraries/torchscale/examples/fairseq/models/language_modeling.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] import argparse import importlib import os MODEL_REGISTRY = {} MODEL_DATACLASS_REGISTRY = {} ARCH_MODEL_REGISTRY = {} ARCH_MODEL_NAME_REGISTRY = {} ARCH_MODEL_INV_REGISTRY = {} ARCH_CONFIG_REGISTRY = {} # automatically import any Python files in the models/ directory models_dir = os.path.dirname(__file__) for file in os.listdir(models_dir): path = os.path.join(models_dir, file) if ( not file.startswith("_") and not file.startswith(".") and (file.endswith(".py") or os.path.isdir(path)) ): model_name = file[: file.find(".py")] if file.endswith(".py") else file module = importlib.import_module("models." + model_name) # extra `model_parser` for sphinx if model_name in MODEL_REGISTRY: parser = argparse.ArgumentParser(add_help=False) group_archs = parser.add_argument_group("Named architectures") group_archs.add_argument( "--arch", choices=ARCH_MODEL_INV_REGISTRY[model_name] ) group_args = parser.add_argument_group("Additional command-line arguments") MODEL_REGISTRY[model_name].add_args(group_args) globals()[model_name + "_parser"] = parser
EXA-1-master
exa/libraries/torchscale/examples/fairseq/models/__init__.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging from typing import Dict, List, Optional, Tuple import torch from fairseq import distributed_utils, utils from fairseq.distributed import fsdp_wrap from fairseq.models import ( FairseqEncoder, FairseqEncoderDecoderModel, register_model, register_model_architecture, ) from fairseq.models.transformer import Embedding from fairseq.modules import PositionalEmbedding from torch import Tensor from torchscale.architecture.config import DecoderConfig, EncoderConfig from torchscale.architecture.encoder import Encoder from .language_modeling import LMDecoder as MTDecoder logger = logging.getLogger(__name__) DEFAULT_MAX_SOURCE_POSITIONS = 1024 DEFAULT_MAX_TARGET_POSITIONS = 1024 DEFAULT_MIN_PARAMS_TO_WRAP = int(1e8) @register_model("mt") class TranslationModel(FairseqEncoderDecoderModel): def __init__(self, args, encoder, decoder): super().__init__(encoder, decoder) self.args = args @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" # fmt: off parser.add_argument('--activation-fn', choices=utils.get_available_activation_fns(), help='activation function to use') parser.add_argument('--dropout', type=float, metavar='D', help='dropout probability') parser.add_argument('--attention-dropout', type=float, metavar='D', help='dropout probability for attention weights') parser.add_argument('--activation-dropout', '--relu-dropout', type=float, metavar='D', help='dropout probability after activation in FFN.') parser.add_argument('--encoder-embed-path', type=str, metavar='STR', help='path to pre-trained encoder embedding') parser.add_argument('--encoder-embed-dim', type=int, metavar='N', help='encoder embedding dimension') parser.add_argument('--encoder-ffn-embed-dim', type=int, metavar='N', help='encoder embedding dimension for FFN') parser.add_argument('--encoder-layers', type=int, metavar='N', help='num encoder layers') parser.add_argument('--encoder-attention-heads', type=int, metavar='N', help='num encoder attention heads') parser.add_argument('--encoder-normalize-before', action='store_true', help='apply layernorm before each encoder block') parser.add_argument('--encoder-learned-pos', action='store_true', help='use learned positional embeddings in the encoder') parser.add_argument('--decoder-embed-path', type=str, metavar='STR', help='path to pre-trained decoder embedding') parser.add_argument('--decoder-embed-dim', type=int, metavar='N', help='decoder embedding dimension') parser.add_argument('--decoder-ffn-embed-dim', type=int, metavar='N', help='decoder embedding dimension for FFN') parser.add_argument('--decoder-layers', type=int, metavar='N', help='num decoder layers') parser.add_argument('--decoder-attention-heads', type=int, metavar='N', help='num decoder attention heads') parser.add_argument('--decoder-learned-pos', action='store_true', help='use learned positional embeddings in the decoder') parser.add_argument('--decoder-normalize-before', action='store_true', help='apply layernorm before each decoder block') parser.add_argument('--decoder-output-dim', type=int, metavar='N', help='decoder output dimension (extra linear layer ' 'if different from decoder embed dim') parser.add_argument('--share-decoder-input-output-embed', action='store_true', help='share decoder input and output embeddings') parser.add_argument('--share-all-embeddings', action='store_true', help='share encoder, decoder and output embeddings' ' (requires shared dictionary and embed dim)') parser.add_argument('--no-token-positional-embeddings', default=False, action='store_true', help='if set, disables positional embeddings (outside self attention)') parser.add_argument('--adaptive-softmax-cutoff', metavar='EXPR', help='comma separated list of adaptive softmax cutoff points. ' 'Must be used with adaptive_loss criterion'), parser.add_argument('--adaptive-softmax-dropout', type=float, metavar='D', help='sets adaptive softmax dropout for the tail projections') parser.add_argument('--layernorm-embedding', action='store_true', help='add layernorm to embedding') parser.add_argument('--no-scale-embedding', action='store_true', help='if True, dont scale embeddings') parser.add_argument('--checkpoint-activations', action='store_true', help='checkpoint activations at each layer, which saves GPU ' 'memory usage at the cost of some additional compute') parser.add_argument('--offload-activations', action='store_true', help='checkpoint activations at each layer, then save to gpu. Sets --checkpoint-activations.') # args for "Cross+Self-Attention for Transformer Models" (Peitz et al., 2019) parser.add_argument('--no-cross-attention', default=False, action='store_true', help='do not perform cross-attention') parser.add_argument('--cross-self-attention', default=False, action='store_true', help='perform cross+self-attention') # args for "Reducing Transformer Depth on Demand with Structured Dropout" (Fan et al., 2019) parser.add_argument('--encoder-layerdrop', type=float, metavar='D', default=0, help='LayerDrop probability for encoder') parser.add_argument('--decoder-layerdrop', type=float, metavar='D', default=0, help='LayerDrop probability for decoder') parser.add_argument('--encoder-layers-to-keep', default=None, help='which layers to *keep* when pruning as a comma-separated list') parser.add_argument('--decoder-layers-to-keep', default=None, help='which layers to *keep* when pruning as a comma-separated list') # args for Training with Quantization Noise for Extreme Model Compression ({Fan*, Stock*} et al., 2020) parser.add_argument('--quant-noise-pq', type=float, metavar='D', default=0, help='iterative PQ quantization noise at training time') parser.add_argument('--quant-noise-pq-block-size', type=int, metavar='D', default=8, help='block size of quantization noise at training time') parser.add_argument('--quant-noise-scalar', type=float, metavar='D', default=0, help='scalar quantization noise and scalar quantization at training time') # args for Fully Sharded Data Parallel (FSDP) training parser.add_argument( '--min-params-to-wrap', type=int, metavar='D', default=DEFAULT_MIN_PARAMS_TO_WRAP, help=( 'minimum number of params for a layer to be wrapped with FSDP() when ' 'training with --ddp-backend=fully_sharded. Smaller values will ' 'improve memory efficiency, but may make torch.distributed ' 'communication less efficient due to smaller input sizes. This option ' 'is set to 0 (i.e., always wrap) when --checkpoint-activations or ' '--offload-activations are passed.' ) ) # args for mixture-of-expert layers parser.add_argument('--moe-freq', type=int, metavar='D', default=0, help='Frequency at which we insert MoE Transformer layers') parser.add_argument('--encoder-moe-freq', type=int, metavar='D', default=0, help='Frequency at which we insert MoE Transformer encoder layers') parser.add_argument('--decoder-moe-freq', type=int, metavar='D', default=0, help='Frequency at which we insert MoE Transformer decoder layers') parser.add_argument('--moe-expert-count', type=int, metavar='D', default=0, help='Number of experts in each MoE Layer') parser.add_argument('--moe-gating-use-fp32', default=False, action='store_true', help="Use FP32 computations in MoE top2 gating function") parser.add_argument('--moe-second-expert-policy', type=str, default='sampling', help="policy for second expert, options: all/sampling/random") parser.add_argument( '--moe-normalize-gate-prob-before-dropping', default=False, action='store_true', help=( "whether to normalize gate probs before or after dropping experts " "for capacity and randomization" ) ) parser.add_argument('--moe-expert-ffn-dim', type=int, default=0, help="MoE Expert FFN dimension") parser.add_argument('--moe-top1-expert', default=False, action='store_true', help="Use top1 gate instead of top2") parser.add_argument( '--moe-eval-capacity-token-fraction', type=float, default=0.25, help=( "Fraction of tokens as capacity during validation" "if set to negative, use same as training. range: (0.0, 1.0]." ) ) parser.add_argument('--moe-normalize-expert-grad', type=str, default='world_size', help="Divide expert gradients by (1) 'world_size' (2) 'sqrt_world_size'") parser.add_argument('--use-moe-pad-mask', default=False, action='store_true', help="Don't route padding tokens to any expert") parser.add_argument('--use-xmoe', default=False, action='store_true', help="Enable X-Moe") parser.add_argument('--freeze-moe', default=False, action='store_true', help="Freeze MoE Params") parser.add_argument('--deepnorm', default=False, action='store_true', help="Enable DeepNorm") parser.add_argument('--subln', default=False, action='store_true', help="Enable SubLN") parser.add_argument('--pretrained-dense-mt-model-path', type=str, default='') # args for pseudo-MoE layers parser.add_argument('--alternate-ffn-embed-dim', type=int, default=0, help="FFN embed dim of alternate pseudo-MoE blocks") parser.add_argument('--rel-pos-buckets', type=int, default=0, help='') parser.add_argument('--max-rel-pos', type=int, default=0, help='') # fmt: on @classmethod def build_model(cls, args, task): """Build a new model instance.""" # make sure all arguments are present in older models base_architecture(args) if getattr(args, "max_source_positions", None) is None: args.max_source_positions = DEFAULT_MAX_SOURCE_POSITIONS if getattr(args, "max_target_positions", None) is None: args.max_target_positions = DEFAULT_MAX_TARGET_POSITIONS args.ddp_rank = distributed_utils.get_data_parallel_rank() src_dict, tgt_dict = task.source_dictionary, task.target_dictionary if args.share_all_embeddings: if src_dict != tgt_dict: raise ValueError("--share-all-embeddings requires a joined dictionary") if args.encoder_embed_dim != args.decoder_embed_dim: raise ValueError( "--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim" ) if args.decoder_embed_path and ( args.decoder_embed_path != args.encoder_embed_path ): raise ValueError( "--share-all-embeddings not compatible with --decoder-embed-path" ) encoder_embed_tokens = cls.build_embedding( args, src_dict, args.encoder_embed_dim, args.encoder_embed_path ) decoder_embed_tokens = encoder_embed_tokens args.share_decoder_input_output_embed = True else: encoder_embed_tokens = cls.build_embedding( args, src_dict, args.encoder_embed_dim, args.encoder_embed_path ) decoder_embed_tokens = cls.build_embedding( args, tgt_dict, args.decoder_embed_dim, args.decoder_embed_path ) if getattr(args, "offload_activations", False): args.checkpoint_activations = True # offloading implies checkpointing encoder_embed_positions = ( PositionalEmbedding( args.max_source_positions, args.encoder_embed_dim, src_dict.pad(), learned=args.encoder_learned_pos, ) if not args.no_token_positional_embeddings else None ) decoder_embed_positions = ( PositionalEmbedding( args.max_target_positions, args.decoder_embed_dim, tgt_dict.pad(), learned=args.decoder_learned_pos, ) if not args.no_token_positional_embeddings else None ) if args.share_decoder_input_output_embed: output_projection = torch.nn.Linear( decoder_embed_tokens.weight.shape[1], decoder_embed_tokens.weight.shape[0], bias=False, ) output_projection.weight = decoder_embed_tokens.weight else: output_projection = torch.nn.Linear( args.decoder_embed_dim, len(tgt_dict), bias=False ) torch.nn.init.normal_( output_projection.weight, mean=0, std=args.decoder_embed_dim**-0.5 ) encoder = cls.build_encoder( args, encoder_embed_tokens, encoder_embed_positions, src_dict, ) decoder = cls.build_decoder( args, decoder_embed_tokens, decoder_embed_positions, output_projection, tgt_dict, ) if not args.share_all_embeddings: min_params_to_wrap = getattr( args, "min_params_to_wrap", DEFAULT_MIN_PARAMS_TO_WRAP ) # fsdp_wrap is a no-op when --ddp-backend != fully_sharded encoder = fsdp_wrap(encoder, min_num_params=min_params_to_wrap) decoder = fsdp_wrap(decoder, min_num_params=min_params_to_wrap) return cls(args, encoder, decoder) @classmethod def build_embedding(cls, args, dictionary, embed_dim, path=None): num_embeddings = len(dictionary) padding_idx = dictionary.pad() emb = Embedding(num_embeddings, embed_dim, padding_idx) # if provided, load from preloaded dictionaries if path: embed_dict = utils.parse_embedding(path) utils.load_embedding(embed_dict, dictionary, emb) return emb @classmethod def build_encoder(cls, args, embed_tokens, embed_positions, dictionary): config = EncoderConfig() config.override(args) return MTEncoder( config, embed_tokens, embed_positions, is_encoder_decoder=True, dictionary=dictionary, ) @classmethod def build_decoder( cls, args, embed_tokens, embed_positions, output_projection, dictionary ): config = DecoderConfig() config.override(args) return MTDecoder( config, embed_tokens, embed_positions, output_projection, is_encoder_decoder=True, dictionary=dictionary, ) def forward( self, src_tokens, src_lengths, prev_output_tokens, return_all_hiddens: bool = False, features_only: bool = False, **kwargs ): encoder_out = self.encoder(src_tokens, return_all_hiddens=return_all_hiddens) decoder_out = self.decoder( prev_output_tokens, encoder_out=encoder_out, features_only=features_only, return_all_hiddens=return_all_hiddens, ) return decoder_out def get_normalized_probs( self, net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]], log_probs: bool, sample: Optional[Dict[str, Tensor]] = None, ): """Get normalized probabilities (or log probs) from a net's output.""" return self.get_normalized_probs_scriptable(net_output, log_probs, sample) class MTEncoder(Encoder, FairseqEncoder): def forward(self, src_tokens, **kwargs): self_attn_padding_mask = src_tokens.eq(self.dictionary.pad()) return super().forward( src_tokens=src_tokens, encoder_padding_mask=self_attn_padding_mask, **kwargs ) def reorder_encoder_out(self, encoder_out, new_order): new_encoder_out = encoder_out["encoder_out"].index_select(0, new_order) new_encoder_embedding = encoder_out["encoder_embedding"].index_select( 0, new_order ) new_encoder_padding_mask = encoder_out["encoder_padding_mask"].index_select( 0, new_order ) encoder_states = encoder_out["encoder_states"] if len(encoder_states) > 0: for idx, state in enumerate(encoder_states): encoder_states[idx] = state.index_select(0, new_order) return { "encoder_out": new_encoder_out, # T x B x C "encoder_padding_mask": new_encoder_padding_mask, "encoder_embedding": new_encoder_embedding, # B x T x C "encoder_states": encoder_states, # List[T x B x C] } def max_positions(self): return self.embed_positions.max_positions @register_model_architecture("mt", "mt_base") def base_architecture(args): args.encoder_embed_path = getattr(args, "encoder_embed_path", None) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048) args.encoder_layers = getattr(args, "encoder_layers", 6) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False) args.decoder_embed_path = getattr(args, "decoder_embed_path", None) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) args.decoder_ffn_embed_dim = getattr( args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim ) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.activation_dropout = getattr(args, "activation_dropout", 0.0) args.activation_fn = getattr(args, "activation_fn", "relu") args.dropout = getattr(args, "dropout", 0.1) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.share_all_embeddings = getattr(args, "share_all_embeddings", False) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.adaptive_input = getattr(args, "adaptive_input", False) args.no_cross_attention = getattr(args, "no_cross_attention", False) args.cross_self_attention = getattr(args, "cross_self_attention", False) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) args.no_scale_embedding = getattr(args, "no_scale_embedding", False) args.layernorm_embedding = getattr(args, "layernorm_embedding", False) args.tie_adaptive_weights = getattr(args, "tie_adaptive_weights", False) args.checkpoint_activations = getattr(args, "checkpoint_activations", False) args.offload_activations = getattr(args, "offload_activations", False) if args.offload_activations: args.checkpoint_activations = True args.encoder_layers_to_keep = getattr(args, "encoder_layers_to_keep", None) args.decoder_layers_to_keep = getattr(args, "decoder_layers_to_keep", None) args.encoder_layerdrop = getattr(args, "encoder_layerdrop", 0) args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0) args.quant_noise_pq = getattr(args, "quant_noise_pq", 0) args.quant_noise_pq_block_size = getattr(args, "quant_noise_pq_block_size", 8) args.quant_noise_scalar = getattr(args, "quant_noise_scalar", 0) args.is_moe = getattr(args, "is_moe", False) args.selected_expert_count = getattr(args, "selected_expert_count", 2)
EXA-1-master
exa/libraries/torchscale/examples/fairseq/models/machine_translation.py
# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] import logging from dataclasses import dataclass, field from typing import Optional import torch import torch.nn as nn import torch.nn.functional as F from fairseq import utils from fairseq.dataclass import ChoiceEnum, FairseqDataclass from fairseq.models import BaseFairseqModel, register_model, register_model_architecture from fairseq.models.squad import SQuADHead from fairseq.models.transformer import DEFAULT_MIN_PARAMS_TO_WRAP, Embedding from fairseq.modules import PositionalEmbedding from omegaconf import II try: from apex.normalization import FusedLayerNorm as LayerNorm except ModuleNotFoundError: from torch.nn import LayerNorm from torchscale.architecture.config import EncoderConfig from .machine_translation import MTEncoder as Encoder DEFAULT_MAX_SOURCE_POSITIONS = 1024 logger = logging.getLogger(__name__) @dataclass class BertConfig(FairseqDataclass): activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field( default="relu", metadata={"help": "activation function to use"} ) dropout: float = field(default=0.1, metadata={"help": "dropout probability"}) attention_dropout: float = field( default=0.0, metadata={"help": "dropout probability for attention weights"} ) activation_dropout: float = field( default=0.0, metadata={"help": "dropout probability after activation in FFN."} ) encoder_embed_dim: int = field( default=512, metadata={"help": "encoder embedding dimension"} ) encoder_output_dim: int = field( default=512, metadata={"help": "encoder output dimension"} ) encoder_input_dim: int = field( default=512, metadata={"help": "encoder input dimension"} ) encoder_ffn_embed_dim: int = field( default=2048, metadata={"help": "encoder embedding dimension for FFN"} ) encoder_layers: int = field(default=6, metadata={"help": "num encoder layers"}) encoder_attention_heads: int = field( default=8, metadata={"help": "num encoder attention heads"} ) encoder_normalize_before: bool = field( default=False, metadata={"help": "apply layernorm before each encoder block"} ) no_encoder_final_norm: bool = field( default=False, metadata={"help": "don't add an extra layernorm after the last encoder block"}, ) no_token_positional_embeddings: bool = field( default=False, metadata={ "help": "if set, disables positional embeddings (outside self attention)" }, ) share_encoder_input_output_embed: bool = field( default=False, metadata={"help": "share encoder input and output embeddings"} ) encoder_learned_pos: bool = field( default=False, metadata={"help": "use learned positional embeddings in the encoder"}, ) layernorm_embedding: bool = field( default=False, metadata={"help": "add layernorm to embedding"} ) no_scale_embedding: bool = field( default=False, metadata={"help": "if True, dont scale embeddings"} ) checkpoint_activations: bool = field( default=False, metadata={"help": "checkpoint activations at each layer"} ) offload_activations: bool = field( default=False, metadata={"help": "move checkpointed activations to CPU after they are used."}, ) # config for "Reducing Transformer Depth on Demand with Structured Dropout" (Fan et al., 2019) encoder_layerdrop: float = field( default=0.0, metadata={"help": "LayerDrop probability for encoder"} ) encoder_layers_to_keep: Optional[str] = field( default=None, metadata={ "help": "which layers to *keep* when pruning as a comma-separated list" }, ) # config for Fully Sharded Data Parallel (FSDP) training min_params_to_wrap: int = field( default=DEFAULT_MIN_PARAMS_TO_WRAP, metadata={ "help": ( "minimum number of params for a layer to be wrapped with FSDP() when " "training with --ddp-backend=fully_sharded. Smaller values will " "improve memory efficiency, but may make torch.distributed " "communication less efficient due to smaller input sizes. This option " "is set to 0 (i.e., always wrap) when --checkpoint-activations or " "--offload-activations are passed." ) }, ) max_source_positions: int = field( default=1024, metadata={"help": "max source positions"} ) pooler_activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field( default="relu", metadata={"help": "activation function to use for pooler layer"} ) pooler_dropout: float = field( default=0.0, metadata={"help": "dropout probability in the masked_lm pooler layers"}, ) # options from other parts of the config # add_bos_token: bool = II("task.add_bos_token") # tokens_per_sample: int = II("task.tokens_per_sample") tpu: bool = II("common.tpu") rel_pos_buckets: int = field(default=0, metadata={"help": ""}) max_rel_pos: int = field(default=0, metadata={"help": ""}) use_xmoe: Optional[bool] = field( default=False, ) moe_freq: int = field( default=0, metadata={"help": "Frequency at which we insert MoE Transformer layers"}, ) moe_expert_count: int = field( default=0, metadata={"help": "Number of experts in each MoE Layer"} ) moe_gating_use_fp32: bool = field( default=False, metadata={"help": "Use FP32 computations in MoE top2 gating function"}, ) moe_second_expert_policy: str = field( default="sampling", metadata={"help": "policy for second expert, options: all/sampling/random"}, ) moe_normalize_gate_prob_before_dropping: bool = field( default=False, metadata={ "help": "whether to normalize gate probs before or after dropping experts for capacity and randomization" }, ) moe_expert_ffn_dim: Optional[int] = field( default=None, metadata={"help": "MoE expert FFN dimension"} ) moe_top1_expert: Optional[bool] = field( default=False, metadata={"help": "Use top1 gate instead of top2"} ) moe_eval_capacity_token_fraction: Optional[float] = field( default=0.25, metadata={ "help": ( "Default: 0.25, Fraction of tokens as capacity during validation, " "if set to negative, use same as training. range: (0.0, 1.0]." ) }, ) moe_normalize_expert_grad: Optional[str] = field( default="world_size", metadata={ "help": "Divide expert gradients by (1) 'world_size' (2) 'sqrt_world_size'" }, ) record_a2a_perf_stats: Optional[bool] = field( default=False, metadata={"help": "records all to all perf stats during distributed training"}, ) dummy_a2a: Optional[bool] = field( default=False, metadata={ "help": "By passes all to all during distributed training by returning the input buffer as output" }, ) moe_batch_prioritized_routing: Optional[bool] = field( default=False, metadata={ "help": "if true orders token by the gate prob before capacity dropping." }, ) ddp_rank: int = II("distributed_training.distributed_rank") deepnorm: Optional[bool] = field( default=False, ) subln: Optional[bool] = field( default=False, ) @register_model("mlm", dataclass=BertConfig) class BertModel(BaseFairseqModel): def __init__(self, args, encoder): super().__init__() self.args = args self.encoder = encoder self.padding_idx = self.encoder.embed_tokens.padding_idx self.classification_heads = nn.ModuleDict() @classmethod def build_model(cls, args, task): """Build a new model instance.""" args.max_source_positions = getattr( args, "max_source_positions", DEFAULT_MAX_SOURCE_POSITIONS ) embed_tokens = cls.build_embedding( args, task.dictionary, args.encoder_embed_dim ) embed_positions = ( PositionalEmbedding( args.max_source_positions, args.encoder_embed_dim, task.dictionary.pad(), learned=args.encoder_learned_pos, ) if not args.no_token_positional_embeddings else None ) lm_head = cls.build_lm_head( args, args.encoder_embed_dim, len(task.dictionary), args.activation_fn, weight=embed_tokens.weight, ) config = EncoderConfig() config.override(args) encoder = Encoder( config, embed_tokens=embed_tokens, embed_positions=embed_positions, output_projection=lm_head, is_encoder_decoder=False, dictionary=task.dictionary, ) return cls(args, encoder) @classmethod def build_embedding(cls, args, dictionary, embed_dim, path=None): embed_tokens = Embedding(len(dictionary), embed_dim, dictionary.pad()) return embed_tokens @classmethod def build_lm_head(cls, args, embed_dim, output_dim, activation_fn, weight): return LMHead(embed_dim, output_dim, activation_fn, weight) def output_layer(self, features, masked_tokens=None): return self.encoder.output_projection(features, masked_tokens=masked_tokens) def register_classification_head( self, name, num_classes=None, inner_dim=None, **kwargs ): """Register a classification head.""" if name in self.classification_heads: prev_num_classes = self.classification_heads[name].out_proj.out_features prev_inner_dim = self.classification_heads[name].dense.out_features if num_classes != prev_num_classes or inner_dim != prev_inner_dim: logger.warning( 're-registering head "{}" with num_classes {} (prev: {}) ' "and inner_dim {} (prev: {})".format( name, num_classes, prev_num_classes, inner_dim, prev_inner_dim ) ) self.classification_heads[name] = ClassificationHead( self.args.encoder_embed_dim, inner_dim or self.args.encoder_embed_dim, num_classes, self.args.pooler_activation_fn, self.args.pooler_dropout, ) def register_question_answering_head(self, name, num_classes=None): self.classification_heads[name] = SQuADHead( self.args.encoder_embed_dim, ) def upgrade_state_dict_named(self, state_dict, name): prefix = name + "." if name != "" else "" # upgrade children modules super().upgrade_state_dict_named(state_dict, name) # Handle new classification heads present in the state dict. current_head_names = ( [] if not hasattr(self, "classification_heads") else self.classification_heads.keys() ) keys_to_delete = [] for k in state_dict.keys(): if not k.startswith(prefix + "classification_heads."): continue head_name = k[len(prefix + "classification_heads.") :].split(".")[0] # noqa: E203 num_classes = state_dict[ prefix + "classification_heads." + head_name + ".out_proj.weight" ].size(0) inner_dim = state_dict[ prefix + "classification_heads." + head_name + ".dense.weight" ].size(0) if getattr(self.args, "load_checkpoint_heads", False): if head_name not in current_head_names: self.register_classification_head(head_name, num_classes, inner_dim) else: if head_name not in current_head_names: logger.warning( "deleting classification head ({}) from checkpoint " "not present in current model: {}".format(head_name, k) ) keys_to_delete.append(k) elif ( num_classes != self.classification_heads[head_name].out_proj.out_features or inner_dim != self.classification_heads[head_name].dense.out_features ): logger.warning( "deleting classification head ({}) from checkpoint " "with different dimensions than current model: {}".format( head_name, k ) ) keys_to_delete.append(k) for k in keys_to_delete: del state_dict[k] # Copy any newly-added classification heads into the state dict # with their current weights. if hasattr(self, "classification_heads"): cur_state = self.classification_heads.state_dict() for k, v in cur_state.items(): if prefix + "classification_heads." + k not in state_dict: logger.info("Overwriting " + prefix + "classification_heads." + k) state_dict[prefix + "classification_heads." + k] = v def get_normalized_probs_scriptable( self, net_output, log_probs, sample = None, ): logits = net_output[0] if log_probs: return utils.log_softmax(logits, dim=-1) else: return utils.softmax(logits, dim=-1) def forward( self, src_tokens=None, features_only=False, return_all_hiddens=False, classification_head_name=None, masked_tokens=None, **kwargs ): encoder_out = self.encoder( src_tokens, features_only=True, return_all_hiddens=return_all_hiddens ) x, extra = encoder_out["encoder_out"], encoder_out if classification_head_name is not None: x = self.classification_heads[classification_head_name](x) elif not features_only: x = self.output_layer(x, masked_tokens=masked_tokens) return x, extra class ClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__( self, input_dim, inner_dim, num_classes, activation_fn, pooler_dropout, ): super().__init__() self.dense = nn.Linear(input_dim, inner_dim) self.activation_fn = utils.get_activation_fn(activation_fn) self.dropout = nn.Dropout(p=pooler_dropout) self.out_proj = nn.Linear(inner_dim, num_classes) def forward(self, features, **kwargs): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = self.activation_fn(x.float()).type_as(x) x = self.dropout(x) x = self.out_proj(x) return x class LMHead(nn.Module): """Head for masked language modeling.""" def __init__(self, embed_dim, output_dim, activation_fn, weight=None): super().__init__() self.dense = nn.Linear(embed_dim, embed_dim) self.activation_fn = utils.get_activation_fn(activation_fn) self.layer_norm = LayerNorm(embed_dim) if weight is None: weight = nn.Linear(embed_dim, output_dim, bias=False).weight self.weight = weight self.bias = nn.Parameter(torch.zeros(output_dim)) def forward(self, features, masked_tokens=None, **kwargs): # Only project the masked tokens while training, # saves both memory and computation if masked_tokens is not None: features = features[masked_tokens, :] x = self.dense(features) x = self.activation_fn(x.float()).type_as(x) x = self.layer_norm(x) # project back to size of vocabulary with bias x = F.linear(x, self.weight) + self.bias return x @register_model_architecture("mlm", "mlm_base") def base_unilm_architecture(args): if hasattr(args, "encoder_final_norm"): args.no_encoder_final_norm = not args.encoder_final_norm args.dropout = getattr(args, "dropout", 0.1) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.activation_dropout = getattr(args, "activation_dropout", 0.0) args.pooler_dropout = getattr(args, "pooler_dropout", 0.0) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 768) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 3072) args.encoder_layers = getattr(args, "encoder_layers", 12) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 12) args.encoder_learned_pos = getattr(args, "encoder_learned_pos", True) args.activation_fn = getattr(args, "activation_fn", "gelu") args.pooler_activation_fn = getattr(args, "pooler_activation_fn", "tanh") args.encoder_layerdrop = getattr(args, "encoder_layerdrop", 0) args.encoder_layers_to_keep = getattr(args, "encoder_layers_to_keep", None) # args.add_bos_token = getattr(args, "add_bos_token", False) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.share_encoder_input_output_embed = getattr( args, "share_encoder_input_output_embed", True ) args.encoder_output_dim = getattr( args, "encoder_output_dim", args.encoder_embed_dim ) args.encoder_input_dim = getattr(args, "encoder_input_dim", args.encoder_embed_dim) # Model training is not stable without this args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.no_encoder_final_norm = getattr(args, "no_encoder_final_norm", False) args.no_scale_embedding = getattr(args, "no_scale_embedding", True) args.layernorm_embedding = getattr(args, "layernorm_embedding", True) args.checkpoint_activations = getattr(args, "checkpoint_activations", False) args.offload_activations = getattr(args, "offload_activations", False) if args.offload_activations: args.checkpoint_activations = True
EXA-1-master
exa/libraries/torchscale/examples/fairseq/models/bert.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch import torch.nn.functional as F from fairseq import metrics, utils from fairseq.criterions import MoECriterion, register_criterion, MoECriterionConfig @register_criterion("masked_lm_moe_cross_entropy", dataclass=MoECriterionConfig) class MaskedLMMoECrossEntropyCriterion(MoECriterion): def compute_inner_loss(self, model, sample, reduce=True): masked_tokens = sample["target"].ne(self.padding_idx) sample_size = masked_tokens.int().sum() masked_tokens = torch.where( masked_tokens.any(), masked_tokens, masked_tokens.new([True]), ) net_output = model(**sample["net_input"], masked_tokens=masked_tokens) lprobs = model.get_normalized_probs(net_output, log_probs=True) lprobs = lprobs.view(-1, lprobs.size(-1)) target = model.get_targets(sample, net_output) if masked_tokens is not None: target = target[masked_tokens] nll_loss = F.nll_loss( lprobs, target.view(-1), ignore_index=self.padding_idx, reduction="sum" if reduce else "none", ) logging_output = { "inner_loss": nll_loss.data, "ntokens": sample["ntokens"], "nsentences": sample["target"].size(0), "sample_size": sample_size, } return net_output, nll_loss, sample_size, logging_output @staticmethod def reduce_metrics(logging_outputs) -> None: """Aggregate logging outputs from data parallel training.""" MaskedLMMoECrossEntropyCriterion.reduce_moe_metrics(logging_outputs) loss_sum = sum(log.get("inner_loss", 0) for log in logging_outputs) ntokens = sum(log.get("ntokens", 0) for log in logging_outputs) sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) # we divide by log(2) to convert the loss from base e to base 2 metrics.log_scalar( "inner_loss", loss_sum / sample_size / math.log(2), sample_size, round=3 ) if sample_size != ntokens: metrics.log_scalar( "nll_loss", loss_sum / ntokens / math.log(2), ntokens, round=3 ) metrics.log_derived( "ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg) ) else: metrics.log_derived( "ppl", lambda meters: utils.get_perplexity(meters["inner_loss"].avg) )
EXA-1-master
exa/libraries/torchscale/examples/fairseq/criterions/masked_lm_moe.py
import importlib import os # automatically import any Python files in the criterions/ directory for file in sorted(os.listdir(os.path.dirname(__file__))): if file.endswith(".py") and not file.startswith("_"): file_name = file[: file.find(".py")] importlib.import_module("criterions." + file_name)
EXA-1-master
exa/libraries/torchscale/examples/fairseq/criterions/__init__.py
EXA-1-master
exa/libraries/CMU-MultimodalSDK-master/mmsdk/__init__.py
import fusion as fusion import modules as modules
EXA-1-master
exa/libraries/CMU-MultimodalSDK-master/mmsdk/mmmodelsdk/__init__.py