python_code
stringlengths 0
992k
| repo_name
stringlengths 8
46
| file_path
stringlengths 5
162
|
---|---|---|
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model")
if is_torch_available():
from transformers.models.plbart.modeling_plbart import shift_tokens_right
EN_CODE = 50003
PYTHON_CODE = 50002
@require_sentencepiece
@require_tokenizers
class PLBartTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = PLBartTokenizer
rust_tokenizer_class = None
test_rust_tokenizer = False
def setUp(self):
super().setUp()
# We have a SentencePiece fixture for testing
tokenizer = PLBartTokenizer(SAMPLE_VOCAB, language_codes="base", keep_accents=True)
tokenizer.save_pretrained(self.tmpdirname)
def test_full_base_tokenizer(self):
tokenizer = PLBartTokenizer(SAMPLE_VOCAB, language_codes="base", keep_accents=True)
tokens = tokenizer.tokenize("This is a test")
self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"])
self.assertListEqual(
tokenizer.convert_tokens_to_ids(tokens),
[value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]],
)
tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.")
self.assertListEqual(
tokens,
[
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
],
)
ids = tokenizer.convert_tokens_to_ids(tokens)
self.assertListEqual(
ids,
[
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
],
)
back_tokens = tokenizer.convert_ids_to_tokens(ids)
self.assertListEqual(
back_tokens,
[
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"<unk>",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"<unk>",
".",
],
)
end = tokenizer.vocab_size
language_tokens = [tokenizer.convert_ids_to_tokens(x) for x in range(end - 4, end)]
self.assertListEqual(language_tokens, ["__java__", "__python__", "__en_XX__", "<mask>"])
code = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go"
input_ids = tokenizer(code).input_ids
self.assertEqual(
tokenizer.decode(input_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False),
code,
)
def test_full_multi_tokenizer(self):
tokenizer = PLBartTokenizer(SAMPLE_VOCAB, language_codes="multi", keep_accents=True)
tokens = tokenizer.tokenize("This is a test")
self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"])
self.assertListEqual(
tokenizer.convert_tokens_to_ids(tokens),
[value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]],
)
tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.")
self.assertListEqual(
tokens,
[
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
],
)
ids = tokenizer.convert_tokens_to_ids(tokens)
self.assertListEqual(
ids,
[
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
],
)
back_tokens = tokenizer.convert_ids_to_tokens(ids)
self.assertListEqual(
back_tokens,
[
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"<unk>",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"<unk>",
".",
],
)
end = tokenizer.vocab_size
language_tokens = [tokenizer.convert_ids_to_tokens(x) for x in range(end - 7, end)]
self.assertListEqual(
language_tokens, ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"]
)
code = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go"
input_ids = tokenizer(code).input_ids
self.assertEqual(
tokenizer.decode(input_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False),
code,
)
@require_torch
@require_sentencepiece
@require_tokenizers
class PLBartPythonEnIntegrationTest(unittest.TestCase):
checkpoint_name = "uclanlp/plbart-python-en_XX"
src_text = [
"def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])",
"def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])",
]
tgt_text = [
"Returns the maximum value of a b c.",
"Sums the values of a b c.",
]
expected_src_tokens = [
134,
5452,
33460,
33441,
33463,
33465,
33463,
33449,
988,
20,
33456,
19,
33456,
771,
39,
4258,
889,
3318,
33441,
33463,
33465,
33463,
33449,
2471,
2,
PYTHON_CODE,
]
@classmethod
def setUpClass(cls):
cls.tokenizer: PLBartTokenizer = PLBartTokenizer.from_pretrained(
cls.checkpoint_name, language_codes="base", src_lang="python", tgt_lang="en_XX"
)
cls.pad_token_id = 1
return cls
def check_language_codes(self):
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"], 50001)
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"], 50002)
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"], 50003)
def test_python_en_tokenizer_batch_encode_plus(self):
ids = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0]
self.assertListEqual(self.expected_src_tokens, ids)
def test_python_en_tokenizer_decode_ignores_language_codes(self):
self.assertIn(PYTHON_CODE, self.tokenizer.all_special_ids)
generated_ids = [EN_CODE, 9037, 33442, 57, 752, 153, 14, 56, 18, 9, 2]
result = self.tokenizer.decode(generated_ids, skip_special_tokens=True)
expected_english = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=True)
self.assertEqual(result, expected_english)
self.assertNotIn(self.tokenizer.eos_token, result)
def test_python_en_tokenizer_truncation(self):
src_text = ["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 20]
self.assertIsInstance(src_text[0], str)
desired_max_length = 10
ids = self.tokenizer(src_text, max_length=desired_max_length, truncation=True).input_ids[0]
self.assertEqual(ids[-2], 2)
self.assertEqual(ids[-1], PYTHON_CODE)
self.assertEqual(len(ids), desired_max_length)
def test_mask_token(self):
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"]), [50004, 50001])
def test_special_tokens_unaffacted_by_save_load(self):
tmpdirname = tempfile.mkdtemp()
original_special_tokens = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(tmpdirname)
new_tok = PLBartTokenizer.from_pretrained(tmpdirname)
self.assertDictEqual(new_tok.fairseq_tokens_to_ids, original_special_tokens)
@require_torch
def test_batch_fairseq_parity(self):
batch = self.tokenizer(self.src_text, text_target=self.tgt_text, padding=True, return_tensors="pt")
batch["decoder_input_ids"] = shift_tokens_right(batch["labels"], self.tokenizer.pad_token_id)
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
self.assertEqual(batch.input_ids[1][-2:].tolist(), [2, PYTHON_CODE])
self.assertEqual(batch.decoder_input_ids[1][0], EN_CODE)
self.assertEqual(batch.decoder_input_ids[1][-1], 2)
self.assertEqual(batch.labels[1][-2:].tolist(), [2, EN_CODE])
@require_torch
def test_python_en_tokenizer_prepare_batch(self):
batch = self.tokenizer(
self.src_text,
text_target=self.tgt_text,
padding=True,
truncation=True,
max_length=len(self.expected_src_tokens),
return_tensors="pt",
)
batch["decoder_input_ids"] = shift_tokens_right(batch["labels"], self.tokenizer.pad_token_id)
self.assertIsInstance(batch, BatchEncoding)
self.assertEqual((2, 26), batch.input_ids.shape)
self.assertEqual((2, 26), batch.attention_mask.shape)
result = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens, result)
self.assertEqual(2, batch.decoder_input_ids[0, -1]) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens, [])
self.assertEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id, PYTHON_CODE])
def test_seq2seq_max_length(self):
batch = self.tokenizer(self.src_text, padding=True, truncation=True, max_length=3, return_tensors="pt")
targets = self.tokenizer(
text_target=self.tgt_text, padding=True, truncation=True, max_length=10, return_tensors="pt"
)
labels = targets["input_ids"]
batch["decoder_input_ids"] = shift_tokens_right(labels, self.tokenizer.pad_token_id)
self.assertEqual(batch.input_ids.shape[1], 3)
self.assertEqual(batch.decoder_input_ids.shape[1], 10)
@require_torch
def test_tokenizer_translation(self):
inputs = self.tokenizer._build_translation_inputs(
"A test", return_tensors="pt", src_lang="en_XX", tgt_lang="java"
)
self.assertEqual(
nested_simplify(inputs),
{
# A, test, EOS, en_XX
"input_ids": [[150, 242, 2, 50003]],
"attention_mask": [[1, 1, 1, 1]],
# java
"forced_bos_token_id": 50001,
},
)
| transformers-main | tests/models/plbart/test_tokenization_plbart.py |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Wav2Vec2-Conformer model. """
import math
import unittest
import numpy as np
from datasets import load_dataset
from transformers import Wav2Vec2ConformerConfig, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
ModelTesterMixin,
_config_zero_init,
floats_tensor,
ids_tensor,
random_attention_mask,
)
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
Wav2Vec2ConformerForAudioFrameClassification,
Wav2Vec2ConformerForCTC,
Wav2Vec2ConformerForPreTraining,
Wav2Vec2ConformerForSequenceClassification,
Wav2Vec2ConformerForXVector,
Wav2Vec2ConformerModel,
Wav2Vec2FeatureExtractor,
Wav2Vec2Processor,
)
from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer import (
Wav2Vec2ConformerGumbelVectorQuantizer,
_compute_mask_indices,
_sample_negative_indices,
)
class Wav2Vec2ConformerModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=1024, # speech is longer
is_training=False,
hidden_size=16,
feat_extract_norm="group",
feat_extract_dropout=0.0,
feat_extract_activation="gelu",
conv_dim=(32, 32, 32),
conv_stride=(4, 4, 4),
conv_kernel=(8, 8, 8),
conv_bias=False,
num_conv_pos_embeddings=16,
num_conv_pos_embedding_groups=2,
num_hidden_layers=2,
num_attention_heads=2,
hidden_dropout_prob=0.1,
intermediate_size=20,
layer_norm_eps=1e-5,
hidden_act="gelu",
initializer_range=0.02,
mask_time_prob=0.5,
mask_time_length=2,
vocab_size=32,
do_stable_layer_norm=False,
num_adapter_layers=1,
adapter_stride=2,
tdnn_dim=(32, 32),
tdnn_kernel=(5, 3),
tdnn_dilation=(1, 2),
xvector_output_dim=32,
position_embeddings_type="relative",
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.hidden_size = hidden_size
self.feat_extract_norm = feat_extract_norm
self.feat_extract_dropout = feat_extract_dropout
self.feat_extract_activation = feat_extract_activation
self.conv_dim = conv_dim
self.conv_stride = conv_stride
self.conv_kernel = conv_kernel
self.conv_bias = conv_bias
self.num_conv_pos_embeddings = num_conv_pos_embeddings
self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_dropout_prob = hidden_dropout_prob
self.intermediate_size = intermediate_size
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.vocab_size = vocab_size
self.do_stable_layer_norm = do_stable_layer_norm
self.num_adapter_layers = num_adapter_layers
self.adapter_stride = adapter_stride
self.mask_time_prob = mask_time_prob
self.mask_time_length = mask_time_length
self.scope = scope
self.tdnn_dim = tdnn_dim
self.tdnn_kernel = tdnn_kernel
self.tdnn_dilation = tdnn_dilation
self.xvector_output_dim = xvector_output_dim
self.position_embeddings_type = position_embeddings_type
output_seq_length = self.seq_length
for kernel, stride in zip(self.conv_kernel, self.conv_stride):
output_seq_length = (output_seq_length - (kernel - 1)) / stride
self.output_seq_length = int(math.ceil(output_seq_length))
self.encoder_seq_length = self.output_seq_length
self.adapter_output_seq_length = (self.output_seq_length - 1) // adapter_stride + 1
def prepare_config_and_inputs(self, position_embeddings_type="relative"):
input_values = floats_tensor([self.batch_size, self.seq_length], self.vocab_size)
attention_mask = random_attention_mask([self.batch_size, self.seq_length])
config = self.get_config(position_embeddings_type=position_embeddings_type)
return config, input_values, attention_mask
def get_config(self, position_embeddings_type="relative"):
return Wav2Vec2ConformerConfig(
hidden_size=self.hidden_size,
feat_extract_norm=self.feat_extract_norm,
feat_extract_dropout=self.feat_extract_dropout,
feat_extract_activation=self.feat_extract_activation,
conv_dim=self.conv_dim,
conv_stride=self.conv_stride,
conv_kernel=self.conv_kernel,
conv_bias=self.conv_bias,
mask_time_prob=self.mask_time_prob,
mask_time_length=self.mask_time_length,
num_conv_pos_embeddings=self.num_conv_pos_embeddings,
num_conv_pos_embedding_groups=self.num_conv_pos_embedding_groups,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
hidden_dropout_prob=self.hidden_dropout_prob,
intermediate_size=self.intermediate_size,
layer_norm_eps=self.layer_norm_eps,
do_stable_layer_norm=self.do_stable_layer_norm,
hidden_act=self.hidden_act,
initializer_range=self.initializer_range,
vocab_size=self.vocab_size,
num_adapter_layers=self.num_adapter_layers,
adapter_stride=self.adapter_stride,
tdnn_dim=self.tdnn_dim,
tdnn_kernel=self.tdnn_kernel,
tdnn_dilation=self.tdnn_dilation,
xvector_output_dim=self.xvector_output_dim,
position_embeddings_type=position_embeddings_type,
)
def create_and_check_model(self, config, input_values, attention_mask):
model = Wav2Vec2ConformerModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_values, attention_mask=attention_mask)
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size)
)
def create_and_check_model_with_adapter(self, config, input_values, attention_mask):
config.add_adapter = True
model = Wav2Vec2ConformerModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_values, attention_mask=attention_mask)
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, self.adapter_output_seq_length, self.hidden_size)
)
def create_and_check_model_with_adapter_for_ctc(self, config, input_values, attention_mask):
config.add_adapter = True
config.output_hidden_size = 2 * config.hidden_size
model = Wav2Vec2ConformerForCTC(config=config)
model.to(torch_device)
model.eval()
result = model(input_values, attention_mask=attention_mask)
self.parent.assertEqual(
result.logits.shape, (self.batch_size, self.adapter_output_seq_length, self.vocab_size)
)
def create_and_check_model_with_adapter_proj_dim(self, config, input_values, attention_mask):
config.add_adapter = True
config.output_hidden_size = 8
model = Wav2Vec2ConformerModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_values, attention_mask=attention_mask)
self.parent.assertEqual(
result.last_hidden_state.shape,
(self.batch_size, self.adapter_output_seq_length, config.output_hidden_size),
)
def create_and_check_batch_inference(self, config, input_values, *args):
# test does not pass for models making use of `group_norm`
# check: https://github.com/pytorch/fairseq/issues/3227
model = Wav2Vec2ConformerModel(config=config)
model.to(torch_device)
model.eval()
input_values = input_values[:3]
attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.bool)
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
# pad input
for i in range(len(input_lengths)):
input_values[i, input_lengths[i] :] = 0.0
attention_mask[i, input_lengths[i] :] = 0.0
batch_outputs = model(input_values, attention_mask=attention_mask).last_hidden_state
for i in range(input_values.shape[0]):
input_slice = input_values[i : i + 1, : input_lengths[i]]
output = model(input_slice).last_hidden_state
batch_output = batch_outputs[i : i + 1, : output.shape[1]]
self.parent.assertTrue(torch.allclose(output, batch_output, atol=1e-3))
def check_ctc_loss(self, config, input_values, *args):
model = Wav2Vec2ConformerForCTC(config=config)
model.to(torch_device)
# make sure that dropout is disabled
model.eval()
input_values = input_values[:3]
attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long)
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
labels = ids_tensor((input_values.shape[0], min(max_length_labels) - 1), model.config.vocab_size)
# pad input
for i in range(len(input_lengths)):
input_values[i, input_lengths[i] :] = 0.0
attention_mask[i, input_lengths[i] :] = 0
model.config.ctc_loss_reduction = "sum"
sum_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item()
model.config.ctc_loss_reduction = "mean"
mean_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item()
self.parent.assertTrue(isinstance(sum_loss, float))
self.parent.assertTrue(isinstance(mean_loss, float))
def check_seq_classifier_loss(self, config, input_values, *args):
model = Wav2Vec2ConformerForSequenceClassification(config=config)
model.to(torch_device)
# make sure that dropout is disabled
model.eval()
input_values = input_values[:3]
attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long)
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label))
# pad input
for i in range(len(input_lengths)):
input_values[i, input_lengths[i] :] = 0.0
attention_mask[i, input_lengths[i] :] = 0
masked_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item()
unmasked_loss = model(input_values, labels=labels).loss.item()
self.parent.assertTrue(isinstance(masked_loss, float))
self.parent.assertTrue(isinstance(unmasked_loss, float))
self.parent.assertTrue(masked_loss != unmasked_loss)
def check_ctc_training(self, config, input_values, *args):
config.ctc_zero_infinity = True
model = Wav2Vec2ConformerForCTC(config=config)
model.to(torch_device)
model.train()
# freeze feature encoder
model.freeze_feature_encoder()
input_values = input_values[:3]
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size)
# pad input
for i in range(len(input_lengths)):
input_values[i, input_lengths[i] :] = 0.0
if max_length_labels[i] < labels.shape[-1]:
# it's important that we make sure that target lenghts are at least
# one shorter than logit lenghts to prevent -inf
labels[i, max_length_labels[i] - 1 :] = -100
loss = model(input_values, labels=labels).loss
self.parent.assertFalse(torch.isinf(loss).item())
loss.backward()
def check_seq_classifier_training(self, config, input_values, *args):
config.ctc_zero_infinity = True
model = Wav2Vec2ConformerForSequenceClassification(config=config)
model.to(torch_device)
model.train()
# freeze everything but the classification head
model.freeze_base_model()
input_values = input_values[:3]
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label))
# pad input
for i in range(len(input_lengths)):
input_values[i, input_lengths[i] :] = 0.0
loss = model(input_values, labels=labels).loss
self.parent.assertFalse(torch.isinf(loss).item())
loss.backward()
def check_xvector_training(self, config, input_values, *args):
config.ctc_zero_infinity = True
model = Wav2Vec2ConformerForXVector(config=config)
model.to(torch_device)
model.train()
# freeze everything but the classification head
model.freeze_base_model()
input_values = input_values[:3]
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label))
# pad input
for i in range(len(input_lengths)):
input_values[i, input_lengths[i] :] = 0.0
loss = model(input_values, labels=labels).loss
self.parent.assertFalse(torch.isinf(loss).item())
loss.backward()
def check_labels_out_of_vocab(self, config, input_values, *args):
model = Wav2Vec2ConformerForCTC(config)
model.to(torch_device)
model.train()
input_values = input_values[:3]
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size + 100)
with self.parent.assertRaises(ValueError):
model(input_values, labels=labels)
def prepare_config_and_inputs_for_common(self):
config, input_values, attention_mask = self.prepare_config_and_inputs()
inputs_dict = {"input_values": input_values, "attention_mask": attention_mask}
return config, inputs_dict
@require_torch
class Wav2Vec2ConformerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(
Wav2Vec2ConformerForCTC,
Wav2Vec2ConformerModel,
Wav2Vec2ConformerForSequenceClassification,
Wav2Vec2ConformerForPreTraining,
Wav2Vec2ConformerForAudioFrameClassification,
Wav2Vec2ConformerForXVector,
)
if is_torch_available()
else ()
)
pipeline_model_mapping = (
{
"audio-classification": Wav2Vec2ConformerForSequenceClassification,
"automatic-speech-recognition": Wav2Vec2ConformerForCTC,
"feature-extraction": Wav2Vec2ConformerModel,
}
if is_torch_available()
else {}
)
test_pruning = False
test_headmasking = False
test_torchscript = False
def setUp(self):
self.model_tester = Wav2Vec2ConformerModelTester(self)
self.config_tester = ConfigTester(self, config_class=Wav2Vec2ConformerConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_with_relative(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs(position_embeddings_type="relative")
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_with_rotary(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs(position_embeddings_type="rotary")
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_with_no_rel_pos(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs(position_embeddings_type=None)
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_with_adapter(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_with_adapter(*config_and_inputs)
def test_model_with_adapter_for_ctc(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_with_adapter_for_ctc(*config_and_inputs)
def test_model_with_adapter_proj_dim(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_with_adapter_proj_dim(*config_and_inputs)
def test_ctc_loss_inference(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_ctc_loss(*config_and_inputs)
def test_seq_classifier_loss_inference(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_seq_classifier_loss(*config_and_inputs)
def test_ctc_train(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_ctc_training(*config_and_inputs)
def test_seq_classifier_train(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_seq_classifier_training(*config_and_inputs)
def test_xvector_train(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_xvector_training(*config_and_inputs)
def test_labels_out_of_vocab(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_labels_out_of_vocab(*config_and_inputs)
# Wav2Vec2Conformer has no inputs_embeds
def test_inputs_embeds(self):
pass
# `input_ids` is renamed to `input_values`
def test_forward_signature(self):
pass
# Wav2Vec2Conformer cannot resize token embeddings
# since it has no tokens embeddings
def test_resize_tokens_embeddings(self):
pass
# Wav2Vec2Conformer has no inputs_embeds
# and thus the `get_input_embeddings` fn
# is not implemented
def test_model_common_attributes(self):
pass
@is_pt_flax_cross_test
# non-robust architecture does not exist in Flax
def test_equivalence_flax_to_pt(self):
pass
@is_pt_flax_cross_test
# non-robust architecture does not exist in Flax
def test_equivalence_pt_to_flax(self):
pass
def test_retain_grad_hidden_states_attentions(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.output_hidden_states = True
config.output_attentions = True
# no need to test all models as different heads yield the same functionality
model_class = self.all_model_classes[0]
model = model_class(config)
model.to(torch_device)
# set layer drop to 0
model.config.layerdrop = 0.0
input_values = inputs_dict["input_values"]
input_lengths = torch.tensor(
[input_values.shape[1] for _ in range(input_values.shape[0])], dtype=torch.long, device=torch_device
)
output_lengths = model._get_feat_extract_output_lengths(input_lengths)
labels = ids_tensor((input_values.shape[0], output_lengths[0] - 2), self.model_tester.vocab_size)
inputs_dict["attention_mask"] = torch.ones_like(inputs_dict["attention_mask"])
inputs_dict["labels"] = labels
outputs = model(**inputs_dict)
output = outputs[0]
# Encoder-/Decoder-only models
hidden_states = outputs.hidden_states[0]
attentions = outputs.attentions[0]
hidden_states.retain_grad()
attentions.retain_grad()
output.flatten()[0].backward(retain_graph=True)
self.assertIsNotNone(hidden_states.grad)
self.assertIsNotNone(attentions.grad)
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
uniform_init_parms = [
"conv.weight",
"masked_spec_embed",
"codevectors",
"quantizer.weight_proj.weight",
"project_hid.weight",
"project_hid.bias",
"project_q.weight",
"project_q.bias",
"pos_bias_v",
"pos_bias_u",
"pointwise_conv1",
"pointwise_conv2",
"feature_projection.projection.weight",
"feature_projection.projection.bias",
"objective.weight",
]
if param.requires_grad:
if any(x in name for x in uniform_init_parms):
self.assertTrue(
-1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
else:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
# overwrite from test_modeling_common
def _mock_init_weights(self, module):
if hasattr(module, "weight") and module.weight is not None:
module.weight.data.fill_(3)
if hasattr(module, "weight_g") and module.weight_g is not None:
module.weight_g.data.fill_(3)
if hasattr(module, "weight_v") and module.weight_v is not None:
module.weight_v.data.fill_(3)
if hasattr(module, "bias") and module.bias is not None:
module.bias.data.fill_(3)
if hasattr(module, "pos_bias_u") and module.pos_bias_u is not None:
module.pos_bias_u.data.fill_(3)
if hasattr(module, "pos_bias_v") and module.pos_bias_v is not None:
module.pos_bias_v.data.fill_(3)
if hasattr(module, "codevectors") and module.codevectors is not None:
module.codevectors.data.fill_(3)
if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None:
module.masked_spec_embed.data.fill_(3)
def test_mask_feature_prob_ctc(self):
model = Wav2Vec2ConformerForCTC.from_pretrained(
"hf-internal-testing/tiny-random-wav2vec2-conformer", mask_feature_prob=0.2, mask_feature_length=2
)
model.to(torch_device).train()
processor = Wav2Vec2Processor.from_pretrained(
"hf-internal-testing/tiny-random-wav2vec2-conformer", return_attention_mask=True
)
batch_duration_in_seconds = [1, 3, 2, 6]
input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds]
batch = processor(
input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt"
)
logits = model(
input_values=batch["input_values"].to(torch_device),
attention_mask=batch["attention_mask"].to(torch_device),
).logits
self.assertEqual(logits.shape, (4, 1498, 32))
def test_mask_time_prob_ctc(self):
model = Wav2Vec2ConformerForCTC.from_pretrained(
"hf-internal-testing/tiny-random-wav2vec2-conformer", mask_time_prob=0.2, mask_time_length=2
)
model.to(torch_device).train()
processor = Wav2Vec2Processor.from_pretrained(
"hf-internal-testing/tiny-random-wav2vec2-conformer", return_attention_mask=True
)
batch_duration_in_seconds = [1, 3, 2, 6]
input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds]
batch = processor(
input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt"
)
logits = model(
input_values=batch["input_values"].to(torch_device),
attention_mask=batch["attention_mask"].to(torch_device),
).logits
self.assertEqual(logits.shape, (4, 1498, 32))
@unittest.skip(reason="Feed forward chunking is not implemented")
def test_feed_forward_chunking(self):
pass
@slow
def test_model_from_pretrained(self):
model = Wav2Vec2ConformerModel.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large")
self.assertIsNotNone(model)
@require_torch
class Wav2Vec2ConformerUtilsTest(unittest.TestCase):
def test_compute_mask_indices(self):
batch_size = 4
sequence_length = 60
mask_prob = 0.5
mask_length = 1
mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)
mask = torch.from_numpy(mask).to(torch_device)
self.assertListEqual(mask.sum(axis=-1).tolist(), [mask_prob * sequence_length for _ in range(batch_size)])
def test_compute_mask_indices_low_prob(self):
# with these settings num_masked_spans=0.5, which means probabilistic rounding
# ensures that in 5 out of 10 method calls, num_masked_spans=0, and in
# the other 5 out of 10, cases num_masked_spans=1
n_trials = 100
batch_size = 4
sequence_length = 100
mask_prob = 0.05
mask_length = 10
count_dimensions_masked = 0
count_dimensions_not_masked = 0
for _ in range(n_trials):
mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)
mask = torch.from_numpy(mask).to(torch_device)
num_masks = torch.sum(mask).item()
if num_masks > 0:
count_dimensions_masked += 1
else:
count_dimensions_not_masked += 1
# as we test for at least 10 masked dimension and at least
# 10 non-masked dimension, this test could fail with probability:
# P(100 coin flips, at most 9 heads) = 1.66e-18
self.assertGreater(count_dimensions_masked, int(n_trials * 0.1))
self.assertGreater(count_dimensions_not_masked, int(n_trials * 0.1))
def test_compute_mask_indices_overlap(self):
batch_size = 4
sequence_length = 80
mask_prob = 0.5
mask_length = 4
mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)
mask = torch.from_numpy(mask).to(torch_device)
# because of overlap mask don't have to add up exactly to `mask_prob * sequence_length`, but have to be smaller or equal
for batch_sum in mask.sum(axis=-1):
self.assertTrue(int(batch_sum) <= mask_prob * sequence_length)
def test_compute_mask_indices_attn_mask_overlap(self):
batch_size = 4
sequence_length = 80
mask_prob = 0.5
mask_length = 4
attention_mask = torch.ones((batch_size, sequence_length), dtype=torch.long, device=torch_device)
attention_mask[:2, sequence_length // 2 :] = 0
mask = _compute_mask_indices(
(batch_size, sequence_length), mask_prob, mask_length, attention_mask=attention_mask
)
mask = torch.from_numpy(mask).to(torch_device)
for batch_sum in mask.sum(axis=-1):
self.assertTrue(int(batch_sum) <= mask_prob * sequence_length)
self.assertTrue(mask[:2, sequence_length // 2 :].sum() == 0)
def test_compute_mask_indices_short_audio(self):
batch_size = 4
sequence_length = 100
mask_prob = 0.05
mask_length = 10
attention_mask = torch.ones((batch_size, sequence_length), dtype=torch.long, device=torch_device)
# force one example to be heavily padded
attention_mask[0, 5:] = 0
mask = _compute_mask_indices(
(batch_size, sequence_length), mask_prob, mask_length, attention_mask=attention_mask, min_masks=2
)
# make sure that non-padded examples cannot be padded
self.assertFalse(mask[0][attention_mask[0].to(torch.bool).cpu()].any())
def test_compute_perplexity(self):
probs = torch.arange(100, device=torch_device).reshape(2, 5, 10) / 100
ppl = Wav2Vec2ConformerGumbelVectorQuantizer._compute_perplexity(probs)
self.assertTrue(abs(ppl.item() - 141.4291) < 1e-3)
# mask half of the input
mask = torch.ones((2,), device=torch_device, dtype=torch.bool)
mask[0] = 0
ppl = Wav2Vec2ConformerGumbelVectorQuantizer._compute_perplexity(probs, mask)
self.assertTrue(abs(ppl.item() - 58.6757) < 1e-3)
def test_sample_negatives(self):
batch_size = 2
sequence_length = 10
hidden_size = 4
num_negatives = 3
features = (torch.arange(sequence_length * hidden_size, device=torch_device) // hidden_size).view(
sequence_length, hidden_size
) # each value in vector consits of same value
features = features[None, :].expand(batch_size, sequence_length, hidden_size).contiguous()
# sample negative indices
sampled_negative_indices = _sample_negative_indices((batch_size, sequence_length), num_negatives, None)
sampled_negative_indices = torch.from_numpy(sampled_negative_indices).to(torch_device)
negatives = features.view(-1, hidden_size)[sampled_negative_indices.long().view(-1)]
negatives = negatives.view(batch_size, sequence_length, -1, hidden_size).permute(2, 0, 1, 3)
self.assertTrue(negatives.shape == (num_negatives, batch_size, sequence_length, hidden_size))
# make sure no negatively sampled vector is actually a positive one
for negative in negatives:
self.assertTrue(((negative - features) == 0).sum() == 0.0)
# make sure that full vectors are sampled and not values of vectors => this means that `unique()` yields a single value for `hidden_size` dim
self.assertTrue(negatives.unique(dim=-1).shape, (num_negatives, batch_size, sequence_length, 1))
def test_sample_negatives_with_mask(self):
batch_size = 2
sequence_length = 10
hidden_size = 4
num_negatives = 3
# second half of last input tensor is padded
mask = torch.ones((batch_size, sequence_length), dtype=torch.long, device=torch_device)
mask[-1, sequence_length // 2 :] = 0
features = (torch.arange(sequence_length * hidden_size, device=torch_device) // hidden_size).view(
sequence_length, hidden_size
) # each value in vector consits of same value
features = features[None, :].expand(batch_size, sequence_length, hidden_size).contiguous()
# replace masked feature vectors with -100 to test that those are not sampled
features = torch.where(mask[:, :, None].expand(features.shape).bool(), features, -100)
# sample negative indices
sampled_negative_indices = _sample_negative_indices(
(batch_size, sequence_length), num_negatives, mask.cpu().numpy()
)
sampled_negative_indices = torch.from_numpy(sampled_negative_indices).to(torch_device)
negatives = features.view(-1, hidden_size)[sampled_negative_indices.long().view(-1)]
negatives = negatives.view(batch_size, sequence_length, -1, hidden_size).permute(2, 0, 1, 3)
self.assertTrue((negatives >= 0).all().item())
self.assertTrue(negatives.shape == (num_negatives, batch_size, sequence_length, hidden_size))
# make sure no negatively sampled vector is actually a positive one
for negative in negatives:
self.assertTrue(((negative - features) == 0).sum() == 0.0)
# make sure that full vectors are sampled and not values of vectors => this means that `unique()` yields a single value for `hidden_size` dim
self.assertTrue(negatives.unique(dim=-1).shape, (num_negatives, batch_size, sequence_length, 1))
@require_torch
@slow
class Wav2Vec2ConformerModelIntegrationTest(unittest.TestCase):
def _load_datasamples(self, num_samples):
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
# automatic decoding with librispeech
speech_samples = ds.sort("id").filter(lambda x: x["id"] in [f"1272-141231-000{i}" for i in range(num_samples)])
speech_samples = speech_samples[:num_samples]["audio"]
return [x["array"] for x in speech_samples]
def test_inference_ctc_normal_batched_rel_pos(self):
model = Wav2Vec2ConformerForCTC.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large-960h-ft")
model.to(torch_device)
processor = Wav2Vec2Processor.from_pretrained(
"facebook/wav2vec2-conformer-rel-pos-large-960h-ft", do_lower_case=True
)
input_speech = self._load_datasamples(2)
inputs = processor(input_speech, return_tensors="pt", padding=True)
input_values = inputs.input_values.to(torch_device)
with torch.no_grad():
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
predicted_trans = processor.batch_decode(predicted_ids)
EXPECTED_TRANSCRIPTIONS = [
"a man said to the universe sir i exist",
"sweat covered brion's body trickling into the tight loincloth that was the only garment he wore",
]
self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)
def test_inference_ctc_normal_batched_rope(self):
model = Wav2Vec2ConformerForCTC.from_pretrained("facebook/wav2vec2-conformer-rope-large-960h-ft")
model.to(torch_device)
processor = Wav2Vec2Processor.from_pretrained(
"facebook/wav2vec2-conformer-rope-large-960h-ft", do_lower_case=True
)
input_speech = self._load_datasamples(2)
inputs = processor(input_speech, return_tensors="pt", padding=True)
input_values = inputs.input_values.to(torch_device)
with torch.no_grad():
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
predicted_trans = processor.batch_decode(predicted_ids)
EXPECTED_TRANSCRIPTIONS = [
"a man said to the universe sir i exist",
"sweat covered brion's body trickling into the tight loin cloth that was the only garment he wore",
]
self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)
def test_inference_pretrained(self):
model = Wav2Vec2ConformerForPreTraining.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large")
model.to(torch_device)
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
"facebook/wav2vec2-conformer-rel-pos-large", return_attention_mask=True
)
input_speech = self._load_datasamples(2)
inputs_dict = feature_extractor(input_speech, return_tensors="pt", padding=True)
batch_size = inputs_dict["input_values"].shape[0]
feature_seq_length = int(model._get_feat_extract_output_lengths(inputs_dict["input_values"].shape[1]))
features_shape = (batch_size, feature_seq_length)
torch.manual_seed(0)
mask_time_indices = _compute_mask_indices(
features_shape,
model.config.mask_time_prob,
model.config.mask_time_length,
min_masks=2,
)
mask_time_indices = torch.from_numpy(mask_time_indices).to(torch_device)
with torch.no_grad():
outputs = model(
inputs_dict.input_values.to(torch_device),
attention_mask=inputs_dict.attention_mask.to(torch_device),
mask_time_indices=mask_time_indices,
)
# compute cosine similarity
cosine_sim = torch.cosine_similarity(outputs.projected_states, outputs.projected_quantized_states, dim=-1)
# retrieve cosine sim of masked features
cosine_sim_masked = cosine_sim[mask_time_indices]
# ... now compare to randomly initialized model
config = Wav2Vec2ConformerConfig.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large")
model_rand = Wav2Vec2ConformerForPreTraining(config).to(torch_device).eval()
with torch.no_grad():
outputs_rand = model_rand(
inputs_dict.input_values.to(torch_device),
attention_mask=inputs_dict.attention_mask.to(torch_device),
mask_time_indices=mask_time_indices,
)
# compute cosine similarity
cosine_sim_rand = torch.cosine_similarity(
outputs_rand.projected_states, outputs_rand.projected_quantized_states, dim=-1
)
# retrieve cosine sim of masked features
cosine_sim_masked_rand = cosine_sim_rand[mask_time_indices]
# a pretrained wav2vec2_conformer model has learned to predict the quantized latent states
# => the cosine similarity between quantized states and predicted states > 0.5
# a random wav2vec2_conformer model has not learned to predict the quantized latent states
# => the cosine similarity between quantized states and predicted states is very likely < 0.1
self.assertTrue(cosine_sim_masked.mean().item() - 5 * cosine_sim_masked_rand.mean().item() > 0)
| transformers-main | tests/models/wav2vec2_conformer/test_modeling_wav2vec2_conformer.py |
transformers-main | tests/models/wav2vec2_conformer/__init__.py |
|
# coding=utf-8
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import tempfile
import unittest
from transformers import NezhaConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
NezhaForMaskedLM,
NezhaForMultipleChoice,
NezhaForNextSentencePrediction,
NezhaForPreTraining,
NezhaForQuestionAnswering,
NezhaForSequenceClassification,
NezhaForTokenClassification,
NezhaModel,
)
from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST
class NezhaModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=128,
max_relative_position=32,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def get_config(self):
"""
Returns a tiny configuration by default.
"""
return NezhaConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
is_decoder=False,
initializer_range=self.initializer_range,
)
def prepare_config_and_inputs_for_decoder(self):
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = self.prepare_config_and_inputs()
config.is_decoder = True
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def create_and_check_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = NezhaModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
result = model(input_ids, token_type_ids=token_type_ids)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def create_and_check_model_as_decoder(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.add_cross_attention = True
model = NezhaModel(config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
)
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
encoder_hidden_states=encoder_hidden_states,
)
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def create_and_check_for_masked_lm(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = NezhaForMaskedLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_for_next_sequence_prediction(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = NezhaForNextSentencePrediction(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
labels=sequence_labels,
)
self.parent.assertEqual(result.logits.shape, (self.batch_size, 2))
def create_and_check_for_pretraining(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = NezhaForPreTraining(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
labels=token_labels,
next_sentence_label=sequence_labels,
)
self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2))
def create_and_check_for_question_answering(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = NezhaForQuestionAnswering(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
start_positions=sequence_labels,
end_positions=sequence_labels,
)
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
def create_and_check_for_sequence_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = NezhaForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_for_token_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = NezhaForTokenClassification(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def create_and_check_for_multiple_choice(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_choices = self.num_choices
model = NezhaForMultipleChoice(config=config)
model.to(torch_device)
model.eval()
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
result = model(
multiple_choice_inputs_ids,
attention_mask=multiple_choice_input_mask,
token_type_ids=multiple_choice_token_type_ids,
labels=choice_labels,
)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class NezhaModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(
NezhaModel,
NezhaForMaskedLM,
NezhaForMultipleChoice,
NezhaForNextSentencePrediction,
NezhaForPreTraining,
NezhaForQuestionAnswering,
NezhaForSequenceClassification,
NezhaForTokenClassification,
)
if is_torch_available()
else ()
)
pipeline_model_mapping = (
{
"feature-extraction": NezhaModel,
"fill-mask": NezhaForMaskedLM,
"question-answering": NezhaForQuestionAnswering,
"text-classification": NezhaForSequenceClassification,
"token-classification": NezhaForTokenClassification,
"zero-shot": NezhaForSequenceClassification,
}
if is_torch_available()
else {}
)
fx_compatible = True
# special case for ForPreTraining model
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
if return_labels:
if model_class in get_values(MODEL_FOR_PRETRAINING_MAPPING):
inputs_dict["labels"] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
)
inputs_dict["next_sentence_label"] = torch.zeros(
self.model_tester.batch_size, dtype=torch.long, device=torch_device
)
return inputs_dict
def setUp(self):
self.model_tester = NezhaModelTester(self)
self.config_tester = ConfigTester(self, config_class=NezhaConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_as_decoder(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*config_and_inputs)
def test_model_as_decoder_with_default_input_mask(self):
# This regression test was failing with PyTorch < 1.3
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
) = self.model_tester.prepare_config_and_inputs_for_decoder()
input_mask = None
self.model_tester.create_and_check_model_as_decoder(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
def test_for_multiple_choice(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
def test_for_next_sequence_prediction(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_next_sequence_prediction(*config_and_inputs)
def test_for_pretraining(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*config_and_inputs)
def test_for_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
def test_for_sequence_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
def test_for_token_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = NezhaModel.from_pretrained(model_name)
self.assertIsNotNone(model)
@slow
@require_torch_gpu
def test_torchscript_device_change(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# NezhaForMultipleChoice behaves incorrectly in JIT environments.
if model_class == NezhaForMultipleChoice:
return
config.torchscript = True
model = model_class(config=config)
inputs_dict = self._prepare_for_class(inputs_dict, model_class)
traced_model = torch.jit.trace(
model, (inputs_dict["input_ids"].to("cpu"), inputs_dict["attention_mask"].to("cpu"))
)
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(traced_model, os.path.join(tmp, "bert.pt"))
loaded = torch.jit.load(os.path.join(tmp, "bert.pt"), map_location=torch_device)
loaded(inputs_dict["input_ids"].to(torch_device), inputs_dict["attention_mask"].to(torch_device))
@require_torch
class NezhaModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_nezha_model(self):
model = NezhaModel.from_pretrained("sijunhe/nezha-cn-base")
input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]])
attention_mask = torch.tensor([[0, 1, 1, 1, 1, 1]])
with torch.no_grad():
output = model(input_ids, attention_mask=attention_mask)[0]
expected_shape = torch.Size((1, 6, 768))
self.assertEqual(output.shape, expected_shape)
expected_slice = torch.tensor([[[0.0685, 0.2441, 0.1102], [0.0600, 0.1906, 0.1349], [0.0221, 0.0819, 0.0586]]])
self.assertTrue(torch.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4))
@slow
def test_inference_nezha_masked_lm(self):
model = NezhaForMaskedLM.from_pretrained("sijunhe/nezha-cn-base")
input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]])
attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1]])
with torch.no_grad():
output = model(input_ids, attention_mask=attention_mask)[0]
expected_shape = torch.Size((1, 6, 21128))
self.assertEqual(output.shape, expected_shape)
expected_slice = torch.tensor(
[[-2.7939, -1.7902, -2.2189], [-2.8585, -1.8908, -2.3723], [-2.6499, -1.7750, -2.2558]]
)
self.assertTrue(torch.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4))
| transformers-main | tests/models/nezha/test_modeling_nezha.py |
transformers-main | tests/models/nezha/__init__.py |
|
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import OwlViTImageProcessor, OwlViTProcessor
@require_vision
class OwlViTProcessorTest(unittest.TestCase):
def setUp(self):
self.tmpdirname = tempfile.mkdtemp()
# fmt: off
vocab = ["", "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"]
# fmt: on
vocab_tokens = dict(zip(vocab, range(len(vocab))))
merges = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""]
self.special_tokens_map = {"unk_token": "<unk>"}
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
with open(self.vocab_file, "w", encoding="utf-8") as fp:
fp.write(json.dumps(vocab_tokens) + "\n")
with open(self.merges_file, "w", encoding="utf-8") as fp:
fp.write("\n".join(merges))
image_processor_map = {
"do_resize": True,
"size": 20,
"do_center_crop": True,
"crop_size": 18,
"do_normalize": True,
"image_mean": [0.48145466, 0.4578275, 0.40821073],
"image_std": [0.26862954, 0.26130258, 0.27577711],
}
self.image_processor_file = os.path.join(self.tmpdirname, IMAGE_PROCESSOR_NAME)
with open(self.image_processor_file, "w", encoding="utf-8") as fp:
json.dump(image_processor_map, fp)
def get_tokenizer(self, **kwargs):
return CLIPTokenizer.from_pretrained(self.tmpdirname, pad_token="!", **kwargs)
def get_rust_tokenizer(self, **kwargs):
return CLIPTokenizerFast.from_pretrained(self.tmpdirname, pad_token="!", **kwargs)
def get_image_processor(self, **kwargs):
return OwlViTImageProcessor.from_pretrained(self.tmpdirname, **kwargs)
def tearDown(self):
shutil.rmtree(self.tmpdirname)
def prepare_image_inputs(self):
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
or a list of PyTorch tensors if one specifies torchify=True.
"""
image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)]
image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]
return image_inputs
def test_save_load_pretrained_default(self):
tokenizer_slow = self.get_tokenizer()
tokenizer_fast = self.get_rust_tokenizer()
image_processor = self.get_image_processor()
processor_slow = OwlViTProcessor(tokenizer=tokenizer_slow, image_processor=image_processor)
processor_slow.save_pretrained(self.tmpdirname)
processor_slow = OwlViTProcessor.from_pretrained(self.tmpdirname, use_fast=False)
processor_fast = OwlViTProcessor(tokenizer=tokenizer_fast, image_processor=image_processor)
processor_fast.save_pretrained(self.tmpdirname)
processor_fast = OwlViTProcessor.from_pretrained(self.tmpdirname)
self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab())
self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab())
self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab())
self.assertIsInstance(processor_slow.tokenizer, CLIPTokenizer)
self.assertIsInstance(processor_fast.tokenizer, CLIPTokenizerFast)
self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string())
self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string())
self.assertIsInstance(processor_slow.image_processor, OwlViTImageProcessor)
self.assertIsInstance(processor_fast.image_processor, OwlViTImageProcessor)
def test_save_load_pretrained_additional_features(self):
processor = OwlViTProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor())
processor.save_pretrained(self.tmpdirname)
tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
image_processor_add_kwargs = self.get_image_processor(do_normalize=False)
processor = OwlViTProcessor.from_pretrained(
self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False
)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer, CLIPTokenizerFast)
self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string())
self.assertIsInstance(processor.image_processor, OwlViTImageProcessor)
def test_image_processor(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = OwlViTProcessor(tokenizer=tokenizer, image_processor=image_processor)
image_input = self.prepare_image_inputs()
input_image_proc = image_processor(image_input, return_tensors="np")
input_processor = processor(images=image_input, return_tensors="np")
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1e-2)
def test_tokenizer(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = OwlViTProcessor(tokenizer=tokenizer, image_processor=image_processor)
input_str = "lower newer"
encoded_processor = processor(text=input_str, return_tensors="np")
encoded_tok = tokenizer(input_str, return_tensors="np")
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key][0].tolist(), encoded_processor[key][0].tolist())
def test_processor(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = OwlViTProcessor(tokenizer=tokenizer, image_processor=image_processor)
input_str = "lower newer"
image_input = self.prepare_image_inputs()
inputs = processor(text=input_str, images=image_input)
self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask", "pixel_values"])
# test if it raises when no input is passed
with pytest.raises(ValueError):
processor()
def test_processor_with_text_list(self):
model_name = "google/owlvit-base-patch32"
processor = OwlViTProcessor.from_pretrained(model_name)
input_text = ["cat", "nasa badge"]
inputs = processor(text=input_text)
seq_length = 16
self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask"])
self.assertEqual(inputs["input_ids"].shape, (2, seq_length))
# test if it raises when no input is passed
with pytest.raises(ValueError):
processor()
def test_processor_with_nested_text_list(self):
model_name = "google/owlvit-base-patch32"
processor = OwlViTProcessor.from_pretrained(model_name)
input_texts = [["cat", "nasa badge"], ["person"]]
inputs = processor(text=input_texts)
seq_length = 16
batch_size = len(input_texts)
num_max_text_queries = max([len(texts) for texts in input_texts])
self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask"])
self.assertEqual(inputs["input_ids"].shape, (batch_size * num_max_text_queries, seq_length))
# test if it raises when no input is passed
with pytest.raises(ValueError):
processor()
def test_processor_case(self):
model_name = "google/owlvit-base-patch32"
processor = OwlViTProcessor.from_pretrained(model_name)
input_texts = ["cat", "nasa badge"]
inputs = processor(text=input_texts)
seq_length = 16
input_ids = inputs["input_ids"]
predicted_ids = [
[49406, 2368, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[49406, 6841, 11301, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask"])
self.assertEqual(inputs["input_ids"].shape, (2, seq_length))
self.assertListEqual(list(input_ids[0]), predicted_ids[0])
self.assertListEqual(list(input_ids[1]), predicted_ids[1])
def test_processor_case2(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = OwlViTProcessor(tokenizer=tokenizer, image_processor=image_processor)
image_input = self.prepare_image_inputs()
query_input = self.prepare_image_inputs()
inputs = processor(images=image_input, query_images=query_input)
self.assertListEqual(list(inputs.keys()), ["query_pixel_values", "pixel_values"])
# test if it raises when no input is passed
with pytest.raises(ValueError):
processor()
def test_tokenizer_decode(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = OwlViTProcessor(tokenizer=tokenizer, image_processor=image_processor)
predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
decoded_processor = processor.batch_decode(predicted_ids)
decoded_tok = tokenizer.batch_decode(predicted_ids)
self.assertListEqual(decoded_tok, decoded_processor)
| transformers-main | tests/models/owlvit/test_processor_owlvit.py |
transformers-main | tests/models/owlvit/__init__.py |
|
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch OwlViT model. """
import inspect
import os
import tempfile
import unittest
import numpy as np
import requests
from transformers import OwlViTConfig, OwlViTTextConfig, OwlViTVisionConfig
from transformers.testing_utils import require_torch, require_torch_gpu, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
ModelTesterMixin,
_config_zero_init,
floats_tensor,
ids_tensor,
random_attention_mask,
)
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import OwlViTForObjectDetection, OwlViTModel, OwlViTTextModel, OwlViTVisionModel
from transformers.models.owlvit.modeling_owlvit import OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import OwlViTProcessor
class OwlViTVisionModelTester:
def __init__(
self,
parent,
batch_size=12,
image_size=32,
patch_size=2,
num_channels=3,
is_training=True,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
dropout=0.1,
attention_dropout=0.1,
initializer_range=0.02,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.is_training = is_training
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.dropout = dropout
self.attention_dropout = attention_dropout
self.initializer_range = initializer_range
self.scope = scope
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
num_patches = (image_size // patch_size) ** 2
self.seq_length = num_patches + 1
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
config = self.get_config()
return config, pixel_values
def get_config(self):
return OwlViTVisionConfig(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
dropout=self.dropout,
attention_dropout=self.attention_dropout,
initializer_range=self.initializer_range,
)
def create_and_check_model(self, config, pixel_values):
model = OwlViTVisionModel(config=config).to(torch_device)
model.eval()
pixel_values = pixel_values.to(torch.float32)
with torch.no_grad():
result = model(pixel_values)
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
num_patches = (self.image_size // self.patch_size) ** 2
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class OwlViTVisionModelTest(ModelTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as OWLVIT does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (OwlViTVisionModel,) if is_torch_available() else ()
fx_compatible = False
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
def setUp(self):
self.model_tester = OwlViTVisionModelTester(self)
self.config_tester = ConfigTester(
self, config_class=OwlViTVisionConfig, has_text_modality=False, hidden_size=37
)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="OWLVIT does not use inputs_embeds")
def test_inputs_embeds(self):
pass
def test_model_common_attributes(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@unittest.skip(reason="OWL-ViT does not support training yet")
def test_training(self):
pass
@unittest.skip(reason="OWL-ViT does not support training yet")
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(reason="OwlViTVisionModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="OwlViTVisionModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_to_base(self):
pass
@slow
def test_model_from_pretrained(self):
for model_name in OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = OwlViTVisionModel.from_pretrained(model_name)
self.assertIsNotNone(model)
class OwlViTTextModelTester:
def __init__(
self,
parent,
batch_size=12,
num_queries=4,
seq_length=16,
is_training=True,
use_input_mask=True,
use_labels=True,
vocab_size=99,
hidden_size=64,
num_hidden_layers=12,
num_attention_heads=4,
intermediate_size=37,
dropout=0.1,
attention_dropout=0.1,
max_position_embeddings=16,
initializer_range=0.02,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.num_queries = num_queries
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.dropout = dropout
self.attention_dropout = attention_dropout
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size * self.num_queries, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size * self.num_queries, self.seq_length])
if input_mask is not None:
num_text, seq_length = input_mask.shape
rnd_start_indices = np.random.randint(1, seq_length - 1, size=(num_text,))
for idx, start_index in enumerate(rnd_start_indices):
input_mask[idx, :start_index] = 1
input_mask[idx, start_index:] = 0
config = self.get_config()
return config, input_ids, input_mask
def get_config(self):
return OwlViTTextConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
dropout=self.dropout,
attention_dropout=self.attention_dropout,
max_position_embeddings=self.max_position_embeddings,
initializer_range=self.initializer_range,
)
def create_and_check_model(self, config, input_ids, input_mask):
model = OwlViTTextModel(config=config).to(torch_device)
model.eval()
with torch.no_grad():
result = model(input_ids=input_ids, attention_mask=input_mask)
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size * self.num_queries, self.seq_length, self.hidden_size)
)
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size * self.num_queries, self.hidden_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, input_mask = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class OwlViTTextModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (OwlViTTextModel,) if is_torch_available() else ()
fx_compatible = False
test_pruning = False
test_head_masking = False
def setUp(self):
self.model_tester = OwlViTTextModelTester(self)
self.config_tester = ConfigTester(self, config_class=OwlViTTextConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@unittest.skip(reason="OWL-ViT does not support training yet")
def test_training(self):
pass
@unittest.skip(reason="OWL-ViT does not support training yet")
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(reason="OWLVIT does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="OwlViTTextModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="OwlViTTextModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_to_base(self):
pass
@slow
def test_model_from_pretrained(self):
for model_name in OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = OwlViTTextModel.from_pretrained(model_name)
self.assertIsNotNone(model)
class OwlViTModelTester:
def __init__(self, parent, text_kwargs=None, vision_kwargs=None, is_training=True):
if text_kwargs is None:
text_kwargs = {}
if vision_kwargs is None:
vision_kwargs = {}
self.parent = parent
self.text_model_tester = OwlViTTextModelTester(parent, **text_kwargs)
self.vision_model_tester = OwlViTVisionModelTester(parent, **vision_kwargs)
self.is_training = is_training
self.text_config = self.text_model_tester.get_config().to_dict()
self.vision_config = self.vision_model_tester.get_config().to_dict()
def prepare_config_and_inputs(self):
text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs()
vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs()
config = self.get_config()
return config, input_ids, attention_mask, pixel_values
def get_config(self):
return OwlViTConfig.from_text_vision_configs(self.text_config, self.vision_config, projection_dim=64)
def create_and_check_model(self, config, input_ids, attention_mask, pixel_values):
model = OwlViTModel(config).to(torch_device).eval()
with torch.no_grad():
result = model(
input_ids=input_ids,
pixel_values=pixel_values,
attention_mask=attention_mask,
)
image_logits_size = (
self.vision_model_tester.batch_size,
self.text_model_tester.batch_size * self.text_model_tester.num_queries,
)
text_logits_size = (
self.text_model_tester.batch_size * self.text_model_tester.num_queries,
self.vision_model_tester.batch_size,
)
self.parent.assertEqual(result.logits_per_image.shape, image_logits_size)
self.parent.assertEqual(result.logits_per_text.shape, text_logits_size)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, attention_mask, pixel_values = config_and_inputs
inputs_dict = {
"pixel_values": pixel_values,
"input_ids": input_ids,
"attention_mask": attention_mask,
"return_loss": False,
}
return config, inputs_dict
@require_torch
class OwlViTModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (OwlViTModel,) if is_torch_available() else ()
pipeline_model_mapping = (
{"feature-extraction": OwlViTModel, "zero-shot-object-detection": OwlViTForObjectDetection}
if is_torch_available()
else {}
)
fx_compatible = False
test_head_masking = False
test_pruning = False
test_resize_embeddings = False
test_attention_outputs = False
def setUp(self):
self.model_tester = OwlViTModelTester(self)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@unittest.skip(reason="Hidden_states is tested in individual model tests")
def test_hidden_states_output(self):
pass
@unittest.skip(reason="Inputs_embeds is tested in individual model tests")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Retain_grad is tested in individual model tests")
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip(reason="OwlViTModel does not have input/output embeddings")
def test_model_common_attributes(self):
pass
# override as the `logit_scale` parameter initilization is different for OWLVIT
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad:
# check if `logit_scale` is initilized as per the original implementation
if name == "logit_scale":
self.assertAlmostEqual(
param.data.item(),
np.log(1 / 0.07),
delta=1e-3,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
else:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
def _create_and_check_torchscript(self, config, inputs_dict):
if not self.test_torchscript:
return
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
configs_no_init.torchscript = True
configs_no_init.return_dict = False
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init).to(torch_device)
model.eval()
try:
input_ids = inputs_dict["input_ids"]
pixel_values = inputs_dict["pixel_values"] # OWLVIT needs pixel_values
traced_model = torch.jit.trace(model, (input_ids, pixel_values))
except RuntimeError:
self.fail("Couldn't trace module.")
with tempfile.TemporaryDirectory() as tmp_dir_name:
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
try:
torch.jit.save(traced_model, pt_file_name)
except Exception:
self.fail("Couldn't save module.")
try:
loaded_model = torch.jit.load(pt_file_name)
except Exception:
self.fail("Couldn't load module.")
loaded_model = loaded_model.to(torch_device)
loaded_model.eval()
model_state_dict = model.state_dict()
loaded_model_state_dict = loaded_model.state_dict()
non_persistent_buffers = {}
for key in loaded_model_state_dict.keys():
if key not in model_state_dict.keys():
non_persistent_buffers[key] = loaded_model_state_dict[key]
loaded_model_state_dict = {
key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
}
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
model_buffers = list(model.buffers())
for non_persistent_buffer in non_persistent_buffers.values():
found_buffer = False
for i, model_buffer in enumerate(model_buffers):
if torch.equal(non_persistent_buffer, model_buffer):
found_buffer = True
break
self.assertTrue(found_buffer)
model_buffers.pop(i)
models_equal = True
for layer_name, p1 in model_state_dict.items():
p2 = loaded_model_state_dict[layer_name]
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
def test_load_vision_text_config(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
# Save OwlViTConfig and check if we can load OwlViTVisionConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
vision_config = OwlViTVisionConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict())
# Save OwlViTConfig and check if we can load OwlViTTextConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
text_config = OwlViTTextConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict())
@slow
def test_model_from_pretrained(self):
for model_name in OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = OwlViTModel.from_pretrained(model_name)
self.assertIsNotNone(model)
class OwlViTForObjectDetectionTester:
def __init__(self, parent, is_training=True):
self.parent = parent
self.text_model_tester = OwlViTTextModelTester(parent)
self.vision_model_tester = OwlViTVisionModelTester(parent)
self.is_training = is_training
self.text_config = self.text_model_tester.get_config().to_dict()
self.vision_config = self.vision_model_tester.get_config().to_dict()
def prepare_config_and_inputs(self):
text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs()
vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs()
config = self.get_config()
return config, pixel_values, input_ids, attention_mask
def get_config(self):
return OwlViTConfig.from_text_vision_configs(self.text_config, self.vision_config, projection_dim=64)
def create_and_check_model(self, config, pixel_values, input_ids, attention_mask):
model = OwlViTForObjectDetection(config).to(torch_device).eval()
with torch.no_grad():
result = model(
pixel_values=pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
return_dict=True,
)
pred_boxes_size = (
self.vision_model_tester.batch_size,
(self.vision_model_tester.image_size // self.vision_model_tester.patch_size) ** 2,
4,
)
pred_logits_size = (
self.vision_model_tester.batch_size,
(self.vision_model_tester.image_size // self.vision_model_tester.patch_size) ** 2,
4,
)
pred_class_embeds_size = (
self.vision_model_tester.batch_size,
(self.vision_model_tester.image_size // self.vision_model_tester.patch_size) ** 2,
self.text_model_tester.hidden_size,
)
self.parent.assertEqual(result.pred_boxes.shape, pred_boxes_size)
self.parent.assertEqual(result.logits.shape, pred_logits_size)
self.parent.assertEqual(result.class_embeds.shape, pred_class_embeds_size)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, input_ids, attention_mask = config_and_inputs
inputs_dict = {
"pixel_values": pixel_values,
"input_ids": input_ids,
"attention_mask": attention_mask,
}
return config, inputs_dict
@require_torch
class OwlViTForObjectDetectionTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (OwlViTForObjectDetection,) if is_torch_available() else ()
fx_compatible = False
test_head_masking = False
test_pruning = False
test_resize_embeddings = False
test_attention_outputs = False
def setUp(self):
self.model_tester = OwlViTForObjectDetectionTester(self)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@unittest.skip(reason="Hidden_states is tested in individual model tests")
def test_hidden_states_output(self):
pass
@unittest.skip(reason="Inputs_embeds is tested in individual model tests")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Retain_grad is tested in individual model tests")
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip(reason="OwlViTModel does not have input/output embeddings")
def test_model_common_attributes(self):
pass
@unittest.skip(reason="Test_initialization is tested in individual model tests")
def test_initialization(self):
pass
@unittest.skip(reason="Test_forward_signature is tested in individual model tests")
def test_forward_signature(self):
pass
@unittest.skip(reason="Test_save_load_fast_init_from_base is tested in individual model tests")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="OWL-ViT does not support training yet")
def test_training(self):
pass
@unittest.skip(reason="OWL-ViT does not support training yet")
def test_training_gradient_checkpointing(self):
pass
def _create_and_check_torchscript(self, config, inputs_dict):
if not self.test_torchscript:
return
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
configs_no_init.torchscript = True
configs_no_init.return_dict = False
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init).to(torch_device)
model.eval()
try:
input_ids = inputs_dict["input_ids"]
pixel_values = inputs_dict["pixel_values"] # OWLVIT needs pixel_values
traced_model = torch.jit.trace(model, (input_ids, pixel_values))
except RuntimeError:
self.fail("Couldn't trace module.")
with tempfile.TemporaryDirectory() as tmp_dir_name:
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
try:
torch.jit.save(traced_model, pt_file_name)
except Exception:
self.fail("Couldn't save module.")
try:
loaded_model = torch.jit.load(pt_file_name)
except Exception:
self.fail("Couldn't load module.")
loaded_model = loaded_model.to(torch_device)
loaded_model.eval()
model_state_dict = model.state_dict()
loaded_model_state_dict = loaded_model.state_dict()
non_persistent_buffers = {}
for key in loaded_model_state_dict.keys():
if key not in model_state_dict.keys():
non_persistent_buffers[key] = loaded_model_state_dict[key]
loaded_model_state_dict = {
key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
}
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
model_buffers = list(model.buffers())
for non_persistent_buffer in non_persistent_buffers.values():
found_buffer = False
for i, model_buffer in enumerate(model_buffers):
if torch.equal(non_persistent_buffer, model_buffer):
found_buffer = True
break
self.assertTrue(found_buffer)
model_buffers.pop(i)
models_equal = True
for layer_name, p1 in model_state_dict.items():
p2 = loaded_model_state_dict[layer_name]
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
@slow
def test_model_from_pretrained(self):
for model_name in OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = OwlViTForObjectDetection.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of cute cats
def prepare_img():
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
im = Image.open(requests.get(url, stream=True).raw)
return im
@require_vision
@require_torch
class OwlViTModelIntegrationTest(unittest.TestCase):
@slow
def test_inference(self):
model_name = "google/owlvit-base-patch32"
model = OwlViTModel.from_pretrained(model_name).to(torch_device)
processor = OwlViTProcessor.from_pretrained(model_name)
image = prepare_img()
inputs = processor(
text=[["a photo of a cat", "a photo of a dog"]],
images=image,
max_length=16,
padding="max_length",
return_tensors="pt",
).to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# verify the logits
self.assertEqual(
outputs.logits_per_image.shape,
torch.Size((inputs.pixel_values.shape[0], inputs.input_ids.shape[0])),
)
self.assertEqual(
outputs.logits_per_text.shape,
torch.Size((inputs.input_ids.shape[0], inputs.pixel_values.shape[0])),
)
expected_logits = torch.tensor([[3.4613, 0.9403]], device=torch_device)
self.assertTrue(torch.allclose(outputs.logits_per_image, expected_logits, atol=1e-3))
@slow
def test_inference_object_detection(self):
model_name = "google/owlvit-base-patch32"
model = OwlViTForObjectDetection.from_pretrained(model_name).to(torch_device)
processor = OwlViTProcessor.from_pretrained(model_name)
image = prepare_img()
inputs = processor(
text=[["a photo of a cat", "a photo of a dog"]],
images=image,
max_length=16,
padding="max_length",
return_tensors="pt",
).to(torch_device)
with torch.no_grad():
outputs = model(**inputs)
num_queries = int((model.config.vision_config.image_size / model.config.vision_config.patch_size) ** 2)
self.assertEqual(outputs.pred_boxes.shape, torch.Size((1, num_queries, 4)))
expected_slice_boxes = torch.tensor(
[[0.0691, 0.0445, 0.1373], [0.1592, 0.0456, 0.3192], [0.1632, 0.0423, 0.2478]]
).to(torch_device)
self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3], expected_slice_boxes, atol=1e-4))
@slow
def test_inference_one_shot_object_detection(self):
model_name = "google/owlvit-base-patch32"
model = OwlViTForObjectDetection.from_pretrained(model_name).to(torch_device)
processor = OwlViTProcessor.from_pretrained(model_name)
image = prepare_img()
query_image = prepare_img()
inputs = processor(
images=image,
query_images=query_image,
max_length=16,
padding="max_length",
return_tensors="pt",
).to(torch_device)
with torch.no_grad():
outputs = model.image_guided_detection(**inputs)
num_queries = int((model.config.vision_config.image_size / model.config.vision_config.patch_size) ** 2)
self.assertEqual(outputs.target_pred_boxes.shape, torch.Size((1, num_queries, 4)))
expected_slice_boxes = torch.tensor(
[[0.0691, 0.0445, 0.1373], [0.1592, 0.0456, 0.3192], [0.1632, 0.0423, 0.2478]]
).to(torch_device)
self.assertTrue(torch.allclose(outputs.target_pred_boxes[0, :3, :3], expected_slice_boxes, atol=1e-4))
@slow
@require_torch_gpu
def test_inference_one_shot_object_detection_fp16(self):
model_name = "google/owlvit-base-patch32"
model = OwlViTForObjectDetection.from_pretrained(model_name, torch_dtype=torch.float16).to(torch_device)
processor = OwlViTProcessor.from_pretrained(model_name)
image = prepare_img()
query_image = prepare_img()
inputs = processor(
images=image,
query_images=query_image,
max_length=16,
padding="max_length",
return_tensors="pt",
).to(torch_device)
with torch.no_grad():
outputs = model.image_guided_detection(**inputs)
# No need to check the logits, we just check inference runs fine.
num_queries = int((model.config.vision_config.image_size / model.config.vision_config.patch_size) ** 2)
self.assertEqual(outputs.target_pred_boxes.shape, torch.Size((1, num_queries, 4)))
| transformers-main | tests/models/owlvit/test_modeling_owlvit.py |
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_vision_available
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
if is_vision_available():
from transformers import OwlViTImageProcessor
class OwlViTImageProcessingTester(unittest.TestCase):
def __init__(
self,
parent,
batch_size=7,
num_channels=3,
image_size=18,
min_resolution=30,
max_resolution=400,
do_resize=True,
size=None,
do_center_crop=True,
crop_size=None,
do_normalize=True,
image_mean=[0.48145466, 0.4578275, 0.40821073],
image_std=[0.26862954, 0.26130258, 0.27577711],
do_convert_rgb=True,
):
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.image_size = image_size
self.min_resolution = min_resolution
self.max_resolution = max_resolution
self.do_resize = do_resize
self.size = size if size is not None else {"height": 18, "width": 18}
self.do_center_crop = do_center_crop
self.crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18}
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
self.do_convert_rgb = do_convert_rgb
def prepare_image_processor_dict(self):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_convert_rgb": self.do_convert_rgb,
}
def expected_output_image_shape(self, images):
return self.num_channels, self.crop_size["height"], self.crop_size["width"]
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
return prepare_image_inputs(
batch_size=self.batch_size,
num_channels=self.num_channels,
min_resolution=self.min_resolution,
max_resolution=self.max_resolution,
equal_resolution=equal_resolution,
numpify=numpify,
torchify=torchify,
)
@require_torch
@require_vision
class OwlViTImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
image_processing_class = OwlViTImageProcessor if is_vision_available() else None
def setUp(self):
self.image_processor_tester = OwlViTImageProcessingTester(self)
@property
def image_processor_dict(self):
return self.image_processor_tester.prepare_image_processor_dict()
def test_image_processor_properties(self):
image_processing = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(image_processing, "do_resize"))
self.assertTrue(hasattr(image_processing, "size"))
self.assertTrue(hasattr(image_processing, "do_center_crop"))
self.assertTrue(hasattr(image_processing, "center_crop"))
self.assertTrue(hasattr(image_processing, "do_normalize"))
self.assertTrue(hasattr(image_processing, "image_mean"))
self.assertTrue(hasattr(image_processing, "image_std"))
self.assertTrue(hasattr(image_processing, "do_convert_rgb"))
def test_image_processor_from_dict_with_kwargs(self):
image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size, {"height": 18, "width": 18})
self.assertEqual(image_processor.crop_size, {"height": 18, "width": 18})
image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84)
self.assertEqual(image_processor.size, {"height": 42, "width": 42})
self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
| transformers-main | tests/models/owlvit/test_image_processing_owlvit.py |
transformers-main | tests/models/blenderbot/__init__.py |
|
# coding=utf-8
# Copyright 2021, The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Blenderbot model. """
import tempfile
import unittest
from transformers import BlenderbotConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from transformers.utils import cached_property
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotTokenizer
from transformers.models.blenderbot.modeling_blenderbot import (
BlenderbotDecoder,
BlenderbotEncoder,
BlenderbotForCausalLM,
)
def prepare_blenderbot_inputs_dict(
config,
input_ids,
decoder_input_ids,
attention_mask=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
):
if attention_mask is None:
attention_mask = input_ids.ne(config.pad_token_id)
if decoder_attention_mask is None:
decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id)
if head_mask is None:
head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device)
if decoder_head_mask is None:
decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
if cross_attn_head_mask is None:
cross_attn_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
class BlenderbotModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_labels=False,
vocab_size=99,
hidden_size=16,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=4,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=20,
eos_token_id=2,
pad_token_id=1,
bos_token_id=0,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
# forcing a certain token to be generated, sets all other tokens to -inf
# if however the token to be generated is already at -inf then it can lead token
# `nan` values and thus break generation
self.forced_bos_token_id = None
self.forced_eos_token_id = None
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(
3,
)
input_ids[:, -1] = self.eos_token_id # Eos Token
decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
config = self.get_config()
inputs_dict = prepare_blenderbot_inputs_dict(config, input_ids, decoder_input_ids)
return config, inputs_dict
def get_config(self):
return BlenderbotConfig(
vocab_size=self.vocab_size,
d_model=self.hidden_size,
encoder_layers=self.num_hidden_layers,
decoder_layers=self.num_hidden_layers,
encoder_attention_heads=self.num_attention_heads,
decoder_attention_heads=self.num_attention_heads,
encoder_ffn_dim=self.intermediate_size,
decoder_ffn_dim=self.intermediate_size,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
pad_token_id=self.pad_token_id,
forced_bos_token_id=self.forced_bos_token_id,
forced_eos_token_id=self.forced_eos_token_id,
)
def get_pipeline_config(self):
config = self.get_config()
config.max_position_embeddings = 100
config.vocab_size = 300
return config
def prepare_config_and_inputs_for_common(self):
config, inputs_dict = self.prepare_config_and_inputs()
return config, inputs_dict
def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict):
model = BlenderbotModel(config=config).get_decoder().to(torch_device).eval()
input_ids = inputs_dict["input_ids"]
attention_mask = inputs_dict["attention_mask"]
head_mask = inputs_dict["head_mask"]
# first forward pass
outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True)
output, past_key_values = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_attn_mask = ids_tensor((self.batch_size, 3), 2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1)
output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"]
output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[
"last_hidden_state"
]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def check_encoder_decoder_model_standalone(self, config, inputs_dict):
model = BlenderbotModel(config=config).to(torch_device).eval()
outputs = model(**inputs_dict)
encoder_last_hidden_state = outputs.encoder_last_hidden_state
last_hidden_state = outputs.last_hidden_state
with tempfile.TemporaryDirectory() as tmpdirname:
encoder = model.get_encoder()
encoder.save_pretrained(tmpdirname)
encoder = BlenderbotEncoder.from_pretrained(tmpdirname).to(torch_device)
encoder_last_hidden_state_2 = encoder(inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"])[
0
]
self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3)
with tempfile.TemporaryDirectory() as tmpdirname:
decoder = model.get_decoder()
decoder.save_pretrained(tmpdirname)
decoder = BlenderbotDecoder.from_pretrained(tmpdirname).to(torch_device)
last_hidden_state_2 = decoder(
input_ids=inputs_dict["decoder_input_ids"],
attention_mask=inputs_dict["decoder_attention_mask"],
encoder_hidden_states=encoder_last_hidden_state,
encoder_attention_mask=inputs_dict["attention_mask"],
)[0]
self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3)
@require_torch
class BlenderbotModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (BlenderbotModel, BlenderbotForConditionalGeneration) if is_torch_available() else ()
all_generative_model_classes = (BlenderbotForConditionalGeneration,) if is_torch_available() else ()
pipeline_model_mapping = (
{
"conversational": BlenderbotForConditionalGeneration,
"feature-extraction": BlenderbotModel,
"summarization": BlenderbotForConditionalGeneration,
"text-generation": BlenderbotForCausalLM,
"text2text-generation": BlenderbotForConditionalGeneration,
"translation": BlenderbotForConditionalGeneration,
}
if is_torch_available()
else {}
)
is_encoder_decoder = True
fx_compatible = True
test_pruning = False
test_missing_keys = False
def setUp(self):
self.model_tester = BlenderbotModelTester(self)
self.config_tester = ConfigTester(self, config_class=BlenderbotConfig)
def test_config(self):
self.config_tester.run_common_tests()
def test_save_load_strict(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
self.assertEqual(info["missing_keys"], [])
def test_decoder_model_past_with_large_inputs(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
def test_encoder_decoder_model_standalone(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs)
def test_generate_fp16(self):
config, input_dict = self.model_tester.prepare_config_and_inputs()
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
model = BlenderbotForConditionalGeneration(config).eval().to(torch_device)
if torch_device == "cuda":
model.half()
model.generate(input_ids, attention_mask=attention_mask)
model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3)
def assert_tensors_close(a, b, atol=1e-12, prefix=""):
"""If tensors have different shapes, different values or a and b are not both tensors, raise a nice Assertion error."""
if a is None and b is None:
return True
try:
if torch.allclose(a, b, atol=atol):
return True
raise
except Exception:
pct_different = (torch.gt((a - b).abs(), atol)).float().mean().item()
if a.numel() > 100:
msg = f"tensor values are {pct_different:.1%} percent different."
else:
msg = f"{a} != {b}"
if prefix:
msg = prefix + ": " + msg
raise AssertionError(msg)
@unittest.skipUnless(torch_device != "cpu", "3B test too slow on CPU.")
@require_torch
@require_sentencepiece
@require_tokenizers
class Blenderbot3BIntegrationTests(unittest.TestCase):
ckpt = "facebook/blenderbot-3B"
@cached_property
def tokenizer(self):
return BlenderbotTokenizer.from_pretrained(self.ckpt)
@slow
def test_generation_from_short_input_same_as_parlai_3B(self):
FASTER_GEN_KWARGS = {"num_beams": 1, "early_stopping": True, "min_length": 15, "max_length": 25}
TOK_DECODE_KW = {"skip_special_tokens": True, "clean_up_tokenization_spaces": True}
torch.cuda.empty_cache()
model = BlenderbotForConditionalGeneration.from_pretrained(self.ckpt).half().to(torch_device)
src_text = ["Sam"]
model_inputs = self.tokenizer(src_text, return_tensors="pt").to(torch_device)
generated_utterances = model.generate(**model_inputs, **FASTER_GEN_KWARGS)
tgt_text = 'Sam is a great name. It means "sun" in Gaelic.'
generated_txt = self.tokenizer.batch_decode(generated_utterances, **TOK_DECODE_KW)
assert generated_txt[0].strip() == tgt_text
src_text = (
"Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel"
" like i'm going to throw up.\nand why is that?"
)
model_inputs = self.tokenizer([src_text], return_tensors="pt").to(torch_device)
generated_ids = model.generate(**model_inputs, **FASTER_GEN_KWARGS)[0]
reply = self.tokenizer.decode(generated_ids, **TOK_DECODE_KW)
assert "I think it's because we are so worried about what people think of us." == reply.strip()
del model
class BlenderbotStandaloneDecoderModelTester:
def __init__(
self,
parent,
vocab_size=99,
batch_size=13,
d_model=16,
decoder_seq_length=7,
is_training=True,
is_decoder=True,
use_attention_mask=True,
use_cache=False,
use_labels=True,
decoder_start_token_id=2,
decoder_ffn_dim=32,
decoder_layers=2,
encoder_attention_heads=4,
decoder_attention_heads=4,
max_position_embeddings=30,
is_encoder_decoder=False,
encoder_no_repeat_ngram_size=0,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.decoder_seq_length = decoder_seq_length
# For common tests
self.seq_length = self.decoder_seq_length
self.is_training = is_training
self.use_attention_mask = use_attention_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.d_model = d_model
self.hidden_size = d_model
self.num_hidden_layers = decoder_layers
self.decoder_layers = decoder_layers
self.decoder_ffn_dim = decoder_ffn_dim
self.encoder_attention_heads = encoder_attention_heads
self.decoder_attention_heads = decoder_attention_heads
self.num_attention_heads = decoder_attention_heads
self.eos_token_id = eos_token_id
self.bos_token_id = bos_token_id
self.pad_token_id = pad_token_id
self.decoder_start_token_id = decoder_start_token_id
self.use_cache = use_cache
self.max_position_embeddings = max_position_embeddings
self.is_encoder_decoder = is_encoder_decoder
self.encoder_no_repeat_ngram_size = encoder_no_repeat_ngram_size
self.scope = None
self.decoder_key_length = decoder_seq_length
self.base_model_out_len = 2
self.decoder_attention_idx = 1
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
attention_mask = None
if self.use_attention_mask:
attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2)
lm_labels = None
if self.use_labels:
lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
config = BlenderbotConfig(
vocab_size=self.vocab_size,
d_model=self.d_model,
decoder_layers=self.decoder_layers,
decoder_ffn_dim=self.decoder_ffn_dim,
encoder_attention_heads=self.encoder_attention_heads,
decoder_attention_heads=self.decoder_attention_heads,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
use_cache=self.use_cache,
pad_token_id=self.pad_token_id,
decoder_start_token_id=self.decoder_start_token_id,
max_position_embeddings=self.max_position_embeddings,
is_encoder_decoder=self.is_encoder_decoder,
encoder_no_repeat_ngram_size=self.encoder_no_repeat_ngram_size,
)
return (
config,
input_ids,
attention_mask,
lm_labels,
)
def create_and_check_decoder_model_past(
self,
config,
input_ids,
attention_mask,
lm_labels,
):
config.use_cache = True
model = BlenderbotDecoder(config=config).to(torch_device).eval()
# first forward pass
outputs = model(input_ids, use_cache=True)
outputs_use_cache_conf = model(input_ids)
outputs_no_past = model(input_ids, use_cache=False)
self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)
past_key_values = outputs["past_key_values"]
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
output_from_no_past = model(next_input_ids)["last_hidden_state"]
output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)
def create_and_check_decoder_model_attention_mask_past(
self,
config,
input_ids,
attention_mask,
lm_labels,
):
model = BlenderbotDecoder(config=config).to(torch_device).eval()
# create attention mask
attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
half_seq_length = input_ids.shape[-1] // 2
attn_mask[:, half_seq_length:] = 0
# first forward pass
past_key_values = model(input_ids, attention_mask=attn_mask, use_cache=True)["past_key_values"]
# past_key_values = model(input_ids, use_cache=True)["past_key_values"]
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# change a random masked slice from input_ids
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1
random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1)
input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens
# append to next input_ids and attn_mask
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
attn_mask = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)],
dim=1,
)
# get two different outputs
output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"]
output_from_past = model(next_tokens, past_key_values=past_key_values, attention_mask=attn_mask)[
"last_hidden_state"
]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
attention_mask,
lm_labels,
) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"attention_mask": attention_mask,
}
return config, inputs_dict
@require_torch
class BlenderbotStandaloneDecoderModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
all_model_classes = (BlenderbotDecoder, BlenderbotForCausalLM) if is_torch_available() else ()
all_generative_model_classes = (BlenderbotForCausalLM,) if is_torch_available() else ()
test_pruning = False
is_encoder_decoder = False
def setUp(
self,
):
self.model_tester = BlenderbotStandaloneDecoderModelTester(self, is_training=False)
self.config_tester = ConfigTester(self, config_class=BlenderbotConfig)
def test_config(self):
self.config_tester.run_common_tests()
def test_decoder_model_past(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past(*config_and_inputs)
def test_decoder_model_attn_mask_past(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_attention_mask_past(*config_and_inputs)
def test_retain_grad_hidden_states_attentions(self):
# decoder cannot keep gradients
return
@unittest.skip("The model doesn't support left padding") # and it's not used enough to be worth fixing :)
def test_left_padding_compatibility(self):
pass
| transformers-main | tests/models/blenderbot/test_modeling_blenderbot.py |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotConfig, is_flax_available
from transformers.testing_utils import jax_device, require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
os.environ["XLA_PYTHON_CLIENT_ALLOCATOR"] = "platform"
import jax
import jax.numpy as jnp
from transformers import BlenderbotTokenizer
from transformers.models.blenderbot.modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
shift_tokens_right,
)
def prepare_blenderbot_inputs_dict(
config,
input_ids,
decoder_input_ids=None,
attention_mask=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
):
if attention_mask is None:
attention_mask = np.where(input_ids != config.pad_token_id, 1, 0)
if decoder_attention_mask is None:
decoder_attention_mask = np.where(decoder_input_ids != config.pad_token_id, 1, 0)
if head_mask is None:
head_mask = np.ones((config.encoder_layers, config.encoder_attention_heads))
if decoder_head_mask is None:
decoder_head_mask = np.ones((config.decoder_layers, config.decoder_attention_heads))
if cross_attn_head_mask is None:
cross_attn_head_mask = np.ones((config.decoder_layers, config.decoder_attention_heads))
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class FlaxBlenderbotModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_labels=False,
vocab_size=99,
hidden_size=16,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=4,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=32,
eos_token_id=2,
pad_token_id=1,
bos_token_id=0,
initializer_range=0.02,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
self.initializer_range = initializer_range
def prepare_config_and_inputs(self):
input_ids = np.clip(ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size), 3, self.vocab_size)
input_ids = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1), dtype=np.int64)), -1)
decoder_input_ids = shift_tokens_right(input_ids, 1, 2)
config = BlenderbotConfig(
vocab_size=self.vocab_size,
d_model=self.hidden_size,
encoder_layers=self.num_hidden_layers,
decoder_layers=self.num_hidden_layers,
encoder_attention_heads=self.num_attention_heads,
decoder_attention_heads=self.num_attention_heads,
encoder_ffn_dim=self.intermediate_size,
decoder_ffn_dim=self.intermediate_size,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
pad_token_id=self.pad_token_id,
initializer_range=self.initializer_range,
use_cache=False,
)
inputs_dict = prepare_blenderbot_inputs_dict(config, input_ids, decoder_input_ids)
return config, inputs_dict
def prepare_config_and_inputs_for_common(self):
config, inputs_dict = self.prepare_config_and_inputs()
return config, inputs_dict
def check_use_cache_forward(self, model_class_name, config, inputs_dict):
max_decoder_length = 20
model = model_class_name(config)
encoder_outputs = model.encode(inputs_dict["input_ids"])
decoder_input_ids, decoder_attention_mask = (
inputs_dict["decoder_input_ids"],
inputs_dict["decoder_attention_mask"],
)
past_key_values = model.init_cache(decoder_input_ids.shape[0], max_decoder_length, encoder_outputs)
decoder_attention_mask = jnp.ones((decoder_input_ids.shape[0], max_decoder_length), dtype="i4")
decoder_position_ids = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :],
(decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1),
)
outputs_cache = model.decode(
decoder_input_ids[:, :-1],
encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
past_key_values=past_key_values,
decoder_position_ids=decoder_position_ids,
)
decoder_position_ids = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype="i4")
outputs_cache_next = model.decode(
decoder_input_ids[:, -1:],
encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
past_key_values=outputs_cache.past_key_values,
decoder_position_ids=decoder_position_ids,
)
outputs = model.decode(decoder_input_ids, encoder_outputs)
diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}")
def check_use_cache_forward_with_attn_mask(self, model_class_name, config, inputs_dict):
max_decoder_length = 20
model = model_class_name(config)
encoder_outputs = model.encode(inputs_dict["input_ids"])
decoder_input_ids, decoder_attention_mask = (
inputs_dict["decoder_input_ids"],
inputs_dict["decoder_attention_mask"],
)
decoder_attention_mask_cache = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])),
],
axis=-1,
)
past_key_values = model.init_cache(decoder_input_ids.shape[0], max_decoder_length, encoder_outputs)
decoder_position_ids = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :],
(decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1),
)
outputs_cache = model.decode(
decoder_input_ids[:, :-1],
encoder_outputs,
decoder_attention_mask=decoder_attention_mask_cache,
past_key_values=past_key_values,
decoder_position_ids=decoder_position_ids,
)
decoder_position_ids = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype="i4")
outputs_cache_next = model.decode(
decoder_input_ids[:, -1:],
encoder_outputs,
past_key_values=outputs_cache.past_key_values,
decoder_attention_mask=decoder_attention_mask_cache,
decoder_position_ids=decoder_position_ids,
)
outputs = model.decode(decoder_input_ids, encoder_outputs, decoder_attention_mask=decoder_attention_mask)
diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}")
@require_flax
class BlenderbotHeadTests(unittest.TestCase):
vocab_size = 99
def _get_config_and_data(self):
input_ids = np.array(
[
[71, 82, 18, 33, 46, 91, 2],
[68, 34, 26, 58, 30, 82, 2],
[5, 97, 17, 39, 94, 40, 2],
[76, 83, 94, 25, 70, 78, 2],
[87, 59, 41, 35, 48, 66, 2],
[55, 13, 16, 58, 5, 2, 1], # note padding
[64, 27, 31, 51, 12, 75, 2],
[52, 64, 86, 17, 83, 39, 2],
[48, 61, 9, 24, 71, 82, 2],
[26, 1, 60, 48, 22, 13, 2],
[21, 5, 62, 28, 14, 76, 2],
[45, 98, 37, 86, 59, 48, 2],
[70, 70, 50, 9, 28, 0, 2],
],
dtype=np.int64,
)
batch_size = input_ids.shape[0]
config = BlenderbotConfig(
vocab_size=self.vocab_size,
d_model=24,
encoder_layers=2,
decoder_layers=2,
encoder_attention_heads=2,
decoder_attention_heads=2,
encoder_ffn_dim=32,
decoder_ffn_dim=32,
max_position_embeddings=48,
eos_token_id=2,
pad_token_id=1,
bos_token_id=0,
)
return config, input_ids, batch_size
# @timeout_decorator.timeout(1) # not working with the decorator so far
def test_lm_forward(self):
config, input_ids, batch_size = self._get_config_and_data()
lm_model = FlaxBlenderbotForConditionalGeneration(config)
outputs = lm_model(input_ids=input_ids)
expected_shape = (batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs["logits"].shape, expected_shape)
def test_lm_uneven_forward(self):
config = BlenderbotConfig(
vocab_size=self.vocab_size,
d_model=14,
encoder_layers=2,
decoder_layers=2,
encoder_attention_heads=2,
decoder_attention_heads=2,
encoder_ffn_dim=8,
decoder_ffn_dim=8,
max_position_embeddings=48,
)
lm_model = FlaxBlenderbotForConditionalGeneration(config)
context = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]], dtype=np.int64)
summary = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]], dtype=np.int64)
outputs = lm_model(input_ids=context, decoder_input_ids=summary)
expected_shape = (*summary.shape, config.vocab_size)
self.assertEqual(outputs["logits"].shape, expected_shape)
def test_shift_tokens_right(self):
input_ids = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]], dtype=np.int64)
shifted = shift_tokens_right(input_ids, 1, 2)
n_pad_before = np.equal(input_ids, 1).astype(np.float32).sum()
n_pad_after = np.equal(shifted, 1).astype(np.float32).sum()
self.assertEqual(shifted.shape, input_ids.shape)
self.assertEqual(n_pad_after, n_pad_before - 1)
self.assertTrue(np.equal(shifted[:, 0], 2).all())
@require_flax
class FlaxBlenderbotModelTest(FlaxModelTesterMixin, unittest.TestCase, FlaxGenerationTesterMixin):
is_encoder_decoder = True
all_model_classes = (
(
FlaxBlenderbotModel,
FlaxBlenderbotForConditionalGeneration,
)
if is_flax_available()
else ()
)
all_generative_model_classes = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else ()
def setUp(self):
self.model_tester = FlaxBlenderbotModelTester(self)
def test_use_cache_forward(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(model_class, config, inputs_dict)
def test_use_cache_forward_with_attn_mask(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(model_class, config, inputs_dict)
def test_encode(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
model = model_class(config)
@jax.jit
def encode_jitted(input_ids, attention_mask=None, **kwargs):
return model.encode(input_ids=input_ids, attention_mask=attention_mask)
with self.subTest("JIT Enabled"):
jitted_outputs = encode_jitted(**prepared_inputs_dict).to_tuple()
with self.subTest("JIT Disabled"):
with jax.disable_jit():
outputs = encode_jitted(**prepared_inputs_dict).to_tuple()
self.assertEqual(len(outputs), len(jitted_outputs))
for jitted_output, output in zip(jitted_outputs, outputs):
self.assertEqual(jitted_output.shape, output.shape)
def test_decode(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
model = model_class(config)
encoder_outputs = model.encode(inputs_dict["input_ids"], inputs_dict["attention_mask"])
prepared_inputs_dict = {
"decoder_input_ids": inputs_dict["decoder_input_ids"],
"decoder_attention_mask": inputs_dict["decoder_attention_mask"],
"encoder_outputs": encoder_outputs,
}
@jax.jit
def decode_jitted(decoder_input_ids, decoder_attention_mask, encoder_outputs):
return model.decode(
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
encoder_outputs=encoder_outputs,
)
with self.subTest("JIT Enabled"):
jitted_outputs = decode_jitted(**prepared_inputs_dict).to_tuple()
with self.subTest("JIT Disabled"):
with jax.disable_jit():
outputs = decode_jitted(**prepared_inputs_dict).to_tuple()
self.assertEqual(len(outputs), len(jitted_outputs))
for jitted_output, output in zip(jitted_outputs, outputs):
self.assertEqual(jitted_output.shape, output.shape)
@slow
def test_model_from_pretrained(self):
for model_class_name in self.all_model_classes:
model = model_class_name.from_pretrained("facebook/blenderbot-400M-distill")
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
input_ids = np.ones((1, 1)) * model.config.eos_token_id
outputs = model(input_ids)
self.assertIsNotNone(outputs)
@unittest.skipUnless(jax_device != "cpu", "3B test too slow on CPU.")
@slow
def test_generation_from_short_input_same_as_parlai_3B(self):
FASTER_GEN_KWARGS = {"num_beams": 1, "early_stopping": True, "min_length": 15, "max_length": 25}
TOK_DECODE_KW = {"skip_special_tokens": True, "clean_up_tokenization_spaces": True}
model = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-3B", from_pt=True)
tokenizer = BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B")
src_text = ["Sam"]
model_inputs = tokenizer(src_text, return_tensors="jax")
generated_utterances = model.generate(**model_inputs, **FASTER_GEN_KWARGS)
tgt_text = 'Sam is a great name. It means "sun" in Gaelic.'
generated_txt = tokenizer.batch_decode(generated_utterances, **TOK_DECODE_KW)
assert generated_txt[0].strip() == tgt_text
| transformers-main | tests/models/blenderbot/test_modeling_flax_blenderbot.py |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import unittest
from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available
from transformers.testing_utils import require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeq2SeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel
@require_tf
class TFBlenderbotModelTester:
config_cls = BlenderbotConfig
config_updates = {}
hidden_act = "gelu"
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_labels=False,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=20,
eos_token_id=2,
pad_token_id=1,
bos_token_id=0,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
def prepare_config_and_inputs_for_common(self):
input_ids = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size)
eos_tensor = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size), 1)
input_ids = tf.concat([input_ids, eos_tensor], axis=1)
decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
config = self.config_cls(
vocab_size=self.vocab_size,
d_model=self.hidden_size,
encoder_layers=self.num_hidden_layers,
decoder_layers=self.num_hidden_layers,
encoder_attention_heads=self.num_attention_heads,
decoder_attention_heads=self.num_attention_heads,
encoder_ffn_dim=self.intermediate_size,
decoder_ffn_dim=self.intermediate_size,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
eos_token_ids=[2],
bos_token_id=self.bos_token_id,
pad_token_id=self.pad_token_id,
decoder_start_token_id=self.pad_token_id,
**self.config_updates,
)
inputs_dict = prepare_blenderbot_inputs_dict(config, input_ids, decoder_input_ids)
return config, inputs_dict
def check_decoder_model_past_large_inputs(self, config, inputs_dict):
model = TFBlenderbotModel(config=config).get_decoder()
input_ids = inputs_dict["input_ids"]
input_ids = input_ids[:1, :]
attention_mask = inputs_dict["attention_mask"][:1, :]
head_mask = inputs_dict["head_mask"]
self.batch_size = 1
# first forward pass
outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True)
output, past_key_values = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_attn_mask = tf.cast(ids_tensor((self.batch_size, 3), 2), tf.int8)
# append to next input_ids and
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
next_attention_mask = tf.concat([attention_mask, next_attn_mask], axis=-1)
output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)[0]
output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[0]
self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1])
# select random slice
random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx]
output_from_past_slice = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)
def prepare_blenderbot_inputs_dict(
config,
input_ids,
decoder_input_ids,
attention_mask=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
):
if attention_mask is None:
attention_mask = tf.cast(tf.math.not_equal(input_ids, config.pad_token_id), tf.int8)
if decoder_attention_mask is None:
decoder_attention_mask = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.int8),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id), tf.int8),
],
axis=-1,
)
if head_mask is None:
head_mask = tf.ones((config.encoder_layers, config.encoder_attention_heads))
if decoder_head_mask is None:
decoder_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads))
if cross_attn_head_mask is None:
cross_attn_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads))
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class TFBlenderbotModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else ()
all_generative_model_classes = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else ()
pipeline_model_mapping = (
{
"conversational": TFBlenderbotForConditionalGeneration,
"feature-extraction": TFBlenderbotModel,
"summarization": TFBlenderbotForConditionalGeneration,
"text2text-generation": TFBlenderbotForConditionalGeneration,
"translation": TFBlenderbotForConditionalGeneration,
}
if is_tf_available()
else {}
)
is_encoder_decoder = True
test_pruning = False
test_onnx = False
def setUp(self):
self.model_tester = TFBlenderbotModelTester(self)
self.config_tester = ConfigTester(self, config_class=BlenderbotConfig)
def test_config(self):
self.config_tester.run_common_tests()
def test_decoder_model_past_large_inputs(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*config_and_inputs)
@require_tokenizers
@require_tf
class TFBlenderbot400MIntegrationTests(unittest.TestCase):
src_text = ["My friends are cool but they eat too many carbs."]
model_name = "facebook/blenderbot-400M-distill"
@cached_property
def tokenizer(self):
return BlenderbotTokenizer.from_pretrained(self.model_name)
@cached_property
def model(self):
model = TFAutoModelForSeq2SeqLM.from_pretrained(self.model_name)
return model
@slow
def test_generation_from_long_input(self):
model_inputs = self.tokenizer(self.src_text, return_tensors="tf")
generated_ids = self.model.generate(
model_inputs.input_ids,
)
generated_words = self.tokenizer.batch_decode(generated_ids.numpy(), skip_special_tokens=True)[0]
assert (
generated_words
== " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?"
)
| transformers-main | tests/models/blenderbot/test_modeling_tf_blenderbot.py |
#!/usr/bin/env python3
# coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for Blenderbot Tokenizers, including common tests for BlenderbotSmallTokenizer."""
import unittest
from transformers import BlenderbotTokenizer, BlenderbotTokenizerFast
from transformers.utils import cached_property
class Blenderbot3BTokenizerTests(unittest.TestCase):
@cached_property
def tokenizer_3b(self):
return BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B")
@cached_property
def rust_tokenizer_3b(self):
return BlenderbotTokenizerFast.from_pretrained("facebook/blenderbot-3B")
def test_encode_decode_cycle(self):
tok = self.tokenizer_3b
src_text = " I am a small frog."
encoded = tok([src_text], padding=False, truncation=False)["input_ids"]
decoded = tok.batch_decode(encoded, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
assert src_text == decoded
def test_encode_decode_cycle_rust_tokenizer(self):
tok = self.rust_tokenizer_3b
src_text = " I am a small frog."
encoded = tok([src_text], padding=False, truncation=False)["input_ids"]
decoded = tok.batch_decode(encoded, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
assert src_text == decoded
def test_3B_tokenization_same_as_parlai(self):
assert self.tokenizer_3b.add_prefix_space
assert self.tokenizer_3b([" Sam", "Sam"]).input_ids == [[5502, 2], [5502, 2]]
def test_3B_tokenization_same_as_parlai_rust_tokenizer(self):
assert self.rust_tokenizer_3b.add_prefix_space
assert self.rust_tokenizer_3b([" Sam", "Sam"]).input_ids == [[5502, 2], [5502, 2]]
| transformers-main | tests/models/blenderbot/test_tokenization_blenderbot.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import itertools
import random
import unittest
import numpy as np
from transformers import ClapFeatureExtractor
from transformers.testing_utils import require_torch, require_torchaudio
from transformers.trainer_utils import set_seed
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_torch_available():
import torch
global_rng = random.Random()
# Copied from tests.models.whisper.test_feature_extraction_whisper.floats_list
def floats_list(shape, scale=1.0, rng=None, name=None):
"""Creates a random float32 tensor"""
if rng is None:
rng = global_rng
values = []
for batch_idx in range(shape[0]):
values.append([])
for _ in range(shape[1]):
values[-1].append(rng.random() * scale)
return values
@require_torch
@require_torchaudio
# Copied from tests.models.whisper.test_feature_extraction_whisper.WhisperFeatureExtractionTester with Whisper->Clap
class ClapFeatureExtractionTester(unittest.TestCase):
def __init__(
self,
parent,
batch_size=7,
min_seq_length=400,
max_seq_length=2000,
feature_size=10,
hop_length=160,
chunk_length=8,
padding_value=0.0,
sampling_rate=4_000,
return_attention_mask=False,
do_normalize=True,
):
self.parent = parent
self.batch_size = batch_size
self.min_seq_length = min_seq_length
self.max_seq_length = max_seq_length
self.seq_length_diff = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
self.padding_value = padding_value
self.sampling_rate = sampling_rate
self.return_attention_mask = return_attention_mask
self.do_normalize = do_normalize
self.feature_size = feature_size
self.chunk_length = chunk_length
self.hop_length = hop_length
def prepare_feat_extract_dict(self):
return {
"feature_size": self.feature_size,
"hop_length": self.hop_length,
"chunk_length": self.chunk_length,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def prepare_inputs_for_common(self, equal_length=False, numpify=False):
def _flatten(list_of_lists):
return list(itertools.chain(*list_of_lists))
if equal_length:
speech_inputs = [floats_list((self.max_seq_length, self.feature_size)) for _ in range(self.batch_size)]
else:
# make sure that inputs increase in size
speech_inputs = [
floats_list((x, self.feature_size))
for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff)
]
if numpify:
speech_inputs = [np.asarray(x) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
# Copied from tests.models.whisper.test_feature_extraction_whisper.WhisperFeatureExtractionTest with Whisper->Clap
class ClapFeatureExtractionTest(SequenceFeatureExtractionTestMixin, unittest.TestCase):
feature_extraction_class = ClapFeatureExtractor
def setUp(self):
self.feat_extract_tester = ClapFeatureExtractionTester(self)
def test_call(self):
# Tests that all call wrap to encode_plus and batch_encode_plus
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
# create three inputs of length 800, 1000, and 1200
speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs]
# Test feature size
input_features = feature_extractor(np_speech_inputs, padding="max_length", return_tensors="np").input_features
self.assertTrue(input_features.ndim == 4)
# Test not batched input
encoded_sequences_1 = feature_extractor(speech_inputs[0], return_tensors="np").input_features
encoded_sequences_2 = feature_extractor(np_speech_inputs[0], return_tensors="np").input_features
self.assertTrue(np.allclose(encoded_sequences_1, encoded_sequences_2, atol=1e-3))
# Test batched
encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_features
encoded_sequences_2 = feature_extractor(np_speech_inputs, return_tensors="np").input_features
for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))
# Test 2-D numpy arrays are batched.
speech_inputs = [floats_list((1, x))[0] for x in (800, 800, 800)]
np_speech_inputs = np.asarray(speech_inputs)
encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_features
encoded_sequences_2 = feature_extractor(np_speech_inputs, return_tensors="np").input_features
for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))
def test_double_precision_pad(self):
import torch
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
np_speech_inputs = np.random.rand(100, 32).astype(np.float64)
py_speech_inputs = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
np_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="np")
self.assertTrue(np_processed.input_features.dtype == np.float32)
pt_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="pt")
self.assertTrue(pt_processed.input_features.dtype == torch.float32)
def _load_datasamples(self, num_samples):
from datasets import load_dataset
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
# automatic decoding with librispeech
speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"]
return [x["array"] for x in speech_samples]
def test_integration_fusion_short_input(self):
# fmt: off
EXPECTED_INPUT_FEATURES = torch.tensor(
[
[
# "repeat"
[
-20.1049, -19.9764, -20.0731, -19.5055, -27.5018, -22.5761, -26.6071,
-29.0091, -26.4659, -26.4236, -28.8808, -31.9190, -32.4848, -34.1186,
-34.0340, -32.8803, -30.9895, -37.6238, -38.0347, -40.6263, -36.3496,
-42.2533, -32.9132, -27.7068, -29.3704, -30.3208, -22.5972, -27.1494,
-30.1975, -31.1005, -29.9372, -27.1917, -25.9806, -30.3489, -33.2380,
-31.9062, -36.5498, -32.8721, -30.5629, -27.4674, -22.2232, -22.5653,
-16.3868, -17.2713, -25.9738, -30.6256, -34.3766, -31.1292, -27.8950,
-27.0588, -25.6206, -23.0712, -26.6050, -28.0112, -32.6847, -34.3396,
-34.9738, -35.8463, -39.2324, -37.1188, -33.3705, -28.9230, -28.9112,
-28.6578
],
[
-36.7233, -30.0587, -24.8431, -18.4611, -16.8149, -23.9319, -32.8580,
-34.2264, -27.4332, -26.8027, -29.2721, -33.9033, -39.3403, -35.3232,
-26.8076, -28.6460, -35.2780, -36.0738, -35.4996, -37.7631, -39.5056,
-34.7112, -36.8741, -34.1066, -32.9474, -33.6604, -27.9937, -30.9594,
-26.2928, -32.0485, -29.2151, -29.2917, -32.7308, -29.6542, -31.1454,
-37.0088, -32.3388, -37.3086, -31.1024, -27.2889, -19.6788, -21.1488,
-19.5144, -14.8889, -21.2006, -24.7488, -27.7940, -31.1058, -27.5068,
-21.5737, -22.3780, -21.5151, -26.3086, -30.9223, -33.5043, -32.0307,
-37.3806, -41.6188, -45.6650, -40.5131, -32.5023, -26.7385, -26.3709,
-26.7761
]
],
[
# "repeatpad"
[
-25.7496, -24.9339, -24.1357, -23.1271, -23.7853, -26.1264, -29.1456,
-33.2060, -37.8179, -42.4833, -41.9386, -41.2164, -42.3566, -44.2575,
-40.0217, -36.6794, -36.6974, -38.7819, -42.0880, -45.5560, -39.9368,
-36.3219, -35.5981, -36.6434, -35.1851, -33.0684, -30.0437, -30.2010,
-34.3476, -42.1373, -38.8039, -37.3355, -40.4576, -41.0485, -40.6377,
-38.2275, -42.7481, -34.6084, -34.7048, -29.5149, -26.3935, -26.8952,
-34.1336, -26.2904, -28.2571, -32.5642, -36.7240, -35.5334, -38.2451,
-34.8177, -28.9754, -25.1096, -27.9768, -32.3184, -37.0269, -40.5136,
-40.8061, -36.4948, -40.3767, -38.9671, -38.3552, -34.1250, -30.9035,
-31.6112
],
[
-100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
-100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
-100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
-100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
-100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
-100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
-100., -100., -100., -100.
]
],
[
# None, same as "repeatpad"
[
-25.7496, -24.9339, -24.1357, -23.1271, -23.7853, -26.1264, -29.1456,
-33.2060, -37.8179, -42.4833, -41.9386, -41.2164, -42.3566, -44.2575,
-40.0217, -36.6794, -36.6974, -38.7819, -42.0880, -45.5560, -39.9368,
-36.3219, -35.5981, -36.6434, -35.1851, -33.0684, -30.0437, -30.2010,
-34.3476, -42.1373, -38.8039, -37.3355, -40.4576, -41.0485, -40.6377,
-38.2275, -42.7481, -34.6084, -34.7048, -29.5149, -26.3935, -26.8952,
-34.1336, -26.2904, -28.2571, -32.5642, -36.7240, -35.5334, -38.2451,
-34.8177, -28.9754, -25.1096, -27.9768, -32.3184, -37.0269, -40.5136,
-40.8061, -36.4948, -40.3767, -38.9671, -38.3552, -34.1250, -30.9035,
-31.6112
],
[
-100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
-100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
-100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
-100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
-100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
-100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
-100., -100., -100., -100.
]
],
[
# "pad"
[
-58.5260, -58.1155, -57.8623, -57.5059, -57.9178, -58.7171, -59.2343,
-59.9833, -60.9764, -62.0722, -63.5723, -65.7111, -67.5153, -68.7088,
-69.8325, -70.2987, -70.1548, -70.6233, -71.5702, -72.5159, -72.3821,
-70.1817, -67.0315, -64.1387, -62.2202, -61.0717, -60.4951, -61.6005,
-63.7358, -67.1400, -67.6185, -65.5635, -64.3593, -63.7138, -63.6209,
-66.4950, -72.6284, -63.3961, -56.8334, -52.7319, -50.6310, -51.3728,
-53.5619, -51.9190, -50.9708, -52.8684, -55.8073, -58.8227, -60.6991,
-57.0547, -52.7611, -51.4388, -54.4892, -60.8950, -66.1024, -72.4352,
-67.8538, -65.1463, -68.7588, -72.3080, -68.4864, -60.4688, -57.1516,
-60.9460
],
[
-100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
-100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
-100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
-100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
-100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
-100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
-100., -100., -100., -100.
]
]
]
)
# fmt: on
MEL_BIN = [[976, 977], [976, 977], [976, 977], [196, 197]]
input_speech = self._load_datasamples(1)
feature_extractor = ClapFeatureExtractor()
for padding, EXPECTED_VALUES, idx_in_mel in zip(
["repeat", "repeatpad", None, "pad"], EXPECTED_INPUT_FEATURES, MEL_BIN
):
input_features = feature_extractor(input_speech, return_tensors="pt", padding=padding).input_features
self.assertEqual(input_features.shape, (1, 4, 1001, 64))
self.assertTrue(torch.allclose(input_features[0, 0, idx_in_mel[0]], EXPECTED_VALUES[0], atol=1e-4))
self.assertTrue(torch.allclose(input_features[0, 0, idx_in_mel[1]], EXPECTED_VALUES[1], atol=1e-4))
self.assertTrue(torch.all(input_features[0, 0] == input_features[0, 1]))
self.assertTrue(torch.all(input_features[0, 0] == input_features[0, 2]))
self.assertTrue(torch.all(input_features[0, 0] == input_features[0, 3]))
def test_integration_rand_trunc_short_input(self):
# fmt: off
EXPECTED_INPUT_FEATURES = torch.tensor(
[
[
# "repeat"
[
-35.0483, -35.7865, -38.2884, -40.0220, -42.5349, -44.9489, -43.2228,
-44.6499, -47.6253, -49.6983, -50.2127, -52.5483, -52.2223, -51.9157,
-49.4082, -51.2024, -57.0476, -56.2803, -58.1618, -60.7474, -55.0389,
-60.9514, -59.3080, -50.4419, -47.8172, -48.7570, -55.2552, -44.5036,
-44.1148, -50.8218, -51.0968, -52.9408, -51.1037, -48.9789, -47.5897,
-52.0915, -55.4216, -54.1529, -58.0149, -58.0866, -52.7798, -52.6154,
-45.9144, -46.2008, -40.7603, -41.1703, -50.2250, -55.4112, -59.4818,
-54.5795, -53.5552, -51.3668, -49.8358, -50.3186, -54.0452, -57.6030,
-61.1589, -61.6415, -63.2756, -66.5890, -62.8543, -58.0665, -56.7203,
-56.7632
],
[
-47.1320, -37.9961, -34.0076, -36.7109, -47.9057, -48.4924, -43.8371,
-44.9728, -48.1689, -52.9141, -57.6077, -52.8520, -44.8502, -45.6764,
-51.8389, -56.4284, -54.6972, -53.4889, -55.6077, -58.7149, -60.3760,
-54.0136, -56.0730, -55.9870, -54.4017, -53.1094, -53.5640, -50.3064,
-49.9520, -49.3239, -48.1668, -53.4852, -50.4561, -50.8688, -55.1970,
-51.5538, -53.0260, -59.6933, -54.8183, -59.5895, -55.9589, -50.3761,
-44.1282, -44.1463, -43.8540, -39.1168, -45.3893, -49.5542, -53.1505,
-55.2870, -50.3921, -46.8511, -47.4444, -49.5633, -56.0034, -59.0815,
-59.0018, -63.7589, -69.5745, -71.5789, -64.0498, -56.0558, -54.3475,
-54.7004
]
],
[
# "repeatpad"
[
-40.3184, -39.7186, -39.8807, -41.6508, -45.3613, -50.4785, -57.0297,
-60.4944, -59.1642, -58.9495, -60.4661, -62.5300, -58.4759, -55.2865,
-54.8973, -56.0780, -57.5482, -59.6557, -64.3309, -65.0330, -59.4941,
-56.8552, -55.0519, -55.9817, -56.9739, -55.2827, -54.5312, -51.4141,
-50.4289, -51.9131, -57.5821, -63.9979, -59.9180, -58.9489, -62.3247,
-62.6975, -63.7948, -60.5250, -64.6107, -58.7905, -57.0229, -54.3084,
-49.8445, -50.4459, -57.0172, -50.6425, -52.5992, -57.4207, -61.6358,
-60.6540, -63.1968, -57.4360, -52.3263, -51.7695, -57.1946, -62.9610,
-66.7359, -67.0335, -63.7440, -68.1775, -66.3798, -62.8650, -59.8972,
-59.3139
],
[
-100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
-100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
-100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
-100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
-100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
-100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
-100., -100., -100., -100.
]
],
[
# None, same as "repeatpad"
[
-40.3184, -39.7186, -39.8807, -41.6508, -45.3613, -50.4785, -57.0297,
-60.4944, -59.1642, -58.9495, -60.4661, -62.5300, -58.4759, -55.2865,
-54.8973, -56.0780, -57.5482, -59.6557, -64.3309, -65.0330, -59.4941,
-56.8552, -55.0519, -55.9817, -56.9739, -55.2827, -54.5312, -51.4141,
-50.4289, -51.9131, -57.5821, -63.9979, -59.9180, -58.9489, -62.3247,
-62.6975, -63.7948, -60.5250, -64.6107, -58.7905, -57.0229, -54.3084,
-49.8445, -50.4459, -57.0172, -50.6425, -52.5992, -57.4207, -61.6358,
-60.6540, -63.1968, -57.4360, -52.3263, -51.7695, -57.1946, -62.9610,
-66.7359, -67.0335, -63.7440, -68.1775, -66.3798, -62.8650, -59.8972,
-59.3139
],
[
-100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
-100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
-100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
-100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
-100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
-100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
-100., -100., -100., -100.
]
],
[
# "pad"
[
-73.3190, -73.6349, -74.1451, -74.8539, -75.7476, -76.5438, -78.5540,
-80.1339, -81.8911, -83.7560, -85.5387, -86.7466, -88.2072, -88.6090,
-88.8243, -89.0784, -89.4364, -89.8179, -91.3146, -92.2833, -91.7221,
-90.9440, -88.1315, -86.2425, -84.2281, -82.4893, -81.5993, -81.1328,
-81.5759, -83.1068, -85.6525, -88.9520, -88.9187, -87.2703, -86.3052,
-85.7188, -85.8802, -87.9996, -95.0464, -88.0133, -80.8561, -76.5597,
-74.2816, -74.8109, -77.3615, -76.0719, -75.3426, -77.6428, -80.9663,
-84.5275, -84.9907, -80.5205, -77.2851, -78.6259, -84.7740, -91.4535,
-98.1894, -94.3872, -92.3735, -97.6807, -98.1501, -91.4344, -85.2842,
-88.4338
],
[
-100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
-100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
-100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
-100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
-100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
-100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
-100., -100., -100., -100.
]
]
]
)
# fmt: on
MEL_BIN = [[976, 977], [976, 977], [976, 977], [196, 197]]
input_speech = self._load_datasamples(1)
feature_extractor = ClapFeatureExtractor()
for padding, EXPECTED_VALUES, idx_in_mel in zip(
["repeat", "repeatpad", None, "pad"], EXPECTED_INPUT_FEATURES, MEL_BIN
):
input_features = feature_extractor(
input_speech, return_tensors="pt", truncation="rand_trunc", padding=padding
).input_features
self.assertEqual(input_features.shape, (1, 1, 1001, 64))
self.assertTrue(torch.allclose(input_features[0, 0, idx_in_mel[0]], EXPECTED_VALUES[0], atol=1e-4))
self.assertTrue(torch.allclose(input_features[0, 0, idx_in_mel[1]], EXPECTED_VALUES[1], atol=1e-4))
def test_integration_fusion_long_input(self):
# fmt: off
EXPECTED_INPUT_FEATURES = torch.tensor(
[
[
-11.1830, -10.1894, -8.6051, -4.8578, -1.3268, -8.4606, -14.5453,
-9.2017, 0.5781, 16.2129, 14.8289, 3.6326, -3.8794, -6.5544,
-2.4408, 1.9531, 6.0967, 1.7590, -7.6730, -6.1571, 2.0052,
16.6694, 20.6447, 21.2145, 13.4972, 15.9043, 16.8987, 4.1766,
11.9428, 21.2372, 12.3016, 4.8604, 6.7241, 1.8543, 4.9235,
5.3188, -0.9897, -1.2416, -6.5864, 2.9529, 2.9274, 6.4753,
10.2300, 11.2127, 3.4042, -1.0055, -6.0475, -6.7524, -3.9801,
-1.4434, 0.4740, -0.1584, -4.5457, -8.5746, -8.8428, -13.1475,
-9.6079, -8.5798, -4.1143, -3.7966, -7.1651, -6.1517, -8.0258,
-12.1486
],
[
-10.2017, -7.9924, -5.9517, -3.9372, -1.9735, -4.3130, 16.1647,
25.0592, 23.5532, 14.4974, -7.0778, -10.2262, 6.4782, 20.3454,
19.4269, 1.7976, -16.5070, 4.9380, 12.3390, 6.9285, -13.6325,
-8.5298, 1.0839, -5.9629, -8.4812, 3.1331, -2.0963, -16.6046,
-14.0070, -17.5707, -13.2080, -17.2168, -17.7770, -12.1111, -18.6184,
-17.1897, -13.9801, -12.0426, -23.5400, -25.6823, -23.5813, -18.7847,
-20.5473, -25.6458, -19.7585, -27.6007, -28.9276, -24.8948, -25.4458,
-22.2807, -19.6613, -19.2669, -15.7813, -19.6821, -24.3439, -22.2598,
-28.2631, -30.1017, -32.7646, -33.6525, -27.5639, -22.0548, -27.8054,
-29.6947
],
[
-9.2078, -7.2963, -6.2095, -7.9959, -2.9280, -11.1843, -6.1490,
5.0733, 19.2957, 21.4578, 14.6803, -3.3153, -6.3334, -2.3542,
6.9509, 15.2965, 14.6620, 5.2075, -0.0873, 1.1919, 18.1986,
20.8470, 10.8035, 2.2516, 7.6905, 7.7427, -1.2543, -5.0018,
0.9809, -2.1584, -5.4580, -5.4760, -11.8888, -9.0605, -8.4638,
-9.9897, -0.0540, -5.1629, 0.0483, -4.1504, -4.8140, -7.8236,
-9.0622, -10.1742, -8.9597, -11.5380, -16.5603, -17.1858, -17.5032,
-20.9326, -23.9543, -25.2602, -25.3429, -27.4536, -26.8859, -22.7852,
-25.8288, -24.8399, -23.8893, -24.2096, -26.5415, -23.7281, -25.6851,
-22.3629
],
[
1.3448, 2.9883, 4.0366, -0.8019, -10.4191, -10.0883, -4.3812,
0.8136, 2.1579, 0.0832, 1.0949, -0.9759, -5.5319, -4.6009,
-6.5452, -14.9155, -20.1584, -9.3611, -2.4271, 1.4031, 4.9910,
8.6916, 8.6785, 10.1973, 9.9029, 5.3840, 7.5336, 5.2803,
2.8144, -0.3138, 2.2216, 5.7328, 7.5574, 7.7402, 1.0681,
3.1049, 7.0742, 6.5588, 7.3712, 5.7881, 8.6874, 8.7725,
2.8133, -4.5809, -6.1317, -5.1719, -5.0192, -9.0977, -10.9391,
-6.0769, 1.6016, -0.8965, -7.2252, -7.8632, -11.4468, -11.7446,
-10.7447, -7.0601, -2.7748, -4.1798, -2.8433, -3.1352, 0.8097,
6.4212
]
]
)
# fmt: on
MEL_BIN = 963
input_speech = torch.cat([torch.tensor(x) for x in self._load_datasamples(5)])
feature_extractor = ClapFeatureExtractor()
for padding, EXPECTED_VALUES, block_idx in zip(
["repeat", "repeatpad", None, "pad"], EXPECTED_INPUT_FEATURES, [1, 2, 0, 3]
):
set_seed(987654321)
input_features = feature_extractor(input_speech, return_tensors="pt", padding=padding).input_features
self.assertEqual(input_features.shape, (1, 4, 1001, 64))
self.assertTrue(torch.allclose(input_features[0, block_idx, MEL_BIN], EXPECTED_VALUES, atol=1e-3))
def test_integration_rand_trunc_long_input(self):
# fmt: off
EXPECTED_INPUT_FEATURES = torch.tensor(
[
[
-35.4022, -32.7555, -31.2004, -32.7764, -42.5770, -41.6339, -43.1630,
-44.5080, -44.3029, -48.9628, -39.5022, -39.2105, -43.1350, -43.2195,
-48.4894, -52.2344, -57.6891, -52.2228, -45.5155, -44.2893, -43.4697,
-46.6702, -43.7490, -40.4819, -42.7275, -46.3434, -46.8412, -41.2003,
-43.1681, -46.2948, -46.1925, -47.8333, -45.6812, -44.9182, -41.7786,
-43.3809, -44.3199, -42.8814, -45.4771, -46.7114, -46.9746, -42.7090,
-41.6057, -38.3965, -40.1980, -41.0263, -34.1256, -28.3289, -29.0201,
-30.4453, -29.5561, -30.1734, -25.9406, -19.0897, -15.8452, -20.1351,
-23.6515, -23.1194, -17.1845, -19.4399, -23.6527, -22.8768, -20.7279,
-22.7864
],
[
-35.7719, -27.2566, -23.6964, -27.5521, 0.2510, 7.4391, 1.3917,
-13.3417, -28.1758, -17.0856, -5.7723, -0.8000, -7.8832, -15.5548,
-30.5935, -24.7571, -13.7009, -10.3432, -21.2464, -24.8118, -19.4080,
-14.9779, -11.7991, -18.4485, -20.1982, -17.3652, -20.6328, -28.2967,
-25.7819, -21.8962, -28.5083, -29.5719, -30.2120, -35.7033, -31.8218,
-34.0408, -37.7744, -33.9653, -31.3009, -30.9063, -28.6153, -32.2202,
-28.5456, -28.8579, -32.5170, -37.9152, -43.0052, -46.4849, -44.0786,
-39.1933, -33.2757, -31.6313, -42.6386, -52.3679, -53.5785, -55.6444,
-47.0050, -47.6459, -56.6361, -60.6781, -61.5244, -55.8272, -60.4832,
-58.1897
],
[
-38.2686, -36.6285, -32.5835, -35.1693, -37.7938, -37.4035, -35.3132,
-35.6083, -36.3609, -40.9472, -36.7846, -36.1544, -38.9076, -39.3618,
-35.4953, -34.2809, -39.9466, -39.7433, -34.8347, -37.5674, -41.5689,
-38.9161, -34.3947, -30.2924, -30.4841, -34.5831, -28.9261, -24.8849,
-31.2324, -27.1622, -27.2107, -25.9385, -30.1691, -30.9223, -23.9495,
-25.6047, -26.7119, -28.5523, -27.7481, -32.8427, -35.4650, -31.0399,
-31.2073, -30.5163, -22.9819, -20.8892, -19.2510, -24.7905, -28.9426,
-28.1998, -26.7386, -25.0140, -27.9223, -32.9913, -33.1864, -34.9742,
-38.5995, -39.6990, -29.3203, -22.4697, -25.6415, -33.5608, -33.0945,
-27.1716
],
[
-33.2015, -28.7741, -21.9457, -23.4888, -32.1072, -8.6307, 3.2724,
5.9157, -0.9221, -30.1814, -31.0015, -27.4508, -27.0477, -9.5342,
0.3221, 0.6511, -7.1596, -25.9707, -32.8924, -32.2300, -13.8974,
-0.4895, 0.9168, -10.7663, -27.1176, -35.0829, -11.6859, -4.8855,
-11.8898, -26.6167, -5.6192, -3.8443, -19.7947, -14.4101, -8.6236,
-21.2458, -21.0801, -17.9136, -24.4663, -18.6333, -24.8085, -15.5854,
-15.4344, -11.5046, -22.3625, -27.3387, -32.4353, -30.9670, -31.3789,
-35.4044, -34.4591, -25.2433, -28.0773, -33.8736, -33.0224, -33.3155,
-38.5302, -39.2741, -36.6395, -34.7729, -32.4483, -42.4001, -49.2857,
-39.1682
]
]
)
# fmt: on
MEL_BIN = 963
SEEDS = [987654321, 1234, 666, 5555]
input_speech = torch.cat([torch.tensor(x) for x in self._load_datasamples(5)])
feature_extractor = ClapFeatureExtractor()
for padding, EXPECTED_VALUES, seed in zip(
["repeat", "repeatpad", None, "pad"], EXPECTED_INPUT_FEATURES, SEEDS
):
set_seed(seed)
input_features = feature_extractor(
input_speech, return_tensors="pt", truncation="rand_trunc", padding=padding
).input_features
self.assertEqual(input_features.shape, (1, 1, 1001, 64))
self.assertTrue(torch.allclose(input_features[0, 0, MEL_BIN], EXPECTED_VALUES, atol=1e-4))
| transformers-main | tests/models/clap/test_feature_extraction_clap.py |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch CLAP model. """
import inspect
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers import ClapAudioConfig, ClapConfig, ClapProcessor, ClapTextConfig
from transformers.testing_utils import require_torch, slow, torch_device
from transformers.utils import is_torch_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
ModelTesterMixin,
_config_zero_init,
floats_tensor,
ids_tensor,
random_attention_mask,
)
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
ClapAudioModel,
ClapAudioModelWithProjection,
ClapModel,
ClapTextModel,
ClapTextModelWithProjection,
)
from transformers.models.clap.modeling_clap import CLAP_PRETRAINED_MODEL_ARCHIVE_LIST
class ClapAudioModelTester:
def __init__(
self,
parent,
batch_size=12,
image_size=60,
num_mel_bins=16,
window_size=4,
spec_size=64,
patch_size=2,
patch_stride=2,
seq_length=16,
freq_ratio=2,
num_channels=3,
is_training=True,
hidden_size=32,
patch_embeds_hidden_size=16,
projection_dim=32,
depths=[2, 2],
num_hidden_layers=2,
num_heads=[2, 2],
intermediate_size=37,
dropout=0.1,
attention_dropout=0.1,
initializer_range=0.02,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.num_mel_bins = num_mel_bins
self.window_size = window_size
self.patch_size = patch_size
self.num_channels = num_channels
self.is_training = is_training
self.hidden_size = hidden_size
self.projection_dim = projection_dim
self.num_hidden_layers = num_hidden_layers
self.depths = depths
self.num_heads = num_heads
self.num_attention_heads = num_heads[0]
self.seq_length = seq_length
self.spec_size = spec_size
self.freq_ratio = freq_ratio
self.patch_stride = patch_stride
self.patch_embeds_hidden_size = patch_embeds_hidden_size
self.intermediate_size = intermediate_size
self.dropout = dropout
self.attention_dropout = attention_dropout
self.initializer_range = initializer_range
self.scope = scope
def prepare_config_and_inputs(self):
input_features = floats_tensor([self.batch_size, 1, self.hidden_size, self.num_mel_bins])
config = self.get_config()
return config, input_features
def get_config(self):
return ClapAudioConfig(
image_size=self.image_size,
patch_size=self.patch_size,
num_mel_bins=self.num_mel_bins,
window_size=self.window_size,
num_channels=self.num_channels,
hidden_size=self.hidden_size,
patch_stride=self.patch_stride,
projection_dim=self.projection_dim,
depths=self.depths,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_heads,
intermediate_size=self.intermediate_size,
dropout=self.dropout,
attention_dropout=self.attention_dropout,
initializer_range=self.initializer_range,
spec_size=self.spec_size,
freq_ratio=self.freq_ratio,
patch_embeds_hidden_size=self.patch_embeds_hidden_size,
)
def create_and_check_model(self, config, input_features):
model = ClapAudioModel(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(input_features)
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def create_and_check_model_with_projection(self, config, input_features):
model = ClapAudioModelWithProjection(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(input_features)
self.parent.assertEqual(result.audio_embeds.shape, (self.batch_size, self.projection_dim))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_features = config_and_inputs
inputs_dict = {"input_features": input_features}
return config, inputs_dict
@require_torch
class ClapAudioModelTest(ModelTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as CLAP does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (ClapAudioModel, ClapAudioModelWithProjection) if is_torch_available() else ()
fx_compatible = False
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
def setUp(self):
self.model_tester = ClapAudioModelTester(self)
self.config_tester = ConfigTester(self, config_class=ClapAudioConfig, has_text_modality=False, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="ClapAudioModel does not use inputs_embeds")
def test_inputs_embeds(self):
pass
def test_model_common_attributes(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.hidden_states
expected_num_layers = getattr(
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
)
self.assertEqual(len(hidden_states), expected_num_layers)
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[2 * self.model_tester.patch_embeds_hidden_size, 2 * self.model_tester.patch_embeds_hidden_size],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
@unittest.skip(reason="ClapAudioModel does not output any loss term in the forward pass")
def test_retain_grad_hidden_states_attentions(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["input_features"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_with_projection(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_with_projection(*config_and_inputs)
@unittest.skip(reason="ClapAudioModel does not output any loss term in the forward pass")
def test_training(self):
pass
@unittest.skip(reason="ClapAudioModel does not output any loss term in the forward pass")
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(reason="ClapAudioModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="ClapAudioModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_to_base(self):
pass
@slow
def test_model_from_pretrained(self):
for model_name in CLAP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = ClapAudioModel.from_pretrained(model_name)
self.assertIsNotNone(model)
@slow
def test_model_with_projection_from_pretrained(self):
for model_name in CLAP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = ClapAudioModelWithProjection.from_pretrained(model_name)
self.assertIsNotNone(model)
self.assertTrue(hasattr(model, "audio_projection"))
class ClapTextModelTester:
def __init__(
self,
parent,
batch_size=12,
seq_length=7,
is_training=True,
use_input_mask=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
projection_dim=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
dropout=0.1,
attention_dropout=0.1,
max_position_embeddings=512,
initializer_range=0.02,
scope=None,
projection_hidden_act="relu",
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.projection_dim = projection_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.dropout = dropout
self.attention_dropout = attention_dropout
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.scope = scope
self.projection_hidden_act = projection_hidden_act
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
if input_mask is not None:
batch_size, seq_length = input_mask.shape
rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,))
for batch_idx, start_index in enumerate(rnd_start_indices):
input_mask[batch_idx, :start_index] = 1
input_mask[batch_idx, start_index:] = 0
config = self.get_config()
return config, input_ids, input_mask
def get_config(self):
return ClapTextConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
projection_dim=self.projection_dim,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
dropout=self.dropout,
attention_dropout=self.attention_dropout,
max_position_embeddings=self.max_position_embeddings,
initializer_range=self.initializer_range,
projection_hidden_act=self.projection_hidden_act,
)
def create_and_check_model(self, config, input_ids, input_mask):
model = ClapTextModel(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(input_ids, attention_mask=input_mask)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def create_and_check_model_with_projection(self, config, input_ids, input_mask):
model = ClapTextModelWithProjection(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(input_ids, attention_mask=input_mask)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.text_embeds.shape, (self.batch_size, self.projection_dim))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, input_mask = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class ClapTextModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (ClapTextModel, ClapTextModelWithProjection) if is_torch_available() else ()
fx_compatible = False
test_pruning = False
test_head_masking = False
def setUp(self):
self.model_tester = ClapTextModelTester(self)
self.config_tester = ConfigTester(self, config_class=ClapTextConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_with_projection(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_with_projection(*config_and_inputs)
@unittest.skip(reason="ClapTextModel does not output any loss term in the forward pass")
def test_training(self):
pass
@unittest.skip(reason="ClapTextModel does not output any loss term in the forward pass")
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(reason="ClapTextModel does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="ClapTextModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="ClapTextModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_to_base(self):
pass
@slow
def test_model_from_pretrained(self):
for model_name in CLAP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = ClapTextModel.from_pretrained(model_name)
self.assertIsNotNone(model)
@slow
def test_model_with_projection_from_pretrained(self):
for model_name in CLAP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = ClapTextModelWithProjection.from_pretrained(model_name)
self.assertIsNotNone(model)
self.assertTrue(hasattr(model, "text_projection"))
class ClapModelTester:
def __init__(self, parent, text_kwargs=None, audio_kwargs=None, is_training=True):
if text_kwargs is None:
text_kwargs = {}
if audio_kwargs is None:
audio_kwargs = {}
self.parent = parent
self.text_model_tester = ClapTextModelTester(parent, **text_kwargs)
self.audio_model_tester = ClapAudioModelTester(parent, **audio_kwargs)
self.is_training = is_training
def prepare_config_and_inputs(self):
_, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs()
_, input_features = self.audio_model_tester.prepare_config_and_inputs()
config = self.get_config()
return config, input_ids, attention_mask, input_features
def get_config(self):
return ClapConfig.from_text_audio_configs(
self.text_model_tester.get_config(), self.audio_model_tester.get_config(), projection_dim=64
)
def create_and_check_model(self, config, input_ids, attention_mask, input_features):
model = ClapModel(config).to(torch_device).eval()
with torch.no_grad():
result = model(input_ids, input_features, attention_mask)
self.parent.assertEqual(
result.logits_per_audio.shape, (self.audio_model_tester.batch_size, self.text_model_tester.batch_size)
)
self.parent.assertEqual(
result.logits_per_text.shape, (self.text_model_tester.batch_size, self.audio_model_tester.batch_size)
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, attention_mask, input_features = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"input_features": input_features,
"return_loss": True,
}
return config, inputs_dict
@require_torch
class ClapModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (ClapModel,) if is_torch_available() else ()
pipeline_model_mapping = {"feature-extraction": ClapModel} if is_torch_available() else {}
fx_compatible = False
test_head_masking = False
test_pruning = False
test_resize_embeddings = False
test_attention_outputs = False
def setUp(self):
self.model_tester = ClapModelTester(self)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@unittest.skip(reason="Hidden_states is tested in individual model tests")
def test_hidden_states_output(self):
pass
@unittest.skip(reason="Inputs_embeds is tested in individual model tests")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Retain_grad is tested in individual model tests")
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip(reason="ClapModel does not have input/output embeddings")
def test_model_common_attributes(self):
pass
# override as the `logit_scale` parameter initilization is different for CLAP
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad:
# check if `logit_scale` is initilized as per the original implementation
if name == "logit_scale":
self.assertAlmostEqual(
param.data.item(),
np.log(1 / 0.07),
delta=1e-3,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
else:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
def _create_and_check_torchscript(self, config, inputs_dict):
if not self.test_torchscript:
return
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
configs_no_init.torchscript = True
configs_no_init.return_dict = False
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
model.to(torch_device)
model.eval()
try:
input_ids = inputs_dict["input_ids"]
input_features = inputs_dict["input_features"] # CLAP needs input_features
traced_model = torch.jit.trace(model, (input_ids, input_features))
except RuntimeError:
self.fail("Couldn't trace module.")
with tempfile.TemporaryDirectory() as tmp_dir_name:
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
try:
torch.jit.save(traced_model, pt_file_name)
except Exception:
self.fail("Couldn't save module.")
try:
loaded_model = torch.jit.load(pt_file_name)
except Exception:
self.fail("Couldn't load module.")
model.to(torch_device)
model.eval()
loaded_model.to(torch_device)
loaded_model.eval()
model_state_dict = model.state_dict()
loaded_model_state_dict = loaded_model.state_dict()
non_persistent_buffers = {}
for key in loaded_model_state_dict.keys():
if key not in model_state_dict.keys():
non_persistent_buffers[key] = loaded_model_state_dict[key]
loaded_model_state_dict = {
key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
}
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
model_buffers = list(model.buffers())
for non_persistent_buffer in non_persistent_buffers.values():
found_buffer = False
for i, model_buffer in enumerate(model_buffers):
if torch.equal(non_persistent_buffer, model_buffer):
found_buffer = True
break
self.assertTrue(found_buffer)
model_buffers.pop(i)
models_equal = True
for layer_name, p1 in model_state_dict.items():
p2 = loaded_model_state_dict[layer_name]
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
def test_load_audio_text_config(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
# Save ClapConfig and check if we can load ClapAudioConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
audio_config = ClapAudioConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.audio_config.to_dict(), audio_config.to_dict())
# Save ClapConfig and check if we can load ClapTextConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
text_config = ClapTextConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict())
@slow
def test_model_from_pretrained(self):
for model_name in CLAP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = ClapModel.from_pretrained(model_name)
self.assertIsNotNone(model)
@slow
@require_torch
class ClapModelIntegrationTest(unittest.TestCase):
paddings = ["repeatpad", "repeat", "pad"]
def test_integration_unfused(self):
EXPECTED_MEANS_UNFUSED = {
"repeatpad": 0.0024,
"pad": 0.0020,
"repeat": 0.0023,
}
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
audio_sample = librispeech_dummy[-1]
model_id = "laion/clap-htsat-unfused"
model = ClapModel.from_pretrained(model_id).to(torch_device)
processor = ClapProcessor.from_pretrained(model_id)
for padding in self.paddings:
inputs = processor(audios=audio_sample["audio"]["array"], return_tensors="pt", padding=padding).to(
torch_device
)
audio_embed = model.get_audio_features(**inputs)
expected_mean = EXPECTED_MEANS_UNFUSED[padding]
self.assertTrue(
torch.allclose(audio_embed.cpu().mean(), torch.tensor([expected_mean]), atol=1e-3, rtol=1e-3)
)
def test_integration_fused(self):
EXPECTED_MEANS_FUSED = {
"repeatpad": 0.00069,
"repeat": 0.00196,
"pad": -0.000379,
}
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
audio_sample = librispeech_dummy[-1]
model_id = "laion/clap-htsat-fused"
model = ClapModel.from_pretrained(model_id).to(torch_device)
processor = ClapProcessor.from_pretrained(model_id)
for padding in self.paddings:
inputs = processor(
audios=audio_sample["audio"]["array"], return_tensors="pt", padding=padding, truncation="fusion"
).to(torch_device)
audio_embed = model.get_audio_features(**inputs)
expected_mean = EXPECTED_MEANS_FUSED[padding]
self.assertTrue(
torch.allclose(audio_embed.cpu().mean(), torch.tensor([expected_mean]), atol=1e-3, rtol=1e-3)
)
def test_batched_fused(self):
EXPECTED_MEANS_FUSED = {
"repeatpad": 0.0010,
"repeat": 0.0020,
"pad": 0.0006,
}
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
audio_samples = [sample["array"] for sample in librispeech_dummy[0:4]["audio"]]
model_id = "laion/clap-htsat-fused"
model = ClapModel.from_pretrained(model_id).to(torch_device)
processor = ClapProcessor.from_pretrained(model_id)
for padding in self.paddings:
inputs = processor(audios=audio_samples, return_tensors="pt", padding=padding, truncation="fusion").to(
torch_device
)
audio_embed = model.get_audio_features(**inputs)
expected_mean = EXPECTED_MEANS_FUSED[padding]
self.assertTrue(
torch.allclose(audio_embed.cpu().mean(), torch.tensor([expected_mean]), atol=1e-3, rtol=1e-3)
)
def test_batched_unfused(self):
EXPECTED_MEANS_FUSED = {
"repeatpad": 0.0016,
"repeat": 0.0019,
"pad": 0.0019,
}
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
audio_samples = [sample["array"] for sample in librispeech_dummy[0:4]["audio"]]
model_id = "laion/clap-htsat-unfused"
model = ClapModel.from_pretrained(model_id).to(torch_device)
processor = ClapProcessor.from_pretrained(model_id)
for padding in self.paddings:
inputs = processor(audios=audio_samples, return_tensors="pt", padding=padding).to(torch_device)
audio_embed = model.get_audio_features(**inputs)
expected_mean = EXPECTED_MEANS_FUSED[padding]
self.assertTrue(
torch.allclose(audio_embed.cpu().mean(), torch.tensor([expected_mean]), atol=1e-3, rtol=1e-3)
)
| transformers-main | tests/models/clap/test_modeling_clap.py |
transformers-main | tests/models/clap/__init__.py |
|
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import shutil
import tempfile
import unittest
from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast
from transformers.testing_utils import require_sentencepiece, require_torchaudio
from .test_feature_extraction_clap import floats_list
@require_torchaudio
@require_sentencepiece
class ClapProcessorTest(unittest.TestCase):
def setUp(self):
self.checkpoint = "laion/clap-htsat-unfused"
self.tmpdirname = tempfile.mkdtemp()
def get_tokenizer(self, **kwargs):
return RobertaTokenizer.from_pretrained(self.checkpoint, **kwargs)
def get_feature_extractor(self, **kwargs):
return ClapFeatureExtractor.from_pretrained(self.checkpoint, **kwargs)
def tearDown(self):
shutil.rmtree(self.tmpdirname)
def test_save_load_pretrained_default(self):
tokenizer = self.get_tokenizer()
feature_extractor = self.get_feature_extractor()
processor = ClapProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
processor.save_pretrained(self.tmpdirname)
processor = ClapProcessor.from_pretrained(self.tmpdirname)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab())
self.assertIsInstance(processor.tokenizer, RobertaTokenizerFast)
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string())
self.assertIsInstance(processor.feature_extractor, ClapFeatureExtractor)
def test_save_load_pretrained_additional_features(self):
processor = ClapProcessor(tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor())
processor.save_pretrained(self.tmpdirname)
tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
feature_extractor_add_kwargs = self.get_feature_extractor(do_normalize=False, padding_value=1.0)
processor = ClapProcessor.from_pretrained(
self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0
)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer, RobertaTokenizerFast)
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string())
self.assertIsInstance(processor.feature_extractor, ClapFeatureExtractor)
def test_feature_extractor(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = ClapProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
raw_speech = floats_list((3, 1000))
input_feat_extract = feature_extractor(raw_speech, return_tensors="np")
input_processor = processor(audios=raw_speech, return_tensors="np")
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
def test_tokenizer(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = ClapProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
input_str = "This is a test string"
encoded_processor = processor(text=input_str)
encoded_tok = tokenizer(input_str)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key], encoded_processor[key])
def test_tokenizer_decode(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = ClapProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
decoded_processor = processor.batch_decode(predicted_ids)
decoded_tok = tokenizer.batch_decode(predicted_ids)
self.assertListEqual(decoded_tok, decoded_processor)
def test_model_input_names(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = ClapProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
self.assertListEqual(
processor.model_input_names[2:],
feature_extractor.model_input_names,
msg="`processor` and `feature_extractor` model input names do not match",
)
| transformers-main | tests/models/clap/test_processor_clap.py |
transformers-main | tests/models/mobilevit/__init__.py |
|
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the TensorFlow MobileViT model. """
from __future__ import annotations
import inspect
import unittest
from transformers import MobileViTConfig
from transformers.file_utils import is_tf_available, is_vision_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel
from transformers.models.mobilevit.modeling_tf_mobilevit import TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class TFMobileViTConfigTester(ConfigTester):
def create_and_test_config_common_properties(self):
config = self.config_class(**self.inputs_dict)
self.parent.assertTrue(hasattr(config, "hidden_sizes"))
self.parent.assertTrue(hasattr(config, "neck_hidden_sizes"))
self.parent.assertTrue(hasattr(config, "num_attention_heads"))
class TFMobileViTModelTester:
def __init__(
self,
parent,
batch_size=13,
image_size=32,
patch_size=2,
num_channels=3,
last_hidden_size=32,
num_attention_heads=4,
hidden_act="silu",
conv_kernel_size=3,
output_stride=32,
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
classifier_dropout_prob=0.1,
initializer_range=0.02,
is_training=True,
use_labels=True,
num_labels=10,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.last_hidden_size = last_hidden_size
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.conv_kernel_size = conv_kernel_size
self.output_stride = output_stride
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.classifier_dropout_prob = classifier_dropout_prob
self.use_labels = use_labels
self.is_training = is_training
self.num_labels = num_labels
self.initializer_range = initializer_range
self.scope = scope
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
labels = None
pixel_labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size], self.num_labels)
pixel_labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels)
config = self.get_config()
return config, pixel_values, labels, pixel_labels
def get_config(self):
return MobileViTConfig(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
num_attention_heads=self.num_attention_heads,
hidden_act=self.hidden_act,
conv_kernel_size=self.conv_kernel_size,
output_stride=self.output_stride,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
classifier_dropout_prob=self.classifier_dropout_prob,
initializer_range=self.initializer_range,
hidden_sizes=[12, 16, 20],
neck_hidden_sizes=[8, 8, 16, 16, 32, 32, 32],
)
def create_and_check_model(self, config, pixel_values, labels, pixel_labels):
model = TFMobileViTModel(config=config)
result = model(pixel_values, training=False)
expected_height = expected_width = self.image_size // self.output_stride
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, self.last_hidden_size, expected_height, expected_width)
)
def create_and_check_for_image_classification(self, config, pixel_values, labels, pixel_labels):
config.num_labels = self.num_labels
model = TFMobileViTForImageClassification(config)
result = model(pixel_values, labels=labels, training=False)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_for_semantic_segmentation(self, config, pixel_values, labels, pixel_labels):
config.num_labels = self.num_labels
model = TFMobileViTForSemanticSegmentation(config)
expected_height = expected_width = self.image_size // self.output_stride
result = model(pixel_values, training=False)
self.parent.assertEqual(
result.logits.shape, (self.batch_size, self.num_labels, expected_height, expected_width)
)
result = model(pixel_values, labels=pixel_labels, training=False)
self.parent.assertEqual(
result.logits.shape, (self.batch_size, self.num_labels, expected_height, expected_width)
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, labels, pixel_labels = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_tf
class TFMobileViTModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as MobileViT does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (
(TFMobileViTModel, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation)
if is_tf_available()
else ()
)
pipeline_model_mapping = (
{"feature-extraction": TFMobileViTModel, "image-classification": TFMobileViTForImageClassification}
if is_tf_available()
else {}
)
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
has_attentions = False
test_onnx = False
def setUp(self):
self.model_tester = TFMobileViTModelTester(self)
self.config_tester = TFMobileViTConfigTester(self, config_class=MobileViTConfig, has_text_modality=False)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="MobileViT does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="MobileViT does not support input and output embeddings")
def test_model_common_attributes(self):
pass
@unittest.skip(reason="MobileViT does not output attentions")
def test_attention_outputs(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.call)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.hidden_states
expected_num_stages = 5
self.assertEqual(len(hidden_states), expected_num_stages)
# MobileViT's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
divisor = 2
for i in range(len(hidden_states)):
self.assertListEqual(
list(hidden_states[i].shape[-2:]),
[self.model_tester.image_size // divisor, self.model_tester.image_size // divisor],
)
divisor *= 2
self.assertEqual(self.model_tester.output_stride, divisor // 2)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
def test_for_image_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*config_and_inputs)
def test_for_semantic_segmentation(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*config_and_inputs)
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0,
reason="TF does not support backprop for grouped convolutions on CPU.",
)
def test_dataset_conversion(self):
super().test_dataset_conversion()
def check_keras_fit_results(self, val_loss1, val_loss2, atol=2e-1, rtol=2e-1):
self.assertTrue(np.allclose(val_loss1, val_loss2, atol=atol, rtol=rtol))
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0,
reason="TF does not support backprop for grouped convolutions on CPU.",
)
@slow
def test_keras_fit(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# Since `TFMobileViTModel` cannot operate with the default `fit()` method.
if model_class.__name__ != "TFMobileViTModel":
model = model_class(config)
if getattr(model, "hf_compute_loss", None):
super().test_keras_fit()
# The default test_loss_computation() uses -100 as a proxy ignore_index
# to test masked losses. Overridding to avoid -100 since semantic segmentation
# models use `semantic_loss_ignore_index` from the config.
def test_loss_computation(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# set an ignore index to correctly test the masked loss used in
# `TFMobileViTForSemanticSegmentation`.
if model_class.__name__ != "TFMobileViTForSemanticSegmentation":
config.semantic_loss_ignore_index = 5
model = model_class(config)
if getattr(model, "hf_compute_loss", None):
# The number of elements in the loss should be the same as the number of elements in the label
prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
added_label = prepared_for_class[
sorted(prepared_for_class.keys() - inputs_dict.keys(), reverse=True)[0]
]
expected_loss_size = added_label.shape.as_list()[:1]
# Test that model correctly compute the loss with kwargs
prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
possible_input_names = {"input_ids", "pixel_values", "input_features"}
input_name = possible_input_names.intersection(set(prepared_for_class)).pop()
model_input = prepared_for_class.pop(input_name)
loss = model(model_input, **prepared_for_class)[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1])
# Test that model correctly compute the loss when we mask some positions
prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
possible_input_names = {"input_ids", "pixel_values", "input_features"}
input_name = possible_input_names.intersection(set(prepared_for_class)).pop()
model_input = prepared_for_class.pop(input_name)
if "labels" in prepared_for_class:
labels = prepared_for_class["labels"].numpy()
if len(labels.shape) > 1 and labels.shape[1] != 1:
# labels[0] = -100
prepared_for_class["labels"] = tf.convert_to_tensor(labels)
loss = model(model_input, **prepared_for_class)[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1])
self.assertTrue(not np.any(np.isnan(loss.numpy())))
# Test that model correctly compute the loss with a dict
prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
loss = model(prepared_for_class)[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1])
# Test that model correctly compute the loss with a tuple
prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
# Get keys that were added with the _prepare_for_class function
label_keys = prepared_for_class.keys() - inputs_dict.keys()
signature = inspect.signature(model.call).parameters
signature_names = list(signature.keys())
# Create a dictionary holding the location of the tensors in the tuple
tuple_index_mapping = {0: input_name}
for label_key in label_keys:
label_key_index = signature_names.index(label_key)
tuple_index_mapping[label_key_index] = label_key
sorted_tuple_index_mapping = sorted(tuple_index_mapping.items())
# Initialize a list with their default values, update the values and convert to a tuple
list_input = []
for name in signature_names:
if name != "kwargs":
list_input.append(signature[name].default)
for index, value in sorted_tuple_index_mapping:
list_input[index] = prepared_for_class[value]
tuple_input = tuple(list_input)
# Send to model
loss = model(tuple_input[:-1])[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1])
@slow
def test_model_from_pretrained(self):
for model_name in TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = TFMobileViTModel.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_tf
class TFMobileViTModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_image_classification_head(self):
model = TFMobileViTForImageClassification.from_pretrained("apple/mobilevit-xx-small")
image_processor = MobileViTImageProcessor.from_pretrained("apple/mobilevit-xx-small")
image = prepare_img()
inputs = image_processor(images=image, return_tensors="tf")
# forward pass
outputs = model(**inputs, training=False)
# verify the logits
expected_shape = tf.TensorShape((1, 1000))
self.assertEqual(outputs.logits.shape, expected_shape)
expected_slice = tf.constant([-1.9364, -1.2327, -0.4653])
tf.debugging.assert_near(outputs.logits[0, :3], expected_slice, atol=1e-4, rtol=1e-04)
@slow
def test_inference_semantic_segmentation(self):
# `from_pt` will be removed
model = TFMobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small")
image_processor = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small")
image = prepare_img()
inputs = image_processor(images=image, return_tensors="tf")
# forward pass
outputs = model(inputs.pixel_values, training=False)
logits = outputs.logits
# verify the logits
expected_shape = tf.TensorShape((1, 21, 32, 32))
self.assertEqual(logits.shape, expected_shape)
expected_slice = tf.constant(
[
[[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]],
[[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]],
[[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]],
]
)
tf.debugging.assert_near(logits[0, :3, :3, :3], expected_slice, rtol=1e-4, atol=1e-4)
| transformers-main | tests/models/mobilevit/test_modeling_tf_mobilevit.py |
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_vision_available
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
if is_vision_available():
from transformers import MobileViTImageProcessor
class MobileViTImageProcessingTester(unittest.TestCase):
def __init__(
self,
parent,
batch_size=7,
num_channels=3,
image_size=18,
min_resolution=30,
max_resolution=400,
do_resize=True,
size=None,
do_center_crop=True,
crop_size=None,
do_flip_channel_order=True,
):
size = size if size is not None else {"shortest_edge": 20}
crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18}
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.image_size = image_size
self.min_resolution = min_resolution
self.max_resolution = max_resolution
self.do_resize = do_resize
self.size = size
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_flip_channel_order = do_flip_channel_order
def prepare_image_processor_dict(self):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_flip_channel_order": self.do_flip_channel_order,
}
def expected_output_image_shape(self, images):
return self.num_channels, self.crop_size["height"], self.crop_size["width"]
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
return prepare_image_inputs(
batch_size=self.batch_size,
num_channels=self.num_channels,
min_resolution=self.min_resolution,
max_resolution=self.max_resolution,
equal_resolution=equal_resolution,
numpify=numpify,
torchify=torchify,
)
@require_torch
@require_vision
class MobileViTImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
image_processing_class = MobileViTImageProcessor if is_vision_available() else None
def setUp(self):
self.image_processor_tester = MobileViTImageProcessingTester(self)
@property
def image_processor_dict(self):
return self.image_processor_tester.prepare_image_processor_dict()
def test_image_processor_properties(self):
image_processing = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(image_processing, "do_resize"))
self.assertTrue(hasattr(image_processing, "size"))
self.assertTrue(hasattr(image_processing, "do_center_crop"))
self.assertTrue(hasattr(image_processing, "center_crop"))
self.assertTrue(hasattr(image_processing, "do_flip_channel_order"))
def test_image_processor_from_dict_with_kwargs(self):
image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size, {"shortest_edge": 20})
self.assertEqual(image_processor.crop_size, {"height": 18, "width": 18})
image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84)
self.assertEqual(image_processor.size, {"shortest_edge": 42})
self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
| transformers-main | tests/models/mobilevit/test_image_processing_mobilevit.py |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch MobileViT model. """
import inspect
import unittest
from transformers import MobileViTConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel
from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class MobileViTConfigTester(ConfigTester):
def create_and_test_config_common_properties(self):
config = self.config_class(**self.inputs_dict)
self.parent.assertTrue(hasattr(config, "hidden_sizes"))
self.parent.assertTrue(hasattr(config, "neck_hidden_sizes"))
self.parent.assertTrue(hasattr(config, "num_attention_heads"))
class MobileViTModelTester:
def __init__(
self,
parent,
batch_size=13,
image_size=32,
patch_size=2,
num_channels=3,
last_hidden_size=32,
num_attention_heads=4,
hidden_act="silu",
conv_kernel_size=3,
output_stride=32,
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
classifier_dropout_prob=0.1,
initializer_range=0.02,
is_training=True,
use_labels=True,
num_labels=10,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.last_hidden_size = last_hidden_size
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.conv_kernel_size = conv_kernel_size
self.output_stride = output_stride
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.classifier_dropout_prob = classifier_dropout_prob
self.use_labels = use_labels
self.is_training = is_training
self.num_labels = num_labels
self.initializer_range = initializer_range
self.scope = scope
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
labels = None
pixel_labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size], self.num_labels)
pixel_labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels)
config = self.get_config()
return config, pixel_values, labels, pixel_labels
def get_config(self):
return MobileViTConfig(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
num_attention_heads=self.num_attention_heads,
hidden_act=self.hidden_act,
conv_kernel_size=self.conv_kernel_size,
output_stride=self.output_stride,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
classifier_dropout_prob=self.classifier_dropout_prob,
initializer_range=self.initializer_range,
hidden_sizes=[12, 16, 20],
neck_hidden_sizes=[8, 8, 16, 16, 32, 32, 32],
)
def create_and_check_model(self, config, pixel_values, labels, pixel_labels):
model = MobileViTModel(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(
result.last_hidden_state.shape,
(
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
),
)
def create_and_check_for_image_classification(self, config, pixel_values, labels, pixel_labels):
config.num_labels = self.num_labels
model = MobileViTForImageClassification(config)
model.to(torch_device)
model.eval()
result = model(pixel_values, labels=labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_for_semantic_segmentation(self, config, pixel_values, labels, pixel_labels):
config.num_labels = self.num_labels
model = MobileViTForSemanticSegmentation(config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(
result.logits.shape,
(
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
),
)
result = model(pixel_values, labels=pixel_labels)
self.parent.assertEqual(
result.logits.shape,
(
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
),
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, labels, pixel_labels = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class MobileViTModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as MobileViT does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (
(MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation)
if is_torch_available()
else ()
)
pipeline_model_mapping = (
{
"feature-extraction": MobileViTModel,
"image-classification": MobileViTForImageClassification,
"image-segmentation": MobileViTForSemanticSegmentation,
}
if is_torch_available()
else {}
)
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
has_attentions = False
def setUp(self):
self.model_tester = MobileViTModelTester(self)
self.config_tester = MobileViTConfigTester(self, config_class=MobileViTConfig, has_text_modality=False)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="MobileViT does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="MobileViT does not support input and output embeddings")
def test_model_common_attributes(self):
pass
@unittest.skip(reason="MobileViT does not output attentions")
def test_attention_outputs(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.hidden_states
expected_num_stages = 5
self.assertEqual(len(hidden_states), expected_num_stages)
# MobileViT's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
divisor = 2
for i in range(len(hidden_states)):
self.assertListEqual(
list(hidden_states[i].shape[-2:]),
[self.model_tester.image_size // divisor, self.model_tester.image_size // divisor],
)
divisor *= 2
self.assertEqual(self.model_tester.output_stride, divisor // 2)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
def test_for_image_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*config_and_inputs)
def test_for_semantic_segmentation(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = MobileViTModel.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_torch
@require_vision
class MobileViTModelIntegrationTest(unittest.TestCase):
@cached_property
def default_image_processor(self):
return MobileViTImageProcessor.from_pretrained("apple/mobilevit-xx-small") if is_vision_available() else None
@slow
def test_inference_image_classification_head(self):
model = MobileViTForImageClassification.from_pretrained("apple/mobilevit-xx-small").to(torch_device)
image_processor = self.default_image_processor
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# verify the logits
expected_shape = torch.Size((1, 1000))
self.assertEqual(outputs.logits.shape, expected_shape)
expected_slice = torch.tensor([-1.9364, -1.2327, -0.4653]).to(torch_device)
self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))
@slow
def test_inference_semantic_segmentation(self):
model = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small")
model = model.to(torch_device)
image_processor = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small")
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
# verify the logits
expected_shape = torch.Size((1, 21, 32, 32))
self.assertEqual(logits.shape, expected_shape)
expected_slice = torch.tensor(
[
[[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]],
[[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]],
[[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]],
],
device=torch_device,
)
self.assertTrue(torch.allclose(logits[0, :3, :3, :3], expected_slice, atol=1e-4))
@slow
def test_post_processing_semantic_segmentation(self):
model = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small")
model = model.to(torch_device)
image_processor = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small")
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
outputs.logits = outputs.logits.detach().cpu()
segmentation = image_processor.post_process_semantic_segmentation(outputs=outputs, target_sizes=[(50, 60)])
expected_shape = torch.Size((50, 60))
self.assertEqual(segmentation[0].shape, expected_shape)
segmentation = image_processor.post_process_semantic_segmentation(outputs=outputs)
expected_shape = torch.Size((32, 32))
self.assertEqual(segmentation[0].shape, expected_shape)
| transformers-main | tests/models/mobilevit/test_modeling_mobilevit.py |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch ConvBERT model. """
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
ConvBertForMaskedLM,
ConvBertForMultipleChoice,
ConvBertForQuestionAnswering,
ConvBertForSequenceClassification,
ConvBertForTokenClassification,
ConvBertModel,
)
from transformers.models.convbert.modeling_convbert import CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class ConvBertModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def get_config(self):
return ConvBertConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
is_decoder=False,
initializer_range=self.initializer_range,
)
def prepare_config_and_inputs_for_decoder(self):
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = self.prepare_config_and_inputs()
config.is_decoder = True
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def create_and_check_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = ConvBertModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
result = model(input_ids, token_type_ids=token_type_ids)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_masked_lm(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = ConvBertForMaskedLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_for_question_answering(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = ConvBertForQuestionAnswering(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
start_positions=sequence_labels,
end_positions=sequence_labels,
)
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
def create_and_check_for_sequence_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = ConvBertForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_for_token_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = ConvBertForTokenClassification(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def create_and_check_for_multiple_choice(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_choices = self.num_choices
model = ConvBertForMultipleChoice(config=config)
model.to(torch_device)
model.eval()
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
result = model(
multiple_choice_inputs_ids,
attention_mask=multiple_choice_input_mask,
token_type_ids=multiple_choice_token_type_ids,
labels=choice_labels,
)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class ConvBertModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(
ConvBertModel,
ConvBertForMaskedLM,
ConvBertForMultipleChoice,
ConvBertForQuestionAnswering,
ConvBertForSequenceClassification,
ConvBertForTokenClassification,
)
if is_torch_available()
else ()
)
pipeline_model_mapping = (
{
"feature-extraction": ConvBertModel,
"fill-mask": ConvBertForMaskedLM,
"question-answering": ConvBertForQuestionAnswering,
"text-classification": ConvBertForSequenceClassification,
"token-classification": ConvBertForTokenClassification,
"zero-shot": ConvBertForSequenceClassification,
}
if is_torch_available()
else {}
)
test_pruning = False
test_head_masking = False
def setUp(self):
self.model_tester = ConvBertModelTester(self)
self.config_tester = ConfigTester(self, config_class=ConvBertConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
def test_for_multiple_choice(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
def test_for_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
def test_for_sequence_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
def test_for_token_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = ConvBertModel.from_pretrained(model_name)
self.assertIsNotNone(model)
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
seq_len = getattr(self.model_tester, "seq_length", None)
decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
chunk_length = getattr(self.model_tester, "chunk_length", None)
if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
if chunk_length is not None:
self.assertListEqual(
list(attentions[0].shape[-4:]),
[self.model_tester.num_attention_heads / 2, encoder_seq_length, chunk_length, encoder_key_length],
)
else:
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length],
)
out_len = len(outputs)
if self.is_encoder_decoder:
correct_outlen = 5
# loss is at first position
if "labels" in inputs_dict:
correct_outlen += 1 # loss is added to beginning
# Question Answering model returns start_logits and end_logits
if model_class in get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING):
correct_outlen += 1 # start_logits and end_logits instead of only 1 output
if "past_key_values" in outputs:
correct_outlen += 1 # past_key_values have been returned
self.assertEqual(out_len, correct_outlen)
# decoder attentions
decoder_attentions = outputs.decoder_attentions
self.assertIsInstance(decoder_attentions, (list, tuple))
self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(decoder_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
)
# cross attentions
cross_attentions = outputs.cross_attentions
self.assertIsInstance(cross_attentions, (list, tuple))
self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(cross_attentions[0].shape[-3:]),
[
self.model_tester.num_attention_heads,
decoder_seq_length,
encoder_key_length,
],
)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
if hasattr(self.model_tester, "num_hidden_states_types"):
added_hidden_states = self.model_tester.num_hidden_states_types
elif self.is_encoder_decoder:
added_hidden_states = 2
else:
added_hidden_states = 1
self.assertEqual(out_len + added_hidden_states, len(outputs))
self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
if chunk_length is not None:
self.assertListEqual(
list(self_attentions[0].shape[-4:]),
[self.model_tester.num_attention_heads / 2, encoder_seq_length, chunk_length, encoder_key_length],
)
else:
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length],
)
@slow
@require_torch_gpu
def test_torchscript_device_change(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# ConvBertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == ConvBertForMultipleChoice:
return
config.torchscript = True
model = model_class(config=config)
inputs_dict = self._prepare_for_class(inputs_dict, model_class)
traced_model = torch.jit.trace(
model, (inputs_dict["input_ids"].to("cpu"), inputs_dict["attention_mask"].to("cpu"))
)
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(traced_model, os.path.join(tmp, "traced_model.pt"))
loaded = torch.jit.load(os.path.join(tmp, "traced_model.pt"), map_location=torch_device)
loaded(inputs_dict["input_ids"].to(torch_device), inputs_dict["attention_mask"].to(torch_device))
def test_model_for_input_embeds(self):
batch_size = 2
seq_length = 10
inputs_embeds = torch.rand([batch_size, seq_length, 768], device=torch_device)
config = self.model_tester.get_config()
model = ConvBertModel(config=config)
model.to(torch_device)
model.eval()
result = model(inputs_embeds=inputs_embeds)
self.assertEqual(result.last_hidden_state.shape, (batch_size, seq_length, config.hidden_size))
def test_reducing_attention_heads(self):
config, *inputs_dict = self.model_tester.prepare_config_and_inputs()
config.head_ratio = 4
self.model_tester.create_and_check_for_masked_lm(config, *inputs_dict)
@require_torch
class ConvBertModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_no_head(self):
model = ConvBertModel.from_pretrained("YituTech/conv-bert-base")
input_ids = torch.tensor([[1, 2, 3, 4, 5, 6]])
with torch.no_grad():
output = model(input_ids)[0]
expected_shape = torch.Size((1, 6, 768))
self.assertEqual(output.shape, expected_shape)
expected_slice = torch.tensor(
[[[-0.0864, -0.4898, -0.3677], [0.1434, -0.2952, -0.7640], [-0.0112, -0.4432, -0.5432]]]
)
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
| transformers-main | tests/models/convbert/test_modeling_convbert.py |
transformers-main | tests/models/convbert/__init__.py |
|
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class TFConvBertModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = 13
self.seq_length = 7
self.is_training = True
self.use_input_mask = True
self.use_token_type_ids = True
self.use_labels = True
self.vocab_size = 99
self.hidden_size = 384
self.num_hidden_layers = 2
self.num_attention_heads = 4
self.intermediate_size = 37
self.hidden_act = "gelu"
self.hidden_dropout_prob = 0.1
self.attention_probs_dropout_prob = 0.1
self.max_position_embeddings = 512
self.type_vocab_size = 16
self.type_sequence_label_size = 2
self.initializer_range = 0.02
self.num_labels = 3
self.num_choices = 4
self.embedding_size = 128
self.head_ratio = 2
self.conv_kernel_size = 9
self.num_groups = 1
self.scope = None
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = ConvBertConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
return_dict=True,
)
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def create_and_check_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFConvBertModel(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
inputs = [input_ids, input_mask]
result = model(inputs)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_masked_lm(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFConvBertForMaskedLM(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_for_sequence_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = TFConvBertForSequenceClassification(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_for_multiple_choice(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_choices = self.num_choices
model = TFConvBertForMultipleChoice(config=config)
multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
inputs = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
def create_and_check_for_token_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = TFConvBertForTokenClassification(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def create_and_check_for_question_answering(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFConvBertForQuestionAnswering(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
result = model(inputs)
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf
class TFConvBertModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
pipeline_model_mapping = (
{
"feature-extraction": TFConvBertModel,
"fill-mask": TFConvBertForMaskedLM,
"question-answering": TFConvBertForQuestionAnswering,
"text-classification": TFConvBertForSequenceClassification,
"token-classification": TFConvBertForTokenClassification,
"zero-shot": TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
test_pruning = False
test_head_masking = False
test_onnx = False
def setUp(self):
self.model_tester = TFConvBertModelTester(self)
self.config_tester = ConfigTester(self, config_class=ConvBertConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
def test_for_multiple_choice(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
def test_for_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
def test_for_sequence_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
def test_for_token_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
@slow
def test_saved_model_creation_extended(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.output_hidden_states = True
config.output_attentions = True
if hasattr(config, "use_cache"):
config.use_cache = True
encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length)
encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
for model_class in self.all_model_classes:
class_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
model = model_class(config)
num_out = len(model(class_inputs_dict))
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname, saved_model=True)
saved_model_dir = os.path.join(tmpdirname, "saved_model", "1")
model = tf.keras.models.load_model(saved_model_dir)
outputs = model(class_inputs_dict)
if self.is_encoder_decoder:
output_hidden_states = outputs["encoder_hidden_states"]
output_attentions = outputs["encoder_attentions"]
else:
output_hidden_states = outputs["hidden_states"]
output_attentions = outputs["attentions"]
self.assertEqual(len(outputs), num_out)
expected_num_layers = getattr(
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
)
self.assertEqual(len(output_hidden_states), expected_num_layers)
self.assertListEqual(
list(output_hidden_states[0].shape[-2:]),
[self.model_tester.seq_length, self.model_tester.hidden_size],
)
self.assertEqual(len(output_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(output_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length],
)
@slow
def test_model_from_pretrained(self):
model = TFConvBertModel.from_pretrained("YituTech/conv-bert-base")
self.assertIsNotNone(model)
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", self.model_tester.seq_length)
encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length)
decoder_key_length = getattr(self.model_tester, "key_length", decoder_seq_length)
encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
def check_decoder_attentions_output(outputs):
out_len = len(outputs)
self.assertEqual(out_len % 2, 0)
decoder_attentions = outputs.decoder_attentions
self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(decoder_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length],
)
def check_encoder_attentions_output(outputs):
attentions = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length],
)
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
config.output_hidden_states = False
model = model_class(config)
outputs = model(self._prepare_for_class(inputs_dict, model_class))
out_len = len(outputs)
self.assertEqual(config.output_hidden_states, False)
check_encoder_attentions_output(outputs)
if self.is_encoder_decoder:
model = model_class(config)
outputs = model(self._prepare_for_class(inputs_dict, model_class))
self.assertEqual(config.output_hidden_states, False)
check_decoder_attentions_output(outputs)
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
outputs = model(self._prepare_for_class(inputs_dict, model_class))
self.assertEqual(config.output_hidden_states, False)
check_encoder_attentions_output(outputs)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
config.output_hidden_states = True
model = model_class(config)
outputs = model(self._prepare_for_class(inputs_dict, model_class))
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs))
self.assertEqual(model.config.output_hidden_states, True)
check_encoder_attentions_output(outputs)
@require_tf
class TFConvBertModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_masked_lm(self):
model = TFConvBertModel.from_pretrained("YituTech/conv-bert-base")
input_ids = tf.constant([[0, 1, 2, 3, 4, 5]])
output = model(input_ids)[0]
expected_shape = [1, 6, 768]
self.assertEqual(output.shape, expected_shape)
expected_slice = tf.constant(
[
[
[-0.03475493, -0.4686034, -0.30638832],
[0.22637248, -0.26988646, -0.7423424],
[0.10324868, -0.45013508, -0.58280784],
]
]
)
tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=1e-4)
| transformers-main | tests/models/convbert/test_modeling_tf_convbert.py |
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_vision_available
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
if is_vision_available():
from transformers import MobileNetV2ImageProcessor
class MobileNetV2ImageProcessingTester(unittest.TestCase):
def __init__(
self,
parent,
batch_size=7,
num_channels=3,
image_size=18,
min_resolution=30,
max_resolution=400,
do_resize=True,
size=None,
do_center_crop=True,
crop_size=None,
):
size = size if size is not None else {"shortest_edge": 20}
crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18}
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.image_size = image_size
self.min_resolution = min_resolution
self.max_resolution = max_resolution
self.do_resize = do_resize
self.size = size
self.do_center_crop = do_center_crop
self.crop_size = crop_size
def prepare_image_processor_dict(self):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
}
def expected_output_image_shape(self, images):
return self.num_channels, self.crop_size["height"], self.crop_size["width"]
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
return prepare_image_inputs(
batch_size=self.batch_size,
num_channels=self.num_channels,
min_resolution=self.min_resolution,
max_resolution=self.max_resolution,
equal_resolution=equal_resolution,
numpify=numpify,
torchify=torchify,
)
@require_torch
@require_vision
class MobileNetV2ImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
image_processing_class = MobileNetV2ImageProcessor if is_vision_available() else None
def setUp(self):
self.image_processor_tester = MobileNetV2ImageProcessingTester(self)
@property
def image_processor_dict(self):
return self.image_processor_tester.prepare_image_processor_dict()
def test_image_processor_properties(self):
image_processor = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(image_processor, "do_resize"))
self.assertTrue(hasattr(image_processor, "size"))
self.assertTrue(hasattr(image_processor, "do_center_crop"))
self.assertTrue(hasattr(image_processor, "crop_size"))
def test_image_processor_from_dict_with_kwargs(self):
image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size, {"shortest_edge": 20})
self.assertEqual(image_processor.crop_size, {"height": 18, "width": 18})
image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84)
self.assertEqual(image_processor.size, {"shortest_edge": 42})
self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
| transformers-main | tests/models/mobilenet_v2/test_image_processing_mobilenet_v2.py |
transformers-main | tests/models/mobilenet_v2/__init__.py |
|
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch MobileNetV2 model. """
import inspect
import unittest
from transformers import MobileNetV2Config
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileNetV2ForImageClassification, MobileNetV2ForSemanticSegmentation, MobileNetV2Model
from transformers.models.mobilenet_v2.modeling_mobilenet_v2 import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileNetV2ImageProcessor
class MobileNetV2ConfigTester(ConfigTester):
def create_and_test_config_common_properties(self):
config = self.config_class(**self.inputs_dict)
self.parent.assertTrue(hasattr(config, "tf_padding"))
self.parent.assertTrue(hasattr(config, "depth_multiplier"))
class MobileNetV2ModelTester:
def __init__(
self,
parent,
batch_size=13,
num_channels=3,
image_size=32,
depth_multiplier=0.25,
depth_divisible_by=8,
min_depth=8,
expand_ratio=6,
output_stride=32,
first_layer_is_expansion=True,
finegrained_output=True,
tf_padding=True,
hidden_act="relu6",
last_hidden_size=1280,
classifier_dropout_prob=0.1,
initializer_range=0.02,
is_training=True,
use_labels=True,
num_labels=10,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.image_size = image_size
self.depth_multiplier = depth_multiplier
self.depth_divisible_by = depth_divisible_by
self.min_depth = min_depth
self.expand_ratio = expand_ratio
self.tf_padding = tf_padding
self.output_stride = output_stride
self.first_layer_is_expansion = first_layer_is_expansion
self.finegrained_output = finegrained_output
self.hidden_act = hidden_act
self.last_hidden_size = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier)
self.classifier_dropout_prob = classifier_dropout_prob
self.use_labels = use_labels
self.is_training = is_training
self.num_labels = num_labels
self.initializer_range = initializer_range
self.scope = scope
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
labels = None
pixel_labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size], self.num_labels)
pixel_labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels)
config = self.get_config()
return config, pixel_values, labels, pixel_labels
def get_config(self):
return MobileNetV2Config(
num_channels=self.num_channels,
image_size=self.image_size,
depth_multiplier=self.depth_multiplier,
depth_divisible_by=self.depth_divisible_by,
min_depth=self.min_depth,
expand_ratio=self.expand_ratio,
output_stride=self.output_stride,
first_layer_is_expansion=self.first_layer_is_expansion,
finegrained_output=self.finegrained_output,
hidden_act=self.hidden_act,
tf_padding=self.tf_padding,
classifier_dropout_prob=self.classifier_dropout_prob,
initializer_range=self.initializer_range,
)
def create_and_check_model(self, config, pixel_values, labels, pixel_labels):
model = MobileNetV2Model(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(
result.last_hidden_state.shape,
(
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
),
)
self.parent.assertEqual(
result.pooler_output.shape,
(self.batch_size, self.last_hidden_size),
)
def create_and_check_for_image_classification(self, config, pixel_values, labels, pixel_labels):
config.num_labels = self.num_labels
model = MobileNetV2ForImageClassification(config)
model.to(torch_device)
model.eval()
result = model(pixel_values, labels=labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_for_semantic_segmentation(self, config, pixel_values, labels, pixel_labels):
config.num_labels = self.num_labels
model = MobileNetV2ForSemanticSegmentation(config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(
result.logits.shape,
(
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
),
)
result = model(pixel_values, labels=pixel_labels)
self.parent.assertEqual(
result.logits.shape,
(
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
),
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, labels, pixel_labels = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class MobileNetV2ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as MobileNetV2 does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (
(MobileNetV2Model, MobileNetV2ForImageClassification, MobileNetV2ForSemanticSegmentation)
if is_torch_available()
else ()
)
pipeline_model_mapping = (
{
"feature-extraction": MobileNetV2Model,
"image-classification": MobileNetV2ForImageClassification,
"image-segmentation": MobileNetV2ForSemanticSegmentation,
}
if is_torch_available()
else {}
)
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
has_attentions = False
def setUp(self):
self.model_tester = MobileNetV2ModelTester(self)
self.config_tester = MobileNetV2ConfigTester(self, config_class=MobileNetV2Config, has_text_modality=False)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="MobileNetV2 does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="MobileNetV2 does not support input and output embeddings")
def test_model_common_attributes(self):
pass
@unittest.skip(reason="MobileNetV2 does not output attentions")
def test_attention_outputs(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.hidden_states
expected_num_stages = 16
self.assertEqual(len(hidden_states), expected_num_stages)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
def test_for_image_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*config_and_inputs)
def test_for_semantic_segmentation(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = MobileNetV2Model.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_torch
@require_vision
class MobileNetV2ModelIntegrationTest(unittest.TestCase):
@cached_property
def default_image_processor(self):
return (
MobileNetV2ImageProcessor.from_pretrained("google/mobilenet_v2_1.0_224") if is_vision_available() else None
)
@slow
def test_inference_image_classification_head(self):
model = MobileNetV2ForImageClassification.from_pretrained("google/mobilenet_v2_1.0_224").to(torch_device)
image_processor = self.default_image_processor
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# verify the logits
expected_shape = torch.Size((1, 1001))
self.assertEqual(outputs.logits.shape, expected_shape)
expected_slice = torch.tensor([0.2445, -1.1993, 0.1905]).to(torch_device)
self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))
@slow
def test_inference_semantic_segmentation(self):
model = MobileNetV2ForSemanticSegmentation.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513")
model = model.to(torch_device)
image_processor = MobileNetV2ImageProcessor.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513")
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
# verify the logits
expected_shape = torch.Size((1, 21, 65, 65))
self.assertEqual(logits.shape, expected_shape)
expected_slice = torch.tensor(
[
[[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]],
[[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]],
[[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]],
],
device=torch_device,
)
self.assertTrue(torch.allclose(logits[0, :3, :3, :3], expected_slice, atol=1e-4))
| transformers-main | tests/models/mobilenet_v2/test_modeling_mobilenet_v2.py |
transformers-main | tests/models/mega/__init__.py |
|
# coding=utf-8
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import MegaConfig, is_torch_available
from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MegaForCausalLM,
MegaForMaskedLM,
MegaForMultipleChoice,
MegaForQuestionAnswering,
MegaForSequenceClassification,
MegaForTokenClassification,
MegaModel,
)
from transformers.models.mega.modeling_mega import MEGA_PRETRAINED_MODEL_ARCHIVE_LIST
class MegaModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
intermediate_size=37,
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_positions=1024,
bidirectional=False, # needed for decoding, and can't modify common generation tests; test separately by overriding
ema_projection_size=16,
shared_representation_size=64,
use_chunking=False,
chunk_size=32,
attention_activation="softmax",
use_normalized_ffn=True,
nffn_hidden_size=24,
add_token_type_embeddings=True,
type_vocab_size=2,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.add_token_type_embeddings = add_token_type_embeddings
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_positions = max_positions
self.bidirectional = bidirectional
self.ema_projection_size = ema_projection_size
self.shared_representation_size = shared_representation_size
self.use_chunking = use_chunking
self.chunk_size = chunk_size
self.attention_activation = attention_activation
self.use_normalized_ffn = use_normalized_ffn
self.nffn_hidden_size = nffn_hidden_size
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
self.num_attention_heads = 1
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = None
if self.add_token_type_embeddings:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def get_config(self):
return MegaConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
intermediate_size=self.intermediate_size,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
# added args
add_token_type_embeddings=self.add_token_type_embeddings,
max_positions=self.max_positions,
bidirectional=self.bidirectional,
ema_projection_size=self.ema_projection_size,
shared_representation_size=self.shared_representation_size,
use_chunking=self.use_chunking,
chunk_size=self.chunk_size,
attention_activation=self.attention_activation,
use_normalized_ffn=self.use_normalized_ffn,
nffn_hidden_size=self.nffn_hidden_size,
)
def get_pipeline_config(self):
config = self.get_config()
config.vocab_size = 300
return config
def prepare_config_and_inputs_for_decoder(self):
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = self.prepare_config_and_inputs()
config.is_decoder = True
config.bidirectional = False
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def create_and_check_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = MegaModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
result = model(input_ids, token_type_ids=token_type_ids)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def create_and_check_model_as_decoder(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.add_cross_attention = True
model = MegaModel(config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
)
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
encoder_hidden_states=encoder_hidden_states,
)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def create_and_check_for_causal_lm(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
model = MegaForCausalLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_decoder_model_past_large_inputs(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.is_decoder = True
config.bidirectional = False
config.add_cross_attention = True
model = MegaForCausalLM(config=config).to(torch_device).eval()
# make sure that ids don't start with pad token
mask = input_ids.ne(config.pad_token_id).long()
input_ids = input_ids * mask
# first forward pass
outputs = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=True,
)
past_key_values = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# make sure that ids don't start with pad token
mask = next_tokens.ne(config.pad_token_id).long()
next_tokens = next_tokens * mask
next_mask = ids_tensor((self.batch_size, 1), vocab_size=2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
output_from_no_past = model(
next_input_ids,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_hidden_states=True,
)["hidden_states"][0]
output_from_past = model(
next_tokens,
attention_mask=next_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
output_hidden_states=True,
)["hidden_states"][0]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -1:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def create_and_check_for_masked_lm(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = MegaForMaskedLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_for_token_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = MegaForTokenClassification(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def create_and_check_for_multiple_choice(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_choices = self.num_choices
model = MegaForMultipleChoice(config=config)
model.to(torch_device)
model.eval()
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
result = model(
multiple_choice_inputs_ids,
attention_mask=multiple_choice_input_mask,
token_type_ids=multiple_choice_token_type_ids,
labels=choice_labels,
)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
def create_and_check_for_question_answering(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = MegaForQuestionAnswering(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
start_positions=sequence_labels,
end_positions=sequence_labels,
)
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
# extra checks for Mega-specific model functionality
def create_and_check_bidirectionality(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.bidirectional = True
model = MegaModel(config)
model.to(torch_device)
model.eval()
# no mask
result = model(input_ids)
# with mask & token types
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
self.parent.assertEqual(result[0].shape, (self.batch_size, self.seq_length, self.hidden_size))
def check_chunking_shorter_sequence(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.use_chunking = True
config.chunk_size = input_ids.size(1) + 25
model = MegaModel(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
self.parent.assertEqual(result[0].shape, (self.batch_size, self.seq_length, self.hidden_size))
def check_chunking_longer_sequence(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.use_chunking = True
# we want the chunk size to be < sequence length, and the sequence length to be a multiple of chunk size
config.chunk_size = input_ids.size(1) * 2
model = MegaModel(config)
model.to(torch_device)
model.eval()
result = model(
input_ids.repeat(1, 8),
)
self.parent.assertEqual(result[0].shape, (self.batch_size, self.seq_length * 8, self.hidden_size))
def check_laplace_self_attention(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.attention_activation = "laplace"
model = MegaModel(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
self.parent.assertEqual(result[0].shape, (self.batch_size, self.seq_length, self.hidden_size))
def check_relu2_self_attention(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.attention_activation = "relu2"
model = MegaModel(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
self.parent.assertEqual(result[0].shape, (self.batch_size, self.seq_length, self.hidden_size))
def check_sequence_length_beyond_max_positions(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.max_positions = self.seq_length - 2
model = MegaModel(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
self.parent.assertEqual(result[0].shape, (self.batch_size, self.seq_length, self.hidden_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class MegaModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(
MegaForCausalLM,
MegaForMaskedLM,
MegaModel,
MegaForSequenceClassification,
MegaForTokenClassification,
MegaForMultipleChoice,
MegaForQuestionAnswering,
)
if is_torch_available()
else ()
)
all_generative_model_classes = (MegaForCausalLM,) if is_torch_available() else ()
pipeline_model_mapping = (
{
"feature-extraction": MegaModel,
"fill-mask": MegaForMaskedLM,
"question-answering": MegaForQuestionAnswering,
"text-classification": MegaForSequenceClassification,
"text-generation": MegaForCausalLM,
"token-classification": MegaForTokenClassification,
"zero-shot": MegaForSequenceClassification,
}
if is_torch_available()
else {}
)
fx_compatible = False
test_head_masking = False
test_pruning = False
def setUp(self):
self.model_tester = MegaModelTester(self)
self.config_tester = ConfigTester(self, config_class=MegaConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_as_decoder(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*config_and_inputs)
def test_model_as_decoder_with_default_input_mask(self):
# This regression test was failing with PyTorch < 1.3
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
) = self.model_tester.prepare_config_and_inputs_for_decoder()
input_mask = None
self.model_tester.create_and_check_model_as_decoder(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def test_for_causal_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_for_causal_lm(*config_and_inputs)
def test_decoder_model_past_with_large_inputs(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
def test_for_token_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
def test_for_multiple_choice(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
def test_for_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
def test_for_bidirectionality(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_bidirectionality(*config_and_inputs)
def test_for_chunking_shorter_sequence(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_chunking_shorter_sequence(*config_and_inputs)
def test_for_chunking_longer_sequence(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_chunking_longer_sequence(*config_and_inputs)
def test_for_laplace_attention(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_laplace_self_attention(*config_and_inputs)
def test_for_relu2_attention(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_relu2_self_attention(*config_and_inputs)
def test_for_sequence_length_beyond_max_positions(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_sequence_length_beyond_max_positions(*config_and_inputs)
def test_generate_fp16(self):
config, input_ids, _, attention_mask, *_ = self.model_tester.prepare_config_and_inputs_for_decoder()
# attention_mask = torch.LongTensor(input_ids.ne(1)).to(torch_device)
model = MegaForCausalLM(config).eval().to(torch_device)
if torch_device == "cuda":
model.half()
model.generate(input_ids, attention_mask=attention_mask)
model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3)
def test_sequence_classification_model(self):
config, input_ids, _, attention_mask, *_ = self.model_tester.prepare_config_and_inputs()
config.num_labels = self.model_tester.num_labels
sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
model = MegaForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
def test_sequence_classification_model_for_multi_label(self):
config, input_ids, _, attention_mask, *_ = self.model_tester.prepare_config_and_inputs()
config.num_labels = self.model_tester.num_labels
config.problem_type = "multi_label_classification"
sequence_labels = ids_tensor(
[self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size
).to(torch.float)
model = MegaForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
@slow
def test_model_from_pretrained(self):
for model_name in MEGA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = MegaModel.from_pretrained(model_name)
self.assertIsNotNone(model)
@unittest.skip(reason="Does not work on the tiny model as we keep hitting edge cases.")
def test_cpu_offload(self):
super().test_cpu_offload()
@unittest.skip(reason="Does not work on the tiny model as we keep hitting edge cases.")
def test_disk_offload(self):
super().test_disk_offload()
@unittest.skip(reason="Does not work on the tiny model as we keep hitting edge cases.")
def test_model_parallelism(self):
super().test_model_parallelism()
@unittest.skip(
reason=(
"Calling `self.attention_function` in `MegaMovingAverageGatedAttention.forward` changes the submodules on "
"device 1 to device 0 (also changes `requires_grad`). No idea how this could happen for now."
)
)
def test_multi_gpu_data_parallel_forward(self):
super().test_multi_gpu_data_parallel_forward()
@unittest.skip(reason="Tracing of the dynamically computed `MegaMultiDimensionDampedEma._kernel` doesn't work.")
def test_torchscript_simple(self):
super().test_torchscript_simple()
@unittest.skip(reason="Tracing of the dynamically computed `MegaMultiDimensionDampedEma._kernel` doesn't work.")
def test_torchscript_output_hidden_state(self):
super().test_torchscript_output_hidden_state()
@unittest.skip(reason="Tracing of the dynamically computed `MegaMultiDimensionDampedEma._kernel` doesn't work.")
def test_torchscript_output_attentions(self):
super().test_torchscript_output_attentions()
@require_torch
class MegaModelIntegrationTest(TestCasePlus):
@slow
def test_inference_masked_lm(self):
model = MegaForMaskedLM.from_pretrained("mnaylor/mega-base-wikitext")
input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
with torch.no_grad():
output = model(input_ids)[0]
expected_shape = torch.Size((1, 11, 50265))
self.assertEqual(output.shape, expected_shape)
# compare the actual values for a slice.
expected_slice = torch.tensor(
[[[67.8389, 10.1470, -32.7148], [-11.1655, 29.1152, 23.1304], [-3.8015, 66.0397, 29.6733]]]
)
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
@slow
def test_inference_no_head(self):
model = MegaModel.from_pretrained("mnaylor/mega-base-wikitext")
input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
with torch.no_grad():
output = model(input_ids)[0]
expected_shape = torch.Size((1, 11, 128))
self.assertEqual(output.shape, expected_shape)
# compare the actual values for a slice. taken from output[:, :3, :3]
expected_slice = torch.tensor(
[[[1.1767, -0.6349, 2.8494], [-0.5109, -0.7745, 1.9495], [-0.3287, -0.2111, 3.3367]]]
)
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
| transformers-main | tests/models/mega/test_modeling_mega.py |
transformers-main | tests/models/vision_encoder_decoder/__init__.py |
|
# coding=utf-8
# Copyright 2021 HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest
import numpy as np
from transformers import is_flax_available, is_torch_available, is_vision_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, require_vision, slow, torch_device
from ...test_modeling_flax_common import floats_tensor, ids_tensor
from ..gpt2.test_modeling_flax_gpt2 import FlaxGPT2ModelTester
from ..vit.test_modeling_flax_vit import FlaxViTModelTester
if is_flax_available():
from transformers import (
AutoTokenizer,
FlaxGPT2LMHeadModel,
FlaxVisionEncoderDecoderModel,
FlaxViTModel,
VisionEncoderDecoderConfig,
)
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
if is_torch_available():
import torch
from transformers import VisionEncoderDecoderModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
@require_flax
class FlaxEncoderDecoderMixin:
def get_encoder_decoder_model(self, config, decoder_config):
raise NotImplementedError
def prepare_config_and_inputs(self):
raise NotImplementedError
def get_pretrained_model(self):
raise NotImplementedError
def check_encoder_decoder_model_from_pretrained_configs(
self,
config,
pixel_values,
encoder_hidden_states,
decoder_config,
decoder_input_ids,
decoder_attention_mask,
**kwargs,
):
encoder_decoder_config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(config, decoder_config)
self.assertTrue(encoder_decoder_config.decoder.is_decoder)
enc_dec_model = FlaxVisionEncoderDecoderModel(encoder_decoder_config)
self.assertTrue(enc_dec_model.config.is_encoder_decoder)
outputs_encoder_decoder = enc_dec_model(
pixel_values=pixel_values,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
)
self.assertEqual(
outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
)
self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[0], pixel_values.shape[0])
self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[-1], config.hidden_size)
def check_encoder_decoder_model_from_pretrained(
self,
config,
pixel_values,
encoder_hidden_states,
decoder_config,
decoder_input_ids,
decoder_attention_mask,
return_dict,
**kwargs,
):
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
kwargs = {"encoder_model": encoder_model, "decoder_model": decoder_model, "return_dict": return_dict}
enc_dec_model = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained(**kwargs)
outputs_encoder_decoder = enc_dec_model(
pixel_values=pixel_values,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
return_dict=True,
)
self.assertEqual(
outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
)
self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[0], pixel_values.shape[0])
self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[-1], config.hidden_size)
def check_save_and_load(
self,
config,
pixel_values,
encoder_hidden_states,
decoder_config,
decoder_input_ids,
decoder_attention_mask,
**kwargs,
):
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
kwargs = {"encoder_model": encoder_model, "decoder_model": decoder_model}
enc_dec_model = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained(**kwargs)
outputs = enc_dec_model(
pixel_values=pixel_values,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
)
out_2 = np.array(outputs[0])
out_2[np.isnan(out_2)] = 0
with tempfile.TemporaryDirectory() as tmpdirname:
enc_dec_model.save_pretrained(tmpdirname)
FlaxVisionEncoderDecoderModel.from_pretrained(tmpdirname)
after_outputs = enc_dec_model(
pixel_values=pixel_values,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
)
out_1 = np.array(after_outputs[0])
out_1[np.isnan(out_1)] = 0
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
def check_encoder_decoder_model_output_attentions(
self,
config,
pixel_values,
encoder_hidden_states,
decoder_config,
decoder_input_ids,
decoder_attention_mask,
**kwargs,
):
# make the decoder inputs a different shape from the encoder inputs to harden the test
decoder_input_ids = decoder_input_ids[:, :-1]
decoder_attention_mask = decoder_attention_mask[:, :-1]
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
kwargs = {"encoder_model": encoder_model, "decoder_model": decoder_model}
enc_dec_model = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained(**kwargs)
outputs_encoder_decoder = enc_dec_model(
pixel_values=pixel_values,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
output_attentions=True,
)
encoder_attentions = outputs_encoder_decoder["encoder_attentions"]
self.assertEqual(len(encoder_attentions), config.num_hidden_layers)
self.assertEqual(encoder_attentions[0].shape[-3:-2], (config.num_attention_heads,))
decoder_attentions = outputs_encoder_decoder["decoder_attentions"]
num_decoder_layers = (
decoder_config.num_decoder_layers
if hasattr(decoder_config, "num_decoder_layers")
else decoder_config.num_hidden_layers
)
self.assertEqual(len(decoder_attentions), num_decoder_layers)
self.assertEqual(
decoder_attentions[0].shape[-3:],
(decoder_config.num_attention_heads, decoder_input_ids.shape[-1], decoder_input_ids.shape[-1]),
)
cross_attentions = outputs_encoder_decoder["cross_attentions"]
self.assertEqual(len(cross_attentions), num_decoder_layers)
cross_attention_input_seq_len = decoder_input_ids.shape[-1] * (
1 + (decoder_config.ngram if hasattr(decoder_config, "ngram") else 0)
)
self.assertEqual(
cross_attentions[0].shape[-3:-1],
(decoder_config.num_attention_heads, cross_attention_input_seq_len),
)
def check_encoder_decoder_model_generate(self, pixel_values, config, decoder_config, **kwargs):
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
kwargs = {"encoder_model": encoder_model, "decoder_model": decoder_model}
enc_dec_model = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained(**kwargs)
pad_token_id = enc_dec_model.config.decoder.pad_token_id
eos_token_id = enc_dec_model.config.decoder.eos_token_id
decoder_start_token_id = enc_dec_model.config.decoder.decoder_start_token_id
# Copied from generation.utils (GPT2 doesn't have `pad_token_id`)
if pad_token_id is None and eos_token_id is not None:
pad_token_id = eos_token_id
if decoder_start_token_id is None:
decoder_start_token_id = enc_dec_model.config.decoder.bos_token_id
# Bert does not have a bos token id, so use pad_token_id instead
# Copied from `test_modeling_encoder_decoder.py`
if decoder_start_token_id is None:
decoder_start_token_id = pad_token_id
generated_output = enc_dec_model.generate(
pixel_values,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
decoder_start_token_id=decoder_start_token_id,
)
generated_sequences = generated_output.sequences
self.assertEqual(generated_sequences.shape, (pixel_values.shape[0],) + (decoder_config.max_length,))
def check_pt_flax_equivalence(self, pt_model, fx_model, inputs_dict):
pt_model.to(torch_device)
pt_model.eval()
# prepare inputs
flax_inputs = inputs_dict
pt_inputs = {k: torch.tensor(v.tolist()) for k, v in flax_inputs.items()}
with torch.no_grad():
pt_outputs = pt_model(**pt_inputs).to_tuple()
fx_outputs = fx_model(**inputs_dict).to_tuple()
self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch")
for fx_output, pt_output in zip(fx_outputs, pt_outputs):
self.assert_almost_equals(fx_output, pt_output.numpy(), 1e-5)
# PT -> Flax
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(tmpdirname)
fx_model_loaded = FlaxVisionEncoderDecoderModel.from_pretrained(tmpdirname, from_pt=True)
fx_outputs_loaded = fx_model_loaded(**inputs_dict).to_tuple()
self.assertEqual(len(fx_outputs_loaded), len(pt_outputs), "Output lengths differ between Flax and PyTorch")
for fx_output_loaded, pt_output in zip(fx_outputs_loaded, pt_outputs):
self.assert_almost_equals(fx_output_loaded, pt_output.numpy(), 1e-5)
# Flax -> PT
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(tmpdirname)
pt_model_loaded = VisionEncoderDecoderModel.from_pretrained(tmpdirname, from_flax=True)
pt_model_loaded.to(torch_device)
pt_model_loaded.eval()
with torch.no_grad():
pt_outputs_loaded = pt_model_loaded(**pt_inputs).to_tuple()
self.assertEqual(len(fx_outputs), len(pt_outputs_loaded), "Output lengths differ between Flax and PyTorch")
for fx_output, pt_output_loaded in zip(fx_outputs, pt_outputs_loaded):
self.assert_almost_equals(fx_output, pt_output_loaded.numpy(), 1e-5)
def check_equivalence_pt_to_flax(self, config, decoder_config, inputs_dict):
encoder_decoder_config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(config, decoder_config)
pt_model = VisionEncoderDecoderModel(encoder_decoder_config)
fx_model = FlaxVisionEncoderDecoderModel(encoder_decoder_config)
fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model)
fx_model.params = fx_state
self.check_pt_flax_equivalence(pt_model, fx_model, inputs_dict)
def check_equivalence_flax_to_pt(self, config, decoder_config, inputs_dict):
encoder_decoder_config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(config, decoder_config)
pt_model = VisionEncoderDecoderModel(encoder_decoder_config)
fx_model = FlaxVisionEncoderDecoderModel(encoder_decoder_config)
pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params)
self.check_pt_flax_equivalence(pt_model, fx_model, inputs_dict)
def test_encoder_decoder_model_from_pretrained_configs(self):
config_inputs_dict = self.prepare_config_and_inputs()
self.check_encoder_decoder_model_from_pretrained_configs(**config_inputs_dict)
def test_encoder_decoder_model_from_pretrained(self):
config_inputs_dict = self.prepare_config_and_inputs()
self.check_encoder_decoder_model_from_pretrained(**config_inputs_dict, return_dict=False)
def test_encoder_decoder_model_from_pretrained_return_dict(self):
config_inputs_dict = self.prepare_config_and_inputs()
self.check_encoder_decoder_model_from_pretrained(**config_inputs_dict, return_dict=True)
def test_save_and_load_from_pretrained(self):
config_inputs_dict = self.prepare_config_and_inputs()
self.check_save_and_load(**config_inputs_dict)
def test_encoder_decoder_model_output_attentions(self):
config_inputs_dict = self.prepare_config_and_inputs()
self.check_encoder_decoder_model_output_attentions(**config_inputs_dict)
def test_encoder_decoder_model_generate(self):
config_inputs_dict = self.prepare_config_and_inputs()
self.check_encoder_decoder_model_generate(**config_inputs_dict)
def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float):
diff = np.abs((a - b)).max()
self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol}).")
@is_pt_flax_cross_test
def test_pt_flax_equivalence(self):
config_inputs_dict = self.prepare_config_and_inputs()
config = config_inputs_dict.pop("config")
decoder_config = config_inputs_dict.pop("decoder_config")
inputs_dict = config_inputs_dict
# `encoder_hidden_states` is not used in model call/forward
del inputs_dict["encoder_hidden_states"]
# Avoid the case where a sequence has no place to attend (after combined with the causal attention mask)
batch_size = inputs_dict["decoder_attention_mask"].shape[0]
inputs_dict["decoder_attention_mask"] = np.concatenate(
[np.ones(shape=(batch_size, 1)), inputs_dict["decoder_attention_mask"][:, 1:]], axis=1
)
# Flax models don't use the `use_cache` option and cache is not returned as a default.
# So we disable `use_cache` here for PyTorch model.
decoder_config.use_cache = False
self.assertTrue(decoder_config.cross_attention_hidden_size is None)
# check without `enc_to_dec_proj` projection
self.assertTrue(config.hidden_size == decoder_config.hidden_size)
self.check_equivalence_pt_to_flax(config, decoder_config, inputs_dict)
self.check_equivalence_flax_to_pt(config, decoder_config, inputs_dict)
# check `enc_to_dec_proj` work as expected
decoder_config.hidden_size = decoder_config.hidden_size * 2
self.assertTrue(config.hidden_size != decoder_config.hidden_size)
self.check_equivalence_pt_to_flax(config, decoder_config, inputs_dict)
self.check_equivalence_flax_to_pt(config, decoder_config, inputs_dict)
@slow
def test_real_model_save_load_from_pretrained(self):
model_2 = self.get_pretrained_model()
pixel_values = floats_tensor(
[
13,
model_2.config.encoder.num_channels,
model_2.config.encoder.image_size,
model_2.config.encoder.image_size,
]
)
decoder_input_ids = ids_tensor([13, 1], model_2.config.decoder.vocab_size)
outputs = model_2(
pixel_values=pixel_values,
decoder_input_ids=decoder_input_ids,
)
out_2 = np.array(outputs[0])
out_2[np.isnan(out_2)] = 0
with tempfile.TemporaryDirectory() as tmp_dirname:
model_2.save_pretrained(tmp_dirname)
model_1 = FlaxVisionEncoderDecoderModel.from_pretrained(tmp_dirname)
after_outputs = model_1(
pixel_values=pixel_values,
decoder_input_ids=decoder_input_ids,
)
out_1 = np.array(after_outputs[0])
out_1[np.isnan(out_1)] = 0
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
@require_flax
class FlaxViT2GPT2EncoderDecoderModelTest(FlaxEncoderDecoderMixin, unittest.TestCase):
def get_encoder_decoder_model(self, config, decoder_config):
encoder_model = FlaxViTModel(config)
decoder_model = FlaxGPT2LMHeadModel(decoder_config)
return encoder_model, decoder_model
def prepare_config_and_inputs(self):
model_tester_encoder = FlaxViTModelTester(self, batch_size=13)
model_tester_decoder = FlaxGPT2ModelTester(self, batch_size=13)
encoder_config_and_inputs = model_tester_encoder.prepare_config_and_inputs()
decoder_config_and_inputs = model_tester_decoder.prepare_config_and_inputs_for_decoder()
(config, pixel_values) = encoder_config_and_inputs
(
decoder_config,
decoder_input_ids,
decoder_attention_mask,
encoder_hidden_states,
encoder_attention_mask,
) = decoder_config_and_inputs
# make sure that cross attention layers are added
decoder_config.add_cross_attention = True
return {
"config": config,
"pixel_values": pixel_values,
"decoder_config": decoder_config,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
"encoder_hidden_states": encoder_hidden_states, # This is not used in the tests.
}
def get_pretrained_model(self):
return FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained(
"google/vit-base-patch16-224-in21k", "gpt2"
)
@require_flax
class FlaxVisionEncoderDecoderModelTest(unittest.TestCase):
def get_from_encoderdecoder_pretrained_model(self):
return FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained(
"google/vit-base-patch16-224-in21k", "gpt2"
)
def _check_configuration_tie(self, model):
module = model.module.bind(model.params)
assert id(module.decoder.config) == id(model.config.decoder)
assert id(module.encoder.config) == id(model.config.encoder)
@slow
def test_configuration_tie(self):
model = self.get_from_encoderdecoder_pretrained_model()
self._check_configuration_tie(model)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_vision
@require_flax
class FlaxViT2GPT2ModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_coco_en(self):
loc = "ydshieh/vit-gpt2-coco-en"
image_processor = ViTImageProcessor.from_pretrained(loc)
tokenizer = AutoTokenizer.from_pretrained(loc)
model = FlaxVisionEncoderDecoderModel.from_pretrained(loc)
img = prepare_img()
pixel_values = image_processor(images=img, return_tensors="np").pixel_values
decoder_input_ids = np.array([[model.config.decoder_start_token_id]])
logits = model(pixel_values, decoder_input_ids)[0]
logits = np.array(logits)
# verify the logits
expected_shape = (1, 1, model.config.decoder.vocab_size)
self.assertEqual(logits.shape, expected_shape)
EXPECTED_LOGIT_SLICE = np.array(
[
-38.705837,
-30.639936,
-31.41905,
-39.01204,
-38.38698,
-34.887215,
-33.29087,
-35.684475,
-38.50852,
-36.124676,
]
)
max_diff = np.amax(np.abs(logits[0, 0, :10] - EXPECTED_LOGIT_SLICE))
self.assertLessEqual(max_diff, 1e-4)
def generate_step(pixel_values):
outputs = model.generate(pixel_values, max_length=16, num_beams=4)
output_ids = outputs.sequences
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
preds = [pred.strip() for pred in preds]
return preds, outputs.scores
preds, scores = generate_step(pixel_values)
EXPECTED_SCORES = np.array([-0.59563464])
scores = np.array(scores)
max_diff = np.amax(np.abs(scores - EXPECTED_SCORES))
self.assertLessEqual(max_diff, 1e-4)
# should produce
# ["a cat laying on top of a couch next to another cat"]
self.assertEqual(preds, ["a cat laying on top of a couch next to another cat"])
| transformers-main | tests/models/vision_encoder_decoder/test_modeling_flax_vision_encoder_decoder.py |
# coding=utf-8
# Copyright 2021 HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
import tempfile
import unittest
from datasets import load_dataset
from packaging import version
from transformers import DonutProcessor, TrOCRProcessor
from transformers.testing_utils import (
require_sentencepiece,
require_torch,
require_vision,
slow,
to_2tuple,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_modeling_common import floats_tensor, ids_tensor, random_attention_mask
from ..bart.test_modeling_bart import BartModelTester
from ..bert.test_modeling_bert import BertModelTester
from ..deit.test_modeling_deit import DeiTModelTester
from ..swin.test_modeling_swin import SwinModelTester
from ..trocr.test_modeling_trocr import TrOCRStandaloneDecoderModelTester
from ..vit.test_modeling_vit import ViTModelTester
if is_torch_available():
import numpy as np
import torch
from transformers import (
AutoTokenizer,
BartForCausalLM,
BertLMHeadModel,
DeiTModel,
SwinModel,
TrOCRForCausalLM,
VisionEncoderDecoderConfig,
VisionEncoderDecoderModel,
ViTModel,
)
from transformers.modeling_outputs import BaseModelOutput
if is_vision_available():
import PIL
from PIL import Image
from transformers import ViTImageProcessor
@require_torch
class EncoderDecoderMixin:
def get_encoder_decoder_model(self, config, decoder_config):
pass
def prepare_config_and_inputs(self):
pass
def get_pretrained_model_and_inputs(self):
pass
def check_encoder_decoder_model_from_pretrained_configs(
self, config, decoder_config, decoder_input_ids, decoder_attention_mask, pixel_values=None, **kwargs
):
encoder_decoder_config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(config, decoder_config)
self.assertTrue(encoder_decoder_config.decoder.is_decoder)
enc_dec_model = VisionEncoderDecoderModel(encoder_decoder_config)
enc_dec_model.to(torch_device)
enc_dec_model.eval()
self.assertTrue(enc_dec_model.config.is_encoder_decoder)
outputs_encoder_decoder = enc_dec_model(
pixel_values=pixel_values,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
)
self.assertEqual(
outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
)
def check_encoder_decoder_model(
self, config, decoder_config, decoder_input_ids, decoder_attention_mask, pixel_values=None, **kwargs
):
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
enc_dec_model = VisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
self.assertTrue(enc_dec_model.config.decoder.is_decoder)
self.assertTrue(enc_dec_model.config.decoder.add_cross_attention)
self.assertTrue(enc_dec_model.config.is_encoder_decoder)
enc_dec_model.to(torch_device)
outputs_encoder_decoder = enc_dec_model(
pixel_values=pixel_values,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
output_hidden_states=True,
)
self.assertEqual(
outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
)
encoder_outputs = BaseModelOutput(last_hidden_state=outputs_encoder_decoder.encoder_hidden_states[-1])
outputs_encoder_decoder = enc_dec_model(
encoder_outputs=encoder_outputs,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
)
self.assertEqual(
outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
)
def check_encoder_decoder_model_from_pretrained(
self,
config,
decoder_config,
decoder_input_ids,
decoder_attention_mask,
return_dict,
pixel_values=None,
**kwargs,
):
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
kwargs = {"encoder_model": encoder_model, "decoder_model": decoder_model, "return_dict": return_dict}
enc_dec_model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained(**kwargs)
enc_dec_model.to(torch_device)
outputs_encoder_decoder = enc_dec_model(
pixel_values=pixel_values,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
output_hidden_states=True,
return_dict=True,
)
self.assertEqual(
outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
)
def check_save_and_load(
self, config, decoder_config, decoder_input_ids, decoder_attention_mask, pixel_values=None, **kwargs
):
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
enc_dec_model = VisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
enc_dec_model.to(torch_device)
enc_dec_model.eval()
with torch.no_grad():
outputs = enc_dec_model(
pixel_values=pixel_values,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
)
out_2 = outputs[0].cpu().numpy()
out_2[np.isnan(out_2)] = 0
with tempfile.TemporaryDirectory() as tmpdirname:
enc_dec_model.save_pretrained(tmpdirname)
enc_dec_model = VisionEncoderDecoderModel.from_pretrained(tmpdirname)
enc_dec_model.to(torch_device)
after_outputs = enc_dec_model(
pixel_values=pixel_values,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
)
out_1 = after_outputs[0].cpu().numpy()
out_1[np.isnan(out_1)] = 0
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
def check_save_and_load_encoder_decoder_model(
self, config, decoder_config, decoder_input_ids, decoder_attention_mask, pixel_values=None, **kwargs
):
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
enc_dec_model = VisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
enc_dec_model.to(torch_device)
enc_dec_model.eval()
with torch.no_grad():
outputs = enc_dec_model(
pixel_values=pixel_values,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
)
out_2 = outputs[0].cpu().numpy()
out_2[np.isnan(out_2)] = 0
with tempfile.TemporaryDirectory() as encoder_tmp_dirname, tempfile.TemporaryDirectory() as decoder_tmp_dirname:
enc_dec_model.encoder.save_pretrained(encoder_tmp_dirname)
enc_dec_model.decoder.save_pretrained(decoder_tmp_dirname)
VisionEncoderDecoderModel.from_encoder_decoder_pretrained(
encoder_pretrained_model_name_or_path=encoder_tmp_dirname,
decoder_pretrained_model_name_or_path=decoder_tmp_dirname,
)
after_outputs = enc_dec_model(
pixel_values=pixel_values,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
)
out_1 = after_outputs[0].cpu().numpy()
out_1[np.isnan(out_1)] = 0
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
def check_encoder_decoder_model_output_attentions(
self,
config,
decoder_config,
decoder_input_ids,
decoder_attention_mask,
labels=None,
pixel_values=None,
**kwargs,
):
# make the decoder inputs a different shape from the encoder inputs to harden the test
decoder_input_ids = decoder_input_ids[:, :-1]
decoder_attention_mask = decoder_attention_mask[:, :-1]
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
enc_dec_model = VisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
enc_dec_model.to(torch_device)
outputs_encoder_decoder = enc_dec_model(
pixel_values=pixel_values,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
output_attentions=True,
)
encoder_attentions = outputs_encoder_decoder["encoder_attentions"]
self.assertEqual(len(encoder_attentions), config.num_hidden_layers)
# in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
image_size = to_2tuple(encoder_model.config.image_size)
patch_size = to_2tuple(encoder_model.config.patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
seq_len = num_patches + 1
self.assertEqual(encoder_attentions[0].shape[-3:], (config.num_attention_heads, seq_len, seq_len))
decoder_attentions = outputs_encoder_decoder["decoder_attentions"]
num_decoder_layers = (
decoder_config.num_decoder_layers
if hasattr(decoder_config, "num_decoder_layers")
else decoder_config.num_hidden_layers
)
self.assertEqual(len(decoder_attentions), num_decoder_layers)
self.assertEqual(
decoder_attentions[0].shape[-3:],
(decoder_config.num_attention_heads, decoder_input_ids.shape[-1], decoder_input_ids.shape[-1]),
)
cross_attentions = outputs_encoder_decoder["cross_attentions"]
self.assertEqual(len(cross_attentions), num_decoder_layers)
cross_attention_input_seq_len = decoder_input_ids.shape[-1]
self.assertEqual(
cross_attentions[0].shape[-3:],
(decoder_config.num_attention_heads, cross_attention_input_seq_len, seq_len),
)
def check_encoder_decoder_model_generate(self, config, decoder_config, pixel_values=None, **kwargs):
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
enc_dec_model = VisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
# Generate until max length
if hasattr(enc_dec_model.config, "eos_token_id"):
enc_dec_model.config.eos_token_id = None
if hasattr(enc_dec_model.config, "decoder") and hasattr(enc_dec_model.config.decoder, "eos_token_id"):
enc_dec_model.config.decoder.eos_token_id = None
enc_dec_model.to(torch_device)
inputs = pixel_values
# Bert does not have a bos token id, so use pad_token_id instead
generated_output = enc_dec_model.generate(
inputs, decoder_start_token_id=enc_dec_model.config.decoder.pad_token_id
)
self.assertEqual(generated_output.shape, (inputs.shape[0],) + (decoder_config.max_length,))
def test_encoder_decoder_model(self):
input_ids_dict = self.prepare_config_and_inputs()
self.check_encoder_decoder_model(**input_ids_dict)
def test_encoder_decoder_model_from_pretrained_configs(self):
input_ids_dict = self.prepare_config_and_inputs()
self.check_encoder_decoder_model_from_pretrained_configs(**input_ids_dict)
def test_encoder_decoder_model_from_pretrained(self):
input_ids_dict = self.prepare_config_and_inputs()
self.check_encoder_decoder_model_from_pretrained(**input_ids_dict, return_dict=False)
def test_encoder_decoder_model_from_pretrained_return_dict(self):
input_ids_dict = self.prepare_config_and_inputs()
self.check_encoder_decoder_model_from_pretrained(**input_ids_dict, return_dict=True)
def test_save_and_load_from_pretrained(self):
input_ids_dict = self.prepare_config_and_inputs()
self.check_save_and_load(**input_ids_dict)
def test_save_and_load_from_encoder_decoder_pretrained(self):
input_ids_dict = self.prepare_config_and_inputs()
self.check_save_and_load_encoder_decoder_model(**input_ids_dict)
def test_encoder_decoder_model_output_attentions(self):
input_ids_dict = self.prepare_config_and_inputs()
self.check_encoder_decoder_model_output_attentions(**input_ids_dict)
def test_encoder_decoder_model_generate(self):
input_ids_dict = self.prepare_config_and_inputs()
self.check_encoder_decoder_model_generate(**input_ids_dict)
def test_training_gradient_checkpointing(self):
inputs_dict = self.prepare_config_and_inputs()
encoder_model, decoder_model = self.get_encoder_decoder_model(
inputs_dict["config"], inputs_dict["decoder_config"]
)
model = VisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
model.to(torch_device)
model.train()
model.gradient_checkpointing_enable()
model.config.decoder_start_token_id = 0
model.config.pad_token_id = 0
model_inputs = {
"pixel_values": inputs_dict["pixel_values"],
"labels": inputs_dict["labels"],
"decoder_input_ids": inputs_dict["decoder_input_ids"],
}
loss = model(**model_inputs).loss
loss.backward()
@slow
def test_real_model_save_load_from_pretrained(self):
model_2, inputs = self.get_pretrained_model_and_inputs()
model_2.to(torch_device)
with torch.no_grad():
outputs = model_2(**inputs)
out_2 = outputs[0].cpu().numpy()
out_2[np.isnan(out_2)] = 0
with tempfile.TemporaryDirectory() as tmp_dirname:
model_2.save_pretrained(tmp_dirname)
model_1 = VisionEncoderDecoderModel.from_pretrained(tmp_dirname)
model_1.to(torch_device)
after_outputs = model_1(**inputs)
out_1 = after_outputs[0].cpu().numpy()
out_1[np.isnan(out_1)] = 0
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
@require_torch
class DeiT2RobertaModelTest(EncoderDecoderMixin, unittest.TestCase):
def get_pretrained_model_and_inputs(self):
model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained(
"hf-internal-testing/tiny-random-deit", "hf-internal-testing/tiny-random-roberta"
)
batch_size = 13
pixel_values = floats_tensor(
[
batch_size,
model.encoder.config.num_channels,
model.encoder.config.image_size,
model.encoder.config.image_size,
]
)
# for DEiT, the sequence length is equal to the number of patches + 2 (for the [CLS] and distillation tokens)
decoder_input_ids = ids_tensor([batch_size, 4], model.decoder.config.vocab_size)
decoder_attention_mask = random_attention_mask([batch_size, 4])
inputs = {
"pixel_values": pixel_values,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
}
return model, inputs
def check_encoder_decoder_model_output_attentions(
self,
config,
decoder_config,
decoder_input_ids,
decoder_attention_mask,
labels=None,
pixel_values=None,
**kwargs,
):
# make the decoder inputs a different shape from the encoder inputs to harden the test
decoder_input_ids = decoder_input_ids[:, :-1]
decoder_attention_mask = decoder_attention_mask[:, :-1]
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
enc_dec_model = VisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
enc_dec_model.to(torch_device)
outputs_encoder_decoder = enc_dec_model(
pixel_values=pixel_values,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
output_attentions=True,
)
encoder_attentions = outputs_encoder_decoder["encoder_attentions"]
self.assertEqual(len(encoder_attentions), config.num_hidden_layers)
# in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens)
image_size = to_2tuple(encoder_model.config.image_size)
patch_size = to_2tuple(encoder_model.config.patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
seq_len = num_patches + 2
self.assertEqual(encoder_attentions[0].shape[-3:], (config.num_attention_heads, seq_len, seq_len))
decoder_attentions = outputs_encoder_decoder["decoder_attentions"]
num_decoder_layers = (
decoder_config.num_decoder_layers
if hasattr(decoder_config, "num_decoder_layers")
else decoder_config.num_hidden_layers
)
self.assertEqual(len(decoder_attentions), num_decoder_layers)
self.assertEqual(
decoder_attentions[0].shape[-3:],
(decoder_config.num_attention_heads, decoder_input_ids.shape[-1], decoder_input_ids.shape[-1]),
)
cross_attentions = outputs_encoder_decoder["cross_attentions"]
self.assertEqual(len(cross_attentions), num_decoder_layers)
cross_attention_input_seq_len = decoder_input_ids.shape[-1]
self.assertEqual(
cross_attentions[0].shape[-3:],
(decoder_config.num_attention_heads, cross_attention_input_seq_len, seq_len),
)
def get_encoder_decoder_model(self, config, decoder_config):
encoder_model = DeiTModel(config).eval()
decoder_model = BertLMHeadModel(decoder_config).eval()
return encoder_model, decoder_model
def prepare_config_and_inputs(self):
bert_model_tester = BertModelTester(self)
deit_model_tester = DeiTModelTester(self)
encoder_config_and_inputs = deit_model_tester.prepare_config_and_inputs()
decoder_config_and_inputs = bert_model_tester.prepare_config_and_inputs_for_decoder()
config, pixel_values, _ = encoder_config_and_inputs
(
decoder_config,
decoder_input_ids,
decoder_token_type_ids,
decoder_input_mask,
decoder_sequence_labels,
decoder_token_labels,
decoder_choice_labels,
encoder_attention_mask,
_,
) = decoder_config_and_inputs
# make sure that cross attention layers are added
decoder_config.add_cross_attention = True
return {
"config": config,
"pixel_values": pixel_values,
"decoder_config": decoder_config,
"decoder_input_ids": decoder_input_ids,
"decoder_token_type_ids": decoder_token_type_ids,
"decoder_attention_mask": decoder_input_mask,
"decoder_sequence_labels": decoder_sequence_labels,
"decoder_token_labels": decoder_token_labels,
"decoder_choice_labels": decoder_choice_labels,
"labels": decoder_token_labels,
}
@require_torch
class ViT2BertModelTest(EncoderDecoderMixin, unittest.TestCase):
def get_pretrained_model_and_inputs(self):
model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained(
"hf-internal-testing/tiny-random-vit", "hf-internal-testing/tiny-bert"
)
batch_size = 13
pixel_values = floats_tensor(
[
batch_size,
model.encoder.config.num_channels,
model.encoder.config.image_size,
model.encoder.config.image_size,
]
)
# for ViT, the sequence length is equal to the number of patches + 1 (for the [CLS] token)
decoder_input_ids = ids_tensor([batch_size, 4], model.decoder.config.vocab_size)
decoder_attention_mask = random_attention_mask([batch_size, 4])
inputs = {
"pixel_values": pixel_values,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
}
return model, inputs
def get_encoder_decoder_model(self, config, decoder_config):
encoder_model = ViTModel(config).eval()
decoder_model = BertLMHeadModel(decoder_config).eval()
return encoder_model, decoder_model
def prepare_config_and_inputs(self):
vit_model_tester = ViTModelTester(self)
bert_model_tester = BertModelTester(self)
encoder_config_and_inputs = vit_model_tester.prepare_config_and_inputs()
decoder_config_and_inputs = bert_model_tester.prepare_config_and_inputs_for_decoder()
config, pixel_values, _ = encoder_config_and_inputs
(
decoder_config,
decoder_input_ids,
decoder_token_type_ids,
decoder_input_mask,
decoder_sequence_labels,
decoder_token_labels,
decoder_choice_labels,
encoder_attention_mask,
_,
) = decoder_config_and_inputs
# make sure that cross attention layers are added
decoder_config.add_cross_attention = True
return {
"config": config,
"pixel_values": pixel_values,
"decoder_config": decoder_config,
"decoder_input_ids": decoder_input_ids,
"decoder_token_type_ids": decoder_token_type_ids,
"decoder_attention_mask": decoder_input_mask,
"decoder_sequence_labels": decoder_sequence_labels,
"decoder_token_labels": decoder_token_labels,
"decoder_choice_labels": decoder_choice_labels,
"labels": decoder_token_labels,
}
@require_torch
class Swin2BartModelTest(EncoderDecoderMixin, unittest.TestCase):
def get_encoder_decoder_model(self, config, decoder_config):
encoder_model = SwinModel(config).eval()
decoder_model = BartForCausalLM(decoder_config).eval()
return encoder_model, decoder_model
def prepare_config_and_inputs(self):
model_tester_encoder = SwinModelTester(self, batch_size=13, embed_dim=32)
model_tester_decoder = BartModelTester(self, batch_size=13, hidden_size=32, max_position_embeddings=512)
encoder_config_and_inputs = model_tester_encoder.prepare_config_and_inputs()
decoder_config_and_inputs = model_tester_decoder.prepare_config_and_inputs()
config, pixel_values, _ = encoder_config_and_inputs
decoder_config, decoder_inputs_dict = decoder_config_and_inputs
decoder_inputs_dict["labels"] = decoder_inputs_dict["decoder_input_ids"]
# make sure that cross attention layers are added
decoder_config.add_cross_attention = True
# disable cache for now
decoder_config.use_cache = False
return {
"config": config,
"pixel_values": pixel_values,
"decoder_config": decoder_config,
**decoder_inputs_dict,
}
def check_encoder_decoder_model_output_attentions(
self,
config,
decoder_config,
decoder_input_ids,
decoder_attention_mask,
labels=None,
pixel_values=None,
**kwargs,
):
# make the decoder inputs a different shape from the encoder inputs to harden the test
decoder_input_ids = decoder_input_ids[:, :-1]
decoder_attention_mask = decoder_attention_mask[:, :-1]
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
enc_dec_model = VisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
enc_dec_model.to(torch_device)
outputs_encoder_decoder = enc_dec_model(
pixel_values=pixel_values,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
output_attentions=True,
)
encoder_attentions = outputs_encoder_decoder["encoder_attentions"]
self.assertEqual(len(encoder_attentions), config.num_hidden_layers)
# in Swin, the seq_len equals:
seq_len = encoder_model.config.window_size**2
self.assertEqual(encoder_attentions[0].shape[-3:], (config.num_attention_heads[0], seq_len, seq_len))
decoder_attentions = outputs_encoder_decoder["decoder_attentions"]
num_decoder_layers = (
decoder_config.num_decoder_layers
if hasattr(decoder_config, "num_decoder_layers")
else decoder_config.num_hidden_layers
)
self.assertEqual(len(decoder_attentions), num_decoder_layers)
self.assertEqual(
decoder_attentions[0].shape[-3:],
(decoder_config.num_attention_heads, decoder_input_ids.shape[-1], decoder_input_ids.shape[-1]),
)
cross_attentions = outputs_encoder_decoder["cross_attentions"]
self.assertEqual(len(cross_attentions), num_decoder_layers)
encoder_seq_len = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1))
cross_attention_input_seq_len = decoder_input_ids.shape[-1]
self.assertEqual(
cross_attentions[0].shape[-3:],
(decoder_config.num_attention_heads, cross_attention_input_seq_len, encoder_seq_len),
)
# there are no published pretrained BART-causal checkpoints for now
def test_real_model_save_load_from_pretrained(self):
pass
@require_torch
class ViT2TrOCR(EncoderDecoderMixin, unittest.TestCase):
def get_encoder_decoder_model(self, config, decoder_config):
encoder_model = ViTModel(config).eval()
decoder_model = TrOCRForCausalLM(decoder_config).eval()
return encoder_model, decoder_model
def prepare_config_and_inputs(self):
model_tester_encoder = ViTModelTester(self, batch_size=13)
model_tester_decoder = TrOCRStandaloneDecoderModelTester(
self, batch_size=13, d_model=32, max_position_embeddings=512
)
encoder_config_and_inputs = model_tester_encoder.prepare_config_and_inputs()
decoder_config_and_inputs = model_tester_decoder.prepare_config_and_inputs()
config, pixel_values, _ = encoder_config_and_inputs
(decoder_config, decoder_input_ids, decoder_attention_mask, _) = decoder_config_and_inputs
# make sure that cross attention layers are added
decoder_config.add_cross_attention = True
# disable cache for now
decoder_config.use_cache = False
return {
"config": config,
"pixel_values": pixel_values,
"decoder_config": decoder_config,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
"labels": decoder_input_ids,
}
# there are no published pretrained TrOCR checkpoints for now
def test_real_model_save_load_from_pretrained(self):
pass
@require_vision
@require_torch
class TrOCRModelIntegrationTest(unittest.TestCase):
@cached_property
def default_processor(self):
return TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten") if is_vision_available() else None
@slow
def test_inference_handwritten(self):
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten").to(torch_device)
dataset = load_dataset("hf-internal-testing/fixtures_ocr", split="test")
image = Image.open(dataset[0]["file"]).convert("RGB")
processor = self.default_processor
pixel_values = processor(images=image, return_tensors="pt").pixel_values.to(torch_device)
# forward pass
decoder_input_ids = torch.tensor([[model.config.decoder.decoder_start_token_id]]).to(torch_device)
outputs = model(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids)
logits = outputs.logits
# verify the logits
expected_shape = torch.Size((1, 1, model.decoder.config.vocab_size))
self.assertEqual(outputs.logits.shape, expected_shape)
expected_slice = torch.tensor(
[-1.4502, -4.6683, -0.5347, -2.9291, 9.1435, -3.0571, 8.9764, 1.7560, 8.7358, -1.5311]
).to(torch_device)
self.assertTrue(torch.allclose(logits[0, 0, :10], expected_slice, atol=1e-4))
@slow
def test_inference_printed(self):
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-printed").to(torch_device)
dataset = load_dataset("hf-internal-testing/fixtures_ocr", split="test")
image = Image.open(dataset[1]["file"]).convert("RGB")
processor = self.default_processor
pixel_values = processor(images=image, return_tensors="pt").pixel_values.to(torch_device)
# forward pass
decoder_input_ids = torch.tensor([[model.config.decoder.decoder_start_token_id]]).to(torch_device)
outputs = model(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids)
logits = outputs.logits
# verify the logits
expected_shape = torch.Size((1, 1, model.decoder.config.vocab_size))
self.assertEqual(outputs.logits.shape, expected_shape)
is_pillow_less_than_9 = version.parse(PIL.__version__) < version.parse("9.0.0")
if is_pillow_less_than_9:
expected_slice = torch.tensor(
[-5.6816, -5.8388, 1.1398, -6.9034, 6.8505, -2.4393, 1.2284, -1.0232, -1.9661, -3.9210],
device=torch_device,
)
else:
expected_slice = torch.tensor(
[-5.6844, -5.8372, 1.1518, -6.8984, 6.8587, -2.4453, 1.2347, -1.0241, -1.9649, -3.9109],
device=torch_device,
)
self.assertTrue(torch.allclose(logits[0, 0, :10], expected_slice, atol=1e-4))
@require_vision
@require_torch
class ViT2GPT2ModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_coco_en(self):
loc = "ydshieh/vit-gpt2-coco-en"
image_processor = ViTImageProcessor.from_pretrained(loc)
tokenizer = AutoTokenizer.from_pretrained(loc)
model = VisionEncoderDecoderModel.from_pretrained(loc)
model.to(torch_device)
model.eval()
# We will verify our results on an image of cute cats
img = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
pixel_values = image_processor(images=img, return_tensors="pt").pixel_values.to(torch_device)
decoder_input_ids = torch.tensor([[model.config.decoder_start_token_id]]).to(torch_device)
with torch.no_grad():
logits = model(pixel_values, decoder_input_ids)[0].detach().cpu().numpy()
# verify the logits
expected_shape = (1, 1, model.config.decoder.vocab_size)
self.assertEqual(logits.shape, expected_shape)
EXPECTED_LOGIT_SLICE = np.array(
[
-38.705807,
-30.639929,
-31.41903,
-39.012012,
-38.38696,
-34.887207,
-33.290855,
-35.68447,
-38.508484,
-36.124645,
]
)
max_diff = np.amax(np.abs(logits[0, 0, :10] - EXPECTED_LOGIT_SLICE))
self.assertLessEqual(max_diff, 1e-4)
def generate_step(pixel_values):
outputs = model.generate(
pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True, output_scores=True
)
output_ids = outputs.sequences
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
preds = [pred.strip() for pred in preds]
return preds, outputs.sequences_scores.detach().cpu().numpy()
preds, scores = generate_step(pixel_values)
EXPECTED_SCORES = np.array([-0.59562886])
max_diff = np.amax(np.abs(scores - EXPECTED_SCORES))
self.assertLessEqual(max_diff, 1e-4)
# should produce
# ["a cat laying on top of a couch next to another cat"]
self.assertEqual(preds, ["a cat laying on top of a couch next to another cat"])
@require_vision
@require_torch
@require_sentencepiece
class DonutModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_docvqa(self):
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa").to(
torch_device
)
dataset = load_dataset("hf-internal-testing/example-documents", split="test")
image = dataset[0]["image"]
pixel_values = processor(images=image, return_tensors="pt").pixel_values.to(torch_device)
decoder_input_ids = processor.tokenizer(
"<s_docvqa>", add_special_tokens=False, return_tensors="pt"
).input_ids.to(torch_device)
# step 1: single forward pass
with torch.no_grad():
outputs = model(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids)
logits = outputs.logits
# verify the logits
expected_shape = torch.Size([1, 1, 57532])
self.assertEqual(outputs.logits.shape, expected_shape)
expected_slice = torch.tensor([24.3873, -6.4491, 32.5394]).to(torch_device)
self.assertTrue(torch.allclose(logits[0, 0, :3], expected_slice, atol=1e-4))
# step 2: generation
task_prompt = "<s_docvqa><s_question>{user_input}</s_question><s_answer>"
question = "When is the coffee break?"
prompt = task_prompt.replace("{user_input}", question)
decoder_input_ids = processor.tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids
decoder_input_ids = decoder_input_ids.to(torch_device)
outputs = model.generate(
pixel_values,
decoder_input_ids=decoder_input_ids,
max_length=model.decoder.config.max_position_embeddings,
early_stopping=True,
pad_token_id=processor.tokenizer.pad_token_id,
eos_token_id=processor.tokenizer.eos_token_id,
use_cache=True,
num_beams=1,
bad_words_ids=[[processor.tokenizer.unk_token_id]],
output_scores=True,
return_dict_in_generate=True,
)
sequence = processor.batch_decode(outputs.sequences)[0]
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
# verify generated sequence
self.assertEqual(
sequence, "<s_question> When is the coffee break?</s_question><s_answer> 11-14 to 11:39 a.m.</s_answer>"
)
# verify scores
self.assertEqual(len(outputs.scores), 11)
self.assertTrue(
torch.allclose(
outputs.scores[0][0, :3], torch.tensor([5.6019, -3.5070, 13.7123], device=torch_device), atol=1e-4
)
)
@slow
def test_inference_cordv2(self):
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2").to(
torch_device
)
dataset = load_dataset("hf-internal-testing/example-documents", split="test")
image = dataset[2]["image"]
pixel_values = processor(images=image, return_tensors="pt").pixel_values.to(torch_device)
decoder_input_ids = processor.tokenizer(
"<s_cord-v2>", add_special_tokens=False, return_tensors="pt"
).input_ids.to(torch_device)
# step 1: single forward pass
with torch.no_grad():
outputs = model(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids)
logits = outputs.logits
# verify the logits
expected_shape = torch.Size((1, 1, model.decoder.config.vocab_size))
self.assertEqual(outputs.logits.shape, expected_shape)
expected_slice = torch.tensor([-27.4344, -3.2686, -19.3524], device=torch_device)
self.assertTrue(torch.allclose(logits[0, 0, :3], expected_slice, atol=1e-4))
# step 2: generation
task_prompt = "<s_cord-v2>"
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
decoder_input_ids = decoder_input_ids.to(torch_device)
outputs = model.generate(
pixel_values,
decoder_input_ids=decoder_input_ids,
max_length=model.decoder.config.max_position_embeddings,
early_stopping=True,
pad_token_id=processor.tokenizer.pad_token_id,
eos_token_id=processor.tokenizer.eos_token_id,
use_cache=True,
num_beams=1,
bad_words_ids=[[processor.tokenizer.unk_token_id]],
output_scores=True,
return_dict_in_generate=True,
)
sequence = processor.batch_decode(outputs.sequences)[0]
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
# verify generated sequence
# fmt: off
expected_sequence = "<s_menu><s_nm> CINNAMON SUGAR</s_nm><s_unitprice> 17,000</s_unitprice><s_cnt> 1 x</s_cnt><s_price> 17,000</s_price></s_menu><s_sub_total><s_subtotal_price> 17,000</s_subtotal_price></s_sub_total><s_total><s_total_price> 17,000</s_total_price><s_cashprice> 20,000</s_cashprice><s_changeprice> 3,000</s_changeprice></s_total>" # noqa: E231
# fmt: on
self.assertEqual(sequence, expected_sequence)
# verify scores
self.assertEqual(len(outputs.scores), 43)
self.assertTrue(
torch.allclose(
outputs.scores[0][0, :3], torch.tensor([-27.4344, -3.2686, -19.3524], device=torch_device), atol=1e-4
)
)
@slow
def test_inference_rvlcdip(self):
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-rvlcdip")
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-rvlcdip").to(
torch_device
)
dataset = load_dataset("hf-internal-testing/example-documents", split="test")
image = dataset[1]["image"]
pixel_values = processor(images=image, return_tensors="pt").pixel_values.to(torch_device)
# step 1: single forward pass
decoder_input_ids = processor.tokenizer(
"<s_rvlcdip>", add_special_tokens=False, return_tensors="pt"
).input_ids.to(torch_device)
with torch.no_grad():
outputs = model(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids)
logits = outputs.logits
# verify the logits
expected_shape = torch.Size((1, 1, model.decoder.config.vocab_size))
self.assertEqual(outputs.logits.shape, expected_shape)
expected_slice = torch.tensor([-17.6490, -4.8381, -15.7577], device=torch_device)
self.assertTrue(torch.allclose(logits[0, 0, :3], expected_slice, atol=1e-4))
# step 2: generation
task_prompt = "<s_rvlcdip>"
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
decoder_input_ids = decoder_input_ids.to(torch_device)
outputs = model.generate(
pixel_values,
decoder_input_ids=decoder_input_ids,
max_length=model.decoder.config.max_position_embeddings,
early_stopping=True,
pad_token_id=processor.tokenizer.pad_token_id,
eos_token_id=processor.tokenizer.eos_token_id,
use_cache=True,
num_beams=1,
bad_words_ids=[[processor.tokenizer.unk_token_id]],
output_scores=True,
return_dict_in_generate=True,
)
sequence = processor.batch_decode(outputs.sequences)[0]
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
# verify generated sequence
self.assertEqual(sequence, "<s_class><advertisement/></s_class>")
# verify scores
self.assertEqual(len(outputs.scores), 4)
self.assertTrue(
torch.allclose(
outputs.scores[0][0, :3], torch.tensor([-17.6490, -4.8381, -15.7577], device=torch_device), atol=1e-4
)
)
| transformers-main | tests/models/vision_encoder_decoder/test_modeling_vision_encoder_decoder.py |
# coding=utf-8
# Copyright 2022 HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the TensorFlow VisionEncoderDecoder model. """
from __future__ import annotations
import copy
import os
import tempfile
import unittest
import numpy as np
from transformers import is_tf_available, is_torch_available, is_vision_available
from transformers.testing_utils import (
is_pt_tf_cross_test,
require_tf,
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils.generic import ModelOutput
from ...test_modeling_tf_common import floats_tensor, ids_tensor
from ..gpt2.test_modeling_tf_gpt2 import TFGPT2ModelTester
from ..vit.test_modeling_tf_vit import TFViTModelTester
if is_tf_available():
import tensorflow as tf
from transformers import (
AutoConfig,
AutoImageProcessor,
AutoTokenizer,
TFAutoModel,
TFAutoModelForCausalLM,
TFGPT2LMHeadModel,
TFVisionEncoderDecoderModel,
TFViTModel,
VisionEncoderDecoderConfig,
)
from transformers.modeling_tf_outputs import TFBaseModelOutput
if is_torch_available():
import torch
from transformers import GPT2LMHeadModel, VisionEncoderDecoderModel, ViTModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
@require_tf
class TFVisionEncoderDecoderMixin:
def get_encoder_decoder_model(self, config, decoder_config):
raise NotImplementedError
def prepare_config_and_inputs(self):
raise NotImplementedError
def get_pretrained_model(self):
raise NotImplementedError
def check_encoder_decoder_model_from_pretrained_configs(
self,
config,
pixel_values,
encoder_hidden_states,
decoder_config,
decoder_input_ids,
decoder_attention_mask,
**kwargs,
):
encoder_decoder_config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(config, decoder_config)
self.assertTrue(encoder_decoder_config.decoder.is_decoder)
enc_dec_model = TFVisionEncoderDecoderModel(encoder_decoder_config)
self.assertTrue(enc_dec_model.config.is_encoder_decoder)
outputs_encoder_decoder = enc_dec_model(
pixel_values=pixel_values,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
kwargs=kwargs,
)
self.assertEqual(
outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
)
self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[0], pixel_values.shape[0])
self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[-1], config.hidden_size)
def check_encoder_decoder_model(
self,
config,
pixel_values,
encoder_hidden_states,
decoder_config,
decoder_input_ids,
decoder_attention_mask,
**kwargs,
):
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
enc_dec_model = TFVisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
self.assertTrue(enc_dec_model.config.decoder.is_decoder)
self.assertTrue(enc_dec_model.config.decoder.add_cross_attention)
self.assertTrue(enc_dec_model.config.is_encoder_decoder)
outputs_encoder_decoder = enc_dec_model(
pixel_values=pixel_values,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
kwargs=kwargs,
)
self.assertEqual(
outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
)
self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[0], pixel_values.shape[0])
self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[-1], config.hidden_size)
encoder_outputs = TFBaseModelOutput(last_hidden_state=encoder_hidden_states)
outputs_encoder_decoder = enc_dec_model(
pixel_values=None,
encoder_outputs=encoder_outputs,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
kwargs=kwargs,
)
self.assertEqual(
outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
)
self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[0], pixel_values.shape[0])
self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[-1], config.hidden_size)
def check_encoder_decoder_model_from_pretrained(
self,
config,
pixel_values,
encoder_hidden_states,
decoder_config,
decoder_input_ids,
decoder_attention_mask,
return_dict,
**kwargs,
):
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
kwargs = {"encoder_model": encoder_model, "decoder_model": decoder_model, "return_dict": return_dict}
enc_dec_model = TFVisionEncoderDecoderModel.from_encoder_decoder_pretrained(**kwargs)
outputs_encoder_decoder = enc_dec_model(
pixel_values=pixel_values,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
return_dict=True,
kwargs=kwargs,
)
self.assertEqual(
outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
)
self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[0], pixel_values.shape[0])
self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[-1], config.hidden_size)
def check_save_and_load(
self,
config,
pixel_values,
encoder_hidden_states,
decoder_config,
decoder_input_ids,
decoder_attention_mask,
**kwargs,
):
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
enc_dec_model = TFVisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
outputs = enc_dec_model(
pixel_values=pixel_values,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
kwargs=kwargs,
)
out_2 = np.array(outputs[0])
out_2[np.isnan(out_2)] = 0
with tempfile.TemporaryDirectory() as tmpdirname:
enc_dec_model.save_pretrained(tmpdirname)
enc_dec_model = TFVisionEncoderDecoderModel.from_pretrained(tmpdirname)
after_outputs = enc_dec_model(
pixel_values=pixel_values,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
kwargs=kwargs,
)
out_1 = np.array(after_outputs[0])
out_1[np.isnan(out_1)] = 0
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
def check_encoder_decoder_model_labels(
self,
config,
pixel_values,
encoder_hidden_states,
decoder_config,
decoder_input_ids,
decoder_attention_mask,
labels,
**kwargs,
):
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
enc_dec_model = TFVisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
outputs_encoder_decoder = enc_dec_model(
pixel_values=pixel_values,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
labels=labels,
kwargs=kwargs,
)
# Make sure `loss` exist
self.assertIn("loss", outputs_encoder_decoder)
batch_size, seq_len = decoder_input_ids.shape
expected_shape = (batch_size, seq_len, decoder_config.vocab_size)
self.assertEqual(outputs_encoder_decoder["logits"].shape, expected_shape)
self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[0], pixel_values.shape[0])
self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[-1], config.hidden_size)
def check_encoder_decoder_model_output_attentions(
self,
config,
pixel_values,
encoder_hidden_states,
decoder_config,
decoder_input_ids,
decoder_attention_mask,
**kwargs,
):
# make the decoder inputs a different shape from the encoder inputs to harden the test
decoder_input_ids = decoder_input_ids[:, :-1]
decoder_attention_mask = decoder_attention_mask[:, :-1]
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
enc_dec_model = TFVisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
outputs_encoder_decoder = enc_dec_model(
pixel_values=pixel_values,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
output_attentions=True,
kwargs=kwargs,
)
encoder_attentions = outputs_encoder_decoder["encoder_attentions"]
self.assertEqual(len(encoder_attentions), config.num_hidden_layers)
self.assertEqual(encoder_attentions[0].shape[-3:-2], (config.num_attention_heads,))
decoder_attentions = outputs_encoder_decoder["decoder_attentions"]
num_decoder_layers = (
decoder_config.num_decoder_layers
if hasattr(decoder_config, "num_decoder_layers")
else decoder_config.num_hidden_layers
)
self.assertEqual(len(decoder_attentions), num_decoder_layers)
self.assertEqual(
decoder_attentions[0].shape[-3:],
(decoder_config.num_attention_heads, decoder_input_ids.shape[-1], decoder_input_ids.shape[-1]),
)
cross_attentions = outputs_encoder_decoder["cross_attentions"]
self.assertEqual(len(cross_attentions), num_decoder_layers)
cross_attention_input_seq_len = decoder_input_ids.shape[-1] * (
1 + (decoder_config.ngram if hasattr(decoder_config, "ngram") else 0)
)
self.assertEqual(
cross_attentions[0].shape[-3:-1],
(decoder_config.num_attention_heads, cross_attention_input_seq_len),
)
def check_encoder_decoder_model_generate(self, pixel_values, config, decoder_config, **kwargs):
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
enc_dec_model = TFVisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
# Generate until max length
if hasattr(enc_dec_model.config, "eos_token_id"):
enc_dec_model.config.eos_token_id = None
if hasattr(enc_dec_model.config, "decoder") and hasattr(enc_dec_model.config.decoder, "eos_token_id"):
enc_dec_model.config.decoder.eos_token_id = None
# Bert does not have a bos token id, so use pad_token_id instead
generated_output = enc_dec_model.generate(
pixel_values, decoder_start_token_id=enc_dec_model.config.decoder.pad_token_id
)
self.assertEqual(
tuple(generated_output.shape.as_list()), (pixel_values.shape[0],) + (decoder_config.max_length,)
)
def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None):
"""Check the outputs from PyTorch and TensorFlow models are close enough. Checks are done in a recursive way.
Args:
model_class: The class of the model that is currently testing. For example, `TFBertModel`,
TFBertForMaskedLM`, `TFBertForSequenceClassification`, etc. Mainly used for providing more informative
error messages.
name (`str`): The name of the output. For example, `output.hidden_states`, `output.attentions`, etc.
attributes (`Tuple[str]`): The names of the output's element if the output is a tuple/list with each element
being a named field in the output.
"""
self.assertEqual(type(name), str)
if attributes is not None:
self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`")
# Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`).
if isinstance(tf_outputs, ModelOutput):
self.assertTrue(
isinstance(pt_outputs, ModelOutput),
f"{name}: `pt_outputs` should an instance of `ModelOutput` when `tf_outputs` is",
)
tf_keys = [k for k, v in tf_outputs.items() if v is not None]
pt_keys = [k for k, v in pt_outputs.items() if v is not None]
self.assertEqual(tf_keys, pt_keys, f"{name}: Output keys differ between TF and PyTorch")
# convert to the case of `tuple`
# appending each key to the current (string) `names`
attributes = tuple([f"{name}.{k}" for k in tf_keys])
self.check_pt_tf_outputs(
tf_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes
)
# Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.)
elif type(tf_outputs) in [tuple, list]:
self.assertEqual(type(tf_outputs), type(pt_outputs), f"{name}: Output types differ between TF and PyTorch")
self.assertEqual(len(tf_outputs), len(pt_outputs), f"{name}: Output lengths differ between TF and PyTorch")
if attributes is not None:
# case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`)
self.assertEqual(
len(attributes),
len(tf_outputs),
f"{name}: The tuple `names` should have the same length as `tf_outputs`",
)
else:
# case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `names`
attributes = tuple([f"{name}_{idx}" for idx in range(len(tf_outputs))])
for tf_output, pt_output, attr in zip(tf_outputs, pt_outputs, attributes):
self.check_pt_tf_outputs(tf_output, pt_output, model_class, tol=tol, name=attr)
elif isinstance(tf_outputs, tf.Tensor):
self.assertTrue(
isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `tf_outputs` is"
)
tf_outputs = tf_outputs.numpy()
pt_outputs = pt_outputs.detach().to("cpu").numpy()
self.assertEqual(
tf_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between TF and PyTorch"
)
# deal with NumPy's scalars to make replacing nan values by 0 work.
if np.isscalar(tf_outputs):
tf_outputs = np.array([tf_outputs])
pt_outputs = np.array([pt_outputs])
tf_nans = np.isnan(tf_outputs)
pt_nans = np.isnan(pt_outputs)
pt_outputs[tf_nans] = 0
tf_outputs[tf_nans] = 0
pt_outputs[pt_nans] = 0
tf_outputs[pt_nans] = 0
max_diff = np.amax(np.abs(tf_outputs - pt_outputs))
self.assertLessEqual(max_diff, tol, f"{name}: Difference between torch and tf is {max_diff} (>= {tol}).")
else:
raise ValueError(
"`tf_outputs` should be an instance of `tf.Tensor`, a `tuple`, or an instance of `tf.Tensor`. Got"
f" {type(tf_outputs)} instead."
)
def prepare_pt_inputs_from_tf_inputs(self, tf_inputs_dict):
pt_inputs_dict = {}
for name, key in tf_inputs_dict.items():
if type(key) == bool:
pt_inputs_dict[name] = key
elif name == "input_values":
pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
elif name == "pixel_values":
pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
elif name == "input_features":
pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
# other general float inputs
elif tf_inputs_dict[name].dtype.is_floating:
pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
else:
pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.long)
return pt_inputs_dict
def check_pt_tf_models(self, tf_model, pt_model, tf_inputs_dict):
pt_inputs_dict = self.prepare_pt_inputs_from_tf_inputs(tf_inputs_dict)
# send pytorch inputs to the correct device
pt_inputs_dict = {
k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs_dict.items()
}
# send pytorch model to the correct device
pt_model.to(torch_device)
# Check predictions on first output (logits/hidden-states) are close enough given low-level computational differences
pt_model.eval()
with torch.no_grad():
pt_outputs = pt_model(**pt_inputs_dict)
tf_outputs = tf_model(tf_inputs_dict)
# tf models returned loss is usually a tensor rather than a scalar.
# (see `hf_compute_loss`: it uses `tf.keras.losses.Reduction.NONE`)
# Change it here to a scalar to match PyTorch models' loss
tf_loss = getattr(tf_outputs, "loss", None)
if tf_loss is not None:
tf_outputs.loss = tf.math.reduce_mean(tf_loss)
self.check_pt_tf_outputs(tf_outputs, pt_outputs, type(tf_model))
def check_pt_tf_equivalence(self, tf_model, pt_model, tf_inputs_dict):
"""Wrap `check_pt_tf_models` to further check PT -> TF again"""
self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict)
# PT -> TF
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(tmpdirname)
tf_model = TFVisionEncoderDecoderModel.from_pretrained(tmpdirname, from_pt=True)
self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict)
def check_pt_to_tf_equivalence(self, config, decoder_config, tf_inputs_dict):
encoder_decoder_config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(config, decoder_config)
# Output all for aggressive testing
encoder_decoder_config.output_hidden_states = True
# All models tested in this file have attentions
encoder_decoder_config.output_attentions = True
pt_model = VisionEncoderDecoderModel(encoder_decoder_config)
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(tmpdirname)
tf_model = TFVisionEncoderDecoderModel.from_pretrained(tmpdirname, from_pt=True)
self.check_pt_tf_equivalence(tf_model, pt_model, tf_inputs_dict)
def check_tf_to_pt_equivalence(self, config, decoder_config, tf_inputs_dict):
encoder_decoder_config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(config, decoder_config)
# Output all for aggressive testing
encoder_decoder_config.output_hidden_states = True
# TODO: A generalizable way to determine this attribute
encoder_decoder_config.output_attentions = True
tf_model = TFVisionEncoderDecoderModel(encoder_decoder_config)
# Make sure model is built before saving
tf_model(**tf_inputs_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
tf_model.save_pretrained(tmpdirname)
pt_model = VisionEncoderDecoderModel.from_pretrained(tmpdirname, from_tf=True)
self.check_pt_tf_equivalence(tf_model, pt_model, tf_inputs_dict)
def test_encoder_decoder_model(self):
config_inputs_dict = self.prepare_config_and_inputs()
self.check_encoder_decoder_model(**config_inputs_dict)
def test_encoder_decoder_model_from_pretrained_configs(self):
config_inputs_dict = self.prepare_config_and_inputs()
self.check_encoder_decoder_model_from_pretrained_configs(**config_inputs_dict)
def test_encoder_decoder_model_from_pretrained(self):
config_inputs_dict = self.prepare_config_and_inputs()
self.check_encoder_decoder_model_from_pretrained(**config_inputs_dict, return_dict=False)
def test_encoder_decoder_model_from_pretrained_return_dict(self):
config_inputs_dict = self.prepare_config_and_inputs()
self.check_encoder_decoder_model_from_pretrained(**config_inputs_dict, return_dict=True)
def test_save_and_load_from_pretrained(self):
config_inputs_dict = self.prepare_config_and_inputs()
self.check_save_and_load(**config_inputs_dict)
def test_encoder_decoder_model_labels(self):
config_inputs_dict = self.prepare_config_and_inputs()
self.check_encoder_decoder_model_labels(**config_inputs_dict)
def test_encoder_decoder_model_output_attentions(self):
config_inputs_dict = self.prepare_config_and_inputs()
self.check_encoder_decoder_model_output_attentions(**config_inputs_dict)
def test_encoder_decoder_model_generate(self):
config_inputs_dict = self.prepare_config_and_inputs()
self.check_encoder_decoder_model_generate(**config_inputs_dict)
def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float):
diff = np.abs((a - b)).max()
self.assertLessEqual(diff, tol, f"Difference between torch and tf is {diff} (>= {tol}).")
@is_pt_tf_cross_test
def test_pt_tf_model_equivalence(self):
config_inputs_dict = self.prepare_config_and_inputs()
labels = config_inputs_dict.pop("decoder_token_labels")
# Keep only common arguments
arg_names = [
"config",
"pixel_values",
"decoder_config",
"decoder_input_ids",
"decoder_attention_mask",
"encoder_hidden_states",
]
config_inputs_dict = {k: v for k, v in config_inputs_dict.items() if k in arg_names}
config = config_inputs_dict.pop("config")
decoder_config = config_inputs_dict.pop("decoder_config")
# Output all for aggressive testing
config.output_hidden_states = True
decoder_config.output_hidden_states = True
# All models tested in this file have attentions
config.output_attentions = True
decoder_config.output_attentions = True
tf_inputs_dict = config_inputs_dict
# `encoder_hidden_states` is not used in model call/forward
del tf_inputs_dict["encoder_hidden_states"]
# Make sure no sequence has all zeros as attention mask, otherwise some tests fail due to the inconsistency
# of the usage `1e-4`, `1e-9`, `1e-30`, `-inf`.
for k in ["decoder_attention_mask"]:
attention_mask = tf_inputs_dict[k]
# Make sure no all 0s attention masks - to avoid failure at this moment.
# Put `1` at the beginning of sequences to make it still work when combining causal attention masks.
# TODO: remove this line once a fix regarding large negative values for attention mask is done.
attention_mask = tf.concat(
[tf.ones_like(attention_mask[:, :1], dtype=attention_mask.dtype), attention_mask[:, 1:]], axis=-1
)
tf_inputs_dict[k] = attention_mask
tf_inputs_dict_with_labels = copy.copy(tf_inputs_dict)
tf_inputs_dict_with_labels["labels"] = labels
self.assertTrue(decoder_config.cross_attention_hidden_size is None)
# Original test: check without `labels` and without `enc_to_dec_proj` projection
self.assertTrue(config.hidden_size == decoder_config.hidden_size)
self.check_pt_to_tf_equivalence(config, decoder_config, tf_inputs_dict)
self.check_tf_to_pt_equivalence(config, decoder_config, tf_inputs_dict)
# check with `labels`
self.check_pt_to_tf_equivalence(config, decoder_config, tf_inputs_dict_with_labels)
self.check_tf_to_pt_equivalence(config, decoder_config, tf_inputs_dict_with_labels)
# check `enc_to_dec_proj` work as expected
decoder_config.hidden_size = decoder_config.hidden_size * 2
self.assertTrue(config.hidden_size != decoder_config.hidden_size)
self.check_pt_to_tf_equivalence(config, decoder_config, tf_inputs_dict)
self.check_tf_to_pt_equivalence(config, decoder_config, tf_inputs_dict)
@slow
def test_real_model_save_load_from_pretrained(self):
model_2 = self.get_pretrained_model()
pixel_values = floats_tensor(
[
13,
model_2.config.encoder.num_channels,
model_2.config.encoder.image_size,
model_2.config.encoder.image_size,
]
)
decoder_input_ids = ids_tensor([13, 1], model_2.config.decoder.vocab_size)
outputs = model_2(
pixel_values=pixel_values,
decoder_input_ids=decoder_input_ids,
)
out_2 = np.array(outputs[0])
out_2[np.isnan(out_2)] = 0
with tempfile.TemporaryDirectory() as tmp_dirname:
model_2.save_pretrained(tmp_dirname)
model_1 = TFVisionEncoderDecoderModel.from_pretrained(tmp_dirname)
after_outputs = model_1(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids)
out_1 = np.array(after_outputs[0])
out_1[np.isnan(out_1)] = 0
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
@require_tf
class TFViT2GPT2EncoderDecoderModelTest(TFVisionEncoderDecoderMixin, unittest.TestCase):
def get_pretrained_model(self):
return TFVisionEncoderDecoderModel.from_encoder_decoder_pretrained("google/vit-base-patch16-224-in21k", "gpt2")
def get_encoder_decoder_model(self, config, decoder_config):
encoder_model = TFViTModel(config, name="encoder")
decoder_model = TFGPT2LMHeadModel(decoder_config, name="decoder")
return encoder_model, decoder_model
def prepare_config_and_inputs(self):
model_tester_encoder = TFViTModelTester(self, batch_size=13)
model_tester_decoder = TFGPT2ModelTester(self)
encoder_config_and_inputs = model_tester_encoder.prepare_config_and_inputs()
decoder_config_and_inputs = model_tester_decoder.prepare_config_and_inputs_for_decoder()
(config, pixel_values, labels) = encoder_config_and_inputs
(
decoder_config,
decoder_input_ids,
decoder_attention_mask,
decoder_head_mask,
decoder_token_type_ids,
decoder_sequence_labels,
decoder_token_labels,
decoder_choice_labels,
encoder_hidden_states,
encoder_attention_mask,
) = decoder_config_and_inputs
# make sure that cross attention layers are added
decoder_config.add_cross_attention = True
# disable cache for now
decoder_config.use_cache = False
return {
"config": config,
"pixel_values": pixel_values,
"decoder_config": decoder_config,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
"decoder_token_labels": decoder_token_labels,
"encoder_hidden_states": encoder_hidden_states, # This is not used in the tests.
"labels": decoder_token_labels,
}
@require_tf
class TFVisionEncoderDecoderModelTest(unittest.TestCase):
def get_from_encoderdecoder_pretrained_model(self):
return TFVisionEncoderDecoderModel.from_encoder_decoder_pretrained("google/vit-base-patch16-224-in21k", "gpt2")
def get_decoder_config(self):
config = AutoConfig.from_pretrained("gpt2")
config.is_decoder = True
config.add_cross_attention = True
return config
def get_encoderdecoder_model(self):
return TFVisionEncoderDecoderModel.from_pretrained("ydshieh/vit-gpt2-coco-en")
def get_encoder_decoder_models(self):
encoder_model = TFViTModel.from_pretrained("google/vit-base-patch16-224-in21k", name="encoder")
decoder_model = TFGPT2LMHeadModel.from_pretrained("gpt2", config=self.get_decoder_config(), name="decoder")
return {"encoder": encoder_model, "decoder": decoder_model}
def _check_configuration_tie(self, model):
assert id(model.decoder.config) == id(model.config.decoder)
assert id(model.encoder.config) == id(model.config.encoder)
@slow
def test_configuration_tie(self):
model = self.get_from_encoderdecoder_pretrained_model()
self._check_configuration_tie(model)
model = TFVisionEncoderDecoderModel(**self.get_encoder_decoder_models())
self._check_configuration_tie(model)
model = self.get_encoderdecoder_model()
self._check_configuration_tie(model)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_tf
class TFVisionEncoderDecoderModelSaveLoadTests(unittest.TestCase):
def get_encoder_decoder_config(self):
encoder_config = AutoConfig.from_pretrained("google/vit-base-patch16-224-in21k")
decoder_config = AutoConfig.from_pretrained("gpt2", is_decoder=True, add_cross_attention=True)
return VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder_config, decoder_config)
def get_encoder_decoder_config_small(self):
encoder_config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-vit")
decoder_config = AutoConfig.from_pretrained(
"hf-internal-testing/tiny-random-gpt2", is_decoder=True, add_cross_attention=True
)
return VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder_config, decoder_config)
def test_encoder_decoder_save_load_from_encoder_decoder(self):
config = self.get_encoder_decoder_config_small()
# create two random ViT/GPT2 models for vit-gpt2 & initialize weights (+cross_attention weights)
encoder = TFViTModel(config.encoder)
encoder.build()
decoder = TFGPT2LMHeadModel(config.decoder)
decoder.build()
encoder_decoder_orig = TFVisionEncoderDecoderModel(encoder=encoder, decoder=decoder)
pixel_values = floats_tensor(
[
13,
encoder.config.num_channels,
encoder.config.image_size,
encoder.config.image_size,
]
)
decoder_input_ids = ids_tensor([13, 1], decoder.config.vocab_size)
logits_orig = encoder_decoder_orig(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids).logits
with tempfile.TemporaryDirectory() as tmp_dirname:
encoder_path = os.path.join(tmp_dirname, "encoder")
decoder_path = os.path.join(tmp_dirname, "decoder")
encoder.save_pretrained(encoder_path)
decoder.save_pretrained(decoder_path)
encoder_decoder = TFVisionEncoderDecoderModel.from_encoder_decoder_pretrained(encoder_path, decoder_path)
logits_1 = encoder_decoder(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids).logits
self.assertTrue(logits_orig.numpy().sum() - logits_1.numpy().sum() < 1e-3)
max_diff = np.max(np.abs(logits_1.numpy() - logits_orig.numpy()))
self.assertAlmostEqual(max_diff, 0.0, places=4)
with tempfile.TemporaryDirectory() as tmp_dirname:
encoder_decoder.save_pretrained(tmp_dirname)
encoder_decoder = TFVisionEncoderDecoderModel.from_pretrained(tmp_dirname)
logits_2 = encoder_decoder(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids).logits
max_diff = np.max(np.abs(logits_2.numpy() - logits_orig.numpy()))
self.assertAlmostEqual(max_diff, 0.0, places=4)
@require_torch
@is_pt_tf_cross_test
def test_encoder_decoder_save_load_from_encoder_decoder_from_pt(self):
config = self.get_encoder_decoder_config_small()
# create two random ViT/GPT2 models for vit-gpt2 & initialize weights (+cross_attention weights)
encoder_pt = ViTModel(config.encoder).to(torch_device).eval()
decoder_pt = GPT2LMHeadModel(config.decoder).to(torch_device).eval()
encoder_decoder_pt = VisionEncoderDecoderModel(encoder=encoder_pt, decoder=decoder_pt).to(torch_device).eval()
pixel_values = floats_tensor(
[
13,
encoder_pt.config.num_channels,
encoder_pt.config.image_size,
encoder_pt.config.image_size,
]
)
decoder_input_ids = ids_tensor([13, 1], decoder_pt.config.vocab_size)
pt_pixel_values = torch.tensor(pixel_values.numpy(), device=torch_device, dtype=torch.float)
pt_decoder_input_ids = torch.tensor(decoder_input_ids.numpy(), device=torch_device, dtype=torch.long)
logits_pt = encoder_decoder_pt(pixel_values=pt_pixel_values, decoder_input_ids=pt_decoder_input_ids).logits
# PyTorch => TensorFlow
with tempfile.TemporaryDirectory() as tmp_dirname_1, tempfile.TemporaryDirectory() as tmp_dirname_2:
encoder_decoder_pt.encoder.save_pretrained(tmp_dirname_1)
encoder_decoder_pt.decoder.save_pretrained(tmp_dirname_2)
encoder_decoder_tf = TFVisionEncoderDecoderModel.from_encoder_decoder_pretrained(
tmp_dirname_1, tmp_dirname_2, encoder_from_pt=True, decoder_from_pt=True
)
logits_tf = encoder_decoder_tf(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids).logits
max_diff = np.max(np.abs(logits_pt.detach().cpu().numpy() - logits_tf.numpy()))
self.assertAlmostEqual(max_diff, 0.0, places=3)
# Make sure `from_pretrained` following `save_pretrained` work and give the same result
# (See https://github.com/huggingface/transformers/pull/14016)
with tempfile.TemporaryDirectory() as tmp_dirname:
encoder_decoder_tf.save_pretrained(tmp_dirname)
encoder_decoder_tf = TFVisionEncoderDecoderModel.from_pretrained(tmp_dirname)
logits_tf_2 = encoder_decoder_tf(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids).logits
max_diff = np.max(np.abs(logits_tf_2.numpy() - logits_tf.numpy()))
self.assertAlmostEqual(max_diff, 0.0, places=3)
@require_vision
@slow
def test_encoder_decoder_from_pretrained(self):
load_weight_prefix = TFVisionEncoderDecoderModel.load_weight_prefix
config = self.get_encoder_decoder_config()
image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k")
decoder_tokenizer = AutoTokenizer.from_pretrained("gpt2")
img = prepare_img()
pixel_values = image_processor(images=img, return_tensors="tf").pixel_values
decoder_input_ids = decoder_tokenizer("Linda Davis", return_tensors="tf").input_ids
with tempfile.TemporaryDirectory() as tmp_dirname:
# Since most of HF's models don't have pretrained cross-attention layers, they are randomly
# initialized even if we create models using `from_pretrained` method.
# For the tests, the decoder need to be a model with pretrained cross-attention layers.
# So we create pretrained models (without `load_weight_prefix`), save them, and later,
# we load them using `from_pretrained`.
# (we don't need to do this for encoder, but let's make the code more similar between encoder/decoder)
encoder = TFAutoModel.from_pretrained("google/vit-base-patch16-224-in21k", name="encoder")
# It's necessary to specify `add_cross_attention=True` here.
decoder = TFAutoModelForCausalLM.from_pretrained(
"gpt2", is_decoder=True, add_cross_attention=True, name="decoder"
)
pretrained_encoder_dir = os.path.join(tmp_dirname, "pretrained_encoder")
pretrained_decoder_dir = os.path.join(tmp_dirname, "pretrained_decoder")
encoder.save_pretrained(pretrained_encoder_dir)
decoder.save_pretrained(pretrained_decoder_dir)
del encoder
del decoder
enc_dec_model = TFVisionEncoderDecoderModel.from_encoder_decoder_pretrained(
pretrained_encoder_dir,
pretrained_decoder_dir,
)
# check that the from pretrained methods work
enc_dec_model.save_pretrained(tmp_dirname)
enc_dec_model = TFVisionEncoderDecoderModel.from_pretrained(tmp_dirname)
output = enc_dec_model(pixel_values, decoder_input_ids=decoder_input_ids, labels=decoder_input_ids)
loss_pretrained = output.loss
del enc_dec_model
# Create the model using `__init__` with loaded ``pretrained`` encoder / decoder
encoder = TFAutoModel.from_pretrained(
pretrained_encoder_dir, load_weight_prefix=load_weight_prefix, name="encoder"
)
decoder = TFAutoModelForCausalLM.from_pretrained(
pretrained_decoder_dir, load_weight_prefix=load_weight_prefix, name="decoder"
)
enc_dec_model = TFVisionEncoderDecoderModel(config=config, encoder=encoder, decoder=decoder)
output = enc_dec_model(pixel_values, decoder_input_ids=decoder_input_ids, labels=decoder_input_ids)
loss_init = output.loss
max_diff = np.max(np.abs(loss_pretrained - loss_init))
expected_diff = 0.0
self.assertAlmostEqual(max_diff, expected_diff, places=4)
@require_vision
@require_tf
class TFViT2GPT2ModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_coco_en(self):
loc = "ydshieh/vit-gpt2-coco-en"
image_processor = ViTImageProcessor.from_pretrained(loc)
tokenizer = AutoTokenizer.from_pretrained(loc)
model = TFVisionEncoderDecoderModel.from_pretrained(loc)
# We will verify our results on an image of cute cats
img = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
pixel_values = image_processor(images=img, return_tensors="tf").pixel_values
decoder_input_ids = tf.constant([[model.config.decoder_start_token_id]])
logits = model(pixel_values, decoder_input_ids)[0].numpy()
# verify the logits
expected_shape = (1, 1, model.config.decoder.vocab_size)
self.assertEqual(logits.shape, expected_shape)
EXPECTED_LOGIT_SLICE = np.array(
[
-38.705807,
-30.639929,
-31.41903,
-39.012012,
-38.38696,
-34.887207,
-33.290855,
-35.68447,
-38.508484,
-36.124645,
]
)
max_diff = np.amax(np.abs(logits[0, 0, :10] - EXPECTED_LOGIT_SLICE))
self.assertLessEqual(max_diff, 1e-4)
def generate_step(pixel_values):
outputs = model.generate(pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True)
output_ids = outputs.sequences
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
preds = [pred.strip() for pred in preds]
return preds
preds = generate_step(pixel_values)
# should produce
# ["a cat laying on top of a couch next to another cat"]
self.assertEqual(preds, ["a cat laying on top of a couch next to another cat"])
| transformers-main | tests/models/vision_encoder_decoder/test_modeling_tf_vision_encoder_decoder.py |
transformers-main | tests/models/chinese_clip/__init__.py |
|
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Chinese-CLIP model. """
import inspect
import os
import tempfile
import unittest
import numpy as np
import requests
from transformers import ChineseCLIPConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
ModelTesterMixin,
_config_zero_init,
floats_tensor,
ids_tensor,
random_attention_mask,
)
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
ChineseCLIPModel,
ChineseCLIPTextModel,
ChineseCLIPVisionModel,
)
from transformers.models.chinese_clip.modeling_chinese_clip import CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ChineseCLIPProcessor
class ChineseCLIPTextModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def get_config(self):
"""
Returns a tiny configuration by default.
"""
return ChineseCLIPTextConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
is_decoder=False,
initializer_range=self.initializer_range,
)
def prepare_config_and_inputs_for_decoder(self):
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = self.prepare_config_and_inputs()
config.is_decoder = True
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def create_and_check_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = ChineseCLIPTextModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
result = model(input_ids, token_type_ids=token_type_ids)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def create_and_check_model_as_decoder(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.add_cross_attention = True
model = ChineseCLIPTextModel(config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
)
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
encoder_hidden_states=encoder_hidden_states,
)
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
class ChineseCLIPVisionModelTester:
def __init__(
self,
parent,
batch_size=12,
image_size=30,
patch_size=2,
num_channels=3,
is_training=True,
hidden_size=32,
projection_dim=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
dropout=0.1,
attention_dropout=0.1,
initializer_range=0.02,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.is_training = is_training
self.hidden_size = hidden_size
self.projection_dim = projection_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.dropout = dropout
self.attention_dropout = attention_dropout
self.initializer_range = initializer_range
self.scope = scope
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
num_patches = (image_size // patch_size) ** 2
self.seq_length = num_patches + 1
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
config = self.get_config()
return config, pixel_values
def get_config(self):
return ChineseCLIPVisionConfig(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
hidden_size=self.hidden_size,
projection_dim=self.projection_dim,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
dropout=self.dropout,
attention_dropout=self.attention_dropout,
initializer_range=self.initializer_range,
)
def create_and_check_model(self, config, pixel_values):
model = ChineseCLIPVisionModel(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(pixel_values)
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
image_size = (self.image_size, self.image_size)
patch_size = (self.patch_size, self.patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class ChineseCLIPTextModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (ChineseCLIPTextModel,) if is_torch_available() else ()
fx_compatible = False
# special case for ForPreTraining model
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
if return_labels:
if model_class in get_values(MODEL_FOR_PRETRAINING_MAPPING):
inputs_dict["labels"] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
)
inputs_dict["next_sentence_label"] = torch.zeros(
self.model_tester.batch_size, dtype=torch.long, device=torch_device
)
return inputs_dict
def setUp(self):
self.model_tester = ChineseCLIPTextModelTester(self)
self.config_tester = ConfigTester(self, config_class=ChineseCLIPTextConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_various_embeddings(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
config_and_inputs[0].position_embedding_type = type
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_as_decoder(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*config_and_inputs)
def test_model_as_decoder_with_default_input_mask(self):
# This regression test was failing with PyTorch < 1.3
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
) = self.model_tester.prepare_config_and_inputs_for_decoder()
input_mask = None
self.model_tester.create_and_check_model_as_decoder(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
@slow
def test_model_from_pretrained(self):
for model_name in CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = ChineseCLIPTextModel.from_pretrained(model_name)
self.assertIsNotNone(model)
def test_training(self):
pass
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(reason="ChineseCLIPTextModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="ChineseCLIPTextModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_to_base(self):
pass
@require_torch
class ChineseCLIPVisionModelTest(ModelTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as CHINESE_CLIP does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (ChineseCLIPVisionModel,) if is_torch_available() else ()
fx_compatible = False
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
def setUp(self):
self.model_tester = ChineseCLIPVisionModelTester(self)
self.config_tester = ConfigTester(
self, config_class=ChineseCLIPVisionConfig, has_text_modality=False, hidden_size=37
)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="CHINESE_CLIP does not use inputs_embeds")
def test_inputs_embeds(self):
pass
def test_model_common_attributes(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_training(self):
pass
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(reason="ChineseCLIPVisionModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="ChineseCLIPVisionModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_to_base(self):
pass
@slow
def test_model_from_pretrained(self):
for model_name in CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = ChineseCLIPVisionModel.from_pretrained(model_name)
self.assertIsNotNone(model)
class ChineseCLIPModelTester:
def __init__(self, parent, text_kwargs=None, vision_kwargs=None, is_training=True):
if text_kwargs is None:
text_kwargs = {}
if vision_kwargs is None:
vision_kwargs = {}
self.parent = parent
self.text_model_tester = ChineseCLIPTextModelTester(parent, **text_kwargs)
self.vision_model_tester = ChineseCLIPVisionModelTester(parent, **vision_kwargs)
self.is_training = is_training
def prepare_config_and_inputs(self):
(
config,
input_ids,
token_type_ids,
attention_mask,
_,
__,
___,
) = self.text_model_tester.prepare_config_and_inputs()
vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs()
config = self.get_config()
return config, input_ids, token_type_ids, attention_mask, pixel_values
def get_config(self):
return ChineseCLIPConfig.from_text_vision_configs(
self.text_model_tester.get_config(), self.vision_model_tester.get_config(), projection_dim=64
)
def create_and_check_model(self, config, input_ids, token_type_ids, attention_mask, pixel_values):
model = ChineseCLIPModel(config).to(torch_device).eval()
with torch.no_grad():
result = model(input_ids, pixel_values, attention_mask, token_type_ids)
self.parent.assertEqual(
result.logits_per_image.shape, (self.vision_model_tester.batch_size, self.text_model_tester.batch_size)
)
self.parent.assertEqual(
result.logits_per_text.shape, (self.text_model_tester.batch_size, self.vision_model_tester.batch_size)
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, token_type_ids, attention_mask, pixel_values = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"attention_mask": attention_mask,
"pixel_values": pixel_values,
"return_loss": True,
}
return config, inputs_dict
@require_torch
class ChineseCLIPModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (ChineseCLIPModel,) if is_torch_available() else ()
pipeline_model_mapping = {"feature-extraction": ChineseCLIPModel} if is_torch_available() else {}
fx_compatible = False
test_head_masking = False
test_pruning = False
test_resize_embeddings = False
test_attention_outputs = False
def setUp(self):
text_kwargs = {"use_labels": False, "batch_size": 12}
vision_kwargs = {"batch_size": 12}
self.model_tester = ChineseCLIPModelTester(self, text_kwargs, vision_kwargs)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@unittest.skip(reason="Hidden_states is tested in individual model tests")
def test_hidden_states_output(self):
pass
@unittest.skip(reason="Inputs_embeds is tested in individual model tests")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Retain_grad is tested in individual model tests")
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip(reason="ChineseCLIPModel does not have input/output embeddings")
def test_model_common_attributes(self):
pass
# override as the `logit_scale` parameter initilization is different for CHINESE_CLIP
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for sub_config_key in ("vision_config", "text_config"):
sub_config = getattr(configs_no_init, sub_config_key, {})
setattr(configs_no_init, sub_config_key, _config_zero_init(sub_config))
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad:
# check if `logit_scale` is initilized as per the original implementation
if name == "logit_scale":
self.assertAlmostEqual(
param.data.item(),
np.log(1 / 0.07),
delta=1e-3,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
else:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
def _create_and_check_torchscript(self, config, inputs_dict):
if not self.test_torchscript:
return
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
configs_no_init.torchscript = True
configs_no_init.return_dict = False
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
model.to(torch_device)
model.eval()
try:
input_ids = inputs_dict["input_ids"]
pixel_values = inputs_dict["pixel_values"] # CHINESE_CLIP needs pixel_values
traced_model = torch.jit.trace(model, (input_ids, pixel_values))
except RuntimeError:
self.fail("Couldn't trace module.")
with tempfile.TemporaryDirectory() as tmp_dir_name:
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
try:
torch.jit.save(traced_model, pt_file_name)
except Exception:
self.fail("Couldn't save module.")
try:
loaded_model = torch.jit.load(pt_file_name)
except Exception:
self.fail("Couldn't load module.")
model.to(torch_device)
model.eval()
loaded_model.to(torch_device)
loaded_model.eval()
model_state_dict = model.state_dict()
loaded_model_state_dict = loaded_model.state_dict()
non_persistent_buffers = {}
for key in loaded_model_state_dict.keys():
if key not in model_state_dict.keys():
non_persistent_buffers[key] = loaded_model_state_dict[key]
loaded_model_state_dict = {
key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
}
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
model_buffers = list(model.buffers())
for non_persistent_buffer in non_persistent_buffers.values():
found_buffer = False
for i, model_buffer in enumerate(model_buffers):
if torch.equal(non_persistent_buffer, model_buffer):
found_buffer = True
break
self.assertTrue(found_buffer)
model_buffers.pop(i)
models_equal = True
for layer_name, p1 in model_state_dict.items():
p2 = loaded_model_state_dict[layer_name]
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
@slow
def test_model_from_pretrained(self):
for model_name in CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = ChineseCLIPModel.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of Pikachu
def prepare_img():
url = "https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/pokemon.jpeg"
im = Image.open(requests.get(url, stream=True).raw)
return im
@require_vision
@require_torch
class ChineseCLIPModelIntegrationTest(unittest.TestCase):
@slow
def test_inference(self):
model_name = "OFA-Sys/chinese-clip-vit-base-patch16"
model = ChineseCLIPModel.from_pretrained(model_name).to(torch_device)
processor = ChineseCLIPProcessor.from_pretrained(model_name)
image = prepare_img()
inputs = processor(text=["杰尼龟", "妙蛙种子", "小火龙", "皮卡丘"], images=image, padding=True, return_tensors="pt").to(
torch_device
)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# verify the logits
self.assertEqual(
outputs.logits_per_image.shape,
torch.Size((inputs.pixel_values.shape[0], inputs.input_ids.shape[0])),
)
self.assertEqual(
outputs.logits_per_text.shape,
torch.Size((inputs.input_ids.shape[0], inputs.pixel_values.shape[0])),
)
probs = outputs.logits_per_image.softmax(dim=1)
expected_probs = torch.tensor([[1.2686e-03, 5.4499e-02, 6.7968e-04, 9.4355e-01]], device=torch_device)
self.assertTrue(torch.allclose(probs, expected_probs, atol=5e-3))
| transformers-main | tests/models/chinese_clip/test_modeling_chinese_clip.py |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import BertTokenizer, BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor
@require_vision
class ChineseCLIPProcessorTest(unittest.TestCase):
def setUp(self):
self.tmpdirname = tempfile.mkdtemp()
vocab_tokens = [
"[UNK]",
"[CLS]",
"[SEP]",
"[PAD]",
"[MASK]",
"的",
"价",
"格",
"是",
"15",
"便",
"alex",
"##andra",
",",
"。",
"-",
"t",
"shirt",
]
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
image_processor_map = {
"do_resize": True,
"size": {"height": 224, "width": 224},
"do_center_crop": True,
"crop_size": {"height": 18, "width": 18},
"do_normalize": True,
"image_mean": [0.48145466, 0.4578275, 0.40821073],
"image_std": [0.26862954, 0.26130258, 0.27577711],
"do_convert_rgb": True,
}
self.image_processor_file = os.path.join(self.tmpdirname, FEATURE_EXTRACTOR_NAME)
with open(self.image_processor_file, "w", encoding="utf-8") as fp:
json.dump(image_processor_map, fp)
def get_tokenizer(self, **kwargs):
return BertTokenizer.from_pretrained(self.tmpdirname, **kwargs)
def get_rust_tokenizer(self, **kwargs):
return BertTokenizerFast.from_pretrained(self.tmpdirname, **kwargs)
def get_image_processor(self, **kwargs):
return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname, **kwargs)
def tearDown(self):
shutil.rmtree(self.tmpdirname)
def prepare_image_inputs(self):
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
or a list of PyTorch tensors if one specifies torchify=True.
"""
image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)]
image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]
return image_inputs
def test_save_load_pretrained_default(self):
tokenizer_slow = self.get_tokenizer()
tokenizer_fast = self.get_rust_tokenizer()
image_processor = self.get_image_processor()
processor_slow = ChineseCLIPProcessor(tokenizer=tokenizer_slow, image_processor=image_processor)
processor_slow.save_pretrained(self.tmpdirname)
processor_slow = ChineseCLIPProcessor.from_pretrained(self.tmpdirname, use_fast=False)
processor_fast = ChineseCLIPProcessor(tokenizer=tokenizer_fast, image_processor=image_processor)
processor_fast.save_pretrained(self.tmpdirname)
processor_fast = ChineseCLIPProcessor.from_pretrained(self.tmpdirname)
self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab())
self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab())
self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab())
self.assertIsInstance(processor_slow.tokenizer, BertTokenizer)
self.assertIsInstance(processor_fast.tokenizer, BertTokenizerFast)
self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string())
self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string())
self.assertIsInstance(processor_slow.image_processor, ChineseCLIPImageProcessor)
self.assertIsInstance(processor_fast.image_processor, ChineseCLIPImageProcessor)
def test_save_load_pretrained_additional_features(self):
processor = ChineseCLIPProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor())
processor.save_pretrained(self.tmpdirname)
tokenizer_add_kwargs = self.get_tokenizer(cls_token="(CLS)", sep_token="(SEP)")
image_processor_add_kwargs = self.get_image_processor(do_normalize=False)
processor = ChineseCLIPProcessor.from_pretrained(
self.tmpdirname, cls_token="(CLS)", sep_token="(SEP)", do_normalize=False
)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer, BertTokenizerFast)
self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string())
self.assertIsInstance(processor.image_processor, ChineseCLIPImageProcessor)
def test_image_processor(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = ChineseCLIPProcessor(tokenizer=tokenizer, image_processor=image_processor)
image_input = self.prepare_image_inputs()
input_feat_extract = image_processor(image_input, return_tensors="np")
input_processor = processor(images=image_input, return_tensors="np")
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
def test_tokenizer(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = ChineseCLIPProcessor(tokenizer=tokenizer, image_processor=image_processor)
input_str = "Alexandra,T-shirt的价格是15便士。"
encoded_processor = processor(text=input_str)
encoded_tok = tokenizer(input_str)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key], encoded_processor[key])
def test_processor(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = ChineseCLIPProcessor(tokenizer=tokenizer, image_processor=image_processor)
input_str = "Alexandra,T-shirt的价格是15便士。"
image_input = self.prepare_image_inputs()
inputs = processor(text=input_str, images=image_input)
self.assertListEqual(list(inputs.keys()), ["input_ids", "token_type_ids", "attention_mask", "pixel_values"])
# test if it raises when no input is passed
with pytest.raises(ValueError):
processor()
def test_tokenizer_decode(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = ChineseCLIPProcessor(tokenizer=tokenizer, image_processor=image_processor)
predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
decoded_processor = processor.batch_decode(predicted_ids)
decoded_tok = tokenizer.batch_decode(predicted_ids)
self.assertListEqual(decoded_tok, decoded_processor)
def test_model_input_names(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = ChineseCLIPProcessor(tokenizer=tokenizer, image_processor=image_processor)
input_str = "Alexandra,T-shirt的价格是15便士。"
image_input = self.prepare_image_inputs()
inputs = processor(text=input_str, images=image_input)
self.assertListEqual(list(inputs.keys()), processor.model_input_names)
| transformers-main | tests/models/chinese_clip/test_processor_chinese_clip.py |
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_vision_available
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
if is_vision_available():
from transformers import ChineseCLIPImageProcessor
class ChineseCLIPImageProcessingTester(unittest.TestCase):
def __init__(
self,
parent,
batch_size=7,
num_channels=3,
image_size=18,
min_resolution=30,
max_resolution=400,
do_resize=True,
size=None,
do_center_crop=True,
crop_size=None,
do_normalize=True,
image_mean=[0.48145466, 0.4578275, 0.40821073],
image_std=[0.26862954, 0.26130258, 0.27577711],
do_convert_rgb=True,
):
size = size if size is not None else {"height": 224, "width": 224}
crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18}
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.image_size = image_size
self.min_resolution = min_resolution
self.max_resolution = max_resolution
self.do_resize = do_resize
self.size = size
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
self.do_convert_rgb = do_convert_rgb
def prepare_image_processor_dict(self):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_convert_rgb": self.do_convert_rgb,
}
def expected_output_image_shape(self, images):
return 3, self.crop_size["height"], self.crop_size["width"]
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
return prepare_image_inputs(
batch_size=self.batch_size,
num_channels=self.num_channels,
min_resolution=self.min_resolution,
max_resolution=self.max_resolution,
equal_resolution=equal_resolution,
numpify=numpify,
torchify=torchify,
)
@require_torch
@require_vision
class ChineseCLIPImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
image_processing_class = ChineseCLIPImageProcessor if is_vision_available() else None
def setUp(self):
self.image_processor_tester = ChineseCLIPImageProcessingTester(self, do_center_crop=True)
@property
def image_processor_dict(self):
return self.image_processor_tester.prepare_image_processor_dict()
def test_image_processor_properties(self):
image_processing = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(image_processing, "do_resize"))
self.assertTrue(hasattr(image_processing, "size"))
self.assertTrue(hasattr(image_processing, "do_center_crop"))
self.assertTrue(hasattr(image_processing, "center_crop"))
self.assertTrue(hasattr(image_processing, "do_normalize"))
self.assertTrue(hasattr(image_processing, "image_mean"))
self.assertTrue(hasattr(image_processing, "image_std"))
self.assertTrue(hasattr(image_processing, "do_convert_rgb"))
def test_image_processor_from_dict_with_kwargs(self):
image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size, {"height": 224, "width": 224})
self.assertEqual(image_processor.crop_size, {"height": 18, "width": 18})
image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84)
self.assertEqual(image_processor.size, {"shortest_edge": 42})
self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
@require_torch
@require_vision
class ChineseCLIPImageProcessingTestFourChannels(ImageProcessingTestMixin, unittest.TestCase):
image_processing_class = ChineseCLIPImageProcessor if is_vision_available() else None
def setUp(self):
self.image_processor_tester = ChineseCLIPImageProcessingTester(self, num_channels=4, do_center_crop=True)
self.expected_encoded_image_num_channels = 3
@property
def image_processor_dict(self):
return self.image_processor_tester.prepare_image_processor_dict()
def test_image_processor_properties(self):
image_processing = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(image_processing, "do_resize"))
self.assertTrue(hasattr(image_processing, "size"))
self.assertTrue(hasattr(image_processing, "do_center_crop"))
self.assertTrue(hasattr(image_processing, "center_crop"))
self.assertTrue(hasattr(image_processing, "do_normalize"))
self.assertTrue(hasattr(image_processing, "image_mean"))
self.assertTrue(hasattr(image_processing, "image_std"))
self.assertTrue(hasattr(image_processing, "do_convert_rgb"))
@unittest.skip("ChineseCLIPImageProcessor does not support 4 channels yet") # FIXME Amy
def test_call_numpy(self):
return super().test_call_numpy()
@unittest.skip("ChineseCLIPImageProcessor does not support 4 channels yet") # FIXME Amy
def test_call_pytorch(self):
return super().test_call_torch()
| transformers-main | tests/models/chinese_clip/test_image_processing_chinese_clip.py |
transformers-main | tests/models/vivit/__init__.py |
|
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch ViViT model. """
import copy
import inspect
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import VivitConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VivitForVideoClassification, VivitModel
from transformers.models.vivit.modeling_vivit import VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from transformers import VivitImageProcessor
class VivitModelTester:
def __init__(
self,
parent,
batch_size=2,
is_training=True,
use_labels=True,
num_labels=10,
image_size=10,
num_frames=8, # decreased, because default 32 takes too much RAM at inference
tubelet_size=[2, 4, 4],
num_channels=3,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu_fast",
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
initializer_range=0.02,
layer_norm_eps=1e-06,
qkv_bias=True,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.is_training = is_training
self.use_labels = use_labels
self.num_labels = num_labels
self.image_size = image_size
self.num_frames = num_frames
self.tubelet_size = tubelet_size
self.num_channels = num_channels
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.qkv_bias = qkv_bias
self.scope = scope
self.seq_length = (
(self.image_size // self.tubelet_size[2])
* (self.image_size // self.tubelet_size[1])
* (self.num_frames // self.tubelet_size[0])
) + 1 # CLS token
def prepare_config_and_inputs(self):
pixel_values = floats_tensor(
[self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size]
)
labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size], self.num_labels)
config = self.get_config()
return config, pixel_values, labels
def get_config(self):
config = VivitConfig(
num_frames=self.num_frames,
image_size=self.image_size,
tubelet_size=self.tubelet_size,
num_channels=self.num_channels,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
initializer_range=self.initializer_range,
layer_norm_eps=self.layer_norm_eps,
qkv_bias=self.qkv_bias,
)
config.num_labels = self.num_labels
return config
def create_and_check_model(self, config, pixel_values, labels):
model = VivitModel(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_video_classification(self, config, pixel_values, labels):
model = VivitForVideoClassification(config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
# verify the logits shape
expected_shape = torch.Size((self.batch_size, self.num_labels))
self.parent.assertEqual(result.logits.shape, expected_shape)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, labels = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class VivitModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as Vivit does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (VivitModel, VivitForVideoClassification) if is_torch_available() else ()
pipeline_model_mapping = (
{"feature-extraction": VivitModel, "video-classification": VivitForVideoClassification}
if is_torch_available()
else {}
)
test_pruning = False
test_torchscript = False
test_resize_embeddings = False
test_head_masking = False
def setUp(self):
self.model_tester = VivitModelTester(self)
self.config_tester = ConfigTester(self, config_class=VivitConfig, has_text_modality=False, hidden_size=37)
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = copy.deepcopy(inputs_dict)
if return_labels:
if model_class in get_values(MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING):
inputs_dict["labels"] = torch.zeros(
self.model_tester.batch_size, dtype=torch.long, device=torch_device
)
return inputs_dict
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="Vivit does not use inputs_embeds")
def test_inputs_embeds(self):
pass
def test_model_common_attributes(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values", "head_mask"]
self.assertListEqual(arg_names[:2], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_video_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_video_classification(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = VivitModel.from_pretrained(model_name)
self.assertIsNotNone(model)
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
for model_class in self.all_model_classes:
seq_len = self.model_tester.seq_length
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, seq_len, seq_len],
)
out_len = len(outputs)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
self.assertEqual(out_len + 1, len(outputs))
self_attentions = outputs.attentions
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, seq_len, seq_len],
)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.hidden_states
expected_num_layers = self.model_tester.num_hidden_layers + 1
self.assertEqual(len(hidden_states), expected_num_layers)
seq_length = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[seq_length, self.model_tester.hidden_size],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
# We will verify our results on a video of eating spaghetti
# Frame indices used: [164 168 172 176 181 185 189 193 198 202 206 210 215 219 223 227]
def prepare_video():
file = hf_hub_download(
repo_id="hf-internal-testing/spaghetti-video", filename="eating_spaghetti_32_frames.npy", repo_type="dataset"
)
video = np.load(file)
return list(video)
@require_torch
@require_vision
class VivitModelIntegrationTest(unittest.TestCase):
@cached_property
def default_image_processor(self):
return VivitImageProcessor() if is_vision_available() else None
@slow
def test_inference_for_video_classification(self):
model = VivitForVideoClassification.from_pretrained("google/vivit-b-16x2-kinetics400").to(torch_device)
image_processor = self.default_image_processor
video = prepare_video()
inputs = image_processor(video, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# verify the logits
expected_shape = torch.Size((1, 400))
self.assertEqual(outputs.logits.shape, expected_shape)
# taken from original model
expected_slice = torch.tensor([-0.9498, 2.7971, -1.4049, 0.1024, -1.8353]).to(torch_device)
self.assertTrue(torch.allclose(outputs.logits[0, :5], expected_slice, atol=1e-4))
| transformers-main | tests/models/vivit/test_modeling_vivit.py |
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_video_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import VivitImageProcessor
class VivitImageProcessingTester(unittest.TestCase):
def __init__(
self,
parent,
batch_size=7,
num_channels=3,
num_frames=10,
image_size=18,
min_resolution=30,
max_resolution=400,
do_resize=True,
size=None,
do_normalize=True,
image_mean=[0.5, 0.5, 0.5],
image_std=[0.5, 0.5, 0.5],
crop_size=None,
):
size = size if size is not None else {"shortest_edge": 18}
crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18}
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.num_frames = num_frames
self.image_size = image_size
self.min_resolution = min_resolution
self.max_resolution = max_resolution
self.do_resize = do_resize
self.size = size
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
self.crop_size = crop_size
def prepare_image_processor_dict(self):
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"crop_size": self.crop_size,
}
def expected_output_image_shape(self, images):
return self.num_frames, self.num_channels, self.crop_size["height"], self.crop_size["width"]
def prepare_video_inputs(self, equal_resolution=False, numpify=False, torchify=False):
return prepare_video_inputs(
batch_size=self.batch_size,
num_channels=self.num_channels,
num_frames=self.num_frames,
min_resolution=self.min_resolution,
max_resolution=self.max_resolution,
equal_resolution=equal_resolution,
numpify=numpify,
torchify=torchify,
)
@require_torch
@require_vision
class VivitImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
image_processing_class = VivitImageProcessor if is_vision_available() else None
def setUp(self):
self.image_processor_tester = VivitImageProcessingTester(self)
@property
def image_processor_dict(self):
return self.image_processor_tester.prepare_image_processor_dict()
def test_image_processor_properties(self):
image_processing = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(image_processing, "image_mean"))
self.assertTrue(hasattr(image_processing, "image_std"))
self.assertTrue(hasattr(image_processing, "do_normalize"))
self.assertTrue(hasattr(image_processing, "do_resize"))
self.assertTrue(hasattr(image_processing, "do_center_crop"))
self.assertTrue(hasattr(image_processing, "size"))
def test_image_processor_from_dict_with_kwargs(self):
image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size, {"shortest_edge": 18})
self.assertEqual(image_processor.crop_size, {"height": 18, "width": 18})
image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84)
self.assertEqual(image_processor.size, {"shortest_edge": 42})
self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
def test_rescale(self):
# ViVit optionally rescales between -1 and 1 instead of the usual 0 and 1
image = np.arange(0, 256, 1, dtype=np.uint8).reshape(1, 8, 32)
image_processor = self.image_processing_class(**self.image_processor_dict)
rescaled_image = image_processor.rescale(image, scale=1 / 127.5)
expected_image = (image * (1 / 127.5)).astype(np.float32) - 1
self.assertTrue(np.allclose(rescaled_image, expected_image))
rescaled_image = image_processor.rescale(image, scale=1 / 255, offset=False)
expected_image = (image / 255.0).astype(np.float32)
self.assertTrue(np.allclose(rescaled_image, expected_image))
def test_call_pil(self):
# Initialize image_processing
image_processing = self.image_processing_class(**self.image_processor_dict)
# create random PIL videos
video_inputs = self.image_processor_tester.prepare_video_inputs(equal_resolution=False)
for video in video_inputs:
self.assertIsInstance(video, list)
self.assertIsInstance(video[0], Image.Image)
# Test not batched input
encoded_videos = image_processing(video_inputs[0], return_tensors="pt").pixel_values
expected_output_video_shape = self.image_processor_tester.expected_output_image_shape([encoded_videos[0]])
self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape))
# Test batched
encoded_videos = image_processing(video_inputs, return_tensors="pt").pixel_values
expected_output_video_shape = self.image_processor_tester.expected_output_image_shape(encoded_videos)
self.assertEqual(
tuple(encoded_videos.shape), (self.image_processor_tester.batch_size, *expected_output_video_shape)
)
def test_call_numpy(self):
# Initialize image_processing
image_processing = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
video_inputs = self.image_processor_tester.prepare_video_inputs(equal_resolution=False, numpify=True)
for video in video_inputs:
self.assertIsInstance(video, list)
self.assertIsInstance(video[0], np.ndarray)
# Test not batched input
encoded_videos = image_processing(video_inputs[0], return_tensors="pt").pixel_values
expected_output_video_shape = self.image_processor_tester.expected_output_image_shape([encoded_videos[0]])
self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape))
# Test batched
encoded_videos = image_processing(video_inputs, return_tensors="pt").pixel_values
expected_output_video_shape = self.image_processor_tester.expected_output_image_shape(encoded_videos)
self.assertEqual(
tuple(encoded_videos.shape), (self.image_processor_tester.batch_size, *expected_output_video_shape)
)
def test_call_pytorch(self):
# Initialize image_processing
image_processing = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
video_inputs = self.image_processor_tester.prepare_video_inputs(equal_resolution=False, torchify=True)
for video in video_inputs:
self.assertIsInstance(video, list)
self.assertIsInstance(video[0], torch.Tensor)
# Test not batched input
encoded_videos = image_processing(video_inputs[0], return_tensors="pt").pixel_values
expected_output_video_shape = self.image_processor_tester.expected_output_image_shape([encoded_videos[0]])
self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape))
# Test batched
encoded_videos = image_processing(video_inputs, return_tensors="pt").pixel_values
expected_output_video_shape = self.image_processor_tester.expected_output_image_shape(encoded_videos)
self.assertEqual(
tuple(encoded_videos.shape), (self.image_processor_tester.batch_size, *expected_output_video_shape)
)
| transformers-main | tests/models/vivit/test_image_processing_vivit.py |
transformers-main | tests/models/megatron_gpt2/__init__.py |
|
# coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
if is_torch_available():
import torch
from transformers import GPT2LMHeadModel
@require_torch
@require_sentencepiece
@require_tokenizers
class MegatronGPT2IntegrationTest(unittest.TestCase):
@slow
@unittest.skip("Model is not available.")
def test_inference_no_head(self):
directory = "nvidia/megatron-gpt2-345m/"
if "MYDIR" in os.environ:
directory = os.path.join(os.environ["MYDIR"], directory)
model = GPT2LMHeadModel.from_pretrained(directory)
model.to(torch_device)
model.half()
input_ids = torch.tensor(
[[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]],
device=torch_device,
dtype=torch.long,
)
with torch.no_grad():
output = model(input_ids).logits
expected_shape = torch.Size((1, 9, 50257))
self.assertEqual(output.shape, expected_shape)
expected_diag = torch.tensor(
[
4.9414,
-0.2920,
-1.2148,
-4.0273,
-0.5161,
-5.2109,
-1.2412,
-1.8301,
-1.7734,
-4.7148,
-0.2317,
-1.0811,
-2.1777,
0.4141,
-3.7969,
-4.0586,
-2.5332,
-3.3809,
4.3867,
],
device=torch_device,
dtype=torch.half,
)
for i in range(19):
r, c = 8 * i // 17, 2792 * i # along the diagonal
computed, expected = output[0, r, c], expected_diag[i]
msg = f"row={r} col={c} computed={computed} expected={expected}"
self.assertAlmostEqual(computed, expected, delta=1e-4, msg=msg)
| transformers-main | tests/models/megatron_gpt2/test_modeling_megatron_gpt2.py |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch UperNet framework. """
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ConvNextConfig, UperNetConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import UperNetForSemanticSegmentation
from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class UperNetModelTester:
def __init__(
self,
parent,
batch_size=13,
image_size=32,
num_channels=3,
num_stages=4,
hidden_sizes=[10, 20, 30, 40],
depths=[1, 1, 1, 1],
is_training=True,
use_labels=True,
intermediate_size=37,
hidden_act="gelu",
type_sequence_label_size=10,
initializer_range=0.02,
out_features=["stage2", "stage3", "stage4"],
num_labels=3,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.num_channels = num_channels
self.num_stages = num_stages
self.hidden_sizes = hidden_sizes
self.depths = depths
self.is_training = is_training
self.use_labels = use_labels
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.out_features = out_features
self.num_labels = num_labels
self.scope = scope
self.num_hidden_layers = num_stages
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
config = self.get_config()
return config, pixel_values, labels
def get_backbone_config(self):
return ConvNextConfig(
num_channels=self.num_channels,
num_stages=self.num_stages,
hidden_sizes=self.hidden_sizes,
depths=self.depths,
is_training=self.is_training,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
out_features=self.out_features,
)
def get_config(self):
return UperNetConfig(
backbone_config=self.get_backbone_config(),
hidden_size=64,
pool_scales=[1, 2, 3, 6],
use_auxiliary_head=True,
auxiliary_loss_weight=0.4,
auxiliary_in_channels=40,
auxiliary_channels=32,
auxiliary_num_convs=1,
auxiliary_concat_input=False,
loss_ignore_index=255,
num_labels=self.num_labels,
)
def create_and_check_for_semantic_segmentation(self, config, pixel_values, labels):
model = UperNetForSemanticSegmentation(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(
result.logits.shape, (self.batch_size, self.num_labels, self.image_size, self.image_size)
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
pixel_values,
labels,
) = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class UperNetModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as UperNet does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (UperNetForSemanticSegmentation,) if is_torch_available() else ()
pipeline_model_mapping = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {}
fx_compatible = False
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
test_torchscript = False
has_attentions = False
def setUp(self):
self.model_tester = UperNetModelTester(self)
self.config_tester = ConfigTester(self, config_class=UperNetConfig, has_text_modality=False, hidden_size=37)
def test_config(self):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def create_and_test_config_common_properties(self):
return
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_for_semantic_segmentation(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*config_and_inputs)
@unittest.skip(reason="UperNet does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="UperNet does not support input and output embeddings")
def test_model_common_attributes(self):
pass
@unittest.skip(reason="UperNet does not have a base model")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="UperNet does not have a base model")
def test_save_load_fast_init_to_base(self):
pass
@require_torch_multi_gpu
@unittest.skip(reason="UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`")
def test_multi_gpu_data_parallel_forward(self):
pass
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
expected_num_stages = self.model_tester.num_stages
self.assertEqual(len(hidden_states), expected_num_stages + 1)
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[self.model_tester.image_size // 4, self.model_tester.image_size // 4],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
configs_no_init.backbone_config = _config_zero_init(configs_no_init.backbone_config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
@unittest.skip(reason="UperNet does not have tied weights")
def test_tied_model_weights_key_ignore(self):
pass
@slow
def test_model_from_pretrained(self):
for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = UperNetForSemanticSegmentation.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of ADE20k
def prepare_img():
filepath = hf_hub_download(
repo_id="hf-internal-testing/fixtures_ade20k", repo_type="dataset", filename="ADE_val_00000001.jpg"
)
image = Image.open(filepath).convert("RGB")
return image
@require_torch
@require_vision
@slow
class UperNetModelIntegrationTest(unittest.TestCase):
def test_inference_swin_backbone(self):
processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-swin-tiny")
model = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-swin-tiny").to(torch_device)
image = prepare_img()
inputs = processor(images=image, return_tensors="pt").to(torch_device)
with torch.no_grad():
outputs = model(**inputs)
expected_shape = torch.Size((1, model.config.num_labels, 512, 512))
self.assertEqual(outputs.logits.shape, expected_shape)
expected_slice = torch.tensor(
[[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]]
).to(torch_device)
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], expected_slice, atol=1e-4))
def test_inference_convnext_backbone(self):
processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-tiny")
model = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-tiny").to(torch_device)
image = prepare_img()
inputs = processor(images=image, return_tensors="pt").to(torch_device)
with torch.no_grad():
outputs = model(**inputs)
expected_shape = torch.Size((1, model.config.num_labels, 512, 512))
self.assertEqual(outputs.logits.shape, expected_shape)
expected_slice = torch.tensor(
[[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]]
).to(torch_device)
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], expected_slice, atol=1e-4))
| transformers-main | tests/models/upernet/test_modeling_upernet.py |
transformers-main | tests/models/upernet/__init__.py |
|
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch TrOCR model. """
import unittest
from transformers import TrOCRConfig
from transformers.testing_utils import is_torch_available, require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM
@require_torch
class TrOCRStandaloneDecoderModelTester:
def __init__(
self,
parent,
vocab_size=99,
batch_size=13,
d_model=16,
decoder_seq_length=7,
is_training=True,
is_decoder=True,
use_attention_mask=True,
use_cache=False,
use_labels=True,
decoder_start_token_id=2,
decoder_ffn_dim=32,
decoder_layers=2,
decoder_attention_heads=4,
max_position_embeddings=30,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.decoder_seq_length = decoder_seq_length
# For common tests
self.seq_length = self.decoder_seq_length
self.is_training = is_training
self.use_attention_mask = use_attention_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.d_model = d_model
self.hidden_size = d_model
self.num_hidden_layers = decoder_layers
self.decoder_layers = decoder_layers
self.decoder_ffn_dim = decoder_ffn_dim
self.decoder_attention_heads = decoder_attention_heads
self.num_attention_heads = decoder_attention_heads
self.eos_token_id = eos_token_id
self.bos_token_id = bos_token_id
self.pad_token_id = pad_token_id
self.decoder_start_token_id = decoder_start_token_id
self.use_cache = use_cache
self.max_position_embeddings = max_position_embeddings
self.scope = None
self.decoder_key_length = decoder_seq_length
self.base_model_out_len = 2
self.decoder_attention_idx = 1
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
attention_mask = None
if self.use_attention_mask:
attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2)
lm_labels = None
if self.use_labels:
lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
config = TrOCRConfig(
vocab_size=self.vocab_size,
d_model=self.d_model,
decoder_layers=self.decoder_layers,
decoder_ffn_dim=self.decoder_ffn_dim,
decoder_attention_heads=self.decoder_attention_heads,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
use_cache=self.use_cache,
pad_token_id=self.pad_token_id,
decoder_start_token_id=self.decoder_start_token_id,
max_position_embeddings=self.max_position_embeddings,
)
return (config, input_ids, attention_mask, lm_labels)
def create_and_check_decoder_model_past(
self,
config,
input_ids,
attention_mask,
lm_labels,
):
config.use_cache = True
model = TrOCRDecoder(config=config).to(torch_device).eval()
input_ids = input_ids[:2]
input_ids[input_ids == 0] += 1
# first forward pass
outputs = model(input_ids, use_cache=True)
outputs_use_cache_conf = model(input_ids)
outputs_no_past = model(input_ids, use_cache=False)
self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)
past_key_values = outputs["past_key_values"]
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((2, 1), config.vocab_size - 1) + 1
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
output_from_no_past = model(next_input_ids)["last_hidden_state"]
output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, attention_mask, lm_labels = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": attention_mask}
return config, inputs_dict
@require_torch
class TrOCRStandaloneDecoderModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else ()
all_generative_model_classes = (TrOCRForCausalLM,) if is_torch_available() else ()
pipeline_model_mapping = {"text-generation": TrOCRForCausalLM} if is_torch_available() else {}
fx_compatible = True
test_pruning = False
def setUp(self):
self.model_tester = TrOCRStandaloneDecoderModelTester(self, is_training=False)
self.config_tester = ConfigTester(self, config_class=TrOCRConfig)
# not implemented currently
def test_inputs_embeds(self):
pass
# trocr has no base model
def test_save_load_fast_init_from_base(self):
pass
# trocr has no base model
def test_save_load_fast_init_to_base(self):
pass
def test_config(self):
self.config_tester.run_common_tests()
def test_decoder_model_past(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past(*config_and_inputs)
# decoder cannot keep gradients
def test_retain_grad_hidden_states_attentions(self):
return
@unittest.skip("The model doesn't support left padding") # and it's not used enough to be worth fixing :)
def test_left_padding_compatibility(self):
pass
| transformers-main | tests/models/trocr/test_modeling_trocr.py |
transformers-main | tests/models/trocr/__init__.py |
|
transformers-main | tests/models/jukebox/__init__.py |
|
# coding=utf-8
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from unittest import skip
from transformers import is_torch_available
from transformers.testing_utils import require_torch, slow
from transformers.trainer_utils import set_seed
if is_torch_available():
import torch
from transformers import JukeboxModel, JukeboxPrior, JukeboxTokenizer
@require_torch
class Jukebox1bModelTester(unittest.TestCase):
all_model_classes = (JukeboxModel,) if is_torch_available() else ()
model_id = "openai/jukebox-1b-lyrics"
metas = {
"artist": "Zac Brown Band",
"genres": "Country",
"lyrics": """I met a traveller from an antique land,
Who said "Two vast and trunkless legs of stone
Stand in the desert. . . . Near them, on the sand,
Half sunk a shattered visage lies, whose frown,
And wrinkled lip, and sneer of cold command,
Tell that its sculptor well those passions read
Which yet survive, stamped on these lifeless things,
The hand that mocked them, and the heart that fed;
And on the pedestal, these words appear:
My name is Ozymandias, King of Kings;
Look on my Works, ye Mighty, and despair!
Nothing beside remains. Round the decay
Of that colossal Wreck, boundless and bare
The lone and level sands stretch far away
""",
}
# fmt: off
EXPECTED_OUTPUT_2 = [
1864, 1536, 1213, 1870, 1357, 1536, 519, 880, 1323, 789, 1082, 534,
1000, 1445, 1105, 1130, 967, 515, 1434, 1620, 534, 1495, 283, 1445,
333, 1307, 539, 1631, 1528, 375, 1434, 673, 627, 710, 778, 1883,
1405, 1276, 1455, 1228
]
EXPECTED_OUTPUT_2_PT_2 = [
1489, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
653, 653, 653, 653
]
EXPECTED_OUTPUT_1 = [
1125, 1751, 697, 1776, 1141, 1476, 391, 697, 1125, 684, 867, 416,
844, 1372, 1274, 717, 1274, 844, 1299, 1419, 697, 1370, 317, 1125,
191, 1440, 1370, 1440, 1370, 282, 1621, 1370, 368, 349, 867, 1872,
1262, 869, 1728, 747
]
EXPECTED_OUTPUT_1_PT_2 = [
416, 416, 1125, 1125, 416, 416, 416, 416, 416, 416, 416, 416,
416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416,
416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416,
416, 416, 416, 416
]
EXPECTED_OUTPUT_0 = [
1755, 842, 307, 1843, 1022, 1395, 234, 1554, 806, 739, 1022, 442,
616, 556, 268, 1499, 933, 457, 1440, 1837, 755, 985, 308, 902,
293, 1443, 1671, 1141, 1533, 555, 1562, 1061, 287, 417, 1022, 2008,
1186, 1015, 1777, 268
]
EXPECTED_OUTPUT_0_PT_2 = [
854, 842, 1353, 114, 1353, 842, 185, 842, 185, 114, 591, 842,
185, 417, 185, 842, 307, 842, 591, 842, 185, 842, 307, 842,
591, 842, 1353, 842, 185, 842, 591, 842, 591, 114, 591, 842,
185, 842, 591, 89
]
EXPECTED_Y_COND = [1058304, 0, 786432, 7169, 507, 76, 27, 40, 30, 76]
EXPECTED_PRIMED_0 = [
390, 1160, 1002, 1907, 1788, 1788, 1788, 1907, 1002, 1002, 1854, 1002,
1002, 1002, 1002, 1002, 1002, 1160, 1160, 1606, 596, 596, 1160, 1002,
1516, 596, 1002, 1002, 1002, 1907, 1788, 1788, 1788, 1854, 1788, 1907,
1907, 1788, 596, 1626
]
EXPECTED_PRIMED_1 = [
1236, 1668, 1484, 1920, 1848, 1409, 139, 864, 1828, 1272, 1599, 824,
1672, 139, 555, 1484, 824, 1920, 555, 596, 1579, 1599, 1231, 1599,
1637, 1407, 212, 824, 1599, 116, 1433, 824, 258, 1599, 1433, 1895,
1063, 1433, 1433, 1599
]
EXPECTED_PRIMED_2 = [
1684, 1873, 1119, 1189, 395, 611, 1901, 972, 890, 1337, 1392, 1927,
96, 972, 672, 780, 1119, 890, 158, 771, 1073, 1927, 353, 1331,
1269, 1459, 1333, 1645, 812, 1577, 1337, 606, 353, 981, 1466, 619,
197, 391, 302, 1930
]
EXPECTED_VQVAE_ENCODE = [
390, 1160, 1002, 1907, 1788, 1788, 1788, 1907, 1002, 1002, 1854, 1002,
1002, 1002, 1002, 1002, 1002, 1160, 1160, 1606, 596, 596, 1160, 1002,
1516, 596, 1002, 1002, 1002, 1907, 1788, 1788, 1788, 1854, 1788, 1907,
1907, 1788, 596, 1626
]
EXPECTED_VQVAE_DECODE = [
-0.0492, -0.0524, -0.0565, -0.0640, -0.0686, -0.0684, -0.0677, -0.0664,
-0.0605, -0.0490, -0.0330, -0.0168, -0.0083, -0.0075, -0.0051, 0.0025,
0.0136, 0.0261, 0.0386, 0.0497, 0.0580, 0.0599, 0.0583, 0.0614,
0.0740, 0.0889, 0.1023, 0.1162, 0.1211, 0.1212, 0.1251, 0.1336,
0.1502, 0.1686, 0.1883, 0.2148, 0.2363, 0.2458, 0.2507, 0.2531
]
EXPECTED_AUDIO_COND = [
0.0256, -0.0544, 0.1600, -0.0032, 0.1066, 0.0825, -0.0013, 0.3440,
0.0210, 0.0412, -0.1777, -0.0892, -0.0164, 0.0285, -0.0613, -0.0617,
-0.0137, -0.0201, -0.0175, 0.0215, -0.0627, 0.0520, -0.0730, 0.0970,
-0.0100, 0.0442, -0.0586, 0.0207, -0.0015, -0.0082
]
EXPECTED_META_COND = [
0.0415, 0.0877, 0.0022, -0.0055, 0.0751, 0.0334, 0.0324, -0.0068,
0.0011, 0.0017, -0.0676, 0.0655, -0.0143, 0.0399, 0.0303, 0.0743,
-0.0168, -0.0394, -0.1113, 0.0124, 0.0442, 0.0267, -0.0003, -0.1536,
-0.0116, -0.1837, -0.0180, -0.1026, -0.0777, -0.0456
]
EXPECTED_LYRIC_COND = [
76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33,
45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76
]
# fmt: on
def prepare_inputs(self):
tokenizer = JukeboxTokenizer.from_pretrained(self.model_id)
tokens = tokenizer(**self.metas)["input_ids"]
return tokens
@slow
def test_sampling(self):
model = JukeboxModel.from_pretrained(self.model_id, min_duration=0).eval()
labels = self.prepare_inputs()
set_seed(0)
zs = [torch.zeros(1, 0, dtype=torch.long).cpu() for _ in range(3)]
zs = model._sample(zs, labels, [0], sample_length=40 * model.priors[0].raw_to_tokens, save_results=False)
self.assertIn(zs[0][0].detach().cpu().tolist(), [self.EXPECTED_OUTPUT_2, self.EXPECTED_OUTPUT_2_PT_2])
set_seed(0)
zs = model._sample(zs, labels, [1], sample_length=40 * model.priors[1].raw_to_tokens, save_results=False)
self.assertIn(zs[1][0].detach().cpu().tolist(), [self.EXPECTED_OUTPUT_1, self.EXPECTED_OUTPUT_1_PT_2])
set_seed(0)
zs = model._sample(zs, labels, [2], sample_length=40 * model.priors[2].raw_to_tokens, save_results=False)
self.assertIn(zs[2][0].detach().cpu().tolist(), [self.EXPECTED_OUTPUT_0, self.EXPECTED_OUTPUT_0_PT_2])
@slow
def test_conditioning(self):
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
model = JukeboxModel.from_pretrained(self.model_id, min_duration=0).eval()
labels = self.prepare_inputs()
set_seed(0)
zs = [torch.zeros(1, 0, dtype=torch.long) for _ in range(3)]
top_prior = model.priors[0]
start = 0
music_token_conds = top_prior.get_music_tokens_conds(zs, start=start, end=start + top_prior.n_ctx)
metadata = top_prior.get_metadata(labels[0].clone(), start, 1058304, 0)
self.assertIsNone(music_token_conds)
self.assertListEqual(metadata.numpy()[0][:10].tolist(), self.EXPECTED_Y_COND)
audio_conditioning, metadata_conditioning, lyric_tokens = top_prior.get_cond(music_token_conds, metadata)
torch.testing.assert_allclose(
audio_conditioning[0][0][:30].detach(), torch.tensor(self.EXPECTED_AUDIO_COND), atol=1e-4, rtol=1e-4
)
torch.testing.assert_allclose(
metadata_conditioning[0][0][:30].detach(), torch.tensor(self.EXPECTED_META_COND), atol=1e-4, rtol=1e-4
)
torch.testing.assert_allclose(
lyric_tokens[0, :30].detach(), torch.tensor(self.EXPECTED_LYRIC_COND), atol=1e-4, rtol=1e-4
)
@slow
def test_primed_sampling(self):
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
model = JukeboxModel.from_pretrained(self.model_id, min_duration=0).eval()
set_seed(0)
waveform = torch.rand((1, 5120, 1))
tokens = list(self.prepare_inputs())
zs = [model.vqvae.encode(waveform, start_level=2, bs_chunks=waveform.shape[0])[0], None, None]
zs = model._sample(
zs, tokens, sample_levels=[0], save_results=False, sample_length=40 * model.priors[0].raw_to_tokens
)
torch.testing.assert_allclose(zs[0][0][:40], torch.tensor(self.EXPECTED_PRIMED_0))
upper_2 = torch.cat((zs[0], torch.zeros(1, 2048 - zs[0].shape[-1])), dim=-1).long()
zs = [upper_2, model.vqvae.encode(waveform, start_level=1, bs_chunks=waveform.shape[0])[0], None]
zs = model._sample(
zs, tokens, sample_levels=[1], save_results=False, sample_length=40 * model.priors[1].raw_to_tokens
)
torch.testing.assert_allclose(zs[1][0][:40], torch.tensor(self.EXPECTED_PRIMED_1))
upper_1 = torch.cat((zs[1], torch.zeros(1, 2048 - zs[1].shape[-1])), dim=-1).long()
zs = [upper_2, upper_1, model.vqvae.encode(waveform, start_level=0, bs_chunks=waveform.shape[0])[0]]
zs = model._sample(
zs, tokens, sample_levels=[2], save_results=False, sample_length=40 * model.priors[2].raw_to_tokens
)
torch.testing.assert_allclose(zs[2][0][:40].cpu(), torch.tensor(self.EXPECTED_PRIMED_2))
@slow
def test_vqvae(self):
model = JukeboxModel.from_pretrained(self.model_id, min_duration=0).eval()
set_seed(0)
x = torch.rand((1, 5120, 1))
with torch.no_grad():
zs = model.vqvae.encode(x, start_level=2, bs_chunks=x.shape[0])
torch.testing.assert_allclose(zs[0][0], torch.tensor(self.EXPECTED_VQVAE_ENCODE))
with torch.no_grad():
x = model.vqvae.decode(zs, start_level=2, bs_chunks=x.shape[0])
torch.testing.assert_allclose(x[0, :40, 0], torch.tensor(self.EXPECTED_VQVAE_DECODE), atol=1e-4, rtol=1e-4)
@require_torch
class Jukebox5bModelTester(unittest.TestCase):
all_model_classes = (JukeboxModel,) if is_torch_available() else ()
model_id = "openai/jukebox-5b-lyrics"
metas = {
"artist": "Zac Brown Band",
"genres": "Country",
"lyrics": """I met a traveller from an antique land,
Who said "Two vast and trunkless legs of stone
Stand in the desert. . . . Near them, on the sand,
Half sunk a shattered visage lies, whose frown,
And wrinkled lip, and sneer of cold command,
Tell that its sculptor well those passions read
Which yet survive, stamped on these lifeless things,
The hand that mocked them, and the heart that fed;
And on the pedestal, these words appear:
My name is Ozymandias, King of Kings;
Look on my Works, ye Mighty, and despair!
Nothing beside remains. Round the decay
Of that colossal Wreck, boundless and bare
The lone and level sands stretch far away
""",
}
# fmt: off
EXPECTED_OUTPUT_2 = [
1489, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
1489, 1489, 1489, 1489, 1150, 1853, 1509, 1150, 1357, 1509, 6, 1272
]
EXPECTED_OUTPUT_2_PT_2 = [
1489, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653
]
EXPECTED_OUTPUT_1 = [
1125, 416, 1125, 1125, 1125, 1125, 1125, 416, 416, 416, 416, 416,
416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416,
416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416,
416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416,
416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416
]
EXPECTED_OUTPUT_1_PT_2 = [
416, 416, 1125, 1125, 416, 416, 416, 416, 416, 416, 416, 416, 416,
416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416,
416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416,
416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416,
416, 416, 416, 416, 416, 416, 416, 416
]
EXPECTED_OUTPUT_0 = [
1755, 1061, 234, 1755, 1061, 1755, 185, 290, 307, 307, 616, 616,
616, 616, 616, 616, 307, 290, 417, 1755, 234, 1755, 185, 290,
290, 290, 307, 616, 616, 616, 616, 616, 290, 234, 234, 1755,
234, 234, 1755, 234, 185, 185, 307, 616, 616, 616, 616, 290,
1755, 1755, 1755, 234, 234, 1755, 1572, 290, 307, 616, 34, 616
]
EXPECTED_OUTPUT_0_PT_2 = [
854, 842, 1353, 114, 1353, 842, 185, 842, 185, 114, 591, 842, 185,
417, 185, 842, 307, 842, 591, 842, 185, 842, 185, 842, 591, 842,
1353, 842, 185, 842, 591, 842, 591, 114, 591, 842, 185, 842, 591,
89, 591, 842, 591, 842, 591, 417, 1372, 842, 1372, 842, 34, 842,
185, 89, 591, 842, 185, 842, 591, 632
]
EXPECTED_GPU_OUTPUTS_2 = [
1489, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653
]
EXPECTED_GPU_OUTPUTS_2_PT_2 = [
1489, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
653, 653, 653, 653, 653, 653, 653, 1853, 1177, 1536, 1228,
710, 475, 1489, 1229, 1224, 231, 1224, 252, 1434, 653, 475,
1106, 1877, 1599, 1228, 1600, 1683, 1182, 1853, 475, 1864,
252, 1229, 1434, 2001
]
EXPECTED_GPU_OUTPUTS_1 = [
1125, 1125, 416, 1125, 1125, 416, 1125, 1125, 416, 416, 1125, 416,
416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416,
416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416,
416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416,
416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416
]
EXPECTED_GPU_OUTPUTS_0 = [
491, 1755, 34, 1613, 1755, 417, 992, 1613, 222, 842, 1353, 1613,
844, 632, 185, 1613, 844, 632, 185, 1613, 185, 842, 677, 1613,
185, 114, 1353, 1613, 307, 89, 844, 1613, 307, 1332, 234, 1979,
307, 89, 1353, 616, 34, 842, 185, 842, 34, 842, 185, 842,
307, 114, 185, 89, 34, 1268, 185, 89, 34, 842, 185, 89
]
# fmt: on
def prepare_inputs(self, model_id):
tokenizer = JukeboxTokenizer.from_pretrained(model_id)
tokens = tokenizer(**self.metas)["input_ids"]
return tokens
@slow
def test_sampling(self):
model = JukeboxModel.from_pretrained(self.model_id, min_duration=0).eval()
labels = self.prepare_inputs(self.model_id)
set_seed(0)
zs = [torch.zeros(1, 0, dtype=torch.long).cpu() for _ in range(3)]
zs = model._sample(zs, labels, [0], sample_length=60 * model.priors[0].raw_to_tokens, save_results=False)
self.assertIn(zs[0][0].detach().cpu().tolist(), [self.EXPECTED_OUTPUT_2, self.EXPECTED_OUTPUT_2_PT_2])
set_seed(0)
zs = model._sample(zs, labels, [1], sample_length=60 * model.priors[1].raw_to_tokens, save_results=False)
self.assertIn(zs[1][0].detach().cpu().tolist(), [self.EXPECTED_OUTPUT_1, self.EXPECTED_OUTPUT_1_PT_2])
set_seed(0)
zs = model._sample(zs, labels, [2], sample_length=60 * model.priors[2].raw_to_tokens, save_results=False)
self.assertIn(zs[2][0].detach().cpu().tolist(), [self.EXPECTED_OUTPUT_0, self.EXPECTED_OUTPUT_0_PT_2])
@slow
@skip("Not enough GPU memory on CI runners")
def test_slow_sampling(self):
model = JukeboxModel.from_pretrained(self.model_id, min_duration=0).eval()
labels = [i.cuda() for i in self.prepare_inputs(self.model_id)]
set_seed(0)
model.priors[0].cuda()
zs = [torch.zeros(1, 0, dtype=torch.long).cuda() for _ in range(3)]
zs = model._sample(zs, labels, [0], sample_length=60 * model.priors[0].raw_to_tokens, save_results=False)
torch.testing.assert_allclose(zs[0][0].cpu(), torch.tensor(self.EXPECTED_GPU_OUTPUTS_2))
model.priors[0].cpu()
set_seed(0)
model.priors[1].cuda()
zs = model._sample(zs, labels, [1], sample_length=60 * model.priors[1].raw_to_tokens, save_results=False)
torch.testing.assert_allclose(zs[1][0].cpu(), torch.tensor(self.EXPECTED_GPU_OUTPUTS_1))
model.priors[1].cpu()
set_seed(0)
model.priors[2].cuda()
zs = model._sample(zs, labels, [2], sample_length=60 * model.priors[2].raw_to_tokens, save_results=False)
torch.testing.assert_allclose(zs[2][0].cpu(), torch.tensor(self.EXPECTED_GPU_OUTPUTS_0))
@slow
def test_fp16_slow_sampling(self):
prior_id = "ArthurZ/jukebox_prior_0"
model = JukeboxPrior.from_pretrained(prior_id, min_duration=0).eval().half().to("cuda")
labels = self.prepare_inputs(prior_id)[0].cuda()
metadata = model.get_metadata(labels, 0, 7680, 0)
set_seed(0)
outputs = model.sample(1, metadata=metadata, sample_tokens=60)
self.assertIn(outputs[0].cpu().tolist(), [self.EXPECTED_GPU_OUTPUTS_2, self.EXPECTED_GPU_OUTPUTS_2_PT_2])
| transformers-main | tests/models/jukebox/test_modeling_jukebox.py |
# coding=utf-8
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import JukeboxTokenizer
from transformers.testing_utils import require_torch
class JukeboxTokenizationTest(unittest.TestCase):
tokenizer_class = JukeboxTokenizer
metas = {
"artist": "Zac Brown Band",
"genres": "Country",
"lyrics": """I met a traveller from an antique land,
Who said "Two vast and trunkless legs of stone
Stand in the desert. . . . Near them, on the sand,
Half sunk a shattered visage lies, whose frown,
And wrinkled lip, and sneer of cold command,
Tell that its sculptor well those passions read
Which yet survive, stamped on these lifeless things,
The hand that mocked them, and the heart that fed;
And on the pedestal, these words appear:
My name is Ozymandias, King of Kings;
Look on my Works, ye Mighty, and despair!
Nothing beside remains. Round the decay
Of that colossal Wreck, boundless and bare
The lone and level sands stretch far away
""",
}
@require_torch
def test_1b_lyrics_tokenizer(self):
"""
how to run the same test with openAI
...
"""
import torch
tokenizer = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics")
tokens = tokenizer(**self.metas)["input_ids"]
# fmt: off
EXPECTED_OUTPUT = [
torch.tensor([[
0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27,
76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32,
44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43,
47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76,
76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35,
30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76,
27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45,
45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46,
41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31,
76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63,
76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39,
64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40,
30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8,
27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45,
34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45,
27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34,
41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76,
76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49,
44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64,
76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41,
32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27,
40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46,
45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49,
31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27,
45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78,
76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29,
34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48,
31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41,
40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31,
38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64,
78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31,
76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39,
41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76,
27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44,
46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78,
76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76,
41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45,
46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49,
41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65,
78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76,
40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39,
27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33,
76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76,
76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76,
41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64,
76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76,
27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67,
78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46,
34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76,
44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47,
40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51,
78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76,
46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27,
38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47,
40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28,
27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30,
76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45,
76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44,
76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76,
76, 76]]),
torch.tensor([[0, 0, 0, 1069, 11]]),
torch.tensor([[0, 0, 0, 1069, 11]]),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0], EXPECTED_OUTPUT[0]))
self.assertTrue(torch.allclose(tokens[1], EXPECTED_OUTPUT[1]))
self.assertTrue(torch.allclose(tokens[2], EXPECTED_OUTPUT[2]))
@require_torch
def test_5b_lyrics_tokenizer(self):
"""
The outputs are similar that open AI but do not have the same format as this one is adapted to the HF integration.
"""
import torch
tokenizer = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics")
tokens = tokenizer(**self.metas)["input_ids"]
# fmt: off
EXPECTED_OUTPUT = [
torch.tensor([[
0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39,
31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38,
31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27,
40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64,
79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41,
77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48,
27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40,
37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41,
32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40,
77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63,
77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77,
46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31,
77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77,
77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37,
77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30,
77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45,
64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49,
40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1,
40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77,
38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31,
31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29,
41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27,
46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46,
41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45,
31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44,
31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77,
23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47,
44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42,
31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77,
38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35,
40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77,
77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34,
27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34,
31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77,
34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32,
31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77,
1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42,
31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31,
45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42,
31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77,
77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77,
15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77,
11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33,
45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12,
41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41,
44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34,
46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42,
27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77,
77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45,
35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63,
77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30,
31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77,
77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38,
41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64,
77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27,
40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31,
77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45,
27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34,
77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77,
77, 77, 77, 77, 77, 77]]),
torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]]),
torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]]),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0], EXPECTED_OUTPUT[0]))
self.assertTrue(torch.allclose(tokens[1], EXPECTED_OUTPUT[1]))
self.assertTrue(torch.allclose(tokens[2], EXPECTED_OUTPUT[2]))
| transformers-main | tests/models/jukebox/test_tokenization_jukebox.py |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch UniSpeech model. """
import math
import unittest
import numpy as np
import pytest
from datasets import load_dataset
from transformers import UniSpeechConfig, is_torch_available
from transformers.testing_utils import require_soundfile, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
ModelTesterMixin,
_config_zero_init,
floats_tensor,
ids_tensor,
random_attention_mask,
)
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
UniSpeechForCTC,
UniSpeechForPreTraining,
UniSpeechForSequenceClassification,
UniSpeechModel,
Wav2Vec2FeatureExtractor,
Wav2Vec2Processor,
)
class UniSpeechModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=1024, # speech is longer
is_training=False,
hidden_size=16,
feat_extract_norm="group",
feat_extract_dropout=0.0,
feat_extract_activation="gelu",
conv_dim=(32, 32, 32),
conv_stride=(4, 4, 4),
conv_kernel=(8, 8, 8),
conv_bias=False,
num_conv_pos_embeddings=16,
num_conv_pos_embedding_groups=2,
num_hidden_layers=2,
num_attention_heads=2,
hidden_dropout_prob=0.1, # this is most likely not correctly set yet
intermediate_size=20,
layer_norm_eps=1e-5,
hidden_act="gelu",
initializer_range=0.02,
vocab_size=32,
do_stable_layer_norm=False,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.hidden_size = hidden_size
self.feat_extract_norm = feat_extract_norm
self.feat_extract_dropout = feat_extract_dropout
self.feat_extract_activation = feat_extract_activation
self.conv_dim = conv_dim
self.conv_stride = conv_stride
self.conv_kernel = conv_kernel
self.conv_bias = conv_bias
self.num_conv_pos_embeddings = num_conv_pos_embeddings
self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_dropout_prob = hidden_dropout_prob
self.intermediate_size = intermediate_size
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.vocab_size = vocab_size
self.do_stable_layer_norm = do_stable_layer_norm
self.scope = scope
output_seq_length = self.seq_length
for kernel, stride in zip(self.conv_kernel, self.conv_stride):
output_seq_length = (output_seq_length - (kernel - 1)) / stride
self.output_seq_length = int(math.ceil(output_seq_length))
self.encoder_seq_length = self.output_seq_length
def prepare_config_and_inputs(self):
input_values = floats_tensor([self.batch_size, self.seq_length], scale=1.0)
attention_mask = random_attention_mask([self.batch_size, self.seq_length])
config = self.get_config()
return config, input_values, attention_mask
def get_config(self):
return UniSpeechConfig(
hidden_size=self.hidden_size,
feat_extract_norm=self.feat_extract_norm,
feat_extract_dropout=self.feat_extract_dropout,
feat_extract_activation=self.feat_extract_activation,
conv_dim=self.conv_dim,
conv_stride=self.conv_stride,
conv_kernel=self.conv_kernel,
conv_bias=self.conv_bias,
num_conv_pos_embeddings=self.num_conv_pos_embeddings,
num_conv_pos_embedding_groups=self.num_conv_pos_embedding_groups,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
hidden_dropout_prob=self.hidden_dropout_prob,
intermediate_size=self.intermediate_size,
layer_norm_eps=self.layer_norm_eps,
hidden_act=self.hidden_act,
initializer_range=self.initializer_range,
vocab_size=self.vocab_size,
)
def create_and_check_model(self, config, input_values, attention_mask):
model = UniSpeechModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_values, attention_mask=attention_mask)
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size)
)
def create_and_check_batch_inference(self, config, input_values, *args):
# test does not pass for models making use of `group_norm`
# check: https://github.com/pytorch/fairseq/issues/3227
model = UniSpeechModel(config=config)
model.to(torch_device)
model.eval()
input_values = input_values[:3]
attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.bool)
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
# pad input
for i in range(len(input_lengths)):
input_values[i, input_lengths[i] :] = 0.0
attention_mask[i, input_lengths[i] :] = 0.0
batch_outputs = model(input_values, attention_mask=attention_mask).last_hidden_state
for i in range(input_values.shape[0]):
input_slice = input_values[i : i + 1, : input_lengths[i]]
output = model(input_slice).last_hidden_state
batch_output = batch_outputs[i : i + 1, : output.shape[1]]
self.parent.assertTrue(torch.allclose(output, batch_output, atol=1e-3))
def check_ctc_loss(self, config, input_values, *args):
model = UniSpeechForCTC(config=config)
model.to(torch_device)
# make sure that dropout is disabled
model.eval()
input_values = input_values[:3]
attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long)
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
labels = ids_tensor((input_values.shape[0], min(max_length_labels) - 1), model.config.vocab_size)
# pad input
for i in range(len(input_lengths)):
input_values[i, input_lengths[i] :] = 0.0
attention_mask[i, input_lengths[i] :] = 0
model.config.ctc_loss_reduction = "sum"
sum_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item()
model.config.ctc_loss_reduction = "mean"
mean_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item()
self.parent.assertTrue(isinstance(sum_loss, float))
self.parent.assertTrue(isinstance(mean_loss, float))
def check_seq_classifier_loss(self, config, input_values, *args):
model = UniSpeechForSequenceClassification(config=config)
model.to(torch_device)
# make sure that dropout is disabled
model.eval()
input_values = input_values[:3]
attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long)
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label))
# pad input
for i in range(len(input_lengths)):
input_values[i, input_lengths[i] :] = 0.0
attention_mask[i, input_lengths[i] :] = 0
masked_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item()
unmasked_loss = model(input_values, labels=labels).loss.item()
self.parent.assertTrue(isinstance(masked_loss, float))
self.parent.assertTrue(isinstance(unmasked_loss, float))
self.parent.assertTrue(masked_loss != unmasked_loss)
def check_ctc_training(self, config, input_values, *args):
config.ctc_zero_infinity = True
model = UniSpeechForCTC(config=config)
model.to(torch_device)
model.train()
# freeze feature encoder
model.freeze_feature_encoder()
input_values = input_values[:3]
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size)
# pad input
for i in range(len(input_lengths)):
input_values[i, input_lengths[i] :] = 0.0
if max_length_labels[i] < labels.shape[-1]:
# it's important that we make sure that target lenghts are at least
# one shorter than logit lenghts to prevent -inf
labels[i, max_length_labels[i] - 1 :] = -100
loss = model(input_values, labels=labels).loss
self.parent.assertFalse(torch.isinf(loss).item())
loss.backward()
def check_seq_classifier_training(self, config, input_values, *args):
config.ctc_zero_infinity = True
model = UniSpeechForSequenceClassification(config=config)
model.to(torch_device)
model.train()
# freeze everything but the classification head
model.freeze_base_model()
input_values = input_values[:3]
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label))
# pad input
for i in range(len(input_lengths)):
input_values[i, input_lengths[i] :] = 0.0
loss = model(input_values, labels=labels).loss
self.parent.assertFalse(torch.isinf(loss).item())
loss.backward()
def check_labels_out_of_vocab(self, config, input_values, *args):
model = UniSpeechForCTC(config)
model.to(torch_device)
model.train()
input_values = input_values[:3]
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size + 100)
with pytest.raises(ValueError):
model(input_values, labels=labels)
def prepare_config_and_inputs_for_common(self):
config, input_values, attention_mask = self.prepare_config_and_inputs()
inputs_dict = {"input_values": input_values, "attention_mask": attention_mask}
return config, inputs_dict
@require_torch
class UniSpeechRobustModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(UniSpeechForCTC, UniSpeechModel, UniSpeechForSequenceClassification, UniSpeechForPreTraining)
if is_torch_available()
else ()
)
pipeline_model_mapping = (
{
"audio-classification": UniSpeechForSequenceClassification,
"automatic-speech-recognition": UniSpeechForCTC,
"feature-extraction": UniSpeechModel,
}
if is_torch_available()
else {}
)
test_pruning = False
test_headmasking = False
def setUp(self):
self.model_tester = UniSpeechModelTester(
self, conv_stride=(3, 3, 3), feat_extract_norm="layer", do_stable_layer_norm=True
)
self.config_tester = ConfigTester(self, config_class=UniSpeechConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_batched_inference(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_batch_inference(*config_and_inputs)
def test_ctc_loss_inference(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_ctc_loss(*config_and_inputs)
def test_seq_classifier_loss_inference(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_seq_classifier_loss(*config_and_inputs)
def test_ctc_train(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_ctc_training(*config_and_inputs)
def test_seq_classifier_train(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_seq_classifier_training(*config_and_inputs)
def test_labels_out_of_vocab(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_labels_out_of_vocab(*config_and_inputs)
# UniSpeech has no inputs_embeds
def test_inputs_embeds(self):
pass
# `input_ids` is renamed to `input_values`
def test_forward_signature(self):
pass
# UniSpeech cannot resize token embeddings
# since it has no tokens embeddings
def test_resize_tokens_embeddings(self):
pass
# UniSpeech has no inputs_embeds
# and thus the `get_input_embeddings` fn
# is not implemented
def test_model_common_attributes(self):
pass
def test_retain_grad_hidden_states_attentions(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.output_hidden_states = True
config.output_attentions = True
# no need to test all models as different heads yield the same functionality
model_class = self.all_model_classes[0]
model = model_class(config)
model.to(torch_device)
# set layer drop to 0
model.config.layerdrop = 0.0
input_values = inputs_dict["input_values"]
input_lengths = torch.tensor(
[input_values.shape[1] for _ in range(input_values.shape[0])], dtype=torch.long, device=torch_device
)
output_lengths = model._get_feat_extract_output_lengths(input_lengths)
labels = ids_tensor((input_values.shape[0], output_lengths[0] - 2), self.model_tester.vocab_size)
inputs_dict["attention_mask"] = torch.ones_like(inputs_dict["attention_mask"])
inputs_dict["labels"] = labels
outputs = model(**inputs_dict)
output = outputs[0]
# Encoder-/Decoder-only models
hidden_states = outputs.hidden_states[0]
attentions = outputs.attentions[0]
hidden_states.retain_grad()
attentions.retain_grad()
output.flatten()[0].backward(retain_graph=True)
self.assertIsNotNone(hidden_states.grad)
self.assertIsNotNone(attentions.grad)
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
uniform_init_parms = [
"conv.weight",
"masked_spec_embed",
"codevectors",
"quantizer.weight_proj.weight",
"project_hid.weight",
"project_hid.bias",
"project_q.weight",
"project_q.bias",
"feature_projection.projection.weight",
"feature_projection.projection.bias",
]
if param.requires_grad:
if any(x in name for x in uniform_init_parms):
self.assertTrue(
-1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
else:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
# overwrite from test_modeling_common
def _mock_init_weights(self, module):
if hasattr(module, "weight") and module.weight is not None:
module.weight.data.fill_(3)
if hasattr(module, "weight_g") and module.weight_g is not None:
module.weight_g.data.fill_(3)
if hasattr(module, "weight_v") and module.weight_v is not None:
module.weight_v.data.fill_(3)
if hasattr(module, "bias") and module.bias is not None:
module.bias.data.fill_(3)
if hasattr(module, "codevectors") and module.codevectors is not None:
module.codevectors.data.fill_(3)
if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None:
module.masked_spec_embed.data.fill_(3)
def test_mask_feature_prob_ctc(self):
model = UniSpeechForCTC.from_pretrained(
"hf-internal-testing/tiny-random-unispeech", mask_feature_prob=0.2, mask_feature_length=2
)
model.to(torch_device).train()
processor = Wav2Vec2Processor.from_pretrained(
"hf-internal-testing/tiny-random-unispeech", return_attention_mask=True
)
batch_duration_in_seconds = [1, 3, 2, 6]
input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds]
batch = processor(
input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt"
)
logits = model(
input_values=batch["input_values"].to(torch_device),
attention_mask=batch["attention_mask"].to(torch_device),
).logits
self.assertEqual(logits.shape, (4, 1498, 32))
def test_mask_time_prob_ctc(self):
model = UniSpeechForCTC.from_pretrained(
"hf-internal-testing/tiny-random-unispeech", mask_time_prob=0.2, mask_time_length=2
)
model.to(torch_device).train()
processor = Wav2Vec2Processor.from_pretrained(
"hf-internal-testing/tiny-random-unispeech", return_attention_mask=True
)
batch_duration_in_seconds = [1, 3, 2, 6]
input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds]
batch = processor(
input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt"
)
logits = model(
input_values=batch["input_values"].to(torch_device),
attention_mask=batch["attention_mask"].to(torch_device),
).logits
self.assertEqual(logits.shape, (4, 1498, 32))
def test_mask_time_feature_prob_ctc_single_batch(self):
model = UniSpeechForCTC.from_pretrained(
"hf-internal-testing/tiny-random-unispeech",
mask_time_prob=0.2,
mask_feature_prob=0.2,
mask_time_length=2,
mask_feature_length=2,
)
model.to(torch_device).train()
processor = Wav2Vec2Processor.from_pretrained(
"hf-internal-testing/tiny-random-unispeech", return_attention_mask=True
)
batch_duration_in_seconds = [6]
input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds]
batch = processor(
input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt"
)
logits = model(
input_values=batch["input_values"].to(torch_device),
attention_mask=batch["attention_mask"].to(torch_device),
).logits
self.assertEqual(logits.shape, (1, 1498, 32))
@unittest.skip(reason="Feed forward chunking is not implemented")
def test_feed_forward_chunking(self):
pass
@slow
def test_model_from_pretrained(self):
model = UniSpeechModel.from_pretrained("microsoft/unispeech-large-1500h-cv")
self.assertIsNotNone(model)
@require_torch
@require_soundfile
@slow
class UniSpeechModelIntegrationTest(unittest.TestCase):
def _load_datasamples(self, num_samples):
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
# automatic decoding with librispeech
speech_samples = ds.sort("id").filter(
lambda x: x["id"] in [f"1272-141231-000{i}" for i in range(num_samples)]
)[:num_samples]["audio"]
return [x["array"] for x in speech_samples]
def _load_superb(self, task, num_samples):
ds = load_dataset("anton-l/superb_dummy", task, split="test")
return ds[:num_samples]
def test_inference_pretraining(self):
model = UniSpeechForPreTraining.from_pretrained("microsoft/unispeech-large-1500h-cv")
model.to(torch_device)
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("facebook/wav2vec2-large-xlsr-53")
input_speech = self._load_datasamples(2)
inputs_dict = feature_extractor(input_speech, return_tensors="pt", padding=True)
with torch.no_grad():
torch.manual_seed(0)
outputs = model(
inputs_dict.input_values.to(torch_device),
attention_mask=inputs_dict.attention_mask.to(torch_device),
)
# compute cosine similarity
cosine_sim = torch.cosine_similarity(outputs.projected_states, outputs.projected_quantized_states, dim=-1)
# pretrained model should have learned a high cosine similarity
self.assertTrue(cosine_sim.mean() > 0.5)
# fmt: off
expected_cosine_sim_slice = torch.tensor(
[[0.8290, 0.8335, 0.8815, 0.8580, 0.8249],
[0.8892, 0.9221, 0.8711, 0.8601, 0.8482]],
device=torch_device,
)
# fmt: on
self.assertTrue(torch.allclose(cosine_sim[:, :5], expected_cosine_sim_slice, atol=1e-3))
| transformers-main | tests/models/unispeech/test_modeling_unispeech.py |
transformers-main | tests/models/unispeech/__init__.py |
|
transformers-main | tests/models/xlm_roberta_xl/__init__.py |
|
# coding=utf-8
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import XLMRobertaXLConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
XLMRobertaXLForCausalLM,
XLMRobertaXLForMaskedLM,
XLMRobertaXLForMultipleChoice,
XLMRobertaXLForQuestionAnswering,
XLMRobertaXLForSequenceClassification,
XLMRobertaXLForTokenClassification,
XLMRobertaXLModel,
)
from transformers.models.xlm_roberta_xl.modeling_xlm_roberta_xl import (
XLMRobertaXLEmbeddings,
create_position_ids_from_input_ids,
)
class XLMRobertaXLModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def get_config(self):
return XLMRobertaXLConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
)
def prepare_config_and_inputs_for_decoder(self):
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = self.prepare_config_and_inputs()
config.is_decoder = True
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def create_and_check_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = XLMRobertaXLModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
result = model(input_ids, token_type_ids=token_type_ids)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def create_and_check_model_as_decoder(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.add_cross_attention = True
model = XLMRobertaXLModel(config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
)
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
encoder_hidden_states=encoder_hidden_states,
)
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def create_and_check_for_causal_lm(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
model = XLMRobertaXLForCausalLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_decoder_model_past_large_inputs(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.is_decoder = True
config.add_cross_attention = True
model = XLMRobertaXLForCausalLM(config=config).to(torch_device).eval()
# make sure that ids don't start with pad token
mask = input_ids.ne(config.pad_token_id).long()
input_ids = input_ids * mask
# first forward pass
outputs = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=True,
)
past_key_values = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
# make sure that ids don't start with pad token
mask = next_tokens.ne(config.pad_token_id).long()
next_tokens = next_tokens * mask
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
output_from_no_past = model(
next_input_ids,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_hidden_states=True,
)["hidden_states"][0]
output_from_past = model(
next_tokens,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
output_hidden_states=True,
)["hidden_states"][0]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def create_and_check_for_masked_lm(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = XLMRobertaXLForMaskedLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_for_token_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = XLMRobertaXLForTokenClassification(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def create_and_check_for_multiple_choice(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_choices = self.num_choices
model = XLMRobertaXLForMultipleChoice(config=config)
model.to(torch_device)
model.eval()
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
result = model(
multiple_choice_inputs_ids,
attention_mask=multiple_choice_input_mask,
token_type_ids=multiple_choice_token_type_ids,
labels=choice_labels,
)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
def create_and_check_for_question_answering(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = XLMRobertaXLForQuestionAnswering(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
start_positions=sequence_labels,
end_positions=sequence_labels,
)
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class XLMRobertaXLModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(
XLMRobertaXLForCausalLM,
XLMRobertaXLForMaskedLM,
XLMRobertaXLModel,
XLMRobertaXLForSequenceClassification,
XLMRobertaXLForTokenClassification,
XLMRobertaXLForMultipleChoice,
XLMRobertaXLForQuestionAnswering,
)
if is_torch_available()
else ()
)
all_generative_model_classes = (XLMRobertaXLForCausalLM,) if is_torch_available() else ()
pipeline_model_mapping = (
{
"feature-extraction": XLMRobertaXLModel,
"fill-mask": XLMRobertaXLForMaskedLM,
"question-answering": XLMRobertaXLForQuestionAnswering,
"text-classification": XLMRobertaXLForSequenceClassification,
"text-generation": XLMRobertaXLForCausalLM,
"token-classification": XLMRobertaXLForTokenClassification,
"zero-shot": XLMRobertaXLForSequenceClassification,
}
if is_torch_available()
else {}
)
# TODO: Fix the failed tests
def is_pipeline_test_to_skip(
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
):
if pipeline_test_casse_name == "QAPipelineTests" and not tokenizer_name.endswith("Fast"):
return True
return False
def setUp(self):
self.model_tester = XLMRobertaXLModelTester(self)
self.config_tester = ConfigTester(self, config_class=XLMRobertaXLConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_various_embeddings(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
config_and_inputs[0].position_embedding_type = type
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_as_decoder(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*config_and_inputs)
def test_model_as_decoder_with_default_input_mask(self):
# This regression test was failing with PyTorch < 1.3
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
) = self.model_tester.prepare_config_and_inputs_for_decoder()
input_mask = None
self.model_tester.create_and_check_model_as_decoder(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def test_for_causal_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_for_causal_lm(*config_and_inputs)
def test_decoder_model_past_with_large_inputs(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
def test_decoder_model_past_with_large_inputs_relative_pos_emb(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
config_and_inputs[0].position_embedding_type = "relative_key"
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
def test_for_token_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
def test_for_multiple_choice(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
def test_for_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
def test_create_position_ids_respects_padding_index(self):
"""Ensure that the default position ids only assign a sequential . This is a regression
test for https://github.com/huggingface/transformers/issues/1761
The position ids should be masked with the embedding object's padding index. Therefore, the
first available non-padding position index is XLMRobertaXLEmbeddings.padding_idx + 1
"""
config = self.model_tester.prepare_config_and_inputs()[0]
model = XLMRobertaXLEmbeddings(config=config)
input_ids = torch.as_tensor([[12, 31, 13, model.padding_idx]])
expected_positions = torch.as_tensor(
[[0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx]]
)
position_ids = create_position_ids_from_input_ids(input_ids, model.padding_idx)
self.assertEqual(position_ids.shape, expected_positions.shape)
self.assertTrue(torch.all(torch.eq(position_ids, expected_positions)))
def test_create_position_ids_from_inputs_embeds(self):
"""Ensure that the default position ids only assign a sequential . This is a regression
test for https://github.com/huggingface/transformers/issues/1761
The position ids should be masked with the embedding object's padding index. Therefore, the
first available non-padding position index is XLMRobertaXLEmbeddings.padding_idx + 1
"""
config = self.model_tester.prepare_config_and_inputs()[0]
embeddings = XLMRobertaXLEmbeddings(config=config)
inputs_embeds = torch.empty(2, 4, 30)
expected_single_positions = [
0 + embeddings.padding_idx + 1,
1 + embeddings.padding_idx + 1,
2 + embeddings.padding_idx + 1,
3 + embeddings.padding_idx + 1,
]
expected_positions = torch.as_tensor([expected_single_positions, expected_single_positions])
position_ids = embeddings.create_position_ids_from_inputs_embeds(inputs_embeds)
self.assertEqual(position_ids.shape, expected_positions.shape)
self.assertTrue(torch.all(torch.eq(position_ids, expected_positions)))
@require_torch
class XLMRobertaModelXLIntegrationTest(unittest.TestCase):
@slow
def test_xlm_roberta_xl(self):
model = XLMRobertaXLModel.from_pretrained("facebook/xlm-roberta-xl").to(torch_device)
input_ids = torch.tensor(
[[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]], device=torch_device
)
# The dog is cute and lives in the garden house
expected_output_shape = torch.Size((1, 12, 2560)) # batch_size, sequence_length, embedding_vector_dim
expected_output_values_last_dim = torch.tensor(
[[0.0110, 0.0605, 0.0354, 0.0689, 0.0066, 0.0691, 0.0302, 0.0412, 0.0860, 0.0036, 0.0405, 0.0170]],
device=torch_device,
)
output = model(input_ids)["last_hidden_state"].detach()
self.assertEqual(output.shape, expected_output_shape)
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1], expected_output_values_last_dim, atol=1e-3))
@unittest.skip(reason="Model is too large to be tested on the CI")
def test_xlm_roberta_xxl(self):
model = XLMRobertaXLModel.from_pretrained("facebook/xlm-roberta-xxl").to(torch_device)
input_ids = torch.tensor(
[[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]], device=torch_device
)
# The dog is cute and lives in the garden house
expected_output_shape = torch.Size((1, 12, 4096)) # batch_size, sequence_length, embedding_vector_dim
expected_output_values_last_dim = torch.tensor(
[[0.0046, 0.0146, 0.0227, 0.0126, 0.0219, 0.0175, -0.0101, 0.0006, 0.0124, 0.0209, -0.0063, 0.0096]],
device=torch_device,
)
output = model(input_ids)["last_hidden_state"].detach()
self.assertEqual(output.shape, expected_output_shape)
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1], expected_output_values_last_dim, atol=1e-3))
| transformers-main | tests/models/xlm_roberta_xl/test_modeling_xlm_roberta_xl.py |
transformers-main | tests/models/byt5/__init__.py |
|
# coding=utf-8
# Copyright 2020 Google T5 Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, ByT5Tokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
FRAMEWORK = "pt"
elif is_tf_available():
FRAMEWORK = "tf"
else:
FRAMEWORK = "jax"
class ByT5TokenizationTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = ByT5Tokenizer
test_rust_tokenizer = False
def setUp(self):
super().setUp()
tokenizer = ByT5Tokenizer()
tokenizer.save_pretrained(self.tmpdirname)
@cached_property
def t5_base_tokenizer(self):
return ByT5Tokenizer.from_pretrained("google/byt5-small")
def get_tokenizer(self, **kwargs) -> ByT5Tokenizer:
return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)
def get_clean_sequence(self, tokenizer, with_prefix_space=False, max_length=20, min_length=5) -> Tuple[str, list]:
# XXX The default common tokenizer tests assume that every ID is decodable on its own.
# This assumption is invalid for ByT5 because single bytes might not be
# valid utf-8 (byte 128 for instance).
# Here we're overriding the smallest possible method to provide
# a clean sequence without making the same assumption.
toks = []
for i in range(len(tokenizer)):
try:
tok = tokenizer.decode([i], clean_up_tokenization_spaces=False)
except UnicodeDecodeError:
pass
toks.append((i, tok))
toks = list(filter(lambda t: re.match(r"^[ a-zA-Z]+$", t[1]), toks))
toks = list(filter(lambda t: [t[0]] == tokenizer.encode(t[1], add_special_tokens=False), toks))
if max_length is not None and len(toks) > max_length:
toks = toks[:max_length]
if min_length is not None and len(toks) < min_length and len(toks) > 0:
while len(toks) < min_length:
toks = toks + toks
# toks_str = [t[1] for t in toks]
toks_ids = [t[0] for t in toks]
# Ensure consistency
output_txt = tokenizer.decode(toks_ids, clean_up_tokenization_spaces=False)
if " " not in output_txt and len(toks_ids) > 1:
output_txt = (
tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=False)
+ " "
+ tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=False)
)
if with_prefix_space:
output_txt = " " + output_txt
output_ids = tokenizer.encode(output_txt, add_special_tokens=False)
return output_txt, output_ids
def test_eos_treatment(self):
tokenizer = self.t5_base_tokenizer
batch_with_eos_added = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"])
batch_without_eos_added = tokenizer(["hi", "I went to the gym", ""])
self.assertListEqual(batch_with_eos_added["input_ids"], batch_without_eos_added["input_ids"])
def test_multibytes_char(self):
tokenizer = self.t5_base_tokenizer
src_text = "Unicode €."
encoded = tokenizer(src_text)
encoded_ids = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1]
self.assertEqual(encoded["input_ids"], encoded_ids)
# decoding
decoded = tokenizer.decode(encoded_ids)
self.assertEqual(decoded, "Unicode €.</s>")
encoded = tokenizer("e è é ê ë")
encoded_ids = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1]
self.assertEqual(encoded["input_ids"], encoded_ids)
# decoding
decoded = tokenizer.decode(encoded_ids)
self.assertEqual(decoded, "e è é ê ë</s>")
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë")), "e è é ê ë</s>")
def test_prepare_batch_integration(self):
tokenizer = self.t5_base_tokenizer
src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."]
# fmt: off
expected_src_tokens = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0]
# fmt: on
batch = tokenizer(src_text, padding=True, return_tensors=FRAMEWORK)
self.assertIsInstance(batch, BatchEncoding)
if FRAMEWORK != "jax":
result = list(batch.input_ids.numpy()[0])
else:
result = list(batch.input_ids.tolist()[0])
self.assertListEqual(expected_src_tokens, result)
self.assertEqual((2, 37), batch.input_ids.shape)
self.assertEqual((2, 37), batch.attention_mask.shape)
def test_empty_target_text(self):
tokenizer = self.t5_base_tokenizer
src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."]
batch = tokenizer(src_text, padding=True, return_tensors=FRAMEWORK)
# check if input_ids are returned and no decoder_input_ids
self.assertIn("input_ids", batch)
self.assertIn("attention_mask", batch)
self.assertNotIn("decoder_input_ids", batch)
self.assertNotIn("decoder_attention_mask", batch)
def test_max_length_integration(self):
tokenizer = self.t5_base_tokenizer
tgt_text = [
"Summary of the text.",
"Another summary.",
]
targets = tokenizer(
text_target=tgt_text, max_length=32, padding="max_length", truncation=True, return_tensors=FRAMEWORK
)
self.assertEqual(32, targets["input_ids"].shape[1])
def test_eos_in_input(self):
tokenizer = self.t5_base_tokenizer
src_text = ["A long paragraph for summarization. </s>"]
tgt_text = ["Summary of the text. </s>"]
# fmt: off
expected_src_tokens = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1]
expected_tgt_tokens = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1]
# fmt: on
batch = tokenizer(src_text, text_target=tgt_text)
self.assertEqual(expected_src_tokens, batch["input_ids"][0])
self.assertEqual(expected_tgt_tokens, batch["labels"][0])
# cannot use default save_and_load_tokenzier test method because tokenzier has no vocab
def test_save_and_load_tokenizer(self):
# safety check on max_len default value so we are sure the test works
tokenizers = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
self.assertNotEqual(tokenizer.model_max_length, 42)
# Now let's start the test
tokenizers = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
# Isolate this from the other tests because we save additional tokens/etc
tmpdirname = tempfile.mkdtemp()
sample_text = " He is very happy, UNwant\u00E9d,running"
before_tokens = tokenizer.encode(sample_text, add_special_tokens=False)
tokenizer.save_pretrained(tmpdirname)
after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname)
after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False)
self.assertListEqual(before_tokens, after_tokens)
shutil.rmtree(tmpdirname)
tokenizers = self.get_tokenizers(model_max_length=42)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
# Isolate this from the other tests because we save additional tokens/etc
tmpdirname = tempfile.mkdtemp()
sample_text = " He is very happy, UNwant\u00E9d,running"
tokenizer.add_tokens(["bim", "bambam"])
additional_special_tokens = tokenizer.additional_special_tokens
additional_special_tokens.append("new_additional_special_token")
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
before_tokens = tokenizer.encode(sample_text, add_special_tokens=False)
tokenizer.save_pretrained(tmpdirname)
after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname)
after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False)
self.assertListEqual(before_tokens, after_tokens)
self.assertIn("new_additional_special_token", after_tokenizer.additional_special_tokens)
self.assertEqual(after_tokenizer.model_max_length, 42)
tokenizer = tokenizer.__class__.from_pretrained(tmpdirname, model_max_length=43)
self.assertEqual(tokenizer.model_max_length, 43)
shutil.rmtree(tmpdirname)
# There is a conflict between the default value of extra_ids and adding a new special token through additional_special_tokens
# We need to add the extra_ids in the list of the arg additional_special_tokens
def test_special_tokens_initialization_with_non_empty_additional_special_tokens(self):
tokenizer_list = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()))
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()))
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(tmp_dir)
with open(os.path.join(tmp_dir, "special_tokens_map.json"), encoding="utf-8") as json_file:
special_tokens_map = json.load(json_file)
with open(os.path.join(tmp_dir, "tokenizer_config.json"), encoding="utf-8") as json_file:
tokenizer_config = json.load(json_file)
added_tokens_extra_ids = [f"<extra_id_{i}>" for i in range(125)]
special_tokens_map["additional_special_tokens"] = added_tokens_extra_ids + [
"an_additional_special_token"
]
tokenizer_config["additional_special_tokens"] = added_tokens_extra_ids + [
"an_additional_special_token"
]
with open(os.path.join(tmp_dir, "special_tokens_map.json"), "w", encoding="utf-8") as outfile:
json.dump(special_tokens_map, outfile)
with open(os.path.join(tmp_dir, "tokenizer_config.json"), "w", encoding="utf-8") as outfile:
json.dump(tokenizer_config, outfile)
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
tokenizer_without_change_in_init = tokenizer_class.from_pretrained(
tmp_dir,
)
self.assertIn(
"an_additional_special_token", tokenizer_without_change_in_init.additional_special_tokens
)
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
["an_additional_special_token"],
tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"])
),
)
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
new_added_tokens = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token", lstrip=True)]
tokenizer = tokenizer_class.from_pretrained(
tmp_dir,
additional_special_tokens=new_added_tokens,
)
self.assertIn("a_new_additional_special_token", tokenizer.additional_special_tokens)
self.assertEqual(
["a_new_additional_special_token"],
tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"])
),
)
def test_decode_single_bytes(self):
tokenizer_list = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()))
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()))
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(tmp_dir)
tokenizer = tokenizer_class.from_pretrained(tmp_dir)
self.assertTrue(tokenizer.decode([255]) == "")
# tokenizer can be instantiated without any pretrained files, so no need for pretrained tokenizer list
def test_pretrained_model_lists(self):
pass
# tokenizer does not have vocabulary
def test_get_vocab(self):
pass
# inputs cannot be pretokenized since ids depend on whole input string and not just on single characters
def test_pretokenized_inputs(self):
pass
# tests all ids in vocab => vocab doesn't exist so unnecessary to test
def test_conversion_reversible(self):
pass
def test_convert_tokens_to_string_format(self):
# The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings
# and special added tokens as tokens
tokenizers = self.get_tokenizers(fast=True, do_lower_case=True)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
tokens = ["t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "x", "t", "</s>"]
string = tokenizer.convert_tokens_to_string(tokens)
self.assertIsInstance(string, str)
# We need a different implementation of the test of the same name defined in TokenizerTesterMixin because this tokenizer
# doesn't have a vocab
def test_tokenizers_common_ids_setters(self):
tokenizers = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
attributes_list = [
"bos_token",
"eos_token",
"unk_token",
"sep_token",
"pad_token",
"cls_token",
"mask_token",
]
token_id_to_test_setters = 0
token_to_test_setters = tokenizer.convert_ids_to_tokens(
token_id_to_test_setters, skip_special_tokens=False
)
for attr in attributes_list:
setattr(tokenizer, attr + "_id", None)
self.assertEqual(getattr(tokenizer, attr), None)
self.assertEqual(getattr(tokenizer, attr + "_id"), None)
setattr(tokenizer, attr + "_id", token_id_to_test_setters)
self.assertEqual(getattr(tokenizer, attr), token_to_test_setters)
self.assertEqual(getattr(tokenizer, attr + "_id"), token_id_to_test_setters)
setattr(tokenizer, "additional_special_tokens_ids", [])
self.assertListEqual(getattr(tokenizer, "additional_special_tokens"), [])
self.assertListEqual(getattr(tokenizer, "additional_special_tokens_ids"), [])
setattr(tokenizer, "additional_special_tokens_ids", [token_id_to_test_setters])
self.assertListEqual(getattr(tokenizer, "additional_special_tokens"), [token_to_test_setters])
self.assertListEqual(getattr(tokenizer, "additional_special_tokens_ids"), [token_id_to_test_setters])
| transformers-main | tests/models/byt5/test_tokenization_byt5.py |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch AltCLIP model. """
import inspect
import os
import tempfile
import unittest
import numpy as np
import requests
from transformers import AltCLIPConfig, AltCLIPProcessor, AltCLIPTextConfig, AltCLIPVisionConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
ModelTesterMixin,
_config_zero_init,
floats_tensor,
ids_tensor,
random_attention_mask,
)
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
import torch.nn as nn
from transformers import AltCLIPModel, AltCLIPTextModel, AltCLIPVisionModel
from transformers.models.altclip.modeling_altclip import ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class AltCLIPVisionModelTester:
def __init__(
self,
parent,
batch_size=12,
image_size=30,
patch_size=2,
num_channels=3,
is_training=True,
hidden_size=32,
projection_dim=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
dropout=0.1,
attention_dropout=0.1,
initializer_range=0.02,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.is_training = is_training
self.hidden_size = hidden_size
self.projection_dim = projection_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.dropout = dropout
self.attention_dropout = attention_dropout
self.initializer_range = initializer_range
self.scope = scope
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
num_patches = (image_size // patch_size) ** 2
self.seq_length = num_patches + 1
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
config = self.get_config()
return config, pixel_values
def get_config(self):
return AltCLIPVisionConfig(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
hidden_size=self.hidden_size,
projection_dim=self.projection_dim,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
dropout=self.dropout,
attention_dropout=self.attention_dropout,
initializer_range=self.initializer_range,
)
def create_and_check_model(self, config, pixel_values):
model = AltCLIPVisionModel(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(pixel_values)
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
image_size = (self.image_size, self.image_size)
patch_size = (self.patch_size, self.patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class AltCLIPVisionModelTest(ModelTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as CLIP does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (AltCLIPVisionModel,) if is_torch_available() else ()
fx_compatible = False
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
def setUp(self):
self.model_tester = AltCLIPVisionModelTester(self)
self.config_tester = ConfigTester(
self, config_class=AltCLIPVisionConfig, has_text_modality=False, hidden_size=37
)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="CLIP does not use inputs_embeds")
def test_inputs_embeds(self):
pass
def test_model_common_attributes(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_training(self):
pass
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(reason="AltCLIPVisionModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="AltCLIPVisionModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_to_base(self):
pass
@unittest.skip(reason="AltCLIPVisionModel use the same cv backbone with CLIP model.")
def test_model_from_pretrained(self):
pass
class AltCLIPTextModelTester:
def __init__(
self,
parent,
batch_size=12,
seq_length=7,
is_training=True,
use_input_mask=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
projection_dim=32,
project_dim=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
dropout=0.1,
attention_dropout=0.1,
max_position_embeddings=512,
initializer_range=0.02,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.projection_dim = projection_dim
self.project_dim = project_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.dropout = dropout
self.attention_dropout = attention_dropout
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
if input_mask is not None:
batch_size, seq_length = input_mask.shape
rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,))
for batch_idx, start_index in enumerate(rnd_start_indices):
input_mask[batch_idx, :start_index] = 1
input_mask[batch_idx, start_index:] = 0
config = self.get_config()
return config, input_ids, input_mask
def get_config(self):
return AltCLIPTextConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
projection_dim=self.projection_dim,
project_dim=self.project_dim,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
dropout=self.dropout,
attention_dropout=self.attention_dropout,
max_position_embeddings=self.max_position_embeddings,
initializer_range=self.initializer_range,
pad_token_id=1,
)
def create_and_check_model(self, config, input_ids, input_mask):
model = AltCLIPTextModel(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(input_ids, attention_mask=input_mask)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.projection_dim))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, input_mask = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class AltCLIPTextModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (AltCLIPTextModel,) if is_torch_available() else ()
fx_compatible = True
test_pruning = False
test_head_masking = False
def setUp(self):
self.model_tester = AltCLIPTextModelTester(self)
self.config_tester = ConfigTester(self, config_class=AltCLIPTextConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_training(self):
pass
def test_training_gradient_checkpointing(self):
pass
def test_model_outputs_equivalence(self):
pass
@unittest.skip(reason="Result of the model is a dict")
def test_hidden_states_output(self):
pass
@unittest.skip(reason="AltCLIP does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="AltCLIPTextModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="AltCLIPTextModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_to_base(self):
pass
@slow
def test_model_from_pretrained(self):
for model_name in ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = AltCLIPTextModel.from_pretrained(model_name)
self.assertIsNotNone(model)
class AltCLIPModelTester:
def __init__(self, parent, text_kwargs=None, vision_kwargs=None, is_training=True):
if text_kwargs is None:
text_kwargs = {}
if vision_kwargs is None:
vision_kwargs = {}
self.parent = parent
self.text_model_tester = AltCLIPTextModelTester(parent, **text_kwargs)
self.vision_model_tester = AltCLIPVisionModelTester(parent, **vision_kwargs)
self.is_training = is_training
def prepare_config_and_inputs(self):
text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs()
vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs()
config = self.get_config()
return config, input_ids, attention_mask, pixel_values
def get_config(self):
return AltCLIPConfig.from_text_vision_configs(
self.text_model_tester.get_config(), self.vision_model_tester.get_config(), projection_dim=64
)
def create_and_check_model(self, config, input_ids, attention_mask, pixel_values):
model = AltCLIPModel(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
model(input_ids, pixel_values, attention_mask)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, attention_mask, pixel_values = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"pixel_values": pixel_values,
"return_loss": True,
}
return config, inputs_dict
# We will verify our results on an image of cute cats
def prepare_img():
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
im = Image.open(requests.get(url, stream=True).raw)
return im
@require_torch
class AltCLIPModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (AltCLIPModel,) if is_torch_available() else ()
pipeline_model_mapping = {"feature-extraction": AltCLIPModel} if is_torch_available() else {}
fx_compatible = True
test_head_masking = False
test_pruning = False
test_resize_embeddings = False
test_attention_outputs = False
# TODO: Fix the failed tests when this model gets more usage
def is_pipeline_test_to_skip(
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
):
if pipeline_test_casse_name == "FeatureExtractionPipelineTests":
return True
return False
def setUp(self):
self.model_tester = AltCLIPModelTester(self)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@unittest.skip(reason="Hidden_states is tested in individual model tests")
def test_hidden_states_output(self):
pass
@unittest.skip(reason="Inputs_embeds is tested in individual model tests")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Retain_grad is tested in individual model tests")
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip(reason="CLIPModel does not have input/output embeddings")
def test_model_common_attributes(self):
pass
# override as the `logit_scale` parameter initilization is different for AltCLIP
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad:
# check if `logit_scale` is initilized as per the original implementation
if name == "logit_scale":
self.assertAlmostEqual(
param.data.item(),
np.log(1 / 0.07),
delta=1e-3,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
else:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
def _create_and_check_torchscript(self, config, inputs_dict):
if not self.test_torchscript:
return
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
configs_no_init.torchscript = True
configs_no_init.return_dict = False
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
model.to(torch_device)
model.eval()
try:
input_ids = inputs_dict["input_ids"]
pixel_values = inputs_dict["pixel_values"] # CLIP needs pixel_values
traced_model = torch.jit.trace(model, (input_ids, pixel_values))
except RuntimeError:
self.fail("Couldn't trace module.")
with tempfile.TemporaryDirectory() as tmp_dir_name:
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
try:
torch.jit.save(traced_model, pt_file_name)
except Exception:
self.fail("Couldn't save module.")
try:
loaded_model = torch.jit.load(pt_file_name)
except Exception:
self.fail("Couldn't load module.")
model.to(torch_device)
model.eval()
loaded_model.to(torch_device)
loaded_model.eval()
model_state_dict = model.state_dict()
loaded_model_state_dict = loaded_model.state_dict()
non_persistent_buffers = {}
for key in loaded_model_state_dict.keys():
if key not in model_state_dict.keys():
non_persistent_buffers[key] = loaded_model_state_dict[key]
loaded_model_state_dict = {
key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
}
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
model_buffers = list(model.buffers())
for non_persistent_buffer in non_persistent_buffers.values():
found_buffer = False
for i, model_buffer in enumerate(model_buffers):
if torch.equal(non_persistent_buffer, model_buffer):
found_buffer = True
break
self.assertTrue(found_buffer)
model_buffers.pop(i)
models_equal = True
for layer_name, p1 in model_state_dict.items():
p2 = loaded_model_state_dict[layer_name]
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
@slow
def test_model_from_pretrained(self):
for model_name in ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = AltCLIPModel.from_pretrained(model_name)
self.assertIsNotNone(model)
@require_vision
@require_torch
class AltCLIPModelIntegrationTest(unittest.TestCase):
@slow
def test_inference(self):
model_name = "BAAI/AltCLIP"
model = AltCLIPModel.from_pretrained(model_name).to(torch_device)
processor = AltCLIPProcessor.from_pretrained(model_name)
image = prepare_img()
inputs = processor(text=["一张猫的照片", "一张狗的照片"], images=image, padding=True, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# verify the logits
self.assertEqual(
outputs.logits_per_image.shape,
torch.Size((inputs.pixel_values.shape[0], inputs.input_ids.shape[0])),
)
self.assertEqual(
outputs.logits_per_text.shape,
torch.Size((inputs.input_ids.shape[0], inputs.pixel_values.shape[0])),
)
probs = outputs.logits_per_image.softmax(dim=1)
expected_probs = torch.tensor([[9.9942e-01, 5.7805e-04]], device=torch_device)
self.assertTrue(torch.allclose(probs, expected_probs, atol=5e-3))
| transformers-main | tests/models/altclip/test_modeling_altclip.py |
transformers-main | tests/models/altclip/__init__.py |
|
transformers-main | tests/models/imagegpt/__init__.py |
|
# coding=utf-8
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import inspect
import os
import tempfile
import unittest
from transformers import ImageGPTConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
ModelTesterMixin,
_config_zero_init,
floats_tensor,
ids_tensor,
random_attention_mask,
)
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
IMAGEGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
ImageGPTForCausalImageModeling,
ImageGPTForImageClassification,
ImageGPTModel,
)
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class ImageGPTModelTester:
def __init__(
self,
parent,
batch_size=14,
seq_length=7,
is_training=True,
use_token_type_ids=True,
use_input_mask=True,
use_labels=True,
use_mc_token_ids=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_token_type_ids = use_token_type_ids
self.use_input_mask = use_input_mask
self.use_labels = use_labels
self.use_mc_token_ids = use_mc_token_ids
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = None
def get_large_model_config(self):
return ImageGPTConfig.from_pretrained("imagegpt")
def prepare_config_and_inputs(
self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False
):
pixel_values = ids_tensor([self.batch_size, self.seq_length], self.vocab_size - 1)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
mc_token_ids = None
if self.use_mc_token_ids:
mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config(
gradient_checkpointing=gradient_checkpointing,
scale_attn_by_inverse_layer_idx=scale_attn_by_inverse_layer_idx,
reorder_and_upcast_attn=reorder_and_upcast_attn,
)
head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)
return (
config,
pixel_values,
input_mask,
head_mask,
token_type_ids,
mc_token_ids,
sequence_labels,
token_labels,
choice_labels,
)
def get_config(
self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False
):
return ImageGPTConfig(
vocab_size=self.vocab_size,
n_embd=self.hidden_size,
n_layer=self.num_hidden_layers,
n_head=self.num_attention_heads,
n_inner=self.intermediate_size,
activation_function=self.hidden_act,
resid_pdrop=self.hidden_dropout_prob,
attn_pdrop=self.attention_probs_dropout_prob,
n_positions=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
use_cache=True,
gradient_checkpointing=gradient_checkpointing,
scale_attn_by_inverse_layer_idx=scale_attn_by_inverse_layer_idx,
reorder_and_upcast_attn=reorder_and_upcast_attn,
)
def get_pipeline_config(self):
config = self.get_config()
config.vocab_size = 513
config.max_position_embeddings = 1024
return config
def prepare_config_and_inputs_for_decoder(self):
(
config,
pixel_values,
input_mask,
head_mask,
token_type_ids,
mc_token_ids,
sequence_labels,
token_labels,
choice_labels,
) = self.prepare_config_and_inputs()
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
return (
config,
pixel_values,
input_mask,
head_mask,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def create_and_check_imagegpt_model(self, config, pixel_values, input_mask, head_mask, token_type_ids, *args):
model = ImageGPTModel(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values, token_type_ids=token_type_ids, head_mask=head_mask)
result = model(pixel_values, token_type_ids=token_type_ids)
result = model(pixel_values)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(len(result.past_key_values), config.n_layer)
def create_and_check_lm_head_model(self, config, pixel_values, input_mask, head_mask, token_type_ids, *args):
model = ImageGPTForCausalImageModeling(config)
model.to(torch_device)
model.eval()
labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size - 1)
result = model(pixel_values, token_type_ids=token_type_ids, labels=labels)
self.parent.assertEqual(result.loss.shape, ())
# ImageGPTForCausalImageModeling doens't have tied input- and output embeddings
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size - 1))
def create_and_check_imagegpt_for_image_classification(
self, config, pixel_values, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, *args
):
config.num_labels = self.num_labels
model = ImageGPTForImageClassification(config)
model.to(torch_device)
model.eval()
result = model(pixel_values, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
pixel_values,
input_mask,
head_mask,
token_type_ids,
mc_token_ids,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {
"pixel_values": pixel_values,
"token_type_ids": token_type_ids,
"head_mask": head_mask,
}
return config, inputs_dict
@require_torch
class ImageGPTModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(ImageGPTForCausalImageModeling, ImageGPTForImageClassification, ImageGPTModel) if is_torch_available() else ()
)
all_generative_model_classes = (ImageGPTForCausalImageModeling,) if is_torch_available() else ()
pipeline_model_mapping = (
{"feature-extraction": ImageGPTModel, "image-classification": ImageGPTForImageClassification}
if is_torch_available()
else {}
)
test_missing_keys = False
input_name = "pixel_values"
# as ImageGPTForImageClassification isn't included in any auto mapping, we add labels here
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
if return_labels:
if model_class.__name__ == "ImageGPTForImageClassification":
inputs_dict["labels"] = torch.zeros(
self.model_tester.batch_size, dtype=torch.long, device=torch_device
)
return inputs_dict
# we overwrite the _check_scores method of GenerationTesterMixin, as ImageGPTForCausalImageModeling doesn't have tied input- and output embeddings
def _check_scores(self, batch_size, scores, length, config):
expected_shape = (batch_size, config.vocab_size - 1)
self.assertIsInstance(scores, tuple)
self.assertEqual(len(scores), length)
self.assertListEqual([iter_scores.shape for iter_scores in scores], [expected_shape] * len(scores))
def setUp(self):
self.model_tester = ImageGPTModelTester(self)
self.config_tester = ConfigTester(self, config_class=ImageGPTConfig, n_embd=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_imagegpt_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_imagegpt_model(*config_and_inputs)
def test_imagegpt_causal_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*config_and_inputs)
def test_imagegpt_image_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_imagegpt_for_image_classification(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in IMAGEGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = ImageGPTModel.from_pretrained(model_name)
self.assertIsNotNone(model)
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["input_ids"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_resize_tokens_embeddings(self):
(
original_config,
inputs_dict,
) = self.model_tester.prepare_config_and_inputs_for_common()
if not self.test_resize_embeddings:
return
for model_class in self.all_model_classes:
config = copy.deepcopy(original_config)
model = model_class(config)
model.to(torch_device)
if self.model_tester.is_training is False:
model.eval()
model_vocab_size = config.vocab_size
# Retrieve the embeddings and clone theme
model_embed = model.resize_token_embeddings(model_vocab_size)
cloned_embeddings = model_embed.weight.clone()
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
model_embed = model.resize_token_embeddings(model_vocab_size + 10)
self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
# Check that it actually resizes the embeddings matrix
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
model(**self._prepare_for_class(inputs_dict, model_class))
# Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
model_embed = model.resize_token_embeddings(model_vocab_size - 15)
self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
# Check that it actually resizes the embeddings matrix
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
# Input ids should be clamped to the maximum size of the vocabulary
inputs_dict["pixel_values"].clamp_(max=model_vocab_size - 15 - 1)
# Check that adding and removing tokens has not modified the first part of the embedding matrix.
models_equal = True
for p1, p2 in zip(cloned_embeddings, model_embed.weight):
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
def test_resize_embeddings_untied(self):
(
original_config,
inputs_dict,
) = self.model_tester.prepare_config_and_inputs_for_common()
if not self.test_resize_embeddings:
return
original_config.tie_word_embeddings = False
# if model cannot untied embeddings -> leave test
if original_config.tie_word_embeddings:
return
for model_class in self.all_model_classes:
config = copy.deepcopy(original_config)
model = model_class(config).to(torch_device)
# if no output embeddings -> leave test
if model.get_output_embeddings() is None:
continue
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
model_vocab_size = config.vocab_size
model.resize_token_embeddings(model_vocab_size + 10)
self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
output_embeds = model.get_output_embeddings()
self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
# Check bias if present
if output_embeds.bias is not None:
self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
model(**self._prepare_for_class(inputs_dict, model_class))
# Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
model.resize_token_embeddings(model_vocab_size - 15)
self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
# Check that it actually resizes the embeddings matrix
output_embeds = model.get_output_embeddings()
self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
# Check bias if present
if output_embeds.bias is not None:
self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
# Input ids should be clamped to the maximum size of the vocabulary
inputs_dict["pixel_values"].clamp_(max=model_vocab_size - 15 - 1)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
model(**self._prepare_for_class(inputs_dict, model_class))
def test_inputs_embeds(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
pixel_values = inputs["pixel_values"]
del inputs["pixel_values"]
wte = model.get_input_embeddings()
inputs["inputs_embeds"] = wte(pixel_values)
with torch.no_grad():
model(**inputs)[0]
def _create_and_check_torchscript(self, config, inputs_dict):
if not self.test_torchscript:
return
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
configs_no_init.torchscript = True
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
model.to(torch_device)
model.eval()
inputs = self._prepare_for_class(inputs_dict, model_class)
try:
pixel_values = inputs["pixel_values"]
traced_model = torch.jit.trace(model, pixel_values)
except RuntimeError:
self.fail("Couldn't trace module.")
with tempfile.TemporaryDirectory() as tmp_dir_name:
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
try:
torch.jit.save(traced_model, pt_file_name)
except Exception:
self.fail("Couldn't save module.")
try:
loaded_model = torch.jit.load(pt_file_name)
except Exception:
self.fail("Couldn't load module.")
model.to(torch_device)
model.eval()
loaded_model.to(torch_device)
loaded_model.eval()
model_state_dict = model.state_dict()
loaded_model_state_dict = loaded_model.state_dict()
non_persistent_buffers = {}
for key in loaded_model_state_dict.keys():
if key not in model_state_dict.keys():
non_persistent_buffers[key] = loaded_model_state_dict[key]
loaded_model_state_dict = {
key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
}
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
model_buffers = list(model.buffers())
for non_persistent_buffer in non_persistent_buffers.values():
found_buffer = False
for i, model_buffer in enumerate(model_buffers):
if torch.equal(non_persistent_buffer, model_buffer):
found_buffer = True
break
self.assertTrue(found_buffer)
model_buffers.pop(i)
model_buffers = list(model.buffers())
for non_persistent_buffer in non_persistent_buffers.values():
found_buffer = False
for i, model_buffer in enumerate(model_buffers):
if torch.equal(non_persistent_buffer, model_buffer):
found_buffer = True
break
self.assertTrue(found_buffer)
model_buffers.pop(i)
models_equal = True
for layer_name, p1 in model_state_dict.items():
if layer_name in loaded_model_state_dict:
p2 = loaded_model_state_dict[layer_name]
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
@unittest.skip("The model doesn't support left padding") # and it's not used enough to be worth fixing :)
def test_left_padding_compatibility(self):
pass
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_torch
@require_vision
class ImageGPTModelIntegrationTest(unittest.TestCase):
@cached_property
def default_image_processor(self):
return ImageGPTImageProcessor.from_pretrained("openai/imagegpt-small") if is_vision_available() else None
@slow
def test_inference_causal_lm_head(self):
model = ImageGPTForCausalImageModeling.from_pretrained("openai/imagegpt-small").to(torch_device)
image_processor = self.default_image_processor
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# verify the logits
expected_shape = torch.Size((1, 1024, 512))
self.assertEqual(outputs.logits.shape, expected_shape)
expected_slice = torch.tensor(
[[2.3445, 2.6889, 2.7313], [1.0530, 1.2416, 0.5699], [0.2205, 0.7749, 0.3953]]
).to(torch_device)
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_slice, atol=1e-4))
| transformers-main | tests/models/imagegpt/test_modeling_imagegpt.py |
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class ImageGPTImageProcessingTester(unittest.TestCase):
def __init__(
self,
parent,
batch_size=7,
num_channels=3,
image_size=18,
min_resolution=30,
max_resolution=400,
do_resize=True,
size=None,
do_normalize=True,
):
size = size if size is not None else {"height": 18, "width": 18}
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.image_size = image_size
self.min_resolution = min_resolution
self.max_resolution = max_resolution
self.do_resize = do_resize
self.size = size
self.do_normalize = do_normalize
def prepare_image_processor_dict(self):
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.8866443634033203, 0.6618829369544983, 0.3891746401786804],
[-0.6042559146881104, -0.02295008860528469, 0.5423797369003296],
]
),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
def expected_output_image_shape(self, images):
return (self.size["height"] * self.size["width"],)
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
return prepare_image_inputs(
batch_size=self.batch_size,
num_channels=self.num_channels,
min_resolution=self.min_resolution,
max_resolution=self.max_resolution,
equal_resolution=equal_resolution,
numpify=numpify,
torchify=torchify,
)
@require_torch
@require_vision
class ImageGPTImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
image_processing_class = ImageGPTImageProcessor if is_vision_available() else None
def setUp(self):
self.image_processor_tester = ImageGPTImageProcessingTester(self)
@property
def image_processor_dict(self):
return self.image_processor_tester.prepare_image_processor_dict()
def test_image_processor_properties(self):
image_processing = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(image_processing, "clusters"))
self.assertTrue(hasattr(image_processing, "do_resize"))
self.assertTrue(hasattr(image_processing, "size"))
self.assertTrue(hasattr(image_processing, "do_normalize"))
def test_image_processor_from_dict_with_kwargs(self):
image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size, {"height": 18, "width": 18})
image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42)
self.assertEqual(image_processor.size, {"height": 42, "width": 42})
def test_image_processor_to_json_string(self):
image_processor = self.image_processing_class(**self.image_processor_dict)
obj = json.loads(image_processor.to_json_string())
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(value, obj[key]))
else:
self.assertEqual(obj[key], value)
def test_image_processor_to_json_file(self):
image_processor_first = self.image_processing_class(**self.image_processor_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
json_file_path = os.path.join(tmpdirname, "image_processor.json")
image_processor_first.to_json_file(json_file_path)
image_processor_second = self.image_processing_class.from_json_file(json_file_path).to_dict()
image_processor_first = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(value, image_processor_second[key]))
else:
self.assertEqual(image_processor_first[key], value)
def test_image_processor_from_and_save_pretrained(self):
image_processor_first = self.image_processing_class(**self.image_processor_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(tmpdirname)
image_processor_second = self.image_processing_class.from_pretrained(tmpdirname).to_dict()
image_processor_first = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(value, image_processor_second[key]))
else:
self.assertEqual(image_processor_first[key], value)
@unittest.skip("ImageGPT requires clusters at initialization")
def test_init_without_params(self):
pass
# Override the test from ImageProcessingTestMixin as ImageGPT model takes input_ids as input
def test_call_pil(self):
# Initialize image_processing
image_processing = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
for image in image_inputs:
self.assertIsInstance(image, Image.Image)
# Test not batched input
encoded_images = image_processing(image_inputs[0], return_tensors="pt").input_ids
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(encoded_images)
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
# Test batched
encoded_images = image_processing(image_inputs, return_tensors="pt").input_ids
self.assertEqual(
tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape)
)
# Override the test from ImageProcessingTestMixin as ImageGPT model takes input_ids as input
def test_call_numpy(self):
# Initialize image_processing
image_processing = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
for image in image_inputs:
self.assertIsInstance(image, np.ndarray)
# Test not batched input
encoded_images = image_processing(image_inputs[0], return_tensors="pt").input_ids
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(encoded_images)
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
# Test batched
encoded_images = image_processing(image_inputs, return_tensors="pt").input_ids
self.assertEqual(
tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape)
)
# Override the test from ImageProcessingTestMixin as ImageGPT model takes input_ids as input
def test_call_pytorch(self):
# Initialize image_processing
image_processing = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
for image in image_inputs:
self.assertIsInstance(image, torch.Tensor)
# Test not batched input
encoded_images = image_processing(image_inputs[0], return_tensors="pt").input_ids
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
# Test batched
encoded_images = image_processing(image_inputs, return_tensors="pt").input_ids
self.assertEqual(
tuple(encoded_images.shape),
(self.image_processor_tester.batch_size, *expected_output_image_shape),
)
def prepare_images():
dataset = load_dataset("hf-internal-testing/fixtures_image_utils", split="test")
image1 = Image.open(dataset[4]["file"])
image2 = Image.open(dataset[5]["file"])
images = [image1, image2]
return images
@require_vision
@require_torch
class ImageGPTImageProcessorIntegrationTest(unittest.TestCase):
@slow
def test_image(self):
image_processing = ImageGPTImageProcessor.from_pretrained("openai/imagegpt-small")
images = prepare_images()
# test non-batched
encoding = image_processing(images[0], return_tensors="pt")
self.assertIsInstance(encoding.input_ids, torch.LongTensor)
self.assertEqual(encoding.input_ids.shape, (1, 1024))
expected_slice = [306, 191, 191]
self.assertEqual(encoding.input_ids[0, :3].tolist(), expected_slice)
# test batched
encoding = image_processing(images, return_tensors="pt")
self.assertIsInstance(encoding.input_ids, torch.LongTensor)
self.assertEqual(encoding.input_ids.shape, (2, 1024))
expected_slice = [303, 13, 13]
self.assertEqual(encoding.input_ids[1, -3:].tolist(), expected_slice)
| transformers-main | tests/models/imagegpt/test_image_processing_imagegpt.py |
transformers-main | tests/models/splinter/__init__.py |
|
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Splinter model. """
import copy
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, require_torch_multi_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import SplinterConfig, SplinterForPreTraining, SplinterForQuestionAnswering, SplinterModel
from transformers.models.splinter.modeling_splinter import SPLINTER_PRETRAINED_MODEL_ARCHIVE_LIST
class SplinterModelTester:
def __init__(
self,
parent,
batch_size=13,
num_questions=3,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
question_token_id=1,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.num_questions = num_questions
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.question_token_id = question_token_id
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_ids[:, 1] = self.question_token_id
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
start_positions = None
end_positions = None
question_positions = None
if self.use_labels:
start_positions = ids_tensor([self.batch_size, self.num_questions], self.type_sequence_label_size)
end_positions = ids_tensor([self.batch_size, self.num_questions], self.type_sequence_label_size)
question_positions = ids_tensor([self.batch_size, self.num_questions], self.num_labels)
config = SplinterConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
is_decoder=False,
initializer_range=self.initializer_range,
question_token_id=self.question_token_id,
)
return (config, input_ids, token_type_ids, input_mask, start_positions, end_positions, question_positions)
def create_and_check_model(
self,
config,
input_ids,
token_type_ids,
input_mask,
start_positions,
end_positions,
question_positions,
):
model = SplinterModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
result = model(input_ids, token_type_ids=token_type_ids)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_question_answering(
self,
config,
input_ids,
token_type_ids,
input_mask,
start_positions,
end_positions,
question_positions,
):
model = SplinterForQuestionAnswering(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
start_positions=start_positions[:, 0],
end_positions=end_positions[:, 0],
)
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
def create_and_check_for_pretraining(
self,
config,
input_ids,
token_type_ids,
input_mask,
start_positions,
end_positions,
question_positions,
):
model = SplinterForPreTraining(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
start_positions=start_positions,
end_positions=end_positions,
question_positions=question_positions,
)
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.num_questions, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.num_questions, self.seq_length))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
start_positions,
end_positions,
question_positions,
) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"attention_mask": input_mask,
}
return config, inputs_dict
@require_torch
class SplinterModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(
SplinterModel,
SplinterForQuestionAnswering,
SplinterForPreTraining,
)
if is_torch_available()
else ()
)
pipeline_model_mapping = (
{"feature-extraction": SplinterModel, "question-answering": SplinterForQuestionAnswering}
if is_torch_available()
else {}
)
# TODO: Fix the failed tests when this model gets more usage
def is_pipeline_test_to_skip(
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
):
if pipeline_test_casse_name == "QAPipelineTests":
return True
elif pipeline_test_casse_name == "FeatureExtractionPipelineTests" and tokenizer_name.endswith("Fast"):
return True
return False
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = copy.deepcopy(inputs_dict)
if return_labels:
if issubclass(model_class, SplinterForPreTraining):
inputs_dict["start_positions"] = torch.zeros(
self.model_tester.batch_size,
self.model_tester.num_questions,
dtype=torch.long,
device=torch_device,
)
inputs_dict["end_positions"] = torch.zeros(
self.model_tester.batch_size,
self.model_tester.num_questions,
dtype=torch.long,
device=torch_device,
)
inputs_dict["question_positions"] = torch.zeros(
self.model_tester.batch_size,
self.model_tester.num_questions,
dtype=torch.long,
device=torch_device,
)
elif issubclass(model_class, SplinterForQuestionAnswering):
inputs_dict["start_positions"] = torch.zeros(
self.model_tester.batch_size, dtype=torch.long, device=torch_device
)
inputs_dict["end_positions"] = torch.zeros(
self.model_tester.batch_size, dtype=torch.long, device=torch_device
)
return inputs_dict
def setUp(self):
self.model_tester = SplinterModelTester(self)
self.config_tester = ConfigTester(self, config_class=SplinterConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_various_embeddings(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
config_and_inputs[0].position_embedding_type = type
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
def test_for_pretraining(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*config_and_inputs)
def test_inputs_embeds(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
if not self.is_encoder_decoder:
input_ids = inputs["input_ids"]
del inputs["input_ids"]
else:
encoder_input_ids = inputs["input_ids"]
decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
del inputs["input_ids"]
inputs.pop("decoder_input_ids", None)
wte = model.get_input_embeddings()
if not self.is_encoder_decoder:
inputs["inputs_embeds"] = wte(input_ids)
else:
inputs["inputs_embeds"] = wte(encoder_input_ids)
inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
with torch.no_grad():
if isinstance(model, SplinterForPreTraining):
with self.assertRaises(TypeError):
# question_positions must not be None.
model(**inputs)[0]
else:
model(**inputs)[0]
@slow
def test_model_from_pretrained(self):
for model_name in SPLINTER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = SplinterModel.from_pretrained(model_name)
self.assertIsNotNone(model)
# overwrite from common since `SplinterForPreTraining` could contain different number of question tokens in inputs.
# When the batch is distributed to multiple devices, each replica could get different values for the maximal number
# of question tokens (see `SplinterForPreTraining._prepare_question_positions()`), and the model returns different
# shape along dimension 1 (i.e. `num_questions`) that could not be combined into a single tensor as an output.
@require_torch_multi_gpu
def test_multi_gpu_data_parallel_forward(self):
from torch import nn
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
# some params shouldn't be scattered by nn.DataParallel
# so just remove them if they are present.
blacklist_non_batched_params = ["head_mask", "decoder_head_mask", "cross_attn_head_mask"]
for k in blacklist_non_batched_params:
inputs_dict.pop(k, None)
# move input tensors to cuda:O
for k, v in inputs_dict.items():
if torch.is_tensor(v):
inputs_dict[k] = v.to(0)
for model_class in self.all_model_classes:
# Skip this case since it will fail sometimes, as described above.
if model_class == SplinterForPreTraining:
continue
model = model_class(config=config)
model.to(0)
model.eval()
# Wrap model in nn.DataParallel
model = nn.DataParallel(model)
with torch.no_grad():
_ = model(**self._prepare_for_class(inputs_dict, model_class))
@require_torch
class SplinterModelIntegrationTest(unittest.TestCase):
@slow
def test_splinter_question_answering(self):
model = SplinterForQuestionAnswering.from_pretrained("tau/splinter-base-qass")
# Input: "[CLS] Brad was born in [QUESTION] . He returned to the United Kingdom later . [SEP]"
# Output should be the span "the United Kingdom"
input_ids = torch.tensor(
[[101, 7796, 1108, 1255, 1107, 104, 119, 1124, 1608, 1106, 1103, 1244, 2325, 1224, 119, 102]]
)
output = model(input_ids)
expected_shape = torch.Size((1, 16))
self.assertEqual(output.start_logits.shape, expected_shape)
self.assertEqual(output.end_logits.shape, expected_shape)
self.assertEqual(torch.argmax(output.start_logits), 10)
self.assertEqual(torch.argmax(output.end_logits), 12)
@slow
def test_splinter_pretraining(self):
model = SplinterForPreTraining.from_pretrained("tau/splinter-base-qass")
# Input: "[CLS] [QUESTION] was born in [QUESTION] . Brad returned to the United Kingdom later . [SEP]"
# Output should be the spans "Brad" and "the United Kingdom"
input_ids = torch.tensor(
[[101, 104, 1108, 1255, 1107, 104, 119, 7796, 1608, 1106, 1103, 1244, 2325, 1224, 119, 102]]
)
question_positions = torch.tensor([[1, 5]], dtype=torch.long)
output = model(input_ids, question_positions=question_positions)
expected_shape = torch.Size((1, 2, 16))
self.assertEqual(output.start_logits.shape, expected_shape)
self.assertEqual(output.end_logits.shape, expected_shape)
self.assertEqual(torch.argmax(output.start_logits[0, 0]), 7)
self.assertEqual(torch.argmax(output.end_logits[0, 0]), 7)
self.assertEqual(torch.argmax(output.start_logits[0, 1]), 10)
self.assertEqual(torch.argmax(output.end_logits[0, 1]), 12)
@slow
def test_splinter_pretraining_loss_requires_question_positions(self):
model = SplinterForPreTraining.from_pretrained("tau/splinter-base-qass")
# Input: "[CLS] [QUESTION] was born in [QUESTION] . Brad returned to the United Kingdom later . [SEP]"
# Output should be the spans "Brad" and "the United Kingdom"
input_ids = torch.tensor(
[[101, 104, 1108, 1255, 1107, 104, 119, 7796, 1608, 1106, 1103, 1244, 2325, 1224, 119, 102]]
)
start_positions = torch.tensor([[7, 10]], dtype=torch.long)
end_positions = torch.tensor([7, 12], dtype=torch.long)
with self.assertRaises(TypeError):
model(
input_ids,
start_positions=start_positions,
end_positions=end_positions,
)
@slow
def test_splinter_pretraining_loss(self):
model = SplinterForPreTraining.from_pretrained("tau/splinter-base-qass")
# Input: "[CLS] [QUESTION] was born in [QUESTION] . Brad returned to the United Kingdom later . [SEP]"
# Output should be the spans "Brad" and "the United Kingdom"
input_ids = torch.tensor(
[
[101, 104, 1108, 1255, 1107, 104, 119, 7796, 1608, 1106, 1103, 1244, 2325, 1224, 119, 102],
[101, 104, 1108, 1255, 1107, 104, 119, 7796, 1608, 1106, 1103, 1244, 2325, 1224, 119, 102],
]
)
start_positions = torch.tensor([[7, 10], [7, 10]], dtype=torch.long)
end_positions = torch.tensor([[7, 12], [7, 12]], dtype=torch.long)
question_positions = torch.tensor([[1, 5], [1, 5]], dtype=torch.long)
output = model(
input_ids,
start_positions=start_positions,
end_positions=end_positions,
question_positions=question_positions,
)
self.assertAlmostEqual(output.loss.item(), 0.0024, 4)
@slow
def test_splinter_pretraining_loss_with_padding(self):
model = SplinterForPreTraining.from_pretrained("tau/splinter-base-qass")
# Input: "[CLS] [QUESTION] was born in [QUESTION] . Brad returned to the United Kingdom later . [SEP]"
# Output should be the spans "Brad" and "the United Kingdom"
input_ids = torch.tensor(
[
[101, 104, 1108, 1255, 1107, 104, 119, 7796, 1608, 1106, 1103, 1244, 2325, 1224, 119, 102],
]
)
start_positions = torch.tensor([[7, 10]], dtype=torch.long)
end_positions = torch.tensor([7, 12], dtype=torch.long)
question_positions = torch.tensor([[1, 5]], dtype=torch.long)
start_positions_with_padding = torch.tensor([[7, 10, 0]], dtype=torch.long)
end_positions_with_padding = torch.tensor([7, 12, 0], dtype=torch.long)
question_positions_with_padding = torch.tensor([[1, 5, 0]], dtype=torch.long)
output = model(
input_ids,
start_positions=start_positions,
end_positions=end_positions,
question_positions=question_positions,
)
output_with_padding = model(
input_ids,
start_positions=start_positions_with_padding,
end_positions=end_positions_with_padding,
question_positions=question_positions_with_padding,
)
self.assertAlmostEqual(output.loss.item(), output_with_padding.loss.item(), 4)
# Note that the original code uses 0 to denote padded question tokens
# and their start and end positions. As the pad_token_id of the model's
# config is used for the losse's ignore_index in SplinterForPreTraining,
# we add this test to ensure anybody making changes to the default
# value of the config, will be aware of the implication.
self.assertEqual(model.config.pad_token_id, 0)
@slow
def test_splinter_pretraining_prepare_question_positions(self):
model = SplinterForPreTraining.from_pretrained("tau/splinter-base-qass")
input_ids = torch.tensor(
[
[101, 104, 1, 2, 104, 3, 4, 102],
[101, 1, 104, 2, 104, 3, 104, 102],
[101, 1, 2, 104, 104, 3, 4, 102],
[101, 1, 2, 3, 4, 5, 104, 102],
]
)
question_positions = torch.tensor([[1, 4, 0], [2, 4, 6], [3, 4, 0], [6, 0, 0]], dtype=torch.long)
output_without_positions = model(input_ids)
output_with_positions = model(input_ids, question_positions=question_positions)
self.assertTrue((output_without_positions.start_logits == output_with_positions.start_logits).all())
self.assertTrue((output_without_positions.end_logits == output_with_positions.end_logits).all())
| transformers-main | tests/models/splinter/test_modeling_splinter.py |
# coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import LongformerConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LongformerForMaskedLM,
LongformerForMultipleChoice,
LongformerForQuestionAnswering,
LongformerForSequenceClassification,
LongformerForTokenClassification,
LongformerModel,
LongformerSelfAttention,
)
class LongformerModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
attention_window=4,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
self.attention_window = attention_window
# `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
# [num_attention_heads, encoder_seq_length, encoder_key_length], but LongformerSelfAttention
# returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1]
# because its local attention only attends to `self.attention_window + 1` locations
# (assuming no token with global attention, otherwise the last dimension of attentions
# is x + self.attention_window + 1, where x is the number of tokens with global attention)
self.key_length = self.attention_window + 2
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def get_config(self):
return LongformerConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
attention_window=self.attention_window,
)
def get_pipeline_config(self):
config = self.get_config()
config.vocab_size = 300
return config
def create_and_check_attention_mask_determinism(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = LongformerModel(config=config)
model.to(torch_device)
model.eval()
attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
output_with_mask = model(input_ids, attention_mask=attention_mask)["last_hidden_state"]
output_without_mask = model(input_ids)["last_hidden_state"]
self.parent.assertTrue(torch.allclose(output_with_mask[0, 0, :5], output_without_mask[0, 0, :5], atol=1e-4))
def create_and_check_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = LongformerModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
result = model(input_ids, token_type_ids=token_type_ids)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def create_and_check_model_with_global_attention_mask(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = LongformerModel(config=config)
model.to(torch_device)
model.eval()
global_attention_mask = input_mask.clone()
global_attention_mask[:, input_mask.shape[-1] // 2] = 0
global_attention_mask = global_attention_mask.to(torch_device)
result = model(
input_ids,
attention_mask=input_mask,
global_attention_mask=global_attention_mask,
token_type_ids=token_type_ids,
)
result = model(input_ids, token_type_ids=token_type_ids, global_attention_mask=global_attention_mask)
result = model(input_ids, global_attention_mask=global_attention_mask)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def create_and_check_for_masked_lm(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = LongformerForMaskedLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_for_question_answering(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = LongformerForQuestionAnswering(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
global_attention_mask=input_mask,
token_type_ids=token_type_ids,
start_positions=sequence_labels,
end_positions=sequence_labels,
)
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
def create_and_check_for_sequence_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = LongformerForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_for_token_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = LongformerForTokenClassification(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def create_and_check_for_multiple_choice(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_choices = self.num_choices
model = LongformerForMultipleChoice(config=config)
model.to(torch_device)
model.eval()
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
result = model(
multiple_choice_inputs_ids,
attention_mask=multiple_choice_input_mask,
global_attention_mask=multiple_choice_input_mask,
token_type_ids=multiple_choice_token_type_ids,
labels=choice_labels,
)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
global_attention_mask = torch.zeros_like(input_ids)
global_attention_mask[:, -1] = 1
inputs_dict = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"attention_mask": input_mask,
"global_attention_mask": global_attention_mask,
}
return config, inputs_dict
def prepare_config_and_inputs_for_question_answering(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
# Replace sep_token_id by some random id
input_ids[input_ids == config.sep_token_id] = torch.randint(0, config.vocab_size, (1,)).item()
# Make sure there are exactly three sep_token_id
input_ids[:, -3:] = config.sep_token_id
input_mask = torch.ones_like(input_ids)
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
@require_torch
class LongformerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
test_pruning = False # pruning is not supported
test_torchscript = False
all_model_classes = (
(
LongformerModel,
LongformerForMaskedLM,
LongformerForSequenceClassification,
LongformerForQuestionAnswering,
LongformerForTokenClassification,
LongformerForMultipleChoice,
)
if is_torch_available()
else ()
)
pipeline_model_mapping = (
{
"feature-extraction": LongformerModel,
"fill-mask": LongformerForMaskedLM,
"question-answering": LongformerForQuestionAnswering,
"text-classification": LongformerForSequenceClassification,
"token-classification": LongformerForTokenClassification,
"zero-shot": LongformerForSequenceClassification,
}
if is_torch_available()
else {}
)
# Need to use `0.6` instead of `0.5` for `test_disk_offload`
model_split_percents = [0.6, 0.7, 0.9]
# TODO: Fix the failed tests
def is_pipeline_test_to_skip(
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
):
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("Fast")
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def setUp(self):
self.model_tester = LongformerModelTester(self)
self.config_tester = ConfigTester(self, config_class=LongformerConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_attention_mask_determinism(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_attention_mask_determinism(*config_and_inputs)
def test_model_global_attention_mask(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_with_global_attention_mask(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
def test_for_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_question_answering()
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
def test_for_sequence_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
def test_for_token_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
def test_for_multiple_choice(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
def test_retain_grad_hidden_states_attentions(self):
# longformer cannot keep gradients in attentions or hidden states
return
@require_torch
@require_sentencepiece
@require_tokenizers
class LongformerModelIntegrationTest(unittest.TestCase):
def _get_hidden_states(self):
return torch.tensor(
[
[
[
4.98332758e-01,
2.69175139e00,
-7.08081422e-03,
1.04915401e00,
-1.83476661e00,
7.67220476e-01,
2.98580543e-01,
2.84803992e-02,
],
[
-7.58357372e-01,
4.20635998e-01,
-4.04739919e-02,
1.59924145e-01,
2.05135748e00,
-1.15997978e00,
5.37166397e-01,
2.62873606e-01,
],
[
-1.69438001e00,
4.17574660e-01,
-1.49196962e00,
-1.76483717e00,
-1.94566312e-01,
-1.71183858e00,
7.72903565e-01,
-1.11557056e00,
],
[
5.44028163e-01,
2.05466114e-01,
-3.63045868e-01,
2.41865062e-01,
3.20348382e-01,
-9.05611176e-01,
-1.92690727e-01,
-1.19917547e00,
],
]
],
dtype=torch.float32,
device=torch_device,
)
def test_diagonalize(self):
hidden_states = self._get_hidden_states()
hidden_states = hidden_states.reshape((1, 8, 4)) # set seq length = 8, hidden dim = 4
chunked_hidden_states = LongformerSelfAttention._chunk(hidden_states, window_overlap=2)
window_overlap_size = chunked_hidden_states.shape[2]
self.assertTrue(window_overlap_size == 4)
padded_hidden_states = LongformerSelfAttention._pad_and_diagonalize(chunked_hidden_states)
self.assertTrue(padded_hidden_states.shape[-1] == chunked_hidden_states.shape[-1] + window_overlap_size - 1)
# first row => [0.4983, 2.6918, -0.0071, 1.0492, 0.0000, 0.0000, 0.0000]
self.assertTrue(torch.allclose(padded_hidden_states[0, 0, 0, :4], chunked_hidden_states[0, 0, 0], atol=1e-3))
self.assertTrue(
torch.allclose(
padded_hidden_states[0, 0, 0, 4:],
torch.zeros((3,), device=torch_device, dtype=torch.float32),
atol=1e-3,
)
)
# last row => [0.0000, 0.0000, 0.0000, 2.0514, -1.1600, 0.5372, 0.2629]
self.assertTrue(torch.allclose(padded_hidden_states[0, 0, -1, 3:], chunked_hidden_states[0, 0, -1], atol=1e-3))
self.assertTrue(
torch.allclose(
padded_hidden_states[0, 0, -1, :3],
torch.zeros((3,), device=torch_device, dtype=torch.float32),
atol=1e-3,
)
)
def test_pad_and_transpose_last_two_dims(self):
hidden_states = self._get_hidden_states()
self.assertEqual(hidden_states.shape, (1, 4, 8))
padding = (0, 0, 0, 1)
padded_hidden_states = LongformerSelfAttention._pad_and_transpose_last_two_dims(hidden_states, padding)
self.assertEqual(padded_hidden_states.shape, (1, 8, 5))
expected_added_dim = torch.zeros((5,), device=torch_device, dtype=torch.float32)
self.assertTrue(torch.allclose(expected_added_dim, padded_hidden_states[0, -1, :], atol=1e-6))
self.assertTrue(torch.allclose(hidden_states[0, -1, :], padded_hidden_states.view(1, -1)[0, 24:32], atol=1e-6))
def test_chunk(self):
hidden_states = self._get_hidden_states()
batch_size = 1
seq_length = 8
hidden_size = 4
hidden_states = hidden_states.reshape((batch_size, seq_length, hidden_size))
chunked_hidden_states = LongformerSelfAttention._chunk(hidden_states, window_overlap=2)
# expected slices across chunk and seq length dim
expected_slice_along_seq_length = torch.tensor(
[0.4983, -0.7584, -1.6944], device=torch_device, dtype=torch.float32
)
expected_slice_along_chunk = torch.tensor(
[0.4983, -1.8348, -0.7584, 2.0514], device=torch_device, dtype=torch.float32
)
self.assertTrue(torch.allclose(chunked_hidden_states[0, :, 0, 0], expected_slice_along_seq_length, atol=1e-3))
self.assertTrue(torch.allclose(chunked_hidden_states[0, 0, :, 0], expected_slice_along_chunk, atol=1e-3))
self.assertEqual(chunked_hidden_states.shape, (1, 3, 4, 4))
def test_mask_invalid_locations(self):
hidden_states = self._get_hidden_states()
batch_size = 1
seq_length = 8
hidden_size = 4
hidden_states = hidden_states.reshape((batch_size, seq_length, hidden_size))
chunked_hidden_states = LongformerSelfAttention._chunk(hidden_states, window_overlap=2)
hid_states_1 = chunked_hidden_states.clone()
LongformerSelfAttention._mask_invalid_locations(hid_states_1, 1)
self.assertTrue(torch.isinf(hid_states_1).sum().item() == 8)
hid_states_2 = chunked_hidden_states.clone()
LongformerSelfAttention._mask_invalid_locations(hid_states_2, 2)
self.assertTrue(torch.isinf(hid_states_2).sum().item() == 24)
hid_states_3 = chunked_hidden_states.clone()[:, :, :, :3]
LongformerSelfAttention._mask_invalid_locations(hid_states_3, 2)
self.assertTrue(torch.isinf(hid_states_3).sum().item() == 24)
hid_states_4 = chunked_hidden_states.clone()[:, :, 2:, :]
LongformerSelfAttention._mask_invalid_locations(hid_states_4, 2)
self.assertTrue(torch.isinf(hid_states_4).sum().item() == 12)
def test_layer_local_attn(self):
model = LongformerModel.from_pretrained("patrickvonplaten/longformer-random-tiny")
model.eval()
layer = model.encoder.layer[0].attention.self.to(torch_device)
hidden_states = self._get_hidden_states()
batch_size, seq_length, hidden_size = hidden_states.size()
attention_mask = torch.zeros((batch_size, seq_length), dtype=torch.float32, device=torch_device)
attention_mask[:, -2:] = -10000
is_index_masked = attention_mask < 0
is_index_global_attn = attention_mask > 0
is_global_attn = is_index_global_attn.flatten().any().item()
output_hidden_states = layer(
hidden_states,
attention_mask=attention_mask,
is_index_masked=is_index_masked,
is_index_global_attn=is_index_global_attn,
is_global_attn=is_global_attn,
)[0]
self.assertEqual(output_hidden_states.shape, (1, 4, 8))
self.assertTrue(
torch.allclose(
output_hidden_states[0, 1],
torch.tensor(
[0.0019, 0.0122, -0.0171, -0.0256, -0.0300, 0.0173, -0.0115, 0.0048],
dtype=torch.float32,
device=torch_device,
),
atol=1e-3,
)
)
def test_layer_global_attn(self):
model = LongformerModel.from_pretrained("patrickvonplaten/longformer-random-tiny")
model.eval()
layer = model.encoder.layer[0].attention.self.to(torch_device)
hidden_states = torch.cat([self._get_hidden_states(), self._get_hidden_states() - 0.5], dim=0)
batch_size, seq_length, hidden_size = hidden_states.size()
attention_mask = torch.zeros((batch_size, seq_length), dtype=torch.float32, device=torch_device)
# create attn mask
attention_mask[0, -2:] = 10000.0
attention_mask[0, -1:] = -10000.0
attention_mask[1, 1:] = 10000.0
is_index_masked = attention_mask < 0
is_index_global_attn = attention_mask > 0
is_global_attn = is_index_global_attn.flatten().any().item()
output_hidden_states = layer(
hidden_states,
attention_mask=attention_mask,
is_index_masked=is_index_masked,
is_index_global_attn=is_index_global_attn,
is_global_attn=is_global_attn,
)[0]
self.assertEqual(output_hidden_states.shape, (2, 4, 8))
self.assertTrue(
torch.allclose(
output_hidden_states[0, 2],
torch.tensor(
[-0.0651, -0.0393, 0.0309, -0.0342, -0.0066, -0.0155, -0.0209, -0.0494],
dtype=torch.float32,
device=torch_device,
),
atol=1e-3,
)
)
self.assertTrue(
torch.allclose(
output_hidden_states[1, -2],
torch.tensor(
[-0.0405, -0.0384, 0.0396, -0.0374, -0.0341, 0.0136, 0.0014, -0.0571],
dtype=torch.float32,
device=torch_device,
),
atol=1e-3,
)
)
def test_layer_attn_probs(self):
model = LongformerModel.from_pretrained("patrickvonplaten/longformer-random-tiny")
model.eval()
layer = model.encoder.layer[0].attention.self.to(torch_device)
hidden_states = torch.cat([self._get_hidden_states(), self._get_hidden_states() - 0.5], dim=0)
batch_size, seq_length, hidden_size = hidden_states.size()
attention_mask = torch.zeros((batch_size, seq_length), dtype=torch.float32, device=torch_device)
# create attn mask
attention_mask[0, -2:] = 10000.0
attention_mask[0, -1:] = -10000.0
attention_mask[1, 1:] = 10000.0
is_index_masked = attention_mask < 0
is_index_global_attn = attention_mask > 0
is_global_attn = is_index_global_attn.flatten().any().item()
output_hidden_states, local_attentions, global_attentions = layer(
hidden_states,
attention_mask=attention_mask,
is_index_masked=is_index_masked,
is_index_global_attn=is_index_global_attn,
is_global_attn=is_global_attn,
output_attentions=True,
)
self.assertEqual(local_attentions.shape, (2, 4, 2, 8))
self.assertEqual(global_attentions.shape, (2, 2, 3, 4))
# All tokens with global attention have weight 0 in local attentions.
self.assertTrue(torch.all(local_attentions[0, 2:4, :, :] == 0))
self.assertTrue(torch.all(local_attentions[1, 1:4, :, :] == 0))
# The weight of all tokens with local attention must sum to 1.
self.assertTrue(torch.all(torch.abs(global_attentions[0, :, :2, :].sum(dim=-1) - 1) < 1e-6))
self.assertTrue(torch.all(torch.abs(global_attentions[1, :, :1, :].sum(dim=-1) - 1) < 1e-6))
self.assertTrue(
torch.allclose(
local_attentions[0, 0, 0, :],
torch.tensor(
[0.3328, 0.0000, 0.0000, 0.0000, 0.0000, 0.3355, 0.3318, 0.0000],
dtype=torch.float32,
device=torch_device,
),
atol=1e-3,
)
)
self.assertTrue(
torch.allclose(
local_attentions[1, 0, 0, :],
torch.tensor(
[0.2492, 0.2502, 0.2502, 0.0000, 0.0000, 0.2505, 0.0000, 0.0000],
dtype=torch.float32,
device=torch_device,
),
atol=1e-3,
)
)
# All the global attention weights must sum to 1.
self.assertTrue(torch.all(torch.abs(global_attentions.sum(dim=-1) - 1) < 1e-6))
self.assertTrue(
torch.allclose(
global_attentions[0, 0, 1, :],
torch.tensor(
[0.2500, 0.2500, 0.2500, 0.2500],
dtype=torch.float32,
device=torch_device,
),
atol=1e-3,
)
)
self.assertTrue(
torch.allclose(
global_attentions[1, 0, 0, :],
torch.tensor(
[0.2497, 0.2500, 0.2499, 0.2504],
dtype=torch.float32,
device=torch_device,
),
atol=1e-3,
)
)
@slow
def test_inference_no_head(self):
model = LongformerModel.from_pretrained("allenai/longformer-base-4096")
model.to(torch_device)
# 'Hello world!'
input_ids = torch.tensor([[0, 20920, 232, 328, 1437, 2]], dtype=torch.long, device=torch_device)
attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
output = model(input_ids, attention_mask=attention_mask)[0]
output_without_mask = model(input_ids)[0]
expected_output_slice = torch.tensor([0.0549, 0.1087, -0.1119, -0.0368, 0.0250], device=torch_device)
self.assertTrue(torch.allclose(output[0, 0, -5:], expected_output_slice, atol=1e-4))
self.assertTrue(torch.allclose(output_without_mask[0, 0, -5:], expected_output_slice, atol=1e-4))
@slow
def test_inference_no_head_long(self):
model = LongformerModel.from_pretrained("allenai/longformer-base-4096")
model.to(torch_device)
# 'Hello world! ' repeated 1000 times
input_ids = torch.tensor(
[[0] + [20920, 232, 328, 1437] * 1000 + [2]], dtype=torch.long, device=torch_device
) # long input
attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=input_ids.device)
global_attention_mask = torch.zeros(input_ids.shape, dtype=torch.long, device=input_ids.device)
global_attention_mask[:, [1, 4, 21]] = 1 # Set global attention on a few random positions
output = model(input_ids, attention_mask=attention_mask, global_attention_mask=global_attention_mask)[0]
expected_output_sum = torch.tensor(74585.8594, device=torch_device)
expected_output_mean = torch.tensor(0.0243, device=torch_device)
self.assertTrue(torch.allclose(output.sum(), expected_output_sum, atol=1e-4))
self.assertTrue(torch.allclose(output.mean(), expected_output_mean, atol=1e-4))
@slow
def test_inference_masked_lm_long(self):
model = LongformerForMaskedLM.from_pretrained("allenai/longformer-base-4096")
model.to(torch_device)
# 'Hello world! ' repeated 1000 times
input_ids = torch.tensor(
[[0] + [20920, 232, 328, 1437] * 1000 + [2]], dtype=torch.long, device=torch_device
) # long input
input_ids = input_ids.to(torch_device)
loss, prediction_scores = model(input_ids, labels=input_ids).to_tuple()
expected_loss = torch.tensor(0.0074, device=torch_device)
expected_prediction_scores_sum = torch.tensor(-6.1048e08, device=torch_device)
expected_prediction_scores_mean = torch.tensor(-3.0348, device=torch_device)
self.assertTrue(torch.allclose(loss, expected_loss, atol=1e-4))
self.assertTrue(torch.allclose(prediction_scores.sum(), expected_prediction_scores_sum, atol=1e-4))
self.assertTrue(torch.allclose(prediction_scores.mean(), expected_prediction_scores_mean, atol=1e-4))
| transformers-main | tests/models/longformer/test_modeling_longformer.py |
transformers-main | tests/models/longformer/__init__.py |
|
# coding=utf-8
# Copyright 2022 Tsimur Hadeliya. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the Longformer tokenizer. """
import itertools
import json
import os
import unittest
from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast
from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
# Copied from transformers.tests.roberta.test_modeling_roberta.py with Roberta->Longformer
@require_tokenizers
class LongformerTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = LongformerTokenizer
test_slow_tokenizer = True
rust_tokenizer_class = LongformerTokenizerFast
test_rust_tokenizer = True
def setUp(self):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
vocab = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"\u0120",
"\u0120l",
"\u0120n",
"\u0120lo",
"\u0120low",
"er",
"\u0120lowest",
"\u0120newer",
"\u0120wider",
"<unk>",
]
vocab_tokens = dict(zip(vocab, range(len(vocab))))
merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
self.special_tokens_map = {"unk_token": "<unk>"}
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
with open(self.vocab_file, "w", encoding="utf-8") as fp:
fp.write(json.dumps(vocab_tokens) + "\n")
with open(self.merges_file, "w", encoding="utf-8") as fp:
fp.write("\n".join(merges))
def get_tokenizer(self, **kwargs):
kwargs.update(self.special_tokens_map)
return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)
def get_rust_tokenizer(self, **kwargs):
kwargs.update(self.special_tokens_map)
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)
def get_input_output_texts(self, tokenizer):
input_text = "lower newer"
output_text = "lower newer"
return input_text, output_text
def test_full_tokenizer(self):
tokenizer = self.tokenizer_class(self.vocab_file, self.merges_file, **self.special_tokens_map)
text = "lower newer"
bpe_tokens = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"]
tokens = tokenizer.tokenize(text) # , add_prefix_space=True)
self.assertListEqual(tokens, bpe_tokens)
input_tokens = tokens + [tokenizer.unk_token]
input_bpe_tokens = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
def longformer_dict_integration_testing(self):
tokenizer = self.get_tokenizer()
self.assertListEqual(tokenizer.encode("Hello world!", add_special_tokens=False), [0, 31414, 232, 328, 2])
self.assertListEqual(
tokenizer.encode("Hello world! cécé herlolip 418", add_special_tokens=False),
[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2],
)
@slow
def test_sequence_builders(self):
tokenizer = self.tokenizer_class.from_pretrained("allenai/longformer-base-4096")
text = tokenizer.encode("sequence builders", add_special_tokens=False)
text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False)
encoded_text_from_decode = tokenizer.encode(
"sequence builders", add_special_tokens=True, add_prefix_space=False
)
encoded_pair_from_decode = tokenizer.encode(
"sequence builders", "multi-sequence build", add_special_tokens=True, add_prefix_space=False
)
encoded_sentence = tokenizer.build_inputs_with_special_tokens(text)
encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2)
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
def test_space_encoding(self):
tokenizer = self.get_tokenizer()
sequence = "Encode this sequence."
space_encoding = tokenizer.byte_encoder[" ".encode("utf-8")[0]]
# Testing encoder arguments
encoded = tokenizer.encode(sequence, add_special_tokens=False, add_prefix_space=False)
first_char = tokenizer.convert_ids_to_tokens(encoded[0])[0]
self.assertNotEqual(first_char, space_encoding)
encoded = tokenizer.encode(sequence, add_special_tokens=False, add_prefix_space=True)
first_char = tokenizer.convert_ids_to_tokens(encoded[0])[0]
self.assertEqual(first_char, space_encoding)
tokenizer.add_special_tokens({"bos_token": "<s>"})
encoded = tokenizer.encode(sequence, add_special_tokens=True)
first_char = tokenizer.convert_ids_to_tokens(encoded[1])[0]
self.assertNotEqual(first_char, space_encoding)
# Testing spaces after special tokens
mask = "<mask>"
tokenizer.add_special_tokens(
{"mask_token": AddedToken(mask, lstrip=True, rstrip=False)}
) # mask token has a left space
mask_ind = tokenizer.convert_tokens_to_ids(mask)
sequence = "Encode <mask> sequence"
sequence_nospace = "Encode <mask>sequence"
encoded = tokenizer.encode(sequence)
mask_loc = encoded.index(mask_ind)
first_char = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1])[0]
self.assertEqual(first_char, space_encoding)
encoded = tokenizer.encode(sequence_nospace)
mask_loc = encoded.index(mask_ind)
first_char = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1])[0]
self.assertNotEqual(first_char, space_encoding)
def test_pretokenized_inputs(self):
pass
def test_embeded_special_tokens(self):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
sentence = "A, <mask> AllenNLP sentence."
tokens_r = tokenizer_r.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True)
tokens_p = tokenizer_p.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True)
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"]))
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r["attention_mask"]) / len(tokens_r["attention_mask"]),
sum(tokens_p["attention_mask"]) / len(tokens_p["attention_mask"]),
)
tokens_r_str = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"])
tokens_p_str = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"])
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2])
self.assertSequenceEqual(tokens_r["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2])
self.assertSequenceEqual(
tokens_p_str, ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"]
)
self.assertSequenceEqual(
tokens_r_str, ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"]
)
def test_change_add_prefix_space_and_trim_offsets_args(self):
for trim_offsets, add_prefix_space in itertools.product([True, False], repeat=2):
tokenizer_r = self.rust_tokenizer_class.from_pretrained(
self.tmpdirname, use_fast=True, add_prefix_space=add_prefix_space, trim_offsets=trim_offsets
)
pre_tokenizer_state = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__())
post_processor_state = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__())
self.assertEqual(pre_tokenizer_state["add_prefix_space"], add_prefix_space)
self.assertEqual(post_processor_state["add_prefix_space"], add_prefix_space)
self.assertEqual(post_processor_state["trim_offsets"], trim_offsets)
def test_offsets_mapping_with_different_add_prefix_space_and_trim_space_arguments(self):
# Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and
# `trim_offsets`
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
text_of_1_token = "hello" # `hello` is a token in the vocabulary of `pretrained_name`
text = f"{text_of_1_token} {text_of_1_token}"
tokenizer_r = self.rust_tokenizer_class.from_pretrained(
pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
)
encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
self.assertEqual(encoding.offset_mapping[0], (0, len(text_of_1_token)))
self.assertEqual(
encoding.offset_mapping[1],
(len(text_of_1_token) + 1, len(text_of_1_token) + 1 + len(text_of_1_token)),
)
tokenizer_r = self.rust_tokenizer_class.from_pretrained(
pretrained_name, use_fast=True, add_prefix_space=False, trim_offsets=True
)
encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
self.assertEqual(encoding.offset_mapping[0], (0, len(text_of_1_token)))
self.assertEqual(
encoding.offset_mapping[1],
(len(text_of_1_token) + 1, len(text_of_1_token) + 1 + len(text_of_1_token)),
)
tokenizer_r = self.rust_tokenizer_class.from_pretrained(
pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=False
)
encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
self.assertEqual(encoding.offset_mapping[0], (0, len(text_of_1_token)))
self.assertEqual(
encoding.offset_mapping[1],
(len(text_of_1_token), len(text_of_1_token) + 1 + len(text_of_1_token)),
)
tokenizer_r = self.rust_tokenizer_class.from_pretrained(
pretrained_name, use_fast=True, add_prefix_space=False, trim_offsets=False
)
encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
self.assertEqual(encoding.offset_mapping[0], (0, len(text_of_1_token)))
self.assertEqual(
encoding.offset_mapping[1],
(len(text_of_1_token), len(text_of_1_token) + 1 + len(text_of_1_token)),
)
text = f" {text}"
# tokenizer_r = self.rust_tokenizer_class.from_pretrained(
# pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
# )
# encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
# self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
# self.assertEqual(
# encoding.offset_mapping[1],
# (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
# )
tokenizer_r = self.rust_tokenizer_class.from_pretrained(
pretrained_name, use_fast=True, add_prefix_space=False, trim_offsets=True
)
encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
self.assertEqual(
encoding.offset_mapping[1],
(1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
)
tokenizer_r = self.rust_tokenizer_class.from_pretrained(
pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=False
)
encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(text_of_1_token)))
self.assertEqual(
encoding.offset_mapping[1],
(1 + len(text_of_1_token), 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
)
tokenizer_r = self.rust_tokenizer_class.from_pretrained(
pretrained_name, use_fast=True, add_prefix_space=False, trim_offsets=False
)
encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(text_of_1_token)))
self.assertEqual(
encoding.offset_mapping[1],
(1 + len(text_of_1_token), 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
)
| transformers-main | tests/models/longformer/test_tokenization_longformer.py |
# coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
LongformerConfig,
TFLongformerForMaskedLM,
TFLongformerForMultipleChoice,
TFLongformerForQuestionAnswering,
TFLongformerForSequenceClassification,
TFLongformerForTokenClassification,
TFLongformerModel,
TFLongformerSelfAttention,
)
from transformers.tf_utils import shape_list
class TFLongformerModelTester:
def __init__(
self,
parent,
):
self.parent = parent
self.batch_size = 13
self.seq_length = 7
self.is_training = True
self.use_input_mask = True
self.use_token_type_ids = True
self.use_labels = True
self.vocab_size = 99
self.hidden_size = 32
self.num_hidden_layers = 2
self.num_attention_heads = 4
self.intermediate_size = 37
self.hidden_act = "gelu"
self.hidden_dropout_prob = 0.1
self.attention_probs_dropout_prob = 0.1
self.max_position_embeddings = 512
self.type_vocab_size = 16
self.type_sequence_label_size = 2
self.initializer_range = 0.02
self.num_labels = 3
self.num_choices = 4
self.scope = None
self.attention_window = 4
# `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
# [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention
# returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1]
# because its local attention only attends to `self.attention_window` and one before and one after
self.key_length = self.attention_window + 2
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = LongformerConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
attention_window=self.attention_window,
)
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def create_and_check_attention_mask_determinism(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFLongformerModel(config=config)
attention_mask = tf.ones(input_ids.shape, dtype=tf.int64)
output_with_mask = model(input_ids, attention_mask=attention_mask)[0]
output_without_mask = model(input_ids)[0]
tf.debugging.assert_near(output_with_mask[0, 0, :5], output_without_mask[0, 0, :5], rtol=1e-4)
def create_and_check_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.return_dict = True
model = TFLongformerModel(config=config)
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
result = model(input_ids, token_type_ids=token_type_ids)
result = model(input_ids)
self.parent.assertListEqual(
shape_list(result.last_hidden_state), [self.batch_size, self.seq_length, self.hidden_size]
)
self.parent.assertListEqual(shape_list(result.pooler_output), [self.batch_size, self.hidden_size])
def create_and_check_model_with_global_attention_mask(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.return_dict = True
model = TFLongformerModel(config=config)
half_input_mask_length = shape_list(input_mask)[-1] // 2
global_attention_mask = tf.concat(
[
tf.zeros_like(input_mask)[:, :half_input_mask_length],
tf.ones_like(input_mask)[:, half_input_mask_length:],
],
axis=-1,
)
result = model(
input_ids,
attention_mask=input_mask,
global_attention_mask=global_attention_mask,
token_type_ids=token_type_ids,
)
result = model(input_ids, token_type_ids=token_type_ids, global_attention_mask=global_attention_mask)
result = model(input_ids, global_attention_mask=global_attention_mask)
self.parent.assertListEqual(
shape_list(result.last_hidden_state), [self.batch_size, self.seq_length, self.hidden_size]
)
self.parent.assertListEqual(shape_list(result.pooler_output), [self.batch_size, self.hidden_size])
def create_and_check_for_masked_lm(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.return_dict = True
model = TFLongformerForMaskedLM(config=config)
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertListEqual(shape_list(result.logits), [self.batch_size, self.seq_length, self.vocab_size])
def create_and_check_for_question_answering(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.return_dict = True
model = TFLongformerForQuestionAnswering(config=config)
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
start_positions=sequence_labels,
end_positions=sequence_labels,
)
self.parent.assertListEqual(shape_list(result.start_logits), [self.batch_size, self.seq_length])
self.parent.assertListEqual(shape_list(result.end_logits), [self.batch_size, self.seq_length])
def create_and_check_for_sequence_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = TFLongformerForSequenceClassification(config=config)
output = model(
input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels
).logits
self.parent.assertListEqual(shape_list(output), [self.batch_size, self.num_labels])
def create_and_check_for_token_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = TFLongformerForTokenClassification(config=config)
output = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels).logits
self.parent.assertListEqual(shape_list(output), [self.batch_size, self.seq_length, self.num_labels])
def create_and_check_for_multiple_choice(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_choices = self.num_choices
model = TFLongformerForMultipleChoice(config=config)
multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
output = model(
multiple_choice_inputs_ids,
attention_mask=multiple_choice_input_mask,
global_attention_mask=multiple_choice_input_mask,
token_type_ids=multiple_choice_token_type_ids,
labels=choice_labels,
).logits
self.parent.assertListEqual(list(output.shape), [self.batch_size, self.num_choices])
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
# global attention mask has to be partly defined
# to trace all weights
global_attention_mask = tf.concat(
[tf.zeros_like(input_ids)[:, :-1], tf.ones_like(input_ids)[:, -1:]],
axis=-1,
)
inputs_dict = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"attention_mask": input_mask,
"global_attention_mask": global_attention_mask,
}
return config, inputs_dict
def prepare_config_and_inputs_for_question_answering(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
# Replace sep_token_id by some random id
input_ids = tf.where(input_ids == config.sep_token_id, 0, input_ids)
# Make sure there are exactly three sep_token_id
input_ids = tf.concat([input_ids[:, :-3], tf.ones_like(input_ids)[:, -3:] * config.sep_token_id], axis=-1)
input_mask = tf.ones_like(input_ids)
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
@require_tf
class TFLongformerModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(
TFLongformerModel,
TFLongformerForMaskedLM,
TFLongformerForQuestionAnswering,
TFLongformerForSequenceClassification,
TFLongformerForMultipleChoice,
TFLongformerForTokenClassification,
)
if is_tf_available()
else ()
)
pipeline_model_mapping = (
{
"feature-extraction": TFLongformerModel,
"fill-mask": TFLongformerForMaskedLM,
"question-answering": TFLongformerForQuestionAnswering,
"text-classification": TFLongformerForSequenceClassification,
"token-classification": TFLongformerForTokenClassification,
"zero-shot": TFLongformerForSequenceClassification,
}
if is_tf_available()
else {}
)
test_head_masking = False
test_onnx = False
# TODO: Fix the failed tests
def is_pipeline_test_to_skip(
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
):
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("Fast")
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def setUp(self):
self.model_tester = TFLongformerModelTester(self)
self.config_tester = ConfigTester(self, config_class=LongformerConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model_attention_mask_determinism(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_attention_mask_determinism(*config_and_inputs)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_global_attention_mask(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_with_global_attention_mask(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
def test_for_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_question_answering()
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
def test_for_sequence_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
def test_for_token_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
def test_for_multiple_choice(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
@unittest.skip("Longformer keeps using potentially symbolic tensors in conditionals and breaks tracing.")
def test_saved_model_creation(self):
pass
@unittest.skip("Longformer keeps using potentially symbolic tensors in conditionals and breaks tracing.")
def test_compile_tf_model(self):
pass
@require_tf
@require_sentencepiece
@require_tokenizers
class TFLongformerModelIntegrationTest(unittest.TestCase):
def _get_hidden_states(self):
return tf.convert_to_tensor(
[
[
[
4.98332758e-01,
2.69175139e00,
-7.08081422e-03,
1.04915401e00,
-1.83476661e00,
7.67220476e-01,
2.98580543e-01,
2.84803992e-02,
],
[
-7.58357372e-01,
4.20635998e-01,
-4.04739919e-02,
1.59924145e-01,
2.05135748e00,
-1.15997978e00,
5.37166397e-01,
2.62873606e-01,
],
[
-1.69438001e00,
4.17574660e-01,
-1.49196962e00,
-1.76483717e00,
-1.94566312e-01,
-1.71183858e00,
7.72903565e-01,
-1.11557056e00,
],
[
5.44028163e-01,
2.05466114e-01,
-3.63045868e-01,
2.41865062e-01,
3.20348382e-01,
-9.05611176e-01,
-1.92690727e-01,
-1.19917547e00,
],
]
],
dtype=tf.float32,
)
def test_diagonalize(self):
hidden_states = self._get_hidden_states()
hidden_states = tf.reshape(hidden_states, (1, 8, 4)) # set seq length = 8, hidden dim = 4
chunked_hidden_states = TFLongformerSelfAttention._chunk(hidden_states, window_overlap=2)
window_overlap_size = shape_list(chunked_hidden_states)[2]
self.assertTrue(window_overlap_size == 4)
padded_hidden_states = TFLongformerSelfAttention._pad_and_diagonalize(chunked_hidden_states)
self.assertTrue(
shape_list(padded_hidden_states)[-1] == shape_list(chunked_hidden_states)[-1] + window_overlap_size - 1
)
# first row => [0.4983, 2.6918, -0.0071, 1.0492, 0.0000, 0.0000, 0.0000]
tf.debugging.assert_near(padded_hidden_states[0, 0, 0, :4], chunked_hidden_states[0, 0, 0], rtol=1e-3)
tf.debugging.assert_near(padded_hidden_states[0, 0, 0, 4:], tf.zeros((3,), dtype=tf.float32), rtol=1e-3)
# last row => [0.0000, 0.0000, 0.0000, 2.0514, -1.1600, 0.5372, 0.2629]
tf.debugging.assert_near(padded_hidden_states[0, 0, -1, 3:], chunked_hidden_states[0, 0, -1], rtol=1e-3)
tf.debugging.assert_near(padded_hidden_states[0, 0, -1, :3], tf.zeros((3,), dtype=tf.float32), rtol=1e-3)
def test_pad_and_transpose_last_two_dims(self):
hidden_states = self._get_hidden_states()
self.assertEqual(shape_list(hidden_states), [1, 4, 8])
# pad along seq length dim
paddings = tf.constant([[0, 0], [0, 0], [0, 1], [0, 0]], dtype=tf.int64)
hidden_states = TFLongformerSelfAttention._chunk(hidden_states, window_overlap=2)
padded_hidden_states = TFLongformerSelfAttention._pad_and_transpose_last_two_dims(hidden_states, paddings)
self.assertTrue(shape_list(padded_hidden_states) == [1, 1, 8, 5])
expected_added_dim = tf.zeros((5,), dtype=tf.float32)
tf.debugging.assert_near(expected_added_dim, padded_hidden_states[0, 0, -1, :], rtol=1e-6)
tf.debugging.assert_near(
hidden_states[0, 0, -1, :], tf.reshape(padded_hidden_states, (1, -1))[0, 24:32], rtol=1e-6
)
def test_mask_invalid_locations(self):
hidden_states = self._get_hidden_states()
batch_size = 1
seq_length = 8
hidden_size = 4
hidden_states = tf.reshape(hidden_states, (batch_size, seq_length, hidden_size))
hidden_states = TFLongformerSelfAttention._chunk(hidden_states, window_overlap=2)
hid_states_1 = TFLongformerSelfAttention._mask_invalid_locations(hidden_states, 1)
hid_states_2 = TFLongformerSelfAttention._mask_invalid_locations(hidden_states, 2)
hid_states_3 = TFLongformerSelfAttention._mask_invalid_locations(hidden_states[:, :, :, :3], 2)
hid_states_4 = TFLongformerSelfAttention._mask_invalid_locations(hidden_states[:, :, 2:, :], 2)
self.assertTrue(tf.math.reduce_sum(tf.cast(tf.math.is_inf(hid_states_1), tf.int64)) == 8)
self.assertTrue(tf.math.reduce_sum(tf.cast(tf.math.is_inf(hid_states_2), tf.int64)) == 24)
self.assertTrue(tf.math.reduce_sum(tf.cast(tf.math.is_inf(hid_states_3), tf.int64)) == 24)
self.assertTrue(tf.math.reduce_sum(tf.cast(tf.math.is_inf(hid_states_4), tf.int64)) == 12)
def test_chunk(self):
hidden_states = self._get_hidden_states()
batch_size = 1
seq_length = 8
hidden_size = 4
hidden_states = tf.reshape(hidden_states, (batch_size, seq_length, hidden_size))
chunked_hidden_states = TFLongformerSelfAttention._chunk(hidden_states, window_overlap=2)
# expected slices across chunk and seq length dim
expected_slice_along_seq_length = tf.convert_to_tensor([0.4983, -0.7584, -1.6944], dtype=tf.float32)
expected_slice_along_chunk = tf.convert_to_tensor([0.4983, -1.8348, -0.7584, 2.0514], dtype=tf.float32)
self.assertTrue(shape_list(chunked_hidden_states) == [1, 3, 4, 4])
tf.debugging.assert_near(
chunked_hidden_states[0, :, 0, 0], expected_slice_along_seq_length, rtol=1e-3, atol=1e-4
)
tf.debugging.assert_near(chunked_hidden_states[0, 0, :, 0], expected_slice_along_chunk, rtol=1e-3, atol=1e-4)
def test_layer_local_attn(self):
model = TFLongformerModel.from_pretrained("patrickvonplaten/longformer-random-tiny")
layer = model.longformer.encoder.layer[0].attention.self_attention
hidden_states = self._get_hidden_states()
batch_size, seq_length, hidden_size = hidden_states.shape
attention_mask = tf.zeros((batch_size, seq_length), dtype=tf.float32)
is_index_global_attn = tf.math.greater(attention_mask, 1)
is_global_attn = tf.math.reduce_any(is_index_global_attn)
attention_mask = tf.where(tf.range(4)[None, :, None, None] > 1, -10000.0, attention_mask[:, :, None, None])
is_index_masked = tf.math.less(attention_mask[:, :, 0, 0], 0)
layer_head_mask = None
output_hidden_states = layer(
[hidden_states, attention_mask, layer_head_mask, is_index_masked, is_index_global_attn, is_global_attn]
)[0]
expected_slice = tf.convert_to_tensor(
[0.00188, 0.012196, -0.017051, -0.025571, -0.02996, 0.017297, -0.011521, 0.004848], dtype=tf.float32
)
self.assertEqual(output_hidden_states.shape, (1, 4, 8))
tf.debugging.assert_near(output_hidden_states[0, 1], expected_slice, rtol=1e-3, atol=1e-4)
def test_layer_global_attn(self):
model = TFLongformerModel.from_pretrained("patrickvonplaten/longformer-random-tiny")
layer = model.longformer.encoder.layer[0].attention.self_attention
hidden_states = self._get_hidden_states()
hidden_states = tf.concat([self._get_hidden_states(), self._get_hidden_states() - 0.5], axis=0)
batch_size, seq_length, hidden_size = hidden_states.shape
# create attn mask
attention_mask_1 = tf.zeros((1, 1, 1, seq_length), dtype=tf.float32)
attention_mask_2 = tf.zeros((1, 1, 1, seq_length), dtype=tf.float32)
attention_mask_1 = tf.where(tf.range(4)[None, :, None, None] > 1, 10000.0, attention_mask_1)
attention_mask_1 = tf.where(tf.range(4)[None, :, None, None] > 2, -10000.0, attention_mask_1)
attention_mask_2 = tf.where(tf.range(4)[None, :, None, None] > 0, 10000.0, attention_mask_2)
attention_mask = tf.concat([attention_mask_1, attention_mask_2], axis=0)
is_index_masked = tf.math.less(attention_mask[:, :, 0, 0], 0)
is_index_global_attn = tf.math.greater(attention_mask[:, :, 0, 0], 0)
is_global_attn = tf.math.reduce_any(is_index_global_attn)
layer_head_mask = None
output_hidden_states = layer(
[
hidden_states,
-tf.math.abs(attention_mask),
layer_head_mask,
is_index_masked,
is_index_global_attn,
is_global_attn,
]
)[0]
self.assertEqual(output_hidden_states.shape, (2, 4, 8))
expected_slice_0 = tf.convert_to_tensor(
[-0.06508, -0.039306, 0.030934, -0.03417, -0.00656, -0.01553, -0.02088, -0.04938], dtype=tf.float32
)
expected_slice_1 = tf.convert_to_tensor(
[-0.04055, -0.038399, 0.0396, -0.03735, -0.03415, 0.01357, 0.00145, -0.05709], dtype=tf.float32
)
tf.debugging.assert_near(output_hidden_states[0, 2], expected_slice_0, rtol=1e-3, atol=1e-4)
tf.debugging.assert_near(output_hidden_states[1, -2], expected_slice_1, rtol=1e-3, atol=1e-4)
def test_layer_attn_probs(self):
model = TFLongformerModel.from_pretrained("patrickvonplaten/longformer-random-tiny")
layer = model.longformer.encoder.layer[0].attention.self_attention
hidden_states = tf.concat([self._get_hidden_states(), self._get_hidden_states() - 0.5], axis=0)
batch_size, seq_length, hidden_size = hidden_states.shape
# create attn mask
attention_mask_1 = tf.zeros((1, 1, 1, seq_length), dtype=tf.float32)
attention_mask_2 = tf.zeros((1, 1, 1, seq_length), dtype=tf.float32)
attention_mask_1 = tf.where(tf.range(4)[None, :, None, None] > 1, 10000.0, attention_mask_1)
attention_mask_1 = tf.where(tf.range(4)[None, :, None, None] > 2, -10000.0, attention_mask_1)
attention_mask_2 = tf.where(tf.range(4)[None, :, None, None] > 0, 10000.0, attention_mask_2)
attention_mask = tf.concat([attention_mask_1, attention_mask_2], axis=0)
is_index_masked = tf.math.less(attention_mask[:, :, 0, 0], 0)
is_index_global_attn = tf.math.greater(attention_mask[:, :, 0, 0], 0)
is_global_attn = tf.math.reduce_any(is_index_global_attn)
layer_head_mask = None
output_hidden_states, local_attentions, global_attentions = layer(
[
hidden_states,
-tf.math.abs(attention_mask),
layer_head_mask,
is_index_masked,
is_index_global_attn,
is_global_attn,
]
)
self.assertEqual(local_attentions.shape, (2, 4, 2, 8))
self.assertEqual(global_attentions.shape, (2, 2, 3, 4))
self.assertTrue((local_attentions[0, 2:4, :, :] == 0).numpy().tolist())
self.assertTrue((local_attentions[1, 1:4, :, :] == 0).numpy().tolist())
#
# The weight of all tokens with local attention must sum to 1.
self.assertTrue(
(tf.math.abs(tf.math.reduce_sum(global_attentions[0, :, :2, :], axis=-1) - 1) < 1e-6).numpy().tolist()
)
self.assertTrue(
(tf.math.abs(tf.math.reduce_sum(global_attentions[1, :, :1, :], axis=-1) - 1) < 1e-6).numpy().tolist()
)
tf.debugging.assert_near(
local_attentions[0, 0, 0, :],
tf.convert_to_tensor([0.3328, 0.0000, 0.0000, 0.0000, 0.0000, 0.3355, 0.3318, 0.0000], dtype=tf.float32),
rtol=1e-3,
atol=1e-4,
)
tf.debugging.assert_near(
local_attentions[1, 0, 0, :],
tf.convert_to_tensor([0.2492, 0.2502, 0.2502, 0.0000, 0.0000, 0.2505, 0.0000, 0.0000], dtype=tf.float32),
rtol=1e-3,
atol=1e-4,
)
# All the global attention weights must sum to 1.
self.assertTrue((tf.math.abs(tf.math.reduce_sum(global_attentions, axis=-1) - 1) < 1e-6).numpy().tolist())
tf.debugging.assert_near(
global_attentions[0, 0, 1, :],
tf.convert_to_tensor([0.2500, 0.2500, 0.2500, 0.2500], dtype=tf.float32),
rtol=1e-3,
atol=1e-4,
)
tf.debugging.assert_near(
global_attentions[1, 0, 0, :],
tf.convert_to_tensor([0.2497, 0.2500, 0.2499, 0.2504], dtype=tf.float32),
rtol=1e-3,
atol=1e-4,
)
@slow
def test_inference_no_head(self):
model = TFLongformerModel.from_pretrained("allenai/longformer-base-4096")
# 'Hello world!'
input_ids = tf.convert_to_tensor([[0, 20920, 232, 328, 1437, 2]], dtype=tf.int64)
attention_mask = tf.ones(shape_list(input_ids), dtype=tf.int64)
output = model(input_ids, attention_mask=attention_mask)[0]
output_without_mask = model(input_ids)[0]
expected_output_slice = tf.convert_to_tensor([0.0549, 0.1087, -0.1119, -0.0368, 0.0250], dtype=tf.float32)
tf.debugging.assert_near(output[0, 0, -5:], expected_output_slice, rtol=1e-3, atol=1e-4)
tf.debugging.assert_near(output_without_mask[0, 0, -5:], expected_output_slice, rtol=1e-3, atol=1e-4)
@slow
def test_inference_no_head_long(self):
model = TFLongformerModel.from_pretrained("allenai/longformer-base-4096")
# 'Hello world! ' repeated 1000 times
input_ids = tf.convert_to_tensor([[0] + [20920, 232, 328, 1437] * 1000 + [2]], dtype=tf.int64)
attention_mask = tf.ones(shape_list(input_ids), dtype=tf.int64)
global_attention_mask = tf.zeros(shape_list(input_ids), dtype=tf.int64)
# Set global attention on a few random positions
global_attention_mask = tf.tensor_scatter_nd_update(
global_attention_mask,
tf.constant([[0, 1], [0, 4], [0, 21]], dtype=tf.int64),
tf.constant([1, 1, 1], dtype=tf.int64),
)
output = model(input_ids, attention_mask=attention_mask, global_attention_mask=global_attention_mask)[0]
expected_output_sum = tf.constant(74585.875)
expected_output_mean = tf.constant(0.024267)
# assert close
tf.debugging.assert_near(tf.reduce_sum(output), expected_output_sum, rtol=1e-4, atol=1e-4)
tf.debugging.assert_near(tf.reduce_mean(output), expected_output_mean, rtol=1e-4, atol=1e-4)
@slow
def test_inference_masked_lm_long(self):
model = TFLongformerForMaskedLM.from_pretrained("allenai/longformer-base-4096")
# 'Hello world! ' repeated 1000 times
input_ids = tf.convert_to_tensor([[0] + [20920, 232, 328, 1437] * 1000 + [2]], dtype=tf.int64)
output = model(input_ids, labels=input_ids)
loss = output.loss
prediction_scores = output.logits
expected_loss = tf.constant(0.0073798)
expected_prediction_scores_sum = tf.constant(-610476600.0)
expected_prediction_scores_mean = tf.constant(-3.03477)
# assert close
tf.debugging.assert_near(tf.reduce_mean(loss), expected_loss, rtol=1e-4, atol=1e-4)
tf.debugging.assert_near(
tf.reduce_sum(prediction_scores), expected_prediction_scores_sum, rtol=1e-4, atol=1e-4
)
tf.debugging.assert_near(
tf.reduce_mean(prediction_scores), expected_prediction_scores_mean, rtol=1e-4, atol=1e-4
)
@slow
def test_inference_masked_lm(self):
model = TFLongformerForMaskedLM.from_pretrained("lysandre/tiny-longformer-random")
input_ids = tf.constant([[0, 1, 2, 3, 4, 5]])
output = model(input_ids)[0]
expected_shape = [1, 6, 10]
self.assertEqual(output.shape, expected_shape)
print(output[:, :3, :3])
expected_slice = tf.constant(
[
[
[-0.04926379, 0.0367098, 0.02099686],
[0.03940692, 0.01547744, -0.01448723],
[0.03495252, -0.05900355, -0.01675752],
]
]
)
tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=1e-4)
| transformers-main | tests/models/longformer/test_modeling_tf_longformer.py |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import shutil
import tempfile
import unittest
from typing import List
import numpy as np
from transformers import PreTrainedTokenizer, PreTrainedTokenizerBase, PreTrainedTokenizerFast
from transformers.models.layoutxlm import LayoutXLMTokenizer, LayoutXLMTokenizerFast
from transformers.testing_utils import (
require_pytesseract,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from transformers.utils import FEATURE_EXTRACTOR_NAME, cached_property, is_pytesseract_available
if is_pytesseract_available():
from PIL import Image
from transformers import LayoutLMv2ImageProcessor, LayoutXLMProcessor
@require_pytesseract
@require_sentencepiece
@require_tokenizers
class LayoutXLMProcessorTest(unittest.TestCase):
tokenizer_class = LayoutXLMTokenizer
rust_tokenizer_class = LayoutXLMTokenizerFast
def setUp(self):
image_processor_map = {
"do_resize": True,
"size": 224,
"apply_ocr": True,
}
self.tmpdirname = tempfile.mkdtemp()
self.feature_extraction_file = os.path.join(self.tmpdirname, FEATURE_EXTRACTOR_NAME)
with open(self.feature_extraction_file, "w", encoding="utf-8") as fp:
fp.write(json.dumps(image_processor_map) + "\n")
# taken from `test_tokenization_layoutxlm.LayoutXLMTokenizationTest.test_save_pretrained`
self.tokenizer_pretrained_name = "hf-internal-testing/tiny-random-layoutxlm"
def get_tokenizer(self, **kwargs) -> PreTrainedTokenizer:
return self.tokenizer_class.from_pretrained(self.tokenizer_pretrained_name, **kwargs)
def get_rust_tokenizer(self, **kwargs) -> PreTrainedTokenizerFast:
return self.rust_tokenizer_class.from_pretrained(self.tokenizer_pretrained_name, **kwargs)
def get_tokenizers(self, **kwargs) -> List[PreTrainedTokenizerBase]:
return [self.get_tokenizer(**kwargs), self.get_rust_tokenizer(**kwargs)]
def get_image_processor(self, **kwargs):
return LayoutLMv2ImageProcessor.from_pretrained(self.tmpdirname, **kwargs)
def tearDown(self):
shutil.rmtree(self.tmpdirname)
def prepare_image_inputs(self):
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
or a list of PyTorch tensors if one specifies torchify=True.
"""
image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)]
image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]
return image_inputs
def test_save_load_pretrained_default(self):
image_processor = self.get_image_processor()
tokenizers = self.get_tokenizers()
for tokenizer in tokenizers:
processor = LayoutXLMProcessor(image_processor=image_processor, tokenizer=tokenizer)
processor.save_pretrained(self.tmpdirname)
processor = LayoutXLMProcessor.from_pretrained(self.tmpdirname)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab())
self.assertIsInstance(processor.tokenizer, (LayoutXLMTokenizer, LayoutXLMTokenizerFast))
self.assertEqual(processor.image_processor.to_json_string(), image_processor.to_json_string())
self.assertIsInstance(processor.image_processor, LayoutLMv2ImageProcessor)
def test_save_load_pretrained_additional_features(self):
processor = LayoutXLMProcessor(image_processor=self.get_image_processor(), tokenizer=self.get_tokenizer())
processor.save_pretrained(self.tmpdirname)
# slow tokenizer
tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
image_processor_add_kwargs = self.get_image_processor(do_resize=False, size=30)
processor = LayoutXLMProcessor.from_pretrained(
self.tmpdirname,
use_fast=False,
bos_token="(BOS)",
eos_token="(EOS)",
do_resize=False,
size=30,
)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer, LayoutXLMTokenizer)
self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string())
self.assertIsInstance(processor.image_processor, LayoutLMv2ImageProcessor)
# fast tokenizer
tokenizer_add_kwargs = self.get_rust_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
image_processor_add_kwargs = self.get_image_processor(do_resize=False, size=30)
processor = LayoutXLMProcessor.from_pretrained(
self.tmpdirname, use_xlm=True, bos_token="(BOS)", eos_token="(EOS)", do_resize=False, size=30
)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer, LayoutXLMTokenizerFast)
self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string())
self.assertIsInstance(processor.image_processor, LayoutLMv2ImageProcessor)
def test_model_input_names(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = LayoutXLMProcessor(tokenizer=tokenizer, image_processor=image_processor)
input_str = "lower newer"
image_input = self.prepare_image_inputs()
# add extra args
inputs = processor(text=input_str, images=image_input, return_codebook_pixels=False, return_image_mask=False)
self.assertListEqual(list(inputs.keys()), processor.model_input_names)
@slow
def test_overflowing_tokens(self):
# In the case of overflowing tokens, test that we still have 1-to-1 mapping between the images and input_ids (sequences that are too long are broken down into multiple sequences).
from datasets import load_dataset
# set up
datasets = load_dataset("nielsr/funsd")
processor = LayoutXLMProcessor.from_pretrained("microsoft/layoutxlm-base", apply_ocr=False)
def preprocess_data(examples):
images = [Image.open(path).convert("RGB") for path in examples["image_path"]]
words = examples["words"]
boxes = examples["bboxes"]
word_labels = examples["ner_tags"]
encoded_inputs = processor(
images,
words,
boxes=boxes,
word_labels=word_labels,
max_length=512,
padding="max_length",
truncation=True,
return_overflowing_tokens=True,
stride=50,
return_offsets_mapping=True,
return_tensors="pt",
)
return encoded_inputs
train_data = preprocess_data(datasets["train"])
self.assertEqual(len(train_data["image"]), len(train_data["input_ids"]))
# different use cases tests
@require_sentencepiece
@require_torch
@require_pytesseract
class LayoutXLMProcessorIntegrationTests(unittest.TestCase):
@cached_property
def get_images(self):
# we verify our implementation on 2 document images from the DocVQA dataset
from datasets import load_dataset
ds = load_dataset("hf-internal-testing/fixtures_docvqa", split="test")
image_1 = Image.open(ds[0]["file"]).convert("RGB")
image_2 = Image.open(ds[1]["file"]).convert("RGB")
return image_1, image_2
@cached_property
def get_tokenizers(self):
slow_tokenizer = LayoutXLMTokenizer.from_pretrained("microsoft/layoutxlm-base")
fast_tokenizer = LayoutXLMTokenizerFast.from_pretrained("microsoft/layoutxlm-base")
return [slow_tokenizer, fast_tokenizer]
@slow
def test_processor_case_1(self):
# case 1: document image classification (training, inference) + token classification (inference), apply_ocr = True
image_processor = LayoutLMv2ImageProcessor()
tokenizers = self.get_tokenizers
images = self.get_images
for tokenizer in tokenizers:
processor = LayoutXLMProcessor(image_processor=image_processor, tokenizer=tokenizer)
# not batched
input_feat_extract = image_processor(images[0], return_tensors="pt")
input_processor = processor(images[0], return_tensors="pt")
# verify keys
expected_keys = ["attention_mask", "bbox", "image", "input_ids"]
actual_keys = sorted(input_processor.keys())
self.assertListEqual(actual_keys, expected_keys)
# verify image
self.assertAlmostEqual(
input_feat_extract["pixel_values"].sum(), input_processor["image"].sum(), delta=1e-2
)
# verify input_ids
# this was obtained with Tesseract 4.1.1
# fmt: off
expected_decoding = "<s> 11:14 to 11:39 a.m 11:39 to 11:44 a.m. 11:44 a.m. to 12:25 p.m. 12:25 to 12:58 p.m. 12:58 to 4:00 p.m. 2:00 to 5:00 p.m. Coffee Break Coffee will be served for men and women in the lobby adjacent to exhibit area. Please move into exhibit area. (Exhibits Open) TRRF GENERAL SESSION (PART |) Presiding: Lee A. Waller TRRF Vice President “Introductory Remarks” Lee A. Waller, TRRF Vice Presi- dent Individual Interviews with TRRF Public Board Members and Sci- entific Advisory Council Mem- bers Conducted by TRRF Treasurer Philip G. Kuehn to get answers which the public refrigerated warehousing industry is looking for. Plus questions from the floor. Dr. Emil M. Mrak, University of Cal- ifornia, Chairman, TRRF Board; Sam R. Cecil, University of Georgia College of Agriculture; Dr. Stanley Charm, Tufts University School of Medicine; Dr. Robert H. Cotton, ITT Continental Baking Company; Dr. Owen Fennema, University of Wis- consin; Dr. Robert E. Hardenburg, USDA. Questions and Answers Exhibits Open Capt. Jack Stoney Room TRRF Scientific Advisory Council Meeting Ballroom Foyer</s>" # noqa: E231
# fmt: on
decoding = processor.decode(input_processor.input_ids.squeeze().tolist())
self.assertSequenceEqual(decoding, expected_decoding)
# batched
input_feat_extract = image_processor(images, return_tensors="pt")
input_processor = processor(images, padding=True, return_tensors="pt")
# verify keys
expected_keys = ["attention_mask", "bbox", "image", "input_ids"]
actual_keys = sorted(input_processor.keys())
self.assertListEqual(actual_keys, expected_keys)
# verify images
self.assertAlmostEqual(
input_feat_extract["pixel_values"].sum(), input_processor["image"].sum(), delta=1e-2
)
# verify input_ids
# this was obtained with Tesseract 4.1.1
# fmt: off
expected_decoding = "<s> 7 ITC Limited REPORT AND ACCOUNTS 2013 ITC’s Brands: An Asset for the Nation The consumer needs and aspirations they fulfil, the benefit they generate for millions across ITC’s value chains, the future-ready capabilities that support them, and the value that they create for the country, have made ITC’s brands national assets, adding to India’s competitiveness. It is ITC’s aspiration to be the No 1 FMCG player in the country, driven by its new FMCG businesses. A recent Nielsen report has highlighted that ITC's new FMCG businesses are the fastest growing among the top consumer goods companies operating in India. ITC takes justifiable pride that, along with generating economic value, these celebrated Indian brands also drive the creation of larger societal capital through the virtuous cycle of sustainable and inclusive growth. DI WILLS * ; LOVE DELIGHTFULLY SOFT SKIN? aia Ans Source: https://www.industrydocuments.ucsf.edu/docs/snbx0223</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>" # noqa: E231
# fmt: on
decoding = processor.decode(input_processor.input_ids[1].tolist())
self.assertSequenceEqual(decoding, expected_decoding)
@slow
def test_processor_case_2(self):
# case 2: document image classification (training, inference) + token classification (inference), apply_ocr=False
image_processor = LayoutLMv2ImageProcessor(apply_ocr=False)
tokenizers = self.get_tokenizers
images = self.get_images
for tokenizer in tokenizers:
processor = LayoutXLMProcessor(image_processor=image_processor, tokenizer=tokenizer)
# not batched
words = ["hello", "world"]
boxes = [[1, 2, 3, 4], [5, 6, 7, 8]]
input_processor = processor(images[0], words, boxes=boxes, return_tensors="pt")
# verify keys
expected_keys = ["input_ids", "bbox", "attention_mask", "image"]
actual_keys = list(input_processor.keys())
for key in expected_keys:
self.assertIn(key, actual_keys)
# verify input_ids
expected_decoding = "<s> hello world</s>"
decoding = processor.decode(input_processor.input_ids.squeeze().tolist())
self.assertSequenceEqual(decoding, expected_decoding)
# batched
words = [["hello", "world"], ["my", "name", "is", "niels"]]
boxes = [[[1, 2, 3, 4], [5, 6, 7, 8]], [[3, 2, 5, 1], [6, 7, 4, 2], [3, 9, 2, 4], [1, 1, 2, 3]]]
input_processor = processor(images, words, boxes=boxes, padding=True, return_tensors="pt")
# verify keys
expected_keys = ["attention_mask", "bbox", "image", "input_ids"]
actual_keys = sorted(input_processor.keys())
self.assertListEqual(actual_keys, expected_keys)
# verify input_ids
expected_decoding = "<s> hello world</s><pad><pad>"
decoding = processor.decode(input_processor.input_ids[0].tolist())
self.assertSequenceEqual(decoding, expected_decoding)
# verify bbox
expected_bbox = [
[0, 0, 0, 0],
[3, 2, 5, 1],
[6, 7, 4, 2],
[3, 9, 2, 4],
[1, 1, 2, 3],
[1, 1, 2, 3],
[1000, 1000, 1000, 1000],
]
self.assertListEqual(input_processor.bbox[1].tolist(), expected_bbox)
@slow
def test_processor_case_3(self):
# case 3: token classification (training), apply_ocr=False
image_processor = LayoutLMv2ImageProcessor(apply_ocr=False)
tokenizers = self.get_tokenizers
images = self.get_images
for tokenizer in tokenizers:
processor = LayoutXLMProcessor(image_processor=image_processor, tokenizer=tokenizer)
# not batched
words = ["weirdly", "world"]
boxes = [[1, 2, 3, 4], [5, 6, 7, 8]]
word_labels = [1, 2]
input_processor = processor(images[0], words, boxes=boxes, word_labels=word_labels, return_tensors="pt")
# verify keys
expected_keys = ["attention_mask", "bbox", "image", "input_ids", "labels"]
actual_keys = sorted(input_processor.keys())
self.assertListEqual(actual_keys, expected_keys)
# verify input_ids
expected_decoding = "<s> weirdly world</s>"
decoding = processor.decode(input_processor.input_ids.squeeze().tolist())
self.assertSequenceEqual(decoding, expected_decoding)
# verify labels
expected_labels = [-100, 1, -100, 2, -100]
self.assertListEqual(input_processor.labels.squeeze().tolist(), expected_labels)
# batched
words = [["hello", "world"], ["my", "name", "is", "niels"]]
boxes = [[[1, 2, 3, 4], [5, 6, 7, 8]], [[3, 2, 5, 1], [6, 7, 4, 2], [3, 9, 2, 4], [1, 1, 2, 3]]]
word_labels = [[1, 2], [6, 3, 10, 2]]
input_processor = processor(
images, words, boxes=boxes, word_labels=word_labels, padding=True, return_tensors="pt"
)
# verify keys
expected_keys = ["attention_mask", "bbox", "image", "input_ids", "labels"]
actual_keys = sorted(input_processor.keys())
self.assertListEqual(actual_keys, expected_keys)
# verify input_ids
expected_decoding = "<s> my name is niels</s>"
decoding = processor.decode(input_processor.input_ids[1].tolist())
self.assertSequenceEqual(decoding, expected_decoding)
# verify bbox
expected_bbox = [
[0, 0, 0, 0],
[3, 2, 5, 1],
[6, 7, 4, 2],
[3, 9, 2, 4],
[1, 1, 2, 3],
[1, 1, 2, 3],
[1000, 1000, 1000, 1000],
]
self.assertListEqual(input_processor.bbox[1].tolist(), expected_bbox)
# verify labels
expected_labels = [-100, 6, 3, 10, 2, -100, -100]
self.assertListEqual(input_processor.labels[1].tolist(), expected_labels)
@slow
def test_processor_case_4(self):
# case 4: visual question answering (inference), apply_ocr=True
image_processor = LayoutLMv2ImageProcessor()
tokenizers = self.get_tokenizers
images = self.get_images
for tokenizer in tokenizers:
processor = LayoutXLMProcessor(image_processor=image_processor, tokenizer=tokenizer)
# not batched
question = "What's his name?"
input_processor = processor(images[0], question, return_tensors="pt")
# verify keys
expected_keys = ["attention_mask", "bbox", "image", "input_ids"]
actual_keys = sorted(input_processor.keys())
self.assertListEqual(actual_keys, expected_keys)
# verify input_ids
# this was obtained with Tesseract 4.1.1
# fmt: off
expected_decoding = "<s> What's his name?</s></s> 11:14 to 11:39 a.m 11:39 to 11:44 a.m. 11:44 a.m. to 12:25 p.m. 12:25 to 12:58 p.m. 12:58 to 4:00 p.m. 2:00 to 5:00 p.m. Coffee Break Coffee will be served for men and women in the lobby adjacent to exhibit area. Please move into exhibit area. (Exhibits Open) TRRF GENERAL SESSION (PART |) Presiding: Lee A. Waller TRRF Vice President “Introductory Remarks” Lee A. Waller, TRRF Vice Presi- dent Individual Interviews with TRRF Public Board Members and Sci- entific Advisory Council Mem- bers Conducted by TRRF Treasurer Philip G. Kuehn to get answers which the public refrigerated warehousing industry is looking for. Plus questions from the floor. Dr. Emil M. Mrak, University of Cal- ifornia, Chairman, TRRF Board; Sam R. Cecil, University of Georgia College of Agriculture; Dr. Stanley Charm, Tufts University School of Medicine; Dr. Robert H. Cotton, ITT Continental Baking Company; Dr. Owen Fennema, University of Wis- consin; Dr. Robert E. Hardenburg, USDA. Questions and Answers Exhibits Open Capt. Jack Stoney Room TRRF Scientific Advisory Council Meeting Ballroom Foyer</s>" # noqa: E231
# fmt: on
decoding = processor.decode(input_processor.input_ids.squeeze().tolist())
self.assertSequenceEqual(decoding, expected_decoding)
# batched
questions = ["How old is he?", "what's the time"]
input_processor = processor(
images, questions, padding="max_length", max_length=20, truncation=True, return_tensors="pt"
)
# verify keys
expected_keys = ["attention_mask", "bbox", "image", "input_ids"]
actual_keys = sorted(input_processor.keys())
self.assertListEqual(actual_keys, expected_keys)
# verify input_ids
# this was obtained with Tesseract 4.1.1
expected_decoding = "<s> what's the time</s></s> 7 ITC Limited REPORT AND ACCOUNTS 2013</s>"
decoding = processor.decode(input_processor.input_ids[1].tolist())
self.assertSequenceEqual(decoding, expected_decoding)
# verify bbox
# fmt: off
expected_bbox = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [1000, 1000, 1000, 1000], [1000, 1000, 1000, 1000], [0, 45, 67, 80], [72, 56, 109, 67], [72, 56, 109, 67], [116, 56, 189, 67], [198, 59, 253, 66], [257, 59, 285, 66], [289, 59, 365, 66], [289, 59, 365, 66], [289, 59, 365, 66], [289, 59, 365, 66], [372, 59, 407, 66], [1000, 1000, 1000, 1000]] # noqa: E231
# fmt: on
self.assertListEqual(input_processor.bbox[1].tolist(), expected_bbox)
@slow
def test_processor_case_5(self):
# case 5: visual question answering (inference), apply_ocr=False
image_processor = LayoutLMv2ImageProcessor(apply_ocr=False)
tokenizers = self.get_tokenizers
images = self.get_images
for tokenizer in tokenizers:
processor = LayoutXLMProcessor(image_processor=image_processor, tokenizer=tokenizer)
# not batched
question = "What's his name?"
words = ["hello", "world"]
boxes = [[1, 2, 3, 4], [5, 6, 7, 8]]
input_processor = processor(images[0], question, words, boxes, return_tensors="pt")
# verify keys
expected_keys = ["attention_mask", "bbox", "image", "input_ids"]
actual_keys = sorted(input_processor.keys())
self.assertListEqual(actual_keys, expected_keys)
# verify input_ids
expected_decoding = "<s> What's his name?</s></s> hello world</s>"
decoding = processor.decode(input_processor.input_ids.squeeze().tolist())
self.assertSequenceEqual(decoding, expected_decoding)
# batched
questions = ["How old is he?", "what's the time"]
words = [["hello", "world"], ["my", "name", "is", "niels"]]
boxes = [[[1, 2, 3, 4], [5, 6, 7, 8]], [[3, 2, 5, 1], [6, 7, 4, 2], [3, 9, 2, 4], [1, 1, 2, 3]]]
input_processor = processor(images, questions, words, boxes, padding=True, return_tensors="pt")
# verify keys
expected_keys = ["attention_mask", "bbox", "image", "input_ids"]
actual_keys = sorted(input_processor.keys())
self.assertListEqual(actual_keys, expected_keys)
# verify input_ids
expected_decoding = "<s> How old is he?</s></s> hello world</s><pad><pad>"
decoding = processor.decode(input_processor.input_ids[0].tolist())
self.assertSequenceEqual(decoding, expected_decoding)
expected_decoding = "<s> what's the time</s></s> my name is niels</s>"
decoding = processor.decode(input_processor.input_ids[1].tolist())
self.assertSequenceEqual(decoding, expected_decoding)
# verify bbox
expected_bbox = [[6, 7, 4, 2], [3, 9, 2, 4], [1, 1, 2, 3], [1, 1, 2, 3], [1000, 1000, 1000, 1000]]
self.assertListEqual(input_processor.bbox[1].tolist()[-5:], expected_bbox)
| transformers-main | tests/models/layoutxlm/test_processor_layoutxlm.py |
transformers-main | tests/models/layoutxlm/__init__.py |
|
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import shutil
import tempfile
import unittest
from typing import List
from transformers import (
AddedToken,
LayoutXLMTokenizerFast,
SpecialTokensMixin,
is_tf_available,
is_torch_available,
logging,
)
from transformers.models.layoutxlm.tokenization_layoutxlm import LayoutXLMTokenizer
from transformers.testing_utils import (
get_tests_dir,
is_pt_tf_cross_test,
require_pandas,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from ...test_tokenization_common import (
SMALL_TRAINING_CORPUS,
TokenizerTesterMixin,
filter_non_english,
merge_model_tokenizer_mappings,
)
logger = logging.get_logger(__name__)
SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model")
@require_sentencepiece
@require_tokenizers
@require_pandas
class LayoutXLMTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = LayoutXLMTokenizer
rust_tokenizer_class = LayoutXLMTokenizerFast
test_rust_tokenizer = True
from_pretrained_filter = filter_non_english
test_seq2seq = False
test_sentencepiece = True
maxDiff = None
def get_words_and_boxes(self):
words = ["a", "weirdly", "test"]
boxes = [[423, 237, 440, 251], [427, 272, 441, 287], [419, 115, 437, 129]]
return words, boxes
def get_words_and_boxes_batch(self):
words = [["a", "weirdly", "test"], ["hello", "my", "name", "is", "bob"]]
boxes = [
[[423, 237, 440, 251], [427, 272, 441, 287], [419, 115, 437, 129]],
[[961, 885, 992, 912], [256, 38, 330, 58], [256, 38, 330, 58], [336, 42, 353, 57], [34, 42, 66, 69]],
]
return words, boxes
def get_question_words_and_boxes(self):
question = "what's his name?"
words = ["a", "weirdly", "test"]
boxes = [[423, 237, 440, 251], [427, 272, 441, 287], [419, 115, 437, 129]]
return question, words, boxes
def get_question_words_and_boxes_batch(self):
questions = ["what's his name?", "how is he called?"]
words = [["a", "weirdly", "test"], ["what", "a", "laif", "gastn"]]
boxes = [
[[423, 237, 440, 251], [427, 272, 441, 287], [419, 115, 437, 129]],
[[256, 38, 330, 58], [256, 38, 330, 58], [336, 42, 353, 57], [34, 42, 66, 69]],
]
return questions, words, boxes
def setUp(self):
super().setUp()
# We have a SentencePiece fixture for testing
tokenizer = LayoutXLMTokenizer(SAMPLE_VOCAB, keep_accents=True)
tokenizer.save_pretrained(self.tmpdirname)
def get_input_output_texts(self, tokenizer):
input_text = "UNwant\u00E9d,running"
output_text = "unwanted, running"
return input_text, output_text
# override test in `test_tokenization_common.py` because of the required input format of the `__call__`` method of
# this tokenizer
def test_save_sentencepiece_tokenizer(self) -> None:
if not self.test_sentencepiece or not self.test_slow_tokenizer:
return
# We want to verify that we will be able to save the tokenizer even if the original files that were used to
# build the tokenizer have been deleted in the meantime.
words, boxes = self.get_words_and_boxes()
tokenizer_slow_1 = self.get_tokenizer()
encoding_tokenizer_slow_1 = tokenizer_slow_1(
words,
boxes=boxes,
)
tmpdirname_1 = tempfile.mkdtemp()
tmpdirname_2 = tempfile.mkdtemp()
tokenizer_slow_1.save_pretrained(tmpdirname_1)
tokenizer_slow_2 = self.tokenizer_class.from_pretrained(tmpdirname_1)
encoding_tokenizer_slow_2 = tokenizer_slow_2(
words,
boxes=boxes,
)
shutil.rmtree(tmpdirname_1)
tokenizer_slow_2.save_pretrained(tmpdirname_2)
tokenizer_slow_3 = self.tokenizer_class.from_pretrained(tmpdirname_2)
encoding_tokenizer_slow_3 = tokenizer_slow_3(
words,
boxes=boxes,
)
shutil.rmtree(tmpdirname_2)
self.assertEqual(encoding_tokenizer_slow_1, encoding_tokenizer_slow_2)
self.assertEqual(encoding_tokenizer_slow_1, encoding_tokenizer_slow_3)
@slow
def test_sequence_builders(self):
tokenizer = self.tokenizer_class.from_pretrained("microsoft/layoutxlm-base")
question, words, boxes = self.get_question_words_and_boxes()
text = tokenizer.encode(
question.split(),
boxes=[tokenizer.pad_token_box for _ in range(len(question.split()))],
add_special_tokens=False,
)
text_2 = tokenizer.encode(words, boxes=boxes, add_special_tokens=False)
encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2)
assert encoded_pair == [0] + text + [2] + [2] + text_2 + [2]
def test_offsets_with_special_characters(self):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
words, boxes = self.get_words_and_boxes()
words[1] = tokenizer_r.mask_token
tokens = tokenizer_r.encode_plus(
words,
boxes=boxes,
return_attention_mask=False,
return_token_type_ids=False,
return_offsets_mapping=True,
add_special_tokens=True,
)
expected_results = [
((0, 0), tokenizer_r.cls_token),
((0, 1), "▁a"),
((0, 6), tokenizer_r.mask_token),
((0, 4), "▁test"),
((0, 0), tokenizer_r.sep_token),
]
self.assertEqual(
[e[1] for e in expected_results], tokenizer_r.convert_ids_to_tokens(tokens["input_ids"])
)
self.assertEqual([e[0] for e in expected_results], tokens["offset_mapping"])
def test_add_special_tokens(self):
tokenizers: List[LayoutXLMTokenizer] = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
special_token = "[SPECIAL_TOKEN]"
special_token_box = [1000, 1000, 1000, 1000]
tokenizer.add_special_tokens({"cls_token": special_token})
encoded_special_token = tokenizer.encode(
[special_token], boxes=[special_token_box], add_special_tokens=False
)
self.assertEqual(len(encoded_special_token), 1)
decoded = tokenizer.decode(encoded_special_token, skip_special_tokens=True)
self.assertTrue(special_token not in decoded)
def test_add_tokens_tokenizer(self):
tokenizers: List[LayoutXLMTokenizer] = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
vocab_size = tokenizer.vocab_size
all_size = len(tokenizer)
self.assertNotEqual(vocab_size, 0)
# We usually have added tokens from the start in tests because our vocab fixtures are
# smaller than the original vocabs - let's not assert this
# self.assertEqual(vocab_size, all_size)
new_toks = ["aaaaa", "bbbbbb", "cccccccccdddddddd"]
added_toks = tokenizer.add_tokens(new_toks)
vocab_size_2 = tokenizer.vocab_size
all_size_2 = len(tokenizer)
self.assertNotEqual(vocab_size_2, 0)
self.assertEqual(vocab_size, vocab_size_2)
self.assertEqual(added_toks, len(new_toks))
self.assertEqual(all_size_2, all_size + len(new_toks))
words = "aaaaa bbbbbb low cccccccccdddddddd l".split()
boxes = [[1000, 1000, 1000, 1000] for _ in range(len(words))]
tokens = tokenizer.encode(words, boxes=boxes, add_special_tokens=False)
self.assertGreaterEqual(len(tokens), 4)
self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
self.assertGreater(tokens[-2], tokenizer.vocab_size - 1)
new_toks_2 = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"}
added_toks_2 = tokenizer.add_special_tokens(new_toks_2)
vocab_size_3 = tokenizer.vocab_size
all_size_3 = len(tokenizer)
self.assertNotEqual(vocab_size_3, 0)
self.assertEqual(vocab_size, vocab_size_3)
self.assertEqual(added_toks_2, len(new_toks_2))
self.assertEqual(all_size_3, all_size_2 + len(new_toks_2))
words = ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l".split()
boxes = [[1000, 1000, 1000, 1000] for _ in range(len(words))]
tokens = tokenizer.encode(
words,
boxes=boxes,
add_special_tokens=False,
)
self.assertGreaterEqual(len(tokens), 6)
self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
self.assertGreater(tokens[0], tokens[1])
self.assertGreater(tokens[-2], tokenizer.vocab_size - 1)
self.assertGreater(tokens[-2], tokens[-3])
self.assertEqual(tokens[0], tokenizer.eos_token_id)
self.assertEqual(tokens[-2], tokenizer.pad_token_id)
@require_tokenizers
def test_encode_decode_with_spaces(self):
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
words, boxes = self.get_words_and_boxes()
new_toks = [AddedToken("[ABC]", normalized=False), AddedToken("[DEF]", normalized=False)]
tokenizer.add_tokens(new_toks)
input = "[ABC][DEF][ABC][DEF]"
if self.space_between_special_tokens:
output = "[ABC] [DEF] [ABC] [DEF]"
else:
output = input
encoded = tokenizer.encode(input.split(), boxes=boxes, add_special_tokens=False)
decoded = tokenizer.decode(encoded, spaces_between_special_tokens=self.space_between_special_tokens)
self.assertIn(decoded, [output, output.lower()])
def test_encode_plus_with_padding(self):
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
words, boxes = self.get_words_and_boxes()
# check correct behaviour if no pad_token_id exists and add it eventually
self._check_no_pad_token_padding(tokenizer, words)
padding_size = 10
padding_idx = tokenizer.pad_token_id
encoded_sequence = tokenizer.encode_plus(words, boxes=boxes, return_special_tokens_mask=True)
input_ids = encoded_sequence["input_ids"]
special_tokens_mask = encoded_sequence["special_tokens_mask"]
sequence_length = len(input_ids)
# Test 'longest' and 'no_padding' don't do anything
tokenizer.padding_side = "right"
not_padded_sequence = tokenizer.encode_plus(
words,
boxes=boxes,
padding=False,
return_special_tokens_mask=True,
)
not_padded_input_ids = not_padded_sequence["input_ids"]
not_padded_special_tokens_mask = not_padded_sequence["special_tokens_mask"]
not_padded_sequence_length = len(not_padded_input_ids)
self.assertTrue(sequence_length == not_padded_sequence_length)
self.assertTrue(input_ids == not_padded_input_ids)
self.assertTrue(special_tokens_mask == not_padded_special_tokens_mask)
not_padded_sequence = tokenizer.encode_plus(
words,
boxes=boxes,
padding=False,
return_special_tokens_mask=True,
)
not_padded_input_ids = not_padded_sequence["input_ids"]
not_padded_special_tokens_mask = not_padded_sequence["special_tokens_mask"]
not_padded_sequence_length = len(not_padded_input_ids)
self.assertTrue(sequence_length == not_padded_sequence_length)
self.assertTrue(input_ids == not_padded_input_ids)
self.assertTrue(special_tokens_mask == not_padded_special_tokens_mask)
# Test right padding
tokenizer.padding_side = "right"
right_padded_sequence = tokenizer.encode_plus(
words,
boxes=boxes,
max_length=sequence_length + padding_size,
padding="max_length",
return_special_tokens_mask=True,
)
right_padded_input_ids = right_padded_sequence["input_ids"]
right_padded_special_tokens_mask = right_padded_sequence["special_tokens_mask"]
right_padded_sequence_length = len(right_padded_input_ids)
self.assertTrue(sequence_length + padding_size == right_padded_sequence_length)
self.assertTrue(input_ids + [padding_idx] * padding_size == right_padded_input_ids)
self.assertTrue(special_tokens_mask + [1] * padding_size == right_padded_special_tokens_mask)
# Test left padding
tokenizer.padding_side = "left"
left_padded_sequence = tokenizer.encode_plus(
words,
boxes=boxes,
max_length=sequence_length + padding_size,
padding="max_length",
return_special_tokens_mask=True,
)
left_padded_input_ids = left_padded_sequence["input_ids"]
left_padded_special_tokens_mask = left_padded_sequence["special_tokens_mask"]
left_padded_sequence_length = len(left_padded_input_ids)
self.assertTrue(sequence_length + padding_size == left_padded_sequence_length)
self.assertTrue([padding_idx] * padding_size + input_ids == left_padded_input_ids)
self.assertTrue([1] * padding_size + special_tokens_mask == left_padded_special_tokens_mask)
if "token_type_ids" in tokenizer.model_input_names:
token_type_ids = encoded_sequence["token_type_ids"]
left_padded_token_type_ids = left_padded_sequence["token_type_ids"]
right_padded_token_type_ids = right_padded_sequence["token_type_ids"]
assert token_type_ids + [0] * padding_size == right_padded_token_type_ids
assert [0] * padding_size + token_type_ids == left_padded_token_type_ids
if "attention_mask" in tokenizer.model_input_names:
attention_mask = encoded_sequence["attention_mask"]
right_padded_attention_mask = right_padded_sequence["attention_mask"]
left_padded_attention_mask = left_padded_sequence["attention_mask"]
self.assertTrue(attention_mask + [0] * padding_size == right_padded_attention_mask)
self.assertTrue([0] * padding_size + attention_mask == left_padded_attention_mask)
def test_internal_consistency(self):
tokenizers = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
words, boxes = self.get_words_and_boxes()
tokens = []
for word in words:
tokens.extend(tokenizer.tokenize(word))
ids = tokenizer.convert_tokens_to_ids(tokens)
ids_2 = tokenizer.encode(words, boxes=boxes, add_special_tokens=False)
self.assertListEqual(ids, ids_2)
tokens_2 = tokenizer.convert_ids_to_tokens(ids)
self.assertNotEqual(len(tokens_2), 0)
text_2 = tokenizer.decode(ids)
self.assertIsInstance(text_2, str)
output_text = "a weirdly test"
self.assertEqual(text_2, output_text)
def test_mask_output(self):
tokenizers = self.get_tokenizers(fast=False, do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
words, boxes = self.get_words_and_boxes()
if (
tokenizer.build_inputs_with_special_tokens.__qualname__.split(".")[0] != "PreTrainedTokenizer"
and "token_type_ids" in tokenizer.model_input_names
):
information = tokenizer.encode_plus(words, boxes=boxes, add_special_tokens=True)
sequences, mask = information["input_ids"], information["token_type_ids"]
self.assertEqual(len(sequences), len(mask))
def test_number_of_added_tokens(self):
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
# test 1: single sequence
words, boxes = self.get_words_and_boxes()
sequences = tokenizer.encode(words, boxes=boxes, add_special_tokens=False)
attached_sequences = tokenizer.encode(words, boxes=boxes, add_special_tokens=True)
# Method is implemented (e.g. not GPT-2)
if len(attached_sequences) != 2:
self.assertEqual(
tokenizer.num_special_tokens_to_add(pair=False), len(attached_sequences) - len(sequences)
)
# test 2: two sequences
question, words, boxes = self.get_question_words_and_boxes()
sequences = tokenizer.encode(question, words, boxes=boxes, add_special_tokens=False)
attached_sequences = tokenizer.encode(question, words, boxes=boxes, add_special_tokens=True)
# Method is implemented (e.g. not GPT-2)
if len(attached_sequences) != 2:
self.assertEqual(
tokenizer.num_special_tokens_to_add(pair=True), len(attached_sequences) - len(sequences)
)
def test_padding_to_max_length(self):
"""We keep this test for backward compatibility but it should be removed when `pad_to_max_length` will be deprecated"""
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
words, boxes = self.get_words_and_boxes()
padding_size = 10
# check correct behaviour if no pad_token_id exists and add it eventually
self._check_no_pad_token_padding(tokenizer, words)
padding_idx = tokenizer.pad_token_id
# Check that it correctly pads when a maximum length is specified along with the padding flag set to True
tokenizer.padding_side = "right"
encoded_sequence = tokenizer.encode(words, boxes=boxes)
sequence_length = len(encoded_sequence)
# FIXME: the next line should be padding(max_length) to avoid warning
padded_sequence = tokenizer.encode(
words, boxes=boxes, max_length=sequence_length + padding_size, pad_to_max_length=True
)
padded_sequence_length = len(padded_sequence)
assert sequence_length + padding_size == padded_sequence_length
assert encoded_sequence + [padding_idx] * padding_size == padded_sequence
# Check that nothing is done when a maximum length is not specified
encoded_sequence = tokenizer.encode(words, boxes=boxes)
sequence_length = len(encoded_sequence)
tokenizer.padding_side = "right"
padded_sequence_right = tokenizer.encode(words, boxes=boxes, pad_to_max_length=True)
padded_sequence_right_length = len(padded_sequence_right)
assert sequence_length == padded_sequence_right_length
assert encoded_sequence == padded_sequence_right
def test_padding(self, max_length=50):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
self.assertEqual(tokenizer_p.pad_token_id, tokenizer_r.pad_token_id)
pad_token_id = tokenizer_p.pad_token_id
# Encode - Simple input
words, boxes = self.get_words_and_boxes()
input_r = tokenizer_r.encode(words, boxes=boxes, max_length=max_length, pad_to_max_length=True)
input_p = tokenizer_p.encode(words, boxes=boxes, max_length=max_length, pad_to_max_length=True)
self.assert_padded_input_match(input_r, input_p, max_length, pad_token_id)
input_r = tokenizer_r.encode(words, boxes=boxes, max_length=max_length, padding="max_length")
input_p = tokenizer_p.encode(words, boxes=boxes, max_length=max_length, padding="max_length")
self.assert_padded_input_match(input_r, input_p, max_length, pad_token_id)
input_r = tokenizer_r.encode(words, boxes=boxes, padding="longest")
input_p = tokenizer_p.encode(words, boxes=boxes, padding=True)
self.assert_padded_input_match(input_r, input_p, len(input_r), pad_token_id)
# Encode - Pair input
question, words, boxes = self.get_question_words_and_boxes()
input_r = tokenizer_r.encode(
question, words, boxes=boxes, max_length=max_length, pad_to_max_length=True
)
input_p = tokenizer_p.encode(
question, words, boxes=boxes, max_length=max_length, pad_to_max_length=True
)
self.assert_padded_input_match(input_r, input_p, max_length, pad_token_id)
input_r = tokenizer_r.encode(question, words, boxes=boxes, max_length=max_length, padding="max_length")
input_p = tokenizer_p.encode(question, words, boxes=boxes, max_length=max_length, padding="max_length")
self.assert_padded_input_match(input_r, input_p, max_length, pad_token_id)
input_r = tokenizer_r.encode(question, words, boxes=boxes, padding=True)
input_p = tokenizer_p.encode(question, words, boxes=boxes, padding="longest")
self.assert_padded_input_match(input_r, input_p, len(input_r), pad_token_id)
# Encode_plus - Simple input
words, boxes = self.get_words_and_boxes()
input_r = tokenizer_r.encode_plus(words, boxes=boxes, max_length=max_length, pad_to_max_length=True)
input_p = tokenizer_p.encode_plus(words, boxes=boxes, max_length=max_length, pad_to_max_length=True)
self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id)
self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])
input_r = tokenizer_r.encode_plus(words, boxes=boxes, max_length=max_length, padding="max_length")
input_p = tokenizer_p.encode_plus(words, boxes=boxes, max_length=max_length, padding="max_length")
self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id)
self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])
input_r = tokenizer_r.encode_plus(words, boxes=boxes, padding="longest")
input_p = tokenizer_p.encode_plus(words, boxes=boxes, padding=True)
self.assert_padded_input_match(
input_r["input_ids"], input_p["input_ids"], len(input_r["input_ids"]), pad_token_id
)
self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])
# Encode_plus - Pair input
question, words, boxes = self.get_question_words_and_boxes()
input_r = tokenizer_r.encode_plus(
question, words, boxes=boxes, max_length=max_length, pad_to_max_length=True
)
input_p = tokenizer_p.encode_plus(
question, words, boxes=boxes, max_length=max_length, pad_to_max_length=True
)
self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id)
self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])
input_r = tokenizer_r.encode_plus(
question, words, boxes=boxes, max_length=max_length, padding="max_length"
)
input_p = tokenizer_p.encode_plus(
question, words, boxes=boxes, max_length=max_length, padding="max_length"
)
self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id)
self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])
input_r = tokenizer_r.encode_plus(question, words, boxes=boxes, padding="longest")
input_p = tokenizer_p.encode_plus(question, words, boxes=boxes, padding=True)
self.assert_padded_input_match(
input_r["input_ids"], input_p["input_ids"], len(input_r["input_ids"]), pad_token_id
)
self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])
# Batch_encode_plus - Simple input
words, boxes = self.get_words_and_boxes_batch()
input_r = tokenizer_r.batch_encode_plus(
words,
boxes=boxes,
max_length=max_length,
pad_to_max_length=True,
)
input_p = tokenizer_p.batch_encode_plus(
words,
boxes=boxes,
max_length=max_length,
pad_to_max_length=True,
)
self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id)
input_r = tokenizer_r.batch_encode_plus(
words,
boxes=boxes,
max_length=max_length,
padding="max_length",
)
input_p = tokenizer_p.batch_encode_plus(
words,
boxes=boxes,
max_length=max_length,
padding="max_length",
)
self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id)
input_r = tokenizer_r.batch_encode_plus(
words,
boxes=boxes,
max_length=max_length,
padding="longest",
)
input_p = tokenizer_p.batch_encode_plus(
words,
boxes=boxes,
max_length=max_length,
padding=True,
)
self.assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]), pad_token_id)
input_r = tokenizer_r.batch_encode_plus(words, boxes=boxes, padding="longest")
input_p = tokenizer_p.batch_encode_plus(words, boxes=boxes, padding=True)
self.assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]), pad_token_id)
# Batch_encode_plus - Pair input
questions, words, boxes = self.get_question_words_and_boxes_batch()
input_r = tokenizer_r.batch_encode_plus(
list(zip(questions, words)),
is_pair=True,
boxes=boxes,
max_length=max_length,
truncation=True,
padding="max_length",
)
input_p = tokenizer_p.batch_encode_plus(
list(zip(questions, words)),
is_pair=True,
boxes=boxes,
max_length=max_length,
truncation=True,
padding="max_length",
)
self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id)
input_r = tokenizer_r.batch_encode_plus(
list(zip(questions, words)),
is_pair=True,
boxes=boxes,
padding=True,
)
input_p = tokenizer_p.batch_encode_plus(
list(zip(questions, words)),
is_pair=True,
boxes=boxes,
padding="longest",
)
self.assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]), pad_token_id)
# Using pad on single examples after tokenization
words, boxes = self.get_words_and_boxes()
input_r = tokenizer_r.encode_plus(words, boxes=boxes)
input_r = tokenizer_r.pad(input_r)
input_p = tokenizer_r.encode_plus(words, boxes=boxes)
input_p = tokenizer_r.pad(input_p)
self.assert_padded_input_match(
input_r["input_ids"], input_p["input_ids"], len(input_r["input_ids"]), pad_token_id
)
# Using pad on single examples after tokenization
input_r = tokenizer_r.encode_plus(words, boxes=boxes)
input_r = tokenizer_r.pad(input_r, max_length=max_length, padding="max_length")
input_p = tokenizer_r.encode_plus(words, boxes=boxes)
input_p = tokenizer_r.pad(input_p, max_length=max_length, padding="max_length")
self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id)
# Using pad after tokenization
words, boxes = self.get_words_and_boxes_batch()
input_r = tokenizer_r.batch_encode_plus(
words,
boxes=boxes,
)
input_r = tokenizer_r.pad(input_r)
input_p = tokenizer_r.batch_encode_plus(
words,
boxes=boxes,
)
input_p = tokenizer_r.pad(input_p)
self.assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]), pad_token_id)
# Using pad after tokenization
words, boxes = self.get_words_and_boxes_batch()
input_r = tokenizer_r.batch_encode_plus(
words,
boxes=boxes,
)
input_r = tokenizer_r.pad(input_r, max_length=max_length, padding="max_length")
input_p = tokenizer_r.batch_encode_plus(
words,
boxes=boxes,
)
input_p = tokenizer_r.pad(input_p, max_length=max_length, padding="max_length")
self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id)
def test_padding_warning_message_fast_tokenizer(self):
if not self.test_rust_tokenizer:
return
words, boxes = self.get_words_and_boxes_batch()
tokenizer_fast = self.get_rust_tokenizer()
encoding_fast = tokenizer_fast(
words,
boxes=boxes,
)
with self.assertLogs("transformers", level="WARNING") as cm:
tokenizer_fast.pad(encoding_fast)
self.assertEqual(len(cm.records), 1)
self.assertIn(
"Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to"
" encode the text followed by a call to the `pad` method to get a padded encoding.",
cm.records[0].message,
)
if not self.test_slow_tokenizer:
return
tokenizer_slow = self.get_tokenizer()
encoding_slow = tokenizer_slow(
words,
boxes=boxes,
)
with self.assertLogs(level="WARNING") as cm:
# We want to assert there are no warnings, but the 'assertLogs' method does not support that.
# Therefore, we are adding a dummy warning, and then we will assert it is the only warning.
logger.warning("Dummy warning")
tokenizer_slow.pad(encoding_slow)
self.assertEqual(len(cm.records), 1)
self.assertIn(
"Dummy warning",
cm.records[0].message,
)
def test_call(self):
# Tests that all call wrap to encode_plus and batch_encode_plus
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
# Test not batched
words, boxes = self.get_words_and_boxes()
encoded_sequences_1 = tokenizer.encode_plus(words, boxes=boxes)
encoded_sequences_2 = tokenizer(words, boxes=boxes)
self.assertEqual(encoded_sequences_1, encoded_sequences_2)
# Test not batched pairs
question, words, boxes = self.get_question_words_and_boxes()
encoded_sequences_1 = tokenizer.encode_plus(words, boxes=boxes)
encoded_sequences_2 = tokenizer(words, boxes=boxes)
self.assertEqual(encoded_sequences_1, encoded_sequences_2)
# Test batched
words, boxes = self.get_words_and_boxes_batch()
encoded_sequences_1 = tokenizer.batch_encode_plus(words, is_pair=False, boxes=boxes)
encoded_sequences_2 = tokenizer(words, boxes=boxes)
self.assertEqual(encoded_sequences_1, encoded_sequences_2)
def test_batch_encode_plus_batch_sequence_length(self):
# Tests that all encoded values have the correct size
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
words, boxes = self.get_words_and_boxes_batch()
encoded_sequences = [
tokenizer.encode_plus(words_example, boxes=boxes_example)
for words_example, boxes_example in zip(words, boxes)
]
encoded_sequences_batch = tokenizer.batch_encode_plus(words, is_pair=False, boxes=boxes, padding=False)
self.assertListEqual(
encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch)
)
maximum_length = len(
max([encoded_sequence["input_ids"] for encoded_sequence in encoded_sequences], key=len)
)
# check correct behaviour if no pad_token_id exists and add it eventually
self._check_no_pad_token_padding(tokenizer, words)
encoded_sequences_padded = [
tokenizer.encode_plus(
words_example, boxes=boxes_example, max_length=maximum_length, padding="max_length"
)
for words_example, boxes_example in zip(words, boxes)
]
encoded_sequences_batch_padded = tokenizer.batch_encode_plus(
words, is_pair=False, boxes=boxes, padding=True
)
self.assertListEqual(
encoded_sequences_padded,
self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch_padded),
)
# check 'longest' is unsensitive to a max length
encoded_sequences_batch_padded_1 = tokenizer.batch_encode_plus(
words, is_pair=False, boxes=boxes, padding=True
)
encoded_sequences_batch_padded_2 = tokenizer.batch_encode_plus(
words, is_pair=False, boxes=boxes, max_length=maximum_length + 10, padding="longest"
)
for key in encoded_sequences_batch_padded_1.keys():
self.assertListEqual(
encoded_sequences_batch_padded_1[key],
encoded_sequences_batch_padded_2[key],
)
# check 'no_padding' is unsensitive to a max length
encoded_sequences_batch_padded_1 = tokenizer.batch_encode_plus(
words, is_pair=False, boxes=boxes, padding=False
)
encoded_sequences_batch_padded_2 = tokenizer.batch_encode_plus(
words, is_pair=False, boxes=boxes, max_length=maximum_length + 10, padding=False
)
for key in encoded_sequences_batch_padded_1.keys():
self.assertListEqual(
encoded_sequences_batch_padded_1[key],
encoded_sequences_batch_padded_2[key],
)
@unittest.skip("batch_encode_plus does not handle overflowing tokens.")
def test_batch_encode_plus_overflowing_tokens(self):
pass
def test_batch_encode_plus_padding(self):
# Test that padded sequences are equivalent between batch_encode_plus and encode_plus
# Right padding tests
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
words, boxes = self.get_words_and_boxes_batch()
max_length = 100
# check correct behaviour if no pad_token_id exists and add it eventually
self._check_no_pad_token_padding(tokenizer, words)
encoded_sequences = [
tokenizer.encode_plus(
words_example, boxes=boxes_example, max_length=max_length, padding="max_length"
)
for words_example, boxes_example in zip(words, boxes)
]
encoded_sequences_batch = tokenizer.batch_encode_plus(
words, is_pair=False, boxes=boxes, max_length=max_length, padding="max_length"
)
self.assertListEqual(
encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch)
)
# Left padding tests
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
tokenizer.padding_side = "left"
words, boxes = self.get_words_and_boxes_batch()
max_length = 100
# check correct behaviour if no pad_token_id exists and add it eventually
self._check_no_pad_token_padding(tokenizer, words)
encoded_sequences = [
tokenizer.encode_plus(
words_example, boxes=boxes_example, max_length=max_length, padding="max_length"
)
for words_example, boxes_example in zip(words, boxes)
]
encoded_sequences_batch = tokenizer.batch_encode_plus(
words, is_pair=False, boxes=boxes, max_length=max_length, padding="max_length"
)
self.assertListEqual(
encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch)
)
def test_padding_to_multiple_of(self):
tokenizers = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
if tokenizer.pad_token is None:
self.skipTest("No padding token.")
else:
words, boxes = self.get_words_and_boxes()
# empty_tokens = tokenizer([""], [[]], padding=True, pad_to_multiple_of=8)
normal_tokens = tokenizer(words, boxes=boxes, padding=True, pad_to_multiple_of=8)
# for key, value in empty_tokens.items():
# self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8")
for key, value in normal_tokens.items():
self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8")
normal_tokens = tokenizer(words, boxes=boxes, pad_to_multiple_of=8)
for key, value in normal_tokens.items():
self.assertNotEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8")
# Should also work with truncation
normal_tokens = tokenizer(words, boxes=boxes, padding=True, truncation=True, pad_to_multiple_of=8)
for key, value in normal_tokens.items():
self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8")
# truncation to something which is not a multiple of pad_to_multiple_of raises an error
self.assertRaises(
ValueError,
tokenizer.__call__,
words,
boxes=boxes,
padding=True,
truncation=True,
max_length=12,
pad_to_multiple_of=8,
)
def test_tokenizer_slow_store_full_signature(self):
signature = inspect.signature(self.tokenizer_class.__init__)
tokenizer = self.get_tokenizer()
for parameter_name, parameter in signature.parameters.items():
if parameter.default != inspect.Parameter.empty:
self.assertIn(parameter_name, tokenizer.init_kwargs)
def test_build_inputs_with_special_tokens(self):
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
# Input tokens id
words, boxes = self.get_words_and_boxes()
input_simple = tokenizer_p.encode(words, boxes=boxes, add_special_tokens=False)
input_pair = tokenizer_p.encode(words, boxes=boxes, add_special_tokens=False)
# Generate output
output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple)
output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple)
self.assertEqual(output_p, output_r)
# Generate pair output
output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple, input_pair)
output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple, input_pair)
self.assertEqual(output_p, output_r)
def test_special_tokens_mask_input_pairs(self):
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
words, boxes = self.get_words_and_boxes()
encoded_sequence = tokenizer.encode(words, boxes=boxes, add_special_tokens=False)
encoded_sequence_dict = tokenizer.encode_plus(
words,
boxes=boxes,
add_special_tokens=True,
return_special_tokens_mask=True,
# add_prefix_space=False,
)
encoded_sequence_w_special = encoded_sequence_dict["input_ids"]
special_tokens_mask = encoded_sequence_dict["special_tokens_mask"]
self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special))
filtered_sequence = [
(x if not special_tokens_mask[i] else None) for i, x in enumerate(encoded_sequence_w_special)
]
filtered_sequence = [x for x in filtered_sequence if x is not None]
self.assertEqual(encoded_sequence, filtered_sequence)
def test_special_tokens_mask(self):
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
words, boxes = self.get_words_and_boxes()
# Testing single inputs
encoded_sequence = tokenizer.encode(words, boxes=boxes, add_special_tokens=False)
encoded_sequence_dict = tokenizer.encode_plus(
words, boxes=boxes, add_special_tokens=True, return_special_tokens_mask=True
)
encoded_sequence_w_special = encoded_sequence_dict["input_ids"]
special_tokens_mask = encoded_sequence_dict["special_tokens_mask"]
self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special))
filtered_sequence = [x for i, x in enumerate(encoded_sequence_w_special) if not special_tokens_mask[i]]
self.assertEqual(encoded_sequence, filtered_sequence)
def test_save_and_load_tokenizer(self):
# safety check on max_len default value so we are sure the test works
tokenizers = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
self.assertNotEqual(tokenizer.model_max_length, 42)
# Now let's start the test
tokenizers = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
# Isolate this from the other tests because we save additional tokens/etc
words, boxes = self.get_words_and_boxes()
tmpdirname = tempfile.mkdtemp()
before_tokens = tokenizer.encode(words, boxes=boxes, add_special_tokens=False)
before_vocab = tokenizer.get_vocab()
tokenizer.save_pretrained(tmpdirname)
after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname)
after_tokens = after_tokenizer.encode(words, boxes=boxes, add_special_tokens=False)
after_vocab = after_tokenizer.get_vocab()
self.assertListEqual(before_tokens, after_tokens)
self.assertDictEqual(before_vocab, after_vocab)
shutil.rmtree(tmpdirname)
@unittest.skip("Not implemented")
def test_right_and_left_truncation(self):
pass
def test_right_and_left_padding(self):
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
words, boxes = self.get_words_and_boxes()
sequence = "Sequence"
padding_size = 10
# check correct behaviour if no pad_token_id exists and add it eventually
self._check_no_pad_token_padding(tokenizer, sequence)
padding_idx = tokenizer.pad_token_id
# RIGHT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True
tokenizer.padding_side = "right"
encoded_sequence = tokenizer.encode(words, boxes=boxes)
sequence_length = len(encoded_sequence)
padded_sequence = tokenizer.encode(
words, boxes=boxes, max_length=sequence_length + padding_size, padding="max_length"
)
padded_sequence_length = len(padded_sequence)
assert sequence_length + padding_size == padded_sequence_length
assert encoded_sequence + [padding_idx] * padding_size == padded_sequence
# LEFT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True
tokenizer.padding_side = "left"
encoded_sequence = tokenizer.encode(words, boxes=boxes)
sequence_length = len(encoded_sequence)
padded_sequence = tokenizer.encode(
words, boxes=boxes, max_length=sequence_length + padding_size, padding="max_length"
)
padded_sequence_length = len(padded_sequence)
assert sequence_length + padding_size == padded_sequence_length
assert [padding_idx] * padding_size + encoded_sequence == padded_sequence
# RIGHT & LEFT PADDING - Check that nothing is done for 'longest' and 'no_padding'
encoded_sequence = tokenizer.encode(words, boxes=boxes)
sequence_length = len(encoded_sequence)
tokenizer.padding_side = "right"
padded_sequence_right = tokenizer.encode(words, boxes=boxes, padding=True)
padded_sequence_right_length = len(padded_sequence_right)
assert sequence_length == padded_sequence_right_length
assert encoded_sequence == padded_sequence_right
tokenizer.padding_side = "left"
padded_sequence_left = tokenizer.encode(words, boxes=boxes, padding="longest")
padded_sequence_left_length = len(padded_sequence_left)
assert sequence_length == padded_sequence_left_length
assert encoded_sequence == padded_sequence_left
tokenizer.padding_side = "right"
padded_sequence_right = tokenizer.encode(words, boxes=boxes)
padded_sequence_right_length = len(padded_sequence_right)
assert sequence_length == padded_sequence_right_length
assert encoded_sequence == padded_sequence_right
tokenizer.padding_side = "left"
padded_sequence_left = tokenizer.encode(words, boxes=boxes, padding=False)
padded_sequence_left_length = len(padded_sequence_left)
assert sequence_length == padded_sequence_left_length
assert encoded_sequence == padded_sequence_left
def test_token_type_ids(self):
tokenizers = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
# test 1: single sequence
words, boxes = self.get_words_and_boxes()
output = tokenizer(words, boxes=boxes, return_token_type_ids=True)
# Assert that the token type IDs have the same length as the input IDs
self.assertEqual(len(output["token_type_ids"]), len(output["input_ids"]))
# Assert that the token type IDs have the same length as the attention mask
self.assertEqual(len(output["token_type_ids"]), len(output["attention_mask"]))
self.assertIn(0, output["token_type_ids"])
self.assertNotIn(1, output["token_type_ids"])
# test 2: two sequences (question + words)
question, words, boxes = self.get_question_words_and_boxes()
output = tokenizer(question, words, boxes, return_token_type_ids=True)
# Assert that the token type IDs have the same length as the input IDs
self.assertEqual(len(output["token_type_ids"]), len(output["input_ids"]))
# Assert that the token type IDs have the same length as the attention mask
self.assertEqual(len(output["token_type_ids"]), len(output["attention_mask"]))
self.assertIn(0, output["token_type_ids"])
self.assertNotIn(1, output["token_type_ids"])
def test_offsets_mapping(self):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
text = ["a", "wonderful", "test"]
boxes = [[1, 8, 12, 20] for _ in range(len(text))]
# No pair
tokens_with_offsets = tokenizer_r.encode_plus(
text,
boxes=boxes,
return_special_tokens_mask=True,
return_offsets_mapping=True,
add_special_tokens=True,
)
added_tokens = tokenizer_r.num_special_tokens_to_add(False)
offsets = tokens_with_offsets["offset_mapping"]
# Assert there is the same number of tokens and offsets
self.assertEqual(len(offsets), len(tokens_with_offsets["input_ids"]))
# Assert there is online added_tokens special_tokens
self.assertEqual(sum(tokens_with_offsets["special_tokens_mask"]), added_tokens)
# Pairs
text = "what's his name"
pair = ["a", "wonderful", "test"]
boxes = [[1, 8, 12, 20] for _ in range(len(pair))]
tokens_with_offsets = tokenizer_r.encode_plus(
text,
pair,
boxes=boxes,
return_special_tokens_mask=True,
return_offsets_mapping=True,
add_special_tokens=True,
)
added_tokens = tokenizer_r.num_special_tokens_to_add(True)
offsets = tokens_with_offsets["offset_mapping"]
# Assert there is the same number of tokens and offsets
self.assertEqual(len(offsets), len(tokens_with_offsets["input_ids"]))
# Assert there is online added_tokens special_tokens
self.assertEqual(sum(tokens_with_offsets["special_tokens_mask"]), added_tokens)
@require_torch
@slow
def test_torch_encode_plus_sent_to_model(self):
import torch
from transformers import MODEL_MAPPING, TOKENIZER_MAPPING
MODEL_TOKENIZER_MAPPING = merge_model_tokenizer_mappings(MODEL_MAPPING, TOKENIZER_MAPPING)
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
if tokenizer.__class__ not in MODEL_TOKENIZER_MAPPING:
return
config_class, model_class = MODEL_TOKENIZER_MAPPING[tokenizer.__class__]
config = config_class()
if config.is_encoder_decoder or config.pad_token_id is None:
return
model = model_class(config)
# Make sure the model contains at least the full vocabulary size in its embedding matrix
is_using_common_embeddings = hasattr(model.get_input_embeddings(), "weight")
assert (
(model.get_input_embeddings().weight.shape[0] >= len(tokenizer))
if is_using_common_embeddings
else True
)
# Build sequence
words, boxes = self.get_words_and_boxes()
encoded_sequence = tokenizer.encode_plus(words, boxes=boxes, return_tensors="pt")
batch_encoded_sequence = tokenizer.batch_encode_plus(
[words, words], [boxes, boxes], return_tensors="pt"
)
# This should not fail
with torch.no_grad(): # saves some time
model(**encoded_sequence)
model(**batch_encoded_sequence)
def test_rust_and_python_full_tokenizers(self):
if not self.test_rust_tokenizer:
return
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
tokenizer = self.get_tokenizer()
rust_tokenizer = self.get_rust_tokenizer()
words, boxes = self.get_words_and_boxes()
ids = tokenizer.encode(words, boxes=boxes, add_special_tokens=False)
rust_ids = rust_tokenizer.encode(words, boxes=boxes, add_special_tokens=False)
self.assertListEqual(ids, rust_ids)
ids = tokenizer.encode(words, boxes=boxes, add_special_tokens=True)
rust_ids = rust_tokenizer.encode(words, boxes=boxes, add_special_tokens=True)
self.assertListEqual(ids, rust_ids)
def test_tokenization_python_rust_equals(self):
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
words, boxes = self.get_words_and_boxes()
# Ensure basic input match
input_p = tokenizer_p.encode_plus(words, boxes=boxes)
input_r = tokenizer_r.encode_plus(words, boxes=boxes)
for key in filter(
lambda x: x in ["input_ids", "token_type_ids", "attention_mask", "bbox"], input_p.keys()
):
self.assertSequenceEqual(input_p[key], input_r[key])
input_pairs_p = tokenizer_p.encode_plus(words, boxes=boxes)
input_pairs_r = tokenizer_r.encode_plus(words, boxes=boxes)
for key in filter(
lambda x: x in ["input_ids", "token_type_ids", "attention_mask", "bbox"], input_p.keys()
):
self.assertSequenceEqual(input_pairs_p[key], input_pairs_r[key])
words = ["hello" for _ in range(1000)]
boxes = [[1000, 1000, 1000, 1000] for _ in range(1000)]
# Ensure truncation match
input_p = tokenizer_p.encode_plus(words, boxes=boxes, max_length=512, truncation=True)
input_r = tokenizer_r.encode_plus(words, boxes=boxes, max_length=512, truncation=True)
for key in filter(
lambda x: x in ["input_ids", "token_type_ids", "attention_mask", "bbox"], input_p.keys()
):
self.assertSequenceEqual(input_p[key], input_r[key])
# Ensure truncation with stride match
input_p = tokenizer_p.encode_plus(
words, boxes=boxes, max_length=512, truncation=True, stride=3, return_overflowing_tokens=True
)
input_r = tokenizer_r.encode_plus(
words, boxes=boxes, max_length=512, truncation=True, stride=3, return_overflowing_tokens=True
)
for key in filter(
lambda x: x in ["input_ids", "token_type_ids", "attention_mask", "bbox"], input_p.keys()
):
self.assertSequenceEqual(input_p[key], input_r[key][0])
def test_embeded_special_tokens(self):
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
words, boxes = self.get_words_and_boxes()
tokens_r = tokenizer_r.encode_plus(
words,
boxes=boxes,
add_special_tokens=True,
)
tokens_p = tokenizer_p.encode_plus(
words,
boxes=boxes,
add_special_tokens=True,
)
for key in tokens_p.keys():
self.assertEqual(tokens_r[key], tokens_p[key])
if "token_type_ids" in tokens_r:
self.assertEqual(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"]))
tokens_r = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"])
tokens_p = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"])
self.assertSequenceEqual(tokens_r, tokens_p)
def test_compare_add_special_tokens(self):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
simple_num_special_tokens_to_add = tokenizer_r.num_special_tokens_to_add(pair=False)
words, boxes = self.get_words_and_boxes()
# tokenize()
no_special_tokens = tokenizer_r.tokenize(" ".join(words), add_special_tokens=False)
with_special_tokens = tokenizer_r.tokenize(" ".join(words), add_special_tokens=True)
self.assertEqual(len(no_special_tokens), len(with_special_tokens) - simple_num_special_tokens_to_add)
# encode()
no_special_tokens = tokenizer_r.encode(words, boxes=boxes, add_special_tokens=False)
with_special_tokens = tokenizer_r.encode(words, boxes=boxes, add_special_tokens=True)
self.assertEqual(len(no_special_tokens), len(with_special_tokens) - simple_num_special_tokens_to_add)
# encode_plus()
no_special_tokens = tokenizer_r.encode_plus(words, boxes=boxes, add_special_tokens=False)
with_special_tokens = tokenizer_r.encode_plus(words, boxes=boxes, add_special_tokens=True)
for key in no_special_tokens.keys():
self.assertEqual(
len(no_special_tokens[key]),
len(with_special_tokens[key]) - simple_num_special_tokens_to_add,
)
# # batch_encode_plus
words, boxes = self.get_words_and_boxes_batch()
no_special_tokens = tokenizer_r.batch_encode_plus(words, boxes=boxes, add_special_tokens=False)
with_special_tokens = tokenizer_r.batch_encode_plus(words, boxes=boxes, add_special_tokens=True)
for key in no_special_tokens.keys():
for i_no, i_with in zip(no_special_tokens[key], with_special_tokens[key]):
self.assertEqual(len(i_no), len(i_with) - simple_num_special_tokens_to_add)
@slow
def test_layoutxlm_truncation_integration_test(self):
words, boxes = self.get_words_and_boxes()
tokenizer = LayoutXLMTokenizer.from_pretrained("microsoft/layoutxlm-base", model_max_length=512)
for i in range(12, 512):
new_encoded_inputs = tokenizer.encode(words, boxes=boxes, max_length=i, truncation=True)
# Ensure that the input IDs are less than the max length defined.
self.assertLessEqual(len(new_encoded_inputs), i)
tokenizer.model_max_length = 20
new_encoded_inputs = tokenizer.encode(words, boxes=boxes, truncation=True)
dropped_encoded_inputs = tokenizer.encode(words, boxes=boxes, truncation=True)
# Ensure that the input IDs are still truncated when no max_length is specified
self.assertListEqual(new_encoded_inputs, dropped_encoded_inputs)
self.assertLessEqual(len(new_encoded_inputs), 20)
@is_pt_tf_cross_test
def test_batch_encode_plus_tensors(self):
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
words, boxes = self.get_words_and_boxes_batch()
# A Tensor cannot be build by sequences which are not the same size
self.assertRaises(ValueError, tokenizer.batch_encode_plus, words, boxes=boxes, return_tensors="pt")
self.assertRaises(ValueError, tokenizer.batch_encode_plus, words, boxes=boxes, return_tensors="tf")
if tokenizer.pad_token_id is None:
self.assertRaises(
ValueError,
tokenizer.batch_encode_plus,
words,
boxes=boxes,
padding=True,
return_tensors="pt",
)
self.assertRaises(
ValueError,
tokenizer.batch_encode_plus,
words,
boxes=boxes,
padding="longest",
return_tensors="tf",
)
else:
pytorch_tensor = tokenizer.batch_encode_plus(words, boxes=boxes, padding=True, return_tensors="pt")
tensorflow_tensor = tokenizer.batch_encode_plus(
words, boxes=boxes, padding="longest", return_tensors="tf"
)
encoded_sequences = tokenizer.batch_encode_plus(words, boxes=boxes, padding=True)
for key in encoded_sequences.keys():
pytorch_value = pytorch_tensor[key].tolist()
tensorflow_value = tensorflow_tensor[key].numpy().tolist()
encoded_value = encoded_sequences[key]
self.assertEqual(pytorch_value, tensorflow_value, encoded_value)
def test_sequence_ids(self):
tokenizers = self.get_tokenizers()
for tokenizer in tokenizers:
if not tokenizer.is_fast:
continue
with self.subTest(f"{tokenizer.__class__.__name__}"):
seq_0 = "Test this method."
seq_1 = ["With", "these", "inputs."]
boxes = [[1000, 1000, 1000, 1000] for _ in range(len(seq_1))]
# We want to have sequence 0 and sequence 1 are tagged
# respectively with 0 and 1 token_ids
# (regardless of whether the model use token type ids)
# We use this assumption in the QA pipeline among other place
output = tokenizer(seq_0.split(), boxes=boxes)
self.assertIn(0, output.sequence_ids())
output = tokenizer(seq_0, seq_1, boxes=boxes)
self.assertIn(0, output.sequence_ids())
self.assertIn(1, output.sequence_ids())
if tokenizer.num_special_tokens_to_add(pair=True):
self.assertIn(None, output.sequence_ids())
def test_special_tokens_initialization(self):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
added_tokens = [AddedToken("<special>", lstrip=True)]
tokenizer_r = self.rust_tokenizer_class.from_pretrained(
pretrained_name, additional_special_tokens=added_tokens, **kwargs
)
words = "Hey this is a <special> token".split()
boxes = [[1000, 1000, 1000, 1000] for _ in range(len(words))]
r_output = tokenizer_r.encode(words, boxes=boxes)
special_token_id = tokenizer_r.encode(
["<special>"], boxes=[1000, 1000, 1000, 1000], add_special_tokens=False
)[0]
self.assertTrue(special_token_id in r_output)
if self.test_slow_tokenizer:
tokenizer_cr = self.rust_tokenizer_class.from_pretrained(
pretrained_name, additional_special_tokens=added_tokens, **kwargs, from_slow=True
)
tokenizer_p = self.tokenizer_class.from_pretrained(
pretrained_name, additional_special_tokens=added_tokens, **kwargs
)
words = "Hey this is a <special> token".split()
boxes = [[1000, 1000, 1000, 1000] for _ in range(len(words))]
p_output = tokenizer_p.encode(words, boxes=boxes)
cr_output = tokenizer_cr.encode(words, boxes=boxes)
self.assertEqual(p_output, r_output)
self.assertEqual(cr_output, r_output)
self.assertTrue(special_token_id in p_output)
self.assertTrue(special_token_id in cr_output)
def test_training_new_tokenizer(self):
# This feature only exists for fast tokenizers
if not self.test_rust_tokenizer:
return
tokenizer = self.get_rust_tokenizer()
new_tokenizer = tokenizer.train_new_from_iterator(SMALL_TRAINING_CORPUS, 100)
# Test we can use the new tokenizer with something not seen during training
text = [["this", "is", "the"], ["how", "are", "you"]]
boxes = [[[1, 2, 3, 4], [5, 6, 7, 8], [1, 3, 4, 8]], [[5, 6, 7, 8], [4, 5, 6, 7], [3, 9, 2, 7]]]
inputs = new_tokenizer(text, boxes=boxes)
self.assertEqual(len(inputs["input_ids"]), 2)
decoded_input = new_tokenizer.decode(inputs["input_ids"][0], skip_special_tokens=True)
expected_result = "this is the"
if tokenizer.backend_tokenizer.normalizer is not None:
expected_result = tokenizer.backend_tokenizer.normalizer.normalize_str(expected_result)
self.assertEqual(expected_result, decoded_input)
# We check that the parameters of the tokenizer remained the same
# Check we have the same number of added_tokens for both pair and non-pair inputs.
self.assertEqual(tokenizer.num_special_tokens_to_add(False), new_tokenizer.num_special_tokens_to_add(False))
self.assertEqual(tokenizer.num_special_tokens_to_add(True), new_tokenizer.num_special_tokens_to_add(True))
# Check we have the correct max_length for both pair and non-pair inputs.
self.assertEqual(tokenizer.max_len_single_sentence, new_tokenizer.max_len_single_sentence)
self.assertEqual(tokenizer.max_len_sentences_pair, new_tokenizer.max_len_sentences_pair)
# Assert the set of special tokens match as we didn't ask to change them
self.assertSequenceEqual(
tokenizer.all_special_tokens_extended,
new_tokenizer.all_special_tokens_extended,
)
self.assertDictEqual(tokenizer.special_tokens_map, new_tokenizer.special_tokens_map)
def test_training_new_tokenizer_with_special_tokens_change(self):
# This feature only exists for fast tokenizers
if not self.test_rust_tokenizer:
return
tokenizer = self.get_rust_tokenizer()
# Test with a special tokens map
class_signature = inspect.signature(tokenizer.__class__)
if "cls_token" in class_signature.parameters:
new_tokenizer = tokenizer.train_new_from_iterator(
SMALL_TRAINING_CORPUS, 100, special_tokens_map={tokenizer.cls_token: "<cls>"}
)
cls_id = new_tokenizer.get_vocab()["<cls>"]
self.assertEqual(new_tokenizer.cls_token, "<cls>")
self.assertEqual(new_tokenizer.cls_token_id, cls_id)
# Create a new mapping from the special tokens defined in the original tokenizer
special_tokens_list = SpecialTokensMixin.SPECIAL_TOKENS_ATTRIBUTES.copy()
special_tokens_list.remove("additional_special_tokens")
special_tokens_map = {}
for token in special_tokens_list:
# Get the private one to avoid unnecessary warnings.
if getattr(tokenizer, f"_{token}") is not None:
special_token = getattr(tokenizer, token)
special_tokens_map[special_token] = f"{special_token}a"
# Train new tokenizer
new_tokenizer = tokenizer.train_new_from_iterator(
SMALL_TRAINING_CORPUS, 100, special_tokens_map=special_tokens_map
)
# Check the changes
for token in special_tokens_list:
# Get the private one to avoid unnecessary warnings.
if getattr(tokenizer, f"_{token}") is None:
continue
special_token = getattr(tokenizer, token)
if special_token in special_tokens_map:
new_special_token = getattr(new_tokenizer, token)
self.assertEqual(special_tokens_map[special_token], new_special_token)
new_id = new_tokenizer.get_vocab()[new_special_token]
self.assertEqual(getattr(new_tokenizer, f"{token}_id"), new_id)
# Check if the AddedToken / string format has been kept
for special_token in tokenizer.all_special_tokens_extended:
if isinstance(special_token, AddedToken) and special_token.content not in special_tokens_map:
# The special token must appear identically in the list of the new tokenizer.
self.assertTrue(
special_token in new_tokenizer.all_special_tokens_extended,
f"'{special_token}' should be in {new_tokenizer.all_special_tokens_extended}",
)
elif isinstance(special_token, AddedToken):
# The special token must appear in the list of the new tokenizer as an object of type AddedToken with
# the same parameters as the old AddedToken except the content that the user has requested to change.
special_token_str = special_token.content
new_special_token_str = special_tokens_map[special_token_str]
find = False
for candidate in new_tokenizer.all_special_tokens_extended:
if (
isinstance(candidate, AddedToken)
and candidate.content == new_special_token_str
and candidate.lstrip == special_token.lstrip
and candidate.rstrip == special_token.rstrip
and candidate.normalized == special_token.normalized
and candidate.single_word == special_token.single_word
):
find = True
break
self.assertTrue(
find,
f"'{new_special_token_str}' doesn't appear in the list "
f"'{new_tokenizer.all_special_tokens_extended}' as an AddedToken with the same parameters as "
f"'{special_token}' in the list {tokenizer.all_special_tokens_extended}",
)
elif special_token not in special_tokens_map:
# The special token must appear identically in the list of the new tokenizer.
self.assertTrue(
special_token in new_tokenizer.all_special_tokens_extended,
f"'{special_token}' should be in {new_tokenizer.all_special_tokens_extended}",
)
else:
# The special token must appear in the list of the new tokenizer as an object of type string.
self.assertTrue(special_tokens_map[special_token] in new_tokenizer.all_special_tokens_extended)
# Test we can use the new tokenizer with something not seen during training
words = [["this", "is"], ["hello", "🤗"]]
boxes = [[[1, 2, 3, 4], [5, 6, 7, 8]], [[1, 2, 3, 4], [5, 6, 7, 8]]]
inputs = new_tokenizer(words, boxes=boxes)
self.assertEqual(len(inputs["input_ids"]), 2)
decoded_input = new_tokenizer.decode(inputs["input_ids"][0], skip_special_tokens=True)
expected_result = "this is"
if tokenizer.backend_tokenizer.normalizer is not None:
expected_result = tokenizer.backend_tokenizer.normalizer.normalize_str(expected_result)
self.assertEqual(expected_result, decoded_input)
def test_prepare_for_model(self):
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
# only test prepare_for_model for the slow tokenizer
if tokenizer.__class__.__name__ == "LayoutXLMTokenizerFast":
continue
with self.subTest(f"{tokenizer.__class__.__name__}"):
words, boxes = self.get_words_and_boxes()
prepared_input_dict = tokenizer.prepare_for_model(words, boxes=boxes, add_special_tokens=True)
input_dict = tokenizer.encode_plus(words, boxes=boxes, add_special_tokens=True)
self.assertEqual(input_dict, prepared_input_dict)
def test_padding_different_model_input_name(self):
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
self.assertEqual(tokenizer_p.pad_token_id, tokenizer_r.pad_token_id)
pad_token_id = tokenizer_p.pad_token_id
words, boxes = self.get_words_and_boxes_batch()
input_r = tokenizer_r.batch_encode_plus(words, boxes=boxes)
input_p = tokenizer_r.batch_encode_plus(words, boxes=boxes)
# rename encoded batch to "inputs"
input_r["inputs"] = input_r[tokenizer_r.model_input_names[0]]
del input_r[tokenizer_r.model_input_names[0]]
input_p["inputs"] = input_p[tokenizer_p.model_input_names[0]]
del input_p[tokenizer_p.model_input_names[0]]
# Renaming `input_ids` to `inputs`
tokenizer_r.model_input_names = ["inputs"] + tokenizer_r.model_input_names[1:]
tokenizer_p.model_input_names = ["inputs"] + tokenizer_p.model_input_names[1:]
input_r = tokenizer_r.pad(input_r, padding="longest")
input_p = tokenizer_r.pad(input_p, padding="longest")
max_length = len(input_p["inputs"][0])
self.assert_batch_padded_input_match(
input_r, input_p, max_length, pad_token_id, model_main_input_name="inputs"
)
def test_batch_encode_dynamic_overflowing(self):
"""
When calling batch_encode with multiple sequences, it can return different number of
overflowing encoding for each sequence:
[
Sequence 1: [Encoding 1, Encoding 2],
Sequence 2: [Encoding 1],
Sequence 3: [Encoding 1, Encoding 2, ... Encoding N]
]
This needs to be padded so that it can represented as a tensor
"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
tokenizer = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name}, {tokenizer.__class__.__name__})"):
if is_torch_available():
returned_tensor = "pt"
elif is_tf_available():
returned_tensor = "tf"
else:
returned_tensor = "jax"
# Single example
words, boxes = self.get_words_and_boxes()
tokens = tokenizer.encode_plus(
words,
boxes=boxes,
max_length=6,
padding=True,
truncation=True,
return_tensors=returned_tensor,
return_overflowing_tokens=True,
)
for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()):
if key != "bbox":
self.assertEqual(len(tokens[key].shape), 2)
else:
self.assertEqual(len(tokens[key].shape), 3)
# Batch of examples
# For these 2 examples, 3 training examples will be created
words, boxes = self.get_words_and_boxes_batch()
tokens = tokenizer.batch_encode_plus(
words,
boxes=boxes,
max_length=6,
padding=True,
truncation="only_first",
return_tensors=returned_tensor,
return_overflowing_tokens=True,
)
for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()):
if key != "bbox":
self.assertEqual(len(tokens[key].shape), 2)
self.assertEqual(tokens[key].shape[-1], 6)
else:
self.assertEqual(len(tokens[key].shape), 3)
self.assertEqual(tokens[key].shape[-1], 4)
# overwrite from test_tokenization_common to speed up test
def test_save_pretrained(self):
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
self.tokenizers_list[0] = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-layoutxlm", {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
tmpdirname2 = tempfile.mkdtemp()
tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2)
tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2)
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files))
tokenizer_r_files = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f)
self.assertSequenceEqual(tokenizer_r_files, tokenizer_p_files)
# Checks everything loads correctly in the same way
tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2)
tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2)
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(tokenizer_rp, key))
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(tmpdirname2)
# Save tokenizer rust, legacy_format=True
tmpdirname2 = tempfile.mkdtemp()
tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2, legacy_format=True)
tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2)
# Checks it save with the same files
self.assertSequenceEqual(tokenizer_r_files, tokenizer_p_files)
# Checks everything loads correctly in the same way
tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2)
tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2)
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(tokenizer_rp, key))
shutil.rmtree(tmpdirname2)
# Save tokenizer rust, legacy_format=False
tmpdirname2 = tempfile.mkdtemp()
tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2, legacy_format=False)
tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2)
# Checks it saved the tokenizer.json file
self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files))
# Checks everything loads correctly in the same way
tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2)
tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2)
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(tokenizer_rp, key))
shutil.rmtree(tmpdirname2)
@unittest.skip("TO DO: overwrite this very extensive test.")
def test_alignement_methods(self):
pass
@unittest.skip("layoutxlm tokenizer requires boxes besides sequences.")
def test_maximum_encoding_length_pair_input(self):
pass
@unittest.skip("layoutxlm tokenizer requires boxes besides sequences.")
def test_maximum_encoding_length_single_input(self):
pass
@unittest.skip("layoutxlm tokenizer requires boxes besides sequences.")
def test_pretokenized_inputs(self):
pass
@unittest.skip("layoutxlm tokenizer always expects pretokenized inputs.")
def test_compare_pretokenized_inputs(self):
pass
@unittest.skip("layoutxlm fast tokenizer does not support prepare_for_model")
def test_compare_prepare_for_model(self):
pass
@slow
def test_only_label_first_subword(self):
words = ["hello", "niels"]
boxes = [[1000, 1000, 1000, 1000] for _ in range(len(words))]
word_labels = [0, 1]
# test slow tokenizer
tokenizer_p = LayoutXLMTokenizer.from_pretrained("microsoft/layoutxlm-base")
encoding = tokenizer_p(words, boxes=boxes, word_labels=word_labels)
self.assertListEqual(encoding.labels, [-100, 0, -100, 1, -100, -100])
tokenizer_p = LayoutXLMTokenizer.from_pretrained("microsoft/layoutxlm-base", only_label_first_subword=False)
encoding = tokenizer_p(words, boxes=boxes, word_labels=word_labels)
self.assertListEqual(encoding.labels, [-100, 0, 0, 1, 1, -100])
# test fast tokenizer
tokenizer_r = LayoutXLMTokenizerFast.from_pretrained("microsoft/layoutxlm-base")
encoding = tokenizer_r(words, boxes=boxes, word_labels=word_labels)
self.assertListEqual(encoding.labels, [-100, 0, -100, 1, -100, -100])
tokenizer_r = LayoutXLMTokenizer.from_pretrained("microsoft/layoutxlm-base", only_label_first_subword=False)
encoding = tokenizer_r(words, boxes=boxes, word_labels=word_labels)
self.assertListEqual(encoding.labels, [-100, 0, 0, 1, 1, -100])
@slow
def test_layoutxlm_integration_test(self):
tokenizer_p = LayoutXLMTokenizer.from_pretrained("microsoft/layoutxlm-base")
tokenizer_r = LayoutXLMTokenizerFast.from_pretrained("microsoft/layoutxlm-base")
# There are 3 cases:
# CASE 1: document image classification (training + inference), document image token classification (inference),
# in which case only words and normalized bounding boxes are provided to the tokenizer
# CASE 2: document image token classification (training),
# in which case one also provides word labels to the tokenizer
# CASE 3: document image visual question answering (inference),
# in which case one also provides a question to the tokenizer
# We need to test all 3 cases both on batched and non-batched inputs.
# CASE 1: not batched
words, boxes = self.get_words_and_boxes()
# fmt: off
expected_results = {'input_ids': [0, 10, 179459, 538, 3034, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], 'bbox': [[0, 0, 0, 0], [423, 237, 440, 251], [427, 272, 441, 287], [427, 272, 441, 287], [419, 115, 437, 129], [1000, 1000, 1000, 1000], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], 'attention_mask': [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]} # noqa: E231
# fmt: on
encoding_p = tokenizer_p(words, boxes=boxes, padding="max_length", max_length=20)
encoding_r = tokenizer_r(words, boxes=boxes, padding="max_length", max_length=20)
self.assertDictEqual(dict(encoding_p), expected_results)
self.assertDictEqual(dict(encoding_r), expected_results)
# CASE 1: batched
words, boxes = self.get_words_and_boxes_batch()
# fmt: off
expected_results = {'input_ids': [[0, 10, 179459, 538, 3034, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 33600, 31, 759, 9351, 83, 21895, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'bbox': [[[0, 0, 0, 0], [423, 237, 440, 251], [427, 272, 441, 287], [427, 272, 441, 287], [419, 115, 437, 129], [1000, 1000, 1000, 1000], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], [[0, 0, 0, 0], [961, 885, 992, 912], [961, 885, 992, 912], [256, 38, 330, 58], [256, 38, 330, 58], [336, 42, 353, 57], [34, 42, 66, 69], [1000, 1000, 1000, 1000], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E231
# fmt: on
encoding_p = tokenizer_p(words, boxes=boxes, padding="max_length", max_length=20)
encoding_r = tokenizer_r(words, boxes=boxes, padding="max_length", max_length=20)
self.assertDictEqual(dict(encoding_p), expected_results)
self.assertDictEqual(dict(encoding_r), expected_results)
# CASE 2: not batched
words, boxes = self.get_words_and_boxes()
word_labels = [1, 2, 3]
# fmt: off
expected_results = {'input_ids': [0, 10, 179459, 538, 3034, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], 'bbox': [[0, 0, 0, 0], [423, 237, 440, 251], [427, 272, 441, 287], [427, 272, 441, 287], [419, 115, 437, 129], [1000, 1000, 1000, 1000], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], 'labels': [-100, 1, 2, -100, 3, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100], 'attention_mask': [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]} # noqa: E231
# fmt: on
encoding_p = tokenizer_p(words, boxes=boxes, word_labels=word_labels, padding="max_length", max_length=20)
encoding_r = tokenizer_r(words, boxes=boxes, word_labels=word_labels, padding="max_length", max_length=20)
self.assertDictEqual(dict(encoding_p), expected_results)
self.assertDictEqual(dict(encoding_r), expected_results)
# CASE 2: batched
words, boxes = self.get_words_and_boxes_batch()
word_labels = [[1, 2, 3], [2, 46, 17, 22, 3]]
# fmt: off
expected_results = {'input_ids': [[0, 10, 179459, 538, 3034, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 33600, 31, 759, 9351, 83, 21895, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'bbox': [[[0, 0, 0, 0], [423, 237, 440, 251], [427, 272, 441, 287], [427, 272, 441, 287], [419, 115, 437, 129], [1000, 1000, 1000, 1000], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], [[0, 0, 0, 0], [961, 885, 992, 912], [961, 885, 992, 912], [256, 38, 330, 58], [256, 38, 330, 58], [336, 42, 353, 57], [34, 42, 66, 69], [1000, 1000, 1000, 1000], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]], 'labels': [[-100, 1, 2, -100, 3, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100], [-100, 2, -100, 46, 17, 22, 3, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E231
# fmt: on
encoding_p = tokenizer_p(words, boxes=boxes, word_labels=word_labels, padding="max_length", max_length=20)
encoding_r = tokenizer_r(words, boxes=boxes, word_labels=word_labels, padding="max_length", max_length=20)
self.assertDictEqual(dict(encoding_p), expected_results)
self.assertDictEqual(dict(encoding_r), expected_results)
# CASE 3: not batched
question, words, boxes = self.get_question_words_and_boxes()
# fmt: off
expected_results = {'input_ids': [0, 2367, 25, 7, 1919, 9351, 32, 2, 2, 10, 179459, 538, 3034, 2, 1, 1, 1, 1, 1, 1], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0], 'bbox': [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [1000, 1000, 1000, 1000], [1000, 1000, 1000, 1000], [423, 237, 440, 251], [427, 272, 441, 287], [427, 272, 441, 287], [419, 115, 437, 129], [1000, 1000, 1000, 1000], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]} # noqa: E231
# fmt: on
encoding_p = tokenizer_p(question, words, boxes, padding="max_length", max_length=20)
encoding_r = tokenizer_r(question, words, boxes, padding="max_length", max_length=20)
self.assertDictEqual(dict(encoding_p), expected_results)
self.assertDictEqual(dict(encoding_r), expected_results)
# CASE 3: batched
questions, words, boxes = self.get_question_words_and_boxes_batch()
# fmt: off
expected_results = {'input_ids': [[0, 2367, 25, 7, 1919, 9351, 32, 2, 2, 10, 179459, 538, 3034, 2, 1, 1, 1, 1, 1, 1], [0, 3642, 83, 764, 35839, 32, 2, 2, 2367, 10, 21, 3190, 53496, 19, 2, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0]], 'bbox': [[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [1000, 1000, 1000, 1000], [1000, 1000, 1000, 1000], [423, 237, 440, 251], [427, 272, 441, 287], [427, 272, 441, 287], [419, 115, 437, 129], [1000, 1000, 1000, 1000], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [1000, 1000, 1000, 1000], [1000, 1000, 1000, 1000], [256, 38, 330, 58], [256, 38, 330, 58], [336, 42, 353, 57], [336, 42, 353, 57], [34, 42, 66, 69], [34, 42, 66, 69], [1000, 1000, 1000, 1000], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]]} # noqa: E231
# fmt: on
encoding_p = tokenizer_p(questions, words, boxes, padding="max_length", max_length=20)
encoding_r = tokenizer_r(questions, words, boxes, padding="max_length", max_length=20)
self.assertDictEqual(dict(encoding_p), expected_results)
self.assertDictEqual(dict(encoding_r), expected_results)
@unittest.skip("Doesn't support another framework than PyTorch")
def test_np_encode_plus_sent_to_model(self):
pass
@unittest.skip("Doesn't use SentencePiece")
def test_sentencepiece_tokenize_and_convert_tokens_to_string(self):
pass
@unittest.skip("Doesn't use SentencePiece")
def test_sentencepiece_tokenize_and_decode(self):
pass
| transformers-main | tests/models/layoutxlm/test_tokenization_layoutxlm.py |
transformers-main | tests/models/dit/__init__.py |
|
# coding=utf-8
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
if is_torch_available():
import torch
from transformers import AutoModelForImageClassification
if is_vision_available():
from transformers import AutoImageProcessor
@require_torch
@require_vision
class DiTIntegrationTest(unittest.TestCase):
@slow
def test_for_image_classification(self):
image_processor = AutoImageProcessor.from_pretrained("microsoft/dit-base-finetuned-rvlcdip")
model = AutoModelForImageClassification.from_pretrained("microsoft/dit-base-finetuned-rvlcdip")
model.to(torch_device)
from datasets import load_dataset
dataset = load_dataset("nielsr/rvlcdip-demo")
image = dataset["train"][0]["image"].convert("RGB")
inputs = image_processor(image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
expected_shape = torch.Size((1, 16))
self.assertEqual(logits.shape, expected_shape)
expected_slice = torch.tensor(
[-0.4158, -0.4092, -0.4347],
device=torch_device,
dtype=torch.float,
)
self.assertTrue(torch.allclose(logits[0, :3], expected_slice, atol=1e-4))
| transformers-main | tests/models/dit/test_modeling_dit.py |
transformers-main | tests/models/yolos/__init__.py |
|
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import pathlib
import unittest
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import YolosImageProcessor
class YolosImageProcessingTester(unittest.TestCase):
def __init__(
self,
parent,
batch_size=7,
num_channels=3,
min_resolution=30,
max_resolution=400,
do_resize=True,
size=None,
do_normalize=True,
image_mean=[0.5, 0.5, 0.5],
image_std=[0.5, 0.5, 0.5],
do_rescale=True,
rescale_factor=1 / 255,
do_pad=True,
):
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
size = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333}
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.min_resolution = min_resolution
self.max_resolution = max_resolution
self.do_resize = do_resize
self.size = size
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_pad = do_pad
def prepare_image_processor_dict(self):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def get_expected_values(self, image_inputs, batched=False):
"""
This function computes the expected height and width when providing images to YolosImageProcessor,
assuming do_resize is set to True with a scalar size.
"""
if not batched:
image = image_inputs[0]
if isinstance(image, Image.Image):
w, h = image.size
else:
h, w = image.shape[1], image.shape[2]
if w < h:
expected_height = int(self.size["shortest_edge"] * h / w)
expected_width = self.size["shortest_edge"]
elif w > h:
expected_height = self.size["shortest_edge"]
expected_width = int(self.size["shortest_edge"] * w / h)
else:
expected_height = self.size["shortest_edge"]
expected_width = self.size["shortest_edge"]
else:
expected_values = []
for image in image_inputs:
expected_height, expected_width = self.get_expected_values([image])
expected_values.append((expected_height, expected_width))
expected_height = max(expected_values, key=lambda item: item[0])[0]
expected_width = max(expected_values, key=lambda item: item[1])[1]
return expected_height, expected_width
def expected_output_image_shape(self, images):
height, width = self.get_expected_values(images, batched=True)
return self.num_channels, height, width
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
return prepare_image_inputs(
batch_size=self.batch_size,
num_channels=self.num_channels,
min_resolution=self.min_resolution,
max_resolution=self.max_resolution,
equal_resolution=equal_resolution,
numpify=numpify,
torchify=torchify,
)
@require_torch
@require_vision
class YolosImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
image_processing_class = YolosImageProcessor if is_vision_available() else None
def setUp(self):
self.image_processor_tester = YolosImageProcessingTester(self)
@property
def image_processor_dict(self):
return self.image_processor_tester.prepare_image_processor_dict()
def test_image_processor_properties(self):
image_processing = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(image_processing, "image_mean"))
self.assertTrue(hasattr(image_processing, "image_std"))
self.assertTrue(hasattr(image_processing, "do_normalize"))
self.assertTrue(hasattr(image_processing, "do_resize"))
self.assertTrue(hasattr(image_processing, "size"))
def test_image_processor_from_dict_with_kwargs(self):
image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size, {"shortest_edge": 18, "longest_edge": 1333})
self.assertEqual(image_processor.do_pad, True)
image_processor = self.image_processing_class.from_dict(
self.image_processor_dict, size=42, max_size=84, pad_and_return_pixel_mask=False
)
self.assertEqual(image_processor.size, {"shortest_edge": 42, "longest_edge": 84})
self.assertEqual(image_processor.do_pad, False)
def test_equivalence_padding(self):
# Initialize image_processings
image_processing_1 = self.image_processing_class(**self.image_processor_dict)
image_processing_2 = self.image_processing_class(do_resize=False, do_normalize=False, do_rescale=False)
# create random PyTorch tensors
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
for image in image_inputs:
self.assertIsInstance(image, torch.Tensor)
# Test whether the method "pad" and calling the image processor return the same tensors
encoded_images_with_method = image_processing_1.pad(image_inputs, return_tensors="pt")
encoded_images = image_processing_2(image_inputs, return_tensors="pt")
self.assertTrue(
torch.allclose(encoded_images_with_method["pixel_values"], encoded_images["pixel_values"], atol=1e-4)
)
@slow
def test_call_pytorch_with_coco_detection_annotations(self):
# prepare image and target
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt", "r") as f:
target = json.loads(f.read())
target = {"image_id": 39769, "annotations": target}
# encode them
image_processing = YolosImageProcessor.from_pretrained("hustvl/yolos-small")
encoding = image_processing(images=image, annotations=target, return_tensors="pt")
# verify pixel values
expected_shape = torch.Size([1, 3, 800, 1066])
self.assertEqual(encoding["pixel_values"].shape, expected_shape)
expected_slice = torch.tensor([0.2796, 0.3138, 0.3481])
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3], expected_slice, atol=1e-4))
# verify area
expected_area = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438])
self.assertTrue(torch.allclose(encoding["labels"][0]["area"], expected_area))
# verify boxes
expected_boxes_shape = torch.Size([6, 4])
self.assertEqual(encoding["labels"][0]["boxes"].shape, expected_boxes_shape)
expected_boxes_slice = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215])
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0], expected_boxes_slice, atol=1e-3))
# verify image_id
expected_image_id = torch.tensor([39769])
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"], expected_image_id))
# verify is_crowd
expected_is_crowd = torch.tensor([0, 0, 0, 0, 0, 0])
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"], expected_is_crowd))
# verify class_labels
expected_class_labels = torch.tensor([75, 75, 63, 65, 17, 17])
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"], expected_class_labels))
# verify orig_size
expected_orig_size = torch.tensor([480, 640])
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"], expected_orig_size))
# verify size
expected_size = torch.tensor([800, 1066])
self.assertTrue(torch.allclose(encoding["labels"][0]["size"], expected_size))
@slow
def test_call_pytorch_with_coco_panoptic_annotations(self):
# prepare image, target and masks_path
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt", "r") as f:
target = json.loads(f.read())
target = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target}
masks_path = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic")
# encode them
image_processing = YolosImageProcessor(format="coco_panoptic")
encoding = image_processing(images=image, annotations=target, masks_path=masks_path, return_tensors="pt")
# verify pixel values
expected_shape = torch.Size([1, 3, 800, 1066])
self.assertEqual(encoding["pixel_values"].shape, expected_shape)
expected_slice = torch.tensor([0.2796, 0.3138, 0.3481])
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3], expected_slice, atol=1e-4))
# verify area
expected_area = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147])
self.assertTrue(torch.allclose(encoding["labels"][0]["area"], expected_area))
# verify boxes
expected_boxes_shape = torch.Size([6, 4])
self.assertEqual(encoding["labels"][0]["boxes"].shape, expected_boxes_shape)
expected_boxes_slice = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625])
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0], expected_boxes_slice, atol=1e-3))
# verify image_id
expected_image_id = torch.tensor([39769])
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"], expected_image_id))
# verify is_crowd
expected_is_crowd = torch.tensor([0, 0, 0, 0, 0, 0])
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"], expected_is_crowd))
# verify class_labels
expected_class_labels = torch.tensor([17, 17, 63, 75, 75, 93])
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"], expected_class_labels))
# verify masks
expected_masks_sum = 822873
self.assertEqual(encoding["labels"][0]["masks"].sum().item(), expected_masks_sum)
# verify orig_size
expected_orig_size = torch.tensor([480, 640])
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"], expected_orig_size))
# verify size
expected_size = torch.tensor([800, 1066])
self.assertTrue(torch.allclose(encoding["labels"][0]["size"], expected_size))
| transformers-main | tests/models/yolos/test_image_processing_yolos.py |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch YOLOS model. """
import inspect
import unittest
from transformers import YolosConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import YolosForObjectDetection, YolosModel
from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class YolosModelTester:
def __init__(
self,
parent,
batch_size=13,
image_size=[30, 30],
patch_size=2,
num_channels=3,
is_training=True,
use_labels=True,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
type_sequence_label_size=10,
initializer_range=0.02,
num_labels=3,
scope=None,
n_targets=8,
num_detection_tokens=10,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.is_training = is_training
self.use_labels = use_labels
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.scope = scope
self.n_targets = n_targets
self.num_detection_tokens = num_detection_tokens
# we set the expected sequence length (which is used in several tests)
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens
num_patches = (image_size[1] // patch_size) * (image_size[0] // patch_size)
self.expected_seq_len = num_patches + 1 + self.num_detection_tokens
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]])
labels = None
if self.use_labels:
# labels is a list of Dict (each Dict being the labels for a given example in the batch)
labels = []
for i in range(self.batch_size):
target = {}
target["class_labels"] = torch.randint(
high=self.num_labels, size=(self.n_targets,), device=torch_device
)
target["boxes"] = torch.rand(self.n_targets, 4, device=torch_device)
labels.append(target)
config = self.get_config()
return config, pixel_values, labels
def get_config(self):
return YolosConfig(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
is_decoder=False,
initializer_range=self.initializer_range,
num_detection_tokens=self.num_detection_tokens,
num_labels=self.num_labels,
)
def create_and_check_model(self, config, pixel_values, labels):
model = YolosModel(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, self.expected_seq_len, self.hidden_size)
)
def create_and_check_for_object_detection(self, config, pixel_values, labels):
model = YolosForObjectDetection(config)
model.to(torch_device)
model.eval()
result = model(pixel_values=pixel_values)
result = model(pixel_values)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_detection_tokens, self.num_labels + 1))
self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_detection_tokens, 4))
result = model(pixel_values=pixel_values, labels=labels)
self.parent.assertEqual(result.loss.shape, ())
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_detection_tokens, self.num_labels + 1))
self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_detection_tokens, 4))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, labels = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class YolosModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as YOLOS does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (YolosModel, YolosForObjectDetection) if is_torch_available() else ()
pipeline_model_mapping = (
{"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {}
)
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
test_torchscript = False
# special case for head model
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
if return_labels:
if model_class.__name__ == "YolosForObjectDetection":
labels = []
for i in range(self.model_tester.batch_size):
target = {}
target["class_labels"] = torch.ones(
size=(self.model_tester.n_targets,), device=torch_device, dtype=torch.long
)
target["boxes"] = torch.ones(
self.model_tester.n_targets, 4, device=torch_device, dtype=torch.float
)
labels.append(target)
inputs_dict["labels"] = labels
return inputs_dict
def setUp(self):
self.model_tester = YolosModelTester(self)
self.config_tester = ConfigTester(self, config_class=YolosConfig, has_text_modality=False, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_inputs_embeds(self):
# YOLOS does not use inputs_embeds
pass
def test_model_common_attributes(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
# in YOLOS, the seq_len is different
seq_len = self.model_tester.expected_seq_len
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, seq_len, seq_len],
)
out_len = len(outputs)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
added_hidden_states = 1
self.assertEqual(out_len + added_hidden_states, len(outputs))
self_attentions = outputs.attentions
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, seq_len, seq_len],
)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.hidden_states
expected_num_layers = getattr(
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
)
self.assertEqual(len(hidden_states), expected_num_layers)
# YOLOS has a different seq_length
seq_length = self.model_tester.expected_seq_len
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[seq_length, self.model_tester.hidden_size],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
def test_for_object_detection(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_object_detection(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = YolosModel.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_torch
@require_vision
class YolosModelIntegrationTest(unittest.TestCase):
@cached_property
def default_image_processor(self):
return AutoImageProcessor.from_pretrained("hustvl/yolos-small") if is_vision_available() else None
@slow
def test_inference_object_detection_head(self):
model = YolosForObjectDetection.from_pretrained("hustvl/yolos-small").to(torch_device)
image_processor = self.default_image_processor
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(inputs.pixel_values)
# verify outputs
expected_shape = torch.Size((1, 100, 92))
self.assertEqual(outputs.logits.shape, expected_shape)
expected_slice_logits = torch.tensor(
[[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]],
device=torch_device,
)
expected_slice_boxes = torch.tensor(
[[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]], device=torch_device
)
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_slice_logits, atol=1e-4))
self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3], expected_slice_boxes, atol=1e-4))
# verify postprocessing
results = image_processor.post_process_object_detection(
outputs, threshold=0.3, target_sizes=[image.size[::-1]]
)[0]
expected_scores = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861]).to(torch_device)
expected_labels = [75, 75, 17, 63, 17]
expected_slice_boxes = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495]).to(torch_device)
self.assertEqual(len(results["scores"]), 5)
self.assertTrue(torch.allclose(results["scores"], expected_scores, atol=1e-4))
self.assertSequenceEqual(results["labels"].tolist(), expected_labels)
self.assertTrue(torch.allclose(results["boxes"][0, :], expected_slice_boxes))
| transformers-main | tests/models/yolos/test_modeling_yolos.py |
transformers-main | tests/models/opt/__init__.py |
|
# coding=utf-8
# Copyright 2021, The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch OPT model. """
import copy
import tempfile
import unittest
import timeout_decorator # noqa
from transformers import OPTConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
GPT2Tokenizer,
OPTForCausalLM,
OPTForQuestionAnswering,
OPTForSequenceClassification,
OPTModel,
)
def prepare_opt_inputs_dict(
config,
input_ids,
decoder_input_ids=None,
attention_mask=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
):
if attention_mask is None:
attention_mask = input_ids.ne(config.pad_token_id)
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"head_mask": head_mask,
}
class OPTModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_labels=False,
vocab_size=99,
hidden_size=16,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=4,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=20,
eos_token_id=2,
pad_token_id=1,
bos_token_id=0,
embed_dim=16,
num_labels=3,
word_embed_proj_dim=16,
type_sequence_label_size=2,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
self.embed_dim = embed_dim
self.num_labels = num_labels
self.type_sequence_label_size = type_sequence_label_size
self.word_embed_proj_dim = word_embed_proj_dim
self.is_encoder_decoder = False
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(
3,
)
input_ids[:, -1] = self.eos_token_id # Eos Token
decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
config = self.get_config()
inputs_dict = prepare_opt_inputs_dict(config, input_ids, decoder_input_ids)
return config, inputs_dict
def get_config(self):
return OPTConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
ffn_dim=self.intermediate_size,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
pad_token_id=self.pad_token_id,
embed_dim=self.embed_dim,
is_encoder_decoder=False,
word_embed_proj_dim=self.word_embed_proj_dim,
)
def get_pipeline_config(self):
config = self.get_config()
config.max_position_embeddings = 100
return config
def prepare_config_and_inputs_for_common(self):
config, inputs_dict = self.prepare_config_and_inputs()
return config, inputs_dict
def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict):
model = OPTModel(config=config).to(torch_device).eval()
input_ids = inputs_dict["input_ids"]
attention_mask = inputs_dict["attention_mask"]
head_mask = inputs_dict["head_mask"]
# first forward pass
outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True)
output, past_key_values = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_attn_mask = ids_tensor((self.batch_size, 3), 2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1)
output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"]
output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[
"last_hidden_state"
]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
# test no attention_mask works
outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True)
_, past_key_values = outputs.to_tuple()
output_from_no_past = model(next_input_ids)["last_hidden_state"]
output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"]
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
@require_torch
class OPTModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(OPTModel, OPTForCausalLM, OPTForSequenceClassification, OPTForQuestionAnswering)
if is_torch_available()
else ()
)
all_generative_model_classes = (OPTForCausalLM,) if is_torch_available() else ()
pipeline_model_mapping = (
{
"feature-extraction": OPTModel,
"question-answering": OPTForQuestionAnswering,
"text-classification": OPTForSequenceClassification,
"text-generation": OPTForCausalLM,
"zero-shot": OPTForSequenceClassification,
}
if is_torch_available()
else {}
)
is_encoder_decoder = False
fx_compatible = True
test_pruning = False
test_missing_keys = False
# TODO: Fix the failed tests
def is_pipeline_test_to_skip(
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
):
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("Fast")
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def setUp(self):
self.model_tester = OPTModelTester(self)
self.config_tester = ConfigTester(self, config_class=OPTConfig)
def test_config(self):
self.config_tester.run_common_tests()
def test_save_load_strict(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
self.assertEqual(info["missing_keys"], [])
def test_decoder_model_past_with_large_inputs(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
def test_inputs_embeds(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in (OPTModel,):
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
if not self.is_encoder_decoder:
input_ids = inputs["input_ids"]
del inputs["input_ids"]
else:
encoder_input_ids = inputs["input_ids"]
decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
del inputs["input_ids"]
inputs.pop("decoder_input_ids", None)
wte = model.get_input_embeddings()
if not self.is_encoder_decoder:
inputs["inputs_embeds"] = wte(input_ids)
else:
inputs["inputs_embeds"] = wte(encoder_input_ids)
inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
with torch.no_grad():
model(**inputs)[0]
def test_generate_fp16(self):
config, input_dict = self.model_tester.prepare_config_and_inputs()
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
model = OPTForCausalLM(config).eval().to(torch_device)
if torch_device == "cuda":
model.half()
model.generate(input_ids, attention_mask=attention_mask)
model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3)
def test_opt_sequence_classification_model(self):
config, input_dict = self.model_tester.prepare_config_and_inputs()
config.num_labels = 3
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
model = OPTForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
def test_opt_sequence_classification_model_for_multi_label(self):
config, input_dict = self.model_tester.prepare_config_and_inputs()
config.num_labels = 3
config.problem_type = "multi_label_classification"
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor(
[self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size
).to(torch.float)
model = OPTForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
@unittest.skip("Does not work on the tiny model as we keep hitting edge cases.")
def test_model_parallelism(self):
super().test_model_parallelism()
def assert_tensors_close(a, b, atol=1e-12, prefix=""):
"""If tensors have different shapes, different values or a and b are not both tensors, raise a nice Assertion error."""
if a is None and b is None:
return True
try:
if torch.allclose(a, b, atol=atol):
return True
raise
except Exception:
pct_different = (torch.gt((a - b).abs(), atol)).float().mean().item()
if a.numel() > 100:
msg = f"tensor values are {pct_different:.1%} percent different."
else:
msg = f"{a} != {b}"
if prefix:
msg = prefix + ": " + msg
raise AssertionError(msg)
def _long_tensor(tok_lst):
return torch.tensor(tok_lst, dtype=torch.long, device=torch_device)
@require_torch
class OPTModelIntegrationTests(unittest.TestCase):
@slow
def test_inference_no_head(self):
model = OPTModel.from_pretrained("facebook/opt-350m").to(torch_device)
input_ids = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
with torch.no_grad():
output = model(input_ids=input_ids).last_hidden_state
expected_shape = torch.Size((1, 11, 512))
self.assertEqual(output.shape, expected_shape)
# expected value works for CPU, as well as GPU (with TF32 disabled)
expected_slice = torch.tensor(
[
[-0.28726277, -1.9241608, -0.3058734],
[-1.2737825, -0.13332152, -0.18766522],
[0.41159445, 0.1191957, -1.3107123],
],
device=torch_device,
)
assert_tensors_close(output[0, :3, :3], expected_slice, atol=5e-5)
@require_torch
@slow
class OPTEmbeddingsTest(unittest.TestCase):
def setUp(self):
super().setUp()
self.path_model = "facebook/opt-350m"
def test_load_model(self):
try:
_ = OPTForCausalLM.from_pretrained(self.path_model)
except BaseException:
self.fail("Failed loading model")
def test_logits(self):
model = OPTForCausalLM.from_pretrained(self.path_model)
model = model.eval()
tokenizer = GPT2Tokenizer.from_pretrained(self.path_model)
prompts = [
"Today is a beautiful day and I want to",
"In the city of",
"Paris is the capital of France and",
"Computers and mobile phones have taken",
]
# verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False
inputs = tokenizer(prompts, return_tensors="pt", padding=True, add_special_tokens=False)
logits = model(inputs.input_ids, attention_mask=inputs.attention_mask)[0].mean(dim=-1)
# logits_meta = torch.load(self.path_logits_meta)
logits_meta = torch.Tensor(
[
[1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670],
[-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822],
[0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703],
[6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477],
]
)
assert torch.allclose(logits, logits_meta, atol=1e-4)
@slow
class OPTGenerationTest(unittest.TestCase):
@property
def prompts(self):
return [
"Today is a beautiful day and I want",
"In the city of",
"Paris is the capital of France and",
"Computers and mobile phones have taken",
]
def test_generation_pre_attn_layer_norm(self):
model_id = "facebook/opt-125m"
EXPECTED_OUTPUTS = [
"Today is a beautiful day and I want to",
"In the city of New York, the city",
"Paris is the capital of France and the capital",
"Computers and mobile phones have taken over the",
]
predicted_outputs = []
tokenizer = GPT2Tokenizer.from_pretrained(model_id)
model = OPTForCausalLM.from_pretrained(model_id)
for prompt in self.prompts:
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
generated_ids = model.generate(input_ids, max_length=10)
generated_string = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
predicted_outputs += generated_string
self.assertListEqual(predicted_outputs, EXPECTED_OUTPUTS)
def test_batch_generation(self):
model_id = "facebook/opt-350m"
tokenizer = GPT2Tokenizer.from_pretrained(model_id)
model = OPTForCausalLM.from_pretrained(model_id)
model.to(torch_device)
tokenizer.padding_side = "left"
# use different length sentences to test batching
sentences = [
"Hello, my dog is a little",
"Today, I",
]
inputs = tokenizer(sentences, return_tensors="pt", padding=True)
input_ids = inputs["input_ids"].to(torch_device)
outputs = model.generate(
input_ids=input_ids,
attention_mask=inputs["attention_mask"].to(torch_device),
)
inputs_non_padded = tokenizer(sentences[0], return_tensors="pt").input_ids.to(torch_device)
output_non_padded = model.generate(input_ids=inputs_non_padded)
num_paddings = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item()
inputs_padded = tokenizer(sentences[1], return_tensors="pt").input_ids.to(torch_device)
output_padded = model.generate(input_ids=inputs_padded, max_length=model.config.max_length - num_paddings)
batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True)
non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True)
padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True)
expected_output_sentence = [
"Hello, my dog is a little bit of a dork.\nI'm a little bit",
"Today, I was in the middle of a conversation with a friend about the",
]
self.assertListEqual(expected_output_sentence, batch_out_sentence)
self.assertListEqual(batch_out_sentence, [non_padded_sentence, padded_sentence])
def test_generation_post_attn_layer_norm(self):
model_id = "facebook/opt-350m"
EXPECTED_OUTPUTS = [
"Today is a beautiful day and I want to",
"In the city of San Francisco, the city",
"Paris is the capital of France and the capital",
"Computers and mobile phones have taken over the",
]
predicted_outputs = []
tokenizer = GPT2Tokenizer.from_pretrained(model_id)
model = OPTForCausalLM.from_pretrained(model_id)
for prompt in self.prompts:
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
generated_ids = model.generate(input_ids, max_length=10)
generated_string = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
predicted_outputs += generated_string
self.assertListEqual(predicted_outputs, EXPECTED_OUTPUTS)
@require_torch_gpu
def test_batched_nan_fp16(self):
# a bug manifested starting at models facebook/opt-1.3 and larger when running batched generations,
# therefore not using a tiny model, but the smallest model the problem was seen with which is opt-1.3b.
# please refer to this github thread: https://github.com/huggingface/transformers/pull/17437 for more details
model_name = "facebook/opt-1.3b"
tokenizer = GPT2Tokenizer.from_pretrained(model_name, use_fast=False, padding_side="left")
model = OPTForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, use_cache=True).cuda()
model = model.eval()
batch = tokenizer(["Who are you?", "Joe Biden is the president of"], padding=True, return_tensors="pt")
input_ids = batch["input_ids"].cuda()
attention_mask = batch["attention_mask"].cuda()
with torch.no_grad():
outputs = model(input_ids, attention_mask=attention_mask)
self.assertFalse(
torch.isnan(outputs.logits[0]).any().item()
) # the first logits could contain NaNs if it fails
@slow
def test_contrastive_search_opt(self):
article = (
"A chat between a curious human and the Statue of Liberty.\n\nHuman: What is your name?\nStatue: I am the "
"Statue of Liberty.\nHuman: Where do you live?\nStatue: New York City.\nHuman: How long have you lived "
"there?"
)
opt_tokenizer = GPT2Tokenizer.from_pretrained("facebook/opt-1.3b")
opt_model = OPTForCausalLM.from_pretrained("facebook/opt-1.3b").to(torch_device)
input_ids = opt_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
outputs = opt_model.generate(input_ids, penalty_alpha=0.6, top_k=5, max_length=256)
generated_text = opt_tokenizer.batch_decode(outputs, skip_special_tokens=True)
self.assertListEqual(
generated_text,
[
"A chat between a curious human and the Statue of Liberty.\n\nHuman: What is your name?\nStatue: I "
"am the Statue of Liberty.\nHuman: Where do you live?\nStatue: New York City.\nHuman: How long have "
"you lived there?\nStatue: A hundred years.\nHuman: And you’re from what country?\nStatue: The United "
"States of America.\nHuman: Why did you come to America?\nStatue: I came to escape the tyranny of my "
"country.\nHuman: What tyranny?\nStatue: They didn’t let me speak my mind.\nHuman: What was your "
"country?\nStatue: It was a country of immigrants.\nHuman: Who were the immigrants?\nStatue: They "
"were from all over the world.\nHuman: What language did they speak?\nStatue: French, Spanish, "
"Italian, German, English—you name it.\nHuman: And where did they come from?\nStatue: They came from "
"every country in the world.\nHuman: And you were born in what country?\nStatue: I was born in "
"France.\nHuman: And your parents were French?\nStatue"
],
)
| transformers-main | tests/models/opt/test_modeling_opt.py |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import unittest
import numpy as np
from transformers import OPTConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import GPT2Tokenizer, TFOPTForCausalLM, TFOPTModel
def prepare_opt_inputs_dict(config, input_ids, attention_mask=None, head_mask=None):
if attention_mask is None:
attention_mask = tf.cast(tf.math.not_equal(input_ids, config.pad_token_id), tf.int8)
return {"input_ids": input_ids, "attention_mask": attention_mask}
@require_tf
class TFOPTModelTester:
config_cls = OPTConfig
config_updates = {}
hidden_act = "gelu"
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_labels=False,
vocab_size=99,
hidden_size=16,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=4,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=20,
eos_token_id=2,
pad_token_id=1,
bos_token_id=0,
embed_dim=16,
word_embed_proj_dim=16,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
self.embed_dim = embed_dim
self.word_embed_proj_dim = word_embed_proj_dim
self.is_encoder_decoder = False
def prepare_config_and_inputs_for_common(self):
input_ids = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size)
eos_tensor = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size), 1)
input_ids = tf.concat([input_ids, eos_tensor], axis=1)
config = self.config_cls(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
ffn_dim=self.intermediate_size,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
pad_token_id=self.pad_token_id,
embed_dim=self.embed_dim,
word_embed_proj_dim=self.word_embed_proj_dim,
is_encoder_decoder=False,
**self.config_updates,
)
inputs_dict = prepare_opt_inputs_dict(config, input_ids)
return config, inputs_dict
def check_decoder_model_past_large_inputs(self, config, inputs_dict):
model = TFOPTModel(config=config)
input_ids = inputs_dict["input_ids"]
input_ids = input_ids[:1, :]
attention_mask = inputs_dict["attention_mask"][:1, :]
self.batch_size = 1
# first forward pass
outputs = model(input_ids, attention_mask=attention_mask, use_cache=True)
output, past_key_values = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_attn_mask = tf.cast(ids_tensor((self.batch_size, 3), 2), tf.int8)
# append to next input_ids and
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
next_attention_mask = tf.concat([attention_mask, next_attn_mask], axis=-1)
output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)[0]
output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[0]
self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1])
# select random slice
random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx]
output_from_past_slice = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)
@require_tf
class TFOPTModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else ()
all_generative_model_classes = (TFOPTForCausalLM,) if is_tf_available() else ()
pipeline_model_mapping = (
{"feature-extraction": TFOPTModel, "text-generation": TFOPTForCausalLM} if is_tf_available() else {}
)
is_encoder_decoder = False
test_pruning = False
test_onnx = False
onnx_min_opset = 10
def setUp(self):
self.model_tester = TFOPTModelTester(self)
self.config_tester = ConfigTester(self, config_class=OPTConfig)
def test_config(self):
self.config_tester.run_common_tests()
def test_decoder_model_past_large_inputs(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*config_and_inputs)
def test_resize_token_embeddings(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
def _get_word_embedding_weight(model, embedding_layer):
if hasattr(embedding_layer, "weight"):
return embedding_layer.weight
else:
# Here we build the word embeddings weights if not exists.
# And then we retry to get the attribute once built.
model.build()
if hasattr(embedding_layer, "weight"):
return embedding_layer.weight
else:
return None
for model_class in self.all_model_classes:
for size in [config.vocab_size - 10, config.vocab_size + 10]:
# build the embeddings
model = model_class(config=config)
old_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings())
old_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings())
# reshape the embeddings
model.resize_token_embeddings(size)
new_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings())
new_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings())
# check that the resized embeddings size matches the desired size.
assert_size = size if size is not None else config.vocab_size
self.assertEqual(new_input_embeddings.shape[0], assert_size)
# check that weights remain the same after resizing
models_equal = True
for p1, p2 in zip(old_input_embeddings.value(), new_input_embeddings.value()):
if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
models_equal = False
self.assertTrue(models_equal)
if old_output_embeddings is not None and new_output_embeddings is not None:
self.assertEqual(new_output_embeddings.shape[0], assert_size)
models_equal = True
for p1, p2 in zip(old_output_embeddings.value(), new_output_embeddings.value()):
if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
models_equal = False
self.assertTrue(models_equal)
def _long_tensor(tok_lst):
return tf.constant(tok_lst, dtype=tf.int32)
@require_tf
class TFOPTHeadTests(unittest.TestCase):
vocab_size = 99
def _get_config_and_data(self):
eos_column_vector = tf.ones((4, 1), dtype=tf.int32) * 2
input_ids = tf.concat([ids_tensor((4, 6), self.vocab_size - 3) + 3, eos_column_vector], axis=1)
batch_size = input_ids.shape[0]
config = OPTConfig(
vocab_size=self.vocab_size,
hidden_size=24,
num_hidden_layers=2,
num_attention_heads=2,
ffn_dim=32,
max_position_embeddings=48,
eos_token_id=2,
pad_token_id=1,
bos_token_id=0,
)
return config, input_ids, batch_size
@require_sentencepiece
@require_tf
class OPTModelIntegrationTests(unittest.TestCase):
@slow
def test_inference_no_head(self):
model = TFOPTModel.from_pretrained("facebook/opt-350m")
input_ids = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
attention_mask = tf.not_equal(input_ids, model.config.pad_token_id)
with tf.GradientTape():
output = model(input_ids=input_ids, attention_mask=attention_mask).last_hidden_state
expected_shape = (1, 11, 512)
self.assertEqual(output.shape, expected_shape)
expected_slice = tf.constant(
[[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]]
)
self.assertTrue(np.allclose(output[:, :3, :3], expected_slice, atol=4e-3))
xla_generate = tf.function(model, jit_compile=True)
output = xla_generate(input_ids, attention_mask)[0]
self.assertTrue(np.allclose(output[:, :3, :3], expected_slice, atol=4e-2))
@require_tf
@slow
class TFOPTEmbeddingsTest(unittest.TestCase):
def setUp(self):
super().setUp()
self.path_model = "facebook/opt-350m"
def test_logits(self):
model = TFOPTForCausalLM.from_pretrained(self.path_model)
tokenizer = GPT2Tokenizer.from_pretrained(self.path_model)
prompts = [
"Today is a beautiful day and I want to",
"In the city of",
"Paris is the capital of France and",
"Computers and mobile phones have taken",
]
# verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False
inputs = tokenizer(prompts, return_tensors="tf", padding=True, add_special_tokens=False)
logits = tf.math.reduce_mean(model(inputs.input_ids, attention_mask=inputs.attention_mask)[0], axis=-1)
logits_meta = tf.constant(
[
[1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670],
[-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822],
[0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703],
[6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477],
]
)
self.assertTrue(np.allclose(logits, logits_meta, atol=1e-4))
xla_generate = tf.function(model, jit_compile=True)
logits = tf.math.reduce_mean(xla_generate(inputs.input_ids, attention_mask=inputs.attention_mask)[0], axis=-1)
self.assertTrue(np.allclose(logits, logits_meta, atol=1e-4))
@require_tf
@slow
class TFOPTGenerationTest(unittest.TestCase):
@property
def prompts(self):
return [
"Today is a beautiful day and I want",
"In the city of",
"Paris is the capital of France and",
"Computers and mobile phones have taken",
]
def test_generation_pre_attn_layer_norm(self):
model_id = "facebook/opt-125m"
EXPECTED_OUTPUTS = [
"Today is a beautiful day and I want to",
"In the city of New York, the city",
"Paris is the capital of France and the capital",
"Computers and mobile phones have taken over the",
]
predicted_outputs = []
tokenizer = GPT2Tokenizer.from_pretrained(model_id)
model = TFOPTForCausalLM.from_pretrained(model_id)
for prompt in self.prompts:
input_ids = tokenizer(prompt, return_tensors="tf").input_ids
generated_ids = model.generate(input_ids, max_length=10)
generated_string = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
predicted_outputs += generated_string
self.assertListEqual(predicted_outputs, EXPECTED_OUTPUTS)
def test_batch_generation(self):
model_id = "facebook/opt-350m"
tokenizer = GPT2Tokenizer.from_pretrained(model_id)
model = TFOPTForCausalLM.from_pretrained(model_id)
tokenizer.padding_side = "left"
# use different length sentences to test batching
sentences = [
"Hello, my dog is a little",
"Today, I",
]
inputs = tokenizer(sentences, return_tensors="tf", padding=True)
input_ids = inputs["input_ids"]
outputs = model.generate(input_ids=input_ids, attention_mask=inputs["attention_mask"])
inputs_non_padded = tokenizer(sentences[0], return_tensors="tf").input_ids
output_non_padded = model.generate(input_ids=inputs_non_padded)
num_paddings = inputs_non_padded.shape[-1] - tf.math.reduce_sum(
tf.cast(inputs["attention_mask"][-1], tf.int64)
)
inputs_padded = tokenizer(sentences[1], return_tensors="tf").input_ids
output_padded = model.generate(input_ids=inputs_padded, max_length=model.config.max_length - num_paddings)
batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True)
non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True)
padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True)
expected_output_sentence = [
"Hello, my dog is a little bit of a dork.\nI'm a little bit",
"Today, I was in the middle of a conversation with a friend about the",
]
self.assertListEqual(expected_output_sentence, batch_out_sentence)
self.assertListEqual(batch_out_sentence, [non_padded_sentence, padded_sentence])
def test_generation_post_attn_layer_norm(self):
model_id = "facebook/opt-350m"
EXPECTED_OUTPUTS = [
"Today is a beautiful day and I want to",
"In the city of San Francisco, the city",
"Paris is the capital of France and the capital",
"Computers and mobile phones have taken over the",
]
predicted_outputs = []
tokenizer = GPT2Tokenizer.from_pretrained(model_id)
model = TFOPTForCausalLM.from_pretrained(model_id)
for prompt in self.prompts:
input_ids = tokenizer(prompt, return_tensors="tf").input_ids
generated_ids = model.generate(input_ids, max_length=10)
generated_string = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
predicted_outputs += generated_string
self.assertListEqual(predicted_outputs, EXPECTED_OUTPUTS)
| transformers-main | tests/models/opt/test_modeling_tf_opt.py |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import OPTConfig, is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
os.environ["XLA_PYTHON_CLIENT_ALLOCATOR"] = "platform"
import jax
import jax.numpy as jnp
from transformers import FlaxOPTForCausalLM, FlaxOPTModel, GPT2Tokenizer
def prepare_opt_inputs_dict(config, input_ids, attention_mask=None, head_mask=None):
if attention_mask is None:
attention_mask = np.where(input_ids != config.pad_token_id, 1, 0)
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
}
@require_flax
class FlaxOPTModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_labels=False,
vocab_size=99,
hidden_size=16,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=4,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=20,
eos_token_id=2,
pad_token_id=1,
bos_token_id=0,
embed_dim=16,
word_embed_proj_dim=16,
initializer_range=0.02,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
self.embed_dim = embed_dim
self.word_embed_proj_dim = word_embed_proj_dim
self.initializer_range = initializer_range
self.is_encoder_decoder = False
def prepare_config_and_inputs(self):
input_ids = np.clip(ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size), 3, self.vocab_size)
input_ids = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1), dtype=np.int64)), -1)
config = OPTConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
ffn_dim=self.intermediate_size,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
pad_token_id=self.pad_token_id,
embed_dim=self.embed_dim,
is_encoder_decoder=False,
word_embed_proj_dim=self.word_embed_proj_dim,
initializer_range=self.initializer_range,
use_cache=False,
)
inputs_dict = prepare_opt_inputs_dict(config, input_ids)
return config, inputs_dict
def prepare_config_and_inputs_for_common(self):
config, inputs_dict = self.prepare_config_and_inputs()
return config, inputs_dict
def check_use_cache_forward(self, model_class_name, config, inputs_dict):
max_length = 20
model = model_class_name(config)
input_ids = inputs_dict["input_ids"]
attention_mask = inputs_dict["attention_mask"]
past_key_values = model.init_cache(input_ids.shape[0], max_length)
attention_mask = jnp.ones((input_ids.shape[0], max_length), dtype="i4")
position_ids = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1)[None, :],
(input_ids.shape[0], input_ids.shape[-1] - 1),
)
outputs_cache = model(
input_ids[:, :-1],
attention_mask=attention_mask,
past_key_values=past_key_values,
position_ids=position_ids,
)
position_ids = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype="i4")
outputs_cache_next = model(
input_ids[:, -1:],
attention_mask=attention_mask,
past_key_values=outputs_cache.past_key_values,
position_ids=position_ids,
)
outputs = model(input_ids)
diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}")
def check_use_cache_forward_with_attn_mask(self, model_class_name, config, inputs_dict):
max_length = 20
model = model_class_name(config)
input_ids, attention_mask = (
inputs_dict["input_ids"],
inputs_dict["attention_mask"],
)
attention_mask_cache = jnp.concatenate(
[
attention_mask,
jnp.zeros((attention_mask.shape[0], max_length - attention_mask.shape[1])),
],
axis=-1,
)
past_key_values = model.init_cache(input_ids.shape[0], max_length)
position_ids = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1)[None, :],
(input_ids.shape[0], input_ids.shape[-1] - 1),
)
outputs_cache = model(
input_ids[:, :-1],
attention_mask=attention_mask_cache,
past_key_values=past_key_values,
position_ids=position_ids,
)
position_ids = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype="i4")
outputs_cache_next = model(
input_ids[:, -1:],
past_key_values=outputs_cache.past_key_values,
attention_mask=attention_mask_cache,
position_ids=position_ids,
)
outputs = model(input_ids, attention_mask=attention_mask)
diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}")
@require_flax
class FlaxOPTModelTest(FlaxModelTesterMixin, unittest.TestCase, FlaxGenerationTesterMixin):
all_model_classes = (FlaxOPTModel, FlaxOPTForCausalLM) if is_flax_available() else ()
all_generative_model_classes = () if is_flax_available() else ()
def setUp(self):
self.model_tester = FlaxOPTModelTester(self)
def test_use_cache_forward(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(model_class, config, inputs_dict)
def test_use_cache_forward_with_attn_mask(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(model_class, config, inputs_dict)
@slow
def test_model_from_pretrained(self):
for model_class_name in self.all_model_classes:
model = model_class_name.from_pretrained("facebook/opt-125m")
input_ids = np.ones((1, 1)) * model.config.eos_token_id
outputs = model(input_ids)
self.assertIsNotNone(outputs)
@require_sentencepiece
@require_flax
class FlaxOPTModelIntegrationTests(unittest.TestCase):
@slow
def test_inference_no_head(self):
model = FlaxOPTModel.from_pretrained("facebook/opt-350m")
input_ids = jnp.array([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
output = model(input_ids=input_ids).last_hidden_state
expected_shape = (1, 11, 512)
self.assertEqual(output.shape, expected_shape)
expected_slice = jnp.array(
[[-0.2867, -1.9256, -0.3062], [-1.2711, -0.1337, -0.1897], [0.4109, 0.1187, -1.3142]]
)
self.assertTrue(jnp.allclose(output[:, :3, :3], expected_slice, atol=4e-2))
@require_flax
@slow
class FlaxOPTEmbeddingsTest(unittest.TestCase):
def setUp(self):
super().setUp()
self.path_model = "facebook/opt-350m"
def test_logits(self):
model = FlaxOPTForCausalLM.from_pretrained(self.path_model)
tokenizer = GPT2Tokenizer.from_pretrained(self.path_model)
prompts = [
"Today is a beautiful day and I want to",
"In the city of",
"Paris is the capital of France and",
"Computers and mobile phones have taken",
]
# verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False
inputs = tokenizer(prompts, return_tensors="jax", padding=True, add_special_tokens=False)
logits = model(inputs.input_ids, attention_mask=inputs.attention_mask)[0].mean(axis=-1)
logits_meta = jnp.array(
[
[1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670],
[-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822],
[0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703],
[6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477],
]
)
self.assertTrue(jnp.allclose(logits, logits_meta, atol=4e-2))
model = jax.jit(model)
logits = model(inputs.input_ids, attention_mask=inputs.attention_mask)[0].mean(axis=-1)
self.assertTrue(jnp.allclose(logits, logits_meta, atol=4e-2))
@require_flax
@slow
class FlaxOPTGenerationTest(unittest.TestCase):
@property
def prompts(self):
return [
"Today is a beautiful day and I want",
"In the city of",
"Paris is the capital of France and",
"Computers and mobile phones have taken",
]
def test_generation_pre_attn_layer_norm(self):
model_id = "facebook/opt-125m"
EXPECTED_OUTPUTS = [
"Today is a beautiful day and I want to",
"In the city of New York, the city",
"Paris is the capital of France and the capital",
"Computers and mobile phones have taken over the",
]
predicted_outputs = []
model = FlaxOPTForCausalLM.from_pretrained(model_id)
tokenizer = GPT2Tokenizer.from_pretrained(model_id)
for prompt in self.prompts:
input_ids = tokenizer(prompt, return_tensors="jax").input_ids
generated_ids = model.generate(input_ids, max_length=10)
generated_ids = generated_ids[0]
generated_string = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
predicted_outputs += generated_string
self.assertListEqual(predicted_outputs, EXPECTED_OUTPUTS)
def test_generation_post_attn_layer_norm(self):
model_id = "facebook/opt-350m"
EXPECTED_OUTPUTS = [
"Today is a beautiful day and I want to",
"In the city of San Francisco, the city",
"Paris is the capital of France and the capital",
"Computers and mobile phones have taken over the",
]
predicted_outputs = []
model = FlaxOPTForCausalLM.from_pretrained(model_id)
tokenizer = GPT2Tokenizer.from_pretrained(model_id)
for prompt in self.prompts:
input_ids = tokenizer(prompt, return_tensors="jax").input_ids
generated_ids = model.generate(input_ids, max_length=10)
generated_ids = generated_ids[0]
generated_string = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
predicted_outputs += generated_string
self.assertListEqual(predicted_outputs, EXPECTED_OUTPUTS)
def test_jitted_batch_generation(self):
model_id = "facebook/opt-125m"
EXPECTED_OUTPUTS = [
"Today is a beautiful day and I want to thank",
"In the city of Rome Canaver Canaver Canaver Canaver",
]
model = FlaxOPTForCausalLM.from_pretrained(model_id)
tokenizer = GPT2Tokenizer.from_pretrained(model_id)
inputs = tokenizer(
[
"Today is a beautiful day and I want to",
"In the city of",
],
return_tensors="jax",
padding=True,
)
jit_generate = jax.jit(model.generate)
output_sequences = jit_generate(inputs["input_ids"], attention_mask=inputs["attention_mask"]).sequences
output_string = tokenizer.batch_decode(output_sequences, skip_special_tokens=True)
self.assertIsNotNone(output_string, EXPECTED_OUTPUTS)
def test_batch_generation(self):
model_id = "facebook/opt-350m"
tokenizer = GPT2Tokenizer.from_pretrained(model_id)
model = FlaxOPTForCausalLM.from_pretrained(model_id)
tokenizer.padding_side = "left"
# use different length sentences to test batching
sentences = [
"Hello, my dog is a little",
"Today, I",
]
inputs = tokenizer(sentences, return_tensors="jax", padding=True)
input_ids = inputs["input_ids"]
outputs = model.generate(input_ids=input_ids, attention_mask=inputs["attention_mask"], trace=False)
inputs_non_padded = tokenizer(sentences[0], return_tensors="jax").input_ids
output_non_padded = model.generate(input_ids=inputs_non_padded)
num_paddings = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].sum()
inputs_padded = tokenizer(sentences[1], return_tensors="jax").input_ids
output_padded = model.generate(input_ids=inputs_padded, max_length=model.config.max_length - num_paddings)
batch_out_sentence = tokenizer.batch_decode(outputs[0], skip_special_tokens=True)
non_padded_sentence = tokenizer.decode(output_non_padded[0][0], skip_special_tokens=True)
padded_sentence = tokenizer.decode(output_padded[0][0], skip_special_tokens=True)
expected_output_sentence = [
"Hello, my dog is a little bit of a dork.\nI'm a little bit",
"Today, I was in the middle of a conversation with a friend about the",
]
self.assertListEqual(expected_output_sentence, batch_out_sentence)
self.assertListEqual(batch_out_sentence, [non_padded_sentence, padded_sentence])
| transformers-main | tests/models/opt/test_modeling_flax_opt.py |
transformers-main | tests/models/nystromformer/__init__.py |
|
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Nystromformer model. """
import unittest
from transformers import AutoTokenizer, NystromformerConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
NystromformerForMaskedLM,
NystromformerForMultipleChoice,
NystromformerForQuestionAnswering,
NystromformerForSequenceClassification,
NystromformerForTokenClassification,
NystromformerModel,
)
from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
class NystromformerModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def get_config(self):
return NystromformerConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
is_decoder=False,
initializer_range=self.initializer_range,
)
def create_and_check_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = NystromformerModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
result = model(input_ids, token_type_ids=token_type_ids)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_masked_lm(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = NystromformerForMaskedLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_for_question_answering(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = NystromformerForQuestionAnswering(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
start_positions=sequence_labels,
end_positions=sequence_labels,
)
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
def create_and_check_for_sequence_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = NystromformerForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_for_token_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = NystromformerForTokenClassification(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def create_and_check_for_multiple_choice(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_choices = self.num_choices
model = NystromformerForMultipleChoice(config=config)
model.to(torch_device)
model.eval()
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
result = model(
multiple_choice_inputs_ids,
attention_mask=multiple_choice_input_mask,
token_type_ids=multiple_choice_token_type_ids,
labels=choice_labels,
)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class NystromformerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(
NystromformerModel,
NystromformerForMaskedLM,
NystromformerForMultipleChoice,
NystromformerForQuestionAnswering,
NystromformerForSequenceClassification,
NystromformerForTokenClassification,
)
if is_torch_available()
else ()
)
pipeline_model_mapping = (
{
"feature-extraction": NystromformerModel,
"fill-mask": NystromformerForMaskedLM,
"question-answering": NystromformerForQuestionAnswering,
"text-classification": NystromformerForSequenceClassification,
"token-classification": NystromformerForTokenClassification,
"zero-shot": NystromformerForSequenceClassification,
}
if is_torch_available()
else {}
)
test_pruning = False
test_headmasking = False
def setUp(self):
self.model_tester = NystromformerModelTester(self)
self.config_tester = ConfigTester(self, config_class=NystromformerConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_various_embeddings(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
config_and_inputs[0].position_embedding_type = type
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
def test_for_multiple_choice(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
def test_for_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
def test_for_sequence_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
def test_for_token_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = NystromformerModel.from_pretrained(model_name)
self.assertIsNotNone(model)
@require_torch
class NystromformerModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_no_head(self):
model = NystromformerModel.from_pretrained("uw-madison/nystromformer-512")
input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]])
with torch.no_grad():
output = model(input_ids)[0]
expected_shape = torch.Size((1, 6, 768))
self.assertEqual(output.shape, expected_shape)
expected_slice = torch.tensor(
[[[-0.4532, -0.0936, 0.5137], [-0.2676, 0.0628, 0.6186], [-0.3629, -0.1726, 0.4716]]]
)
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
@slow
def test_masked_lm_end_to_end(self):
sentence = "the [MASK] of Belgium is Brussels"
tokenizer = AutoTokenizer.from_pretrained("uw-madison/nystromformer-512")
model = NystromformerForMaskedLM.from_pretrained("uw-madison/nystromformer-512")
encoding = tokenizer(sentence, return_tensors="pt")
with torch.no_grad():
token_logits = model(encoding.input_ids).logits
prediction = token_logits[:, 2, :].argmax(-1)[0]
self.assertEqual(tokenizer.decode(prediction), "capital")
| transformers-main | tests/models/nystromformer/test_modeling_nystromformer.py |
transformers-main | tests/models/vit_hybrid/__init__.py |
|
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch ViT Hybrid model. """
import inspect
import unittest
from transformers import ViTHybridConfig
from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel
from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class ViTHybridModelTester:
def __init__(
self,
parent,
batch_size=13,
image_size=64,
patch_size=2,
num_channels=3,
is_training=True,
use_labels=True,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
type_sequence_label_size=10,
initializer_range=0.02,
backbone_featmap_shape=[1, 16, 4, 4],
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.is_training = is_training
self.use_labels = use_labels
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.scope = scope
self.backbone_featmap_shape = backbone_featmap_shape
# in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
# the number of patches is based on the feature map of the backbone, which by default uses an output stride
# of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size
num_patches = (self.image_size // 32) ** 2
self.seq_length = num_patches + 1
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
config = self.get_config()
return config, pixel_values, labels
def get_config(self):
backbone_config = {
"global_padding": "same",
"layer_type": "bottleneck",
"depths": [3, 4, 9],
"out_features": ["stage1", "stage2", "stage3"],
"embedding_dynamic_padding": True,
"hidden_sizes": [4, 8, 16, 32],
"num_groups": 2,
}
return ViTHybridConfig(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
is_decoder=False,
initializer_range=self.initializer_range,
backbone_featmap_shape=self.backbone_featmap_shape,
backbone_config=backbone_config,
)
def create_and_check_model(self, config, pixel_values, labels):
model = ViTHybridModel(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_image_classification(self, config, pixel_values, labels):
config.num_labels = self.type_sequence_label_size
model = ViTHybridForImageClassification(config)
model.to(torch_device)
model.eval()
result = model(pixel_values, labels=labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, labels = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class ViTHybridModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as ViT does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else ()
pipeline_model_mapping = (
{"feature-extraction": ViTHybridModel, "image-classification": ViTHybridForImageClassification}
if is_torch_available()
else {}
)
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
model_split_percents = [0.5, 0.9]
def setUp(self):
self.model_tester = ViTHybridModelTester(self)
self.config_tester = ConfigTester(self, config_class=ViTHybridConfig, has_text_modality=False, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="ViT does not use inputs_embeds")
def test_inputs_embeds(self):
pass
def test_model_common_attributes(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_image_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*config_and_inputs)
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
# Skip the check for the backbone
for name, module in model.named_modules():
if module.__class__.__name__ == "ViTHybridPatchEmbeddings":
backbone_params = [f"{name}.{key}" for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if name in backbone_params:
continue
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
@slow
def test_model_from_pretrained(self):
for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = ViTHybridModel.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_torch
@require_vision
class ViTModelIntegrationTest(unittest.TestCase):
@cached_property
def default_image_processor(self):
return (
ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0])
if is_vision_available()
else None
)
@slow
def test_inference_image_classification_head(self):
model = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(
torch_device
)
image_processor = self.default_image_processor
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# verify the logits
expected_shape = torch.Size((1, 1000))
self.assertEqual(outputs.logits.shape, expected_shape)
expected_slice = torch.tensor([-1.9090, -0.4993, -0.2389]).to(torch_device)
self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))
@slow
@require_accelerate
def test_accelerate_inference(self):
image_processor = ViTHybridImageProcessor.from_pretrained("google/vit-hybrid-base-bit-384")
model = ViTHybridForImageClassification.from_pretrained("google/vit-hybrid-base-bit-384", device_map="auto")
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
outputs = model(**inputs)
logits = outputs.logits
# model predicts one of the 1000 ImageNet classes
predicted_class_idx = logits.argmax(-1).item()
self.assertTrue(model.config.id2label[predicted_class_idx], "tabby, tabby cat")
| transformers-main | tests/models/vit_hybrid/test_modeling_vit_hybrid.py |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch DecisionTransformer model. """
import inspect
import unittest
from transformers import DecisionTransformerConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import DecisionTransformerModel
from transformers.models.decision_transformer.modeling_decision_transformer import (
DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
class DecisionTransformerModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
act_dim=6,
state_dim=17,
hidden_size=23,
max_length=11,
is_training=True,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.act_dim = act_dim
self.state_dim = state_dim
self.hidden_size = hidden_size
self.max_length = max_length
self.is_training = is_training
def prepare_config_and_inputs(self):
states = floats_tensor((self.batch_size, self.seq_length, self.state_dim))
actions = floats_tensor((self.batch_size, self.seq_length, self.act_dim))
rewards = floats_tensor((self.batch_size, self.seq_length, 1))
returns_to_go = floats_tensor((self.batch_size, self.seq_length, 1))
timesteps = ids_tensor((self.batch_size, self.seq_length), vocab_size=1000)
attention_mask = random_attention_mask((self.batch_size, self.seq_length))
config = self.get_config()
return (
config,
states,
actions,
rewards,
returns_to_go,
timesteps,
attention_mask,
)
def get_config(self):
return DecisionTransformerConfig(
batch_size=self.batch_size,
seq_length=self.seq_length,
act_dim=self.act_dim,
state_dim=self.state_dim,
hidden_size=self.hidden_size,
max_length=self.max_length,
)
def create_and_check_model(
self,
config,
states,
actions,
rewards,
returns_to_go,
timesteps,
attention_mask,
):
model = DecisionTransformerModel(config=config)
model.to(torch_device)
model.eval()
result = model(states, actions, rewards, returns_to_go, timesteps, attention_mask)
self.parent.assertEqual(result.state_preds.shape, states.shape)
self.parent.assertEqual(result.action_preds.shape, actions.shape)
self.parent.assertEqual(result.return_preds.shape, returns_to_go.shape)
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, self.seq_length * 3, self.hidden_size)
) # seq length *3 as there are 3 modelities: states, returns and actions
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
states,
actions,
rewards,
returns_to_go,
timesteps,
attention_mask,
) = config_and_inputs
inputs_dict = {
"states": states,
"actions": actions,
"rewards": rewards,
"returns_to_go": returns_to_go,
"timesteps": timesteps,
"attention_mask": attention_mask,
}
return config, inputs_dict
@require_torch
class DecisionTransformerModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (DecisionTransformerModel,) if is_torch_available() else ()
all_generative_model_classes = ()
pipeline_model_mapping = {"feature-extraction": DecisionTransformerModel} if is_torch_available() else {}
# Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids
test_generate_without_input_ids = False
# Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
test_attention_outputs = False
test_hidden_states_output = False
test_inputs_embeds = False
test_model_common_attributes = False
test_gradient_checkpointing = False
test_torchscript = False
def setUp(self):
self.model_tester = DecisionTransformerModelTester(self)
self.config_tester = ConfigTester(self, config_class=DecisionTransformerConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = DecisionTransformerModel.from_pretrained(model_name)
self.assertIsNotNone(model)
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = [
"states",
"actions",
"rewards",
"returns_to_go",
"timesteps",
"attention_mask",
]
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
@require_torch
class DecisionTransformerModelIntegrationTest(unittest.TestCase):
@slow
def test_autoregressive_prediction(self):
"""
An integration test that performs autoregressive prediction of state, action and return
from a sequence of state, actions and returns. Test is performed over two timesteps.
"""
NUM_STEPS = 2 # number of steps of autoregressive prediction we will perform
TARGET_RETURN = 10 # defined by the RL environment, may be normalized
model = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert")
model = model.to(torch_device)
config = model.config
torch.manual_seed(0)
state = torch.randn(1, 1, config.state_dim).to(device=torch_device, dtype=torch.float32) # env.reset()
expected_outputs = torch.tensor(
[[0.242793, -0.28693074, 0.8742613], [0.67815274, -0.08101085, -0.12952147]], device=torch_device
)
returns_to_go = torch.tensor(TARGET_RETURN, device=torch_device, dtype=torch.float32).reshape(1, 1, 1)
states = state
actions = torch.zeros(1, 0, config.act_dim, device=torch_device, dtype=torch.float32)
rewards = torch.zeros(1, 0, device=torch_device, dtype=torch.float32)
timesteps = torch.tensor(0, device=torch_device, dtype=torch.long).reshape(1, 1)
for step in range(NUM_STEPS):
actions = torch.cat([actions, torch.zeros(1, 1, config.act_dim, device=torch_device)], dim=1)
rewards = torch.cat([rewards, torch.zeros(1, 1, device=torch_device)], dim=1)
attention_mask = torch.ones(1, states.shape[1]).to(dtype=torch.long, device=states.device)
with torch.no_grad():
_, action_pred, _ = model(
states=states,
actions=actions,
rewards=rewards,
returns_to_go=returns_to_go,
timesteps=timesteps,
attention_mask=attention_mask,
return_dict=False,
)
self.assertEqual(action_pred.shape, actions.shape)
self.assertTrue(torch.allclose(action_pred[0, -1], expected_outputs[step], atol=1e-4))
state, reward, _, _ = ( # env.step(action)
torch.randn(1, 1, config.state_dim).to(device=torch_device, dtype=torch.float32),
1.0,
False,
{},
)
actions[-1] = action_pred[0, -1]
states = torch.cat([states, state], dim=1)
pred_return = returns_to_go[0, -1] - reward
returns_to_go = torch.cat([returns_to_go, pred_return.reshape(1, 1, 1)], dim=1)
timesteps = torch.cat(
[timesteps, torch.ones((1, 1), device=torch_device, dtype=torch.long) * (step + 1)], dim=1
)
| transformers-main | tests/models/decision_transformer/test_modeling_decision_transformer.py |
transformers-main | tests/models/decision_transformer/__init__.py |
|
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import unittest
import numpy as np
from transformers import BeitConfig
from transformers.testing_utils import require_flax, require_vision, slow
from transformers.utils import cached_property, is_flax_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor
if is_flax_available():
import jax
from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class FlaxBeitModelTester(unittest.TestCase):
def __init__(
self,
parent,
vocab_size=100,
batch_size=13,
image_size=30,
patch_size=2,
num_channels=3,
is_training=True,
use_labels=True,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
type_sequence_label_size=10,
initializer_range=0.02,
num_labels=3,
):
self.parent = parent
self.vocab_size = vocab_size
self.batch_size = batch_size
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.is_training = is_training
self.use_labels = use_labels
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
num_patches = (image_size // patch_size) ** 2
self.seq_length = num_patches + 1
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
config = BeitConfig(
vocab_size=self.vocab_size,
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
is_decoder=False,
initializer_range=self.initializer_range,
)
return config, pixel_values, labels
def create_and_check_model(self, config, pixel_values, labels):
model = FlaxBeitModel(config=config)
result = model(pixel_values)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_masked_lm(self, config, pixel_values, labels):
model = FlaxBeitForMaskedImageModeling(config=config)
result = model(pixel_values)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size))
def create_and_check_for_image_classification(self, config, pixel_values, labels):
config.num_labels = self.type_sequence_label_size
model = FlaxBeitForImageClassification(config=config)
result = model(pixel_values)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
# test greyscale images
config.num_channels = 1
model = FlaxBeitForImageClassification(config)
pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
result = model(pixel_values)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
pixel_values,
labels,
) = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_flax
class FlaxBeitModelTest(FlaxModelTesterMixin, unittest.TestCase):
all_model_classes = (
(FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else ()
)
def setUp(self) -> None:
self.model_tester = FlaxBeitModelTester(self)
self.config_tester = ConfigTester(self, config_class=BeitConfig, has_text_modality=False, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
# We need to override this test because Beit's forward signature is different than text models.
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.__call__)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
# We need to override this test because Beit expects pixel_values instead of input_ids
def test_jit_compilation(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
model = model_class(config)
@jax.jit
def model_jitted(pixel_values, **kwargs):
return model(pixel_values=pixel_values, **kwargs)
with self.subTest("JIT Enabled"):
jitted_outputs = model_jitted(**prepared_inputs_dict).to_tuple()
with self.subTest("JIT Disabled"):
with jax.disable_jit():
outputs = model_jitted(**prepared_inputs_dict).to_tuple()
self.assertEqual(len(outputs), len(jitted_outputs))
for jitted_output, output in zip(jitted_outputs, outputs):
self.assertEqual(jitted_output.shape, output.shape)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
def test_for_image_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_class_name in self.all_model_classes:
model = model_class_name.from_pretrained("microsoft/beit-base-patch16-224")
outputs = model(np.ones((1, 3, 224, 224)))
self.assertIsNotNone(outputs)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_vision
@require_flax
class FlaxBeitModelIntegrationTest(unittest.TestCase):
@cached_property
def default_image_processor(self):
return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224") if is_vision_available() else None
@slow
def test_inference_masked_image_modeling_head(self):
model = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k")
image_processor = self.default_image_processor
image = prepare_img()
pixel_values = image_processor(images=image, return_tensors="np").pixel_values
# prepare bool_masked_pos
bool_masked_pos = np.ones((1, 196), dtype=bool)
# forward pass
outputs = model(pixel_values=pixel_values, bool_masked_pos=bool_masked_pos)
logits = outputs.logits
# verify the logits
expected_shape = (1, 196, 8192)
self.assertEqual(logits.shape, expected_shape)
expected_slice = np.array(
[[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]]
)
self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3], expected_slice, atol=1e-2))
@slow
def test_inference_image_classification_head_imagenet_1k(self):
model = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224")
image_processor = self.default_image_processor
image = prepare_img()
inputs = image_processor(images=image, return_tensors="np")
# forward pass
outputs = model(**inputs)
logits = outputs.logits
# verify the logits
expected_shape = (1, 1000)
self.assertEqual(logits.shape, expected_shape)
expected_slice = np.array([-1.2385, -1.0987, -1.0108])
self.assertTrue(np.allclose(logits[0, :3], expected_slice, atol=1e-4))
expected_class_idx = 281
self.assertEqual(logits.argmax(-1).item(), expected_class_idx)
@slow
def test_inference_image_classification_head_imagenet_22k(self):
model = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k")
image_processor = self.default_image_processor
image = prepare_img()
inputs = image_processor(images=image, return_tensors="np")
# forward pass
outputs = model(**inputs)
logits = outputs.logits
# verify the logits
expected_shape = (1, 21841)
self.assertEqual(logits.shape, expected_shape)
expected_slice = np.array([1.6881, -0.2787, 0.5901])
self.assertTrue(np.allclose(logits[0, :3], expected_slice, atol=1e-4))
expected_class_idx = 2396
self.assertEqual(logits.argmax(-1).item(), expected_class_idx)
| transformers-main | tests/models/beit/test_modeling_flax_beit.py |
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class BeitImageProcessingTester(unittest.TestCase):
def __init__(
self,
parent,
batch_size=7,
num_channels=3,
image_size=18,
min_resolution=30,
max_resolution=400,
do_resize=True,
size=None,
do_center_crop=True,
crop_size=None,
do_normalize=True,
image_mean=[0.5, 0.5, 0.5],
image_std=[0.5, 0.5, 0.5],
do_reduce_labels=False,
):
size = size if size is not None else {"height": 20, "width": 20}
crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18}
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.image_size = image_size
self.min_resolution = min_resolution
self.max_resolution = max_resolution
self.do_resize = do_resize
self.size = size
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
self.do_reduce_labels = do_reduce_labels
def prepare_image_processor_dict(self):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_reduce_labels": self.do_reduce_labels,
}
def expected_output_image_shape(self, images):
return self.num_channels, self.crop_size["height"], self.crop_size["width"]
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
return prepare_image_inputs(
batch_size=self.batch_size,
num_channels=self.num_channels,
min_resolution=self.min_resolution,
max_resolution=self.max_resolution,
equal_resolution=equal_resolution,
numpify=numpify,
torchify=torchify,
)
def prepare_semantic_single_inputs():
dataset = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
image = Image.open(dataset[0]["file"])
map = Image.open(dataset[1]["file"])
return image, map
def prepare_semantic_batch_inputs():
ds = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
image1 = Image.open(ds[0]["file"])
map1 = Image.open(ds[1]["file"])
image2 = Image.open(ds[2]["file"])
map2 = Image.open(ds[3]["file"])
return [image1, image2], [map1, map2]
@require_torch
@require_vision
class BeitImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
image_processing_class = BeitImageProcessor if is_vision_available() else None
def setUp(self):
self.image_processor_tester = BeitImageProcessingTester(self)
@property
def image_processor_dict(self):
return self.image_processor_tester.prepare_image_processor_dict()
def test_image_processor_properties(self):
image_processing = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(image_processing, "do_resize"))
self.assertTrue(hasattr(image_processing, "size"))
self.assertTrue(hasattr(image_processing, "do_center_crop"))
self.assertTrue(hasattr(image_processing, "center_crop"))
self.assertTrue(hasattr(image_processing, "do_normalize"))
self.assertTrue(hasattr(image_processing, "image_mean"))
self.assertTrue(hasattr(image_processing, "image_std"))
def test_image_processor_from_dict_with_kwargs(self):
image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size, {"height": 20, "width": 20})
self.assertEqual(image_processor.crop_size, {"height": 18, "width": 18})
self.assertEqual(image_processor.do_reduce_labels, False)
image_processor = self.image_processing_class.from_dict(
self.image_processor_dict, size=42, crop_size=84, reduce_labels=True
)
self.assertEqual(image_processor.size, {"height": 42, "width": 42})
self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
self.assertEqual(image_processor.do_reduce_labels, True)
def test_call_segmentation_maps(self):
# Initialize image_processing
image_processing = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
maps = []
for image in image_inputs:
self.assertIsInstance(image, torch.Tensor)
maps.append(torch.zeros(image.shape[-2:]).long())
# Test not batched input
encoding = image_processing(image_inputs[0], maps[0], return_tensors="pt")
self.assertEqual(
encoding["pixel_values"].shape,
(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
),
)
self.assertEqual(
encoding["labels"].shape,
(
1,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
),
)
self.assertEqual(encoding["labels"].dtype, torch.long)
self.assertTrue(encoding["labels"].min().item() >= 0)
self.assertTrue(encoding["labels"].max().item() <= 255)
# Test batched
encoding = image_processing(image_inputs, maps, return_tensors="pt")
self.assertEqual(
encoding["pixel_values"].shape,
(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
),
)
self.assertEqual(
encoding["labels"].shape,
(
self.image_processor_tester.batch_size,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
),
)
self.assertEqual(encoding["labels"].dtype, torch.long)
self.assertTrue(encoding["labels"].min().item() >= 0)
self.assertTrue(encoding["labels"].max().item() <= 255)
# Test not batched input (PIL images)
image, segmentation_map = prepare_semantic_single_inputs()
encoding = image_processing(image, segmentation_map, return_tensors="pt")
self.assertEqual(
encoding["pixel_values"].shape,
(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
),
)
self.assertEqual(
encoding["labels"].shape,
(
1,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
),
)
self.assertEqual(encoding["labels"].dtype, torch.long)
self.assertTrue(encoding["labels"].min().item() >= 0)
self.assertTrue(encoding["labels"].max().item() <= 255)
# Test batched input (PIL images)
images, segmentation_maps = prepare_semantic_batch_inputs()
encoding = image_processing(images, segmentation_maps, return_tensors="pt")
self.assertEqual(
encoding["pixel_values"].shape,
(
2,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
),
)
self.assertEqual(
encoding["labels"].shape,
(
2,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
),
)
self.assertEqual(encoding["labels"].dtype, torch.long)
self.assertTrue(encoding["labels"].min().item() >= 0)
self.assertTrue(encoding["labels"].max().item() <= 255)
def test_reduce_labels(self):
# Initialize image_processing
image_processing = self.image_processing_class(**self.image_processor_dict)
# ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150
image, map = prepare_semantic_single_inputs()
encoding = image_processing(image, map, return_tensors="pt")
self.assertTrue(encoding["labels"].min().item() >= 0)
self.assertTrue(encoding["labels"].max().item() <= 150)
image_processing.do_reduce_labels = True
encoding = image_processing(image, map, return_tensors="pt")
self.assertTrue(encoding["labels"].min().item() >= 0)
self.assertTrue(encoding["labels"].max().item() <= 255)
| transformers-main | tests/models/beit/test_image_processing_beit.py |
transformers-main | tests/models/beit/__init__.py |
|
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch BEiT model. """
import inspect
import unittest
from datasets import load_dataset
from packaging import version
from transformers import BeitConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_MAPPING,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
)
from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
import PIL
from PIL import Image
from transformers import BeitImageProcessor
class BeitModelTester:
def __init__(
self,
parent,
vocab_size=100,
batch_size=13,
image_size=30,
patch_size=2,
num_channels=3,
is_training=True,
use_labels=True,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
type_sequence_label_size=10,
initializer_range=0.02,
num_labels=3,
scope=None,
out_indices=[0, 1, 2, 3],
):
self.parent = parent
self.vocab_size = 100
self.batch_size = batch_size
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.is_training = is_training
self.use_labels = use_labels
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.scope = scope
self.out_indices = out_indices
self.num_labels = num_labels
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
num_patches = (image_size // patch_size) ** 2
self.seq_length = num_patches + 1
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
labels = None
pixel_labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
pixel_labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels)
config = self.get_config()
return config, pixel_values, labels, pixel_labels
def get_config(self):
return BeitConfig(
vocab_size=self.vocab_size,
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
is_decoder=False,
initializer_range=self.initializer_range,
out_indices=self.out_indices,
)
def create_and_check_model(self, config, pixel_values, labels, pixel_labels):
model = BeitModel(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_masked_lm(self, config, pixel_values, labels, pixel_labels):
model = BeitForMaskedImageModeling(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size))
def create_and_check_for_image_classification(self, config, pixel_values, labels, pixel_labels):
config.num_labels = self.type_sequence_label_size
model = BeitForImageClassification(config)
model.to(torch_device)
model.eval()
result = model(pixel_values, labels=labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
# test greyscale images
config.num_channels = 1
model = BeitForImageClassification(config)
model.to(torch_device)
model.eval()
pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
result = model(pixel_values, labels=labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
def create_and_check_for_semantic_segmentation(self, config, pixel_values, labels, pixel_labels):
config.num_labels = self.num_labels
model = BeitForSemanticSegmentation(config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(
result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2)
)
result = model(pixel_values, labels=pixel_labels)
self.parent.assertEqual(
result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2)
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, labels, pixel_labels = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class BeitModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as BEiT does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (
(BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation)
if is_torch_available()
else ()
)
pipeline_model_mapping = (
{
"feature-extraction": BeitModel,
"image-classification": BeitForImageClassification,
"image-segmentation": BeitForSemanticSegmentation,
}
if is_torch_available()
else {}
)
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
def setUp(self):
self.model_tester = BeitModelTester(self)
self.config_tester = ConfigTester(self, config_class=BeitConfig, has_text_modality=False, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="BEiT does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@require_torch_multi_gpu
@unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`")
def test_multi_gpu_data_parallel_forward(self):
pass
def test_model_common_attributes(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
def test_for_image_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*config_and_inputs)
def test_for_semantic_segmentation(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*config_and_inputs)
def test_training(self):
if not self.model_tester.is_training:
return
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if model_class in [*get_values(MODEL_MAPPING), BeitForMaskedImageModeling]:
continue
model = model_class(config)
model.to(torch_device)
model.train()
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
loss = model(**inputs).loss
loss.backward()
def test_training_gradient_checkpointing(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
config.use_cache = False
config.return_dict = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if (
model_class in [*get_values(MODEL_MAPPING), BeitForMaskedImageModeling]
or not model_class.supports_gradient_checkpointing
):
continue
model = model_class(config)
model.gradient_checkpointing_enable()
model.to(torch_device)
model.train()
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
loss = model(**inputs).loss
loss.backward()
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
# we skip lambda parameters as these require special initial values
# determined by config.layer_scale_init_value
if "lambda" in name:
continue
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
@slow
def test_model_from_pretrained(self):
for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = BeitModel.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_torch
@require_vision
class BeitModelIntegrationTest(unittest.TestCase):
@cached_property
def default_image_processor(self):
return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224") if is_vision_available() else None
@slow
def test_inference_masked_image_modeling_head(self):
model = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k").to(torch_device)
image_processor = self.default_image_processor
image = prepare_img()
pixel_values = image_processor(images=image, return_tensors="pt").pixel_values.to(torch_device)
# prepare bool_masked_pos
bool_masked_pos = torch.ones((1, 196), dtype=torch.bool).to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(pixel_values=pixel_values, bool_masked_pos=bool_masked_pos)
logits = outputs.logits
# verify the logits
expected_shape = torch.Size((1, 196, 8192))
self.assertEqual(logits.shape, expected_shape)
expected_slice = torch.tensor(
[[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]]
).to(torch_device)
self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3], expected_slice, atol=1e-2))
@slow
def test_inference_image_classification_head_imagenet_1k(self):
model = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224").to(torch_device)
image_processor = self.default_image_processor
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
# verify the logits
expected_shape = torch.Size((1, 1000))
self.assertEqual(logits.shape, expected_shape)
expected_slice = torch.tensor([-1.2385, -1.0987, -1.0108]).to(torch_device)
self.assertTrue(torch.allclose(logits[0, :3], expected_slice, atol=1e-4))
expected_class_idx = 281
self.assertEqual(logits.argmax(-1).item(), expected_class_idx)
@slow
def test_inference_image_classification_head_imagenet_22k(self):
model = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k").to(
torch_device
)
image_processor = self.default_image_processor
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
# verify the logits
expected_shape = torch.Size((1, 21841))
self.assertEqual(logits.shape, expected_shape)
expected_slice = torch.tensor([1.6881, -0.2787, 0.5901]).to(torch_device)
self.assertTrue(torch.allclose(logits[0, :3], expected_slice, atol=1e-4))
expected_class_idx = 2396
self.assertEqual(logits.argmax(-1).item(), expected_class_idx)
@slow
def test_inference_semantic_segmentation(self):
model = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640")
model = model.to(torch_device)
image_processor = BeitImageProcessor(do_resize=True, size=640, do_center_crop=False)
ds = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
image = Image.open(ds[0]["file"])
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
# verify the logits
expected_shape = torch.Size((1, 150, 160, 160))
self.assertEqual(logits.shape, expected_shape)
is_pillow_less_than_9 = version.parse(PIL.__version__) < version.parse("9.0.0")
if is_pillow_less_than_9:
expected_slice = torch.tensor(
[
[[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]],
[[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]],
[[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]],
],
device=torch_device,
)
else:
expected_slice = torch.tensor(
[
[[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]],
[[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]],
[[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]],
],
device=torch_device,
)
self.assertTrue(torch.allclose(logits[0, :3, :3, :3], expected_slice, atol=1e-4))
@slow
def test_post_processing_semantic_segmentation(self):
model = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640")
model = model.to(torch_device)
image_processor = BeitImageProcessor(do_resize=True, size=640, do_center_crop=False)
ds = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
image = Image.open(ds[0]["file"])
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
outputs.logits = outputs.logits.detach().cpu()
segmentation = image_processor.post_process_semantic_segmentation(outputs=outputs, target_sizes=[(500, 300)])
expected_shape = torch.Size((500, 300))
self.assertEqual(segmentation[0].shape, expected_shape)
segmentation = image_processor.post_process_semantic_segmentation(outputs=outputs)
expected_shape = torch.Size((160, 160))
self.assertEqual(segmentation[0].shape, expected_shape)
| transformers-main | tests/models/beit/test_modeling_beit.py |
transformers-main | tests/models/timm_backbone/__init__.py |
|
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import inspect
import unittest
from transformers import AutoBackbone
from transformers.configuration_utils import PretrainedConfig
from transformers.testing_utils import require_timm, require_torch, torch_device
from transformers.utils.import_utils import is_torch_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor
if is_torch_available():
import torch
from transformers import TimmBackbone, TimmBackboneConfig
from ...test_pipeline_mixin import PipelineTesterMixin
class TimmBackboneModelTester:
def __init__(
self,
parent,
out_indices=None,
out_features=None,
stage_names=None,
backbone="resnet18",
batch_size=3,
image_size=32,
num_channels=3,
is_training=True,
use_pretrained_backbone=True,
):
self.parent = parent
self.out_indices = out_indices if out_indices is not None else [4]
self.stage_names = stage_names
self.out_features = out_features
self.backbone = backbone
self.batch_size = batch_size
self.image_size = image_size
self.num_channels = num_channels
self.use_pretrained_backbone = use_pretrained_backbone
self.is_training = is_training
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
config = self.get_config()
return config, pixel_values
def get_config(self):
return TimmBackboneConfig(
image_size=self.image_size,
num_channels=self.num_channels,
out_features=self.out_features,
out_indices=self.out_indices,
stage_names=self.stage_names,
use_pretrained_backbone=self.use_pretrained_backbone,
backbone=self.backbone,
)
def create_and_check_model(self, config, pixel_values):
model = TimmBackbone(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(pixel_values)
self.parent.assertEqual(
result.feature_map[-1].shape,
(self.batch_size, model.channels[-1], 14, 14),
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
@require_timm
class TimmBackboneModelTest(ModelTesterMixin, BackboneTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (TimmBackbone,) if is_torch_available() else ()
pipeline_model_mapping = {"feature-extraction": TimmBackbone} if is_torch_available() else {}
test_resize_embeddings = False
test_head_masking = False
test_pruning = False
has_attentions = False
def setUp(self):
self.model_tester = TimmBackboneModelTester(self)
self.config_tester = ConfigTester(self, config_class=PretrainedConfig, has_text_modality=False)
def test_config(self):
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def test_timm_transformer_backbone_equivalence(self):
timm_checkpoint = "resnet18"
transformers_checkpoint = "microsoft/resnet-18"
timm_model = AutoBackbone.from_pretrained(timm_checkpoint, use_timm_backbone=True)
transformers_model = AutoBackbone.from_pretrained(transformers_checkpoint)
self.assertEqual(len(timm_model.out_features), len(transformers_model.out_features))
self.assertEqual(len(timm_model.stage_names), len(transformers_model.stage_names))
self.assertEqual(timm_model.channels, transformers_model.channels)
# Out indices are set to the last layer by default. For timm models, we don't know
# the number of layers in advance, so we set it to (-1,), whereas for transformers
# models, we set it to [len(stage_names) - 1] (kept for backward compatibility).
self.assertEqual(timm_model.out_indices, (-1,))
self.assertEqual(transformers_model.out_indices, [len(timm_model.stage_names) - 1])
timm_model = AutoBackbone.from_pretrained(timm_checkpoint, use_timm_backbone=True, out_indices=[1, 2, 3])
transformers_model = AutoBackbone.from_pretrained(transformers_checkpoint, out_indices=[1, 2, 3])
self.assertEqual(timm_model.out_indices, transformers_model.out_indices)
self.assertEqual(len(timm_model.out_features), len(transformers_model.out_features))
self.assertEqual(timm_model.channels, transformers_model.channels)
@unittest.skip("TimmBackbone doesn't support feed forward chunking")
def test_feed_forward_chunking(self):
pass
@unittest.skip("TimmBackbone doesn't have num_hidden_layers attribute")
def test_hidden_states_output(self):
pass
@unittest.skip("TimmBackbone initialization is managed on the timm side")
def test_initialization(self):
pass
@unittest.skip("TimmBackbone models doesn't have inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip("TimmBackbone models doesn't have inputs_embeds")
def test_model_common_attributes(self):
pass
@unittest.skip("TimmBackbone model cannot be created without specifying a backbone checkpoint")
def test_from_pretrained_no_checkpoint(self):
pass
@unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone")
def test_save_load(self):
pass
@unittest.skip("model weights aren't tied in TimmBackbone.")
def test_tie_model_weights(self):
pass
@unittest.skip("model weights aren't tied in TimmBackbone.")
def test_tied_model_weights_key_ignore(self):
pass
@unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone")
def test_load_save_without_tied_weights(self):
pass
@unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone")
def test_model_weights_reload_no_missing_tied_weights(self):
pass
@unittest.skip("TimmBackbone doesn't have hidden size info in its configuration.")
def test_channels(self):
pass
@unittest.skip("TimmBackbone doesn't support output_attentions.")
def test_torchscript_output_attentions(self):
pass
@unittest.skip("Safetensors is not supported by timm.")
def test_can_use_safetensors(self):
pass
@unittest.skip("Need to use a timm backbone and there is no tiny model available.")
def test_model_is_small(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_retain_grad_hidden_states_attentions(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.output_hidden_states = True
config.output_attentions = self.has_attentions
# no need to test all models as different heads yield the same functionality
model_class = self.all_model_classes[0]
model = model_class(config)
model.to(torch_device)
inputs = self._prepare_for_class(inputs_dict, model_class)
outputs = model(**inputs)
output = outputs[0][-1]
# Encoder-/Decoder-only models
hidden_states = outputs.hidden_states[0]
hidden_states.retain_grad()
if self.has_attentions:
attentions = outputs.attentions[0]
attentions.retain_grad()
output.flatten()[0].backward(retain_graph=True)
self.assertIsNotNone(hidden_states.grad)
if self.has_attentions:
self.assertIsNotNone(attentions.grad)
# TimmBackbone config doesn't have out_features attribute
def test_create_from_modified_config(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
result = model(**inputs_dict)
self.assertEqual(len(result.feature_maps), len(config.out_indices))
self.assertEqual(len(model.channels), len(config.out_indices))
# Check output of last stage is taken if out_features=None, out_indices=None
modified_config = copy.deepcopy(config)
modified_config.out_indices = None
model = model_class(modified_config)
model.to(torch_device)
model.eval()
result = model(**inputs_dict)
self.assertEqual(len(result.feature_maps), 1)
self.assertEqual(len(model.channels), 1)
# Check backbone can be initialized with fresh weights
modified_config = copy.deepcopy(config)
modified_config.use_pretrained_backbone = False
model = model_class(modified_config)
model.to(torch_device)
model.eval()
result = model(**inputs_dict)
| transformers-main | tests/models/timm_backbone/test_modeling_timm_backbone.py |
transformers-main | tests/models/x_clip/__init__.py |
|
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch XCLIP model. """
import inspect
import os
import tempfile
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
ModelTesterMixin,
_config_zero_init,
floats_tensor,
ids_tensor,
random_attention_mask,
)
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import XCLIPModel, XCLIPTextModel, XCLIPVisionModel
from transformers.models.x_clip.modeling_x_clip import XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from transformers import XCLIPProcessor
class XCLIPVisionModelTester:
def __init__(
self,
parent,
batch_size=8,
image_size=30,
patch_size=2,
num_channels=3,
num_frames=8, # important; the batch size * time must be divisible by the number of frames
is_training=True,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
mit_hidden_size=64,
dropout=0.1,
attention_dropout=0.1,
initializer_range=0.02,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.num_frames = num_frames
self.is_training = is_training
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.mit_hidden_size = mit_hidden_size
self.dropout = dropout
self.attention_dropout = attention_dropout
self.initializer_range = initializer_range
self.scope = scope
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
num_patches = (image_size // patch_size) ** 2
self.seq_length = num_patches + 1
def prepare_config_and_inputs(self):
pixel_values = floats_tensor(
[self.batch_size * self.num_frames, self.num_channels, self.image_size, self.image_size]
)
config = self.get_config()
return config, pixel_values
def get_config(self):
return XCLIPVisionConfig(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
num_frames=self.num_frames,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
mit_hidden_size=self.mit_hidden_size,
dropout=self.dropout,
attention_dropout=self.attention_dropout,
initializer_range=self.initializer_range,
)
def create_and_check_model(self, config, pixel_values):
model = XCLIPVisionModel(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(pixel_values)
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
image_size = (self.image_size, self.image_size)
patch_size = (self.patch_size, self.patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size * self.num_frames, num_patches + 1, self.hidden_size)
)
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size * self.num_frames, self.hidden_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class XCLIPVisionModelTest(ModelTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as X-CLIP does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (XCLIPVisionModel,) if is_torch_available() else ()
fx_compatible = False
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
def setUp(self):
self.model_tester = XCLIPVisionModelTester(self)
self.config_tester = ConfigTester(
self, config_class=XCLIPVisionConfig, has_text_modality=False, hidden_size=37
)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="X-CLIP does not use inputs_embeds")
def test_inputs_embeds(self):
pass
def test_model_common_attributes(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_training(self):
pass
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(reason="XCLIPVisionModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="XCLIPVisionModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_to_base(self):
pass
@slow
def test_model_from_pretrained(self):
for model_name in XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = XCLIPVisionModel.from_pretrained(model_name)
self.assertIsNotNone(model)
def test_gradient_checkpointing_backward_compatibility(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
if not model_class.supports_gradient_checkpointing:
continue
print("Model class:", model_class)
config.gradient_checkpointing = True
model = model_class(config)
self.assertTrue(model.is_gradient_checkpointing)
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
# we add 1 here due to the special message token in X-CLIP's vision encoder
seq_len = getattr(self.model_tester, "seq_length", None) + 1
encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
self.assertEqual(len(outputs.attentions), self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
self.assertEqual(len(outputs.attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(outputs.attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_seq_length],
)
out_len = len(outputs)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
self.assertEqual(out_len + 1, len(outputs))
self_attentions = outputs.attentions
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_seq_length],
)
@require_torch_multi_gpu
def test_multi_gpu_data_parallel_forward(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
# some params shouldn't be scattered by nn.DataParallel
# so just remove them if they are present.
blacklist_non_batched_params = ["head_mask", "decoder_head_mask", "cross_attn_head_mask"]
for k in blacklist_non_batched_params:
inputs_dict.pop(k, None)
# move input tensors to cuda:O
for k, v in inputs_dict.items():
if torch.is_tensor(v):
inputs_dict[k] = v.to(0)
for model_class in self.all_model_classes:
model = model_class(config=config)
model.to(0)
model.eval()
# Wrap model in nn.DataParallel
model = nn.DataParallel(model)
with torch.no_grad():
test = self._prepare_for_class(inputs_dict, model_class)
for k, v in test.items():
if isinstance(v, torch.Tensor):
print(k, v.shape)
else:
print(k, v)
_ = model(**self._prepare_for_class(inputs_dict, model_class))
class XCLIPTextModelTester:
def __init__(
self,
parent,
batch_size=8,
seq_length=7,
is_training=True,
use_input_mask=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
dropout=0.1,
attention_dropout=0.1,
max_position_embeddings=512,
initializer_range=0.02,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.dropout = dropout
self.attention_dropout = attention_dropout
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
if input_mask is not None:
batch_size, seq_length = input_mask.shape
rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,))
for batch_idx, start_index in enumerate(rnd_start_indices):
input_mask[batch_idx, :start_index] = 1
input_mask[batch_idx, start_index:] = 0
config = self.get_config()
return config, input_ids, input_mask
def get_config(self):
return XCLIPTextConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
dropout=self.dropout,
attention_dropout=self.attention_dropout,
max_position_embeddings=self.max_position_embeddings,
initializer_range=self.initializer_range,
)
def create_and_check_model(self, config, input_ids, input_mask):
model = XCLIPTextModel(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(input_ids, attention_mask=input_mask)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, input_mask = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class XCLIPTextModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (XCLIPTextModel,) if is_torch_available() else ()
fx_compatible = False
test_pruning = False
test_head_masking = False
def setUp(self):
self.model_tester = XCLIPTextModelTester(self)
self.config_tester = ConfigTester(self, config_class=XCLIPTextConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_training(self):
pass
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(reason="X-CLIP does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="XCLIPTextModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="XCLIPTextModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_to_base(self):
pass
@slow
def test_model_from_pretrained(self):
for model_name in XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = XCLIPTextModel.from_pretrained(model_name)
self.assertIsNotNone(model)
class XCLIPModelTester:
def __init__(
self,
parent,
text_kwargs=None,
vision_kwargs=None,
projection_dim=64,
mit_hidden_size=64,
is_training=True,
):
if text_kwargs is None:
text_kwargs = {}
if vision_kwargs is None:
vision_kwargs = {}
self.parent = parent
self.projection_dim = projection_dim
self.mit_hidden_size = mit_hidden_size
self.text_model_tester = XCLIPTextModelTester(parent, **text_kwargs)
self.vision_model_tester = XCLIPVisionModelTester(parent, **vision_kwargs)
self.is_training = is_training
def prepare_config_and_inputs(self):
text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs()
vision_config, _ = self.vision_model_tester.prepare_config_and_inputs()
pixel_values = floats_tensor(
[
self.vision_model_tester.batch_size,
self.vision_model_tester.num_frames,
self.vision_model_tester.num_channels,
self.vision_model_tester.image_size,
self.vision_model_tester.image_size,
]
)
config = self.get_config()
return config, input_ids, attention_mask, pixel_values
def get_config(self):
return XCLIPConfig.from_text_vision_configs(
self.text_model_tester.get_config(),
self.vision_model_tester.get_config(),
projection_dim=self.projection_dim,
)
def create_and_check_model(self, config, input_ids, attention_mask, pixel_values):
model = XCLIPModel(config).to(torch_device).eval()
with torch.no_grad():
result = model(input_ids, pixel_values, attention_mask)
self.parent.assertEqual(
result.logits_per_video.shape,
(self.vision_model_tester.batch_size, self.text_model_tester.batch_size),
)
self.parent.assertEqual(
result.logits_per_text.shape,
(self.text_model_tester.batch_size, self.vision_model_tester.batch_size),
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, attention_mask, pixel_values = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"pixel_values": pixel_values,
"return_loss": True,
}
return config, inputs_dict
@require_torch
class XCLIPModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (XCLIPModel,) if is_torch_available() else ()
pipeline_model_mapping = {"feature-extraction": XCLIPModel} if is_torch_available() else {}
fx_compatible = False
test_head_masking = False
test_pruning = False
test_resize_embeddings = False
test_attention_outputs = False
test_torchscript = False
maxdiff = None
def setUp(self):
self.model_tester = XCLIPModelTester(self)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@unittest.skip(reason="Hidden_states is tested in individual model tests")
def test_hidden_states_output(self):
pass
@unittest.skip(reason="Inputs_embeds is tested in individual model tests")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Retain_grad is tested in individual model tests")
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip(reason="XCLIPModel does not have input/output embeddings")
def test_model_common_attributes(self):
pass
@unittest.skip(reason="XCLIPModel does not support feedforward chunking")
def test_feed_forward_chunking(self):
pass
# override as the `logit_scale`, `prompts_generator.alpha` parameters require special treatment
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad:
# check if `logit_scale` is initilized as per the original implementation
if name == "logit_scale":
self.assertAlmostEqual(
param.data.item(),
np.log(1 / 0.07),
delta=1e-3,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
elif name == "prompts_generator.alpha":
self.assertAlmostEqual(param.data.mean().item(), model.config.prompt_alpha)
else:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
def _create_and_check_torchscript(self, config, inputs_dict):
if not self.test_torchscript:
return
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
configs_no_init.torchscript = True
configs_no_init.return_dict = False
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
model.to(torch_device)
model.eval()
try:
input_ids = inputs_dict["input_ids"]
pixel_values = inputs_dict["pixel_values"] # X-CLIP needs pixel_values
traced_model = torch.jit.trace(model, (input_ids, pixel_values))
except RuntimeError:
self.fail("Couldn't trace module.")
with tempfile.TemporaryDirectory() as tmp_dir_name:
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
try:
torch.jit.save(traced_model, pt_file_name)
except Exception:
self.fail("Couldn't save module.")
try:
loaded_model = torch.jit.load(pt_file_name)
except Exception:
self.fail("Couldn't load module.")
model.to(torch_device)
model.eval()
loaded_model.to(torch_device)
loaded_model.eval()
model_state_dict = model.state_dict()
loaded_model_state_dict = loaded_model.state_dict()
non_persistent_buffers = {}
for key in loaded_model_state_dict.keys():
if key not in model_state_dict.keys():
non_persistent_buffers[key] = loaded_model_state_dict[key]
loaded_model_state_dict = {
key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
}
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
model_buffers = list(model.buffers())
for non_persistent_buffer in non_persistent_buffers.values():
found_buffer = False
for i, model_buffer in enumerate(model_buffers):
if torch.equal(non_persistent_buffer, model_buffer):
found_buffer = True
break
self.assertTrue(found_buffer)
model_buffers.pop(i)
models_equal = True
for layer_name, p1 in model_state_dict.items():
p2 = loaded_model_state_dict[layer_name]
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
def test_load_vision_text_config(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
# Save XCLIPConfig and check if we can load XCLIPVisionConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
vision_config = XCLIPVisionConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict())
# Save XCLIPConfig and check if we can load XCLIPTextConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
text_config = XCLIPTextConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict())
@slow
def test_model_from_pretrained(self):
for model_name in XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = XCLIPModel.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on a spaghetti video
def prepare_video():
file = hf_hub_download(
repo_id="hf-internal-testing/spaghetti-video", filename="eating_spaghetti_8_frames.npy", repo_type="dataset"
)
video = np.load(file)
return list(video)
@require_vision
@require_torch
class XCLIPModelIntegrationTest(unittest.TestCase):
@slow
def test_inference(self):
model_name = "microsoft/xclip-base-patch32"
model = XCLIPModel.from_pretrained(model_name).to(torch_device)
processor = XCLIPProcessor.from_pretrained(model_name)
video = prepare_video()
inputs = processor(
text=["playing sports", "eating spaghetti", "go shopping"], videos=video, return_tensors="pt", padding=True
).to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# verify the logits
self.assertEqual(
outputs.logits_per_video.shape,
torch.Size((inputs.pixel_values.shape[0], inputs.input_ids.shape[0])),
)
self.assertEqual(
outputs.logits_per_text.shape,
torch.Size((inputs.input_ids.shape[0], inputs.pixel_values.shape[0])),
)
expected_logits = torch.tensor([[14.0181, 20.2771, 14.4776]], device=torch_device)
self.assertTrue(torch.allclose(outputs.logits_per_video, expected_logits, atol=1e-3))
| transformers-main | tests/models/x_clip/test_modeling_x_clip.py |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch CvT model. """
import inspect
import unittest
from math import floor
from transformers import CvtConfig
from transformers.file_utils import cached_property, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import CvtForImageClassification, CvtModel
from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class CvtConfigTester(ConfigTester):
def create_and_test_config_common_properties(self):
config = self.config_class(**self.inputs_dict)
self.parent.assertTrue(hasattr(config, "embed_dim"))
self.parent.assertTrue(hasattr(config, "num_heads"))
class CvtModelTester:
def __init__(
self,
parent,
batch_size=13,
image_size=64,
num_channels=3,
embed_dim=[16, 32, 48],
num_heads=[1, 2, 3],
depth=[1, 2, 10],
patch_sizes=[7, 3, 3],
patch_stride=[4, 2, 2],
patch_padding=[2, 1, 1],
stride_kv=[2, 2, 2],
cls_token=[False, False, True],
attention_drop_rate=[0.0, 0.0, 0.0],
initializer_range=0.02,
layer_norm_eps=1e-12,
is_training=True,
use_labels=True,
num_labels=2, # Check
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.patch_sizes = patch_sizes
self.patch_stride = patch_stride
self.patch_padding = patch_padding
self.is_training = is_training
self.use_labels = use_labels
self.num_labels = num_labels
self.num_channels = num_channels
self.embed_dim = embed_dim
self.num_heads = num_heads
self.stride_kv = stride_kv
self.depth = depth
self.cls_token = cls_token
self.attention_drop_rate = attention_drop_rate
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size], self.num_labels)
config = self.get_config()
return config, pixel_values, labels
def get_config(self):
return CvtConfig(
image_size=self.image_size,
num_labels=self.num_labels,
num_channels=self.num_channels,
embed_dim=self.embed_dim,
num_heads=self.num_heads,
patch_sizes=self.patch_sizes,
patch_padding=self.patch_padding,
patch_stride=self.patch_stride,
stride_kv=self.stride_kv,
depth=self.depth,
cls_token=self.cls_token,
attention_drop_rate=self.attention_drop_rate,
initializer_range=self.initializer_range,
)
def create_and_check_model(self, config, pixel_values, labels):
model = CvtModel(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
image_size = (self.image_size, self.image_size)
height, width = image_size[0], image_size[1]
for i in range(len(self.depth)):
height = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1)
width = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.embed_dim[-1], height, width))
def create_and_check_for_image_classification(self, config, pixel_values, labels):
config.num_labels = self.num_labels
model = CvtForImageClassification(config)
model.to(torch_device)
model.eval()
result = model(pixel_values, labels=labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, labels = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class CvtModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as Cvt does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (CvtModel, CvtForImageClassification) if is_torch_available() else ()
pipeline_model_mapping = (
{"feature-extraction": CvtModel, "image-classification": CvtForImageClassification}
if is_torch_available()
else {}
)
test_pruning = False
test_torchscript = False
test_resize_embeddings = False
test_head_masking = False
has_attentions = False
def setUp(self):
self.model_tester = CvtModelTester(self)
self.config_tester = ConfigTester(self, config_class=CvtConfig, has_text_modality=False, hidden_size=37)
def test_config(self):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def create_and_test_config_common_properties(self):
return
@unittest.skip(reason="Cvt does not output attentions")
def test_attention_outputs(self):
pass
@unittest.skip(reason="Cvt does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Cvt does not support input and output embeddings")
def test_model_common_attributes(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.hidden_states
expected_num_layers = len(self.model_tester.depth)
self.assertEqual(len(hidden_states), expected_num_layers)
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-3:]),
[
self.model_tester.embed_dim[0],
self.model_tester.image_size // 4,
self.model_tester.image_size // 4,
],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
def test_for_image_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = CvtModel.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_torch
@require_vision
class CvtModelIntegrationTest(unittest.TestCase):
@cached_property
def default_image_processor(self):
return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0])
@slow
def test_inference_image_classification_head(self):
model = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(torch_device)
image_processor = self.default_image_processor
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# verify the logits
expected_shape = torch.Size((1, 1000))
self.assertEqual(outputs.logits.shape, expected_shape)
expected_slice = torch.tensor([0.9285, 0.9015, -0.3150]).to(torch_device)
self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))
| transformers-main | tests/models/cvt/test_modeling_cvt.py |
transformers-main | tests/models/cvt/__init__.py |
|
""" Testing suite for the Tensorflow CvT model. """
from __future__ import annotations
import inspect
import unittest
from math import floor
import numpy as np
from transformers import CvtConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFCvtForImageClassification, TFCvtModel
from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class TFCvtConfigTester(ConfigTester):
def create_and_test_config_common_properties(self):
config = self.config_class(**self.inputs_dict)
self.parent.assertTrue(hasattr(config, "embed_dim"))
self.parent.assertTrue(hasattr(config, "num_heads"))
class TFCvtModelTester:
def __init__(
self,
parent,
batch_size=13,
image_size=64,
num_channels=3,
embed_dim=[16, 32, 48],
num_heads=[1, 2, 3],
depth=[1, 2, 10],
patch_sizes=[7, 3, 3],
patch_stride=[4, 2, 2],
patch_padding=[2, 1, 1],
stride_kv=[2, 2, 2],
cls_token=[False, False, True],
attention_drop_rate=[0.0, 0.0, 0.0],
initializer_range=0.02,
layer_norm_eps=1e-12,
is_training=True,
use_labels=True,
num_labels=2,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.patch_sizes = patch_sizes
self.patch_stride = patch_stride
self.patch_padding = patch_padding
self.is_training = is_training
self.use_labels = use_labels
self.num_labels = num_labels
self.num_channels = num_channels
self.embed_dim = embed_dim
self.num_heads = num_heads
self.stride_kv = stride_kv
self.depth = depth
self.cls_token = cls_token
self.attention_drop_rate = attention_drop_rate
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
labels = None
if self.use_labels:
# create a random int32 tensor of given shape
labels = ids_tensor([self.batch_size], self.num_labels)
config = self.get_config()
return config, pixel_values, labels
def get_config(self):
return CvtConfig(
image_size=self.image_size,
num_labels=self.num_labels,
num_channels=self.num_channels,
embed_dim=self.embed_dim,
num_heads=self.num_heads,
patch_sizes=self.patch_sizes,
patch_padding=self.patch_padding,
patch_stride=self.patch_stride,
stride_kv=self.stride_kv,
depth=self.depth,
cls_token=self.cls_token,
attention_drop_rate=self.attention_drop_rate,
initializer_range=self.initializer_range,
)
def create_and_check_model(self, config, pixel_values, labels):
model = TFCvtModel(config=config)
result = model(pixel_values, training=False)
image_size = (self.image_size, self.image_size)
height, width = image_size[0], image_size[1]
for i in range(len(self.depth)):
height = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1)
width = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.embed_dim[-1], height, width))
def create_and_check_for_image_classification(self, config, pixel_values, labels):
config.num_labels = self.num_labels
model = TFCvtForImageClassification(config)
result = model(pixel_values, labels=labels, training=False)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, labels = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_tf
class TFCvtModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as Cvt
does not use input_ids, inputs_embeds, attention_mask and seq_length.
"""
all_model_classes = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else ()
pipeline_model_mapping = (
{"feature-extraction": TFCvtModel, "image-classification": TFCvtForImageClassification}
if is_tf_available()
else {}
)
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
has_attentions = False
test_onnx = False
def setUp(self):
self.model_tester = TFCvtModelTester(self)
self.config_tester = TFCvtConfigTester(self, config_class=CvtConfig, has_text_modality=False, hidden_size=37)
def test_config(self):
self.config_tester.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
@unittest.skip(reason="Cvt does not output attentions")
def test_attention_outputs(self):
pass
@unittest.skip(reason="Cvt does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Cvt does not support input and output embeddings")
def test_model_common_attributes(self):
pass
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0,
reason="TF does not support backprop for grouped convolutions on CPU.",
)
def test_dataset_conversion(self):
super().test_dataset_conversion()
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0,
reason="TF does not support backprop for grouped convolutions on CPU.",
)
@slow
def test_keras_fit(self):
super().test_keras_fit()
@unittest.skip(reason="Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8")
def test_keras_fit_mixed_precision(self):
policy = tf.keras.mixed_precision.Policy("mixed_float16")
tf.keras.mixed_precision.set_global_policy(policy)
super().test_keras_fit()
tf.keras.mixed_precision.set_global_policy("float32")
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.call)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.hidden_states
expected_num_layers = len(self.model_tester.depth)
self.assertEqual(len(hidden_states), expected_num_layers)
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-3:]),
[
self.model_tester.embed_dim[0],
self.model_tester.image_size // 4,
self.model_tester.image_size // 4,
],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_image_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = TFCvtModel.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_tf
@require_vision
class TFCvtModelIntegrationTest(unittest.TestCase):
@cached_property
def default_image_processor(self):
return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0])
@slow
def test_inference_image_classification_head(self):
model = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0])
image_processor = self.default_image_processor
image = prepare_img()
inputs = image_processor(images=image, return_tensors="tf")
# forward pass
outputs = model(**inputs)
# verify the logits
expected_shape = tf.TensorShape((1, 1000))
self.assertEqual(outputs.logits.shape, expected_shape)
expected_slice = tf.constant([0.9285, 0.9015, -0.3150])
self.assertTrue(np.allclose(outputs.logits[0, :3].numpy(), expected_slice, atol=1e-4))
| transformers-main | tests/models/cvt/test_modeling_tf_cvt.py |
transformers-main | tests/models/cpm/__init__.py |
|
# coding=utf-8
# Copyright 2018 HuggingFace Inc. team.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from transformers.models.cpm.tokenization_cpm import CpmTokenizer
from transformers.testing_utils import custom_tokenizers
from ..xlnet.test_modeling_xlnet import XLNetModelTest
@custom_tokenizers
class CpmTokenizationTest(XLNetModelTest):
# There is no `CpmModel`
def is_pipeline_test_to_skip(
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
):
return True
def test_pre_tokenization(self):
tokenizer = CpmTokenizer.from_pretrained("TsinghuaAI/CPM-Generate")
text = "Hugging Face大法好,谁用谁知道。"
normalized_text = "Hugging Face大法好,谁用谁知道。<unk>"
bpe_tokens = "▁Hu gg ing ▁ ▂ ▁F ace ▁大法 ▁好 ▁ , ▁谁 ▁用 ▁谁 ▁知 道 ▁ 。".split()
tokens = tokenizer.tokenize(text)
self.assertListEqual(tokens, bpe_tokens)
input_tokens = tokens + [tokenizer.unk_token]
input_bpe_tokens = [13789, 13283, 1421, 8, 10, 1164, 13608, 16528, 63, 8, 9, 440, 108, 440, 121, 90, 8, 12, 0]
self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
reconstructed_text = tokenizer.decode(input_bpe_tokens)
self.assertEqual(reconstructed_text, normalized_text)
| transformers-main | tests/models/cpm/test_tokenization_cpm.py |
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import pathlib
import unittest
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DetaImageProcessor
class DetaImageProcessingTester(unittest.TestCase):
def __init__(
self,
parent,
batch_size=7,
num_channels=3,
min_resolution=30,
max_resolution=400,
do_resize=True,
size=None,
do_normalize=True,
image_mean=[0.5, 0.5, 0.5],
image_std=[0.5, 0.5, 0.5],
do_rescale=True,
rescale_factor=1 / 255,
do_pad=True,
):
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
size = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333}
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.min_resolution = min_resolution
self.max_resolution = max_resolution
self.do_resize = do_resize
self.size = size
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_pad = do_pad
def prepare_image_processor_dict(self):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def get_expected_values(self, image_inputs, batched=False):
"""
This function computes the expected height and width when providing images to DetaImageProcessor,
assuming do_resize is set to True with a scalar size.
"""
if not batched:
image = image_inputs[0]
if isinstance(image, Image.Image):
w, h = image.size
else:
h, w = image.shape[1], image.shape[2]
if w < h:
expected_height = int(self.size["shortest_edge"] * h / w)
expected_width = self.size["shortest_edge"]
elif w > h:
expected_height = self.size["shortest_edge"]
expected_width = int(self.size["shortest_edge"] * w / h)
else:
expected_height = self.size["shortest_edge"]
expected_width = self.size["shortest_edge"]
else:
expected_values = []
for image in image_inputs:
expected_height, expected_width = self.get_expected_values([image])
expected_values.append((expected_height, expected_width))
expected_height = max(expected_values, key=lambda item: item[0])[0]
expected_width = max(expected_values, key=lambda item: item[1])[1]
return expected_height, expected_width
def expected_output_image_shape(self, images):
height, width = self.get_expected_values(images, batched=True)
return self.num_channels, height, width
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
return prepare_image_inputs(
batch_size=self.batch_size,
num_channels=self.num_channels,
min_resolution=self.min_resolution,
max_resolution=self.max_resolution,
equal_resolution=equal_resolution,
numpify=numpify,
torchify=torchify,
)
@require_torch
@require_vision
class DetaImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
image_processing_class = DetaImageProcessor if is_vision_available() else None
def setUp(self):
self.image_processor_tester = DetaImageProcessingTester(self)
@property
def image_processor_dict(self):
return self.image_processor_tester.prepare_image_processor_dict()
def test_image_processor_properties(self):
image_processing = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(image_processing, "image_mean"))
self.assertTrue(hasattr(image_processing, "image_std"))
self.assertTrue(hasattr(image_processing, "do_normalize"))
self.assertTrue(hasattr(image_processing, "do_resize"))
self.assertTrue(hasattr(image_processing, "do_rescale"))
self.assertTrue(hasattr(image_processing, "do_pad"))
self.assertTrue(hasattr(image_processing, "size"))
def test_image_processor_from_dict_with_kwargs(self):
image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size, {"shortest_edge": 18, "longest_edge": 1333})
self.assertEqual(image_processor.do_pad, True)
@slow
def test_call_pytorch_with_coco_detection_annotations(self):
# prepare image and target
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt", "r") as f:
target = json.loads(f.read())
target = {"image_id": 39769, "annotations": target}
# encode them
image_processing = DetaImageProcessor()
encoding = image_processing(images=image, annotations=target, return_tensors="pt")
# verify pixel values
expected_shape = torch.Size([1, 3, 800, 1066])
self.assertEqual(encoding["pixel_values"].shape, expected_shape)
expected_slice = torch.tensor([0.2796, 0.3138, 0.3481])
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3], expected_slice, atol=1e-4))
# verify area
expected_area = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438])
self.assertTrue(torch.allclose(encoding["labels"][0]["area"], expected_area))
# verify boxes
expected_boxes_shape = torch.Size([6, 4])
self.assertEqual(encoding["labels"][0]["boxes"].shape, expected_boxes_shape)
expected_boxes_slice = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215])
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0], expected_boxes_slice, atol=1e-3))
# verify image_id
expected_image_id = torch.tensor([39769])
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"], expected_image_id))
# verify is_crowd
expected_is_crowd = torch.tensor([0, 0, 0, 0, 0, 0])
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"], expected_is_crowd))
# verify class_labels
expected_class_labels = torch.tensor([75, 75, 63, 65, 17, 17])
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"], expected_class_labels))
# verify orig_size
expected_orig_size = torch.tensor([480, 640])
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"], expected_orig_size))
# verify size
expected_size = torch.tensor([800, 1066])
self.assertTrue(torch.allclose(encoding["labels"][0]["size"], expected_size))
@slow
def test_call_pytorch_with_coco_panoptic_annotations(self):
# prepare image, target and masks_path
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt", "r") as f:
target = json.loads(f.read())
target = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target}
masks_path = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic")
# encode them
image_processing = DetaImageProcessor(format="coco_panoptic")
encoding = image_processing(images=image, annotations=target, masks_path=masks_path, return_tensors="pt")
# verify pixel values
expected_shape = torch.Size([1, 3, 800, 1066])
self.assertEqual(encoding["pixel_values"].shape, expected_shape)
expected_slice = torch.tensor([0.2796, 0.3138, 0.3481])
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3], expected_slice, atol=1e-4))
# verify area
expected_area = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147])
self.assertTrue(torch.allclose(encoding["labels"][0]["area"], expected_area))
# verify boxes
expected_boxes_shape = torch.Size([6, 4])
self.assertEqual(encoding["labels"][0]["boxes"].shape, expected_boxes_shape)
expected_boxes_slice = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625])
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0], expected_boxes_slice, atol=1e-3))
# verify image_id
expected_image_id = torch.tensor([39769])
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"], expected_image_id))
# verify is_crowd
expected_is_crowd = torch.tensor([0, 0, 0, 0, 0, 0])
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"], expected_is_crowd))
# verify class_labels
expected_class_labels = torch.tensor([17, 17, 63, 75, 75, 93])
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"], expected_class_labels))
# verify masks
expected_masks_sum = 822873
self.assertEqual(encoding["labels"][0]["masks"].sum().item(), expected_masks_sum)
# verify orig_size
expected_orig_size = torch.tensor([480, 640])
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"], expected_orig_size))
# verify size
expected_size = torch.tensor([800, 1066])
self.assertTrue(torch.allclose(encoding["labels"][0]["size"], expected_size))
| transformers-main | tests/models/deta/test_image_processing_deta.py |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch DETA model. """
import inspect
import math
import unittest
from transformers import DetaConfig, ResNetConfig, is_torch_available, is_torchvision_available, is_vision_available
from transformers.file_utils import cached_property
from transformers.testing_utils import require_torchvision, require_vision, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
if is_torchvision_available():
from transformers import DetaForObjectDetection, DetaModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class DetaModelTester:
def __init__(
self,
parent,
batch_size=8,
is_training=True,
use_labels=True,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=8,
intermediate_size=4,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
num_queries=12,
num_channels=3,
image_size=196,
n_targets=8,
num_labels=91,
num_feature_levels=4,
encoder_n_points=2,
decoder_n_points=6,
two_stage=False,
):
self.parent = parent
self.batch_size = batch_size
self.is_training = is_training
self.use_labels = use_labels
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.num_queries = num_queries
self.num_channels = num_channels
self.image_size = image_size
self.n_targets = n_targets
self.num_labels = num_labels
self.num_feature_levels = num_feature_levels
self.encoder_n_points = encoder_n_points
self.decoder_n_points = decoder_n_points
self.two_stage = two_stage
# we also set the expected seq length for both encoder and decoder
self.encoder_seq_length = (
math.ceil(self.image_size / 8) ** 2
+ math.ceil(self.image_size / 16) ** 2
+ math.ceil(self.image_size / 32) ** 2
+ math.ceil(self.image_size / 64) ** 2
)
self.decoder_seq_length = self.num_queries
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
pixel_mask = torch.ones([self.batch_size, self.image_size, self.image_size], device=torch_device)
labels = None
if self.use_labels:
# labels is a list of Dict (each Dict being the labels for a given example in the batch)
labels = []
for i in range(self.batch_size):
target = {}
target["class_labels"] = torch.randint(
high=self.num_labels, size=(self.n_targets,), device=torch_device
)
target["boxes"] = torch.rand(self.n_targets, 4, device=torch_device)
target["masks"] = torch.rand(self.n_targets, self.image_size, self.image_size, device=torch_device)
labels.append(target)
config = self.get_config()
return config, pixel_values, pixel_mask, labels
def get_config(self):
resnet_config = ResNetConfig(
num_channels=3,
embeddings_size=10,
hidden_sizes=[10, 20, 30, 40],
depths=[1, 1, 2, 1],
hidden_act="relu",
num_labels=3,
out_features=["stage2", "stage3", "stage4"],
out_indices=[2, 3, 4],
)
return DetaConfig(
d_model=self.hidden_size,
encoder_layers=self.num_hidden_layers,
decoder_layers=self.num_hidden_layers,
encoder_attention_heads=self.num_attention_heads,
decoder_attention_heads=self.num_attention_heads,
encoder_ffn_dim=self.intermediate_size,
decoder_ffn_dim=self.intermediate_size,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
num_queries=self.num_queries,
num_labels=self.num_labels,
num_feature_levels=self.num_feature_levels,
encoder_n_points=self.encoder_n_points,
decoder_n_points=self.decoder_n_points,
two_stage=self.two_stage,
backbone_config=resnet_config,
)
def prepare_config_and_inputs_for_common(self):
config, pixel_values, pixel_mask, labels = self.prepare_config_and_inputs()
inputs_dict = {"pixel_values": pixel_values, "pixel_mask": pixel_mask}
return config, inputs_dict
def create_and_check_deta_model(self, config, pixel_values, pixel_mask, labels):
model = DetaModel(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values=pixel_values, pixel_mask=pixel_mask)
result = model(pixel_values)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.num_queries, self.hidden_size))
def create_and_check_deta_object_detection_head_model(self, config, pixel_values, pixel_mask, labels):
model = DetaForObjectDetection(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values=pixel_values, pixel_mask=pixel_mask)
result = model(pixel_values)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_queries, self.num_labels))
self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_queries, 4))
result = model(pixel_values=pixel_values, pixel_mask=pixel_mask, labels=labels)
self.parent.assertEqual(result.loss.shape, ())
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_queries, self.num_labels))
self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_queries, 4))
@require_torchvision
class DetaModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (DetaModel, DetaForObjectDetection) if is_torchvision_available() else ()
pipeline_model_mapping = (
{"feature-extraction": DetaModel, "object-detection": DetaForObjectDetection}
if is_torchvision_available()
else {}
)
is_encoder_decoder = True
test_torchscript = False
test_pruning = False
test_head_masking = False
test_missing_keys = False
# TODO: Fix the failed tests when this model gets more usage
def is_pipeline_test_to_skip(
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
):
if pipeline_test_casse_name == "ObjectDetectionPipelineTests":
return True
return False
@unittest.skip("Skip for now. PR #22437 causes some loading issue. See (not merged) #22656 for some discussions.")
def test_can_use_safetensors(self):
super().test_can_use_safetensors()
# special case for head models
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
if return_labels:
if model_class.__name__ == "DetaForObjectDetection":
labels = []
for i in range(self.model_tester.batch_size):
target = {}
target["class_labels"] = torch.ones(
size=(self.model_tester.n_targets,), device=torch_device, dtype=torch.long
)
target["boxes"] = torch.ones(
self.model_tester.n_targets, 4, device=torch_device, dtype=torch.float
)
target["masks"] = torch.ones(
self.model_tester.n_targets,
self.model_tester.image_size,
self.model_tester.image_size,
device=torch_device,
dtype=torch.float,
)
labels.append(target)
inputs_dict["labels"] = labels
return inputs_dict
def setUp(self):
self.model_tester = DetaModelTester(self)
self.config_tester = ConfigTester(self, config_class=DetaConfig, has_text_modality=False)
def test_config(self):
# we don't test common_properties and arguments_init as these don't apply for DETA
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
def test_deta_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deta_model(*config_and_inputs)
def test_deta_object_detection_head_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deta_object_detection_head_model(*config_and_inputs)
@unittest.skip(reason="DETA does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="DETA does not have a get_input_embeddings method")
def test_model_common_attributes(self):
pass
@unittest.skip(reason="DETA is not a generative model")
def test_generate_without_input_ids(self):
pass
@unittest.skip(reason="DETA does not use token embeddings")
def test_resize_tokens_embeddings(self):
pass
@unittest.skip(reason="Feed forward chunking is not implemented")
def test_feed_forward_chunking(self):
pass
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.encoder_attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.encoder_attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]),
[
self.model_tester.num_attention_heads,
self.model_tester.num_feature_levels,
self.model_tester.encoder_n_points,
],
)
out_len = len(outputs)
correct_outlen = 8
# loss is at first position
if "labels" in inputs_dict:
correct_outlen += 1 # loss is added to beginning
# Object Detection model returns pred_logits and pred_boxes
if model_class.__name__ == "DetaForObjectDetection":
correct_outlen += 2
self.assertEqual(out_len, correct_outlen)
# decoder attentions
decoder_attentions = outputs.decoder_attentions
self.assertIsInstance(decoder_attentions, (list, tuple))
self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(decoder_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, self.model_tester.num_queries, self.model_tester.num_queries],
)
# cross attentions
cross_attentions = outputs.cross_attentions
self.assertIsInstance(cross_attentions, (list, tuple))
self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(cross_attentions[0].shape[-3:]),
[
self.model_tester.num_attention_heads,
self.model_tester.num_feature_levels,
self.model_tester.decoder_n_points,
],
)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
if hasattr(self.model_tester, "num_hidden_states_types"):
added_hidden_states = self.model_tester.num_hidden_states_types
elif self.is_encoder_decoder:
added_hidden_states = 2
else:
added_hidden_states = 1
self.assertEqual(out_len + added_hidden_states, len(outputs))
self_attentions = outputs.encoder_attentions
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[
self.model_tester.num_attention_heads,
self.model_tester.num_feature_levels,
self.model_tester.encoder_n_points,
],
)
# removed retain_grad and grad on decoder_hidden_states, as queries don't require grad
def test_retain_grad_hidden_states_attentions(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.output_hidden_states = True
config.output_attentions = True
# no need to test all models as different heads yield the same functionality
model_class = self.all_model_classes[0]
model = model_class(config)
model.to(torch_device)
inputs = self._prepare_for_class(inputs_dict, model_class)
outputs = model(**inputs)
# we take the second output since last_hidden_state is the second item
output = outputs[1]
encoder_hidden_states = outputs.encoder_hidden_states[0]
encoder_attentions = outputs.encoder_attentions[0]
encoder_hidden_states.retain_grad()
encoder_attentions.retain_grad()
decoder_attentions = outputs.decoder_attentions[0]
decoder_attentions.retain_grad()
cross_attentions = outputs.cross_attentions[0]
cross_attentions.retain_grad()
output.flatten()[0].backward(retain_graph=True)
self.assertIsNotNone(encoder_hidden_states.grad)
self.assertIsNotNone(encoder_attentions.grad)
self.assertIsNotNone(decoder_attentions.grad)
self.assertIsNotNone(cross_attentions.grad)
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
if model.config.is_encoder_decoder:
expected_arg_names = ["pixel_values", "pixel_mask"]
expected_arg_names.extend(
["head_mask", "decoder_head_mask", "encoder_outputs"]
if "head_mask" and "decoder_head_mask" in arg_names
else []
)
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
else:
expected_arg_names = ["pixel_values", "pixel_mask"]
self.assertListEqual(arg_names[:1], expected_arg_names)
@unittest.skip(reason="Model doesn't use tied weights")
def test_tied_model_weights_key_ignore(self):
pass
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
# Skip the check for the backbone
for name, module in model.named_modules():
if module.__class__.__name__ == "DetaBackboneWithPositionalEncodings":
backbone_params = [f"{name}.{key}" for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if (
"level_embed" in name
or "sampling_offsets.bias" in name
or "value_proj" in name
or "output_proj" in name
or "reference_points" in name
or name in backbone_params
):
continue
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
TOLERANCE = 1e-4
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_torchvision
@require_vision
@slow
class DetaModelIntegrationTests(unittest.TestCase):
@cached_property
def default_image_processor(self):
return AutoImageProcessor.from_pretrained("jozhang97/deta-resnet-50") if is_vision_available() else None
def test_inference_object_detection_head(self):
model = DetaForObjectDetection.from_pretrained("jozhang97/deta-resnet-50").to(torch_device)
image_processor = self.default_image_processor
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
with torch.no_grad():
outputs = model(**inputs)
expected_shape_logits = torch.Size((1, 300, model.config.num_labels))
self.assertEqual(outputs.logits.shape, expected_shape_logits)
expected_logits = torch.tensor(
[[-7.3978, -2.5406, -4.1668], [-8.2684, -3.9933, -3.8096], [-7.0515, -3.7973, -5.8516]]
).to(torch_device)
expected_boxes = torch.tensor(
[[0.5043, 0.4973, 0.9998], [0.2542, 0.5489, 0.4748], [0.5490, 0.2765, 0.0570]]
).to(torch_device)
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_logits, atol=1e-4))
expected_shape_boxes = torch.Size((1, 300, 4))
self.assertEqual(outputs.pred_boxes.shape, expected_shape_boxes)
self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3], expected_boxes, atol=1e-4))
# verify postprocessing
results = image_processor.post_process_object_detection(
outputs, threshold=0.3, target_sizes=[image.size[::-1]]
)[0]
expected_scores = torch.tensor([0.6392, 0.6276, 0.5546, 0.5260, 0.4706], device=torch_device)
expected_labels = [75, 17, 17, 75, 63]
expected_slice_boxes = torch.tensor([40.5866, 73.2107, 176.1421, 117.1751], device=torch_device)
self.assertTrue(torch.allclose(results["scores"], expected_scores, atol=1e-4))
self.assertSequenceEqual(results["labels"].tolist(), expected_labels)
self.assertTrue(torch.allclose(results["boxes"][0, :], expected_slice_boxes))
def test_inference_object_detection_head_swin_backbone(self):
model = DetaForObjectDetection.from_pretrained("jozhang97/deta-swin-large").to(torch_device)
image_processor = self.default_image_processor
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
with torch.no_grad():
outputs = model(**inputs)
expected_shape_logits = torch.Size((1, 300, model.config.num_labels))
self.assertEqual(outputs.logits.shape, expected_shape_logits)
expected_logits = torch.tensor(
[[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]]
).to(torch_device)
expected_boxes = torch.tensor(
[[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]]
).to(torch_device)
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_logits, atol=1e-4))
expected_shape_boxes = torch.Size((1, 300, 4))
self.assertEqual(outputs.pred_boxes.shape, expected_shape_boxes)
self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3], expected_boxes, atol=1e-4))
# verify postprocessing
results = image_processor.post_process_object_detection(
outputs, threshold=0.3, target_sizes=[image.size[::-1]]
)[0]
expected_scores = torch.tensor([0.6831, 0.6826, 0.5684, 0.5464, 0.4392], device=torch_device)
expected_labels = [17, 17, 75, 75, 63]
expected_slice_boxes = torch.tensor([345.8478, 23.6754, 639.8562, 372.8265], device=torch_device)
self.assertTrue(torch.allclose(results["scores"], expected_scores, atol=1e-4))
self.assertSequenceEqual(results["labels"].tolist(), expected_labels)
self.assertTrue(torch.allclose(results["boxes"][0, :], expected_slice_boxes))
| transformers-main | tests/models/deta/test_modeling_deta.py |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.