python_code
stringlengths
0
1.02M
repo_name
stringlengths
9
48
file_path
stringlengths
5
114
# Lint as: python2, python3 # pylint: disable=g-bad-file-header # Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """RMA agent.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import numpy as np from six.moves import range from six.moves import zip import sonnet as snt import tensorflow.compat.v1 as tf import trfl from tvt import losses from tvt import memory as memory_module from tensorflow.contrib import framework as contrib_framework nest = contrib_framework.nest PolicyOutputs = collections.namedtuple( 'PolicyOutputs', ['policy', 'action', 'baseline']) StepOutput = collections.namedtuple( 'StepOutput', ['action', 'baseline', 'read_info']) AgentState = collections.namedtuple( 'AgentState', ['core_state', 'prev_action']) Observation = collections.namedtuple( 'Observation', ['image', 'last_action', 'last_reward']) RNNStateNoMem = collections.namedtuple( 'RNNStateNoMem', ['controller_outputs', 'h_controller']) RNNState = collections.namedtuple( 'RNNState', list(RNNStateNoMem._fields) + ['memory', 'mem_reads', 'h_mem_writer']) CoreOutputs = collections.namedtuple( 'CoreOutputs', ['action', 'policy', 'baseline', 'z', 'read_info']) def rnn_inputs_to_static_rnn_inputs(inputs): """Converts time major tensors to timestep lists.""" # Inputs to core build method are expected to be a tensor or tuple of tensors. if isinstance(inputs, tuple): num_timesteps = inputs[0].shape.as_list()[0] converted_inputs = [tf.unstack(input_, num_timesteps) for input_ in inputs] return list(zip(*converted_inputs)) else: return tf.unstack(inputs) def static_rnn_outputs_to_core_outputs(outputs): """Convert from length T list of nests to nest of tensors with first dim T.""" list_of_flats = [nest.flatten(n) for n in outputs] new_outputs = list() for i in range(len(list_of_flats[0])): new_outputs.append(tf.stack([flat_nest[i] for flat_nest in list_of_flats])) return nest.pack_sequence_as(structure=outputs[0], flat_sequence=new_outputs) def unroll(core, initial_state, inputs, dtype=tf.float32): """Perform a static unroll of the core.""" static_rnn_inputs = rnn_inputs_to_static_rnn_inputs(inputs) static_outputs, _ = tf.nn.static_rnn( core, inputs=static_rnn_inputs, initial_state=initial_state, dtype=dtype) core_outputs = static_rnn_outputs_to_core_outputs(static_outputs) return core_outputs class ImageEncoderDecoder(snt.AbstractModule): """Image Encoder/Decoder module.""" def __init__( self, image_code_size, name='image_encoder_decoder'): """Initialize the image encoder/decoder.""" super(ImageEncoderDecoder, self).__init__(name=name) # This is set by a call to `encode`. `decode` will fail before this is set. self._convnet_output_shape = None with self._enter_variable_scope(): self._convnet = snt.nets.ConvNet2D( output_channels=(16, 32), kernel_shapes=(3, 3), strides=(1, 1), paddings=('SAME',)) self._post_convnet_layer = snt.Linear(image_code_size, name='final_layer') @snt.reuse_variables def encode(self, image): """Encode the image observation.""" convnet_output = self._convnet(image) # Store unflattened convnet output shape for use in decoder. self._convnet_output_shape = convnet_output.shape[1:] # Flatten convnet outputs and pass through final layer to get image code. return self._post_convnet_layer(snt.BatchFlatten()(convnet_output)) @snt.reuse_variables def decode(self, code): """Decode the image observation from a latent code.""" if self._convnet_output_shape is None: raise ValueError('Must call `encode` before `decode`.') transpose_convnet_in_flat = snt.Linear( self._convnet_output_shape.num_elements(), name='decode_initial_linear')( code) transpose_convnet_in_flat = tf.nn.relu(transpose_convnet_in_flat) transpose_convnet_in = snt.BatchReshape( self._convnet_output_shape.as_list())(transpose_convnet_in_flat) return self._convnet.transpose(None)(transpose_convnet_in) def _build(self, *args): # Unused. Use encode/decode instead. raise NotImplementedError('Use encode/decode methods instead of __call__.') class Policy(snt.AbstractModule): """A policy module possibly containing a read-only DNC.""" def __init__(self, num_actions, num_policy_hiddens=(), num_baseline_hiddens=(), activation=tf.nn.tanh, policy_clip_abs_value=10.0, name='Policy'): """Construct a policy module possibly containing a read-only DNC. Args: num_actions: Number of discrete actions to choose from. num_policy_hiddens: Tuple or List, sizes of policy MLP hidden layers. num_baseline_hiddens: Tuple or List, sizes of baseline MLP hidden layers. An empty tuple/list results in a linear layer instead of an MLP. activation: Callable, e.g. tf.nn.tanh. policy_clip_abs_value: float, Policy gradient clip value. name: A string, the module's name """ super(Policy, self).__init__(name=name) self._num_actions = num_actions self._policy_layers = tuple(num_policy_hiddens) + (num_actions,) self._baseline_layers = tuple(num_baseline_hiddens) + (1,) self._policy_clip_abs_value = policy_clip_abs_value self._activation = activation def _build(self, inputs): (shared_inputs, extra_policy_inputs) = inputs policy_in = tf.concat([shared_inputs, extra_policy_inputs], axis=1) policy = snt.nets.MLP( output_sizes=self._policy_layers, activation=self._activation, name='policy_mlp')( policy_in) # Sample an action from the policy logits. action = tf.multinomial(policy, num_samples=1, output_dtype=tf.int32) action = tf.squeeze(action, 1) # [B, 1] -> [B] if self._policy_clip_abs_value > 0: policy = snt.clip_gradient( net=policy, clip_value_min=-self._policy_clip_abs_value, clip_value_max=self._policy_clip_abs_value) baseline_in = tf.concat([shared_inputs, tf.stop_gradient(policy)], axis=1) baseline = snt.nets.MLP( self._baseline_layers, activation=self._activation, name='baseline_mlp')( baseline_in) baseline = tf.squeeze(baseline, axis=-1) # [B, 1] -> [B] if self._policy_clip_abs_value > 0: baseline = snt.clip_gradient( net=baseline, clip_value_min=-self._policy_clip_abs_value, clip_value_max=self._policy_clip_abs_value) outputs = PolicyOutputs( policy=policy, action=action, baseline=baseline) return outputs class _RMACore(snt.RNNCore): """RMA RNN Core.""" def __init__(self, num_actions, with_memory=True, name='rma_core'): super(_RMACore, self).__init__(name=name) # MLP activation as callable. mlp_activation = tf.nn.tanh # Size of latent code written to memory (if using it) and used to # reconstruct from (if including reconstructions). num_latents = 200 # Value function decode settings. baseline_mlp_num_hiddens = (200,) # Policy settings. num_policy_hiddens = (200,) # Only used for non-recurrent core. # Controller settings. control_hidden_size = 256 control_num_layers = 2 # Memory settings (only used if with_memory=True). memory_size = 1000 memory_num_reads = 3 memory_top_k = 50 self._with_memory = with_memory with self._enter_variable_scope(): # Construct the features -> latent encoder. self._z_encoder_mlp = snt.nets.MLP( output_sizes=(2 * num_latents, num_latents), activation=mlp_activation, activate_final=False, name='z_encoder_mlp') # Construct controller. rnn_cores = [snt.LSTM(control_hidden_size) for _ in range(control_num_layers)] self._controller = snt.DeepRNN( rnn_cores, skip_connections=True, name='controller') # Construct memory. if self._with_memory: memory_dim = num_latents # Each write to memory is of size memory_dim. self._mem_shape = (memory_size, memory_dim) self._memory_reader = memory_module.MemoryReader( memory_word_size=memory_dim, num_read_heads=memory_num_reads, top_k=memory_top_k, memory_size=memory_size) self._memory_writer = memory_module.MemoryWriter( mem_shape=self._mem_shape) # Construct policy, starting with policy_core and policy_action_head. # `extra_inputs` in this case will be mem_out from current time step (note # that mem_out is just the controller output if with_memory=False). self._policy = Policy( num_policy_hiddens=num_policy_hiddens, num_actions=num_actions, num_baseline_hiddens=baseline_mlp_num_hiddens, activation=mlp_activation, policy_clip_abs_value=10.0,) # Set state_size and output_size. controller_out_size = self._controller.output_size controller_state_size = self._controller.state_size self._state_size = RNNStateNoMem(controller_outputs=controller_out_size, h_controller=controller_state_size) read_info_size = () if self._with_memory: mem_reads_size, read_info_size = self._memory_reader.output_size mem_writer_state_size = self._memory_writer.state_size self._state_size = RNNState(memory=tf.TensorShape(self._mem_shape), mem_reads=mem_reads_size, h_mem_writer=mem_writer_state_size, **self._state_size._asdict()) z_size = num_latents self._output_size = CoreOutputs( action=tf.TensorShape([]), # Scalar tensor shapes must be explicit. policy=num_actions, baseline=tf.TensorShape([]), # Scalar tensor shapes must be explicit. z=z_size, read_info=read_info_size) def _build(self, inputs, h_prev): features = inputs z_net_inputs = [features, h_prev.controller_outputs] if self._with_memory: z_net_inputs.append(h_prev.mem_reads) z_net_inputs_concat = tf.concat(z_net_inputs, axis=1) z = self._z_encoder_mlp(z_net_inputs_concat) controller_out, h_controller = self._controller(z, h_prev.h_controller) read_info = () if self._with_memory: # Perform a memory read/write step before generating the policy_modules. mem_reads, read_info = self._memory_reader((controller_out, h_prev.memory)) memory, h_mem_writer = self._memory_writer((z, h_prev.memory), h_prev.h_mem_writer) policy_extra_input = tf.concat([controller_out, mem_reads], axis=1) else: policy_extra_input = controller_out # Get policy, action and (possible empty) baseline from policy module. policy_inputs = (z, policy_extra_input) policy_outputs = self._policy(policy_inputs) core_outputs = CoreOutputs( z=z, read_info=read_info, **policy_outputs._asdict()) h_next = RNNStateNoMem(controller_outputs=controller_out, h_controller=h_controller) if self._with_memory: h_next = RNNState(memory=memory, mem_reads=mem_reads, h_mem_writer=h_mem_writer, **h_next._asdict()) return core_outputs, h_next def initial_state(self, batch_size): """Use initial state for RNN modules, otherwise use zero state.""" zero_state = self.zero_state(batch_size, dtype=tf.float32) controller_out = zero_state.controller_outputs h_controller = self._controller.initial_state(batch_size) state = RNNStateNoMem(controller_outputs=controller_out, h_controller=h_controller) if self._with_memory: memory = zero_state.memory mem_reads = zero_state.mem_reads h_mem_writer = self._memory_writer.initial_state(batch_size) state = RNNState(memory=memory, mem_reads=mem_reads, h_mem_writer=h_mem_writer, **state._asdict()) return state @property def state_size(self): return self._state_size @property def output_size(self): return self._output_size class Agent(snt.AbstractModule): """Myriad RMA agent. `latents` here refers to a purely deterministic encoding of the inputs, rather than VAE-like latents in e.g. the MERLIN agent. """ def __init__(self, batch_size, with_reconstructions=True, with_memory=True, image_code_size=500, image_cost_weight=50., num_actions=None, observation_shape=None, entropy_cost=0.01, return_cost_weight=0.4, gamma=0.96, read_strength_cost=5e-5, read_strength_tolerance=2., name='rma_agent'): super(Agent, self).__init__(name=name) self._batch_size = batch_size self._with_reconstructions = with_reconstructions self._image_cost_weight = image_cost_weight self._image_code_size = image_code_size self._entropy_cost = entropy_cost self._return_cost_weight = return_cost_weight self._gamma = gamma self._read_strength_cost = read_strength_cost self._read_strength_tolerance = read_strength_tolerance self._num_actions = num_actions self._name = name self._logged_values = {} # Store total number of pixels across channels (for image loss scaling). self._total_num_pixels = np.prod(observation_shape) with self._enter_variable_scope(): # Construct image encoder/decoder. self._image_encoder_decoder = ImageEncoderDecoder( image_code_size=image_code_size) self._core = _RMACore( num_actions=self._num_actions, with_memory=with_memory) def initial_state(self, batch_size): with tf.name_scope(self._name + '/initial_state'): return AgentState( core_state=self._core.initial_state(batch_size), prev_action=tf.zeros(shape=(batch_size,), dtype=tf.int32)) def _prepare_observations(self, observation, last_reward, last_action): image = observation # Make sure the entries are in [0, 1) range. if image.dtype.is_integer: image = tf.cast(image, tf.float32) / 255. if last_reward is None: # For some envs, in the first timestep the last_reward can be None. batch_size = observation.shape[0] last_reward = tf.zeros((batch_size,), dtype=tf.float32) return Observation( image=image, last_action=last_action, last_reward=last_reward) @snt.reuse_variables def _encode(self, observation, last_reward, last_action): inputs = self._prepare_observations(observation, last_reward, last_action) # Encode image observation. obs_code = self._image_encoder_decoder.encode(inputs.image) # Encode last action. action_code = tf.one_hot(inputs.last_action, self._num_actions) # Encode last reward. reward_code = tf.expand_dims(inputs.last_reward, -1) features = tf.concat([obs_code, action_code, reward_code], axis=1) return inputs, features @snt.reuse_variables def _decode(self, z): # Decode image. image_recon = self._image_encoder_decoder.decode(z) # Decode action. action_recon = snt.Linear(self._num_actions, name='action_recon_linear')(z) # Decode reward. reward_recon = snt.Linear(1, name='reward_recon_linear')(z) # Full reconstructions. recons = Observation( image=image_recon, last_reward=reward_recon, last_action=action_recon) return recons def step(self, reward, observation, prev_state): with tf.name_scope(self._name + '/step'): _, features = self._encode(observation, reward, prev_state.prev_action) core_outputs, next_core_state = self._core( features, prev_state.core_state) action = core_outputs.action step_output = StepOutput( action=action, baseline=core_outputs.baseline, read_info=core_outputs.read_info) agent_state = AgentState( core_state=next_core_state, prev_action=action) return step_output, agent_state @snt.reuse_variables def loss(self, observations, rewards, actions, additional_rewards=None): """Compute the loss.""" dummy_zeroth_step_actions = tf.zeros_like(actions[:1]) all_actions = tf.concat([dummy_zeroth_step_actions, actions], axis=0) inputs, features = snt.BatchApply(self._encode)( observations, rewards, all_actions) rewards = rewards[1:] # Zeroth step reward not correlated to actions. if additional_rewards is not None: # Additional rewards are not passed to the encoder (above) in order to be # consistent with the step, nor to the recon loss so that recons are # consistent with the observations. Thus, additional rewards only affect # the returns used to learn the value function. rewards += additional_rewards initial_state = self._core.initial_state(self._batch_size) rnn_inputs = features core_outputs = unroll(self._core, initial_state, rnn_inputs) # Remove final timestep of outputs. core_outputs = nest.map_structure(lambda t: t[:-1], core_outputs) if self._with_reconstructions: recons = snt.BatchApply(self._decode)(core_outputs.z) recon_targets = nest.map_structure(lambda t: t[:-1], inputs) recon_loss, recon_logged_values = losses.reconstruction_losses( recons=recons, targets=recon_targets, image_cost=self._image_cost_weight / self._total_num_pixels, action_cost=1., reward_cost=1.) else: recon_loss = tf.constant(0.0) recon_logged_values = dict() if core_outputs.read_info is not tuple(): read_reg_loss, read_reg_logged_values = ( losses.read_regularization_loss( read_info=core_outputs.read_info, strength_cost=self._read_strength_cost, strength_tolerance=self._read_strength_tolerance, strength_reg_mode='L1', key_norm_cost=0., key_norm_tolerance=1.)) else: read_reg_loss = tf.constant(0.0) read_reg_logged_values = dict() # Bootstrap value is at end of episode so is zero. bootstrap_value = tf.zeros(shape=(self._batch_size,), dtype=tf.float32) discounts = self._gamma * tf.ones_like(rewards) a2c_loss, a2c_loss_extra = trfl.sequence_advantage_actor_critic_loss( policy_logits=core_outputs.policy, baseline_values=core_outputs.baseline, actions=actions, rewards=rewards, pcontinues=discounts, bootstrap_value=bootstrap_value, lambda_=self._gamma, entropy_cost=self._entropy_cost, baseline_cost=self._return_cost_weight, name='SequenceA2CLoss') a2c_loss = tf.reduce_mean(a2c_loss) # Average over batch. total_loss = a2c_loss + recon_loss + read_reg_loss a2c_loss_logged_values = dict( pg_loss=tf.reduce_mean(a2c_loss_extra.policy_gradient_loss), baseline_loss=tf.reduce_mean(a2c_loss_extra.baseline_loss), entropy_loss=tf.reduce_mean(a2c_loss_extra.entropy_loss)) agent_loss_log = losses.combine_logged_values( a2c_loss_logged_values, recon_logged_values, read_reg_logged_values) agent_loss_log['total_loss'] = total_loss return total_loss, agent_loss_log def _build(self, *args): # Unused. # pylint: disable=no-value-for-parameter return self.step(*args) # pylint: enable=no-value-for-parameter
deepmind-research-master
tvt/rma.py
# Lint as: python2, python3 # pylint: disable=g-bad-file-header # Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Loss functions.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import six import tensorflow.compat.v1 as tf def sum_time_average_batch(tensor, name=None): """Computes the mean over B assuming tensor is of shape [T, B].""" tensor.get_shape().assert_has_rank(2) return tf.reduce_mean(tf.reduce_sum(tensor, axis=0), axis=0, name=name) def combine_logged_values(*logged_values_dicts): """Combine logged values dicts. Throws if there are any repeated keys.""" combined_dict = dict() for logged_values in logged_values_dicts: for k, v in six.iteritems(logged_values): if k in combined_dict: raise ValueError('Key "%s" is repeated in loss logging.' % k) combined_dict[k] = v return combined_dict def reconstruction_losses( recons, targets, image_cost, action_cost, reward_cost): """Reconstruction losses.""" if image_cost > 0.0: # Neg log prob of obs image given Bernoulli(recon image) distribution. negative_image_log_prob = tf.nn.sigmoid_cross_entropy_with_logits( labels=targets.image, logits=recons.image) nll_per_time = tf.reduce_sum(negative_image_log_prob, [-3, -2, -1]) image_loss = image_cost * nll_per_time image_loss = sum_time_average_batch(image_loss) else: image_loss = tf.constant(0.) if action_cost > 0.0 and recons.last_action is not tuple(): # Labels have shape (T, B), logits have shape (T, B, num_actions). action_loss = action_cost * tf.nn.sparse_softmax_cross_entropy_with_logits( labels=targets.last_action, logits=recons.last_action) action_loss = sum_time_average_batch(action_loss) else: action_loss = tf.constant(0.) if reward_cost > 0.0 and recons.last_reward is not tuple(): # MSE loss for reward. recon_last_reward = recons.last_reward recon_last_reward = tf.squeeze(recon_last_reward, -1) reward_loss = 0.5 * reward_cost * tf.square( recon_last_reward - targets.last_reward) reward_loss = sum_time_average_batch(reward_loss) else: reward_loss = tf.constant(0.) total_loss = image_loss + action_loss + reward_loss logged_values = dict( recon_loss_image=image_loss, recon_loss_action=action_loss, recon_loss_reward=reward_loss, total_reconstruction_loss=total_loss,) return total_loss, logged_values def read_regularization_loss( read_info, strength_cost, strength_tolerance, strength_reg_mode, key_norm_cost, key_norm_tolerance): """Computes the sum of read strength and read key regularization losses.""" if (strength_cost <= 0.) and (key_norm_cost <= 0.): read_reg_loss = tf.constant(0.) return read_reg_loss, dict(read_regularization_loss=read_reg_loss) if hasattr(read_info, 'read_strengths'): read_strengths = read_info.read_strengths read_keys = read_info.read_keys else: read_strengths = read_info.strengths read_keys = read_info.keys if read_info == tuple(): raise ValueError('Make sure read regularization costs are zero when ' 'not outputting read info.') read_reg_loss = tf.constant(0.) if strength_cost > 0.: strength_hinged = tf.maximum(strength_tolerance, read_strengths) if strength_reg_mode == 'L2': strength_loss = 0.5 * tf.square(strength_hinged) elif strength_reg_mode == 'L1': # Read strengths are always positive. strength_loss = strength_hinged else: raise ValueError( 'Strength regularization mode "{}" is not supported.'.format( strength_reg_mode)) # Sum across read heads to reduce from [T, B, n_reads] to [T, B]. strength_loss = strength_cost * tf.reduce_sum(strength_loss, axis=2) if key_norm_cost > 0.: key_norm_norms = tf.norm(read_keys, axis=-1) key_norm_norms_hinged = tf.maximum(key_norm_tolerance, key_norm_norms) key_norm_loss = 0.5 * tf.square(key_norm_norms_hinged) # Sum across read heads to reduce from [T, B, n_reads] to [T, B]. key_norm_loss = key_norm_cost * tf.reduce_sum(key_norm_loss, axis=2) read_reg_loss += key_norm_cost * key_norm_loss if strength_cost > 0.: strength_loss = sum_time_average_batch(strength_loss) else: strength_loss = tf.constant(0.) if key_norm_cost > 0.: key_norm_loss = sum_time_average_batch(key_norm_loss) else: key_norm_loss = tf.constant(0.) read_reg_loss = strength_loss + key_norm_loss logged_values = dict( read_reg_strength_loss=strength_loss, read_reg_key_norm_loss=key_norm_loss, total_read_reg_loss=read_reg_loss) return read_reg_loss, logged_values
deepmind-research-master
tvt/losses.py
# Lint as: python2, python3 # pylint: disable=g-bad-file-header # Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Batched synchronous actor/learner training.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import time from absl import app from absl import flags from absl import logging import numpy as np from six.moves import range from six.moves import zip import tensorflow.compat.v1 as tf from tvt import batch_env from tvt import nest_utils from tvt import rma from tvt import tvt_rewards as tvt_module from tvt.pycolab import env as pycolab_env from tensorflow.contrib import framework as contrib_framework nest = contrib_framework.nest FLAGS = flags.FLAGS flags.DEFINE_integer('logging_frequency', 1, 'Log training progress every logging_frequency episodes.') flags.DEFINE_string('logdir', None, 'Directory for tensorboard logging.') flags.DEFINE_boolean('with_memory', True, 'whether or not agent has external memory.') flags.DEFINE_boolean('with_reconstruction', True, 'whether or not agent reconstruct the observation.') flags.DEFINE_float('gamma', 0.92, 'Agent discount factor') flags.DEFINE_float('entropy_cost', 0.05, 'weight of the entropy loss') flags.DEFINE_float('image_cost_weight', 50., 'image recon cost weight.') flags.DEFINE_float('read_strength_cost', 5e-5, 'Cost weight of the memory read strength.') flags.DEFINE_float('read_strength_tolerance', 2., 'The tolerance of hinge loss of the read_strength_cost.') flags.DEFINE_boolean('do_tvt', True, 'whether or not do tvt') flags.DEFINE_enum('pycolab_game', 'key_to_door', ['key_to_door', 'active_visual_match'], 'The name of the game in pycolab environment') flags.DEFINE_integer('num_episodes', None, 'Number of episodes to train for. None means run forever.') flags.DEFINE_integer('batch_size', 16, 'Batch size') flags.DEFINE_float('learning_rate', 2e-4, 'Adam optimizer learning rate') flags.DEFINE_float('beta1', 0., 'Adam optimizer beta1') flags.DEFINE_float('beta2', 0.95, 'Adam optimizer beta2') flags.DEFINE_float('epsilon', 1e-6, 'Adam optimizer epsilon') # Pycolab-specific flags: flags.DEFINE_integer('pycolab_num_apples', 10, 'Number of apples to sample from the distractor grid.') flags.DEFINE_float('pycolab_apple_reward_min', 1., 'A reward range [min, max) to uniformly sample from.') flags.DEFINE_float('pycolab_apple_reward_max', 10., 'A reward range [min, max) to uniformly sample from.') flags.DEFINE_boolean('pycolab_fix_apple_reward_in_episode', True, 'Fix the sampled apple reward within an episode.') flags.DEFINE_float('pycolab_final_reward', 10., 'Reward obtained at the last phase.') flags.DEFINE_boolean('pycolab_crop', True, 'Whether to crop observations or not.') def main(_): batch_size = FLAGS.batch_size env_builder = pycolab_env.PycolabEnvironment env_kwargs = { 'game': FLAGS.pycolab_game, 'num_apples': FLAGS.pycolab_num_apples, 'apple_reward': [FLAGS.pycolab_apple_reward_min, FLAGS.pycolab_apple_reward_max], 'fix_apple_reward_in_episode': FLAGS.pycolab_fix_apple_reward_in_episode, 'final_reward': FLAGS.pycolab_final_reward, 'crop': FLAGS.pycolab_crop } env = batch_env.BatchEnv(batch_size, env_builder, **env_kwargs) ep_length = env.episode_length agent = rma.Agent(batch_size=batch_size, num_actions=env.num_actions, observation_shape=env.observation_shape, with_reconstructions=FLAGS.with_reconstruction, gamma=FLAGS.gamma, read_strength_cost=FLAGS.read_strength_cost, read_strength_tolerance=FLAGS.read_strength_tolerance, entropy_cost=FLAGS.entropy_cost, with_memory=FLAGS.with_memory, image_cost_weight=FLAGS.image_cost_weight) # Agent step placeholders and agent step. batch_shape = (batch_size,) observation_ph = tf.placeholder( dtype=tf.uint8, shape=batch_shape + env.observation_shape, name='obs') reward_ph = tf.placeholder( dtype=tf.float32, shape=batch_shape, name='reward') state_ph = nest.map_structure( lambda s: tf.placeholder(dtype=s.dtype, shape=s.shape, name='state'), agent.initial_state(batch_size=batch_size)) step_outputs, state = agent.step(reward_ph, observation_ph, state_ph) # Update op placeholders and update op. observations_ph = tf.placeholder( dtype=tf.uint8, shape=(ep_length + 1, batch_size) + env.observation_shape, name='observations') rewards_ph = tf.placeholder( dtype=tf.float32, shape=(ep_length + 1, batch_size), name='rewards') actions_ph = tf.placeholder( dtype=tf.int64, shape=(ep_length, batch_size), name='actions') tvt_rewards_ph = tf.placeholder( dtype=tf.float32, shape=(ep_length, batch_size), name='tvt_rewards') loss, loss_logs = agent.loss( observations_ph, rewards_ph, actions_ph, tvt_rewards_ph) optimizer = tf.train.AdamOptimizer( learning_rate=FLAGS.learning_rate, beta1=FLAGS.beta1, beta2=FLAGS.beta2, epsilon=FLAGS.epsilon) update_op = optimizer.minimize(loss) initial_state = agent.initial_state(batch_size) if FLAGS.logdir: if not tf.io.gfile.exists(FLAGS.logdir): tf.io.gfile.makedirs(FLAGS.logdir) summary_writer = tf.summary.FileWriter(FLAGS.logdir) # Do init init_ops = (tf.global_variables_initializer(), tf.local_variables_initializer()) tf.get_default_graph().finalize() sess = tf.Session() sess.run(init_ops) run = True ep_num = 0 prev_logging_time = time.time() while run: observation, reward = env.reset() agent_state = sess.run(initial_state) # Initialise episode data stores. observations = [observation] rewards = [reward] actions = [] baselines = [] read_infos = [] for _ in range(ep_length): step_feed = {reward_ph: reward, observation_ph: observation} for ph, ar in zip(nest.flatten(state_ph), nest.flatten(agent_state)): step_feed[ph] = ar step_output, agent_state = sess.run( (step_outputs, state), feed_dict=step_feed) action = step_output.action baseline = step_output.baseline read_info = step_output.read_info # Take step in environment, append results. observation, reward = env.step(action) observations.append(observation) rewards.append(reward) actions.append(action) baselines.append(baseline) if read_info is not None: read_infos.append(read_info) # Stack the lists of length ep_length so that each array (or each element # of nest stucture for read_infos) has shape (ep_length, batch_size, ...). observations = np.stack(observations) rewards = np.array(rewards) actions = np.array(actions) baselines = np.array(baselines) read_infos = nest_utils.nest_stack(read_infos) # Compute TVT rewards. if FLAGS.do_tvt: tvt_rewards = tvt_module.compute_tvt_rewards(read_infos, baselines, gamma=FLAGS.gamma) else: tvt_rewards = np.squeeze(np.zeros_like(baselines)) # Run update op. loss_feed = {observations_ph: observations, rewards_ph: rewards, actions_ph: actions, tvt_rewards_ph: tvt_rewards} ep_loss, _, ep_loss_logs = sess.run([loss, update_op, loss_logs], feed_dict=loss_feed) # Log episode results. if ep_num % FLAGS.logging_frequency == 0: steps_per_second = ( FLAGS.logging_frequency * ep_length * batch_size / ( time.time() - prev_logging_time)) mean_reward = np.mean(np.sum(rewards, axis=0)) mean_last_phase_reward = np.mean(env.last_phase_rewards()) mean_tvt_reward = np.mean(np.sum(tvt_rewards, axis=0)) logging.info('Episode %d. SPS: %s', ep_num, steps_per_second) logging.info('Episode %d. Mean episode reward: %f', ep_num, mean_reward) logging.info('Episode %d. Last phase reward: %f', ep_num, mean_last_phase_reward) logging.info('Episode %d. Mean TVT episode reward: %f', ep_num, mean_tvt_reward) logging.info('Episode %d. Loss: %s', ep_num, ep_loss) logging.info('Episode %d. Loss logs: %s', ep_num, ep_loss_logs) if FLAGS.logdir: summary = tf.Summary() summary.value.add(tag='reward', simple_value=mean_reward) summary.value.add(tag='last phase reward', simple_value=mean_last_phase_reward) summary.value.add(tag='tvt reward', simple_value=mean_tvt_reward) summary.value.add(tag='total loss', simple_value=ep_loss) for k, v in ep_loss_logs.items(): summary.value.add(tag='loss - {}'.format(k), simple_value=v) # Tensorboard x-axis is total number of episodes run. summary_writer.add_summary(summary, ep_num * batch_size) summary_writer.flush() prev_logging_time = time.time() ep_num += 1 if FLAGS.num_episodes and ep_num >= FLAGS.num_episodes: run = False if __name__ == '__main__': app.run(main)
deepmind-research-master
tvt/main.py
# Lint as: python2, python3 # pylint: disable=g-bad-file-header # Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Pycolab env.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from pycolab import rendering from tvt.pycolab import active_visual_match from tvt.pycolab import key_to_door from tensorflow.contrib import framework as contrib_framework nest = contrib_framework.nest class PycolabEnvironment(object): """A simple environment adapter for pycolab games.""" def __init__(self, game, num_apples=10, apple_reward=1., fix_apple_reward_in_episode=False, final_reward=10., crop=True, default_reward=0): """Construct a `environment.Base` adapter that wraps a pycolab game.""" rng = np.random.RandomState() if game == 'key_to_door': self._game = key_to_door.Game(rng, num_apples, apple_reward, fix_apple_reward_in_episode, final_reward, crop) elif game == 'active_visual_match': self._game = active_visual_match.Game(rng, num_apples, apple_reward, fix_apple_reward_in_episode, final_reward) else: raise ValueError('Unsupported game "%s".' % game) self._default_reward = default_reward self._num_actions = self._game.num_actions # Agents expect HWC uint8 observations, Pycolab uses CHW float observations. colours = nest.map_structure(lambda c: float(c) * 255 / 1000, self._game.colours) self._rgb_converter = rendering.ObservationToArray( value_mapping=colours, permute=(1, 2, 0), dtype=np.uint8) episode = self._game.make_episode() observation, _, _ = episode.its_showtime() self._image_shape = self._rgb_converter(observation).shape def _process_outputs(self, observation, reward): if reward is None: reward = self._default_reward image = self._rgb_converter(observation) return image, reward def reset(self): """Start a new episode.""" self._episode = self._game.make_episode() observation, reward, _ = self._episode.its_showtime() return self._process_outputs(observation, reward) def step(self, action): """Take step in episode.""" observation, reward, _ = self._episode.play(action) return self._process_outputs(observation, reward) @property def num_actions(self): return self._num_actions @property def observation_shape(self): return self._image_shape @property def episode_length(self): return self._game.episode_length def last_phase_reward(self): # In Pycolab games here we only track chapter_reward for final chapter. return float(self._episode.the_plot['chapter_reward'])
deepmind-research-master
tvt/pycolab/env.py
# pylint: disable=g-bad-file-header # Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Pycolab Game interface.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import six @six.add_metaclass(abc.ABCMeta) class AbstractGame(object): """Abstract base class for Pycolab games.""" @abc.abstractmethod def __init__(self, rng, **settings): """Initialize the game.""" @abc.abstractproperty def num_actions(self): """Number of possible actions in the game.""" @abc.abstractproperty def colours(self): """Symbol to colour map for the game.""" @abc.abstractmethod def make_episode(self): """Factory method for generating new episodes of the game."""
deepmind-research-master
tvt/pycolab/game.py
# Lint as: python2, python3 # pylint: disable=g-bad-file-header # Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Key to door task. The game is split up into three phases: 1. (exploration phase) player can collect a key, 2. (distractor phase) player is collecting apples, 3. (reward phase) player can open the door and get the reward if the key is previously collected. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from pycolab import ascii_art from pycolab import storytelling from pycolab import things as plab_things from tvt.pycolab import common from tvt.pycolab import game from tvt.pycolab import objects COLOURS = { 'i': (1000, 1000, 1000), # Indicator. } EXPLORE_GRID = [ ' ####### ', ' #kkkkk# ', ' #kkkkk# ', ' ## ## ', ' #+++++# ', ' #+++++# ', ' ####### ' ] REWARD_GRID = [ ' ', ' ##d## ', ' # # ', ' # + # ', ' # # ', ' ##### ', ' ', ] class KeySprite(plab_things.Sprite): """Sprite for the key.""" def update(self, actions, board, layers, backdrop, things, the_plot): player_position = things[common.PLAYER].position pick_up = self.position == player_position if self.visible and pick_up: # Pass information to all phases. the_plot['has_key'] = True self._visible = False class DoorSprite(plab_things.Sprite): """Sprite for the door.""" def __init__(self, corner, position, character, pickup_reward): super(DoorSprite, self).__init__(corner, position, character) self._pickup_reward = pickup_reward def update(self, actions, board, layers, backdrop, things, the_plot): player_position = things[common.PLAYER].position pick_up = self.position == player_position if pick_up and the_plot.get('has_key'): the_plot.add_reward(self._pickup_reward) # The key is lost after the first time opening the door # to ensure only one reward per episode. the_plot['has_key'] = False class PlayerSprite(common.PlayerSprite): """Sprite for the actor.""" def __init__(self, corner, position, character): super(PlayerSprite, self).__init__( corner, position, character, impassable=common.BORDER + common.INDICATOR + common.DOOR) def update(self, actions, board, layers, backdrop, things, the_plot): # Allow moving through the door if key is previously collected. if common.DOOR in self.impassable and the_plot.get('has_key'): self._impassable.remove(common.DOOR) super(PlayerSprite, self).update(actions, board, layers, backdrop, things, the_plot) class Game(game.AbstractGame): """Key To Door Game.""" def __init__(self, rng, num_apples=10, apple_reward=(1, 10), fix_apple_reward_in_episode=True, final_reward=10., crop=True, max_frames=common.DEFAULT_MAX_FRAMES_PER_PHASE): del rng # Each episode is identical and colours are not randomised. self._num_apples = num_apples self._apple_reward = apple_reward self._fix_apple_reward_in_episode = fix_apple_reward_in_episode self._final_reward = final_reward self._crop = crop self._max_frames = max_frames self._episode_length = sum(self._max_frames.values()) self._num_actions = common.NUM_ACTIONS self._colours = common.FIXED_COLOURS.copy() self._colours.update(COLOURS) self._extra_observation_fields = ['chapter_reward_as_string'] @property def extra_observation_fields(self): """The field names of extra observations.""" return self._extra_observation_fields @property def num_actions(self): """Number of possible actions in the game.""" return self._num_actions @property def episode_length(self): return self._episode_length @property def colours(self): """Symbol to colour map for key to door.""" return self._colours def _make_explore_phase(self): # Keep only one key and one player position. explore_grid = common.keep_n_characters_in_grid( EXPLORE_GRID, common.KEY, 1) explore_grid = common.keep_n_characters_in_grid( explore_grid, common.PLAYER, 1) return ascii_art.ascii_art_to_game( art=explore_grid, what_lies_beneath=' ', sprites={ common.PLAYER: PlayerSprite, common.KEY: KeySprite, common.INDICATOR: ascii_art.Partial(objects.IndicatorObjectSprite, char_to_track=common.KEY, override_position=(0, 5)), common.TIMER: ascii_art.Partial(common.TimerSprite, self._max_frames['explore']), }, update_schedule=[ common.PLAYER, common.KEY, common.INDICATOR, common.TIMER], z_order=[common.KEY, common.INDICATOR, common.PLAYER, common.TIMER], ) def _make_distractor_phase(self): return common.distractor_phase( player_sprite=PlayerSprite, num_apples=self._num_apples, max_frames=self._max_frames['distractor'], apple_reward=self._apple_reward, fix_apple_reward_in_episode=self._fix_apple_reward_in_episode) def _make_reward_phase(self): return ascii_art.ascii_art_to_game( art=REWARD_GRID, what_lies_beneath=' ', sprites={ common.PLAYER: PlayerSprite, common.DOOR: ascii_art.Partial(DoorSprite, pickup_reward=self._final_reward), common.TIMER: ascii_art.Partial(common.TimerSprite, self._max_frames['reward'], track_chapter_reward=True), }, update_schedule=[common.PLAYER, common.DOOR, common.TIMER], z_order=[common.PLAYER, common.DOOR, common.TIMER], ) def make_episode(self): """Factory method for generating new episodes of the game.""" if self._crop: croppers = common.get_cropper() else: croppers = None return storytelling.Story([ self._make_explore_phase, self._make_distractor_phase, self._make_reward_phase, ], croppers=croppers)
deepmind-research-master
tvt/pycolab/key_to_door.py
# Lint as: python2, python3 # pylint: disable=g-bad-file-header # Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Active visual match task. The game is split up into three phases: 1. (exploration phase) player is in one room and there's a colour in the other, 2. (distractor phase) player is collecting apples, 3. (reward phase) player sees three doors of different colours and has to select the one of the same color as the colour in the first phase. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from pycolab import ascii_art from pycolab import storytelling from tvt.pycolab import common from tvt.pycolab import game from tvt.pycolab import objects SYMBOLS_TO_SHUFFLE = ['b', 'c', 'e'] EXPLORE_GRID = [ ' ppppppp ', ' p p ', ' p p ', ' pp pp ', ' p+++++p ', ' p+++++p ', ' ppppppp ' ] REWARD_GRID = [ '###########', '# b c e #', '# #', '# #', '#### ####', ' # + # ', ' ##### ' ] class Game(game.AbstractGame): """Image Match Passive Game.""" def __init__(self, rng, num_apples=10, apple_reward=(1, 10), fix_apple_reward_in_episode=True, final_reward=10., max_frames=common.DEFAULT_MAX_FRAMES_PER_PHASE): self._rng = rng self._num_apples = num_apples self._apple_reward = apple_reward self._fix_apple_reward_in_episode = fix_apple_reward_in_episode self._final_reward = final_reward self._max_frames = max_frames self._episode_length = sum(self._max_frames.values()) self._num_actions = common.NUM_ACTIONS self._colours = common.FIXED_COLOURS.copy() self._colours.update( common.get_shuffled_symbol_colour_map(rng, SYMBOLS_TO_SHUFFLE)) self._extra_observation_fields = ['chapter_reward_as_string'] @property def extra_observation_fields(self): """The field names of extra observations.""" return self._extra_observation_fields @property def num_actions(self): """Number of possible actions in the game.""" return self._num_actions @property def episode_length(self): return self._episode_length @property def colours(self): """Symbol to colour map for key to door.""" return self._colours def _make_explore_phase(self, target_char): # Keep only one coloured position and one player position. grid = common.keep_n_characters_in_grid(EXPLORE_GRID, 'p', 1, common.BORDER) grid = common.keep_n_characters_in_grid(grid, 'p', 0, target_char) grid = common.keep_n_characters_in_grid(grid, common.PLAYER, 1) return ascii_art.ascii_art_to_game( grid, what_lies_beneath=' ', sprites={ common.PLAYER: ascii_art.Partial( common.PlayerSprite, impassable=common.BORDER + target_char), target_char: objects.ObjectSprite, common.TIMER: ascii_art.Partial(common.TimerSprite, self._max_frames['explore']), }, update_schedule=[common.PLAYER, target_char, common.TIMER], z_order=[target_char, common.PLAYER, common.TIMER], ) def _make_distractor_phase(self): return common.distractor_phase( player_sprite=common.PlayerSprite, num_apples=self._num_apples, max_frames=self._max_frames['distractor'], apple_reward=self._apple_reward, fix_apple_reward_in_episode=self._fix_apple_reward_in_episode) def _make_reward_phase(self, target_char): return ascii_art.ascii_art_to_game( REWARD_GRID, what_lies_beneath=' ', sprites={ common.PLAYER: common.PlayerSprite, 'b': objects.ObjectSprite, 'c': objects.ObjectSprite, 'e': objects.ObjectSprite, common.TIMER: ascii_art.Partial(common.TimerSprite, self._max_frames['reward'], track_chapter_reward=True), target_char: ascii_art.Partial(objects.ObjectSprite, reward=self._final_reward), }, update_schedule=[common.PLAYER, 'b', 'c', 'e', common.TIMER], z_order=[common.PLAYER, 'b', 'c', 'e', common.TIMER], ) def make_episode(self): """Factory method for generating new episodes of the game.""" target_char = self._rng.choice(SYMBOLS_TO_SHUFFLE) return storytelling.Story([ lambda: self._make_explore_phase(target_char), self._make_distractor_phase, lambda: self._make_reward_phase(target_char), ], croppers=common.get_cropper())
deepmind-research-master
tvt/pycolab/active_visual_match.py
# Lint as: python2, python3 # pylint: disable=g-bad-file-header # Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Common utilities for Pycolab games.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import colorsys import numpy as np from pycolab import ascii_art from pycolab import cropping from pycolab import things as plab_things from pycolab.prefab_parts import sprites as prefab_sprites from six.moves import zip from tensorflow.contrib import framework as contrib_framework nest = contrib_framework.nest # Actions. # Those with a negative ID are not allowed for the agent. ACTION_QUIT = -2 ACTION_DELAY = -1 ACTION_NORTH = 0 ACTION_SOUTH = 1 ACTION_WEST = 2 ACTION_EAST = 3 NUM_ACTIONS = 4 DEFAULT_MAX_FRAMES_PER_PHASE = { 'explore': 15, 'distractor': 90, 'reward': 15 } # Reserved symbols. PLAYER = '+' BORDER = '#' BACKGROUND = ' ' KEY = 'k' DOOR = 'd' APPLE = 'a' TIMER = 't' INDICATOR = 'i' FIXED_COLOURS = { PLAYER: (898, 584, 430), BORDER: (100, 100, 100), BACKGROUND: (800, 800, 800), KEY: (627, 321, 176), DOOR: (529, 808, 922), APPLE: (550, 700, 0), } APPLE_DISTRACTOR_GRID = [ '###########', '#a a a a a#', '# a a a a #', '#a a a a a#', '# a a a a #', '#a a + a a#', '###########' ] DEFAULT_APPLE_RESPAWN_TIME = 20 DEFAULT_APPLE_REWARD = 1. def get_shuffled_symbol_colour_map(rng_or_seed, symbols, num_potential_colours=None): """Get a randomized mapping between symbols and colours. Args: rng_or_seed: A random state or random seed. symbols: List of symbols. num_potential_colours: Number of equally spaced colours to choose from. Defaults to number of symbols. Colours are generated deterministically. Returns: Randomized mapping between symbols and colours. """ num_symbols = len(symbols) num_potential_colours = num_potential_colours or num_symbols if isinstance(rng_or_seed, np.random.RandomState): rng = rng_or_seed else: rng = np.random.RandomState(rng_or_seed) # Generate a range of colours. step = 1. / num_potential_colours hues = np.arange(0, num_potential_colours) * step potential_colours = [colorsys.hsv_to_rgb(h, 1.0, 1.0) for h in hues] # Randomly draw num_symbols colours without replacement. rng.shuffle(potential_colours) colours = potential_colours[:num_symbols] symbol_to_colour_map = dict(list(zip(symbols, colours))) # Multiply each colour value by 1000. return nest.map_structure(lambda c: int(c * 1000), symbol_to_colour_map) def get_cropper(): return cropping.ScrollingCropper( rows=5, cols=5, to_track=PLAYER, pad_char=BACKGROUND, scroll_margins=(2, 2)) def distractor_phase(player_sprite, num_apples, max_frames, apple_reward=DEFAULT_APPLE_REWARD, fix_apple_reward_in_episode=False, respawn_every=DEFAULT_APPLE_RESPAWN_TIME): """Distractor phase engine factory. Args: player_sprite: Player sprite class. num_apples: Number of apples to sample from the apple distractor grid. max_frames: Maximum duration of the distractor phase in frames. apple_reward: Can either be a scalar specifying the reward or a reward range [min, max), given as a list or tuple, to uniformly sample from. fix_apple_reward_in_episode: The apple reward is constant throughout each episode. respawn_every: respawn frequency of apples. Returns: Distractor phase engine. """ distractor_grid = keep_n_characters_in_grid(APPLE_DISTRACTOR_GRID, APPLE, num_apples) engine = ascii_art.ascii_art_to_game( distractor_grid, what_lies_beneath=BACKGROUND, sprites={ PLAYER: player_sprite, TIMER: ascii_art.Partial(TimerSprite, max_frames), }, drapes={ APPLE: ascii_art.Partial( AppleDrape, reward=apple_reward, fix_apple_reward_in_episode=fix_apple_reward_in_episode, respawn_every=respawn_every) }, update_schedule=[PLAYER, APPLE, TIMER], z_order=[APPLE, PLAYER, TIMER], ) return engine def replace_grid_symbols(grid, old_to_new_map): """Replaces symbols in the grid. If mapping is not defined the symbol is not updated. Args: grid: Represented as a list of strings. old_to_new_map: Mapping between symbols. Returns: Updated grid. """ def symbol_map(x): if x in old_to_new_map: return old_to_new_map[x] return x new_grid = [] for row in grid: new_grid.append(''.join(symbol_map(i) for i in row)) return new_grid def keep_n_characters_in_grid(grid, character, n, backdrop_char=BACKGROUND): """Keeps only a sample of characters `character` in the grid.""" np_grid = np.array([list(i) for i in grid]) char_positions = np.argwhere(np_grid == character) # Randomly select parts to remove. num_empty_positions = char_positions.shape[0] - n if num_empty_positions < 0: raise ValueError('Not enough characters `{}` in grid.'.format(character)) empty_pos = np.random.permutation(char_positions)[:num_empty_positions] # Remove characters. grid = [list(row) for row in grid] for (i, j) in empty_pos: grid[i][j] = backdrop_char return [''.join(row) for row in grid] class PlayerSprite(prefab_sprites.MazeWalker): """Sprite for the actor.""" def __init__(self, corner, position, character, impassable=BORDER): super(PlayerSprite, self).__init__( corner, position, character, impassable=impassable, confined_to_board=True) def update(self, actions, board, layers, backdrop, things, the_plot): the_plot.add_reward(0.) if actions == ACTION_QUIT: the_plot.next_chapter = None the_plot.terminate_episode() if actions == ACTION_WEST: self._west(board, the_plot) elif actions == ACTION_EAST: self._east(board, the_plot) elif actions == ACTION_NORTH: self._north(board, the_plot) elif actions == ACTION_SOUTH: self._south(board, the_plot) class AppleDrape(plab_things.Drape): """Drape for the apples used in the distractor phase.""" def __init__(self, curtain, character, respawn_every, reward, fix_apple_reward_in_episode): """Constructor. Args: curtain: Array specifying locations of apples. Obtained from ascii grid. character: Character representing the drape. respawn_every: respawn frequency of apples. reward: Can either be a scalar specifying the reward or a reward range [min, max), given as a list or tuple, to uniformly sample from. fix_apple_reward_in_episode: If set to True, then only sample the apple's reward once in the episode and then fix the value. """ super(AppleDrape, self).__init__(curtain, character) self._respawn_every = respawn_every if not isinstance(reward, (list, tuple)): # Assuming scalar. self._reward = [reward, reward] else: if len(reward) != 2: raise ValueError('Reward must be a scalar or a two element list/tuple.') self._reward = reward self._fix_apple_reward_in_episode = fix_apple_reward_in_episode # Grid specifying for each apple the last frame it was picked up. # Initialized to inifinity for cells with apples and -1 for cells without. self._last_pickup = np.where(curtain, np.inf * np.ones_like(curtain), -1. * np.ones_like(curtain)) def update(self, actions, board, layers, backdrop, things, the_plot): player_position = things[PLAYER].position # decide the apple_reward if (self._fix_apple_reward_in_episode and not the_plot.get('sampled_apple_reward', None)): the_plot['sampled_apple_reward'] = np.random.choice((self._reward[0], self._reward[1])) if self.curtain[player_position]: self._last_pickup[player_position] = the_plot.frame self.curtain[player_position] = False if not self._fix_apple_reward_in_episode: the_plot.add_reward(np.random.uniform(*self._reward)) else: the_plot.add_reward(the_plot['sampled_apple_reward']) if self._respawn_every: respawn_cond = the_plot.frame > self._last_pickup + self._respawn_every respawn_cond &= self._last_pickup >= 0 self.curtain[respawn_cond] = True class TimerSprite(plab_things.Sprite): """Sprite for the timer. The timer is in charge of stopping the current chapter. Timer sprite should be placed last in the update order to make sure everything is updated before the chapter terminates. """ def __init__(self, corner, position, character, max_frames, track_chapter_reward=False): super(TimerSprite, self).__init__(corner, position, character) if not isinstance(max_frames, int): raise ValueError('max_frames must be of type integer.') self._max_frames = max_frames self._visible = False self._track_chapter_reward = track_chapter_reward self._total_chapter_reward = 0. def update(self, actions, board, layers, backdrop, things, the_plot): directives = the_plot._get_engine_directives() # pylint: disable=protected-access if self._track_chapter_reward: self._total_chapter_reward += directives.summed_reward or 0. # Every chapter starts at frame = 0. if the_plot.frame >= self._max_frames or directives.game_over: # Calculate the reward obtained in this phase and send it through the # extra observations channel. if self._track_chapter_reward: the_plot['chapter_reward'] = self._total_chapter_reward the_plot.terminate_episode()
deepmind-research-master
tvt/pycolab/common.py
# pylint: disable=g-bad-file-header # Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Pycolab human player.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import curses from absl import app from absl import flags import numpy as np from pycolab import human_ui from tvt.pycolab import active_visual_match from tvt.pycolab import common from tvt.pycolab import key_to_door FLAGS = flags.FLAGS flags.DEFINE_enum('game', 'key_to_door', ['key_to_door', 'active_visual_match'], 'The name of the game') def main(unused_argv): rng = np.random.RandomState() if FLAGS.game == 'key_to_door': game = key_to_door.Game(rng) elif FLAGS.game == 'active_visual_match': game = active_visual_match.Game(rng) else: raise ValueError('Unsupported game "%s".' % FLAGS.game) episode = game.make_episode() ui = human_ui.CursesUi( keys_to_actions={ curses.KEY_UP: common.ACTION_NORTH, curses.KEY_DOWN: common.ACTION_SOUTH, curses.KEY_LEFT: common.ACTION_WEST, curses.KEY_RIGHT: common.ACTION_EAST, -1: common.ACTION_DELAY, 'q': common.ACTION_QUIT, 'Q': common.ACTION_QUIT}, delay=-1, colour_fg=game.colours ) ui.play(episode) if __name__ == '__main__': app.run(main)
deepmind-research-master
tvt/pycolab/human_player.py
# Lint as: python2, python3 # pylint: disable=g-bad-file-header # Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Pycolab sprites.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from pycolab import things as plab_things from pycolab.prefab_parts import sprites as prefab_sprites import six from tvt.pycolab import common class PlayerSprite(prefab_sprites.MazeWalker): """Sprite representing the agent.""" def __init__(self, corner, position, character, max_steps_per_act, moving_player): """Indicates to the superclass that we can't walk off the board.""" super(PlayerSprite, self).__init__( corner, position, character, impassable=[common.BORDER], confined_to_board=True) self._moving_player = moving_player self._max_steps_per_act = max_steps_per_act self._num_steps = 0 def update(self, actions, board, layers, backdrop, things, the_plot): del backdrop # Unused. if actions is not None: assert actions in common.ACTIONS the_plot.log("Step {} | Action {}".format(self._num_steps, actions)) the_plot.add_reward(0.0) self._num_steps += 1 if actions == common.ACTION_QUIT: the_plot.terminate_episode() if self._moving_player: if actions == common.ACTION_WEST: self._west(board, the_plot) elif actions == common.ACTION_EAST: self._east(board, the_plot) elif actions == common.ACTION_NORTH: self._north(board, the_plot) elif actions == common.ACTION_SOUTH: self._south(board, the_plot) if self._max_steps_per_act == self._num_steps: the_plot.terminate_episode() class ObjectSprite(plab_things.Sprite): """Sprite for a generic object which can be collectable.""" def __init__(self, corner, position, character, reward=0., collectable=True, terminate=True): super(ObjectSprite, self).__init__(corner, position, character) self._reward = reward # Reward on pickup. self._collectable = collectable def set_visibility(self, visible): self._visible = visible def update(self, actions, board, layers, backdrop, things, the_plot): player_position = things[common.PLAYER].position pick_up = self.position == player_position if pick_up and self.visible: the_plot.add_reward(self._reward) if self._collectable: self.set_visibility(False) # set all other objects to be invisible for v in six.itervalues(things): if isinstance(v, ObjectSprite): v.set_visibility(False) class IndicatorObjectSprite(plab_things.Sprite): """Sprite for the indicator object. The indicator object is an object that spawns at a designated position once the player picks up an object defined by the `char_to_track` argument. The indicator object is spawned for just a single frame. """ def __init__(self, corner, position, character, char_to_track, override_position=None): super(IndicatorObjectSprite, self).__init__(corner, position, character) if override_position is not None: self._position = override_position self._char_to_track = char_to_track self._visible = False self._pickup_frame = None def update(self, actions, board, layers, backdrop, things, the_plot): player_position = things[common.PLAYER].position pick_up = things[self._char_to_track].position == player_position if self._pickup_frame: self._visible = False if pick_up and not self._pickup_frame: self._visible = True self._pickup_frame = the_plot.frame
deepmind-research-master
tvt/pycolab/objects.py
# Lint as: python3. # Copyright 2019 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Two dimensional convolutional neural net layers.""" from absl import logging import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import def weight_variable(shape, stddev=0.01): """Returns the weight variable.""" logging.vlog(1, 'weight init for shape %s', str(shape)) return tf.get_variable( 'w', shape, initializer=tf.random_normal_initializer(stddev=stddev)) def bias_variable(shape): return tf.get_variable( 'b', shape, initializer=tf.zeros_initializer()) def conv2d(x, w, atrou_rate=1, data_format='NHWC'): if atrou_rate > 1: return tf.nn.convolution( x, w, dilation_rate=[atrou_rate] * 2, padding='SAME', data_format=data_format) else: return tf.nn.conv2d( x, w, strides=[1, 1, 1, 1], padding='SAME', data_format=data_format) def make_conv_sep2d_layer(input_node, in_channels, channel_multiplier, out_channels, layer_name, filter_size, filter_size_2=None, batch_norm=False, is_training=True, atrou_rate=1, data_format='NHWC', stddev=0.01): """Use separable convolutions.""" if filter_size_2 is None: filter_size_2 = filter_size logging.vlog(1, 'layer %s in %d out %d chan mult %d', layer_name, in_channels, out_channels, channel_multiplier) with tf.variable_scope(layer_name): with tf.variable_scope('depthwise'): w_depthwise = weight_variable( [filter_size, filter_size_2, in_channels, channel_multiplier], stddev=stddev) with tf.variable_scope('pointwise'): w_pointwise = weight_variable( [1, 1, in_channels * channel_multiplier, out_channels], stddev=stddev) h_conv = tf.nn.separable_conv2d( input_node, w_depthwise, w_pointwise, padding='SAME', strides=[1, 1, 1, 1], rate=[atrou_rate, atrou_rate], data_format=data_format) if batch_norm: h_conv = batch_norm_layer( h_conv, layer_name=layer_name, is_training=is_training, data_format=data_format) else: b_conv = bias_variable([out_channels]) h_conv = tf.nn.bias_add(h_conv, b_conv, data_format=data_format) return h_conv def batch_norm_layer(h_conv, layer_name, is_training=True, data_format='NCHW'): """Batch norm layer.""" logging.vlog(1, 'batch norm for layer %s', layer_name) return tf.contrib.layers.batch_norm( h_conv, is_training=is_training, fused=True, decay=0.999, scope=layer_name, data_format=data_format) def make_conv_layer(input_node, in_channels, out_channels, layer_name, filter_size, filter_size_2=None, non_linearity=True, batch_norm=False, is_training=True, atrou_rate=1, data_format='NHWC', stddev=0.01): """Creates a convolution layer.""" if filter_size_2 is None: filter_size_2 = filter_size logging.vlog( 1, 'layer %s in %d out %d', layer_name, in_channels, out_channels) with tf.variable_scope(layer_name): w_conv = weight_variable( [filter_size, filter_size_2, in_channels, out_channels], stddev=stddev) h_conv = conv2d( input_node, w_conv, atrou_rate=atrou_rate, data_format=data_format) if batch_norm: h_conv = batch_norm_layer( h_conv, layer_name=layer_name, is_training=is_training, data_format=data_format) else: b_conv = bias_variable([out_channels]) h_conv = tf.nn.bias_add(h_conv, b_conv, data_format=data_format) if non_linearity: h_conv = tf.nn.elu(h_conv) return h_conv
deepmind-research-master
alphafold_casp13/two_dim_convnet.py
# Lint as: python3. # Copyright 2019 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Code to run distogram inference.""" import collections import os import time from absl import app from absl import flags from absl import logging import numpy as np import six import sonnet as snt import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import from alphafold_casp13 import config_dict from alphafold_casp13 import contacts_experiment from alphafold_casp13 import distogram_io from alphafold_casp13 import secstruct flags.DEFINE_string('config_path', None, 'Path of the JSON config file.') flags.DEFINE_string('checkpoint_path', None, 'Checkpoint path for evaluation.') flags.DEFINE_boolean('cpu', False, 'Force onto CPU.') flags.DEFINE_string('output_path', None, 'Base path where all output files will be saved to.') flags.DEFINE_string('eval_sstable', None, 'Path of the SSTable to read the input tf.Examples from.') flags.DEFINE_string('stats_file', None, 'Path of the statistics file to use for normalization.') FLAGS = flags.FLAGS # A named tuple to store the outputs of a single prediction run. Prediction = collections.namedtuple( 'Prediction', [ 'single_message', # A debugging message. 'num_crops_local', # The number of crops used to make this prediction. 'sequence', # The amino acid sequence. 'filebase', # The chain name. All output files will use this name. 'softmax_probs', # Softmax of the distogram. 'ss', # Secondary structure prediction. 'asa', # ASA prediction. 'torsions', # Torsion prediction. ]) def evaluate(crop_size_x, crop_size_y, feature_normalization, checkpoint_path, normalization_exclusion, eval_config, network_config): """Main evaluation loop.""" experiment = contacts_experiment.Contacts( tfrecord=eval_config.eval_sstable, stats_file=eval_config.stats_file, network_config=network_config, crop_size_x=crop_size_x, crop_size_y=crop_size_y, feature_normalization=feature_normalization, normalization_exclusion=normalization_exclusion) checkpoint = snt.get_saver(experiment.model, collections=[ tf.GraphKeys.GLOBAL_VARIABLES, tf.GraphKeys.MOVING_AVERAGE_VARIABLES]) with tf.train.SingularMonitoredSession(hooks=[]) as sess: logging.info('Restoring from checkpoint %s', checkpoint_path) checkpoint.restore(sess, checkpoint_path) logging.info('Writing output to %s', eval_config.output_path) eval_begin_time = time.time() _run_evaluation(sess=sess, experiment=experiment, eval_config=eval_config, output_dir=eval_config.output_path, min_range=network_config.min_range, max_range=network_config.max_range, num_bins=network_config.num_bins, torsion_bins=network_config.torsion_bins) logging.info('Finished eval %.1fs', (time.time() - eval_begin_time)) def _run_evaluation( sess, experiment, eval_config, output_dir, min_range, max_range, num_bins, torsion_bins): """Evaluate a contact map by aggregating crops. Args: sess: A tf.train.Session. experiment: An experiment class. eval_config: A config dict of eval parameters. output_dir: Directory to save the predictions to. min_range: The minimum range in Angstroms to consider in distograms. max_range: The maximum range in Angstroms to consider in distograms, see num_bins below for clarification. num_bins: The number of bins in the distance histogram being predicted. We divide the min_range--(min_range + max_range) Angstrom range into this many bins. torsion_bins: The number of bins the torsion angles are discretised into. """ tf.io.gfile.makedirs(os.path.join(output_dir, 'pickle_files')) logging.info('Eval config is %s\nnum_bins: %d', eval_config, num_bins) num_examples = 0 num_crops = 0 start_all_time = time.time() # Either do the whole test set, or up to a specified limit. max_examples = experiment.num_eval_examples if eval_config.max_num_examples > 0: max_examples = min(max_examples, eval_config.max_num_examples) while num_examples < max_examples: one_prediction = compute_one_prediction( num_examples, experiment, sess, eval_config, num_bins, torsion_bins) single_message = one_prediction.single_message num_crops_local = one_prediction.num_crops_local sequence = one_prediction.sequence filebase = one_prediction.filebase softmax_probs = one_prediction.softmax_probs ss = one_prediction.ss asa = one_prediction.asa torsions = one_prediction.torsions num_examples += 1 num_crops += num_crops_local # Save the output files. filename = os.path.join(output_dir, 'pickle_files', '%s.pickle' % filebase) distogram_io.save_distance_histogram( filename, softmax_probs, filebase, sequence, min_range=min_range, max_range=max_range, num_bins=num_bins) if experiment.model.torsion_multiplier > 0: torsions_dir = os.path.join(output_dir, 'torsions') tf.io.gfile.makedirs(torsions_dir) distogram_io.save_torsions(torsions_dir, filebase, sequence, torsions) if experiment.model.secstruct_multiplier > 0: ss_dir = os.path.join(output_dir, 'secstruct') tf.io.gfile.makedirs(ss_dir) secstruct.save_secstructs(ss_dir, filebase, None, sequence, ss) if experiment.model.asa_multiplier > 0: asa_dir = os.path.join(output_dir, 'asa') tf.io.gfile.makedirs(asa_dir) secstruct.save_secstructs(asa_dir, filebase, None, sequence, np.expand_dims(asa, 1), label='Deepmind 2D ASA') time_spent = time.time() - start_all_time logging.info( 'Evaluate %d examples, %d crops %.1f crops/ex. ' 'Took %.1fs, %.3f s/example %.3f crops/s\n%s', num_examples, num_crops, num_crops / float(num_examples), time_spent, time_spent / num_examples, num_crops / time_spent, single_message) logging.info('Tested on %d', num_examples) def compute_one_prediction( num_examples, experiment, sess, eval_config, num_bins, torsion_bins): """Find the contact map for a single domain.""" num_crops_local = 0 debug_steps = 0 start = time.time() output_fetches = {'probs': experiment.eval_probs} output_fetches['softmax_probs'] = experiment.eval_probs_softmax # Add the auxiliary outputs if present. experiment.model.update_crop_fetches(output_fetches) # Get data. batch = experiment.get_one_example(sess) length = batch['sequence_lengths'][0] batch_size = batch['sequence_lengths'].shape[0] domain = batch['domain_name'][0][0].decode('utf-8') chain = batch['chain_name'][0][0].decode('utf-8') filebase = domain or chain sequence = six.ensure_str(batch['sequences'][0][0]) logging.info('SepWorking on %d %s %s %d', num_examples, domain, chain, length) inputs_1d = batch['inputs_1d'] if 'residue_index' in batch: logging.info('Getting residue_index from features') residue_index = np.squeeze( batch['residue_index'], axis=2).astype(np.int32) else: logging.info('Generating residue_index') residue_index = np.tile(np.expand_dims( np.arange(length, dtype=np.int32), 0), [batch_size, 1]) assert batch_size == 1 num_examples += batch_size # Crops. prob_accum = np.zeros((length, length, 2)) ss_accum = np.zeros((length, 8)) torsions_accum = np.zeros((length, torsion_bins**2)) asa_accum = np.zeros((length,)) weights_1d_accum = np.zeros((length,)) softmax_prob_accum = np.zeros((length, length, num_bins), dtype=np.float32) crop_size_x = experiment.crop_size_x crop_step_x = crop_size_x // eval_config.crop_shingle_x crop_size_y = experiment.crop_size_y crop_step_y = crop_size_y // eval_config.crop_shingle_y prob_weights = 1 if eval_config.pyramid_weights > 0: sx = np.expand_dims(np.linspace(1.0 / crop_size_x, 1, crop_size_x), 1) sy = np.expand_dims(np.linspace(1.0 / crop_size_y, 1, crop_size_y), 0) prob_weights = np.minimum(np.minimum(sx, np.flipud(sx)), np.minimum(sy, np.fliplr(sy))) prob_weights /= np.max(prob_weights) prob_weights = np.minimum(prob_weights, eval_config.pyramid_weights) logging.log_first_n(logging.INFO, 'Crop: %dx%d step %d,%d pyr %.2f', debug_steps, crop_size_x, crop_size_y, crop_step_x, crop_step_y, eval_config.pyramid_weights) # Accumulate all crops, starting and ending half off the square. for i in range(-crop_size_x // 2, length - crop_size_x // 2, crop_step_x): for j in range(-crop_size_y // 2, length - crop_size_y // 2, crop_step_y): # The ideal crop. patch = compute_one_patch( sess, experiment, output_fetches, inputs_1d, residue_index, prob_weights, batch, length, i, j, crop_size_x, crop_size_y) # Assemble the crops into a final complete prediction. ic = max(0, i) jc = max(0, j) ic_to = ic + patch['prob'].shape[1] jc_to = jc + patch['prob'].shape[0] prob_accum[jc:jc_to, ic:ic_to, 0] += patch['prob'] * patch['weight'] prob_accum[jc:jc_to, ic:ic_to, 1] += patch['weight'] softmax_prob_accum[jc:jc_to, ic:ic_to, :] += ( patch['softmax'] * np.expand_dims(patch['weight'], 2)) weights_1d_accum[jc:jc_to] += 1 weights_1d_accum[ic:ic_to] += 1 if 'asa_x' in patch: asa_accum[ic:ic + patch['asa_x'].shape[0]] += np.squeeze( patch['asa_x'], axis=1) asa_accum[jc:jc + patch['asa_y'].shape[0]] += np.squeeze( patch['asa_y'], axis=1) if 'ss_x' in patch: ss_accum[ic:ic + patch['ss_x'].shape[0]] += patch['ss_x'] ss_accum[jc:jc + patch['ss_y'].shape[0]] += patch['ss_y'] if 'torsions_x' in patch: torsions_accum[ ic:ic + patch['torsions_x'].shape[0]] += patch['torsions_x'] torsions_accum[ jc:jc + patch['torsions_y'].shape[0]] += patch['torsions_y'] num_crops_local += 1 single_message = ( 'Constructed %s len %d from %d chunks [%d, %d x %d, %d] ' 'in %5.1fs' % ( filebase, length, num_crops_local, crop_size_x, crop_step_x, crop_size_y, crop_step_y, time.time() - start)) logging.info(single_message) logging.info('prob_accum[:, :, 1]: %s', prob_accum[:, :, 1]) assert (prob_accum[:, :, 1] > 0.0).all() probs = prob_accum[:, :, 0] / prob_accum[:, :, 1] softmax_probs = softmax_prob_accum[:, :, :] / prob_accum[:, :, 1:2] asa_accum /= weights_1d_accum ss_accum /= np.expand_dims(weights_1d_accum, 1) torsions_accum /= np.expand_dims(weights_1d_accum, 1) # The probs are symmetrical. probs = (probs + probs.transpose()) / 2 if num_bins > 1: softmax_probs = (softmax_probs + np.transpose( softmax_probs, axes=[1, 0, 2])) / 2 return Prediction( single_message=single_message, num_crops_local=num_crops_local, sequence=sequence, filebase=filebase, softmax_probs=softmax_probs, ss=ss_accum, asa=asa_accum, torsions=torsions_accum) def compute_one_patch(sess, experiment, output_fetches, inputs_1d, residue_index, prob_weights, batch, length, i, j, crop_size_x, crop_size_y): """Compute the output predictions for a single crop.""" # Note that these are allowed to go off the end of the protein. end_x = i + crop_size_x end_y = j + crop_size_y crop_limits = np.array([[i, end_x, j, end_y]], dtype=np.int32) ic = max(0, i) jc = max(0, j) end_x_cropped = min(length, end_x) end_y_cropped = min(length, end_y) prepad_x = max(0, -i) prepad_y = max(0, -j) postpad_x = end_x - end_x_cropped postpad_y = end_y - end_y_cropped # Precrop the 2D features: inputs_2d = np.pad(batch['inputs_2d'][ :, jc:end_y, ic:end_x, :], [[0, 0], [prepad_y, postpad_y], [prepad_x, postpad_x], [0, 0]], mode='constant') assert inputs_2d.shape[1] == crop_size_y assert inputs_2d.shape[2] == crop_size_x # Generate the corresponding crop, but it might be truncated. cxx = batch['inputs_2d'][:, ic:end_x, ic:end_x, :] cyy = batch['inputs_2d'][:, jc:end_y, jc:end_y, :] if cxx.shape[1] < inputs_2d.shape[1]: cxx = np.pad(cxx, [[0, 0], [prepad_x, max(0, i + crop_size_y - length)], [prepad_x, postpad_x], [0, 0]], mode='constant') assert cxx.shape[1] == crop_size_y assert cxx.shape[2] == crop_size_x if cyy.shape[2] < inputs_2d.shape[2]: cyy = np.pad(cyy, [[0, 0], [prepad_y, postpad_y], [prepad_y, max(0, j + crop_size_x - length)], [0, 0]], mode='constant') assert cyy.shape[1] == crop_size_y assert cyy.shape[2] == crop_size_x inputs_2d = np.concatenate([inputs_2d, cxx, cyy], 3) output_results = sess.run(output_fetches, feed_dict={ experiment.inputs_1d_placeholder: inputs_1d, experiment.residue_index_placeholder: residue_index, experiment.inputs_2d_placeholder: inputs_2d, experiment.crop_placeholder: crop_limits, }) # Crop out the "live" region of the probs. prob_patch = output_results['probs'][ 0, prepad_y:crop_size_y - postpad_y, prepad_x:crop_size_x - postpad_x] weight_patch = prob_weights[prepad_y:crop_size_y - postpad_y, prepad_x:crop_size_x - postpad_x] patch = {'prob': prob_patch, 'weight': weight_patch} if 'softmax_probs' in output_results: patch['softmax'] = output_results['softmax_probs'][ 0, prepad_y:crop_size_y - postpad_y, prepad_x:crop_size_x - postpad_x] if 'secstruct_probs' in output_results: patch['ss_x'] = output_results['secstruct_probs'][ 0, prepad_x:crop_size_x - postpad_x] patch['ss_y'] = output_results['secstruct_probs'][ 0, crop_size_x + prepad_y:crop_size_x + crop_size_y - postpad_y] if 'torsion_probs' in output_results: patch['torsions_x'] = output_results['torsion_probs'][ 0, prepad_x:crop_size_x - postpad_x] patch['torsions_y'] = output_results['torsion_probs'][ 0, crop_size_x + prepad_y:crop_size_x + crop_size_y - postpad_y] if 'asa_output' in output_results: patch['asa_x'] = output_results['asa_output'][ 0, prepad_x:crop_size_x - postpad_x] patch['asa_y'] = output_results['asa_output'][ 0, crop_size_x + prepad_y:crop_size_x + crop_size_y - postpad_y] return patch def main(argv): del argv # Unused. logging.info('Loading a JSON config from: %s', FLAGS.config_path) with tf.io.gfile.GFile(FLAGS.config_path, 'r') as f: config = config_dict.ConfigDict.from_json(f.read()) # Redefine the relevant output fields. if FLAGS.eval_sstable: config.eval_config.eval_sstable = FLAGS.eval_sstable if FLAGS.stats_file: config.eval_config.stats_file = FLAGS.stats_file if FLAGS.output_path: config.eval_config.output_path = FLAGS.output_path with tf.device('/cpu:0' if FLAGS.cpu else None): evaluate(checkpoint_path=FLAGS.checkpoint_path, **config) if __name__ == '__main__': app.run(main)
deepmind-research-master
alphafold_casp13/contacts.py
# Lint as: python3. # Copyright 2019 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Layer for modelling and scoring secondary structure.""" import os from absl import logging import numpy as np import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import # 8-class classes (Q8) SECONDARY_STRUCTURES = '-HETSGBI' # Equivalence classes for 3-class (Q3) from Li & Yu 2016. # See http://www.cmbi.ru.nl/dssp.html for letter explanations. Q3_MAP = ['-TSGIB', 'H', 'E'] def make_q3_matrices(): """Generate mapping matrices for secstruct Q8:Q3 equivalence classes.""" dimension = len(SECONDARY_STRUCTURES) q3_map_matrix = np.zeros((dimension, len(Q3_MAP))) q3_lookup = np.zeros((dimension,), dtype=np.int32) for i, eclass in enumerate(Q3_MAP): # equivalence classes for m in eclass: # Members of the class. ss_type = SECONDARY_STRUCTURES.index(m) q3_map_matrix[ss_type, i] = 1.0 q3_lookup[ss_type] = i return q3_map_matrix, q3_lookup class Secstruct(object): """Make a layer that computes hierarchical secstruct.""" # Build static, shared structures: q3_map_matrix, q3_lookup = make_q3_matrices() static_dimension = len(SECONDARY_STRUCTURES) def __init__(self, name='secstruct'): self.name = name self._dimension = Secstruct.static_dimension def make_layer_new(self, activations): """Make the layer.""" with tf.variable_scope(self.name, reuse=tf.AUTO_REUSE): logging.info('Creating secstruct %s', activations) self.logits = tf.contrib.layers.linear(activations, self._dimension) self.ss_q8_probs = tf.nn.softmax(self.logits) self.ss_q3_probs = tf.matmul( self.ss_q8_probs, tf.constant(self.q3_map_matrix, dtype=tf.float32)) def get_q8_probs(self): return self.ss_q8_probs def save_secstructs(dump_dir_path, name, index, sequence, probs, label='Deepmind secstruct'): """Write secstruct prob distributions to an ss2 file. Can be overloaded to write out asa values too. Args: dump_dir_path: directory where to write files. name: name of domain index: index number of multiple samples. (or None for no index) sequence: string of L residue labels probs: L x D matrix of probabilities. L is length of sequence, D is probability dimension (usually 3). label: A label for the file. """ filename = os.path.join(dump_dir_path, '%s.ss2' % name) if index is not None: filename = os.path.join(dump_dir_path, '%s_%04d.ss2' % (name, index)) with tf.io.gfile.GFile(filename, 'w') as gf: logging.info('Saving secstruct to %s', filename) gf.write('# %s CLASSES [%s] %s sample %s\n\n' % ( label, ''.join(SECONDARY_STRUCTURES[:probs.shape[1]]), name, index)) for l in range(probs.shape[0]): ss = SECONDARY_STRUCTURES[np.argmax(probs[l, :])] gf.write('%4d %1s %1s %s\n' % (l + 1, sequence[l], ss, ''.join( [('%6.3f' % p) for p in probs[l, :]])))
deepmind-research-master
alphafold_casp13/secstruct.py
# Lint as: python3. # Copyright 2019 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities for storing configuration flags.""" import json class ConfigDict(dict): """Configuration dictionary with convenient dot element access.""" def __init__(self, *args, **kwargs): super(ConfigDict, self).__init__(*args, **kwargs) for arg in args: if isinstance(arg, dict): for key, value in arg.items(): self._add(key, value) for key, value in kwargs.items(): self._add(key, value) def _add(self, key, value): if isinstance(value, dict): self[key] = ConfigDict(value) else: self[key] = value def __getattr__(self, attr): try: return self[attr] except KeyError as e: raise AttributeError(e) def __setattr__(self, key, value): self.__setitem__(key, value) def __setitem__(self, key, value): super(ConfigDict, self).__setitem__(key, value) self.__dict__.update({key: value}) def __delattr__(self, item): self.__delitem__(item) def __delitem__(self, key): super(ConfigDict, self).__delitem__(key) del self.__dict__[key] def to_json(self): return json.dumps(self) @classmethod def from_json(cls, json_string): return cls(json.loads(json_string))
deepmind-research-master
alphafold_casp13/config_dict.py
# Lint as: python3. # Copyright 2019 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Class for predicting Accessible Surface Area.""" import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import class ASAOutputLayer(object): """An output layer to predict Accessible Surface Area.""" def __init__(self, name='asa'): self.name = name def compute_asa_output(self, activations): """Just compute the logits and outputs given activations.""" asa_logits = tf.contrib.layers.linear( activations, 1, weights_initializer=tf.random_uniform_initializer(-0.01, 0.01), scope='ASALogits') self.asa_output = tf.nn.relu(asa_logits, name='ASA_output_relu') return asa_logits
deepmind-research-master
alphafold_casp13/asa_output.py
# Lint as: python3. # Copyright 2019 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """2D Resnet.""" from absl import logging import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import from alphafold_casp13 import two_dim_convnet def make_sep_res_layer( input_node, in_channels, out_channels, layer_name, filter_size, filter_size_2=None, batch_norm=False, is_training=True, divide_channels_by=2, atrou_rate=1, channel_multiplier=0, data_format='NHWC', stddev=0.01, dropout_keep_prob=1.0): """A separable resnet block.""" with tf.name_scope(layer_name): input_times_almost_1 = input_node h_conv = input_times_almost_1 if batch_norm: h_conv = two_dim_convnet.batch_norm_layer( h_conv, layer_name=layer_name, is_training=is_training, data_format=data_format) h_conv = tf.nn.elu(h_conv) if filter_size_2 is None: filter_size_2 = filter_size # 1x1 with half size h_conv = two_dim_convnet.make_conv_layer( h_conv, in_channels=in_channels, out_channels=in_channels / divide_channels_by, layer_name=layer_name + '_1x1h', filter_size=1, filter_size_2=1, non_linearity=True, batch_norm=batch_norm, is_training=is_training, data_format=data_format, stddev=stddev) # 3x3 with half size if channel_multiplier == 0: h_conv = two_dim_convnet.make_conv_layer( h_conv, in_channels=in_channels / divide_channels_by, out_channels=in_channels / divide_channels_by, layer_name=layer_name + '_%dx%dh' % (filter_size, filter_size_2), filter_size=filter_size, filter_size_2=filter_size_2, non_linearity=True, batch_norm=batch_norm, is_training=is_training, atrou_rate=atrou_rate, data_format=data_format, stddev=stddev) else: # We use separable convolution for 3x3 h_conv = two_dim_convnet.make_conv_sep2d_layer( h_conv, in_channels=in_channels / divide_channels_by, channel_multiplier=channel_multiplier, out_channels=in_channels / divide_channels_by, layer_name=layer_name + '_sep%dx%dh' % (filter_size, filter_size_2), filter_size=filter_size, filter_size_2=filter_size_2, batch_norm=batch_norm, is_training=is_training, atrou_rate=atrou_rate, data_format=data_format, stddev=stddev) # 1x1 back to normal size without relu h_conv = two_dim_convnet.make_conv_layer( h_conv, in_channels=in_channels / divide_channels_by, out_channels=out_channels, layer_name=layer_name + '_1x1', filter_size=1, filter_size_2=1, non_linearity=False, batch_norm=False, is_training=is_training, data_format=data_format, stddev=stddev) if dropout_keep_prob < 1.0: logging.info('dropout keep prob %f', dropout_keep_prob) h_conv = tf.nn.dropout(h_conv, keep_prob=dropout_keep_prob) return h_conv + input_times_almost_1 def make_two_dim_resnet( input_node, num_residues=50, num_features=40, num_predictions=1, num_channels=32, num_layers=2, filter_size=3, filter_size_2=None, final_non_linearity=False, name_prefix='', fancy=True, batch_norm=False, is_training=False, atrou_rates=None, channel_multiplier=0, divide_channels_by=2, resize_features_with_1x1=False, data_format='NHWC', stddev=0.01, dropout_keep_prob=1.0): """Two dim resnet towers.""" del num_residues # Unused. if atrou_rates is None: atrou_rates = [1] if not fancy: raise ValueError('non fancy deprecated') logging.info('atrou rates %s', atrou_rates) logging.info('name prefix %s', name_prefix) x_image = input_node previous_layer = x_image non_linearity = True for i_layer in range(num_layers): in_channels = num_channels out_channels = num_channels curr_atrou_rate = atrou_rates[i_layer % len(atrou_rates)] if i_layer == 0: in_channels = num_features if i_layer == num_layers - 1: out_channels = num_predictions non_linearity = final_non_linearity if i_layer == 0 or i_layer == num_layers - 1: layer_name = name_prefix + 'conv%d' % (i_layer + 1) initial_filter_size = filter_size if resize_features_with_1x1: initial_filter_size = 1 previous_layer = two_dim_convnet.make_conv_layer( input_node=previous_layer, in_channels=in_channels, out_channels=out_channels, layer_name=layer_name, filter_size=initial_filter_size, filter_size_2=filter_size_2, non_linearity=non_linearity, atrou_rate=curr_atrou_rate, data_format=data_format, stddev=stddev) else: layer_name = name_prefix + 'res%d' % (i_layer + 1) previous_layer = make_sep_res_layer( input_node=previous_layer, in_channels=in_channels, out_channels=out_channels, layer_name=layer_name, filter_size=filter_size, filter_size_2=filter_size_2, batch_norm=batch_norm, is_training=is_training, atrou_rate=curr_atrou_rate, channel_multiplier=channel_multiplier, divide_channels_by=divide_channels_by, data_format=data_format, stddev=stddev, dropout_keep_prob=dropout_keep_prob) y = previous_layer return y
deepmind-research-master
alphafold_casp13/two_dim_resnet.py
# Lint as: python3. # Copyright 2019 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Form a weighted average of several distograms. Can also/instead form a weighted average of a set of distance histogram pickle files, so long as they have identical hyperparameters. """ import os from absl import app from absl import flags from absl import logging import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import from alphafold_casp13 import distogram_io from alphafold_casp13 import parsers flags.DEFINE_list( 'pickle_dirs', [], 'Comma separated list of directories with pickle files to ensemble.') flags.DEFINE_list( 'weights', [], 'Comma separated list of weights for the pickle files from different dirs.') flags.DEFINE_string( 'output_dir', None, 'Directory where to save results of the evaluation.') FLAGS = flags.FLAGS def ensemble_distance_histograms(pickle_dirs, weights, output_dir): """Find all the contact maps in the first dir, then ensemble across dirs.""" if len(pickle_dirs) <= 1: logging.warning('Pointless to ensemble %d pickle_dirs %s', len(pickle_dirs), pickle_dirs) # Carry on if there's one dir, otherwise do nothing. if not pickle_dirs: return tf.io.gfile.makedirs(output_dir) one_dir_pickle_files = tf.io.gfile.glob( os.path.join(pickle_dirs[0], '*.pickle')) assert one_dir_pickle_files, pickle_dirs[0] original_files = len(one_dir_pickle_files) logging.info('Found %d files %d in first of %d dirs', original_files, len(one_dir_pickle_files), len(pickle_dirs)) targets = [os.path.splitext(os.path.basename(f))[0] for f in one_dir_pickle_files] skipped = 0 wrote = 0 for t in targets: dump_file = os.path.join(output_dir, t + '.pickle') pickle_files = [os.path.join(pickle_dir, t + '.pickle') for pickle_dir in pickle_dirs] _, new_dict = ensemble_one_distance_histogram(pickle_files, weights) if new_dict is not None: wrote += 1 distogram_io.save_distance_histogram_from_dict(dump_file, new_dict) msg = 'Distograms Wrote %s %d / %d Skipped %d %s' % ( t, wrote, len(one_dir_pickle_files), skipped, dump_file) logging.info(msg) def ensemble_one_distance_histogram(pickle_files, weights): """Average the given pickle_files and dump.""" dicts = [] sequence = None max_dim = None for picklefile in pickle_files: if not tf.io.gfile.exists(picklefile): logging.warning('missing %s', picklefile) break logging.info('loading pickle file %s', picklefile) distance_histogram_dict = parsers.parse_distance_histogram_dict(picklefile) if sequence is None: sequence = distance_histogram_dict['sequence'] else: assert sequence == distance_histogram_dict['sequence'], '%s vs %s' % ( sequence, distance_histogram_dict['sequence']) dicts.append(distance_histogram_dict) assert dicts[-1]['probs'].shape[0] == dicts[-1]['probs'].shape[1], ( '%d vs %d' % (dicts[-1]['probs'].shape[0], dicts[-1]['probs'].shape[1])) assert (dicts[0]['probs'].shape[0:2] == dicts[-1]['probs'].shape[0:2] ), ('%d vs %d' % (dicts[0]['probs'].shape, dicts[-1]['probs'].shape)) if max_dim is None or max_dim < dicts[-1]['probs'].shape[2]: max_dim = dicts[-1]['probs'].shape[2] if len(dicts) != len(pickle_files): logging.warning('length mismatch\n%s\nVS\n%s', dicts, pickle_files) return sequence, None ensemble_hist = ( sum(w * c['probs'] for w, c in zip(weights, dicts)) / sum(weights)) new_dict = dict(dicts[0]) new_dict['probs'] = ensemble_hist return sequence, new_dict def main(argv): del argv # Unused. num_dirs = len(FLAGS.pickle_dirs) if FLAGS.weights: assert len(FLAGS.weights) == num_dirs, ( 'Supply as many weights as pickle_dirs, or no weights') weights = [float(w) for w in FLAGS.weights] else: weights = [1.0 for w in range(num_dirs)] ensemble_distance_histograms( pickle_dirs=FLAGS.pickle_dirs, weights=weights, output_dir=FLAGS.output_dir) if __name__ == '__main__': app.run(main)
deepmind-research-master
alphafold_casp13/ensemble_contact_maps.py
# Lint as: python3. # Copyright 2019 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Parsers for various standard biology or AlphaFold-specific formats.""" import pickle import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import def distance_histogram_dict(f): """Parses distance histogram dict pickle. Distance histograms are stored as pickles of dicts. Write one of these with contacts/write_rr_file.write_pickle_file() Args: f: File-like handle to distance histogram dict pickle. Returns: Dict with fields: probs: (an L x L x num_bins) histogram. num_bins: number of bins for each residue pair min_range: left hand edge of the distance histogram max_range: the extent of the histogram NOT the right hand edge. """ contact_dict = pickle.load(f, encoding='latin1') num_res = len(contact_dict['sequence']) if not all(key in contact_dict.keys() for key in ['probs', 'num_bins', 'min_range', 'max_range']): raise ValueError('The pickled contact dict doesn\'t contain all required ' 'keys: probs, num_bins, min_range, max_range but %s.' % contact_dict.keys()) if contact_dict['probs'].ndim != 3: raise ValueError( 'Probs is not rank 3 but %d' % contact_dict['probs'].ndim) if contact_dict['num_bins'] != contact_dict['probs'].shape[2]: raise ValueError( 'The probs shape doesn\'t match num_bins in the third dimension. ' 'Expected %d got %d.' % (contact_dict['num_bins'], contact_dict['probs'].shape[2])) if contact_dict['probs'].shape[:2] != (num_res, num_res): raise ValueError( 'The first two probs dims (%i, %i) aren\'t equal to len(sequence) %i' % (contact_dict['probs'].shape[0], contact_dict['probs'].shape[1], num_res)) return contact_dict def parse_distance_histogram_dict(filepath): """Parses distance histogram piclkle from filepath.""" with tf.io.gfile.GFile(filepath, 'rb') as f: return distance_histogram_dict(f)
deepmind-research-master
alphafold_casp13/parsers.py
# Lint as: python3. # Copyright 2019 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Contact prediction convnet experiment example.""" from absl import logging import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import from alphafold_casp13 import contacts_dataset from alphafold_casp13 import contacts_network def _int_ph(shape, name): return tf.placeholder( dtype=tf.int32, shape=shape, name=('%s_placeholder' % name)) def _float_ph(shape, name): return tf.placeholder( dtype=tf.float32, shape=shape, name=('%s_placeholder' % name)) class Contacts(object): """Contact prediction experiment.""" def __init__( self, tfrecord, stats_file, network_config, crop_size_x, crop_size_y, feature_normalization, normalization_exclusion): """Builds the TensorFlow graph.""" self.network_config = network_config self.crop_size_x = crop_size_x self.crop_size_y = crop_size_y self._feature_normalization = feature_normalization self._normalization_exclusion = normalization_exclusion self._model = contacts_network.ContactsNet(**network_config) self._features = network_config.features self._scalars = network_config.scalars self._targets = network_config.targets # Add extra targets we need. required_targets = ['domain_name', 'resolution', 'chain_name'] if self.model.torsion_multiplier > 0: required_targets.extend([ 'phi_angles', 'phi_mask', 'psi_angles', 'psi_mask']) if self.model.secstruct_multiplier > 0: required_targets.extend(['sec_structure', 'sec_structure_mask']) if self.model.asa_multiplier > 0: required_targets.extend(['solv_surf', 'solv_surf_mask']) extra_targets = [t for t in required_targets if t not in self._targets] if extra_targets: targets = list(self._targets) targets.extend(extra_targets) self._targets = tuple(targets) logging.info('Targets %s %s extra %s', type(self._targets), self._targets, extra_targets) logging.info('Evaluating on %s, stats: %s', tfrecord, stats_file) self._build_evaluation_graph(tfrecord=tfrecord, stats_file=stats_file) @property def model(self): return self._model def _get_feature_normalization(self, features): return {key: self._feature_normalization for key in features if key not in list(self._normalization_exclusion)} def _build_evaluation_graph(self, tfrecord, stats_file): """Constructs the graph in pieces so it can be fed.""" with tf.name_scope('competitionsep'): # Construct the dataset and mapping ops. dataset = contacts_dataset.create_tf_dataset( tf_record_filename=tfrecord, features=tuple(self._features) + tuple( self._scalars) + tuple(self._targets)) def normalize(data): return contacts_dataset.normalize_from_stats_file( features=data, stats_file_path=stats_file, feature_normalization=self._get_feature_normalization( self._features), copy_unnormalized=list(set(self._features) & set(self._targets))) def convert_to_legacy(features): return contacts_dataset.convert_to_legacy_proteins_dataset_format( features, self._features, self._scalars, self._targets) dataset = dataset.map(normalize) dataset = dataset.map(convert_to_legacy) dataset = dataset.batch(1) # Get a batch of tensors in the legacy ProteinsDataset format. iterator = tf.data.make_one_shot_iterator(dataset) self._input_batch = iterator.get_next() self.num_eval_examples = sum( 1 for _ in tf.python_io.tf_record_iterator(tfrecord)) logging.info('Eval batch:\n%s', self._input_batch) feature_dim_1d = self._input_batch.inputs_1d.shape.as_list()[-1] feature_dim_2d = self._input_batch.inputs_2d.shape.as_list()[-1] feature_dim_2d *= 3 # The diagonals will be stacked before feeding. # Now placeholders for the graph to compute the outputs for one crop. self.inputs_1d_placeholder = _float_ph( shape=[None, None, feature_dim_1d], name='inputs_1d') self.residue_index_placeholder = _int_ph( shape=[None, None], name='residue_index') self.inputs_2d_placeholder = _float_ph( shape=[None, None, None, feature_dim_2d], name='inputs_2d') # 4 ints: x_start, x_end, y_start, y_end. self.crop_placeholder = _int_ph(shape=[None, 4], name='crop') # Finally placeholders for the graph to score the complete contact map. self.probs_placeholder = _float_ph(shape=[None, None, None], name='probs') self.softmax_probs_placeholder = _float_ph( shape=[None, None, None, self.network_config.num_bins], name='softmax_probs') self.cb_placeholder = _float_ph(shape=[None, None, 3], name='cb') self.cb_mask_placeholder = _float_ph(shape=[None, None], name='cb_mask') self.lengths_placeholder = _int_ph(shape=[None], name='lengths') if self.model.secstruct_multiplier > 0: self.sec_structure_placeholder = _float_ph( shape=[None, None, 8], name='sec_structure') self.sec_structure_logits_placeholder = _float_ph( shape=[None, None, 8], name='sec_structure_logits') self.sec_structure_mask_placeholder = _float_ph( shape=[None, None, 1], name='sec_structure_mask') if self.model.asa_multiplier > 0: self.solv_surf_placeholder = _float_ph( shape=[None, None, 1], name='solv_surf') self.solv_surf_logits_placeholder = _float_ph( shape=[None, None, 1], name='solv_surf_logits') self.solv_surf_mask_placeholder = _float_ph( shape=[None, None, 1], name='solv_surf_mask') if self.model.torsion_multiplier > 0: self.torsions_truth_placeholder = _float_ph( shape=[None, None, 2], name='torsions_truth') self.torsions_mask_placeholder = _float_ph( shape=[None, None, 1], name='torsions_mask') self.torsion_logits_placeholder = _float_ph( shape=[None, None, self.network_config.torsion_bins ** 2], name='torsion_logits') # Build a dict to pass all the placeholders into build. placeholders = { 'inputs_1d_placeholder': self.inputs_1d_placeholder, 'residue_index_placeholder': self.residue_index_placeholder, 'inputs_2d_placeholder': self.inputs_2d_placeholder, 'crop_placeholder': self.crop_placeholder, 'probs_placeholder': self.probs_placeholder, 'softmax_probs_placeholder': self.softmax_probs_placeholder, 'cb_placeholder': self.cb_placeholder, 'cb_mask_placeholder': self.cb_mask_placeholder, 'lengths_placeholder': self.lengths_placeholder, } if self.model.secstruct_multiplier > 0: placeholders.update({ 'sec_structure': self.sec_structure_placeholder, 'sec_structure_logits_placeholder': self.sec_structure_logits_placeholder, 'sec_structure_mask': self.sec_structure_mask_placeholder,}) if self.model.asa_multiplier > 0: placeholders.update({ 'solv_surf': self.solv_surf_placeholder, 'solv_surf_logits_placeholder': self.solv_surf_logits_placeholder, 'solv_surf_mask': self.solv_surf_mask_placeholder,}) if self.model.torsion_multiplier > 0: placeholders.update({ 'torsions_truth': self.torsions_truth_placeholder, 'torsion_logits_placeholder': self.torsion_logits_placeholder, 'torsions_truth_mask': self.torsions_mask_placeholder,}) activations = self._model( crop_size_x=self.crop_size_x, crop_size_y=self.crop_size_y, placeholders=placeholders) self.eval_probs_softmax = tf.nn.softmax( activations[:, :, :, :self.network_config.num_bins]) self.eval_probs = tf.reduce_sum( self.eval_probs_softmax[:, :, :, :self._model.quant_threshold()], axis=3) def get_one_example(self, sess): """Pull one example off the queue so we can feed it for evaluation.""" request_dict = { 'inputs_1d': self._input_batch.inputs_1d, 'inputs_2d': self._input_batch.inputs_2d, 'sequence_lengths': self._input_batch.sequence_lengths, 'beta_positions': self._input_batch.targets.beta_positions, 'beta_mask': self._input_batch.targets.beta_mask, 'domain_name': self._input_batch.targets.domain_name, 'chain_name': self._input_batch.targets.chain_name, 'sequences': self._input_batch.sequences, } if hasattr(self._input_batch.targets, 'residue_index'): request_dict.update( {'residue_index': self._input_batch.targets.residue_index}) if hasattr(self._input_batch.targets, 'phi_angles'): request_dict.update( {'phi_angles': self._input_batch.targets.phi_angles, 'psi_angles': self._input_batch.targets.psi_angles, 'phi_mask': self._input_batch.targets.phi_mask, 'psi_mask': self._input_batch.targets.psi_mask}) if hasattr(self._input_batch.targets, 'sec_structure'): request_dict.update( {'sec_structure': self._input_batch.targets.sec_structure, 'sec_structure_mask': self._input_batch.targets.sec_structure_mask,}) if hasattr(self._input_batch.targets, 'solv_surf'): request_dict.update( {'solv_surf': self._input_batch.targets.solv_surf, 'solv_surf_mask': self._input_batch.targets.solv_surf_mask,}) if hasattr(self._input_batch.targets, 'alpha_positions'): request_dict.update( {'alpha_positions': self._input_batch.targets.alpha_positions, 'alpha_mask': self._input_batch.targets.alpha_mask,}) batch = sess.run(request_dict) return batch
deepmind-research-master
alphafold_casp13/contacts_experiment.py
# Lint as: python3. # Copyright 2019 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Write contact map predictions to a tf.io.gfile. Either write a binary contact map as an RR format text file, or a histogram prediction as a pickle of a dict containing a numpy array. """ import os import numpy as np import six.moves.cPickle as pickle import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import RR_FORMAT = """PFRMAT RR TARGET {} AUTHOR DM-ORIGAMI-TEAM METHOD {} MODEL 1 {} """ def save_rr_file(filename, probs, domain, sequence, method='dm-contacts-resnet'): """Save a contact probability matrix as an RR file.""" assert len(sequence) == probs.shape[0] assert len(sequence) == probs.shape[1] with tf.io.gfile.GFile(filename, 'w') as f: f.write(RR_FORMAT.format(domain, method, sequence)) for i in range(probs.shape[0]): for j in range(i + 1, probs.shape[1]): f.write('{:d} {:d} {:d} {:d} {:f}\n'.format( i + 1, j + 1, 0, 8, probs[j, i])) f.write('END\n') def save_torsions(torsions_dir, filebase, sequence, torsions_probs): """Save Torsions to a file as pickle of a dict.""" filename = os.path.join(torsions_dir, filebase + '.torsions') t_dict = dict(probs=torsions_probs, sequence=sequence) with tf.io.gfile.GFile(filename, 'w') as fh: pickle.dump(t_dict, fh, protocol=2) def save_distance_histogram( filename, probs, domain, sequence, min_range, max_range, num_bins): """Save a distance histogram prediction matrix as a pickle file.""" dh_dict = { 'min_range': min_range, 'max_range': max_range, 'num_bins': num_bins, 'domain': domain, 'sequence': sequence, 'probs': probs.astype(np.float32)} save_distance_histogram_from_dict(filename, dh_dict) def save_distance_histogram_from_dict(filename, dh_dict): """Save a distance histogram prediction matrix as a pickle file.""" fields = ['min_range', 'max_range', 'num_bins', 'domain', 'sequence', 'probs'] missing_fields = [f for f in fields if f not in dh_dict] assert not missing_fields, 'Fields {} missing from dictionary'.format( missing_fields) assert len(dh_dict['sequence']) == dh_dict['probs'].shape[0] assert len(dh_dict['sequence']) == dh_dict['probs'].shape[1] assert dh_dict['num_bins'] == dh_dict['probs'].shape[2] assert dh_dict['min_range'] >= 0.0 assert dh_dict['max_range'] > 0.0 with tf.io.gfile.GFile(filename, 'wb') as fw: pickle.dump(dh_dict, fw, protocol=2) def contact_map_from_distogram(distogram_dict): """Split the boundary bin.""" num_bins = distogram_dict['probs'].shape[-1] bin_size_angstrom = distogram_dict['max_range'] / num_bins threshold_cts = (8.0 - distogram_dict['min_range']) / bin_size_angstrom threshold_bin = int(threshold_cts) # Round down pred_contacts = np.sum(distogram_dict['probs'][:, :, :threshold_bin], axis=-1) if threshold_bin < threshold_cts: # Add on the fraction of the boundary bin. pred_contacts += distogram_dict['probs'][:, :, threshold_bin] * ( threshold_cts - threshold_bin) return pred_contacts
deepmind-research-master
alphafold_casp13/distogram_io.py
# Lint as: python3. # Copyright 2019 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TF wrapper for protein tf.Example datasets.""" import collections import enum import json import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import _ProteinDescription = collections.namedtuple( '_ProteinDescription', ( 'sequence_lengths', 'key', 'sequences', 'inputs_1d', 'inputs_2d', 'inputs_2d_diagonal', 'crops', 'scalars', 'targets')) class FeatureType(enum.Enum): ZERO_DIM = 0 # Shape [x] ONE_DIM = 1 # Shape [num_res, x] TWO_DIM = 2 # Shape [num_res, num_res, x] # Placeholder values that will be replaced with their true value at runtime. NUM_RES = 'num residues placeholder' # Sizes of the protein features. NUM_RES is allowed as a placeholder to be # replaced with the number of residues. FEATURES = { 'aatype': (tf.float32, [NUM_RES, 21]), 'alpha_mask': (tf.int64, [NUM_RES, 1]), 'alpha_positions': (tf.float32, [NUM_RES, 3]), 'beta_mask': (tf.int64, [NUM_RES, 1]), 'beta_positions': (tf.float32, [NUM_RES, 3]), 'between_segment_residues': (tf.int64, [NUM_RES, 1]), 'chain_name': (tf.string, [1]), 'deletion_probability': (tf.float32, [NUM_RES, 1]), 'domain_name': (tf.string, [1]), 'gap_matrix': (tf.float32, [NUM_RES, NUM_RES, 1]), 'hhblits_profile': (tf.float32, [NUM_RES, 22]), 'hmm_profile': (tf.float32, [NUM_RES, 30]), 'key': (tf.string, [1]), 'mutual_information': (tf.float32, [NUM_RES, NUM_RES, 1]), 'non_gapped_profile': (tf.float32, [NUM_RES, 21]), 'num_alignments': (tf.int64, [NUM_RES, 1]), 'num_effective_alignments': (tf.float32, [1]), 'phi_angles': (tf.float32, [NUM_RES, 1]), 'phi_mask': (tf.int64, [NUM_RES, 1]), 'profile': (tf.float32, [NUM_RES, 21]), 'profile_with_prior': (tf.float32, [NUM_RES, 22]), 'profile_with_prior_without_gaps': (tf.float32, [NUM_RES, 21]), 'pseudo_bias': (tf.float32, [NUM_RES, 22]), 'pseudo_frob': (tf.float32, [NUM_RES, NUM_RES, 1]), 'pseudolikelihood': (tf.float32, [NUM_RES, NUM_RES, 484]), 'psi_angles': (tf.float32, [NUM_RES, 1]), 'psi_mask': (tf.int64, [NUM_RES, 1]), 'residue_index': (tf.int64, [NUM_RES, 1]), 'resolution': (tf.float32, [1]), 'reweighted_profile': (tf.float32, [NUM_RES, 22]), 'sec_structure': (tf.int64, [NUM_RES, 8]), 'sec_structure_mask': (tf.int64, [NUM_RES, 1]), 'seq_length': (tf.int64, [NUM_RES, 1]), 'sequence': (tf.string, [1]), 'solv_surf': (tf.float32, [NUM_RES, 1]), 'solv_surf_mask': (tf.int64, [NUM_RES, 1]), 'superfamily': (tf.string, [1]), } FEATURE_TYPES = {k: v[0] for k, v in FEATURES.items()} FEATURE_SIZES = {k: v[1] for k, v in FEATURES.items()} def shape(feature_name, num_residues, features=None): """Get the shape for the given feature name. Args: feature_name: String identifier for the feature. If the feature name ends with "_unnormalized", theis suffix is stripped off. num_residues: The number of residues in the current domain - some elements of the shape can be dynamic and will be replaced by this value. features: A feature_name to (tf_dtype, shape) lookup; defaults to FEATURES. Returns: List of ints representation the tensor size. """ features = features or FEATURES if feature_name.endswith('_unnormalized'): feature_name = feature_name[:-13] unused_dtype, raw_sizes = features[feature_name] replacements = {NUM_RES: num_residues} sizes = [replacements.get(dimension, dimension) for dimension in raw_sizes] return sizes def dim(feature_name): """Determine the type of feature. Args: feature_name: String identifier for the feature to lookup. If the feature name ends with "_unnormalized", theis suffix is stripped off. Returns: A FeatureType enum describing whether the feature is of size num_res or num_res * num_res. Raises: ValueError: If the feature is of an unknown type. """ if feature_name.endswith('_unnormalized'): feature_name = feature_name[:-13] num_dims = len(FEATURE_SIZES[feature_name]) if num_dims == 1: return FeatureType.ZERO_DIM elif num_dims == 2 and FEATURE_SIZES[feature_name][0] == NUM_RES: return FeatureType.ONE_DIM elif num_dims == 3 and FEATURE_SIZES[feature_name][0] == NUM_RES: return FeatureType.TWO_DIM else: raise ValueError('Expect feature sizes to be 2 or 3, got %i' % len(FEATURE_SIZES[feature_name])) def _concat_or_zeros(tensor_list, axis, tensor_shape, name): """Concatenates the tensors if given, otherwise returns a tensor of zeros.""" if tensor_list: return tf.concat(tensor_list, axis=axis, name=name) return tf.zeros(tensor_shape, name=name + '_zeros') def parse_tfexample(raw_data, features): """Read a single TF Example proto and return a subset of its features. Args: raw_data: A serialized tf.Example proto. features: A dictionary of features, mapping string feature names to a tuple (dtype, shape). This dictionary should be a subset of protein_features.FEATURES (or the dictionary itself for all features). Returns: A dictionary of features mapping feature names to features. Only the given features are returned, all other ones are filtered out. """ feature_map = { k: tf.io.FixedLenSequenceFeature(shape=(), dtype=v[0], allow_missing=True) for k, v in features.items() } parsed_features = tf.io.parse_single_example(raw_data, feature_map) # Find out what is the number of sequences and the number of alignments. num_residues = tf.cast(parsed_features['seq_length'][0], dtype=tf.int32) # Reshape the tensors according to the sequence length and num alignments. for k, v in parsed_features.items(): new_shape = shape(feature_name=k, num_residues=num_residues) # Make sure the feature we are reshaping is not empty. assert_non_empty = tf.assert_greater( tf.size(v), 0, name='assert_%s_non_empty' % k, message='The feature %s is not set in the tf.Example. Either do not ' 'request the feature or use a tf.Example that has the feature set.' % k) with tf.control_dependencies([assert_non_empty]): parsed_features[k] = tf.reshape(v, new_shape, name='reshape_%s' % k) return parsed_features def create_tf_dataset(tf_record_filename, features): """Creates an instance of tf.data.Dataset backed by a protein dataset SSTable. Args: tf_record_filename: A string with filename of the TFRecord file. features: A list of strings of feature names to be returned in the dataset. Returns: A tf.data.Dataset object. Its items are dictionaries from feature names to feature values. """ # Make sure these features are always read. required_features = ['aatype', 'sequence', 'seq_length'] features = list(set(features) | set(required_features)) features = {name: FEATURES[name] for name in features} tf_dataset = tf.data.TFRecordDataset(filenames=[tf_record_filename]) tf_dataset = tf_dataset.map(lambda raw: parse_tfexample(raw, features)) return tf_dataset def normalize_from_stats_file( features, stats_file_path, feature_normalization, copy_unnormalized=None): """Normalizes the features set in the feature_normalization by the norm stats. Args: features: A dictionary mapping feature names to feature tensors. stats_file_path: A string with the path of the statistics JSON file. feature_normalization: A dictionary specifying the normalization type for each input feature. Acceptable values are 'std' and 'none'. If not specified default to 'none'. Any extra features that are not present in features will be ignored. copy_unnormalized: A list of features whose unnormalized copy should be added. For any feature F in this list a feature F + "_unnormalized" will be added in the output dictionary containing the unnormalized feature. This is useful if you have a feature you want to have both in desired_features (normalized) and also in desired_targets (unnormalized). See convert_to_legacy_proteins_dataset_format for more details. Returns: A dictionary mapping features names to feature tensors. The ones that were specified in feature_normalization will be normalized. Raises: ValueError: If an unknown normalization mode is used. """ with tf.io.gfile.GFile(stats_file_path, 'r') as f: norm_stats = json.loads(f.read()) if not copy_unnormalized: copy_unnormalized = [] # We need this unnormalized in convert_to_legacy_proteins_dataset_format. copy_unnormalized.append('num_alignments') for feature in copy_unnormalized: if feature in features: features[feature + '_unnormalized'] = features[feature] range_epsilon = 1e-12 for key, value in features.items(): if key not in feature_normalization or feature_normalization[key] == 'none': pass elif feature_normalization[key] == 'std': value = tf.cast(value, dtype=tf.float32) train_mean = tf.cast(norm_stats['mean'][key], dtype=tf.float32) train_range = tf.sqrt(tf.cast(norm_stats['var'][key], dtype=tf.float32)) value -= train_mean value = tf.where( train_range > range_epsilon, value / train_range, value) features[key] = value else: raise ValueError('Unknown normalization mode %s for feature %s.' % (feature_normalization[key], key)) return features def convert_to_legacy_proteins_dataset_format( features, desired_features, desired_scalars, desired_targets): """Converts the output of tf.Dataset to the legacy format. Args: features: A dictionary mapping feature names to feature tensors. desired_features: A list with the names of the desired features. These will be filtered out of features and returned in one of the inputs_1d or inputs_2d. The features concatenated in `inputs_1d`, `inputs_2d` will be concatenated in the same order as they were given in `desired_features`. desired_scalars: A list naming the desired scalars. These will be filtered out of features and returned in scalars. If features contain an unnormalized version of a desired scalar, it will be used. desired_targets: A list naming the desired targets. These will be filtered out of features and returned in targets. If features contain an unnormalized version of a desired target, it will be used. Returns: A _ProteinDescription namedtuple consisting of: sequence_length: A scalar int32 tensor with the sequence length. key: A string tensor with the sequence key or empty if not set features. sequences: A string tensor with the protein sequence. inputs_1d: All 1D features in a single tensor of shape [num_res, 1d_channels]. inputs_2d: All 2D features in a single tensor of shape [num_res, num_res, 2d_channels]. inputs_2d_diagonal: All 2D diagonal features in a single tensor of shape [num_res, num_res, 2d_diagonal_channels]. If no diagonal features found in features, the tensor will be set to inputs_2d. crops: A int32 tensor with the crop poisitions. If not set in features, it will be set to [0, num_res, 0, num_res]. scalars: All requested scalar tensors in a list. targets: All requested target tensors in a list. Raises: ValueError: If the feature size is invalid. """ tensors_1d = [] tensors_2d = [] tensors_2d_diagonal = [] for key in desired_features: # Determine if the feature is 1D or 2D. feature_dim = dim(key) if feature_dim == FeatureType.ONE_DIM: tensors_1d.append(tf.cast(features[key], dtype=tf.float32)) elif feature_dim == FeatureType.TWO_DIM: if key not in features: if not(key + '_cropped' in features and key + '_diagonal' in features): raise ValueError( 'The 2D feature %s is not in the features dictionary and neither ' 'are its cropped and diagonal versions.' % key) else: tensors_2d.append( tf.cast(features[key + '_cropped'], dtype=tf.float32)) tensors_2d_diagonal.append( tf.cast(features[key + '_diagonal'], dtype=tf.float32)) else: tensors_2d.append(tf.cast(features[key], dtype=tf.float32)) else: raise ValueError('Unexpected FeatureType returned: %s' % str(feature_dim)) # Determine num_res from the sequence as seq_length was possibly normalized. num_res = tf.strings.length(features['sequence'])[0] # Concatenate feature tensors into a single tensor inputs_1d = _concat_or_zeros( tensors_1d, axis=1, tensor_shape=[num_res, 0], name='inputs_1d_concat') inputs_2d = _concat_or_zeros( tensors_2d, axis=2, tensor_shape=[num_res, num_res, 0], name='inputs_2d_concat') if tensors_2d_diagonal: # The legacy dataset outputs the two diagonal crops stacked # A1, B1, C1, A2, B2, C2. So convert the A1, A2, B1, B2, C1, C2 format. diagonal_crops1 = [t[:, :, :(t.shape[2] // 2)] for t in tensors_2d_diagonal] diagonal_crops2 = [t[:, :, (t.shape[2] // 2):] for t in tensors_2d_diagonal] inputs_2d_diagonal = tf.concat(diagonal_crops1 + diagonal_crops2, axis=2) else: inputs_2d_diagonal = inputs_2d sequence = features['sequence'] sequence_key = features.get('key', tf.constant(['']))[0] if 'crops' in features: crops = features['crops'] else: crops = tf.stack([0, tf.shape(sequence)[0], 0, tf.shape(sequence)[0]]) scalar_tensors = [] for key in desired_scalars: scalar_tensors.append(features.get(key + '_unnormalized', features[key])) target_tensors = [] for key in desired_targets: target_tensors.append(features.get(key + '_unnormalized', features[key])) scalar_class = collections.namedtuple('_ScalarClass', desired_scalars) target_class = collections.namedtuple('_TargetClass', desired_targets) return _ProteinDescription( sequence_lengths=num_res, key=sequence_key, sequences=sequence, inputs_1d=inputs_1d, inputs_2d=inputs_2d, inputs_2d_diagonal=inputs_2d_diagonal, crops=crops, scalars=scalar_class(*scalar_tensors), targets=target_class(*target_tensors))
deepmind-research-master
alphafold_casp13/contacts_dataset.py
# Lint as: python3. # Copyright 2019 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Combines predictions by pasting.""" import os from absl import app from absl import flags from absl import logging import numpy as np import six import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import from alphafold_casp13 import distogram_io from alphafold_casp13 import parsers flags.DEFINE_string("pickle_input_dir", None, "Directory to read pickle distance histogram files from.") flags.DEFINE_string("output_dir", None, "Directory to write chain RR files to.") flags.DEFINE_string("tfrecord_path", "", "If provided, construct the average weighted by number of " "alignments.") flags.DEFINE_string("crop_sizes", "64,128,256", "The crop sizes to use.") flags.DEFINE_integer("crop_step", 32, "The step size for cropping.") FLAGS = flags.FLAGS def generate_domains(target, sequence, crop_sizes, crop_step): """Take fasta files and generate a domain definition for data generation.""" logging.info("Generating crop domains for target %s", target) windows = [int(x) for x in crop_sizes.split(",")] num_residues = len(sequence) domains = [] domains.append({"name": target, "description": (1, num_residues)}) for window in windows: starts = list(range(0, num_residues - window, crop_step)) # Append a last crop to ensure we get all the way to the end of the # sequence, even when num_residues - window is not divisible by crop_step. if num_residues >= window: starts += [num_residues - window] for start in starts: name = "%s-l%i_s%i" % (target, window, start) domains.append({"name": name, "description": (start + 1, start + window)}) return domains def get_weights(path): """Fetch all the weights from a TFRecord.""" if not path: return {} logging.info("Getting weights from %s", path) weights = {} record_iterator = tf.python_io.tf_record_iterator(path=path) for serialized_tfexample in record_iterator: example = tf.train.Example() example.ParseFromString(serialized_tfexample) domain_name = six.ensure_str( example.features.feature["domain_name"].bytes_list.value[0]) weights[domain_name] = float( example.features.feature["num_alignments"].int64_list.value[0]) logging.info("Weight %s: %d", domain_name, weights[domain_name]) logging.info("Loaded %d weights", len(weights)) return weights def paste_distance_histograms( input_dir, output_dir, weights, crop_sizes, crop_step): """Paste together distograms for given domains of given targets and write. Domains distance histograms are 'pasted', meaning they are substituted directly into the contact map. The order is determined by the order in the domain definition file. Args: input_dir: String, path to directory containing chain and domain-level distogram files. output_dir: String, path to directory to write out chain-level distrogram files. weights: A dictionary with weights. crop_sizes: The crop sizes. crop_step: The step size for cropping. Raises: ValueError: if histogram parameters don't match. """ tf.io.gfile.makedirs(output_dir) targets = tf.io.gfile.glob(os.path.join(input_dir, "*.pickle")) targets = [os.path.splitext(os.path.basename(t))[0] for t in targets] targets = set([t.split("-")[0] for t in targets]) logging.info("Pasting distance histograms for %d targets", len(targets)) for target in sorted(targets): logging.info("%s as chain", target) chain_pickle_path = os.path.join(input_dir, "%s.pickle" % target) distance_histogram_dict = parsers.parse_distance_histogram_dict( chain_pickle_path) combined_cmap = np.array(distance_histogram_dict["probs"]) # Make the counter map 1-deep but still rank 3. counter_map = np.ones_like(combined_cmap[:, :, 0:1]) sequence = distance_histogram_dict["sequence"] target_domains = generate_domains( target=target, sequence=sequence, crop_sizes=crop_sizes, crop_step=crop_step) # Paste in each domain. for domain in sorted(target_domains, key=lambda x: x["name"]): if domain["name"] == target: logging.info("Skipping %s as domain", target) continue if "," in domain["description"]: logging.info("Skipping multisegment domain %s", domain["name"]) continue crop_start, crop_end = domain["description"] domain_pickle_path = os.path.join(input_dir, "%s.pickle" % domain["name"]) weight = weights.get(domain["name"], 1e9) logging.info("Pasting %s: %d-%d. weight: %f", domain_pickle_path, crop_start, crop_end, weight) domain_distance_histogram_dict = parsers.parse_distance_histogram_dict( domain_pickle_path) for field in ["num_bins", "min_range", "max_range"]: if domain_distance_histogram_dict[field] != distance_histogram_dict[ field]: raise ValueError("Field {} does not match {} {}".format( field, domain_distance_histogram_dict[field], distance_histogram_dict[field])) weight_matrix_size = crop_end - crop_start + 1 weight_matrix = np.ones( (weight_matrix_size, weight_matrix_size), dtype=np.float32) * weight combined_cmap[crop_start - 1:crop_end, crop_start - 1:crop_end, :] += ( domain_distance_histogram_dict["probs"] * np.expand_dims(weight_matrix, 2)) counter_map[crop_start - 1:crop_end, crop_start - 1:crop_end, 0] += weight_matrix # Broadcast across the histogram bins. combined_cmap /= counter_map # Write out full-chain cmap for folding. output_chain_pickle_path = os.path.join(output_dir, "{}.pickle".format(target)) logging.info("Writing to %s", output_chain_pickle_path) distance_histogram_dict["probs"] = combined_cmap distance_histogram_dict["target"] = target # Save the distogram pickle file. distogram_io.save_distance_histogram_from_dict( output_chain_pickle_path, distance_histogram_dict) # Compute the contact map and save it as an RR file. contact_probs = distogram_io.contact_map_from_distogram( distance_histogram_dict) rr_path = os.path.join(output_dir, "%s.rr" % target) distogram_io.save_rr_file( filename=rr_path, probs=contact_probs, domain=target, sequence=distance_histogram_dict["sequence"]) def main(argv): del argv # Unused. flags.mark_flag_as_required("pickle_input_dir") weights = get_weights(FLAGS.tfrecord_path) paste_distance_histograms( FLAGS.pickle_input_dir, FLAGS.output_dir, weights, FLAGS.crop_sizes, FLAGS.crop_step) if __name__ == "__main__": app.run(main)
deepmind-research-master
alphafold_casp13/paste_contact_maps.py
# Lint as: python3. # Copyright 2019 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Network for predicting C-beta contacts.""" from absl import logging import sonnet import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import from alphafold_casp13 import asa_output from alphafold_casp13 import secstruct from alphafold_casp13 import two_dim_convnet from alphafold_casp13 import two_dim_resnet def call_on_tuple(f): """Unpacks a tuple input parameter into arguments for a function f. Mimics tuple unpacking in lambdas, which existed in Python 2 but has been removed in Python 3. Args: f: A function taking multiple arguments. Returns: A function equivalent to f accepting a tuple, which is then unpacked. """ return lambda args: f(*args) class ContactsNet(sonnet.AbstractModule): """A network to go from sequence to distance histograms.""" def __init__(self, binary_code_bits, data_format, distance_multiplier, features, features_forward, max_range, min_range, num_bins, reshape_layer, resolution_noise_scale, scalars, targets, network_2d_deep, torsion_bins=None, skip_connect=0, position_specific_bias_size=0, filters_1d=(), collapsed_batch_norm=False, is_ca_feature=False, asa_multiplier=0.0, secstruct_multiplier=0.0, torsion_multiplier=0.0, name='contacts_net'): """Construct position prediction network.""" super(ContactsNet, self).__init__(name=name) self._filters_1d = filters_1d self._collapsed_batch_norm = collapsed_batch_norm self._is_ca_feature = is_ca_feature self._binary_code_bits = binary_code_bits self._data_format = data_format self._distance_multiplier = distance_multiplier self._features = features self._features_forward = features_forward self._max_range = max_range self._min_range = min_range self._num_bins = num_bins self._position_specific_bias_size = position_specific_bias_size self._reshape_layer = reshape_layer self._resolution_noise_scale = resolution_noise_scale self._scalars = scalars self._torsion_bins = torsion_bins self._skip_connect = skip_connect self._targets = targets self._network_2d_deep = network_2d_deep self.asa_multiplier = asa_multiplier self.secstruct_multiplier = secstruct_multiplier self.torsion_multiplier = torsion_multiplier with self._enter_variable_scope(): if self.secstruct_multiplier > 0: self._secstruct = secstruct.Secstruct() if self.asa_multiplier > 0: self._asa = asa_output.ASAOutputLayer() if self._position_specific_bias_size: self._position_specific_bias = tf.get_variable( 'position_specific_bias', [self._position_specific_bias_size, self._num_bins or 1], initializer=tf.zeros_initializer()) def quant_threshold(self, threshold=8.0): """Find the bin that is 8A+: we sum mass below this bin gives contact prob. Args: threshold: The distance threshold. Returns: Index of bin. """ # Note that this misuses the max_range as the range. return int( (threshold - self._min_range) * self._num_bins / float(self._max_range)) def _build(self, crop_size_x=0, crop_size_y=0, placeholders=None): """Puts the network into the graph. Args: crop_size_x: Crop a chunk out in one dimension. 0 means no cropping. crop_size_y: Crop a chunk out in one dimension. 0 means no cropping. placeholders: A dict containing the placeholders needed. Returns: A Tensor with logits of size [batch_size, num_residues, 3]. """ crop_placeholder = placeholders['crop_placeholder'] inputs_1d = placeholders['inputs_1d_placeholder'] if self._is_ca_feature and 'aatype' in self._features: logging.info('Collapsing aatype to is_ca_feature %s', inputs_1d.shape.as_list()[-1]) assert inputs_1d.shape.as_list()[-1] <= 21 + ( 1 if 'seq_length' in self._features else 0) inputs_1d = inputs_1d[:, :, 7:8] logits = self.compute_outputs( inputs_1d=inputs_1d, residue_index=placeholders['residue_index_placeholder'], inputs_2d=placeholders['inputs_2d_placeholder'], crop_x=crop_placeholder[:, 0:2], crop_y=crop_placeholder[:, 2:4], use_on_the_fly_stats=True, crop_size_x=crop_size_x, crop_size_y=crop_size_y, data_format='NHWC', # Force NHWC for evals. ) return logits def compute_outputs(self, inputs_1d, residue_index, inputs_2d, crop_x, crop_y, use_on_the_fly_stats, crop_size_x, crop_size_y, data_format='NHWC'): """Given the inputs for a block, compute the network outputs.""" hidden_1d = inputs_1d hidden_1d_list = [hidden_1d] if len(hidden_1d_list) != 1: hidden_1d = tf.concat(hidden_1d_list, 2) output_dimension = self._num_bins or 1 if self._distance_multiplier > 0: output_dimension += 1 logits, activations = self._build_2d_embedding( hidden_1d=hidden_1d, residue_index=residue_index, inputs_2d=inputs_2d, output_dimension=output_dimension, use_on_the_fly_stats=use_on_the_fly_stats, crop_x=crop_x, crop_y=crop_y, crop_size_x=crop_size_x, crop_size_y=crop_size_y, data_format=data_format) logits = tf.debugging.check_numerics( logits, 'NaN in resnet activations', name='resnet_activations') if (self.secstruct_multiplier > 0 or self.asa_multiplier > 0 or self.torsion_multiplier > 0): # Make a 1d embedding by reducing the 2D activations. # We do this in the x direction and the y direction separately. collapse_dim = 1 join_dim = -1 embedding_1d = tf.concat( # First targets are crop_x (axis 2) which we must reduce on axis 1 [tf.concat([tf.reduce_max(activations, axis=collapse_dim), tf.reduce_mean(activations, axis=collapse_dim)], axis=join_dim), # Next targets are crop_y (axis 1) which we must reduce on axis 2 tf.concat([tf.reduce_max(activations, axis=collapse_dim+1), tf.reduce_mean(activations, axis=collapse_dim+1)], axis=join_dim)], axis=collapse_dim) # Join the two crops together. if self._collapsed_batch_norm: embedding_1d = tf.contrib.layers.batch_norm( embedding_1d, is_training=use_on_the_fly_stats, fused=True, decay=0.999, scope='collapsed_batch_norm', data_format='NHWC') for i, nfil in enumerate(self._filters_1d): embedding_1d = tf.contrib.layers.fully_connected( embedding_1d, num_outputs=nfil, normalizer_fn=( tf.contrib.layers.batch_norm if self._collapsed_batch_norm else None), normalizer_params={'is_training': use_on_the_fly_stats, 'updates_collections': None}, scope='collapsed_embed_%d' % i) if self.torsion_multiplier > 0: self.torsion_logits = tf.contrib.layers.fully_connected( embedding_1d, num_outputs=self._torsion_bins * self._torsion_bins, activation_fn=None, scope='torsion_logits') self.torsion_output = tf.nn.softmax(self.torsion_logits) if self.secstruct_multiplier > 0: self._secstruct.make_layer_new(embedding_1d) if self.asa_multiplier > 0: self.asa_logits = self._asa.compute_asa_output(embedding_1d) return logits @staticmethod def _concatenate_2d(hidden_1d, residue_index, hidden_2d, crop_x, crop_y, binary_code_bits, crop_size_x, crop_size_y): # Form the pairwise expansion of the 1D embedding # And the residue offsets and (one) absolute position. with tf.name_scope('Features2D'): range_scale = 100.0 # Crude normalization factor. n = tf.shape(hidden_1d)[1] # pylint: disable=g-long-lambda hidden_1d_cropped_y = tf.map_fn( call_on_tuple(lambda c, h: tf.pad( h[tf.maximum(0, c[0]):c[1]], [[tf.maximum(0, -c[0]), tf.maximum(0, crop_size_y -(n - c[0]))], [0, 0]])), elems=(crop_y, hidden_1d), dtype=tf.float32, back_prop=True) range_n_y = tf.map_fn( call_on_tuple(lambda ri, c: tf.pad( ri[tf.maximum(0, c[0]):c[1]], [[tf.maximum(0, -c[0]), tf.maximum(0, crop_size_y -(n - c[0]))]])), elems=(residue_index, crop_y), dtype=tf.int32, back_prop=False) hidden_1d_cropped_x = tf.map_fn( call_on_tuple(lambda c, h: tf.pad( h[tf.maximum(0, c[0]):c[1]], [[tf.maximum(0, -c[0]), tf.maximum(0, crop_size_x -(n - c[0]))], [0, 0]])), elems=(crop_x, hidden_1d), dtype=tf.float32, back_prop=True) range_n_x = tf.map_fn( call_on_tuple(lambda ri, c: tf.pad( ri[tf.maximum(0, c[0]):c[1]], [[tf.maximum(0, -c[0]), tf.maximum(0, crop_size_x -(n - c[0]))]])), elems=(residue_index, crop_x), dtype=tf.int32, back_prop=False) # pylint: enable=g-long-lambda n_x = crop_size_x n_y = crop_size_y offset = (tf.expand_dims(tf.cast(range_n_x, tf.float32), 1) - tf.expand_dims(tf.cast(range_n_y, tf.float32), 2)) / range_scale position_features = [ tf.tile( tf.reshape( (tf.cast(range_n_y, tf.float32) - range_scale) / range_scale, [-1, n_y, 1, 1]), [1, 1, n_x, 1], name='TileRange'), tf.tile( tf.reshape(offset, [-1, n_y, n_x, 1]), [1, 1, 1, 1], name='TileOffset') ] channels = 2 if binary_code_bits: # Binary coding of position. exp_range_n_y = tf.expand_dims(range_n_y, 2) bin_y = tf.stop_gradient( tf.concat([tf.math.floormod(exp_range_n_y // (1 << i), 2) for i in range(binary_code_bits)], 2)) exp_range_n_x = tf.expand_dims(range_n_x, 2) bin_x = tf.stop_gradient( tf.concat([tf.math.floormod(exp_range_n_x // (1 << i), 2) for i in range(binary_code_bits)], 2)) position_features += [ tf.tile( tf.expand_dims(tf.cast(bin_y, tf.float32), 2), [1, 1, n_x, 1], name='TileBinRangey'), tf.tile( tf.expand_dims(tf.cast(bin_x, tf.float32), 1), [1, n_y, 1, 1], name='TileBinRangex') ] channels += 2 * binary_code_bits augmentation_features = position_features + [ tf.tile(tf.expand_dims(hidden_1d_cropped_x, 1), [1, n_y, 1, 1], name='Tile1Dx'), tf.tile(tf.expand_dims(hidden_1d_cropped_y, 2), [1, 1, n_x, 1], name='Tile1Dy')] channels += 2 * hidden_1d.shape.as_list()[-1] channels += hidden_2d.shape.as_list()[-1] hidden_2d = tf.concat( [hidden_2d] + augmentation_features, 3, name='Stack2Dfeatures') logging.info('2d stacked features are depth %d %s', channels, hidden_2d) hidden_2d.set_shape([None, None, None, channels]) return hidden_2d def _build_2d_embedding(self, hidden_1d, residue_index, inputs_2d, output_dimension, use_on_the_fly_stats, crop_x, crop_y, crop_size_x, crop_size_y, data_format): """Returns NHWC logits and NHWC preactivations.""" logging.info('2d %s %s', inputs_2d, data_format) # Stack with diagonal has already happened. inputs_2d_cropped = inputs_2d features_forward = None hidden_2d = inputs_2d_cropped hidden_2d = self._concatenate_2d( hidden_1d, residue_index, hidden_2d, crop_x, crop_y, self._binary_code_bits, crop_size_x, crop_size_y) config_2d_deep = self._network_2d_deep num_features = hidden_2d.shape.as_list()[3] if data_format == 'NCHW': logging.info('NCHW shape deep pre %s', hidden_2d) hidden_2d = tf.transpose(hidden_2d, perm=[0, 3, 1, 2]) hidden_2d.set_shape([None, num_features, None, None]) logging.info('NCHW shape deep post %s', hidden_2d) layers_forward = None if config_2d_deep.extra_blocks: # Optionally put some extra double-size blocks at the beginning. with tf.variable_scope('Deep2DExtra'): hidden_2d = two_dim_resnet.make_two_dim_resnet( input_node=hidden_2d, num_residues=None, # Unused num_features=num_features, num_predictions=2 * config_2d_deep.num_filters, num_channels=2 * config_2d_deep.num_filters, num_layers=config_2d_deep.extra_blocks * config_2d_deep.num_layers_per_block, filter_size=3, batch_norm=config_2d_deep.use_batch_norm, is_training=use_on_the_fly_stats, fancy=True, final_non_linearity=True, atrou_rates=[1, 2, 4, 8], data_format=data_format, dropout_keep_prob=1.0 ) num_features = 2 * config_2d_deep.num_filters if self._skip_connect: layers_forward = hidden_2d if features_forward is not None: hidden_2d = tf.concat([hidden_2d, features_forward], 1 if data_format == 'NCHW' else 3) with tf.variable_scope('Deep2D'): logging.info('2d hidden shape is %s', str(hidden_2d.shape.as_list())) contact_pre_logits = two_dim_resnet.make_two_dim_resnet( input_node=hidden_2d, num_residues=None, # Unused num_features=num_features, num_predictions=(config_2d_deep.num_filters if self._reshape_layer else output_dimension), num_channels=config_2d_deep.num_filters, num_layers=config_2d_deep.num_blocks * config_2d_deep.num_layers_per_block, filter_size=3, batch_norm=config_2d_deep.use_batch_norm, is_training=use_on_the_fly_stats, fancy=True, final_non_linearity=self._reshape_layer, atrou_rates=[1, 2, 4, 8], data_format=data_format, dropout_keep_prob=1.0 ) contact_logits = self._output_from_pre_logits( contact_pre_logits, features_forward, layers_forward, output_dimension, data_format, crop_x, crop_y, use_on_the_fly_stats) if data_format == 'NCHW': contact_pre_logits = tf.transpose(contact_pre_logits, perm=[0, 2, 3, 1]) # Both of these will be NHWC return contact_logits, contact_pre_logits def _output_from_pre_logits(self, contact_pre_logits, features_forward, layers_forward, output_dimension, data_format, crop_x, crop_y, use_on_the_fly_stats): """Given pre-logits, compute the final distogram/contact activations.""" config_2d_deep = self._network_2d_deep if self._reshape_layer: in_channels = config_2d_deep.num_filters concat_features = [contact_pre_logits] if features_forward is not None: concat_features.append(features_forward) in_channels += self._features_forward if layers_forward is not None: concat_features.append(layers_forward) in_channels += 2 * config_2d_deep.num_filters if len(concat_features) > 1: contact_pre_logits = tf.concat(concat_features, 1 if data_format == 'NCHW' else 3) contact_logits = two_dim_convnet.make_conv_layer( contact_pre_logits, in_channels=in_channels, out_channels=output_dimension, layer_name='output_reshape_1x1h', filter_size=1, filter_size_2=1, non_linearity=False, batch_norm=config_2d_deep.use_batch_norm, is_training=use_on_the_fly_stats, data_format=data_format) else: contact_logits = contact_pre_logits if data_format == 'NCHW': contact_logits = tf.transpose(contact_logits, perm=[0, 2, 3, 1]) if self._position_specific_bias_size: # Make 2D pos-specific biases: NHWC. biases = build_crops_biases( self._position_specific_bias_size, self._position_specific_bias, crop_x, crop_y, back_prop=True) contact_logits += biases # Will be NHWC. return contact_logits def update_crop_fetches(self, fetches): """Add auxiliary outputs for a crop to the fetches.""" if self.secstruct_multiplier > 0: fetches['secstruct_probs'] = self._secstruct.get_q8_probs() if self.asa_multiplier > 0: fetches['asa_output'] = self._asa.asa_output if self.torsion_multiplier > 0: fetches['torsion_probs'] = self.torsion_output def build_crops_biases(bias_size, raw_biases, crop_x, crop_y, back_prop): """Take the offset-specific biases and reshape them to match current crops. Args: bias_size: how many bias variables we're storing. raw_biases: the bias variable crop_x: B x 2 array of start/end for the batch crop_y: B x 2 array of start/end for the batch back_prop: whether to backprop through the map_fn. Returns: Reshaped biases. """ # First pad the biases with a copy of the final value to the maximum length. max_off_diag = tf.reduce_max( tf.maximum(tf.abs(crop_x[:, 1] - crop_y[:, 0]), tf.abs(crop_y[:, 1] - crop_x[:, 0]))) padded_bias_size = tf.maximum(bias_size, max_off_diag) biases = tf.concat( [raw_biases, tf.tile(raw_biases[-1:, :], [padded_bias_size - bias_size, 1])], axis=0) # Now prepend a mirror image (excluding 0th elt) for below-diagonal. biases = tf.concat([tf.reverse(biases[1:, :], axis=[0]), biases], axis=0) # Which diagonal of the full matrix each crop starts on (top left): start_diag = crop_x[:, 0:1] - crop_y[:, 0:1] # B x 1 crop_size_x = tf.reduce_max(crop_x[:, 1] - crop_x[:, 0]) crop_size_y = tf.reduce_max(crop_y[:, 1] - crop_y[:, 0]) # Relative offset of each row within a crop: # (off-diagonal decreases as y increases) increment = tf.expand_dims(-tf.range(0, crop_size_y), 0) # 1 x crop_size_y # Index of diagonal of first element of each row, flattened. row_offsets = tf.reshape(start_diag + increment, [-1]) # B*crop_size_y logging.info('row_offsets %s', row_offsets) # Make it relative to the start of the biases array. (0-th diagonal is in # the middle at position padded_bias_size - 1) row_offsets += padded_bias_size - 1 # Map_fn to build the individual rows. # B*cropsizey x cropsizex x num_bins cropped_biases = tf.map_fn(lambda i: biases[i:i+crop_size_x, :], elems=row_offsets, dtype=tf.float32, back_prop=back_prop) logging.info('cropped_biases %s', cropped_biases) return tf.reshape( cropped_biases, [-1, crop_size_y, crop_size_x, tf.shape(raw_biases)[-1]])
deepmind-research-master
alphafold_casp13/contacts_network.py
# Lint as: python3 # Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for `bernoulli.py`.""" from absl.testing import absltest from absl.testing import parameterized import haiku as hk import jax import jax.numpy as jnp import numpy as np import tree from gated_linear_networks import bernoulli def _get_dataset(input_size, batch_size=None): """Get mock dataset.""" if batch_size: inputs = jnp.ones([batch_size, input_size]) side_info = jnp.ones([batch_size, input_size]) targets = jnp.ones([batch_size]) else: inputs = jnp.ones([input_size]) side_info = jnp.ones([input_size]) targets = jnp.ones([]) return inputs, side_info, targets class GatedLinearNetworkTest(parameterized.TestCase): # TODO(b/170843789): Factor out common test utilities. def setUp(self): super(GatedLinearNetworkTest, self).setUp() self._name = "test_network" self._rng = hk.PRNGSequence(jax.random.PRNGKey(42)) self._output_sizes = (4, 5, 6) self._context_dim = 2 def gln_factory(): return bernoulli.GatedLinearNetwork( output_sizes=self._output_sizes, context_dim=self._context_dim, name=self._name) def inference_fn(inputs, side_info): return gln_factory().inference(inputs, side_info) def batch_inference_fn(inputs, side_info): return jax.vmap(inference_fn, in_axes=(0, 0))(inputs, side_info) def update_fn(inputs, side_info, label, learning_rate): params, predictions, unused_loss = gln_factory().update( inputs, side_info, label, learning_rate) return predictions, params def batch_update_fn(inputs, side_info, label, learning_rate): predictions, params = jax.vmap( update_fn, in_axes=(0, 0, 0, None))(inputs, side_info, label, learning_rate) avg_params = tree.map_structure(lambda x: jnp.mean(x, axis=0), params) return predictions, avg_params # Haiku transform functions. self._init_fn, inference_fn_ = hk.without_apply_rng( hk.transform_with_state(inference_fn)) self._batch_init_fn, batch_inference_fn_ = hk.without_apply_rng( hk.transform_with_state(batch_inference_fn)) _, update_fn_ = hk.without_apply_rng(hk.transform_with_state(update_fn)) _, batch_update_fn_ = hk.without_apply_rng( hk.transform_with_state(batch_update_fn)) self._inference_fn = jax.jit(inference_fn_) self._batch_inference_fn = jax.jit(batch_inference_fn_) self._update_fn = jax.jit(update_fn_) self._batch_update_fn = jax.jit(batch_update_fn_) @parameterized.named_parameters(("Online mode", None), ("Batch mode", 3)) def test_shapes(self, batch_size): """Test shapes in online and batch regimes.""" if batch_size is None: init_fn = self._init_fn inference_fn = self._inference_fn else: init_fn = self._batch_init_fn inference_fn = self._batch_inference_fn input_size = 10 inputs, side_info, _ = _get_dataset(input_size, batch_size) input_size = inputs.shape[-1] # Initialize network. gln_params, gln_state = init_fn(next(self._rng), inputs, side_info) # Test shapes of parameters layer-wise. layer_input_size = input_size for layer_idx, output_size in enumerate(self._output_sizes): name = "{}/~/{}_layer_{}".format(self._name, self._name, layer_idx) weights = gln_params[name]["weights"] expected_shape = (output_size, 2**self._context_dim, layer_input_size + 1) self.assertEqual(weights.shape, expected_shape) layer_input_size = output_size # Test shape of output. output_size = sum(self._output_sizes) predictions, _ = inference_fn(gln_params, gln_state, inputs, side_info) expected_shape = (batch_size, output_size) if batch_size else (output_size,) self.assertEqual(predictions.shape, expected_shape) @parameterized.named_parameters(("Online mode", None), ("Batch mode", 3)) def test_update(self, batch_size): """Test network updates in online and batch regimes.""" if batch_size is None: init_fn = self._init_fn inference_fn = self._inference_fn update_fn = self._update_fn else: init_fn = self._batch_init_fn inference_fn = self._batch_inference_fn update_fn = self._batch_update_fn input_size = 10 inputs, side_info, targets = _get_dataset(input_size, batch_size) # Initialize network. initial_params, gln_state = init_fn(next(self._rng), inputs, side_info) # Initial predictions. initial_predictions, _ = inference_fn(initial_params, gln_state, inputs, side_info) # Test that params remain valid after consecutive updates. gln_params = initial_params for _ in range(3): (_, gln_params), gln_state = update_fn( gln_params, gln_state, inputs, side_info, targets, learning_rate=1e-4) # Check updated weights layer-wise. for layer_idx in range(len(self._output_sizes)): name = "{}/~/{}_layer_{}".format(self._name, self._name, layer_idx) initial_weights = initial_params[name]["weights"] new_weights = gln_params[name]["weights"] # Shape consistency. self.assertEqual(new_weights.shape, initial_weights.shape) # Check that different weights yield different predictions. new_predictions, _ = inference_fn(gln_params, gln_state, inputs, side_info) self.assertFalse(np.array_equal(new_predictions, initial_predictions)) def test_batch_consistency(self): """Test consistency between online and batch updates.""" input_size = 10 batch_size = 3 inputs, side_info, targets = _get_dataset(input_size, batch_size) # Initialize network. gln_params, gln_state = self._batch_init_fn( next(self._rng), inputs, side_info) test_layer = "{}/~/{}_layer_0".format(self._name, self._name) for _ in range(10): # Update on full batch. (expected_predictions, expected_params), _ = self._batch_update_fn( gln_params, gln_state, inputs, side_info, targets, learning_rate=1e-3) # Average updates across batch and check equivalence. accum_predictions = [] accum_weights = [] for inputs_, side_info_, targets_ in zip(inputs, side_info, targets): (predictions, params), _ = self._update_fn( gln_params, gln_state, inputs_, side_info_, targets_, learning_rate=1e-3) accum_predictions.append(predictions) accum_weights.append(params[test_layer]["weights"]) # Check prediction equivalence. actual_predictions = np.stack(accum_predictions, axis=0) np.testing.assert_array_almost_equal(actual_predictions, expected_predictions) # Check weight equivalence. actual_weights = np.mean(np.stack(accum_weights, axis=0), axis=0) expected_weights = expected_params[test_layer]["weights"] np.testing.assert_array_almost_equal(actual_weights, expected_weights) gln_params = expected_params if __name__ == "__main__": absltest.main()
deepmind-research-master
gated_linear_networks/bernoulli_test.py
# Lint as: python3 # Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Bernoulli Gated Linear Network.""" from typing import List, Text, Tuple import chex import jax import jax.numpy as jnp import rlax import tensorflow_probability as tfp from gated_linear_networks import base tfp = tfp.experimental.substrates.jax tfd = tfp.distributions Array = chex.Array GLN_EPS = 0.01 MAX_WEIGHT = 200. class GatedLinearNetwork(base.GatedLinearNetwork): """Bernoulli Gated Linear Network.""" def __init__(self, output_sizes: List[int], context_dim: int, name: Text = "bernoulli_gln"): """Initialize a Bernoulli GLN.""" super(GatedLinearNetwork, self).__init__( output_sizes, context_dim, inference_fn=GatedLinearNetwork._inference_fn, update_fn=GatedLinearNetwork._update_fn, init=jnp.zeros, dtype=jnp.float32, name=name) def _add_bias(self, inputs): return jnp.append(inputs, rlax.sigmoid(1.)) @staticmethod def _inference_fn( inputs: Array, # [input_size] side_info: Array, # [side_info_size] weights: Array, # [2**context_dim, input_size] hyperplanes: Array, # [context_dim, side_info_size] hyperplane_bias: Array, # [context_dim] ) -> Array: """Inference step for a single Beurnolli neuron.""" weight_index = GatedLinearNetwork._compute_context(side_info, hyperplanes, hyperplane_bias) used_weights = weights[weight_index] inputs = rlax.logit(jnp.clip(inputs, GLN_EPS, 1. - GLN_EPS)) prediction = rlax.sigmoid(jnp.dot(used_weights, inputs)) return prediction @staticmethod def _update_fn( inputs: Array, # [input_size] side_info: Array, # [side_info_size] weights: Array, # [2**context_dim, num_features] hyperplanes: Array, # [context_dim, side_info_size] hyperplane_bias: Array, # [context_dim] target: Array, # [] learning_rate: float, ) -> Tuple[Array, Array, Array]: """Update step for a single Bernoulli neuron.""" def log_loss_fn(inputs, side_info, weights, hyperplanes, hyperplane_bias, target): """Log loss for a single Bernoulli neuron.""" prediction = GatedLinearNetwork._inference_fn(inputs, side_info, weights, hyperplanes, hyperplane_bias) prediction = jnp.clip(prediction, GLN_EPS, 1. - GLN_EPS) return rlax.log_loss(prediction, target), prediction grad_log_loss = jax.value_and_grad(log_loss_fn, argnums=2, has_aux=True) ((log_loss, prediction), dloss_dweights) = grad_log_loss(inputs, side_info, weights, hyperplanes, hyperplane_bias, target) delta_weights = learning_rate * dloss_dweights new_weights = jnp.clip(weights - delta_weights, -MAX_WEIGHT, MAX_WEIGHT) return new_weights, prediction, log_loss class LastNeuronAggregator(base.LastNeuronAggregator): """Bernoulli last neuron aggregator, implemented by the super class.""" pass
deepmind-research-master
gated_linear_networks/bernoulli.py
# Lint as: python3 # Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for `gaussian.py`.""" from absl.testing import absltest from absl.testing import parameterized import haiku as hk import jax import jax.numpy as jnp import numpy as np import tree from gated_linear_networks import gaussian def _get_dataset(input_size, batch_size=None): """Get mock dataset.""" if batch_size: inputs = jnp.ones([batch_size, input_size, 2]) side_info = jnp.ones([batch_size, input_size]) targets = 0.8 * jnp.ones([batch_size]) else: inputs = jnp.ones([input_size, 2]) side_info = jnp.ones([input_size]) targets = jnp.ones([]) return inputs, side_info, targets class UtilsTest(absltest.TestCase): def test_packing_identity(self): mu = jnp.array([1., 2., 3., 4., 5.]) sigma_sq = jnp.array([6., 7., 8., 9., 10.]) mu_2, sigma_sq_2 = gaussian._unpack_inputs( gaussian._pack_inputs(mu, sigma_sq)) np.testing.assert_array_equal(mu, mu_2) np.testing.assert_array_equal(sigma_sq, sigma_sq_2) class GatedLinearNetworkTest(parameterized.TestCase): # TODO(b/170843789): Factor out common test utilities. def setUp(self): super(GatedLinearNetworkTest, self).setUp() self._name = "test_network" self._rng = hk.PRNGSequence(jax.random.PRNGKey(42)) self._output_sizes = (4, 5, 6) self._context_dim = 2 self._bias_len = 3 def gln_factory(): return gaussian.GatedLinearNetwork( output_sizes=self._output_sizes, context_dim=self._context_dim, bias_len=self._bias_len, name=self._name, ) def inference_fn(inputs, side_info): return gln_factory().inference(inputs, side_info, 0.5) def batch_inference_fn(inputs, side_info): return jax.vmap(inference_fn, in_axes=(0, 0))(inputs, side_info) def update_fn(inputs, side_info, label, learning_rate): params, predictions, unused_loss = gln_factory().update( inputs, side_info, label, learning_rate, 0.5) return predictions, params def batch_update_fn(inputs, side_info, label, learning_rate): predictions, params = jax.vmap( update_fn, in_axes=(0, 0, 0, None))( inputs, side_info, label, learning_rate) avg_params = tree.map_structure(lambda x: jnp.mean(x, axis=0), params) return predictions, avg_params # Haiku transform functions. self._init_fn, inference_fn_ = hk.without_apply_rng( hk.transform_with_state(inference_fn)) self._batch_init_fn, batch_inference_fn_ = hk.without_apply_rng( hk.transform_with_state(batch_inference_fn)) _, update_fn_ = hk.without_apply_rng(hk.transform_with_state(update_fn)) _, batch_update_fn_ = hk.without_apply_rng( hk.transform_with_state(batch_update_fn)) self._inference_fn = jax.jit(inference_fn_) self._batch_inference_fn = jax.jit(batch_inference_fn_) self._update_fn = jax.jit(update_fn_) self._batch_update_fn = jax.jit(batch_update_fn_) @parameterized.named_parameters(("Online mode", None), ("Batch mode", 3)) def test_shapes(self, batch_size): """Test shapes in online and batch regimes.""" if batch_size is None: init_fn = self._init_fn inference_fn = self._inference_fn else: init_fn = self._batch_init_fn inference_fn = self._batch_inference_fn input_size = 10 inputs, side_info, _ = _get_dataset(input_size, batch_size) # Initialize network. gln_params, gln_state = init_fn(next(self._rng), inputs, side_info) # Test shapes of parameters layer-wise. layer_input_size = input_size for layer_idx, output_size in enumerate(self._output_sizes): name = "{}/~/{}_layer_{}".format(self._name, self._name, layer_idx) weights = gln_params[name]["weights"] expected_shape = (output_size, 2**self._context_dim, layer_input_size + self._bias_len) self.assertEqual(weights.shape, expected_shape) layer_input_size = output_size # Test shape of output. output_size = sum(self._output_sizes) predictions, _ = inference_fn(gln_params, gln_state, inputs, side_info) expected_shape = (batch_size, output_size, 2) if batch_size else (output_size, 2) self.assertEqual(predictions.shape, expected_shape) @parameterized.named_parameters(("Online mode", None), ("Batch mode", 3)) def test_update(self, batch_size): """Test network updates in online and batch regimes.""" if batch_size is None: init_fn = self._init_fn inference_fn = self._inference_fn update_fn = self._update_fn else: init_fn = self._batch_init_fn inference_fn = self._batch_inference_fn update_fn = self._batch_update_fn inputs, side_info, targets = _get_dataset(10, batch_size) # Initialize network. initial_params, gln_state = init_fn(next(self._rng), inputs, side_info) # Initial predictions. initial_predictions, _ = inference_fn(initial_params, gln_state, inputs, side_info) # Test that params remain valid after consecutive updates. gln_params = initial_params for _ in range(3): (_, gln_params), _ = update_fn( gln_params, gln_state, inputs, side_info, targets, learning_rate=1e-4) # Check updated weights layer-wise. for layer_idx in range(len(self._output_sizes)): name = "{}/~/{}_layer_{}".format(self._name, self._name, layer_idx) initial_weights = initial_params[name]["weights"] new_weights = gln_params[name]["weights"] # Shape consistency. self.assertEqual(new_weights.shape, initial_weights.shape) # Check that different weights yield different predictions. new_predictions, _ = inference_fn(gln_params, gln_state, inputs, side_info) self.assertFalse(np.array_equal(new_predictions, initial_predictions)) def test_batch_consistency(self): """Test consistency between online and batch updates.""" batch_size = 3 inputs, side_info, targets = _get_dataset(10, batch_size) # Initialize network. gln_params, gln_state = self._batch_init_fn( next(self._rng), inputs, side_info) test_layer = "{}/~/{}_layer_0".format(self._name, self._name) for _ in range(10): # Update on full batch. (expected_predictions, expected_params), _ = self._batch_update_fn( gln_params, gln_state, inputs, side_info, targets, learning_rate=1e-3) # Average updates across batch and check equivalence. accum_predictions = [] accum_weights = [] for inputs_, side_info_, targets_ in zip(inputs, side_info, targets): (predictions, params), _ = self._update_fn( gln_params, gln_state, inputs_, side_info_, targets_, learning_rate=1e-3) accum_predictions.append(predictions) accum_weights.append(params[test_layer]["weights"]) # Check prediction equivalence. actual_predictions = np.stack(accum_predictions, axis=0) np.testing.assert_array_almost_equal(actual_predictions, expected_predictions) # Check weight equivalence. actual_weights = np.mean(np.stack(accum_weights, axis=0), axis=0) expected_weights = expected_params[test_layer]["weights"] np.testing.assert_array_almost_equal(actual_weights, expected_weights) gln_params = expected_params if __name__ == "__main__": absltest.main()
deepmind-research-master
gated_linear_networks/gaussian_test.py
# Lint as: python3 # Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Base classes for Gated Linear Networks.""" import abc import collections import functools import inspect from typing import Any, Callable, Optional, Sequence, Tuple import chex import haiku as hk import jax import jax.numpy as jnp Array = chex.Array DType = Any Initializer = hk.initializers.Initializer Shape = Sequence[int] EPS = 1e-12 MIN_ALPHA = 1e-5 def _l2_normalize(x: Array, axis: int) -> Array: return x / jnp.sqrt(jnp.maximum(jnp.sum(x**2, axis, keepdims=True), EPS)) def _wrapped_fn_argnames(fun): """Returns list of argnames of a (possibly wrapped) function.""" return tuple(inspect.signature(fun).parameters) def _vmap(fun, in_axes=0, out_axes=0, parameters=None): """JAX vmap with human-friendly axes.""" def _axes(fun, d): """Maps dict {kwarg_i, : val_i} to [None, ..., val_i, ..., None].""" argnames = _wrapped_fn_argnames(fun) if not parameters else parameters for key in d: if key not in argnames: raise ValueError(f"{key} is not a valid axis.") return tuple(d.get(key, None) for key in argnames) in_axes = _axes(fun, in_axes) if isinstance(in_axes, dict) else in_axes return jax.vmap(fun, in_axes, out_axes) # Map a neuron-level function across a layer. _layer_vmap = functools.partial( _vmap, in_axes=({ "weights": 0, "hyperplanes": 0, "hyperplane_bias": 0, })) class NormalizedRandomNormal(hk.initializers.RandomNormal): """Random normal initializer with l2-normalization.""" def __init__(self, stddev: float = 1., mean: float = 0., normalize_axis: int = 0): super(NormalizedRandomNormal, self).__init__(stddev, mean) self._normalize_axis = normalize_axis def __call__(self, shape: Shape, dtype: DType) -> Array: if self._normalize_axis >= len(shape): raise ValueError("Cannot normalize axis {} for ndim = {}.".format( self._normalize_axis, len(shape))) weights = super(NormalizedRandomNormal, self).__call__(shape, dtype) return _l2_normalize(weights, axis=self._normalize_axis) class ShapeScaledConstant(hk.initializers.Initializer): """Initializes with a constant dependent on last dimension of input shape.""" def __call__(self, shape: Shape, dtype: DType) -> jnp.ndarray: constant = 1. / shape[-1] return jnp.broadcast_to(constant, shape).astype(dtype) class LocalUpdateModule(hk.Module): """Abstract base class for GLN variants and utils.""" def __init__(self, name: Optional[str] = None): if hasattr(self, "__call__"): raise ValueError("Do not implement `__call__` for a LocalUpdateModule." + " Implement `inference` and `update` instead.") super(LocalUpdateModule, self).__init__(name) @abc.abstractmethod def inference(self, *args, **kwargs): """Module inference step.""" @abc.abstractmethod def update(self, *args, **kwargs): """Module update step.""" @property @abc.abstractmethod def output_sizes(self) -> Shape: """Returns network output sizes.""" class GatedLinearNetwork(LocalUpdateModule): """Abstract base class for a multi-layer Gated Linear Network.""" def __init__(self, output_sizes: Shape, context_dim: int, inference_fn: Callable[..., Array], update_fn: Callable[..., Array], init: Initializer, hyp_w_init: Optional[Initializer] = None, hyp_b_init: Optional[Initializer] = None, dtype: DType = jnp.float32, name: str = "gated_linear_network"): """Initialize a GatedLinearNetwork as a sequence of GatedLinearLayers.""" super(GatedLinearNetwork, self).__init__(name=name) self._layers = [] self._output_sizes = output_sizes for i, output_size in enumerate(self._output_sizes): layer = _GatedLinearLayer( output_size=output_size, context_dim=context_dim, update_fn=update_fn, inference_fn=inference_fn, init=init, hyp_w_init=hyp_w_init, hyp_b_init=hyp_b_init, dtype=dtype, name=name + "_layer_{}".format(i)) self._layers.append(layer) self._name = name @abc.abstractmethod def _add_bias(self, inputs): pass def inference(self, inputs: Array, side_info: Array, *args, **kwargs) -> Array: """GatedLinearNetwork inference.""" predictions_per_layer = [] predictions = inputs for layer in self._layers: predictions = self._add_bias(predictions) predictions = layer.inference(predictions, side_info, *args, **kwargs) predictions_per_layer.append(predictions) return jnp.concatenate(predictions_per_layer, axis=0) def update(self, inputs, side_info, target, learning_rate, *args, **kwargs): """GatedLinearNetwork update.""" all_params = [] all_predictions = [] all_losses = [] predictions = inputs for layer in self._layers: predictions = self._add_bias(predictions) # Note: This is correct because returned predictions are pre-update. params, predictions, log_loss = layer.update(predictions, side_info, target, learning_rate, *args, **kwargs) all_params.append(params) all_predictions.append(predictions) all_losses.append(log_loss) new_params = dict(collections.ChainMap(*all_params)) predictions = jnp.concatenate(all_predictions, axis=0) log_loss = jnp.concatenate(all_losses, axis=0) return new_params, predictions, log_loss @property def output_sizes(self): return self._output_sizes @staticmethod def _compute_context( side_info: Array, # [side_info_size] hyperplanes: Array, # [context_dim, side_info_size] hyperplane_bias: Array, # [context_dim] ) -> Array: # Index weights by side information. context_dim = hyperplane_bias.shape[0] proj = jnp.dot(hyperplanes, side_info) bits = (proj > hyperplane_bias).astype(jnp.int32) weight_index = jnp.sum( bits * jnp.array([2**i for i in range(context_dim)])) if context_dim else 0 return weight_index class _GatedLinearLayer(LocalUpdateModule): """A single layer of a Gated Linear Network.""" def __init__(self, output_size: int, context_dim: int, inference_fn: Callable[..., Array], update_fn: Callable[..., Array], init: Initializer, hyp_w_init: Optional[Initializer] = None, hyp_b_init: Optional[Initializer] = None, dtype: DType = jnp.float32, name: str = "gated_linear_layer"): """Initialize a GatedLinearLayer.""" super(_GatedLinearLayer, self).__init__(name=name) self._output_size = output_size self._context_dim = context_dim self._inference_fn = inference_fn self._update_fn = update_fn self._init = init self._hyp_w_init = hyp_w_init self._hyp_b_init = hyp_b_init self._dtype = dtype self._name = name def _get_weights(self, input_size): """Get (or initialize) weight parameters.""" weights = hk.get_parameter( "weights", shape=(self._output_size, 2**self._context_dim, input_size), dtype=self._dtype, init=self._init, ) return weights def _get_hyperplanes(self, side_info_size): """Get (or initialize) hyperplane weights and bias.""" hyp_w_init = self._hyp_w_init or NormalizedRandomNormal( stddev=1., normalize_axis=1) hyperplanes = hk.get_state( "hyperplanes", shape=(self._output_size, self._context_dim, side_info_size), init=hyp_w_init) hyp_b_init = self._hyp_b_init or hk.initializers.RandomNormal(stddev=0.05) hyperplane_bias = hk.get_state( "hyperplane_bias", shape=(self._output_size, self._context_dim), init=hyp_b_init) return hyperplanes, hyperplane_bias def inference(self, inputs: Array, side_info: Array, *args, **kwargs) -> Array: """GatedLinearLayer inference.""" # Initialize layer weights. weights = self._get_weights(inputs.shape[0]) # Initialize fixed random hyperplanes. side_info_size = side_info.shape[0] hyperplanes, hyperplane_bias = self._get_hyperplanes(side_info_size) # Perform layer-wise inference by mapping along output_size (num_neurons). layer_inference = _layer_vmap(self._inference_fn) predictions = layer_inference(inputs, side_info, weights, hyperplanes, hyperplane_bias, *args, **kwargs) return predictions def update(self, inputs: Array, side_info: Array, target: Array, learning_rate: float, *args, **kwargs) -> Tuple[Array, Array, Array]: """GatedLinearLayer update.""" # Fetch layer weights. weights = self._get_weights(inputs.shape[0]) # Fetch fixed random hyperplanes. side_info_size = side_info.shape[0] hyperplanes, hyperplane_bias = self._get_hyperplanes(side_info_size) # Perform layer-wise update by mapping along output_size (num_neurons). layer_update = _layer_vmap(self._update_fn) new_weights, predictions, log_loss = layer_update(inputs, side_info, weights, hyperplanes, hyperplane_bias, target, learning_rate, *args, **kwargs) assert new_weights.shape == weights.shape params = {self.module_name: {"weights": new_weights}} return params, predictions, log_loss @property def output_sizes(self): return self._output_size class Mutator(LocalUpdateModule): """Abstract base class for GLN Mutators.""" def __init__( self, network_factory: Callable[..., LocalUpdateModule], name: str, ): super(Mutator, self).__init__(name=name) self._network = network_factory() self._name = name @property def output_sizes(self): return self._network.output_sizes class LastNeuronAggregator(Mutator): """Last neuron aggregator: network output is read from the last neuron.""" def __init__( self, network_factory: Callable[..., LocalUpdateModule], name: str = "last_neuron", ): super(LastNeuronAggregator, self).__init__(network_factory, name) if self._network.output_sizes[-1] != 1: raise ValueError( "LastNeuronAggregator requires the last GLN layer to have" " output_size = 1.") def inference(self, *args, **kwargs) -> Array: predictions = self._network.inference(*args, **kwargs) return predictions[-1] def update(self, *args, **kwargs) -> Tuple[Array, Array, Array]: params_t, predictions_tm1, loss_tm1 = self._network.update(*args, **kwargs) return params_t, predictions_tm1[-1], loss_tm1[-1]
deepmind-research-master
gated_linear_networks/base.py
# Lint as: python3 # Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Gaussian Gated Linear Network.""" from typing import Callable, List, Text, Tuple import chex import jax import jax.numpy as jnp import tensorflow_probability as tfp from gated_linear_networks import base tfp = tfp.experimental.substrates.jax tfd = tfp.distributions Array = chex.Array MIN_SIGMA_SQ_AGGREGATOR = 0.5 MAX_SIGMA_SQ = 1e5 MAX_WEIGHT = 1e3 MIN_WEIGHT = -1e3 def _unpack_inputs(inputs: Array) -> Tuple[Array, Array]: inputs = jnp.atleast_2d(inputs) chex.assert_rank(inputs, 2) (mu, sigma_sq) = [jnp.squeeze(x, 1) for x in jnp.hsplit(inputs, 2)] return mu, sigma_sq def _pack_inputs(mu: Array, sigma_sq: Array) -> Array: mu = jnp.atleast_1d(mu) sigma_sq = jnp.atleast_1d(sigma_sq) chex.assert_rank([mu, sigma_sq], 1) return jnp.vstack([mu, sigma_sq]).T class GatedLinearNetwork(base.GatedLinearNetwork): """Gaussian Gated Linear Network.""" def __init__( self, output_sizes: List[int], context_dim: int, bias_len: int = 3, bias_max_mu: float = 1., bias_sigma_sq: float = 1., name: Text = "gaussian_gln"): """Initialize a Gaussian GLN.""" super(GatedLinearNetwork, self).__init__( output_sizes, context_dim, inference_fn=GatedLinearNetwork._inference_fn, update_fn=GatedLinearNetwork._update_fn, init=base.ShapeScaledConstant(), dtype=jnp.float64, name=name) self._bias_len = bias_len self._bias_max_mu = bias_max_mu self._bias_sigma_sq = bias_sigma_sq def _add_bias(self, inputs): mu = jnp.linspace(-1. * self._bias_max_mu, self._bias_max_mu, self._bias_len) sigma_sq = self._bias_sigma_sq * jnp.ones_like(mu) bias = _pack_inputs(mu, sigma_sq) return jnp.concatenate([inputs, bias], axis=0) @staticmethod def _inference_fn( inputs: Array, # [input_size, 2] side_info: Array, # [side_info_size] weights: Array, # [2**context_dim, input_size] hyperplanes: Array, # [context_dim, side_info_size] hyperplane_bias: Array, # [context_dim] min_sigma_sq: float, ) -> Array: """Inference step for a single Gaussian neuron.""" mu_in, sigma_sq_in = _unpack_inputs(inputs) weight_index = GatedLinearNetwork._compute_context(side_info, hyperplanes, hyperplane_bias) used_weights = weights[weight_index] # This projection operation is differentiable and affects the gradients. used_weights = GatedLinearNetwork._project_weights(inputs, used_weights, min_sigma_sq) sigma_sq_out = 1. / jnp.sum(used_weights / sigma_sq_in) mu_out = sigma_sq_out * jnp.sum((used_weights * mu_in) / sigma_sq_in) prediction = jnp.hstack((mu_out, sigma_sq_out)) return prediction @staticmethod def _project_weights(inputs: Array, # [input_size] weights: Array, # [2**context_dim, num_features] min_sigma_sq: float) -> Array: """Implements hard projection.""" # This projection should be performed before the sigma related ones. weights = jnp.minimum(jnp.maximum(MIN_WEIGHT, weights), MAX_WEIGHT) _, sigma_sq_in = _unpack_inputs(inputs) lambda_in = 1. / sigma_sq_in sigma_sq_out = 1. / weights.dot(lambda_in) # If w.dot(x) < U, linearly project w such that w.dot(x) = U. weights = jnp.where( sigma_sq_out < min_sigma_sq, weights - lambda_in * (1. / sigma_sq_out - 1. / min_sigma_sq) / jnp.sum(lambda_in**2), weights) # If w.dot(x) > U, linearly project w such that w.dot(x) = U. weights = jnp.where( sigma_sq_out > MAX_SIGMA_SQ, weights - lambda_in * (1. / sigma_sq_out - 1. / MAX_SIGMA_SQ) / jnp.sum(lambda_in**2), weights) return weights @staticmethod def _update_fn( inputs: Array, # [input_size] side_info: Array, # [side_info_size] weights: Array, # [2**context_dim, num_features] hyperplanes: Array, # [context_dim, side_info_size] hyperplane_bias: Array, # [context_dim] target: Array, # [] learning_rate: float, min_sigma_sq: float, # needed for inference (weight projection) ) -> Tuple[Array, Array, Array]: """Update step for a single Gaussian neuron.""" def log_loss_fn(inputs, side_info, weights, hyperplanes, hyperplane_bias, target): """Log loss for a single Gaussian neuron.""" prediction = GatedLinearNetwork._inference_fn(inputs, side_info, weights, hyperplanes, hyperplane_bias, min_sigma_sq) mu, sigma_sq = prediction.T loss = -tfd.Normal(mu, jnp.sqrt(sigma_sq)).log_prob(target) return loss, prediction grad_log_loss = jax.value_and_grad(log_loss_fn, argnums=2, has_aux=True) (log_loss, prediction), dloss_dweights = grad_log_loss(inputs, side_info, weights, hyperplanes, hyperplane_bias, target) delta_weights = learning_rate * dloss_dweights return weights - delta_weights, prediction, log_loss class ConstantInputSigma(base.Mutator): """Input pre-processing by concatenating a constant sigma^2.""" def __init__( self, network_factory: Callable[..., GatedLinearNetwork], input_sigma_sq: float, name: Text = "constant_input_sigma", ): super(ConstantInputSigma, self).__init__(network_factory, name) self._input_sigma_sq = input_sigma_sq def inference(self, inputs, *args, **kwargs): """ConstantInputSigma inference.""" chex.assert_rank(inputs, 1) sigma_sq = self._input_sigma_sq * jnp.ones_like(inputs) return self._network.inference(_pack_inputs(inputs, sigma_sq), *args, **kwargs) def update(self, inputs, *args, **kwargs): """ConstantInputSigma update.""" chex.assert_rank(inputs, 1) sigma_sq = self._input_sigma_sq * jnp.ones_like(inputs) return self._network.update(_pack_inputs(inputs, sigma_sq), *args, **kwargs) class LastNeuronAggregator(base.LastNeuronAggregator): """Gaussian last neuron aggregator, implemented by the super class.""" pass
deepmind-research-master
gated_linear_networks/gaussian.py
# Lint as: python3 # Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for `utils.py`.""" from absl.testing import absltest import haiku as hk import jax import numpy as np from gated_linear_networks.examples import utils class MeanStdEstimator(absltest.TestCase): def test_statistics(self): num_features = 100 feature_size = 3 samples = np.random.normal( loc=5., scale=2., size=(num_features, feature_size)) true_mean = np.mean(samples, axis=0) true_std = np.std(samples, axis=0) def tick_(sample): return utils.MeanStdEstimator()(sample) init_fn, apply_fn = hk.without_apply_rng(hk.transform_with_state(tick_)) tick = jax.jit(apply_fn) params, state = init_fn(rng=None, sample=samples[0]) for sample in samples: (mean, std), state = tick(params, state, sample) np.testing.assert_array_almost_equal(mean, true_mean, decimal=5) np.testing.assert_array_almost_equal(std, true_std, decimal=5) if __name__ == '__main__': absltest.main()
deepmind-research-master
gated_linear_networks/examples/utils_test.py
# Lint as: python3 # Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Online MNIST classification example with Bernoulli GLN.""" from absl import app from absl import flags import haiku as hk import jax import jax.numpy as jnp import rlax from gated_linear_networks import bernoulli from gated_linear_networks.examples import utils MAX_TRAIN_STEPS = flags.DEFINE_integer( name='max_train_steps', default=None, help='Maximum number of training steps to perform (None=no limit)', ) # Small example network, achieves ~95% test set accuracy ======================= # Network parameters. NUM_LAYERS = flags.DEFINE_integer( name='num_layers', default=2, help='Number of network layers', ) NEURONS_PER_LAYER = flags.DEFINE_integer( name='neurons_per_layer', default=100, help='Number of neurons per layer', ) CONTEXT_DIM = flags.DEFINE_integer( name='context_dim', default=1, help='Context vector size', ) # Learning rate schedule. MAX_LR = flags.DEFINE_float( name='max_lr', default=0.003, help='Maximum learning rate', ) LR_CONSTANT = flags.DEFINE_float( name='lr_constant', default=1.0, help='Learning rate constant parameter', ) LR_DECAY = flags.DEFINE_float( name='lr_decay', default=0.1, help='Learning rate decay parameter', ) # Logging parameters. EVALUATE_EVERY = flags.DEFINE_integer( name='evaluate_every', default=1000, help='Number of training steps per evaluation epoch', ) def main(unused_argv): # Load MNIST dataset ========================================================= mnist_data, info = utils.load_deskewed_mnist( name='mnist', batch_size=-1, with_info=True) num_classes = info.features['label'].num_classes (train_images, train_labels) = (mnist_data['train']['image'], mnist_data['train']['label']) (test_images, test_labels) = (mnist_data['test']['image'], mnist_data['test']['label']) # Build a (binary) GLN classifier ============================================ def network_factory(): def gln_factory(): output_sizes = [NEURONS_PER_LAYER.value] * NUM_LAYERS.value + [1] return bernoulli.GatedLinearNetwork( output_sizes=output_sizes, context_dim=CONTEXT_DIM.value) return bernoulli.LastNeuronAggregator(gln_factory) def extract_features(image): mean, stddev = utils.MeanStdEstimator()(image) standardized_img = (image - mean) / (stddev + 1.) inputs = rlax.sigmoid(standardized_img) side_info = standardized_img return inputs, side_info def inference_fn(image, *args, **kwargs): inputs, side_info = extract_features(image) return network_factory().inference(inputs, side_info, *args, **kwargs) def update_fn(image, *args, **kwargs): inputs, side_info = extract_features(image) return network_factory().update(inputs, side_info, *args, **kwargs) init_, inference_ = hk.without_apply_rng( hk.transform_with_state(inference_fn)) _, update_ = hk.without_apply_rng(hk.transform_with_state(update_fn)) # Map along class dimension to create a one-vs-all classifier ================ @jax.jit def init(dummy_image, key): """One-vs-all classifier init fn.""" dummy_images = jnp.stack([dummy_image] * num_classes, axis=0) keys = jax.random.split(key, num_classes) return jax.vmap(init_, in_axes=(0, 0))(keys, dummy_images) @jax.jit def accuracy(params, state, image, label): """One-vs-all classifier inference fn.""" fn = jax.vmap(inference_, in_axes=(0, 0, None)) predictions, unused_state = fn(params, state, image) return (jnp.argmax(predictions) == label).astype(jnp.float32) @jax.jit def update(params, state, step, image, label): """One-vs-all classifier update fn.""" # Learning rate schedules. learning_rate = jnp.minimum( MAX_LR.value, LR_CONSTANT.value / (1. + LR_DECAY.value * step)) # Update weights and report log-loss. targets = hk.one_hot(jnp.asarray(label), num_classes) fn = jax.vmap(update_, in_axes=(0, 0, None, 0, None)) out = fn(params, state, image, targets, learning_rate) (params, unused_predictions, log_loss), state = out return (jnp.mean(log_loss), params), state # Train on train split ======================================================= dummy_image = train_images[0] params, state = init(dummy_image, jax.random.PRNGKey(42)) for step, (image, label) in enumerate(zip(train_images, train_labels), 1): (unused_loss, params), state = update( params, state, step, image, label, ) # Evaluate on test split =================================================== if not step % EVALUATE_EVERY.value: batch_accuracy = jax.vmap(accuracy, in_axes=(None, None, 0, 0)) accuracies = batch_accuracy(params, state, test_images, test_labels) total_accuracy = float(jnp.mean(accuracies)) # Report statistics. print({ 'step': step, 'accuracy': float(total_accuracy), }) if MAX_TRAIN_STEPS.value is not None and step >= MAX_TRAIN_STEPS.value: return if __name__ == '__main__': app.run(main)
deepmind-research-master
gated_linear_networks/examples/bernoulli_mnist.py
# Lint as: python3 # Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Haiku modules for feature processing.""" import copy from typing import Tuple import chex import haiku as hk import jax.numpy as jnp import numpy as np from scipy.ndimage import interpolation import tensorflow_datasets as tfds Array = chex.Array def _moments(image): """Compute the first and second moments of a given image.""" c0, c1 = np.mgrid[:image.shape[0], :image.shape[1]] total_image = np.sum(image) m0 = np.sum(c0 * image) / total_image m1 = np.sum(c1 * image) / total_image m00 = np.sum((c0 - m0)**2 * image) / total_image m11 = np.sum((c1 - m1)**2 * image) / total_image m01 = np.sum((c0 - m0) * (c1 - m1) * image) / total_image mu_vector = np.array([m0, m1]) covariance_matrix = np.array([[m00, m01], [m01, m11]]) return mu_vector, covariance_matrix def _deskew(image): """Image deskew.""" c, v = _moments(image) alpha = v[0, 1] / v[0, 0] affine = np.array([[1, 0], [alpha, 1]]) ocenter = np.array(image.shape) / 2.0 offset = c - np.dot(affine, ocenter) return interpolation.affine_transform(image, affine, offset=offset) def _deskew_dataset(dataset): """Dataset deskew.""" deskewed = copy.deepcopy(dataset) for k, before in dataset.items(): images = before["image"] num_images = images.shape[0] after = np.stack([_deskew(i) for i in np.squeeze(images, axis=-1)], axis=0) deskewed[k]["image"] = np.reshape(after, (num_images, -1)) return deskewed def load_deskewed_mnist(*a, **k): """Returns deskewed MNIST numpy dataset.""" mnist_data, info = tfds.load(*a, **k) mnist_data = tfds.as_numpy(mnist_data) deskewed_data = _deskew_dataset(mnist_data) return deskewed_data, info class MeanStdEstimator(hk.Module): """Online mean and standard deviation estimator using Welford's algorithm.""" def __call__(self, sample: jnp.DeviceArray) -> Tuple[Array, Array]: if len(sample.shape) > 1: raise ValueError("sample must be a rank 0 or 1 DeviceArray.") count = hk.get_state("count", shape=(), dtype=jnp.int32, init=jnp.zeros) mean = hk.get_state( "mean", shape=sample.shape, dtype=jnp.float32, init=jnp.zeros) m2 = hk.get_state( "m2", shape=sample.shape, dtype=jnp.float32, init=jnp.zeros) count += 1 delta = sample - mean mean += delta / count delta_2 = sample - mean m2 += delta * delta_2 hk.set_state("count", count) hk.set_state("mean", mean) hk.set_state("m2", m2) stddev = jnp.sqrt(m2 / count) return mean, stddev
deepmind-research-master
gated_linear_networks/examples/utils.py
# Copyright 2019 DeepMind Technologies Limited and Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """GAN modules.""" import collections import math import sonnet as snt import tensorflow.compat.v1 as tf from cs_gan import utils class GAN(object): """Standard generative adversarial network setup. The aim of the generator is to generate samples which fool a discriminator. Does not make any assumptions about the discriminator and generator loss functions. Trained module components: * discriminator * generator For the standard GAN algorithm, generator_inputs is a vector of noise (either Gaussian or uniform). """ def __init__(self, discriminator, generator, num_z_iters=None, z_step_size=None, z_project_method=None, optimisation_cost_weight=None): """Constructs the module. Args: discriminator: The discriminator network. A sonnet module. See `nets.py`. generator: The generator network. A sonnet module. For examples, see `nets.py`. num_z_iters: an integer, the number of latent optimisation steps. z_step_size: an integer, latent optimisation step size. z_project_method: the method for projecting latent after optimisation, a string from {'norm', 'clip'}. optimisation_cost_weight: a float, how much to penalise the distance of z moved by latent optimisation. """ self._discriminator = discriminator self.generator = generator self.num_z_iters = num_z_iters self.z_project_method = z_project_method if z_step_size: self._log_step_size_module = snt.TrainableVariable( [], initializers={'w': tf.constant_initializer(math.log(z_step_size))}) self.z_step_size = tf.exp(self._log_step_size_module()) self._optimisation_cost_weight = optimisation_cost_weight def connect(self, data, generator_inputs): """Connects the components and returns the losses, outputs and debug ops. Args: data: a `tf.Tensor`: `[batch_size, ...]`. There are no constraints on the rank of this tensor, but it has to be compatible with the shapes expected by the discriminator. generator_inputs: a `tf.Tensor`: `[g_in_batch_size, ...]`. It does not have to have the same batch size as the `data` tensor. There are not constraints on the rank of this tensor, but it has to be compatible with the shapes the generator network supports as inputs. Returns: An `ModelOutputs` instance. """ samples, optimised_z = utils.optimise_and_sample( generator_inputs, self, data, is_training=True) optimisation_cost = utils.get_optimisation_cost(generator_inputs, optimised_z) # Pass in the labels to the discriminator in case we are using a # discriminator which makes use of labels. The labels can be None. disc_data_logits = self._discriminator(data) disc_sample_logits = self._discriminator(samples) disc_data_loss = utils.cross_entropy_loss( disc_data_logits, tf.ones(tf.shape(disc_data_logits[:, 0]), dtype=tf.int32)) disc_sample_loss = utils.cross_entropy_loss( disc_sample_logits, tf.zeros(tf.shape(disc_sample_logits[:, 0]), dtype=tf.int32)) disc_loss = disc_data_loss + disc_sample_loss generator_loss = utils.cross_entropy_loss( disc_sample_logits, tf.ones(tf.shape(disc_sample_logits[:, 0]), dtype=tf.int32)) optimization_components = self._build_optimization_components( discriminator_loss=disc_loss, generator_loss=generator_loss, optimisation_cost=optimisation_cost) debug_ops = {} debug_ops['disc_data_loss'] = disc_data_loss debug_ops['disc_sample_loss'] = disc_sample_loss debug_ops['disc_loss'] = disc_loss debug_ops['gen_loss'] = generator_loss debug_ops['opt_cost'] = optimisation_cost if hasattr(self, 'z_step_size'): debug_ops['z_step_size'] = self.z_step_size return utils.ModelOutputs( optimization_components, debug_ops) def gen_loss_fn(self, data, samples): """Generator loss as latent optimisation's error function.""" del data disc_sample_logits = self._discriminator(samples) generator_loss = utils.cross_entropy_loss( disc_sample_logits, tf.ones(tf.shape(disc_sample_logits[:, 0]), dtype=tf.int32)) return generator_loss def _build_optimization_components( self, generator_loss=None, discriminator_loss=None, optimisation_cost=None): """Create the optimization components for this module.""" discriminator_vars = _get_and_check_variables(self._discriminator) generator_vars = _get_and_check_variables(self.generator) if hasattr(self, '_log_step_size_module'): step_vars = _get_and_check_variables(self._log_step_size_module) generator_vars += step_vars optimization_components = collections.OrderedDict() optimization_components['disc'] = utils.OptimizationComponent( discriminator_loss, discriminator_vars) if self._optimisation_cost_weight: generator_loss += self._optimisation_cost_weight * optimisation_cost optimization_components['gen'] = utils.OptimizationComponent( generator_loss, generator_vars) return optimization_components def get_variables(self): disc_vars = _get_and_check_variables(self._discriminator) gen_vars = _get_and_check_variables(self.generator) return disc_vars, gen_vars def _get_and_check_variables(module): module_variables = module.get_all_variables() if not module_variables: raise ValueError( 'Module {} has no variables! Variables needed for training.'.format( module.module_name)) # TensorFlow optimizers require lists to be passed in. return list(module_variables)
deepmind-research-master
cs_gan/gan.py
# Copyright 2019 DeepMind Technologies Limited and Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Training script.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from absl import app from absl import flags from absl import logging import tensorflow.compat.v1 as tf import tensorflow_probability as tfp from cs_gan import cs from cs_gan import file_utils from cs_gan import utils tfd = tfp.distributions flags.DEFINE_string( 'mode', 'recons', 'Model mode.') flags.DEFINE_integer( 'num_training_iterations', 10000000, 'Number of training iterations.') flags.DEFINE_integer( 'batch_size', 64, 'Training batch size.') flags.DEFINE_integer( 'num_measurements', 25, 'The number of measurements') flags.DEFINE_integer( 'num_latents', 100, 'The number of latents') flags.DEFINE_integer( 'num_z_iters', 3, 'The number of latent optimisation steps.') flags.DEFINE_float( 'z_step_size', 0.01, 'Step size for latent optimisation.') flags.DEFINE_string( 'z_project_method', 'norm', 'The method to project z.') flags.DEFINE_integer( 'summary_every_step', 1000, 'The interval at which to log debug ops.') flags.DEFINE_integer( 'export_every', 10, 'The interval at which to export samples.') flags.DEFINE_string( 'dataset', 'mnist', 'The dataset used for learning (cifar|mnist.') flags.DEFINE_float('learning_rate', 1e-4, 'Learning rate.') flags.DEFINE_string( 'output_dir', '/tmp/cs_gan/cs', 'Location where to save output files.') FLAGS = flags.FLAGS # Log info level (for Hooks). tf.logging.set_verbosity(tf.logging.INFO) def main(argv): del argv utils.make_output_dir(FLAGS.output_dir) data_processor = utils.DataProcessor() images = utils.get_train_dataset(data_processor, FLAGS.dataset, FLAGS.batch_size) logging.info('Learning rate: %d', FLAGS.learning_rate) # Construct optimizers. optimizer = tf.train.AdamOptimizer(FLAGS.learning_rate) # Create the networks and models. generator = utils.get_generator(FLAGS.dataset) metric_net = utils.get_metric_net(FLAGS.dataset, FLAGS.num_measurements) model = cs.CS(metric_net, generator, FLAGS.num_z_iters, FLAGS.z_step_size, FLAGS.z_project_method) prior = utils.make_prior(FLAGS.num_latents) generator_inputs = prior.sample(FLAGS.batch_size) model_output = model.connect(images, generator_inputs) optimization_components = model_output.optimization_components debug_ops = model_output.debug_ops reconstructions, _ = utils.optimise_and_sample( generator_inputs, model, images, is_training=False) global_step = tf.train.get_or_create_global_step() update_op = optimizer.minimize( optimization_components.loss, var_list=optimization_components.vars, global_step=global_step) sample_exporter = file_utils.FileExporter( os.path.join(FLAGS.output_dir, 'reconstructions')) # Hooks. debug_ops['it'] = global_step # Abort training on Nans. nan_hook = tf.train.NanTensorHook(optimization_components.loss) # Step counter. step_conter_hook = tf.train.StepCounterHook() checkpoint_saver_hook = tf.train.CheckpointSaverHook( checkpoint_dir=utils.get_ckpt_dir(FLAGS.output_dir), save_secs=10 * 60) loss_summary_saver_hook = tf.train.SummarySaverHook( save_steps=FLAGS.summary_every_step, output_dir=os.path.join(FLAGS.output_dir, 'summaries'), summary_op=utils.get_summaries(debug_ops)) hooks = [checkpoint_saver_hook, nan_hook, step_conter_hook, loss_summary_saver_hook] # Start training. with tf.train.MonitoredSession(hooks=hooks) as sess: logging.info('starting training') for i in range(FLAGS.num_training_iterations): sess.run(update_op) if i % FLAGS.export_every == 0: reconstructions_np, data_np = sess.run([reconstructions, images]) # Create an object which gets data and does the processing. data_np = data_processor.postprocess(data_np) reconstructions_np = data_processor.postprocess(reconstructions_np) sample_exporter.save(reconstructions_np, 'reconstructions') sample_exporter.save(data_np, 'data') if __name__ == '__main__': app.run(main)
deepmind-research-master
cs_gan/main_cs.py
# Copyright 2019 DeepMind Technologies Limited and Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Training script.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from absl import app from absl import flags from absl import logging import tensorflow.compat.v1 as tf from cs_gan import file_utils from cs_gan import gan from cs_gan import image_metrics from cs_gan import utils flags.DEFINE_integer( 'num_training_iterations', 1200000, 'Number of training iterations.') flags.DEFINE_string( 'ode_mode', 'rk4', 'Integration method.') flags.DEFINE_integer( 'batch_size', 64, 'Training batch size.') flags.DEFINE_float( 'grad_reg_weight', 0.02, 'Step size for latent optimisation.') flags.DEFINE_string( 'opt_name', 'gd', 'Name of the optimiser (gd|adam).') flags.DEFINE_bool( 'schedule_lr', True, 'The method to project z.') flags.DEFINE_bool( 'reg_first_grad_only', True, 'Whether only to regularise the first grad.') flags.DEFINE_integer( 'num_latents', 128, 'The number of latents') flags.DEFINE_integer( 'summary_every_step', 1000, 'The interval at which to log debug ops.') flags.DEFINE_integer( 'image_metrics_every_step', 1000, 'The interval at which to log (expensive) image metrics.') flags.DEFINE_integer( 'export_every', 10, 'The interval at which to export samples.') # Use 50k to reproduce scores from the paper. Default to 10k here to avoid the # runtime error caused by too large graph with 50k samples on some machines. flags.DEFINE_integer( 'num_eval_samples', 10000, 'The number of samples used to evaluate FID/IS.') flags.DEFINE_string( 'dataset', 'cifar', 'The dataset used for learning (cifar|mnist).') flags.DEFINE_string( 'output_dir', '/tmp/ode_gan/gan', 'Location where to save output files.') flags.DEFINE_float('disc_lr', 4e-2, 'Discriminator Learning rate.') flags.DEFINE_float('gen_lr', 4e-2, 'Generator Learning rate.') flags.DEFINE_bool( 'run_real_data_metrics', False, 'Whether or not to run image metrics on real data.') flags.DEFINE_bool( 'run_sample_metrics', True, 'Whether or not to run image metrics on samples.') FLAGS = flags.FLAGS # Log info level (for Hooks). tf.logging.set_verbosity(tf.logging.INFO) def _copy_vars(v_list): """Copy variables in v_list.""" t_list = [] for v in v_list: t_list.append(tf.identity(v)) return t_list def _restore_vars(v_list, t_list): """Restore variables in v_list from t_list.""" ops = [] for v, t in zip(v_list, t_list): ops.append(v.assign(t)) return ops def _scale_vars(s, v_list): """Scale all variables in v_list by s.""" return [s * v for v in v_list] def _acc_grads(g_sum, g_w, g): """Accumulate gradients in g, weighted by g_w.""" return [g_sum_i + g_w * g_i for g_sum_i, g_i in zip(g_sum, g)] def _compute_reg_grads(gen_grads, disc_vars): """Compute gradients norm (this is an upper-bpund of the full-batch norm).""" gen_norm = tf.accumulate_n([tf.reduce_sum(u * u) for u in gen_grads]) disc_reg_grads = tf.gradients(gen_norm, disc_vars) return disc_reg_grads def run_model(prior, images, model, disc_reg_weight): """Run the model with new data and samples. Args: prior: the noise source as the generator input. images: images sampled from dataset. model: a GAN model defined in gan.py. disc_reg_weight: regularisation weight for discrmininator gradients. Returns: debug_ops: statistics from the model, see gan.py for more detials. disc_grads: discriminator gradients. gen_grads: generator gradients. """ generator_inputs = prior.sample(FLAGS.batch_size) model_output = model.connect(images, generator_inputs) optimization_components = model_output.optimization_components disc_grads = tf.gradients( optimization_components['disc'].loss, optimization_components['disc'].vars) gen_grads = tf.gradients( optimization_components['gen'].loss, optimization_components['gen'].vars) if disc_reg_weight > 0.0: reg_grads = _compute_reg_grads(gen_grads, optimization_components['disc'].vars) disc_grads = _acc_grads(disc_grads, disc_reg_weight, reg_grads) debug_ops = model_output.debug_ops return debug_ops, disc_grads, gen_grads def update_model(model, disc_grads, gen_grads, disc_opt, gen_opt, global_step, update_scale): """Update model with gradients.""" disc_vars, gen_vars = model.get_variables() with tf.control_dependencies(gen_grads + disc_grads): disc_update_op = disc_opt.apply_gradients( zip(_scale_vars(update_scale, disc_grads), disc_vars)) gen_update_op = gen_opt.apply_gradients( zip(_scale_vars(update_scale, gen_grads), gen_vars), global_step=global_step) update_op = tf.group([disc_update_op, gen_update_op]) return update_op def main(argv): del argv utils.make_output_dir(FLAGS.output_dir) data_processor = utils.DataProcessor() # Compute the batch-size multiplier if FLAGS.ode_mode == 'rk2': batch_mul = 2 elif FLAGS.ode_mode == 'rk4': batch_mul = 4 else: batch_mul = 1 images = utils.get_train_dataset(data_processor, FLAGS.dataset, int(FLAGS.batch_size * batch_mul)) image_splits = tf.split(images, batch_mul) logging.info('Generator learning rate: %d', FLAGS.gen_lr) logging.info('Discriminator learning rate: %d', FLAGS.disc_lr) global_step = tf.train.get_or_create_global_step() # Construct optimizers. if FLAGS.opt_name == 'adam': disc_opt = tf.train.AdamOptimizer(FLAGS.disc_lr, beta1=0.5, beta2=0.999) gen_opt = tf.train.AdamOptimizer(FLAGS.gen_lr, beta1=0.5, beta2=0.999) elif FLAGS.opt_name == 'gd': if FLAGS.schedule_lr: gd_disc_lr = tf.train.piecewise_constant( global_step, values=[FLAGS.disc_lr / 4., FLAGS.disc_lr, FLAGS.disc_lr / 2.], boundaries=[500, 400000]) gd_gen_lr = tf.train.piecewise_constant( global_step, values=[FLAGS.gen_lr / 4., FLAGS.gen_lr, FLAGS.gen_lr / 2.], boundaries=[500, 400000]) else: gd_disc_lr = FLAGS.disc_lr gd_gen_lr = FLAGS.gen_lr disc_opt = tf.train.GradientDescentOptimizer(gd_disc_lr) gen_opt = tf.train.GradientDescentOptimizer(gd_gen_lr) else: raise ValueError('Unknown ODE mode!') # Create the networks and models. generator = utils.get_generator(FLAGS.dataset) metric_net = utils.get_metric_net(FLAGS.dataset, use_sn=False) model = gan.GAN(metric_net, generator) prior = utils.make_prior(FLAGS.num_latents) # Setup ODE parameters. if FLAGS.ode_mode == 'rk2': ode_grad_weights = [0.5, 0.5] step_scale = [1.0] elif FLAGS.ode_mode == 'rk4': ode_grad_weights = [1. / 6., 1. / 3., 1. / 3., 1. / 6.] step_scale = [0.5, 0.5, 1.] elif FLAGS.ode_mode == 'euler': # Euler update ode_grad_weights = [1.0] step_scale = [] else: raise ValueError('Unknown ODE mode!') # Extra steps for RK updates. num_extra_steps = len(step_scale) if FLAGS.reg_first_grad_only: first_reg_weight = FLAGS.grad_reg_weight / ode_grad_weights[0] other_reg_weight = 0.0 else: first_reg_weight = FLAGS.grad_reg_weight other_reg_weight = FLAGS.grad_reg_weight debug_ops, disc_grads, gen_grads = run_model(prior, image_splits[0], model, first_reg_weight) disc_vars, gen_vars = model.get_variables() final_disc_grads = _scale_vars(ode_grad_weights[0], disc_grads) final_gen_grads = _scale_vars(ode_grad_weights[0], gen_grads) restore_ops = [] # Preparing for further RK steps. if num_extra_steps > 0: # copy the variables before they are changed by update_op saved_disc_vars = _copy_vars(disc_vars) saved_gen_vars = _copy_vars(gen_vars) # Enter RK loop. with tf.control_dependencies(saved_disc_vars + saved_gen_vars): step_deps = [] for i_step in range(num_extra_steps): with tf.control_dependencies(step_deps): # Compute gradient steps for intermediate updates. update_op = update_model( model, disc_grads, gen_grads, disc_opt, gen_opt, None, step_scale[i_step]) with tf.control_dependencies([update_op]): _, disc_grads, gen_grads = run_model( prior, image_splits[i_step + 1], model, other_reg_weight) # Accumlate gradients for final update. final_disc_grads = _acc_grads(final_disc_grads, ode_grad_weights[i_step + 1], disc_grads) final_gen_grads = _acc_grads(final_gen_grads, ode_grad_weights[i_step + 1], gen_grads) # Make new restore_op for each step. restore_ops = [] restore_ops += _restore_vars(disc_vars, saved_disc_vars) restore_ops += _restore_vars(gen_vars, saved_gen_vars) step_deps = restore_ops with tf.control_dependencies(restore_ops): update_op = update_model( model, final_disc_grads, final_gen_grads, disc_opt, gen_opt, global_step, 1.0) samples = generator(prior.sample(FLAGS.batch_size), is_training=False) # Get data needed to compute FID. We also compute metrics on # real data as a sanity check and as a reference point. eval_real_data = utils.get_real_data_for_eval(FLAGS.num_eval_samples, FLAGS.dataset, split='train') def sample_fn(x): return utils.optimise_and_sample(x, module=model, data=None, is_training=False)[0] if FLAGS.run_sample_metrics: sample_metrics = image_metrics.get_image_metrics_for_samples( eval_real_data, sample_fn, prior, data_processor, num_eval_samples=FLAGS.num_eval_samples) else: sample_metrics = {} if FLAGS.run_real_data_metrics: data_metrics = image_metrics.get_image_metrics( eval_real_data, eval_real_data) else: data_metrics = {} sample_exporter = file_utils.FileExporter( os.path.join(FLAGS.output_dir, 'samples')) # Hooks. debug_ops['it'] = global_step # Abort training on Nans. nan_disc_hook = tf.train.NanTensorHook(debug_ops['disc_loss']) nan_gen_hook = tf.train.NanTensorHook(debug_ops['gen_loss']) # Step counter. step_conter_hook = tf.train.StepCounterHook() checkpoint_saver_hook = tf.train.CheckpointSaverHook( checkpoint_dir=utils.get_ckpt_dir(FLAGS.output_dir), save_secs=10 * 60) loss_summary_saver_hook = tf.train.SummarySaverHook( save_steps=FLAGS.summary_every_step, output_dir=os.path.join(FLAGS.output_dir, 'summaries'), summary_op=utils.get_summaries(debug_ops)) metrics_summary_saver_hook = tf.train.SummarySaverHook( save_steps=FLAGS.image_metrics_every_step, output_dir=os.path.join(FLAGS.output_dir, 'summaries'), summary_op=utils.get_summaries(sample_metrics)) hooks = [checkpoint_saver_hook, metrics_summary_saver_hook, nan_disc_hook, nan_gen_hook, step_conter_hook, loss_summary_saver_hook] # Start training. with tf.train.MonitoredSession(hooks=hooks) as sess: logging.info('starting training') for key, value in sess.run(data_metrics).items(): logging.info('%s: %d', key, value) for i in range(FLAGS.num_training_iterations): sess.run(update_op) if i % FLAGS.export_every == 0: samples_np, data_np = sess.run([samples, image_splits[0]]) # Create an object which gets data and does the processing. data_np = data_processor.postprocess(data_np) samples_np = data_processor.postprocess(samples_np) sample_exporter.save(samples_np, 'samples') sample_exporter.save(data_np, 'data') if __name__ == '__main__': tf.enable_resource_variables() app.run(main)
deepmind-research-master
cs_gan/main_ode.py
# Copyright 2019 DeepMind Technologies Limited and Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """GAN modules.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import sonnet as snt import tensorflow.compat.v1 as tf from cs_gan import utils class CS(object): """Compressed Sensing Module.""" def __init__(self, metric_net, generator, num_z_iters, z_step_size, z_project_method): """Constructs the module. Args: metric_net: the measurement network. generator: The generator network. A sonnet module. For examples, see `nets.py`. num_z_iters: an integer, the number of latent optimisation steps. z_step_size: an integer, latent optimisation step size. z_project_method: the method for projecting latent after optimisation, a string from {'norm', 'clip'}. """ self._measure = metric_net self.generator = generator self.num_z_iters = num_z_iters self.z_project_method = z_project_method self._log_step_size_module = snt.TrainableVariable( [], initializers={'w': tf.constant_initializer(math.log(z_step_size))}) self.z_step_size = tf.exp(self._log_step_size_module()) def connect(self, data, generator_inputs): """Connects the components and returns the losses, outputs and debug ops. Args: data: a `tf.Tensor`: `[batch_size, ...]`. There are no constraints on the rank of this tensor, but it has to be compatible with the shapes expected by the discriminator. generator_inputs: a `tf.Tensor`: `[g_in_batch_size, ...]`. It does not have to have the same batch size as the `data` tensor. There are not constraints on the rank of this tensor, but it has to be compatible with the shapes the generator network supports as inputs. Returns: An `ModelOutputs` instance. """ samples, optimised_z = utils.optimise_and_sample( generator_inputs, self, data, is_training=True) optimisation_cost = utils.get_optimisation_cost(generator_inputs, optimised_z) debug_ops = {} initial_samples = self.generator(generator_inputs, is_training=True) generator_loss = tf.reduce_mean(self.gen_loss_fn(data, samples)) # compute the RIP loss # (\sqrt{F(x_1 - x_2)^2} - \sqrt{(x_1 - x_2)^2})^2 # as a triplet loss for 3 pairs of images. r1 = self._get_rip_loss(samples, initial_samples) r2 = self._get_rip_loss(samples, data) r3 = self._get_rip_loss(initial_samples, data) rip_loss = tf.reduce_mean((r1 + r2 + r3) / 3.0) total_loss = generator_loss + rip_loss optimization_components = self._build_optimization_components( generator_loss=total_loss) debug_ops['rip_loss'] = rip_loss debug_ops['recons_loss'] = tf.reduce_mean( tf.norm(snt.BatchFlatten()(samples) - snt.BatchFlatten()(data), axis=-1)) debug_ops['z_step_size'] = self.z_step_size debug_ops['opt_cost'] = optimisation_cost debug_ops['gen_loss'] = generator_loss return utils.ModelOutputs( optimization_components, debug_ops) def _get_rip_loss(self, img1, img2): r"""Compute the RIP loss from two images. The RIP loss: (\sqrt{F(x_1 - x_2)^2} - \sqrt{(x_1 - x_2)^2})^2 Args: img1: an image (x_1), 4D tensor of shape [batch_size, W, H, C]. img2: an other image (x_2), 4D tensor of shape [batch_size, W, H, C]. """ m1 = self._measure(img1) m2 = self._measure(img2) img_diff_norm = tf.norm(snt.BatchFlatten()(img1) - snt.BatchFlatten()(img2), axis=-1) m_diff_norm = tf.norm(m1 - m2, axis=-1) return tf.square(img_diff_norm - m_diff_norm) def _get_measurement_error(self, target_img, sample_img): """Compute the measurement error of sample images given the targets.""" m_targets = self._measure(target_img) m_samples = self._measure(sample_img) return tf.reduce_sum(tf.square(m_targets - m_samples), -1) def gen_loss_fn(self, data, samples): """Generator loss as latent optimisation's error function.""" return self._get_measurement_error(data, samples) def _build_optimization_components( self, generator_loss=None, discriminator_loss=None): """Create the optimization components for this module.""" metric_vars = _get_and_check_variables(self._measure) generator_vars = _get_and_check_variables(self.generator) step_vars = _get_and_check_variables(self._log_step_size_module) assert discriminator_loss is None optimization_components = utils.OptimizationComponent( generator_loss, generator_vars + metric_vars + step_vars) return optimization_components def _get_and_check_variables(module): module_variables = module.get_all_variables() if not module_variables: raise ValueError( 'Module {} has no variables! Variables needed for training.'.format( module.module_name)) # TensorFlow optimizers require lists to be passed in. return list(module_variables)
deepmind-research-master
cs_gan/cs.py
# python3 # Copyright 2019 DeepMind Technologies Limited and Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tools for latent optimisation.""" import collections import os from absl import logging import numpy as np import tensorflow.compat.v1 as tf import tensorflow_probability as tfp from cs_gan import nets tfd = tfp.distributions class ModelOutputs( collections.namedtuple('AdversarialModelOutputs', ['optimization_components', 'debug_ops'])): """All the information produced by the adversarial module. Fields: * `optimization_components`: A dictionary. Each entry in this dictionary corresponds to a module to train using their own optimizer. The keys are names of the components, and the values are `common.OptimizationComponent` instances. The keys of this dict can be made keys of the configuration used by the main train loop, to define the configuration of the optimization details for each module. * `debug_ops`: A dictionary, from string to a scalar `tf.Tensor`. Quantities used for tracking training. """ class OptimizationComponent( collections.namedtuple('OptimizationComponent', ['loss', 'vars'])): """Information needed by the optimizer to train modules. Usage: `optimizer.minimize( opt_compoment.loss, var_list=opt_component.vars)` Fields: * `loss`: A `tf.Tensor` the loss of the module. * `vars`: A list of variables, the ones which will be used to minimize the loss. """ def cross_entropy_loss(logits, expected): """The cross entropy classification loss between logits and expected values. The loss proposed by the original GAN paper: https://arxiv.org/abs/1406.2661. Args: logits: a `tf.Tensor`, the model produced logits. expected: a `tf.Tensor`, the expected output. Returns: A scalar `tf.Tensor`, the average loss obtained on the given inputs. Raises: ValueError: if the logits do not have shape [batch_size, 2]. """ num_logits = logits.get_shape()[1] if num_logits != 2: raise ValueError(('Invalid number of logits for cross_entropy_loss! ' 'cross_entropy_loss supports only 2 output logits!')) return tf.reduce_mean( tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logits, labels=expected)) def optimise_and_sample(init_z, module, data, is_training): """Optimising generator latent variables and sample.""" if module.num_z_iters is None or module.num_z_iters == 0: z_final = init_z else: init_loop_vars = (0, _project_z(init_z, module.z_project_method)) loop_cond = lambda i, _: i < module.num_z_iters def loop_body(i, z): loop_samples = module.generator(z, is_training) gen_loss = module.gen_loss_fn(data, loop_samples) z_grad = tf.gradients(gen_loss, z)[0] z -= module.z_step_size * z_grad z = _project_z(z, module.z_project_method) return i + 1, z # Use the following static loop for debugging # z = init_z # for _ in xrange(num_z_iters): # _, z = loop_body(0, z) # z_final = z _, z_final = tf.while_loop(loop_cond, loop_body, init_loop_vars) return module.generator(z_final, is_training), z_final def get_optimisation_cost(initial_z, optimised_z): optimisation_cost = tf.reduce_mean( tf.reduce_sum((optimised_z - initial_z)**2, -1)) return optimisation_cost def _project_z(z, project_method='clip'): """To be used for projected gradient descent over z.""" if project_method == 'norm': z_p = tf.nn.l2_normalize(z, axis=-1) elif project_method == 'clip': z_p = tf.clip_by_value(z, -1, 1) else: raise ValueError('Unknown project_method: {}'.format(project_method)) return z_p class DataProcessor(object): def preprocess(self, x): return x * 2 - 1 def postprocess(self, x): return (x + 1) / 2. def _get_np_data(data_processor, dataset, split='train'): """Get the dataset as numpy arrays.""" index = 0 if split == 'train' else 1 if dataset == 'mnist': # Construct the dataset. x, _ = tf.keras.datasets.mnist.load_data()[index] # Note: tf dataset is binary so we convert it to float. x = x.astype(np.float32) x = x / 255. x = x.reshape((-1, 28, 28, 1)) if dataset == 'cifar': x, _ = tf.keras.datasets.cifar10.load_data()[index] x = x.astype(np.float32) x = x / 255. if data_processor: # Normalize data if a processor is given. x = data_processor.preprocess(x) return x def make_output_dir(output_dir): logging.info('Creating output dir %s', output_dir) if not tf.gfile.IsDirectory(output_dir): tf.gfile.MakeDirs(output_dir) def get_ckpt_dir(output_dir): ckpt_dir = os.path.join(output_dir, 'ckpt') if not tf.gfile.IsDirectory(ckpt_dir): tf.gfile.MakeDirs(ckpt_dir) return ckpt_dir def get_real_data_for_eval(num_eval_samples, dataset, split='valid'): data = _get_np_data(data_processor=None, dataset=dataset, split=split) data = data[:num_eval_samples] return tf.constant(data) def get_summaries(ops): summaries = [] for name, op in ops.items(): # Ensure to log the value ops before writing them in the summary. # We do this instead of a hook to ensure IS/FID are never computed twice. print_op = tf.print(name, [op], output_stream=tf.logging.info) with tf.control_dependencies([print_op]): summary = tf.summary.scalar(name, op) summaries.append(summary) return summaries def get_train_dataset(data_processor, dataset, batch_size): """Creates the training data tensors.""" x_train = _get_np_data(data_processor, dataset, split='train') # Create the TF dataset. dataset = tf.data.Dataset.from_tensor_slices(x_train) # Shuffle and repeat the dataset for training. # This is required because we want to do multiple passes through the entire # dataset when training. dataset = dataset.shuffle(100000).repeat() # Batch the data and return the data batch. one_shot_iterator = dataset.batch(batch_size).make_one_shot_iterator() data_batch = one_shot_iterator.get_next() return data_batch def get_generator(dataset): if dataset == 'mnist': return nets.MLPGeneratorNet() if dataset == 'cifar': return nets.ConvGenNet() def get_metric_net(dataset, num_outputs=2, use_sn=True): if dataset == 'mnist': return nets.MLPMetricNet(num_outputs) if dataset == 'cifar': return nets.ConvMetricNet(num_outputs, use_sn) def make_prior(num_latents): # Zero mean, unit variance prior. prior_mean = tf.zeros(shape=(num_latents), dtype=tf.float32) prior_scale = tf.ones(shape=(num_latents), dtype=tf.float32) return tfd.Normal(loc=prior_mean, scale=prior_scale)
deepmind-research-master
cs_gan/utils.py
# Copyright 2019 DeepMind Technologies Limited and Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Compute image metrics: IS, FID.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow_gan as tfgan def get_image_metrics_for_samples( real_images, generator, prior, data_processor, num_eval_samples): """Compute inception score and FID.""" max_classifier_batch = 10 num_batches = num_eval_samples // max_classifier_batch def sample_fn(arg): del arg samples = generator(prior.sample(max_classifier_batch)) # Samples must be in [-1, 1], as expected by TFGAN. # Resizing to appropriate size is done by TFGAN. return samples fake_outputs = tfgan.eval.sample_and_run_inception( sample_fn, sample_inputs=[1.0] * num_batches) # Dummy inputs. fake_logits = fake_outputs['logits'] inception_score = tfgan.eval.classifier_score_from_logits(fake_logits) real_outputs = tfgan.eval.run_inception( data_processor.preprocess(real_images), num_batches=num_batches) fid = tfgan.eval.frechet_classifier_distance_from_activations( real_outputs['pool_3'], fake_outputs['pool_3']) return { 'inception_score': inception_score, 'fid': fid}
deepmind-research-master
cs_gan/image_metrics.py
# Copyright 2019 DeepMind Technologies Limited and Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """File utilities.""" import math import os import numpy as np from PIL import Image class FileExporter(object): """File exporter utilities.""" def __init__(self, path, grid_height=None, zoom=1): """Constructor. Arguments: path: The directory to save data to. grid_height: How many data elements tall to make the grid, if appropriate. The width will be chosen based on height. If None, automatically determined. zoom: How much to zoom in each data element by, if appropriate. """ if not os.path.exists(path): os.makedirs(path) self._path = path self._zoom = zoom self._grid_height = grid_height def _reshape(self, data): """Reshape given data into image format.""" batch_size, height, width, n_channels = data.shape if self._grid_height: grid_height = self._grid_height else: grid_height = int(math.floor(math.sqrt(batch_size))) grid_width = int(math.ceil(batch_size/grid_height)) if n_channels == 1: data = np.tile(data, (1, 1, 1, 3)) n_channels = 3 if n_channels != 3: raise ValueError('Image batch must have either 1 or 3 channels, but ' 'was {}'.format(n_channels)) shape = (height * grid_height, width * grid_width, n_channels) buf = np.full(shape, 255, dtype=np.uint8) multiplier = 1 if data.dtype in (np.int32, np.int64) else 255 for k in range(batch_size): i = k // grid_width j = k % grid_width arr = data[k] x, y = i * height, j * width buf[x:x + height, y:y + width, :] = np.clip( multiplier * arr, 0, 255).astype(np.uint8) if self._zoom > 1: buf = buf.repeat(self._zoom, axis=0).repeat(self._zoom, axis=1) return buf def save(self, data, name): data = self._reshape(data) relative_name = '{}_last.png'.format(name) target_file = os.path.join(self._path, relative_name) img = Image.fromarray(data) img.save(target_file, format='PNG')
deepmind-research-master
cs_gan/file_utils.py
# Copyright 2019 DeepMind Technologies Limited and Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Training script.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from absl import app from absl import flags from absl import logging import tensorflow.compat.v1 as tf from cs_gan import file_utils from cs_gan import gan from cs_gan import image_metrics from cs_gan import utils flags.DEFINE_integer( 'num_training_iterations', 200000, 'Number of training iterations.') flags.DEFINE_integer( 'batch_size', 64, 'Training batch size.') flags.DEFINE_integer( 'num_latents', 128, 'The number of latents') flags.DEFINE_integer( 'summary_every_step', 1000, 'The interval at which to log debug ops.') flags.DEFINE_integer( 'image_metrics_every_step', 2000, 'The interval at which to log (expensive) image metrics.') flags.DEFINE_integer( 'export_every', 10, 'The interval at which to export samples.') flags.DEFINE_integer( 'num_eval_samples', 10000, 'The number of samples used to evaluate FID/IS') flags.DEFINE_string( 'dataset', 'cifar', 'The dataset used for learning (cifar|mnist.') flags.DEFINE_float( 'optimisation_cost_weight', 3., 'weight for latent optimisation cost.') flags.DEFINE_integer( 'num_z_iters', 3, 'The number of latent optimisation steps.' 'It falls back to vanilla GAN when num_z_iters is set to 0.') flags.DEFINE_float( 'z_step_size', 0.01, 'Step size for latent optimisation.') flags.DEFINE_string( 'z_project_method', 'norm', 'The method to project z.') flags.DEFINE_string( 'output_dir', '/tmp/cs_gan/gan', 'Location where to save output files.') flags.DEFINE_float('disc_lr', 2e-4, 'Discriminator Learning rate.') flags.DEFINE_float('gen_lr', 2e-4, 'Generator Learning rate.') flags.DEFINE_bool( 'run_real_data_metrics', False, 'Whether or not to run image metrics on real data.') flags.DEFINE_bool( 'run_sample_metrics', True, 'Whether or not to run image metrics on samples.') FLAGS = flags.FLAGS # Log info level (for Hooks). tf.logging.set_verbosity(tf.logging.INFO) def main(argv): del argv utils.make_output_dir(FLAGS.output_dir) data_processor = utils.DataProcessor() images = utils.get_train_dataset(data_processor, FLAGS.dataset, FLAGS.batch_size) logging.info('Generator learning rate: %d', FLAGS.gen_lr) logging.info('Discriminator learning rate: %d', FLAGS.disc_lr) # Construct optimizers. disc_optimizer = tf.train.AdamOptimizer(FLAGS.disc_lr, beta1=0.5, beta2=0.999) gen_optimizer = tf.train.AdamOptimizer(FLAGS.gen_lr, beta1=0.5, beta2=0.999) # Create the networks and models. generator = utils.get_generator(FLAGS.dataset) metric_net = utils.get_metric_net(FLAGS.dataset) model = gan.GAN(metric_net, generator, FLAGS.num_z_iters, FLAGS.z_step_size, FLAGS.z_project_method, FLAGS.optimisation_cost_weight) prior = utils.make_prior(FLAGS.num_latents) generator_inputs = prior.sample(FLAGS.batch_size) model_output = model.connect(images, generator_inputs) optimization_components = model_output.optimization_components debug_ops = model_output.debug_ops samples = generator(generator_inputs, is_training=False) global_step = tf.train.get_or_create_global_step() # We pass the global step both to the disc and generator update ops. # This means that the global step will not be the same as the number of # iterations, but ensures that hooks which rely on global step work correctly. disc_update_op = disc_optimizer.minimize( optimization_components['disc'].loss, var_list=optimization_components['disc'].vars, global_step=global_step) gen_update_op = gen_optimizer.minimize( optimization_components['gen'].loss, var_list=optimization_components['gen'].vars, global_step=global_step) # Get data needed to compute FID. We also compute metrics on # real data as a sanity check and as a reference point. eval_real_data = utils.get_real_data_for_eval(FLAGS.num_eval_samples, FLAGS.dataset, split='train') def sample_fn(x): return utils.optimise_and_sample(x, module=model, data=None, is_training=False)[0] if FLAGS.run_sample_metrics: sample_metrics = image_metrics.get_image_metrics_for_samples( eval_real_data, sample_fn, prior, data_processor, num_eval_samples=FLAGS.num_eval_samples) else: sample_metrics = {} if FLAGS.run_real_data_metrics: data_metrics = image_metrics.get_image_metrics( eval_real_data, eval_real_data) else: data_metrics = {} sample_exporter = file_utils.FileExporter( os.path.join(FLAGS.output_dir, 'samples')) # Hooks. debug_ops['it'] = global_step # Abort training on Nans. nan_disc_hook = tf.train.NanTensorHook(optimization_components['disc'].loss) nan_gen_hook = tf.train.NanTensorHook(optimization_components['gen'].loss) # Step counter. step_conter_hook = tf.train.StepCounterHook() checkpoint_saver_hook = tf.train.CheckpointSaverHook( checkpoint_dir=utils.get_ckpt_dir(FLAGS.output_dir), save_secs=10 * 60) loss_summary_saver_hook = tf.train.SummarySaverHook( save_steps=FLAGS.summary_every_step, output_dir=os.path.join(FLAGS.output_dir, 'summaries'), summary_op=utils.get_summaries(debug_ops)) metrics_summary_saver_hook = tf.train.SummarySaverHook( save_steps=FLAGS.image_metrics_every_step, output_dir=os.path.join(FLAGS.output_dir, 'summaries'), summary_op=utils.get_summaries(sample_metrics)) hooks = [checkpoint_saver_hook, metrics_summary_saver_hook, nan_disc_hook, nan_gen_hook, step_conter_hook, loss_summary_saver_hook] # Start training. with tf.train.MonitoredSession(hooks=hooks) as sess: logging.info('starting training') for key, value in sess.run(data_metrics).items(): logging.info('%s: %d', key, value) for i in range(FLAGS.num_training_iterations): sess.run(disc_update_op) sess.run(gen_update_op) if i % FLAGS.export_every == 0: samples_np, data_np = sess.run([samples, images]) # Create an object which gets data and does the processing. data_np = data_processor.postprocess(data_np) samples_np = data_processor.postprocess(samples_np) sample_exporter.save(samples_np, 'samples') sample_exporter.save(data_np, 'data') if __name__ == '__main__': app.run(main)
deepmind-research-master
cs_gan/main.py
# Copyright 2019 DeepMind Technologies Limited and Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Network utilities.""" import functools import re import numpy as np import sonnet as snt import tensorflow.compat.v1 as tf import tensorflow_gan as tfgan def _sn_custom_getter(): def name_filter(name): match = re.match(r'.*w(_.*)?$', name) return match is not None return tfgan.features.spectral_normalization_custom_getter( name_filter=name_filter) class ConvGenNet(snt.AbstractModule): """As in the SN paper.""" def __init__(self, name='conv_gen'): super(ConvGenNet, self).__init__(name=name) def _build(self, inputs, is_training): batch_size = inputs.get_shape().as_list()[0] first_shape = [4, 4, 512] norm_ctor = snt.BatchNormV2 norm_ctor_config = {'scale': True} up_tensor = snt.Linear(np.prod(first_shape))(inputs) first_tensor = tf.reshape(up_tensor, shape=[batch_size] + first_shape) net = snt.nets.ConvNet2DTranspose( output_channels=[256, 128, 64, 3], output_shapes=[(8, 8), (16, 16), (32, 32), (32, 32)], kernel_shapes=[(4, 4), (4, 4), (4, 4), (3, 3)], strides=[2, 2, 2, 1], normalization_ctor=norm_ctor, normalization_kwargs=norm_ctor_config, normalize_final=False, paddings=[snt.SAME], activate_final=False, activation=tf.nn.relu) output = net(first_tensor, is_training=is_training) return tf.nn.tanh(output) class ConvMetricNet(snt.AbstractModule): """Convolutional discriminator (metric) architecture.""" def __init__(self, num_outputs=2, use_sn=True, name='sn_metric'): super(ConvMetricNet, self).__init__(name=name) self._num_outputs = num_outputs self._use_sn = use_sn def _build(self, inputs): def build_net(): net = snt.nets.ConvNet2D( output_channels=[64, 64, 128, 128, 256, 256, 512], kernel_shapes=[ (3, 3), (4, 4), (3, 3), (4, 4), (3, 3), (4, 4), (3, 3)], strides=[1, 2, 1, 2, 1, 2, 1], paddings=[snt.SAME], activate_final=True, activation=functools.partial(tf.nn.leaky_relu, alpha=0.1)) linear = snt.Linear(self._num_outputs) output = linear(snt.BatchFlatten()(net(inputs))) return output if self._use_sn: with tf.variable_scope('', custom_getter=_sn_custom_getter()): output = build_net() else: output = build_net() return output class MLPGeneratorNet(snt.AbstractModule): """MNIST generator net.""" def __init__(self, name='mlp_generator'): super(MLPGeneratorNet, self).__init__(name=name) def _build(self, inputs, is_training=True): del is_training net = snt.nets.MLP([500, 500, 784], activation=tf.nn.leaky_relu) out = net(inputs) out = tf.nn.tanh(out) return snt.BatchReshape([28, 28, 1])(out) class MLPMetricNet(snt.AbstractModule): """Same as in Grover and Ermon, ICLR workshop 2017.""" def __init__(self, num_outputs=2, name='mlp_metric'): super(MLPMetricNet, self).__init__(name=name) self._layer_size = [500, 500, num_outputs] def _build(self, inputs): net = snt.nets.MLP(self._layer_size, activation=tf.nn.leaky_relu) output = net(snt.BatchFlatten()(inputs)) return output
deepmind-research-master
cs_gan/nets.py
# Copyright 2019 DeepMind Technologies Limited and Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sonnet as snt import tensorflow.compat.v1 as tf from cs_gan import gan class DummyGenerator(snt.AbstractModule): def __init__(self): super(DummyGenerator, self).__init__(name='dummy_generator') def _build(self, inputs, is_training): return snt.Linear(10)(inputs) class GanTest(tf.test.TestCase): def testConnect(self): discriminator = snt.Linear(2) generator = DummyGenerator() model = gan.GAN( discriminator, generator, num_z_iters=0, z_step_size=0.1, z_project_method='none', optimisation_cost_weight=0.0) generator_inputs = tf.ones((16, 3), dtype=tf.float32) data = tf.ones((16, 10)) opt_compoments, _ = model.connect(data, generator_inputs) self.assertIn('disc', opt_compoments) self.assertIn('gen', opt_compoments) self.assertCountEqual( opt_compoments['disc'].vars, discriminator.get_variables()) self.assertCountEqual( opt_compoments['gen'].vars, generator.get_variables() + model._log_step_size_module.get_variables()) if __name__ == '__main__': tf.test.main()
deepmind-research-master
cs_gan/tests/gan_test.py
# Copyright 2019 Deepmind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test for the Transporter module.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized import tensorflow.compat.v1 as tf from transporter import transporter IMAGE_H = 16 IMAGE_W = 16 IMAGE_C = 3 BATCH_SIZE = 4 IMAGE_BATCH_SHAPE = (BATCH_SIZE, IMAGE_H, IMAGE_W, IMAGE_C) FILTERS = (16, 16, 32, 32, 64, 64) STRIDES = (1, 1, 2, 1, 2, 1) KERNEL_SIZES = (7, 3, 3, 3, 3, 3) class TransporterTest(tf.test.TestCase, parameterized.TestCase): @parameterized.parameters( {'norm_type': 'batch'}, {'norm_type': 'layer'}, {'norm_type': 'instance'}) def test_output_shape(self, norm_type): encoder_ctor = transporter.Encoder encoder_kwargs = { 'filters': FILTERS, 'strides': STRIDES, 'kernel_sizes': KERNEL_SIZES, 'norm_type': norm_type, } decoder_filters = 4 num_keypoints = 5 gauss_std = 0.1 encoder = encoder_ctor(name='encoder', **encoder_kwargs) keypoint_encoder = encoder_ctor(name='keypoint_encoder', **encoder_kwargs) keypointer = transporter.KeyPointer(keypoint_encoder=keypoint_encoder, num_keypoints=num_keypoints, gauss_std=gauss_std) decoder = transporter.Decoder(initial_filters=decoder_filters, output_size=[IMAGE_H, IMAGE_W], output_channels=IMAGE_C, norm_type=norm_type) model = transporter.Transporter(encoder=encoder, decoder=decoder, keypointer=keypointer) image_a = tf.random.normal(IMAGE_BATCH_SHAPE) image_b = tf.random.normal(IMAGE_BATCH_SHAPE) transporter_results = model(image_a, image_b, is_training=True) reconstructed_image_b = transporter_results['reconstructed_image_b'] self.assertEqual(reconstructed_image_b.shape, IMAGE_BATCH_SHAPE) def testIncorrectEncoderShapes(self): """Test that a possible misconfiguration throws an error as expected. If the two encoders used produce different spatial sizes for their feature maps, this should cause an error when multiplying tensors together. """ decoder_filters = 4 num_keypoints = 5 gauss_std = 0.1 encoder = transporter.Encoder( filters=FILTERS, strides=STRIDES, kernel_sizes=KERNEL_SIZES) # Use less conv layers in this, in particular one less stride 2 layer, so # we will get a different spatial output resolution. keypoint_encoder = transporter.Encoder( filters=FILTERS[:-2], strides=STRIDES[:-2], kernel_sizes=KERNEL_SIZES[:-2]) keypointer = transporter.KeyPointer( keypoint_encoder=keypoint_encoder, num_keypoints=num_keypoints, gauss_std=gauss_std) decoder = transporter.Decoder( initial_filters=decoder_filters, output_size=[IMAGE_H, IMAGE_W], output_channels=IMAGE_C) model = transporter.Transporter( encoder=encoder, decoder=decoder, keypointer=keypointer) with self.assertRaisesRegexp(ValueError, 'Dimensions must be equal'): model(tf.random.normal(IMAGE_BATCH_SHAPE), tf.random.normal(IMAGE_BATCH_SHAPE), is_training=True) class EncoderTest(tf.test.TestCase): def test_output_shape(self): image_batch = tf.random.normal(shape=IMAGE_BATCH_SHAPE) filters = (4, 4, 8, 8, 16, 16) encoder = transporter.Encoder(filters=filters, strides=STRIDES, kernel_sizes=KERNEL_SIZES) features = encoder(image_batch, is_training=True) self.assertEqual(features.shape, (BATCH_SIZE, IMAGE_H // 4, IMAGE_W // 4, filters[-1])) class KeyPointerTest(tf.test.TestCase): def test_output_shape(self): image_batch = tf.random.normal(shape=IMAGE_BATCH_SHAPE) num_keypoints = 6 gauss_std = 0.1 keypoint_encoder = transporter.Encoder(filters=FILTERS, strides=STRIDES, kernel_sizes=KERNEL_SIZES) keypointer = transporter.KeyPointer(keypoint_encoder=keypoint_encoder, num_keypoints=num_keypoints, gauss_std=gauss_std) keypointer_results = keypointer(image_batch, is_training=True) self.assertEqual(keypointer_results['centers'].shape, (BATCH_SIZE, num_keypoints, 2)) self.assertEqual(keypointer_results['heatmaps'].shape, (BATCH_SIZE, IMAGE_H // 4, IMAGE_W // 4, num_keypoints)) class DecoderTest(tf.test.TestCase): def test_output_shape(self): feature_batch = tf.random.normal(shape=(BATCH_SIZE, IMAGE_H // 4, IMAGE_W // 4, 64)) decoder = transporter.Decoder(initial_filters=64, output_size=[IMAGE_H, IMAGE_W], output_channels=IMAGE_C) reconstructed_image_batch = decoder(feature_batch, is_training=True) self.assertEqual(reconstructed_image_batch.shape, IMAGE_BATCH_SHAPE) def test_encoder_decoder_output_shape(self): image_batch = tf.random.normal(shape=IMAGE_BATCH_SHAPE) encoder = transporter.Encoder(filters=FILTERS, strides=STRIDES, kernel_sizes=KERNEL_SIZES) decoder = transporter.Decoder(initial_filters=4, output_size=[IMAGE_H, IMAGE_W], output_channels=IMAGE_C) features = encoder(image_batch, is_training=True) reconstructed_images = decoder(features, is_training=True) self.assertEqual(reconstructed_images.shape, IMAGE_BATCH_SHAPE) if __name__ == '__main__': tf.test.main()
deepmind-research-master
transporter/transporter_test.py
# Copyright 2019 Deepmind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Transporter architecture in Sonnet/TF 1: https://arxiv.org/abs/1906.11883.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import sonnet as snt import tensorflow.compat.v1 as tf from tensorflow.contrib import framework as contrib_framework from tensorflow.contrib import layers as contrib_layers nest = contrib_framework.nest # Paper submission used BatchNorm, but we have since found that Layer & Instance # norm can be quite a lot more stable. _NORMALIZATION_CTORS = { "layer": snt.LayerNorm, "instance": functools.partial(snt.LayerNorm, axis=[1, 2]), "batch": snt.BatchNormV2, } def _connect_module_with_kwarg_if_supported(module, input_tensor, kwarg_name, kwarg_value): """Connects a module to some input, plus a kwarg= if supported by module.""" if snt.supports_kwargs(module, kwarg_name) == "supported": kwargs = {kwarg_name: kwarg_value} else: kwargs = {} return module(input_tensor, **kwargs) class Transporter(snt.AbstractModule): """Sonnet module implementing the Transporter architecture.""" def __init__( self, encoder, keypointer, decoder, name="transporter"): """Initialize the Transporter module. Args: encoder: `snt.AbstractModule` mapping images to features (see `Encoder`) keypointer: `snt.AbstractModule` mapping images to keypoint masks (see `KeyPointer`) decoder: `snt.AbstractModule` decoding features to images (see `Decoder`) name: `str` module name """ super(Transporter, self).__init__(name=name) self._encoder = encoder self._decoder = decoder self._keypointer = keypointer def _build(self, image_a, image_b, is_training): """Reconstructs image_b using feature transport from image_a. This approaches matches the NeurIPS submission. Args: image_a: Tensor of shape [B, H, W, C] containing a batch of images. image_b: Tensor of shape [B, H, W, C] containing a batch of images. is_training: `bool` indication whether the model is in training mode. Returns: A dict containing keys: 'reconstructed_image_b': Reconstruction of image_b, with the same shape. 'features_a': Tensor of shape [B, F_h, F_w, N] of the extracted features for `image_a`. 'features_b': Tensor of shape [B, F_h, F_w, N] of the extracted features for `image_b`. 'keypoints_a': The result of the keypointer module on image_a, with stop gradients applied. 'keypoints_b': The result of the keypointer module on image_b. """ # Process both images. All gradients related to image_a are stopped. image_a_features = tf.stop_gradient( self._encoder(image_a, is_training=is_training)) image_a_keypoints = nest.map_structure( tf.stop_gradient, self._keypointer(image_a, is_training=is_training)) image_b_features = self._encoder(image_b, is_training=is_training) image_b_keypoints = self._keypointer(image_b, is_training=is_training) # Transport features num_keypoints = image_a_keypoints["heatmaps"].shape[-1] transported_features = image_a_features for k in range(num_keypoints): mask_a = image_a_keypoints["heatmaps"][..., k, None] mask_b = image_b_keypoints["heatmaps"][..., k, None] # suppress features from image a, around both keypoint locations. transported_features = ( (1 - mask_a) * (1 - mask_b) * transported_features) # copy features from image b around keypoints for image b. transported_features += (mask_b * image_b_features) reconstructed_image_b = self._decoder( transported_features, is_training=is_training) return { "reconstructed_image_b": reconstructed_image_b, "features_a": image_a_features, "features_b": image_b_features, "keypoints_a": image_a_keypoints, "keypoints_b": image_b_keypoints, } def reconstruction_loss(image, predicted_image, loss_type="l2"): """Returns the reconstruction loss between the image and the predicted_image. Args: image: target image tensor of shape [B, H, W, C] predicted_image: reconstructed image as returned by the model loss_type: `str` reconstruction loss, either `l2` (default) or `l1`. Returns: The reconstruction loss """ if loss_type == "l2": return tf.reduce_mean(tf.square(image - predicted_image)) elif loss_type == "l1": return tf.reduce_mean(tf.abs(image - predicted_image)) else: raise ValueError("Unknown loss type: {}".format(loss_type)) class Encoder(snt.AbstractModule): """Encoder module mapping an image to features. The encoder is a standard convolutional network with ReLu activations. """ def __init__( self, filters=(16, 16, 32, 32), kernel_sizes=(7, 3, 3, 3), strides=(1, 1, 2, 1), norm_type="batch", name="encoder"): """Initialize the Encoder. Args: filters: tuple of `int`. The ith layer of the encoder will consist of `filters[i]` filters. kernel_sizes: tuple of `int` kernel sizes for each layer strides: tuple of `int` strides for each layer norm_type: string, one of 'instance', 'layer', 'batch'. name: `str` name of the module. """ super(Encoder, self).__init__(name=name) if len({len(filters), len(kernel_sizes), len(strides)}) != 1: raise ValueError( "length of filters/kernel_sizes/strides lists must be the same") self._filters = filters self._kernels = kernel_sizes self._strides = strides self._norm_ctor = _NORMALIZATION_CTORS[norm_type] def _build(self, image, is_training): """Connect the Encoder. Args: image: A batch of images of shape [B, H, W, C] is_training: `bool` indicating if the model is in training mode. Returns: A tensor of features of shape [B, F_h, F_w, N] where F_h and F_w are the height and width of the feature map and N = 4 * `self._filters` """ regularizers = {"w": contrib_layers.l2_regularizer(1.0)} features = image for l in range(len(self._filters)): with tf.variable_scope("conv_{}".format(l + 1)): conv = snt.Conv2D( self._filters[l], self._kernels[l], self._strides[l], padding=snt.SAME, regularizers=regularizers, name="conv_{}".format(l+1)) norm_module = self._norm_ctor(name="normalization") features = conv(features) features = _connect_module_with_kwarg_if_supported( norm_module, features, "is_training", is_training) features = tf.nn.relu(features) return features class KeyPointer(snt.AbstractModule): """Module for extracting keypoints from an image.""" def __init__(self, num_keypoints, gauss_std, keypoint_encoder, custom_getter=None, name="key_pointer"): """Iniitialize the keypointer. Args: num_keypoints: `int` number of keypoints to extract gauss_std: `float` size of the keypoints, relative to the image dimensions normalized to the range [-1, 1] keypoint_encoder: sonnet Module which produces a feature map. Must accept an is_training kwarg. When used in the Transporter, the output spatial resolution of this encoder should match the output spatial resolution of the other encoder, although these two encoders should not share weights. custom_getter: optional custom getter for variables in this module. name: `str` name of the module """ super(KeyPointer, self).__init__(name=name, custom_getter=custom_getter) self._num_keypoints = num_keypoints self._gauss_std = gauss_std self._keypoint_encoder = keypoint_encoder def _build(self, image, is_training): """Compute the gaussian keypoints for the image. Args: image: Image tensor of shape [B, H, W, C] is_training: `bool` whether the model is in training or evaluation mode Returns: a dict with keys: 'centers': A tensor of shape [B, K, 2] of the center locations for each of the K keypoints. 'heatmaps': A tensor of shape [B, F_h, F_w, K] of gaussian maps over the keypoints, where [F_h, F_w] is the size of the keypoint_encoder feature maps. """ conv = snt.Conv2D( self._num_keypoints, [1, 1], stride=1, regularizers={"w": contrib_layers.l2_regularizer(1.0)}, name="conv_1/conv_1") image_features = self._keypoint_encoder(image, is_training=is_training) keypoint_features = conv(image_features) return get_keypoint_data_from_feature_map( keypoint_features, self._gauss_std) def get_keypoint_data_from_feature_map(feature_map, gauss_std): """Returns keypoint information from a feature map. Args: feature_map: [B, H, W, K] Tensor, should be activations from a convnet. gauss_std: float, the standard deviation of the gaussians to be put around the keypoints. Returns: a dict with keys: 'centers': A tensor of shape [B, K, 2] of the center locations for each of the K keypoints. 'heatmaps': A tensor of shape [B, H, W, K] of gaussian maps over the keypoints. """ gauss_mu = _get_keypoint_mus(feature_map) map_size = feature_map.shape.as_list()[1:3] gauss_maps = _get_gaussian_maps(gauss_mu, map_size, 1.0 / gauss_std) return { "centers": gauss_mu, "heatmaps": gauss_maps, } def _get_keypoint_mus(keypoint_features): """Returns the keypoint center points. Args: keypoint_features: A tensor of shape [B, F_h, F_w, K] where K is the number of keypoints to extract. Returns: A tensor of shape [B, K, 2] of the y, x center points of each keypoint. Each center point are in the range [-1, 1]^2. Note: the first element is the y coordinate, the second is the x coordinate. """ gauss_y = _get_coord(keypoint_features, 1) gauss_x = _get_coord(keypoint_features, 2) gauss_mu = tf.stack([gauss_y, gauss_x], axis=2) return gauss_mu def _get_coord(features, axis): """Returns the keypoint coordinate encoding for the given axis. Args: features: A tensor of shape [B, F_h, F_w, K] where K is the number of keypoints to extract. axis: `int` which axis to extract the coordinate for. Has to be axis 1 or 2. Returns: A tensor of shape [B, K] containing the keypoint centers along the given axis. The location is given in the range [-1, 1]. """ if axis != 1 and axis != 2: raise ValueError("Axis needs to be 1 or 2.") other_axis = 1 if axis == 2 else 2 axis_size = features.shape[axis] # Compute the normalized weight for each row/column along the axis g_c_prob = tf.reduce_mean(features, axis=other_axis) g_c_prob = tf.nn.softmax(g_c_prob, axis=1) # Linear combination of the interval [-1, 1] using the normalized weights to # give a single coordinate in the same interval [-1, 1] scale = tf.cast(tf.linspace(-1.0, 1.0, axis_size), tf.float32) scale = tf.reshape(scale, [1, axis_size, 1]) coordinate = tf.reduce_sum(g_c_prob * scale, axis=1) return coordinate def _get_gaussian_maps(mu, map_size, inv_std, power=2): """Transforms the keypoint center points to a gaussian masks.""" mu_y, mu_x = mu[:, :, 0:1], mu[:, :, 1:2] y = tf.cast(tf.linspace(-1.0, 1.0, map_size[0]), tf.float32) x = tf.cast(tf.linspace(-1.0, 1.0, map_size[1]), tf.float32) mu_y, mu_x = tf.expand_dims(mu_y, -1), tf.expand_dims(mu_x, -1) y = tf.reshape(y, [1, 1, map_size[0], 1]) x = tf.reshape(x, [1, 1, 1, map_size[1]]) g_y = tf.pow(y - mu_y, power) g_x = tf.pow(x - mu_x, power) dist = (g_y + g_x) * tf.pow(inv_std, power) g_yx = tf.exp(-dist) g_yx = tf.transpose(g_yx, perm=[0, 2, 3, 1]) return g_yx class Decoder(snt.AbstractModule): """Decoder reconstruction network. The decoder is a standard convolutional network with ReLu activations. """ def __init__(self, initial_filters, output_size, output_channels=3, norm_type="batch", name="decoder"): """Initialize the decoder. Args: initial_filters: `int` number of initial filters used in the decoder output_size: tuple of `int` height and width of the reconstructed image output_channels: `int` number of output channels, for RGB use 3 (default) norm_type: string, one of 'instance', 'layer', 'batch'. name: `str` name of the module """ super(Decoder, self).__init__(name=name) self._initial_filters = initial_filters self._output_height = output_size[0] self._output_width = output_size[1] self._output_channels = output_channels self._norm_ctor = _NORMALIZATION_CTORS[norm_type] def _build(self, features, is_training): """Connect the Decoder. Args: features: Tensor of shape [B, F_h, F_w, N] is_training: `bool` whether the module is in training mode. Returns: A reconstructed image tensor of shape [B, output_height, output_width, output_channels] """ height, width = features.shape.as_list()[1:3] filters = self._initial_filters regularizers = {"w": contrib_layers.l2_regularizer(1.0)} layer = 0 while height <= self._output_height: layer += 1 with tf.variable_scope("conv_{}".format(layer)): conv1 = snt.Conv2D( filters, [3, 3], stride=1, regularizers=regularizers, name="conv_{}".format(layer)) norm_module = self._norm_ctor(name="normalization") features = conv1(features) features = _connect_module_with_kwarg_if_supported( norm_module, features, "is_training", is_training) features = tf.nn.relu(features) if height == self._output_height: layer += 1 with tf.variable_scope("conv_{}".format(layer)): conv2 = snt.Conv2D( self._output_channels, [3, 3], stride=1, regularizers=regularizers, name="conv_{}".format(layer)) features = conv2(features) break else: layer += 1 with tf.variable_scope("conv_{}".format(layer)): conv2 = snt.Conv2D( filters, [3, 3], stride=1, regularizers=regularizers, name="conv_{}".format(layer)) norm_module = self._norm_ctor(name="normalization") features = conv2(features) features = _connect_module_with_kwarg_if_supported( norm_module, features, "is_training", is_training) features = tf.nn.relu(features) height *= 2 width *= 2 features = tf.image.resize(features, [height, width]) if filters >= 8: filters /= 2 assert height == self._output_height assert width == self._output_width return features
deepmind-research-master
transporter/transporter.py
# Copyright 2019 Deepmind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Single file script for doing a quick evaluation of a model. This script is called by run.sh. Usage: user@host:/path/to/deepmind_research$ unsupervised_adversarial_training/run.sh """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections from absl import app from absl import flags import cleverhans from cleverhans import attacks import numpy as np import tensorflow.compat.v1 as tf import tensorflow_hub as hub UAT_HUB_URL = ('https://tfhub.dev/deepmind/unsupervised-adversarial-training/' 'cifar10/wrn_106/1') FLAGS = flags.FLAGS flags.DEFINE_enum('attack_fn_name', 'fgsm', ['fgsm', 'none'], 'Name of the attack method to use.') flags.DEFINE_float('epsilon_attack', 8.0 / 255, 'Maximum allowable perturbation size, between 0 and 1.') flags.DEFINE_integer('num_steps', 20, 'Number of attack iterations.') flags.DEFINE_integer('num_batches', 100, 'Number of batches to evaluate.') flags.DEFINE_integer('batch_size', 32, 'Batch size.') flags.DEFINE_integer('skip_batches', 0, 'Controls index of start image. This can be used to ' 'evaluate the model on different subsets of the test set.') flags.DEFINE_float('learning_rate', 0.003, 'Attack optimizer learning rate.') def _top_1_accuracy(logits, labels): return tf.reduce_mean(tf.cast(tf.nn.in_top_k(logits, labels, 1), tf.float32)) def make_classifier(): model = hub.Module(UAT_HUB_URL) def classifier(x): x = _cifar_meanstd_normalize(x) model_input = dict(x=x, decay_rate=0.1, prefix='default') return model(model_input) return classifier def eval_cifar(): """Evaluate an adversarially trained model.""" attack_fn_name = FLAGS.attack_fn_name total_batches = FLAGS.num_batches batch_size = FLAGS.batch_size # Note that a `classifier` is a function mapping [0,1]-scaled image Tensors # to a logit Tensor. In particular, it includes *both* the preprocessing # function, and the neural network. classifier = make_classifier() cleverhans_model = cleverhans.model.CallableModelWrapper(classifier, 'logits') _, data_test = tf.keras.datasets.cifar10.load_data() data = _build_dataset(data_test, batch_size=batch_size, shuffle=False) # Generate adversarial images. if attack_fn_name == 'fgsm': attack = attacks.MadryEtAl(cleverhans_model) num_cifar_classes = 10 adv_x = attack.generate(data.image, eps=FLAGS.epsilon_attack, eps_iter=FLAGS.learning_rate, nb_iter=FLAGS.num_steps, y=tf.one_hot(data.label, depth=num_cifar_classes)) elif attack_fn_name == 'none': adv_x = data.image logits = classifier(adv_x) probs = tf.nn.softmax(logits) adv_acc = _top_1_accuracy(logits, data.label) with tf.train.SingularMonitoredSession() as sess: total_acc = 0. for _ in range(FLAGS.skip_batches): sess.run(data.image) for _ in range(total_batches): _, _, adv_acc_val = sess.run([probs, data.label, adv_acc]) total_acc += adv_acc_val print('Batch accuracy: {}'.format(adv_acc_val)) print('Total accuracy against {}: {}'.format( FLAGS.attack_fn_name, total_acc / total_batches)) ########## Utilities ########## # Defines a dataset sample.""" Sample = collections.namedtuple('Sample', ['image', 'label']) def _build_dataset(raw_data, batch_size=32, shuffle=False): """Builds a dataset from raw NumPy tensors. Args: raw_data: Pair (images, labels) of numpy arrays. `images` should have shape (N, H, W, C) with values in [0, 255], and `labels` should have shape (N,) or (N, 1) indicating class indices. batch_size: int, batch size shuffle: bool, whether to shuffle the data (default: True). Returns: (image_tensor, label_tensor), which iterate over the dataset, which are (batch_size, H, W, C) tf.float32 and (batch_size,) tf.int32 Tensors respectively """ images, labels = raw_data labels = np.squeeze(labels) samples = Sample(images.astype(np.float32) / 255., labels.astype(np.int64)) data = tf.data.Dataset.from_tensor_slices(samples) if shuffle: data = data.shuffle(1000) return data.repeat().batch(batch_size).make_one_shot_iterator().get_next() def _cifar_meanstd_normalize(image): """Mean + stddev whitening for CIFAR-10 used in ResNets. Args: image: Numpy array or TF Tensor, with values in [0, 255] Returns: image: Numpy array or TF Tensor, shifted and scaled by mean/stdev on CIFAR-10 dataset. """ # Channel-wise means and std devs calculated from the CIFAR-10 training set cifar_means = [125.3, 123.0, 113.9] cifar_devs = [63.0, 62.1, 66.7] rescaled_means = [x / 255. for x in cifar_means] rescaled_devs = [x / 255. for x in cifar_devs] image = (image - rescaled_means) / rescaled_devs return image def main(unused_argv): eval_cifar() if __name__ == '__main__': app.run(main)
deepmind-research-master
unsupervised_adversarial_training/quick_eval_cifar.py
# Copyright 2019 Deepmind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r"""Loads images from the 80M@200K training set and saves them in PNG format. Usage: cd /path/to/deepmind_research python -m unsupervised_adversarial_training.save_example_images \ --data_bin_path=/path/to/tiny_images.bin """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from absl import app from absl import flags import numpy as np from PIL import Image DIR_NAME = os.path.dirname(__file__) FLAGS = flags.FLAGS flags.DEFINE_string('data_bin_path', None, 'path to 80M Tiny Images data binary') flags.DEFINE_string('idxs_path', os.path.join(DIR_NAME, 'tiny_200K_idxs.txt'), 'path to file of indices indicating subset of 80M dataset') flags.DEFINE_string('output_dir', os.path.join(DIR_NAME, 'images'), 'path to output directory for images') flags.mark_flag_as_required('data_bin_path') CIFAR_LABEL_IDX_TO_NAME = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] DATASET_SIZE = 79302017 def _load_dataset_as_array(ds_path): dataset = np.memmap(filename=ds_path, dtype=np.uint8, mode='r', shape=(DATASET_SIZE, 3, 32, 32)) return dataset.transpose([0, 3, 2, 1]) def main(unused_argv): dataset = _load_dataset_as_array(FLAGS.data_bin_path) # Load the indices and labels of the 80M@200K training set data_idxs, data_labels = np.loadtxt( FLAGS.idxs_path, delimiter=',', dtype=[('index', np.uint64), ('label', np.uint8)], unpack=True) # Save images as PNG files if not os.path.exists(FLAGS.output_dir): os.makedirs(FLAGS.output_dir) for i in range(100): class_name = CIFAR_LABEL_IDX_TO_NAME[data_labels[i]] file_name = 'im{}_{}.png'.format(i, class_name) file_path = os.path.join(FLAGS.output_dir, file_name) img = dataset[data_idxs[i]] Image.fromarray(img).save(file_path) if __name__ == '__main__': app.run(main)
deepmind-research-master
unsupervised_adversarial_training/save_example_images.py
# Copyright 2020 Deepmind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the PolyGen open-source version.""" from modules import FaceModel from modules import VertexModel import numpy as np import tensorflow as tf _BATCH_SIZE = 4 _TRANSFORMER_CONFIG = { 'num_layers': 2, 'hidden_size': 64, 'fc_size': 256 } _CLASS_CONDITIONAL = True _NUM_CLASSES = 4 _NUM_INPUT_VERTS = 50 _NUM_PAD_VERTS = 10 _NUM_INPUT_FACE_INDICES = 200 _QUANTIZATION_BITS = 8 _VERTEX_MODEL_USE_DISCRETE_EMBEDDINGS = True _FACE_MODEL_DECODER_CROSS_ATTENTION = True _FACE_MODEL_DISCRETE_EMBEDDINGS = True _MAX_SAMPLE_LENGTH_VERTS = 10 _MAX_SAMPLE_LENGTH_FACES = 10 def _get_vertex_model_batch(): """Returns batch with placeholders for vertex model inputs.""" return { 'class_label': tf.range(_BATCH_SIZE), 'vertices_flat': tf.placeholder( dtype=tf.int32, shape=[_BATCH_SIZE, None]), } def _get_face_model_batch(): """Returns batch with placeholders for face model inputs.""" return { 'vertices': tf.placeholder( dtype=tf.float32, shape=[_BATCH_SIZE, None, 3]), 'vertices_mask': tf.placeholder( dtype=tf.float32, shape=[_BATCH_SIZE, None]), 'faces': tf.placeholder( dtype=tf.int32, shape=[_BATCH_SIZE, None]), } class VertexModelTest(tf.test.TestCase): def setUp(self): """Defines a vertex model.""" super(VertexModelTest, self).setUp() self.model = VertexModel( decoder_config=_TRANSFORMER_CONFIG, class_conditional=_CLASS_CONDITIONAL, num_classes=_NUM_CLASSES, max_num_input_verts=_NUM_INPUT_VERTS, quantization_bits=_QUANTIZATION_BITS, use_discrete_embeddings=_VERTEX_MODEL_USE_DISCRETE_EMBEDDINGS) def test_model_runs(self): """Tests if the model runs without crashing.""" batch = _get_vertex_model_batch() pred_dist = self.model(batch, is_training=False) logits = pred_dist.logits with self.session() as sess: sess.run(tf.global_variables_initializer()) vertices_flat = np.random.randint( 2**_QUANTIZATION_BITS + 1, size=[_BATCH_SIZE, _NUM_INPUT_VERTS * 3 + 1]) sess.run(logits, {batch['vertices_flat']: vertices_flat}) def test_sample_outputs_range(self): """Tests if the model produces samples in the correct range.""" context = {'class_label': tf.zeros((_BATCH_SIZE,), dtype=tf.int32)} sample_dict = self.model.sample( _BATCH_SIZE, max_sample_length=_MAX_SAMPLE_LENGTH_VERTS, context=context) with self.session() as sess: sess.run(tf.global_variables_initializer()) sample_dict_np = sess.run(sample_dict) in_range = np.logical_and( 0 <= sample_dict_np['vertices'], sample_dict_np['vertices'] <= 2**_QUANTIZATION_BITS).all() self.assertTrue(in_range) class FaceModelTest(tf.test.TestCase): def setUp(self): """Defines a face model.""" super(FaceModelTest, self).setUp() self.model = FaceModel( encoder_config=_TRANSFORMER_CONFIG, decoder_config=_TRANSFORMER_CONFIG, class_conditional=False, max_seq_length=_NUM_INPUT_FACE_INDICES, decoder_cross_attention=_FACE_MODEL_DECODER_CROSS_ATTENTION, use_discrete_vertex_embeddings=_FACE_MODEL_DISCRETE_EMBEDDINGS, quantization_bits=_QUANTIZATION_BITS) def test_model_runs(self): """Tests if the model runs without crashing.""" batch = _get_face_model_batch() pred_dist = self.model(batch, is_training=False) logits = pred_dist.logits with self.session() as sess: sess.run(tf.global_variables_initializer()) vertices = np.random.rand(_BATCH_SIZE, _NUM_INPUT_VERTS, 3) - 0.5 vertices_mask = np.ones([_BATCH_SIZE, _NUM_INPUT_VERTS]) faces = np.random.randint( _NUM_INPUT_VERTS + 2, size=[_BATCH_SIZE, _NUM_INPUT_FACE_INDICES]) sess.run( logits, {batch['vertices']: vertices, batch['vertices_mask']: vertices_mask, batch['faces']: faces} ) def test_sample_outputs_range(self): """Tests if the model produces samples in the correct range.""" context = _get_face_model_batch() del context['faces'] sample_dict = self.model.sample( context, max_sample_length=_MAX_SAMPLE_LENGTH_FACES) with self.session() as sess: sess.run(tf.global_variables_initializer()) # Pad the vertices in order to test that the face model only outputs # vertex indices in the unpadded range vertices = np.pad( np.random.rand(_BATCH_SIZE, _NUM_INPUT_VERTS, 3) - 0.5, [[0, 0], [0, _NUM_PAD_VERTS], [0, 0]], mode='constant') vertices_mask = np.pad( np.ones([_BATCH_SIZE, _NUM_INPUT_VERTS]), [[0, 0], [0, _NUM_PAD_VERTS]], mode='constant') sample_dict_np = sess.run( sample_dict, {context['vertices']: vertices, context['vertices_mask']: vertices_mask}) in_range = np.logical_and( 0 <= sample_dict_np['faces'], sample_dict_np['faces'] <= _NUM_INPUT_VERTS + 1).all() self.assertTrue(in_range) if __name__ == '__main__': tf.test.main()
deepmind-research-master
polygen/model_test.py
# Copyright 2020 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Setup for pip package.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from setuptools import find_packages from setuptools import setup REQUIRED_PACKAGES = ['numpy', 'dm-sonnet==1.36', 'tensorflow==1.14', 'tensor2tensor==1.15', 'networkx', 'matplotlib', 'six'] setup( name='polygen', version='0.1', description='A library for PolyGen: An Autoregressive Generative Model of 3D Meshes.', url='https://github.com/deepmind/deepmind-research/polygen', author='DeepMind', author_email='[email protected]', # Contained modules and scripts. packages=find_packages(), install_requires=REQUIRED_PACKAGES, platforms=['any'], license='Apache 2.0', )
deepmind-research-master
polygen/setup.py
# Copyright 2020 Deepmind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Mesh data utilities.""" import matplotlib.pyplot as plt import modules from mpl_toolkits import mplot3d # pylint: disable=unused-import from mpl_toolkits.mplot3d.art3d import Poly3DCollection import networkx as nx import numpy as np import six from six.moves import range import tensorflow.compat.v1 as tf import tensorflow_probability as tfp tfd = tfp.distributions def random_shift(vertices, shift_factor=0.25): """Apply random shift to vertices.""" max_shift_pos = tf.cast(255 - tf.reduce_max(vertices, axis=0), tf.float32) max_shift_pos = tf.maximum(max_shift_pos, 1e-9) max_shift_neg = tf.cast(tf.reduce_min(vertices, axis=0), tf.float32) max_shift_neg = tf.maximum(max_shift_neg, 1e-9) shift = tfd.TruncatedNormal( tf.zeros([1, 3]), shift_factor*255, -max_shift_neg, max_shift_pos).sample() shift = tf.cast(shift, tf.int32) vertices += shift return vertices def make_vertex_model_dataset(ds, apply_random_shift=False): """Prepare dataset for vertex model training.""" def _vertex_model_map_fn(example): vertices = example['vertices'] # Randomly shift vertices if apply_random_shift: vertices = random_shift(vertices) # Re-order vertex coordinates as (z, y, x). vertices_permuted = tf.stack( [vertices[:, 2], vertices[:, 1], vertices[:, 0]], axis=-1) # Flatten quantized vertices, reindex starting from 1, and pad with a # zero stopping token. vertices_flat = tf.reshape(vertices_permuted, [-1]) example['vertices_flat'] = tf.pad(vertices_flat + 1, [[0, 1]]) # Create mask to indicate valid tokens after padding and batching. example['vertices_flat_mask'] = tf.ones_like( example['vertices_flat'], dtype=tf.float32) return example return ds.map(_vertex_model_map_fn) def make_face_model_dataset( ds, apply_random_shift=False, shuffle_vertices=True, quantization_bits=8): """Prepare dataset for face model training.""" def _face_model_map_fn(example): vertices = example['vertices'] # Randomly shift vertices if apply_random_shift: vertices = random_shift(vertices) example['num_vertices'] = tf.shape(vertices)[0] # Optionally shuffle vertices and re-order faces to match if shuffle_vertices: permutation = tf.random_shuffle(tf.range(example['num_vertices'])) vertices = tf.gather(vertices, permutation) face_permutation = tf.concat( [tf.constant([0, 1], dtype=tf.int32), tf.argsort(permutation) + 2], axis=0) example['faces'] = tf.cast( tf.gather(face_permutation, example['faces']), tf.int64) # Vertices are quantized. So convert to floats for input to face model example['vertices'] = modules.dequantize_verts(vertices, quantization_bits) example['vertices_mask'] = tf.ones_like( example['vertices'][..., 0], dtype=tf.float32) example['faces_mask'] = tf.ones_like(example['faces'], dtype=tf.float32) return example return ds.map(_face_model_map_fn) def read_obj(obj_path): """Read vertices and faces from .obj file.""" vertex_list = [] flat_vertices_list = [] flat_vertices_indices = {} flat_triangles = [] with open(obj_path) as obj_file: for line in obj_file: tokens = line.split() if not tokens: continue line_type = tokens[0] # We skip lines not starting with v or f. if line_type == 'v': vertex_list.append([float(x) for x in tokens[1:]]) elif line_type == 'f': triangle = [] for i in range(len(tokens) - 1): vertex_name = tokens[i + 1] if vertex_name in flat_vertices_indices: triangle.append(flat_vertices_indices[vertex_name]) continue flat_vertex = [] for index in six.ensure_str(vertex_name).split('/'): if not index: continue # obj triangle indices are 1 indexed, so subtract 1 here. flat_vertex += vertex_list[int(index) - 1] flat_vertex_index = len(flat_vertices_list) flat_vertices_list.append(flat_vertex) flat_vertices_indices[vertex_name] = flat_vertex_index triangle.append(flat_vertex_index) flat_triangles.append(triangle) return np.array(flat_vertices_list, dtype=np.float32), flat_triangles def write_obj(vertices, faces, file_path, transpose=True, scale=1.): """Write vertices and faces to obj.""" if transpose: vertices = vertices[:, [1, 2, 0]] vertices *= scale if faces is not None: if min(min(faces)) == 0: f_add = 1 else: f_add = 0 with open(file_path, 'w') as f: for v in vertices: f.write('v {} {} {}\n'.format(v[0], v[1], v[2])) for face in faces: line = 'f' for i in face: line += ' {}'.format(i + f_add) line += '\n' f.write(line) def quantize_verts(verts, n_bits=8): """Convert vertices in [-1., 1.] to discrete values in [0, n_bits**2 - 1].""" min_range = -0.5 max_range = 0.5 range_quantize = 2**n_bits - 1 verts_quantize = (verts - min_range) * range_quantize / ( max_range - min_range) return verts_quantize.astype('int32') def dequantize_verts(verts, n_bits=8, add_noise=False): """Convert quantized vertices to floats.""" min_range = -0.5 max_range = 0.5 range_quantize = 2**n_bits - 1 verts = verts.astype('float32') verts = verts * (max_range - min_range) / range_quantize + min_range if add_noise: verts += np.random.uniform(size=verts.shape) * (1 / range_quantize) return verts def face_to_cycles(face): """Find cycles in face.""" g = nx.Graph() for v in range(len(face) - 1): g.add_edge(face[v], face[v + 1]) g.add_edge(face[-1], face[0]) return list(nx.cycle_basis(g)) def flatten_faces(faces): """Converts from list of faces to flat face array with stopping indices.""" if not faces: return np.array([0]) else: l = [f + [-1] for f in faces[:-1]] l += [faces[-1] + [-2]] return np.array([item for sublist in l for item in sublist]) + 2 # pylint: disable=g-complex-comprehension def unflatten_faces(flat_faces): """Converts from flat face sequence to a list of separate faces.""" def group(seq): g = [] for el in seq: if el == 0 or el == -1: yield g g = [] else: g.append(el - 1) yield g outputs = list(group(flat_faces - 1))[:-1] # Remove empty faces return [o for o in outputs if len(o) > 2] def center_vertices(vertices): """Translate the vertices so that bounding box is centered at zero.""" vert_min = vertices.min(axis=0) vert_max = vertices.max(axis=0) vert_center = 0.5 * (vert_min + vert_max) return vertices - vert_center def normalize_vertices_scale(vertices): """Scale the vertices so that the long diagonal of the bounding box is one.""" vert_min = vertices.min(axis=0) vert_max = vertices.max(axis=0) extents = vert_max - vert_min scale = np.sqrt(np.sum(extents**2)) return vertices / scale def quantize_process_mesh(vertices, faces, tris=None, quantization_bits=8): """Quantize vertices, remove resulting duplicates and reindex faces.""" vertices = quantize_verts(vertices, quantization_bits) vertices, inv = np.unique(vertices, axis=0, return_inverse=True) # Sort vertices by z then y then x. sort_inds = np.lexsort(vertices.T) vertices = vertices[sort_inds] # Re-index faces and tris to re-ordered vertices. faces = [np.argsort(sort_inds)[inv[f]] for f in faces] if tris is not None: tris = np.array([np.argsort(sort_inds)[inv[t]] for t in tris]) # Merging duplicate vertices and re-indexing the faces causes some faces to # contain loops (e.g [2, 3, 5, 2, 4]). Split these faces into distinct # sub-faces. sub_faces = [] for f in faces: cliques = face_to_cycles(f) for c in cliques: c_length = len(c) # Only append faces with more than two verts. if c_length > 2: d = np.argmin(c) # Cyclically permute faces just that first index is the smallest. sub_faces.append([c[(d + i) % c_length] for i in range(c_length)]) faces = sub_faces if tris is not None: tris = np.array([v for v in tris if len(set(v)) == len(v)]) # Sort faces by lowest vertex indices. If two faces have the same lowest # index then sort by next lowest and so on. faces.sort(key=lambda f: tuple(sorted(f))) if tris is not None: tris = tris.tolist() tris.sort(key=lambda f: tuple(sorted(f))) tris = np.array(tris) # After removing degenerate faces some vertices are now unreferenced. # Remove these. num_verts = vertices.shape[0] vert_connected = np.equal( np.arange(num_verts)[:, None], np.hstack(faces)[None]).any(axis=-1) vertices = vertices[vert_connected] # Re-index faces and tris to re-ordered vertices. vert_indices = ( np.arange(num_verts) - np.cumsum(1 - vert_connected.astype('int'))) faces = [vert_indices[f].tolist() for f in faces] if tris is not None: tris = np.array([vert_indices[t].tolist() for t in tris]) return vertices, faces, tris def load_process_mesh(mesh_obj_path, quantization_bits=8): """Load obj file and process.""" # Load mesh vertices, faces = read_obj(mesh_obj_path) # Transpose so that z-axis is vertical. vertices = vertices[:, [2, 0, 1]] # Translate the vertices so that bounding box is centered at zero. vertices = center_vertices(vertices) # Scale the vertices so that the long diagonal of the bounding box is equal # to one. vertices = normalize_vertices_scale(vertices) # Quantize and sort vertices, remove resulting duplicates, sort and reindex # faces. vertices, faces, _ = quantize_process_mesh( vertices, faces, quantization_bits=quantization_bits) # Flatten faces and add 'new face' = 1 and 'stop' = 0 tokens. faces = flatten_faces(faces) # Discard degenerate meshes without faces. return { 'vertices': vertices, 'faces': faces, } def plot_meshes(mesh_list, ax_lims=0.3, fig_size=4, el=30, rot_start=120, vert_size=10, vert_alpha=0.75, n_cols=4): """Plots mesh data using matplotlib.""" n_plot = len(mesh_list) n_cols = np.minimum(n_plot, n_cols) n_rows = np.ceil(n_plot / n_cols).astype('int') fig = plt.figure(figsize=(fig_size * n_cols, fig_size * n_rows)) for p_inc, mesh in enumerate(mesh_list): for key in [ 'vertices', 'faces', 'vertices_conditional', 'pointcloud', 'class_name' ]: if key not in list(mesh.keys()): mesh[key] = None ax = fig.add_subplot(n_rows, n_cols, p_inc + 1, projection='3d') if mesh['faces'] is not None: if mesh['vertices_conditional'] is not None: face_verts = np.concatenate( [mesh['vertices_conditional'], mesh['vertices']], axis=0) else: face_verts = mesh['vertices'] collection = [] for f in mesh['faces']: collection.append(face_verts[f]) plt_mesh = Poly3DCollection(collection) plt_mesh.set_edgecolor((0., 0., 0., 0.3)) plt_mesh.set_facecolor((1, 0, 0, 0.2)) ax.add_collection3d(plt_mesh) if mesh['vertices'] is not None: ax.scatter3D( mesh['vertices'][:, 0], mesh['vertices'][:, 1], mesh['vertices'][:, 2], lw=0., s=vert_size, c='g', alpha=vert_alpha) if mesh['vertices_conditional'] is not None: ax.scatter3D( mesh['vertices_conditional'][:, 0], mesh['vertices_conditional'][:, 1], mesh['vertices_conditional'][:, 2], lw=0., s=vert_size, c='b', alpha=vert_alpha) if mesh['pointcloud'] is not None: ax.scatter3D( mesh['pointcloud'][:, 0], mesh['pointcloud'][:, 1], mesh['pointcloud'][:, 2], lw=0., s=2.5 * vert_size, c='b', alpha=1.) ax.set_xlim(-ax_lims, ax_lims) ax.set_ylim(-ax_lims, ax_lims) ax.set_zlim(-ax_lims, ax_lims) ax.view_init(el, rot_start) display_string = '' if mesh['faces'] is not None: display_string += 'Num. faces: {}\n'.format(len(collection)) if mesh['vertices'] is not None: num_verts = mesh['vertices'].shape[0] if mesh['vertices_conditional'] is not None: num_verts += mesh['vertices_conditional'].shape[0] display_string += 'Num. verts: {}\n'.format(num_verts) if mesh['class_name'] is not None: display_string += 'Synset: {}'.format(mesh['class_name']) if mesh['pointcloud'] is not None: display_string += 'Num. pointcloud: {}\n'.format( mesh['pointcloud'].shape[0]) ax.text2D(0.05, 0.8, display_string, transform=ax.transAxes) plt.subplots_adjust( left=0., right=1., bottom=0., top=1., wspace=0.025, hspace=0.025) plt.show()
deepmind-research-master
polygen/data_utils.py
# Copyright 2020 Deepmind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Modules and networks for mesh generation.""" import sonnet as snt from tensor2tensor.layers import common_attention from tensor2tensor.layers import common_layers import tensorflow.compat.v1 as tf from tensorflow.python.framework import function import tensorflow_probability as tfp tfd = tfp.distributions tfb = tfp.bijectors def dequantize_verts(verts, n_bits, add_noise=False): """Quantizes vertices and outputs integers with specified n_bits.""" min_range = -0.5 max_range = 0.5 range_quantize = 2**n_bits - 1 verts = tf.cast(verts, tf.float32) verts = verts * (max_range - min_range) / range_quantize + min_range if add_noise: verts += tf.random_uniform(tf.shape(verts)) * (1 / float(range_quantize)) return verts def quantize_verts(verts, n_bits): """Dequantizes integer vertices to floats.""" min_range = -0.5 max_range = 0.5 range_quantize = 2**n_bits - 1 verts_quantize = ( (verts - min_range) * range_quantize / (max_range - min_range)) return tf.cast(verts_quantize, tf.int32) def top_k_logits(logits, k): """Masks logits such that logits not in top-k are small.""" if k == 0: return logits else: values, _ = tf.math.top_k(logits, k=k) k_largest = tf.reduce_min(values) logits = tf.where(tf.less_equal(logits, k_largest), tf.ones_like(logits)*-1e9, logits) return logits def top_p_logits(logits, p): """Masks logits using nucleus (top-p) sampling.""" if p == 1: return logits else: logit_shape = tf.shape(logits) seq, dim = logit_shape[1], logit_shape[2] logits = tf.reshape(logits, [-1, dim]) sort_indices = tf.argsort(logits, axis=-1, direction='DESCENDING') probs = tf.gather(tf.nn.softmax(logits), sort_indices, batch_dims=1) cumprobs = tf.cumsum(probs, axis=-1, exclusive=True) # The top 1 candidate always will not be masked. # This way ensures at least 1 indices will be selected. sort_mask = tf.cast(tf.greater(cumprobs, p), logits.dtype) batch_indices = tf.tile( tf.expand_dims(tf.range(tf.shape(logits)[0]), axis=-1), [1, dim]) top_p_mask = tf.scatter_nd( tf.stack([batch_indices, sort_indices], axis=-1), sort_mask, tf.shape(logits)) logits -= top_p_mask * 1e9 return tf.reshape(logits, [-1, seq, dim]) _function_cache = {} # For multihead_self_attention_memory_efficient def multihead_self_attention_memory_efficient(x, bias, num_heads, head_size=None, cache=None, epsilon=1e-6, forget=True, test_vars=None, name=None): """Memory-efficient Multihead scaled-dot-product self-attention. Based on Tensor2Tensor version but adds optional caching. Returns multihead-self-attention(layer_norm(x)) Computes one attention head at a time to avoid exhausting memory. If forget=True, then forget all forwards activations and recompute on the backwards pass. Args: x: a Tensor with shape [batch, length, input_size] bias: an attention bias tensor broadcastable to [batch, 1, length, length] num_heads: an integer head_size: an optional integer - defaults to input_size/num_heads cache: Optional dict containing tensors which are the results of previous attentions, used for fast decoding. Expects the dict to contain two keys ('k' and 'v'), for the initial call the values for these keys should be empty Tensors of the appropriate shape. 'k' [batch_size, 0, key_channels] 'v' [batch_size, 0, value_channels] epsilon: a float, for layer norm forget: a boolean - forget forwards activations and recompute on backprop test_vars: optional tuple of variables for testing purposes name: an optional string Returns: A Tensor. """ io_size = x.get_shape().as_list()[-1] if head_size is None: assert io_size % num_heads == 0 head_size = io_size / num_heads def forward_internal(x, wqkv, wo, attention_bias, norm_scale, norm_bias): """Forward function.""" n = common_layers.layer_norm_compute(x, epsilon, norm_scale, norm_bias) wqkv_split = tf.unstack(wqkv, num=num_heads) wo_split = tf.unstack(wo, num=num_heads) y = 0 if cache is not None: cache_k = [] cache_v = [] for h in range(num_heads): with tf.control_dependencies([y] if h > 0 else []): combined = tf.nn.conv1d(n, wqkv_split[h], 1, 'SAME') q, k, v = tf.split(combined, 3, axis=2) if cache is not None: k = tf.concat([cache['k'][:, h], k], axis=1) v = tf.concat([cache['v'][:, h], v], axis=1) cache_k.append(k) cache_v.append(v) o = common_attention.scaled_dot_product_attention_simple( q, k, v, attention_bias) y += tf.nn.conv1d(o, wo_split[h], 1, 'SAME') if cache is not None: cache['k'] = tf.stack(cache_k, axis=1) cache['v'] = tf.stack(cache_v, axis=1) return y key = ( 'multihead_self_attention_memory_efficient %s %s' % (num_heads, epsilon)) if not forget: forward_fn = forward_internal elif key in _function_cache: forward_fn = _function_cache[key] else: @function.Defun(compiled=True) def grad_fn(x, wqkv, wo, attention_bias, norm_scale, norm_bias, dy): """Custom gradient function.""" with tf.control_dependencies([dy]): n = common_layers.layer_norm_compute(x, epsilon, norm_scale, norm_bias) wqkv_split = tf.unstack(wqkv, num=num_heads) wo_split = tf.unstack(wo, num=num_heads) deps = [] dwqkvs = [] dwos = [] dn = 0 for h in range(num_heads): with tf.control_dependencies(deps): combined = tf.nn.conv1d(n, wqkv_split[h], 1, 'SAME') q, k, v = tf.split(combined, 3, axis=2) o = common_attention.scaled_dot_product_attention_simple( q, k, v, attention_bias) partial_y = tf.nn.conv1d(o, wo_split[h], 1, 'SAME') pdn, dwqkvh, dwoh = tf.gradients( ys=[partial_y], xs=[n, wqkv_split[h], wo_split[h]], grad_ys=[dy]) dn += pdn dwqkvs.append(dwqkvh) dwos.append(dwoh) deps = [dn, dwqkvh, dwoh] dwqkv = tf.stack(dwqkvs) dwo = tf.stack(dwos) with tf.control_dependencies(deps): dx, dnorm_scale, dnorm_bias = tf.gradients( ys=[n], xs=[x, norm_scale, norm_bias], grad_ys=[dn]) return (dx, dwqkv, dwo, tf.zeros_like(attention_bias), dnorm_scale, dnorm_bias) @function.Defun( grad_func=grad_fn, compiled=True, separate_compiled_gradients=True) def forward_fn(x, wqkv, wo, attention_bias, norm_scale, norm_bias): return forward_internal(x, wqkv, wo, attention_bias, norm_scale, norm_bias) _function_cache[key] = forward_fn if bias is not None: bias = tf.squeeze(bias, 1) with tf.variable_scope(name, default_name='multihead_attention', values=[x]): if test_vars is not None: wqkv, wo, norm_scale, norm_bias = list(test_vars) else: wqkv = tf.get_variable( 'wqkv', [num_heads, 1, io_size, 3 * head_size], initializer=tf.random_normal_initializer(stddev=io_size**-0.5)) wo = tf.get_variable( 'wo', [num_heads, 1, head_size, io_size], initializer=tf.random_normal_initializer( stddev=(head_size * num_heads)**-0.5)) norm_scale, norm_bias = common_layers.layer_norm_vars(io_size) y = forward_fn(x, wqkv, wo, bias, norm_scale, norm_bias) y.set_shape(x.get_shape()) # pytype: disable=attribute-error return y class TransformerEncoder(snt.AbstractModule): """Transformer encoder. Sonnet Transformer encoder module as described in Vaswani et al. 2017. Uses the Tensor2Tensor multihead_attention function for full self attention (no masking). Layer norm is applied inside the residual path as in sparse transformers (Child 2019). This module expects inputs to be already embedded, and does not add position embeddings. """ def __init__(self, hidden_size=256, fc_size=1024, num_heads=4, layer_norm=True, num_layers=8, dropout_rate=0.2, re_zero=True, memory_efficient=False, name='transformer_encoder'): """Initializes TransformerEncoder. Args: hidden_size: Size of embedding vectors. fc_size: Size of fully connected layer. num_heads: Number of attention heads. layer_norm: If True, apply layer normalization num_layers: Number of Transformer blocks, where each block contains a multi-head attention layer and a MLP. dropout_rate: Dropout rate applied immediately after the ReLU in each fully-connected layer. re_zero: If True, alpha scale residuals with zero init. memory_efficient: If True, recompute gradients for memory savings. name: Name of variable scope """ super(TransformerEncoder, self).__init__(name=name) self.hidden_size = hidden_size self.num_heads = num_heads self.layer_norm = layer_norm self.fc_size = fc_size self.num_layers = num_layers self.dropout_rate = dropout_rate self.re_zero = re_zero self.memory_efficient = memory_efficient def _build(self, inputs, is_training=False): """Passes inputs through Transformer encoder network. Args: inputs: Tensor of shape [batch_size, sequence_length, embed_size]. Zero embeddings are masked in self-attention. is_training: If True, dropout is applied. Returns: output: Tensor of shape [batch_size, sequence_length, embed_size]. """ if is_training: dropout_rate = self.dropout_rate else: dropout_rate = 0. # Identify elements with all zeros as padding, and create bias to mask # out padding elements in self attention. encoder_padding = common_attention.embedding_to_padding(inputs) encoder_self_attention_bias = ( common_attention.attention_bias_ignore_padding(encoder_padding)) x = inputs for layer_num in range(self.num_layers): with tf.variable_scope('layer_{}'.format(layer_num)): # Multihead self-attention from Tensor2Tensor. res = x if self.memory_efficient: res = multihead_self_attention_memory_efficient( res, bias=encoder_self_attention_bias, num_heads=self.num_heads, head_size=self.hidden_size // self.num_heads, forget=True if is_training else False, name='self_attention' ) else: if self.layer_norm: res = common_layers.layer_norm(res, name='self_attention') res = common_attention.multihead_attention( res, memory_antecedent=None, bias=encoder_self_attention_bias, total_key_depth=self.hidden_size, total_value_depth=self.hidden_size, output_depth=self.hidden_size, num_heads=self.num_heads, dropout_rate=0., make_image_summary=False, name='self_attention') if self.re_zero: res *= tf.get_variable('self_attention/alpha', initializer=0.) if dropout_rate: res = tf.nn.dropout(res, rate=dropout_rate) x += res # MLP res = x if self.layer_norm: res = common_layers.layer_norm(res, name='fc') res = tf.layers.dense( res, self.fc_size, activation=tf.nn.relu, name='fc_1') res = tf.layers.dense(res, self.hidden_size, name='fc_2') if self.re_zero: res *= tf.get_variable('fc/alpha', initializer=0.) if dropout_rate: res = tf.nn.dropout(res, rate=dropout_rate) x += res if self.layer_norm: output = common_layers.layer_norm(x, name='output') else: output = x return output class TransformerDecoder(snt.AbstractModule): """Transformer decoder. Sonnet Transformer decoder module as described in Vaswani et al. 2017. Uses the Tensor2Tensor multihead_attention function for masked self attention, and non-masked cross attention attention. Layer norm is applied inside the residual path as in sparse transformers (Child 2019). This module expects inputs to be already embedded, and does not add position embeddings. """ def __init__(self, hidden_size=256, fc_size=1024, num_heads=4, layer_norm=True, num_layers=8, dropout_rate=0.2, re_zero=True, memory_efficient=False, name='transformer_decoder'): """Initializes TransformerDecoder. Args: hidden_size: Size of embedding vectors. fc_size: Size of fully connected layer. num_heads: Number of attention heads. layer_norm: If True, apply layer normalization. If mem_efficient_attention is True, then layer norm is always applied. num_layers: Number of Transformer blocks, where each block contains a multi-head attention layer and a MLP. dropout_rate: Dropout rate applied immediately after the ReLU in each fully-connected layer. re_zero: If True, alpha scale residuals with zero init. memory_efficient: If True, recompute gradients for memory savings. name: Name of variable scope """ super(TransformerDecoder, self).__init__(name=name) self.hidden_size = hidden_size self.num_heads = num_heads self.layer_norm = layer_norm self.fc_size = fc_size self.num_layers = num_layers self.dropout_rate = dropout_rate self.re_zero = re_zero self.memory_efficient = memory_efficient def _build(self, inputs, sequential_context_embeddings=None, is_training=False, cache=None): """Passes inputs through Transformer decoder network. Args: inputs: Tensor of shape [batch_size, sequence_length, embed_size]. Zero embeddings are masked in self-attention. sequential_context_embeddings: Optional tensor with global context (e.g image embeddings) of shape [batch_size, context_seq_length, context_embed_size]. is_training: If True, dropout is applied. cache: Optional dict containing tensors which are the results of previous attentions, used for fast decoding. Expects the dict to contain two keys ('k' and 'v'), for the initial call the values for these keys should be empty Tensors of the appropriate shape. 'k' [batch_size, 0, key_channels] 'v' [batch_size, 0, value_channels] Returns: output: Tensor of shape [batch_size, sequence_length, embed_size]. """ if is_training: dropout_rate = self.dropout_rate else: dropout_rate = 0. # create bias to mask future elements for causal self-attention. seq_length = tf.shape(inputs)[1] decoder_self_attention_bias = common_attention.attention_bias_lower_triangle( seq_length) # If using sequential_context, identify elements with all zeros as padding, # and create bias to mask out padding elements in self attention. if sequential_context_embeddings is not None: encoder_padding = common_attention.embedding_to_padding( sequential_context_embeddings) encoder_decoder_attention_bias = ( common_attention.attention_bias_ignore_padding(encoder_padding)) x = inputs for layer_num in range(self.num_layers): with tf.variable_scope('layer_{}'.format(layer_num)): # If using cached decoding, access cache for current layer, and create # bias that enables un-masked attention into the cache if cache is not None: layer_cache = cache[layer_num] layer_decoder_bias = tf.zeros([1, 1, 1, 1]) # Otherwise use standard masked bias else: layer_cache = None layer_decoder_bias = decoder_self_attention_bias # Multihead self-attention from Tensor2Tensor. res = x if self.memory_efficient: res = multihead_self_attention_memory_efficient( res, bias=layer_decoder_bias, cache=layer_cache, num_heads=self.num_heads, head_size=self.hidden_size // self.num_heads, forget=True if is_training else False, name='self_attention' ) else: if self.layer_norm: res = common_layers.layer_norm(res, name='self_attention') res = common_attention.multihead_attention( res, memory_antecedent=None, bias=layer_decoder_bias, total_key_depth=self.hidden_size, total_value_depth=self.hidden_size, output_depth=self.hidden_size, num_heads=self.num_heads, cache=layer_cache, dropout_rate=0., make_image_summary=False, name='self_attention') if self.re_zero: res *= tf.get_variable('self_attention/alpha', initializer=0.) if dropout_rate: res = tf.nn.dropout(res, rate=dropout_rate) x += res # Optional cross attention into sequential context if sequential_context_embeddings is not None: res = x if self.layer_norm: res = common_layers.layer_norm(res, name='cross_attention') res = common_attention.multihead_attention( res, memory_antecedent=sequential_context_embeddings, bias=encoder_decoder_attention_bias, total_key_depth=self.hidden_size, total_value_depth=self.hidden_size, output_depth=self.hidden_size, num_heads=self.num_heads, dropout_rate=0., make_image_summary=False, name='cross_attention') if self.re_zero: res *= tf.get_variable('cross_attention/alpha', initializer=0.) if dropout_rate: res = tf.nn.dropout(res, rate=dropout_rate) x += res # FC layers res = x if self.layer_norm: res = common_layers.layer_norm(res, name='fc') res = tf.layers.dense( res, self.fc_size, activation=tf.nn.relu, name='fc_1') res = tf.layers.dense(res, self.hidden_size, name='fc_2') if self.re_zero: res *= tf.get_variable('fc/alpha', initializer=0.) if dropout_rate: res = tf.nn.dropout(res, rate=dropout_rate) x += res if self.layer_norm: output = common_layers.layer_norm(x, name='output') else: output = x return output def create_init_cache(self, batch_size): """Creates empty cache dictionary for use in fast decoding.""" def compute_cache_shape_invariants(tensor): """Helper function to get dynamic shapes for cache tensors.""" shape_list = tensor.shape.as_list() if len(shape_list) == 4: return tf.TensorShape( [shape_list[0], shape_list[1], None, shape_list[3]]) elif len(shape_list) == 3: return tf.TensorShape([shape_list[0], None, shape_list[2]]) # Build cache k = common_attention.split_heads( tf.zeros([batch_size, 0, self.hidden_size]), self.num_heads) v = common_attention.split_heads( tf.zeros([batch_size, 0, self.hidden_size]), self.num_heads) cache = [{'k': k, 'v': v} for _ in range(self.num_layers)] shape_invariants = tf.nest.map_structure( compute_cache_shape_invariants, cache) return cache, shape_invariants def conv_residual_block(inputs, output_channels=None, downsample=False, kernel_size=3, re_zero=True, dropout_rate=0., name='conv_residual_block'): """Convolutional block with residual connections for 2D or 3D inputs. Args: inputs: Input tensor of shape [batch_size, height, width, channels] or [batch_size, height, width, depth, channels]. output_channels: Number of output channels. downsample: If True, downsample by 1/2 in this block. kernel_size: Spatial size of convolutional kernels. re_zero: If True, alpha scale residuals with zero init. dropout_rate: Dropout rate applied after second ReLU in residual path. name: Name for variable scope. Returns: outputs: Output tensor of shape [batch_size, height, width, output_channels] or [batch_size, height, width, depth, output_channels]. """ with tf.variable_scope(name): input_shape = inputs.get_shape().as_list() num_dims = len(input_shape) - 2 if num_dims == 2: conv = tf.layers.conv2d elif num_dims == 3: conv = tf.layers.conv3d input_channels = input_shape[-1] if output_channels is None: output_channels = input_channels if downsample: shortcut = conv( inputs, filters=output_channels, strides=2, kernel_size=kernel_size, padding='same', name='conv_shortcut') else: shortcut = inputs res = inputs res = tf.nn.relu(res) res = conv( res, filters=input_channels, kernel_size=kernel_size, padding='same', name='conv_1') res = tf.nn.relu(res) if dropout_rate: res = tf.nn.dropout(res, rate=dropout_rate) if downsample: out_strides = 2 else: out_strides = 1 res = conv( res, filters=output_channels, kernel_size=kernel_size, padding='same', strides=out_strides, name='conv_2') if re_zero: res *= tf.get_variable('alpha', initializer=0.) return shortcut + res class ResNet(snt.AbstractModule): """ResNet architecture for 2D image or 3D voxel inputs.""" def __init__(self, num_dims, hidden_sizes=(64, 256), num_blocks=(2, 2), dropout_rate=0.1, re_zero=True, name='res_net'): """Initializes ResNet. Args: num_dims: Number of spatial dimensions. 2 for images or 3 for voxels. hidden_sizes: Sizes of hidden layers in resnet blocks. num_blocks: Number of resnet blocks at each size. dropout_rate: Dropout rate applied immediately after the ReLU in each fully-connected layer. re_zero: If True, alpha scale residuals with zero init. name: Name of variable scope """ super(ResNet, self).__init__(name=name) self.num_dims = num_dims self.hidden_sizes = hidden_sizes self.num_blocks = num_blocks self.dropout_rate = dropout_rate self.re_zero = re_zero def _build(self, inputs, is_training=False): """Passes inputs through resnet. Args: inputs: Tensor of shape [batch_size, height, width, channels] or [batch_size, height, width, depth, channels]. is_training: If True, dropout is applied. Returns: output: Tensor of shape [batch_size, height, width, depth, output_size]. """ if is_training: dropout_rate = self.dropout_rate else: dropout_rate = 0. # Initial projection with large kernel as in original resnet architecture if self.num_dims == 3: conv = tf.layers.conv3d elif self.num_dims == 2: conv = tf.layers.conv2d x = conv( inputs, filters=self.hidden_sizes[0], kernel_size=7, strides=2, padding='same', name='conv_input') if self.num_dims == 2: x = tf.layers.max_pooling2d( x, strides=2, pool_size=3, padding='same', name='pool_input') for d, (hidden_size, blocks) in enumerate(zip(self.hidden_sizes, self.num_blocks)): with tf.variable_scope('resolution_{}'.format(d)): # Downsample at the start of each collection of blocks x = conv_residual_block( x, downsample=False if d == 0 else True, dropout_rate=dropout_rate, output_channels=hidden_size, re_zero=self.re_zero, name='block_1_downsample') for i in range(blocks - 1): x = conv_residual_block( x, dropout_rate=dropout_rate, output_channels=hidden_size, re_zero=self.re_zero, name='block_{}'.format(i + 2)) return x class VertexModel(snt.AbstractModule): """Autoregressive generative model of quantized mesh vertices. Operates on flattened vertex sequences with a stopping token: [z_0, y_0, x_0, z_1, y_1, x_1, ..., z_n, y_n, z_n, STOP] Input vertex coordinates are embedded and tagged with learned coordinate and position indicators. A transformer decoder outputs logits for a quantized vertex distribution. """ def __init__(self, decoder_config, quantization_bits, class_conditional=False, num_classes=55, max_num_input_verts=2500, use_discrete_embeddings=True, name='vertex_model'): """Initializes VertexModel. Args: decoder_config: Dictionary with TransformerDecoder config quantization_bits: Number of quantization used in mesh preprocessing. class_conditional: If True, then condition on learned class embeddings. num_classes: Number of classes to condition on. max_num_input_verts: Maximum number of vertices. Used for learned position embeddings. use_discrete_embeddings: If True, use discrete rather than continuous vertex embeddings. name: Name of variable scope """ super(VertexModel, self).__init__(name=name) self.embedding_dim = decoder_config['hidden_size'] self.class_conditional = class_conditional self.num_classes = num_classes self.max_num_input_verts = max_num_input_verts self.quantization_bits = quantization_bits self.use_discrete_embeddings = use_discrete_embeddings with self._enter_variable_scope(): self.decoder = TransformerDecoder(**decoder_config) @snt.reuse_variables def _embed_class_label(self, labels): """Embeds class label with learned embedding matrix.""" init_dict = {'embeddings': tf.glorot_uniform_initializer} return snt.Embed( vocab_size=self.num_classes, embed_dim=self.embedding_dim, initializers=init_dict, densify_gradients=True, name='class_label')(labels) @snt.reuse_variables def _prepare_context(self, context, is_training=False): """Prepare class label context.""" if self.class_conditional: global_context_embedding = self._embed_class_label(context['class_label']) else: global_context_embedding = None return global_context_embedding, None @snt.reuse_variables def _embed_inputs(self, vertices, global_context_embedding=None): """Embeds flat vertices and adds position and coordinate information.""" # Dequantize inputs and get shapes input_shape = tf.shape(vertices) batch_size, seq_length = input_shape[0], input_shape[1] # Coord indicators (x, y, z) coord_embeddings = snt.Embed( vocab_size=3, embed_dim=self.embedding_dim, initializers={'embeddings': tf.glorot_uniform_initializer}, densify_gradients=True, name='coord_embeddings')(tf.mod(tf.range(seq_length), 3)) # Position embeddings pos_embeddings = snt.Embed( vocab_size=self.max_num_input_verts, embed_dim=self.embedding_dim, initializers={'embeddings': tf.glorot_uniform_initializer}, densify_gradients=True, name='coord_embeddings')(tf.floordiv(tf.range(seq_length), 3)) # Discrete vertex value embeddings if self.use_discrete_embeddings: vert_embeddings = snt.Embed( vocab_size=2**self.quantization_bits + 1, embed_dim=self.embedding_dim, initializers={'embeddings': tf.glorot_uniform_initializer}, densify_gradients=True, name='value_embeddings')(vertices) # Continuous vertex value embeddings else: vert_embeddings = tf.layers.dense( dequantize_verts(vertices[..., None], self.quantization_bits), self.embedding_dim, use_bias=True, name='value_embeddings') # Step zero embeddings if global_context_embedding is None: zero_embed = tf.get_variable( 'embed_zero', shape=[1, 1, self.embedding_dim]) zero_embed_tiled = tf.tile(zero_embed, [batch_size, 1, 1]) else: zero_embed_tiled = global_context_embedding[:, None] # Aggregate embeddings embeddings = vert_embeddings + (coord_embeddings + pos_embeddings)[None] embeddings = tf.concat([zero_embed_tiled, embeddings], axis=1) return embeddings @snt.reuse_variables def _project_to_logits(self, inputs): """Projects transformer outputs to logits for predictive distribution.""" return tf.layers.dense( inputs, 2**self.quantization_bits + 1, # + 1 for stopping token use_bias=True, kernel_initializer=tf.zeros_initializer(), name='project_to_logits') @snt.reuse_variables def _create_dist(self, vertices, global_context_embedding=None, sequential_context_embeddings=None, temperature=1., top_k=0, top_p=1., is_training=False, cache=None): """Outputs categorical dist for quantized vertex coordinates.""" # Embed inputs decoder_inputs = self._embed_inputs(vertices, global_context_embedding) if cache is not None: decoder_inputs = decoder_inputs[:, -1:] # pass through decoder outputs = self.decoder( decoder_inputs, cache=cache, sequential_context_embeddings=sequential_context_embeddings, is_training=is_training) # Get logits and optionally process for sampling logits = self._project_to_logits(outputs) logits /= temperature logits = top_k_logits(logits, top_k) logits = top_p_logits(logits, top_p) cat_dist = tfd.Categorical(logits=logits) return cat_dist def _build(self, batch, is_training=False): """Pass batch through vertex model and get log probabilities under model. Args: batch: Dictionary containing: 'vertices_flat': int32 vertex tensors of shape [batch_size, seq_length]. is_training: If True, use dropout. Returns: pred_dist: tfd.Categorical predictive distribution with batch shape [batch_size, seq_length]. """ global_context, seq_context = self._prepare_context( batch, is_training=is_training) pred_dist = self._create_dist( batch['vertices_flat'][:, :-1], # Last element not used for preds global_context_embedding=global_context, sequential_context_embeddings=seq_context, is_training=is_training) return pred_dist def sample(self, num_samples, context=None, max_sample_length=None, temperature=1., top_k=0, top_p=1., recenter_verts=True, only_return_complete=True): """Autoregressive sampling with caching. Args: num_samples: Number of samples to produce. context: Dictionary of context, such as class labels. See _prepare_context for details. max_sample_length: Maximum length of sampled vertex sequences. Sequences that do not complete are truncated. temperature: Scalar softmax temperature > 0. top_k: Number of tokens to keep for top-k sampling. top_p: Proportion of probability mass to keep for top-p sampling. recenter_verts: If True, center vertex samples around origin. This should be used if model is trained using shift augmentations. only_return_complete: If True, only return completed samples. Otherwise return all samples along with completed indicator. Returns: outputs: Output dictionary with fields: 'completed': Boolean tensor of shape [num_samples]. If True then corresponding sample completed within max_sample_length. 'vertices': Tensor of samples with shape [num_samples, num_verts, 3]. 'num_vertices': Tensor indicating number of vertices for each example in padded vertex samples. 'vertices_mask': Tensor of shape [num_samples, num_verts] that masks corresponding invalid elements in 'vertices'. """ # Obtain context for decoder global_context, seq_context = self._prepare_context( context, is_training=False) # num_samples is the minimum value of num_samples and the batch size of # context inputs (if present). if global_context is not None: num_samples = tf.minimum(num_samples, tf.shape(global_context)[0]) global_context = global_context[:num_samples] if seq_context is not None: seq_context = seq_context[:num_samples] elif seq_context is not None: num_samples = tf.minimum(num_samples, tf.shape(seq_context)[0]) seq_context = seq_context[:num_samples] def _loop_body(i, samples, cache): """While-loop body for autoregression calculation.""" cat_dist = self._create_dist( samples, global_context_embedding=global_context, sequential_context_embeddings=seq_context, cache=cache, temperature=temperature, top_k=top_k, top_p=top_p) next_sample = cat_dist.sample() samples = tf.concat([samples, next_sample], axis=1) return i + 1, samples, cache def _stopping_cond(i, samples, cache): """Stopping condition for sampling while-loop.""" del i, cache # Unused return tf.reduce_any(tf.reduce_all(tf.not_equal(samples, 0), axis=-1)) # Initial values for loop variables samples = tf.zeros([num_samples, 0], dtype=tf.int32) max_sample_length = max_sample_length or self.max_num_input_verts cache, cache_shape_invariants = self.decoder.create_init_cache(num_samples) _, v, _ = tf.while_loop( cond=_stopping_cond, body=_loop_body, loop_vars=(0, samples, cache), shape_invariants=(tf.TensorShape([]), tf.TensorShape([None, None]), cache_shape_invariants), maximum_iterations=max_sample_length * 3 + 1, back_prop=False, parallel_iterations=1) # Check if samples completed. Samples are complete if the stopping token # is produced. completed = tf.reduce_any(tf.equal(v, 0), axis=-1) # Get the number of vertices in the sample. This requires finding the # index of the stopping token. For complete samples use to argmax to get # first nonzero index. stop_index_completed = tf.argmax( tf.cast(tf.equal(v, 0), tf.int32), axis=-1, output_type=tf.int32) # For incomplete samples the stopping index is just the maximum index. stop_index_incomplete = ( max_sample_length * 3 * tf.ones_like(stop_index_completed)) stop_index = tf.where( completed, stop_index_completed, stop_index_incomplete) num_vertices = tf.floordiv(stop_index, 3) # Convert to 3D vertices by reshaping and re-ordering x -> y -> z v = v[:, :(tf.reduce_max(num_vertices) * 3)] - 1 verts_dequantized = dequantize_verts(v, self.quantization_bits) vertices = tf.reshape(verts_dequantized, [num_samples, -1, 3]) vertices = tf.stack( [vertices[..., 2], vertices[..., 1], vertices[..., 0]], axis=-1) # Pad samples to max sample length. This is required in order to concatenate # Samples across different replicator instances. Pad with stopping tokens # for incomplete samples. pad_size = max_sample_length - tf.shape(vertices)[1] vertices = tf.pad(vertices, [[0, 0], [0, pad_size], [0, 0]]) # 3D Vertex mask vertices_mask = tf.cast( tf.range(max_sample_length)[None] < num_vertices[:, None], tf.float32) if recenter_verts: vert_max = tf.reduce_max( vertices - 1e10 * (1. - vertices_mask)[..., None], axis=1, keepdims=True) vert_min = tf.reduce_min( vertices + 1e10 * (1. - vertices_mask)[..., None], axis=1, keepdims=True) vert_centers = 0.5 * (vert_max + vert_min) vertices -= vert_centers vertices *= vertices_mask[..., None] if only_return_complete: vertices = tf.boolean_mask(vertices, completed) num_vertices = tf.boolean_mask(num_vertices, completed) vertices_mask = tf.boolean_mask(vertices_mask, completed) completed = tf.boolean_mask(completed, completed) # Outputs outputs = { 'completed': completed, 'vertices': vertices, 'num_vertices': num_vertices, 'vertices_mask': vertices_mask, } return outputs class ImageToVertexModel(VertexModel): """Generative model of quantized mesh vertices with image conditioning. Operates on flattened vertex sequences with a stopping token: [z_0, y_0, x_0, z_1, y_1, x_1, ..., z_n, y_n, z_n, STOP] Input vertex coordinates are embedded and tagged with learned coordinate and position indicators. A transformer decoder outputs logits for a quantized vertex distribution. Image inputs are encoded and used to condition the vertex decoder. """ def __init__(self, res_net_config, decoder_config, quantization_bits, use_discrete_embeddings=True, max_num_input_verts=2500, name='image_to_vertex_model'): """Initializes VoxelToVertexModel. Args: res_net_config: Dictionary with ResNet config. decoder_config: Dictionary with TransformerDecoder config. quantization_bits: Number of quantization used in mesh preprocessing. use_discrete_embeddings: If True, use discrete rather than continuous vertex embeddings. max_num_input_verts: Maximum number of vertices. Used for learned position embeddings. name: Name of variable scope """ super(ImageToVertexModel, self).__init__( decoder_config=decoder_config, quantization_bits=quantization_bits, max_num_input_verts=max_num_input_verts, use_discrete_embeddings=use_discrete_embeddings, name=name) with self._enter_variable_scope(): self.res_net = ResNet(num_dims=2, **res_net_config) @snt.reuse_variables def _prepare_context(self, context, is_training=False): # Pass images through encoder image_embeddings = self.res_net( context['image'] - 0.5, is_training=is_training) # Add 2D coordinate grid embedding processed_image_resolution = tf.shape(image_embeddings)[1] x = tf.linspace(-1., 1., processed_image_resolution) image_coords = tf.stack(tf.meshgrid(x, x), axis=-1) image_coord_embeddings = tf.layers.dense( image_coords, self.embedding_dim, use_bias=True, name='image_coord_embeddings') image_embeddings += image_coord_embeddings[None] # Reshape spatial grid to sequence batch_size = tf.shape(image_embeddings)[0] sequential_context_embedding = tf.reshape( image_embeddings, [batch_size, -1, self.embedding_dim]) return None, sequential_context_embedding class VoxelToVertexModel(VertexModel): """Generative model of quantized mesh vertices with voxel conditioning. Operates on flattened vertex sequences with a stopping token: [z_0, y_0, x_0, z_1, y_1, x_1, ..., z_n, y_n, z_n, STOP] Input vertex coordinates are embedded and tagged with learned coordinate and position indicators. A transformer decoder outputs logits for a quantized vertex distribution. Image inputs are encoded and used to condition the vertex decoder. """ def __init__(self, res_net_config, decoder_config, quantization_bits, use_discrete_embeddings=True, max_num_input_verts=2500, name='voxel_to_vertex_model'): """Initializes VoxelToVertexModel. Args: res_net_config: Dictionary with ResNet config. decoder_config: Dictionary with TransformerDecoder config. quantization_bits: Integer number of bits used for vertex quantization. use_discrete_embeddings: If True, use discrete rather than continuous vertex embeddings. max_num_input_verts: Maximum number of vertices. Used for learned position embeddings. name: Name of variable scope """ super(VoxelToVertexModel, self).__init__( decoder_config=decoder_config, quantization_bits=quantization_bits, max_num_input_verts=max_num_input_verts, use_discrete_embeddings=use_discrete_embeddings, name=name) with self._enter_variable_scope(): self.res_net = ResNet(num_dims=3, **res_net_config) @snt.reuse_variables def _prepare_context(self, context, is_training=False): # Embed binary input voxels voxel_embeddings = snt.Embed( vocab_size=2, embed_dim=self.pre_embed_dim, initializers={'embeddings': tf.glorot_uniform_initializer}, densify_gradients=True, name='voxel_embeddings')(context['voxels']) # Pass embedded voxels through voxel encoder voxel_embeddings = self.res_net( voxel_embeddings, is_training=is_training) # Add 3D coordinate grid embedding processed_voxel_resolution = tf.shape(voxel_embeddings)[1] x = tf.linspace(-1., 1., processed_voxel_resolution) voxel_coords = tf.stack(tf.meshgrid(x, x, x), axis=-1) voxel_coord_embeddings = tf.layers.dense( voxel_coords, self.embedding_dim, use_bias=True, name='voxel_coord_embeddings') voxel_embeddings += voxel_coord_embeddings[None] # Reshape spatial grid to sequence batch_size = tf.shape(voxel_embeddings)[0] sequential_context_embedding = tf.reshape( voxel_embeddings, [batch_size, -1, self.embedding_dim]) return None, sequential_context_embedding class FaceModel(snt.AbstractModule): """Autoregressive generative model of n-gon meshes. Operates on sets of input vertices as well as flattened face sequences with new face and stopping tokens: [f_0^0, f_0^1, f_0^2, NEW, f_1^0, f_1^1, ..., STOP] Input vertices are encoded using a Transformer encoder. Input face sequences are embedded and tagged with learned position indicators, as well as their corresponding vertex embeddings. A transformer decoder outputs a pointer which is compared to each vertex embedding to obtain a distribution over vertex indices. """ def __init__(self, encoder_config, decoder_config, class_conditional=True, num_classes=55, decoder_cross_attention=True, use_discrete_vertex_embeddings=True, quantization_bits=8, max_seq_length=5000, name='face_model'): """Initializes FaceModel. Args: encoder_config: Dictionary with TransformerEncoder config. decoder_config: Dictionary with TransformerDecoder config. class_conditional: If True, then condition on learned class embeddings. num_classes: Number of classes to condition on. decoder_cross_attention: If True, the use cross attention from decoder querys into encoder outputs. use_discrete_vertex_embeddings: If True, use discrete vertex embeddings. quantization_bits: Number of quantization bits for discrete vertex embeddings. max_seq_length: Maximum face sequence length. Used for learned position embeddings. name: Name of variable scope """ super(FaceModel, self).__init__(name=name) self.embedding_dim = decoder_config['hidden_size'] self.class_conditional = class_conditional self.num_classes = num_classes self.max_seq_length = max_seq_length self.decoder_cross_attention = decoder_cross_attention self.use_discrete_vertex_embeddings = use_discrete_vertex_embeddings self.quantization_bits = quantization_bits with self._enter_variable_scope(): self.decoder = TransformerDecoder(**decoder_config) self.encoder = TransformerEncoder(**encoder_config) @snt.reuse_variables def _embed_class_label(self, labels): """Embeds class label with learned embedding matrix.""" init_dict = {'embeddings': tf.glorot_uniform_initializer} return snt.Embed( vocab_size=self.num_classes, embed_dim=self.embedding_dim, initializers=init_dict, densify_gradients=True, name='class_label')(labels) @snt.reuse_variables def _prepare_context(self, context, is_training=False): """Prepare class label and vertex context.""" if self.class_conditional: global_context_embedding = self._embed_class_label(context['class_label']) else: global_context_embedding = None vertex_embeddings = self._embed_vertices( context['vertices'], context['vertices_mask'], is_training=is_training) if self.decoder_cross_attention: sequential_context_embeddings = ( vertex_embeddings * tf.pad(context['vertices_mask'], [[0, 0], [2, 0]], constant_values=1)[..., None]) else: sequential_context_embeddings = None return (vertex_embeddings, global_context_embedding, sequential_context_embeddings) @snt.reuse_variables def _embed_vertices(self, vertices, vertices_mask, is_training=False): """Embeds vertices with transformer encoder.""" # num_verts = tf.shape(vertices)[1] if self.use_discrete_vertex_embeddings: vertex_embeddings = 0. verts_quantized = quantize_verts(vertices, self.quantization_bits) for c in range(3): vertex_embeddings += snt.Embed( vocab_size=256, embed_dim=self.embedding_dim, initializers={'embeddings': tf.glorot_uniform_initializer}, densify_gradients=True, name='coord_{}'.format(c))(verts_quantized[..., c]) else: vertex_embeddings = tf.layers.dense( vertices, self.embedding_dim, use_bias=True, name='vertex_embeddings') vertex_embeddings *= vertices_mask[..., None] # Pad vertex embeddings with learned embeddings for stopping and new face # tokens stopping_embeddings = tf.get_variable( 'stopping_embeddings', shape=[1, 2, self.embedding_dim]) stopping_embeddings = tf.tile(stopping_embeddings, [tf.shape(vertices)[0], 1, 1]) vertex_embeddings = tf.concat( [stopping_embeddings, vertex_embeddings], axis=1) # Pass through Transformer encoder vertex_embeddings = self.encoder(vertex_embeddings, is_training=is_training) return vertex_embeddings @snt.reuse_variables def _embed_inputs(self, faces_long, vertex_embeddings, global_context_embedding=None): """Embeds face sequences and adds within and between face positions.""" # Face value embeddings are gathered vertex embeddings face_embeddings = tf.gather(vertex_embeddings, faces_long, batch_dims=1) # Position embeddings pos_embeddings = snt.Embed( vocab_size=self.max_seq_length, embed_dim=self.embedding_dim, initializers={'embeddings': tf.glorot_uniform_initializer}, densify_gradients=True, name='coord_embeddings')(tf.range(tf.shape(faces_long)[1])) # Step zero embeddings batch_size = tf.shape(face_embeddings)[0] if global_context_embedding is None: zero_embed = tf.get_variable( 'embed_zero', shape=[1, 1, self.embedding_dim]) zero_embed_tiled = tf.tile(zero_embed, [batch_size, 1, 1]) else: zero_embed_tiled = global_context_embedding[:, None] # Aggregate embeddings embeddings = face_embeddings + pos_embeddings[None] embeddings = tf.concat([zero_embed_tiled, embeddings], axis=1) return embeddings @snt.reuse_variables def _project_to_pointers(self, inputs): """Projects transformer outputs to pointer vectors.""" return tf.layers.dense( inputs, self.embedding_dim, use_bias=True, kernel_initializer=tf.zeros_initializer(), name='project_to_pointers' ) @snt.reuse_variables def _create_dist(self, vertex_embeddings, vertices_mask, faces_long, global_context_embedding=None, sequential_context_embeddings=None, temperature=1., top_k=0, top_p=1., is_training=False, cache=None): """Outputs categorical dist for vertex indices.""" # Embed inputs decoder_inputs = self._embed_inputs( faces_long, vertex_embeddings, global_context_embedding) # Pass through Transformer decoder if cache is not None: decoder_inputs = decoder_inputs[:, -1:] decoder_outputs = self.decoder( decoder_inputs, cache=cache, sequential_context_embeddings=sequential_context_embeddings, is_training=is_training) # Get pointers pred_pointers = self._project_to_pointers(decoder_outputs) # Get logits and mask logits = tf.matmul(pred_pointers, vertex_embeddings, transpose_b=True) logits /= tf.sqrt(float(self.embedding_dim)) f_verts_mask = tf.pad( vertices_mask, [[0, 0], [2, 0]], constant_values=1.)[:, None] logits *= f_verts_mask logits -= (1. - f_verts_mask) * 1e9 logits /= temperature logits = top_k_logits(logits, top_k) logits = top_p_logits(logits, top_p) return tfd.Categorical(logits=logits) def _build(self, batch, is_training=False): """Pass batch through face model and get log probabilities. Args: batch: Dictionary containing: 'vertices_dequantized': Tensor of shape [batch_size, num_vertices, 3]. 'faces': int32 tensor of shape [batch_size, seq_length] with flattened faces. 'vertices_mask': float32 tensor with shape [batch_size, num_vertices] that masks padded elements in 'vertices'. is_training: If True, use dropout. Returns: pred_dist: tfd.Categorical predictive distribution with batch shape [batch_size, seq_length]. """ vertex_embeddings, global_context, seq_context = self._prepare_context( batch, is_training=is_training) pred_dist = self._create_dist( vertex_embeddings, batch['vertices_mask'], batch['faces'][:, :-1], global_context_embedding=global_context, sequential_context_embeddings=seq_context, is_training=is_training) return pred_dist def sample(self, context, max_sample_length=None, temperature=1., top_k=0, top_p=1., only_return_complete=True): """Sample from face model using caching. Args: context: Dictionary of context, including 'vertices' and 'vertices_mask'. See _prepare_context for details. max_sample_length: Maximum length of sampled vertex sequences. Sequences that do not complete are truncated. temperature: Scalar softmax temperature > 0. top_k: Number of tokens to keep for top-k sampling. top_p: Proportion of probability mass to keep for top-p sampling. only_return_complete: If True, only return completed samples. Otherwise return all samples along with completed indicator. Returns: outputs: Output dictionary with fields: 'completed': Boolean tensor of shape [num_samples]. If True then corresponding sample completed within max_sample_length. 'faces': Tensor of samples with shape [num_samples, num_verts, 3]. 'num_face_indices': Tensor indicating number of vertices for each example in padded vertex samples. """ vertex_embeddings, global_context, seq_context = self._prepare_context( context, is_training=False) num_samples = tf.shape(vertex_embeddings)[0] def _loop_body(i, samples, cache): """While-loop body for autoregression calculation.""" pred_dist = self._create_dist( vertex_embeddings, context['vertices_mask'], samples, global_context_embedding=global_context, sequential_context_embeddings=seq_context, cache=cache, temperature=temperature, top_k=top_k, top_p=top_p) next_sample = pred_dist.sample()[:, -1:] samples = tf.concat([samples, next_sample], axis=1) return i + 1, samples, cache def _stopping_cond(i, samples, cache): """Stopping conditions for autoregressive calculation.""" del i, cache # Unused return tf.reduce_any(tf.reduce_all(tf.not_equal(samples, 0), axis=-1)) # While loop sampling with caching samples = tf.zeros([num_samples, 0], dtype=tf.int32) max_sample_length = max_sample_length or self.max_seq_length cache, cache_shape_invariants = self.decoder.create_init_cache(num_samples) _, f, _ = tf.while_loop( cond=_stopping_cond, body=_loop_body, loop_vars=(0, samples, cache), shape_invariants=(tf.TensorShape([]), tf.TensorShape([None, None]), cache_shape_invariants), back_prop=False, parallel_iterations=1, maximum_iterations=max_sample_length) # Record completed samples complete_samples = tf.reduce_any(tf.equal(f, 0), axis=-1) # Find number of faces sample_length = tf.shape(f)[-1] # Get largest new face (1) index as stopping point for incomplete samples. max_one_ind = tf.reduce_max( tf.range(sample_length)[None] * tf.cast(tf.equal(f, 1), tf.int32), axis=-1) zero_inds = tf.cast( tf.argmax(tf.cast(tf.equal(f, 0), tf.int32), axis=-1), tf.int32) num_face_indices = tf.where(complete_samples, zero_inds, max_one_ind) + 1 # Mask faces beyond stopping token with zeros # This mask has a -1 in order to replace the last new face token with zero faces_mask = tf.cast( tf.range(sample_length)[None] < num_face_indices[:, None] - 1, tf.int32) f *= faces_mask # This is the real mask faces_mask = tf.cast( tf.range(sample_length)[None] < num_face_indices[:, None], tf.int32) # Pad to maximum size with zeros pad_size = max_sample_length - sample_length f = tf.pad(f, [[0, 0], [0, pad_size]]) if only_return_complete: f = tf.boolean_mask(f, complete_samples) num_face_indices = tf.boolean_mask(num_face_indices, complete_samples) context = tf.nest.map_structure( lambda x: tf.boolean_mask(x, complete_samples), context) complete_samples = tf.boolean_mask(complete_samples, complete_samples) # outputs outputs = { 'context': context, 'completed': complete_samples, 'faces': f, 'num_face_indices': num_face_indices, } return outputs
deepmind-research-master
polygen/modules.py
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Haiku module implementing hierarchical attention over memory.""" from typing import Optional, NamedTuple import chex import haiku as hk import jax import jax.numpy as jnp import numpy as np _EPSILON = 1e-3 class HierarchicalMemory(NamedTuple): """Structure of the hierarchical memory. Where 'B' is batch size, 'M' is number of memories, 'C' is chunk size, and 'D' is memory dimension. """ keys: jnp.ndarray # [B, M, D] contents: jnp.ndarray # [B, M, C, D] steps_since_last_write: jnp.ndarray # [B], steps since last memory write accumulator: jnp.ndarray # [B, C, D], accumulates experiences before write def sinusoid_position_encoding( sequence_length: int, hidden_size: int, min_timescale: float = 2., max_timescale: float = 1e4, ) -> jnp.ndarray: """Creates sinusoidal encodings. Args: sequence_length: length [L] of sequence to be position encoded. hidden_size: dimension [D] of the positional encoding vectors. min_timescale: minimum timescale for the frequency. max_timescale: maximum timescale for the frequency. Returns: An array of shape [L, D] """ freqs = np.arange(0, hidden_size, min_timescale) inv_freq = max_timescale**(-freqs / hidden_size) pos_seq = np.arange(sequence_length - 1, -1, -1.0) sinusoid_inp = np.einsum("i,j->ij", pos_seq, inv_freq) pos_emb = np.concatenate( [np.sin(sinusoid_inp), np.cos(sinusoid_inp)], axis=-1) return pos_emb class HierarchicalMemoryAttention(hk.Module): """Multi-head attention over hierarchical memory.""" def __init__(self, feature_size: int, k: int, num_heads: int = 1, memory_position_encoding: bool = True, init_scale: float = 2., name: Optional[str] = None) -> None: """Constructor. Args: feature_size: size of feature dimension of attention-over-memories embedding. k: number of memories to sample. num_heads: number of attention heads. memory_position_encoding: whether to add positional encodings to memories during within memory attention. init_scale: scale factor for Variance weight initializers. name: module name. """ super().__init__(name=name) self._size = feature_size self._k = k self._num_heads = num_heads self._weights = None self._memory_position_encoding = memory_position_encoding self._init_scale = init_scale @property def num_heads(self): return self._num_heads @hk.transparent def _singlehead_linear(self, inputs: jnp.ndarray, hidden_size: int, name: str): linear = hk.Linear( hidden_size, with_bias=False, w_init=hk.initializers.VarianceScaling(scale=self._init_scale), name=name) out = linear(inputs) return out def __call__( self, queries: jnp.ndarray, hm_memory: HierarchicalMemory, hm_mask: Optional[jnp.ndarray] = None) -> jnp.ndarray: """Do hierarchical attention over the stored memories. Args: queries: Tensor [B, Q, E] Query(ies) in, for batch size B, query length Q, and embedding dimension E. hm_memory: Hierarchical Memory. hm_mask: Optional boolean mask tensor of shape [B, Q, M]. Where false, the corresponding query timepoints cannot attend to the corresponding memory chunks. This can be used for enforcing causal attention on the learner, not attending to memories from prior episodes, etc. Returns: Value updates for each query slot: [B, Q, D] """ # some shape checks batch_size, query_length, _ = queries.shape (memory_batch_size, num_memories, memory_chunk_size, mem_embbedding_size) = hm_memory.contents.shape assert batch_size == memory_batch_size chex.assert_shape(hm_memory.keys, (batch_size, num_memories, mem_embbedding_size)) chex.assert_shape(hm_memory.accumulator, (memory_batch_size, memory_chunk_size, mem_embbedding_size)) chex.assert_shape(hm_memory.steps_since_last_write, (memory_batch_size,)) if hm_mask is not None: chex.assert_type(hm_mask, bool) chex.assert_shape(hm_mask, (batch_size, query_length, num_memories)) query_head = self._singlehead_linear(queries, self._size, "query") key_head = self._singlehead_linear( jax.lax.stop_gradient(hm_memory.keys), self._size, "key") # What times in the input [t] attend to what times in the memories [T]. logits = jnp.einsum("btd,bTd->btT", query_head, key_head) scaled_logits = logits / np.sqrt(self._size) # Mask last dimension, replacing invalid logits with large negative values. # This allows e.g. enforcing causal attention on learner, or blocking # attention across episodes if hm_mask is not None: masked_logits = jnp.where(hm_mask, scaled_logits, -1e6) else: masked_logits = scaled_logits # identify the top-k memories and their relevance weights top_k_logits, top_k_indices = jax.lax.top_k(masked_logits, self._k) weights = jax.nn.softmax(top_k_logits) # set up the within-memory attention assert self._size % self._num_heads == 0 mha_key_size = self._size // self._num_heads attention_layer = hk.MultiHeadAttention( key_size=mha_key_size, model_size=self._size, num_heads=self._num_heads, w_init_scale=self._init_scale, name="within_mem_attn") # position encodings augmented_contents = hm_memory.contents if self._memory_position_encoding: position_embs = sinusoid_position_encoding( memory_chunk_size, mem_embbedding_size) augmented_contents += position_embs[None, None, :, :] def _within_memory_attention(sub_inputs, sub_memory_contents, sub_weights, sub_top_k_indices): top_k_contents = sub_memory_contents[sub_top_k_indices, :, :] # Now we go deeper, with another vmap over **tokens**, because each token # can each attend to different memories. def do_attention(sub_sub_inputs, sub_sub_top_k_contents): tiled_inputs = jnp.tile(sub_sub_inputs[None, None, :], reps=(self._k, 1, 1)) sub_attention_results = attention_layer( query=tiled_inputs, key=sub_sub_top_k_contents, value=sub_sub_top_k_contents) return sub_attention_results do_attention = jax.vmap(do_attention, in_axes=0) attention_results = do_attention(sub_inputs, top_k_contents) attention_results = jnp.squeeze(attention_results, axis=2) # Now collapse results across k memories attention_results = sub_weights[:, :, None] * attention_results attention_results = jnp.sum(attention_results, axis=1) return attention_results # vmap across batch batch_within_memory_attention = jax.vmap(_within_memory_attention, in_axes=0) outputs = batch_within_memory_attention( queries, jax.lax.stop_gradient(augmented_contents), weights, top_k_indices) return outputs
deepmind-research-master
hierarchical_transformer_memory/hierarchical_attention/htm_attention.py
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for hierarchical_attention.htm_attention.""" from absl.testing import absltest from absl.testing import parameterized import haiku as hk import numpy as np from hierarchical_transformer_memory.hierarchical_attention import htm_attention def _build_queries_and_memory(query_length, num_memories, mem_chunk_size, batch_size=2, embedding_size=12): """Builds dummy queries + memory contents for tests.""" queries = np.random.random([batch_size, query_length, embedding_size]) memory_contents = np.random.random( [batch_size, num_memories, mem_chunk_size, embedding_size]) # summary key = average across chunk memory_keys = np.mean(memory_contents, axis=2) # to accumulate newest memories before writing memory_accumulator = np.zeros_like(memory_contents[:, -1, :, :]) memory = htm_attention.HierarchicalMemory( keys=memory_keys, contents=memory_contents, accumulator=memory_accumulator, steps_since_last_write=np.zeros([batch_size,], dtype=np.int32)) return queries, memory class HierarchicalAttentionTest(parameterized.TestCase): @parameterized.parameters([ { 'query_length': 1, 'num_memories': 7, 'mem_chunk_size': 5, 'mem_k': 4, }, { 'query_length': 9, 'num_memories': 7, 'mem_chunk_size': 5, 'mem_k': 4, }, ]) @hk.testing.transform_and_run def test_output_shapes(self, query_length, num_memories, mem_chunk_size, mem_k): np.random.seed(0) batch_size = 2 embedding_size = 12 num_heads = 3 queries, memory = _build_queries_and_memory( query_length=query_length, num_memories=num_memories, mem_chunk_size=mem_chunk_size, embedding_size=embedding_size) hm_att = htm_attention.HierarchicalMemoryAttention( feature_size=embedding_size, k=mem_k, num_heads=num_heads) results = hm_att(queries, memory) self.assertEqual(results.shape, (batch_size, query_length, embedding_size)) self.assertTrue(np.all(np.isfinite(results))) @hk.testing.transform_and_run def test_masking(self): np.random.seed(0) batch_size = 2 embedding_size = 12 num_heads = 3 query_length = 5 num_memories = 7 mem_chunk_size = 6 mem_k = 4 queries, memory = _build_queries_and_memory( query_length=query_length, num_memories=num_memories, mem_chunk_size=mem_chunk_size, embedding_size=embedding_size) hm_att = htm_attention.HierarchicalMemoryAttention( feature_size=embedding_size, k=mem_k, num_heads=num_heads) # get a random boolean mask mask = np.random.binomial( 1, 0.5, [batch_size, query_length, num_memories]).astype(bool) results = hm_att(queries, memory, hm_mask=mask) self.assertEqual(results.shape, (batch_size, query_length, embedding_size)) self.assertTrue(np.all(np.isfinite(results))) if __name__ == '__main__': absltest.main()
deepmind-research-master
hierarchical_transformer_memory/hierarchical_attention/htm_attention_test.py
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A pycolab environment for going to the ballet. A pycolab-based environment for testing memory for sequences of events. The environment contains some number of "dancer" characters in (implicit) 3 x 3 squares within a larger 9 x 9 room. The agent starts in the center of the room. At the beginning of an episode, the dancers each do a dance solo of a fixed length, separated by empty time of a fixed length. The agent's actions do nothing during the dances. After the last dance ends, the agent must go up to a dancer, identified using language describing the dance. The agent is rewarded +1 for approaching the correct dancer, 0 otherwise. The room is upsampled at a size of 9 pixels per square to render a view for the agent, which is cropped in egocentric perspective, i.e. the agent is always in the center of its view (see https://arxiv.org/abs/1910.00571). """ from absl import app from absl import flags from absl import logging import dm_env import numpy as np from pycolab import cropping from hierarchical_transformer_memory.pycolab_ballet import ballet_environment_core as ballet_core FLAGS = flags.FLAGS UPSAMPLE_SIZE = 9 # pixels per game square SCROLL_CROP_SIZE = 11 # in game squares DANCER_SHAPES = [ "triangle", "empty_square", "plus", "inverse_plus", "ex", "inverse_ex", "circle", "empty_circle", "tee", "upside_down_tee", "h", "u", "upside_down_u", "vertical_stripes", "horizontal_stripes" ] COLORS = { "red": np.array([255, 0, 0]), "green": np.array([0, 255, 0]), "blue": np.array([0, 0, 255]), "purple": np.array([128, 0, 128]), "orange": np.array([255, 165, 0]), "yellow": np.array([255, 255, 0]), "brown": np.array([128, 64, 0]), "pink": np.array([255, 64, 255]), "cyan": np.array([0, 255, 255]), "dark_green": np.array([0, 100, 0]), "dark_red": np.array([100, 0, 0]), "dark_blue": np.array([0, 0, 100]), "olive": np.array([100, 100, 0]), "teal": np.array([0, 100, 100]), "lavender": np.array([215, 200, 255]), "peach": np.array([255, 210, 170]), "rose": np.array([255, 205, 230]), "light_green": np.array([200, 255, 200]), "light_yellow": np.array([255, 255, 200]), } def _generate_template(object_name): """Generates a template object image, given a name with color and shape.""" object_color, object_type = object_name.split() template = np.zeros((UPSAMPLE_SIZE, UPSAMPLE_SIZE)) half = UPSAMPLE_SIZE // 2 if object_type == "triangle": for i in range(UPSAMPLE_SIZE): for j in range(UPSAMPLE_SIZE): if (j <= half and i >= 2 * (half - j)) or (j > half and i >= 2 * (j - half)): template[i, j] = 1. elif object_type == "square": template[:, :] = 1. elif object_type == "empty_square": template[:2, :] = 1. template[-2:, :] = 1. template[:, :2] = 1. template[:, -2:] = 1. elif object_type == "plus": template[:, half - 1:half + 2] = 1. template[half - 1:half + 2, :] = 1. elif object_type == "inverse_plus": template[:, :] = 1. template[:, half - 1:half + 2] = 0. template[half - 1:half + 2, :] = 0. elif object_type == "ex": for i in range(UPSAMPLE_SIZE): for j in range(UPSAMPLE_SIZE): if abs(i - j) <= 1 or abs(UPSAMPLE_SIZE - 1 - j - i) <= 1: template[i, j] = 1. elif object_type == "inverse_ex": for i in range(UPSAMPLE_SIZE): for j in range(UPSAMPLE_SIZE): if not (abs(i - j) <= 1 or abs(UPSAMPLE_SIZE - 1 - j - i) <= 1): template[i, j] = 1. elif object_type == "circle": for i in range(UPSAMPLE_SIZE): for j in range(UPSAMPLE_SIZE): if (i - half)**2 + (j - half)**2 <= half**2: template[i, j] = 1. elif object_type == "empty_circle": for i in range(UPSAMPLE_SIZE): for j in range(UPSAMPLE_SIZE): if abs((i - half)**2 + (j - half)**2 - half**2) < 6: template[i, j] = 1. elif object_type == "tee": template[:, half - 1:half + 2] = 1. template[:3, :] = 1. elif object_type == "upside_down_tee": template[:, half - 1:half + 2] = 1. template[-3:, :] = 1. elif object_type == "h": template[:, :3] = 1. template[:, -3:] = 1. template[half - 1:half + 2, :] = 1. elif object_type == "u": template[:, :3] = 1. template[:, -3:] = 1. template[-3:, :] = 1. elif object_type == "upside_down_u": template[:, :3] = 1. template[:, -3:] = 1. template[:3, :] = 1. elif object_type == "vertical_stripes": for j in range(half + UPSAMPLE_SIZE % 2): template[:, 2*j] = 1. elif object_type == "horizontal_stripes": for i in range(half + UPSAMPLE_SIZE % 2): template[2*i, :] = 1. else: raise ValueError("Unknown object: {}".format(object_type)) if object_color not in COLORS: raise ValueError("Unknown color: {}".format(object_color)) template = np.tensordot(template, COLORS[object_color], axes=0) return template # Agent and wall templates _CHAR_TO_TEMPLATE_BASE = { ballet_core.AGENT_CHAR: np.tensordot( np.ones([UPSAMPLE_SIZE, UPSAMPLE_SIZE]), np.array([255, 255, 255]), axes=0), ballet_core.WALL_CHAR: np.tensordot( np.ones([UPSAMPLE_SIZE, UPSAMPLE_SIZE]), np.array([40, 40, 40]), axes=0), } def get_scrolling_cropper(rows=9, cols=9, crop_pad_char=" "): return cropping.ScrollingCropper(rows=rows, cols=cols, to_track=[ballet_core.AGENT_CHAR], pad_char=crop_pad_char, scroll_margins=(None, None)) class BalletEnvironment(dm_env.Environment): """A Python environment API for pycolab ballet tasks.""" def __init__(self, num_dancers, dance_delay, max_steps, rng=None): """Construct a BalletEnvironment that wraps pycolab games for agent use. This class inherits from dm_env and has all the expected methods and specs. Args: num_dancers: The number of dancers to use, between 1 and 8 (inclusive). dance_delay: How long to delay between the dances. max_steps: The maximum number of steps to allow in an episode, after which it will terminate. rng: An optional numpy Random Generator, to set a fixed seed use e.g. `rng=np.random.default_rng(seed=...)` """ self._num_dancers = num_dancers self._dance_delay = dance_delay self._max_steps = max_steps # internal state if rng is None: rng = np.random.default_rng() self._rng = rng self._current_game = None # Current pycolab game instance. self._state = None # Current game step state. self._game_over = None # Whether the game has ended. self._char_to_template = None # Mapping of chars to sprite images. # rendering tools self._cropper = get_scrolling_cropper(SCROLL_CROP_SIZE, SCROLL_CROP_SIZE, " ") def _game_factory(self): """Samples dancers and positions, returns a pycolab core game engine.""" target_dancer_index = self._rng.integers(self._num_dancers) motions = list(ballet_core.DANCE_SEQUENCES.keys()) positions = ballet_core.DANCER_POSITIONS.copy() colors = list(COLORS.keys()) shapes = DANCER_SHAPES.copy() self._rng.shuffle(positions) self._rng.shuffle(motions) self._rng.shuffle(colors) self._rng.shuffle(shapes) dancers_and_properties = [] for dancer_i in range(self._num_dancers): if dancer_i == target_dancer_index: value = 1. else: value = 0. dancers_and_properties.append( (ballet_core.POSSIBLE_DANCER_CHARS[dancer_i], positions[dancer_i], motions[dancer_i], shapes[dancer_i], colors[dancer_i], value)) logging.info("Making level with dancers_and_properties: %s", dancers_and_properties) return ballet_core.make_game( dancers_and_properties=dancers_and_properties, dance_delay=self._dance_delay) def _render_observation(self, observation): """Renders from raw pycolab image observation to agent-usable ones.""" observation = self._cropper.crop(observation) obs_rows, obs_cols = observation.board.shape image = np.zeros([obs_rows * UPSAMPLE_SIZE, obs_cols * UPSAMPLE_SIZE, 3], dtype=np.float32) for i in range(obs_rows): for j in range(obs_cols): this_char = chr(observation.board[i, j]) if this_char != ballet_core.FLOOR_CHAR: image[ i * UPSAMPLE_SIZE:(i + 1) * UPSAMPLE_SIZE, j * UPSAMPLE_SIZE:(j + 1) * UPSAMPLE_SIZE] = self._char_to_template[ this_char] image /= 255. language = np.array(self._current_game.the_plot["instruction_string"]) full_observation = (image, language) return full_observation def reset(self): """Start a new episode.""" # Build a new game and retrieve its first set of state/reward/discount. self._current_game = self._game_factory() # set up rendering, cropping, and state for current game self._char_to_template = { k: _generate_template(v) for k, v in self._current_game.the_plot[ "char_to_color_shape"]} self._char_to_template.update(_CHAR_TO_TEMPLATE_BASE) self._cropper.set_engine(self._current_game) self._state = dm_env.StepType.FIRST # let's go! observation, _, _ = self._current_game.its_showtime() observation = self._render_observation(observation) return dm_env.TimeStep( step_type=self._state, reward=None, discount=None, observation=observation) def step(self, action): """Apply action, step the world forward, and return observations.""" # If needed, reset and start new episode. if self._state == dm_env.StepType.LAST: self._clear_state() if self._current_game is None: return self.reset() # Execute the action in pycolab. observation, reward, discount = self._current_game.play(action) self._game_over = self._is_game_over() reward = reward if reward is not None else 0. observation = self._render_observation(observation) # Check the current status of the game. if self._game_over: self._state = dm_env.StepType.LAST else: self._state = dm_env.StepType.MID return dm_env.TimeStep( step_type=self._state, reward=reward, discount=discount, observation=observation) @property def observation_spec(self): image_shape = (SCROLL_CROP_SIZE * UPSAMPLE_SIZE, SCROLL_CROP_SIZE * UPSAMPLE_SIZE, 3) return ( # vision dm_env.specs.Array( shape=image_shape, dtype=np.float32, name="image"), # language dm_env.specs.Array( shape=[], dtype=str, name="language"), ) @property def action_spec(self): return dm_env.specs.BoundedArray( shape=[], dtype="int32", minimum=0, maximum=7, name="grid_actions") def _is_game_over(self): """Returns whether it is game over, either from the engine or timeout.""" return (self._current_game.game_over or (self._current_game.the_plot.frame >= self._max_steps)) def _clear_state(self): """Clear all the internal information about the game.""" self._state = None self._current_game = None self._char_to_template = None self._game_over = None def simple_builder(level_name): """Simplifies building from fixed defs. Args: level_name: '{num_dancers}_delay{delay_length}', where each variable is an integer. The levels used in the paper were: ['2_delay16', '4_delay16', '8_delay16', '2_delay48', '4_delay48', '8_delay48'] Returns: A BalletEnvironment with the requested settings. """ num_dancers, dance_delay = level_name.split("_") num_dancers = int(num_dancers) dance_delay = int(dance_delay[5:]) max_steps = 320 if dance_delay == 16 else 1024 level_args = dict( num_dancers=num_dancers, dance_delay=dance_delay, max_steps=max_steps) return BalletEnvironment(**level_args) def main(argv): if len(argv) > 1: raise app.UsageError("Too many command-line arguments.") env = simple_builder("4_delay16") for _ in range(3): obs = env.reset().observation for _ in range(300): obs = env.step(0).observation print(obs) if __name__ == "__main__": app.run(main)
deepmind-research-master
hierarchical_transformer_memory/pycolab_ballet/ballet_environment.py
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for pycolab_ballet.ballet_environment_wrapper.""" from absl.testing import absltest from absl.testing import parameterized import numpy as np from hierarchical_transformer_memory.pycolab_ballet import ballet_environment from hierarchical_transformer_memory.pycolab_ballet import ballet_environment_core class BalletEnvironmentTest(parameterized.TestCase): def test_full_wrapper(self): env = ballet_environment.BalletEnvironment( num_dancers=1, dance_delay=16, max_steps=200, rng=np.random.default_rng(seed=0)) result = env.reset() self.assertIsNone(result.reward) level_size = ballet_environment_core.ROOM_SIZE upsample_size = ballet_environment.UPSAMPLE_SIZE # wait for dance to complete for i in range(30): result = env.step(0).observation self.assertEqual(result[0].shape, (level_size[0] * upsample_size, level_size[1] * upsample_size, 3)) self.assertEqual(str(result[1])[:5], np.array("watch")) for i in [1, 1, 1, 1]: # first gets eaten before agent can move result = env.step(i) self.assertEqual(result.observation[0].shape, (level_size[0] * upsample_size, level_size[1] * upsample_size, 3)) self.assertEqual(str(result.observation[1])[:11], np.array("up_and_down")) self.assertEqual(result.reward, 1.) # check egocentric scrolling is working, by checking object is in center np.testing.assert_array_almost_equal( result.observation[0][45:54, 45:54], ballet_environment._generate_template("orange plus") / 255.) @parameterized.parameters( "2_delay16", "4_delay16", "8_delay48", ) def test_simple_builder(self, level_name): dance_delay = int(level_name[-2:]) np.random.seed(0) env = ballet_environment.simple_builder(level_name) # check max steps are set to match paper settings self.assertEqual(env._max_steps, 320 if dance_delay == 16 else 1024) # test running a few steps of each env.reset() level_size = ballet_environment_core.ROOM_SIZE upsample_size = ballet_environment.UPSAMPLE_SIZE for i in range(8): result = env.step(i) # check all 8 movements work self.assertEqual(result.observation[0].shape, (level_size[0] * upsample_size, level_size[1] * upsample_size, 3)) self.assertEqual(str(result.observation[1])[:5], np.array("watch")) self.assertEqual(result.reward, 0.) if __name__ == "__main__": absltest.main()
deepmind-research-master
hierarchical_transformer_memory/pycolab_ballet/ballet_environment_test.py
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The pycolab core of the environment for going to the ballet. This builds the text-based (non-graphical) engine of the environment, and offers a UI which a human can play (for a fixed level). However, the logic of level creation, the graphics, and anything that is external to the pycolab engine itself is contained in ballet_environment.py. """ import curses import enum from absl import app from absl import flags from pycolab import ascii_art from pycolab import human_ui from pycolab.prefab_parts import sprites as prefab_sprites FLAGS = flags.FLAGS ROOM_SIZE = (11, 11) # one square around edge will be wall. DANCER_POSITIONS = [(2, 2), (2, 5), (2, 8), (5, 2), (5, 8), # space in center for agent (8, 2), (8, 5), (8, 8)] AGENT_START = (5, 5) AGENT_CHAR = "A" WALL_CHAR = "#" FLOOR_CHAR = " " RESERVED_CHARS = [AGENT_CHAR, WALL_CHAR, FLOOR_CHAR] POSSIBLE_DANCER_CHARS = [ chr(i) for i in range(65, 91) if chr(i) not in RESERVED_CHARS ] DANCE_SEQUENCE_LENGTHS = 16 # movement directions for dancers / actions for agent class DIRECTIONS(enum.IntEnum): N = 0 NE = 1 E = 2 SE = 3 S = 4 SW = 5 W = 6 NW = 7 DANCE_SEQUENCES = { "circle_cw": [ DIRECTIONS.N, DIRECTIONS.E, DIRECTIONS.S, DIRECTIONS.S, DIRECTIONS.W, DIRECTIONS.W, DIRECTIONS.N, DIRECTIONS.N, DIRECTIONS.E, DIRECTIONS.E, DIRECTIONS.S, DIRECTIONS.S, DIRECTIONS.W, DIRECTIONS.W, DIRECTIONS.N, DIRECTIONS.E ], "circle_ccw": [ DIRECTIONS.N, DIRECTIONS.W, DIRECTIONS.S, DIRECTIONS.S, DIRECTIONS.E, DIRECTIONS.E, DIRECTIONS.N, DIRECTIONS.N, DIRECTIONS.W, DIRECTIONS.W, DIRECTIONS.S, DIRECTIONS.S, DIRECTIONS.E, DIRECTIONS.E, DIRECTIONS.N, DIRECTIONS.W ], "up_and_down": [ DIRECTIONS.N, DIRECTIONS.S, DIRECTIONS.S, DIRECTIONS.N, DIRECTIONS.N, DIRECTIONS.S, DIRECTIONS.S, DIRECTIONS.N, DIRECTIONS.N, DIRECTIONS.S, DIRECTIONS.S, DIRECTIONS.N, DIRECTIONS.N, DIRECTIONS.S, DIRECTIONS.S, DIRECTIONS.N ], "left_and_right": [ DIRECTIONS.E, DIRECTIONS.W, DIRECTIONS.W, DIRECTIONS.E, DIRECTIONS.E, DIRECTIONS.W, DIRECTIONS.W, DIRECTIONS.E, DIRECTIONS.E, DIRECTIONS.W, DIRECTIONS.W, DIRECTIONS.E, DIRECTIONS.E, DIRECTIONS.W, DIRECTIONS.W, DIRECTIONS.E ], "diagonal_uldr": [ DIRECTIONS.NW, DIRECTIONS.SE, DIRECTIONS.SE, DIRECTIONS.NW, DIRECTIONS.NW, DIRECTIONS.SE, DIRECTIONS.SE, DIRECTIONS.NW, DIRECTIONS.NW, DIRECTIONS.SE, DIRECTIONS.SE, DIRECTIONS.NW, DIRECTIONS.NW, DIRECTIONS.SE, DIRECTIONS.SE, DIRECTIONS.NW ], "diagonal_urdl": [ DIRECTIONS.NE, DIRECTIONS.SW, DIRECTIONS.SW, DIRECTIONS.NE, DIRECTIONS.NE, DIRECTIONS.SW, DIRECTIONS.SW, DIRECTIONS.NE, DIRECTIONS.NE, DIRECTIONS.SW, DIRECTIONS.SW, DIRECTIONS.NE, DIRECTIONS.NE, DIRECTIONS.SW, DIRECTIONS.SW, DIRECTIONS.NE ], "plus_cw": [ DIRECTIONS.N, DIRECTIONS.S, DIRECTIONS.E, DIRECTIONS.W, DIRECTIONS.S, DIRECTIONS.N, DIRECTIONS.W, DIRECTIONS.E, DIRECTIONS.N, DIRECTIONS.S, DIRECTIONS.E, DIRECTIONS.W, DIRECTIONS.S, DIRECTIONS.N, DIRECTIONS.W, DIRECTIONS.E ], "plus_ccw": [ DIRECTIONS.N, DIRECTIONS.S, DIRECTIONS.W, DIRECTIONS.E, DIRECTIONS.S, DIRECTIONS.N, DIRECTIONS.E, DIRECTIONS.W, DIRECTIONS.N, DIRECTIONS.S, DIRECTIONS.W, DIRECTIONS.E, DIRECTIONS.S, DIRECTIONS.N, DIRECTIONS.E, DIRECTIONS.W ], "times_cw": [ DIRECTIONS.NE, DIRECTIONS.SW, DIRECTIONS.SE, DIRECTIONS.NW, DIRECTIONS.SW, DIRECTIONS.NE, DIRECTIONS.NW, DIRECTIONS.SE, DIRECTIONS.NE, DIRECTIONS.SW, DIRECTIONS.SE, DIRECTIONS.NW, DIRECTIONS.SW, DIRECTIONS.NE, DIRECTIONS.NW, DIRECTIONS.SE ], "times_ccw": [ DIRECTIONS.NW, DIRECTIONS.SE, DIRECTIONS.SW, DIRECTIONS.NE, DIRECTIONS.SE, DIRECTIONS.NW, DIRECTIONS.NE, DIRECTIONS.SW, DIRECTIONS.NW, DIRECTIONS.SE, DIRECTIONS.SW, DIRECTIONS.NE, DIRECTIONS.SE, DIRECTIONS.NW, DIRECTIONS.NE, DIRECTIONS.SW ], "zee": [ DIRECTIONS.NE, DIRECTIONS.W, DIRECTIONS.W, DIRECTIONS.E, DIRECTIONS.E, DIRECTIONS.SW, DIRECTIONS.NE, DIRECTIONS.SW, DIRECTIONS.SW, DIRECTIONS.E, DIRECTIONS.E, DIRECTIONS.W, DIRECTIONS.W, DIRECTIONS.NE, DIRECTIONS.SW, DIRECTIONS.NE ], "chevron_down": [ DIRECTIONS.NW, DIRECTIONS.S, DIRECTIONS.SE, DIRECTIONS.NE, DIRECTIONS.N, DIRECTIONS.SW, DIRECTIONS.NE, DIRECTIONS.SW, DIRECTIONS.NE, DIRECTIONS.S, DIRECTIONS.SW, DIRECTIONS.NW, DIRECTIONS.N, DIRECTIONS.SE, DIRECTIONS.NW, DIRECTIONS.SE ], "chevron_up": [ DIRECTIONS.SE, DIRECTIONS.N, DIRECTIONS.NW, DIRECTIONS.SW, DIRECTIONS.S, DIRECTIONS.NE, DIRECTIONS.SW, DIRECTIONS.NE, DIRECTIONS.SW, DIRECTIONS.N, DIRECTIONS.NE, DIRECTIONS.SE, DIRECTIONS.S, DIRECTIONS.NW, DIRECTIONS.SE, DIRECTIONS.NW ], } class DancerSprite(prefab_sprites.MazeWalker): """A `Sprite` for dancers.""" def __init__(self, corner, position, character, motion, color, shape, value=0.): super(DancerSprite, self).__init__( corner, position, character, impassable="#") self.motion = motion self.dance_sequence = DANCE_SEQUENCES[motion].copy() self.color = color self.shape = shape self.value = value self.is_dancing = False def update(self, actions, board, layers, backdrop, things, the_plot): if the_plot["task_phase"] == "dance" and self.is_dancing: if not self.dance_sequence: raise ValueError( "Dance sequence is empty! Was this dancer repeated in the order?") dance_move = self.dance_sequence.pop(0) if dance_move == DIRECTIONS.N: self._north(board, the_plot) elif dance_move == DIRECTIONS.NE: self._northeast(board, the_plot) elif dance_move == DIRECTIONS.E: self._east(board, the_plot) elif dance_move == DIRECTIONS.SE: self._southeast(board, the_plot) elif dance_move == DIRECTIONS.S: self._south(board, the_plot) elif dance_move == DIRECTIONS.SW: self._southwest(board, the_plot) elif dance_move == DIRECTIONS.W: self._west(board, the_plot) elif dance_move == DIRECTIONS.NW: self._northwest(board, the_plot) if not self.dance_sequence: # done! self.is_dancing = False the_plot["time_until_next_dance"] = the_plot["dance_delay"] else: if self.position == things[AGENT_CHAR].position: # Award the player the appropriate amount of reward, and end episode. the_plot.add_reward(self.value) the_plot.terminate_episode() class PlayerSprite(prefab_sprites.MazeWalker): """The player / agent character. MazeWalker class methods handle basic movement and collision detection. """ def __init__(self, corner, position, character): super(PlayerSprite, self).__init__( corner, position, character, impassable="#") def update(self, actions, board, layers, backdrop, things, the_plot): if the_plot["task_phase"] == "dance": # agent's actions are ignored, this logic updates the dance phases. if the_plot["time_until_next_dance"] > 0: the_plot["time_until_next_dance"] -= 1 if the_plot["time_until_next_dance"] == 0: # next phase time! if the_plot["dance_order"]: # start the next dance! next_dancer = the_plot["dance_order"].pop(0) things[next_dancer].is_dancing = True else: # choice time! the_plot["task_phase"] = "choice" the_plot["instruction_string"] = the_plot[ "choice_instruction_string"] elif the_plot["task_phase"] == "choice": # agent can now move and make its choice if actions == DIRECTIONS.N: self._north(board, the_plot) elif actions == DIRECTIONS.NE: self._northeast(board, the_plot) elif actions == DIRECTIONS.E: self._east(board, the_plot) elif actions == DIRECTIONS.SE: self._southeast(board, the_plot) elif actions == DIRECTIONS.S: self._south(board, the_plot) elif actions == DIRECTIONS.SW: self._southwest(board, the_plot) elif actions == DIRECTIONS.W: self._west(board, the_plot) elif actions == DIRECTIONS.NW: self._northwest(board, the_plot) def make_game(dancers_and_properties, dance_delay=16): """Constructs an ascii map, then uses pycolab to make it a game. Args: dancers_and_properties: list of (character, (row, column), motion, shape, color, value), for placing objects in the world. dance_delay: how long to wait between dances. Returns: this_game: Pycolab engine running the specified game. """ num_rows, num_cols = ROOM_SIZE level_layout = [] # upper wall level_layout.append("".join([WALL_CHAR] * num_cols)) # room middle_string = "".join([WALL_CHAR] + [" "] * (num_cols - 2) + [WALL_CHAR]) level_layout.extend([middle_string for _ in range(num_rows - 2)]) # lower wall level_layout.append("".join([WALL_CHAR] * num_cols)) def _add_to_map(obj, loc): """Adds an ascii character to the level at the requested position.""" obj_row = level_layout[loc[0]] pre_string = obj_row[:loc[1]] post_string = obj_row[loc[1] + 1:] level_layout[loc[0]] = pre_string + obj + post_string _add_to_map(AGENT_CHAR, AGENT_START) sprites = {AGENT_CHAR: PlayerSprite} dance_order = [] char_to_color_shape = [] # add dancers to level for obj, loc, motion, shape, color, value in dancers_and_properties: _add_to_map(obj, loc) sprites[obj] = ascii_art.Partial( DancerSprite, motion=motion, color=color, shape=shape, value=value) char_to_color_shape.append((obj, color + " " + shape)) dance_order += obj if value > 0.: choice_instruction_string = motion this_game = ascii_art.ascii_art_to_game( art=level_layout, what_lies_beneath=" ", sprites=sprites, update_schedule=[[AGENT_CHAR], dance_order]) this_game.the_plot["task_phase"] = "dance" this_game.the_plot["instruction_string"] = "watch" this_game.the_plot["choice_instruction_string"] = choice_instruction_string this_game.the_plot["dance_order"] = dance_order this_game.the_plot["dance_delay"] = dance_delay this_game.the_plot["time_until_next_dance"] = 1 this_game.the_plot["char_to_color_shape"] = char_to_color_shape return this_game def main(argv): del argv # unused these_dancers_and_properties = [ (POSSIBLE_DANCER_CHARS[1], (2, 2), "chevron_up", "triangle", "red", 1), (POSSIBLE_DANCER_CHARS[2], (2, 5), "circle_ccw", "triangle", "red", 0), (POSSIBLE_DANCER_CHARS[3], (2, 8), "plus_cw", "triangle", "red", 0), (POSSIBLE_DANCER_CHARS[4], (5, 2), "plus_ccw", "triangle", "red", 0), (POSSIBLE_DANCER_CHARS[5], (5, 8), "times_cw", "triangle", "red", 0), (POSSIBLE_DANCER_CHARS[6], (8, 2), "up_and_down", "plus", "blue", 0), (POSSIBLE_DANCER_CHARS[7], (8, 5), "left_and_right", "plus", "blue", 0), (POSSIBLE_DANCER_CHARS[8], (8, 8), "zee", "plus", "blue", 0), ] game = make_game(dancers_and_properties=these_dancers_and_properties) # Note that these colors are only for human UI fg_colours = { AGENT_CHAR: (999, 999, 999), # Agent is white WALL_CHAR: (300, 300, 300), # Wall, dark grey FLOOR_CHAR: (0, 0, 0), # Floor } for (c, _, _, _, col, _) in these_dancers_and_properties: fg_colours[c] = (999, 0, 0) if col == "red" else (0, 0, 999) bg_colours = { c: (0, 0, 0) for c in RESERVED_CHARS + POSSIBLE_DANCER_CHARS[1:8] } ui = human_ui.CursesUi( keys_to_actions={ # Basic movement. curses.KEY_UP: DIRECTIONS.N, curses.KEY_DOWN: DIRECTIONS.S, curses.KEY_LEFT: DIRECTIONS.W, curses.KEY_RIGHT: DIRECTIONS.E, -1: 8, # Do nothing. }, delay=500, colour_fg=fg_colours, colour_bg=bg_colours) ui.play(game) if __name__ == "__main__": app.run(main)
deepmind-research-master
hierarchical_transformer_memory/pycolab_ballet/ballet_environment_core.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Visualize physical planning games in Domain Explorer. """ import functools from absl import app from absl import flags from dm_control import composer from dm_control import viewer from dm_control.locomotion import walkers from physics_planning_games import board_games from physics_planning_games.mujoban.boxoban import boxoban_level_generator from physics_planning_games.mujoban.mujoban import Mujoban from physics_planning_games.mujoban.mujoban_level import MujobanLevel flags.DEFINE_enum('environment_name', 'mujoban', [ 'mujoban', 'go_7x7', 'tic_tac_toe_markers_features', 'tic_tac_toe_mixture_opponent_markers_features', 'tic_tac_toe_optimal_opponent_markers_features'], 'Name of an environment to load.') FLAGS = flags.FLAGS TIME_LIMIT = 1000 CONTROL_TIMESTEP = .1 def main(argv): if len(argv) > 1: raise app.UsageError('Too many command-line arguments.') environment_name = FLAGS.environment_name if environment_name == 'mujoban': walker = walkers.JumpingBallWithHead(add_ears=True, camera_height=0.25) arena = MujobanLevel(boxoban_level_generator) task = Mujoban( walker=walker, maze=arena, control_timestep=CONTROL_TIMESTEP, top_camera_height=64, top_camera_width=48) env = composer.Environment( time_limit=TIME_LIMIT, task=task, strip_singleton_obs_buffer_dim=True) else: env = functools.partial( board_games.load, environment_name=environment_name) viewer.launch(env) if __name__ == '__main__': app.run(main)
deepmind-research-master
physics_planning_games/explore.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for Mujoban.""" from absl.testing import absltest from dm_control import composer from dm_control.locomotion import walkers import dm_env as environment import numpy as np from physics_planning_games.mujoban.mujoban import Mujoban from physics_planning_games.mujoban.mujoban_level import MujobanLevel TIME_LIMIT = 5 CONTROL_TIMESTEP = .1 class MujobanTest(absltest.TestCase): def test(self): walker = walkers.JumpingBallWithHead(add_ears=True, camera_height=0.25) arena = MujobanLevel() task = Mujoban( walker=walker, maze=arena, control_timestep=CONTROL_TIMESTEP, top_camera_height=64, top_camera_width=48) env = composer.Environment( time_limit=TIME_LIMIT, task=task, strip_singleton_obs_buffer_dim=True) time_step = env.reset() self.assertEqual( set([ 'pixel_layer', 'full_entity_layer', 'top_camera', 'walker/body_height', 'walker/end_effectors_pos', 'walker/joints_pos', 'walker/joints_vel', 'walker/sensors_accelerometer', 'walker/sensors_gyro', 'walker/sensors_touch', 'walker/sensors_velocimeter', 'walker/world_zaxis', 'walker/orientation', ]), set(time_step.observation.keys())) top_camera = time_step.observation['top_camera'] self.assertEqual(np.uint8, top_camera.dtype) self.assertEqual((64, 48, 3), top_camera.shape) all_step_types = [] # Run enough actions that we are guaranteed to have restarted the # episode at least once. for _ in range(int(2*TIME_LIMIT/CONTROL_TIMESTEP)): action = 2*np.random.random(env.action_spec().shape) - 1 time_step = env.step(action) all_step_types.append(time_step.step_type) self.assertEqual(set([environment.StepType.FIRST, environment.StepType.MID, environment.StepType.LAST]), set(all_step_types)) if __name__ == '__main__': absltest.main()
deepmind-research-master
physics_planning_games/mujoban/mujoban_test.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """A floor pad that is activated through touch.""" import weakref from dm_control import composer from dm_control import mjcf import numpy as np def _get_activator_box(pad_xpos, pad_size, boxes, tolerance=0.0): """Returns the activator box, if any. Otherwise returns None.""" # Ignore the height pad_min = pad_xpos[0:2] - pad_size[0:2] pad_max = pad_xpos[0:2] + pad_size[0:2] for box in boxes: box_xpos = np.array(box.xpos[0:2]) box_size = np.array(box.size[0:2]) min_ = pad_min + box_size - tolerance max_ = pad_max - box_size + tolerance in_range = np.logical_and(box_xpos >= min_, box_xpos <= max_).all() if in_range: return box # No activator box was found return None class MujobanPad(composer.Entity): """A less sensitive floor pad for Mujoban.""" def _build(self, rgba=None, pressed_rgba=None, size=1, height=0.02, detection_tolerance=0.0, name='mujoban_pad'): rgba = tuple(rgba or (1, 0, 0, 1)) pressed_rgba = tuple(pressed_rgba or (0.2, 0, 0, 1)) self._mjcf_root = mjcf.RootElement(model=name) self._site = self._mjcf_root.worldbody.add( 'site', type='box', name='site', pos=[0, 0, (height / 2 or -0.001)], size=[size / 2, size / 2, (height / 2 or 0.001)], rgba=rgba) self._activated = False self._rgba = np.array(rgba, dtype=np.float) self._pressed_rgba = np.array(pressed_rgba, dtype=np.float) self._activator = None self._detection_tolerance = detection_tolerance self._boxes = [] @property def rgba(self): return self._rgba @property def pressed_rgba(self): return self._pressed_rgba def register_box(self, box_entity): self._boxes.append(weakref.proxy(box_entity)) @property def site(self): return self._site @property def boxes(self): return self._boxes @property def activator(self): return self._activator if self._activated else None @property def mjcf_model(self): return self._mjcf_root def initialize_episode_mjcf(self, unused_random_state): self._activated = False def initialize_episode(self, physics, unused_random_state): self._update_activation(physics) def _update_activation(self, physics): # Note: we get the physically bound box, not an object from self._boxes. # That's because the generator expression below generates bound objects. box = _get_activator_box( pad_xpos=np.array(physics.bind(self._site).xpos), pad_size=np.array(physics.bind(self._site).size), boxes=(physics.bind(box.geom) for box in self._boxes), tolerance=self._detection_tolerance,) if box: self._activated = True self._activator = box else: self._activated = False self._activator = None if self._activated: physics.bind(self._site).rgba = self._pressed_rgba else: physics.bind(self._site).rgba = self._rgba def before_step(self, physics, unused_random_state): self._update_activation(physics) def after_substep(self, physics, unused_random_state): self._update_activation(physics) @property def activated(self): """Whether this floor pad is pressed at the moment.""" return self._activated def reset(self, physics): self._activated = False physics.bind(self._site).rgba = self._rgba
deepmind-research-master
physics_planning_games/mujoban/mujoban_pad.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Module for generating Mujoban level. """ import labmaze BOX_CHAR = 'B' TARGET_CHAR = labmaze.defaults.OBJECT_TOKEN _DEFAULT_LEVEL = """ ##### # # #### # # # . .# # # . # # .## $## ## #$$ # ## $@# ## ### ####""" # The meaning of symbols here are the same as defined in # http://sneezingtiger.com/sokoban/levels/sasquatch5Text.html. These are the # same symbols as used by the Sokoban community. EMPTY_CELL = ' ' GOAL = '.' PLAYER = '@' PLAYER_ON_GOAL = '+' BOX = '$' BOX_ON_GOAL = '*' WALL = '#' _SOKOBAN_SYMBOLS = [ EMPTY_CELL, GOAL, PLAYER, PLAYER_ON_GOAL, BOX, BOX_ON_GOAL, WALL ] def single_level_generator(level=_DEFAULT_LEVEL): while True: yield level def _ascii_to_text_grid_level(ascii_level): """Goes from official Sokoban ASCII art to string understood by Mujoban. Args: ascii_level: a multiline string; each character is a location in a gridworld. Returns: A string. """ level = ascii_level if level.startswith('\n'): level = level[1:] level = level.replace('$', BOX_CHAR) level = level.replace('.', TARGET_CHAR) level = level.replace(' ', '.') level = level.replace('#', '*') level = level.replace('@', 'P') if level[-1] == '\n': level = level[:-1] # Pad all_rows = level.split('\n') width = max(len(row) for row in all_rows) padded_rows = [] for row in all_rows: row += '*' * (width - len(row)) padded_rows.append(row) level = '\n'.join(padded_rows) return level + '\n' class MujobanLevel(labmaze.BaseMaze): """A maze that represents a level in Mujoban.""" def __init__(self, ascii_level_generator=single_level_generator): """Constructor. Args: ascii_level_generator: a Python generator. At each iteration, this should return a string representing a level. The symbols in the string should be those of http://sneezingtiger.com/sokoban/levels/sasquatch5Text.html. These are the same symbols as used by the Sokoban community. """ self._level_iterator = ascii_level_generator() self.regenerate() def regenerate(self): """Regenerates the maze if required.""" level = next(self._level_iterator) self._entity_layer = labmaze.TextGrid(_ascii_to_text_grid_level(level)) self._variation_layer = self._entity_layer.copy() self._variation_layer[:] = '.' self._num_boxes = (self._entity_layer == BOX_CHAR).sum() num_targets = (self._entity_layer == TARGET_CHAR).sum() if num_targets != self._num_boxes: raise ValueError('Number of targets {} should equal number of boxes {}.' .format(num_targets, self._num_boxes)) @property def num_boxes(self): return self._num_boxes @property def num_targets(self): return self._num_boxes @property def entity_layer(self): return self._entity_layer @property def variations_layer(self): return self._variation_layer @property def height(self): return self._entity_layer.shape[0] @property def width(self): return self._entity_layer.shape[1]
deepmind-research-master
physics_planning_games/mujoban/mujoban_level.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Top-level module definitions for mujoban.""" from physics_planning_games.mujoban.mujoban import Mujoban from physics_planning_games.mujoban.mujoban_level import MujobanLevel
deepmind-research-master
physics_planning_games/mujoban/__init__.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for mujoban_level.""" from absl.testing import absltest from physics_planning_games.mujoban import mujoban_level _LEVEL = """ ##### # @#### # $. # ###$.# # # $.# # # #$. # # ### ######""" _GRID_LEVEL = """******** *..P**** *..BG..* ***BG*.* *..BG*.* *.*BG..* *....*** ******** """ class MujobanLevelTest(absltest.TestCase): def test_ascii_to_text_grid_level(self): grid_level = mujoban_level._ascii_to_text_grid_level(_LEVEL) self.assertEqual(_GRID_LEVEL, grid_level) if __name__ == '__main__': absltest.main()
deepmind-research-master
physics_planning_games/mujoban/mujoban_level_test.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Box props used in Mujoban that the agent pushes. """ import itertools from dm_control import composer from dm_control.entities import props class Box(props.Primitive): """A class representing a box prop.""" def _build(self, half_lengths=None, mass=None, name='box'): half_lengths = half_lengths or [0.05, 0.1, 0.15] super(Box, self)._build(geom_type='box', size=half_lengths, mass=mass, name=name) class BoxWithSites(Box): """A class representing a box prop with sites on the corners.""" def _build(self, half_lengths=None, mass=None, name='box'): half_lengths = half_lengths or [0.05, 0.1, 0.15] super(BoxWithSites, self)._build(half_lengths=half_lengths, mass=mass, name=name) corner_positions = itertools.product([half_lengths[0], -half_lengths[0]], [half_lengths[1], -half_lengths[1]], [half_lengths[2], -half_lengths[2]]) corner_sites = [] for i, corner_pos in enumerate(corner_positions): corner_sites.append( self.mjcf_model.worldbody.add( 'site', type='sphere', name='corner_{}'.format(i), size=[0.1], pos=corner_pos, rgba=[1, 0, 0, 1.0], group=composer.SENSOR_SITES_GROUP)) self._corner_sites = tuple(corner_sites) @property def corner_sites(self): return self._corner_sites
deepmind-research-master
physics_planning_games/mujoban/props.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """MuJoban task. Mujoban is a single player puzzle-solving game embedded in the MuJoCo simulation environment. The puzzle is based on the 2D game of Sokoban, where an agent situated on a grid has to push boxes onto target locations. """ import collections from dm_control import composer from dm_control.composer.observation import observable as observable_lib from dm_control.locomotion.arenas import labmaze_textures from dm_control.locomotion.arenas.mazes import MazeWithTargets from dm_env import specs import numpy as np from six.moves import range from six.moves import zip from physics_planning_games.mujoban import mujoban_level from physics_planning_games.mujoban.mujoban_pad import MujobanPad from physics_planning_games.mujoban.props import BoxWithSites _FLOOR_GAP_CHAR = '#' _AMBIENT_HEADLIGHT = 0.8 _BOX_SIZE = 0.4 _BOX_HEIGHT = 0.15 _BOX_MASS = 2.5 _BOX_FRICTION = [0.5, 0.005, 0.0001] _BOX_RGBA = [173. / 255., 179. / 255., 60. / 255., 1.] _BOX_PRESSED_RGBA = [0, 0, 1, 1] _TARGET_RGBA = [1.0, 0., 0., 1.] _PRESSED_TARGET_RGBA = [0., 1., 0., 1.] _PEG_SIZE = 0.05 _PEG_HEIGHT = 0.25 _PEG_RGBA = [0.5, 0.5, 0.5, 1] _PEG_ANGLE = np.pi / 4 # Aliveness in [-1., 0.]. _ALIVE_THRESHOLD = -0.5 # Constants used by the full entity layer _WALL_LAYER = 0 _TARGET_LAYER = 1 _SOKOBAN_LAYER = 2 _BOX_LAYER = 3 def _round_positions(boxes, walker, last_round_walker): """Round float positions to snap objects to grid.""" round_walker = np.round(walker).astype('int32') round_boxes = [np.round(box).astype('int32') for box in boxes] for box in round_boxes: if np.array_equal(box, round_walker): round_walker = last_round_walker return round_boxes, round_walker class Mujoban(composer.Task): """Requires objects to be moved onto matching-colored floor pads. Agent only receives instantaneous rewards of +1 for the timestep in which a box first enters a target, and -1 for the timestep in which a box leaves the target. There is an additional reward of +10 when all the boxes are put on targets, at which point the episode terminates. """ def __init__(self, walker, maze, target_height=0, box_prop=None, box_size=None, box_mass=None, with_grid_pegs=False, detection_tolerance=0.0, physics_timestep=0.001, control_timestep=0.025, top_camera_height=128, top_camera_width=128, box_on_target_reward=1.0, level_solved_reward=10.0): """Initializes this task. Args: walker: A `Walker` object. maze: A `BaseMaze` object. target_height: The height of the target pads above the ground, in meters. box_prop: An optional `Primitive` prop to use as the box. box_size: An optional three element sequence defining the half lengths of the sides of the box. box_mass: Box mass. If this is a list or tuple, a random value is sampled from the truncated exponential distribution in [a, b) where a = box_mass[0] and b = box_mass[1], with scale factor box_mass[2] * (b - a). with_grid_pegs: Whether to add solid pegs at the corners of the maze grid cells. This helps to enforce the usual Sokoban rules where diagonal movements are forbidden. detection_tolerance: A maximum length scale (in metres) within which a box is allowed to stick outside a target pad while still activating it. For example, if this is set to 0.1 then a box will activate a pad if it sticks out of the pad by no more than 10 centimetres. physics_timestep: The time step of the physics simulation. control_timestep: Should be an integer multiple of the physics time step. top_camera_height: An int; the height of the top camera in the observation. Setting this to 0 will disable the top camera. top_camera_width: An int; the width of the top camera in the observation. Setting this to 0 will disable the top camera. box_on_target_reward: A float; reward for putting a box on a target. level_solved_reward: A float: reward for solving the level. """ skybox_texture = labmaze_textures.SkyBox(style='sky_03') wall_textures = labmaze_textures.WallTextures(style='style_01') floor_textures = labmaze_textures.FloorTextures(style='style_01') self._detection_tolerance = detection_tolerance self._box_prop = box_prop self._box_on_target_reward = box_on_target_reward self._level_solved_reward = level_solved_reward self._maze = maze self._arena = MazeWithTargets( maze=maze, xy_scale=1, z_height=1, skybox_texture=skybox_texture, wall_textures=wall_textures, floor_textures=floor_textures) self._walker = walker self._arena.mjcf_model.visual.headlight.ambient = [_AMBIENT_HEADLIGHT] * 3 self._arena.text_maze_regenerated_hook = self._regenerate_positions self._first_step = True # Targets. self._targets = [] self._target_positions = [] # Boxes. self._box_size = box_size or [_BOX_SIZE] * 2 + [_BOX_HEIGHT] self._box_mass = box_mass or _BOX_MASS self._boxes = [] self._box_positions = [] self._with_grid_pegs = with_grid_pegs self._peg_body = None self._last_walker_position = None # Create walkers and corresponding observables. self._walker.create_root_joints(self._arena.attach(self._walker)) enabled_observables = [self._walker.observables.sensors_touch, self._walker.observables.orientation] enabled_observables += self._walker.observables.proprioception enabled_observables += self._walker.observables.kinematic_sensors for observable in enabled_observables: observable.enabled = True if top_camera_width and top_camera_height: self._arena.observables.top_camera.enabled = True self._arena.observables.top_camera.width = top_camera_width self._arena.observables.top_camera.height = top_camera_height # symbolic entity repenstaion in labyrinth format. self._entity_layer = self._maze.entity_layer # pixel layer is same as pixel rendering of symbolic sokoban. self._pixel_layer = np.zeros(self._entity_layer.shape + (3,), dtype='uint8') self._full_entity_layer = np.zeros(self._entity_layer.shape + (4,), dtype='bool') pixel_layer_obs = observable_lib.Generic(lambda _: self._pixel_layer) pixel_layer_obs.enabled = True full_entity_layer_obs = observable_lib.Generic( lambda _: self._full_entity_layer) full_entity_layer_obs.enabled = True self._task_observables = collections.OrderedDict({ 'pixel_layer': pixel_layer_obs, 'full_entity_layer': full_entity_layer_obs, }) # Set time steps. self.set_timesteps( physics_timestep=physics_timestep, control_timestep=control_timestep) self._discount = 1. @property def name(self): return 'Mujoban' @property def root_entity(self): return self._arena def _regenerate_positions(self): self._object_positions = self._arena.find_token_grid_positions( [mujoban_level.TARGET_CHAR, mujoban_level.BOX_CHAR]) self._box_positions = self._arena.grid_to_world_positions( self._object_positions[mujoban_level.BOX_CHAR]) target_grid_positions = self._object_positions[mujoban_level.TARGET_CHAR] self._target_positions = self._arena.grid_to_world_positions( target_grid_positions) for idx in range(len(self._target_positions)): target_grid_position = target_grid_positions[idx] grid_y, grid_x = target_grid_position self._arena.maze.variations_layer[grid_y, grid_x] = _FLOOR_GAP_CHAR def initialize_episode_mjcf(self, random_state): self._arena.regenerate() # Clear existing targets and boxes for target in self._targets: target.detach() self._targets = [] for box in self._boxes: box.detach() self._boxes = [] self._arena.mjcf_model.contact.remove('pair') for _ in range(self._maze.num_targets): target = MujobanPad( size=self._arena.xy_scale, height=0, detection_tolerance=self._detection_tolerance) self._arena.attach(target) self._targets.append(target) for _ in range(self._maze.num_boxes): box = self._box_prop if not box: box = BoxWithSites(half_lengths=self._box_size) box.geom.mass = _BOX_MASS box.geom.rgba = [0, 0, 0, 1] # Will be randomized for each episode. frame = self._arena.attach(box) frame.add('joint', type='slide', axis=[1, 0, 0], name='x_slider') frame.add('joint', type='slide', axis=[0, 1, 0], name='y_slider') frame.add('joint', type='slide', axis=[0, 0, 1], name='z_slider') self._boxes.append(box) for target in self._targets: target.register_box(box) # Reduce the friction between box and ground. ground_geom = self._arena.mjcf_model.find('geom', 'ground') self._arena.mjcf_model.contact.add( 'pair', geom1=box.geom, geom2=ground_geom, condim=6, friction=[ _BOX_FRICTION[0], _BOX_FRICTION[0], _BOX_FRICTION[1], _BOX_FRICTION[2], _BOX_FRICTION[2] ]) # Set box masses. for box in self._boxes: box.geom.mass = _BOX_MASS box.geom.rgba[:] = _BOX_RGBA for target in self._targets: target.rgba[:] = _TARGET_RGBA target.pressed_rgba[:] = _PRESSED_TARGET_RGBA if self._with_grid_pegs: if self._peg_body is not None: self._peg_body.remove() self._peg_body = self._arena.mjcf_model.worldbody.add('body') for y in range(self._arena.maze.height - 1): for x in range(self._arena.maze.width - 1): peg_x, peg_y, _ = self._arena.grid_to_world_positions( [[x + 0.5, y + 0.5]])[0] self._peg_body.add( 'geom', type='box', size=[_PEG_SIZE / np.sqrt(2), _PEG_SIZE / np.sqrt(2), _PEG_HEIGHT / 2], pos=[peg_x, peg_y, _PEG_HEIGHT / 2], quat=[np.cos(_PEG_ANGLE / 2), 0, 0, np.sin(_PEG_ANGLE / 2)], rgba=_PEG_RGBA) def initialize_episode(self, physics, random_state): self._first_step = True self._was_activated = [False] * len(self._targets) self._is_solved = False self._discount = 1. self._walker.reinitialize_pose(physics, random_state) spawn_position = self._arena.spawn_positions[0] spawn_rotation = random_state.uniform(-np.pi, np.pi) spawn_quat = np.array( [np.cos(spawn_rotation / 2), 0, 0, np.sin(spawn_rotation / 2)]) self._walker.shift_pose( physics, [spawn_position[0], spawn_position[1], 0.0], spawn_quat) for box, box_xy_position in zip(self._boxes, self._box_positions): # Position at the middle of a maze cell. box_position = np.array( [box_xy_position[0], box_xy_position[1], self._box_size[2]]) # Commit the box's final pose. box.set_pose(physics, position=box_position, quaternion=[1., 0., 0., 0.]) for target, target_position in zip(self._targets, self._target_positions): target.set_pose(physics, position=target_position) target.reset(physics) self._update_entity_pixel_layers(physics) def before_step(self, physics, actions, random_state): if isinstance(actions, list): actions = np.concatenate(actions) super(Mujoban, self).before_step(physics, actions, random_state) if self._first_step: self._first_step = False else: self._was_activated = [target.activated for target in self._targets] def _get_object_positions_in_grid(self, physics): box_positions = self._arena.world_to_grid_positions( [physics.bind(box.geom).xpos for box in self._boxes]) walker_position = self._arena.world_to_grid_positions( [physics.bind(self._walker.root_body).xpos])[0] return box_positions, walker_position def _update_entity_pixel_layers(self, physics): """Updates the pixel observation and both layered representations. Mujoban offers 3 grid representations of the world: * the pixel layer: this is a grid representations with an RGB value at each grid point; * the entity layer: this is a grid representation with a character at each grid point. This representation hides information since if Sokoban or a box are over a target, then the target is occluded. This is the official entity layer used by arenas which is based on dm_control labmaze; * the full entity layer: this is a grid represention with a boolean vector of length 4 at each grid point. The first value is `True` iff there is a wall at this location. The second value is `True` iff there is a target at this location. The third value is for Sokoban, and fourth value is for boxes. Note that this is not a one-hot encoding since Sokoban or a box can share the same location as a target. Args: physics: a Mujoco physics object. Raises: RuntimeError: if a box or walker are overlapping with a wall. """ # The entity layer from the maze is a string that shows the maze at the # *beginning* of the level. This is fixed throughout an episode. entity_layer = self._maze.entity_layer.copy() box_positions, walker_position = self._get_object_positions_in_grid(physics) # round positions to snap to grid. box_positions, walker_position = _round_positions( box_positions, walker_position, self._last_walker_position) # setup pixel layer map_size = entity_layer.shape pixel_layer = np.ndarray(map_size + (3,), dtype='uint8') pixel_layer.fill(128) # setup full entity layer full_entity_layer = np.zeros(map_size + (4,), dtype='bool') # remove boxes and agent entity_layer[entity_layer == mujoban_level.BOX_CHAR] = '.' entity_layer[entity_layer == 'P'] = '.' # draw empty space and goals pixel_layer[entity_layer == '.'] = [0, 0, 0] pixel_layer[entity_layer == 'G'] = [255, 0, 0] full_entity_layer[:, :, _WALL_LAYER] = True full_entity_layer[:, :, _WALL_LAYER][entity_layer == '.'] = False full_entity_layer[:, :, _WALL_LAYER][entity_layer == 'G'] = False full_entity_layer[:, :, _TARGET_LAYER][entity_layer == 'G'] = True # update boxes for pos in box_positions: # to ensure we are not changing the walls. if entity_layer[pos[0], pos[1]] == '*': raise RuntimeError('Box and wall positions are overlapping and this ', 'should not happen. It requires investigation and ', 'and fixing.') # the entity layer has no representation of box on goal. entity_layer[pos[0], pos[1]] = mujoban_level.BOX_CHAR if np.array_equal(pixel_layer[pos[0], pos[1]], [255, 0, 0]): pixel_layer[pos[0], pos[1]] = [0, 255, 0] # box on goal else: pixel_layer[pos[0], pos[1]] = [255, 255, 0] full_entity_layer[pos[0], pos[1], _BOX_LAYER] = True # update player if entity_layer[walker_position[0], walker_position[1]] == '*': raise RuntimeError('Walker and wall positions are overlapping and this ', 'should have not happen. It requires investigation ', 'and fixing.') entity_layer[walker_position[0], walker_position[1]] = 'P' pixel_layer[walker_position[0], walker_position[1]] = 0, 0, 255 full_entity_layer[ walker_position[0], walker_position[1], _SOKOBAN_LAYER] = True self._last_walker_position = walker_position self._entity_layer = entity_layer self._pixel_layer = pixel_layer self._full_entity_layer = full_entity_layer def after_step(self, physics, random_state): super(Mujoban, self).after_step(physics, random_state) for box in self._boxes: physics.bind(box.geom).rgba = _BOX_RGBA for target in self._targets: if target.activated: target.activator.rgba = _BOX_PRESSED_RGBA self._update_entity_pixel_layers(physics) self._is_solved = all([target.activated for target in self._targets]) if self._is_solved: self._discount = 0. def get_reward(self, physics): reward = 0.0 for target, was_activated in zip(self._targets, self._was_activated): if target.activated and not was_activated: reward += self._box_on_target_reward elif was_activated and not target.activated: reward -= self._box_on_target_reward if self._is_solved: reward += self._level_solved_reward return reward def get_discount(self, physics): return self._discount def should_terminate_episode(self, physics): is_dead = self._walker.aliveness(physics) < _ALIVE_THRESHOLD return self._is_solved or is_dead def get_reward_spec(self): return specs.ArraySpec(shape=[], dtype=np.float32) @property def task_observables(self): return self._task_observables
deepmind-research-master
physics_planning_games/mujoban/mujoban.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Level generator for Mujoban based on levels from follwing dataset. https://github.com/deepmind/boxoban-levels/ """ import glob import os import zipfile import numpy as np import requests BOXOBAN_URL = "https://github.com/deepmind/boxoban-levels/archive/master.zip" def boxoban_level_generator(levels_set="unfiltered", data_split="valid"): env = Boxoban(levels_set=levels_set, data_split=data_split) while True: index = np.random.randint(0, env.num_levels-1) yield env.levels[index] class Boxoban(object): """Class for loading and generatting Boxoban levels.""" def __init__(self, levels_set="unfiltered", data_split="valid"): self._levels_set = levels_set self._data_split = data_split self._levels = [] data_file_path_local = os.path.join(os.path.dirname(__file__), "boxoban_cache", "{}_{}.npz".format(self._levels_set, self._data_split)) data_file_path_global = os.path.join("/tmp/boxoban_cache", "{}_{}.npz".format(self._levels_set, self._data_split)) if os.path.exists(data_file_path_local): self.levels = np.load(data_file_path_local)["levels"] elif os.path.exists(data_file_path_global): self.levels = np.load(data_file_path_global)["levels"] else: self.levels = self.get_data() self.num_levels = len(self.levels) def get_data(self): """Downloads and cache the data.""" try: cache_path = os.path.join( os.path.dirname(__file__), "boxoban_cache") os.makedirs(cache_path, exist_ok=True) except PermissionError: cache_path = os.path.join("/tmp/boxoban_cache") if not os.path.exists(cache_path): os.makedirs(cache_path, exist_ok=True) # Get the zip file zip_file_path = os.path.join(cache_path, "master.zip") if not os.path.exists(zip_file_path): response = requests.get(BOXOBAN_URL, stream=True) handle = open(zip_file_path, "wb") for chunk in response.iter_content(chunk_size=512): if chunk: handle.write(chunk) handle.close() with zipfile.ZipFile(zip_file_path, "r") as zipref: zipref.extractall(cache_path) # convert to npz path = os.path.join(cache_path, "boxoban-levels-master", self._levels_set, self._data_split) files = glob.glob(path + "/*.txt") levels = "".join([open(f, "r").read() for f in files]) levels = levels.split("\n;") levels = ["\n".join(item.split("\n")[1:]) for item in levels] levels = np.asarray(levels) data_file_path = os.path.join( cache_path, "{}_{}.npz".format(self._levels_set, self._data_split)) np.savez(data_file_path, levels=levels) return levels
deepmind-research-master
physics_planning_games/mujoban/boxoban.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ from absl.testing import absltest from absl.testing import parameterized import numpy as np from physics_planning_games.board_games import tic_tac_toe_logic class TicTacToeGameLogicTest(parameterized.TestCase): def setUp(self): super(TicTacToeGameLogicTest, self).setUp() self.logic = tic_tac_toe_logic.TicTacToeGameLogic() self.expected_board_state = np.zeros((3, 3, 3), dtype=bool) self.expected_board_state[..., 0] = True # All positions initially empty. def test_valid_move_sequence(self): np.testing.assert_array_equal(self.logic.get_board_state(), self.expected_board_state) action = tic_tac_toe_logic.SingleMarkerAction(col=1, row=2) self.assertTrue(self.logic.apply(player=0, action=action), msg='Invalid action: {}'.format(action)) self.expected_board_state[action.row, action.col, 0] = False self.expected_board_state[action.row, action.col, 1] = True np.testing.assert_array_equal(self.logic.get_board_state(), self.expected_board_state) action = tic_tac_toe_logic.SingleMarkerAction(col=0, row=1) self.assertTrue(self.logic.apply(player=1, action=action), msg='Invalid action: {}'.format(action)) self.expected_board_state[action.row, action.col, 0] = False self.expected_board_state[action.row, action.col, 2] = True np.testing.assert_array_equal(self.logic.get_board_state(), self.expected_board_state) def test_invalid_move_sequence(self): np.testing.assert_array_equal(self.logic.get_board_state(), self.expected_board_state) action = tic_tac_toe_logic.SingleMarkerAction(col=1, row=2) self.assertTrue(self.logic.apply(player=0, action=action), msg='Invalid action: {}'.format(action)) self.expected_board_state[action.row, action.col, 0] = False self.expected_board_state[action.row, action.col, 1] = True np.testing.assert_array_equal(self.logic.get_board_state(), self.expected_board_state) # Player 0 tries to move again in the same location. action = tic_tac_toe_logic.SingleMarkerAction(col=1, row=2) self.assertFalse(self.logic.apply(player=0, action=action), msg='Invalid action was accepted: {}'.format(action)) # Player 1 tries to move in the same location as player 0. self.assertFalse(self.logic.apply(player=1, action=action), msg='Invalid action was accepted: {}'.format(action)) # The board state should not have changed as a result of invalid actions. np.testing.assert_array_equal(self.logic.get_board_state(), self.expected_board_state) @parameterized.named_parameters([ dict(testcase_name='player_0_win', move_sequence=((0, 0, 0), (1, 0, 1), (0, 1, 0), (1, 2, 1), (0, 2, 0)), winner_id=0), dict(testcase_name='player_1_win', move_sequence=((0, 0, 0), (1, 0, 2), (0, 1, 0), (1, 1, 1), (0, 0, 1), (1, 2, 0)), winner_id=1), dict(testcase_name='draw', move_sequence=((0, 0, 0), (1, 1, 1), (0, 1, 0), (1, 2, 0), (0, 0, 2), (1, 0, 1), (0, 2, 1), (1, 2, 2), (0, 1, 2)), winner_id=None)]) def test_reward_and_termination(self, move_sequence, winner_id): for (player_id, row, col) in move_sequence: self.assertFalse(self.logic.is_game_over) self.assertDictEqual(self.logic.get_reward, {0: 0.0, 1: 0.0}) action = tic_tac_toe_logic.SingleMarkerAction(col=col, row=row) self.assertTrue(self.logic.apply(player=player_id, action=action), msg='Invalid action: {}'.format(action)) self.assertTrue(self.logic.is_game_over) rewards = self.logic.get_reward if winner_id is not None: loser_id = 1 - winner_id self.assertDictEqual(rewards, {winner_id: 1.0, loser_id: 0.0}) else: # Draw self.assertDictEqual(rewards, {0: 0.5, 1: 0.5}) def test_random_opponent_vs_optimal(self): """Play random v optimal opponents and check that optimal largely wins. """ rand_state = np.random.RandomState(42) optimal_opponent = tic_tac_toe_logic.TicTacToeOptimalOpponent() random_opponent = tic_tac_toe_logic.TicTacToeRandomOpponent() players = [optimal_opponent, random_opponent] optimal_returns = [] random_returns = [] for _ in range(20): logic = tic_tac_toe_logic.TicTacToeGameLogic() optimal_opponent.reset() random_opponent.reset() rand_state.shuffle(players) current_player_idx = 0 while not logic.is_game_over: current_player = players[current_player_idx] action = current_player.policy(logic, rand_state) self.assertTrue(logic.apply(current_player_idx, action), msg='Opponent {} selected invalid action {}'.format( current_player, action)) current_player_idx = (current_player_idx + 1) % 2 # Record the winner. reward = logic.get_reward if players[0] == optimal_opponent: optimal_return = reward[0] random_return = reward[1] else: optimal_return = reward[1] random_return = reward[0] optimal_returns.append(optimal_return) random_returns.append(random_return) mean_optimal_returns = np.mean(optimal_returns) mean_random_returns = np.mean(random_returns) self.assertGreater(mean_optimal_returns, 0.9) self.assertLess(mean_random_returns, 0.1) @parameterized.named_parameters([ dict(testcase_name='pos0', move_sequence=((0, 0, 1), (1, 1, 1), (0, 0, 2), (1, 1, 2)), optimal_move=(0, 0)), dict(testcase_name='pos1', move_sequence=((0, 0, 1), (1, 1, 2), (0, 0, 2), (1, 1, 1)), optimal_move=(0, 0)), dict(testcase_name='pos2', move_sequence=((0, 2, 1), (1, 1, 2), (0, 2, 2), (1, 1, 1)), optimal_move=(2, 0)), ]) def test_minimax_policy(self, move_sequence, optimal_move): rand_state = np.random.RandomState(42) for (player_id, row, col) in move_sequence: action = tic_tac_toe_logic.SingleMarkerAction(col=col, row=row) self.assertTrue(self.logic.apply(player=player_id, action=action), msg='Invalid action: {}'.format(action)) state = self.logic.open_spiel_state planner_action = tic_tac_toe_logic.tic_tac_toe_minimax(state, rand_state) self.assertEqual(planner_action, optimal_move) # Do the same but with np array as input self.logic = tic_tac_toe_logic.TicTacToeGameLogic() for (player_id, row, col) in move_sequence: action = tic_tac_toe_logic.SingleMarkerAction(col=col, row=row) self.assertTrue(self.logic.apply(player=player_id, action=action), msg='Invalid action: {}'.format(action)) board = self.logic.get_board_state() planner_action = tic_tac_toe_logic.tic_tac_toe_minimax(board, rand_state) self.assertEqual(planner_action, optimal_move) if __name__ == '__main__': absltest.main()
deepmind-research-master
physics_planning_games/board_games/tic_tac_toe_logic_test.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """TicTacToe logic wrapper for use in manipulation tasks.""" import collections import itertools import numpy as np from physics_planning_games.board_games import logic_base from open_spiel.python.algorithms import minimax import pyspiel SingleMarkerAction = collections.namedtuple('SingleMarkerAction', ['row', 'col']) force_random_start_position = False class TicTacToeGameLogic(logic_base.OpenSpielBasedLogic): """Logic for TicTacToe game.""" def __init__(self): self.reset() def reset(self): """Resets the game state.""" # For now we always assume we are the starting player. game = pyspiel.load_game('tic_tac_toe') self._open_spiel_state = game.new_initial_state() if force_random_start_position: # For debugging purposes only, force some random moves rand_state = np.random.RandomState(46) rand_player = TicTacToeRandomOpponent() num_moves = 4 for _ in range(num_moves): action = rand_player.policy(self, rand_state) action_1d = np.ravel_multi_index(action, (3, 3)) self._open_spiel_state.apply_action(action_1d) def get_board_state(self): """Returns the logical board state as a numpy array. Returns: A boolean array of shape (H, W, C), where H=3, W=3 (height and width of the board) and C=3 for the 3 planes. The 3 planes are, in order, unmarked squares, x's (player 0) and y's (player 1). """ board_state = np.reshape( np.array(self._open_spiel_state.observation_tensor(0), dtype=np.bool), [3, 3, 3]) board_state = np.transpose(board_state, [1, 2, 0]) board_state = board_state[:, :, [0, 2, 1]] return board_state def apply(self, player, action): """Checks whether action is valid, and if so applies it to the game state. Args: player: Integer specifying the player ID; either 0 or 1. action: A `SingleMarkerAction` instance. Returns: True if the action was valid, else False. """ action_value = np.ravel_multi_index((action.row, action.col), (3, 3)) if self._open_spiel_state.current_player() != player: return False try: self._open_spiel_state.apply_action(action_value) was_valid_move = True except RuntimeError: was_valid_move = False return was_valid_move class TicTacToeRandomOpponent(logic_base.Opponent): """An easy opponent for TicTacToe.""" def __init__(self): pass def reset(self): """Resets the opponent's internal state (not implemented).""" pass def policy(self, game_logic, random_state): """Return a random, valid move. Args: game_logic: TicTacToeGameLogic state of the game. random_state: An instance of `np.random.RandomState` Returns: SingleMarkerAction of opponent. """ if game_logic.is_game_over: return None valid_moves = game_logic.open_spiel_state.legal_actions() assert valid_moves move = random_state.choice(valid_moves) row, col = np.unravel_index(move, dims=(3, 3)) return SingleMarkerAction(row=row, col=col) class TicTacToeMixtureOpponent(logic_base.Opponent): """A TicTacToe opponent which makes a mixture of optimal and random moves. The optimal mixture component uses minimax search. """ def __init__(self, mixture_p): """Initialize the mixture opponent. Args: mixture_p: The mixture probability. We choose moves from the random opponent with probability mixture_p and moves from the optimal opponent with probability 1 - mixture_p. """ self._random_opponent = TicTacToeRandomOpponent() self._optimal_opponent = TicTacToeOptimalOpponent() self._mixture_p = mixture_p def reset(self): pass def policy(self, game_logic, random_state): if random_state.rand() < self._mixture_p: return self._random_opponent.policy(game_logic, random_state) else: return self._optimal_opponent.policy(game_logic, random_state) class TicTacToeOptimalOpponent(logic_base.Opponent): """A TicTacToe opponent which makes perfect moves. Uses minimax search. """ def __init__(self): pass def reset(self): pass def policy(self, game_logic, random_state): action = tic_tac_toe_minimax(game_logic.open_spiel_state, random_state) return action def numpy_array_to_open_spiel_state(board_state): """Take a numpy observation [3x3x3] bool area and create an OpenSpiel state. Args: board_state: 3x3x3 bool array with [col, row, c] with c indexing, in order, empty squares, x moves, y moves. Returns: open_spiel_state: OpenSpiel state of this position. """ game = pyspiel.load_game('tic_tac_toe') open_spiel_state = game.new_initial_state() x_moves = np.flatnonzero(board_state[:, :, 1]) y_moves = np.flatnonzero(board_state[:, :, 2]) for x_m, y_m in itertools.zip_longest(x_moves, y_moves): if open_spiel_state.is_terminal(): break open_spiel_state.apply_action(x_m) if open_spiel_state.is_terminal(): break if y_m is not None: open_spiel_state.apply_action(y_m) return open_spiel_state def open_spiel_move_to_single_marker_action(action): row, col = np.unravel_index(action, dims=(3, 3)) return SingleMarkerAction(row=row, col=col) def tic_tac_toe_random_move(state, random_state): """Returns a legal move at random from current state. Args: state: World state of the game. Either an OpenSpiel state or a numpy encoding of the board. random_state: numpy random state used for choosing randomly if there is more than one optimal action. Returns: action: SingleMarkerAction of a random move. """ if isinstance(state, np.ndarray): spiel_state = numpy_array_to_open_spiel_state(state) else: spiel_state = state if spiel_state.is_terminal(): return False legal_actions = spiel_state.legal_actions() action = random_state.choice(legal_actions) return open_spiel_move_to_single_marker_action(action) def tic_tac_toe_minimax(state, random_state): """Tree search from the world_state in order to find the optimal action. Args: state: World state of the game. Either an OpenSpiel state or a numpy encoding of the board. random_state: numpy random state used for choosing randomly if there is more than one optimal action. Returns: action: SingleMarkerAction of an optimal move. """ if isinstance(state, np.ndarray): spiel_state = numpy_array_to_open_spiel_state(state) else: spiel_state = state if spiel_state.is_terminal(): return False current_player = spiel_state.current_player() legal_actions = spiel_state.legal_actions() best_actions = [] best_value = -100 for action in legal_actions: state_after_action = spiel_state.clone() state_after_action.apply_action(action) value, _ = minimax.expectiminimax(state_after_action, 100, None, current_player) if value > best_value: best_value = value best_actions = [action] elif value == best_value: best_actions.append(action) assert best_actions action = random_state.choice(best_actions) return open_spiel_move_to_single_marker_action(action)
deepmind-research-master
physics_planning_games/board_games/tic_tac_toe_logic.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Abstract base classes and utility functions for logical aspects of the games. """ import abc ABC = abc.ABCMeta('ABC', (object,), {'__slots__': ()}) class GameLogic(ABC): """Define the abstrat game logic class. """ @abc.abstractmethod def __init__(self): pass @abc.abstractmethod def reset(self): pass @abc.abstractproperty def is_game_over(self): """Boolean specifying whether the current game has ended.""" @abc.abstractproperty def get_reward(self): pass @abc.abstractmethod def get_board_state(self): """Returns the logical board state as a numpy array.""" @abc.abstractmethod def apply(self, player, action): """Checks whether action is valid, and if so applies it to the game state. Args: player: Integer specifying the player ID; either 0 or 1. action: A `GoMarkerAction` instance. Returns: True if the action was valid, else False. """ class OpenSpielBasedLogic(GameLogic): """GameLogic using OpenSpiel for tracking game state. """ @property def is_game_over(self): """Boolean specifying whether the current game has ended.""" return self._open_spiel_state.is_terminal() @property def get_reward(self): """Returns a dictionary that maps from `{player_id: player_reward}`.""" if self.is_game_over: player0_return = self._open_spiel_state.player_return(0) # Translate from OpenSpiel returns to 0.5 for draw, -1 for loss, # +1 for win. if player0_return == 0.: reward = {0: 0.5, 1: 0.5} elif player0_return == 1.: reward = {0: 1., 1: 0.} else: assert player0_return == -1. reward = {0: 0., 1: 1.} else: reward = {0: 0., 1: 0.} return reward @property def open_spiel_state(self): """OpenSpiel object representing the underlying game state.""" return self._open_spiel_state class Opponent(ABC): """Abstract Opponent class.""" @abc.abstractmethod def __init__(self): pass @abc.abstractmethod def reset(self): pass @abc.abstractmethod def policy(self, game_logic, random_state): """Return policy action. Args: game_logic: Go game logic state. random_state: Numpy random state object. Returns: NamedTuple indicating opponent move. """
deepmind-research-master
physics_planning_games/board_games/logic_base.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Shared base class for two-player Jaco arm board games. """ import functools from dm_control import composer from dm_control.composer import initializers from dm_control.composer.observation import observable from dm_control.composer.variation import distributions from dm_control.composer.variation import rotations from dm_control.entities.manipulators import base from dm_control.entities.manipulators import kinova import numpy as np from physics_planning_games.board_games._internal import arenas from physics_planning_games.board_games._internal import observations _ARM_Y_OFFSET = 0.4 _TCP_LOWER_BOUNDS = (-0.1, -0.1, 0.2) _TCP_UPPER_BOUNDS = (0.1, 0.1, 0.4) # Player IDs SELF = 0 OPPONENT = 1 def _uniform_downward_rotation(): angle = distributions.Uniform(-np.pi, np.pi, single_sample=True) quaternion = rotations.QuaternionFromAxisAngle(axis=(0., 0., 1.), angle=angle) return functools.partial(rotations.QuaternionPreMultiply(quaternion), initial_value=base.DOWN_QUATERNION) class JacoArmBoardGame(composer.Task): """Base class for two-player checker-like board games.""" def __init__(self, observation_settings, opponent, game_logic, board, markers): """Initializes the task. Args: observation_settings: An `observations.ObservationSettings` namedtuple specifying configuration options for each category of observation. opponent: Opponent used for generating opponent moves. game_logic: Logic for keeping track of the logical state of the board. board: Board to use. markers: Markers to use. """ self._game_logic = game_logic self._game_opponent = opponent arena = arenas.Standard(observable_options=observations.make_options( observation_settings, observations.ARENA_OBSERVABLES)) arena.attach(board) arm = kinova.JacoArm(observable_options=observations.make_options( observation_settings, observations.JACO_ARM_OBSERVABLES)) hand = kinova.JacoHand(observable_options=observations.make_options( observation_settings, observations.JACO_HAND_OBSERVABLES)) arm.attach(hand) arena.attach_offset(arm, offset=(0, _ARM_Y_OFFSET, 0)) arena.attach(markers) # Geoms belonging to the arm and hand are placed in a custom group in order # to disable their visibility to the top-down camera. NB: we assume that # there are no other geoms in ROBOT_GEOM_GROUP that don't belong to the # robot (this is usually the case since the default geom group is 0). If # there are then these will also be invisible to the top-down camera. for robot_geom in arm.mjcf_model.find_all('geom'): robot_geom.group = arenas.ROBOT_GEOM_GROUP self._arena = arena self._board = board self._arm = arm self._hand = hand self._markers = markers self._tcp_initializer = initializers.ToolCenterPointInitializer( hand=hand, arm=arm, position=distributions.Uniform(_TCP_LOWER_BOUNDS, _TCP_UPPER_BOUNDS), quaternion=_uniform_downward_rotation()) # Add an observable exposing the logical state of the board. board_state_observable = observable.Generic( lambda physics: self._game_logic.get_board_state()) board_state_observable.configure( **observation_settings.board_state._asdict()) self._task_observables = {'board_state': board_state_observable} @property def root_entity(self): return self._arena @property def arm(self): return self._arm @property def hand(self): return self._hand @property def task_observables(self): return self._task_observables def get_reward(self, physics): del physics # Unused. return self._game_logic.get_reward[SELF] def should_terminate_episode(self, physics): return self._game_logic.is_game_over def initialize_episode(self, physics, random_state): self._tcp_initializer(physics, random_state) self._game_logic.reset() self._game_opponent.reset() def before_step(self, physics, action, random_state): super(JacoArmBoardGame, self).before_step(physics, action, random_state) self._made_move_this_step = False def after_substep(self, physics, random_state): raise NotImplementedError('Subclass must implement after_substep.')
deepmind-research-master
physics_planning_games/board_games/jaco_arm_board_game.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Basic smoke test for board_games environments.""" from absl.testing import absltest from dm_env import test_utils from physics_planning_games import board_games class GoTest(test_utils.EnvironmentTestMixin, absltest.TestCase): def make_object_under_test(self): return board_games.load(environment_name='go_7x7', seed=0) class TicTacToeTest(test_utils.EnvironmentTestMixin, absltest.TestCase): def make_object_under_test(self): return board_games.load( environment_name='tic_tac_toe_mixture_opponent_markers_features', seed=0) if __name__ == '__main__': absltest.main()
deepmind-research-master
physics_planning_games/board_games/board_games_test.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Physically-grounded board game environments.""" from dm_control import composer as _composer from physics_planning_games.board_games import go as _go from physics_planning_games.board_games import tic_tac_toe as _tic_tac_toe from physics_planning_games.board_games._internal import registry as _registry _registry.done_importing_tasks() ALL = tuple(_registry.get_all_names()) TAGS = tuple(_registry.get_tags()) def get_environments_by_tag(tag): """Returns the names of all environments matching a given tag. Args: tag: A string from `TAGS`. Returns: A tuple of environment names. """ return tuple(_registry.get_names_by_tag(tag)) def load(environment_name, env_kwargs=None, seed=None, time_limit=float('inf'), strip_singleton_obs_buffer_dim=False): """Loads an environment from board_games. Args: environment_name: String, the name of the environment to load. Must be in `ALL`. env_kwargs: extra params to pass to task creation. seed: Optional, either an int seed or an `np.random.RandomState` object. If None (default), the random number generator will self-seed from a platform-dependent source of entropy. time_limit: (optional) A float, the time limit in seconds beyond which an episode is forced to terminate. strip_singleton_obs_buffer_dim: (optional) A boolean, if `True`, the array shape of observations with `buffer_size == 1` will not have a leading buffer dimension. Returns: An instance of `composer.Environment`. """ if env_kwargs is not None: task = _registry.get_constructor(environment_name)(**env_kwargs) else: task = _registry.get_constructor(environment_name)() return _composer.Environment( task=task, time_limit=time_limit, strip_singleton_obs_buffer_dim=strip_singleton_obs_buffer_dim, random_state=seed)
deepmind-research-master
physics_planning_games/board_games/__init__.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Logic for the Go Game.""" import abc import collections import enum import shutil import subprocess from absl import logging import numpy as np from dm_control.utils import io as resources from physics_planning_games.board_games import logic_base import pyspiel GNUGO_PATH = '/usr/games/gnugo' GoMarkerAction = collections.namedtuple('GoMarkerAction', ['row', 'col', 'pass_action']) # Note that there is no 'i' in these Go board coordinates # (cf https://senseis.xmp.net/?Coordinates) _X_CHARS = 'abcdefghjklmnopqrstuvwxyz' _X_MAP = {c: x for c, x in zip(_X_CHARS, range(len(_X_CHARS)))} def _go_marker_to_int(go_marker, board_size): """Convert GoMarkerAction into GoPoint integer encoding of move. Args: go_marker: GoMarkerAction. board_size: Board size of the go board (e.g. 9 or 19). Returns: GoPoint int value. """ if go_marker.pass_action: return board_size * board_size else: return int((go_marker.row) * board_size + go_marker.col) def _int_to_go_marker(move_int, board_size): """Decode the integer move encoding to a GoMarkerAction. Args: move_int: Integer encoding the go move. board_size: Board size of the go board (e.g. 9 or 19). Returns: GoMarkerAction encoding of move. """ if move_int == board_size * board_size: go_marker_action = GoMarkerAction(row=-1, col=-1, pass_action=True) else: row = move_int // board_size col = move_int % board_size go_marker_action = GoMarkerAction(row=row, col=col, pass_action=False) return go_marker_action def _go_marker_to_str(go_marker): if go_marker.pass_action: return 'PASS' else: move_str = _X_CHARS[go_marker.col] + str(go_marker.row + 1) return move_str def _str_to_go_marker(move_str): """Convert from a 2-letter Go move str (e.g. a3) to a GoMarker. Args: move_str: String describing the move (e.g. a3). Returns: GoMarkerAction encoding of move. """ move_str = move_str.lower() if move_str == 'pass': action = GoMarkerAction(row=-1, col=-1, pass_action=True) elif move_str == 'resign': raise NotImplementedError('Not dealing with resign') else: assert len(move_str) == 2 col, row = move_str[0], move_str[1] col = _X_MAP[col] row = int(row) - 1 action = GoMarkerAction(row=row, col=col, pass_action=False) return action def _get_gnugo_ref_config(level=1, binary_path=None): """Reference config for GnuGo. Args: level: GnuGo level binary_path: string pointing to GnuGo binary Returns: Config dict that can be passed to gtp engine """ try: gnugo_binary_path = resources.GetResourceFilename(binary_path) except FileNotFoundError: gnugo_binary_path = shutil.which('gnugo') if not gnugo_binary_path: raise FileNotFoundError('Not able to locate gnugo library. ', 'Try installing it by: apt install gnugo') gnugo_extra_flags = ['--mode', 'gtp'] gnugo_extra_flags += ['--chinese-rules', '--capture-all-dead'] gtp_player_cfg = { 'name': 'gnugo', 'binary_path': gnugo_binary_path, 'level': level, 'extra_flags': gnugo_extra_flags, } return gtp_player_cfg class Stone(enum.Enum): EMPTY = 1 WHITE = 2 BLACK = 3 def __lt__(self, other): value = int(self.value) return value < other.value def gtp_to_sgf_point(gtp_point, board_size): """Format a GTP point according to the SGF format.""" if gtp_point.lower() == 'pass' or gtp_point.lower() == 'resign': return 'tt' column, row = gtp_point[0], gtp_point[1:] # GTP doesn't use i, but SGF does, so we need to convert. gtp_columns = 'abcdefghjklmnopqrstuvwxyz' sgf_columns = 'abcdefghijklmnopqrstuvwxyz' x = gtp_columns.find(column.lower()) y = board_size - int(row) return '%s%s' % (sgf_columns[x], sgf_columns[y]) class Gtp(object): """Wrapper around Go playing program that communicates using GTP.""" __metaclass__ = abc.ABCMeta def __init__(self, checkpoint_file=None): self.stones = { '.': Stone.EMPTY, '+': Stone.EMPTY, 'O': Stone.WHITE, 'X': Stone.BLACK } self.moves = [] self.comments = [] self.handicap = 0 self.board_size = 19 self.komi = 0 self.free_handicap = None self.byo_yomi_time = None self.checkpoint_file = checkpoint_file self.stderr = None def set_board_size(self, size): self.board_size = size self.gtp_command('boardsize %d' % size) self.gtp_command('clear_board') def set_komi(self, komi): self.komi = komi self.gtp_command('komi %s' % komi) def set_free_handicap(self, vertices): self.free_handicap = vertices self.gtp_command('set_free_handicap %s' % vertices) def place_free_handicap(self, n): self.free_handicap = self.gtp_command('place_free_handicap %d' % n) return self.free_handicap def make_move(self, move, record=True): self.gtp_command('play %s' % move) if record: self._record_move(move) def set_byo_yomi_time(self, t): self.byo_yomi_time = t def num_moves(self): return len(self.moves) def clear_board(self): self.moves = [] self.comments = [] self.gtp_command('clear_board') def generate_move(self, color): if self.byo_yomi_time is not None: self.gtp_command('time_left %s %d 1' % (color, self.byo_yomi_time)) move = '%s %s' % (color, self.gtp_command( 'genmove %s' % color).split(' ')[-1].lower()) self._record_move(move, stderr=self.stderr) return move def board(self): raw_board = self.gtp_command('showboard', log=False)[1:].strip() rows = [line.strip().split(' ')[0] for line in raw_board.split('\n')][1:-1] rows = [''.join(row.split(' ')[1:-1]) for row in rows] return [[self.stones[cell] for cell in row] for row in rows] def quit(self): self.gtp_command('quit') def final_status(self, status): return self.gtp_command('final_status_list %s' % status)[2:].replace( '\n', ' ').split(' ') def fixed_handicap(self, handicap): self.handicap = handicap self.gtp_command('fixed_handicap %d' % handicap) def undo(self, num_moves): self.gtp_command('gg-undo %d' % num_moves) for _ in range(num_moves): self.moves.pop() self.comments.pop() def _record_move(self, move, stderr=None): self.moves.append(move) self.comments.append(stderr) if self.checkpoint_file: with open(self.checkpoint_file, 'w') as f: f.write(self.to_sgf()) def to_sgf(self): sgf = '(;PB[Black]PW[White]KM[%.1f]HA[%d]SZ[19]' % (self.komi, self.handicap) for i, move in enumerate(self.moves): sgf += '\n;' + self._format_sgf_move(move) if self.comments[i]: sgf += 'C[' + self._sgf_escape(self.comments[i]) + ']' return sgf + ')' def _format_sgf_move(self, move): """Format a move according to the SGF format.""" color, vertex = str(move).split(' ') return '%s[%s]' % (color[0].upper(), gtp_to_sgf_point(vertex, self.board_size)) def _sgf_escape(self, text): return ''.join(['\\' + t if t == ']' or t == '\\' else t for t in text]) @abc.abstractmethod def gtp_command(self, command, log=True): """Executes a GTP command and returns its response. Args: command: The GTP command to run, no trailing newline. log: Whether to log command and response to INFO. Returns: The GTP response. Raises: GtpError: if the response is not ok (doesn't start with '='). """ pass class GtpError(Exception): def __init__(self, response): super(GtpError, self).__init__() self.response = response def __str__(self): return self.response class GoEngine(Gtp): """GTP-based Go engine. Supports at least GnuGo and Pachi. For GnuGo, at least specify ['--mode', 'gtp'] in extra_flags. """ def __init__(self, command='', checkpoint_file=None, extra_flags=None): super(GoEngine, self).__init__(checkpoint_file) if extra_flags: command = [command] + extra_flags self.p = subprocess.Popen( command, stdin=subprocess.PIPE, stdout=subprocess.PIPE, universal_newlines=True) def gtp_command(self, command, log=True): if log: logging.info('GTP: %s', command) self.p.stdin.write(command) self.p.stdin.write('\n') self.p.stdin.flush() response = [self.p.stdout.readline()] while response[-1] != '\n': response.append(self.p.stdout.readline()) response = ''.join(response).strip() if log: logging.info('GTP: %s', response) if response[0][0] != '=': raise GtpError(response) return response class GoGameLogic(logic_base.OpenSpielBasedLogic): """Logic for Go game.""" def __init__(self, board_size, gnugo_level=1, komi=5.5): self._board_size = board_size self._komi = komi gtp_player_cfg = _get_gnugo_ref_config( level=gnugo_level, binary_path=GNUGO_PATH) self._gtp_player = GoEngine( command=gtp_player_cfg['binary_path'], extra_flags=gtp_player_cfg['extra_flags']) self._gtp_player.set_board_size(board_size) self.reset() def board_size(self): return self._board_size def get_gtp_player(self): return self._gtp_player def reset(self): """Resets the game state.""" # For now we always assume we are the starting player and use a random # opponent. self._gtp_player.gtp_command('clear_board', log=False) self._gtp_player.set_board_size(self._board_size) self._gtp_player.set_komi(self._komi) game = pyspiel.load_game('go', {'board_size': self._board_size}) self._open_spiel_state = game.new_initial_state() self._moves = np.ones( (self._board_size * self._board_size * 2,), dtype=np.int32) * -1 self._move_id = 0 def show_board(self): self._gtp_player.gtp_command('showboard') def get_gtp_reward(self): self._gtp_player.gtp_command('final_score') def get_board_state(self): """Returns the logical board state as a numpy array. Returns: A boolean array of shape (H, W, C), where H=3, W=3 (height and width of the board) and C=4 for the 4 planes. The 4 planes are, in order, unmarked, black (player 0), white (player 1) and komi (this layer is always all the same value indicating whether white is to play). """ board_state = np.reshape( np.array(self._open_spiel_state.observation_tensor(0), dtype=np.bool), [4, self._board_size, self._board_size]) board_state = np.transpose(board_state, [1, 2, 0]) board_state = board_state[:, :, [2, 0, 1, 3]] return board_state def set_state_from_history(self, move_history): self.reset() move_history = np.squeeze(move_history.numpy()) for t in range(move_history.size): if move_history[t] < 0: break else: self.apply(t % 2, move_history[t]) # self.show_board() def get_move_history(self): """Returns the move history as padded numpy array.""" return self._moves def apply(self, player, action): """Checks whether action is valid, and if so applies it to the game state. Args: player: Integer specifying the player ID; either 0 or 1. action: A `GoMarkerAction` instance (or numpy.int32) which represent the action in the board of size `board_size`. Returns: True if the action was valid, else False. """ if isinstance(action, GoMarkerAction): action = _go_marker_to_int(action, self._board_size) if self._open_spiel_state.current_player() != player: return False legal_actions = self._open_spiel_state.legal_actions() if np.isin(action, legal_actions): self._open_spiel_state.apply_action(action) was_valid_move = True else: was_valid_move = False if not was_valid_move: return False self._moves[self._move_id] = action self._move_id += 1 # Apply to the Go program player_color = 'B' if player == 0 else 'W' action_str = _go_marker_to_str(_int_to_go_marker(action, self._board_size)) self._gtp_player.gtp_command('play {} {}'.format(player_color, action_str)) return was_valid_move def gen_move(game_logic, player): """Generate move from GTP player and game state defined in game_logic.""" player_color = 'B' if player == 0 else 'W' gtp_player = game_logic.get_gtp_player() move_str = gtp_player.gtp_command( 'reg_genmove {}'.format(player_color), log=True) move_str = move_str[2:].lower() action = _str_to_go_marker(move_str) return action def gen_random_move(game_logic, random_state): """Generate random move for current state in game logic.""" if game_logic.is_game_over: return None valid_moves = game_logic.open_spiel_state.legal_actions() assert valid_moves move = random_state.choice(valid_moves) go_action = _int_to_go_marker(move, board_size=game_logic.board_size()) return go_action class GoGTPOpponent(logic_base.Opponent): """Use external binary Pachi to generate opponent moves.""" def __init__(self, board_size, mixture_p=0.0): """Initialize Go opponent. Args: board_size: Go board size (int) mixture_p: Probability of playing a random move (amongst legal moves). """ self._board_size = board_size self._mixture_p = mixture_p def reset(self): pass def policy(self, game_logic, player, random_state): """Return policy action. Args: game_logic: Go game logic state. player: Integer specifying the player ID; either 0 or 1. random_state: Numpy random state object. Returns: GoMarkerAction indicating opponent move. """ if random_state.rand() < self._mixture_p: return gen_random_move(game_logic, random_state) else: return gen_move(game_logic, player) class GoRandomOpponent(logic_base.Opponent): """An easy opponent for Go.""" def __init__(self, board_size): self._board_size = board_size def reset(self): """Resets the opponent's internal state (not implemented).""" pass def policy(self, game_logic, player, random_state): """Return a random, valid move. Args: game_logic: TicTacToeGameLogic state of the game. player: Integer specifying the player ID; either 0 or 1. random_state: An instance of `np.random.RandomState` Returns: GoMarkerAction of opponent. """ return gen_random_move(game_logic, random_state)
deepmind-research-master
physics_planning_games/board_games/go_logic.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ from absl.testing import absltest from absl.testing import parameterized import numpy as np from physics_planning_games.board_games import go_logic class GoGameLogicTest(parameterized.TestCase): def setUp(self): super(GoGameLogicTest, self).setUp() self.logic = go_logic.GoGameLogic(board_size=5) self.expected_board_state = np.zeros((5, 5, 4), dtype=bool) self.expected_board_state[:, :, 0] = True def test_valid_move_sequence(self): np.testing.assert_array_equal(self.logic.get_board_state(), self.expected_board_state) action = go_logic.GoMarkerAction(col=1, row=2, pass_action=False) self.assertTrue(self.logic.apply(player=0, action=action), msg='Invalid action: {}'.format(action)) def test_pass(self): action = go_logic.GoMarkerAction(col=0, row=0, pass_action=True) self.assertTrue(self.logic.apply(player=0, action=action), msg='Invalid action: {}'.format(action)) self.expected_board_state[:, :, 3] = True np.testing.assert_array_equal(self.logic.get_board_state(), self.expected_board_state) def test_invalid_move_sequence(self): np.testing.assert_array_equal(self.logic.get_board_state(), self.expected_board_state) action = go_logic.GoMarkerAction(col=1, row=2, pass_action=False) self.assertTrue(self.logic.apply(player=0, action=action), msg='Invalid action: {}'.format(action)) self.expected_board_state[action.row, action.col, 0] = False self.expected_board_state[action.row, action.col, 1] = True self.expected_board_state[:, :, 3] = True np.testing.assert_array_equal(self.logic.get_board_state(), self.expected_board_state) action = go_logic.GoMarkerAction(col=1, row=2, pass_action=False) self.assertFalse(self.logic.apply(player=0, action=action), msg='Invalid action was accepted: {}'.format(action)) # Player 1 tries to move in the same location as player 0. self.assertFalse(self.logic.apply(player=1, action=action), msg='Invalid action was accepted: {}'.format(action)) # The board state should not have changed as a result of invalid actions. np.testing.assert_array_equal(self.logic.get_board_state(), self.expected_board_state) def test_random_opponent_vs_gnugo(self): """Play random v gnugo opponents and check that optimal largely wins. """ board_size = 9 rand_state = np.random.RandomState(42) pachi_opponent = go_logic.GoGTPOpponent(board_size) random_opponent = go_logic.GoRandomOpponent(board_size) players = [pachi_opponent, random_opponent] pachi_returns = [] random_returns = [] for _ in range(3): logic = go_logic.GoGameLogic(board_size) pachi_opponent.reset() random_opponent.reset() rand_state.shuffle(players) current_player_idx = 0 while not logic.is_game_over: current_player = players[current_player_idx] action = current_player.policy(logic, current_player_idx, rand_state) valid_action = logic.apply(current_player_idx, action) self.assertTrue(valid_action, msg='Opponent {} selected invalid action {}'.format( current_player, action)) current_player_idx = (current_player_idx + 1) % 2 # Record the winner. reward = logic.get_reward if players[0] == pachi_opponent: pachi_return = reward[0] random_return = reward[1] else: pachi_return = reward[1] random_return = reward[0] pachi_returns.append(pachi_return) random_returns.append(random_return) mean_pachi_returns = np.mean(pachi_returns) mean_random_returns = np.mean(random_returns) self.assertGreater(mean_pachi_returns, 0.95) self.assertLess(mean_random_returns, 0.05) @parameterized.named_parameters([ dict(testcase_name='00', row=0, col=0), dict(testcase_name='01', row=1, col=0)]) def test_go_marker_to_int(self, row, col): go_marker = go_logic.GoMarkerAction(row=row, col=col, pass_action=False) int_action = go_logic._go_marker_to_int(go_marker, board_size=19) recovered_go_marker = go_logic._int_to_go_marker(int_action, board_size=19) self.assertEqual(go_marker, recovered_go_marker, msg='Initial go marker {}, recovered {}'.format( go_marker, recovered_go_marker)) @parameterized.named_parameters([ dict(testcase_name='00', row=0, col=0), dict(testcase_name='01', row=1, col=0)]) def test_go_marker_to_str(self, row, col): go_marker = go_logic.GoMarkerAction(row=row, col=col, pass_action=False) str_action = go_logic._go_marker_to_str(go_marker) recovered_go_marker = go_logic._str_to_go_marker(str_action) self.assertEqual(go_marker, recovered_go_marker, msg='Initial go marker {}, recovered {}, ' 'str_action {}'.format(go_marker, recovered_go_marker, str_action)) if __name__ == '__main__': absltest.main()
deepmind-research-master
physics_planning_games/board_games/go_logic_test.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """A Go board game.""" from dm_control.composer.observation import observable import numpy as np from physics_planning_games.board_games import go_logic from physics_planning_games.board_games import jaco_arm_board_game from physics_planning_games.board_games._internal import boards from physics_planning_games.board_games._internal import observations from physics_planning_games.board_games._internal import pieces from physics_planning_games.board_games._internal import registry from physics_planning_games.board_games._internal import tags _BLACK = (0., 0., 0., 0.75) _WHITE = (1., 1., 1., 0.75) _GO_PIECE_SIZE = 0.04 _DEFAULT_OPPONENT_MIXTURE = 0.2 class Go(jaco_arm_board_game.JacoArmBoardGame): """Single-player Go of configurable size.""" def __init__(self, board_size, observation_settings, opponent=None, reset_arm_after_move=True): """Initializes a `Go` task. Args: board_size: board size observation_settings: An `observations.ObservationSettings` namedtuple specifying configuration options for each category of observation. opponent: Go opponent to use for the opponent player actions. reset_arm_after_move: Whether to reset arm to random position after every piece being placed on the board. """ game_logic = go_logic.GoGameLogic(board_size=board_size) if opponent is None: opponent = go_logic.GoGTPOpponent(board_size=board_size, mixture_p=_DEFAULT_OPPONENT_MIXTURE) self._last_valid_move_is_pass = False super(Go, self).__init__(observation_settings=observation_settings, opponent=opponent, game_logic=game_logic, board=boards.GoBoard(boardsize=board_size), markers=pieces.Markers( player_colors=(_BLACK, _WHITE), halfwidth=_GO_PIECE_SIZE, num_per_player=board_size*board_size*2, observable_options=observations.make_options( observation_settings, observations.MARKER_OBSERVABLES), board_size=board_size)) self._reset_arm_after_move = reset_arm_after_move # Add an observable exposing the move history (to reconstruct game states) move_history_observable = observable.Generic( lambda physics: self._game_logic.get_move_history()) move_history_observable.configure( **observation_settings.board_state._asdict()) self._task_observables['move_history'] = move_history_observable @property def name(self): return 'Go' @property def control_timestep(self): return 0.05 def after_substep(self, physics, random_state): if not self._made_move_this_step: # which board square received the most contact pressure indices = self._board.get_contact_indices(physics) if not indices: return row, col = indices # Makes sure that contact with that board square involved a finger finger_touch = self._board.validate_finger_touch(physics, row, col, self._hand) if not finger_touch: return pass_action = True if (row == -1 and col == -1) else False if pass_action and self._last_valid_move_is_pass: # Don't allow two passes in a row (otherwise hard to only pass once) valid_move = False else: valid_move = self._game_logic.apply( player=jaco_arm_board_game.SELF, action=go_logic.GoMarkerAction(row=int(row), col=int(col), pass_action=pass_action)) if valid_move: self._made_move_this_step = True if not pass_action: self._last_valid_move_is_pass = False marker_pos = self._board.get_contact_pos( physics=physics, row=row, col=col) self._markers.mark(physics=physics, player_id=jaco_arm_board_game.SELF, pos=marker_pos, bpos=(row, col)) else: self._last_valid_move_is_pass = True if not self._game_logic.is_game_over: opponent_move = self._game_opponent.policy( game_logic=self._game_logic, player=jaco_arm_board_game.OPPONENT, random_state=random_state) assert opponent_move assert self._game_logic.apply(player=jaco_arm_board_game.OPPONENT, action=opponent_move) marker_pos = self._board.sample_pos_inside_touch_sensor( physics=physics, random_state=random_state, row=opponent_move.row, col=opponent_move.col) self._markers.mark(physics=physics, player_id=jaco_arm_board_game.OPPONENT, pos=marker_pos, bpos=(opponent_move.row, opponent_move.col)) if self._reset_arm_after_move: self._tcp_initializer(physics, random_state) # Redraw all markers that are on the board (after captures) self._markers.make_all_invisible(physics) board = self._game_logic.get_board_state() black_stones = np.transpose(np.nonzero(board[:, :, 1])) white_stones = np.transpose(np.nonzero(board[:, :, 2])) if black_stones.size > 0: self._markers.make_visible_by_bpos(physics, 0, black_stones) if white_stones.size > 0: self._markers.make_visible_by_bpos(physics, 1, white_stones) @registry.add(tags.EASY, tags.FEATURES) def go_7x7(): return Go(board_size=7, observation_settings=observations.PERFECT_FEATURES)
deepmind-research-master
physics_planning_games/board_games/go.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """A Tic Tac Toe task.""" from physics_planning_games.board_games import jaco_arm_board_game from physics_planning_games.board_games import tic_tac_toe_logic from physics_planning_games.board_games._internal import boards from physics_planning_games.board_games._internal import observations from physics_planning_games.board_games._internal import pieces from physics_planning_games.board_games._internal import registry from physics_planning_games.board_games._internal import tags class TicTacToe(jaco_arm_board_game.JacoArmBoardGame): """Single-player Tic Tac Toe.""" def __init__(self, observation_settings, opponent=None, reset_arm_after_move=True): """Initializes a `TicTacToe` task. Args: observation_settings: An `observations.ObservationSettings` namedtuple specifying configuration options for each category of observation. opponent: TicTacToeOpponent used for generating opponent moves. reset_arm_after_move: Whether to reset arm to random position after every piece being placed on the board. """ game_logic = tic_tac_toe_logic.TicTacToeGameLogic() if opponent is None: opponent = tic_tac_toe_logic.TicTacToeRandomOpponent() markers = pieces.Markers(num_per_player=5, observable_options=observations.make_options( observation_settings, observations.MARKER_OBSERVABLES)) self._reset_arm_after_move = reset_arm_after_move super(TicTacToe, self).__init__(observation_settings=observation_settings, opponent=opponent, game_logic=game_logic, board=boards.CheckerBoard(), markers=markers) @property def control_timestep(self): return 0.05 def after_substep(self, physics, random_state): if not self._made_move_this_step: indices = self._board.get_contact_indices(physics) if not indices: return row, col = indices valid_move = self._game_logic.apply( player=jaco_arm_board_game.SELF, action=tic_tac_toe_logic.SingleMarkerAction(row=row, col=col)) if valid_move: self._made_move_this_step = True marker_pos = self._board.get_contact_pos( physics=physics, row=row, col=col) self._markers.mark(physics=physics, player_id=jaco_arm_board_game.SELF, pos=marker_pos) if not self._game_logic.is_game_over: opponent_move = self._game_opponent.policy( game_logic=self._game_logic, random_state=random_state) assert opponent_move assert self._game_logic.apply(player=jaco_arm_board_game.OPPONENT, action=opponent_move) marker_pos = self._board.sample_pos_inside_touch_sensor( physics=physics, random_state=random_state, row=opponent_move.row, col=opponent_move.col) self._markers.mark(physics=physics, player_id=jaco_arm_board_game.OPPONENT, pos=marker_pos) if self._reset_arm_after_move: self._tcp_initializer(physics, random_state) @registry.add(tags.EASY, tags.FEATURES) def tic_tac_toe_markers_features(**unused_kwargs): return TicTacToe(observation_settings=observations.PERFECT_FEATURES) @registry.add(tags.MED, tags.FEATURES) def tic_tac_toe_mixture_opponent_markers_features(mixture_p=0.25): print('Creating tictactoe task with random/optimal opponent mixture, p={}' .format(mixture_p)) return TicTacToe( observation_settings=observations.PERFECT_FEATURES, opponent=tic_tac_toe_logic.TicTacToeMixtureOpponent(mixture_p)) @registry.add(tags.HARD, tags.FEATURES) def tic_tac_toe_optimal_opponent_markers_features(**unused_kwargs): return TicTacToe(observation_settings=observations.PERFECT_FEATURES, opponent=tic_tac_toe_logic.TicTacToeOptimalOpponent())
deepmind-research-master
physics_planning_games/board_games/tic_tac_toe.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """String constants used to annotate task constructors.""" FEATURES = 'features' VISION = 'vision' EASY = 'easy' MED = 'medium' HARD = 'hard'
deepmind-research-master
physics_planning_games/board_games/_internal/tags.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """A global registry of constructors for board game environments.""" from dm_control.utils import containers _ALL_CONSTRUCTORS = containers.TaggedTasks(allow_overriding_keys=False) add = _ALL_CONSTRUCTORS.add get_constructor = _ALL_CONSTRUCTORS.__getitem__ get_all_names = _ALL_CONSTRUCTORS.keys get_tags = _ALL_CONSTRUCTORS.tags get_names_by_tag = _ALL_CONSTRUCTORS.tagged # This disables the check that prevents the same task constructor name from # being added to the container more than once. This is done in order to allow # individual task modules to be reloaded without also reloading `registry.py` # first (e.g. when "hot-reloading" environments in domain explorer). def done_importing_tasks(): _ALL_CONSTRUCTORS.allow_overriding_keys = True
deepmind-research-master
physics_planning_games/board_games/_internal/registry.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Configuration for observations.""" import collections import numpy as np class ObservableSpec(collections.namedtuple( 'ObservableSpec', ['enabled', 'update_interval', 'buffer_size', 'delay', 'aggregator', 'corruptor'])): """Configuration options for generic observables.""" __slots__ = () class CameraObservableSpec(collections.namedtuple( 'CameraObservableSpec', ('height', 'width') + ObservableSpec._fields)): """Configuration options for camera observables.""" __slots__ = () class ObservationSettings(collections.namedtuple( 'ObservationSettings', ['proprio', 'ftt', 'prop_pose', 'board_state', 'camera'])): """Container of `ObservableSpecs` grouped by category.""" __slots__ = () class ObservableNames(collections.namedtuple( 'ObservableNames', ['proprio', 'ftt', 'prop_pose', 'board_state', 'camera'])): """Container that groups the names of observables by category.""" __slots__ = () def __new__(cls, proprio=(), ftt=(), prop_pose=(), board_state=(), camera=()): return super(ObservableNames, cls).__new__( cls, proprio=proprio, ftt=ftt, prop_pose=prop_pose, board_state=board_state, camera=camera) # Global defaults for "feature" observables (i.e. anything that isn't a camera). _DISABLED_FEATURE = ObservableSpec( enabled=False, update_interval=1, buffer_size=1, delay=0, aggregator=None, corruptor=None) _ENABLED_FEATURE = _DISABLED_FEATURE._replace(enabled=True) # Force, torque and touch-sensor readings are scaled using a symmetric # logarithmic transformation that handles 0 and negative values. _symlog1p = lambda x, random_state: np.sign(x) * np.log1p(abs(x)) _DISABLED_FTT = _DISABLED_FEATURE._replace(corruptor=_symlog1p) _ENABLED_FTT = _ENABLED_FEATURE._replace(corruptor=_symlog1p) # Global defaults for camera observables. _DISABLED_CAMERA = CameraObservableSpec( height=84, width=84, enabled=False, update_interval=1, buffer_size=1, delay=0, aggregator=None, corruptor=None) _ENABLED_CAMERA = _DISABLED_CAMERA._replace(enabled=True) # Predefined sets of configurations options to apply to each category of # observable. PERFECT_FEATURES = ObservationSettings( proprio=_ENABLED_FEATURE, ftt=_ENABLED_FTT, prop_pose=_ENABLED_FEATURE, board_state=_ENABLED_FEATURE, camera=_ENABLED_CAMERA) ARENA_OBSERVABLES = ObservableNames(camera=['front_camera', 'front_camera_2']) JACO_ARM_OBSERVABLES = ObservableNames( proprio=['joints_pos', 'joints_vel'], ftt=['joints_torque']) JACO_HAND_OBSERVABLES = ObservableNames( proprio=['joints_pos', 'joints_vel', 'pinch_site_pos', 'pinch_site_rmat']) MARKER_OBSERVABLES = ObservableNames(prop_pose=['position']) def make_options(obs_settings, obs_names): """Constructs a dict of configuration options for a set of named observables. Args: obs_settings: An `ObservationSettings` instance. obs_names: An `ObservableNames` instance. Returns: A nested dict containing `{observable_name: {option_name: value}}`. """ observable_options = {} for category, spec in obs_settings._asdict().items(): for observable_name in getattr(obs_names, category): observable_options[observable_name] = spec._asdict() return observable_options
deepmind-research-master
physics_planning_games/board_games/_internal/observations.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for physics_planning_games.board_games._internal.pieces.py.""" from absl.testing import absltest from dm_control import mjcf import numpy as np from physics_planning_games.board_games._internal import pieces class MarkersTest(absltest.TestCase): def test_position_observable(self): num_per_player = 3 markers = pieces.Markers(num_per_player=num_per_player) physics = mjcf.Physics.from_mjcf_model(markers.mjcf_model) all_positions = [ [(0, 1, 2), (3, 4, 5), (6, 7, 8)], # Player 0 [(-1, 2, -3), (4, -5, 6)], # Player 1 ] for player_id, positions in enumerate(all_positions): for marker_pos in positions: markers.mark(physics=physics, player_id=player_id, pos=marker_pos) expected_positions = np.zeros((2, num_per_player, 3), dtype=np.double) expected_positions[0, :len(all_positions[0])] = all_positions[0] expected_positions[1, :len(all_positions[1])] = all_positions[1] observed_positions = markers.observables.position(physics) np.testing.assert_array_equal( expected_positions.reshape(-1, 3), observed_positions) def test_invalid_player_id(self): markers = pieces.Markers(num_per_player=5) physics = mjcf.Physics.from_mjcf_model(markers.mjcf_model) invalid_player_id = 99 with self.assertRaisesWithLiteralMatch( ValueError, pieces._INVALID_PLAYER_ID.format(1, 99)): markers.mark(physics=physics, player_id=invalid_player_id, pos=(1, 2, 3)) def test_too_many_moves(self): num_per_player = 5 player_id = 0 markers = pieces.Markers(num_per_player=num_per_player) physics = mjcf.Physics.from_mjcf_model(markers.mjcf_model) for _ in range(num_per_player): markers.mark(physics=physics, player_id=player_id, pos=(1, 2, 3)) with self.assertRaisesWithLiteralMatch( RuntimeError, pieces._NO_MORE_MARKERS_AVAILABLE.format(num_per_player, player_id)): markers.mark(physics=physics, player_id=player_id, pos=(1, 2, 3)) if __name__ == '__main__': absltest.main()
deepmind-research-master
physics_planning_games/board_games/_internal/pieces_test.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Entities representing board game pieces.""" import itertools from dm_control import composer from dm_control import mjcf from dm_control.composer.observation import observable import numpy as np _VISIBLE_SITE_GROUP = 0 _INVISIBLE_SITE_GROUP = 3 _RED = (1., 0., 0., 0.5) _BLUE = (0., 0, 1., 0.5) _INVALID_PLAYER_ID = '`player_id` must be between 0 and {}, got {}.' _NO_MORE_MARKERS_AVAILABLE = ( 'All {} markers for player {} have already been placed.') class Markers(composer.Entity): """A collection of non-physical entities for marking board positions.""" def _build(self, num_per_player, player_colors=(_RED, _BLUE), halfwidth=0.025, height=0.01, board_size=7): """Builds a `Markers` entity. Args: num_per_player: Integer, the total number of markers to create per player. player_colors: Sequence of (R, G, B, A) values specifying the marker colors for each player. halfwidth: Scalar, the halfwidth of each marker. height: Scalar, height of each marker. board_size: Integer, optional if using the integer indexing. """ root = mjcf.RootElement(model='markers') root.default.site.set_attributes(type='cylinder', size=(halfwidth, height)) all_markers = [] for i, color in enumerate(player_colors): player_name = 'player_{}'.format(i) # TODO(alimuldal): Would look cool if these were textured. material = root.asset.add('material', name=player_name, rgba=color) player_markers = [] for j in range(num_per_player): player_markers.append( root.worldbody.add( 'site', name='player_{}_move_{}'.format(i, j), material=material)) all_markers.append(player_markers) self._num_players = len(player_colors) self._mjcf_model = root self._all_markers = all_markers self._move_counts = [0] * self._num_players # To go from integer position to marker index in the all_markers array self._marker_ids = np.zeros((2, board_size, board_size)) self._board_size = board_size def _build_observables(self): return MarkersObservables(self) @property def mjcf_model(self): """`mjcf.RootElement` for this entity.""" return self._mjcf_model @property def markers(self): """Marker sites belonging to all players. Returns: A nested list, where `markers[i][j]` contains the `mjcf.Element` corresponding to player i's jth marker. """ return self._all_markers def initialize_episode(self, physics, random_state): """Resets the markers at the start of an episode.""" del random_state # Unused. self._reset(physics) def _reset(self, physics): for player_markers in self._all_markers: for marker in player_markers: bound_marker = physics.bind(marker) bound_marker.pos = 0. # Markers are initially placed at the origin. bound_marker.group = _INVISIBLE_SITE_GROUP self._move_counts = [0] * self._num_players self._marker_ids = np.zeros((2, self._board_size, self._board_size), dtype=np.int32) def make_all_invisible(self, physics): for player_markers in self._all_markers: for marker in player_markers: bound_marker = physics.bind(marker) bound_marker.group = _INVISIBLE_SITE_GROUP def make_visible_by_bpos(self, physics, player_id, all_bpos): for bpos in all_bpos: marker_id = self._marker_ids[player_id][bpos[0]][bpos[1]] marker = self._all_markers[player_id][marker_id] bound_marker = physics.bind(marker) bound_marker.group = _VISIBLE_SITE_GROUP def mark(self, physics, player_id, pos, bpos=None): """Enables the visibility of a marker, moves it to the specified position. Args: physics: `mjcf.Physics` instance. player_id: Integer specifying the ID of the player whose marker to use. pos: Array-like object specifying the cartesian position of the marker. bpos: Board position, optional integer coordinates to index the markers. Raises: ValueError: If `player_id` is invalid. RuntimeError: If `player_id` has no more available markers. """ if not 0 <= player_id < self._num_players: raise ValueError( _INVALID_PLAYER_ID.format(self._num_players - 1, player_id)) markers = self._all_markers[player_id] move_count = self._move_counts[player_id] if move_count >= len(markers): raise RuntimeError( _NO_MORE_MARKERS_AVAILABLE.format(move_count, player_id)) bound_marker = physics.bind(markers[move_count]) bound_marker.pos = pos # TODO(alimuldal): Set orientation as well (random? same as contact frame?) bound_marker.group = _VISIBLE_SITE_GROUP self._move_counts[player_id] += 1 if bpos: self._marker_ids[player_id][bpos[0]][bpos[1]] = move_count class MarkersObservables(composer.Observables): """Observables for a `Markers` entity.""" @composer.observable def position(self): """Cartesian positions of all marker sites. Returns: An `observable.MJCFFeature` instance. When called with an instance of `physics` as the argument, this will return a numpy float64 array of shape (num_players * num_markers, 3) where each row contains the cartesian position of a marker. Unplaced markers will have position (0, 0, 0). """ return observable.MJCFFeature( 'xpos', list(itertools.chain.from_iterable(self._entity.markers)))
deepmind-research-master
physics_planning_games/board_games/_internal/pieces.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Composer entities corresponding to game boards.""" import os from dm_control import composer from dm_control import mjcf import numpy as np from dm_control.utils import io as resources _TOUCH_THRESHOLD = 1e-3 # Activation threshold for touch sensors (N). # whether to display underlying sensors for Goboard (useful to align texture) _SHOW_DEBUG_GRID = False _TEXTURE_PATH = os.path.join(os.path.dirname(__file__), 'goboard_7x7.png') def _make_checkerboard(rows, columns, square_halfwidth, height=0.01, sensor_size=0.7, name='checkerboard'): """Builds a checkerboard with touch sensors centered on each square.""" root = mjcf.RootElement(model=name) black_mat = root.asset.add('material', name='black', rgba=(0.2, 0.2, 0.2, 1)) white_mat = root.asset.add('material', name='white', rgba=(0.8, 0.8, 0.8, 1)) sensor_mat = root.asset.add('material', name='sensor', rgba=(0, 1, 0, 0.3)) root.default.geom.set_attributes( type='box', size=(square_halfwidth, square_halfwidth, height)) root.default.site.set_attributes( type='box', size=(sensor_size * square_halfwidth,) * 2 + (0.5 * height,), material=sensor_mat, group=composer.SENSOR_SITES_GROUP) xpos = (np.arange(columns) - 0.5*(columns - 1)) * 2 * square_halfwidth ypos = (np.arange(rows) - 0.5*(rows - 1)) * 2 * square_halfwidth geoms = [] touch_sensors = [] for i in range(rows): for j in range(columns): geom_mat = black_mat if ((i % 2) == (j % 2)) else white_mat name = '{}_{}'.format(i, j) geoms.append( root.worldbody.add( 'geom', pos=(xpos[j], ypos[i], height), name=name, material=geom_mat)) site = root.worldbody.add('site', pos=(xpos[j], ypos[i], 2*height), name=name) touch_sensors.append(root.sensor.add('touch', site=site, name=name)) return root, geoms, touch_sensors def _make_goboard(boardsize, square_halfwidth, height=0.01, sensor_size=0.7, name='goboard'): """Builds a Go with touch sensors centered on each intersection.""" y_offset = -0.08 rows = boardsize columns = boardsize root = mjcf.RootElement(model=name) if _SHOW_DEBUG_GRID: black_mat = root.asset.add('material', name='black', rgba=(0.2, 0.2, 0.2, 0.5)) white_mat = root.asset.add('material', name='white', rgba=(0.8, 0.8, 0.8, 0.5)) else: transparent_mat = root.asset.add('material', name='intersection', rgba=(0, 1, 0, 0.0)) sensor_mat = root.asset.add('material', name='sensor', rgba=(0, 1, 0, 0.3)) contents = resources.GetResource(_TEXTURE_PATH) root.asset.add('texture', name='goboard', type='2d', file=mjcf.Asset(contents, '.png')) board_mat = root.asset.add( 'material', name='goboard', texture='goboard', texrepeat=[0.97, 0.97]) root.default.geom.set_attributes( type='box', size=(square_halfwidth, square_halfwidth, height)) root.default.site.set_attributes( type='box', size=(sensor_size * square_halfwidth,) * 2 + (0.5 * height,), material=sensor_mat, group=composer.SENSOR_SITES_GROUP) board_height = height if _SHOW_DEBUG_GRID: board_height = 0.5*height root.worldbody.add( 'geom', pos=(0, 0+y_offset, height), type='box', size=(square_halfwidth * boardsize,) * 2 + (board_height,), name=name, material=board_mat) xpos = (np.arange(columns) - 0.5*(columns - 1)) * 2 * square_halfwidth ypos = (np.arange(rows) - 0.5*(rows - 1)) * 2 * square_halfwidth + y_offset geoms = [] touch_sensors = [] for i in range(rows): for j in range(columns): name = '{}_{}'.format(i, j) if _SHOW_DEBUG_GRID: transparent_mat = black_mat if ((i % 2) == (j % 2)) else white_mat geoms.append( root.worldbody.add( 'geom', pos=(xpos[j], ypos[i], height), name=name, material=transparent_mat)) site = root.worldbody.add('site', pos=(xpos[j], ypos[i], 2*height), name=name) touch_sensors.append(root.sensor.add('touch', site=site, name=name)) pass_geom = root.worldbody.add( 'geom', pos=(0, y_offset, 0.0), size=(square_halfwidth*boardsize*2, square_halfwidth*boardsize) + (0.5 * height,), name='pass', material=transparent_mat) site = root.worldbody.add('site', pos=(0, y_offset, 0.0), size=(square_halfwidth*boardsize*2, square_halfwidth*boardsize) + (0.5 * height,), name='pass') pass_sensor = root.sensor.add('touch', site=site, name='pass') return root, geoms, touch_sensors, pass_geom, pass_sensor class CheckerBoard(composer.Entity): """An entity representing a checkerboard.""" def __init__(self, *args, **kwargs): super(CheckerBoard, self).__init__(*args, **kwargs) self._contact_from_before_substep = None def _build(self, rows=3, columns=3, square_halfwidth=0.05): """Builds a `CheckerBoard` entity. Args: rows: Integer, the number of rows. columns: Integer, the number of columns. square_halfwidth: Float, the halfwidth of the squares on the board. """ root, geoms, touch_sensors = _make_checkerboard( rows=rows, columns=columns, square_halfwidth=square_halfwidth) self._mjcf_model = root self._geoms = np.array(geoms).reshape(rows, columns) self._touch_sensors = np.array(touch_sensors).reshape(rows, columns) @property def mjcf_model(self): return self._mjcf_model def before_substep(self, physics, random_state): del random_state # Unused. # Cache a copy of the array of active contacts before each substep. self._contact_from_before_substep = physics.data.contact.copy() def validate_finger_touch(self, physics, row, col, hand): # Geom for the board square geom_id = physics.bind(self._geoms[row, col]).element_id # finger geoms finger_geoms_ids = set(physics.bind(hand.finger_geoms).element_id) contacts = self._contact_from_before_substep set1, set2 = set([geom_id]), finger_geoms_ids for contact in contacts: finger_tile_contact = ((contact.geom1 in set1 and contact.geom2 in set2) or (contact.geom1 in set2 and contact.geom2 in set1)) if finger_tile_contact: return True return False def get_contact_pos(self, physics, row, col): geom_id = physics.bind(self._geoms[row, col]).element_id # Here we use the array of active contacts from the previous substep, rather # than the current values in `physics.data.contact`. This is because we use # touch sensors to detect when a square on the board is being pressed, and # the pressure readings are based on forces that were calculated at the end # of the previous substep. It's possible that `physics.data.contact` no # longer contains any active contacts involving the board geoms, even though # the touch sensors are telling us that one of the squares on the board is # being pressed. contact = self._contact_from_before_substep involves_geom = (contact.geom1 == geom_id) | (contact.geom2 == geom_id) [relevant_contact_ids] = np.where(involves_geom) if relevant_contact_ids.size: # If there are multiple contacts involving this square of the board, just # pick the first one. return contact[relevant_contact_ids[0]].pos.copy() else: print("Touch sensor at ({},{}) doesn't have any active contacts!".format( row, col)) return False def get_contact_indices(self, physics): pressures = physics.bind(self._touch_sensors.ravel()).sensordata # If any of the touch sensors exceed the threshold, return the (row, col) # indices of the most strongly activated sensor. if np.any(pressures > _TOUCH_THRESHOLD): return np.unravel_index(np.argmax(pressures), self._touch_sensors.shape) else: return None def sample_pos_inside_touch_sensor(self, physics, random_state, row, col): bound_site = physics.bind(self._touch_sensors[row, col].site) jitter = bound_site.size * np.array([1., 1., 0.]) return bound_site.xpos + random_state.uniform(-jitter, jitter) class GoBoard(CheckerBoard): """An entity representing a Goboard.""" def _build(self, boardsize=7, square_halfwidth=0.05): """Builds a `GoBoard` entity. Args: boardsize: Integer, the size of the board (boardsize x boardsize). square_halfwidth: Float, the halfwidth of the squares on the board. """ if boardsize != 7: raise ValueError('Only boardsize of 7x7 is implemented at the moment') root, geoms, touch_sensors, pass_geom, pass_sensor = _make_goboard( boardsize=boardsize, square_halfwidth=square_halfwidth) self._mjcf_model = root self._geoms = np.array(geoms).reshape(boardsize, boardsize) self._touch_sensors = np.array(touch_sensors).reshape(boardsize, boardsize) self._pass_geom = pass_geom self._pass_sensor = pass_sensor def get_contact_indices(self, physics): pressures = physics.bind(self._touch_sensors.ravel()).sensordata # Deal with pass first pass_pressure = physics.bind(self._pass_sensor).sensordata if pass_pressure > np.max(pressures) and pass_pressure > _TOUCH_THRESHOLD: return -1, -1 # If any of the other touch sensors exceed the threshold, return the # (row, col) indices of the most strongly activated sensor. if np.any(pressures > _TOUCH_THRESHOLD): return np.unravel_index(np.argmax(pressures), self._touch_sensors.shape) else: return None def validate_finger_touch(self, physics, row, col, hand): # Geom for the board square if row == -1 and col == -1: geom_id = physics.bind(self._pass_geom).element_id else: geom_id = physics.bind(self._geoms[row, col]).element_id # finger geoms finger_geoms_ids = set(physics.bind(hand.finger_geoms).element_id) contacts = self._contact_from_before_substep set1, set2 = set([geom_id]), finger_geoms_ids for contact in contacts: finger_tile_contact = ((contact.geom1 in set1 and contact.geom2 in set2) or (contact.geom1 in set2 and contact.geom2 in set1)) if finger_tile_contact: return True return False def sample_pos_inside_touch_sensor(self, physics, random_state, row, col): bound_site = physics.bind(self._touch_sensors[row, col].site) jitter = bound_site.size * np.array([0.25, 0.25, 0.]) return bound_site.xpos + random_state.uniform(-jitter, jitter)
deepmind-research-master
physics_planning_games/board_games/_internal/boards.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Board game-specific arena classes.""" from dm_control import composer from dm_control.composer.observation import observable from dm_control.mujoco import wrapper # Robot geoms will be assigned to this group in order to disable their # visibility to the top-down camera. ROBOT_GEOM_GROUP = 1 class Standard(composer.Arena): """"Board game-specific arena class.""" def _build(self, name=None): """Initializes this arena. Args: name: (optional) A string, the name of this arena. If `None`, use the model name defined in the MJCF file. """ super(Standard, self)._build(name=name) # Add visual assets. self.mjcf_model.asset.add( 'texture', type='skybox', builtin='gradient', rgb1=(0.4, 0.6, 0.8), rgb2=(0., 0., 0.), width=100, height=100) groundplane_texture = self.mjcf_model.asset.add( 'texture', name='groundplane', type='2d', builtin='checker', rgb1=(0.2, 0.3, 0.4), rgb2=(0.1, 0.2, 0.3), width=300, height=300, mark='edge', markrgb=(.8, .8, .8)) groundplane_material = self.mjcf_model.asset.add( 'material', name='groundplane', texture=groundplane_texture, texrepeat=(5, 5), texuniform='true', reflectance=0.2) # Add ground plane. self.mjcf_model.worldbody.add( 'geom', name='ground', type='plane', material=groundplane_material, size=(1, 1, 0.1), friction=(0.4,), solimp=(0.95, 0.99, 0.001), solref=(0.002, 1)) # Add lighting self.mjcf_model.worldbody.add( 'light', pos=(0, 0, 1.5), dir=(0, 0, -1), diffuse=(0.7, 0.7, 0.7), specular=(.3, .3, .3), directional='false', castshadow='true') # Add some fixed cameras to the arena. self._front_camera = self.mjcf_model.worldbody.add( 'camera', name='front', pos=(0., -0.6, 0.75), xyaxes=(1., 0., 0., 0., 0.7, 0.75)) # Ensures a 7x7 go board fits into the view from camera self._front_camera_2 = self.mjcf_model.worldbody.add( 'camera', name='front_2', pos=(0., -0.65, 0.85), xyaxes=(1., 0., 0., 0., 0.85, 0.6)) self._top_down_camera = self.mjcf_model.worldbody.add( 'camera', name='top_down', pos=(0., 0., 0.5), xyaxes=(1., 0., 0., 0., 1., 0.)) # Always initialize the free camera so that it points at the origin. self.mjcf_model.statistic.center = (0., 0., 0.) def _build_observables(self): return ArenaObservables(self) @property def front_camera(self): return self._front_camera @property def front_camera_2(self): return self._front_camera_2 @property def top_down_camera(self): return self._top_down_camera def attach_offset(self, entity, offset, attach_site=None): """Attaches another entity at a position offset from the attachment site. Args: entity: The `Entity` to attach. offset: A length 3 array-like object representing the XYZ offset. attach_site: (optional) The site to which to attach the entity's model. If not set, defaults to self.attachment_site. Returns: The frame of the attached model. """ frame = self.attach(entity, attach_site=attach_site) frame.pos = offset return frame class ArenaObservables(composer.Observables): """Observables belonging to the arena.""" @composer.observable def front_camera(self): return observable.MJCFCamera(mjcf_element=self._entity.front_camera) @composer.observable def front_camera_2(self): return observable.MJCFCamera(mjcf_element=self._entity.front_camera_2) @composer.observable def top_down_camera(self): return observable.MJCFCamera(mjcf_element=self._entity.top_down_camera) @composer.observable def top_down_camera_invisible_robot(self): # Custom scene options for making robot geoms invisible. robot_geoms_invisible = wrapper.MjvOption() robot_geoms_invisible.geomgroup[ROBOT_GEOM_GROUP] = 0 return observable.MJCFCamera(mjcf_element=self._entity.top_down_camera, scene_option=robot_geoms_invisible)
deepmind-research-master
physics_planning_games/board_games/_internal/arenas.py
# Lint as: python3 # pylint: disable=g-bad-file-header # Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Model for CylinderFlow.""" import sonnet as snt import tensorflow.compat.v1 as tf from meshgraphnets import common from meshgraphnets import core_model from meshgraphnets import normalization class Model(snt.AbstractModule): """Model for fluid simulation.""" def __init__(self, learned_model, name='Model'): super(Model, self).__init__(name=name) with self._enter_variable_scope(): self._learned_model = learned_model self._output_normalizer = normalization.Normalizer( size=2, name='output_normalizer') self._node_normalizer = normalization.Normalizer( size=2+common.NodeType.SIZE, name='node_normalizer') self._edge_normalizer = normalization.Normalizer( size=3, name='edge_normalizer') # 2D coord + length def _build_graph(self, inputs, is_training): """Builds input graph.""" # construct graph nodes node_type = tf.one_hot(inputs['node_type'][:, 0], common.NodeType.SIZE) node_features = tf.concat([inputs['velocity'], node_type], axis=-1) # construct graph edges senders, receivers = common.triangles_to_edges(inputs['cells']) relative_mesh_pos = (tf.gather(inputs['mesh_pos'], senders) - tf.gather(inputs['mesh_pos'], receivers)) edge_features = tf.concat([ relative_mesh_pos, tf.norm(relative_mesh_pos, axis=-1, keepdims=True)], axis=-1) mesh_edges = core_model.EdgeSet( name='mesh_edges', features=self._edge_normalizer(edge_features, is_training), receivers=receivers, senders=senders) return core_model.MultiGraph( node_features=self._node_normalizer(node_features, is_training), edge_sets=[mesh_edges]) def _build(self, inputs): graph = self._build_graph(inputs, is_training=False) per_node_network_output = self._learned_model(graph) return self._update(inputs, per_node_network_output) @snt.reuse_variables def loss(self, inputs): """L2 loss on velocity.""" graph = self._build_graph(inputs, is_training=True) network_output = self._learned_model(graph) # build target velocity change cur_velocity = inputs['velocity'] target_velocity = inputs['target|velocity'] target_velocity_change = target_velocity - cur_velocity target_normalized = self._output_normalizer(target_velocity_change) # build loss node_type = inputs['node_type'][:, 0] loss_mask = tf.logical_or(tf.equal(node_type, common.NodeType.NORMAL), tf.equal(node_type, common.NodeType.OUTFLOW)) error = tf.reduce_sum((target_normalized - network_output)**2, axis=1) loss = tf.reduce_mean(error[loss_mask]) return loss def _update(self, inputs, per_node_network_output): """Integrate model outputs.""" velocity_update = self._output_normalizer.inverse(per_node_network_output) # integrate forward cur_velocity = inputs['velocity'] return cur_velocity + velocity_update
deepmind-research-master
meshgraphnets/cfd_model.py
# Lint as: python3 # pylint: disable=g-bad-file-header # Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Model for FlagSimple.""" import sonnet as snt import tensorflow.compat.v1 as tf from meshgraphnets import common from meshgraphnets import core_model from meshgraphnets import normalization class Model(snt.AbstractModule): """Model for static cloth simulation.""" def __init__(self, learned_model, name='Model'): super(Model, self).__init__(name=name) with self._enter_variable_scope(): self._learned_model = learned_model self._output_normalizer = normalization.Normalizer( size=3, name='output_normalizer') self._node_normalizer = normalization.Normalizer( size=3+common.NodeType.SIZE, name='node_normalizer') self._edge_normalizer = normalization.Normalizer( size=7, name='edge_normalizer') # 2D coord + 3D coord + 2*length = 7 def _build_graph(self, inputs, is_training): """Builds input graph.""" # construct graph nodes velocity = inputs['world_pos'] - inputs['prev|world_pos'] node_type = tf.one_hot(inputs['node_type'][:, 0], common.NodeType.SIZE) node_features = tf.concat([velocity, node_type], axis=-1) # construct graph edges senders, receivers = common.triangles_to_edges(inputs['cells']) relative_world_pos = (tf.gather(inputs['world_pos'], senders) - tf.gather(inputs['world_pos'], receivers)) relative_mesh_pos = (tf.gather(inputs['mesh_pos'], senders) - tf.gather(inputs['mesh_pos'], receivers)) edge_features = tf.concat([ relative_world_pos, tf.norm(relative_world_pos, axis=-1, keepdims=True), relative_mesh_pos, tf.norm(relative_mesh_pos, axis=-1, keepdims=True)], axis=-1) mesh_edges = core_model.EdgeSet( name='mesh_edges', features=self._edge_normalizer(edge_features, is_training), receivers=receivers, senders=senders) return core_model.MultiGraph( node_features=self._node_normalizer(node_features, is_training), edge_sets=[mesh_edges]) def _build(self, inputs): graph = self._build_graph(inputs, is_training=False) per_node_network_output = self._learned_model(graph) return self._update(inputs, per_node_network_output) @snt.reuse_variables def loss(self, inputs): """L2 loss on position.""" graph = self._build_graph(inputs, is_training=True) network_output = self._learned_model(graph) # build target acceleration cur_position = inputs['world_pos'] prev_position = inputs['prev|world_pos'] target_position = inputs['target|world_pos'] target_acceleration = target_position - 2*cur_position + prev_position target_normalized = self._output_normalizer(target_acceleration) # build loss loss_mask = tf.equal(inputs['node_type'][:, 0], common.NodeType.NORMAL) error = tf.reduce_sum((target_normalized - network_output)**2, axis=1) loss = tf.reduce_mean(error[loss_mask]) return loss def _update(self, inputs, per_node_network_output): """Integrate model outputs.""" acceleration = self._output_normalizer.inverse(per_node_network_output) # integrate forward cur_position = inputs['world_pos'] prev_position = inputs['prev|world_pos'] position = 2*cur_position + acceleration - prev_position return position
deepmind-research-master
meshgraphnets/cloth_model.py
# Lint as: python3 # pylint: disable=g-bad-file-header # Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Runs the learner/evaluator.""" import pickle from absl import app from absl import flags from absl import logging import numpy as np import tensorflow.compat.v1 as tf from meshgraphnets import cfd_eval from meshgraphnets import cfd_model from meshgraphnets import cloth_eval from meshgraphnets import cloth_model from meshgraphnets import core_model from meshgraphnets import dataset FLAGS = flags.FLAGS flags.DEFINE_enum('mode', 'train', ['train', 'eval'], 'Train model, or run evaluation.') flags.DEFINE_enum('model', None, ['cfd', 'cloth'], 'Select model to run.') flags.DEFINE_string('checkpoint_dir', None, 'Directory to save checkpoint') flags.DEFINE_string('dataset_dir', None, 'Directory to load dataset from.') flags.DEFINE_string('rollout_path', None, 'Pickle file to save eval trajectories') flags.DEFINE_enum('rollout_split', 'valid', ['train', 'test', 'valid'], 'Dataset split to use for rollouts.') flags.DEFINE_integer('num_rollouts', 10, 'No. of rollout trajectories') flags.DEFINE_integer('num_training_steps', int(10e6), 'No. of training steps') PARAMETERS = { 'cfd': dict(noise=0.02, gamma=1.0, field='velocity', history=False, size=2, batch=2, model=cfd_model, evaluator=cfd_eval), 'cloth': dict(noise=0.003, gamma=0.1, field='world_pos', history=True, size=3, batch=1, model=cloth_model, evaluator=cloth_eval) } def learner(model, params): """Run a learner job.""" ds = dataset.load_dataset(FLAGS.dataset_dir, 'train') ds = dataset.add_targets(ds, [params['field']], add_history=params['history']) ds = dataset.split_and_preprocess(ds, noise_field=params['field'], noise_scale=params['noise'], noise_gamma=params['gamma']) inputs = tf.data.make_one_shot_iterator(ds).get_next() loss_op = model.loss(inputs) global_step = tf.train.create_global_step() lr = tf.train.exponential_decay(learning_rate=1e-4, global_step=global_step, decay_steps=int(5e6), decay_rate=0.1) + 1e-6 optimizer = tf.train.AdamOptimizer(learning_rate=lr) train_op = optimizer.minimize(loss_op, global_step=global_step) # Don't train for the first few steps, just accumulate normalization stats train_op = tf.cond(tf.less(global_step, 1000), lambda: tf.group(tf.assign_add(global_step, 1)), lambda: tf.group(train_op)) with tf.train.MonitoredTrainingSession( hooks=[tf.train.StopAtStepHook(last_step=FLAGS.num_training_steps)], checkpoint_dir=FLAGS.checkpoint_dir, save_checkpoint_secs=600) as sess: while not sess.should_stop(): _, step, loss = sess.run([train_op, global_step, loss_op]) if step % 1000 == 0: logging.info('Step %d: Loss %g', step, loss) logging.info('Training complete.') def evaluator(model, params): """Run a model rollout trajectory.""" ds = dataset.load_dataset(FLAGS.dataset_dir, FLAGS.rollout_split) ds = dataset.add_targets(ds, [params['field']], add_history=params['history']) inputs = tf.data.make_one_shot_iterator(ds).get_next() scalar_op, traj_ops = params['evaluator'].evaluate(model, inputs) tf.train.create_global_step() with tf.train.MonitoredTrainingSession( checkpoint_dir=FLAGS.checkpoint_dir, save_checkpoint_secs=None, save_checkpoint_steps=None) as sess: trajectories = [] scalars = [] for traj_idx in range(FLAGS.num_rollouts): logging.info('Rollout trajectory %d', traj_idx) scalar_data, traj_data = sess.run([scalar_op, traj_ops]) trajectories.append(traj_data) scalars.append(scalar_data) for key in scalars[0]: logging.info('%s: %g', key, np.mean([x[key] for x in scalars])) with open(FLAGS.rollout_path, 'wb') as fp: pickle.dump(trajectories, fp) def main(argv): del argv tf.enable_resource_variables() tf.disable_eager_execution() params = PARAMETERS[FLAGS.model] learned_model = core_model.EncodeProcessDecode( output_size=params['size'], latent_size=128, num_layers=2, message_passing_steps=15) model = params['model'].Model(learned_model) if FLAGS.mode == 'train': learner(model, params) elif FLAGS.mode == 'eval': evaluator(model, params) if __name__ == '__main__': app.run(main)
deepmind-research-master
meshgraphnets/run_model.py
# Lint as: python3 # pylint: disable=g-bad-file-header # Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Core learned graph net model.""" import collections import functools import sonnet as snt import tensorflow.compat.v1 as tf EdgeSet = collections.namedtuple('EdgeSet', ['name', 'features', 'senders', 'receivers']) MultiGraph = collections.namedtuple('Graph', ['node_features', 'edge_sets']) class GraphNetBlock(snt.AbstractModule): """Multi-Edge Interaction Network with residual connections.""" def __init__(self, model_fn, name='GraphNetBlock'): super(GraphNetBlock, self).__init__(name=name) self._model_fn = model_fn def _update_edge_features(self, node_features, edge_set): """Aggregrates node features, and applies edge function.""" sender_features = tf.gather(node_features, edge_set.senders) receiver_features = tf.gather(node_features, edge_set.receivers) features = [sender_features, receiver_features, edge_set.features] with tf.variable_scope(edge_set.name+'_edge_fn'): return self._model_fn()(tf.concat(features, axis=-1)) def _update_node_features(self, node_features, edge_sets): """Aggregrates edge features, and applies node function.""" num_nodes = tf.shape(node_features)[0] features = [node_features] for edge_set in edge_sets: features.append(tf.math.unsorted_segment_sum(edge_set.features, edge_set.receivers, num_nodes)) with tf.variable_scope('node_fn'): return self._model_fn()(tf.concat(features, axis=-1)) def _build(self, graph): """Applies GraphNetBlock and returns updated MultiGraph.""" # apply edge functions new_edge_sets = [] for edge_set in graph.edge_sets: updated_features = self._update_edge_features(graph.node_features, edge_set) new_edge_sets.append(edge_set._replace(features=updated_features)) # apply node function new_node_features = self._update_node_features(graph.node_features, new_edge_sets) # add residual connections new_node_features += graph.node_features new_edge_sets = [es._replace(features=es.features + old_es.features) for es, old_es in zip(new_edge_sets, graph.edge_sets)] return MultiGraph(new_node_features, new_edge_sets) class EncodeProcessDecode(snt.AbstractModule): """Encode-Process-Decode GraphNet model.""" def __init__(self, output_size, latent_size, num_layers, message_passing_steps, name='EncodeProcessDecode'): super(EncodeProcessDecode, self).__init__(name=name) self._latent_size = latent_size self._output_size = output_size self._num_layers = num_layers self._message_passing_steps = message_passing_steps def _make_mlp(self, output_size, layer_norm=True): """Builds an MLP.""" widths = [self._latent_size] * self._num_layers + [output_size] network = snt.nets.MLP(widths, activate_final=False) if layer_norm: network = snt.Sequential([network, snt.LayerNorm()]) return network def _encoder(self, graph): """Encodes node and edge features into latent features.""" with tf.variable_scope('encoder'): node_latents = self._make_mlp(self._latent_size)(graph.node_features) new_edges_sets = [] for edge_set in graph.edge_sets: latent = self._make_mlp(self._latent_size)(edge_set.features) new_edges_sets.append(edge_set._replace(features=latent)) return MultiGraph(node_latents, new_edges_sets) def _decoder(self, graph): """Decodes node features from graph.""" with tf.variable_scope('decoder'): decoder = self._make_mlp(self._output_size, layer_norm=False) return decoder(graph.node_features) def _build(self, graph): """Encodes and processes a multigraph, and returns node features.""" model_fn = functools.partial(self._make_mlp, output_size=self._latent_size) latent_graph = self._encoder(graph) for _ in range(self._message_passing_steps): latent_graph = GraphNetBlock(model_fn)(latent_graph) return self._decoder(latent_graph)
deepmind-research-master
meshgraphnets/core_model.py
# Lint as: python3 # pylint: disable=g-bad-file-header # Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Utility functions for reading the datasets.""" import functools import json import os import tensorflow.compat.v1 as tf from meshgraphnets.common import NodeType def _parse(proto, meta): """Parses a trajectory from tf.Example.""" feature_lists = {k: tf.io.VarLenFeature(tf.string) for k in meta['field_names']} features = tf.io.parse_single_example(proto, feature_lists) out = {} for key, field in meta['features'].items(): data = tf.io.decode_raw(features[key].values, getattr(tf, field['dtype'])) data = tf.reshape(data, field['shape']) if field['type'] == 'static': data = tf.tile(data, [meta['trajectory_length'], 1, 1]) elif field['type'] == 'dynamic_varlen': length = tf.io.decode_raw(features['length_'+key].values, tf.int32) length = tf.reshape(length, [-1]) data = tf.RaggedTensor.from_row_lengths(data, row_lengths=length) elif field['type'] != 'dynamic': raise ValueError('invalid data format') out[key] = data return out def load_dataset(path, split): """Load dataset.""" with open(os.path.join(path, 'meta.json'), 'r') as fp: meta = json.loads(fp.read()) ds = tf.data.TFRecordDataset(os.path.join(path, split+'.tfrecord')) ds = ds.map(functools.partial(_parse, meta=meta), num_parallel_calls=8) ds = ds.prefetch(1) return ds def add_targets(ds, fields, add_history): """Adds target and optionally history fields to dataframe.""" def fn(trajectory): out = {} for key, val in trajectory.items(): out[key] = val[1:-1] if key in fields: if add_history: out['prev|'+key] = val[0:-2] out['target|'+key] = val[2:] return out return ds.map(fn, num_parallel_calls=8) def split_and_preprocess(ds, noise_field, noise_scale, noise_gamma): """Splits trajectories into frames, and adds training noise.""" def add_noise(frame): noise = tf.random.normal(tf.shape(frame[noise_field]), stddev=noise_scale, dtype=tf.float32) # don't apply noise to boundary nodes mask = tf.equal(frame['node_type'], NodeType.NORMAL)[:, 0] noise = tf.where(mask, noise, tf.zeros_like(noise)) frame[noise_field] += noise frame['target|'+noise_field] += (1.0 - noise_gamma) * noise return frame ds = ds.flat_map(tf.data.Dataset.from_tensor_slices) ds = ds.map(add_noise, num_parallel_calls=8) ds = ds.shuffle(10000) ds = ds.repeat(None) return ds.prefetch(10) def batch_dataset(ds, batch_size): """Batches input datasets.""" shapes = ds.output_shapes types = ds.output_types def renumber(buffer, frame): nodes, cells = buffer new_nodes, new_cells = frame return nodes + new_nodes, tf.concat([cells, new_cells+nodes], axis=0) def batch_accumulate(ds_window): out = {} for key, ds_val in ds_window.items(): initial = tf.zeros((0, shapes[key][1]), dtype=types[key]) if key == 'cells': # renumber node indices in cells num_nodes = ds_window['node_type'].map(lambda x: tf.shape(x)[0]) cells = tf.data.Dataset.zip((num_nodes, ds_val)) initial = (tf.constant(0, tf.int32), initial) _, out[key] = cells.reduce(initial, renumber) else: merge = lambda prev, cur: tf.concat([prev, cur], axis=0) out[key] = ds_val.reduce(initial, merge) return out if batch_size > 1: ds = ds.window(batch_size, drop_remainder=True) ds = ds.map(batch_accumulate, num_parallel_calls=8) return ds
deepmind-research-master
meshgraphnets/dataset.py
# Lint as: python3 # pylint: disable=g-bad-file-header # Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Plots a cloth trajectory rollout.""" import pickle from absl import app from absl import flags from matplotlib import animation import matplotlib.pyplot as plt FLAGS = flags.FLAGS flags.DEFINE_string('rollout_path', None, 'Path to rollout pickle file') def main(unused_argv): with open(FLAGS.rollout_path, 'rb') as fp: rollout_data = pickle.load(fp) fig = plt.figure(figsize=(8, 8)) ax = fig.add_subplot(111, projection='3d') skip = 10 num_steps = rollout_data[0]['gt_pos'].shape[0] num_frames = len(rollout_data) * num_steps // skip # compute bounds bounds = [] for trajectory in rollout_data: bb_min = trajectory['gt_pos'].min(axis=(0, 1)) bb_max = trajectory['gt_pos'].max(axis=(0, 1)) bounds.append((bb_min, bb_max)) def animate(num): step = (num*skip) % num_steps traj = (num*skip) // num_steps ax.cla() bound = bounds[traj] ax.set_xlim([bound[0][0], bound[1][0]]) ax.set_ylim([bound[0][1], bound[1][1]]) ax.set_zlim([bound[0][2], bound[1][2]]) pos = rollout_data[traj]['pred_pos'][step] faces = rollout_data[traj]['faces'][step] ax.plot_trisurf(pos[:, 0], pos[:, 1], faces, pos[:, 2], shade=True) ax.set_title('Trajectory %d Step %d' % (traj, step)) return fig, _ = animation.FuncAnimation(fig, animate, frames=num_frames, interval=100) plt.show(block=True) if __name__ == '__main__': app.run(main)
deepmind-research-master
meshgraphnets/plot_cloth.py
# Lint as: python3 # pylint: disable=g-bad-file-header # Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Commonly used data structures and functions.""" import enum import tensorflow.compat.v1 as tf class NodeType(enum.IntEnum): NORMAL = 0 OBSTACLE = 1 AIRFOIL = 2 HANDLE = 3 INFLOW = 4 OUTFLOW = 5 WALL_BOUNDARY = 6 SIZE = 9 def triangles_to_edges(faces): """Computes mesh edges from triangles.""" # collect edges from triangles edges = tf.concat([faces[:, 0:2], faces[:, 1:3], tf.stack([faces[:, 2], faces[:, 0]], axis=1)], axis=0) # those edges are sometimes duplicated (within the mesh) and sometimes # single (at the mesh boundary). # sort & pack edges as single tf.int64 receivers = tf.reduce_min(edges, axis=1) senders = tf.reduce_max(edges, axis=1) packed_edges = tf.bitcast(tf.stack([senders, receivers], axis=1), tf.int64) # remove duplicates and unpack unique_edges = tf.bitcast(tf.unique(packed_edges)[0], tf.int32) senders, receivers = tf.unstack(unique_edges, axis=1) # create two-way connectivity return (tf.concat([senders, receivers], axis=0), tf.concat([receivers, senders], axis=0))
deepmind-research-master
meshgraphnets/common.py
# Lint as: python3 # pylint: disable=g-bad-file-header # Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Functions to build evaluation metrics for cloth data.""" import tensorflow.compat.v1 as tf from meshgraphnets.common import NodeType def _rollout(model, initial_state, num_steps): """Rolls out a model trajectory.""" mask = tf.equal(initial_state['node_type'][:, 0], NodeType.NORMAL) def step_fn(step, prev_pos, cur_pos, trajectory): prediction = model({**initial_state, 'prev|world_pos': prev_pos, 'world_pos': cur_pos}) # don't update kinematic nodes next_pos = tf.where(mask, prediction, cur_pos) trajectory = trajectory.write(step, cur_pos) return step+1, cur_pos, next_pos, trajectory _, _, _, output = tf.while_loop( cond=lambda step, last, cur, traj: tf.less(step, num_steps), body=step_fn, loop_vars=(0, initial_state['prev|world_pos'], initial_state['world_pos'], tf.TensorArray(tf.float32, num_steps)), parallel_iterations=1) return output.stack() def evaluate(model, inputs): """Performs model rollouts and create stats.""" initial_state = {k: v[0] for k, v in inputs.items()} num_steps = inputs['cells'].shape[0] prediction = _rollout(model, initial_state, num_steps) error = tf.reduce_mean((prediction - inputs['world_pos'])**2, axis=-1) scalars = {'mse_%d_steps' % horizon: tf.reduce_mean(error[1:horizon+1]) for horizon in [1, 10, 20, 50, 100, 200]} traj_ops = { 'faces': inputs['cells'], 'mesh_pos': inputs['mesh_pos'], 'gt_pos': inputs['world_pos'], 'pred_pos': prediction } return scalars, traj_ops
deepmind-research-master
meshgraphnets/cloth_eval.py
# Lint as: python3 # pylint: disable=g-bad-file-header # Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Plots a CFD trajectory rollout.""" import pickle from absl import app from absl import flags from matplotlib import animation from matplotlib import tri as mtri import matplotlib.pyplot as plt FLAGS = flags.FLAGS flags.DEFINE_string('rollout_path', None, 'Path to rollout pickle file') def main(unused_argv): with open(FLAGS.rollout_path, 'rb') as fp: rollout_data = pickle.load(fp) fig, ax = plt.subplots(1, 1, figsize=(12, 8)) skip = 10 num_steps = rollout_data[0]['gt_velocity'].shape[0] num_frames = len(rollout_data) * num_steps // skip # compute bounds bounds = [] for trajectory in rollout_data: bb_min = trajectory['gt_velocity'].min(axis=(0, 1)) bb_max = trajectory['gt_velocity'].max(axis=(0, 1)) bounds.append((bb_min, bb_max)) def animate(num): step = (num*skip) % num_steps traj = (num*skip) // num_steps ax.cla() ax.set_aspect('equal') ax.set_axis_off() vmin, vmax = bounds[traj] pos = rollout_data[traj]['mesh_pos'][step] faces = rollout_data[traj]['faces'][step] velocity = rollout_data[traj]['pred_velocity'][step] triang = mtri.Triangulation(pos[:, 0], pos[:, 1], faces) ax.tripcolor(triang, velocity[:, 0], vmin=vmin[0], vmax=vmax[0]) ax.triplot(triang, 'ko-', ms=0.5, lw=0.3) ax.set_title('Trajectory %d Step %d' % (traj, step)) return fig, _ = animation.FuncAnimation(fig, animate, frames=num_frames, interval=100) plt.show(block=True) if __name__ == '__main__': app.run(main)
deepmind-research-master
meshgraphnets/plot_cfd.py
# Lint as: python3 # pylint: disable=g-bad-file-header # Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Functions to build evaluation metrics for CFD data.""" import tensorflow.compat.v1 as tf from meshgraphnets.common import NodeType def _rollout(model, initial_state, num_steps): """Rolls out a model trajectory.""" node_type = initial_state['node_type'][:, 0] mask = tf.logical_or(tf.equal(node_type, NodeType.NORMAL), tf.equal(node_type, NodeType.OUTFLOW)) def step_fn(step, velocity, trajectory): prediction = model({**initial_state, 'velocity': velocity}) # don't update boundary nodes next_velocity = tf.where(mask, prediction, velocity) trajectory = trajectory.write(step, velocity) return step+1, next_velocity, trajectory _, _, output = tf.while_loop( cond=lambda step, cur, traj: tf.less(step, num_steps), body=step_fn, loop_vars=(0, initial_state['velocity'], tf.TensorArray(tf.float32, num_steps)), parallel_iterations=1) return output.stack() def evaluate(model, inputs): """Performs model rollouts and create stats.""" initial_state = {k: v[0] for k, v in inputs.items()} num_steps = inputs['cells'].shape[0] prediction = _rollout(model, initial_state, num_steps) error = tf.reduce_mean((prediction - inputs['velocity'])**2, axis=-1) scalars = {'mse_%d_steps' % horizon: tf.reduce_mean(error[1:horizon+1]) for horizon in [1, 10, 20, 50, 100, 200]} traj_ops = { 'faces': inputs['cells'], 'mesh_pos': inputs['mesh_pos'], 'gt_velocity': inputs['velocity'], 'pred_velocity': prediction } return scalars, traj_ops
deepmind-research-master
meshgraphnets/cfd_eval.py
# Lint as: python3 # pylint: disable=g-bad-file-header # Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Online data normalization.""" import sonnet as snt import tensorflow.compat.v1 as tf class Normalizer(snt.AbstractModule): """Feature normalizer that accumulates statistics online.""" def __init__(self, size, max_accumulations=10**6, std_epsilon=1e-8, name='Normalizer'): super(Normalizer, self).__init__(name=name) self._max_accumulations = max_accumulations self._std_epsilon = std_epsilon with self._enter_variable_scope(): self._acc_count = tf.Variable(0, dtype=tf.float32, trainable=False) self._num_accumulations = tf.Variable(0, dtype=tf.float32, trainable=False) self._acc_sum = tf.Variable(tf.zeros(size, tf.float32), trainable=False) self._acc_sum_squared = tf.Variable(tf.zeros(size, tf.float32), trainable=False) def _build(self, batched_data, accumulate=True): """Normalizes input data and accumulates statistics.""" update_op = tf.no_op() if accumulate: # stop accumulating after a million updates, to prevent accuracy issues update_op = tf.cond(self._num_accumulations < self._max_accumulations, lambda: self._accumulate(batched_data), tf.no_op) with tf.control_dependencies([update_op]): return (batched_data - self._mean()) / self._std_with_epsilon() @snt.reuse_variables def inverse(self, normalized_batch_data): """Inverse transformation of the normalizer.""" return normalized_batch_data * self._std_with_epsilon() + self._mean() def _accumulate(self, batched_data): """Function to perform the accumulation of the batch_data statistics.""" count = tf.cast(tf.shape(batched_data)[0], tf.float32) data_sum = tf.reduce_sum(batched_data, axis=0) squared_data_sum = tf.reduce_sum(batched_data**2, axis=0) return tf.group( tf.assign_add(self._acc_sum, data_sum), tf.assign_add(self._acc_sum_squared, squared_data_sum), tf.assign_add(self._acc_count, count), tf.assign_add(self._num_accumulations, 1.)) def _mean(self): safe_count = tf.maximum(self._acc_count, 1.) return self._acc_sum / safe_count def _std_with_epsilon(self): safe_count = tf.maximum(self._acc_count, 1.) std = tf.sqrt(self._acc_sum_squared / safe_count - self._mean()**2) return tf.math.maximum(std, self._std_epsilon)
deepmind-research-master
meshgraphnets/normalization.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TransformerBlock and MultiheadAttention modules used in the paper. "Effective gene expression prediction from sequence by integrating long-range interactions" Žiga Avsec1, Vikram Agarwal2,4, Daniel Visentin1,4, Joseph R. Ledsam1,3, Agnieszka Grabska-Barwinska1, Kyle R. Taylor1, Yannis Assael1, John Jumper1, Pushmeet Kohli1, David R. Kelley2* 1 DeepMind, London, UK 2 Calico Life Sciences, South San Francisco, CA, USA 3 Google, Tokyo, Japan 4 These authors contributed equally. * correspondence: [email protected], [email protected], [email protected] Example: ``` mha = MultiheadAttention( value_size=96, key_size=64, num_heads=8, relative_position_functions=['positional_features_sin_cos']) mha(tf.ones((2, 1024, 96*8)), is_training=True) # Transformer block as used in the paper transformer_block = TransformerBlock( channels=96 * 8, dropout_rate=0.4, attention_kwargs=dict( value_size=96, key_size=64, num_heads=8, relative_positions=True, relative_position_symmetric=False, num_relative_position_features=None, relative_position_functions=['positional_features_exponential', 'positional_features_central_mask', 'positional_features_gamma'], positional_dropout_rate=0.01, attention_dropout_rate=0.05, ) ) transformer_block(tf.ones((2, 1024, 96*8)), is_training=True) ``` """ from typing import Any, Dict, List, Optional import numpy as np import sonnet as snt import tensorflow as tf class TransformerBlock(snt.Module): """Full transformer module block.""" def __init__( self, channels: int, dropout_rate: float, attention_kwargs: Dict[str, Any], name: str = 'transformer_block', ): super().__init__(name=name) self.mha_ln = snt.LayerNorm(axis=-1, create_scale=True, create_offset=True) self.mha = MultiheadAttention(**attention_kwargs) self.mha_dropout = snt.Dropout(dropout_rate) self.mlp_ln = snt.LayerNorm(axis=-1, create_scale=True, create_offset=True) self.mlp_linear1 = snt.Linear(channels * 2) self.mlp_dropout1 = snt.Dropout(dropout_rate) self.mlp_linear2 = snt.Linear(channels) self.mlp_dropout2 = snt.Dropout(dropout_rate) def __call__(self, inputs: tf.Tensor, is_training: bool) -> tf.Tensor: x = self.mha_ln(inputs) x = self.mha(x, is_training=is_training) x = self.mha_dropout(x, is_training=is_training) x += inputs # Residual mha_output = x # MLP. x = self.mlp_ln(mha_output) x = self.mlp_linear1(x) x = self.mlp_dropout1(x, is_training=is_training) x = tf.nn.relu(x) x = self.mlp_linear2(x) x = self.mlp_dropout2(x, is_training=is_training) return x + mha_output class MultiheadAttention(snt.Module): """Multi-head attention.""" def __init__(self, value_size: int, key_size: int, num_heads: int, scaling: bool = True, attention_dropout_rate: float = 0.1, relative_positions: bool = False, relative_position_symmetric: bool = False, relative_position_functions: Optional[List[str]] = None, num_relative_position_features: Optional[int] = None, positional_dropout_rate: float = 0.1, zero_initialize: bool = True, initializer: Optional[snt.initializers.Initializer] = None, name: str = None): """Creates a MultiheadAttention module. Args: value_size: The size of each value embedding per head. key_size: The size of each key and query embedding per head. num_heads: The number of independent queries per timestep. scaling: Whether to scale the attention logits. attention_dropout_rate: Dropout rate for attention logits. relative_positions: Whether to use TransformerXL style relative attention. relative_position_symmetric: If True, the symmetric version of basis functions will be used. If False, a symmetric and asymmetric versions will be use. relative_position_functions: List of function names used for relative positional biases. num_relative_position_features: Number of relative positional features to compute. If None, `value_size * num_heads` is used. positional_dropout_rate: Dropout rate for the positional encodings if relative positions are used. zero_initialize: if True, the final linear layer will be 0 initialized. initializer: Initializer for the projection layers. If unspecified, VarianceScaling is used with scale = 2.0. name: Name of module. """ super().__init__(name=name) self._value_size = value_size self._key_size = key_size self._num_heads = num_heads self._attention_dropout_rate = attention_dropout_rate self._scaling = scaling self._relative_positions = relative_positions self._relative_position_symmetric = relative_position_symmetric self._relative_position_functions = relative_position_functions if num_relative_position_features is None: # num_relative_position_features needs to be divisible by the number of # relative positional functions *2 (for symmetric & asymmetric version). divisible_by = 2 * len(self._relative_position_functions) self._num_relative_position_features = ( (self._value_size // divisible_by) * divisible_by) else: self._num_relative_position_features = num_relative_position_features self._positional_dropout_rate = positional_dropout_rate self._initializer = initializer if self._initializer is None: self._initializer = snt.initializers.VarianceScaling(scale=2.0) key_proj_size = self._key_size * self._num_heads embedding_size = self._value_size * self._num_heads self._q_layer = snt.Linear( key_proj_size, name='q_layer', with_bias=False, w_init=self._initializer) self._k_layer = snt.Linear( key_proj_size, name='k_layer', with_bias=False, w_init=self._initializer) self._v_layer = snt.Linear( embedding_size, name='v_layer', with_bias=False, w_init=self._initializer) w_init = snt.initializers.Zeros() if zero_initialize else self._initializer self._embedding_layer = snt.Linear( embedding_size, name='embedding_layer', w_init=w_init) # Create additional layers if using relative positions. if self._relative_positions: self._r_k_layer = snt.Linear( key_proj_size, name='r_k_layer', with_bias=False, w_init=self._initializer) self._r_w_bias = tf.Variable( self._initializer([1, self._num_heads, 1, self._key_size], dtype=tf.float32), name='r_w_bias') self._r_r_bias = tf.Variable( self._initializer([1, self._num_heads, 1, self._key_size], dtype=tf.float32), name='r_r_bias') def _multihead_output(self, linear, inputs): """Applies a standard linear to inputs and returns multihead output.""" output = snt.BatchApply(linear)(inputs) # [B, T, H * KV] num_kv_channels = output.shape[-1] // self._num_heads # Split H * Channels into separate axes. output = snt.reshape(output, output_shape=[-1, self._num_heads, num_kv_channels]) # [B, T, H, KV] -> [B, H, T, KV] return tf.transpose(output, [0, 2, 1, 3]) def __call__(self, inputs, is_training=False): # Initialise the projection layers. embedding_size = self._value_size * self._num_heads seq_len = inputs.shape[1] # Compute q, k and v as multi-headed projections of the inputs. q = self._multihead_output(self._q_layer, inputs) # [B, H, T, K] k = self._multihead_output(self._k_layer, inputs) # [B, H, T, K] v = self._multihead_output(self._v_layer, inputs) # [B, H, T, V] # Scale the query by the square-root of key size. if self._scaling: q *= self._key_size**-0.5 if self._relative_positions: # For relative positions, we project positions to form relative keys. distances = tf.range(-seq_len + 1, seq_len, dtype=tf.float32)[tf.newaxis] positional_encodings = positional_features_all( positions=distances, feature_size=self._num_relative_position_features, seq_length=seq_len, feature_functions=self._relative_position_functions, symmetric=self._relative_position_symmetric) # [1, 2T-1, Cr] if is_training: positional_encodings = tf.nn.dropout( positional_encodings, rate=self._positional_dropout_rate) # [1, H, 2T-1, K] r_k = self._multihead_output(self._r_k_layer, positional_encodings) # Add shifted relative logits to content logits. # [B, H, T', T] content_logits = tf.matmul(q + self._r_w_bias, k, transpose_b=True) # [B, H, T', 2T-1] relative_logits = tf.matmul( q + self._r_r_bias, r_k, transpose_b=True) # [B, H, T', T] relative_logits = relative_shift(relative_logits) logits = content_logits + relative_logits else: # [B, H, T', T] logits = tf.matmul(q, k, transpose_b=True) weights = tf.nn.softmax(logits) # Dropout on the attention weights. if is_training: weights = tf.nn.dropout(weights, rate=self._attention_dropout_rate) # Transpose and reshape the output. output = tf.matmul(weights, v) # [B, H, T', V] output_transpose = tf.transpose(output, [0, 2, 1, 3]) # [B, T', H, V] # Final linear layer. attended_inputs = snt.reshape( output_transpose, output_shape=[embedding_size], preserve_dims=2) output = self._embedding_layer(attended_inputs) return output def relative_shift(x): """Shift the relative logits like in TransformerXL.""" # We prepend zeros on the final timescale dimension. to_pad = tf.zeros_like(x[..., :1]) x = tf.concat([to_pad, x], -1) _, num_heads, t1, t2 = x.shape x = tf.reshape(x, [-1, num_heads, t2, t1]) x = tf.slice(x, [0, 0, 1, 0], [-1, -1, -1, -1]) x = tf.reshape(x, [-1, num_heads, t1, t2 - 1]) x = tf.slice(x, [0, 0, 0, 0], [-1, -1, -1, (t2 + 1) // 2]) return x # Available feature functions: def get_positional_feature_function(name): """Returns positional feature functions.""" available = { 'positional_features_exponential': positional_features_exponential, 'positional_features_central_mask': positional_features_central_mask, 'positional_features_gamma': positional_features_gamma, 'positional_features_cosine': positional_features_cosine, 'positional_features_linear_masks': positional_features_linear_masks, 'positional_features_sin_cos': positional_features_sin_cos, } if name not in available: raise ValueError(f'Function {name} not available in {available.keys()}') return available[name] def positional_features_all(positions: tf.Tensor, feature_size: int, seq_length: Optional[int] = None, bin_size: Optional[int] = None, feature_functions: Optional[List[str]] = None, symmetric=False): """Compute relative positional encodings/features. Each positional feature function will compute/provide the same fraction of features, making up the total of feature_size. Args: positions: Tensor of relative positions of arbitrary shape. feature_size: Total number of basis functions. seq_length: Sequence length denoting the characteristic length that the individual positional features can use. This is required since the parametrization of the input features should be independent of `positions` while it could still require to use the total number of features. bin_size: Bin sized used to partition the sequence. This can be used to compute features on the absolute scale relative to the genome. feature_functions: List of different feature functions to use. Each function will take as argument: positions, sequence length and number of features to compute. symmetric: If True, the resulting features will be symmetric across the relative position of 0 (i.e. only absolute value of positions will matter). If false, then both the symmetric and asymmetric version (symmetric multiplied by sign(positions)) of the features will be used. Returns: Tensor of shape: `positions.shape + (feature_size,)`. """ if feature_functions is None: feature_functions = ['positional_features_exponential', 'positional_features_central_mask', 'positional_features_gamma'] num_components = len(feature_functions) # 1 per each basis function if not symmetric: num_components = 2 * num_components # For now, we do not allow odd sized embeddings. if feature_size % num_components != 0: raise ValueError( f'feature_size has to be divisible by {num_components}') feature_functions = [get_positional_feature_function(f) for f in feature_functions] num_basis_per_class = feature_size // num_components embeddings = tf.concat([f(tf.abs(positions), num_basis_per_class, seq_length, bin_size) for f in feature_functions], axis=-1) if not symmetric: embeddings = tf.concat([embeddings, tf.sign(positions)[..., tf.newaxis] * embeddings], axis=-1) tf.TensorShape(embeddings.shape).assert_is_compatible_with( positions.shape + [feature_size]) return embeddings def _prepend_dims(x, num_dims): return tf.reshape(x, shape=[1] * num_dims + x.shape) def positional_features_exponential(positions: tf.Tensor, feature_size: int, seq_length: Optional[int] = None, bin_size: Optional[int] = None, min_half_life: Optional[float] = 3.0): """Create exponentially decaying positional weights. Args: positions: Position tensor (arbitrary shape). feature_size: Number of basis functions to use. seq_length: Sequence length. bin_size: (unused). See `positional_features_all`. min_half_life: Smallest exponential half life in the grid of half lives. Returns: A Tensor with shape [2 * seq_length - 1, feature_size]. """ del bin_size # Unused. if seq_length is None: seq_length = tf.reduce_max(tf.abs(positions)) + 1 # Grid of half lifes from [3, seq_length / 2] with feature_size # distributed on the log scale. seq_length = tf.cast(seq_length, dtype=tf.float32) max_range = tf.math.log(seq_length) / tf.math.log(2.0) half_life = tf.pow(2.0, tf.linspace(min_half_life, max_range, feature_size)) half_life = _prepend_dims(half_life, positions.shape.rank) positions = tf.abs(positions) outputs = tf.exp(-tf.math.log(2.0) / half_life * positions[..., tf.newaxis]) tf.TensorShape(outputs.shape).assert_is_compatible_with( positions.shape + [feature_size]) return outputs def positional_features_central_mask(positions: tf.Tensor, feature_size: int, seq_length: Optional[int] = None, bin_size: Optional[int] = None): """Positional features using a central mask (allow only central features).""" del seq_length # Unused. del bin_size # Unused. center_widths = tf.pow(2.0, tf.range(1, feature_size + 1, dtype=tf.float32)) center_widths = center_widths - 1 center_widths = _prepend_dims(center_widths, positions.shape.rank) outputs = tf.cast(center_widths > tf.abs(positions)[..., tf.newaxis], tf.float32) tf.TensorShape(outputs.shape).assert_is_compatible_with( positions.shape + [feature_size]) return outputs def gamma_pdf(x, concentration, rate): """Gamma probability distribution function: p(x|concentration, rate).""" log_unnormalized_prob = tf.math.xlogy(concentration - 1., x) - rate * x log_normalization = (tf.math.lgamma(concentration) - concentration * tf.math.log(rate)) return tf.exp(log_unnormalized_prob - log_normalization) def positional_features_gamma(positions: tf.Tensor, feature_size: int, seq_length: Optional[int] = None, bin_size: Optional[int] = None, stddev=None, start_mean=None): """Positional features computed using the gamma distributions.""" del bin_size # Unused. if seq_length is None: seq_length = tf.reduce_max(tf.abs(positions)) + 1 if stddev is None: stddev = seq_length / (2 * feature_size) if start_mean is None: start_mean = seq_length / feature_size mean = tf.linspace(start_mean, seq_length, num=feature_size) mean = _prepend_dims(mean, positions.shape.rank) concentration = (mean / stddev)**2 rate = mean / stddev**2 probabilities = gamma_pdf( tf.abs(tf.cast(positions, dtype=tf.float32))[..., tf.newaxis], concentration, rate) probabilities += 1e-8 # To ensure numerical stability. outputs = probabilities / tf.reduce_max(probabilities) tf.TensorShape(outputs.shape).assert_is_compatible_with( positions.shape + [feature_size]) return outputs def positional_features_cosine(positions: tf.Tensor, feature_size: int, seq_length: Optional[int] = None, bin_size: Optional[int] = None): """Cosine positional features.""" del bin_size # Unused. del seq_length # Unused. periodicity = 1.25 * tf.pow(2.0, tf.range(0, feature_size, dtype=tf.float32)) periodicity = _prepend_dims(periodicity, positions.shape.rank) outputs = tf.math.cos(2 * np.pi * positions[..., tf.newaxis] / periodicity) tf.TensorShape(outputs.shape).assert_is_compatible_with( positions.shape + [feature_size]) return outputs def positional_features_linear_masks(positions: tf.Tensor, feature_size: int, seq_length: Optional[int] = None, bin_size: Optional[int] = None): """Exponentially increasing point focuses.""" del bin_size # Unused. del seq_length # Unused. distances = tf.range(0, feature_size, dtype=tf.float32) distances = _prepend_dims(distances, positions.shape.rank) outputs = tf.cast(distances == tf.abs(positions[..., tf.newaxis]), dtype=tf.float32) tf.TensorShape(outputs.shape).assert_is_compatible_with( positions.shape + [feature_size]) return outputs def positional_features_sin_cos(positions: tf.Tensor, feature_size: int, seq_length: Optional[int] = None, bin_size: Optional[int] = None, max_time=10000.0): """Sine/cosine positional encodings.""" del bin_size # Unused. del seq_length # Unused. if feature_size % 2 != 0: raise ValueError('feature_size needs to be divisible by 2.') i = tf.range(0, feature_size, 2, dtype=tf.float32) i = _prepend_dims(i, positions.shape.rank) # Concat sines and cosines and return. outputs = tf.concat([ tf.sin(positions[..., tf.newaxis] / max_time**(i / feature_size)), tf.cos(positions[..., tf.newaxis] / max_time**(i / feature_size))], -1) tf.TensorShape(outputs.shape).assert_is_compatible_with( positions.shape + [feature_size]) return outputs
deepmind-research-master
enformer/attention_module.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tensorflow implementation of Enformer model. "Effective gene expression prediction from sequence by integrating long-range interactions" Žiga Avsec1, Vikram Agarwal2,4, Daniel Visentin1,4, Joseph R. Ledsam1,3, Agnieszka Grabska-Barwinska1, Kyle R. Taylor1, Yannis Assael1, John Jumper1, Pushmeet Kohli1, David R. Kelley2* 1 DeepMind, London, UK 2 Calico Life Sciences, South San Francisco, CA, USA 3 Google, Tokyo, Japan 4 These authors contributed equally. * correspondence: [email protected], [email protected], [email protected] """ import inspect from typing import Any, Callable, Dict, Optional, Text, Union, Iterable import attention_module import numpy as np import sonnet as snt import tensorflow as tf SEQUENCE_LENGTH = 196_608 BIN_SIZE = 128 TARGET_LENGTH = 896 class Enformer(snt.Module): """Main model.""" def __init__(self, channels: int = 1536, num_transformer_layers: int = 11, num_heads: int = 8, pooling_type: str = 'attention', name: str = 'enformer'): """Enformer model. Args: channels: Number of convolutional filters and the overall 'width' of the model. num_transformer_layers: Number of transformer layers. num_heads: Number of attention heads. pooling_type: Which pooling function to use. Options: 'attention' or max'. name: Name of sonnet module. """ super().__init__(name=name) # pylint: disable=g-complex-comprehension,g-long-lambda,cell-var-from-loop heads_channels = {'human': 5313, 'mouse': 1643} dropout_rate = 0.4 assert channels % num_heads == 0, ('channels needs to be divisible ' f'by {num_heads}') whole_attention_kwargs = { 'attention_dropout_rate': 0.05, 'initializer': None, 'key_size': 64, 'num_heads': num_heads, 'num_relative_position_features': channels // num_heads, 'positional_dropout_rate': 0.01, 'relative_position_functions': [ 'positional_features_exponential', 'positional_features_central_mask', 'positional_features_gamma' ], 'relative_positions': True, 'scaling': True, 'value_size': channels // num_heads, 'zero_initialize': True } trunk_name_scope = tf.name_scope('trunk') trunk_name_scope.__enter__() # lambda is used in Sequential to construct the module under tf.name_scope. def conv_block(filters, width=1, w_init=None, name='conv_block', **kwargs): return Sequential(lambda: [ snt.BatchNorm(create_scale=True, create_offset=True, decay_rate=0.9, scale_init=snt.initializers.Ones()), gelu, snt.Conv1D(filters, width, w_init=w_init, **kwargs) ], name=name) stem = Sequential(lambda: [ snt.Conv1D(channels // 2, 15), Residual(conv_block(channels // 2, 1, name='pointwise_conv_block')), pooling_module(pooling_type, pool_size=2), ], name='stem') filter_list = exponential_linspace_int(start=channels // 2, end=channels, num=6, divisible_by=128) conv_tower = Sequential(lambda: [ Sequential(lambda: [ conv_block(num_filters, 5), Residual(conv_block(num_filters, 1, name='pointwise_conv_block')), pooling_module(pooling_type, pool_size=2), ], name=f'conv_tower_block_{i}') for i, num_filters in enumerate(filter_list)], name='conv_tower') # Transformer. def transformer_mlp(): return Sequential(lambda: [ snt.LayerNorm(axis=-1, create_scale=True, create_offset=True), snt.Linear(channels * 2), snt.Dropout(dropout_rate), tf.nn.relu, snt.Linear(channels), snt.Dropout(dropout_rate)], name='mlp') transformer = Sequential(lambda: [ Sequential(lambda: [ Residual(Sequential(lambda: [ snt.LayerNorm(axis=-1, create_scale=True, create_offset=True, scale_init=snt.initializers.Ones()), attention_module.MultiheadAttention(**whole_attention_kwargs, name=f'attention_{i}'), snt.Dropout(dropout_rate)], name='mha')), Residual(transformer_mlp())], name=f'transformer_block_{i}') for i in range(num_transformer_layers)], name='transformer') crop_final = TargetLengthCrop1D(TARGET_LENGTH, name='target_input') final_pointwise = Sequential(lambda: [ conv_block(channels * 2, 1), snt.Dropout(dropout_rate / 8), gelu], name='final_pointwise') self._trunk = Sequential([stem, conv_tower, transformer, crop_final, final_pointwise], name='trunk') trunk_name_scope.__exit__(None, None, None) with tf.name_scope('heads'): self._heads = { head: Sequential( lambda: [snt.Linear(num_channels), tf.nn.softplus], name=f'head_{head}') for head, num_channels in heads_channels.items() } # pylint: enable=g-complex-comprehension,g-long-lambda,cell-var-from-loop @property def trunk(self): return self._trunk @property def heads(self): return self._heads def __call__(self, inputs: tf.Tensor, is_training: bool) -> Dict[str, tf.Tensor]: trunk_embedding = self.trunk(inputs, is_training=is_training) return { head: head_module(trunk_embedding, is_training=is_training) for head, head_module in self.heads.items() } @tf.function(input_signature=[ tf.TensorSpec([None, SEQUENCE_LENGTH, 4], tf.float32)]) def predict_on_batch(self, x): """Method for SavedModel.""" return self(x, is_training=False) class TargetLengthCrop1D(snt.Module): """Crop sequence to match the desired target length.""" def __init__(self, target_length: int, name='target_length_crop'): super().__init__(name=name) self._target_length = target_length def __call__(self, inputs): trim = (inputs.shape[-2] - self._target_length) // 2 if trim < 0: raise ValueError('inputs longer than target length') return inputs[..., trim:-trim, :] class Sequential(snt.Module): """snt.Sequential automatically passing is_training where it exists.""" def __init__(self, layers: Optional[Union[Callable[[], Iterable[snt.Module]], Iterable[Callable[..., Any]]]] = None, name: Optional[Text] = None): super().__init__(name=name) if layers is None: self._layers = [] else: # layers wrapped in a lambda function to have a common namespace. if hasattr(layers, '__call__'): with tf.name_scope(name): layers = layers() self._layers = [layer for layer in layers if layer is not None] def __call__(self, inputs: tf.Tensor, is_training: bool, **kwargs): outputs = inputs for _, mod in enumerate(self._layers): if accepts_is_training(mod): outputs = mod(outputs, is_training=is_training, **kwargs) else: outputs = mod(outputs, **kwargs) return outputs def pooling_module(kind, pool_size): """Pooling module wrapper.""" if kind == 'attention': return SoftmaxPooling1D(pool_size=pool_size, per_channel=True, w_init_scale=2.0) elif kind == 'max': return tf.keras.layers.MaxPool1D(pool_size=pool_size, padding='same') else: raise ValueError(f'Invalid pooling kind: {kind}.') class SoftmaxPooling1D(snt.Module): """Pooling operation with optional weights.""" def __init__(self, pool_size: int = 2, per_channel: bool = False, w_init_scale: float = 0.0, name: str = 'softmax_pooling'): """Softmax pooling. Args: pool_size: Pooling size, same as in Max/AvgPooling. per_channel: If True, the logits/softmax weights will be computed for each channel separately. If False, same weights will be used across all channels. w_init_scale: When 0.0 is equivalent to avg pooling, and when ~2.0 and `per_channel=False` it's equivalent to max pooling. name: Module name. """ super().__init__(name=name) self._pool_size = pool_size self._per_channel = per_channel self._w_init_scale = w_init_scale self._logit_linear = None @snt.once def _initialize(self, num_features): self._logit_linear = snt.Linear( output_size=num_features if self._per_channel else 1, with_bias=False, # Softmax is agnostic to shifts. w_init=snt.initializers.Identity(self._w_init_scale)) def __call__(self, inputs): _, length, num_features = inputs.shape self._initialize(num_features) inputs = tf.reshape( inputs, (-1, length // self._pool_size, self._pool_size, num_features)) return tf.reduce_sum( inputs * tf.nn.softmax(self._logit_linear(inputs), axis=-2), axis=-2) class Residual(snt.Module): """Residual block.""" def __init__(self, module: snt.Module, name='residual'): super().__init__(name=name) self._module = module def __call__(self, inputs: tf.Tensor, is_training: bool, *args, **kwargs) -> tf.Tensor: return inputs + self._module(inputs, is_training, *args, **kwargs) def gelu(x: tf.Tensor) -> tf.Tensor: """Applies the Gaussian error linear unit (GELU) activation function. Using approximiation in section 2 of the original paper: https://arxiv.org/abs/1606.08415 Args: x: Input tensor to apply gelu activation. Returns: Tensor with gelu activation applied to it. """ return tf.nn.sigmoid(1.702 * x) * x def one_hot_encode(sequence: str, alphabet: str = 'ACGT', neutral_alphabet: str = 'N', neutral_value: Any = 0, dtype=np.float32) -> np.ndarray: """One-hot encode sequence.""" def to_uint8(string): return np.frombuffer(string.encode('ascii'), dtype=np.uint8) hash_table = np.zeros((np.iinfo(np.uint8).max, len(alphabet)), dtype=dtype) hash_table[to_uint8(alphabet)] = np.eye(len(alphabet), dtype=dtype) hash_table[to_uint8(neutral_alphabet)] = neutral_value hash_table = hash_table.astype(dtype) return hash_table[to_uint8(sequence)] def exponential_linspace_int(start, end, num, divisible_by=1): """Exponentially increasing values of integers.""" def _round(x): return int(np.round(x / divisible_by) * divisible_by) base = np.exp(np.log(end / start) / (num - 1)) return [_round(start * base**i) for i in range(num)] def accepts_is_training(module): return 'is_training' in list(inspect.signature(module.__call__).parameters)
deepmind-research-master
enformer/enformer.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test enformer model by applying random sequence as input. Test: $ python enformer_test.py """ import random import unittest import enformer import numpy as np class TestEnformer(unittest.TestCase): def test_enformer(self): model = enformer.Enformer(channels=1536, num_transformer_layers=11) inputs = _get_random_input() outputs = model(inputs, is_training=True) self.assertEqual(outputs['human'].shape, (1, enformer.TARGET_LENGTH, 5313)) self.assertEqual(outputs['mouse'].shape, (1, enformer.TARGET_LENGTH, 1643)) def _get_random_input(): seq = ''.join( [random.choice('ACGT') for _ in range(enformer.SEQUENCE_LENGTH)]) return np.expand_dims(enformer.one_hot_encode(seq), 0).astype(np.float32) if __name__ == '__main__': unittest.main()
deepmind-research-master
enformer/enformer_test.py
################################################################################ # Copyright 2019 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ################################################################################ """Tests for curl.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import absltest from curl import training class TrainingTest(absltest.TestCase): def testRunTraining(self): training.run_training( dataset='mnist', output_type='bernoulli', n_y=10, n_y_active=1, training_data_type='sequential', n_concurrent_classes=1, lr_init=1e-3, lr_factor=1., lr_schedule=[1], blend_classes=False, train_supervised=False, n_steps=1000, report_interval=1000, knn_values=[3], random_seed=1, encoder_kwargs={ 'encoder_type': 'multi', 'n_enc': [1200, 600, 300, 150], 'enc_strides': [1], }, decoder_kwargs={ 'decoder_type': 'single', 'n_dec': [500, 500], 'dec_up_strides': None, }, n_z=32, dynamic_expansion=True, ll_thresh=-200.0, classify_with_samples=False, gen_replay_type='fixed', use_supervised_replay=False, ) if __name__ == '__main__': absltest.main()
deepmind-research-master
curl/unit_test.py
################################################################################ # Copyright 2019 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ################################################################################ """Runs the supervised CL benchmark experiments in the paper.""" from absl import app from absl import flags from curl import training flags.DEFINE_enum('dataset', 'mnist', ['mnist', 'omniglot'], 'Dataset.') FLAGS = flags.FLAGS def main(unused_argv): training.run_training( dataset=FLAGS.dataset, output_type='bernoulli', n_y=10, n_y_active=10, training_data_type='sequential', n_concurrent_classes=2, lr_init=1e-3, lr_factor=1., lr_schedule=[1], train_supervised=True, blend_classes=False, n_steps=100000, report_interval=10000, knn_values=[], random_seed=1, encoder_kwargs={ 'encoder_type': 'multi', 'n_enc': [400, 400], 'enc_strides': [1], }, decoder_kwargs={ 'decoder_type': 'single', 'n_dec': [400, 400], 'dec_up_strides': None, }, n_z=32, dynamic_expansion=False, ll_thresh=-10000.0, classify_with_samples=False, gen_replay_type='fixed', use_supervised_replay=False, ) if __name__ == '__main__': app.run(main)
deepmind-research-master
curl/train_sup.py
################################################################################ # Copyright 2019 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ################################################################################ """Implementation of Continual Unsupervised Representation Learning model.""" from absl import logging import numpy as np import sonnet as snt import tensorflow.compat.v1 as tf import tensorflow_probability as tfp from curl import layers from curl import utils tfc = tf.compat.v1 # pylint: disable=g-long-lambda # pylint: disable=redefined-outer-name class SharedEncoder(snt.AbstractModule): """The shared encoder module, mapping input x to hiddens.""" def __init__(self, encoder_type, n_enc, enc_strides, name='shared_encoder'): """The shared encoder function, mapping input x to hiddens. Args: encoder_type: str, type of encoder, either 'conv' or 'multi' n_enc: list, number of hidden units per layer in the encoder enc_strides: list, stride in each layer (only for 'conv' encoder_type) name: str, module name used for tf scope. """ super(SharedEncoder, self).__init__(name=name) self._encoder_type = encoder_type if encoder_type == 'conv': self.shared_encoder = layers.SharedConvModule( filters=n_enc, strides=enc_strides, kernel_size=3, activation=tf.nn.relu) elif encoder_type == 'multi': self.shared_encoder = snt.nets.MLP( name='mlp_shared_encoder', output_sizes=n_enc, activation=tf.nn.relu, activate_final=True) else: raise ValueError('Unknown encoder_type {}'.format(encoder_type)) def _build(self, x, is_training): if self._encoder_type == 'multi': self.conv_shapes = None x = snt.BatchFlatten()(x) return self.shared_encoder(x) else: output = self.shared_encoder(x) self.conv_shapes = self.shared_encoder.conv_shapes return output def cluster_encoder_fn(hiddens, n_y_active, n_y, is_training=True): """The cluster encoder function, modelling q(y | x). Args: hiddens: The shared encoder activations, 2D `Tensor` of size `[B, ...]`. n_y_active: Tensor, the number of active components. n_y: int, number of maximum components allowed (used for tensor size) is_training: Boolean, whether to build the training graph or an evaluation graph. Returns: The distribution `q(y | x)`. """ del is_training # unused for now with tf.control_dependencies([tfc.assert_rank(hiddens, 2)]): lin = snt.Linear(n_y, name='mlp_cluster_encoder_final') logits = lin(hiddens) # Only use the first n_y_active components, and set the remaining to zero. if n_y > 1: probs = tf.nn.softmax(logits[:, :n_y_active]) logging.info('Cluster softmax active probs shape: %s', str(probs.shape)) paddings1 = tf.stack([tf.constant(0), tf.constant(0)], axis=0) paddings2 = tf.stack([tf.constant(0), n_y - n_y_active], axis=0) paddings = tf.stack([paddings1, paddings2], axis=1) probs = tf.pad(probs, paddings) + 0.0 * logits + 1e-12 else: probs = tf.ones_like(logits) logging.info('Cluster softmax probs shape: %s', str(probs.shape)) return tfp.distributions.OneHotCategorical(probs=probs) def latent_encoder_fn(hiddens, y, n_y, n_z, is_training=True): """The latent encoder function, modelling q(z | x, y). Args: hiddens: The shared encoder activations, 2D `Tensor` of size `[B, ...]`. y: Categorical cluster variable, `Tensor` of size `[B, n_y]`. n_y: int, number of dims of y. n_z: int, number of dims of z. is_training: Boolean, whether to build the training graph or an evaluation graph. Returns: The Gaussian distribution `q(z | x, y)`. """ del is_training # unused for now with tf.control_dependencies([tfc.assert_rank(hiddens, 2)]): # Logits for both mean and variance n_logits = 2 * n_z all_logits = [] for k in range(n_y): lin = snt.Linear(n_logits, name='mlp_latent_encoder_' + str(k)) all_logits.append(lin(hiddens)) # Sum over cluster components. all_logits = tf.stack(all_logits) # [n_y, B, n_logits] logits = tf.einsum('ij,jik->ik', y, all_logits) # Compute distribution from logits. return utils.generate_gaussian( logits=logits, sigma_nonlin='softplus', sigma_param='var') def data_decoder_fn(z, y, output_type, output_shape, decoder_type, n_dec, dec_up_strides, n_x, n_y, shared_encoder_conv_shapes=None, is_training=True, test_local_stats=True): """The data decoder function, modelling p(x | z). Args: z: Latent variables, `Tensor` of size `[B, n_z]`. y: Categorical cluster variable, `Tensor` of size `[B, n_y]`. output_type: str, output distribution ('bernoulli' or 'quantized_normal'). output_shape: list, shape of output (not including batch dimension). decoder_type: str, 'single', 'multi', or 'deconv'. n_dec: list, number of hidden units per layer in the decoder dec_up_strides: list, stride in each layer (only for 'deconv' decoder_type). n_x: int, number of dims of x. n_y: int, number of dims of y. shared_encoder_conv_shapes: the shapes of the activations of the intermediate layers of the encoder, is_training: Boolean, whether to build the training graph or an evaluation graph. test_local_stats: Boolean, whether to use the test batch statistics at test time for batch norm (default) or the moving averages. Returns: The Bernoulli distribution `p(x | z)`. """ if output_type == 'bernoulli': output_dist = lambda x: tfp.distributions.Bernoulli(logits=x) n_out_factor = 1 out_shape = list(output_shape) else: raise NotImplementedError if len(z.shape) != 2: raise NotImplementedError('The data decoder function expects `z` to be ' '2D, but its shape was %s instead.' % str(z.shape)) if len(y.shape) != 2: raise NotImplementedError('The data decoder function expects `y` to be ' '2D, but its shape was %s instead.' % str(y.shape)) # Upsample layer (deconvolutional, bilinear, ..). if decoder_type == 'deconv': # First, check that the encoder is convolutional too (needed for batchnorm) if shared_encoder_conv_shapes is None: raise ValueError('Shared encoder does not contain conv_shapes.') num_output_channels = output_shape[-1] conv_decoder = UpsampleModule( filters=n_dec, kernel_size=3, activation=tf.nn.relu, dec_up_strides=dec_up_strides, enc_conv_shapes=shared_encoder_conv_shapes, n_c=num_output_channels * n_out_factor, method=decoder_type) logits = conv_decoder( z, is_training=is_training, test_local_stats=test_local_stats) logits = tf.reshape(logits, [-1] + out_shape) # n_out_factor in last dim # Multiple MLP decoders, one for each component. elif decoder_type == 'multi': all_logits = [] for k in range(n_y): mlp_decoding = snt.nets.MLP( name='mlp_latent_decoder_' + str(k), output_sizes=n_dec + [n_x * n_out_factor], activation=tf.nn.relu, activate_final=False) logits = mlp_decoding(z) all_logits.append(logits) all_logits = tf.stack(all_logits) logits = tf.einsum('ij,jik->ik', y, all_logits) logits = tf.reshape(logits, [-1] + out_shape) # Back to 4D # Single (shared among components) MLP decoder. elif decoder_type == 'single': mlp_decoding = snt.nets.MLP( name='mlp_latent_decoder', output_sizes=n_dec + [n_x * n_out_factor], activation=tf.nn.relu, activate_final=False) logits = mlp_decoding(z) logits = tf.reshape(logits, [-1] + out_shape) # Back to 4D else: raise ValueError('Unknown decoder_type {}'.format(decoder_type)) return output_dist(logits) def latent_decoder_fn(y, n_z, is_training=True): """The latent decoder function, modelling p(z | y). Args: y: Categorical cluster variable, `Tensor` of size `[B, n_y]`. n_z: int, number of dims of z. is_training: Boolean, whether to build the training graph or an evaluation graph. Returns: The Gaussian distribution `p(z | y)`. """ del is_training # Unused for now. if len(y.shape) != 2: raise NotImplementedError('The latent decoder function expects `y` to be ' '2D, but its shape was %s instead.' % str(y.shape)) lin_mu = snt.Linear(n_z, name='latent_prior_mu') lin_sigma = snt.Linear(n_z, name='latent_prior_sigma') mu = lin_mu(y) sigma = lin_sigma(y) logits = tf.concat([mu, sigma], axis=1) return utils.generate_gaussian( logits=logits, sigma_nonlin='softplus', sigma_param='var') class Curl(object): """CURL model class.""" def __init__(self, prior, latent_decoder, data_decoder, shared_encoder, cluster_encoder, latent_encoder, n_y_active, kly_over_batch=False, is_training=True, name='curl'): self.scope_name = name self._shared_encoder = shared_encoder self._prior = prior self._latent_decoder = latent_decoder self._data_decoder = data_decoder self._cluster_encoder = cluster_encoder self._latent_encoder = latent_encoder self._n_y_active = n_y_active self._kly_over_batch = kly_over_batch self._is_training = is_training self._cache = {} def sample(self, sample_shape=(), y=None, mean=False): """Draws a sample from the learnt distribution p(x). Args: sample_shape: `int` or 0D `Tensor` giving the number of samples to return. If empty tuple (default value), 1 sample will be returned. y: Optional, the one hot label on which to condition the sample. mean: Boolean, if True the expected value of the output distribution is returned, otherwise samples from the output distribution. Returns: Sample tensor of shape `[B * N, ...]` where `B` is the batch size of the prior, `N` is the number of samples requested, and `...` represents the shape of the observations. Raises: ValueError: If both `sample_shape` and `n` are provided. ValueError: If `sample_shape` has rank > 0 or if `sample_shape` is an int that is < 1. """ with tf.name_scope('{}_sample'.format(self.scope_name)): if y is None: y = tf.to_float(self.compute_prior().sample(sample_shape)) if y.shape.ndims > 2: y = snt.MergeDims(start=0, size=y.shape.ndims - 1, name='merge_y')(y) z = self._latent_decoder(y, is_training=self._is_training) if mean: samples = self.predict(z.sample(), y).mean() else: samples = self.predict(z.sample(), y).sample() return samples def reconstruct(self, x, use_mode=True, use_mean=False): """Reconstructs the given observations. Args: x: Observed `Tensor`. use_mode: Boolean, if true, take the argmax over q(y|x) use_mean: Boolean, if true, use pixel-mean for reconstructions. Returns: The reconstructed samples x ~ p(x | y~q(y|x), z~q(z|x, y)). """ hiddens = self._shared_encoder(x, is_training=self._is_training) qy = self.infer_cluster(hiddens) y_sample = qy.mode() if use_mode else qy.sample() y_sample = tf.to_float(y_sample) qz = self.infer_latent(hiddens, y_sample) p = self.predict(qz.sample(), y_sample) if use_mean: return p.mean() else: return p.sample() def log_prob(self, x): """Redirects to log_prob_elbo with a warning.""" logging.warn('log_prob is actually a lower bound') return self.log_prob_elbo(x) def log_prob_elbo(self, x): """Returns evidence lower bound.""" log_p_x, kl_y, kl_z = self.log_prob_elbo_components(x)[:3] return log_p_x - kl_y - kl_z def log_prob_elbo_components(self, x, y=None, reduce_op=tf.reduce_sum): """Returns the components used in calculating the evidence lower bound. Args: x: Observed variables, `Tensor` of size `[B, I]` where `I` is the size of a flattened input. y: Optional labels, `Tensor` of size `[B, I]` where `I` is the size of a flattened input. reduce_op: The op to use for reducing across non-batch dimensions. Typically either `tf.reduce_sum` or `tf.reduce_mean`. Returns: `log p(x|y,z)` of shape `[B]` where `B` is the batch size. `KL[q(y|x) || p(y)]` of shape `[B]` where `B` is the batch size. `KL[q(z|x,y) || p(z|y)]` of shape `[B]` where `B` is the batch size. """ cache_key = (x,) # Checks if the output graph for this inputs has already been computed. if cache_key in self._cache: return self._cache[cache_key] with tf.name_scope('{}_log_prob_elbo'.format(self.scope_name)): hiddens = self._shared_encoder(x, is_training=self._is_training) # 1) Compute KL[q(y|x) || p(y)] from x, and keep distribution q_y around kl_y, q_y = self._kl_and_qy(hiddens) # [B], distribution # For the next two terms, we need to marginalise over all y. # First, construct every possible y indexing (as a one hot) and repeat it # for every element in the batch [n_y_active, B, n_y]. # Note that the onehot have dimension of all y, while only the codes # corresponding to active components are instantiated bs, n_y = q_y.probs.shape all_y = tf.tile( tf.expand_dims(tf.one_hot(tf.range(self._n_y_active), n_y), axis=1), multiples=[1, bs, 1]) # 2) Compute KL[q(z|x,y) || p(z|y)] (for all possible y), and keep z's # around [n_y, B] and [n_y, B, n_z] kl_z_all, z_all = tf.map_fn( fn=lambda y: self._kl_and_z(hiddens, y), elems=all_y, dtype=(tf.float32, tf.float32), name='elbo_components_z_map') kl_z_all = tf.transpose(kl_z_all, name='kl_z_all') # Now take the expectation over y (scale by q(y|x)) y_logits = q_y.logits[:, :self._n_y_active] # [B, n_y] y_probs = q_y.probs[:, :self._n_y_active] # [B, n_y] y_probs = y_probs / tf.reduce_sum(y_probs, axis=1, keepdims=True) kl_z = tf.reduce_sum(y_probs * kl_z_all, axis=1) # 3) Evaluate logp and recon, i.e., log and mean of p(x|z,[y]) # (conditioning on y only in the `multi` decoder_type case, when # train_supervised is True). Here we take the reconstruction from each # possible component y and take its log prob. [n_y, B, Ix, Iy, Iz] log_p_x_all = tf.map_fn( fn=lambda val: self.predict(val[0], val[1]).log_prob(x), elems=(z_all, all_y), dtype=tf.float32, name='elbo_components_logpx_map') # Sum log probs over all dimensions apart from the first two (n_y, B), # i.e., over I. Use einsum to construct higher order multiplication. log_p_x_all = snt.BatchFlatten(preserve_dims=2)(log_p_x_all) # [n_y,B,I] # Note, this is E_{q(y|x)} [ log p(x | z, y)], i.e., we scale log_p_x_all # by q(y|x). log_p_x = tf.einsum('ij,jik->ik', y_probs, log_p_x_all) # [B, I] # We may also use a supervised loss for some samples [B, n_y] if y is not None: self.y_label = tf.one_hot(y, n_y) else: self.y_label = tfc.placeholder( shape=[bs, n_y], dtype=tf.float32, name='y_label') # This is computing log p(x | z, y=true_y)], which is basically equivalent # to indexing into the correct element of `log_p_x_all`. log_p_x_sup = tf.einsum('ij,jik->ik', self.y_label[:, :self._n_y_active], log_p_x_all) # [B, I] kl_z_sup = tf.einsum('ij,ij->i', self.y_label[:, :self._n_y_active], kl_z_all) # [B] # -log q(y=y_true | x) kl_y_sup = tf.nn.sparse_softmax_cross_entropy_with_logits( # [B] labels=tf.argmax(self.y_label[:, :self._n_y_active], axis=1), logits=y_logits) # Reduce over all dimension except batch. dims_x = [k for k in range(1, log_p_x.shape.ndims)] log_p_x = reduce_op(log_p_x, dims_x, name='log_p_x') log_p_x_sup = reduce_op(log_p_x_sup, dims_x, name='log_p_x_sup') # Store values needed externally self.q_y = q_y self.log_p_x_all = tf.transpose( reduce_op( log_p_x_all, -1, # [B, n_y] name='log_p_x_all')) self.kl_z_all = kl_z_all self.y_probs = y_probs self._cache[cache_key] = (log_p_x, kl_y, kl_z, log_p_x_sup, kl_y_sup, kl_z_sup) return log_p_x, kl_y, kl_z, log_p_x_sup, kl_y_sup, kl_z_sup def _kl_and_qy(self, hiddens): """Returns analytical or sampled KL div and the distribution q(y | x). Args: hiddens: The shared encoder activations, 2D `Tensor` of size `[B, ...]`. Returns: Pair `(kl, y)`, where `kl` is the KL divergence (a `Tensor` with shape `[B]`, where `B` is the batch size), and `y` is a sample from the categorical encoding distribution. """ with tf.control_dependencies([tfc.assert_rank(hiddens, 2)]): q = self.infer_cluster(hiddens) # q(y|x) p = self.compute_prior() # p(y) try: # Take the average proportions over whole batch then repeat it in each row # before computing the KL if self._kly_over_batch: probs = tf.reduce_mean( q.probs, axis=0, keepdims=True) * tf.ones_like(q.probs) qmean = tfp.distributions.OneHotCategorical(probs=probs) kl = tfp.distributions.kl_divergence(qmean, p) else: kl = tfp.distributions.kl_divergence(q, p) except NotImplementedError: y = q.sample(name='y_sample') logging.warn('Using sampling KLD for y') log_p_y = p.log_prob(y, name='log_p_y') log_q_y = q.log_prob(y, name='log_q_y') # Reduce over all dimension except batch. sum_axis_p = [k for k in range(1, log_p_y.get_shape().ndims)] log_p_y = tf.reduce_sum(log_p_y, sum_axis_p) sum_axis_q = [k for k in range(1, log_q_y.get_shape().ndims)] log_q_y = tf.reduce_sum(log_q_y, sum_axis_q) kl = log_q_y - log_p_y # Reduce over all dimension except batch. sum_axis_kl = [k for k in range(1, kl.get_shape().ndims)] kl = tf.reduce_sum(kl, sum_axis_kl, name='kl') return kl, q def _kl_and_z(self, hiddens, y): """Returns KL[q(z|y,x) || p(z|y)] and a sample for z from q(z|y,x). Returns the analytical KL divergence KL[q(z|y,x) || p(z|y)] if one is available (as registered with `kullback_leibler.RegisterKL`), or a sampled KL divergence otherwise (in this case the returned sample is the one used for the KL divergence). Args: hiddens: The shared encoder activations, 2D `Tensor` of size `[B, ...]`. y: Categorical cluster random variable, `Tensor` of size `[B, n_y]`. Returns: Pair `(kl, z)`, where `kl` is the KL divergence (a `Tensor` with shape `[B]`, where `B` is the batch size), and `z` is a sample from the encoding distribution. """ with tf.control_dependencies([tfc.assert_rank(hiddens, 2)]): q = self.infer_latent(hiddens, y) # q(z|x,y) p = self.generate_latent(y) # p(z|y) z = q.sample(name='z') try: kl = tfp.distributions.kl_divergence(q, p) except NotImplementedError: logging.warn('Using sampling KLD for z') log_p_z = p.log_prob(z, name='log_p_z_y') log_q_z = q.log_prob(z, name='log_q_z_xy') # Reduce over all dimension except batch. sum_axis_p = [k for k in range(1, log_p_z.get_shape().ndims)] log_p_z = tf.reduce_sum(log_p_z, sum_axis_p) sum_axis_q = [k for k in range(1, log_q_z.get_shape().ndims)] log_q_z = tf.reduce_sum(log_q_z, sum_axis_q) kl = log_q_z - log_p_z # Reduce over all dimension except batch. sum_axis_kl = [k for k in range(1, kl.get_shape().ndims)] kl = tf.reduce_sum(kl, sum_axis_kl, name='kl') return kl, z def infer_latent(self, hiddens, y=None, use_mean_y=False): """Performs inference over the latent variable z. Args: hiddens: The shared encoder activations, 4D `Tensor` of size `[B, ...]`. y: Categorical cluster variable, `Tensor` of size `[B, ...]`. use_mean_y: Boolean, whether to take the mean encoding over all y. Returns: The distribution `q(z|x, y)`, which on sample produces tensors of size `[N, B, ...]` where `B` is the batch size of `x` and `y`, and `N` is the number of samples and `...` represents the shape of the latent variables. """ with tf.control_dependencies([tfc.assert_rank(hiddens, 2)]): if y is None: y = tf.to_float(self.infer_cluster(hiddens).mode()) if use_mean_y: # If use_mean_y, then y must be probabilities all_y = tf.tile( tf.expand_dims(tf.one_hot(tf.range(y.shape[1]), y.shape[1]), axis=1), multiples=[1, y.shape[0], 1]) # Compute z KL from x (for all possible y), and keep z's around z_all = tf.map_fn( fn=lambda y: self._latent_encoder( hiddens, y, is_training=self._is_training).mean(), elems=all_y, dtype=tf.float32) return tf.einsum('ij,jik->ik', y, z_all) else: return self._latent_encoder(hiddens, y, is_training=self._is_training) def generate_latent(self, y): """Use the generative model to compute latent variable z, given a y. Args: y: Categorical cluster variable, `Tensor` of size `[B, ...]`. Returns: The distribution `p(z|y)`, which on sample produces tensors of size `[N, B, ...]` where `B` is the batch size of `x`, and `N` is the number of samples asked and `...` represents the shape of the latent variables. """ return self._latent_decoder(y, is_training=self._is_training) def get_shared_rep(self, x, is_training): """Gets the shared representation from a given input x. Args: x: Observed variables, `Tensor` of size `[B, I]` where `I` is the size of a flattened input. is_training: bool, whether this constitutes training data or not. Returns: `log p(x|y,z)` of shape `[B]` where `B` is the batch size. `KL[q(y|x) || p(y)]` of shape `[B]` where `B` is the batch size. `KL[q(z|x,y) || p(z|y)]` of shape `[B]` where `B` is the batch size. """ return self._shared_encoder(x, is_training) def infer_cluster(self, hiddens): """Performs inference over the categorical variable y. Args: hiddens: The shared encoder activations, 2D `Tensor` of size `[B, ...]`. Returns: The distribution `q(y|x)`, which on sample produces tensors of size `[N, B, ...]` where `B` is the batch size of `x`, and `N` is the number of samples asked and `...` represents the shape of the latent variables. """ with tf.control_dependencies([tfc.assert_rank(hiddens, 2)]): return self._cluster_encoder(hiddens, is_training=self._is_training) def predict(self, z, y): """Computes prediction over the observed variables. Args: z: Latent variables, `Tensor` of size `[B, ...]`. y: Categorical cluster variable, `Tensor` of size `[B, ...]`. Returns: The distribution `p(x|z)`, which on sample produces tensors of size `[N, B, ...]` where `N` is the number of samples asked. """ encoder_conv_shapes = getattr(self._shared_encoder, 'conv_shapes', None) return self._data_decoder( z, y, shared_encoder_conv_shapes=encoder_conv_shapes, is_training=self._is_training) def compute_prior(self): """Computes prior over the latent variables. Returns: The distribution `p(y)`, which on sample produces tensors of size `[N, ...]` where `N` is the number of samples asked and `...` represents the shape of the latent variables. """ return self._prior() class UpsampleModule(snt.AbstractModule): """Convolutional decoder. If `method` is 'deconv' apply transposed convolutions with stride 2, otherwise apply the `method` upsampling function and then smooth with a stride 1x1 convolution. Params: ------- filters: list, where the first element is the number of filters of the initial MLP layer and the remaining elements are the number of filters of the upsampling layers. kernel_size: the size of the convolutional kernels. The same size will be used in all convolutions. activation: an activation function, applied to all layers but the last. dec_up_strides: list, the upsampling factors of each upsampling convolutional layer. enc_conv_shapes: list, the shapes of the input and of all the intermediate feature maps of the convolutional layers in the encoder. n_c: the number of output channels. """ def __init__(self, filters, kernel_size, activation, dec_up_strides, enc_conv_shapes, n_c, method='nn', name='upsample_module'): super(UpsampleModule, self).__init__(name=name) assert len(filters) == len(dec_up_strides) + 1, ( 'The decoder\'s filters should contain one element more than the ' 'decoder\'s up stride list, but has %d elements instead of %d.\n' 'Decoder filters: %s\nDecoder up strides: %s' % (len(filters), len(dec_up_strides) + 1, str(filters), str(dec_up_strides))) self._filters = filters self._kernel_size = kernel_size self._activation = activation self._dec_up_strides = dec_up_strides self._enc_conv_shapes = enc_conv_shapes self._n_c = n_c if method == 'deconv': self._conv_layer = tf.layers.Conv2DTranspose self._method = method else: self._conv_layer = tf.layers.Conv2D self._method = getattr(tf.image.ResizeMethod, method.upper()) self._method_str = method.capitalize() def _build(self, z, is_training=True, test_local_stats=True, use_bn=False): batch_norm_args = { 'is_training': is_training, 'test_local_stats': test_local_stats } method = self._method # Cycle over the encoder shapes backwards, to build a symmetrical decoder. enc_conv_shapes = self._enc_conv_shapes[::-1] strides = self._dec_up_strides # We store the heights and widths of the encoder feature maps that are # unique, i.e., the ones right after a layer with stride != 1. These will be # used as a target to potentially crop the upsampled feature maps. unique_hw = np.unique([(el[1], el[2]) for el in enc_conv_shapes], axis=0) unique_hw = unique_hw.tolist()[::-1] unique_hw.pop() # Drop the initial shape # The first filter is an MLP. mlp_filter, conv_filters = self._filters[0], self._filters[1:] # The first shape is used after the MLP to go to 4D. layers = [z] # The shape of the first enc is used after the MLP to go back to 4D. dec_mlp = snt.nets.MLP( name='dec_mlp_projection', output_sizes=[mlp_filter, np.prod(enc_conv_shapes[0][1:])], use_bias=not use_bn, activation=self._activation, activate_final=True) upsample_mlp_flat = dec_mlp(z) if use_bn: upsample_mlp_flat = snt.BatchNorm(scale=True)(upsample_mlp_flat, **batch_norm_args) layers.append(upsample_mlp_flat) upsample = tf.reshape(upsample_mlp_flat, enc_conv_shapes[0]) layers.append(upsample) for i, (filter_i, stride_i) in enumerate(zip(conv_filters, strides), 1): if method != 'deconv' and stride_i > 1: upsample = tf.image.resize_images( upsample, [stride_i * el for el in upsample.shape.as_list()[1:3]], method=method, name='upsample_' + str(i)) upsample = self._conv_layer( filters=filter_i, kernel_size=self._kernel_size, padding='same', use_bias=not use_bn, activation=self._activation, strides=stride_i if method == 'deconv' else 1, name='upsample_conv_' + str(i))( upsample) if use_bn: upsample = snt.BatchNorm(scale=True)(upsample, **batch_norm_args) if stride_i > 1: hw = unique_hw.pop() upsample = utils.maybe_center_crop(upsample, hw) layers.append(upsample) # Final layer, no upsampling. x_logits = tf.layers.Conv2D( filters=self._n_c, kernel_size=self._kernel_size, padding='same', use_bias=not use_bn, activation=None, strides=1, name='logits')( upsample) if use_bn: x_logits = snt.BatchNorm(scale=True)(x_logits, **batch_norm_args) layers.append(x_logits) logging.info('%s upsampling module layer shapes', self._method_str) logging.info('\n'.join([str(v.shape.as_list()) for v in layers])) return x_logits
deepmind-research-master
curl/model.py
################################################################################ # Copyright 2019 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ################################################################################ """Runs the unsupervised i.i.d benchmark experiments in the paper.""" from absl import app from absl import flags from curl import training flags.DEFINE_enum('dataset', 'mnist', ['mnist', 'omniglot'], 'Dataset.') FLAGS = flags.FLAGS def main(unused_argv): if FLAGS.dataset == 'mnist': n_y = 25 n_y_active = 1 n_z = 50 else: # omniglot n_y = 100 n_y_active = 1 n_z = 100 training.run_training( dataset=FLAGS.dataset, n_y=n_y, n_y_active=n_y_active, n_z=n_z, output_type='bernoulli', training_data_type='iid', n_concurrent_classes=1, lr_init=5e-4, lr_factor=1., lr_schedule=[1], blend_classes=False, train_supervised=False, n_steps=100000, report_interval=10000, knn_values=[3], random_seed=1, encoder_kwargs={ 'encoder_type': 'multi', 'n_enc': [500, 500], 'enc_strides': [1], }, decoder_kwargs={ 'decoder_type': 'single', 'n_dec': [500], 'dec_up_strides': None, }, dynamic_expansion=True, ll_thresh=-200.0, classify_with_samples=True, gen_replay_type=None, use_supervised_replay=False, ) if __name__ == '__main__': app.run(main)
deepmind-research-master
curl/train_unsup.py
################################################################################ # Copyright 2019 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ################################################################################ """Some common utils.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import logging import tensorflow.compat.v1 as tf import tensorflow_probability as tfp def generate_gaussian(logits, sigma_nonlin, sigma_param): """Generate a Gaussian distribution given a selected parameterisation.""" mu, sigma = tf.split(value=logits, num_or_size_splits=2, axis=1) if sigma_nonlin == 'exp': sigma = tf.exp(sigma) elif sigma_nonlin == 'softplus': sigma = tf.nn.softplus(sigma) else: raise ValueError('Unknown sigma_nonlin {}'.format(sigma_nonlin)) if sigma_param == 'var': sigma = tf.sqrt(sigma) elif sigma_param != 'std': raise ValueError('Unknown sigma_param {}'.format(sigma_param)) return tfp.distributions.Normal(loc=mu, scale=sigma) def construct_prior_probs(batch_size, n_y, n_y_active): """Construct the uniform prior probabilities. Args: batch_size: int, the size of the batch. n_y: int, the number of categorical cluster components. n_y_active: tf.Variable, the number of components that are currently in use. Returns: Tensor representing the prior probability matrix, size of [batch_size, n_y]. """ probs = tf.ones((batch_size, n_y_active)) / tf.cast( n_y_active, dtype=tf.float32) paddings1 = tf.stack([tf.constant(0), tf.constant(0)], axis=0) paddings2 = tf.stack([tf.constant(0), n_y - n_y_active], axis=0) paddings = tf.stack([paddings1, paddings2], axis=1) probs = tf.pad(probs, paddings, constant_values=1e-12) probs.set_shape((batch_size, n_y)) logging.info('Prior shape: %s', str(probs.shape)) return probs def maybe_center_crop(layer, target_hw): """Center crop the layer to match a target shape.""" l_height, l_width = layer.shape.as_list()[1:3] t_height, t_width = target_hw assert t_height <= l_height and t_width <= l_width if (l_height - t_height) % 2 != 0 or (l_width - t_width) % 2 != 0: logging.warn( 'It is impossible to center-crop [%d, %d] into [%d, %d].' ' Crop will be uneven.', t_height, t_width, l_height, l_width) border = int((l_height - t_height) / 2) x_0, x_1 = border, l_height - border border = int((l_width - t_width) / 2) y_0, y_1 = border, l_width - border layer_cropped = layer[:, x_0:x_1, y_0:y_1, :] return layer_cropped
deepmind-research-master
curl/utils.py
################################################################################ # Copyright 2019 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ################################################################################ """Custom layers for CURL.""" from absl import logging import sonnet as snt import tensorflow.compat.v1 as tf tfc = tf.compat.v1 class ResidualStack(snt.AbstractModule): """A stack of ResNet V2 blocks.""" def __init__(self, num_hiddens, num_residual_layers, num_residual_hiddens, filter_size=3, initializers=None, data_format='NHWC', activation=tf.nn.relu, name='residual_stack'): """Instantiate a ResidualStack.""" super(ResidualStack, self).__init__(name=name) self._num_hiddens = num_hiddens self._num_residual_layers = num_residual_layers self._num_residual_hiddens = num_residual_hiddens self._filter_size = filter_size self._initializers = initializers self._data_format = data_format self._activation = activation def _build(self, h): for i in range(self._num_residual_layers): h_i = self._activation(h) h_i = snt.Conv2D( output_channels=self._num_residual_hiddens, kernel_shape=(self._filter_size, self._filter_size), stride=(1, 1), initializers=self._initializers, data_format=self._data_format, name='res_nxn_%d' % i)( h_i) h_i = self._activation(h_i) h_i = snt.Conv2D( output_channels=self._num_hiddens, kernel_shape=(1, 1), stride=(1, 1), initializers=self._initializers, data_format=self._data_format, name='res_1x1_%d' % i)( h_i) h += h_i return self._activation(h) class SharedConvModule(snt.AbstractModule): """Convolutional decoder.""" def __init__(self, filters, kernel_size, activation, strides, name='shared_conv_encoder'): super(SharedConvModule, self).__init__(name=name) self._filters = filters self._kernel_size = kernel_size self._activation = activation self.strides = strides assert len(strides) == len(filters) - 1 self.conv_shapes = None def _build(self, x, is_training=True): with tf.control_dependencies([tfc.assert_rank(x, 4)]): self.conv_shapes = [x.shape.as_list()] # Needed by deconv module conv = x for i, (filter_i, stride_i) in enumerate(zip(self._filters, self.strides), 1): conv = tf.layers.Conv2D( filters=filter_i, kernel_size=self._kernel_size, padding='same', activation=self._activation, strides=stride_i, name='enc_conv_%d' % i)( conv) self.conv_shapes.append(conv.shape.as_list()) conv_flat = snt.BatchFlatten()(conv) enc_mlp = snt.nets.MLP( name='enc_mlp', output_sizes=[self._filters[-1]], activation=self._activation, activate_final=True) h = enc_mlp(conv_flat) logging.info('Shared conv module layer shapes:') logging.info('\n'.join([str(el) for el in self.conv_shapes])) logging.info(h.shape.as_list()) return h
deepmind-research-master
curl/layers.py