python_code
stringlengths
0
1.02M
repo_name
stringlengths
9
48
file_path
stringlengths
5
114
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """tfdbg CLI as SessionRunHook.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.core.protobuf import config_pb2 from tensorflow.python.debug.lib import debug_utils from tensorflow.python.debug.wrappers import dumping_wrapper from tensorflow.python.debug.wrappers import framework from tensorflow.python.debug.wrappers import grpc_wrapper from tensorflow.python.debug.wrappers import local_cli_wrapper from tensorflow.python.training import session_run_hook class LocalCLIDebugHook(session_run_hook.SessionRunHook): """Command-line-interface debugger hook. Can be used as a hook for `tf.compat.v1.train.MonitoredSession`s and `tf.estimator.Estimator`s. Provides a substitute for `tfdbg.LocalCLIDebugWrapperSession` in cases where the session is not directly available. """ def __init__(self, ui_type="curses", dump_root=None, thread_name_filter=None): """Create a local debugger command-line interface (CLI) hook. Args: ui_type: (`str`) requested user-interface type. Currently supported: (curses | readline). dump_root: (`str`) optional path to the dump root directory. Must be a directory that does not exist or an empty directory. If the directory does not exist, it will be created by the debugger core during debug `run()` calls and removed afterwards. thread_name_filter: Regular-expression white list for threads on which the wrapper session will be active. See doc of `BaseDebugWrapperSession` for more details. """ self._ui_type = ui_type self._dump_root = dump_root self._thread_name_filter = thread_name_filter self._session_wrapper = None self._pending_tensor_filters = {} def add_tensor_filter(self, filter_name, tensor_filter): """Add a tensor filter. See doc of `LocalCLIDebugWrapperSession.add_tensor_filter()` for details. Override default behavior to accommodate the possibility of this method being called prior to the initialization of the underlying `LocalCLIDebugWrapperSession` object. Args: filter_name: See doc of `LocalCLIDebugWrapperSession.add_tensor_filter()` for details. tensor_filter: See doc of `LocalCLIDebugWrapperSession.add_tensor_filter()` for details. """ if self._session_wrapper: self._session_wrapper.add_tensor_filter(filter_name, tensor_filter) else: self._pending_tensor_filters[filter_name] = tensor_filter def begin(self): pass def before_run(self, run_context): if not self._session_wrapper: self._session_wrapper = local_cli_wrapper.LocalCLIDebugWrapperSession( run_context.session, ui_type=self._ui_type, dump_root=self._dump_root, thread_name_filter=self._thread_name_filter) # Actually register tensor filters registered prior to the construction # of the underlying LocalCLIDebugWrapperSession object. for filter_name in self._pending_tensor_filters: self._session_wrapper.add_tensor_filter( filter_name, self._pending_tensor_filters[filter_name]) # Increment run call counter. self._session_wrapper.increment_run_call_count() # Adapt run_context to an instance of OnRunStartRequest for invoking # superclass on_run_start(). on_run_start_request = framework.OnRunStartRequest( run_context.original_args.fetches, run_context.original_args.feed_dict, None, None, self._session_wrapper.run_call_count) on_run_start_response = self._session_wrapper.on_run_start( on_run_start_request) self._performed_action = on_run_start_response.action run_args = session_run_hook.SessionRunArgs( None, feed_dict=None, options=config_pb2.RunOptions()) if self._performed_action == framework.OnRunStartAction.DEBUG_RUN: # pylint: disable=protected-access self._session_wrapper._decorate_run_options_for_debug( run_args.options, on_run_start_response.debug_urls, debug_ops=on_run_start_response.debug_ops, node_name_regex_whitelist=( on_run_start_response.node_name_regex_whitelist), op_type_regex_whitelist=( on_run_start_response.op_type_regex_whitelist), tensor_dtype_regex_whitelist=( on_run_start_response.tensor_dtype_regex_whitelist), tolerate_debug_op_creation_failures=( on_run_start_response.tolerate_debug_op_creation_failures)) # pylint: enable=protected-access elif self._performed_action == framework.OnRunStartAction.PROFILE_RUN: # pylint: disable=protected-access self._session_wrapper._decorate_run_options_for_profile(run_args.options) # pylint: enable=protected-access return run_args def after_run(self, run_context, run_values): # Adapt run_context and run_values to OnRunEndRequest and invoke superclass # on_run_end() on_run_end_request = framework.OnRunEndRequest(self._performed_action, run_values.run_metadata) self._session_wrapper.on_run_end(on_run_end_request) class DumpingDebugHook(session_run_hook.SessionRunHook): """A debugger hook that dumps debug data to filesystem. Can be used as a hook for `tf.compat.v1.train.MonitoredSession`s and `tf.estimator.Estimator`s. """ def __init__(self, session_root, watch_fn=None, thread_name_filter=None, log_usage=True): """Create a local debugger command-line interface (CLI) hook. Args: session_root: See doc of `dumping_wrapper.DumpingDebugWrapperSession.__init__`. watch_fn: See doc of `dumping_wrapper.DumpingDebugWrapperSession.__init__`. thread_name_filter: Regular-expression white list for threads on which the wrapper session will be active. See doc of `BaseDebugWrapperSession` for more details. log_usage: (bool) Whether usage is to be logged. """ self._session_root = session_root self._watch_fn = watch_fn self._thread_name_filter = thread_name_filter self._log_usage = log_usage self._session_wrapper = None def begin(self): pass def before_run(self, run_context): reset_disk_byte_usage = False if not self._session_wrapper: self._session_wrapper = dumping_wrapper.DumpingDebugWrapperSession( run_context.session, self._session_root, watch_fn=self._watch_fn, thread_name_filter=self._thread_name_filter, log_usage=self._log_usage) reset_disk_byte_usage = True self._session_wrapper.increment_run_call_count() # pylint: disable=protected-access debug_urls, watch_options = self._session_wrapper._prepare_run_watch_config( run_context.original_args.fetches, run_context.original_args.feed_dict) # pylint: enable=protected-access run_options = config_pb2.RunOptions() debug_utils.watch_graph( run_options, run_context.session.graph, debug_urls=debug_urls, debug_ops=watch_options.debug_ops, node_name_regex_whitelist=watch_options.node_name_regex_whitelist, op_type_regex_whitelist=watch_options.op_type_regex_whitelist, tensor_dtype_regex_whitelist=watch_options.tensor_dtype_regex_whitelist, tolerate_debug_op_creation_failures=( watch_options.tolerate_debug_op_creation_failures), reset_disk_byte_usage=reset_disk_byte_usage) run_args = session_run_hook.SessionRunArgs( None, feed_dict=None, options=run_options) return run_args def after_run(self, run_context, run_values): pass class GrpcDebugHook(session_run_hook.SessionRunHook): """A hook that streams debugger-related events to any grpc_debug_server. For example, the debugger data server is a grpc_debug_server. The debugger data server writes debugger-related events it receives via GRPC to logdir. This enables debugging features in Tensorboard such as health pills. When the arguments of debug_utils.watch_graph changes, strongly consider changing arguments here too so that features are available to tflearn users. Can be used as a hook for `tf.compat.v1.train.MonitoredSession`s and `tf.estimator.Estimator`s. """ def __init__(self, grpc_debug_server_addresses, watch_fn=None, thread_name_filter=None, log_usage=True): """Constructs a GrpcDebugHook. Args: grpc_debug_server_addresses: (`list` of `str`) A list of the gRPC debug server addresses, in the format of <host:port>, with or without the "grpc://" prefix. For example: ["localhost:7000", "192.168.0.2:8000"] watch_fn: A function that allows for customizing which ops to watch at which specific steps. See doc of `dumping_wrapper.DumpingDebugWrapperSession.__init__` for details. thread_name_filter: Regular-expression white list for threads on which the wrapper session will be active. See doc of `BaseDebugWrapperSession` for more details. log_usage: (bool) Whether usage is to be logged. """ self._grpc_debug_wrapper_session = None self._thread_name_filter = thread_name_filter self._grpc_debug_server_addresses = ( grpc_debug_server_addresses if isinstance(grpc_debug_server_addresses, list) else [grpc_debug_server_addresses]) self._watch_fn = watch_fn self._log_usage = log_usage def before_run(self, run_context): """Called right before a session is run. Args: run_context: A session_run_hook.SessionRunContext. Encapsulates information on the run. Returns: A session_run_hook.SessionRunArgs object. """ if not self._grpc_debug_wrapper_session: self._grpc_debug_wrapper_session = grpc_wrapper.GrpcDebugWrapperSession( run_context.session, self._grpc_debug_server_addresses, watch_fn=self._watch_fn, thread_name_filter=self._thread_name_filter, log_usage=self._log_usage) fetches = run_context.original_args.fetches feed_dict = run_context.original_args.feed_dict watch_options = self._watch_fn(fetches, feed_dict) run_options = config_pb2.RunOptions() debug_utils.watch_graph( run_options, run_context.session.graph, debug_urls=self._grpc_debug_wrapper_session.prepare_run_debug_urls( fetches, feed_dict), debug_ops=watch_options.debug_ops, node_name_regex_whitelist=watch_options.node_name_regex_whitelist, op_type_regex_whitelist=watch_options.op_type_regex_whitelist, tensor_dtype_regex_whitelist=watch_options.tensor_dtype_regex_whitelist, tolerate_debug_op_creation_failures=( watch_options.tolerate_debug_op_creation_failures)) return session_run_hook.SessionRunArgs( None, feed_dict=None, options=run_options) class TensorBoardDebugHook(GrpcDebugHook): """A tfdbg hook that can be used with TensorBoard Debugger Plugin. This hook is the same as `GrpcDebugHook`, except that it uses a predefined `watch_fn` that 1) uses `DebugIdentity` debug ops with the `gated_grpc` attribute set to `True`, to allow the interactive enabling and disabling of tensor breakpoints. 2) watches all tensors in the graph. This saves the need for the user to define a `watch_fn`. """ def __init__(self, grpc_debug_server_addresses, thread_name_filter=None, send_traceback_and_source_code=True, log_usage=True): """Constructor of TensorBoardDebugHook. Args: grpc_debug_server_addresses: gRPC address(es) of debug server(s), as a `str` or a `list` of `str`s. E.g., "localhost:2333", "grpc://localhost:2333", ["192.168.0.7:2333", "192.168.0.8:2333"]. thread_name_filter: Optional filter for thread names. send_traceback_and_source_code: Whether traceback of graph elements and the source code are to be sent to the debug server(s). log_usage: Whether the usage of this class is to be logged (if applicable). """ def _gated_grpc_watch_fn(fetches, feeds): del fetches, feeds # Unused. return framework.WatchOptions( debug_ops=["DebugIdentity(gated_grpc=true)"]) super(TensorBoardDebugHook, self).__init__( grpc_debug_server_addresses, watch_fn=_gated_grpc_watch_fn, thread_name_filter=thread_name_filter, log_usage=log_usage) self._grpc_debug_server_addresses = grpc_debug_server_addresses self._send_traceback_and_source_code = send_traceback_and_source_code self._sent_graph_version = -1 grpc_wrapper.register_signal_handler() def before_run(self, run_context): if self._send_traceback_and_source_code: self._sent_graph_version = grpc_wrapper.publish_traceback( self._grpc_debug_server_addresses, run_context.session.graph, run_context.original_args.feed_dict, run_context.original_args.fetches, self._sent_graph_version) return super(TensorBoardDebugHook, self).before_run(run_context)
tensorflow-master
tensorflow/python/debug/wrappers/hooks.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Framework of debug-wrapped sessions.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import shutil import tempfile import threading import numpy as np from tensorflow.core.protobuf import config_pb2 from tensorflow.core.protobuf import rewriter_config_pb2 from tensorflow.python.client import session from tensorflow.python.debug.lib import debug_data from tensorflow.python.debug.wrappers import framework from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops # Import resource_variable_ops for the variables-to-tensor implicit conversion. from tensorflow.python.ops import resource_variable_ops # pylint: disable=unused-import from tensorflow.python.ops import variables from tensorflow.python.platform import googletest from tensorflow.python.training import monitored_session from tensorflow.python.util import tf_inspect class TestDebugWrapperSession(framework.BaseDebugWrapperSession): """A concrete implementation of BaseDebugWrapperSession for test.""" def __init__(self, sess, dump_root, observer, thread_name_filter=None): # Supply dump root. self._dump_root = dump_root # Supply observer. self._obs = observer # Invoke superclass constructor. framework.BaseDebugWrapperSession.__init__( self, sess, thread_name_filter=thread_name_filter) def on_session_init(self, request): """Override abstract on-session-init callback method.""" self._obs["sess_init_count"] += 1 self._obs["request_sess"] = request.session return framework.OnSessionInitResponse( framework.OnSessionInitAction.PROCEED) def on_run_start(self, request): """Override abstract on-run-start callback method.""" self._obs["on_run_start_count"] += 1 self._obs["run_fetches"] = request.fetches self._obs["run_feed_dict"] = request.feed_dict return framework.OnRunStartResponse( framework.OnRunStartAction.DEBUG_RUN, ["file://" + self._dump_root]) def on_run_end(self, request): """Override abstract on-run-end callback method.""" self._obs["on_run_end_count"] += 1 self._obs["performed_action"] = request.performed_action self._obs["tf_error"] = request.tf_error return framework.OnRunEndResponse() class TestDebugWrapperSessionBadAction(framework.BaseDebugWrapperSession): """A concrete implementation of BaseDebugWrapperSession for test. This class intentionally puts a bad action value in OnSessionInitResponse and/or in OnRunStartAction to test the handling of such invalid cases. """ def __init__( self, sess, bad_init_action=None, bad_run_start_action=None, bad_debug_urls=None): """Constructor. Args: sess: The TensorFlow Session object to be wrapped. bad_init_action: (str) bad action value to be returned during the on-session-init callback. bad_run_start_action: (str) bad action value to be returned during the the on-run-start callback. bad_debug_urls: Bad URL values to be returned during the on-run-start callback. """ self._bad_init_action = bad_init_action self._bad_run_start_action = bad_run_start_action self._bad_debug_urls = bad_debug_urls # Invoke superclass constructor. framework.BaseDebugWrapperSession.__init__(self, sess) def on_session_init(self, request): if self._bad_init_action: return framework.OnSessionInitResponse(self._bad_init_action) else: return framework.OnSessionInitResponse( framework.OnSessionInitAction.PROCEED) def on_run_start(self, request): debug_urls = self._bad_debug_urls or [] if self._bad_run_start_action: return framework.OnRunStartResponse( self._bad_run_start_action, debug_urls) else: return framework.OnRunStartResponse( framework.OnRunStartAction.DEBUG_RUN, debug_urls) def on_run_end(self, request): return framework.OnRunEndResponse() @test_util.run_deprecated_v1 class DebugWrapperSessionTest(test_util.TensorFlowTestCase): def _no_rewrite_session_config(self): rewriter_config = rewriter_config_pb2.RewriterConfig( disable_model_pruning=True) graph_options = config_pb2.GraphOptions(rewrite_options=rewriter_config) return config_pb2.ConfigProto(graph_options=graph_options) def setUp(self): self._observer = { "sess_init_count": 0, "request_sess": None, "on_run_start_count": 0, "run_fetches": None, "run_feed_dict": None, "on_run_end_count": 0, "performed_action": None, "tf_error": None, } self._dump_root = tempfile.mkdtemp() self._sess = session.Session(config=self._no_rewrite_session_config()) self._a_init_val = np.array([[5.0, 3.0], [-1.0, 0.0]]) self._b_init_val = np.array([[2.0], [-1.0]]) self._c_val = np.array([[-4.0], [6.0]]) self._a_init = constant_op.constant( self._a_init_val, shape=[2, 2], name="a_init") self._b_init = constant_op.constant( self._b_init_val, shape=[2, 1], name="b_init") self._ph = array_ops.placeholder(dtype=dtypes.float64, name="ph") self._a = variables.Variable(self._a_init, name="a1") self._b = variables.Variable(self._b_init, name="b") self._c = constant_op.constant(self._c_val, shape=[2, 1], name="c") # Matrix product of a and b. self._p = math_ops.matmul(self._a, self._b, name="p1") # Matrix product of a and ph. self._q = math_ops.matmul(self._a, self._ph, name="q") # Sum of two vectors. self._s = math_ops.add(self._p, self._c, name="s") # Initialize the variables. self._sess.run(self._a.initializer) self._sess.run(self._b.initializer) def tearDown(self): # Tear down temporary dump directory. if os.path.isdir(self._dump_root): shutil.rmtree(self._dump_root) ops.reset_default_graph() def testSessionInit(self): self.assertEqual(0, self._observer["sess_init_count"]) wrapper_sess = TestDebugWrapperSession(self._sess, self._dump_root, self._observer) # Assert that on-session-init callback is invoked. self.assertEqual(1, self._observer["sess_init_count"]) # Assert that the request to the on-session-init callback carries the # correct session object. self.assertEqual(self._sess, self._observer["request_sess"]) # Verify that the wrapper session implements the session.SessionInterface. self.assertTrue(isinstance(wrapper_sess, session.SessionInterface)) self.assertEqual(self._sess.sess_str, wrapper_sess.sess_str) self.assertEqual(self._sess.graph, wrapper_sess.graph) self.assertEqual(self._sess.graph_def, wrapper_sess.graph_def) # Check that the partial_run_setup and partial_run are not implemented for # the debug wrapper session. with self.assertRaises(NotImplementedError): wrapper_sess.partial_run_setup(self._p) def testInteractiveSessionInit(self): """The wrapper should work also on other subclasses of session.Session.""" TestDebugWrapperSession( session.InteractiveSession(), self._dump_root, self._observer) def testSessionRun(self): wrapper = TestDebugWrapperSession( self._sess, self._dump_root, self._observer) # Check initial state of the observer. self.assertEqual(0, self._observer["on_run_start_count"]) self.assertEqual(0, self._observer["on_run_end_count"]) s = wrapper.run(self._s) # Assert the run return value is correct. self.assertAllClose(np.array([[3.0], [4.0]]), s) # Assert the on-run-start method is invoked. self.assertEqual(1, self._observer["on_run_start_count"]) # Assert the on-run-start request reflects the correct fetch. self.assertEqual(self._s, self._observer["run_fetches"]) # Assert the on-run-start request reflects the correct feed_dict. self.assertIsNone(self._observer["run_feed_dict"]) # Assert the file debug URL has led to dump on the filesystem. dump = debug_data.DebugDumpDir(self._dump_root) self.assertEqual(7, len(dump.dumped_tensor_data)) # Assert the on-run-end method is invoked. self.assertEqual(1, self._observer["on_run_end_count"]) # Assert the performed action field in the on-run-end callback request is # correct. self.assertEqual( framework.OnRunStartAction.DEBUG_RUN, self._observer["performed_action"]) # No TensorFlow runtime error should have happened. self.assertIsNone(self._observer["tf_error"]) def testSessionInitInvalidSessionType(self): """Attempt to wrap a non-Session-type object should cause an exception.""" wrapper = TestDebugWrapperSessionBadAction(self._sess) with self.assertRaisesRegexp(TypeError, "Expected type .*; got type .*"): TestDebugWrapperSessionBadAction(wrapper) def testSessionInitBadActionValue(self): with self.assertRaisesRegexp( ValueError, "Invalid OnSessionInitAction value: nonsense_action"): TestDebugWrapperSessionBadAction( self._sess, bad_init_action="nonsense_action") def testRunStartBadActionValue(self): wrapper = TestDebugWrapperSessionBadAction( self._sess, bad_run_start_action="nonsense_action") with self.assertRaisesRegexp( ValueError, "Invalid OnRunStartAction value: nonsense_action"): wrapper.run(self._s) def testRunStartBadURLs(self): # debug_urls ought to be a list of str, not a str. So an exception should # be raised during a run() call. wrapper = TestDebugWrapperSessionBadAction( self._sess, bad_debug_urls="file://foo") with self.assertRaisesRegexp(TypeError, "Expected type .*; got type .*"): wrapper.run(self._s) def testErrorDuringRun(self): wrapper = TestDebugWrapperSession(self._sess, self._dump_root, self._observer) # No matrix size mismatch. self.assertAllClose( np.array([[11.0], [-1.0]]), wrapper.run(self._q, feed_dict={self._ph: np.array([[1.0], [2.0]])})) self.assertEqual(1, self._observer["on_run_end_count"]) self.assertIsNone(self._observer["tf_error"]) # Now there should be a matrix size mismatch error. wrapper.run(self._q, feed_dict={self._ph: np.array([[1.0], [2.0], [3.0]])}) self.assertEqual(2, self._observer["on_run_end_count"]) self.assertTrue( isinstance(self._observer["tf_error"], errors.InvalidArgumentError)) def testUsingWrappedSessionShouldWorkAsContextManager(self): wrapper = TestDebugWrapperSession(self._sess, self._dump_root, self._observer) with wrapper as sess: self.assertAllClose([[3.0], [4.0]], self._s.eval()) self.assertEqual(1, self._observer["on_run_start_count"]) self.assertEqual(self._s, self._observer["run_fetches"]) self.assertEqual(1, self._observer["on_run_end_count"]) self.assertAllClose( [[11.0], [-1.0]], sess.run(self._q, feed_dict={self._ph: np.array([[1.0], [2.0]])})) self.assertEqual(2, self._observer["on_run_start_count"]) self.assertEqual(self._q, self._observer["run_fetches"]) self.assertEqual(2, self._observer["on_run_end_count"]) def testUsingWrappedSessionShouldSupportEvalWithAsDefault(self): wrapper = TestDebugWrapperSession(self._sess, self._dump_root, self._observer) with wrapper.as_default(): foo = constant_op.constant(42, name="foo") self.assertEqual(42, self.evaluate(foo)) self.assertEqual(foo, self._observer["run_fetches"]) def testWrapperShouldSupportSessionClose(self): wrapper = TestDebugWrapperSession(self._sess, self._dump_root, self._observer) wrapper.close() def testWrapperThreadNameFilterMainThread(self): wrapper = TestDebugWrapperSession( self._sess, self._dump_root, self._observer, thread_name_filter="MainThread") child_run_output = [] def child_thread_job(): child_run_output.append(wrapper.run(self._b_init)) thread = threading.Thread(name="ChildThread", target=child_thread_job) thread.start() self.assertAllClose(self._a_init_val, wrapper.run(self._a_init)) thread.join() self.assertAllClose([self._b_init_val], child_run_output) dump = debug_data.DebugDumpDir(self._dump_root) self.assertEqual(1, dump.size) self.assertEqual("a_init", dump.dumped_tensor_data[0].node_name) def testWrapperThreadNameFilterChildThread(self): wrapper = TestDebugWrapperSession( self._sess, self._dump_root, self._observer, thread_name_filter=r"Child.*") child_run_output = [] def child_thread_job(): child_run_output.append(wrapper.run(self._b_init)) thread = threading.Thread(name="ChildThread", target=child_thread_job) thread.start() self.assertAllClose(self._a_init_val, wrapper.run(self._a_init)) thread.join() self.assertAllClose([self._b_init_val], child_run_output) dump = debug_data.DebugDumpDir(self._dump_root) self.assertEqual(1, dump.size) self.assertEqual("b_init", dump.dumped_tensor_data[0].node_name) def testWrapperThreadNameFilterBothThreads(self): wrapper = TestDebugWrapperSession( self._sess, self._dump_root, self._observer, thread_name_filter=None) child_run_output = [] def child_thread_job(): child_run_output.append(wrapper.run(self._b_init)) thread = threading.Thread(name="ChildThread", target=child_thread_job) thread.start() self.assertAllClose(self._a_init_val, wrapper.run(self._a_init)) thread.join() self.assertAllClose([self._b_init_val], child_run_output) dump = debug_data.DebugDumpDir(self._dump_root, validate=False) self.assertEqual(2, dump.size) self.assertItemsEqual( ["a_init", "b_init"], [datum.node_name for datum in dump.dumped_tensor_data]) def _is_public_method_name(method_name): return (method_name.startswith("__") and method_name.endswith("__") or not method_name.startswith("_")) class SessionWrapperPublicMethodParityTest(test_util.TensorFlowTestCase): def testWrapperHasAllPublicMethodsOfSession(self): session_public_methods = [ method_tuple[0] for method_tuple in tf_inspect.getmembers(session.Session, predicate=tf_inspect.ismethod) if _is_public_method_name(method_tuple[0])] wrapper_public_methods = [ method_tuple[0] for method_tuple in tf_inspect.getmembers( framework.BaseDebugWrapperSession, predicate=tf_inspect.ismethod) if _is_public_method_name(method_tuple[0])] missing_public_methods = [ method for method in session_public_methods if method not in wrapper_public_methods] self.assertFalse(missing_public_methods) def testWrapperHasAllPublicMethodsOfMonitoredSession(self): session_public_methods = [ method_tuple[0] for method_tuple in tf_inspect.getmembers(monitored_session.MonitoredSession, predicate=tf_inspect.ismethod) if _is_public_method_name(method_tuple[0])] wrapper_public_methods = [ method_tuple[0] for method_tuple in tf_inspect.getmembers( framework.BaseDebugWrapperSession, predicate=tf_inspect.ismethod) if _is_public_method_name(method_tuple[0])] missing_public_methods = [ method for method in session_public_methods if method not in wrapper_public_methods] self.assertFalse(missing_public_methods) if __name__ == "__main__": googletest.main()
tensorflow-master
tensorflow/python/debug/wrappers/framework_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Debugger wrapper session that dumps debug data to file:// URLs.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import threading import time # Google-internal import(s). from tensorflow.core.util import event_pb2 from tensorflow.python.debug.lib import debug_data from tensorflow.python.debug.wrappers import framework from tensorflow.python.platform import gfile class DumpingDebugWrapperSession(framework.NonInteractiveDebugWrapperSession): """Debug Session wrapper that dumps debug data to filesystem.""" def __init__(self, sess, session_root, watch_fn=None, thread_name_filter=None, pass_through_operrors=None, log_usage=True): """Constructor of DumpingDebugWrapperSession. Args: sess: The TensorFlow `Session` object being wrapped. session_root: (`str`) Path to the session root directory. Must be a directory that does not exist or an empty directory. If the directory does not exist, it will be created by the debugger core during debug `tf.Session.run` calls. As the `run()` calls occur, subdirectories will be added to `session_root`. The subdirectories' names has the following pattern: run_<epoch_time_stamp>_<zero_based_run_counter> E.g., run_1480734393835964_ad4c953a85444900ae79fc1b652fb324 watch_fn: (`Callable`) A Callable that can be used to define per-run debug ops and watched tensors. See the doc of `NonInteractiveDebugWrapperSession.__init__()` for details. thread_name_filter: Regular-expression white list for threads on which the wrapper session will be active. See doc of `BaseDebugWrapperSession` for more details. pass_through_operrors: If true, all captured OpErrors will be propagated. By default this captures all OpErrors. log_usage: (`bool`) whether the usage of this class is to be logged. Raises: ValueError: If `session_root` is an existing and non-empty directory or if `session_root` is a file. """ if log_usage: pass # No logging for open-source. framework.NonInteractiveDebugWrapperSession.__init__( self, sess, watch_fn=watch_fn, thread_name_filter=thread_name_filter, pass_through_operrors=pass_through_operrors) session_root = os.path.expanduser(session_root) if gfile.Exists(session_root): if not gfile.IsDirectory(session_root): raise ValueError( "session_root path points to a file: %s" % session_root) elif gfile.ListDirectory(session_root): raise ValueError( "session_root path points to a non-empty directory: %s" % session_root) else: gfile.MakeDirs(session_root) self._session_root = session_root self._run_counter = 0 self._run_counter_lock = threading.Lock() def prepare_run_debug_urls(self, fetches, feed_dict): """Implementation of abstrat method in superclass. See doc of `NonInteractiveDebugWrapperSession.prepare_run_debug_urls()` for details. This implementation creates a run-specific subdirectory under self._session_root and stores information regarding run `fetches` and `feed_dict.keys()` in the subdirectory. Args: fetches: Same as the `fetches` argument to `Session.run()` feed_dict: Same as the `feed_dict` argument to `Session.run()` Returns: debug_urls: (`str` or `list` of `str`) file:// debug URLs to be used in this `Session.run()` call. """ # Add a UUID to accommodate the possibility of concurrent run() calls. self._run_counter_lock.acquire() run_dir = os.path.join(self._session_root, "run_%d_%d" % (int(time.time() * 1e6), self._run_counter)) self._run_counter += 1 self._run_counter_lock.release() gfile.MkDir(run_dir) fetches_event = event_pb2.Event() fetches_event.log_message.message = repr(fetches) fetches_path = os.path.join( run_dir, debug_data.METADATA_FILE_PREFIX + debug_data.FETCHES_INFO_FILE_TAG) with gfile.Open(os.path.join(fetches_path), "wb") as f: f.write(fetches_event.SerializeToString()) feed_keys_event = event_pb2.Event() feed_keys_event.log_message.message = (repr(feed_dict.keys()) if feed_dict else repr(feed_dict)) feed_keys_path = os.path.join( run_dir, debug_data.METADATA_FILE_PREFIX + debug_data.FEED_KEYS_INFO_FILE_TAG) with gfile.Open(os.path.join(feed_keys_path), "wb") as f: f.write(feed_keys_event.SerializeToString()) return ["file://" + run_dir]
tensorflow-master
tensorflow/python/debug/wrappers/dumping_wrapper.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Framework of debug wrapper sessions. A debug wrapper session is a wrapper around a TensorFlow Python Session. The wrapper preserves the Session interface, most importantly the run() method, while providing abilities to: a) Intercept a run() call to a wrapped session and insert debug tensor watches according to externally-specified debug URLs. b) Release control to an external (i.e., non-Session) object before and after the run() call, so that the external object can perform actions such as launching a UI to let users inspect the intermediate tensors and partition graphs from the run() call. c) (To be implemented in a future CL) Enter an instruction loop to let an external object (e.g., remote client) launch run() and cont() calls remotely. *** The lifetime of a debug wrapper session: *** 1) The wrapper session is created by calling the constructor with a wrapped (normal) session as the argument: wrapper = FooDebugWrapperSession(sess) wherein FooDebugWrapperSession is a concrete subclass implementing the abstract BaseDebugWrapperSession class below. 2) Near the end of the constructor call, the on_session_init() callback is invoked, with a OnSessionInitRequest object as the argument. The object carries the wrapped (normal) session object. 3) The callback handles the request and returns a OnSessionInitResponse object with an action field, directing the wrapper session what to do next. If the action field in the OnSessionInitResponse is PROCEED, the constuctor returns. Control is released back to the caller of the constructor, which can invoke run() method of wrapper session with the same syntax as a non-wrapped session, e.g.,: wrapper.run(fetches, feed_dict=feeds, options=run_options) Below, A1 - A2 is the lifetime of a wrapper run() call if the action is PROCEED: A1) Right at the start of each run() call, the on_run_start() callback is invoked, with an OnRunStartRequest object carrying information such as the fetches, the feed dict, the run options and run metadata used in this run call, along with a count of how many run calls has occurred on this wrapper session. The callback then returns an OnRunStartResponse object, of which the action field directs what the wrapper session actually will do of the run() call. If the action is DEBUG_RUN, a debugged (tensor-watched) run will ensue, with the debug URLs supplied in the debug_urls field of the response. These can be file:// or grpc:// URLs, for example. If the action is NON_DEBUG_RUN, a non-debug (normal) run will ensue. A2) Right before the run() returns, the on_run_end() callback is invoked, with an OnRunEndRequest object as the argument, which carries information including the actual action performed in the warpper run() call and the run_metadata from the run() call. However, if the action field in OnSessionInitResponse is REMOTE_INSTR_LOOP, the constructor will automatically invoke an instruction loop that gives the control to a remote caller. In the remote instruction loop, the following steps will happen: B1) Callback on_instr_start() is invoked. The callback will return an OnInstrStartResponse object with an action field which can order one of the following actions: i) a run() call with fetches, feeds and debug_urls specified. ii) exit the instruction loop. B2) The wrapper session carries out the action specified above. B3) If still in the instruction loop, the wrapper session invokes the on_instr_end() callback. After the on_instr_end() callback returns, jump back to B1. TODO(cais): Implemented the instruction loop in B1 - B3. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import collections import re import threading import six from tensorflow.core.protobuf import config_pb2 from tensorflow.python.client import session from tensorflow.python.debug.lib import debug_utils from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.platform import tf_logging from tensorflow.python.training import monitored_session from tensorflow.python.util import nest # Helper function. def _check_type(obj, expected_types): """Check if an object is of the expected type. Args: obj: The object being checked. expected_types: (`type` or an iterable of `type`s) The expected `type`(s) of obj. Raises: TypeError: If obj is not an instance of expected_type. """ if not isinstance(obj, expected_types): raise TypeError("Expected type %s; got type %s" % (expected_types, type(obj))) class OnSessionInitRequest(object): """Request to an on-session-init callback. This callback is invoked during the __init__ call to a debug-wrapper session. """ def __init__(self, sess): """Constructor. Args: sess: A tensorflow Session object. """ _check_type(sess, (session.BaseSession, monitored_session.MonitoredSession)) self.session = sess class OnSessionInitAction(object): """Enum-like values for possible action to take on session init.""" # Proceed, without special actions, in the wrapper session initialization. # What action the wrapper session performs next is determined by the caller # of the wrapper session. E.g., it can call run(). PROCEED = "proceed" # Instead of letting the caller of the wrapper session determine what actions # the wrapper session will perform next, enter a loop to receive instructions # from a remote client. # For example, TensorBoard visual debugger can use this action so that it can # launch session.run() calls remotely. REMOTE_INSTR_LOOP = "remote_instr_loop" class OnSessionInitResponse(object): """Response from an on-session-init callback.""" def __init__(self, action): """Constructor. Args: action: (`OnSessionInitAction`) Debugger action to take on session init. """ _check_type(action, str) self.action = action class OnRunStartRequest(object): """Request to an on-run-start callback. This callback is invoked during a run() call of the debug-wrapper session, immediately after the run() call counter is incremented. """ def __init__(self, fetches, feed_dict, run_options, run_metadata, run_call_count, is_callable_runner=False): """Constructor of `OnRunStartRequest`. Args: fetches: Fetch targets of the run() call. feed_dict: The feed dictionary to the run() call. run_options: RunOptions input to the run() call. run_metadata: RunMetadata input to the run() call. The above four arguments are identical to the input arguments to the run() method of a non-wrapped TensorFlow session. run_call_count: 1-based count of how many run calls (including this one) has been invoked. is_callable_runner: (bool) whether a runner returned by Session.make_callable is being run. """ self.fetches = fetches self.feed_dict = feed_dict self.run_options = run_options self.run_metadata = run_metadata self.run_call_count = run_call_count self.is_callable_runner = is_callable_runner class OnRunStartAction(object): """Enum-like values for possible action to take on start of a run() call.""" # Run once with debug tensor-watching. DEBUG_RUN = "debug_run" # Run once with profiler. PROFILE_RUN = "profile_run" # Run without debug tensor-watching. NON_DEBUG_RUN = "non_debug_run" class OnRunStartResponse(object): """Request from an on-run-start callback. The caller of the callback can use this response object to specify what action the debug-wrapper session actually takes on the run() call. """ def __init__(self, action, debug_urls, debug_ops="DebugIdentity", node_name_regex_whitelist=None, op_type_regex_whitelist=None, tensor_dtype_regex_whitelist=None, tolerate_debug_op_creation_failures=False): """Constructor of `OnRunStartResponse`. Args: action: (`OnRunStartAction`) the action actually taken by the wrapped session for the run() call. debug_urls: (`list` of `str`) debug_urls used in watching the tensors during the run() call. debug_ops: (`str` or `list` of `str`) Debug op(s) to be used by the debugger. node_name_regex_whitelist: Regular-expression whitelist for node name. op_type_regex_whitelist: Regular-expression whitelist for op type. tensor_dtype_regex_whitelist: Regular-expression whitelist for tensor dtype. tolerate_debug_op_creation_failures: Whether debug op creation failures are to be tolerated. """ _check_type(action, str) self.action = action _check_type(debug_urls, list) self.debug_urls = debug_urls self.debug_ops = debug_ops self.node_name_regex_whitelist = node_name_regex_whitelist self.op_type_regex_whitelist = op_type_regex_whitelist self.tensor_dtype_regex_whitelist = tensor_dtype_regex_whitelist self.tolerate_debug_op_creation_failures = ( tolerate_debug_op_creation_failures) class OnRunEndRequest(object): """Request to an on-run-end callback. The callback is invoked immediately before the wrapped run() call ends. """ def __init__(self, performed_action, run_metadata=None, client_graph_def=None, tf_error=None): """Constructor for `OnRunEndRequest`. Args: performed_action: (`OnRunStartAction`) Actually-performed action by the debug-wrapper session. run_metadata: run_metadata output from the run() call (if any). client_graph_def: (GraphDef) GraphDef from the client side, i.e., from the python front end of TensorFlow. Can be obtained with session.graph.as_graph_def(). tf_error: (errors.OpError subtypes) TensorFlow OpError that occurred during the run (if any). """ _check_type(performed_action, str) self.performed_action = performed_action if run_metadata is not None: _check_type(run_metadata, config_pb2.RunMetadata) self.run_metadata = run_metadata self.client_graph_def = client_graph_def self.tf_error = tf_error class OnRunEndResponse(object): """Response from an on-run-end callback.""" def __init__(self): # Currently only a placeholder. pass @six.add_metaclass(abc.ABCMeta) class BaseDebugWrapperSession(session.SessionInterface): """Base class of debug-wrapper session classes. Concrete classes that inherit from this class need to implement the abstract methods such as on_session_init, on_run_start and on_run_end. """ def __init__(self, sess, thread_name_filter=None, pass_through_operrors=False): """Constructor of `BaseDebugWrapperSession`. Args: sess: An (unwrapped) TensorFlow session instance. It should be a subtype of `BaseSession` or `tf.MonitoredSession`. thread_name_filter: Regular-expression filter (whitelist) for name(s) of thread(s) on which the wrapper session will be active. This regular expression is used in a start-anchored fashion on the thread name, i.e., by applying the `match` method of the compiled pattern. The default `None` means that the wrapper session will be active on all threads. E.g., r"MainThread$", r"QueueRunnerThread.*". pass_through_operrors: If True, all captured OpErrors will be propagated. By default this captures all OpErrors. Raises: ValueError: On invalid `OnSessionInitAction` value. NotImplementedError: If a non-DirectSession sess object is received. """ _check_type(sess, (session.BaseSession, monitored_session.MonitoredSession)) # The session being wrapped. self._sess = sess self._thread_name_filter_pattern = (re.compile(thread_name_filter) if thread_name_filter else None) # TODO(cais/kstevens): Unittest this pass through feature. self._pass_through_operrors = pass_through_operrors # Keeps track of number of run calls that have been performed on this # debug-wrapper session. The count can be used for purposes such as # displaying the state of the Session in a UI and determining a run # number-dependent debug URL. self._run_call_count = 0 # Invoke on-session-init callback. response = self.on_session_init(OnSessionInitRequest(self._sess)) _check_type(response, OnSessionInitResponse) if response.action == OnSessionInitAction.PROCEED: pass elif response.action == OnSessionInitAction.REMOTE_INSTR_LOOP: # TODO(cais): Implement REMOTE_INSTR_LOOP raise NotImplementedError( "OnSessionInitAction REMOTE_INSTR_LOOP has not been " "implemented.") else: raise ValueError( "Invalid OnSessionInitAction value: %s" % response.action) self._default_session_context_manager = None # A cache for callables created from CallableOptions. self._cached_callables_from_options = {} @property def graph(self): return self._sess.graph @property def graph_def(self): return self._sess.graph_def @property def sess_str(self): return self._sess.sess_str @property def session(self): return self._sess def run(self, fetches, feed_dict=None, options=None, run_metadata=None, callable_runner=None, callable_runner_args=None, callable_options=None): """Wrapper around Session.run() that inserts tensor watch options. Args: fetches: Same as the `fetches` arg to regular `Session.run()`. feed_dict: Same as the `feed_dict` arg to regular `Session.run()`. options: Same as the `options` arg to regular `Session.run()`. run_metadata: Same as the `run_metadata` arg to regular `Session.run()`. callable_runner: A `callable` returned by `Session.make_callable()`. If not `None`, `fetches` and `feed_dict` must both be `None`. Mutually exclusive with `callable_options`. callable_runner_args: An optional list of arguments to `callable_runner` or for `callable_options`. callable_options: An instance of `config_pb2.CallableOptions`, to be used with `Session._make_callable_from_options()`. Mutually exclusive with `callable_runner`. Returns: Simply forwards the output of the wrapped `Session.run()` call. Raises: ValueError: On invalid `OnRunStartAction` value. Or if `callable_runner` is not `None` and either or both of `fetches` and `feed_dict` is `None`. """ if callable_runner and callable_options: raise ValueError( "callable_runner and callable_options are mutually exclusive, but " "are both specified in this call to BaseDebugWrapperSession.run().") if callable_runner and (fetches or feed_dict): raise ValueError( "callable_runner and fetches/feed_dict are mutually exclusive, " "but are used simultaneously.") elif callable_options and (fetches or feed_dict): raise ValueError( "callable_options and fetches/feed_dict are mutually exclusive, " "but are used simultaneously.") self.increment_run_call_count() def is_empty(x): """Check whether a possibly nested structure is empty.""" if not nest.is_nested(x): return False if isinstance(x, collections.Mapping): return is_empty(list(x.values())) for item in x: if not is_empty(item): return False return True empty_fetches = is_empty(fetches) if empty_fetches: tf_logging.info( "Due to empty fetches, tfdbg Session wrapper is letting a " "Session.run pass through without any debugging actions.") if self._is_disabled_thread() or empty_fetches: if callable_runner: return callable_runner(*callable_runner_args) elif callable_options: # pylint:disable=protected-access return self._sess._make_callable_from_options( callable_options)(*callable_runner_args) # pylint:enable=protected-access else: return self._sess.run(fetches, feed_dict=feed_dict, options=options, run_metadata=run_metadata) # Invoke on-run-start callback and obtain response. run_start_resp = self.on_run_start( OnRunStartRequest(fetches, feed_dict, options, run_metadata, self._run_call_count, is_callable_runner=bool(callable_runner))) _check_type(run_start_resp, OnRunStartResponse) if run_start_resp.action == OnRunStartAction.DEBUG_RUN: retvals, run_end_req = self._run_with_debugging( run_start_resp, fetches, feed_dict, options, run_metadata, callable_runner, callable_runner_args, callable_options) elif run_start_resp.action == OnRunStartAction.PROFILE_RUN: retvals, run_end_req = self._run_with_profiling( run_start_resp, fetches, feed_dict, options, run_metadata, callable_runner, callable_runner_args, callable_options) elif run_start_resp.action == OnRunStartAction.NON_DEBUG_RUN: # Invoke run() method of the wrapped session. if callable_runner: retvals = callable_runner(*callable_runner_args) elif callable_options: # pylint:disable=protected-access callable_object = self._sess._make_callable_from_options( callable_options) # pylint:enable=protected-access retvals = callable_object(*callable_runner_args) else: retvals = self._sess.run( fetches, feed_dict=feed_dict, options=options, run_metadata=run_metadata) # Prepare arg for the on-run-end callback. run_end_req = OnRunEndRequest(run_start_resp.action) else: raise ValueError( "Invalid OnRunStartAction value: %s" % run_start_resp.action) # Invoke on-run-end callback and obtain response. run_end_resp = self.on_run_end(run_end_req) _check_type(run_end_resp, OnRunEndResponse) # Currently run_end_resp is only a placeholder. No action is taken on it. return retvals def _run_with_debugging(self, run_start_resp, fetches, feed_dict, options, run_metadata, callable_runner, callable_runner_args, callable_options): """Perform a session.run() or callable with debugging.""" # Decorate RunOption to fill in debugger tensor watch specifications. decorated_run_options = None if callable_options: callable_options_id = id(callable_options) if callable_options_id not in self._cached_callables_from_options: # Make a copy of callable_options to avoid mutating it. new_callable_options = config_pb2.CallableOptions() new_callable_options.CopyFrom(callable_options) decorated_run_options = new_callable_options.run_options else: decorated_run_options = options or config_pb2.RunOptions() run_metadata = run_metadata or config_pb2.RunMetadata() if decorated_run_options: self._decorate_run_options_for_debug( decorated_run_options, run_start_resp.debug_urls, debug_ops=run_start_resp.debug_ops, node_name_regex_whitelist=( run_start_resp.node_name_regex_whitelist), op_type_regex_whitelist=run_start_resp.op_type_regex_whitelist, tensor_dtype_regex_whitelist=( run_start_resp.tensor_dtype_regex_whitelist), tolerate_debug_op_creation_failures=( run_start_resp.tolerate_debug_op_creation_failures)) # Invoke the run() method of the wrapped Session. Catch any TensorFlow # runtime errors. tf_error = None try: if callable_runner: retvals = callable_runner(*callable_runner_args, options=decorated_run_options, run_metadata=run_metadata) elif callable_options: # pylint:disable=protected-access if callable_options_id in self._cached_callables_from_options: callable_object = self._cached_callables_from_options[ callable_options_id] else: callable_object = self._sess._make_callable_from_options( new_callable_options) self._cached_callables_from_options[ callable_options_id] = callable_object # pylint:enable=protected-access retvals = callable_object( *callable_runner_args, run_metadata=run_metadata) else: retvals = self._sess.run(fetches, feed_dict=feed_dict, options=decorated_run_options, run_metadata=run_metadata) except errors.OpError as op_error: if self._pass_through_operrors: raise op_error tf_error = op_error retvals = op_error return retvals, OnRunEndRequest( run_start_resp.action, run_metadata=run_metadata, client_graph_def=self._sess.graph.as_graph_def(), tf_error=tf_error) def _run_with_profiling(self, run_start_resp, fetches, feed_dict, options, run_metadata, callable_runner, callable_runner_args, callable_options): """Perform a session.run() or callable with profiling.""" # Decorate RunOption to fill in debugger tensor watch specifications. decorated_run_options = None if callable_options: callable_options_id = id(callable_options) if callable_options_id not in self._cached_callables_from_options: # Make a copy of callable_options to avoid mutating it. new_callable_options = config_pb2.CallableOptions() new_callable_options.CopyFrom(callable_options) decorated_run_options = new_callable_options.run_options else: decorated_run_options = options or config_pb2.RunOptions() self._decorate_run_options_for_profile(decorated_run_options) run_metadata = run_metadata or config_pb2.RunMetadata() if callable_runner: retvals = callable_runner(*callable_runner_args, options=decorated_run_options, run_metadata=run_metadata) elif callable_options: # pylint:disable=protected-access callable_object = self._sess._make_callable_from_options( new_callable_options) # pylint:enable=protected-access retvals = callable_object( *callable_runner_args, run_metadata=run_metadata) else: retvals = self._sess.run(fetches, feed_dict=feed_dict, options=decorated_run_options, run_metadata=run_metadata) return retvals, OnRunEndRequest( run_start_resp.action, run_metadata=run_metadata, client_graph_def=self._sess.graph.as_graph_def()) def _is_disabled_thread(self): thread_name = threading.current_thread().name or "" return (self._thread_name_filter_pattern and not self._thread_name_filter_pattern.match(thread_name)) def run_step_fn(self, step_fn): return step_fn( monitored_session.MonitoredSession.StepContext(self._sess, self.run)) def partial_run_setup(self, fetches, feeds=None): """Sets up the feeds and fetches for partial runs in the session.""" raise NotImplementedError( "partial_run_setup is not implemented for debug-wrapper sessions.") def partial_run(self, handle, fetches, feed_dict=None): raise NotImplementedError( "partial_run is not implemented for debug-wrapper sessions.") def list_devices(self, *args, **kwargs): return self._sess.list_devices(*args, **kwargs) def reset(self, *args, **kwargs): return self._sess.reset(*args, **kwargs) def make_callable(self, fetches, feed_list=None, accept_options=False): runner = self._sess.make_callable( fetches, feed_list=feed_list, accept_options=True) def wrapped_runner(*runner_args, **kwargs): return self.run(None, feed_dict=None, options=kwargs.get("options", None), run_metadata=kwargs.get("run_metadata", None), callable_runner=runner, callable_runner_args=runner_args) return wrapped_runner def _make_callable_from_options(self, callable_options): def wrapped_runner(*feed_values, **kwargs): return self.run(None, run_metadata=kwargs.get("run_metadata", None), callable_options=callable_options, callable_runner_args=feed_values) return wrapped_runner @property def run_call_count(self): return self._run_call_count def increment_run_call_count(self): self._run_call_count += 1 def _is_disk_usage_reset_each_run(self): """Indicates whether disk usage is reset after each Session.run. Subclasses that clean up the disk usage after every run should override this protected method. Returns: (`bool`) Whether the disk usage amount is reset to zero after each Session.run. """ return False def _decorate_run_options_for_debug( self, run_options, debug_urls, debug_ops="DebugIdentity", node_name_regex_whitelist=None, op_type_regex_whitelist=None, tensor_dtype_regex_whitelist=None, tolerate_debug_op_creation_failures=False): """Modify a RunOptions object for debug tensor watching. Specifies request for outputting partition graphs. Adds debug_tensor_watch_opts with proper debug URLs. Args: run_options: (RunOptions) the modified RunOptions object. debug_urls: (list of str) debug URLs to be entered in run_options. debug_tensor_watch_opts. debug_ops: (str or list of str) debug op(s) to be used by the debugger. node_name_regex_whitelist: Regular-expression whitelist for node name. op_type_regex_whitelist: Regular-expression whitelist for op type. tensor_dtype_regex_whitelist: Regular-expression whitelist for tensor dtype. tolerate_debug_op_creation_failures: Whether debug op creation failures are to be tolerated. """ run_options.output_partition_graphs = True debug_utils.watch_graph( run_options, self._sess.graph, debug_urls=debug_urls, debug_ops=debug_ops, node_name_regex_whitelist=node_name_regex_whitelist, op_type_regex_whitelist=op_type_regex_whitelist, tensor_dtype_regex_whitelist=tensor_dtype_regex_whitelist, tolerate_debug_op_creation_failures=tolerate_debug_op_creation_failures, reset_disk_byte_usage=(self._run_call_count == 1 or self._is_disk_usage_reset_each_run())) def _decorate_run_options_for_profile(self, run_options): """Modify a RunOptions object for profiling TensorFlow graph execution. Args: run_options: (RunOptions) the modified RunOptions object. """ run_options.trace_level = config_pb2.RunOptions.FULL_TRACE @abc.abstractmethod def on_session_init(self, request): """Callback invoked during construction of the debug-wrapper session. This is a blocking callback. The invocation happens right before the constructor ends. Args: request: (`OnSessionInitRequest`) callback request carrying information such as the session being wrapped. Returns: An instance of `OnSessionInitResponse`. """ @abc.abstractmethod def on_run_start(self, request): """Callback invoked on run() calls to the debug-wrapper session. This is a blocking callback. The invocation happens after the wrapper's run() call is entered, after an increment of run call counter. Args: request: (`OnRunStartRequest`) callback request object carrying information about the run call such as the fetches, feed dict, run options, run metadata, and how many `run()` calls to this wrapper session have occurred. Returns: An instance of `OnRunStartResponse`, carrying information to debug URLs used to watch the tensors. """ @abc.abstractmethod def on_run_end(self, request): """Callback invoked on run() calls to the debug-wrapper session. This is a blocking callback. The invocation happens right before the wrapper exits its run() call. Args: request: (`OnRunEndRequest`) callback request object carrying information such as the actual action performed by the session wrapper for the run() call. Returns: An instance of `OnRunStartResponse`. """ def as_default(self): return ops.default_session(self) def __enter__(self): if self._default_session_context_manager is None: self._default_session_context_manager = self.as_default() return self._default_session_context_manager.__enter__() def __exit__(self, exec_type, exec_value, exec_tb): self._default_session_context_manager.__exit__( exec_type, exec_value, exec_tb) def __del__(self): if hasattr(self._sess, "__del__"): self._sess.__del__() def close(self): self._sess.close() # TODO(cais): Add _node_name_regex_whitelist and # _node_op_type_regex_whitelist. def should_stop(self): if hasattr(self._sess, "should_stop"): return self._sess.should_stop() else: raise ValueError( "The wrapped session %r does not have a method called 'should_stop'. " "Do you intend to wrap a tf.MonitoredSession instead?" % self._sess) class WatchOptions(object): """Type for return values of watch_fn.""" def __init__(self, debug_ops=None, node_name_regex_whitelist=None, op_type_regex_whitelist=None, tensor_dtype_regex_whitelist=None, tolerate_debug_op_creation_failures=False): """Constructor of WatchOptions: Debug watch options. Used as return values of `watch_fn`s. Args: debug_ops: (`str` or `list of str`) Debug ops to be used. node_name_regex_whitelist: Regular-expression whitelist for node_name, e.g., `"(weight_[0-9]+|bias_.*)"` op_type_regex_whitelist: Regular-expression whitelist for the op type of nodes, e.g., `"(Variable|Add)"`. If both `node_name_regex_whitelist` and `op_type_regex_whitelist` are set, the two filtering operations will occur in a logical `AND` relation. In other words, a node will be included if and only if it hits both whitelists. tensor_dtype_regex_whitelist: Regular-expression whitelist for Tensor data type, e.g., `"^int.*"`. This whitelist operates in logical `AND` relations to the two whitelists above. tolerate_debug_op_creation_failures: (`bool`) whether debug op creation failures (e.g., due to dtype incompatibility) are to be tolerated by not throwing exceptions. """ if debug_ops: self.debug_ops = debug_ops else: self.debug_ops = ["DebugIdentity"] self.node_name_regex_whitelist = node_name_regex_whitelist self.op_type_regex_whitelist = op_type_regex_whitelist self.tensor_dtype_regex_whitelist = tensor_dtype_regex_whitelist self.tolerate_debug_op_creation_failures = ( tolerate_debug_op_creation_failures) def __repr__(self): return ("WatchOptions(debug_ops=%r, node_name_regex_whitelist=%r, " "op_type_regex_whitelist=%r, tensor_dtype_regex_whitelist=%r, " "tolerate_debug_op_creation_failures=%r)" % ( self.debug_ops, self.node_name_regex_whitelist, self.op_type_regex_whitelist, self.tensor_dtype_regex_whitelist, self.tolerate_debug_op_creation_failures)) class NonInteractiveDebugWrapperSession(BaseDebugWrapperSession): """Base class for non-interactive (i.e., non-CLI) debug wrapper sessions.""" def __init__(self, sess, watch_fn=None, thread_name_filter=None, pass_through_operrors=False): """Constructor of NonInteractiveDebugWrapperSession. Args: sess: The TensorFlow `Session` object being wrapped. watch_fn: (`Callable`) A Callable that maps the fetches and feeds of a debugged `Session.run()` call to `WatchOptions.` * Args: * `fetches`: the fetches to the `Session.run()` call. * `feeds`: the feeds to the `Session.run()` call. * Returns: (`tf_debug.WatchOptions`) An object containing debug options including the debug ops to use, the node names, op types and/or tensor data types to watch, etc. See the documentation of `tf_debug.WatchOptions` for more details. thread_name_filter: Regular-expression white list for threads on which the wrapper session will be active. See doc of `BaseDebugWrapperSession` for more details. pass_through_operrors: If true, all captured OpErrors will be propagated. By default this captures all OpErrors. Raises: TypeError: If a non-None `watch_fn` is specified and it is not callable. """ BaseDebugWrapperSession.__init__( self, sess, thread_name_filter=thread_name_filter, pass_through_operrors=pass_through_operrors) self._watch_fn = None if watch_fn is not None: if not callable(watch_fn): raise TypeError("watch_fn is not callable") self._watch_fn = watch_fn def on_session_init(self, request): """See doc of BaseDebugWrapperSession.on_run_start.""" return OnSessionInitResponse(OnSessionInitAction.PROCEED) @abc.abstractmethod def prepare_run_debug_urls(self, fetches, feed_dict): """Abstract method to be implemented by concrete subclasses. This method prepares the run-specific debug URL(s). Args: fetches: Same as the `fetches` argument to `Session.run()` feed_dict: Same as the `feed_dict` argument to `Session.run()` Returns: debug_urls: (`str` or `list` of `str`) Debug URLs to be used in this `Session.run()` call. """ def on_run_start(self, request): """See doc of BaseDebugWrapperSession.on_run_start.""" debug_urls, watch_opts = self._prepare_run_watch_config( request.fetches, request.feed_dict) return OnRunStartResponse( OnRunStartAction.DEBUG_RUN, debug_urls, debug_ops=watch_opts.debug_ops, node_name_regex_whitelist=watch_opts.node_name_regex_whitelist, op_type_regex_whitelist=watch_opts.op_type_regex_whitelist, tensor_dtype_regex_whitelist=watch_opts.tensor_dtype_regex_whitelist, tolerate_debug_op_creation_failures=( watch_opts.tolerate_debug_op_creation_failures)) def _prepare_run_watch_config(self, fetches, feed_dict): """Get the debug_urls, and node/op whitelists for the current run() call. Args: fetches: Same as the `fetches` argument to `Session.run()`. feed_dict: Same as the `feed_dict argument` to `Session.run()`. Returns: debug_urls: (str or list of str) Debug URLs for the current run() call. Currently, the list consists of only one URL that is a file:// URL. watch_options: (WatchOptions) The return value of a watch_fn, containing options including debug_ops, and whitelists. """ debug_urls = self.prepare_run_debug_urls(fetches, feed_dict) if self._watch_fn is None: watch_options = WatchOptions() else: watch_options = self._watch_fn(fetches, feed_dict) if isinstance(watch_options, tuple): # For legacy return type (tuples). watch_options = WatchOptions(*watch_options) return debug_urls, watch_options def on_run_end(self, request): """See doc of BaseDebugWrapperSession.on_run_end.""" return OnRunEndResponse()
tensorflow-master
tensorflow/python/debug/wrappers/framework.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Debugger Wrapper Session Consisting of a Local Curses-based CLI.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import os import shutil import sys import tempfile # Google-internal import(s). from tensorflow.python.debug.cli import analyzer_cli from tensorflow.python.debug.cli import cli_shared from tensorflow.python.debug.cli import command_parser from tensorflow.python.debug.cli import debugger_cli_common from tensorflow.python.debug.cli import profile_analyzer_cli from tensorflow.python.debug.cli import ui_factory from tensorflow.python.debug.lib import common from tensorflow.python.debug.lib import debug_data from tensorflow.python.debug.wrappers import framework _DUMP_ROOT_PREFIX = "tfdbg_" class LocalCLIDebugWrapperSession(framework.BaseDebugWrapperSession): """Concrete subclass of BaseDebugWrapperSession implementing a local CLI. This class has all the methods that a `session.Session` object has, in order to support debugging with minimal code changes. Invoking its `run()` method will launch the command-line interface (CLI) of tfdbg. """ def __init__(self, sess, dump_root=None, log_usage=True, ui_type="curses", thread_name_filter=None): """Constructor of LocalCLIDebugWrapperSession. Args: sess: The TensorFlow `Session` object being wrapped. dump_root: (`str`) optional path to the dump root directory. Must be a directory that does not exist or an empty directory. If the directory does not exist, it will be created by the debugger core during debug `run()` calls and removed afterwards. If `None`, the debug dumps will be at tfdbg_<random_string> under the system temp directory. log_usage: (`bool`) whether the usage of this class is to be logged. ui_type: (`str`) requested UI type. Currently supported: (curses | readline) thread_name_filter: Regular-expression white list for thread name. See the doc of `BaseDebugWrapperSession` for details. Raises: ValueError: If dump_root is an existing and non-empty directory or if dump_root is a file. """ if log_usage: pass # No logging for open-source. framework.BaseDebugWrapperSession.__init__( self, sess, thread_name_filter=thread_name_filter) if not dump_root: self._dump_root = tempfile.mktemp(prefix=_DUMP_ROOT_PREFIX) else: dump_root = os.path.expanduser(dump_root) if os.path.isfile(dump_root): raise ValueError("dump_root path points to a file: %s" % dump_root) elif os.path.isdir(dump_root) and os.listdir(dump_root): raise ValueError("dump_root path points to a non-empty directory: %s" % dump_root) self._dump_root = dump_root self._initialize_argparsers() # Registered tensor filters. self._tensor_filters = {} # Register frequently-used filter(s). self.add_tensor_filter("has_inf_or_nan", debug_data.has_inf_or_nan) # Below are the state variables of this wrapper object. # _active_tensor_filter: what (if any) tensor filter is in effect. If such # a filter is in effect, this object will call run() method of the # underlying TensorFlow Session object until the filter passes. This is # activated by the "-f" flag of the "run" command. # _run_through_times: keeps track of how many times the wrapper needs to # run through without stopping at the run-end CLI. It is activated by the # "-t" option of the "run" command. # _skip_debug: keeps track of whether the current run should be executed # without debugging. It is activated by the "-n" option of the "run" # command. # # _run_start_response: keeps track what OnRunStartResponse the wrapper # should return at the next run-start callback. If this information is # unavailable (i.e., is None), the run-start CLI will be launched to ask # the user. This is the case, e.g., right before the first run starts. self._active_tensor_filter = None self._active_filter_exclude_node_names = None self._active_tensor_filter_run_start_response = None self._run_through_times = 1 self._skip_debug = False self._run_start_response = None self._is_run_start = True self._ui_type = ui_type def _is_disk_usage_reset_each_run(self): # The dumped tensors are all cleaned up after every Session.run # in a command-line wrapper. return True def _initialize_argparsers(self): self._argparsers = {} ap = argparse.ArgumentParser( description="Run through, with or without debug tensor watching.", usage=argparse.SUPPRESS) ap.add_argument( "-t", "--times", dest="times", type=int, default=1, help="How many Session.run() calls to proceed with.") ap.add_argument( "-n", "--no_debug", dest="no_debug", action="store_true", help="Run through without debug tensor watching.") ap.add_argument( "-f", "--till_filter_pass", dest="till_filter_pass", type=str, default="", help="Run until a tensor in the graph passes the specified filter.") ap.add_argument( "-fenn", "--filter_exclude_node_names", dest="filter_exclude_node_names", type=str, default="", help="When applying the tensor filter, exclude node with names " "matching the regular expression. Applicable only if --tensor_filter " "or -f is used.") ap.add_argument( "--node_name_filter", dest="node_name_filter", type=str, default="", help="Regular-expression filter for node names to be watched in the " "run, e.g., loss, reshape.*") ap.add_argument( "--op_type_filter", dest="op_type_filter", type=str, default="", help="Regular-expression filter for op type to be watched in the run, " "e.g., (MatMul|Add), Variable.*") ap.add_argument( "--tensor_dtype_filter", dest="tensor_dtype_filter", type=str, default="", help="Regular-expression filter for tensor dtype to be watched in the " "run, e.g., (float32|float64), int.*") ap.add_argument( "-p", "--profile", dest="profile", action="store_true", help="Run and profile TensorFlow graph execution.") self._argparsers["run"] = ap ap = argparse.ArgumentParser( description="Display information about this Session.run() call.", usage=argparse.SUPPRESS) self._argparsers["run_info"] = ap self._argparsers["print_feed"] = command_parser.get_print_tensor_argparser( "Print the value of a feed in feed_dict.") def add_tensor_filter(self, filter_name, tensor_filter): """Add a tensor filter. Args: filter_name: (`str`) name of the filter. tensor_filter: (`callable`) the filter callable. See the doc string of `DebugDumpDir.find()` for more details about its signature. """ self._tensor_filters[filter_name] = tensor_filter def on_session_init(self, request): """Overrides on-session-init callback. Args: request: An instance of `OnSessionInitRequest`. Returns: An instance of `OnSessionInitResponse`. """ return framework.OnSessionInitResponse( framework.OnSessionInitAction.PROCEED) def on_run_start(self, request): """Overrides on-run-start callback. Args: request: An instance of `OnRunStartRequest`. Returns: An instance of `OnRunStartResponse`. """ self._is_run_start = True self._update_run_calls_state( request.run_call_count, request.fetches, request.feed_dict, is_callable_runner=request.is_callable_runner) if self._active_tensor_filter: # If we are running until a filter passes, we just need to keep running # with the previous `OnRunStartResponse`. return self._active_tensor_filter_run_start_response self._exit_if_requested_by_user() if self._run_call_count > 1 and not self._skip_debug: if self._run_through_times > 0: # Just run through without debugging. return framework.OnRunStartResponse( framework.OnRunStartAction.NON_DEBUG_RUN, []) elif self._run_through_times == 0: # It is the run at which the run-end CLI will be launched: activate # debugging. return (self._run_start_response or framework.OnRunStartResponse( framework.OnRunStartAction.DEBUG_RUN, self._get_run_debug_urls())) if self._run_start_response is None: self._prep_cli_for_run_start() self._run_start_response = self._launch_cli() if self._active_tensor_filter: self._active_tensor_filter_run_start_response = self._run_start_response if self._run_through_times > 1: self._run_through_times -= 1 self._exit_if_requested_by_user() return self._run_start_response def _exit_if_requested_by_user(self): if self._run_start_response == debugger_cli_common.EXPLICIT_USER_EXIT: # Explicit user "exit" command leads to sys.exit(1). print( "Note: user exited from debugger CLI: Calling sys.exit(1).", file=sys.stderr) sys.exit(1) def _prep_cli_for_run_start(self): """Prepare (but not launch) the CLI for run-start.""" self._run_cli = ui_factory.get_ui(self._ui_type) help_intro = debugger_cli_common.RichTextLines([]) if self._run_call_count == 1: # Show logo at the onset of the first run. help_intro.extend(cli_shared.get_tfdbg_logo()) help_intro.extend(debugger_cli_common.get_tensorflow_version_lines()) help_intro.extend(debugger_cli_common.RichTextLines("Upcoming run:")) help_intro.extend(self._run_info) self._run_cli.set_help_intro(help_intro) # Create initial screen output detailing the run. self._title = "run-start: " + self._run_description self._init_command = "run_info" self._title_color = "blue_on_white" def on_run_end(self, request): """Overrides on-run-end callback. Actions taken: 1) Load the debug dump. 2) Bring up the Analyzer CLI. Args: request: An instance of OnSessionInitRequest. Returns: An instance of OnSessionInitResponse. """ self._is_run_start = False if request.performed_action == framework.OnRunStartAction.DEBUG_RUN: partition_graphs = None if request.run_metadata and request.run_metadata.partition_graphs: partition_graphs = request.run_metadata.partition_graphs elif request.client_graph_def: partition_graphs = [request.client_graph_def] if request.tf_error and not os.path.isdir(self._dump_root): # It is possible that the dump root may not exist due to errors that # have occurred prior to graph execution (e.g., invalid device # assignments), in which case we will just raise the exception as the # unwrapped Session does. raise request.tf_error debug_dump = debug_data.DebugDumpDir( self._dump_root, partition_graphs=partition_graphs) debug_dump.set_python_graph(self._sess.graph) passed_filter = None passed_filter_exclude_node_names = None if self._active_tensor_filter: if not debug_dump.find( self._tensor_filters[self._active_tensor_filter], first_n=1, exclude_node_names=self._active_filter_exclude_node_names): # No dumped tensor passes the filter in this run. Clean up the dump # directory and move on. self._remove_dump_root() return framework.OnRunEndResponse() else: # Some dumped tensor(s) from this run passed the filter. passed_filter = self._active_tensor_filter passed_filter_exclude_node_names = ( self._active_filter_exclude_node_names) self._active_tensor_filter = None self._active_filter_exclude_node_names = None self._prep_debug_cli_for_run_end( debug_dump, request.tf_error, passed_filter, passed_filter_exclude_node_names) self._run_start_response = self._launch_cli() # Clean up the dump generated by this run. self._remove_dump_root() elif request.performed_action == framework.OnRunStartAction.PROFILE_RUN: self._prep_profile_cli_for_run_end(self._sess.graph, request.run_metadata) self._run_start_response = self._launch_cli() else: # No debug information to show following a non-debug run() call. self._run_start_response = None # Return placeholder response that currently holds no additional # information. return framework.OnRunEndResponse() def _remove_dump_root(self): if os.path.isdir(self._dump_root): shutil.rmtree(self._dump_root) def _prep_debug_cli_for_run_end(self, debug_dump, tf_error, passed_filter, passed_filter_exclude_node_names): """Prepare (but not launch) CLI for run-end, with debug dump from the run. Args: debug_dump: (debug_data.DebugDumpDir) The debug dump directory from this run. tf_error: (None or OpError) OpError that happened during the run() call (if any). passed_filter: (None or str) Name of the tensor filter that just passed and caused the preparation of this run-end CLI (if any). passed_filter_exclude_node_names: (None or str) Regular expression used with the tensor filter to exclude ops with names matching the regular expresssion. """ if tf_error: help_intro = cli_shared.get_error_intro(tf_error) self._init_command = "help" self._title_color = "red_on_white" else: help_intro = None self._init_command = "lt" self._title_color = "black_on_white" if passed_filter is not None: # Some dumped tensor(s) from this run passed the filter. self._init_command = "lt -f %s" % passed_filter if passed_filter_exclude_node_names: self._init_command += (" --filter_exclude_node_names %s" % passed_filter_exclude_node_names) self._title_color = "red_on_white" self._run_cli = analyzer_cli.create_analyzer_ui( debug_dump, self._tensor_filters, ui_type=self._ui_type, on_ui_exit=self._remove_dump_root) # Get names of all dumped tensors. dumped_tensor_names = [] for datum in debug_dump.dumped_tensor_data: dumped_tensor_names.append("%s:%d" % (datum.node_name, datum.output_slot)) # Tab completions for command "print_tensors". self._run_cli.register_tab_comp_context(["print_tensor", "pt"], dumped_tensor_names) # Tab completion for commands "node_info", "list_inputs" and # "list_outputs". The list comprehension is used below because nodes() # output can be unicodes and they need to be converted to strs. self._run_cli.register_tab_comp_context( ["node_info", "ni", "list_inputs", "li", "list_outputs", "lo"], [str(node_name) for node_name in debug_dump.nodes()]) # TODO(cais): Reduce API surface area for aliases vis-a-vis tab # completion contexts and registered command handlers. self._title = "run-end: " + self._run_description if help_intro: self._run_cli.set_help_intro(help_intro) def _prep_profile_cli_for_run_end(self, py_graph, run_metadata): self._init_command = "lp" self._run_cli = profile_analyzer_cli.create_profiler_ui( py_graph, run_metadata, ui_type=self._ui_type, config=self._run_cli.config) self._title = "run-end (profiler mode): " + self._run_description def _launch_cli(self): """Launch the interactive command-line interface. Returns: The OnRunStartResponse specified by the user using the "run" command. """ self._register_this_run_info(self._run_cli) response = self._run_cli.run_ui( init_command=self._init_command, title=self._title, title_color=self._title_color) return response def _run_info_handler(self, args, screen_info=None): output = debugger_cli_common.RichTextLines([]) if self._run_call_count == 1: output.extend(cli_shared.get_tfdbg_logo()) output.extend(debugger_cli_common.get_tensorflow_version_lines()) output.extend(self._run_info) if (not self._is_run_start and debugger_cli_common.MAIN_MENU_KEY in output.annotations): menu = output.annotations[debugger_cli_common.MAIN_MENU_KEY] if "list_tensors" not in menu.captions(): menu.insert( 0, debugger_cli_common.MenuItem("list_tensors", "list_tensors")) return output def _print_feed_handler(self, args, screen_info=None): np_printoptions = cli_shared.numpy_printoptions_from_screen_info( screen_info) if not self._feed_dict: return cli_shared.error( "The feed_dict of the current run is None or empty.") parsed = self._argparsers["print_feed"].parse_args(args) tensor_name, tensor_slicing = ( command_parser.parse_tensor_name_with_slicing(parsed.tensor_name)) feed_key = None feed_value = None for key in self._feed_dict: key_name = common.get_graph_element_name(key) if key_name == tensor_name: feed_key = key_name feed_value = self._feed_dict[key] break if feed_key is None: return cli_shared.error( "The feed_dict of the current run does not contain the key %s" % tensor_name) else: return cli_shared.format_tensor( feed_value, feed_key + " (feed)", np_printoptions, print_all=parsed.print_all, tensor_slicing=tensor_slicing, highlight_options=cli_shared.parse_ranges_highlight(parsed.ranges), include_numeric_summary=parsed.numeric_summary) def _run_handler(self, args, screen_info=None): """Command handler for "run" command during on-run-start.""" del screen_info # Currently unused. parsed = self._argparsers["run"].parse_args(args) parsed.node_name_filter = parsed.node_name_filter or None parsed.op_type_filter = parsed.op_type_filter or None parsed.tensor_dtype_filter = parsed.tensor_dtype_filter or None if parsed.filter_exclude_node_names and not parsed.till_filter_pass: raise ValueError( "The --filter_exclude_node_names (or -feon) flag is valid only if " "the --till_filter_pass (or -f) flag is used.") if parsed.profile: raise debugger_cli_common.CommandLineExit( exit_token=framework.OnRunStartResponse( framework.OnRunStartAction.PROFILE_RUN, [])) self._skip_debug = parsed.no_debug self._run_through_times = parsed.times if parsed.times > 1 or parsed.no_debug: # If requested -t times > 1, the very next run will be a non-debug run. action = framework.OnRunStartAction.NON_DEBUG_RUN debug_urls = [] else: action = framework.OnRunStartAction.DEBUG_RUN debug_urls = self._get_run_debug_urls() run_start_response = framework.OnRunStartResponse( action, debug_urls, node_name_regex_whitelist=parsed.node_name_filter, op_type_regex_whitelist=parsed.op_type_filter, tensor_dtype_regex_whitelist=parsed.tensor_dtype_filter) if parsed.till_filter_pass: # For the run-till-filter-pass (run -f) mode, use the DEBUG_RUN # option to access the intermediate tensors, and set the corresponding # state flag of the class itself to True. if parsed.till_filter_pass in self._tensor_filters: action = framework.OnRunStartAction.DEBUG_RUN self._active_tensor_filter = parsed.till_filter_pass self._active_filter_exclude_node_names = ( parsed.filter_exclude_node_names) self._active_tensor_filter_run_start_response = run_start_response else: # Handle invalid filter name. return debugger_cli_common.RichTextLines( ["ERROR: tensor filter \"%s\" does not exist." % parsed.till_filter_pass]) # Raise CommandLineExit exception to cause the CLI to exit. raise debugger_cli_common.CommandLineExit(exit_token=run_start_response) def _register_this_run_info(self, curses_cli): curses_cli.register_command_handler( "run", self._run_handler, self._argparsers["run"].format_help(), prefix_aliases=["r"]) curses_cli.register_command_handler( "run_info", self._run_info_handler, self._argparsers["run_info"].format_help(), prefix_aliases=["ri"]) curses_cli.register_command_handler( "print_feed", self._print_feed_handler, self._argparsers["print_feed"].format_help(), prefix_aliases=["pf"]) if self._tensor_filters: # Register tab completion for the filter names. curses_cli.register_tab_comp_context(["run", "r"], list(self._tensor_filters.keys())) if self._feed_dict and hasattr(self._feed_dict, "keys"): # Register tab completion for feed_dict keys. feed_keys = [common.get_graph_element_name(key) for key in self._feed_dict.keys()] curses_cli.register_tab_comp_context(["print_feed", "pf"], feed_keys) def _get_run_debug_urls(self): """Get the debug_urls value for the current run() call. Returns: debug_urls: (list of str) Debug URLs for the current run() call. Currently, the list consists of only one URL that is a file:// URL. """ return ["file://" + self._dump_root] def _update_run_calls_state(self, run_call_count, fetches, feed_dict, is_callable_runner=False): """Update the internal state with regard to run() call history. Args: run_call_count: (int) Number of run() calls that have occurred. fetches: a node/tensor or a list of node/tensor that are the fetches of the run() call. This is the same as the fetches argument to the run() call. feed_dict: None of a dict. This is the feed_dict argument to the run() call. is_callable_runner: (bool) whether a runner returned by Session.make_callable is being run. """ self._run_call_count = run_call_count self._feed_dict = feed_dict self._run_description = cli_shared.get_run_short_description( run_call_count, fetches, feed_dict, is_callable_runner=is_callable_runner) self._run_through_times -= 1 self._run_info = cli_shared.get_run_start_intro( run_call_count, fetches, feed_dict, self._tensor_filters, is_callable_runner=is_callable_runner)
tensorflow-master
tensorflow/python/debug/wrappers/local_cli_wrapper.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Unit Tests for classes in dumping_wrapper.py.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import glob import os import shutil import tempfile import threading from tensorflow.python.client import session from tensorflow.python.debug.lib import debug_data from tensorflow.python.debug.wrappers import dumping_wrapper from tensorflow.python.debug.wrappers import framework from tensorflow.python.debug.wrappers import hooks from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops import variables from tensorflow.python.platform import gfile from tensorflow.python.platform import googletest from tensorflow.python.training import monitored_session @test_util.run_v1_only("b/120545219") class DumpingDebugWrapperSessionTest(test_util.TensorFlowTestCase): def setUp(self): self.session_root = tempfile.mkdtemp() self.v = variables.VariableV1(10.0, dtype=dtypes.float32, name="v") self.delta = constant_op.constant(1.0, dtype=dtypes.float32, name="delta") self.eta = constant_op.constant(-1.4, dtype=dtypes.float32, name="eta") self.inc_v = state_ops.assign_add(self.v, self.delta, name="inc_v") self.dec_v = state_ops.assign_add(self.v, self.eta, name="dec_v") self.ph = array_ops.placeholder(dtypes.float32, shape=(), name="ph") self.inc_w_ph = state_ops.assign_add(self.v, self.ph, name="inc_w_ph") self.sess = session.Session() self.sess.run(self.v.initializer) def tearDown(self): ops.reset_default_graph() if os.path.isdir(self.session_root): shutil.rmtree(self.session_root) def _assert_correct_run_subdir_naming(self, run_subdir): self.assertStartsWith(run_subdir, "run_") self.assertEqual(2, run_subdir.count("_")) self.assertGreater(int(run_subdir.split("_")[1]), 0) def testConstructWrapperWithExistingNonEmptyRootDirRaisesException(self): dir_path = os.path.join(self.session_root, "foo") os.mkdir(dir_path) self.assertTrue(os.path.isdir(dir_path)) with self.assertRaisesRegexp( ValueError, "session_root path points to a non-empty directory"): dumping_wrapper.DumpingDebugWrapperSession( session.Session(), session_root=self.session_root, log_usage=False) def testConstructWrapperWithExistingFileDumpRootRaisesException(self): file_path = os.path.join(self.session_root, "foo") open(file_path, "a").close() # Create the file self.assertTrue(gfile.Exists(file_path)) self.assertFalse(gfile.IsDirectory(file_path)) with self.assertRaisesRegexp(ValueError, "session_root path points to a file"): dumping_wrapper.DumpingDebugWrapperSession( session.Session(), session_root=file_path, log_usage=False) def testConstructWrapperWithNonexistentSessionRootCreatesDirectory(self): new_dir_path = os.path.join(tempfile.mkdtemp(), "new_dir") dumping_wrapper.DumpingDebugWrapperSession( session.Session(), session_root=new_dir_path, log_usage=False) self.assertTrue(gfile.IsDirectory(new_dir_path)) # Cleanup. gfile.DeleteRecursively(new_dir_path) def testDumpingOnASingleRunWorks(self): sess = dumping_wrapper.DumpingDebugWrapperSession( self.sess, session_root=self.session_root, log_usage=False) sess.run(self.inc_v) dump_dirs = glob.glob(os.path.join(self.session_root, "run_*")) self.assertEqual(1, len(dump_dirs)) self._assert_correct_run_subdir_naming(os.path.basename(dump_dirs[0])) dump = debug_data.DebugDumpDir(dump_dirs[0]) self.assertAllClose([10.0], dump.get_tensors("v", 0, "DebugIdentity")) self.assertEqual(repr(self.inc_v), dump.run_fetches_info) self.assertEqual(repr(None), dump.run_feed_keys_info) def testDumpingOnASingleRunWorksWithRelativePathForDebugDumpDir(self): sess = dumping_wrapper.DumpingDebugWrapperSession( self.sess, session_root=self.session_root, log_usage=False) sess.run(self.inc_v) dump_dirs = glob.glob(os.path.join(self.session_root, "run_*")) cwd = os.getcwd() try: os.chdir(self.session_root) dump = debug_data.DebugDumpDir( os.path.relpath(dump_dirs[0], self.session_root)) self.assertAllClose([10.0], dump.get_tensors("v", 0, "DebugIdentity")) finally: os.chdir(cwd) def testDumpingOnASingleRunWithFeedDictWorks(self): sess = dumping_wrapper.DumpingDebugWrapperSession( self.sess, session_root=self.session_root, log_usage=False) feed_dict = {self.ph: 3.2} sess.run(self.inc_w_ph, feed_dict=feed_dict) dump_dirs = glob.glob(os.path.join(self.session_root, "run_*")) self.assertEqual(1, len(dump_dirs)) self._assert_correct_run_subdir_naming(os.path.basename(dump_dirs[0])) dump = debug_data.DebugDumpDir(dump_dirs[0]) self.assertAllClose([10.0], dump.get_tensors("v", 0, "DebugIdentity")) self.assertEqual(repr(self.inc_w_ph), dump.run_fetches_info) self.assertEqual(repr(feed_dict.keys()), dump.run_feed_keys_info) def testDumpingOnMultipleRunsWorks(self): sess = dumping_wrapper.DumpingDebugWrapperSession( self.sess, session_root=self.session_root, log_usage=False) for _ in range(3): sess.run(self.inc_v) dump_dirs = glob.glob(os.path.join(self.session_root, "run_*")) dump_dirs = sorted( dump_dirs, key=lambda x: int(os.path.basename(x).split("_")[1])) self.assertEqual(3, len(dump_dirs)) for i, dump_dir in enumerate(dump_dirs): self._assert_correct_run_subdir_naming(os.path.basename(dump_dir)) dump = debug_data.DebugDumpDir(dump_dir) self.assertAllClose([10.0 + 1.0 * i], dump.get_tensors("v", 0, "DebugIdentity")) self.assertEqual(repr(self.inc_v), dump.run_fetches_info) self.assertEqual(repr(None), dump.run_feed_keys_info) def testUsingNonCallableAsWatchFnRaisesTypeError(self): bad_watch_fn = "bad_watch_fn" with self.assertRaisesRegexp(TypeError, "watch_fn is not callable"): dumping_wrapper.DumpingDebugWrapperSession( self.sess, session_root=self.session_root, watch_fn=bad_watch_fn, log_usage=False) def testDumpingWithLegacyWatchFnOnFetchesWorks(self): """Use a watch_fn that returns different whitelists for different runs.""" def watch_fn(fetches, feeds): del feeds # A watch_fn that picks fetch name. if fetches.name == "inc_v:0": # If inc_v, watch everything. return "DebugIdentity", r".*", r".*" else: # If dec_v, watch nothing. return "DebugIdentity", r"$^", r"$^" sess = dumping_wrapper.DumpingDebugWrapperSession( self.sess, session_root=self.session_root, watch_fn=watch_fn, log_usage=False) for _ in range(3): sess.run(self.inc_v) sess.run(self.dec_v) dump_dirs = glob.glob(os.path.join(self.session_root, "run_*")) dump_dirs = sorted( dump_dirs, key=lambda x: int(os.path.basename(x).split("_")[1])) self.assertEqual(6, len(dump_dirs)) for i, dump_dir in enumerate(dump_dirs): self._assert_correct_run_subdir_naming(os.path.basename(dump_dir)) dump = debug_data.DebugDumpDir(dump_dir) if i % 2 == 0: self.assertGreater(dump.size, 0) self.assertAllClose([10.0 - 0.4 * (i / 2)], dump.get_tensors("v", 0, "DebugIdentity")) self.assertEqual(repr(self.inc_v), dump.run_fetches_info) self.assertEqual(repr(None), dump.run_feed_keys_info) else: self.assertEqual(0, dump.size) self.assertEqual(repr(self.dec_v), dump.run_fetches_info) self.assertEqual(repr(None), dump.run_feed_keys_info) def testDumpingWithLegacyWatchFnWithNonDefaultDebugOpsWorks(self): """Use a watch_fn that specifies non-default debug ops.""" def watch_fn(fetches, feeds): del fetches, feeds return ["DebugIdentity", "DebugNumericSummary"], r".*", r".*" sess = dumping_wrapper.DumpingDebugWrapperSession( self.sess, session_root=self.session_root, watch_fn=watch_fn, log_usage=False) sess.run(self.inc_v) dump_dirs = glob.glob(os.path.join(self.session_root, "run_*")) self.assertEqual(1, len(dump_dirs)) dump = debug_data.DebugDumpDir(dump_dirs[0]) self.assertAllClose([10.0], dump.get_tensors("v", 0, "DebugIdentity")) self.assertEqual(14, len(dump.get_tensors("v", 0, "DebugNumericSummary")[0])) def testDumpingWithWatchFnWithNonDefaultDebugOpsWorks(self): """Use a watch_fn that specifies non-default debug ops.""" def watch_fn(fetches, feeds): del fetches, feeds return framework.WatchOptions( debug_ops=["DebugIdentity", "DebugNumericSummary"], node_name_regex_whitelist=r"^v.*", op_type_regex_whitelist=r".*", tensor_dtype_regex_whitelist=".*_ref") sess = dumping_wrapper.DumpingDebugWrapperSession( self.sess, session_root=self.session_root, watch_fn=watch_fn, log_usage=False) sess.run(self.inc_v) dump_dirs = glob.glob(os.path.join(self.session_root, "run_*")) self.assertEqual(1, len(dump_dirs)) dump = debug_data.DebugDumpDir(dump_dirs[0]) self.assertAllClose([10.0], dump.get_tensors("v", 0, "DebugIdentity")) self.assertEqual(14, len(dump.get_tensors("v", 0, "DebugNumericSummary")[0])) dumped_nodes = [dump.node_name for dump in dump.dumped_tensor_data] self.assertNotIn("inc_v", dumped_nodes) self.assertNotIn("delta", dumped_nodes) def testDumpingDebugHookWithoutWatchFnWorks(self): dumping_hook = hooks.DumpingDebugHook(self.session_root, log_usage=False) mon_sess = monitored_session._HookedSession(self.sess, [dumping_hook]) mon_sess.run(self.inc_v) dump_dirs = glob.glob(os.path.join(self.session_root, "run_*")) self.assertEqual(1, len(dump_dirs)) self._assert_correct_run_subdir_naming(os.path.basename(dump_dirs[0])) dump = debug_data.DebugDumpDir(dump_dirs[0]) self.assertAllClose([10.0], dump.get_tensors("v", 0, "DebugIdentity")) self.assertEqual(repr(self.inc_v), dump.run_fetches_info) self.assertEqual(repr(None), dump.run_feed_keys_info) def testDumpingDebugHookWithStatefulWatchFnWorks(self): watch_fn_state = {"run_counter": 0} def counting_watch_fn(fetches, feed_dict): del fetches, feed_dict watch_fn_state["run_counter"] += 1 if watch_fn_state["run_counter"] % 2 == 1: # If odd-index run (1-based), watch every ref-type tensor. return framework.WatchOptions( debug_ops="DebugIdentity", tensor_dtype_regex_whitelist=".*_ref") else: # If even-index run, watch nothing. return framework.WatchOptions( debug_ops="DebugIdentity", node_name_regex_whitelist=r"^$", op_type_regex_whitelist=r"^$") dumping_hook = hooks.DumpingDebugHook( self.session_root, watch_fn=counting_watch_fn, log_usage=False) mon_sess = monitored_session._HookedSession(self.sess, [dumping_hook]) for _ in range(4): mon_sess.run(self.inc_v) dump_dirs = glob.glob(os.path.join(self.session_root, "run_*")) dump_dirs = sorted( dump_dirs, key=lambda x: int(os.path.basename(x).split("_")[1])) self.assertEqual(4, len(dump_dirs)) for i, dump_dir in enumerate(dump_dirs): self._assert_correct_run_subdir_naming(os.path.basename(dump_dir)) dump = debug_data.DebugDumpDir(dump_dir) if i % 2 == 0: self.assertAllClose([10.0 + 1.0 * i], dump.get_tensors("v", 0, "DebugIdentity")) self.assertNotIn("delta", [datum.node_name for datum in dump.dumped_tensor_data]) else: self.assertEqual(0, dump.size) self.assertEqual(repr(self.inc_v), dump.run_fetches_info) self.assertEqual(repr(None), dump.run_feed_keys_info) def testDumpingDebugHookWithStatefulLegacyWatchFnWorks(self): watch_fn_state = {"run_counter": 0} def counting_watch_fn(fetches, feed_dict): del fetches, feed_dict watch_fn_state["run_counter"] += 1 if watch_fn_state["run_counter"] % 2 == 1: # If odd-index run (1-based), watch everything. return "DebugIdentity", r".*", r".*" else: # If even-index run, watch nothing. return "DebugIdentity", r"$^", r"$^" dumping_hook = hooks.DumpingDebugHook( self.session_root, watch_fn=counting_watch_fn, log_usage=False) mon_sess = monitored_session._HookedSession(self.sess, [dumping_hook]) for _ in range(4): mon_sess.run(self.inc_v) dump_dirs = glob.glob(os.path.join(self.session_root, "run_*")) dump_dirs = sorted( dump_dirs, key=lambda x: int(os.path.basename(x).split("_")[1])) self.assertEqual(4, len(dump_dirs)) for i, dump_dir in enumerate(dump_dirs): self._assert_correct_run_subdir_naming(os.path.basename(dump_dir)) dump = debug_data.DebugDumpDir(dump_dir) if i % 2 == 0: self.assertAllClose([10.0 + 1.0 * i], dump.get_tensors("v", 0, "DebugIdentity")) else: self.assertEqual(0, dump.size) self.assertEqual(repr(self.inc_v), dump.run_fetches_info) self.assertEqual(repr(None), dump.run_feed_keys_info) def testDumpingFromMultipleThreadsObeysThreadNameFilter(self): sess = dumping_wrapper.DumpingDebugWrapperSession( self.sess, session_root=self.session_root, log_usage=False, thread_name_filter=r"MainThread$") self.assertAllClose(1.0, sess.run(self.delta)) child_thread_result = [] def child_thread_job(): child_thread_result.append(sess.run(self.eta)) thread = threading.Thread(name="ChildThread", target=child_thread_job) thread.start() thread.join() self.assertAllClose([-1.4], child_thread_result) dump_dirs = glob.glob(os.path.join(self.session_root, "run_*")) self.assertEqual(1, len(dump_dirs)) dump = debug_data.DebugDumpDir(dump_dirs[0]) self.assertEqual(1, dump.size) self.assertEqual("delta", dump.dumped_tensor_data[0].node_name) def testDumpingWrapperWithEmptyFetchWorks(self): sess = dumping_wrapper.DumpingDebugWrapperSession( self.sess, session_root=self.session_root, log_usage=False) sess.run([]) if __name__ == "__main__": googletest.main()
tensorflow-master
tensorflow/python/debug/wrappers/dumping_wrapper_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Debugger wrapper session that sends debug data to file:// URLs.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import signal import sys import traceback import six # Google-internal import(s). from tensorflow.python.debug.lib import common from tensorflow.python.debug.wrappers import framework def publish_traceback(debug_server_urls, graph, feed_dict, fetches, old_graph_version): """Publish traceback and source code if graph version is new. `graph.version` is compared with `old_graph_version`. If the former is higher (i.e., newer), the graph traceback and the associated source code is sent to the debug server at the specified gRPC URLs. Args: debug_server_urls: A single gRPC debug server URL as a `str` or a `list` of debug server URLs. graph: A Python `tf.Graph` object. feed_dict: Feed dictionary given to the `Session.run()` call. fetches: Fetches from the `Session.run()` call. old_graph_version: Old graph version to compare to. Returns: If `graph.version > old_graph_version`, the new graph version as an `int`. Else, the `old_graph_version` is returned. """ # TODO(cais): Consider moving this back to the top, after grpc becomes a # pip dependency of tensorflow or tf_debug. # pylint:disable=g-import-not-at-top from tensorflow.python.debug.lib import source_remote # pylint:enable=g-import-not-at-top if graph.version > old_graph_version: run_key = common.get_run_key(feed_dict, fetches) source_remote.send_graph_tracebacks( debug_server_urls, run_key, traceback.extract_stack(), graph, send_source=True) return graph.version else: return old_graph_version class GrpcDebugWrapperSession(framework.NonInteractiveDebugWrapperSession): """Debug Session wrapper that send debug data to gRPC stream(s).""" def __init__(self, sess, grpc_debug_server_addresses, watch_fn=None, thread_name_filter=None, log_usage=True): """Constructor of DumpingDebugWrapperSession. Args: sess: The TensorFlow `Session` object being wrapped. grpc_debug_server_addresses: (`str` or `list` of `str`) Single or a list of the gRPC debug server addresses, in the format of <host:port>, with or without the "grpc://" prefix. For example: "localhost:7000", ["localhost:7000", "192.168.0.2:8000"] watch_fn: (`Callable`) A Callable that can be used to define per-run debug ops and watched tensors. See the doc of `NonInteractiveDebugWrapperSession.__init__()` for details. thread_name_filter: Regular-expression white list for threads on which the wrapper session will be active. See doc of `BaseDebugWrapperSession` for more details. log_usage: (`bool`) whether the usage of this class is to be logged. Raises: TypeError: If `grpc_debug_server_addresses` is not a `str` or a `list` of `str`. """ if log_usage: pass # No logging for open-source. framework.NonInteractiveDebugWrapperSession.__init__( self, sess, watch_fn=watch_fn, thread_name_filter=thread_name_filter) if isinstance(grpc_debug_server_addresses, str): self._grpc_debug_server_urls = [ self._normalize_grpc_url(grpc_debug_server_addresses)] elif isinstance(grpc_debug_server_addresses, list): self._grpc_debug_server_urls = [] for address in grpc_debug_server_addresses: if not isinstance(address, str): raise TypeError( "Expected type str in list grpc_debug_server_addresses, " "received type %s" % type(address)) self._grpc_debug_server_urls.append(self._normalize_grpc_url(address)) else: raise TypeError( "Expected type str or list in grpc_debug_server_addresses, " "received type %s" % type(grpc_debug_server_addresses)) def prepare_run_debug_urls(self, fetches, feed_dict): """Implementation of abstract method in superclass. See doc of `NonInteractiveDebugWrapperSession.prepare_run_debug_urls()` for details. Args: fetches: Same as the `fetches` argument to `Session.run()` feed_dict: Same as the `feed_dict` argument to `Session.run()` Returns: debug_urls: (`str` or `list` of `str`) file:// debug URLs to be used in this `Session.run()` call. """ return self._grpc_debug_server_urls def _normalize_grpc_url(self, address): return (common.GRPC_URL_PREFIX + address if not address.startswith(common.GRPC_URL_PREFIX) else address) def _signal_handler(unused_signal, unused_frame): while True: response = six.moves.input( "\nSIGINT received. Quit program? (Y/n): ").strip() if response in ("", "Y", "y"): sys.exit(0) elif response in ("N", "n"): break def register_signal_handler(): try: signal.signal(signal.SIGINT, _signal_handler) except ValueError: # This can happen if we are not in the MainThread. pass class TensorBoardDebugWrapperSession(GrpcDebugWrapperSession): """A tfdbg Session wrapper that can be used with TensorBoard Debugger Plugin. This wrapper is the same as `GrpcDebugWrapperSession`, except that it uses a predefined `watch_fn` that 1) uses `DebugIdentity` debug ops with the `gated_grpc` attribute set to `True` to allow the interactive enabling and disabling of tensor breakpoints. 2) watches all tensors in the graph. This saves the need for the user to define a `watch_fn`. """ def __init__(self, sess, grpc_debug_server_addresses, thread_name_filter=None, send_traceback_and_source_code=True, log_usage=True): """Constructor of TensorBoardDebugWrapperSession. Args: sess: The `tf.compat.v1.Session` instance to be wrapped. grpc_debug_server_addresses: gRPC address(es) of debug server(s), as a `str` or a `list` of `str`s. E.g., "localhost:2333", "grpc://localhost:2333", ["192.168.0.7:2333", "192.168.0.8:2333"]. thread_name_filter: Optional filter for thread names. send_traceback_and_source_code: Whether traceback of graph elements and the source code are to be sent to the debug server(s). log_usage: Whether the usage of this class is to be logged (if applicable). """ def _gated_grpc_watch_fn(fetches, feeds): del fetches, feeds # Unused. return framework.WatchOptions( debug_ops=["DebugIdentity(gated_grpc=true)"]) super(TensorBoardDebugWrapperSession, self).__init__( sess, grpc_debug_server_addresses, watch_fn=_gated_grpc_watch_fn, thread_name_filter=thread_name_filter, log_usage=log_usage) self._send_traceback_and_source_code = send_traceback_and_source_code # Keeps track of the latest version of Python graph object that has been # sent to the debug servers. self._sent_graph_version = -1 register_signal_handler() def run(self, fetches, feed_dict=None, options=None, run_metadata=None, callable_runner=None, callable_runner_args=None, callable_options=None): if self._send_traceback_and_source_code: self._sent_graph_version = publish_traceback( self._grpc_debug_server_urls, self.graph, feed_dict, fetches, self._sent_graph_version) return super(TensorBoardDebugWrapperSession, self).run( fetches, feed_dict=feed_dict, options=options, run_metadata=run_metadata, callable_runner=callable_runner, callable_runner_args=callable_runner_args, callable_options=callable_options)
tensorflow-master
tensorflow/python/debug/wrappers/grpc_wrapper.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Debugger Wrapper Session Consisting of a Local Curses-based CLI.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import tempfile from tensorflow.python.client import session from tensorflow.python.debug.wrappers import dumping_wrapper from tensorflow.python.debug.wrappers import hooks from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import test_util from tensorflow.python.ops import state_ops from tensorflow.python.ops import variables from tensorflow.python.platform import googletest from tensorflow.python.training import monitored_session @test_util.run_deprecated_v1 class DumpingDebugWrapperDiskUsageLimitTest(test_util.TensorFlowTestCase): @classmethod def setUpClass(cls): # For efficient testing, set the disk usage bytes limit to a small # number (10). os.environ["TFDBG_DISK_BYTES_LIMIT"] = "10" def setUp(self): self.session_root = tempfile.mkdtemp() self.v = variables.Variable(10.0, dtype=dtypes.float32, name="v") self.delta = constant_op.constant(1.0, dtype=dtypes.float32, name="delta") self.eta = constant_op.constant(-1.4, dtype=dtypes.float32, name="eta") self.inc_v = state_ops.assign_add(self.v, self.delta, name="inc_v") self.dec_v = state_ops.assign_add(self.v, self.eta, name="dec_v") self.sess = session.Session() self.sess.run(self.v.initializer) def testWrapperSessionNotExceedingLimit(self): def _watch_fn(fetches, feeds): del fetches, feeds return "DebugIdentity", r"(.*delta.*|.*inc_v.*)", r".*" sess = dumping_wrapper.DumpingDebugWrapperSession( self.sess, session_root=self.session_root, watch_fn=_watch_fn, log_usage=False) sess.run(self.inc_v) def testWrapperSessionExceedingLimit(self): def _watch_fn(fetches, feeds): del fetches, feeds return "DebugIdentity", r".*delta.*", r".*" sess = dumping_wrapper.DumpingDebugWrapperSession( self.sess, session_root=self.session_root, watch_fn=_watch_fn, log_usage=False) # Due to the watch function, each run should dump only 1 tensor, # which has a size of 4 bytes, which corresponds to the dumped 'delta:0' # tensor of scalar shape and float32 dtype. # 1st run should pass, after which the disk usage is at 4 bytes. sess.run(self.inc_v) # 2nd run should also pass, after which 8 bytes are used. sess.run(self.inc_v) # 3rd run should fail, because the total byte count (12) exceeds the # limit (10) with self.assertRaises(ValueError): sess.run(self.inc_v) def testHookNotExceedingLimit(self): def _watch_fn(fetches, feeds): del fetches, feeds return "DebugIdentity", r".*delta.*", r".*" dumping_hook = hooks.DumpingDebugHook( self.session_root, watch_fn=_watch_fn, log_usage=False) mon_sess = monitored_session._HookedSession(self.sess, [dumping_hook]) mon_sess.run(self.inc_v) def testHookExceedingLimit(self): def _watch_fn(fetches, feeds): del fetches, feeds return "DebugIdentity", r".*delta.*", r".*" dumping_hook = hooks.DumpingDebugHook( self.session_root, watch_fn=_watch_fn, log_usage=False) mon_sess = monitored_session._HookedSession(self.sess, [dumping_hook]) # Like in `testWrapperSessionExceedingLimit`, the first two calls # should be within the byte limit, but the third one should error # out due to exceeding the limit. mon_sess.run(self.inc_v) mon_sess.run(self.inc_v) with self.assertRaises(ValueError): mon_sess.run(self.inc_v) if __name__ == "__main__": googletest.main()
tensorflow-master
tensorflow/python/debug/wrappers/disk_usage_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests of the Analyzer CLI Backend.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import shutil import tempfile import numpy as np from six.moves import xrange # pylint: disable=redefined-builtin from tensorflow.core.protobuf import config_pb2 from tensorflow.core.protobuf import rewriter_config_pb2 from tensorflow.python.client import session from tensorflow.python.debug.cli import analyzer_cli from tensorflow.python.debug.cli import cli_config from tensorflow.python.debug.cli import cli_shared from tensorflow.python.debug.cli import cli_test_utils from tensorflow.python.debug.cli import command_parser from tensorflow.python.debug.cli import debugger_cli_common from tensorflow.python.debug.lib import debug_data from tensorflow.python.debug.lib import debug_utils from tensorflow.python.debug.lib import source_utils from tensorflow.python.framework import constant_op from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import variables from tensorflow.python.platform import googletest from tensorflow.python.platform import test from tensorflow.python.util import tf_inspect def _cli_config_from_temp_file(): return cli_config.CLIConfig( config_file_path=os.path.join(tempfile.mkdtemp(), ".tfdbg_config")) def no_rewrite_session_config(): rewriter_config = rewriter_config_pb2.RewriterConfig( disable_model_pruning=True, constant_folding=rewriter_config_pb2.RewriterConfig.OFF, arithmetic_optimization=rewriter_config_pb2.RewriterConfig.OFF, dependency_optimization=rewriter_config_pb2.RewriterConfig.OFF, pin_to_host_optimization=rewriter_config_pb2.RewriterConfig.OFF) graph_options = config_pb2.GraphOptions(rewrite_options=rewriter_config) return config_pb2.ConfigProto(graph_options=graph_options) def line_number_above(): return tf_inspect.stack()[1][2] - 1 def parse_op_and_node(line): """Parse a line containing an op node followed by a node name. For example, if the line is " [Variable] hidden/weights", this function will return ("Variable", "hidden/weights") Args: line: The line to be parsed, as a str. Returns: Name of the parsed op type. Name of the parsed node. """ op_type = line.strip().split(" ")[0].replace("[", "").replace("]", "") # Not using [-1], to tolerate any other items that might be present behind # the node name. node_name = line.strip().split(" ")[1] return op_type, node_name def assert_column_header_command_shortcut(tst, command, reverse, node_name_regex, op_type_regex, tensor_filter_name): tst.assertFalse(reverse and "-r" in command) tst.assertFalse(not(op_type_regex) and ("-t %s" % op_type_regex) in command) tst.assertFalse( not(node_name_regex) and ("-t %s" % node_name_regex) in command) tst.assertFalse( not(tensor_filter_name) and ("-t %s" % tensor_filter_name) in command) def assert_listed_tensors(tst, out, expected_tensor_names, expected_op_types, node_name_regex=None, op_type_regex=None, tensor_filter_name=None, sort_by="timestamp", reverse=False): """Check RichTextLines output for list_tensors commands. Args: tst: A test_util.TensorFlowTestCase instance. out: The RichTextLines object to be checked. expected_tensor_names: (list of str) Expected tensor names in the list. expected_op_types: (list of str) Expected op types of the tensors, in the same order as the expected_tensor_names. node_name_regex: Optional: node name regex filter. op_type_regex: Optional: op type regex filter. tensor_filter_name: Optional: name of the tensor filter. sort_by: (str) (timestamp | op_type | tensor_name) the field by which the tensors in the list are sorted. reverse: (bool) whether the sorting is in reverse (i.e., descending) order. """ line_iter = iter(out.lines) attr_segs = out.font_attr_segs line_counter = 0 num_tensors = len(expected_tensor_names) if tensor_filter_name is None: tst.assertEqual("%d dumped tensor(s):" % num_tensors, next(line_iter)) else: tst.assertEqual("%d dumped tensor(s) passing filter \"%s\":" % (num_tensors, tensor_filter_name), next(line_iter)) line_counter += 1 if op_type_regex is not None: tst.assertEqual("Op type regex filter: \"%s\"" % op_type_regex, next(line_iter)) line_counter += 1 if node_name_regex is not None: tst.assertEqual("Node name regex filter: \"%s\"" % node_name_regex, next(line_iter)) line_counter += 1 tst.assertEqual("", next(line_iter)) line_counter += 1 # Verify the column heads "t (ms)", "Op type" and "Tensor name" are present. line = next(line_iter) tst.assertIn("t (ms)", line) tst.assertIn("Op type", line) tst.assertIn("Tensor name", line) # Verify the command shortcuts in the top row. attr_segs = out.font_attr_segs[line_counter] attr_seg = attr_segs[0] tst.assertEqual(0, attr_seg[0]) tst.assertEqual(len("t (ms)"), attr_seg[1]) command = attr_seg[2][0].content tst.assertIn("-s timestamp", command) assert_column_header_command_shortcut( tst, command, reverse, node_name_regex, op_type_regex, tensor_filter_name) tst.assertEqual("bold", attr_seg[2][1]) idx0 = line.index("Size") attr_seg = attr_segs[1] tst.assertEqual(idx0, attr_seg[0]) tst.assertEqual(idx0 + len("Size (B)"), attr_seg[1]) command = attr_seg[2][0].content tst.assertIn("-s dump_size", command) assert_column_header_command_shortcut(tst, command, reverse, node_name_regex, op_type_regex, tensor_filter_name) tst.assertEqual("bold", attr_seg[2][1]) idx0 = line.index("Op type") attr_seg = attr_segs[2] tst.assertEqual(idx0, attr_seg[0]) tst.assertEqual(idx0 + len("Op type"), attr_seg[1]) command = attr_seg[2][0].content tst.assertIn("-s op_type", command) assert_column_header_command_shortcut( tst, command, reverse, node_name_regex, op_type_regex, tensor_filter_name) tst.assertEqual("bold", attr_seg[2][1]) idx0 = line.index("Tensor name") attr_seg = attr_segs[3] tst.assertEqual(idx0, attr_seg[0]) tst.assertEqual(idx0 + len("Tensor name"), attr_seg[1]) command = attr_seg[2][0].content tst.assertIn("-s tensor_name", command) assert_column_header_command_shortcut( tst, command, reverse, node_name_regex, op_type_regex, tensor_filter_name) tst.assertEqual("bold", attr_seg[2][1]) # Verify the listed tensors and their timestamps. tensor_timestamps = [] dump_sizes_bytes = [] op_types = [] tensor_names = [] for line in line_iter: items = line.split(" ") items = [item for item in items if item] rel_time = float(items[0][1:-1]) tst.assertGreaterEqual(rel_time, 0.0) tensor_timestamps.append(rel_time) dump_sizes_bytes.append(command_parser.parse_readable_size_str(items[1])) op_types.append(items[2]) tensor_names.append(items[3]) # Verify that the tensors should be listed in ascending order of their # timestamps. if sort_by == "timestamp": sorted_timestamps = sorted(tensor_timestamps) if reverse: sorted_timestamps.reverse() tst.assertEqual(sorted_timestamps, tensor_timestamps) elif sort_by == "dump_size": sorted_dump_sizes_bytes = sorted(dump_sizes_bytes) if reverse: sorted_dump_sizes_bytes.reverse() tst.assertEqual(sorted_dump_sizes_bytes, dump_sizes_bytes) elif sort_by == "op_type": sorted_op_types = sorted(op_types) if reverse: sorted_op_types.reverse() tst.assertEqual(sorted_op_types, op_types) elif sort_by == "tensor_name": sorted_tensor_names = sorted(tensor_names) if reverse: sorted_tensor_names.reverse() tst.assertEqual(sorted_tensor_names, tensor_names) else: tst.fail("Invalid value in sort_by: %s" % sort_by) # Verify that the tensors are all listed. for tensor_name, op_type in zip(expected_tensor_names, expected_op_types): tst.assertIn(tensor_name, tensor_names) index = tensor_names.index(tensor_name) tst.assertEqual(op_type, op_types[index]) def assert_node_attribute_lines(tst, out, node_name, op_type, device, input_op_type_node_name_pairs, ctrl_input_op_type_node_name_pairs, recipient_op_type_node_name_pairs, ctrl_recipient_op_type_node_name_pairs, attr_key_val_pairs=None, num_dumped_tensors=None, show_stack_trace=False, stack_trace_available=False): """Check RichTextLines output for node_info commands. Args: tst: A test_util.TensorFlowTestCase instance. out: The RichTextLines object to be checked. node_name: Name of the node. op_type: Op type of the node, as a str. device: Name of the device on which the node resides. input_op_type_node_name_pairs: A list of 2-tuples of op type and node name, for the (non-control) inputs to the node. ctrl_input_op_type_node_name_pairs: A list of 2-tuples of op type and node name, for the control inputs to the node. recipient_op_type_node_name_pairs: A list of 2-tuples of op type and node name, for the (non-control) output recipients to the node. ctrl_recipient_op_type_node_name_pairs: A list of 2-tuples of op type and node name, for the control output recipients to the node. attr_key_val_pairs: Optional: attribute key-value pairs of the node, as a list of 2-tuples. num_dumped_tensors: Optional: number of tensor dumps from the node. show_stack_trace: (bool) whether the stack trace of the node's construction is asserted to be present. stack_trace_available: (bool) whether Python stack trace is available. """ line_iter = iter(out.lines) tst.assertEqual("Node %s" % node_name, next(line_iter)) tst.assertEqual("", next(line_iter)) tst.assertEqual(" Op: %s" % op_type, next(line_iter)) tst.assertEqual(" Device: %s" % device, next(line_iter)) tst.assertEqual("", next(line_iter)) tst.assertEqual(" %d input(s) + %d control input(s):" % (len(input_op_type_node_name_pairs), len(ctrl_input_op_type_node_name_pairs)), next(line_iter)) # Check inputs. tst.assertEqual(" %d input(s):" % len(input_op_type_node_name_pairs), next(line_iter)) for op_type, node_name in input_op_type_node_name_pairs: tst.assertEqual(" [%s] %s" % (op_type, node_name), next(line_iter)) tst.assertEqual("", next(line_iter)) # Check control inputs. if ctrl_input_op_type_node_name_pairs: tst.assertEqual(" %d control input(s):" % len(ctrl_input_op_type_node_name_pairs), next(line_iter)) for op_type, node_name in ctrl_input_op_type_node_name_pairs: tst.assertEqual(" [%s] %s" % (op_type, node_name), next(line_iter)) tst.assertEqual("", next(line_iter)) tst.assertEqual(" %d recipient(s) + %d control recipient(s):" % (len(recipient_op_type_node_name_pairs), len(ctrl_recipient_op_type_node_name_pairs)), next(line_iter)) # Check recipients, the order of which is not deterministic. tst.assertEqual(" %d recipient(s):" % len(recipient_op_type_node_name_pairs), next(line_iter)) t_recs = [] for _ in recipient_op_type_node_name_pairs: line = next(line_iter) op_type, node_name = parse_op_and_node(line) t_recs.append((op_type, node_name)) tst.assertItemsEqual(recipient_op_type_node_name_pairs, t_recs) # Check control recipients, the order of which is not deterministic. if ctrl_recipient_op_type_node_name_pairs: tst.assertEqual("", next(line_iter)) tst.assertEqual(" %d control recipient(s):" % len(ctrl_recipient_op_type_node_name_pairs), next(line_iter)) t_ctrl_recs = [] for _ in ctrl_recipient_op_type_node_name_pairs: line = next(line_iter) op_type, node_name = parse_op_and_node(line) t_ctrl_recs.append((op_type, node_name)) tst.assertItemsEqual(ctrl_recipient_op_type_node_name_pairs, t_ctrl_recs) # The order of multiple attributes can be non-deterministic. if attr_key_val_pairs: tst.assertEqual("", next(line_iter)) tst.assertEqual("Node attributes:", next(line_iter)) kv_pairs = [] for key, val in attr_key_val_pairs: key = next(line_iter).strip().replace(":", "") val = next(line_iter).strip() kv_pairs.append((key, val)) tst.assertEqual("", next(line_iter)) tst.assertItemsEqual(attr_key_val_pairs, kv_pairs) if num_dumped_tensors is not None: tst.assertEqual("%d dumped tensor(s):" % num_dumped_tensors, next(line_iter)) tst.assertEqual("", next(line_iter)) dump_timestamps_ms = [] for _ in xrange(num_dumped_tensors): line = next(line_iter) tst.assertStartsWith(line.strip(), "Slot 0 @ DebugIdentity @") tst.assertTrue(line.strip().endswith(" ms")) dump_timestamp_ms = float(line.strip().split(" @ ")[-1].replace("ms", "")) tst.assertGreaterEqual(dump_timestamp_ms, 0.0) dump_timestamps_ms.append(dump_timestamp_ms) tst.assertEqual(sorted(dump_timestamps_ms), dump_timestamps_ms) if show_stack_trace: tst.assertEqual("", next(line_iter)) tst.assertEqual("", next(line_iter)) tst.assertEqual("Traceback of node construction:", next(line_iter)) if stack_trace_available: try: depth_counter = 0 while True: for i in range(5): line = next(line_iter) if i == 0: tst.assertEqual(depth_counter, int(line.split(":")[0])) elif i == 1: tst.assertStartsWith(line, " Line:") elif i == 2: tst.assertStartsWith(line, " Function:") elif i == 3: tst.assertStartsWith(line, " Text:") elif i == 4: tst.assertEqual("", line) depth_counter += 1 except StopIteration: tst.assertEqual(0, i) else: tst.assertEqual("(Unavailable because no Python graph has been loaded)", next(line_iter)) def check_syntax_error_output(tst, out, command_prefix): """Check RichTextLines output for valid command prefix but invalid syntax.""" tst.assertEqual([ "Syntax error for command: %s" % command_prefix, "For help, do \"help %s\"" % command_prefix ], out.lines) def check_error_output(tst, out, command_prefix, args): """Check RichTextLines output from invalid/erroneous commands. Args: tst: A test_util.TensorFlowTestCase instance. out: The RichTextLines object to be checked. command_prefix: The command prefix of the command that caused the error. args: The arguments (excluding prefix) of the command that caused the error. """ tst.assertGreater(len(out.lines), 2) tst.assertStartsWith(out.lines[0], "Error occurred during handling of command: %s %s" % (command_prefix, " ".join(args))) def check_main_menu(tst, out, list_tensors_enabled=False, node_info_node_name=None, print_tensor_node_name=None, list_inputs_node_name=None, list_outputs_node_name=None): """Check the main menu annotation of an output.""" tst.assertIn(debugger_cli_common.MAIN_MENU_KEY, out.annotations) menu = out.annotations[debugger_cli_common.MAIN_MENU_KEY] tst.assertEqual(list_tensors_enabled, menu.caption_to_item("list_tensors").is_enabled()) menu_item = menu.caption_to_item("node_info") if node_info_node_name: tst.assertTrue(menu_item.is_enabled()) tst.assertTrue(menu_item.content.endswith(node_info_node_name)) else: tst.assertFalse(menu_item.is_enabled()) menu_item = menu.caption_to_item("print_tensor") if print_tensor_node_name: tst.assertTrue(menu_item.is_enabled()) tst.assertTrue(menu_item.content.endswith(print_tensor_node_name)) else: tst.assertFalse(menu_item.is_enabled()) menu_item = menu.caption_to_item("list_inputs") if list_inputs_node_name: tst.assertTrue(menu_item.is_enabled()) tst.assertTrue(menu_item.content.endswith(list_inputs_node_name)) else: tst.assertFalse(menu_item.is_enabled()) menu_item = menu.caption_to_item("list_outputs") if list_outputs_node_name: tst.assertTrue(menu_item.is_enabled()) tst.assertTrue(menu_item.content.endswith(list_outputs_node_name)) else: tst.assertFalse(menu_item.is_enabled()) tst.assertTrue(menu.caption_to_item("run_info").is_enabled()) tst.assertTrue(menu.caption_to_item("help").is_enabled()) def check_menu_item(tst, out, line_index, expected_begin, expected_end, expected_command): attr_segs = out.font_attr_segs[line_index] found_menu_item = False for begin, end, attribute in attr_segs: attributes = [attribute] if not isinstance(attribute, list) else attribute menu_item = [attribute for attribute in attributes if isinstance(attribute, debugger_cli_common.MenuItem)] if menu_item: tst.assertEqual(expected_begin, begin) tst.assertEqual(expected_end, end) tst.assertEqual(expected_command, menu_item[0].content) found_menu_item = True break tst.assertTrue(found_menu_item) def create_analyzer_cli(dump): """Create an analyzer CLI. Args: dump: A `DebugDumpDir` object to base the analyzer CLI on. Returns: 1) A `DebugAnalyzer` object created based on `dump`. 2) A `CommandHandlerRegistry` that is based on the `DebugAnalyzer` object and has the common tfdbg commands, e.g., lt, ni, li, lo, registered. """ # Construct the analyzer. analyzer = analyzer_cli.DebugAnalyzer(dump, _cli_config_from_temp_file()) # Construct the handler registry. registry = debugger_cli_common.CommandHandlerRegistry() # Register command handlers. registry.register_command_handler( "list_tensors", analyzer.list_tensors, analyzer.get_help("list_tensors"), prefix_aliases=["lt"]) registry.register_command_handler( "node_info", analyzer.node_info, analyzer.get_help("node_info"), prefix_aliases=["ni"]) registry.register_command_handler( "list_inputs", analyzer.list_inputs, analyzer.get_help("list_inputs"), prefix_aliases=["li"]) registry.register_command_handler( "list_outputs", analyzer.list_outputs, analyzer.get_help("list_outputs"), prefix_aliases=["lo"]) registry.register_command_handler( "print_tensor", analyzer.print_tensor, analyzer.get_help("print_tensor"), prefix_aliases=["pt"]) registry.register_command_handler( "print_source", analyzer.print_source, analyzer.get_help("print_source"), prefix_aliases=["ps"]) registry.register_command_handler( "list_source", analyzer.list_source, analyzer.get_help("list_source"), prefix_aliases=["ls"]) registry.register_command_handler( "eval", analyzer.evaluate_expression, analyzer.get_help("eval"), prefix_aliases=["ev"]) return analyzer, registry @test_util.run_v1_only("b/120545219") class AnalyzerCLISimpleMulAddTest(test_util.TensorFlowTestCase): @classmethod def setUpClass(cls): cls._dump_root = tempfile.mkdtemp() cls._dump_root_for_unique = tempfile.mkdtemp() cls._is_gpu_available = test.is_gpu_available() if cls._is_gpu_available: gpu_name = test_util.gpu_device_name() cls._main_device = "/job:localhost/replica:0/task:0" + gpu_name else: cls._main_device = "/job:localhost/replica:0/task:0/device:CPU:0" cls._curr_file_path = os.path.abspath( tf_inspect.getfile(tf_inspect.currentframe())) cls._sess = session.Session(config=no_rewrite_session_config()) with cls._sess as sess: u_init_val = np.array([[5.0, 3.0], [-1.0, 0.0]]) v_init_val = np.array([[2.0], [-1.0]]) u_name = "simple_mul_add/u" v_name = "simple_mul_add/v" u_init = constant_op.constant(u_init_val, shape=[2, 2], name="u_init") u = variables.VariableV1(u_init, name=u_name) cls._u_line_number = line_number_above() v_init = constant_op.constant(v_init_val, shape=[2, 1], name="v_init") v = variables.VariableV1(v_init, name=v_name) cls._v_line_number = line_number_above() w = math_ops.matmul(u, v, name="simple_mul_add/matmul") cls._w_line_number = line_number_above() x = math_ops.add(w, w, name="simple_mul_add/add") cls._x_line_number = line_number_above() a = variables.VariableV1([1, 3, 3, 7], name="a") u.initializer.run() v.initializer.run() a.initializer.run() run_options = config_pb2.RunOptions(output_partition_graphs=True) debug_utils.watch_graph( run_options, sess.graph, debug_ops=["DebugIdentity"], debug_urls="file://%s" % cls._dump_root) # Invoke Session.run(). run_metadata = config_pb2.RunMetadata() sess.run([x], options=run_options, run_metadata=run_metadata) cls._debug_dump = debug_data.DebugDumpDir( cls._dump_root, partition_graphs=run_metadata.partition_graphs) cls._analyzer, cls._registry = create_analyzer_cli(cls._debug_dump) @classmethod def tearDownClass(cls): # Tear down temporary dump directory. shutil.rmtree(cls._dump_root) shutil.rmtree(cls._dump_root_for_unique) def testMeasureTensorListColumnWidthsGivesRightAnswerForEmptyData(self): timestamp_col_width, dump_size_col_width, op_type_col_width = ( self._analyzer._measure_tensor_list_column_widths([])) self.assertEqual(len("t (ms)") + 1, timestamp_col_width) self.assertEqual(len("Size (B)") + 1, dump_size_col_width) self.assertEqual(len("Op type") + 1, op_type_col_width) def testMeasureTensorListColumnWidthsGivesRightAnswerForData(self): dump = self._debug_dump.dumped_tensor_data[0] self.assertLess(dump.dump_size_bytes, 1000) self.assertEqual( "VariableV2", self._debug_dump.node_op_type(dump.node_name)) _, dump_size_col_width, op_type_col_width = ( self._analyzer._measure_tensor_list_column_widths([dump])) # The length of str(dump.dump_size_bytes) is less than the length of # "Size (B)" (8). So the column width should be determined by the length of # "Size (B)". self.assertEqual(len("Size (B)") + 1, dump_size_col_width) # The length of "VariableV2" is greater than the length of "Op type". So the # column should be determined by the length of "VariableV2". self.assertEqual(len("VariableV2") + 1, op_type_col_width) def testListTensors(self): # Use shorthand alias for the command prefix. out = self._registry.dispatch_command("lt", []) assert_listed_tensors(self, out, [ "simple_mul_add/u:0", "simple_mul_add/v:0", "simple_mul_add/u/read:0", "simple_mul_add/v/read:0", "simple_mul_add/matmul:0", "simple_mul_add/add:0" ], ["VariableV2", "VariableV2", "Identity", "Identity", "MatMul", "Add"]) # Check the main menu. check_main_menu(self, out, list_tensors_enabled=False) def testListTensorsInReverseTimeOrderWorks(self): # Use shorthand alias for the command prefix. out = self._registry.dispatch_command("lt", ["-s", "timestamp", "-r"]) assert_listed_tensors( self, out, [ "simple_mul_add/u:0", "simple_mul_add/v:0", "simple_mul_add/u/read:0", "simple_mul_add/v/read:0", "simple_mul_add/matmul:0", "simple_mul_add/add:0" ], ["VariableV2", "VariableV2", "Identity", "Identity", "MatMul", "Add"], sort_by="timestamp", reverse=True) check_main_menu(self, out, list_tensors_enabled=False) def testListTensorsInDumpSizeOrderWorks(self): out = self._registry.dispatch_command("lt", ["-s", "dump_size"]) assert_listed_tensors( self, out, [ "simple_mul_add/u:0", "simple_mul_add/v:0", "simple_mul_add/u/read:0", "simple_mul_add/v/read:0", "simple_mul_add/matmul:0", "simple_mul_add/add:0" ], ["VariableV2", "VariableV2", "Identity", "Identity", "MatMul", "Add"], sort_by="dump_size") check_main_menu(self, out, list_tensors_enabled=False) def testListTensorsInReverseDumpSizeOrderWorks(self): out = self._registry.dispatch_command("lt", ["-s", "dump_size", "-r"]) assert_listed_tensors( self, out, [ "simple_mul_add/u:0", "simple_mul_add/v:0", "simple_mul_add/u/read:0", "simple_mul_add/v/read:0", "simple_mul_add/matmul:0", "simple_mul_add/add:0" ], ["VariableV2", "VariableV2", "Identity", "Identity", "MatMul", "Add"], sort_by="dump_size", reverse=True) check_main_menu(self, out, list_tensors_enabled=False) def testListTensorsWithInvalidSortByFieldGivesError(self): out = self._registry.dispatch_command("lt", ["-s", "foobar"]) self.assertIn("ValueError: Unsupported key to sort tensors by: foobar", out.lines) def testListTensorsInOpTypeOrderWorks(self): # Use shorthand alias for the command prefix. out = self._registry.dispatch_command("lt", ["-s", "op_type"]) assert_listed_tensors( self, out, [ "simple_mul_add/u:0", "simple_mul_add/v:0", "simple_mul_add/u/read:0", "simple_mul_add/v/read:0", "simple_mul_add/matmul:0", "simple_mul_add/add:0" ], ["VariableV2", "VariableV2", "Identity", "Identity", "MatMul", "Add"], sort_by="op_type", reverse=False) check_main_menu(self, out, list_tensors_enabled=False) def testListTensorsInReverseOpTypeOrderWorks(self): # Use shorthand alias for the command prefix. out = self._registry.dispatch_command("lt", ["-s", "op_type", "-r"]) assert_listed_tensors( self, out, [ "simple_mul_add/u:0", "simple_mul_add/v:0", "simple_mul_add/u/read:0", "simple_mul_add/v/read:0", "simple_mul_add/matmul:0", "simple_mul_add/add:0" ], ["VariableV2", "VariableV2", "Identity", "Identity", "MatMul", "Add"], sort_by="op_type", reverse=True) check_main_menu(self, out, list_tensors_enabled=False) def testListTensorsInTensorNameOrderWorks(self): # Use shorthand alias for the command prefix. out = self._registry.dispatch_command("lt", ["-s", "tensor_name"]) assert_listed_tensors( self, out, [ "simple_mul_add/u:0", "simple_mul_add/v:0", "simple_mul_add/u/read:0", "simple_mul_add/v/read:0", "simple_mul_add/matmul:0", "simple_mul_add/add:0" ], ["VariableV2", "VariableV2", "Identity", "Identity", "MatMul", "Add"], sort_by="tensor_name", reverse=False) check_main_menu(self, out, list_tensors_enabled=False) def testListTensorsInReverseTensorNameOrderWorks(self): # Use shorthand alias for the command prefix. out = self._registry.dispatch_command("lt", ["-s", "tensor_name", "-r"]) assert_listed_tensors( self, out, [ "simple_mul_add/u:0", "simple_mul_add/v:0", "simple_mul_add/u/read:0", "simple_mul_add/v/read:0", "simple_mul_add/matmul:0", "simple_mul_add/add:0" ], ["VariableV2", "VariableV2", "Identity", "Identity", "MatMul", "Add"], sort_by="tensor_name", reverse=True) check_main_menu(self, out, list_tensors_enabled=False) def testListTensorsFilterByNodeNameRegex(self): out = self._registry.dispatch_command("list_tensors", ["--node_name_filter", ".*read.*"]) assert_listed_tensors( self, out, ["simple_mul_add/u/read:0", "simple_mul_add/v/read:0"], ["Identity", "Identity"], node_name_regex=".*read.*") out = self._registry.dispatch_command("list_tensors", ["-n", "^read"]) assert_listed_tensors(self, out, [], [], node_name_regex="^read") check_main_menu(self, out, list_tensors_enabled=False) def testListTensorFilterByOpTypeRegex(self): out = self._registry.dispatch_command("list_tensors", ["--op_type_filter", "Identity"]) assert_listed_tensors( self, out, ["simple_mul_add/u/read:0", "simple_mul_add/v/read:0"], ["Identity", "Identity"], op_type_regex="Identity") out = self._registry.dispatch_command("list_tensors", ["-t", "(Add|MatMul)"]) assert_listed_tensors( self, out, ["simple_mul_add/add:0", "simple_mul_add/matmul:0"], ["Add", "MatMul"], op_type_regex="(Add|MatMul)") check_main_menu(self, out, list_tensors_enabled=False) def testListTensorFilterByNodeNameRegexAndOpTypeRegex(self): out = self._registry.dispatch_command( "list_tensors", ["-t", "(Add|MatMul)", "-n", ".*add$"]) assert_listed_tensors( self, out, ["simple_mul_add/add:0"], ["Add"], node_name_regex=".*add$", op_type_regex="(Add|MatMul)") check_main_menu(self, out, list_tensors_enabled=False) def testListTensorWithFilterAndNodeNameExclusionWorks(self): # First, create and register the filter. def is_2x1_vector(datum, tensor): del datum # Unused. return list(tensor.shape) == [2, 1] self._analyzer.add_tensor_filter("is_2x1_vector", is_2x1_vector) # Use shorthand alias for the command prefix. out = self._registry.dispatch_command( "lt", ["-f", "is_2x1_vector", "--filter_exclude_node_names", ".*v.*"]) # If the --filter_exclude_node_names were not used, then the matching # tensors would be: # - simple_mul_add/v:0 # - simple_mul_add/v/read:0 # - simple_mul_add/matmul:0 # - simple_mul_add/add:0 # # With the --filter_exclude_node_names option, only the last two should # show up in the result. assert_listed_tensors( self, out, ["simple_mul_add/matmul:0", "simple_mul_add/add:0"], ["MatMul", "Add"], tensor_filter_name="is_2x1_vector") check_main_menu(self, out, list_tensors_enabled=False) def testListTensorsFilterNanOrInf(self): """Test register and invoke a tensor filter.""" # First, register the filter. self._analyzer.add_tensor_filter("has_inf_or_nan", debug_data.has_inf_or_nan) # Use shorthand alias for the command prefix. out = self._registry.dispatch_command("lt", ["-f", "has_inf_or_nan"]) # This TF graph run did not generate any bad numerical values. assert_listed_tensors( self, out, [], [], tensor_filter_name="has_inf_or_nan") # TODO(cais): A test with some actual bad numerical values. check_main_menu(self, out, list_tensors_enabled=False) def testListTensorNonexistentFilter(self): """Test attempt to use a nonexistent tensor filter.""" out = self._registry.dispatch_command("lt", ["-f", "foo_filter"]) self.assertEqual(["ERROR: There is no tensor filter named \"foo_filter\"."], out.lines) check_main_menu(self, out, list_tensors_enabled=False) def testListTensorsInvalidOptions(self): out = self._registry.dispatch_command("list_tensors", ["--bar"]) check_syntax_error_output(self, out, "list_tensors") def testNodeInfoByNodeName(self): node_name = "simple_mul_add/matmul" out = self._registry.dispatch_command("node_info", [node_name]) recipients = [("Add", "simple_mul_add/add"), ("Add", "simple_mul_add/add")] assert_node_attribute_lines(self, out, node_name, "MatMul", self._main_device, [("Identity", "simple_mul_add/u/read"), ("Identity", "simple_mul_add/v/read")], [], recipients, []) check_main_menu( self, out, list_tensors_enabled=True, list_inputs_node_name=node_name, print_tensor_node_name=node_name, list_outputs_node_name=node_name) # Verify that the node name is bold in the first line. self.assertEqual( [(len(out.lines[0]) - len(node_name), len(out.lines[0]), "bold")], out.font_attr_segs[0]) def testNodeInfoShowAttributes(self): node_name = "simple_mul_add/matmul" out = self._registry.dispatch_command("node_info", ["-a", node_name]) assert_node_attribute_lines( self, out, node_name, "MatMul", self._main_device, [("Identity", "simple_mul_add/u/read"), ("Identity", "simple_mul_add/v/read")], [], [("Add", "simple_mul_add/add"), ("Add", "simple_mul_add/add")], [], attr_key_val_pairs=[("transpose_a", "b: false"), ("transpose_b", "b: false"), ("T", "type: DT_DOUBLE")]) check_main_menu( self, out, list_tensors_enabled=True, list_inputs_node_name=node_name, print_tensor_node_name=node_name, list_outputs_node_name=node_name) def testNodeInfoShowDumps(self): node_name = "simple_mul_add/matmul" out = self._registry.dispatch_command("node_info", ["-d", node_name]) assert_node_attribute_lines( self, out, node_name, "MatMul", self._main_device, [("Identity", "simple_mul_add/u/read"), ("Identity", "simple_mul_add/v/read")], [], [("Add", "simple_mul_add/add"), ("Add", "simple_mul_add/add")], [], num_dumped_tensors=1) check_main_menu( self, out, list_tensors_enabled=True, list_inputs_node_name=node_name, print_tensor_node_name=node_name, list_outputs_node_name=node_name) check_menu_item(self, out, 16, len(out.lines[16]) - len(out.lines[16].strip()), len(out.lines[16]), "pt %s:0 -n 0" % node_name) def testNodeInfoShowStackTraceUnavailableIsIndicated(self): self._debug_dump.set_python_graph(None) node_name = "simple_mul_add/matmul" out = self._registry.dispatch_command("node_info", ["-t", node_name]) assert_node_attribute_lines( self, out, node_name, "MatMul", self._main_device, [("Identity", "simple_mul_add/u/read"), ("Identity", "simple_mul_add/v/read")], [], [("Add", "simple_mul_add/add"), ("Add", "simple_mul_add/add")], [], show_stack_trace=True, stack_trace_available=False) check_main_menu( self, out, list_tensors_enabled=True, list_inputs_node_name=node_name, print_tensor_node_name=node_name, list_outputs_node_name=node_name) def testNodeInfoShowStackTraceAvailableWorks(self): self._debug_dump.set_python_graph(self._sess.graph) node_name = "simple_mul_add/matmul" out = self._registry.dispatch_command("node_info", ["-t", node_name]) assert_node_attribute_lines( self, out, node_name, "MatMul", self._main_device, [("Identity", "simple_mul_add/u/read"), ("Identity", "simple_mul_add/v/read")], [], [("Add", "simple_mul_add/add"), ("Add", "simple_mul_add/add")], [], show_stack_trace=True, stack_trace_available=True) check_main_menu( self, out, list_tensors_enabled=True, list_inputs_node_name=node_name, print_tensor_node_name=node_name, list_outputs_node_name=node_name) def testNodeInfoByTensorName(self): node_name = "simple_mul_add/u/read" tensor_name = node_name + ":0" out = self._registry.dispatch_command("node_info", [tensor_name]) assert_node_attribute_lines(self, out, node_name, "Identity", self._main_device, [("VariableV2", "simple_mul_add/u")], [], [("MatMul", "simple_mul_add/matmul")], []) check_main_menu( self, out, list_tensors_enabled=True, list_inputs_node_name=node_name, print_tensor_node_name=node_name, list_outputs_node_name=node_name) def testNodeInfoNonexistentNodeName(self): out = self._registry.dispatch_command("node_info", ["bar"]) self.assertEqual( ["ERROR: There is no node named \"bar\" in the partition graphs"], out.lines) # Check color indicating error. self.assertEqual({0: [(0, 59, cli_shared.COLOR_RED)]}, out.font_attr_segs) check_main_menu(self, out, list_tensors_enabled=True) def testPrintTensor(self): node_name = "simple_mul_add/matmul" tensor_name = node_name + ":0" out = self._registry.dispatch_command( "print_tensor", [tensor_name], screen_info={"cols": 80}) self.assertEqual([ "Tensor \"%s:DebugIdentity\":" % tensor_name, " dtype: float64", " shape: (2, 1)", "", "array([[ 7.],", " [-2.]])", ], out.lines) self.assertIn("tensor_metadata", out.annotations) self.assertIn(4, out.annotations) self.assertIn(5, out.annotations) check_main_menu( self, out, list_tensors_enabled=True, node_info_node_name=node_name, list_inputs_node_name=node_name, list_outputs_node_name=node_name) def testPrintTensorAndWriteToNpyFile(self): node_name = "simple_mul_add/matmul" tensor_name = node_name + ":0" npy_path = os.path.join(self._dump_root, "matmul.npy") out = self._registry.dispatch_command( "print_tensor", [tensor_name, "-w", npy_path], screen_info={"cols": 80}) self.assertEqual([ "Tensor \"%s:DebugIdentity\":" % tensor_name, " dtype: float64", " shape: (2, 1)", "", ], out.lines[:4]) self.assertTrue(out.lines[4].startswith("Saved value to: %s (" % npy_path)) # Load the numpy file and verify its contents. self.assertAllClose([[7.0], [-2.0]], np.load(npy_path)) def testPrintTensorHighlightingRanges(self): node_name = "simple_mul_add/matmul" tensor_name = node_name + ":0" out = self._registry.dispatch_command( "print_tensor", [tensor_name, "--ranges", "[-inf, 0.0]"], screen_info={"cols": 80}) self.assertEqual([ "Tensor \"%s:DebugIdentity\": " % tensor_name + "Highlighted([-inf, 0.0]): 1 of 2 element(s) (50.00%)", " dtype: float64", " shape: (2, 1)", "", "array([[ 7.],", " [-2.]])", ], out.lines) self.assertIn("tensor_metadata", out.annotations) self.assertIn(4, out.annotations) self.assertIn(5, out.annotations) self.assertEqual([(8, 11, "bold")], out.font_attr_segs[5]) out = self._registry.dispatch_command( "print_tensor", [tensor_name, "--ranges", "[[-inf, -5.5], [5.5, inf]]"], screen_info={"cols": 80}) self.assertEqual([ "Tensor \"%s:DebugIdentity\": " % tensor_name + "Highlighted([[-inf, -5.5], [5.5, inf]]): " "1 of 2 element(s) (50.00%)", " dtype: float64", " shape: (2, 1)", "", "array([[ 7.],", " [-2.]])", ], out.lines) self.assertIn("tensor_metadata", out.annotations) self.assertIn(4, out.annotations) self.assertIn(5, out.annotations) self.assertEqual([(9, 11, "bold")], out.font_attr_segs[4]) self.assertNotIn(5, out.font_attr_segs) check_main_menu( self, out, list_tensors_enabled=True, node_info_node_name=node_name, list_inputs_node_name=node_name, list_outputs_node_name=node_name) def testPrintTensorHighlightingRangesAndIncludingNumericSummary(self): node_name = "simple_mul_add/matmul" tensor_name = node_name + ":0" out = self._registry.dispatch_command( "print_tensor", [tensor_name, "--ranges", "[-inf, 0.0]", "-s"], screen_info={"cols": 80}) self.assertEqual([ "Tensor \"%s:DebugIdentity\": " % tensor_name + "Highlighted([-inf, 0.0]): 1 of 2 element(s) (50.00%)", " dtype: float64", " shape: (2, 1)", "", "Numeric summary:", "| - + | total |", "| 1 1 | 2 |", "| min max mean std |", "| -2.0 7.0 2.5 4.5 |", "", "array([[ 7.],", " [-2.]])", ], out.lines) self.assertIn("tensor_metadata", out.annotations) self.assertIn(10, out.annotations) self.assertIn(11, out.annotations) self.assertEqual([(8, 11, "bold")], out.font_attr_segs[11]) def testPrintTensorWithSlicing(self): node_name = "simple_mul_add/matmul" tensor_name = node_name + ":0" out = self._registry.dispatch_command( "print_tensor", [tensor_name + "[1, :]"], screen_info={"cols": 80}) self.assertEqual([ "Tensor \"%s:DebugIdentity[1, :]\":" % tensor_name, " dtype: float64", " shape: (1,)", "", "array([-2.])" ], out.lines) self.assertIn("tensor_metadata", out.annotations) self.assertIn(4, out.annotations) check_main_menu( self, out, list_tensors_enabled=True, node_info_node_name=node_name, list_inputs_node_name=node_name, list_outputs_node_name=node_name) def testPrintTensorInvalidSlicingString(self): node_name = "simple_mul_add/matmul" tensor_name = node_name + ":0" out = self._registry.dispatch_command( "print_tensor", [tensor_name + "[1, foo()]"], screen_info={"cols": 80}) self.assertEqual("Error occurred during handling of command: print_tensor " + tensor_name + "[1, foo()]:", out.lines[0]) self.assertEqual("ValueError: Invalid tensor-slicing string.", out.lines[-2]) def testPrintTensorValidExplicitNumber(self): node_name = "simple_mul_add/matmul" tensor_name = node_name + ":0" out = self._registry.dispatch_command( "print_tensor", [tensor_name, "-n", "0"], screen_info={"cols": 80}) self.assertEqual([ "Tensor \"%s:DebugIdentity\":" % tensor_name, " dtype: float64", " shape: (2, 1)", "", "array([[ 7.],", " [-2.]])", ], out.lines) self.assertIn("tensor_metadata", out.annotations) self.assertIn(4, out.annotations) self.assertIn(5, out.annotations) check_main_menu( self, out, list_tensors_enabled=True, node_info_node_name=node_name, list_inputs_node_name=node_name, list_outputs_node_name=node_name) def testPrintTensorInvalidExplicitNumber(self): node_name = "simple_mul_add/matmul" tensor_name = node_name + ":0" out = self._registry.dispatch_command( "print_tensor", [tensor_name, "-n", "1"], screen_info={"cols": 80}) self.assertEqual([ "ERROR: Invalid number (1) for tensor simple_mul_add/matmul:0, " "which generated one dump." ], out.lines) self.assertNotIn("tensor_metadata", out.annotations) check_main_menu( self, out, list_tensors_enabled=True, node_info_node_name=node_name, list_inputs_node_name=node_name, list_outputs_node_name=node_name) def testPrintTensorMissingOutputSlotLeadsToOnlyDumpedTensorPrinted(self): node_name = "simple_mul_add/matmul" out = self._registry.dispatch_command("print_tensor", [node_name]) self.assertEqual([ "Tensor \"%s:0:DebugIdentity\":" % node_name, " dtype: float64", " shape: (2, 1)", "", "array([[ 7.],", " [-2.]])" ], out.lines) check_main_menu( self, out, list_tensors_enabled=True, node_info_node_name=node_name, list_inputs_node_name=node_name, list_outputs_node_name=node_name) def testPrintTensorNonexistentNodeName(self): out = self._registry.dispatch_command( "print_tensor", ["simple_mul_add/matmul/foo:0"]) self.assertEqual([ "ERROR: Node \"simple_mul_add/matmul/foo\" does not exist in partition " "graphs" ], out.lines) check_main_menu(self, out, list_tensors_enabled=True) def testEvalExpression(self): node_name = "simple_mul_add/matmul" tensor_name = node_name + ":0" out = self._registry.dispatch_command( "eval", ["np.matmul(`%s`, `%s`.T)" % (tensor_name, tensor_name)], screen_info={"cols": 80}) cli_test_utils.assert_lines_equal_ignoring_whitespace( self, ["Tensor \"from eval of expression " "'np.matmul(`simple_mul_add/matmul:0`, " "`simple_mul_add/matmul:0`.T)'\":", " dtype: float64", " shape: (2, 2)", "", "Numeric summary:", "| - + | total |", "| 2 2 | 4 |", "| min max mean std |"], out.lines[:8]) cli_test_utils.assert_array_lines_close( self, [-14.0, 49.0, 6.25, 25.7524270701], out.lines[8:9]) cli_test_utils.assert_array_lines_close( self, [[49.0, -14.0], [-14.0, 4.0]], out.lines[10:]) def testEvalExpressionAndWriteToNpyFile(self): node_name = "simple_mul_add/matmul" tensor_name = node_name + ":0" npy_path = os.path.join(self._dump_root, "matmul_eval.npy") out = self._registry.dispatch_command( "eval", ["np.matmul(`%s`, `%s`.T)" % (tensor_name, tensor_name), "-w", npy_path], screen_info={"cols": 80}) self.assertEqual([ "Tensor \"from eval of expression " "'np.matmul(`simple_mul_add/matmul:0`, " "`simple_mul_add/matmul:0`.T)'\":", " dtype: float64", " shape: (2, 2)", ""], out.lines[:4]) self.assertTrue(out.lines[4].startswith("Saved value to: %s (" % npy_path)) # Load the numpy file and verify its contents. self.assertAllClose([[49.0, -14.0], [-14.0, 4.0]], np.load(npy_path)) def testAddGetTensorFilterLambda(self): analyzer = analyzer_cli.DebugAnalyzer(self._debug_dump, _cli_config_from_temp_file()) analyzer.add_tensor_filter("foo_filter", lambda x, y: True) self.assertTrue(analyzer.get_tensor_filter("foo_filter")(None, None)) def testAddGetTensorFilterNestedFunction(self): analyzer = analyzer_cli.DebugAnalyzer(self._debug_dump, _cli_config_from_temp_file()) def foo_filter(unused_arg_0, unused_arg_1): return True analyzer.add_tensor_filter("foo_filter", foo_filter) self.assertTrue(analyzer.get_tensor_filter("foo_filter")(None, None)) def testAddTensorFilterEmptyName(self): analyzer = analyzer_cli.DebugAnalyzer(self._debug_dump, _cli_config_from_temp_file()) with self.assertRaisesRegexp(ValueError, "Input argument filter_name cannot be empty."): analyzer.add_tensor_filter("", lambda datum, tensor: True) def testAddTensorFilterNonStrName(self): analyzer = analyzer_cli.DebugAnalyzer(self._debug_dump, _cli_config_from_temp_file()) with self.assertRaisesRegexp( TypeError, "Input argument filter_name is expected to be str, ""but is not"): analyzer.add_tensor_filter(1, lambda datum, tensor: True) def testAddGetTensorFilterNonCallable(self): analyzer = analyzer_cli.DebugAnalyzer(self._debug_dump, _cli_config_from_temp_file()) with self.assertRaisesRegexp( TypeError, "Input argument filter_callable is expected to be callable, " "but is not."): analyzer.add_tensor_filter("foo_filter", "bar") def testGetNonexistentTensorFilter(self): analyzer = analyzer_cli.DebugAnalyzer(self._debug_dump, _cli_config_from_temp_file()) analyzer.add_tensor_filter("foo_filter", lambda datum, tensor: True) with self.assertRaisesRegexp(ValueError, "There is no tensor filter named \"bar\""): analyzer.get_tensor_filter("bar") def _findSourceLine(self, annotated_source, line_number): """Find line of given line number in annotated source. Args: annotated_source: (debugger_cli_common.RichTextLines) the annotated source line_number: (int) 1-based line number Returns: (int) If line_number is found, 0-based line index in annotated_source.lines. Otherwise, None. """ index = None for i, line in enumerate(annotated_source.lines): if line.startswith("L%d " % line_number): index = i break return index def testPrintSourceForOpNamesWholeFileWorks(self): self._debug_dump.set_python_graph(self._sess.graph) out = self._registry.dispatch_command( "print_source", [self._curr_file_path], screen_info={"cols": 80}) # Verify the annotation of the line that creates u. index = self._findSourceLine(out, self._u_line_number) self.assertEqual( ["L%d u = variables.VariableV1(u_init, name=u_name)" % self._u_line_number, " simple_mul_add/u", " simple_mul_add/u/Assign", " simple_mul_add/u/read"], out.lines[index : index + 4]) self.assertEqual("pt simple_mul_add/u", out.font_attr_segs[index + 1][0][2].content) # simple_mul_add/u/Assign is not used in this run because the Variable has # already been initialized. self.assertEqual(cli_shared.COLOR_BLUE, out.font_attr_segs[index + 2][0][2]) self.assertEqual("pt simple_mul_add/u/read", out.font_attr_segs[index + 3][0][2].content) # Verify the annotation of the line that creates v. index = self._findSourceLine(out, self._v_line_number) self.assertEqual( ["L%d v = variables.VariableV1(v_init, name=v_name)" % self._v_line_number, " simple_mul_add/v"], out.lines[index : index + 2]) self.assertEqual("pt simple_mul_add/v", out.font_attr_segs[index + 1][0][2].content) # Verify the annotation of the line that creates w. index = self._findSourceLine(out, self._w_line_number) self.assertEqual( ["L%d " % self._w_line_number + "w = math_ops.matmul(u, v, name=\"simple_mul_add/matmul\")", " simple_mul_add/matmul"], out.lines[index : index + 2]) self.assertEqual("pt simple_mul_add/matmul", out.font_attr_segs[index + 1][0][2].content) # Verify the annotation of the line that creates x. index = self._findSourceLine(out, self._x_line_number) self.assertEqual( ["L%d " % self._x_line_number + "x = math_ops.add(w, w, name=\"simple_mul_add/add\")", " simple_mul_add/add"], out.lines[index : index + 2]) self.assertEqual("pt simple_mul_add/add", out.font_attr_segs[index + 1][0][2].content) def testPrintSourceForTensorNamesWholeFileWorks(self): self._debug_dump.set_python_graph(self._sess.graph) out = self._registry.dispatch_command( "print_source", [self._curr_file_path, "--tensors"], screen_info={"cols": 80}) # Verify the annotation of the line that creates u. index = self._findSourceLine(out, self._u_line_number) self.assertEqual( ["L%d u = variables.VariableV1(u_init, name=u_name)" % self._u_line_number, " simple_mul_add/u/read:0", " simple_mul_add/u:0"], out.lines[index : index + 3]) self.assertEqual("pt simple_mul_add/u/read:0", out.font_attr_segs[index + 1][0][2].content) self.assertEqual("pt simple_mul_add/u:0", out.font_attr_segs[index + 2][0][2].content) def testPrintSourceForOpNamesStartingAtSpecifiedLineWorks(self): self._debug_dump.set_python_graph(self._sess.graph) out = self._registry.dispatch_command( "print_source", [self._curr_file_path, "-b", "3"], screen_info={"cols": 80}) self.assertEqual( 2, out.annotations[debugger_cli_common.INIT_SCROLL_POS_KEY]) index = self._findSourceLine(out, self._u_line_number) self.assertEqual( ["L%d u = variables.VariableV1(u_init, name=u_name)" % self._u_line_number, " simple_mul_add/u", " simple_mul_add/u/Assign", " simple_mul_add/u/read"], out.lines[index : index + 4]) self.assertEqual("pt simple_mul_add/u", out.font_attr_segs[index + 1][0][2].content) # simple_mul_add/u/Assign is not used in this run because the Variable has # already been initialized. self.assertEqual(cli_shared.COLOR_BLUE, out.font_attr_segs[index + 2][0][2]) self.assertEqual("pt simple_mul_add/u/read", out.font_attr_segs[index + 3][0][2].content) def testPrintSourceForOpNameSettingMaximumElementCountWorks(self): self._debug_dump.set_python_graph(self._sess.graph) out = self._registry.dispatch_command( "print_source", [self._curr_file_path, "-m", "1"], screen_info={"cols": 80}) index = self._findSourceLine(out, self._u_line_number) self.assertEqual( ["L%d u = variables.VariableV1(u_init, name=u_name)" % self._u_line_number, " simple_mul_add/u", " (... Omitted 2 of 3 op(s) ...) +5"], out.lines[index : index + 3]) self.assertEqual("pt simple_mul_add/u", out.font_attr_segs[index + 1][0][2].content) more_elements_command = out.font_attr_segs[index + 2][-1][2].content self.assertStartsWith(more_elements_command, "ps %s " % self._curr_file_path) self.assertIn(" -m 6", more_elements_command) def testListSourceWorks(self): self._debug_dump.set_python_graph(self._sess.graph) out = self._registry.dispatch_command("list_source", []) non_tf_lib_files_start = [ i for i in xrange(len(out.lines)) if out.lines[i].startswith("Source file path")][0] + 1 non_tf_lib_files_end = [ i for i in xrange(len(out.lines)) if out.lines[i].startswith("TensorFlow Python library file(s):")][0] - 1 non_tf_lib_files = [ line.split(" ")[0] for line in out.lines[non_tf_lib_files_start : non_tf_lib_files_end]] self.assertIn(self._curr_file_path, non_tf_lib_files) # Check that the TF library files are marked with special color attribute. for i in xrange(non_tf_lib_files_end + 1, len(out.lines)): if not out.lines[i]: continue for attr_seg in out.font_attr_segs[i]: self.assertTrue(cli_shared.COLOR_GRAY in attr_seg[2] or attr_seg[2] == cli_shared.COLOR_GRAY) def testListSourceWithNodeNameFilterWithMatchesWorks(self): self._debug_dump.set_python_graph(self._sess.graph) out = self._registry.dispatch_command("list_source", ["-n", ".*/read"]) self.assertStartsWith(out.lines[1], "Node name regex filter: \".*/read\"") non_tf_lib_files_start = [ i for i in xrange(len(out.lines)) if out.lines[i].startswith("Source file path")][0] + 1 non_tf_lib_files_end = [ i for i in xrange(len(out.lines)) if out.lines[i].startswith("TensorFlow Python library file(s):")][0] - 1 non_tf_lib_files = [ line.split(" ")[0] for line in out.lines[non_tf_lib_files_start : non_tf_lib_files_end]] self.assertIn(self._curr_file_path, non_tf_lib_files) # Check that the TF library files are marked with special color attribute. for i in xrange(non_tf_lib_files_end + 1, len(out.lines)): if not out.lines[i]: continue for attr_seg in out.font_attr_segs[i]: self.assertTrue(cli_shared.COLOR_GRAY in attr_seg[2] or attr_seg[2] == cli_shared.COLOR_GRAY) def testListSourceWithNodeNameFilterWithNoMatchesWorks(self): self._debug_dump.set_python_graph(self._sess.graph) out = self._registry.dispatch_command("list_source", ["-n", "^$"]) self.assertEqual([ "List of source files that created nodes in this run", "Node name regex filter: \"^$\"", "", "[No source file information.]"], out.lines) def testListSourceWithPathAndNodeNameFiltersWorks(self): self._debug_dump.set_python_graph(self._sess.graph) out = self._registry.dispatch_command( "list_source", ["-p", self._curr_file_path, "-n", ".*read"]) self.assertEqual([ "List of source files that created nodes in this run", "File path regex filter: \"%s\"" % self._curr_file_path, "Node name regex filter: \".*read\"", ""], out.lines[:4]) def testListSourceWithCompiledPythonSourceWorks(self): def fake_list_source_files_against_dump(dump, path_regex_whitelist=None, node_name_regex_whitelist=None): del dump, path_regex_whitelist, node_name_regex_whitelist return [("compiled_1.pyc", False, 10, 20, 30, 4), ("compiled_2.pyo", False, 10, 20, 30, 5), ("uncompiled.py", False, 10, 20, 30, 6)] with test.mock.patch.object( source_utils, "list_source_files_against_dump", side_effect=fake_list_source_files_against_dump): out = self._registry.dispatch_command("list_source", []) self.assertStartsWith(out.lines[4], "compiled_1.pyc") self.assertEqual((0, 14, [cli_shared.COLOR_WHITE]), out.font_attr_segs[4][0]) self.assertStartsWith(out.lines[5], "compiled_2.pyo") self.assertEqual((0, 14, [cli_shared.COLOR_WHITE]), out.font_attr_segs[5][0]) self.assertStartsWith(out.lines[6], "uncompiled.py") self.assertEqual(0, out.font_attr_segs[6][0][0]) self.assertEqual(13, out.font_attr_segs[6][0][1]) self.assertEqual(cli_shared.COLOR_WHITE, out.font_attr_segs[6][0][2][0]) self.assertEqual("ps uncompiled.py -b 6", out.font_attr_segs[6][0][2][1].content) def testListInputInvolvingNodesWithMultipleOutputs(self): """List an input tree containing tensors from non-:0 output slot.""" with session.Session(config=no_rewrite_session_config()) as sess: x = variables.VariableV1([1, 3, 3, 7], name="x") _, idx = array_ops.unique(x, name="x_unique") idx_times_two = math_ops.multiply(idx, 2, name="idx_times_two") self.evaluate(x.initializer) run_options = config_pb2.RunOptions(output_partition_graphs=True) debug_utils.watch_graph( run_options, sess.graph, debug_ops=["DebugIdentity"], debug_urls="file://%s" % self._dump_root_for_unique) run_metadata = config_pb2.RunMetadata() self.assertAllEqual( [0, 2, 2, 4], sess.run(idx_times_two, options=run_options, run_metadata=run_metadata)) debug_dump = debug_data.DebugDumpDir( self._dump_root_for_unique, partition_graphs=run_metadata.partition_graphs) _, registry = create_analyzer_cli(debug_dump) out = registry.dispatch_command("li", ["idx_times_two"]) self.assertEqual( ["Inputs to node \"idx_times_two\" (Depth limit = 1):", "|- (1) x_unique:1"], out.lines[:2]) class AnalyzerCLIPrintLargeTensorTest(test_util.TensorFlowTestCase): @classmethod def setUpClass(cls): cls._dump_root = tempfile.mkdtemp() with session.Session(config=no_rewrite_session_config()) as sess: # 2400 elements should exceed the default threshold (2000). x = constant_op.constant(np.zeros([300, 8]), name="large_tensors/x") run_options = config_pb2.RunOptions(output_partition_graphs=True) debug_utils.watch_graph( run_options, sess.graph, debug_ops=["DebugIdentity"], debug_urls="file://%s" % cls._dump_root) # Invoke Session.run(). run_metadata = config_pb2.RunMetadata() sess.run(x, options=run_options, run_metadata=run_metadata) cls._debug_dump = debug_data.DebugDumpDir( cls._dump_root, partition_graphs=run_metadata.partition_graphs) # Construct the analyzer and command registry. cls._analyzer, cls._registry = create_analyzer_cli(cls._debug_dump) @classmethod def tearDownClass(cls): # Tear down temporary dump directory. shutil.rmtree(cls._dump_root) def testPrintLargeTensorWithoutAllOption(self): out = self._registry.dispatch_command( "print_tensor", ["large_tensors/x:0"], screen_info={"cols": 80}) # Assert that ellipses are present in the tensor value printout. self.assertIn("...,", out.lines[4]) # 2100 still exceeds 2000. out = self._registry.dispatch_command( "print_tensor", ["large_tensors/x:0[:, 0:7]"], screen_info={"cols": 80}) self.assertIn("...,", out.lines[4]) def testPrintLargeTensorWithAllOption(self): out = self._registry.dispatch_command( "print_tensor", ["large_tensors/x:0", "-a"], screen_info={"cols": 80}) # Assert that ellipses are not present in the tensor value printout. self.assertNotIn("...,", out.lines[4]) out = self._registry.dispatch_command( "print_tensor", ["large_tensors/x:0[:, 0:7]", "--all"], screen_info={"cols": 80}) self.assertNotIn("...,", out.lines[4]) @test_util.run_v1_only("b/120545219") class AnalyzerCLIControlDepTest(test_util.TensorFlowTestCase): @classmethod def setUpClass(cls): cls._dump_root = tempfile.mkdtemp() cls._is_gpu_available = test.is_gpu_available() if cls._is_gpu_available: gpu_name = test_util.gpu_device_name() cls._main_device = "/job:localhost/replica:0/task:0" + gpu_name else: cls._main_device = "/job:localhost/replica:0/task:0/device:CPU:0" with session.Session(config=no_rewrite_session_config()) as sess: x_init_val = np.array([5.0, 3.0]) x_init = constant_op.constant(x_init_val, shape=[2]) x = variables.VariableV1(x_init, name="control_deps/x") y = math_ops.add(x, x, name="control_deps/y") y = control_flow_ops.with_dependencies( [x], y, name="control_deps/ctrl_dep_y") z = math_ops.multiply(x, y, name="control_deps/z") z = control_flow_ops.with_dependencies( [x, y], z, name="control_deps/ctrl_dep_z") x.initializer.run() run_options = config_pb2.RunOptions(output_partition_graphs=True) debug_utils.watch_graph( run_options, sess.graph, debug_ops=["DebugIdentity"], debug_urls="file://%s" % cls._dump_root) # Invoke Session.run(). run_metadata = config_pb2.RunMetadata() sess.run(z, options=run_options, run_metadata=run_metadata) debug_dump = debug_data.DebugDumpDir( cls._dump_root, partition_graphs=run_metadata.partition_graphs) # Construct the analyzer and command handler registry. _, cls._registry = create_analyzer_cli(debug_dump) @classmethod def tearDownClass(cls): # Tear down temporary dump directory. shutil.rmtree(cls._dump_root) def testNodeInfoWithControlDependencies(self): # Call node_info on a node with control inputs. out = self._registry.dispatch_command("node_info", ["control_deps/ctrl_dep_y"]) assert_node_attribute_lines( self, out, "control_deps/ctrl_dep_y", "Identity", self._main_device, [("Add", "control_deps/y")], [("VariableV2", "control_deps/x")], [("Mul", "control_deps/z")], [("Identity", "control_deps/ctrl_dep_z")]) # Call node info on a node with control recipients. out = self._registry.dispatch_command("ni", ["control_deps/x"]) assert_node_attribute_lines(self, out, "control_deps/x", "VariableV2", self._main_device, [], [], [("Identity", "control_deps/x/read")], [("Identity", "control_deps/ctrl_dep_y"), ("Identity", "control_deps/ctrl_dep_z")]) # Verify the menu items (command shortcuts) in the output. check_menu_item(self, out, 10, len(out.lines[10]) - len("control_deps/x/read"), len(out.lines[10]), "ni -a -d -t control_deps/x/read") if out.lines[13].endswith("control_deps/ctrl_dep_y"): y_line = 13 z_line = 14 else: y_line = 14 z_line = 13 check_menu_item(self, out, y_line, len(out.lines[y_line]) - len("control_deps/ctrl_dep_y"), len(out.lines[y_line]), "ni -a -d -t control_deps/ctrl_dep_y") check_menu_item(self, out, z_line, len(out.lines[z_line]) - len("control_deps/ctrl_dep_z"), len(out.lines[z_line]), "ni -a -d -t control_deps/ctrl_dep_z") def testListInputsNonRecursiveNoControl(self): """List inputs non-recursively, without any control inputs.""" # Do not include node op types. node_name = "control_deps/z" out = self._registry.dispatch_command("list_inputs", [node_name]) self.assertEqual([ "Inputs to node \"%s\" (Depth limit = 1):" % node_name, "|- (1) control_deps/x/read", "| |- ...", "|- (1) control_deps/ctrl_dep_y", " |- ...", "", "Legend:", " (d): recursion depth = d." ], out.lines) # Include node op types. out = self._registry.dispatch_command("li", ["-t", node_name]) self.assertEqual([ "Inputs to node \"%s\" (Depth limit = 1):" % node_name, "|- (1) [Identity] control_deps/x/read", "| |- ...", "|- (1) [Identity] control_deps/ctrl_dep_y", " |- ...", "", "Legend:", " (d): recursion depth = d.", " [Op]: Input node has op type Op." ], out.lines) check_main_menu( self, out, list_tensors_enabled=True, node_info_node_name=node_name, print_tensor_node_name=node_name, list_outputs_node_name=node_name) # Verify that the node name has bold attribute. self.assertEqual([(16, 16 + len(node_name), "bold")], out.font_attr_segs[0]) # Verify the menu items (command shortcuts) in the output. check_menu_item(self, out, 1, len(out.lines[1]) - len("control_deps/x/read"), len(out.lines[1]), "li -c -r control_deps/x/read") check_menu_item(self, out, 3, len(out.lines[3]) - len("control_deps/ctrl_dep_y"), len(out.lines[3]), "li -c -r control_deps/ctrl_dep_y") def testListInputsNonRecursiveNoControlUsingTensorName(self): """List inputs using the name of an output tensor of the node.""" # Do not include node op types. node_name = "control_deps/z" tensor_name = node_name + ":0" out = self._registry.dispatch_command("list_inputs", [tensor_name]) self.assertEqual([ "Inputs to node \"%s\" (Depth limit = 1):" % node_name, "|- (1) control_deps/x/read", "| |- ...", "|- (1) control_deps/ctrl_dep_y", " |- ...", "", "Legend:", " (d): recursion depth = d." ], out.lines) check_main_menu( self, out, list_tensors_enabled=True, node_info_node_name=node_name, print_tensor_node_name=node_name, list_outputs_node_name=node_name) check_menu_item(self, out, 1, len(out.lines[1]) - len("control_deps/x/read"), len(out.lines[1]), "li -c -r control_deps/x/read") check_menu_item(self, out, 3, len(out.lines[3]) - len("control_deps/ctrl_dep_y"), len(out.lines[3]), "li -c -r control_deps/ctrl_dep_y") def testListInputsNonRecursiveWithControls(self): """List inputs non-recursively, with control inputs.""" node_name = "control_deps/ctrl_dep_z" out = self._registry.dispatch_command("li", ["-t", node_name, "-c"]) self.assertEqual([ "Inputs to node \"%s\" (Depth limit = 1, " % node_name + "control inputs included):", "|- (1) [Mul] control_deps/z", "| |- ...", "|- (1) (Ctrl) [Identity] control_deps/ctrl_dep_y", "| |- ...", "|- (1) (Ctrl) [VariableV2] control_deps/x", "", "Legend:", " (d): recursion depth = d.", " (Ctrl): Control input.", " [Op]: Input node has op type Op." ], out.lines) check_main_menu( self, out, list_tensors_enabled=True, node_info_node_name=node_name, print_tensor_node_name=node_name, list_outputs_node_name=node_name) check_menu_item(self, out, 1, len(out.lines[1]) - len("control_deps/z"), len(out.lines[1]), "li -c -r control_deps/z") check_menu_item(self, out, 3, len(out.lines[3]) - len("control_deps/ctrl_dep_y"), len(out.lines[3]), "li -c -r control_deps/ctrl_dep_y") check_menu_item(self, out, 5, len(out.lines[5]) - len("control_deps/x"), len(out.lines[5]), "li -c -r control_deps/x") def testListInputsRecursiveWithControls(self): """List inputs recursively, with control inputs.""" node_name = "control_deps/ctrl_dep_z" out = self._registry.dispatch_command("li", ["-c", "-r", "-t", node_name]) self.assertEqual([ "Inputs to node \"%s\" (Depth limit = 20, " % node_name + "control inputs included):", "|- (1) [Mul] control_deps/z", "| |- (2) [Identity] control_deps/x/read", "| | |- (3) [VariableV2] control_deps/x", "| |- (2) [Identity] control_deps/ctrl_dep_y", "| |- (3) [Add] control_deps/y", "| | |- (4) [Identity] control_deps/x/read", "| | | |- (5) [VariableV2] control_deps/x", "| | |- (4) [Identity] control_deps/x/read", "| | |- (5) [VariableV2] control_deps/x", "| |- (3) (Ctrl) [VariableV2] control_deps/x", "|- (1) (Ctrl) [Identity] control_deps/ctrl_dep_y", "| |- (2) [Add] control_deps/y", "| | |- (3) [Identity] control_deps/x/read", "| | | |- (4) [VariableV2] control_deps/x", "| | |- (3) [Identity] control_deps/x/read", "| | |- (4) [VariableV2] control_deps/x", "| |- (2) (Ctrl) [VariableV2] control_deps/x", "|- (1) (Ctrl) [VariableV2] control_deps/x", "", "Legend:", " (d): recursion depth = d.", " (Ctrl): Control input.", " [Op]: Input node has op type Op." ], out.lines) check_main_menu( self, out, list_tensors_enabled=True, node_info_node_name=node_name, print_tensor_node_name=node_name, list_outputs_node_name=node_name) check_menu_item(self, out, 1, len(out.lines[1]) - len("control_deps/z"), len(out.lines[1]), "li -c -r control_deps/z") check_menu_item(self, out, 11, len(out.lines[11]) - len("control_deps/ctrl_dep_y"), len(out.lines[11]), "li -c -r control_deps/ctrl_dep_y") check_menu_item(self, out, 18, len(out.lines[18]) - len("control_deps/x"), len(out.lines[18]), "li -c -r control_deps/x") def testListInputsRecursiveWithControlsWithDepthLimit(self): """List inputs recursively, with control inputs and a depth limit.""" node_name = "control_deps/ctrl_dep_z" out = self._registry.dispatch_command( "li", ["-c", "-r", "-t", "-d", "2", node_name]) self.assertEqual([ "Inputs to node \"%s\" (Depth limit = 2, " % node_name + "control inputs included):", "|- (1) [Mul] control_deps/z", "| |- (2) [Identity] control_deps/x/read", "| | |- ...", "| |- (2) [Identity] control_deps/ctrl_dep_y", "| |- ...", "|- (1) (Ctrl) [Identity] control_deps/ctrl_dep_y", "| |- (2) [Add] control_deps/y", "| | |- ...", "| |- (2) (Ctrl) [VariableV2] control_deps/x", "|- (1) (Ctrl) [VariableV2] control_deps/x", "", "Legend:", " (d): recursion depth = d.", " (Ctrl): Control input.", " [Op]: Input node has op type Op." ], out.lines) check_main_menu( self, out, list_tensors_enabled=True, node_info_node_name=node_name, print_tensor_node_name=node_name, list_outputs_node_name=node_name) check_menu_item(self, out, 1, len(out.lines[1]) - len("control_deps/z"), len(out.lines[1]), "li -c -r control_deps/z") check_menu_item(self, out, 10, len(out.lines[10]) - len("control_deps/x"), len(out.lines[10]), "li -c -r control_deps/x") def testListInputsNodeWithoutInputs(self): """List the inputs to a node without any input.""" node_name = "control_deps/x" out = self._registry.dispatch_command("li", ["-c", "-r", "-t", node_name]) self.assertEqual([ "Inputs to node \"%s\" (Depth limit = 20, control " % node_name + "inputs included):", " [None]", "", "Legend:", " (d): recursion depth = d.", " (Ctrl): Control input.", " [Op]: Input node has op type Op." ], out.lines) check_main_menu( self, out, list_tensors_enabled=True, node_info_node_name=node_name, print_tensor_node_name=node_name, list_outputs_node_name=node_name) def testListInputsNonexistentNode(self): out = self._registry.dispatch_command( "list_inputs", ["control_deps/z/foo"]) self.assertEqual([ "ERROR: There is no node named \"control_deps/z/foo\" in the " "partition graphs"], out.lines) def testListRecipientsRecursiveWithControlsWithDepthLimit(self): """List recipients recursively, with control inputs and a depth limit.""" out = self._registry.dispatch_command( "lo", ["-c", "-r", "-t", "-d", "1", "control_deps/x"]) self.assertEqual([ "Recipients of node \"control_deps/x\" (Depth limit = 1, control " "recipients included):", "|- (1) [Identity] control_deps/x/read", "| |- ...", "|- (1) (Ctrl) [Identity] control_deps/ctrl_dep_y", "| |- ...", "|- (1) (Ctrl) [Identity] control_deps/ctrl_dep_z", "", "Legend:", " (d): recursion depth = d.", " (Ctrl): Control input.", " [Op]: Input node has op type Op."], out.lines) check_menu_item(self, out, 1, len(out.lines[1]) - len("control_deps/x/read"), len(out.lines[1]), "lo -c -r control_deps/x/read") check_menu_item(self, out, 3, len(out.lines[3]) - len("control_deps/ctrl_dep_y"), len(out.lines[3]), "lo -c -r control_deps/ctrl_dep_y") check_menu_item(self, out, 5, len(out.lines[5]) - len("control_deps/ctrl_dep_z"), len(out.lines[5]), "lo -c -r control_deps/ctrl_dep_z") # Verify the bold attribute of the node name. self.assertEqual([(20, 20 + len("control_deps/x"), "bold")], out.font_attr_segs[0]) @test_util.run_v1_only("b/120545219") class AnalyzerCLIWhileLoopTest(test_util.TensorFlowTestCase): @classmethod def setUpClass(cls): cls._dump_root = tempfile.mkdtemp() with session.Session(config=no_rewrite_session_config()) as sess: loop_var = constant_op.constant(0, name="while_loop_test/loop_var") cond = lambda loop_var: math_ops.less(loop_var, 10) body = lambda loop_var: math_ops.add(loop_var, 1) while_loop = control_flow_ops.while_loop( cond, body, [loop_var], parallel_iterations=1) run_options = config_pb2.RunOptions(output_partition_graphs=True) debug_url = "file://%s" % cls._dump_root watch_opts = run_options.debug_options.debug_tensor_watch_opts # Add debug tensor watch for "while/Identity". watch = watch_opts.add() watch.node_name = "while/Identity" watch.output_slot = 0 watch.debug_ops.append("DebugIdentity") watch.debug_urls.append(debug_url) # Invoke Session.run(). run_metadata = config_pb2.RunMetadata() sess.run(while_loop, options=run_options, run_metadata=run_metadata) cls._debug_dump = debug_data.DebugDumpDir( cls._dump_root, partition_graphs=run_metadata.partition_graphs) cls._analyzer, cls._registry = create_analyzer_cli(cls._debug_dump) @classmethod def tearDownClass(cls): # Tear down temporary dump directory. shutil.rmtree(cls._dump_root) def testMultipleDumpsPrintTensorNoNumber(self): output = self._registry.dispatch_command("pt", ["while/Identity:0"]) self.assertEqual("Tensor \"while/Identity:0\" generated 10 dumps:", output.lines[0]) for i in xrange(10): self.assertTrue(output.lines[i + 1].startswith("#%d" % i)) self.assertTrue(output.lines[i + 1].endswith( " ms] while/Identity:0:DebugIdentity")) self.assertEqual( "You can use the -n (--number) flag to specify which dump to print.", output.lines[-3]) self.assertEqual("For example:", output.lines[-2]) self.assertEqual(" print_tensor while/Identity:0 -n 0", output.lines[-1]) def testMultipleDumpsPrintTensorWithNumber(self): for i in xrange(5): output = self._registry.dispatch_command( "pt", ["while/Identity:0", "-n", "%d" % i]) self.assertEqual("Tensor \"while/Identity:0:DebugIdentity (dump #%d)\":" % i, output.lines[0]) self.assertEqual(" dtype: int32", output.lines[1]) self.assertEqual(" shape: ()", output.lines[2]) self.assertEqual("", output.lines[3]) self.assertTrue(output.lines[4].startswith("array(%d" % i)) self.assertTrue(output.lines[4].endswith(")")) def testMultipleDumpsPrintTensorInvalidNumber(self): output = self._registry.dispatch_command("pt", ["while/Identity:0", "-n", "10"]) self.assertEqual([ "ERROR: Specified number (10) exceeds the number of available dumps " "(10) for tensor while/Identity:0" ], output.lines) if __name__ == "__main__": googletest.main()
tensorflow-master
tensorflow/python/debug/cli/analyzer_cli_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Configurations for TensorFlow Debugger (TFDBG) command-line interfaces.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import json import os from tensorflow.python.debug.cli import debugger_cli_common from tensorflow.python.platform import gfile RL = debugger_cli_common.RichLine class CLIConfig(object): """Client-facing configurations for TFDBG command-line interfaces.""" _CONFIG_FILE_NAME = ".tfdbg_config" _DEFAULT_CONFIG = [ ("graph_recursion_depth", 20), ("mouse_mode", True), ] def __init__(self, config_file_path=None): self._config_file_path = (config_file_path or self._default_config_file_path()) self._config = collections.OrderedDict(self._DEFAULT_CONFIG) if gfile.Exists(self._config_file_path): config = self._load_from_file() for key, value in config.items(): self._config[key] = value self._save_to_file() self._set_callbacks = {} def get(self, property_name): if property_name not in self._config: raise KeyError("%s is not a valid property name." % property_name) return self._config[property_name] def set(self, property_name, property_val): """Set the value of a property. Supports limitd property value types: `bool`, `int` and `str`. Args: property_name: Name of the property. property_val: Value of the property. If the property has `bool` type and this argument has `str` type, the `str` value will be parsed as a `bool` Raises: ValueError: if a `str` property_value fails to be parsed as a `bool`. KeyError: if `property_name` is an invalid property name. """ if property_name not in self._config: raise KeyError("%s is not a valid property name." % property_name) orig_val = self._config[property_name] if isinstance(orig_val, bool): if isinstance(property_val, str): if property_val.lower() in ("1", "true", "t", "yes", "y", "on"): property_val = True elif property_val.lower() in ("0", "false", "f", "no", "n", "off"): property_val = False else: raise ValueError( "Invalid string value for bool type: %s" % property_val) else: property_val = bool(property_val) elif isinstance(orig_val, int): property_val = int(property_val) elif isinstance(orig_val, str): property_val = str(property_val) else: raise TypeError("Unsupported property type: %s" % type(orig_val)) self._config[property_name] = property_val self._save_to_file() # Invoke set-callback. if property_name in self._set_callbacks: self._set_callbacks[property_name](self._config) def set_callback(self, property_name, callback): """Set a set-callback for given property. Args: property_name: Name of the property. callback: The callback as a `callable` of signature: def cbk(config): where config is the config after it is set to the new value. The callback is invoked each time the set() method is called with the matching property_name. Raises: KeyError: If property_name does not exist. TypeError: If `callback` is not callable. """ if property_name not in self._config: raise KeyError("%s is not a valid property name." % property_name) if not callable(callback): raise TypeError("The callback object provided is not callable.") self._set_callbacks[property_name] = callback def _default_config_file_path(self): return os.path.join(os.path.expanduser("~"), self._CONFIG_FILE_NAME) def _save_to_file(self): try: with gfile.Open(self._config_file_path, "w") as config_file: json.dump(self._config, config_file) except IOError: pass def summarize(self, highlight=None): """Get a text summary of the config. Args: highlight: A property name to highlight in the output. Returns: A `RichTextLines` output. """ lines = [RL("Command-line configuration:", "bold"), RL("")] for name, val in self._config.items(): highlight_attr = "bold" if name == highlight else None line = RL(" ") line += RL(name, ["underline", highlight_attr]) line += RL(": ") line += RL(str(val), font_attr=highlight_attr) lines.append(line) return debugger_cli_common.rich_text_lines_from_rich_line_list(lines) def _load_from_file(self): try: with gfile.Open(self._config_file_path, "r") as config_file: config_dict = json.load(config_file) config = collections.OrderedDict() for key in sorted(config_dict.keys()): config[key] = config_dict[key] return config except (IOError, ValueError): # The reading of the config file may fail due to IO issues or file # corruption. We do not want tfdbg to error out just because of that. return dict()
tensorflow-master
tensorflow/python/debug/cli/cli_config.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Building Blocks of the TensorFlow Debugger CLI.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import stat import tempfile import numpy as np from tensorflow.python import pywrap_tensorflow_internal from tensorflow.python.debug.cli import debugger_cli_common from tensorflow.python.framework import test_util from tensorflow.python.platform import gfile from tensorflow.python.platform import googletest class CommandLineExitTest(test_util.TensorFlowTestCase): def testConstructionWithoutToken(self): exit_exc = debugger_cli_common.CommandLineExit() self.assertTrue(isinstance(exit_exc, Exception)) def testConstructionWithToken(self): exit_exc = debugger_cli_common.CommandLineExit(exit_token={"foo": "bar"}) self.assertTrue(isinstance(exit_exc, Exception)) self.assertEqual({"foo": "bar"}, exit_exc.exit_token) class RichTextLinesTest(test_util.TensorFlowTestCase): def testRichTextLinesConstructorComplete(self): # Test RichTextLines constructor. screen_output = debugger_cli_common.RichTextLines( ["Roses are red", "Violets are blue"], font_attr_segs={0: [(0, 5, "red")], 1: [(0, 7, "blue")]}, annotations={0: "longer wavelength", 1: "shorter wavelength"}) self.assertEqual(2, len(screen_output.lines)) self.assertEqual(2, len(screen_output.font_attr_segs)) self.assertEqual(1, len(screen_output.font_attr_segs[0])) self.assertEqual(1, len(screen_output.font_attr_segs[1])) self.assertEqual(2, len(screen_output.annotations)) self.assertEqual(2, screen_output.num_lines()) def testRichTextLinesConstructorWithInvalidType(self): with self.assertRaisesRegexp(ValueError, "Unexpected type in lines"): debugger_cli_common.RichTextLines(123) def testRichTextLinesConstructorWithString(self): # Test constructing a RichTextLines object with a string, instead of a list # of strings. screen_output = debugger_cli_common.RichTextLines( "Roses are red", font_attr_segs={0: [(0, 5, "red")]}, annotations={0: "longer wavelength"}) self.assertEqual(1, len(screen_output.lines)) self.assertEqual(1, len(screen_output.font_attr_segs)) self.assertEqual(1, len(screen_output.font_attr_segs[0])) self.assertEqual(1, len(screen_output.annotations)) def testRichLinesAppendRichLine(self): rtl = debugger_cli_common.RichTextLines( "Roses are red", font_attr_segs={0: [(0, 5, "red")]}) rtl.append_rich_line(debugger_cli_common.RichLine("Violets are ") + debugger_cli_common.RichLine("blue", "blue")) self.assertEqual(2, len(rtl.lines)) self.assertEqual(2, len(rtl.font_attr_segs)) self.assertEqual(1, len(rtl.font_attr_segs[0])) self.assertEqual(1, len(rtl.font_attr_segs[1])) def testRichLineLenMethodWorks(self): self.assertEqual(0, len(debugger_cli_common.RichLine())) self.assertEqual(0, len(debugger_cli_common.RichLine(""))) self.assertEqual(1, len(debugger_cli_common.RichLine("x"))) self.assertEqual(6, len(debugger_cli_common.RichLine("x y z ", "blue"))) def testRichTextLinesConstructorIncomplete(self): # Test RichTextLines constructor, with incomplete keyword arguments. screen_output = debugger_cli_common.RichTextLines( ["Roses are red", "Violets are blue"], font_attr_segs={0: [(0, 5, "red")], 1: [(0, 7, "blue")]}) self.assertEqual(2, len(screen_output.lines)) self.assertEqual(2, len(screen_output.font_attr_segs)) self.assertEqual(1, len(screen_output.font_attr_segs[0])) self.assertEqual(1, len(screen_output.font_attr_segs[1])) self.assertEqual({}, screen_output.annotations) def testModifyRichTextLinesObject(self): screen_output = debugger_cli_common.RichTextLines( ["Roses are red", "Violets are blue"]) self.assertEqual(2, len(screen_output.lines)) screen_output.lines.append("Sugar is sweet") self.assertEqual(3, len(screen_output.lines)) def testMergeRichTextLines(self): screen_output_1 = debugger_cli_common.RichTextLines( ["Roses are red", "Violets are blue"], font_attr_segs={0: [(0, 5, "red")], 1: [(0, 7, "blue")]}, annotations={0: "longer wavelength", 1: "shorter wavelength"}) screen_output_2 = debugger_cli_common.RichTextLines( ["Lilies are white", "Sunflowers are yellow"], font_attr_segs={0: [(0, 6, "white")], 1: [(0, 7, "yellow")]}, annotations={ "metadata": "foo", 0: "full spectrum", 1: "medium wavelength" }) screen_output_1.extend(screen_output_2) self.assertEqual(4, screen_output_1.num_lines()) self.assertEqual([ "Roses are red", "Violets are blue", "Lilies are white", "Sunflowers are yellow" ], screen_output_1.lines) self.assertEqual({ 0: [(0, 5, "red")], 1: [(0, 7, "blue")], 2: [(0, 6, "white")], 3: [(0, 7, "yellow")] }, screen_output_1.font_attr_segs) self.assertEqual({ 0: [(0, 5, "red")], 1: [(0, 7, "blue")], 2: [(0, 6, "white")], 3: [(0, 7, "yellow")] }, screen_output_1.font_attr_segs) self.assertEqual({ "metadata": "foo", 0: "longer wavelength", 1: "shorter wavelength", 2: "full spectrum", 3: "medium wavelength" }, screen_output_1.annotations) def testMergeRichTextLinesEmptyOther(self): screen_output_1 = debugger_cli_common.RichTextLines( ["Roses are red", "Violets are blue"], font_attr_segs={0: [(0, 5, "red")], 1: [(0, 7, "blue")]}, annotations={0: "longer wavelength", 1: "shorter wavelength"}) screen_output_2 = debugger_cli_common.RichTextLines([]) screen_output_1.extend(screen_output_2) self.assertEqual(2, screen_output_1.num_lines()) self.assertEqual(["Roses are red", "Violets are blue"], screen_output_1.lines) self.assertEqual({ 0: [(0, 5, "red")], 1: [(0, 7, "blue")], }, screen_output_1.font_attr_segs) self.assertEqual({ 0: [(0, 5, "red")], 1: [(0, 7, "blue")], }, screen_output_1.font_attr_segs) self.assertEqual({ 0: "longer wavelength", 1: "shorter wavelength", }, screen_output_1.annotations) def testMergeRichTextLinesEmptySelf(self): screen_output_1 = debugger_cli_common.RichTextLines([]) screen_output_2 = debugger_cli_common.RichTextLines( ["Roses are red", "Violets are blue"], font_attr_segs={0: [(0, 5, "red")], 1: [(0, 7, "blue")]}, annotations={0: "longer wavelength", 1: "shorter wavelength"}) screen_output_1.extend(screen_output_2) self.assertEqual(2, screen_output_1.num_lines()) self.assertEqual(["Roses are red", "Violets are blue"], screen_output_1.lines) self.assertEqual({ 0: [(0, 5, "red")], 1: [(0, 7, "blue")], }, screen_output_1.font_attr_segs) self.assertEqual({ 0: [(0, 5, "red")], 1: [(0, 7, "blue")], }, screen_output_1.font_attr_segs) self.assertEqual({ 0: "longer wavelength", 1: "shorter wavelength", }, screen_output_1.annotations) def testAppendALineWithAttributeSegmentsWorks(self): screen_output_1 = debugger_cli_common.RichTextLines( ["Roses are red"], font_attr_segs={0: [(0, 5, "red")]}, annotations={0: "longer wavelength"}) screen_output_1.append("Violets are blue", [(0, 7, "blue")]) self.assertEqual(["Roses are red", "Violets are blue"], screen_output_1.lines) self.assertEqual({ 0: [(0, 5, "red")], 1: [(0, 7, "blue")], }, screen_output_1.font_attr_segs) def testPrependALineWithAttributeSegmentsWorks(self): screen_output_1 = debugger_cli_common.RichTextLines( ["Roses are red"], font_attr_segs={0: [(0, 5, "red")]}, annotations={0: "longer wavelength"}) screen_output_1.prepend("Violets are blue", font_attr_segs=[(0, 7, "blue")]) self.assertEqual(["Violets are blue", "Roses are red"], screen_output_1.lines) self.assertEqual({ 0: [(0, 7, "blue")], 1: [(0, 5, "red")], }, screen_output_1.font_attr_segs) def testWriteToFileSucceeds(self): screen_output = debugger_cli_common.RichTextLines( ["Roses are red", "Violets are blue"], font_attr_segs={0: [(0, 5, "red")], 1: [(0, 7, "blue")]}) file_path = tempfile.mktemp() screen_output.write_to_file(file_path) with gfile.Open(file_path, "r") as f: self.assertEqual("Roses are red\nViolets are blue\n", f.read()) # Clean up. gfile.Remove(file_path) def testAttemptToWriteToADirectoryFails(self): screen_output = debugger_cli_common.RichTextLines( ["Roses are red", "Violets are blue"], font_attr_segs={0: [(0, 5, "red")], 1: [(0, 7, "blue")]}) with self.assertRaises(Exception): screen_output.write_to_file("/") def testAttemptToWriteToFileInNonexistentDirectoryFails(self): screen_output = debugger_cli_common.RichTextLines( ["Roses are red", "Violets are blue"], font_attr_segs={0: [(0, 5, "red")], 1: [(0, 7, "blue")]}) file_path = os.path.join(tempfile.mkdtemp(), "foo", "bar.txt") with self.assertRaises(Exception): screen_output.write_to_file(file_path) class CommandHandlerRegistryTest(test_util.TensorFlowTestCase): def setUp(self): self._intentional_error_msg = "Intentionally raised exception" def _noop_handler(self, argv, screen_info=None): # A handler that does nothing other than returning "Done." return debugger_cli_common.RichTextLines(["Done."]) def _handler_raising_exception(self, argv, screen_info=None): # A handler that intentionally raises an exception. raise RuntimeError(self._intentional_error_msg) def _handler_returning_wrong_type(self, argv, screen_info=None): # A handler that returns a wrong type, instead of the correct type # (RichTextLines). return "Hello" def _echo_screen_cols(self, argv, screen_info=None): # A handler that uses screen_info. return debugger_cli_common.RichTextLines( ["cols = %d" % screen_info["cols"]]) def _exiting_handler(self, argv, screen_info=None): """A handler that exits with an exit token.""" if argv: exit_token = argv[0] else: exit_token = None raise debugger_cli_common.CommandLineExit(exit_token=exit_token) def testRegisterEmptyCommandPrefix(self): registry = debugger_cli_common.CommandHandlerRegistry() # Attempt to register an empty-string as a command prefix should trigger # an exception. with self.assertRaisesRegexp(ValueError, "Empty command prefix"): registry.register_command_handler("", self._noop_handler, "") def testRegisterAndInvokeHandler(self): registry = debugger_cli_common.CommandHandlerRegistry() registry.register_command_handler("noop", self._noop_handler, "") self.assertTrue(registry.is_registered("noop")) self.assertFalse(registry.is_registered("beep")) cmd_output = registry.dispatch_command("noop", []) self.assertEqual(["Done."], cmd_output.lines) # Attempt to invoke an unregistered command prefix should trigger an # exception. with self.assertRaisesRegexp(ValueError, "No handler is registered"): registry.dispatch_command("beep", []) # Empty command prefix should trigger an exception. with self.assertRaisesRegexp(ValueError, "Prefix is empty"): registry.dispatch_command("", []) def testExitingHandler(self): """Test that exit exception is correctly raised.""" registry = debugger_cli_common.CommandHandlerRegistry() registry.register_command_handler("exit", self._exiting_handler, "") self.assertTrue(registry.is_registered("exit")) exit_token = None try: registry.dispatch_command("exit", ["foo"]) except debugger_cli_common.CommandLineExit as e: exit_token = e.exit_token self.assertEqual("foo", exit_token) def testInvokeHandlerWithScreenInfo(self): registry = debugger_cli_common.CommandHandlerRegistry() # Register and invoke a command handler that uses screen_info. registry.register_command_handler("cols", self._echo_screen_cols, "") cmd_output = registry.dispatch_command( "cols", [], screen_info={"cols": 100}) self.assertEqual(["cols = 100"], cmd_output.lines) def testRegisterAndInvokeHandlerWithAliases(self): registry = debugger_cli_common.CommandHandlerRegistry() registry.register_command_handler( "noop", self._noop_handler, "", prefix_aliases=["n", "NOOP"]) # is_registered() should work for full prefix and aliases. self.assertTrue(registry.is_registered("noop")) self.assertTrue(registry.is_registered("n")) self.assertTrue(registry.is_registered("NOOP")) cmd_output = registry.dispatch_command("n", []) self.assertEqual(["Done."], cmd_output.lines) cmd_output = registry.dispatch_command("NOOP", []) self.assertEqual(["Done."], cmd_output.lines) def testHandlerWithWrongReturnType(self): registry = debugger_cli_common.CommandHandlerRegistry() registry.register_command_handler("wrong_return", self._handler_returning_wrong_type, "") # If the command handler fails to return a RichTextLines instance, an error # should be triggered. with self.assertRaisesRegexp( ValueError, "Return value from command handler.*is not None or a RichTextLines " "instance"): registry.dispatch_command("wrong_return", []) def testRegisterDuplicateHandlers(self): registry = debugger_cli_common.CommandHandlerRegistry() registry.register_command_handler("noop", self._noop_handler, "") # Registering the same command prefix more than once should trigger an # exception. with self.assertRaisesRegexp( ValueError, "A handler is already registered for command prefix"): registry.register_command_handler("noop", self._noop_handler, "") cmd_output = registry.dispatch_command("noop", []) self.assertEqual(["Done."], cmd_output.lines) def testRegisterDuplicateAliases(self): registry = debugger_cli_common.CommandHandlerRegistry() registry.register_command_handler( "noop", self._noop_handler, "", prefix_aliases=["n"]) # Clash with existing alias. with self.assertRaisesRegexp(ValueError, "clashes with existing prefixes or aliases"): registry.register_command_handler( "cols", self._echo_screen_cols, "", prefix_aliases=["n"]) # The name clash should have prevent the handler from being registered. self.assertFalse(registry.is_registered("cols")) # Aliases can also clash with command prefixes. with self.assertRaisesRegexp(ValueError, "clashes with existing prefixes or aliases"): registry.register_command_handler( "cols", self._echo_screen_cols, "", prefix_aliases=["noop"]) self.assertFalse(registry.is_registered("cols")) def testDispatchHandlerRaisingException(self): registry = debugger_cli_common.CommandHandlerRegistry() registry.register_command_handler("raise_exception", self._handler_raising_exception, "") # The registry should catch and wrap exceptions that occur during command # handling. cmd_output = registry.dispatch_command("raise_exception", []) # The error output contains a stack trace. # So the line count should be >= 2. self.assertGreater(len(cmd_output.lines), 2) self.assertTrue(cmd_output.lines[0].startswith( "Error occurred during handling of command")) self.assertTrue(cmd_output.lines[1].endswith(self._intentional_error_msg)) def testRegisterNonCallableHandler(self): registry = debugger_cli_common.CommandHandlerRegistry() # Attempt to register a non-callable handler should fail. with self.assertRaisesRegexp(ValueError, "handler is not callable"): registry.register_command_handler("non_callable", 1, "") def testRegisterHandlerWithInvalidHelpInfoType(self): registry = debugger_cli_common.CommandHandlerRegistry() with self.assertRaisesRegexp(ValueError, "help_info is not a str"): registry.register_command_handler("noop", self._noop_handler, ["foo"]) def testGetHelpFull(self): registry = debugger_cli_common.CommandHandlerRegistry() registry.register_command_handler( "noop", self._noop_handler, "No operation.\nI.e., do nothing.", prefix_aliases=["n", "NOOP"]) registry.register_command_handler( "cols", self._echo_screen_cols, "Show screen width in number of columns.", prefix_aliases=["c"]) help_lines = registry.get_help().lines # The help info should list commands in alphabetically sorted order, # regardless of order in which the commands are reigstered. self.assertEqual("cols", help_lines[0]) self.assertTrue(help_lines[1].endswith("Aliases: c")) self.assertFalse(help_lines[2]) self.assertTrue(help_lines[3].endswith( "Show screen width in number of columns.")) self.assertFalse(help_lines[4]) self.assertFalse(help_lines[5]) # The default help command should appear in the help output. self.assertEqual("help", help_lines[6]) self.assertEqual("noop", help_lines[12]) self.assertTrue(help_lines[13].endswith("Aliases: n, NOOP")) self.assertFalse(help_lines[14]) self.assertTrue(help_lines[15].endswith("No operation.")) self.assertTrue(help_lines[16].endswith("I.e., do nothing.")) def testGetHelpSingleCommand(self): registry = debugger_cli_common.CommandHandlerRegistry() registry.register_command_handler( "noop", self._noop_handler, "No operation.\nI.e., do nothing.", prefix_aliases=["n", "NOOP"]) registry.register_command_handler( "cols", self._echo_screen_cols, "Show screen width in number of columns.", prefix_aliases=["c"]) # Get help info for one of the two commands, using full prefix. help_lines = registry.get_help("cols").lines self.assertTrue(help_lines[0].endswith("cols")) self.assertTrue(help_lines[1].endswith("Aliases: c")) self.assertFalse(help_lines[2]) self.assertTrue(help_lines[3].endswith( "Show screen width in number of columns.")) # Get help info for one of the two commands, using alias. help_lines = registry.get_help("c").lines self.assertTrue(help_lines[0].endswith("cols")) self.assertTrue(help_lines[1].endswith("Aliases: c")) self.assertFalse(help_lines[2]) self.assertTrue(help_lines[3].endswith( "Show screen width in number of columns.")) # Get help info for a nonexistent command. help_lines = registry.get_help("foo").lines self.assertEqual("Invalid command prefix: \"foo\"", help_lines[0]) def testHelpCommandWithoutIntro(self): registry = debugger_cli_common.CommandHandlerRegistry() registry.register_command_handler( "noop", self._noop_handler, "No operation.\nI.e., do nothing.", prefix_aliases=["n", "NOOP"]) registry.register_command_handler( "cols", self._echo_screen_cols, "Show screen width in number of columns.", prefix_aliases=["c"]) # Get help for all commands. output = registry.dispatch_command("help", []) self.assertEqual(["cols", " Aliases: c", "", " Show screen width in number of columns.", "", "", "help", " Aliases: h", "", " Print this help message.", "", "", "noop", " Aliases: n, NOOP", "", " No operation.", " I.e., do nothing.", "", "", "version", " Aliases: ver", "", " Print the versions of TensorFlow and its key " "dependencies.", "", ""], output.lines) # Get help for one specific command prefix. output = registry.dispatch_command("help", ["noop"]) self.assertEqual(["noop", " Aliases: n, NOOP", "", " No operation.", " I.e., do nothing."], output.lines) # Get help for a nonexistent command prefix. output = registry.dispatch_command("help", ["foo"]) self.assertEqual(["Invalid command prefix: \"foo\""], output.lines) def testHelpCommandWithIntro(self): registry = debugger_cli_common.CommandHandlerRegistry() registry.register_command_handler( "noop", self._noop_handler, "No operation.\nI.e., do nothing.", prefix_aliases=["n", "NOOP"]) help_intro = debugger_cli_common.RichTextLines( ["Introductory comments.", ""]) registry.set_help_intro(help_intro) output = registry.dispatch_command("help", []) self.assertEqual(help_intro.lines + [ "help", " Aliases: h", "", " Print this help message.", "", "", "noop", " Aliases: n, NOOP", "", " No operation.", " I.e., do nothing.", "", "", "version", " Aliases: ver", "", " Print the versions of TensorFlow and its key dependencies.", "", "" ], output.lines) class RegexFindTest(test_util.TensorFlowTestCase): def setUp(self): self._orig_screen_output = debugger_cli_common.RichTextLines( ["Roses are red", "Violets are blue"]) def testRegexFindWithoutExistingFontAttrSegs(self): new_screen_output = debugger_cli_common.regex_find(self._orig_screen_output, "are", "yellow") self.assertEqual(2, len(new_screen_output.font_attr_segs)) self.assertEqual([(6, 9, "yellow")], new_screen_output.font_attr_segs[0]) self.assertEqual([(8, 11, "yellow")], new_screen_output.font_attr_segs[1]) # Check field in annotations carrying a list of matching line indices. self.assertEqual([0, 1], new_screen_output.annotations[ debugger_cli_common.REGEX_MATCH_LINES_KEY]) def testRegexFindWithExistingFontAttrSegs(self): # Add a font attribute segment first. self._orig_screen_output.font_attr_segs[0] = [(9, 12, "red")] self.assertEqual(1, len(self._orig_screen_output.font_attr_segs)) new_screen_output = debugger_cli_common.regex_find(self._orig_screen_output, "are", "yellow") self.assertEqual(2, len(new_screen_output.font_attr_segs)) self.assertEqual([(6, 9, "yellow"), (9, 12, "red")], new_screen_output.font_attr_segs[0]) self.assertEqual([0, 1], new_screen_output.annotations[ debugger_cli_common.REGEX_MATCH_LINES_KEY]) def testRegexFindWithNoMatches(self): new_screen_output = debugger_cli_common.regex_find(self._orig_screen_output, "infrared", "yellow") self.assertEqual({}, new_screen_output.font_attr_segs) self.assertEqual([], new_screen_output.annotations[ debugger_cli_common.REGEX_MATCH_LINES_KEY]) def testInvalidRegex(self): with self.assertRaisesRegexp(ValueError, "Invalid regular expression"): debugger_cli_common.regex_find(self._orig_screen_output, "[", "yellow") def testRegexFindOnPrependedLinesWorks(self): rich_lines = debugger_cli_common.RichTextLines(["Violets are blue"]) rich_lines.prepend(["Roses are red"]) searched_rich_lines = debugger_cli_common.regex_find( rich_lines, "red", "bold") self.assertEqual( {0: [(10, 13, "bold")]}, searched_rich_lines.font_attr_segs) rich_lines = debugger_cli_common.RichTextLines(["Violets are blue"]) rich_lines.prepend(["A poem"], font_attr_segs=[(0, 1, "underline")]) searched_rich_lines = debugger_cli_common.regex_find( rich_lines, "poem", "italic") self.assertEqual( {0: [(0, 1, "underline"), (2, 6, "italic")]}, searched_rich_lines.font_attr_segs) class WrapScreenOutputTest(test_util.TensorFlowTestCase): def setUp(self): self._orig_screen_output = debugger_cli_common.RichTextLines( ["Folk song:", "Roses are red", "Violets are blue"], font_attr_segs={1: [(0, 5, "red"), (6, 9, "gray"), (10, 12, "red"), (12, 13, "crimson")], 2: [(0, 7, "blue"), (8, 11, "gray"), (12, 14, "blue"), (14, 16, "indigo")]}, annotations={1: "longer wavelength", 2: "shorter wavelength"}) def testNoActualWrapping(self): # Large column limit should lead to no actual wrapping. out, new_line_indices = debugger_cli_common.wrap_rich_text_lines( self._orig_screen_output, 100) self.assertEqual(self._orig_screen_output.lines, out.lines) self.assertEqual(self._orig_screen_output.font_attr_segs, out.font_attr_segs) self.assertEqual(self._orig_screen_output.annotations, out.annotations) self.assertEqual(new_line_indices, [0, 1, 2]) def testWrappingWithAttrCutoff(self): out, new_line_indices = debugger_cli_common.wrap_rich_text_lines( self._orig_screen_output, 11) # Add non-row-index field to out. out.annotations["metadata"] = "foo" # Check wrapped text. self.assertEqual(5, len(out.lines)) self.assertEqual("Folk song:", out.lines[0]) self.assertEqual("Roses are r", out.lines[1]) self.assertEqual("ed", out.lines[2]) self.assertEqual("Violets are", out.lines[3]) self.assertEqual(" blue", out.lines[4]) # Check wrapped font_attr_segs. self.assertFalse(0 in out.font_attr_segs) self.assertEqual([(0, 5, "red"), (6, 9, "gray"), (10, 11, "red")], out.font_attr_segs[1]) self.assertEqual([(0, 1, "red"), (1, 2, "crimson")], out.font_attr_segs[2]) self.assertEqual([(0, 7, "blue"), (8, 11, "gray")], out.font_attr_segs[3]) self.assertEqual([(1, 3, "blue"), (3, 5, "indigo")], out.font_attr_segs[4]) # Check annotations. self.assertFalse(0 in out.annotations) self.assertEqual("longer wavelength", out.annotations[1]) self.assertFalse(2 in out.annotations) self.assertEqual("shorter wavelength", out.annotations[3]) self.assertFalse(4 in out.annotations) # Chec that the non-row-index field is present in output. self.assertEqual("foo", out.annotations["metadata"]) self.assertEqual(new_line_indices, [0, 1, 3]) def testWrappingWithMultipleAttrCutoff(self): self._orig_screen_output = debugger_cli_common.RichTextLines( ["Folk song:", "Roses are red", "Violets are blue"], font_attr_segs={1: [(0, 12, "red")], 2: [(1, 16, "blue")]}, annotations={1: "longer wavelength", 2: "shorter wavelength"}) out, new_line_indices = debugger_cli_common.wrap_rich_text_lines( self._orig_screen_output, 5) # Check wrapped text. self.assertEqual(9, len(out.lines)) self.assertEqual("Folk ", out.lines[0]) self.assertEqual("song:", out.lines[1]) self.assertEqual("Roses", out.lines[2]) self.assertEqual(" are ", out.lines[3]) self.assertEqual("red", out.lines[4]) self.assertEqual("Viole", out.lines[5]) self.assertEqual("ts ar", out.lines[6]) self.assertEqual("e blu", out.lines[7]) self.assertEqual("e", out.lines[8]) # Check wrapped font_attr_segs. self.assertFalse(0 in out.font_attr_segs) self.assertFalse(1 in out.font_attr_segs) self.assertEqual([(0, 5, "red")], out.font_attr_segs[2]) self.assertEqual([(0, 5, "red")], out.font_attr_segs[3]) self.assertEqual([(0, 2, "red")], out.font_attr_segs[4]) self.assertEqual([(1, 5, "blue")], out.font_attr_segs[5]) self.assertEqual([(0, 5, "blue")], out.font_attr_segs[6]) self.assertEqual([(0, 5, "blue")], out.font_attr_segs[7]) self.assertEqual([(0, 1, "blue")], out.font_attr_segs[8]) # Check annotations. self.assertFalse(0 in out.annotations) self.assertFalse(1 in out.annotations) self.assertEqual("longer wavelength", out.annotations[2]) self.assertFalse(3 in out.annotations) self.assertFalse(4 in out.annotations) self.assertEqual("shorter wavelength", out.annotations[5]) self.assertFalse(6 in out.annotations) self.assertFalse(7 in out.annotations) self.assertFalse(8 in out.annotations) self.assertEqual(new_line_indices, [0, 2, 5]) def testWrappingInvalidArguments(self): with self.assertRaisesRegexp(ValueError, "Invalid type of input screen_output"): debugger_cli_common.wrap_rich_text_lines("foo", 12) with self.assertRaisesRegexp(ValueError, "Invalid type of input cols"): debugger_cli_common.wrap_rich_text_lines( debugger_cli_common.RichTextLines(["foo", "bar"]), "12") def testWrappingEmptyInput(self): out, new_line_indices = debugger_cli_common.wrap_rich_text_lines( debugger_cli_common.RichTextLines([]), 10) self.assertEqual([], out.lines) self.assertEqual([], new_line_indices) class SliceRichTextLinesTest(test_util.TensorFlowTestCase): def setUp(self): self._original = debugger_cli_common.RichTextLines( ["Roses are red", "Violets are blue"], font_attr_segs={0: [(0, 5, "red")], 1: [(0, 7, "blue")]}, annotations={ 0: "longer wavelength", 1: "shorter wavelength", "foo_metadata": "bar" }) def testSliceBeginning(self): sliced = self._original.slice(0, 1) self.assertEqual(["Roses are red"], sliced.lines) self.assertEqual({0: [(0, 5, "red")]}, sliced.font_attr_segs) # Non-line-number metadata should be preseved. self.assertEqual({ 0: "longer wavelength", "foo_metadata": "bar" }, sliced.annotations) self.assertEqual(1, sliced.num_lines()) def testSliceEnd(self): sliced = self._original.slice(1, 2) self.assertEqual(["Violets are blue"], sliced.lines) # The line index should have changed from 1 to 0. self.assertEqual({0: [(0, 7, "blue")]}, sliced.font_attr_segs) self.assertEqual({ 0: "shorter wavelength", "foo_metadata": "bar" }, sliced.annotations) self.assertEqual(1, sliced.num_lines()) def testAttemptSliceWithNegativeIndex(self): with self.assertRaisesRegexp(ValueError, "Encountered negative index"): self._original.slice(0, -1) class TabCompletionRegistryTest(test_util.TensorFlowTestCase): def setUp(self): self._tc_reg = debugger_cli_common.TabCompletionRegistry() # Register the items in an unsorted order deliberately, to test the sorted # output from get_completions(). self._tc_reg.register_tab_comp_context( ["print_tensor", "pt"], ["node_b:1", "node_b:2", "node_a:1", "node_a:2"]) self._tc_reg.register_tab_comp_context(["node_info"], ["node_c", "node_b", "node_a"]) def testTabCompletion(self): # The returned completions should have sorted order. self.assertEqual( (["node_a:1", "node_a:2", "node_b:1", "node_b:2"], "node_"), self._tc_reg.get_completions("print_tensor", "node_")) self.assertEqual((["node_a:1", "node_a:2", "node_b:1", "node_b:2"], "node_"), self._tc_reg.get_completions("pt", "")) self.assertEqual((["node_a:1", "node_a:2"], "node_a:"), self._tc_reg.get_completions("print_tensor", "node_a")) self.assertEqual((["node_a:1"], "node_a:1"), self._tc_reg.get_completions("pt", "node_a:1")) self.assertEqual(([], ""), self._tc_reg.get_completions("print_tensor", "node_a:3")) self.assertEqual((None, None), self._tc_reg.get_completions("foo", "node_")) def testExtendCompletionItems(self): self.assertEqual( (["node_a:1", "node_a:2", "node_b:1", "node_b:2"], "node_"), self._tc_reg.get_completions("print_tensor", "node_")) self.assertEqual((["node_a", "node_b", "node_c"], "node_"), self._tc_reg.get_completions("node_info", "node_")) self._tc_reg.extend_comp_items("print_tensor", ["node_A:1", "node_A:2"]) self.assertEqual((["node_A:1", "node_A:2", "node_a:1", "node_a:2", "node_b:1", "node_b:2"], "node_"), self._tc_reg.get_completions("print_tensor", "node_")) # Extending the completions for one of the context's context words should # have taken effect on other context words of the same context as well. self.assertEqual((["node_A:1", "node_A:2", "node_a:1", "node_a:2", "node_b:1", "node_b:2"], "node_"), self._tc_reg.get_completions("pt", "node_")) self.assertEqual((["node_a", "node_b", "node_c"], "node_"), self._tc_reg.get_completions("node_info", "node_")) def testExtendCompletionItemsNonexistentContext(self): with self.assertRaisesRegexp( KeyError, "Context word \"foo\" has not been registered"): self._tc_reg.extend_comp_items("foo", ["node_A:1", "node_A:2"]) def testRemoveCompletionItems(self): self.assertEqual( (["node_a:1", "node_a:2", "node_b:1", "node_b:2"], "node_"), self._tc_reg.get_completions("print_tensor", "node_")) self.assertEqual((["node_a", "node_b", "node_c"], "node_"), self._tc_reg.get_completions("node_info", "node_")) self._tc_reg.remove_comp_items("pt", ["node_a:1", "node_a:2"]) self.assertEqual((["node_b:1", "node_b:2"], "node_b:"), self._tc_reg.get_completions("print_tensor", "node_")) self.assertEqual((["node_a", "node_b", "node_c"], "node_"), self._tc_reg.get_completions("node_info", "node_")) def testRemoveCompletionItemsNonexistentContext(self): with self.assertRaisesRegexp( KeyError, "Context word \"foo\" has not been registered"): self._tc_reg.remove_comp_items("foo", ["node_a:1", "node_a:2"]) def testDeregisterContext(self): self.assertEqual( (["node_a:1", "node_a:2", "node_b:1", "node_b:2"], "node_"), self._tc_reg.get_completions("print_tensor", "node_")) self.assertEqual((["node_a", "node_b", "node_c"], "node_"), self._tc_reg.get_completions("node_info", "node_")) self._tc_reg.deregister_context(["print_tensor"]) self.assertEqual((None, None), self._tc_reg.get_completions("print_tensor", "node_")) # The alternative context word should be unaffected. self.assertEqual( (["node_a:1", "node_a:2", "node_b:1", "node_b:2"], "node_"), self._tc_reg.get_completions("pt", "node_")) def testDeregisterNonexistentContext(self): self.assertEqual( (["node_a:1", "node_a:2", "node_b:1", "node_b:2"], "node_"), self._tc_reg.get_completions("print_tensor", "node_")) self.assertEqual((["node_a", "node_b", "node_c"], "node_"), self._tc_reg.get_completions("node_info", "node_")) self._tc_reg.deregister_context(["print_tensor"]) with self.assertRaisesRegexp( KeyError, "Cannot deregister unregistered context word \"print_tensor\""): self._tc_reg.deregister_context(["print_tensor"]) class CommandHistoryTest(test_util.TensorFlowTestCase): def setUp(self): self._history_file_path = tempfile.mktemp() self._cmd_hist = debugger_cli_common.CommandHistory( limit=3, history_file_path=self._history_file_path) def tearDown(self): if os.path.isfile(self._history_file_path): os.remove(self._history_file_path) def _restoreFileReadWritePermissions(self, file_path): os.chmod(file_path, (stat.S_IRUSR | stat.S_IRGRP | stat.S_IROTH | stat.S_IWUSR | stat.S_IWGRP | stat.S_IWOTH)) def testLookUpMostRecent(self): self.assertEqual([], self._cmd_hist.most_recent_n(3)) self._cmd_hist.add_command("list_tensors") self._cmd_hist.add_command("node_info node_a") self.assertEqual(["node_info node_a"], self._cmd_hist.most_recent_n(1)) self.assertEqual(["list_tensors", "node_info node_a"], self._cmd_hist.most_recent_n(2)) self.assertEqual(["list_tensors", "node_info node_a"], self._cmd_hist.most_recent_n(3)) self._cmd_hist.add_command("node_info node_b") self.assertEqual(["node_info node_b"], self._cmd_hist.most_recent_n(1)) self.assertEqual(["node_info node_a", "node_info node_b"], self._cmd_hist.most_recent_n(2)) self.assertEqual(["list_tensors", "node_info node_a", "node_info node_b"], self._cmd_hist.most_recent_n(3)) self.assertEqual(["list_tensors", "node_info node_a", "node_info node_b"], self._cmd_hist.most_recent_n(4)) # Go over the limit. self._cmd_hist.add_command("node_info node_a") self.assertEqual(["node_info node_a"], self._cmd_hist.most_recent_n(1)) self.assertEqual(["node_info node_b", "node_info node_a"], self._cmd_hist.most_recent_n(2)) self.assertEqual( ["node_info node_a", "node_info node_b", "node_info node_a"], self._cmd_hist.most_recent_n(3)) self.assertEqual( ["node_info node_a", "node_info node_b", "node_info node_a"], self._cmd_hist.most_recent_n(4)) def testLookUpPrefix(self): self._cmd_hist.add_command("node_info node_b") self._cmd_hist.add_command("list_tensors") self._cmd_hist.add_command("node_info node_a") self.assertEqual(["node_info node_b", "node_info node_a"], self._cmd_hist.lookup_prefix("node_info", 10)) self.assertEqual(["node_info node_a"], self._cmd_hist.lookup_prefix( "node_info", 1)) self.assertEqual([], self._cmd_hist.lookup_prefix("print_tensor", 10)) def testAddNonStrCommand(self): with self.assertRaisesRegexp( TypeError, "Attempt to enter non-str entry to command history"): self._cmd_hist.add_command(["print_tensor node_a:0"]) def testRepeatingCommandsDoNotGetLoggedRepeatedly(self): self._cmd_hist.add_command("help") self._cmd_hist.add_command("help") self.assertEqual(["help"], self._cmd_hist.most_recent_n(2)) def testCommandHistoryFileIsCreated(self): self.assertFalse(os.path.isfile(self._history_file_path)) self._cmd_hist.add_command("help") self.assertTrue(os.path.isfile(self._history_file_path)) with open(self._history_file_path, "rt") as f: self.assertEqual(["help\n"], f.readlines()) def testLoadingCommandHistoryFileObeysLimit(self): self._cmd_hist.add_command("help 1") self._cmd_hist.add_command("help 2") self._cmd_hist.add_command("help 3") self._cmd_hist.add_command("help 4") cmd_hist_2 = debugger_cli_common.CommandHistory( limit=3, history_file_path=self._history_file_path) self.assertEqual(["help 2", "help 3", "help 4"], cmd_hist_2.most_recent_n(3)) with open(self._history_file_path, "rt") as f: self.assertEqual( ["help 2\n", "help 3\n", "help 4\n"], f.readlines()) def testCommandHistoryHandlesReadingIOErrorGracoiusly(self): with open(self._history_file_path, "wt") as f: f.write("help\n") # Change file to not readable by anyone. os.chmod(self._history_file_path, 0) # The creation of a CommandHistory object should not error out. debugger_cli_common.CommandHistory( limit=3, history_file_path=self._history_file_path) self._restoreFileReadWritePermissions(self._history_file_path) def testCommandHistoryHandlesWritingIOErrorGracoiusly(self): with open(self._history_file_path, "wt") as f: f.write("help\n") # Change file to read-only. os.chmod(self._history_file_path, stat.S_IRUSR | stat.S_IRGRP | stat.S_IROTH) # Reading from the file should still work. cmd_hist_2 = debugger_cli_common.CommandHistory( limit=3, history_file_path=self._history_file_path) self.assertEqual(["help"], cmd_hist_2.most_recent_n(1)) # Writing should no longer work, but it should fail silently and # the within instance-command history should still work. cmd_hist_2.add_command("foo") self.assertEqual(["help", "foo"], cmd_hist_2.most_recent_n(2)) cmd_hist_3 = debugger_cli_common.CommandHistory( limit=3, history_file_path=self._history_file_path) self.assertEqual(["help"], cmd_hist_3.most_recent_n(1)) self._restoreFileReadWritePermissions(self._history_file_path) class MenuNodeTest(test_util.TensorFlowTestCase): def testCommandTypeConstructorSucceeds(self): menu_node = debugger_cli_common.MenuItem("water flower", "water_flower") self.assertEqual("water flower", menu_node.caption) self.assertEqual("water_flower", menu_node.content) def testDisableWorks(self): menu_node = debugger_cli_common.MenuItem("water flower", "water_flower") self.assertTrue(menu_node.is_enabled()) menu_node.disable() self.assertFalse(menu_node.is_enabled()) menu_node.enable() self.assertTrue(menu_node.is_enabled()) def testConstructAsDisabledWorks(self): menu_node = debugger_cli_common.MenuItem( "water flower", "water_flower", enabled=False) self.assertFalse(menu_node.is_enabled()) menu_node.enable() self.assertTrue(menu_node.is_enabled()) class MenuTest(test_util.TensorFlowTestCase): def setUp(self): self.menu = debugger_cli_common.Menu() self.assertEqual(0, self.menu.num_items()) self.node1 = debugger_cli_common.MenuItem("water flower", "water_flower") self.node2 = debugger_cli_common.MenuItem( "measure wavelength", "measure_wavelength") self.menu.append(self.node1) self.menu.append(self.node2) self.assertEqual(2, self.menu.num_items()) def testFormatAsSingleLineWithStrItemAttrsWorks(self): output = self.menu.format_as_single_line( prefix="Menu: ", divider=", ", enabled_item_attrs="underline") self.assertEqual(["Menu: water flower, measure wavelength, "], output.lines) self.assertEqual((6, 18, [self.node1, "underline"]), output.font_attr_segs[0][0]) self.assertEqual((20, 38, [self.node2, "underline"]), output.font_attr_segs[0][1]) self.assertEqual({}, output.annotations) def testFormatAsSingleLineWithListItemAttrsWorks(self): output = self.menu.format_as_single_line( prefix="Menu: ", divider=", ", enabled_item_attrs=["underline", "bold"]) self.assertEqual(["Menu: water flower, measure wavelength, "], output.lines) self.assertEqual((6, 18, [self.node1, "underline", "bold"]), output.font_attr_segs[0][0]) self.assertEqual((20, 38, [self.node2, "underline", "bold"]), output.font_attr_segs[0][1]) self.assertEqual({}, output.annotations) def testFormatAsSingleLineWithNoneItemAttrsWorks(self): output = self.menu.format_as_single_line(prefix="Menu: ", divider=", ") self.assertEqual(["Menu: water flower, measure wavelength, "], output.lines) self.assertEqual((6, 18, [self.node1]), output.font_attr_segs[0][0]) self.assertEqual((20, 38, [self.node2]), output.font_attr_segs[0][1]) self.assertEqual({}, output.annotations) def testInsertNode(self): self.assertEqual(["water flower", "measure wavelength"], self.menu.captions()) node2 = debugger_cli_common.MenuItem("write poem", "write_poem") self.menu.insert(1, node2) self.assertEqual(["water flower", "write poem", "measure wavelength"], self.menu.captions()) output = self.menu.format_as_single_line(prefix="Menu: ", divider=", ") self.assertEqual(["Menu: water flower, write poem, measure wavelength, "], output.lines) def testFormatAsSingleLineWithDisabledNode(self): node2 = debugger_cli_common.MenuItem( "write poem", "write_poem", enabled=False) self.menu.append(node2) output = self.menu.format_as_single_line( prefix="Menu: ", divider=", ", disabled_item_attrs="bold") self.assertEqual(["Menu: water flower, measure wavelength, write poem, "], output.lines) self.assertEqual((6, 18, [self.node1]), output.font_attr_segs[0][0]) self.assertEqual((20, 38, [self.node2]), output.font_attr_segs[0][1]) self.assertEqual((40, 50, ["bold"]), output.font_attr_segs[0][2]) class GetTensorFlowVersionLinesTest(test_util.TensorFlowTestCase): def testGetVersionWithoutDependencies(self): out = debugger_cli_common.get_tensorflow_version_lines() self.assertEqual(2, len(out.lines)) self.assertEqual( "TensorFlow version: %s" % pywrap_tensorflow_internal.__version__, out.lines[0]) def testGetVersionWithDependencies(self): out = debugger_cli_common.get_tensorflow_version_lines(True) self.assertIn( "TensorFlow version: %s" % pywrap_tensorflow_internal.__version__, out.lines) self.assertIn(" numpy: %s" % np.__version__, out.lines) if __name__ == "__main__": googletest.main()
tensorflow-master
tensorflow/python/debug/cli/debugger_cli_common_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Unit tests for the shared functions and classes for tfdbg CLI.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from collections import namedtuple from tensorflow.python.debug.cli import cli_shared from tensorflow.python.debug.cli import debugger_cli_common from tensorflow.python.framework import constant_op from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.framework import test_util from tensorflow.python.ops import variables from tensorflow.python.platform import googletest class BytesToReadableStrTest(test_util.TensorFlowTestCase): def testNoneSizeWorks(self): self.assertEqual(str(None), cli_shared.bytes_to_readable_str(None)) def testSizesBelowOneKiloByteWorks(self): self.assertEqual("0", cli_shared.bytes_to_readable_str(0)) self.assertEqual("500", cli_shared.bytes_to_readable_str(500)) self.assertEqual("1023", cli_shared.bytes_to_readable_str(1023)) def testSizesBetweenOneKiloByteandOneMegaByteWorks(self): self.assertEqual("1.00k", cli_shared.bytes_to_readable_str(1024)) self.assertEqual("2.40k", cli_shared.bytes_to_readable_str(int(1024 * 2.4))) self.assertEqual("1023.00k", cli_shared.bytes_to_readable_str(1024 * 1023)) def testSizesBetweenOneMegaByteandOneGigaByteWorks(self): self.assertEqual("1.00M", cli_shared.bytes_to_readable_str(1024**2)) self.assertEqual("2.40M", cli_shared.bytes_to_readable_str(int(1024**2 * 2.4))) self.assertEqual("1023.00M", cli_shared.bytes_to_readable_str(1024**2 * 1023)) def testSizeAboveOneGigaByteWorks(self): self.assertEqual("1.00G", cli_shared.bytes_to_readable_str(1024**3)) self.assertEqual("2000.00G", cli_shared.bytes_to_readable_str(1024**3 * 2000)) def testReadableStrIncludesBAtTheEndOnRequest(self): self.assertEqual("0B", cli_shared.bytes_to_readable_str(0, include_b=True)) self.assertEqual( "1.00kB", cli_shared.bytes_to_readable_str( 1024, include_b=True)) self.assertEqual( "1.00MB", cli_shared.bytes_to_readable_str( 1024**2, include_b=True)) self.assertEqual( "1.00GB", cli_shared.bytes_to_readable_str( 1024**3, include_b=True)) class TimeToReadableStrTest(test_util.TensorFlowTestCase): def testNoneTimeWorks(self): self.assertEqual("0", cli_shared.time_to_readable_str(None)) def testMicrosecondsTime(self): self.assertEqual("40us", cli_shared.time_to_readable_str(40)) def testMillisecondTime(self): self.assertEqual("40ms", cli_shared.time_to_readable_str(40e3)) def testSecondTime(self): self.assertEqual("40s", cli_shared.time_to_readable_str(40e6)) def testForceTimeUnit(self): self.assertEqual("40s", cli_shared.time_to_readable_str( 40e6, force_time_unit=cli_shared.TIME_UNIT_S)) self.assertEqual("40000ms", cli_shared.time_to_readable_str( 40e6, force_time_unit=cli_shared.TIME_UNIT_MS)) self.assertEqual("40000000us", cli_shared.time_to_readable_str( 40e6, force_time_unit=cli_shared.TIME_UNIT_US)) self.assertEqual("4e-05s", cli_shared.time_to_readable_str( 40, force_time_unit=cli_shared.TIME_UNIT_S)) self.assertEqual("0", cli_shared.time_to_readable_str( 0, force_time_unit=cli_shared.TIME_UNIT_S)) with self.assertRaisesRegexp(ValueError, r"Invalid time unit: ks"): cli_shared.time_to_readable_str(100, force_time_unit="ks") @test_util.run_deprecated_v1 class GetRunStartIntroAndDescriptionTest(test_util.TensorFlowTestCase): def setUp(self): self.const_a = constant_op.constant(11.0, name="a") self.const_b = constant_op.constant(22.0, name="b") self.const_c = constant_op.constant(33.0, name="c") self.sparse_d = sparse_tensor.SparseTensor( indices=[[0, 0], [1, 1]], values=[1.0, 2.0], dense_shape=[3, 3]) def tearDown(self): ops.reset_default_graph() def testSingleFetchNoFeeds(self): run_start_intro = cli_shared.get_run_start_intro(12, self.const_a, None, {}) # Verify line about run() call number. self.assertTrue(run_start_intro.lines[1].endswith("run() call #12:")) # Verify line about fetch. const_a_name_line = run_start_intro.lines[4] self.assertEqual(self.const_a.name, const_a_name_line.strip()) # Verify line about feeds. feeds_line = run_start_intro.lines[7] self.assertEqual("(Empty)", feeds_line.strip()) # Verify lines about possible commands and their font attributes. self.assertEqual("run:", run_start_intro.lines[11][2:]) annot = run_start_intro.font_attr_segs[11][0] self.assertEqual(2, annot[0]) self.assertEqual(5, annot[1]) self.assertEqual("run", annot[2][0].content) self.assertEqual("bold", annot[2][1]) annot = run_start_intro.font_attr_segs[13][0] self.assertEqual(2, annot[0]) self.assertEqual(8, annot[1]) self.assertEqual("run -n", annot[2][0].content) self.assertEqual("bold", annot[2][1]) self.assertEqual("run -t <T>:", run_start_intro.lines[15][2:]) self.assertEqual([(2, 12, "bold")], run_start_intro.font_attr_segs[15]) self.assertEqual("run -f <filter_name>:", run_start_intro.lines[17][2:]) self.assertEqual([(2, 22, "bold")], run_start_intro.font_attr_segs[17]) # Verify short description. description = cli_shared.get_run_short_description(12, self.const_a, None) self.assertEqual("run #12: 1 fetch (a:0); 0 feeds", description) # Verify the main menu associated with the run_start_intro. self.assertIn(debugger_cli_common.MAIN_MENU_KEY, run_start_intro.annotations) menu = run_start_intro.annotations[debugger_cli_common.MAIN_MENU_KEY] self.assertEqual("run", menu.caption_to_item("run").content) self.assertEqual("exit", menu.caption_to_item("exit").content) def testSparseTensorAsFeedShouldHandleNoNameAttribute(self): sparse_feed_val = ([[0, 0], [1, 1]], [10.0, 20.0]) run_start_intro = cli_shared.get_run_start_intro( 1, self.sparse_d, {self.sparse_d: sparse_feed_val}, {}) self.assertEqual(str(self.sparse_d), run_start_intro.lines[7].strip()) short_description = cli_shared.get_run_short_description( 1, self.sparse_d, {self.sparse_d: sparse_feed_val}) self.assertEqual( "run #1: 1 fetch; 1 feed (%s)" % self.sparse_d, short_description) def testSparseTensorAsFetchShouldHandleNoNameAttribute(self): run_start_intro = cli_shared.get_run_start_intro(1, self.sparse_d, None, {}) self.assertEqual(str(self.sparse_d), run_start_intro.lines[4].strip()) def testTwoFetchesListNoFeeds(self): fetches = [self.const_a, self.const_b] run_start_intro = cli_shared.get_run_start_intro(1, fetches, None, {}) const_a_name_line = run_start_intro.lines[4] const_b_name_line = run_start_intro.lines[5] self.assertEqual(self.const_a.name, const_a_name_line.strip()) self.assertEqual(self.const_b.name, const_b_name_line.strip()) feeds_line = run_start_intro.lines[8] self.assertEqual("(Empty)", feeds_line.strip()) # Verify short description. description = cli_shared.get_run_short_description(1, fetches, None) self.assertEqual("run #1: 2 fetches; 0 feeds", description) def testNestedListAsFetches(self): fetches = [self.const_c, [self.const_a, self.const_b]] run_start_intro = cli_shared.get_run_start_intro(1, fetches, None, {}) # Verify lines about the fetches. self.assertEqual(self.const_c.name, run_start_intro.lines[4].strip()) self.assertEqual(self.const_a.name, run_start_intro.lines[5].strip()) self.assertEqual(self.const_b.name, run_start_intro.lines[6].strip()) # Verify short description. description = cli_shared.get_run_short_description(1, fetches, None) self.assertEqual("run #1: 3 fetches; 0 feeds", description) def testNestedDictAsFetches(self): fetches = {"c": self.const_c, "ab": {"a": self.const_a, "b": self.const_b}} run_start_intro = cli_shared.get_run_start_intro(1, fetches, None, {}) # Verify lines about the fetches. The ordering of the dict keys is # indeterminate. fetch_names = set() fetch_names.add(run_start_intro.lines[4].strip()) fetch_names.add(run_start_intro.lines[5].strip()) fetch_names.add(run_start_intro.lines[6].strip()) self.assertEqual({"a:0", "b:0", "c:0"}, fetch_names) # Verify short description. description = cli_shared.get_run_short_description(1, fetches, None) self.assertEqual("run #1: 3 fetches; 0 feeds", description) def testTwoFetchesAsTupleNoFeeds(self): fetches = (self.const_a, self.const_b) run_start_intro = cli_shared.get_run_start_intro(1, fetches, None, {}) const_a_name_line = run_start_intro.lines[4] const_b_name_line = run_start_intro.lines[5] self.assertEqual(self.const_a.name, const_a_name_line.strip()) self.assertEqual(self.const_b.name, const_b_name_line.strip()) feeds_line = run_start_intro.lines[8] self.assertEqual("(Empty)", feeds_line.strip()) # Verify short description. description = cli_shared.get_run_short_description(1, fetches, None) self.assertEqual("run #1: 2 fetches; 0 feeds", description) def testTwoFetchesAsNamedTupleNoFeeds(self): fetches_namedtuple = namedtuple("fetches", "x y") fetches = fetches_namedtuple(self.const_b, self.const_c) run_start_intro = cli_shared.get_run_start_intro(1, fetches, None, {}) const_b_name_line = run_start_intro.lines[4] const_c_name_line = run_start_intro.lines[5] self.assertEqual(self.const_b.name, const_b_name_line.strip()) self.assertEqual(self.const_c.name, const_c_name_line.strip()) feeds_line = run_start_intro.lines[8] self.assertEqual("(Empty)", feeds_line.strip()) # Verify short description. description = cli_shared.get_run_short_description(1, fetches, None) self.assertEqual("run #1: 2 fetches; 0 feeds", description) def testWithFeedDict(self): feed_dict = { self.const_a: 10.0, self.const_b: 20.0, } run_start_intro = cli_shared.get_run_start_intro(1, self.const_c, feed_dict, {}) const_c_name_line = run_start_intro.lines[4] self.assertEqual(self.const_c.name, const_c_name_line.strip()) # Verify lines about the feed dict. feed_a_line = run_start_intro.lines[7] feed_b_line = run_start_intro.lines[8] self.assertEqual(self.const_a.name, feed_a_line.strip()) self.assertEqual(self.const_b.name, feed_b_line.strip()) # Verify short description. description = cli_shared.get_run_short_description(1, self.const_c, feed_dict) self.assertEqual("run #1: 1 fetch (c:0); 2 feeds", description) def testTensorFilters(self): feed_dict = {self.const_a: 10.0} tensor_filters = { "filter_a": lambda x: True, "filter_b": lambda x: False, } run_start_intro = cli_shared.get_run_start_intro(1, self.const_c, feed_dict, tensor_filters) # Verify the listed names of the tensor filters. filter_names = set() filter_names.add(run_start_intro.lines[20].split(" ")[-1]) filter_names.add(run_start_intro.lines[21].split(" ")[-1]) self.assertEqual({"filter_a", "filter_b"}, filter_names) # Verify short description. description = cli_shared.get_run_short_description(1, self.const_c, feed_dict) self.assertEqual("run #1: 1 fetch (c:0); 1 feed (a:0)", description) # Verify the command links for the two filters. command_set = set() annot = run_start_intro.font_attr_segs[20][0] command_set.add(annot[2].content) annot = run_start_intro.font_attr_segs[21][0] command_set.add(annot[2].content) self.assertEqual({"run -f filter_a", "run -f filter_b"}, command_set) def testGetRunShortDescriptionWorksForTensorFeedKey(self): short_description = cli_shared.get_run_short_description( 1, self.const_a, {self.const_a: 42.0}) self.assertEqual("run #1: 1 fetch (a:0); 1 feed (a:0)", short_description) def testGetRunShortDescriptionWorksForUnicodeFeedKey(self): short_description = cli_shared.get_run_short_description( 1, self.const_a, {u"foo": 42.0}) self.assertEqual("run #1: 1 fetch (a:0); 1 feed (foo)", short_description) @test_util.run_deprecated_v1 class GetErrorIntroTest(test_util.TensorFlowTestCase): def setUp(self): self.var_a = variables.Variable(42.0, name="a") def tearDown(self): ops.reset_default_graph() def testShapeError(self): tf_error = errors.OpError(None, self.var_a.initializer, "foo description", None) error_intro = cli_shared.get_error_intro(tf_error) self.assertEqual("!!! An error occurred during the run !!!", error_intro.lines[1]) self.assertEqual([(0, len(error_intro.lines[1]), "blink")], error_intro.font_attr_segs[1]) self.assertEqual(2, error_intro.lines[4].index("ni -a -d -t a/Assign")) self.assertEqual(2, error_intro.font_attr_segs[4][0][0]) self.assertEqual(22, error_intro.font_attr_segs[4][0][1]) self.assertEqual("ni -a -d -t a/Assign", error_intro.font_attr_segs[4][0][2][0].content) self.assertEqual("bold", error_intro.font_attr_segs[4][0][2][1]) self.assertEqual(2, error_intro.lines[6].index("li -r a/Assign")) self.assertEqual(2, error_intro.font_attr_segs[6][0][0]) self.assertEqual(16, error_intro.font_attr_segs[6][0][1]) self.assertEqual("li -r a/Assign", error_intro.font_attr_segs[6][0][2][0].content) self.assertEqual("bold", error_intro.font_attr_segs[6][0][2][1]) self.assertEqual(2, error_intro.lines[8].index("lt")) self.assertEqual(2, error_intro.font_attr_segs[8][0][0]) self.assertEqual(4, error_intro.font_attr_segs[8][0][1]) self.assertEqual("lt", error_intro.font_attr_segs[8][0][2][0].content) self.assertEqual("bold", error_intro.font_attr_segs[8][0][2][1]) self.assertStartsWith(error_intro.lines[11], "Op name:") self.assertTrue(error_intro.lines[11].endswith("a/Assign")) self.assertStartsWith(error_intro.lines[12], "Error type:") self.assertTrue(error_intro.lines[12].endswith(str(type(tf_error)))) self.assertEqual("Details:", error_intro.lines[14]) self.assertStartsWith(error_intro.lines[15], "foo description") def testGetErrorIntroForNoOpName(self): tf_error = errors.OpError(None, None, "Fake OpError", -1) error_intro = cli_shared.get_error_intro(tf_error) self.assertIn("Cannot determine the name of the op", error_intro.lines[3]) if __name__ == "__main__": googletest.main()
tensorflow-master
tensorflow/python/debug/cli/cli_shared_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Offline dump analyzer of TensorFlow Debugger (tfdbg).""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import sys # Google-internal import(s). from tensorflow.python.debug.cli import analyzer_cli from tensorflow.python.debug.lib import debug_data from tensorflow.python.platform import app def main(_): if FLAGS.log_usage: pass # No logging for open-source. if not FLAGS.dump_dir: print("ERROR: dump_dir flag is empty.", file=sys.stderr) sys.exit(1) print("tfdbg offline: FLAGS.dump_dir = %s" % FLAGS.dump_dir) debug_dump = debug_data.DebugDumpDir( FLAGS.dump_dir, validate=FLAGS.validate_graph) cli = analyzer_cli.create_analyzer_ui( debug_dump, tensor_filters={"has_inf_or_nan": debug_data.has_inf_or_nan}, ui_type=FLAGS.ui_type) title = "tfdbg offline @ %s" % FLAGS.dump_dir cli.run_ui(title=title, title_color="black_on_white", init_command="lt") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.register("type", "bool", lambda v: v.lower() == "true") parser.add_argument( "--dump_dir", type=str, default="", help="tfdbg dump directory to load") parser.add_argument( "--log_usage", type="bool", nargs="?", const=True, default=True, help="Whether the usage of this tool is to be logged") parser.add_argument( "--ui_type", type=str, default="curses", help="Command-line user interface type (curses | readline)") parser.add_argument( "--validate_graph", nargs="?", const=True, type="bool", default=True, help="""\ Whether the dumped tensors will be validated against the GraphDefs\ """) FLAGS, unparsed = parser.parse_known_args() app.run(main=main, argv=[sys.argv[0]] + unparsed)
tensorflow-master
tensorflow/python/debug/cli/offline_analyzer.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for arbitrary expression evaluator.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.debug.cli import evaluator from tensorflow.python.debug.lib import debug_data from tensorflow.python.framework import test_util from tensorflow.python.platform import test class ParseDebugTensorNameTest(test_util.TensorFlowTestCase): def testParseNamesWithoutPrefixOrSuffix(self): device_name, node_name, output_slot, debug_op, exec_index = ( evaluator._parse_debug_tensor_name("foo:1")) self.assertIsNone(device_name) self.assertEqual("foo", node_name) self.assertEqual(1, output_slot) self.assertEqual("DebugIdentity", debug_op) self.assertEqual(0, exec_index) device_name, node_name, output_slot, debug_op, exec_index = ( evaluator._parse_debug_tensor_name("hidden_0/Weights:0")) self.assertIsNone(device_name) self.assertEqual("hidden_0/Weights", node_name) self.assertEqual(0, output_slot) self.assertEqual("DebugIdentity", debug_op) self.assertEqual(0, exec_index) def testParseNamesWithoutPrefixWithDebugOpSuffix(self): device_name, node_name, output_slot, debug_op, exec_index = ( evaluator._parse_debug_tensor_name("foo:1:DebugNanCount")) self.assertIsNone(device_name) self.assertEqual("foo", node_name) self.assertEqual(1, output_slot) self.assertEqual("DebugNanCount", debug_op) self.assertEqual(0, exec_index) device_name, node_name, output_slot, debug_op, exec_index = ( evaluator._parse_debug_tensor_name( "hidden_0/Weights:0:DebugNumericSummary")) self.assertIsNone(device_name) self.assertEqual("hidden_0/Weights", node_name) self.assertEqual(0, output_slot) self.assertEqual("DebugNumericSummary", debug_op) self.assertEqual(0, exec_index) def testParseNamesWithDeviceNamePrefixWithoutDebugOpSuffix(self): device_name, node_name, output_slot, debug_op, exec_index = ( evaluator._parse_debug_tensor_name( "/job:ps/replica:0/task:2/cpu:0:foo:1")) self.assertEqual("/job:ps/replica:0/task:2/cpu:0", device_name) self.assertEqual("foo", node_name) self.assertEqual(1, output_slot) self.assertEqual("DebugIdentity", debug_op) self.assertEqual(0, exec_index) device_name, node_name, output_slot, debug_op, exec_index = ( evaluator._parse_debug_tensor_name( "/job:worker/replica:0/task:3/gpu:0:hidden_0/Weights:0")) self.assertEqual("/job:worker/replica:0/task:3/gpu:0", device_name) self.assertEqual("hidden_0/Weights", node_name) self.assertEqual(0, output_slot) self.assertEqual("DebugIdentity", debug_op) self.assertEqual(0, exec_index) def testParseNamesWithDeviceNamePrefixWithDebugOpSuffix(self): device_name, node_name, output_slot, debug_op, exec_index = ( evaluator._parse_debug_tensor_name( "/job:ps/replica:0/task:2/cpu:0:foo:1:DebugNanCount")) self.assertEqual("/job:ps/replica:0/task:2/cpu:0", device_name) self.assertEqual("foo", node_name) self.assertEqual(1, output_slot) self.assertEqual("DebugNanCount", debug_op) self.assertEqual(0, exec_index) device_name, node_name, output_slot, debug_op, exec_index = ( evaluator._parse_debug_tensor_name( "/job:worker/replica:0/task:3/gpu:0:" "hidden_0/Weights:0:DebugNumericSummary")) self.assertEqual("/job:worker/replica:0/task:3/gpu:0", device_name) self.assertEqual("hidden_0/Weights", node_name) self.assertEqual(0, output_slot) self.assertEqual("DebugNumericSummary", debug_op) self.assertEqual(0, exec_index) def testParseMalformedDebugTensorName(self): with self.assertRaisesRegexp( ValueError, r"The debug tensor name in the to-be-evaluated expression is " r"malformed:"): evaluator._parse_debug_tensor_name( "/job:ps/replica:0/task:2/cpu:0:foo:1:DebugNanCount:1337") with self.assertRaisesRegexp( ValueError, r"The debug tensor name in the to-be-evaluated expression is " r"malformed:"): evaluator._parse_debug_tensor_name( "/job:ps/replica:0/cpu:0:foo:1:DebugNanCount") with self.assertRaises(ValueError): evaluator._parse_debug_tensor_name( "foo:1:DebugNanCount[]") with self.assertRaises(ValueError): evaluator._parse_debug_tensor_name( "foo:1[DebugNanCount]") def testParseNamesWithExecIndex(self): device_name, node_name, output_slot, debug_op, exec_index = ( evaluator._parse_debug_tensor_name("foo:1[20]")) self.assertIsNone(device_name) self.assertEqual("foo", node_name) self.assertEqual(1, output_slot) self.assertEqual("DebugIdentity", debug_op) self.assertEqual(20, exec_index) device_name, node_name, output_slot, debug_op, exec_index = ( evaluator._parse_debug_tensor_name("hidden_0/Weights:0[3]")) self.assertIsNone(device_name) self.assertEqual("hidden_0/Weights", node_name) self.assertEqual(0, output_slot) self.assertEqual("DebugIdentity", debug_op) self.assertEqual(3, exec_index) class EvaluatorTest(test_util.TensorFlowTestCase): def testEvaluateSingleTensor(self): dump = test.mock.MagicMock() def fake_get_tensors(node_name, output_slot, debug_op, device_name=None): del node_name, output_slot, debug_op, device_name # Unused. return [np.array([[1.0, 2.0, 3.0]])] with test.mock.patch.object( dump, "get_tensors", side_effect=fake_get_tensors, autospec=True): ev = evaluator.ExpressionEvaluator(dump) self.assertEqual(3, ev.evaluate("np.size(`a:0`)")) # Whitespace in backticks should be tolerated. self.assertEqual(3, ev.evaluate("np.size(` a:0 `)")) def testEvaluateTwoTensors(self): dump = test.mock.MagicMock() def fake_get_tensors(node_name, output_slot, debug_op, device_name=None): del debug_op, device_name # Unused. if node_name == "a" and output_slot == 0: return [np.array([[1.0, -2.0], [0.0, 1.0]])] elif node_name == "b" and output_slot == 0: return [np.array([[-1.0], [1.0]])] with test.mock.patch.object( dump, "get_tensors", side_effect=fake_get_tensors, autospec=True): ev = evaluator.ExpressionEvaluator(dump) self.assertAllClose([[-3.0], [1.0]], ev.evaluate("np.matmul(`a:0`, `b:0`)")) self.assertAllClose( [[-4.0], [2.0]], ev.evaluate("np.matmul(`a:0`, `b:0`) + `b:0`")) def testEvaluateNoneExistentTensorGeneratesError(self): dump = test.mock.MagicMock() def fake_get_tensors(node_name, output_slot, debug_op, device_name=None): del node_name, output_slot, debug_op, device_name # Unused. raise debug_data.WatchKeyDoesNotExistInDebugDumpDirError() with test.mock.patch.object( dump, "get_tensors", side_effect=fake_get_tensors, autospec=True): ev = evaluator.ExpressionEvaluator(dump) with self.assertRaisesRegexp( ValueError, "Eval failed due to the value of .* being unavailable"): ev.evaluate("np.matmul(`a:0`, `b:0`)") def testEvaluateWithMultipleDevicesContainingTheSameTensorName(self): dump = test.mock.MagicMock() def fake_get_tensors(node_name, output_slot, debug_op, device_name=None): del output_slot, debug_op # Unused. if node_name == "a" and device_name is None: raise ValueError( "There are multiple (2) devices with nodes named 'a' but " "device_name is not specified") elif (node_name == "a" and device_name == "/job:worker/replica:0/task:0/cpu:0"): return [np.array(10.0)] elif (node_name == "a" and device_name == "/job:worker/replica:0/task:1/cpu:0"): return [np.array(20.0)] with test.mock.patch.object( dump, "get_tensors", side_effect=fake_get_tensors, autospec=True): ev = evaluator.ExpressionEvaluator(dump) with self.assertRaisesRegexp(ValueError, r"multiple \(2\) devices"): ev.evaluate("`a:0` + `a:0`") self.assertAllClose( 30.0, ev.evaluate("`/job:worker/replica:0/task:0/cpu:0:a:0` + " "`/job:worker/replica:0/task:1/cpu:0:a:0`")) def testEvaluateWithNonDefaultDebugOp(self): dump = test.mock.MagicMock() def fake_get_tensors(node_name, output_slot, debug_op, device_name=None): del device_name # Unused. if node_name == "a" and output_slot == 0 and debug_op == "DebugIdentity": return [np.array([[-1.0], [1.0]])] elif node_name == "a" and output_slot == 0 and debug_op == "DebugFoo": return [np.array([[-2.0, 2.0]])] with test.mock.patch.object( dump, "get_tensors", side_effect=fake_get_tensors, autospec=True): ev = evaluator.ExpressionEvaluator(dump) self.assertAllClose( [[4.0]], ev.evaluate("np.matmul(`a:0:DebugFoo`, `a:0:DebugIdentity`)")) def testEvaluateWithMultipleExecIndexes(self): dump = test.mock.MagicMock() def fake_get_tensors(node_name, output_slot, debug_op, device_name=None): del debug_op, device_name # Unused. if node_name == "a" and output_slot == 0: return [np.array([[-1.0], [1.0]]), np.array([[-2.0], [2.0]])] with test.mock.patch.object( dump, "get_tensors", side_effect=fake_get_tensors, autospec=True): ev = evaluator.ExpressionEvaluator(dump) self.assertAllClose( [[4.0]], ev.evaluate("np.matmul(`a:0[1]`.T, `a:0[0]`)")) def testEvaluateExpressionWithUnmatchedBacktick(self): dump = test.mock.MagicMock() ev = evaluator.ExpressionEvaluator(dump) with self.assertRaises(SyntaxError): ev.evaluate("np.matmul(`a:0`, `b:0`) + `b:0") def testEvaluateExpressionWithInvalidDebugTensorName(self): dump = test.mock.MagicMock() ev = evaluator.ExpressionEvaluator(dump) with self.assertRaisesRegexp( ValueError, r".* tensor name .* expression .* malformed"): ev.evaluate("np.matmul(`a`, `b`)") with self.assertRaisesRegexp( ValueError, r".* tensor name .* expression .* malformed"): ev.evaluate("np.matmul(`a:0:DebugIdentity:0`, `b:1:DebugNanCount:2`)") with self.assertRaises(ValueError): ev.evaluate("np.matmul(`a:0[]`, `b:0[]`)") if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/python/debug/cli/evaluator_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for TensorFlow Debugger command parser.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys from tensorflow.python.debug.cli import command_parser from tensorflow.python.framework import test_util from tensorflow.python.platform import googletest class ParseCommandTest(test_util.TensorFlowTestCase): def testParseNoBracketsOrQuotes(self): command = "" self.assertEqual([], command_parser.parse_command(command)) command = "a" self.assertEqual(["a"], command_parser.parse_command(command)) command = "foo bar baz qux" self.assertEqual(["foo", "bar", "baz", "qux"], command_parser.parse_command(command)) command = "foo bar\tbaz\t qux" self.assertEqual(["foo", "bar", "baz", "qux"], command_parser.parse_command(command)) def testParseLeadingTrailingWhitespaces(self): command = " foo bar baz qux " self.assertEqual(["foo", "bar", "baz", "qux"], command_parser.parse_command(command)) command = "\nfoo bar baz qux\n" self.assertEqual(["foo", "bar", "baz", "qux"], command_parser.parse_command(command)) def testParseCommandsWithBrackets(self): command = "pt foo[1, 2, :]" self.assertEqual(["pt", "foo[1, 2, :]"], command_parser.parse_command(command)) command = "pt foo[1, 2, :] -a" self.assertEqual(["pt", "foo[1, 2, :]", "-a"], command_parser.parse_command(command)) command = "inject_value foo [1, 2,:] 0" self.assertEqual(["inject_value", "foo", "[1, 2,:]", "0"], command_parser.parse_command(command)) def testParseCommandWithTwoArgsContainingBrackets(self): command = "pt foo[1, :] bar[:, 2]" self.assertEqual(["pt", "foo[1, :]", "bar[:, 2]"], command_parser.parse_command(command)) command = "pt foo[] bar[:, 2]" self.assertEqual(["pt", "foo[]", "bar[:, 2]"], command_parser.parse_command(command)) def testParseCommandWithUnmatchedBracket(self): command = "pt foo[1, 2, :" self.assertNotEqual(["pt", "foo[1, 2, :]"], command_parser.parse_command(command)) def testParseCommandsWithQuotes(self): command = "inject_value foo \"np.zeros([100, 500])\"" self.assertEqual(["inject_value", "foo", "np.zeros([100, 500])"], command_parser.parse_command(command)) # The pair of double quotes should have been stripped. command = "inject_value foo 'np.zeros([100, 500])'" self.assertEqual(["inject_value", "foo", "np.zeros([100, 500])"], command_parser.parse_command(command)) # The pair of single quotes should have been stripped. command = "\"command prefix with spaces\" arg1" self.assertEqual(["command prefix with spaces", "arg1"], command_parser.parse_command(command)) def testParseCommandWithTwoArgsContainingQuotes(self): command = "foo \"bar\" \"qux\"" self.assertEqual(["foo", "bar", "qux"], command_parser.parse_command(command)) command = "foo \"\" \"qux\"" self.assertEqual(["foo", "", "qux"], command_parser.parse_command(command)) class ExtractOutputFilePathTest(test_util.TensorFlowTestCase): def testNoOutputFilePathIsReflected(self): args, output_path = command_parser.extract_output_file_path(["pt", "a:0"]) self.assertEqual(["pt", "a:0"], args) self.assertIsNone(output_path) def testHasOutputFilePathInOneArgsIsReflected(self): args, output_path = command_parser.extract_output_file_path( ["pt", "a:0", ">/tmp/foo.txt"]) self.assertEqual(["pt", "a:0"], args) self.assertEqual(output_path, "/tmp/foo.txt") def testHasOutputFilePathInTwoArgsIsReflected(self): args, output_path = command_parser.extract_output_file_path( ["pt", "a:0", ">", "/tmp/foo.txt"]) self.assertEqual(["pt", "a:0"], args) self.assertEqual(output_path, "/tmp/foo.txt") def testHasGreaterThanSignButNoFileNameCausesSyntaxError(self): with self.assertRaisesRegexp(SyntaxError, "Redirect file path is empty"): command_parser.extract_output_file_path( ["pt", "a:0", ">"]) def testOutputPathMergedWithLastArgIsHandledCorrectly(self): args, output_path = command_parser.extract_output_file_path( ["pt", "a:0>/tmp/foo.txt"]) self.assertEqual(["pt", "a:0"], args) self.assertEqual(output_path, "/tmp/foo.txt") def testOutputPathInLastArgGreaterThanInSecondLastIsHandledCorrectly(self): args, output_path = command_parser.extract_output_file_path( ["pt", "a:0>", "/tmp/foo.txt"]) self.assertEqual(["pt", "a:0"], args) self.assertEqual(output_path, "/tmp/foo.txt") def testFlagWithEqualGreaterThanShouldIgnoreIntervalFlags(self): args, output_path = command_parser.extract_output_file_path( ["lp", "--execution_time=>100ms"]) self.assertEqual(["lp", "--execution_time=>100ms"], args) self.assertIsNone(output_path) args, output_path = command_parser.extract_output_file_path( ["lp", "--execution_time", ">1.2s"]) self.assertEqual(["lp", "--execution_time", ">1.2s"], args) self.assertIsNone(output_path) args, output_path = command_parser.extract_output_file_path( ["lp", "-e", ">1200"]) self.assertEqual(["lp", "-e", ">1200"], args) self.assertIsNone(output_path) args, output_path = command_parser.extract_output_file_path( ["lp", "--foo_value", ">-.2MB"]) self.assertEqual(["lp", "--foo_value", ">-.2MB"], args) self.assertIsNone(output_path) args, output_path = command_parser.extract_output_file_path( ["lp", "--bar_value", ">-42e3GB"]) self.assertEqual(["lp", "--bar_value", ">-42e3GB"], args) self.assertIsNone(output_path) args, output_path = command_parser.extract_output_file_path( ["lp", "--execution_time", ">=100ms"]) self.assertEqual(["lp", "--execution_time", ">=100ms"], args) self.assertIsNone(output_path) args, output_path = command_parser.extract_output_file_path( ["lp", "--execution_time=>=100ms"]) self.assertEqual(["lp", "--execution_time=>=100ms"], args) self.assertIsNone(output_path) def testFlagWithEqualGreaterThanShouldRecognizeFilePaths(self): args, output_path = command_parser.extract_output_file_path( ["lp", ">1.2s"]) self.assertEqual(["lp"], args) self.assertEqual("1.2s", output_path) args, output_path = command_parser.extract_output_file_path( ["lp", "--execution_time", ">x.yms"]) self.assertEqual(["lp", "--execution_time"], args) self.assertEqual("x.yms", output_path) args, output_path = command_parser.extract_output_file_path( ["lp", "--memory", ">a.1kB"]) self.assertEqual(["lp", "--memory"], args) self.assertEqual("a.1kB", output_path) args, output_path = command_parser.extract_output_file_path( ["lp", "--memory", ">e002MB"]) self.assertEqual(["lp", "--memory"], args) self.assertEqual("e002MB", output_path) def testOneArgumentIsHandledCorrectly(self): args, output_path = command_parser.extract_output_file_path(["lt"]) self.assertEqual(["lt"], args) self.assertIsNone(output_path) def testEmptyArgumentIsHandledCorrectly(self): args, output_path = command_parser.extract_output_file_path([]) self.assertEqual([], args) self.assertIsNone(output_path) class ParseTensorNameTest(test_util.TensorFlowTestCase): def testParseTensorNameWithoutSlicing(self): (tensor_name, tensor_slicing) = command_parser.parse_tensor_name_with_slicing( "hidden/weights/Variable:0") self.assertEqual("hidden/weights/Variable:0", tensor_name) self.assertEqual("", tensor_slicing) def testParseTensorNameWithSlicing(self): (tensor_name, tensor_slicing) = command_parser.parse_tensor_name_with_slicing( "hidden/weights/Variable:0[:, 1]") self.assertEqual("hidden/weights/Variable:0", tensor_name) self.assertEqual("[:, 1]", tensor_slicing) class ValidateSlicingStringTest(test_util.TensorFlowTestCase): def testValidateValidSlicingStrings(self): self.assertTrue(command_parser.validate_slicing_string("[1]")) self.assertTrue(command_parser.validate_slicing_string("[2,3]")) self.assertTrue(command_parser.validate_slicing_string("[4, 5, 6]")) self.assertTrue(command_parser.validate_slicing_string("[7,:, :]")) def testValidateInvalidSlicingStrings(self): self.assertFalse(command_parser.validate_slicing_string("")) self.assertFalse(command_parser.validate_slicing_string("[1,")) self.assertFalse(command_parser.validate_slicing_string("2,3]")) self.assertFalse(command_parser.validate_slicing_string("[4, foo()]")) self.assertFalse(command_parser.validate_slicing_string("[5, bar]")) class ParseIndicesTest(test_util.TensorFlowTestCase): def testParseValidIndicesStringsWithBrackets(self): self.assertEqual([0], command_parser.parse_indices("[0]")) self.assertEqual([0], command_parser.parse_indices(" [0] ")) self.assertEqual([-1, 2], command_parser.parse_indices("[-1, 2]")) self.assertEqual([3, 4, -5], command_parser.parse_indices("[3,4,-5]")) def testParseValidIndicesStringsWithoutBrackets(self): self.assertEqual([0], command_parser.parse_indices("0")) self.assertEqual([0], command_parser.parse_indices(" 0 ")) self.assertEqual([-1, 2], command_parser.parse_indices("-1, 2")) self.assertEqual([3, 4, -5], command_parser.parse_indices("3,4,-5")) def testParseInvalidIndicesStringsWithoutBrackets(self): with self.assertRaisesRegexp( ValueError, r"invalid literal for int\(\) with base 10: 'a'"): self.assertEqual([0], command_parser.parse_indices("0,a")) with self.assertRaisesRegexp( ValueError, r"invalid literal for int\(\) with base 10: '2\]'"): self.assertEqual([0], command_parser.parse_indices("1, 2]")) with self.assertRaisesRegexp( ValueError, r"invalid literal for int\(\) with base 10: ''"): self.assertEqual([0], command_parser.parse_indices("3, 4,")) class ParseRangesTest(test_util.TensorFlowTestCase): INF_VALUE = sys.float_info.max def testParseEmptyRangeString(self): self.assertEqual([], command_parser.parse_ranges("")) self.assertEqual([], command_parser.parse_ranges(" ")) def testParseSingleRange(self): self.assertAllClose([[-0.1, 0.2]], command_parser.parse_ranges("[-0.1, 0.2]")) self.assertAllClose([[-0.1, self.INF_VALUE]], command_parser.parse_ranges("[-0.1, inf]")) self.assertAllClose([[-self.INF_VALUE, self.INF_VALUE]], command_parser.parse_ranges("[-inf, inf]")) def testParseSingleListOfRanges(self): self.assertAllClose([[-0.1, 0.2], [10.0, 12.0]], command_parser.parse_ranges("[[-0.1, 0.2], [10, 12]]")) self.assertAllClose( [[-self.INF_VALUE, -1.0], [1.0, self.INF_VALUE]], command_parser.parse_ranges("[[-inf, -1.0],[1.0, inf]]")) def testParseInvalidRangeString(self): with self.assertRaises(SyntaxError): command_parser.parse_ranges("[[1,2]") with self.assertRaisesRegexp(ValueError, "Incorrect number of elements in range"): command_parser.parse_ranges("[1,2,3]") with self.assertRaisesRegexp(ValueError, "Incorrect number of elements in range"): command_parser.parse_ranges("[inf]") with self.assertRaisesRegexp(ValueError, "Incorrect type in the 1st element of range"): command_parser.parse_ranges("[1j, 1]") with self.assertRaisesRegexp(ValueError, "Incorrect type in the 2nd element of range"): command_parser.parse_ranges("[1, 1j]") class ParseReadableSizeStrTest(test_util.TensorFlowTestCase): def testParseNoUnitWorks(self): self.assertEqual(0, command_parser.parse_readable_size_str("0")) self.assertEqual(1024, command_parser.parse_readable_size_str("1024 ")) self.assertEqual(2000, command_parser.parse_readable_size_str(" 2000 ")) def testParseKiloBytesWorks(self): self.assertEqual(0, command_parser.parse_readable_size_str("0kB")) self.assertEqual(1024**2, command_parser.parse_readable_size_str("1024 kB")) self.assertEqual(1024**2 * 2, command_parser.parse_readable_size_str("2048k")) self.assertEqual(1024**2 * 2, command_parser.parse_readable_size_str("2048kB")) self.assertEqual(1024 / 4, command_parser.parse_readable_size_str("0.25k")) def testParseMegaBytesWorks(self): self.assertEqual(0, command_parser.parse_readable_size_str("0MB")) self.assertEqual(1024**3, command_parser.parse_readable_size_str("1024 MB")) self.assertEqual(1024**3 * 2, command_parser.parse_readable_size_str("2048M")) self.assertEqual(1024**3 * 2, command_parser.parse_readable_size_str("2048MB")) self.assertEqual(1024**2 / 4, command_parser.parse_readable_size_str("0.25M")) def testParseGigaBytesWorks(self): self.assertEqual(0, command_parser.parse_readable_size_str("0GB")) self.assertEqual(1024**4, command_parser.parse_readable_size_str("1024 GB")) self.assertEqual(1024**4 * 2, command_parser.parse_readable_size_str("2048G")) self.assertEqual(1024**4 * 2, command_parser.parse_readable_size_str("2048GB")) self.assertEqual(1024**3 / 4, command_parser.parse_readable_size_str("0.25G")) def testParseUnsupportedUnitRaisesException(self): with self.assertRaisesRegexp( ValueError, "Failed to parsed human-readable byte size str: \"0foo\""): command_parser.parse_readable_size_str("0foo") with self.assertRaisesRegexp( ValueError, "Failed to parsed human-readable byte size str: \"2E\""): command_parser.parse_readable_size_str("2EB") class ParseReadableTimeStrTest(test_util.TensorFlowTestCase): def testParseNoUnitWorks(self): self.assertEqual(0, command_parser.parse_readable_time_str("0")) self.assertEqual(100, command_parser.parse_readable_time_str("100 ")) self.assertEqual(25, command_parser.parse_readable_time_str(" 25 ")) def testParseSeconds(self): self.assertEqual(1e6, command_parser.parse_readable_time_str("1 s")) self.assertEqual(2e6, command_parser.parse_readable_time_str("2s")) def testParseMicros(self): self.assertEqual(2, command_parser.parse_readable_time_str("2us")) def testParseMillis(self): self.assertEqual(2e3, command_parser.parse_readable_time_str("2ms")) def testParseUnsupportedUnitRaisesException(self): with self.assertRaisesRegexp( ValueError, r".*float.*2us.*"): command_parser.parse_readable_time_str("2uss") with self.assertRaisesRegexp( ValueError, r".*float.*2m.*"): command_parser.parse_readable_time_str("2m") with self.assertRaisesRegexp( ValueError, r"Invalid time -1. Time value must be positive."): command_parser.parse_readable_time_str("-1s") class ParseInterval(test_util.TensorFlowTestCase): def testParseTimeInterval(self): self.assertEquals( command_parser.Interval(10, True, 1e3, True), command_parser.parse_time_interval("[10us, 1ms]")) self.assertEquals( command_parser.Interval(10, False, 1e3, False), command_parser.parse_time_interval("(10us, 1ms)")) self.assertEquals( command_parser.Interval(10, False, 1e3, True), command_parser.parse_time_interval("(10us, 1ms]")) self.assertEquals( command_parser.Interval(10, True, 1e3, False), command_parser.parse_time_interval("[10us, 1ms)")) self.assertEquals(command_parser.Interval(0, False, 1e3, True), command_parser.parse_time_interval("<=1ms")) self.assertEquals( command_parser.Interval(1e3, True, float("inf"), False), command_parser.parse_time_interval(">=1ms")) self.assertEquals(command_parser.Interval(0, False, 1e3, False), command_parser.parse_time_interval("<1ms")) self.assertEquals( command_parser.Interval(1e3, False, float("inf"), False), command_parser.parse_time_interval(">1ms")) def testParseTimeGreaterLessThanWithInvalidValueStrings(self): with self.assertRaisesRegexp(ValueError, "Invalid value string after >= "): command_parser.parse_time_interval(">=wms") with self.assertRaisesRegexp(ValueError, "Invalid value string after > "): command_parser.parse_time_interval(">Yms") with self.assertRaisesRegexp(ValueError, "Invalid value string after <= "): command_parser.parse_time_interval("<= _ms") with self.assertRaisesRegexp(ValueError, "Invalid value string after < "): command_parser.parse_time_interval("<-ms") def testParseTimeIntervalsWithInvalidValueStrings(self): with self.assertRaisesRegexp(ValueError, "Invalid first item in interval:"): command_parser.parse_time_interval("[wms, 10ms]") with self.assertRaisesRegexp(ValueError, "Invalid second item in interval:"): command_parser.parse_time_interval("[ 0ms, _ms]") with self.assertRaisesRegexp(ValueError, "Invalid first item in interval:"): command_parser.parse_time_interval("(xms, _ms]") with self.assertRaisesRegexp(ValueError, "Invalid first item in interval:"): command_parser.parse_time_interval("((3ms, _ms)") def testInvalidTimeIntervalRaisesException(self): with self.assertRaisesRegexp( ValueError, r"Invalid interval format: \[10us, 1ms. Valid formats are: " r"\[min, max\], \(min, max\), <max, >min"): command_parser.parse_time_interval("[10us, 1ms") with self.assertRaisesRegexp( ValueError, r"Incorrect interval format: \[10us, 1ms, 2ms\]. Interval should " r"specify two values: \[min, max\] or \(min, max\)"): command_parser.parse_time_interval("[10us, 1ms, 2ms]") with self.assertRaisesRegexp( ValueError, r"Invalid interval \[1s, 1ms\]. Start must be before end of interval."): command_parser.parse_time_interval("[1s, 1ms]") def testParseMemoryInterval(self): self.assertEquals( command_parser.Interval(1024, True, 2048, True), command_parser.parse_memory_interval("[1k, 2k]")) self.assertEquals( command_parser.Interval(1024, False, 2048, False), command_parser.parse_memory_interval("(1kB, 2kB)")) self.assertEquals( command_parser.Interval(1024, False, 2048, True), command_parser.parse_memory_interval("(1k, 2k]")) self.assertEquals( command_parser.Interval(1024, True, 2048, False), command_parser.parse_memory_interval("[1k, 2k)")) self.assertEquals( command_parser.Interval(0, False, 2048, True), command_parser.parse_memory_interval("<=2k")) self.assertEquals( command_parser.Interval(11, True, float("inf"), False), command_parser.parse_memory_interval(">=11")) self.assertEquals(command_parser.Interval(0, False, 2048, False), command_parser.parse_memory_interval("<2k")) self.assertEquals( command_parser.Interval(11, False, float("inf"), False), command_parser.parse_memory_interval(">11")) def testParseMemoryIntervalsWithInvalidValueStrings(self): with self.assertRaisesRegexp(ValueError, "Invalid value string after >= "): command_parser.parse_time_interval(">=wM") with self.assertRaisesRegexp(ValueError, "Invalid value string after > "): command_parser.parse_time_interval(">YM") with self.assertRaisesRegexp(ValueError, "Invalid value string after <= "): command_parser.parse_time_interval("<= _MB") with self.assertRaisesRegexp(ValueError, "Invalid value string after < "): command_parser.parse_time_interval("<-MB") def testInvalidMemoryIntervalRaisesException(self): with self.assertRaisesRegexp( ValueError, r"Invalid interval \[5k, 3k\]. Start of interval must be less than or " "equal to end of interval."): command_parser.parse_memory_interval("[5k, 3k]") def testIntervalContains(self): interval = command_parser.Interval( start=1, start_included=True, end=10, end_included=True) self.assertTrue(interval.contains(1)) self.assertTrue(interval.contains(10)) self.assertTrue(interval.contains(5)) interval.start_included = False self.assertFalse(interval.contains(1)) self.assertTrue(interval.contains(10)) interval.end_included = False self.assertFalse(interval.contains(1)) self.assertFalse(interval.contains(10)) interval.start_included = True self.assertTrue(interval.contains(1)) self.assertFalse(interval.contains(10)) if __name__ == "__main__": googletest.main()
tensorflow-master
tensorflow/python/debug/cli/command_parser_test.py
tensorflow-master
tensorflow/python/debug/cli/__init__.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for profile_analyzer_cli.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import re from tensorflow.core.framework import step_stats_pb2 from tensorflow.core.protobuf import config_pb2 from tensorflow.core.protobuf import rewriter_config_pb2 from tensorflow.python.client import session from tensorflow.python.debug.cli import debugger_cli_common from tensorflow.python.debug.cli import profile_analyzer_cli from tensorflow.python.framework import constant_op from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.platform import googletest from tensorflow.python.platform import test from tensorflow.python.util import tf_inspect def no_rewrite_session_config(): rewriter_config = rewriter_config_pb2.RewriterConfig( disable_model_pruning=True, constant_folding=rewriter_config_pb2.RewriterConfig.OFF) graph_options = config_pb2.GraphOptions(rewrite_options=rewriter_config) return config_pb2.ConfigProto(graph_options=graph_options) def _line_number_above(): return tf_inspect.stack()[1][2] - 1 def _at_least_one_line_matches(pattern, lines): pattern_re = re.compile(pattern) for i, line in enumerate(lines): if pattern_re.search(line): return True, i return False, None def _assert_at_least_one_line_matches(pattern, lines): any_match, _ = _at_least_one_line_matches(pattern, lines) if not any_match: raise AssertionError( "%s does not match any line in %s." % (pattern, str(lines))) def _assert_no_lines_match(pattern, lines): any_match, _ = _at_least_one_line_matches(pattern, lines) if any_match: raise AssertionError( "%s matched at least one line in %s." % (pattern, str(lines))) @test_util.run_v1_only("b/120545219") class ProfileAnalyzerListProfileTest(test_util.TensorFlowTestCase): def testNodeInfoEmpty(self): graph = ops.Graph() run_metadata = config_pb2.RunMetadata() prof_analyzer = profile_analyzer_cli.ProfileAnalyzer(graph, run_metadata) prof_output = prof_analyzer.list_profile([]).lines self.assertEquals([""], prof_output) def testSingleDevice(self): node1 = step_stats_pb2.NodeExecStats( node_name="Add/123", op_start_rel_micros=3, op_end_rel_micros=5, all_end_rel_micros=4) node2 = step_stats_pb2.NodeExecStats( node_name="Mul/456", op_start_rel_micros=1, op_end_rel_micros=2, all_end_rel_micros=3) run_metadata = config_pb2.RunMetadata() device1 = run_metadata.step_stats.dev_stats.add() device1.device = "deviceA" device1.node_stats.extend([node1, node2]) graph = test.mock.MagicMock() op1 = test.mock.MagicMock() op1.name = "Add/123" op1.traceback = [("a/b/file1", 10, "some_var")] op1.type = "add" op2 = test.mock.MagicMock() op2.name = "Mul/456" op2.traceback = [("a/b/file1", 11, "some_var")] op2.type = "mul" graph.get_operations.return_value = [op1, op2] prof_analyzer = profile_analyzer_cli.ProfileAnalyzer(graph, run_metadata) prof_output = prof_analyzer.list_profile([]).lines _assert_at_least_one_line_matches(r"Device 1 of 1: deviceA", prof_output) _assert_at_least_one_line_matches(r"^Add/123.*add.*2us.*4us", prof_output) _assert_at_least_one_line_matches(r"^Mul/456.*mul.*1us.*3us", prof_output) def testMultipleDevices(self): node1 = step_stats_pb2.NodeExecStats( node_name="Add/123", op_start_rel_micros=3, op_end_rel_micros=5, all_end_rel_micros=3) run_metadata = config_pb2.RunMetadata() device1 = run_metadata.step_stats.dev_stats.add() device1.device = "deviceA" device1.node_stats.extend([node1]) device2 = run_metadata.step_stats.dev_stats.add() device2.device = "deviceB" device2.node_stats.extend([node1]) graph = test.mock.MagicMock() op = test.mock.MagicMock() op.name = "Add/123" op.traceback = [("a/b/file1", 10, "some_var")] op.type = "abc" graph.get_operations.return_value = [op] prof_analyzer = profile_analyzer_cli.ProfileAnalyzer(graph, run_metadata) prof_output = prof_analyzer.list_profile([]).lines _assert_at_least_one_line_matches(r"Device 1 of 2: deviceA", prof_output) _assert_at_least_one_line_matches(r"Device 2 of 2: deviceB", prof_output) # Try filtering by device. prof_output = prof_analyzer.list_profile(["-d", "deviceB"]).lines _assert_at_least_one_line_matches(r"Device 2 of 2: deviceB", prof_output) _assert_no_lines_match(r"Device 1 of 2: deviceA", prof_output) def testWithSession(self): options = config_pb2.RunOptions() options.trace_level = config_pb2.RunOptions.FULL_TRACE run_metadata = config_pb2.RunMetadata() with session.Session(config=no_rewrite_session_config()) as sess: a = constant_op.constant([1, 2, 3]) b = constant_op.constant([2, 2, 1]) result = math_ops.add(a, b) sess.run(result, options=options, run_metadata=run_metadata) prof_analyzer = profile_analyzer_cli.ProfileAnalyzer( sess.graph, run_metadata) prof_output = prof_analyzer.list_profile([]).lines _assert_at_least_one_line_matches("Device 1 of", prof_output) expected_headers = [ "Node", r"Start Time \(us\)", r"Op Time \(.*\)", r"Exec Time \(.*\)", r"Filename:Lineno\(function\)"] _assert_at_least_one_line_matches( ".*".join(expected_headers), prof_output) _assert_at_least_one_line_matches(r"^Add/", prof_output) _assert_at_least_one_line_matches(r"Device Total", prof_output) def testSorting(self): node1 = step_stats_pb2.NodeExecStats( node_name="Add/123", all_start_micros=123, op_start_rel_micros=3, op_end_rel_micros=5, all_end_rel_micros=4) node2 = step_stats_pb2.NodeExecStats( node_name="Mul/456", all_start_micros=122, op_start_rel_micros=1, op_end_rel_micros=2, all_end_rel_micros=5) run_metadata = config_pb2.RunMetadata() device1 = run_metadata.step_stats.dev_stats.add() device1.device = "deviceA" device1.node_stats.extend([node1, node2]) graph = test.mock.MagicMock() op1 = test.mock.MagicMock() op1.name = "Add/123" op1.traceback = [("a/b/file2", 10, "some_var")] op1.type = "add" op2 = test.mock.MagicMock() op2.name = "Mul/456" op2.traceback = [("a/b/file1", 11, "some_var")] op2.type = "mul" graph.get_operations.return_value = [op1, op2] prof_analyzer = profile_analyzer_cli.ProfileAnalyzer(graph, run_metadata) # Default sort by start time (i.e. all_start_micros). prof_output = prof_analyzer.list_profile([]).lines self.assertRegexpMatches("".join(prof_output), r"Mul/456.*Add/123") # Default sort in reverse. prof_output = prof_analyzer.list_profile(["-r"]).lines self.assertRegexpMatches("".join(prof_output), r"Add/123.*Mul/456") # Sort by name. prof_output = prof_analyzer.list_profile(["-s", "node"]).lines self.assertRegexpMatches("".join(prof_output), r"Add/123.*Mul/456") # Sort by op time (i.e. op_end_rel_micros - op_start_rel_micros). prof_output = prof_analyzer.list_profile(["-s", "op_time"]).lines self.assertRegexpMatches("".join(prof_output), r"Mul/456.*Add/123") # Sort by exec time (i.e. all_end_rel_micros). prof_output = prof_analyzer.list_profile(["-s", "exec_time"]).lines self.assertRegexpMatches("".join(prof_output), r"Add/123.*Mul/456") # Sort by line number. prof_output = prof_analyzer.list_profile(["-s", "line"]).lines self.assertRegexpMatches("".join(prof_output), r"Mul/456.*Add/123") def testFiltering(self): node1 = step_stats_pb2.NodeExecStats( node_name="Add/123", all_start_micros=123, op_start_rel_micros=3, op_end_rel_micros=5, all_end_rel_micros=4) node2 = step_stats_pb2.NodeExecStats( node_name="Mul/456", all_start_micros=122, op_start_rel_micros=1, op_end_rel_micros=2, all_end_rel_micros=5) run_metadata = config_pb2.RunMetadata() device1 = run_metadata.step_stats.dev_stats.add() device1.device = "deviceA" device1.node_stats.extend([node1, node2]) graph = test.mock.MagicMock() op1 = test.mock.MagicMock() op1.name = "Add/123" op1.traceback = [("a/b/file2", 10, "some_var")] op1.type = "add" op2 = test.mock.MagicMock() op2.name = "Mul/456" op2.traceback = [("a/b/file1", 11, "some_var")] op2.type = "mul" graph.get_operations.return_value = [op1, op2] prof_analyzer = profile_analyzer_cli.ProfileAnalyzer(graph, run_metadata) # Filter by name prof_output = prof_analyzer.list_profile(["-n", "Add"]).lines _assert_at_least_one_line_matches(r"Add/123", prof_output) _assert_no_lines_match(r"Mul/456", prof_output) # Filter by op_type prof_output = prof_analyzer.list_profile(["-t", "mul"]).lines _assert_at_least_one_line_matches(r"Mul/456", prof_output) _assert_no_lines_match(r"Add/123", prof_output) # Filter by file name. prof_output = prof_analyzer.list_profile(["-f", ".*file2"]).lines _assert_at_least_one_line_matches(r"Add/123", prof_output) _assert_no_lines_match(r"Mul/456", prof_output) # Fitler by execution time. prof_output = prof_analyzer.list_profile(["-e", "[5, 10]"]).lines _assert_at_least_one_line_matches(r"Mul/456", prof_output) _assert_no_lines_match(r"Add/123", prof_output) # Fitler by op time. prof_output = prof_analyzer.list_profile(["-o", ">=2"]).lines _assert_at_least_one_line_matches(r"Add/123", prof_output) _assert_no_lines_match(r"Mul/456", prof_output) def testSpecifyingTimeUnit(self): node1 = step_stats_pb2.NodeExecStats( node_name="Add/123", all_start_micros=123, op_start_rel_micros=3, op_end_rel_micros=5, all_end_rel_micros=4) node2 = step_stats_pb2.NodeExecStats( node_name="Mul/456", all_start_micros=122, op_start_rel_micros=1, op_end_rel_micros=2, all_end_rel_micros=5) run_metadata = config_pb2.RunMetadata() device1 = run_metadata.step_stats.dev_stats.add() device1.device = "deviceA" device1.node_stats.extend([node1, node2]) graph = test.mock.MagicMock() op1 = test.mock.MagicMock() op1.name = "Add/123" op1.traceback = [("a/b/file2", 10, "some_var")] op1.type = "add" op2 = test.mock.MagicMock() op2.name = "Mul/456" op2.traceback = [("a/b/file1", 11, "some_var")] op2.type = "mul" graph.get_operations.return_value = [op1, op2] prof_analyzer = profile_analyzer_cli.ProfileAnalyzer(graph, run_metadata) # Force time unit. prof_output = prof_analyzer.list_profile(["--time_unit", "ms"]).lines _assert_at_least_one_line_matches(r"Add/123.*add.*0\.002ms", prof_output) _assert_at_least_one_line_matches(r"Mul/456.*mul.*0\.005ms", prof_output) _assert_at_least_one_line_matches(r"Device Total.*0\.009ms", prof_output) @test_util.run_v1_only("b/120545219") class ProfileAnalyzerPrintSourceTest(test_util.TensorFlowTestCase): def setUp(self): super(ProfileAnalyzerPrintSourceTest, self).setUp() options = config_pb2.RunOptions() options.trace_level = config_pb2.RunOptions.FULL_TRACE run_metadata = config_pb2.RunMetadata() with session.Session() as sess: loop_cond = lambda x: math_ops.less(x, 10) self.loop_cond_lineno = _line_number_above() loop_body = lambda x: math_ops.add(x, 1) self.loop_body_lineno = _line_number_above() x = constant_op.constant(0, name="x") self.x_lineno = _line_number_above() loop = control_flow_ops.while_loop(loop_cond, loop_body, [x]) self.loop_lineno = _line_number_above() self.assertEqual( 10, sess.run(loop, options=options, run_metadata=run_metadata)) self.prof_analyzer = profile_analyzer_cli.ProfileAnalyzer( sess.graph, run_metadata) def tearDown(self): ops.reset_default_graph() super(ProfileAnalyzerPrintSourceTest, self).tearDown() def testPrintSourceForWhileLoop(self): prof_output = self.prof_analyzer.print_source([__file__]) _assert_at_least_one_line_matches( r"\[(\|)+(\s)*\] .*us .*2\(22\) .*L%d.*(\S)+" % self.loop_cond_lineno, prof_output.lines) _assert_at_least_one_line_matches( r"\[(\|)+(\s)*\] .*us .*2\(20\) .*L%d.*(\S)+" % self.loop_body_lineno, prof_output.lines) _assert_at_least_one_line_matches( r"\[(\|)+(\s)*\] .*us .*7\(55\) .*L%d.*(\S)+" % self.loop_lineno, prof_output.lines) def testPrintSourceOutputContainsClickableLinks(self): prof_output = self.prof_analyzer.print_source([__file__]) any_match, line_index = _at_least_one_line_matches( r"\[(\|)+(\s)*\] .*us .*2\(22\) .*L%d.*(\S)+" % self.loop_cond_lineno, prof_output.lines) self.assertTrue(any_match) any_menu_item_match = False for seg in prof_output.font_attr_segs[line_index]: if (isinstance(seg[2][1], debugger_cli_common.MenuItem) and seg[2][1].content.startswith("lp --file_path_filter ") and "--min_lineno %d" % self.loop_cond_lineno in seg[2][1].content and "--max_lineno %d" % (self.loop_cond_lineno + 1) in seg[2][1].content): any_menu_item_match = True break self.assertTrue(any_menu_item_match) def testPrintSourceWithNonDefaultTimeUnit(self): prof_output = self.prof_analyzer.print_source([ __file__, "--time_unit", "ms"]) _assert_at_least_one_line_matches( r"\[(\|)+(\s)*\] .*ms .*2\(22\) .*L%d.*(\S)+" % self.loop_cond_lineno, prof_output.lines) _assert_at_least_one_line_matches( r"\[(\|)+(\s)*\] .*ms .*2\(20\) .*L%d.*(\S)+" % self.loop_body_lineno, prof_output.lines) _assert_at_least_one_line_matches( r"\[(\|)+(\s)*\] .*ms .*7\(55\) .*L%d.*(\S)+" % self.loop_lineno, prof_output.lines) def testPrintSourceWithNodeNameFilter(self): prof_output = self.prof_analyzer.print_source([ __file__, "--node_name_filter", "x$"]) _assert_at_least_one_line_matches( r"\[(\|)+(\s)*\] .*us .*1\(1\) .*L%d.*(\S)+" % self.x_lineno, prof_output.lines) _assert_no_lines_match( r"\[(\|)+(\s)*\] .*us .*2\(22\) .*L%d.*(\S)+" % self.loop_cond_lineno, prof_output.lines) _assert_no_lines_match( r"\[(\|)+(\s)*\] .*us .*2\(20\) .*L%d.*(\S)+" % self.loop_body_lineno, prof_output.lines) _assert_no_lines_match( r"\[(\|)+(\s)*\] .*ms .*7\(55\) .*L%d.*(\S)+" % self.loop_lineno, prof_output.lines) # Check clickable link. _, line_index = _at_least_one_line_matches( r"\[(\|)+(\s)*\] .*us .*1\(1\) .*L%d.*(\S)+" % self.x_lineno, prof_output.lines) any_menu_item_match = False for seg in prof_output.font_attr_segs[line_index]: if (isinstance(seg[2][1], debugger_cli_common.MenuItem) and seg[2][1].content.startswith("lp --file_path_filter ") and "--node_name_filter x$" in seg[2][1].content and "--min_lineno %d" % self.x_lineno in seg[2][1].content and "--max_lineno %d" % (self.x_lineno + 1) in seg[2][1].content): any_menu_item_match = True break self.assertTrue(any_menu_item_match) def testPrintSourceWithOpTypeFilter(self): prof_output = self.prof_analyzer.print_source([ __file__, "--op_type_filter", "Less"]) _assert_at_least_one_line_matches( r"\[(\|)+(\s)*\] .*us .*1\(11\) .*L%d.*(\S)+" % self.loop_cond_lineno, prof_output.lines) _assert_no_lines_match( r"\[(\|)+(\s)*\] .*us .*2\(20\) .*L%d.*(\S)+" % self.loop_body_lineno, prof_output.lines) _assert_no_lines_match( r"\[(\|)+(\s)*\] .*us .*7\(55\) .*L%d.*(\S)+" % self.loop_lineno, prof_output.lines) def testPrintSourceWithNonexistentDeviceGivesCorrectErrorMessage(self): prof_output = self.prof_analyzer.print_source([ __file__, "--device_name_filter", "foo_device"]) _assert_at_least_one_line_matches( r"The source file .* does not contain any profile information for the " "previous Session run", prof_output.lines) _assert_at_least_one_line_matches( r".*--device_name_filter: foo_device", prof_output.lines) def testPrintSourceWithUnrelatedFileShowsCorrectErrorMessage(self): prof_output = self.prof_analyzer.print_source([tf_inspect.__file__]) _assert_at_least_one_line_matches( r"The source file .* does not contain any profile information for the " "previous Session run", prof_output.lines) def testPrintSourceOutputContainsInitScrollPosAnnotation(self): prof_output = self.prof_analyzer.print_source([ __file__, "--init_line", str(self.loop_cond_lineno)]) self.assertEqual( self.loop_cond_lineno + 1, # The extra line is due to the head lines. prof_output.annotations[debugger_cli_common.INIT_SCROLL_POS_KEY]) if __name__ == "__main__": googletest.main()
tensorflow-master
tensorflow/python/debug/cli/profile_analyzer_cli_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Unit tests for curses-based CLI widgets.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.debug.cli import curses_widgets from tensorflow.python.debug.cli import debugger_cli_common from tensorflow.python.framework import test_util from tensorflow.python.platform import googletest RTL = debugger_cli_common.RichTextLines CNH = curses_widgets.CursesNavigationHistory class CNHTest(test_util.TensorFlowTestCase): def testConstructorWorks(self): CNH(10) def testConstructorWithInvalidCapacityErrors(self): with self.assertRaises(ValueError): CNH(0) with self.assertRaises(ValueError): CNH(-1) def testInitialStateIsCorrect(self): nav_history = CNH(10) self.assertEqual(0, nav_history.size()) self.assertFalse(nav_history.can_go_forward()) self.assertFalse(nav_history.can_go_back()) with self.assertRaisesRegexp(ValueError, "Empty navigation history"): nav_history.go_back() with self.assertRaisesRegexp(ValueError, "Empty navigation history"): nav_history.go_forward() with self.assertRaisesRegexp(ValueError, "Empty navigation history"): nav_history.update_scroll_position(3) def testAddOneItemWorks(self): nav_history = CNH(10) nav_history.add_item("foo", RTL(["bar"]), 0) self.assertEqual(1, nav_history.size()) self.assertEqual(0, nav_history.pointer()) self.assertFalse(nav_history.can_go_forward()) self.assertFalse(nav_history.can_go_back()) output = nav_history.go_back() self.assertEqual("foo", output.command) self.assertEqual(["bar"], output.screen_output.lines) self.assertEqual(0, output.scroll_position) def testAddItemsBeyondCapacityWorks(self): nav_history = CNH(2) nav_history.add_item("foo", RTL(["foo_output"]), 0) nav_history.add_item("bar", RTL(["bar_output"]), 0) self.assertEqual(2, nav_history.size()) self.assertEqual(1, nav_history.pointer()) self.assertTrue(nav_history.can_go_back()) self.assertFalse(nav_history.can_go_forward()) nav_history.add_item("baz", RTL(["baz_output"]), 0) self.assertEqual(2, nav_history.size()) self.assertEqual(1, nav_history.pointer()) self.assertTrue(nav_history.can_go_back()) self.assertFalse(nav_history.can_go_forward()) item = nav_history.go_back() self.assertEqual("bar", item.command) self.assertFalse(nav_history.can_go_back()) self.assertTrue(nav_history.can_go_forward()) item = nav_history.go_forward() self.assertEqual("baz", item.command) self.assertTrue(nav_history.can_go_back()) self.assertFalse(nav_history.can_go_forward()) def testAddItemFromNonLatestPointerPositionWorks(self): nav_history = CNH(2) nav_history.add_item("foo", RTL(["foo_output"]), 0) nav_history.add_item("bar", RTL(["bar_output"]), 0) nav_history.go_back() nav_history.add_item("baz", RTL(["baz_output"]), 0) self.assertEqual(2, nav_history.size()) self.assertEqual(1, nav_history.pointer()) self.assertTrue(nav_history.can_go_back()) self.assertFalse(nav_history.can_go_forward()) item = nav_history.go_back() self.assertEqual("foo", item.command) item = nav_history.go_forward() self.assertEqual("baz", item.command) def testUpdateScrollPositionOnLatestItemWorks(self): nav_history = CNH(2) nav_history.add_item("foo", RTL(["foo_out", "more_foo_out"]), 0) nav_history.add_item("bar", RTL(["bar_out", "more_bar_out"]), 0) nav_history.update_scroll_position(1) nav_history.go_back() item = nav_history.go_forward() self.assertEqual("bar", item.command) self.assertEqual(1, item.scroll_position) def testUpdateScrollPositionOnOldItemWorks(self): nav_history = CNH(2) nav_history.add_item("foo", RTL(["foo_out", "more_foo_out"]), 0) nav_history.add_item("bar", RTL(["bar_out", "more_bar_out"]), 0) item = nav_history.go_back() self.assertEqual("foo", item.command) self.assertEqual(0, item.scroll_position) nav_history.update_scroll_position(1) nav_history.go_forward() item = nav_history.go_back() self.assertEqual("foo", item.command) self.assertEqual(1, item.scroll_position) item = nav_history.go_forward() self.assertEqual("bar", item.command) self.assertEqual(0, item.scroll_position) def testRenderWithEmptyHistoryWorks(self): nav_history = CNH(2) output = nav_history.render(40, "prev", "next") self.assertEqual(1, len(output.lines)) self.assertEqual( "| " + CNH.BACK_ARROW_TEXT + " " + CNH.FORWARD_ARROW_TEXT, output.lines[0]) self.assertEqual({}, output.font_attr_segs) def testRenderLatestWithSufficientLengthWorks(self): nav_history = CNH(2) nav_history.add_item("foo", RTL(["foo_out", "more_foo_out"]), 0) nav_history.add_item("bar", RTL(["bar_out", "more_bar_out"]), 0) output = nav_history.render( 40, "prev", "next", latest_command_attribute="green", old_command_attribute="yellow") self.assertEqual(1, len(output.lines)) self.assertEqual( "| " + CNH.BACK_ARROW_TEXT + " " + CNH.FORWARD_ARROW_TEXT + " | bar", output.lines[0]) self.assertEqual(2, output.font_attr_segs[0][0][0]) self.assertEqual(5, output.font_attr_segs[0][0][1]) self.assertEqual("prev", output.font_attr_segs[0][0][2].content) self.assertEqual(12, output.font_attr_segs[0][1][0]) self.assertEqual(15, output.font_attr_segs[0][1][1]) self.assertEqual("green", output.font_attr_segs[0][1][2]) def testRenderOldButNotOldestWithSufficientLengthWorks(self): nav_history = CNH(3) nav_history.add_item("foo", RTL(["foo_out", "more_foo_out"]), 0) nav_history.add_item("bar", RTL(["bar_out", "more_bar_out"]), 0) nav_history.add_item("baz", RTL(["baz_out", "more_baz_out"]), 0) nav_history.go_back() output = nav_history.render( 40, "prev", "next", latest_command_attribute="green", old_command_attribute="yellow") self.assertEqual(1, len(output.lines)) self.assertEqual( "| " + CNH.BACK_ARROW_TEXT + " " + CNH.FORWARD_ARROW_TEXT + " | (-1) bar", output.lines[0]) self.assertEqual(2, output.font_attr_segs[0][0][0]) self.assertEqual(5, output.font_attr_segs[0][0][1]) self.assertEqual("prev", output.font_attr_segs[0][0][2].content) self.assertEqual(6, output.font_attr_segs[0][1][0]) self.assertEqual(9, output.font_attr_segs[0][1][1]) self.assertEqual("next", output.font_attr_segs[0][1][2].content) self.assertEqual(12, output.font_attr_segs[0][2][0]) self.assertEqual(17, output.font_attr_segs[0][2][1]) self.assertEqual("yellow", output.font_attr_segs[0][2][2]) self.assertEqual(17, output.font_attr_segs[0][3][0]) self.assertEqual(20, output.font_attr_segs[0][3][1]) self.assertEqual("yellow", output.font_attr_segs[0][3][2]) def testRenderOldestWithSufficientLengthWorks(self): nav_history = CNH(3) nav_history.add_item("foo", RTL(["foo_out", "more_foo_out"]), 0) nav_history.add_item("bar", RTL(["bar_out", "more_bar_out"]), 0) nav_history.add_item("baz", RTL(["baz_out", "more_baz_out"]), 0) nav_history.go_back() nav_history.go_back() output = nav_history.render( 40, "prev", "next", latest_command_attribute="green", old_command_attribute="yellow") self.assertEqual(1, len(output.lines)) self.assertEqual( "| " + CNH.BACK_ARROW_TEXT + " " + CNH.FORWARD_ARROW_TEXT + " | (-2) foo", output.lines[0]) self.assertEqual(6, output.font_attr_segs[0][0][0]) self.assertEqual(9, output.font_attr_segs[0][0][1]) self.assertEqual("next", output.font_attr_segs[0][0][2].content) self.assertEqual(12, output.font_attr_segs[0][1][0]) self.assertEqual(17, output.font_attr_segs[0][1][1]) self.assertEqual("yellow", output.font_attr_segs[0][1][2]) self.assertEqual(17, output.font_attr_segs[0][2][0]) self.assertEqual(20, output.font_attr_segs[0][2][1]) self.assertEqual("yellow", output.font_attr_segs[0][2][2]) def testRenderWithInsufficientLengthWorks(self): nav_history = CNH(2) nav_history.add_item("long_command", RTL(["output"]), 0) output = nav_history.render( 15, "prev", "next", latest_command_attribute="green", old_command_attribute="yellow") self.assertEqual(1, len(output.lines)) self.assertEqual( "| " + CNH.BACK_ARROW_TEXT + " " + CNH.FORWARD_ARROW_TEXT + " | lon", output.lines[0]) self.assertEqual(12, output.font_attr_segs[0][0][0]) self.assertEqual(15, output.font_attr_segs[0][0][1]) self.assertEqual("green", output.font_attr_segs[0][0][2]) if __name__ == "__main__": googletest.main()
tensorflow-master
tensorflow/python/debug/cli/curses_widgets_test.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Testing utilities for tfdbg command-line interface.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import re import numpy as np def assert_lines_equal_ignoring_whitespace(test, expected_lines, actual_lines): """Assert equality in lines, ignoring all whitespace. Args: test: An instance of unittest.TestCase or its subtypes (e.g., TensorFlowTestCase). expected_lines: Expected lines as an iterable of strings. actual_lines: Actual lines as an iterable of strings. """ test.assertEqual( len(expected_lines), len(actual_lines), "Mismatch in the number of lines: %d vs %d" % ( len(expected_lines), len(actual_lines))) for expected_line, actual_line in zip(expected_lines, actual_lines): test.assertEqual("".join(expected_line.split()), "".join(actual_line.split())) # Regular expression for separators between values in a string representation # of an ndarray, exclusing whitespace. _ARRAY_VALUE_SEPARATOR_REGEX = re.compile(r"(array|\(|\[|\]|\)|\||,)") def assert_array_lines_close(test, expected_array, array_lines): """Assert that the array value represented by lines is close to expected. Note that the shape of the array represented by the `array_lines` is ignored. Args: test: An instance of TensorFlowTestCase. expected_array: Expected value of the array. array_lines: A list of strings representing the array. E.g., "array([[ 1.0, 2.0 ], [ 3.0, 4.0 ]])" Assumes that values are separated by commas, parentheses, brackets, "|" characters and whitespace. """ elements = [] for line in array_lines: line = re.sub(_ARRAY_VALUE_SEPARATOR_REGEX, " ", line) elements.extend(float(s) for s in line.split()) test.assertAllClose(np.array(expected_array).flatten(), elements)
tensorflow-master
tensorflow/python/debug/cli/cli_test_utils.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for cli_config.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import json import os import shutil import tempfile from tensorflow.python.debug.cli import cli_config from tensorflow.python.framework import test_util from tensorflow.python.platform import gfile from tensorflow.python.platform import googletest class CLIConfigTest(test_util.TensorFlowTestCase): def setUp(self): self._tmp_dir = tempfile.mkdtemp() self._tmp_config_path = os.path.join(self._tmp_dir, ".tfdbg_config") self.assertFalse(gfile.Exists(self._tmp_config_path)) super(CLIConfigTest, self).setUp() def tearDown(self): shutil.rmtree(self._tmp_dir) super(CLIConfigTest, self).tearDown() def testConstructCLIConfigWithoutFile(self): config = cli_config.CLIConfig(config_file_path=self._tmp_config_path) self.assertEqual(20, config.get("graph_recursion_depth")) self.assertEqual(True, config.get("mouse_mode")) with self.assertRaises(KeyError): config.get("property_that_should_not_exist") self.assertTrue(gfile.Exists(self._tmp_config_path)) def testCLIConfigForwardCompatibilityTest(self): config = cli_config.CLIConfig(config_file_path=self._tmp_config_path) with open(self._tmp_config_path, "rt") as f: config_json = json.load(f) # Remove a field to simulate forward compatibility test. del config_json["graph_recursion_depth"] with open(self._tmp_config_path, "wt") as f: json.dump(config_json, f) config = cli_config.CLIConfig(config_file_path=self._tmp_config_path) self.assertEqual(20, config.get("graph_recursion_depth")) def testModifyConfigValue(self): config = cli_config.CLIConfig(config_file_path=self._tmp_config_path) config.set("graph_recursion_depth", 9) config.set("mouse_mode", False) self.assertEqual(9, config.get("graph_recursion_depth")) self.assertEqual(False, config.get("mouse_mode")) def testModifyConfigValueWithTypeCasting(self): config = cli_config.CLIConfig(config_file_path=self._tmp_config_path) config.set("graph_recursion_depth", "18") config.set("mouse_mode", "false") self.assertEqual(18, config.get("graph_recursion_depth")) self.assertEqual(False, config.get("mouse_mode")) def testModifyConfigValueWithTypeCastingFailure(self): config = cli_config.CLIConfig(config_file_path=self._tmp_config_path) with self.assertRaises(ValueError): config.set("mouse_mode", "maybe") def testLoadFromModifiedConfigFile(self): config = cli_config.CLIConfig(config_file_path=self._tmp_config_path) config.set("graph_recursion_depth", 9) config.set("mouse_mode", False) config2 = cli_config.CLIConfig(config_file_path=self._tmp_config_path) self.assertEqual(9, config2.get("graph_recursion_depth")) self.assertEqual(False, config2.get("mouse_mode")) def testSummarizeFromConfig(self): config = cli_config.CLIConfig(config_file_path=self._tmp_config_path) output = config.summarize() self.assertEqual( ["Command-line configuration:", "", " graph_recursion_depth: %d" % config.get("graph_recursion_depth"), " mouse_mode: %s" % config.get("mouse_mode")], output.lines) def testSummarizeFromConfigWithHighlight(self): config = cli_config.CLIConfig(config_file_path=self._tmp_config_path) output = config.summarize(highlight="mouse_mode") self.assertEqual( ["Command-line configuration:", "", " graph_recursion_depth: %d" % config.get("graph_recursion_depth"), " mouse_mode: %s" % config.get("mouse_mode")], output.lines) self.assertEqual((2, 12, ["underline", "bold"]), output.font_attr_segs[3][0]) self.assertEqual((14, 18, "bold"), output.font_attr_segs[3][1]) def testSetCallback(self): config = cli_config.CLIConfig(config_file_path=self._tmp_config_path) test_value = {"graph_recursion_depth": -1} def callback(config): test_value["graph_recursion_depth"] = config.get("graph_recursion_depth") config.set_callback("graph_recursion_depth", callback) config.set("graph_recursion_depth", config.get("graph_recursion_depth") - 1) self.assertEqual(test_value["graph_recursion_depth"], config.get("graph_recursion_depth")) def testSetCallbackInvalidPropertyName(self): config = cli_config.CLIConfig(config_file_path=self._tmp_config_path) with self.assertRaises(KeyError): config.set_callback("nonexistent_property_name", print) def testSetCallbackNotCallable(self): config = cli_config.CLIConfig(config_file_path=self._tmp_config_path) with self.assertRaises(TypeError): config.set_callback("graph_recursion_depth", 1) if __name__ == "__main__": googletest.main()
tensorflow-master
tensorflow/python/debug/cli/cli_config_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Curses-Based Command-Line Interface of TensorFlow Debugger (tfdbg).""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import curses from curses import textpad import os import signal import sys import threading from six.moves import xrange # pylint: disable=redefined-builtin from tensorflow.python.debug.cli import base_ui from tensorflow.python.debug.cli import cli_shared from tensorflow.python.debug.cli import command_parser from tensorflow.python.debug.cli import curses_widgets from tensorflow.python.debug.cli import debugger_cli_common from tensorflow.python.debug.cli import tensor_format _SCROLL_REFRESH = "refresh" _SCROLL_UP = "up" _SCROLL_DOWN = "down" _SCROLL_UP_A_LINE = "up_a_line" _SCROLL_DOWN_A_LINE = "down_a_line" _SCROLL_HOME = "home" _SCROLL_END = "end" _SCROLL_TO_LINE_INDEX = "scroll_to_line_index" _COLOR_READY_COLORTERMS = ["gnome-terminal", "xfce4-terminal"] _COLOR_ENABLED_TERM = "xterm-256color" def _get_command_from_line_attr_segs(mouse_x, attr_segs): """Attempt to extract command from the attribute segments of a line. Args: mouse_x: (int) x coordinate of the mouse event. attr_segs: (list) The list of attribute segments of a line from a RichTextLines object. Returns: (str or None) If a command exists: the command as a str; otherwise, None. """ for seg in attr_segs: if seg[0] <= mouse_x < seg[1]: attributes = seg[2] if isinstance(seg[2], list) else [seg[2]] for attr in attributes: if isinstance(attr, debugger_cli_common.MenuItem): return attr.content class ScrollBar(object): """Vertical ScrollBar for Curses-based CLI. An object of this class has knowledge of the location of the scroll bar in the screen coordinates, the current scrolling position, and the total number of text lines in the screen text. By using this information, it can generate text rendering of the scroll bar, which consists of and UP button on the top and a DOWN button on the bottom, in addition to a scroll block in between, whose exact location is determined by the scrolling position. The object can also calculate the scrolling command (e.g., _SCROLL_UP_A_LINE, _SCROLL_DOWN) from the coordinate of a mouse click event in the screen region it occupies. """ BASE_ATTR = cli_shared.COLOR_BLACK + "_on_" + cli_shared.COLOR_WHITE def __init__(self, min_x, min_y, max_x, max_y, scroll_position, output_num_rows): """Constructor of ScrollBar. Args: min_x: (int) left index of the scroll bar on the screen (inclusive). min_y: (int) top index of the scroll bar on the screen (inclusive). max_x: (int) right index of the scroll bar on the screen (inclusive). max_y: (int) bottom index of the scroll bar on the screen (inclusive). scroll_position: (int) 0-based location of the screen output. For example, if the screen output is scrolled to the top, the value of scroll_position should be 0. If it is scrolled to the bottom, the value should be output_num_rows - 1. output_num_rows: (int) Total number of output rows. Raises: ValueError: If the width or height of the scroll bar, as determined by min_x, max_x, min_y and max_y, is too small. """ self._min_x = min_x self._min_y = min_y self._max_x = max_x self._max_y = max_y self._scroll_position = scroll_position self._output_num_rows = output_num_rows self._scroll_bar_height = max_y - min_y + 1 if self._max_x < self._min_x: raise ValueError("Insufficient width for ScrollBar (%d)" % (self._max_x - self._min_x + 1)) if self._max_y < self._min_y + 3: raise ValueError("Insufficient height for ScrollBar (%d)" % (self._max_y - self._min_y + 1)) def _block_y(self, screen_coord_sys=False): """Get the 0-based y coordinate of the scroll block. This y coordinate takes into account the presence of the UP and DN buttons present at the top and bottom of the ScrollBar. For example, at the home location, the return value will be 1; at the bottom location, the return value will be self._scroll_bar_height - 2. Args: screen_coord_sys: (`bool`) whether the return value will be in the screen coordinate system. Returns: (int) 0-based y coordinate of the scroll block, in the ScrollBar coordinate system by default. For example, when scroll position is at the top, this return value will be 1 (not 0, because of the presence of the UP button). When scroll position is at the bottom, this return value will be self._scroll_bar_height - 2 (not self._scroll_bar_height - 1, because of the presence of the DOWN button). """ rel_block_y = int( float(self._scroll_position) / (self._output_num_rows - 1) * (self._scroll_bar_height - 3)) + 1 return rel_block_y + self._min_y if screen_coord_sys else rel_block_y def layout(self): """Get the RichTextLines layout of the scroll bar. Returns: (debugger_cli_common.RichTextLines) The text layout of the scroll bar. """ width = self._max_x - self._min_x + 1 empty_line = " " * width foreground_font_attr_segs = [(0, width, self.BASE_ATTR)] if self._output_num_rows > 1: block_y = self._block_y() if width == 1: up_text = "U" down_text = "D" elif width == 2: up_text = "UP" down_text = "DN" elif width == 3: up_text = "UP " down_text = "DN " else: up_text = " UP " down_text = "DOWN" layout = debugger_cli_common.RichTextLines( [up_text], font_attr_segs={0: [(0, width, self.BASE_ATTR)]}) for i in xrange(1, self._scroll_bar_height - 1): font_attr_segs = foreground_font_attr_segs if i == block_y else None layout.append(empty_line, font_attr_segs=font_attr_segs) layout.append(down_text, font_attr_segs=foreground_font_attr_segs) else: layout = debugger_cli_common.RichTextLines( [empty_line] * self._scroll_bar_height) return layout def get_click_command(self, mouse_y): if self._output_num_rows <= 1: return None elif mouse_y == self._min_y: return _SCROLL_UP_A_LINE elif mouse_y == self._max_y: return _SCROLL_DOWN_A_LINE elif (mouse_y > self._block_y(screen_coord_sys=True) and mouse_y < self._max_y): return _SCROLL_DOWN elif (mouse_y < self._block_y(screen_coord_sys=True) and mouse_y > self._min_y): return _SCROLL_UP else: return None class CursesUI(base_ui.BaseUI): """Curses-based Command-line UI. In this class, the methods with the prefix "_screen_" are the methods that interact with the actual terminal using the curses library. """ CLI_TERMINATOR_KEY = 7 # Terminator key for input text box. CLI_TAB_KEY = ord("\t") BACKSPACE_KEY = ord("\b") REGEX_SEARCH_PREFIX = "/" TENSOR_INDICES_NAVIGATION_PREFIX = "@" _NAVIGATION_FORWARD_COMMAND = "next" _NAVIGATION_BACK_COMMAND = "prev" # Limit screen width to work around the limitation of the curses library that # it may return invalid x coordinates for large values. _SCREEN_WIDTH_LIMIT = 220 # Possible Enter keys. 343 is curses key code for the num-pad Enter key when # num lock is off. CLI_CR_KEYS = [ord("\n"), ord("\r"), 343] _KEY_MAP = { 127: curses.KEY_BACKSPACE, # Backspace curses.KEY_DC: 4, # Delete } _FOREGROUND_COLORS = { cli_shared.COLOR_WHITE: curses.COLOR_WHITE, cli_shared.COLOR_RED: curses.COLOR_RED, cli_shared.COLOR_GREEN: curses.COLOR_GREEN, cli_shared.COLOR_YELLOW: curses.COLOR_YELLOW, cli_shared.COLOR_BLUE: curses.COLOR_BLUE, cli_shared.COLOR_CYAN: curses.COLOR_CYAN, cli_shared.COLOR_MAGENTA: curses.COLOR_MAGENTA, cli_shared.COLOR_BLACK: curses.COLOR_BLACK, } _BACKGROUND_COLORS = { "transparent": -1, cli_shared.COLOR_WHITE: curses.COLOR_WHITE, cli_shared.COLOR_BLACK: curses.COLOR_BLACK, } # Font attribute for search and highlighting. _SEARCH_HIGHLIGHT_FONT_ATTR = ( cli_shared.COLOR_BLACK + "_on_" + cli_shared.COLOR_WHITE) _ARRAY_INDICES_COLOR_PAIR = ( cli_shared.COLOR_BLACK + "_on_" + cli_shared.COLOR_WHITE) _ERROR_TOAST_COLOR_PAIR = ( cli_shared.COLOR_RED + "_on_" + cli_shared.COLOR_WHITE) _INFO_TOAST_COLOR_PAIR = ( cli_shared.COLOR_BLUE + "_on_" + cli_shared.COLOR_WHITE) _STATUS_BAR_COLOR_PAIR = ( cli_shared.COLOR_BLACK + "_on_" + cli_shared.COLOR_WHITE) _UI_WAIT_COLOR_PAIR = ( cli_shared.COLOR_MAGENTA + "_on_" + cli_shared.COLOR_WHITE) _NAVIGATION_WARNING_COLOR_PAIR = ( cli_shared.COLOR_RED + "_on_" + cli_shared.COLOR_WHITE) _UI_WAIT_MESSAGE = "Processing..." # The delay (in ms) between each update of the scroll bar when the mouse # button is held down on the scroll bar. Controls how fast the screen scrolls. _MOUSE_SCROLL_DELAY_MS = 100 _single_instance_lock = threading.Lock() def __init__(self, on_ui_exit=None, config=None): """Constructor of CursesUI. Args: on_ui_exit: (Callable) Callback invoked when the UI exits. config: An instance of `cli_config.CLIConfig()` carrying user-facing configurations. """ base_ui.BaseUI.__init__(self, on_ui_exit=on_ui_exit, config=config) self._screen_init() self._screen_refresh_size() # TODO(cais): Error out if the size of the screen is too small. # Initialize some UI component size and locations. self._init_layout() self._command_history_store = debugger_cli_common.CommandHistory() # Active list of command history, used in history navigation. # _command_handler_registry holds all the history commands the CLI has # received, up to a size limit. _active_command_history is the history # currently being navigated in, e.g., using the Up/Down keys. The latter # can be different from the former during prefixed or regex-based history # navigation, e.g., when user enter the beginning of a command and hit Up. self._active_command_history = [] # Pointer to the current position in the history sequence. # 0 means it is a new command being keyed in. self._command_pointer = 0 self._command_history_limit = 100 self._pending_command = "" self._nav_history = curses_widgets.CursesNavigationHistory(10) # State related to screen output. self._output_pad = None self._output_pad_row = 0 self._output_array_pointer_indices = None self._curr_unwrapped_output = None self._curr_wrapped_output = None try: # Register signal handler for SIGINT. signal.signal(signal.SIGINT, self._interrupt_handler) except ValueError: # Running in a child thread, can't catch signals. pass self.register_command_handler( "mouse", self._mouse_mode_command_handler, "Get or set the mouse mode of this CLI: (on|off)", prefix_aliases=["m"]) def _init_layout(self): """Initialize the layout of UI components. Initialize the location and size of UI components such as command textbox and output region according to the terminal size. """ # NamedTuple for rectangular locations on screen self.rectangle = collections.namedtuple("rectangle", "top left bottom right") # Height of command text box self._command_textbox_height = 2 self._title_row = 0 # Row index of the Navigation Bar (i.e., the bar that contains forward and # backward buttons and displays the current command line). self._nav_bar_row = 1 # Top row index of the output pad. # A "pad" is a curses object that holds lines of text and not limited to # screen size. It can be rendered on the screen partially with scroll # parameters specified. self._output_top_row = 2 # Number of rows that the output pad has. self._output_num_rows = ( self._max_y - self._output_top_row - self._command_textbox_height - 1) # Row index of scroll information line: Taking into account the zero-based # row indexing and the command textbox area under the scroll information # row. self._output_scroll_row = self._max_y - 1 - self._command_textbox_height # Tab completion bottom row. self._candidates_top_row = self._output_scroll_row - 4 self._candidates_bottom_row = self._output_scroll_row - 1 # Maximum number of lines the candidates display can have. self._candidates_max_lines = int(self._output_num_rows / 2) self.max_output_lines = 10000 # Regex search state. self._curr_search_regex = None self._unwrapped_regex_match_lines = [] # Size of view port on screen, which is always smaller or equal to the # screen size. self._output_pad_screen_height = self._output_num_rows - 1 self._output_pad_screen_width = self._max_x - 2 self._output_pad_screen_location = self.rectangle( top=self._output_top_row, left=0, bottom=self._output_top_row + self._output_num_rows, right=self._output_pad_screen_width) def _screen_init(self): """Screen initialization. Creates curses stdscr and initialize the color pairs for display. """ # If the terminal type is color-ready, enable it. if os.getenv("COLORTERM") in _COLOR_READY_COLORTERMS: os.environ["TERM"] = _COLOR_ENABLED_TERM self._stdscr = curses.initscr() self._command_window = None self._screen_color_init() def _screen_color_init(self): """Initialization of screen colors.""" curses.start_color() curses.use_default_colors() self._color_pairs = {} color_index = 0 # Prepare color pairs. for fg_color in self._FOREGROUND_COLORS: for bg_color in self._BACKGROUND_COLORS: color_index += 1 curses.init_pair(color_index, self._FOREGROUND_COLORS[fg_color], self._BACKGROUND_COLORS[bg_color]) color_name = fg_color if bg_color != "transparent": color_name += "_on_" + bg_color self._color_pairs[color_name] = curses.color_pair(color_index) # Try getting color(s) available only under 256-color support. try: color_index += 1 curses.init_pair(color_index, 245, -1) self._color_pairs[cli_shared.COLOR_GRAY] = curses.color_pair(color_index) except curses.error: # Use fall-back color(s): self._color_pairs[cli_shared.COLOR_GRAY] = ( self._color_pairs[cli_shared.COLOR_GREEN]) # A_BOLD or A_BLINK is not really a "color". But place it here for # convenience. self._color_pairs["bold"] = curses.A_BOLD self._color_pairs["blink"] = curses.A_BLINK self._color_pairs["underline"] = curses.A_UNDERLINE # Default color pair to use when a specified color pair does not exist. self._default_color_pair = self._color_pairs[cli_shared.COLOR_WHITE] def _screen_launch(self, enable_mouse_on_start): """Launch the curses screen.""" curses.noecho() curses.cbreak() self._stdscr.keypad(1) self._mouse_enabled = self.config.get("mouse_mode") self._screen_set_mousemask() self.config.set_callback( "mouse_mode", lambda cfg: self._set_mouse_enabled(cfg.get("mouse_mode"))) self._screen_create_command_window() def _screen_create_command_window(self): """Create command window according to screen size.""" if self._command_window: del self._command_window self._command_window = curses.newwin( self._command_textbox_height, self._max_x - len(self.CLI_PROMPT), self._max_y - self._command_textbox_height, len(self.CLI_PROMPT)) def _screen_refresh(self): self._stdscr.refresh() def _screen_terminate(self): """Terminate the curses screen.""" self._stdscr.keypad(0) curses.nocbreak() curses.echo() curses.endwin() try: # Remove SIGINT handler. signal.signal(signal.SIGINT, signal.SIG_DFL) except ValueError: # Can't catch signals unless you're the main thread. pass def run_ui(self, init_command=None, title=None, title_color=None, enable_mouse_on_start=True): """Run the CLI: See the doc of base_ui.BaseUI.run_ui for more details.""" # Only one instance of the Curses UI can be running at a time, since # otherwise they would try to both read from the same keystrokes, and write # to the same screen. self._single_instance_lock.acquire() self._screen_launch(enable_mouse_on_start=enable_mouse_on_start) # Optional initial command. if init_command is not None: self._dispatch_command(init_command) if title is not None: self._title(title, title_color=title_color) # CLI main loop. exit_token = self._ui_loop() if self._on_ui_exit: self._on_ui_exit() self._screen_terminate() self._single_instance_lock.release() return exit_token def get_help(self): return self._command_handler_registry.get_help() def _addstr(self, *args): try: self._stdscr.addstr(*args) except curses.error: pass def _refresh_pad(self, pad, *args): try: pad.refresh(*args) except curses.error: pass def _screen_create_command_textbox(self, existing_command=None): """Create command textbox on screen. Args: existing_command: (str) A command string to put in the textbox right after its creation. """ # Display the tfdbg prompt. self._addstr(self._max_y - self._command_textbox_height, 0, self.CLI_PROMPT, curses.A_BOLD) self._stdscr.refresh() self._command_window.clear() # Command text box. self._command_textbox = textpad.Textbox( self._command_window, insert_mode=True) # Enter existing command. self._auto_key_in(existing_command) def _ui_loop(self): """Command-line UI loop. Returns: An exit token of arbitrary type. The token can be None. """ while True: # Enter history command if pointer is in history (> 0): if self._command_pointer > 0: existing_command = self._active_command_history[-self._command_pointer] else: existing_command = self._pending_command self._screen_create_command_textbox(existing_command) try: command, terminator, pending_command_changed = self._get_user_command() except debugger_cli_common.CommandLineExit as e: return e.exit_token if not command and terminator != self.CLI_TAB_KEY: continue if terminator in self.CLI_CR_KEYS or terminator == curses.KEY_MOUSE: exit_token = self._dispatch_command(command) if exit_token is not None: return exit_token elif terminator == self.CLI_TAB_KEY: tab_completed = self._tab_complete(command) self._pending_command = tab_completed self._cmd_ptr = 0 elif pending_command_changed: self._pending_command = command return def _get_user_command(self): """Get user command from UI. Returns: command: (str) The user-entered command. terminator: (str) Terminator type for the command. If command is a normal command entered with the Enter key, the value will be the key itself. If this is a tab completion call (using the Tab key), the value will reflect that as well. pending_command_changed: (bool) If the pending command has changed. Used during command history navigation. """ # First, reset textbox state variables. self._textbox_curr_terminator = None self._textbox_pending_command_changed = False command = self._screen_get_user_command() command = self._strip_terminator(command) return (command, self._textbox_curr_terminator, self._textbox_pending_command_changed) def _screen_get_user_command(self): return self._command_textbox.edit(validate=self._on_textbox_keypress) def _strip_terminator(self, command): if not command: return command for v in self.CLI_CR_KEYS: if v < 256: command = command.replace(chr(v), "") return command.strip() def _screen_refresh_size(self): self._max_y, self._max_x = self._stdscr.getmaxyx() if self._max_x > self._SCREEN_WIDTH_LIMIT: self._max_x = self._SCREEN_WIDTH_LIMIT def _navigate_screen_output(self, command): """Navigate in screen output history. Args: command: (`str`) the navigation command, from {self._NAVIGATION_FORWARD_COMMAND, self._NAVIGATION_BACK_COMMAND}. """ if command == self._NAVIGATION_FORWARD_COMMAND: if self._nav_history.can_go_forward(): item = self._nav_history.go_forward() scroll_position = item.scroll_position else: self._toast("At the LATEST in navigation history!", color=self._NAVIGATION_WARNING_COLOR_PAIR) return else: if self._nav_history.can_go_back(): item = self._nav_history.go_back() scroll_position = item.scroll_position else: self._toast("At the OLDEST in navigation history!", color=self._NAVIGATION_WARNING_COLOR_PAIR) return self._display_output(item.screen_output) if scroll_position != 0: self._scroll_output(_SCROLL_TO_LINE_INDEX, line_index=scroll_position) def _dispatch_command(self, command): """Dispatch user command. Args: command: (str) Command to dispatch. Returns: An exit token object. None value means that the UI loop should not exit. A non-None value means the UI loop should exit. """ if self._output_pad: self._toast(self._UI_WAIT_MESSAGE, color=self._UI_WAIT_COLOR_PAIR) if command in self.CLI_EXIT_COMMANDS: # Explicit user command-triggered exit: EXPLICIT_USER_EXIT as the exit # token. return debugger_cli_common.EXPLICIT_USER_EXIT elif (command == self._NAVIGATION_FORWARD_COMMAND or command == self._NAVIGATION_BACK_COMMAND): self._navigate_screen_output(command) return if command: self._command_history_store.add_command(command) if (command.startswith(self.REGEX_SEARCH_PREFIX) and self._curr_unwrapped_output): if len(command) > len(self.REGEX_SEARCH_PREFIX): # Command is like "/regex". Perform regex search. regex = command[len(self.REGEX_SEARCH_PREFIX):] self._curr_search_regex = regex self._display_output(self._curr_unwrapped_output, highlight_regex=regex) elif self._unwrapped_regex_match_lines: # Command is "/". Continue scrolling down matching lines. self._display_output( self._curr_unwrapped_output, is_refresh=True, highlight_regex=self._curr_search_regex) self._command_pointer = 0 self._pending_command = "" return elif command.startswith(self.TENSOR_INDICES_NAVIGATION_PREFIX): indices_str = command[1:].strip() if indices_str: try: indices = command_parser.parse_indices(indices_str) omitted, line_index, _, _ = tensor_format.locate_tensor_element( self._curr_wrapped_output, indices) if not omitted: self._scroll_output( _SCROLL_TO_LINE_INDEX, line_index=line_index) except Exception as e: # pylint: disable=broad-except self._error_toast(str(e)) else: self._error_toast("Empty indices.") return try: prefix, args, output_file_path = self._parse_command(command) except SyntaxError as e: self._error_toast(str(e)) return if not prefix: # Empty command: take no action. Should not exit. return # Take into account scroll bar width. screen_info = {"cols": self._max_x - 2} exit_token = None if self._command_handler_registry.is_registered(prefix): try: screen_output = self._command_handler_registry.dispatch_command( prefix, args, screen_info=screen_info) except debugger_cli_common.CommandLineExit as e: exit_token = e.exit_token else: screen_output = debugger_cli_common.RichTextLines([ self.ERROR_MESSAGE_PREFIX + "Invalid command prefix \"%s\"" % prefix ]) # Clear active command history. Until next up/down history navigation # occurs, it will stay empty. self._active_command_history = [] if exit_token is not None: return exit_token self._nav_history.add_item(command, screen_output, 0) self._display_output(screen_output) if output_file_path: try: screen_output.write_to_file(output_file_path) self._info_toast("Wrote output to %s" % output_file_path) except Exception: # pylint: disable=broad-except self._error_toast("Failed to write output to %s" % output_file_path) self._command_pointer = 0 self._pending_command = "" def _screen_gather_textbox_str(self): """Gather the text string in the command text box. Returns: (str) the current text string in the command textbox, excluding any return keys. """ txt = self._command_textbox.gather() return txt.strip() def _on_textbox_keypress(self, x): """Text box key validator: Callback of key strokes. Handles a user's keypress in the input text box. Translates certain keys to terminator keys for the textbox to allow its edit() method to return. Also handles special key-triggered events such as PgUp/PgDown scrolling of the screen output. Args: x: (int) Key code. Returns: (int) A translated key code. In most cases, this is identical to the input x. However, if x is a Return key, the return value will be CLI_TERMINATOR_KEY, so that the text box's edit() method can return. Raises: TypeError: If the input x is not of type int. debugger_cli_common.CommandLineExit: If a mouse-triggered command returns an exit token when dispatched. """ if not isinstance(x, int): raise TypeError("Key validator expected type int, received type %s" % type(x)) if x in self.CLI_CR_KEYS: # Make Enter key the terminator self._textbox_curr_terminator = x return self.CLI_TERMINATOR_KEY elif x == self.CLI_TAB_KEY: self._textbox_curr_terminator = self.CLI_TAB_KEY return self.CLI_TERMINATOR_KEY elif x == curses.KEY_PPAGE: self._scroll_output(_SCROLL_UP_A_LINE) return x elif x == curses.KEY_NPAGE: self._scroll_output(_SCROLL_DOWN_A_LINE) return x elif x == curses.KEY_HOME: self._scroll_output(_SCROLL_HOME) return x elif x == curses.KEY_END: self._scroll_output(_SCROLL_END) return x elif x in [curses.KEY_UP, curses.KEY_DOWN]: # Command history navigation. if not self._active_command_history: hist_prefix = self._screen_gather_textbox_str() self._active_command_history = ( self._command_history_store.lookup_prefix( hist_prefix, self._command_history_limit)) if self._active_command_history: if x == curses.KEY_UP: if self._command_pointer < len(self._active_command_history): self._command_pointer += 1 elif x == curses.KEY_DOWN: if self._command_pointer > 0: self._command_pointer -= 1 else: self._command_pointer = 0 self._textbox_curr_terminator = x # Force return from the textbox edit(), so that the textbox can be # redrawn with a history command entered. return self.CLI_TERMINATOR_KEY elif x == curses.KEY_RESIZE: # Respond to terminal resize. self._screen_refresh_size() self._init_layout() self._screen_create_command_window() self._redraw_output() # Force return from the textbox edit(), so that the textbox can be # redrawn. return self.CLI_TERMINATOR_KEY elif x == curses.KEY_MOUSE and self._mouse_enabled: try: _, mouse_x, mouse_y, _, mouse_event_type = self._screen_getmouse() except curses.error: mouse_event_type = None if mouse_event_type == curses.BUTTON1_PRESSED: # Logic for held mouse-triggered scrolling. if mouse_x >= self._max_x - 2: # Disable blocking on checking for user input. self._command_window.nodelay(True) # Loop while mouse button is pressed. while mouse_event_type == curses.BUTTON1_PRESSED: # Sleep for a bit. curses.napms(self._MOUSE_SCROLL_DELAY_MS) scroll_command = self._scroll_bar.get_click_command(mouse_y) if scroll_command in (_SCROLL_UP_A_LINE, _SCROLL_DOWN_A_LINE): self._scroll_output(scroll_command) # Check to see if different mouse event is in queue. self._command_window.getch() try: _, _, _, _, mouse_event_type = self._screen_getmouse() except curses.error: pass self._command_window.nodelay(False) return x elif mouse_event_type == curses.BUTTON1_RELEASED: # Logic for mouse-triggered scrolling. if mouse_x >= self._max_x - 2: scroll_command = self._scroll_bar.get_click_command(mouse_y) if scroll_command is not None: self._scroll_output(scroll_command) return x else: command = self._fetch_hyperlink_command(mouse_x, mouse_y) if command: self._screen_create_command_textbox() exit_token = self._dispatch_command(command) if exit_token is not None: raise debugger_cli_common.CommandLineExit(exit_token=exit_token) else: # Mark the pending command as modified. self._textbox_pending_command_changed = True # Invalidate active command history. self._command_pointer = 0 self._active_command_history = [] return self._KEY_MAP.get(x, x) def _screen_getmouse(self): return curses.getmouse() def _redraw_output(self): if self._curr_unwrapped_output is not None: self._display_nav_bar() self._display_main_menu(self._curr_unwrapped_output) self._display_output(self._curr_unwrapped_output, is_refresh=True) def _fetch_hyperlink_command(self, mouse_x, mouse_y): output_top = self._output_top_row if self._main_menu_pad: output_top += 1 if mouse_y == self._nav_bar_row and self._nav_bar: # Click was in the nav bar. return _get_command_from_line_attr_segs(mouse_x, self._nav_bar.font_attr_segs[0]) elif mouse_y == self._output_top_row and self._main_menu_pad: # Click was in the menu bar. return _get_command_from_line_attr_segs(mouse_x, self._main_menu.font_attr_segs[0]) else: absolute_mouse_y = mouse_y + self._output_pad_row - output_top if absolute_mouse_y in self._curr_wrapped_output.font_attr_segs: return _get_command_from_line_attr_segs( mouse_x, self._curr_wrapped_output.font_attr_segs[absolute_mouse_y]) def _title(self, title, title_color=None): """Display title. Args: title: (str) The title to display. title_color: (str) Color of the title, e.g., "yellow". """ # Pad input title str with "-" and space characters to make it pretty. self._title_line = "--- %s " % title if len(self._title_line) < self._max_x: self._title_line += "-" * (self._max_x - len(self._title_line)) self._screen_draw_text_line( self._title_row, self._title_line, color=title_color) def _auto_key_in(self, command, erase_existing=False): """Automatically key in a command to the command Textbox. Args: command: The command, as a string or None. erase_existing: (bool) whether existing text (if any) is to be erased first. """ if erase_existing: self._erase_existing_command() command = command or "" for c in command: self._command_textbox.do_command(ord(c)) def _erase_existing_command(self): """Erase existing text in command textpad.""" existing_len = len(self._command_textbox.gather()) for _ in xrange(existing_len): self._command_textbox.do_command(self.BACKSPACE_KEY) def _screen_draw_text_line(self, row, line, attr=curses.A_NORMAL, color=None): """Render a line of text on the screen. Args: row: (int) Row index. line: (str) The line content. attr: curses font attribute. color: (str) font foreground color name. Raises: TypeError: If row is not of type int. """ if not isinstance(row, int): raise TypeError("Invalid type in row") if len(line) > self._max_x: line = line[:self._max_x] color_pair = (self._default_color_pair if color is None else self._color_pairs[color]) self._addstr(row, 0, line, color_pair | attr) self._screen_refresh() def _screen_new_output_pad(self, rows, cols): """Generate a new pad on the screen. Args: rows: (int) Number of rows the pad will have: not limited to screen size. cols: (int) Number of columns the pad will have: not limited to screen size. Returns: A curses textpad object. """ return curses.newpad(rows, cols) def _screen_display_output(self, output): """Actually render text output on the screen. Wraps the lines according to screen width. Pad lines below according to screen height so that the user can scroll the output to a state where the last non-empty line is on the top of the screen. Then renders the lines on the screen. Args: output: (RichTextLines) text lines to display on the screen. These lines may have widths exceeding the screen width. This method will take care of the wrapping. Returns: (List of int) A list of line indices, in the wrapped output, where there are regex matches. """ # Wrap the output lines according to screen width. self._curr_wrapped_output, wrapped_line_indices = ( debugger_cli_common.wrap_rich_text_lines(output, self._max_x - 2)) # Append lines to curr_wrapped_output so that the user can scroll to a # state where the last text line is on the top of the output area. self._curr_wrapped_output.lines.extend([""] * (self._output_num_rows - 1)) # Limit number of lines displayed to avoid curses overflow problems. if self._curr_wrapped_output.num_lines() > self.max_output_lines: self._curr_wrapped_output = self._curr_wrapped_output.slice( 0, self.max_output_lines) self._curr_wrapped_output.lines.append("Output cut off at %d lines!" % self.max_output_lines) self._curr_wrapped_output.font_attr_segs[self.max_output_lines] = [ (0, len(output.lines[-1]), cli_shared.COLOR_MAGENTA) ] self._display_nav_bar() self._display_main_menu(self._curr_wrapped_output) (self._output_pad, self._output_pad_height, self._output_pad_width) = self._display_lines(self._curr_wrapped_output, self._output_num_rows) # The indices of lines with regex matches (if any) need to be mapped to # indices of wrapped lines. return [ wrapped_line_indices[line] for line in self._unwrapped_regex_match_lines ] def _display_output(self, output, is_refresh=False, highlight_regex=None): """Display text output in a scrollable text pad. This method does some preprocessing on the text lines, render them on the screen and scroll to the appropriate line. These are done according to regex highlighting requests (if any), scroll-to-next-match requests (if any), and screen refresh requests (if any). TODO(cais): Separate these unrelated request to increase clarity and maintainability. Args: output: A RichTextLines object that is the screen output text. is_refresh: (bool) Is this a refreshing display with existing output. highlight_regex: (str) Optional string representing the regex used to search and highlight in the current screen output. """ if not output: return if highlight_regex: try: output = debugger_cli_common.regex_find( output, highlight_regex, font_attr=self._SEARCH_HIGHLIGHT_FONT_ATTR) except ValueError as e: self._error_toast(str(e)) return if not is_refresh: # Perform new regex search on the current output. self._unwrapped_regex_match_lines = output.annotations[ debugger_cli_common.REGEX_MATCH_LINES_KEY] else: # Continue scrolling down. self._output_pad_row += 1 else: self._curr_unwrapped_output = output self._unwrapped_regex_match_lines = [] # Display output on the screen. wrapped_regex_match_lines = self._screen_display_output(output) # Now that the text lines are displayed on the screen scroll to the # appropriate line according to previous scrolling state and regex search # and highlighting state. if highlight_regex: next_match_line = -1 for match_line in wrapped_regex_match_lines: if match_line >= self._output_pad_row: next_match_line = match_line break if next_match_line >= 0: self._scroll_output( _SCROLL_TO_LINE_INDEX, line_index=next_match_line) else: # Regex search found no match >= current line number. Display message # stating as such. self._toast("Pattern not found", color=self._ERROR_TOAST_COLOR_PAIR) elif is_refresh: self._scroll_output(_SCROLL_REFRESH) elif debugger_cli_common.INIT_SCROLL_POS_KEY in output.annotations: line_index = output.annotations[debugger_cli_common.INIT_SCROLL_POS_KEY] self._scroll_output(_SCROLL_TO_LINE_INDEX, line_index=line_index) else: self._output_pad_row = 0 self._scroll_output(_SCROLL_HOME) def _display_lines(self, output, min_num_rows): """Display RichTextLines object on screen. Args: output: A RichTextLines object. min_num_rows: (int) Minimum number of output rows. Returns: 1) The text pad object used to display the main text body. 2) (int) number of rows of the text pad, which may exceed screen size. 3) (int) number of columns of the text pad. Raises: ValueError: If input argument "output" is invalid. """ if not isinstance(output, debugger_cli_common.RichTextLines): raise ValueError( "Output is required to be an instance of RichTextLines, but is not.") self._screen_refresh() # Number of rows the output area will have. rows = max(min_num_rows, len(output.lines)) # Size of the output pad, which may exceed screen size and require # scrolling. cols = self._max_x - 2 # Create new output pad. pad = self._screen_new_output_pad(rows, cols) for i in xrange(len(output.lines)): if i in output.font_attr_segs: self._screen_add_line_to_output_pad( pad, i, output.lines[i], color_segments=output.font_attr_segs[i]) else: self._screen_add_line_to_output_pad(pad, i, output.lines[i]) return pad, rows, cols def _display_nav_bar(self): nav_bar_width = self._max_x - 2 self._nav_bar_pad = self._screen_new_output_pad(1, nav_bar_width) self._nav_bar = self._nav_history.render( nav_bar_width, self._NAVIGATION_BACK_COMMAND, self._NAVIGATION_FORWARD_COMMAND) self._screen_add_line_to_output_pad( self._nav_bar_pad, 0, self._nav_bar.lines[0][:nav_bar_width - 1], color_segments=(self._nav_bar.font_attr_segs[0] if 0 in self._nav_bar.font_attr_segs else None)) def _display_main_menu(self, output): """Display main menu associated with screen output, if the menu exists. Args: output: (debugger_cli_common.RichTextLines) The RichTextLines output from the annotations field of which the menu will be extracted and used (if the menu exists). """ if debugger_cli_common.MAIN_MENU_KEY in output.annotations: self._main_menu = output.annotations[ debugger_cli_common.MAIN_MENU_KEY].format_as_single_line( prefix="| ", divider=" | ", enabled_item_attrs=["underline"]) self._main_menu_pad = self._screen_new_output_pad(1, self._max_x - 2) # The unwrapped menu line may exceed screen width, in which case it needs # to be cut off. wrapped_menu, _ = debugger_cli_common.wrap_rich_text_lines( self._main_menu, self._max_x - 3) self._screen_add_line_to_output_pad( self._main_menu_pad, 0, wrapped_menu.lines[0], color_segments=(wrapped_menu.font_attr_segs[0] if 0 in wrapped_menu.font_attr_segs else None)) else: self._main_menu = None self._main_menu_pad = None def _pad_line_end_with_whitespace(self, pad, row, line_end_x): """Pad the whitespace at the end of a line with the default color pair. Prevents spurious color pairs from appearing at the end of the lines in certain text terimnals. Args: pad: The curses pad object to operate on. row: (`int`) row index. line_end_x: (`int`) column index of the end of the line (beginning of the whitespace). """ if line_end_x < self._max_x - 2: pad.addstr(row, line_end_x, " " * (self._max_x - 3 - line_end_x), self._default_color_pair) def _screen_add_line_to_output_pad(self, pad, row, txt, color_segments=None): """Render a line in a text pad. Assumes: segments in color_segments are sorted in ascending order of the beginning index. Note: Gaps between the segments are allowed and will be fixed in with a default color. Args: pad: The text pad to render the line in. row: Row index, as an int. txt: The text to be displayed on the specified row, as a str. color_segments: A list of 3-tuples. Each tuple represents the beginning and the end of a color segment, in the form of a right-open interval: [start, end). The last element of the tuple is a color string, e.g., "red". Raisee: TypeError: If color_segments is not of type list. """ if not color_segments: pad.addstr(row, 0, txt, self._default_color_pair) self._pad_line_end_with_whitespace(pad, row, len(txt)) return if not isinstance(color_segments, list): raise TypeError("Input color_segments needs to be a list, but is not.") all_segments = [] all_color_pairs = [] # Process the beginning. if color_segments[0][0] == 0: pass else: all_segments.append((0, color_segments[0][0])) all_color_pairs.append(self._default_color_pair) for (curr_start, curr_end, curr_attrs), (next_start, _, _) in zip( color_segments, color_segments[1:] + [(len(txt), None, None)]): all_segments.append((curr_start, curr_end)) if not isinstance(curr_attrs, list): curr_attrs = [curr_attrs] curses_attr = curses.A_NORMAL for attr in curr_attrs: if (self._mouse_enabled and isinstance(attr, debugger_cli_common.MenuItem)): curses_attr |= curses.A_UNDERLINE else: curses_attr |= self._color_pairs.get(attr, self._default_color_pair) all_color_pairs.append(curses_attr) if curr_end < next_start: # Fill in the gap with the default color. all_segments.append((curr_end, next_start)) all_color_pairs.append(self._default_color_pair) # Finally, draw all the segments. for segment, color_pair in zip(all_segments, all_color_pairs): if segment[1] < self._max_x: pad.addstr(row, segment[0], txt[segment[0]:segment[1]], color_pair) if all_segments: self._pad_line_end_with_whitespace(pad, row, all_segments[-1][1]) def _screen_scroll_output_pad(self, pad, viewport_top, viewport_left, screen_location_top, screen_location_left, screen_location_bottom, screen_location_right): self._refresh_pad(pad, viewport_top, viewport_left, screen_location_top, screen_location_left, screen_location_bottom, screen_location_right) self._scroll_bar = ScrollBar( self._max_x - 2, 3, self._max_x - 1, self._output_num_rows + 1, self._output_pad_row, self._output_pad_height - self._output_pad_screen_height) (scroll_pad, _, _) = self._display_lines( self._scroll_bar.layout(), self._output_num_rows - 1) self._refresh_pad(scroll_pad, 0, 0, self._output_top_row + 1, self._max_x - 2, self._output_num_rows + 1, self._max_x - 1) def _scroll_output(self, direction, line_index=None): """Scroll the output pad. Args: direction: _SCROLL_REFRESH, _SCROLL_UP, _SCROLL_DOWN, _SCROLL_UP_A_LINE, _SCROLL_DOWN_A_LINE, _SCROLL_HOME, _SCROLL_END, _SCROLL_TO_LINE_INDEX line_index: (int) Specifies the zero-based line index to scroll to. Applicable only if direction is _SCROLL_TO_LINE_INDEX. Raises: ValueError: On invalid scroll direction. TypeError: If line_index is not int and direction is _SCROLL_TO_LINE_INDEX. """ if not self._output_pad: # No output pad is present. Do nothing. return if direction == _SCROLL_REFRESH: pass elif direction == _SCROLL_UP: # Scroll up. self._output_pad_row -= int(self._output_num_rows / 3) if self._output_pad_row < 0: self._output_pad_row = 0 elif direction == _SCROLL_DOWN: # Scroll down. self._output_pad_row += int(self._output_num_rows / 3) if (self._output_pad_row > self._output_pad_height - self._output_pad_screen_height - 1): self._output_pad_row = ( self._output_pad_height - self._output_pad_screen_height - 1) elif direction == _SCROLL_UP_A_LINE: # Scroll up a line if self._output_pad_row - 1 >= 0: self._output_pad_row -= 1 elif direction == _SCROLL_DOWN_A_LINE: # Scroll down a line if self._output_pad_row + 1 < ( self._output_pad_height - self._output_pad_screen_height): self._output_pad_row += 1 elif direction == _SCROLL_HOME: # Scroll to top self._output_pad_row = 0 elif direction == _SCROLL_END: # Scroll to bottom self._output_pad_row = ( self._output_pad_height - self._output_pad_screen_height - 1) elif direction == _SCROLL_TO_LINE_INDEX: if not isinstance(line_index, int): raise TypeError("Invalid line_index type (%s) under mode %s" % (type(line_index), _SCROLL_TO_LINE_INDEX)) self._output_pad_row = line_index else: raise ValueError("Unsupported scroll mode: %s" % direction) self._nav_history.update_scroll_position(self._output_pad_row) # Actually scroll the output pad: refresh with new location. output_pad_top = self._output_pad_screen_location.top if self._main_menu_pad: output_pad_top += 1 self._screen_scroll_output_pad(self._output_pad, self._output_pad_row, 0, output_pad_top, self._output_pad_screen_location.left, self._output_pad_screen_location.bottom, self._output_pad_screen_location.right) self._screen_render_nav_bar() self._screen_render_menu_pad() self._scroll_info = self._compile_ui_status_summary() self._screen_draw_text_line( self._output_scroll_row, self._scroll_info, color=self._STATUS_BAR_COLOR_PAIR) def _screen_render_nav_bar(self): if self._nav_bar_pad: self._refresh_pad(self._nav_bar_pad, 0, 0, self._nav_bar_row, 0, self._output_pad_screen_location.top, self._max_x) def _screen_render_menu_pad(self): if self._main_menu_pad: self._refresh_pad( self._main_menu_pad, 0, 0, self._output_pad_screen_location.top, 0, self._output_pad_screen_location.top, self._max_x) def _compile_ui_status_summary(self): """Compile status summary about this Curses UI instance. The information includes: scroll status and mouse ON/OFF status. Returns: (str) A single text line summarizing the UI status, adapted to the current screen width. """ info = "" if self._output_pad_height > self._output_pad_screen_height + 1: # Display information about the scrolling of tall screen output. scroll_percentage = 100.0 * (min( 1.0, float(self._output_pad_row) / (self._output_pad_height - self._output_pad_screen_height - 1))) if self._output_pad_row == 0: scroll_directions = " (PgDn)" elif self._output_pad_row >= ( self._output_pad_height - self._output_pad_screen_height - 1): scroll_directions = " (PgUp)" else: scroll_directions = " (PgDn/PgUp)" info += "--- Scroll%s: %.2f%% " % (scroll_directions, scroll_percentage) self._output_array_pointer_indices = self._show_array_indices() # Add array indices information to scroll message. if self._output_array_pointer_indices: if self._output_array_pointer_indices[0]: info += self._format_indices(self._output_array_pointer_indices[0]) info += "-" if self._output_array_pointer_indices[-1]: info += self._format_indices(self._output_array_pointer_indices[-1]) info += " " # Add mouse mode information. mouse_mode_str = "Mouse: " mouse_mode_str += "ON" if self._mouse_enabled else "OFF" if len(info) + len(mouse_mode_str) + 5 < self._max_x: info += "-" * (self._max_x - len(info) - len(mouse_mode_str) - 4) info += " " info += mouse_mode_str info += " ---" else: info += "-" * (self._max_x - len(info)) return info def _format_indices(self, indices): # Remove the spaces to make it compact. return repr(indices).replace(" ", "") def _show_array_indices(self): """Show array indices for the lines at the top and bottom of the output. For the top line and bottom line of the output display area, show the element indices of the array being displayed. Returns: If either the top of the bottom row has any matching array indices, a dict from line index (0 being the top of the display area, -1 being the bottom of the display area) to array element indices. For example: {0: [0, 0], -1: [10, 0]} Otherwise, None. """ indices_top = self._show_array_index_at_line(0) output_top = self._output_top_row if self._main_menu_pad: output_top += 1 bottom_line_index = ( self._output_pad_screen_location.bottom - output_top - 1) indices_bottom = self._show_array_index_at_line(bottom_line_index) if indices_top or indices_bottom: return {0: indices_top, -1: indices_bottom} else: return None def _show_array_index_at_line(self, line_index): """Show array indices for the specified line in the display area. Uses the line number to array indices map in the annotations field of the RichTextLines object being displayed. If the displayed RichTextLines object does not contain such a mapping, will do nothing. Args: line_index: (int) 0-based line index from the top of the display area. For example,if line_index == 0, this method will display the array indices for the line currently at the top of the display area. Returns: (list) The array indices at the specified line, if available. None, if not available. """ # Examine whether the index information is available for the specified line # number. pointer = self._output_pad_row + line_index if (pointer in self._curr_wrapped_output.annotations and "i0" in self._curr_wrapped_output.annotations[pointer]): indices = self._curr_wrapped_output.annotations[pointer]["i0"] array_indices_str = self._format_indices(indices) array_indices_info = "@" + array_indices_str # TODO(cais): Determine line_index properly given menu pad status. # Test coverage? output_top = self._output_top_row if self._main_menu_pad: output_top += 1 self._toast( array_indices_info, color=self._ARRAY_INDICES_COLOR_PAIR, line_index=output_top + line_index) return indices else: return None def _tab_complete(self, command_str): """Perform tab completion. Obtains tab completion candidates. If there are no candidates, return command_str and take no other actions. If there are candidates, display the candidates on screen and return command_str + (common prefix of the candidates). Args: command_str: (str) The str in the command input textbox when Tab key is hit. Returns: (str) Completed string. Could be the same as command_str if no completion candidate is available. If candidate(s) are available, return command_str appended by the common prefix of the candidates. """ context, prefix, except_last_word = self._analyze_tab_complete_input( command_str) candidates, common_prefix = self._tab_completion_registry.get_completions( context, prefix) if candidates and len(candidates) > 1: self._display_candidates(candidates) else: # In the case of len(candidates) == 1, the single completion will be # entered to the textbox automatically. So there is no need to show any # candidates. self._display_candidates([]) if common_prefix: # Common prefix is not None and non-empty. The completed string will # incorporate the common prefix. return except_last_word + common_prefix else: return except_last_word + prefix def _display_candidates(self, candidates): """Show candidates (e.g., tab-completion candidates) on multiple lines. Args: candidates: (list of str) candidates. """ if self._curr_unwrapped_output: # Force refresh screen output. self._scroll_output(_SCROLL_REFRESH) if not candidates: return candidates_prefix = "Candidates: " candidates_line = candidates_prefix + " ".join(candidates) candidates_output = debugger_cli_common.RichTextLines( candidates_line, font_attr_segs={ 0: [(len(candidates_prefix), len(candidates_line), "yellow")] }) candidates_output, _ = debugger_cli_common.wrap_rich_text_lines( candidates_output, self._max_x - 3) # Calculate how many lines the candidate text should occupy. Limit it to # a maximum value. candidates_num_rows = min( len(candidates_output.lines), self._candidates_max_lines) self._candidates_top_row = ( self._candidates_bottom_row - candidates_num_rows + 1) # Render the candidate text on screen. pad, _, _ = self._display_lines(candidates_output, 0) self._screen_scroll_output_pad( pad, 0, 0, self._candidates_top_row, 0, self._candidates_top_row + candidates_num_rows - 1, self._max_x - 2) def _toast(self, message, color=None, line_index=None): """Display a one-line message on the screen. By default, the toast is displayed in the line right above the scroll bar. But the line location can be overridden with the line_index arg. Args: message: (str) the message to display. color: (str) optional color attribute for the message. line_index: (int) line index. """ pad, _, _ = self._display_lines( debugger_cli_common.RichTextLines( message, font_attr_segs={ 0: [(0, len(message), color or cli_shared.COLOR_WHITE)]}), 0) right_end = min(len(message), self._max_x - 2) if line_index is None: line_index = self._output_scroll_row - 1 self._screen_scroll_output_pad(pad, 0, 0, line_index, 0, line_index, right_end) def _error_toast(self, message): """Display a one-line error message on screen. Args: message: The error message, without the preceding "ERROR: " substring. """ self._toast( self.ERROR_MESSAGE_PREFIX + message, color=self._ERROR_TOAST_COLOR_PAIR) def _info_toast(self, message): """Display a one-line informational message on screen. Args: message: The informational message. """ self._toast( self.INFO_MESSAGE_PREFIX + message, color=self._INFO_TOAST_COLOR_PAIR) def _interrupt_handler(self, signal_num, frame): del signal_num # Unused. del frame # Unused. if self._on_ui_exit: self._on_ui_exit() self._screen_terminate() print("\ntfdbg: caught SIGINT; calling sys.exit(1).", file=sys.stderr) sys.exit(1) def _mouse_mode_command_handler(self, args, screen_info=None): """Handler for the command prefix 'mouse'. Args: args: (list of str) Arguments to the command prefix 'mouse'. screen_info: (dict) Information about the screen, unused by this handler. Returns: None, as this command handler does not generate any screen outputs other than toasts. """ del screen_info if not args or len(args) == 1: if args: if args[0].lower() == "on": enabled = True elif args[0].lower() == "off": enabled = False else: self._error_toast("Invalid mouse mode: %s" % args[0]) return None self._set_mouse_enabled(enabled) mode_str = "on" if self._mouse_enabled else "off" self._info_toast("Mouse mode: %s" % mode_str) else: self._error_toast("mouse_mode: syntax error") return None def _set_mouse_enabled(self, enabled): if self._mouse_enabled != enabled: self._mouse_enabled = enabled self._screen_set_mousemask() self._redraw_output() def _screen_set_mousemask(self): if self._mouse_enabled: curses.mousemask(curses.BUTTON1_RELEASED | curses.BUTTON1_PRESSED) else: curses.mousemask(0)
tensorflow-master
tensorflow/python/debug/cli/curses_ui.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Shared functions and classes for tfdbg command-line interface.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import numpy as np import six from tensorflow.python.debug.cli import command_parser from tensorflow.python.debug.cli import debugger_cli_common from tensorflow.python.debug.cli import tensor_format from tensorflow.python.debug.lib import common from tensorflow.python.framework import ops from tensorflow.python.ops import variables from tensorflow.python.platform import gfile RL = debugger_cli_common.RichLine # Default threshold number of elements above which ellipses will be used # when printing the value of the tensor. DEFAULT_NDARRAY_DISPLAY_THRESHOLD = 2000 COLOR_BLACK = "black" COLOR_BLUE = "blue" COLOR_CYAN = "cyan" COLOR_GRAY = "gray" COLOR_GREEN = "green" COLOR_MAGENTA = "magenta" COLOR_RED = "red" COLOR_WHITE = "white" COLOR_YELLOW = "yellow" TIME_UNIT_US = "us" TIME_UNIT_MS = "ms" TIME_UNIT_S = "s" TIME_UNITS = [TIME_UNIT_US, TIME_UNIT_MS, TIME_UNIT_S] def bytes_to_readable_str(num_bytes, include_b=False): """Generate a human-readable string representing number of bytes. The units B, kB, MB and GB are used. Args: num_bytes: (`int` or None) Number of bytes. include_b: (`bool`) Include the letter B at the end of the unit. Returns: (`str`) A string representing the number of bytes in a human-readable way, including a unit at the end. """ if num_bytes is None: return str(num_bytes) if num_bytes < 1024: result = "%d" % num_bytes elif num_bytes < 1048576: result = "%.2fk" % (num_bytes / 1024.0) elif num_bytes < 1073741824: result = "%.2fM" % (num_bytes / 1048576.0) else: result = "%.2fG" % (num_bytes / 1073741824.0) if include_b: result += "B" return result def time_to_readable_str(value_us, force_time_unit=None): """Convert time value to human-readable string. Args: value_us: time value in microseconds. force_time_unit: force the output to use the specified time unit. Must be in TIME_UNITS. Returns: Human-readable string representation of the time value. Raises: ValueError: if force_time_unit value is not in TIME_UNITS. """ if not value_us: return "0" if force_time_unit: if force_time_unit not in TIME_UNITS: raise ValueError("Invalid time unit: %s" % force_time_unit) order = TIME_UNITS.index(force_time_unit) time_unit = force_time_unit return "{:.10g}{}".format(value_us / math.pow(10.0, 3*order), time_unit) else: order = min(len(TIME_UNITS) - 1, int(math.log(value_us, 10) / 3)) time_unit = TIME_UNITS[order] return "{:.3g}{}".format(value_us / math.pow(10.0, 3*order), time_unit) def parse_ranges_highlight(ranges_string): """Process ranges highlight string. Args: ranges_string: (str) A string representing a numerical range of a list of numerical ranges. See the help info of the -r flag of the print_tensor command for more details. Returns: An instance of tensor_format.HighlightOptions, if range_string is a valid representation of a range or a list of ranges. """ ranges = None def ranges_filter(x): r = np.zeros(x.shape, dtype=bool) for range_start, range_end in ranges: r = np.logical_or(r, np.logical_and(x >= range_start, x <= range_end)) return r if ranges_string: ranges = command_parser.parse_ranges(ranges_string) return tensor_format.HighlightOptions( ranges_filter, description=ranges_string) else: return None def numpy_printoptions_from_screen_info(screen_info): if screen_info and "cols" in screen_info: return {"linewidth": screen_info["cols"]} else: return {} def format_tensor(tensor, tensor_name, np_printoptions, print_all=False, tensor_slicing=None, highlight_options=None, include_numeric_summary=False, write_path=None): """Generate formatted str to represent a tensor or its slices. Args: tensor: (numpy ndarray) The tensor value. tensor_name: (str) Name of the tensor, e.g., the tensor's debug watch key. np_printoptions: (dict) Numpy tensor formatting options. print_all: (bool) Whether the tensor is to be displayed in its entirety, instead of printing ellipses, even if its number of elements exceeds the default numpy display threshold. (Note: Even if this is set to true, the screen output can still be cut off by the UI frontend if it consist of more lines than the frontend can handle.) tensor_slicing: (str or None) Slicing of the tensor, e.g., "[:, 1]". If None, no slicing will be performed on the tensor. highlight_options: (tensor_format.HighlightOptions) options to highlight elements of the tensor. See the doc of tensor_format.format_tensor() for more details. include_numeric_summary: Whether a text summary of the numeric values (if applicable) will be included. write_path: A path to save the tensor value (after any slicing) to (optional). `numpy.save()` is used to save the value. Returns: An instance of `debugger_cli_common.RichTextLines` representing the (potentially sliced) tensor. """ if tensor_slicing: # Validate the indexing. value = command_parser.evaluate_tensor_slice(tensor, tensor_slicing) sliced_name = tensor_name + tensor_slicing else: value = tensor sliced_name = tensor_name auxiliary_message = None if write_path: with gfile.Open(write_path, "wb") as output_file: np.save(output_file, value) line = debugger_cli_common.RichLine("Saved value to: ") line += debugger_cli_common.RichLine(write_path, font_attr="bold") line += " (%sB)" % bytes_to_readable_str(gfile.Stat(write_path).length) auxiliary_message = debugger_cli_common.rich_text_lines_from_rich_line_list( [line, debugger_cli_common.RichLine("")]) if print_all: np_printoptions["threshold"] = value.size else: np_printoptions["threshold"] = DEFAULT_NDARRAY_DISPLAY_THRESHOLD return tensor_format.format_tensor( value, sliced_name, include_metadata=True, include_numeric_summary=include_numeric_summary, auxiliary_message=auxiliary_message, np_printoptions=np_printoptions, highlight_options=highlight_options) def error(msg): """Generate a RichTextLines output for error. Args: msg: (str) The error message. Returns: (debugger_cli_common.RichTextLines) A representation of the error message for screen output. """ return debugger_cli_common.rich_text_lines_from_rich_line_list([ RL("ERROR: " + msg, COLOR_RED)]) def _recommend_command(command, description, indent=2, create_link=False): """Generate a RichTextLines object that describes a recommended command. Args: command: (str) The command to recommend. description: (str) A description of what the command does. indent: (int) How many spaces to indent in the beginning. create_link: (bool) Whether a command link is to be applied to the command string. Returns: (RichTextLines) Formatted text (with font attributes) for recommending the command. """ indent_str = " " * indent if create_link: font_attr = [debugger_cli_common.MenuItem("", command), "bold"] else: font_attr = "bold" lines = [RL(indent_str) + RL(command, font_attr) + ":", indent_str + " " + description] return debugger_cli_common.rich_text_lines_from_rich_line_list(lines) def get_tfdbg_logo(): """Make an ASCII representation of the tfdbg logo.""" lines = [ "", "TTTTTT FFFF DDD BBBB GGG ", " TT F D D B B G ", " TT FFF D D BBBB G GG", " TT F D D B B G G", " TT F DDD BBBB GGG ", "", ] return debugger_cli_common.RichTextLines(lines) _HORIZONTAL_BAR = "======================================" def get_run_start_intro(run_call_count, fetches, feed_dict, tensor_filters, is_callable_runner=False): """Generate formatted intro for run-start UI. Args: run_call_count: (int) Run call counter. fetches: Fetches of the `Session.run()` call. See doc of `Session.run()` for more details. feed_dict: Feeds to the `Session.run()` call. See doc of `Session.run()` for more details. tensor_filters: (dict) A dict from tensor-filter name to tensor-filter callable. is_callable_runner: (bool) whether a runner returned by Session.make_callable is being run. Returns: (RichTextLines) Formatted intro message about the `Session.run()` call. """ fetch_lines = common.get_flattened_names(fetches) if not feed_dict: feed_dict_lines = [debugger_cli_common.RichLine(" (Empty)")] else: feed_dict_lines = [] for feed_key in feed_dict: feed_key_name = common.get_graph_element_name(feed_key) feed_dict_line = debugger_cli_common.RichLine(" ") feed_dict_line += debugger_cli_common.RichLine( feed_key_name, debugger_cli_common.MenuItem(None, "pf '%s'" % feed_key_name)) # Surround the name string with quotes, because feed_key_name may contain # spaces in some cases, e.g., SparseTensors. feed_dict_lines.append(feed_dict_line) feed_dict_lines = debugger_cli_common.rich_text_lines_from_rich_line_list( feed_dict_lines) out = debugger_cli_common.RichTextLines(_HORIZONTAL_BAR) if is_callable_runner: out.append("Running a runner returned by Session.make_callable()") else: out.append("Session.run() call #%d:" % run_call_count) out.append("") out.append("Fetch(es):") out.extend(debugger_cli_common.RichTextLines( [" " + line for line in fetch_lines])) out.append("") out.append("Feed dict:") out.extend(feed_dict_lines) out.append(_HORIZONTAL_BAR) out.append("") out.append("Select one of the following commands to proceed ---->") out.extend( _recommend_command( "run", "Execute the run() call with debug tensor-watching", create_link=True)) out.extend( _recommend_command( "run -n", "Execute the run() call without debug tensor-watching", create_link=True)) out.extend( _recommend_command( "run -t <T>", "Execute run() calls (T - 1) times without debugging, then " "execute run() once more with debugging and drop back to the CLI")) out.extend( _recommend_command( "run -f <filter_name>", "Keep executing run() calls until a dumped tensor passes a given, " "registered filter (conditional breakpoint mode)")) more_lines = [" Registered filter(s):"] if tensor_filters: filter_names = [] for filter_name in tensor_filters: filter_names.append(filter_name) command_menu_node = debugger_cli_common.MenuItem( "", "run -f %s" % filter_name) more_lines.append(RL(" * ") + RL(filter_name, command_menu_node)) else: more_lines.append(" (None)") out.extend( debugger_cli_common.rich_text_lines_from_rich_line_list(more_lines)) out.append("") out.append_rich_line(RL("For more details, see ") + RL("help.", debugger_cli_common.MenuItem("", "help")) + ".") out.append("") # Make main menu for the run-start intro. menu = debugger_cli_common.Menu() menu.append(debugger_cli_common.MenuItem("run", "run")) menu.append(debugger_cli_common.MenuItem("exit", "exit")) out.annotations[debugger_cli_common.MAIN_MENU_KEY] = menu return out def get_run_short_description(run_call_count, fetches, feed_dict, is_callable_runner=False): """Get a short description of the run() call. Args: run_call_count: (int) Run call counter. fetches: Fetches of the `Session.run()` call. See doc of `Session.run()` for more details. feed_dict: Feeds to the `Session.run()` call. See doc of `Session.run()` for more details. is_callable_runner: (bool) whether a runner returned by Session.make_callable is being run. Returns: (str) A short description of the run() call, including information about the fetche(s) and feed(s). """ if is_callable_runner: return "runner from make_callable()" description = "run #%d: " % run_call_count if isinstance(fetches, (ops.Tensor, ops.Operation, variables.Variable)): description += "1 fetch (%s); " % common.get_graph_element_name(fetches) else: # Could be (nested) list, tuple, dict or namedtuple. num_fetches = len(common.get_flattened_names(fetches)) if num_fetches > 1: description += "%d fetches; " % num_fetches else: description += "%d fetch; " % num_fetches if not feed_dict: description += "0 feeds" else: if len(feed_dict) == 1: for key in feed_dict: description += "1 feed (%s)" % ( key if isinstance(key, six.string_types) or not hasattr(key, "name") else key.name) else: description += "%d feeds" % len(feed_dict) return description def get_error_intro(tf_error): """Generate formatted intro for TensorFlow run-time error. Args: tf_error: (errors.OpError) TensorFlow run-time error object. Returns: (RichTextLines) Formatted intro message about the run-time OpError, with sample commands for debugging. """ if hasattr(tf_error, "op") and hasattr(tf_error.op, "name"): op_name = tf_error.op.name else: op_name = None intro_lines = [ "--------------------------------------", RL("!!! An error occurred during the run !!!", "blink"), "", ] out = debugger_cli_common.rich_text_lines_from_rich_line_list(intro_lines) if op_name is not None: out.extend(debugger_cli_common.RichTextLines( ["You may use the following commands to debug:"])) out.extend( _recommend_command("ni -a -d -t %s" % op_name, "Inspect information about the failing op.", create_link=True)) out.extend( _recommend_command("li -r %s" % op_name, "List inputs to the failing op, recursively.", create_link=True)) out.extend( _recommend_command( "lt", "List all tensors dumped during the failing run() call.", create_link=True)) else: out.extend(debugger_cli_common.RichTextLines([ "WARNING: Cannot determine the name of the op that caused the error."])) more_lines = [ "", "Op name: %s" % op_name, "Error type: " + str(type(tf_error)), "", "Details:", str(tf_error), "", "--------------------------------------", "", ] out.extend(debugger_cli_common.RichTextLines(more_lines)) return out
tensorflow-master
tensorflow/python/debug/cli/cli_shared.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests of the curses-based CLI.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import curses import tempfile import threading import numpy as np from six.moves import queue from tensorflow.python.debug.cli import cli_test_utils from tensorflow.python.debug.cli import curses_ui from tensorflow.python.debug.cli import debugger_cli_common from tensorflow.python.debug.cli import tensor_format from tensorflow.python.framework import test_util from tensorflow.python.platform import gfile from tensorflow.python.platform import googletest def string_to_codes(cmd): return [ord(c) for c in cmd] def codes_to_string(cmd_code): # Omit non-ASCII key codes. return "".join([chr(code) for code in cmd_code if code < 256]) class MockCursesUI(curses_ui.CursesUI): """Mock subclass of CursesUI that bypasses actual terminal manipulations.""" def __init__(self, height, width, command_sequence=None): self._height = height self._width = width self._command_sequence = command_sequence self._command_counter = 0 # The mock class has no actual textbox. So use this variable to keep # track of what's entered in the textbox on creation. self._curr_existing_command = "" # Observers for test. # Observers of screen output. self.unwrapped_outputs = [] self.wrapped_outputs = [] self.scroll_messages = [] self.output_array_pointer_indices = [] self.output_pad_rows = [] # Observers of command textbox. self.existing_commands = [] # Observer for tab-completion candidates. self.candidates_lists = [] # Observer for the main menu. self.main_menu_list = [] # Observer for toast messages. self.toasts = [] curses_ui.CursesUI.__init__(self) # Override the default path to the command history file to avoid test # concurrency issues. self._command_history_store = debugger_cli_common.CommandHistory( history_file_path=tempfile.mktemp()) # Below, override the _screen_ prefixed member methods that interact with the # actual terminal, so that the mock can run in a terminal-less environment. # TODO(cais): Search for a way to have a mock terminal object that behaves # like the actual terminal, so that we can test the terminal interaction # parts of the CursesUI class. def _screen_init(self): pass def _screen_refresh_size(self): self._max_y = self._height self._max_x = self._width def _screen_launch(self, enable_mouse_on_start): self._mouse_enabled = enable_mouse_on_start def _screen_terminate(self): pass def _screen_refresh(self): pass def _screen_create_command_window(self): pass def _screen_create_command_textbox(self, existing_command=None): """Override to insert observer of existing commands. Used in testing of history navigation and tab completion. Args: existing_command: Command string entered to the textbox at textbox creation time. Note that the textbox does not actually exist in this mock subclass. This method only keeps track of and records the state. """ self.existing_commands.append(existing_command) self._curr_existing_command = existing_command def _screen_new_output_pad(self, rows, cols): return "mock_pad" def _screen_add_line_to_output_pad(self, pad, row, txt, color_segments=None): pass def _screen_draw_text_line(self, row, line, attr=curses.A_NORMAL, color=None): pass def _screen_scroll_output_pad(self, pad, viewport_top, viewport_left, screen_location_top, screen_location_left, screen_location_bottom, screen_location_right): pass def _screen_get_user_command(self): command = self._command_sequence[self._command_counter] self._command_key_counter = 0 for c in command: if c == curses.KEY_RESIZE: # Special case for simulating a terminal resize event in curses. self._height = command[1] self._width = command[2] self._on_textbox_keypress(c) self._command_counter += 1 return "" elif c == curses.KEY_MOUSE: mouse_x = command[1] mouse_y = command[2] self._command_counter += 1 self._textbox_curr_terminator = c return self._fetch_hyperlink_command(mouse_x, mouse_y) else: y = self._on_textbox_keypress(c) self._command_key_counter += 1 if y == curses_ui.CursesUI.CLI_TERMINATOR_KEY: break self._command_counter += 1 # Take into account pre-existing string automatically entered on textbox # creation. return self._curr_existing_command + codes_to_string(command) def _screen_getmouse(self): output = (0, self._mouse_xy_sequence[self._mouse_counter][0], self._mouse_xy_sequence[self._mouse_counter][1], 0, curses.BUTTON1_CLICKED) self._mouse_counter += 1 return output def _screen_gather_textbox_str(self): return codes_to_string(self._command_sequence[self._command_counter] [:self._command_key_counter]) def _scroll_output(self, direction, line_index=None): """Override to observe screen output. This method is invoked after every command that generates a new screen output and after every keyboard triggered screen scrolling. Therefore it is a good place to insert the observer. Args: direction: which direction to scroll. line_index: (int or None) Optional line index to scroll to. See doc string of the overridden method for more information. """ curses_ui.CursesUI._scroll_output(self, direction, line_index=line_index) self.unwrapped_outputs.append(self._curr_unwrapped_output) self.wrapped_outputs.append(self._curr_wrapped_output) self.scroll_messages.append(self._scroll_info) self.output_array_pointer_indices.append(self._output_array_pointer_indices) self.output_pad_rows.append(self._output_pad_row) def _display_main_menu(self, output): curses_ui.CursesUI._display_main_menu(self, output) self.main_menu_list.append(self._main_menu) def _screen_render_nav_bar(self): pass def _screen_render_menu_pad(self): pass def _display_candidates(self, candidates): curses_ui.CursesUI._display_candidates(self, candidates) self.candidates_lists.append(candidates) def _toast(self, message, color=None, line_index=None): curses_ui.CursesUI._toast(self, message, color=color, line_index=line_index) self.toasts.append(message) class CursesTest(test_util.TensorFlowTestCase): _EXIT = string_to_codes("exit\n") def _babble(self, args, screen_info=None): ap = argparse.ArgumentParser( description="Do babble.", usage=argparse.SUPPRESS) ap.add_argument( "-n", "--num_times", dest="num_times", type=int, default=60, help="How many times to babble") ap.add_argument( "-l", "--line", dest="line", type=str, default="bar", help="The content of each line") ap.add_argument( "-k", "--link", dest="link", action="store_true", help="Create a command link on each line") ap.add_argument( "-m", "--menu", dest="menu", action="store_true", help="Create a menu for testing") parsed = ap.parse_args(args) lines = [parsed.line] * parsed.num_times font_attr_segs = {} if parsed.link: for i in range(len(lines)): font_attr_segs[i] = [( 0, len(lines[i]), debugger_cli_common.MenuItem("", "babble"),)] annotations = {} if parsed.menu: menu = debugger_cli_common.Menu() menu.append( debugger_cli_common.MenuItem("babble again", "babble")) menu.append( debugger_cli_common.MenuItem("ahoy", "ahoy", enabled=False)) annotations[debugger_cli_common.MAIN_MENU_KEY] = menu output = debugger_cli_common.RichTextLines( lines, font_attr_segs=font_attr_segs, annotations=annotations) return output def _print_ones(self, args, screen_info=None): ap = argparse.ArgumentParser( description="Print all-one matrix.", usage=argparse.SUPPRESS) ap.add_argument( "-s", "--size", dest="size", type=int, default=3, help="Size of the matrix. For example, of the value is 3, " "the matrix will have shape (3, 3)") parsed = ap.parse_args(args) m = np.ones([parsed.size, parsed.size]) return tensor_format.format_tensor(m, "m") def testInitialization(self): ui = MockCursesUI(40, 80) self.assertEqual(0, ui._command_pointer) self.assertEqual([], ui._active_command_history) self.assertEqual("", ui._pending_command) def testCursesUiInChildThreadStartsWithoutException(self): result = queue.Queue() def child_thread(): try: MockCursesUI(40, 80) except ValueError as e: result.put(e) t = threading.Thread(target=child_thread) t.start() t.join() self.assertTrue(result.empty()) def testRunUIExitImmediately(self): """Make sure that the UI can exit properly after launch.""" ui = MockCursesUI(40, 80, command_sequence=[self._EXIT]) ui.run_ui() # No screen output should have happened. self.assertEqual(0, len(ui.unwrapped_outputs)) def testRunUIEmptyCommand(self): """Issue an empty command then exit.""" ui = MockCursesUI(40, 80, command_sequence=[[], self._EXIT]) ui.run_ui() # Empty command should not lead to any screen output. self.assertEqual(0, len(ui.unwrapped_outputs)) def testRunUIInvalidCommandPrefix(self): """Handle an unregistered command prefix.""" ui = MockCursesUI( 40, 80, command_sequence=[string_to_codes("foo\n"), self._EXIT]) ui.run_ui() # Screen output/scrolling should have happened exactly once. self.assertEqual(1, len(ui.unwrapped_outputs)) self.assertEqual(1, len(ui.wrapped_outputs)) self.assertEqual(1, len(ui.scroll_messages)) self.assertEqual(["ERROR: Invalid command prefix \"foo\""], ui.unwrapped_outputs[0].lines) # TODO(cais): Add explanation for the 35 extra lines. self.assertEqual(["ERROR: Invalid command prefix \"foo\""], ui.wrapped_outputs[0].lines[:1]) # A single line of output should not have caused scrolling. self.assertNotIn("Scroll", ui.scroll_messages[0]) self.assertIn("Mouse:", ui.scroll_messages[0]) def testRunUIInvalidCommandSyntax(self): """Handle a command with invalid syntax.""" ui = MockCursesUI( 40, 80, command_sequence=[string_to_codes("babble -z\n"), self._EXIT]) ui.register_command_handler("babble", self._babble, "") ui.run_ui() # Screen output/scrolling should have happened exactly once. self.assertEqual(1, len(ui.unwrapped_outputs)) self.assertEqual(1, len(ui.wrapped_outputs)) self.assertEqual(1, len(ui.scroll_messages)) self.assertIn("Mouse:", ui.scroll_messages[0]) self.assertEqual( ["Syntax error for command: babble", "For help, do \"help babble\""], ui.unwrapped_outputs[0].lines) def testRunUIScrollTallOutputPageDownUp(self): """Scroll tall output with PageDown and PageUp.""" # Use PageDown and PageUp to scroll back and forth a little before exiting. ui = MockCursesUI( 40, 80, command_sequence=[string_to_codes("babble\n"), [curses.KEY_NPAGE] * 2 + [curses.KEY_PPAGE] + self._EXIT]) ui.register_command_handler("babble", self._babble, "") ui.run_ui() # Screen output/scrolling should have happened exactly once. self.assertEqual(4, len(ui.unwrapped_outputs)) self.assertEqual(4, len(ui.wrapped_outputs)) self.assertEqual(4, len(ui.scroll_messages)) # Before scrolling. self.assertEqual(["bar"] * 60, ui.unwrapped_outputs[0].lines) self.assertEqual(["bar"] * 60, ui.wrapped_outputs[0].lines[:60]) # Initial scroll: At the top. self.assertIn("Scroll (PgDn): 0.00%", ui.scroll_messages[0]) self.assertIn("Mouse:", ui.scroll_messages[0]) # After 1st scrolling (PageDown). # The screen output shouldn't have changed. Only the viewport should. self.assertEqual(["bar"] * 60, ui.unwrapped_outputs[0].lines) self.assertEqual(["bar"] * 60, ui.wrapped_outputs[0].lines[:60]) self.assertIn("Scroll (PgDn/PgUp): 1.69%", ui.scroll_messages[1]) self.assertIn("Mouse:", ui.scroll_messages[1]) # After 2nd scrolling (PageDown). self.assertIn("Scroll (PgDn/PgUp): 3.39%", ui.scroll_messages[2]) self.assertIn("Mouse:", ui.scroll_messages[2]) # After 3rd scrolling (PageUp). self.assertIn("Scroll (PgDn/PgUp): 1.69%", ui.scroll_messages[3]) self.assertIn("Mouse:", ui.scroll_messages[3]) def testCutOffTooManyOutputLines(self): ui = MockCursesUI( 40, 80, command_sequence=[string_to_codes("babble -n 20\n"), self._EXIT]) # Modify max_output_lines so that this test doesn't use too much time or # memory. ui.max_output_lines = 10 ui.register_command_handler("babble", self._babble, "") ui.run_ui() self.assertEqual(["bar"] * 10 + ["Output cut off at 10 lines!"], ui.wrapped_outputs[0].lines[:11]) def testRunUIScrollTallOutputEndHome(self): """Scroll tall output with PageDown and PageUp.""" # Use End and Home to scroll a little before exiting to test scrolling. ui = MockCursesUI( 40, 80, command_sequence=[ string_to_codes("babble\n"), [curses.KEY_END] * 2 + [curses.KEY_HOME] + self._EXIT ]) ui.register_command_handler("babble", self._babble, "") ui.run_ui() # Screen output/scrolling should have happened exactly once. self.assertEqual(4, len(ui.unwrapped_outputs)) self.assertEqual(4, len(ui.wrapped_outputs)) self.assertEqual(4, len(ui.scroll_messages)) # Before scrolling. self.assertEqual(["bar"] * 60, ui.unwrapped_outputs[0].lines) self.assertEqual(["bar"] * 60, ui.wrapped_outputs[0].lines[:60]) # Initial scroll: At the top. self.assertIn("Scroll (PgDn): 0.00%", ui.scroll_messages[0]) # After 1st scrolling (End). self.assertIn("Scroll (PgUp): 100.00%", ui.scroll_messages[1]) # After 2nd scrolling (End). self.assertIn("Scroll (PgUp): 100.00%", ui.scroll_messages[2]) # After 3rd scrolling (Hhome). self.assertIn("Scroll (PgDn): 0.00%", ui.scroll_messages[3]) def testRunUIWithInitCmd(self): """Run UI with an initial command specified.""" ui = MockCursesUI(40, 80, command_sequence=[self._EXIT]) ui.register_command_handler("babble", self._babble, "") ui.run_ui(init_command="babble") self.assertEqual(1, len(ui.unwrapped_outputs)) self.assertEqual(["bar"] * 60, ui.unwrapped_outputs[0].lines) self.assertEqual(["bar"] * 60, ui.wrapped_outputs[0].lines[:60]) self.assertIn("Scroll (PgDn): 0.00%", ui.scroll_messages[0]) def testCompileHelpWithoutHelpIntro(self): ui = MockCursesUI( 40, 80, command_sequence=[string_to_codes("help\n"), self._EXIT]) ui.register_command_handler( "babble", self._babble, "babble some", prefix_aliases=["b"]) ui.run_ui() self.assertEqual(["babble", " Aliases: b", "", " babble some"], ui.unwrapped_outputs[0].lines[:4]) def testCompileHelpWithHelpIntro(self): ui = MockCursesUI( 40, 80, command_sequence=[string_to_codes("help\n"), self._EXIT]) help_intro = debugger_cli_common.RichTextLines( ["This is a curses UI.", "All it can do is 'babble'.", ""]) ui.register_command_handler( "babble", self._babble, "babble some", prefix_aliases=["b"]) ui.set_help_intro(help_intro) ui.run_ui() self.assertEqual(1, len(ui.unwrapped_outputs)) self.assertEqual( help_intro.lines + ["babble", " Aliases: b", "", " babble some"], ui.unwrapped_outputs[0].lines[:7]) def testCommandHistoryNavBackwardOnce(self): ui = MockCursesUI( 40, 80, command_sequence=[string_to_codes("help\n"), [curses.KEY_UP], # Hit Up and Enter. string_to_codes("\n"), self._EXIT]) ui.register_command_handler( "babble", self._babble, "babble some", prefix_aliases=["b"]) ui.run_ui() self.assertEqual(2, len(ui.unwrapped_outputs)) for i in [0, 1]: self.assertEqual(["babble", " Aliases: b", "", " babble some"], ui.unwrapped_outputs[i].lines[:4]) def testCommandHistoryNavBackwardTwice(self): ui = MockCursesUI( 40, 80, command_sequence=[string_to_codes("help\n"), string_to_codes("babble\n"), [curses.KEY_UP], [curses.KEY_UP], # Hit Up twice and Enter. string_to_codes("\n"), self._EXIT]) ui.register_command_handler( "babble", self._babble, "babble some", prefix_aliases=["b"]) ui.run_ui() self.assertEqual(3, len(ui.unwrapped_outputs)) # The 1st and 3rd outputs are for command "help". for i in [0, 2]: self.assertEqual(["babble", " Aliases: b", "", " babble some"], ui.unwrapped_outputs[i].lines[:4]) # The 2nd output is for command "babble". self.assertEqual(["bar"] * 60, ui.unwrapped_outputs[1].lines) def testCommandHistoryNavBackwardOverLimit(self): ui = MockCursesUI( 40, 80, command_sequence=[string_to_codes("help\n"), string_to_codes("babble\n"), [curses.KEY_UP], [curses.KEY_UP], [curses.KEY_UP], # Hit Up three times and Enter. string_to_codes("\n"), self._EXIT]) ui.register_command_handler( "babble", self._babble, "babble some", prefix_aliases=["b"]) ui.run_ui() self.assertEqual(3, len(ui.unwrapped_outputs)) # The 1st and 3rd outputs are for command "help". for i in [0, 2]: self.assertEqual(["babble", " Aliases: b", "", " babble some"], ui.unwrapped_outputs[i].lines[:4]) # The 2nd output is for command "babble". self.assertEqual(["bar"] * 60, ui.unwrapped_outputs[1].lines) def testCommandHistoryNavBackwardThenForward(self): ui = MockCursesUI( 40, 80, command_sequence=[string_to_codes("help\n"), string_to_codes("babble\n"), [curses.KEY_UP], [curses.KEY_UP], [curses.KEY_DOWN], # Hit Up twice and Down once. string_to_codes("\n"), self._EXIT]) ui.register_command_handler( "babble", self._babble, "babble some", prefix_aliases=["b"]) ui.run_ui() self.assertEqual(3, len(ui.unwrapped_outputs)) # The 1st output is for command "help". self.assertEqual(["babble", " Aliases: b", "", " babble some"], ui.unwrapped_outputs[0].lines[:4]) # The 2nd and 3rd outputs are for command "babble". for i in [1, 2]: self.assertEqual(["bar"] * 60, ui.unwrapped_outputs[i].lines) def testCommandHistoryPrefixNavBackwardOnce(self): ui = MockCursesUI( 40, 80, command_sequence=[ string_to_codes("babble -n 1\n"), string_to_codes("babble -n 10\n"), string_to_codes("help\n"), string_to_codes("b") + [curses.KEY_UP], # Navigate with prefix. string_to_codes("\n"), self._EXIT ]) ui.register_command_handler( "babble", self._babble, "babble some", prefix_aliases=["b"]) ui.run_ui() self.assertEqual(["bar"], ui.unwrapped_outputs[0].lines) self.assertEqual(["bar"] * 10, ui.unwrapped_outputs[1].lines) self.assertEqual(["babble", " Aliases: b", "", " babble some"], ui.unwrapped_outputs[2].lines[:4]) self.assertEqual(["bar"] * 10, ui.unwrapped_outputs[3].lines) def testTerminalResize(self): ui = MockCursesUI( 40, 80, command_sequence=[string_to_codes("babble\n"), [curses.KEY_RESIZE, 100, 85], # Resize to [100, 85] self._EXIT]) ui.register_command_handler( "babble", self._babble, "babble some", prefix_aliases=["b"]) ui.run_ui() # The resize event should have caused a second screen output event. self.assertEqual(2, len(ui.unwrapped_outputs)) self.assertEqual(2, len(ui.wrapped_outputs)) self.assertEqual(2, len(ui.scroll_messages)) # The 1st and 2nd screen outputs should be identical (unwrapped). self.assertEqual(ui.unwrapped_outputs[0], ui.unwrapped_outputs[1]) # The 1st scroll info should contain scrolling, because the screen size # is less than the number of lines in the output. self.assertIn("Scroll (PgDn): 0.00%", ui.scroll_messages[0]) def testTabCompletionWithCommonPrefix(self): # Type "b" and trigger tab completion. ui = MockCursesUI( 40, 80, command_sequence=[string_to_codes("b\t"), string_to_codes("\n"), self._EXIT]) ui.register_command_handler( "babble", self._babble, "babble some", prefix_aliases=["ba"]) ui.run_ui() # The automatically registered exit commands "exit" and "quit" should not # appear in the tab completion candidates because they don't start with # "b". self.assertEqual([["ba", "babble"]], ui.candidates_lists) # "ba" is a common prefix of the two candidates. So the "ba" command should # have been issued after the Enter. self.assertEqual(1, len(ui.unwrapped_outputs)) self.assertEqual(1, len(ui.wrapped_outputs)) self.assertEqual(1, len(ui.scroll_messages)) self.assertEqual(["bar"] * 60, ui.unwrapped_outputs[0].lines) self.assertEqual(["bar"] * 60, ui.wrapped_outputs[0].lines[:60]) def testTabCompletionEmptyTriggerWithoutCommonPrefix(self): ui = MockCursesUI( 40, 80, command_sequence=[string_to_codes("\t"), # Trigger tab completion. string_to_codes("\n"), self._EXIT]) ui.register_command_handler( "babble", self._babble, "babble some", prefix_aliases=["a"]) # Use a different alias "a" instead. ui.run_ui() # The manually registered command, along with the automatically registered # exit commands should appear in the candidates. self.assertEqual( [["a", "babble", "cfg", "config", "exit", "h", "help", "m", "mouse", "quit"]], ui.candidates_lists) # The two candidates have no common prefix. So no command should have been # issued. self.assertEqual(0, len(ui.unwrapped_outputs)) self.assertEqual(0, len(ui.wrapped_outputs)) self.assertEqual(0, len(ui.scroll_messages)) def testTabCompletionNonemptyTriggerSingleCandidate(self): ui = MockCursesUI( 40, 80, command_sequence=[string_to_codes("b\t"), # Trigger tab completion. string_to_codes("\n"), self._EXIT]) ui.register_command_handler( "babble", self._babble, "babble some", prefix_aliases=["a"]) ui.run_ui() # There is only one candidate, so no candidates should have been displayed. # Instead, the completion should have been automatically keyed in, leading # to the "babble" command being issue. self.assertEqual([[]], ui.candidates_lists) self.assertEqual(1, len(ui.unwrapped_outputs)) self.assertEqual(1, len(ui.wrapped_outputs)) self.assertEqual(1, len(ui.scroll_messages)) self.assertEqual(["bar"] * 60, ui.unwrapped_outputs[0].lines) self.assertEqual(["bar"] * 60, ui.wrapped_outputs[0].lines[:60]) def testTabCompletionNoMatch(self): ui = MockCursesUI( 40, 80, command_sequence=[string_to_codes("c\t"), # Trigger tab completion. string_to_codes("\n"), self._EXIT]) ui.register_command_handler( "babble", self._babble, "babble some", prefix_aliases=["a"]) ui.run_ui() # Only the invalid command "c" should have been issued. self.assertEqual(1, len(ui.unwrapped_outputs)) self.assertEqual(1, len(ui.wrapped_outputs)) self.assertEqual(1, len(ui.scroll_messages)) self.assertEqual(["ERROR: Invalid command prefix \"c\""], ui.unwrapped_outputs[0].lines) self.assertEqual(["ERROR: Invalid command prefix \"c\""], ui.wrapped_outputs[0].lines[:1]) def testTabCompletionOneWordContext(self): ui = MockCursesUI( 40, 80, command_sequence=[ string_to_codes("babble -n 3\t"), # Trigger tab completion. string_to_codes("\n"), self._EXIT ]) ui.register_command_handler( "babble", self._babble, "babble some", prefix_aliases=["b"]) ui.register_tab_comp_context(["babble", "b"], ["10", "20", "30", "300"]) ui.run_ui() self.assertEqual([["30", "300"]], ui.candidates_lists) self.assertEqual(1, len(ui.unwrapped_outputs)) self.assertEqual(1, len(ui.wrapped_outputs)) self.assertEqual(1, len(ui.scroll_messages)) self.assertEqual(["bar"] * 30, ui.unwrapped_outputs[0].lines) self.assertEqual(["bar"] * 30, ui.wrapped_outputs[0].lines[:30]) def testTabCompletionTwice(self): ui = MockCursesUI( 40, 80, command_sequence=[ string_to_codes("babble -n 1\t"), # Trigger tab completion. string_to_codes("2\t"), # With more prefix, tab again. string_to_codes("3\n"), self._EXIT ]) ui.register_command_handler( "babble", self._babble, "babble some", prefix_aliases=["b"]) ui.register_tab_comp_context(["babble", "b"], ["10", "120", "123"]) ui.run_ui() # There should have been two different lists of candidates. self.assertEqual([["10", "120", "123"], ["120", "123"]], ui.candidates_lists) self.assertEqual(1, len(ui.unwrapped_outputs)) self.assertEqual(1, len(ui.wrapped_outputs)) self.assertEqual(1, len(ui.scroll_messages)) self.assertEqual(["bar"] * 123, ui.unwrapped_outputs[0].lines) self.assertEqual(["bar"] * 123, ui.wrapped_outputs[0].lines[:123]) def testRegexSearch(self): """Test regex search.""" ui = MockCursesUI( 40, 80, command_sequence=[ string_to_codes("babble -n 3\n"), string_to_codes("/(b|r)\n"), # Regex search and highlight. string_to_codes("/a\n"), # Regex search and highlight. self._EXIT ]) ui.register_command_handler( "babble", self._babble, "babble some", prefix_aliases=["b"]) ui.run_ui() # The unwrapped (original) output should never have any highlighting. self.assertEqual(3, len(ui.unwrapped_outputs)) for i in range(3): self.assertEqual(["bar"] * 3, ui.unwrapped_outputs[i].lines) self.assertEqual({}, ui.unwrapped_outputs[i].font_attr_segs) # The wrapped outputs should show highlighting depending on the regex. self.assertEqual(3, len(ui.wrapped_outputs)) # The first output should have no highlighting. self.assertEqual(["bar"] * 3, ui.wrapped_outputs[0].lines[:3]) self.assertEqual({}, ui.wrapped_outputs[0].font_attr_segs) # The second output should have highlighting for "b" and "r". self.assertEqual(["bar"] * 3, ui.wrapped_outputs[1].lines[:3]) for i in range(3): self.assertEqual([(0, 1, "black_on_white"), (2, 3, "black_on_white")], ui.wrapped_outputs[1].font_attr_segs[i]) # The third output should have highlighting for "a" only. self.assertEqual(["bar"] * 3, ui.wrapped_outputs[1].lines[:3]) for i in range(3): self.assertEqual([(1, 2, "black_on_white")], ui.wrapped_outputs[2].font_attr_segs[i]) def testRegexSearchContinuation(self): """Test continuing scrolling down to next regex match.""" ui = MockCursesUI( 40, 80, command_sequence=[ string_to_codes("babble -n 3\n"), string_to_codes("/(b|r)\n"), # Regex search and highlight. string_to_codes("/\n"), # Continue scrolling down: 1st time. string_to_codes("/\n"), # Continue scrolling down: 2nd time. string_to_codes("/\n"), # Continue scrolling down: 3rd time. string_to_codes("/\n"), # Continue scrolling down: 4th time. self._EXIT ]) ui.register_command_handler( "babble", self._babble, "babble some", prefix_aliases=["b"]) ui.run_ui() # The 1st output is for the non-searched output. The other three are for # the searched output. Even though continuation search "/" is performed # four times, there should be only three searched outputs, because the # last one has exceeded the end. self.assertEqual(4, len(ui.unwrapped_outputs)) for i in range(4): self.assertEqual(["bar"] * 3, ui.unwrapped_outputs[i].lines) self.assertEqual({}, ui.unwrapped_outputs[i].font_attr_segs) self.assertEqual(["bar"] * 3, ui.wrapped_outputs[0].lines[:3]) self.assertEqual({}, ui.wrapped_outputs[0].font_attr_segs) for j in range(1, 4): self.assertEqual(["bar"] * 3, ui.wrapped_outputs[j].lines[:3]) self.assertEqual({ 0: [(0, 1, "black_on_white"), (2, 3, "black_on_white")], 1: [(0, 1, "black_on_white"), (2, 3, "black_on_white")], 2: [(0, 1, "black_on_white"), (2, 3, "black_on_white")] }, ui.wrapped_outputs[j].font_attr_segs) self.assertEqual([0, 0, 1, 2], ui.output_pad_rows) def testRegexSearchUnderLineWrapping(self): ui = MockCursesUI( 40, 6, # Use a narrow window to trigger line wrapping command_sequence=[ string_to_codes("babble -n 3 -l foo-bar-baz-qux\n"), string_to_codes("/foo\n"), # Regex search and highlight. string_to_codes("/\n"), # Continue scrolling down: 1st time. string_to_codes("/\n"), # Continue scrolling down: 2nd time. string_to_codes("/\n"), # Continue scrolling down: 3rd time. string_to_codes("/\n"), # Continue scrolling down: 4th time. self._EXIT ]) ui.register_command_handler( "babble", self._babble, "babble some") ui.run_ui() self.assertEqual(4, len(ui.wrapped_outputs)) for wrapped_output in ui.wrapped_outputs: self.assertEqual(["foo-", "bar-", "baz-", "qux"] * 3, wrapped_output.lines[0 : 12]) # The scroll location should reflect the line wrapping. self.assertEqual([0, 0, 4, 8], ui.output_pad_rows) def testRegexSearchNoMatchContinuation(self): """Test continuing scrolling when there is no regex match.""" ui = MockCursesUI( 40, 80, command_sequence=[ string_to_codes("babble -n 3\n"), string_to_codes("/foo\n"), # Regex search and highlight. string_to_codes("/\n"), # Continue scrolling down. self._EXIT ]) ui.register_command_handler( "babble", self._babble, "babble some", prefix_aliases=["b"]) ui.run_ui() # The regex search and continuation search in the 3rd command should not # have produced any output. self.assertEqual(1, len(ui.unwrapped_outputs)) self.assertEqual([0], ui.output_pad_rows) def testRegexSearchContinuationWithoutSearch(self): """Test continuation scrolling when no regex search has been performed.""" ui = MockCursesUI( 40, 80, command_sequence=[ string_to_codes("babble -n 3\n"), string_to_codes("/\n"), # Continue scrolling without search first. self._EXIT ]) ui.register_command_handler( "babble", self._babble, "babble some", prefix_aliases=["b"]) ui.run_ui() self.assertEqual(1, len(ui.unwrapped_outputs)) self.assertEqual([0], ui.output_pad_rows) def testRegexSearchWithInvalidRegex(self): """Test using invalid regex to search.""" ui = MockCursesUI( 40, 80, command_sequence=[ string_to_codes("babble -n 3\n"), string_to_codes("/[\n"), # Continue scrolling without search first. self._EXIT ]) ui.register_command_handler( "babble", self._babble, "babble some", prefix_aliases=["b"]) ui.run_ui() # Invalid regex should not have led to a new screen of output. self.assertEqual(1, len(ui.unwrapped_outputs)) self.assertEqual([0], ui.output_pad_rows) # Invalid regex should have led to a toast error message. self.assertEqual( [MockCursesUI._UI_WAIT_MESSAGE, "ERROR: Invalid regular expression: \"[\"", MockCursesUI._UI_WAIT_MESSAGE], ui.toasts) def testRegexSearchFromCommandHistory(self): """Test regex search commands are recorded in command history.""" ui = MockCursesUI( 40, 80, command_sequence=[ string_to_codes("babble -n 3\n"), string_to_codes("/(b|r)\n"), # Regex search and highlight. string_to_codes("babble -n 4\n"), [curses.KEY_UP], [curses.KEY_UP], string_to_codes("\n"), # Hit Up twice and Enter. self._EXIT ]) ui.register_command_handler( "babble", self._babble, "babble some", prefix_aliases=["b"]) ui.run_ui() self.assertEqual(4, len(ui.wrapped_outputs)) self.assertEqual(["bar"] * 3, ui.wrapped_outputs[0].lines[:3]) self.assertEqual({}, ui.wrapped_outputs[0].font_attr_segs) self.assertEqual(["bar"] * 3, ui.wrapped_outputs[1].lines[:3]) for i in range(3): self.assertEqual([(0, 1, "black_on_white"), (2, 3, "black_on_white")], ui.wrapped_outputs[1].font_attr_segs[i]) self.assertEqual(["bar"] * 4, ui.wrapped_outputs[2].lines[:4]) self.assertEqual({}, ui.wrapped_outputs[2].font_attr_segs) # The regex search command loaded from history should have worked on the # new screen output. self.assertEqual(["bar"] * 4, ui.wrapped_outputs[3].lines[:4]) for i in range(4): self.assertEqual([(0, 1, "black_on_white"), (2, 3, "black_on_white")], ui.wrapped_outputs[3].font_attr_segs[i]) def testDisplayTensorWithIndices(self): """Test displaying tensor with indices.""" ui = MockCursesUI( 9, # Use a small screen height to cause scrolling. 80, command_sequence=[ string_to_codes("print_ones --size 5\n"), [curses.KEY_NPAGE], [curses.KEY_NPAGE], [curses.KEY_NPAGE], [curses.KEY_END], [curses.KEY_NPAGE], # This PageDown goes over the bottom limit. [curses.KEY_PPAGE], [curses.KEY_PPAGE], [curses.KEY_PPAGE], [curses.KEY_HOME], [curses.KEY_PPAGE], # This PageDown goes over the top limit. self._EXIT ]) ui.register_command_handler("print_ones", self._print_ones, "print an all-one matrix of specified size") ui.run_ui() self.assertEqual(11, len(ui.unwrapped_outputs)) self.assertEqual(11, len(ui.output_array_pointer_indices)) self.assertEqual(11, len(ui.scroll_messages)) for i in range(11): cli_test_utils.assert_lines_equal_ignoring_whitespace( self, ["Tensor \"m\":", ""], ui.unwrapped_outputs[i].lines[:2]) self.assertEqual( repr(np.ones([5, 5])).split("\n"), ui.unwrapped_outputs[i].lines[2:]) self.assertEqual({ 0: None, -1: [1, 0] }, ui.output_array_pointer_indices[0]) self.assertIn(" Scroll (PgDn): 0.00% -[1,0] ", ui.scroll_messages[0]) # Scrolled down one line. self.assertEqual({ 0: None, -1: [2, 0] }, ui.output_array_pointer_indices[1]) self.assertIn(" Scroll (PgDn/PgUp): 16.67% -[2,0] ", ui.scroll_messages[1]) # Scrolled down one line. self.assertEqual({ 0: [0, 0], -1: [3, 0] }, ui.output_array_pointer_indices[2]) self.assertIn(" Scroll (PgDn/PgUp): 33.33% [0,0]-[3,0] ", ui.scroll_messages[2]) # Scrolled down one line. self.assertEqual({ 0: [1, 0], -1: [4, 0] }, ui.output_array_pointer_indices[3]) self.assertIn(" Scroll (PgDn/PgUp): 50.00% [1,0]-[4,0] ", ui.scroll_messages[3]) # Scroll to the bottom. self.assertEqual({ 0: [4, 0], -1: None }, ui.output_array_pointer_indices[4]) self.assertIn(" Scroll (PgUp): 100.00% [4,0]- ", ui.scroll_messages[4]) # Attempt to scroll beyond the bottom should lead to no change. self.assertEqual({ 0: [4, 0], -1: None }, ui.output_array_pointer_indices[5]) self.assertIn(" Scroll (PgUp): 100.00% [4,0]- ", ui.scroll_messages[5]) # Scrolled up one line. self.assertEqual({ 0: [3, 0], -1: None }, ui.output_array_pointer_indices[6]) self.assertIn(" Scroll (PgDn/PgUp): 83.33% [3,0]- ", ui.scroll_messages[6]) # Scrolled up one line. self.assertEqual({ 0: [2, 0], -1: None }, ui.output_array_pointer_indices[7]) self.assertIn(" Scroll (PgDn/PgUp): 66.67% [2,0]- ", ui.scroll_messages[7]) # Scrolled up one line. self.assertEqual({ 0: [1, 0], -1: [4, 0] }, ui.output_array_pointer_indices[8]) self.assertIn(" Scroll (PgDn/PgUp): 50.00% [1,0]-[4,0] ", ui.scroll_messages[8]) # Scroll to the top. self.assertEqual({ 0: None, -1: [1, 0] }, ui.output_array_pointer_indices[9]) self.assertIn(" Scroll (PgDn): 0.00% -[1,0] ", ui.scroll_messages[9]) # Attempt to scroll pass the top limit should lead to no change. self.assertEqual({ 0: None, -1: [1, 0] }, ui.output_array_pointer_indices[10]) self.assertIn(" Scroll (PgDn): 0.00% -[1,0] ", ui.scroll_messages[10]) def testScrollTensorByValidIndices(self): """Test scrolling to specified (valid) indices in a tensor.""" ui = MockCursesUI( 8, # Use a small screen height to cause scrolling. 80, command_sequence=[ string_to_codes("print_ones --size 5\n"), string_to_codes("@[0, 0]\n"), # Scroll to element [0, 0]. string_to_codes("@1,0\n"), # Scroll to element [3, 0]. string_to_codes("@[0,2]\n"), # Scroll back to line 0. self._EXIT ]) ui.register_command_handler("print_ones", self._print_ones, "print an all-one matrix of specified size") ui.run_ui() self.assertEqual(4, len(ui.unwrapped_outputs)) self.assertEqual(4, len(ui.output_array_pointer_indices)) for i in range(4): cli_test_utils.assert_lines_equal_ignoring_whitespace( self, ["Tensor \"m\":", ""], ui.unwrapped_outputs[i].lines[:2]) self.assertEqual( repr(np.ones([5, 5])).split("\n"), ui.unwrapped_outputs[i].lines[2:]) self.assertEqual({ 0: None, -1: [0, 0] }, ui.output_array_pointer_indices[0]) self.assertEqual({ 0: [0, 0], -1: [2, 0] }, ui.output_array_pointer_indices[1]) self.assertEqual({ 0: [1, 0], -1: [3, 0] }, ui.output_array_pointer_indices[2]) self.assertEqual({ 0: [0, 0], -1: [2, 0] }, ui.output_array_pointer_indices[3]) def testScrollTensorByInvalidIndices(self): """Test scrolling to specified invalid indices in a tensor.""" ui = MockCursesUI( 8, # Use a small screen height to cause scrolling. 80, command_sequence=[ string_to_codes("print_ones --size 5\n"), string_to_codes("@[10, 0]\n"), # Scroll to invalid indices. string_to_codes("@[]\n"), # Scroll to invalid indices. string_to_codes("@\n"), # Scroll to invalid indices. self._EXIT ]) ui.register_command_handler("print_ones", self._print_ones, "print an all-one matrix of specified size") ui.run_ui() # Because all scroll-by-indices commands are invalid, there should be only # one output event. self.assertEqual(1, len(ui.unwrapped_outputs)) self.assertEqual(1, len(ui.output_array_pointer_indices)) # Check error messages. self.assertEqual("ERROR: Indices exceed tensor dimensions.", ui.toasts[2]) self.assertEqual("ERROR: invalid literal for int() with base 10: ''", ui.toasts[4]) self.assertEqual("ERROR: Empty indices.", ui.toasts[6]) def testWriteScreenOutputToFileWorks(self): output_path = tempfile.mktemp() ui = MockCursesUI( 40, 80, command_sequence=[ string_to_codes("babble -n 2>%s\n" % output_path), self._EXIT ]) ui.register_command_handler("babble", self._babble, "") ui.run_ui() self.assertEqual(1, len(ui.unwrapped_outputs)) with gfile.Open(output_path, "r") as f: self.assertEqual("bar\nbar\n", f.read()) # Clean up output file. gfile.Remove(output_path) def testIncompleteRedirectErrors(self): ui = MockCursesUI( 40, 80, command_sequence=[ string_to_codes("babble -n 2 >\n"), self._EXIT ]) ui.register_command_handler("babble", self._babble, "") ui.run_ui() self.assertEqual(["ERROR: Redirect file path is empty"], ui.toasts) self.assertEqual(0, len(ui.unwrapped_outputs)) def testAppendingRedirectErrors(self): output_path = tempfile.mktemp() ui = MockCursesUI( 40, 80, command_sequence=[ string_to_codes("babble -n 2 >> %s\n" % output_path), self._EXIT ]) ui.register_command_handler("babble", self._babble, "") ui.run_ui() self.assertEqual(1, len(ui.unwrapped_outputs)) self.assertEqual( ["Syntax error for command: babble", "For help, do \"help babble\""], ui.unwrapped_outputs[0].lines) # Clean up output file. gfile.Remove(output_path) def testMouseOffTakesEffect(self): ui = MockCursesUI( 40, 80, command_sequence=[ string_to_codes("mouse off\n"), string_to_codes("babble\n"), self._EXIT ]) ui.register_command_handler("babble", self._babble, "") ui.run_ui() self.assertFalse(ui._mouse_enabled) self.assertIn("Mouse: OFF", ui.scroll_messages[-1]) def testMouseOffAndOnTakeEffect(self): ui = MockCursesUI( 40, 80, command_sequence=[ string_to_codes("mouse off\n"), string_to_codes("mouse on\n"), string_to_codes("babble\n"), self._EXIT ]) ui.register_command_handler("babble", self._babble, "") ui.run_ui() self.assertTrue(ui._mouse_enabled) self.assertIn("Mouse: ON", ui.scroll_messages[-1]) def testMouseClickOnLinkTriggersCommand(self): ui = MockCursesUI( 40, 80, command_sequence=[ string_to_codes("babble -n 10 -k\n"), [curses.KEY_MOUSE, 1, 4], # A click on a hyperlink. self._EXIT ]) ui.register_command_handler("babble", self._babble, "") ui.run_ui() self.assertEqual(2, len(ui.unwrapped_outputs)) self.assertEqual(["bar"] * 10, ui.unwrapped_outputs[0].lines) self.assertEqual(["bar"] * 60, ui.unwrapped_outputs[1].lines) def testMouseClickOnLinkWithExistingTextTriggersCommand(self): ui = MockCursesUI( 40, 80, command_sequence=[ string_to_codes("babble -n 10 -k\n"), string_to_codes("foo"), # Enter some existing code in the textbox. [curses.KEY_MOUSE, 1, 4], # A click on a hyperlink. self._EXIT ]) ui.register_command_handler("babble", self._babble, "") ui.run_ui() self.assertEqual(2, len(ui.unwrapped_outputs)) self.assertEqual(["bar"] * 10, ui.unwrapped_outputs[0].lines) self.assertEqual(["bar"] * 60, ui.unwrapped_outputs[1].lines) def testMouseClickOffLinkDoesNotTriggersCommand(self): ui = MockCursesUI( 40, 80, command_sequence=[ string_to_codes("babble -n 10 -k\n"), # A click off a hyperlink (too much to the right). [curses.KEY_MOUSE, 8, 4], self._EXIT ]) ui.register_command_handler("babble", self._babble, "") ui.run_ui() # The mouse click event should not triggered no command. self.assertEqual(1, len(ui.unwrapped_outputs)) self.assertEqual(["bar"] * 10, ui.unwrapped_outputs[0].lines) # This command should have generated no main menus. self.assertEqual([None], ui.main_menu_list) def testMouseClickOnEnabledMenuItemWorks(self): ui = MockCursesUI( 40, 80, command_sequence=[ string_to_codes("babble -n 10 -m\n"), # A click on the enabled menu item. [curses.KEY_MOUSE, 3, 2], self._EXIT ]) ui.register_command_handler("babble", self._babble, "") ui.run_ui() self.assertEqual(2, len(ui.unwrapped_outputs)) self.assertEqual(["bar"] * 10, ui.unwrapped_outputs[0].lines) self.assertEqual(["bar"] * 60, ui.unwrapped_outputs[1].lines) # Check the content of the menu. self.assertEqual(["| babble again | ahoy | "], ui.main_menu_list[0].lines) self.assertEqual(1, len(ui.main_menu_list[0].font_attr_segs)) self.assertEqual(1, len(ui.main_menu_list[0].font_attr_segs[0])) item_annot = ui.main_menu_list[0].font_attr_segs[0][0] self.assertEqual(2, item_annot[0]) self.assertEqual(14, item_annot[1]) self.assertEqual("babble", item_annot[2][0].content) self.assertEqual("underline", item_annot[2][1]) # The output from the menu-triggered command does not have a menu. self.assertIsNone(ui.main_menu_list[1]) def testMouseClickOnDisabledMenuItemTriggersNoCommand(self): ui = MockCursesUI( 40, 80, command_sequence=[ string_to_codes("babble -n 10 -m\n"), # A click on the disabled menu item. [curses.KEY_MOUSE, 18, 1], self._EXIT ]) ui.register_command_handler("babble", self._babble, "") ui.run_ui() self.assertEqual(1, len(ui.unwrapped_outputs)) self.assertEqual(["bar"] * 10, ui.unwrapped_outputs[0].lines) def testNavigationUsingCommandLineWorks(self): ui = MockCursesUI( 40, 80, command_sequence=[ string_to_codes("babble -n 2\n"), string_to_codes("babble -n 4\n"), string_to_codes("prev\n"), string_to_codes("next\n"), self._EXIT ]) ui.register_command_handler("babble", self._babble, "") ui.run_ui() self.assertEqual(4, len(ui.unwrapped_outputs)) self.assertEqual(["bar"] * 2, ui.unwrapped_outputs[0].lines) self.assertEqual(["bar"] * 4, ui.unwrapped_outputs[1].lines) self.assertEqual(["bar"] * 2, ui.unwrapped_outputs[2].lines) self.assertEqual(["bar"] * 4, ui.unwrapped_outputs[3].lines) def testNavigationOverOldestLimitUsingCommandLineGivesCorrectWarning(self): ui = MockCursesUI( 40, 80, command_sequence=[ string_to_codes("babble -n 2\n"), string_to_codes("babble -n 4\n"), string_to_codes("prev\n"), string_to_codes("prev\n"), # Navigate over oldest limit. self._EXIT ]) ui.register_command_handler("babble", self._babble, "") ui.run_ui() self.assertEqual(3, len(ui.unwrapped_outputs)) self.assertEqual(["bar"] * 2, ui.unwrapped_outputs[0].lines) self.assertEqual(["bar"] * 4, ui.unwrapped_outputs[1].lines) self.assertEqual(["bar"] * 2, ui.unwrapped_outputs[2].lines) self.assertEqual("At the OLDEST in navigation history!", ui.toasts[-2]) def testNavigationOverLatestLimitUsingCommandLineGivesCorrectWarning(self): ui = MockCursesUI( 40, 80, command_sequence=[ string_to_codes("babble -n 2\n"), string_to_codes("babble -n 4\n"), string_to_codes("prev\n"), string_to_codes("next\n"), string_to_codes("next\n"), # Navigate over latest limit. self._EXIT ]) ui.register_command_handler("babble", self._babble, "") ui.run_ui() self.assertEqual(4, len(ui.unwrapped_outputs)) self.assertEqual(["bar"] * 2, ui.unwrapped_outputs[0].lines) self.assertEqual(["bar"] * 4, ui.unwrapped_outputs[1].lines) self.assertEqual(["bar"] * 2, ui.unwrapped_outputs[2].lines) self.assertEqual(["bar"] * 4, ui.unwrapped_outputs[3].lines) self.assertEqual("At the LATEST in navigation history!", ui.toasts[-2]) def testMouseClicksOnNavBarWorks(self): ui = MockCursesUI( 40, 80, command_sequence=[ string_to_codes("babble -n 2\n"), string_to_codes("babble -n 4\n"), # A click on the back (prev) button of the nav bar. [curses.KEY_MOUSE, 3, 1], # A click on the forward (prev) button of the nav bar. [curses.KEY_MOUSE, 7, 1], self._EXIT ]) ui.register_command_handler("babble", self._babble, "") ui.run_ui() self.assertEqual(4, len(ui.unwrapped_outputs)) self.assertEqual(["bar"] * 2, ui.unwrapped_outputs[0].lines) self.assertEqual(["bar"] * 4, ui.unwrapped_outputs[1].lines) self.assertEqual(["bar"] * 2, ui.unwrapped_outputs[2].lines) self.assertEqual(["bar"] * 4, ui.unwrapped_outputs[3].lines) def testMouseClicksOnNavBarAfterPreviousScrollingWorks(self): ui = MockCursesUI( 40, 80, command_sequence=[ string_to_codes("babble -n 2\n"), [curses.KEY_NPAGE], # Scroll down one line. string_to_codes("babble -n 4\n"), # A click on the back (prev) button of the nav bar. [curses.KEY_MOUSE, 3, 1], # A click on the forward (prev) button of the nav bar. [curses.KEY_MOUSE, 7, 1], self._EXIT ]) ui.register_command_handler("babble", self._babble, "") ui.run_ui() self.assertEqual(6, len(ui.unwrapped_outputs)) self.assertEqual(["bar"] * 2, ui.unwrapped_outputs[0].lines) # From manual scroll. self.assertEqual(["bar"] * 2, ui.unwrapped_outputs[1].lines) self.assertEqual(["bar"] * 4, ui.unwrapped_outputs[2].lines) # From history navigation. self.assertEqual(["bar"] * 2, ui.unwrapped_outputs[3].lines) # From history navigation's auto-scroll to history scroll position. self.assertEqual(["bar"] * 2, ui.unwrapped_outputs[4].lines) self.assertEqual(["bar"] * 4, ui.unwrapped_outputs[5].lines) self.assertEqual(6, len(ui.scroll_messages)) self.assertIn("Scroll (PgDn): 0.00%", ui.scroll_messages[0]) self.assertIn("Scroll (PgUp): 100.00%", ui.scroll_messages[1]) self.assertIn("Scroll (PgDn): 0.00%", ui.scroll_messages[2]) self.assertIn("Scroll (PgDn): 0.00%", ui.scroll_messages[3]) self.assertIn("Scroll (PgUp): 100.00%", ui.scroll_messages[4]) self.assertIn("Scroll (PgDn): 0.00%", ui.scroll_messages[5]) class ScrollBarTest(test_util.TensorFlowTestCase): def testConstructorRaisesExceptionForNotEnoughHeight(self): with self.assertRaisesRegexp( ValueError, r"Insufficient height for ScrollBar \(2\)"): curses_ui.ScrollBar(0, 0, 1, 1, 0, 0) def testLayoutIsEmptyForZeroRow(self): scroll_bar = curses_ui.ScrollBar(0, 0, 1, 7, 0, 0) layout = scroll_bar.layout() self.assertEqual([" "] * 8, layout.lines) self.assertEqual({}, layout.font_attr_segs) def testLayoutIsEmptyFoOneRow(self): scroll_bar = curses_ui.ScrollBar(0, 0, 1, 7, 0, 1) layout = scroll_bar.layout() self.assertEqual([" "] * 8, layout.lines) self.assertEqual({}, layout.font_attr_segs) def testClickCommandForOneRowIsNone(self): scroll_bar = curses_ui.ScrollBar(0, 0, 1, 7, 0, 1) self.assertIsNone(scroll_bar.get_click_command(0)) self.assertIsNone(scroll_bar.get_click_command(3)) self.assertIsNone(scroll_bar.get_click_command(7)) self.assertIsNone(scroll_bar.get_click_command(8)) def testLayoutIsCorrectForTopPosition(self): scroll_bar = curses_ui.ScrollBar(0, 0, 1, 7, 0, 20) layout = scroll_bar.layout() self.assertEqual(["UP"] + [" "] * 6 + ["DN"], layout.lines) self.assertEqual( {0: [(0, 2, curses_ui.ScrollBar.BASE_ATTR)], 1: [(0, 2, curses_ui.ScrollBar.BASE_ATTR)], 7: [(0, 2, curses_ui.ScrollBar.BASE_ATTR)]}, layout.font_attr_segs) def testWidth1LayoutIsCorrectForTopPosition(self): scroll_bar = curses_ui.ScrollBar(0, 0, 0, 7, 0, 20) layout = scroll_bar.layout() self.assertEqual(["U"] + [" "] * 6 + ["D"], layout.lines) self.assertEqual( {0: [(0, 1, curses_ui.ScrollBar.BASE_ATTR)], 1: [(0, 1, curses_ui.ScrollBar.BASE_ATTR)], 7: [(0, 1, curses_ui.ScrollBar.BASE_ATTR)]}, layout.font_attr_segs) def testWidth3LayoutIsCorrectForTopPosition(self): scroll_bar = curses_ui.ScrollBar(0, 0, 2, 7, 0, 20) layout = scroll_bar.layout() self.assertEqual(["UP "] + [" "] * 6 + ["DN "], layout.lines) self.assertEqual( {0: [(0, 3, curses_ui.ScrollBar.BASE_ATTR)], 1: [(0, 3, curses_ui.ScrollBar.BASE_ATTR)], 7: [(0, 3, curses_ui.ScrollBar.BASE_ATTR)]}, layout.font_attr_segs) def testWidth4LayoutIsCorrectForTopPosition(self): scroll_bar = curses_ui.ScrollBar(0, 0, 3, 7, 0, 20) layout = scroll_bar.layout() self.assertEqual([" UP "] + [" "] * 6 + ["DOWN"], layout.lines) self.assertEqual( {0: [(0, 4, curses_ui.ScrollBar.BASE_ATTR)], 1: [(0, 4, curses_ui.ScrollBar.BASE_ATTR)], 7: [(0, 4, curses_ui.ScrollBar.BASE_ATTR)]}, layout.font_attr_segs) def testLayoutIsCorrectForBottomPosition(self): scroll_bar = curses_ui.ScrollBar(0, 0, 1, 7, 19, 20) layout = scroll_bar.layout() self.assertEqual(["UP"] + [" "] * 6 + ["DN"], layout.lines) self.assertEqual( {0: [(0, 2, curses_ui.ScrollBar.BASE_ATTR)], 6: [(0, 2, curses_ui.ScrollBar.BASE_ATTR)], 7: [(0, 2, curses_ui.ScrollBar.BASE_ATTR)]}, layout.font_attr_segs) def testLayoutIsCorrectForMiddlePosition(self): scroll_bar = curses_ui.ScrollBar(0, 0, 1, 7, 10, 20) layout = scroll_bar.layout() self.assertEqual(["UP"] + [" "] * 6 + ["DN"], layout.lines) self.assertEqual( {0: [(0, 2, curses_ui.ScrollBar.BASE_ATTR)], 3: [(0, 2, curses_ui.ScrollBar.BASE_ATTR)], 7: [(0, 2, curses_ui.ScrollBar.BASE_ATTR)]}, layout.font_attr_segs) def testClickCommandsAreCorrectForMiddlePosition(self): scroll_bar = curses_ui.ScrollBar(0, 0, 1, 7, 10, 20) self.assertIsNone(scroll_bar.get_click_command(-1)) self.assertEqual(curses_ui._SCROLL_UP_A_LINE, scroll_bar.get_click_command(0)) self.assertEqual(curses_ui._SCROLL_UP, scroll_bar.get_click_command(1)) self.assertEqual(curses_ui._SCROLL_UP, scroll_bar.get_click_command(2)) self.assertIsNone(scroll_bar.get_click_command(3)) self.assertEqual(curses_ui._SCROLL_DOWN, scroll_bar.get_click_command(5)) self.assertEqual(curses_ui._SCROLL_DOWN, scroll_bar.get_click_command(6)) self.assertEqual(curses_ui._SCROLL_DOWN_A_LINE, scroll_bar.get_click_command(7)) self.assertIsNone(scroll_bar.get_click_command(8)) def testClickCommandsAreCorrectForBottomPosition(self): scroll_bar = curses_ui.ScrollBar(0, 0, 1, 7, 19, 20) self.assertIsNone(scroll_bar.get_click_command(-1)) self.assertEqual(curses_ui._SCROLL_UP_A_LINE, scroll_bar.get_click_command(0)) for i in range(1, 6): self.assertEqual(curses_ui._SCROLL_UP, scroll_bar.get_click_command(i)) self.assertIsNone(scroll_bar.get_click_command(6)) self.assertEqual(curses_ui._SCROLL_DOWN_A_LINE, scroll_bar.get_click_command(7)) self.assertIsNone(scroll_bar.get_click_command(8)) def testClickCommandsAreCorrectForScrollBarNotAtZeroMinY(self): scroll_bar = curses_ui.ScrollBar(0, 5, 1, 12, 10, 20) self.assertIsNone(scroll_bar.get_click_command(0)) self.assertIsNone(scroll_bar.get_click_command(4)) self.assertEqual(curses_ui._SCROLL_UP_A_LINE, scroll_bar.get_click_command(5)) self.assertEqual(curses_ui._SCROLL_UP, scroll_bar.get_click_command(6)) self.assertEqual(curses_ui._SCROLL_UP, scroll_bar.get_click_command(7)) self.assertIsNone(scroll_bar.get_click_command(8)) self.assertEqual(curses_ui._SCROLL_DOWN, scroll_bar.get_click_command(10)) self.assertEqual(curses_ui._SCROLL_DOWN, scroll_bar.get_click_command(11)) self.assertEqual(curses_ui._SCROLL_DOWN_A_LINE, scroll_bar.get_click_command(12)) self.assertIsNone(scroll_bar.get_click_command(13)) if __name__ == "__main__": googletest.main()
tensorflow-master
tensorflow/python/debug/cli/curses_ui_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Format tensors (ndarrays) for screen display and navigation.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import re import numpy as np from six.moves import xrange # pylint: disable=redefined-builtin from tensorflow.python.debug.cli import debugger_cli_common from tensorflow.python.debug.lib import debug_data _NUMPY_OMISSION = "...," _NUMPY_DEFAULT_EDGE_ITEMS = 3 _NUMBER_REGEX = re.compile(r"[-+]?([0-9][-+0-9eE\.]+|nan|inf)(\s|,|\])") BEGIN_INDICES_KEY = "i0" OMITTED_INDICES_KEY = "omitted" DEFAULT_TENSOR_ELEMENT_HIGHLIGHT_FONT_ATTR = "bold" class HighlightOptions(object): """Options for highlighting elements of a tensor.""" def __init__(self, criterion, description=None, font_attr=DEFAULT_TENSOR_ELEMENT_HIGHLIGHT_FONT_ATTR): """Constructor of HighlightOptions. Args: criterion: (callable) A callable of the following signature: def to_highlight(X): # Args: # X: The tensor to highlight elements in. # # Returns: # (boolean ndarray) A boolean ndarray of the same shape as X # indicating which elements are to be highlighted (iff True). This callable will be used as the argument of np.argwhere() to determine which elements of the tensor are to be highlighted. description: (str) Description of the highlight criterion embodied by criterion. font_attr: (str) Font attribute to be applied to the highlighted elements. """ self.criterion = criterion self.description = description self.font_attr = font_attr def format_tensor(tensor, tensor_label, include_metadata=False, auxiliary_message=None, include_numeric_summary=False, np_printoptions=None, highlight_options=None): """Generate a RichTextLines object showing a tensor in formatted style. Args: tensor: The tensor to be displayed, as a numpy ndarray or other appropriate format (e.g., None representing uninitialized tensors). tensor_label: A label for the tensor, as a string. If set to None, will suppress the tensor name line in the return value. include_metadata: Whether metadata such as dtype and shape are to be included in the formatted text. auxiliary_message: An auxiliary message to display under the tensor label, dtype and shape information lines. include_numeric_summary: Whether a text summary of the numeric values (if applicable) will be included. np_printoptions: A dictionary of keyword arguments that are passed to a call of np.set_printoptions() to set the text format for display numpy ndarrays. highlight_options: (HighlightOptions) options for highlighting elements of the tensor. Returns: A RichTextLines object. Its annotation field has line-by-line markups to indicate which indices in the array the first element of each line corresponds to. """ lines = [] font_attr_segs = {} if tensor_label is not None: lines.append("Tensor \"%s\":" % tensor_label) suffix = tensor_label.split(":")[-1] if suffix.isdigit(): # Suffix is a number. Assume it is the output slot index. font_attr_segs[0] = [(8, 8 + len(tensor_label), "bold")] else: # Suffix is not a number. It is auxiliary information such as the debug # op type. In this case, highlight the suffix with a different color. debug_op_len = len(suffix) proper_len = len(tensor_label) - debug_op_len - 1 font_attr_segs[0] = [ (8, 8 + proper_len, "bold"), (8 + proper_len + 1, 8 + proper_len + 1 + debug_op_len, "yellow") ] if isinstance(tensor, debug_data.InconvertibleTensorProto): if lines: lines.append("") lines.extend(str(tensor).split("\n")) return debugger_cli_common.RichTextLines(lines) elif not isinstance(tensor, np.ndarray): # If tensor is not a np.ndarray, return simple text-line representation of # the object without annotations. if lines: lines.append("") lines.extend(repr(tensor).split("\n")) return debugger_cli_common.RichTextLines(lines) if include_metadata: lines.append(" dtype: %s" % str(tensor.dtype)) lines.append(" shape: %s" % str(tensor.shape).replace("L", "")) if lines: lines.append("") formatted = debugger_cli_common.RichTextLines( lines, font_attr_segs=font_attr_segs) if auxiliary_message: formatted.extend(auxiliary_message) if include_numeric_summary: formatted.append("Numeric summary:") formatted.extend(numeric_summary(tensor)) formatted.append("") # Apply custom string formatting options for numpy ndarray. if np_printoptions is not None: np.set_printoptions(**np_printoptions) array_lines = repr(tensor).split("\n") if tensor.dtype.type is not np.string_: # Parse array lines to get beginning indices for each line. # TODO(cais): Currently, we do not annotate string-type tensors due to # difficulty in escaping sequences. Address this issue. annotations = _annotate_ndarray_lines( array_lines, tensor, np_printoptions=np_printoptions) else: annotations = None formatted_array = debugger_cli_common.RichTextLines( array_lines, annotations=annotations) formatted.extend(formatted_array) # Perform optional highlighting. if highlight_options is not None: indices_list = list(np.argwhere(highlight_options.criterion(tensor))) total_elements = np.size(tensor) highlight_summary = "Highlighted%s: %d of %d element(s) (%.2f%%)" % ( "(%s)" % highlight_options.description if highlight_options.description else "", len(indices_list), total_elements, len(indices_list) / float(total_elements) * 100.0) formatted.lines[0] += " " + highlight_summary if indices_list: indices_list = [list(indices) for indices in indices_list] are_omitted, rows, start_cols, end_cols = locate_tensor_element( formatted, indices_list) for is_omitted, row, start_col, end_col in zip(are_omitted, rows, start_cols, end_cols): if is_omitted or start_col is None or end_col is None: continue if row in formatted.font_attr_segs: formatted.font_attr_segs[row].append( (start_col, end_col, highlight_options.font_attr)) else: formatted.font_attr_segs[row] = [(start_col, end_col, highlight_options.font_attr)] return formatted def _annotate_ndarray_lines( array_lines, tensor, np_printoptions=None, offset=0): """Generate annotations for line-by-line begin indices of tensor text. Parse the numpy-generated text representation of a numpy ndarray to determine the indices of the first element of each text line (if any element is present in the line). For example, given the following multi-line ndarray text representation: ["array([[ 0. , 0.0625, 0.125 , 0.1875],", " [ 0.25 , 0.3125, 0.375 , 0.4375],", " [ 0.5 , 0.5625, 0.625 , 0.6875],", " [ 0.75 , 0.8125, 0.875 , 0.9375]])"] the generate annotation will be: {0: {BEGIN_INDICES_KEY: [0, 0]}, 1: {BEGIN_INDICES_KEY: [1, 0]}, 2: {BEGIN_INDICES_KEY: [2, 0]}, 3: {BEGIN_INDICES_KEY: [3, 0]}} Args: array_lines: Text lines representing the tensor, as a list of str. tensor: The tensor being formatted as string. np_printoptions: A dictionary of keyword arguments that are passed to a call of np.set_printoptions(). offset: Line number offset applied to the line indices in the returned annotation. Returns: An annotation as a dict. """ if np_printoptions and "edgeitems" in np_printoptions: edge_items = np_printoptions["edgeitems"] else: edge_items = _NUMPY_DEFAULT_EDGE_ITEMS annotations = {} # Put metadata about the tensor in the annotations["tensor_metadata"]. annotations["tensor_metadata"] = { "dtype": tensor.dtype, "shape": tensor.shape} dims = np.shape(tensor) ndims = len(dims) if ndims == 0: # No indices for a 0D tensor. return annotations curr_indices = [0] * len(dims) curr_dim = 0 for i in xrange(len(array_lines)): line = array_lines[i].strip() if not line: # Skip empty lines, which can appear for >= 3D arrays. continue if line == _NUMPY_OMISSION: annotations[offset + i] = {OMITTED_INDICES_KEY: copy.copy(curr_indices)} curr_indices[curr_dim - 1] = dims[curr_dim - 1] - edge_items else: num_lbrackets = line.count("[") # TODO(cais): String array escaping. num_rbrackets = line.count("]") curr_dim += num_lbrackets - num_rbrackets annotations[offset + i] = {BEGIN_INDICES_KEY: copy.copy(curr_indices)} if num_rbrackets == 0: line_content = line[line.rfind("[") + 1:] num_elements = line_content.count(",") curr_indices[curr_dim - 1] += num_elements else: if curr_dim > 0: curr_indices[curr_dim - 1] += 1 for k in xrange(curr_dim, ndims): curr_indices[k] = 0 return annotations def locate_tensor_element(formatted, indices): """Locate a tensor element in formatted text lines, given element indices. Given a RichTextLines object representing a tensor and indices of the sought element, return the row number at which the element is located (if exists). Args: formatted: A RichTextLines object containing formatted text lines representing the tensor. indices: Indices of the sought element, as a list of int or a list of list of int. The former case is for a single set of indices to look up, whereas the latter case is for looking up a batch of indices sets at once. In the latter case, the indices must be in ascending order, or a ValueError will be raised. Returns: 1) A boolean indicating whether the element falls into an omitted line. 2) Row index. 3) Column start index, i.e., the first column in which the representation of the specified tensor starts, if it can be determined. If it cannot be determined (e.g., due to ellipsis), None. 4) Column end index, i.e., the column right after the last column that represents the specified tensor. Iff it cannot be determined, None. For return values described above are based on a single set of indices to look up. In the case of batch mode (multiple sets of indices), the return values will be lists of the types described above. Raises: AttributeError: If: Input argument "formatted" does not have the required annotations. ValueError: If: 1) Indices do not match the dimensions of the tensor, or 2) Indices exceed sizes of the tensor, or 3) Indices contain negative value(s). 4) If in batch mode, and if not all sets of indices are in ascending order. """ if isinstance(indices[0], list): indices_list = indices input_batch = True else: indices_list = [indices] input_batch = False # Check that tensor_metadata is available. if "tensor_metadata" not in formatted.annotations: raise AttributeError("tensor_metadata is not available in annotations.") # Sanity check on input argument. _validate_indices_list(indices_list, formatted) dims = formatted.annotations["tensor_metadata"]["shape"] batch_size = len(indices_list) lines = formatted.lines annot = formatted.annotations prev_r = 0 prev_line = "" prev_indices = [0] * len(dims) # Initialize return values are_omitted = [None] * batch_size row_indices = [None] * batch_size start_columns = [None] * batch_size end_columns = [None] * batch_size batch_pos = 0 # Current position in the batch. for r in xrange(len(lines)): if r not in annot: continue if BEGIN_INDICES_KEY in annot[r]: indices_key = BEGIN_INDICES_KEY elif OMITTED_INDICES_KEY in annot[r]: indices_key = OMITTED_INDICES_KEY matching_indices_list = [ ind for ind in indices_list[batch_pos:] if prev_indices <= ind < annot[r][indices_key] ] if matching_indices_list: num_matches = len(matching_indices_list) match_start_columns, match_end_columns = _locate_elements_in_line( prev_line, matching_indices_list, prev_indices) start_columns[batch_pos:batch_pos + num_matches] = match_start_columns end_columns[batch_pos:batch_pos + num_matches] = match_end_columns are_omitted[batch_pos:batch_pos + num_matches] = [ OMITTED_INDICES_KEY in annot[prev_r] ] * num_matches row_indices[batch_pos:batch_pos + num_matches] = [prev_r] * num_matches batch_pos += num_matches if batch_pos >= batch_size: break prev_r = r prev_line = lines[r] prev_indices = annot[r][indices_key] if batch_pos < batch_size: matching_indices_list = indices_list[batch_pos:] num_matches = len(matching_indices_list) match_start_columns, match_end_columns = _locate_elements_in_line( prev_line, matching_indices_list, prev_indices) start_columns[batch_pos:batch_pos + num_matches] = match_start_columns end_columns[batch_pos:batch_pos + num_matches] = match_end_columns are_omitted[batch_pos:batch_pos + num_matches] = [ OMITTED_INDICES_KEY in annot[prev_r] ] * num_matches row_indices[batch_pos:batch_pos + num_matches] = [prev_r] * num_matches if input_batch: return are_omitted, row_indices, start_columns, end_columns else: return are_omitted[0], row_indices[0], start_columns[0], end_columns[0] def _validate_indices_list(indices_list, formatted): prev_ind = None for ind in indices_list: # Check indices match tensor dimensions. dims = formatted.annotations["tensor_metadata"]["shape"] if len(ind) != len(dims): raise ValueError("Dimensions mismatch: requested: %d; actual: %d" % (len(ind), len(dims))) # Check indices is within size limits. for req_idx, siz in zip(ind, dims): if req_idx >= siz: raise ValueError("Indices exceed tensor dimensions.") if req_idx < 0: raise ValueError("Indices contain negative value(s).") # Check indices are in ascending order. if prev_ind and ind < prev_ind: raise ValueError("Input indices sets are not in ascending order.") prev_ind = ind def _locate_elements_in_line(line, indices_list, ref_indices): """Determine the start and end indices of an element in a line. Args: line: (str) the line in which the element is to be sought. indices_list: (list of list of int) list of indices of the element to search for. Assumes that the indices in the batch are unique and sorted in ascending order. ref_indices: (list of int) reference indices, i.e., the indices of the first element represented in the line. Returns: start_columns: (list of int) start column indices, if found. If not found, None. end_columns: (list of int) end column indices, if found. If not found, None. If found, the element is represented in the left-closed-right-open interval [start_column, end_column]. """ batch_size = len(indices_list) offsets = [indices[-1] - ref_indices[-1] for indices in indices_list] start_columns = [None] * batch_size end_columns = [None] * batch_size if _NUMPY_OMISSION in line: ellipsis_index = line.find(_NUMPY_OMISSION) else: ellipsis_index = len(line) matches_iter = re.finditer(_NUMBER_REGEX, line) batch_pos = 0 offset_counter = 0 for match in matches_iter: if match.start() > ellipsis_index: # Do not attempt to search beyond ellipsis. break if offset_counter == offsets[batch_pos]: start_columns[batch_pos] = match.start() # Remove the final comma, right bracket, or whitespace. end_columns[batch_pos] = match.end() - 1 batch_pos += 1 if batch_pos >= batch_size: break offset_counter += 1 return start_columns, end_columns def _pad_string_to_length(string, length): return " " * (length - len(string)) + string def numeric_summary(tensor): """Get a text summary of a numeric tensor. This summary is only available for numeric (int*, float*, complex*) and Boolean tensors. Args: tensor: (`numpy.ndarray`) the tensor value object to be summarized. Returns: The summary text as a `RichTextLines` object. If the type of `tensor` is not numeric or Boolean, a single-line `RichTextLines` object containing a warning message will reflect that. """ def _counts_summary(counts, skip_zeros=True, total_count=None): """Format values as a two-row table.""" if skip_zeros: counts = [(count_key, count_val) for count_key, count_val in counts if count_val] max_common_len = 0 for count_key, count_val in counts: count_val_str = str(count_val) common_len = max(len(count_key) + 1, len(count_val_str) + 1) max_common_len = max(common_len, max_common_len) key_line = debugger_cli_common.RichLine("|") val_line = debugger_cli_common.RichLine("|") for count_key, count_val in counts: count_val_str = str(count_val) key_line += _pad_string_to_length(count_key, max_common_len) val_line += _pad_string_to_length(count_val_str, max_common_len) key_line += " |" val_line += " |" if total_count is not None: total_key_str = "total" total_val_str = str(total_count) max_common_len = max(len(total_key_str) + 1, len(total_val_str)) total_key_str = _pad_string_to_length(total_key_str, max_common_len) total_val_str = _pad_string_to_length(total_val_str, max_common_len) key_line += total_key_str + " |" val_line += total_val_str + " |" return debugger_cli_common.rich_text_lines_from_rich_line_list( [key_line, val_line]) if not isinstance(tensor, np.ndarray) or not np.size(tensor): return debugger_cli_common.RichTextLines([ "No numeric summary available due to empty tensor."]) elif (np.issubdtype(tensor.dtype, np.floating) or np.issubdtype(tensor.dtype, np.complex) or np.issubdtype(tensor.dtype, np.integer)): counts = [ ("nan", np.sum(np.isnan(tensor))), ("-inf", np.sum(np.isneginf(tensor))), ("-", np.sum(np.logical_and( tensor < 0.0, np.logical_not(np.isneginf(tensor))))), ("0", np.sum(tensor == 0.0)), ("+", np.sum(np.logical_and( tensor > 0.0, np.logical_not(np.isposinf(tensor))))), ("+inf", np.sum(np.isposinf(tensor)))] output = _counts_summary(counts, total_count=np.size(tensor)) valid_array = tensor[ np.logical_not(np.logical_or(np.isinf(tensor), np.isnan(tensor)))] if np.size(valid_array): stats = [ ("min", np.min(valid_array)), ("max", np.max(valid_array)), ("mean", np.mean(valid_array)), ("std", np.std(valid_array))] output.extend(_counts_summary(stats, skip_zeros=False)) return output elif tensor.dtype == np.bool: counts = [ ("False", np.sum(tensor == 0)), ("True", np.sum(tensor > 0)),] return _counts_summary(counts, total_count=np.size(tensor)) else: return debugger_cli_common.RichTextLines([ "No numeric summary available due to tensor dtype: %s." % tensor.dtype])
tensorflow-master
tensorflow/python/debug/cli/tensor_format.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """TensorFlow Debugger (tfdbg) User-Interface Factory.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy SUPPORTED_UI_TYPES = ["curses", "readline"] def get_ui(ui_type, on_ui_exit=None, available_ui_types=None, config=None): """Create a `base_ui.BaseUI` subtype. This factory method attempts to fallback to other available ui_types on ImportError. For example, if `ui_type` is `curses`, but `curses` cannot be imported properly, e.g., on Windows, will fallback to `readline`. Args: ui_type: (`str`) requested UI type. Currently supported: (curses | readline) on_ui_exit: (`Callable`) the callback to be called when the UI exits. available_ui_types: (`None` or `list` of `str`) Manually-set available ui_types. config: An instance of `cli_config.CLIConfig()` carrying user-facing configurations. Returns: A `base_ui.BaseUI` subtype object. Raises: ValueError: on invalid ui_type or on exhausting or fallback ui_types. """ if available_ui_types is None: available_ui_types = copy.deepcopy(SUPPORTED_UI_TYPES) if ui_type and (ui_type not in available_ui_types): raise ValueError("Invalid ui_type: '%s'" % ui_type) try: # pylint: disable=g-import-not-at-top if not ui_type or ui_type == "curses": from tensorflow.python.debug.cli import curses_ui return curses_ui.CursesUI(on_ui_exit=on_ui_exit, config=config) elif ui_type == "readline": from tensorflow.python.debug.cli import readline_ui return readline_ui.ReadlineUI(on_ui_exit=on_ui_exit, config=config) # pylint: enable=g-import-not-at-top except ImportError: available_ui_types.remove(ui_type) if not available_ui_types: raise ValueError("Exhausted all fallback ui_types.") return get_ui(available_ui_types[0], available_ui_types=available_ui_types)
tensorflow-master
tensorflow/python/debug/cli/ui_factory.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """CLI Backend for the Analyzer Part of the Debugger. The analyzer performs post hoc analysis of dumped intermediate tensors and graph structure information from debugged Session.run() calls. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import copy import re from six.moves import xrange # pylint: disable=redefined-builtin from tensorflow.python.debug.cli import cli_config from tensorflow.python.debug.cli import cli_shared from tensorflow.python.debug.cli import command_parser from tensorflow.python.debug.cli import debugger_cli_common from tensorflow.python.debug.cli import evaluator from tensorflow.python.debug.cli import ui_factory from tensorflow.python.debug.lib import debug_graphs from tensorflow.python.debug.lib import source_utils RL = debugger_cli_common.RichLine # String constants for the depth-dependent hanging indent at the beginning # of each line. HANG_UNFINISHED = "| " # Used for unfinished recursion depths. HANG_FINISHED = " " HANG_SUFFIX = "|- " # String constant for displaying depth and op type. DEPTH_TEMPLATE = "(%d) " OP_TYPE_TEMPLATE = "[%s] " # String constants for control inputs/outputs, etc. CTRL_LABEL = "(Ctrl) " ELLIPSIS = "..." SORT_TENSORS_BY_TIMESTAMP = "timestamp" SORT_TENSORS_BY_DUMP_SIZE = "dump_size" SORT_TENSORS_BY_OP_TYPE = "op_type" SORT_TENSORS_BY_TENSOR_NAME = "tensor_name" def _add_main_menu(output, node_name=None, enable_list_tensors=True, enable_node_info=True, enable_print_tensor=True, enable_list_inputs=True, enable_list_outputs=True): """Generate main menu for the screen output from a command. Args: output: (debugger_cli_common.RichTextLines) the output object to modify. node_name: (str or None) name of the node involved (if any). If None, the menu items node_info, list_inputs and list_outputs will be automatically disabled, overriding the values of arguments enable_node_info, enable_list_inputs and enable_list_outputs. enable_list_tensors: (bool) whether the list_tensor menu item will be enabled. enable_node_info: (bool) whether the node_info item will be enabled. enable_print_tensor: (bool) whether the print_tensor item will be enabled. enable_list_inputs: (bool) whether the item list_inputs will be enabled. enable_list_outputs: (bool) whether the item list_outputs will be enabled. """ menu = debugger_cli_common.Menu() menu.append( debugger_cli_common.MenuItem( "list_tensors", "list_tensors", enabled=enable_list_tensors)) if node_name: menu.append( debugger_cli_common.MenuItem( "node_info", "node_info -a -d -t %s" % node_name, enabled=enable_node_info)) menu.append( debugger_cli_common.MenuItem( "print_tensor", "print_tensor %s" % node_name, enabled=enable_print_tensor)) menu.append( debugger_cli_common.MenuItem( "list_inputs", "list_inputs -c -r %s" % node_name, enabled=enable_list_inputs)) menu.append( debugger_cli_common.MenuItem( "list_outputs", "list_outputs -c -r %s" % node_name, enabled=enable_list_outputs)) else: menu.append( debugger_cli_common.MenuItem( "node_info", None, enabled=False)) menu.append( debugger_cli_common.MenuItem("print_tensor", None, enabled=False)) menu.append( debugger_cli_common.MenuItem("list_inputs", None, enabled=False)) menu.append( debugger_cli_common.MenuItem("list_outputs", None, enabled=False)) menu.append( debugger_cli_common.MenuItem("run_info", "run_info")) menu.append( debugger_cli_common.MenuItem("help", "help")) output.annotations[debugger_cli_common.MAIN_MENU_KEY] = menu class DebugAnalyzer(object): """Analyzer for debug data from dump directories.""" _TIMESTAMP_COLUMN_HEAD = "t (ms)" _DUMP_SIZE_COLUMN_HEAD = "Size (B)" _OP_TYPE_COLUMN_HEAD = "Op type" _TENSOR_NAME_COLUMN_HEAD = "Tensor name" # Op types to be omitted when generating descriptions of graph structure. _GRAPH_STRUCT_OP_TYPE_BLACKLIST = ( "_Send", "_Recv", "_HostSend", "_HostRecv", "_Retval") def __init__(self, debug_dump, config): """DebugAnalyzer constructor. Args: debug_dump: A DebugDumpDir object. config: A `cli_config.CLIConfig` object that carries user-facing configurations. """ self._debug_dump = debug_dump self._evaluator = evaluator.ExpressionEvaluator(self._debug_dump) # Initialize tensor filters state. self._tensor_filters = {} self._build_argument_parsers(config) config.set_callback("graph_recursion_depth", self._build_argument_parsers) # TODO(cais): Implement list_nodes. def _build_argument_parsers(self, config): """Build argument parsers for DebugAnalayzer. Args: config: A `cli_config.CLIConfig` object. Returns: A dict mapping command handler name to `ArgumentParser` instance. """ # Argument parsers for command handlers. self._arg_parsers = {} # Parser for list_tensors. ap = argparse.ArgumentParser( description="List dumped intermediate tensors.", usage=argparse.SUPPRESS) ap.add_argument( "-f", "--tensor_filter", dest="tensor_filter", type=str, default="", help="List only Tensors passing the filter of the specified name") ap.add_argument( "-fenn", "--filter_exclude_node_names", dest="filter_exclude_node_names", type=str, default="", help="When applying the tensor filter, exclude node with names " "matching the regular expression. Applicable only if --tensor_filter " "or -f is used.") ap.add_argument( "-n", "--node_name_filter", dest="node_name_filter", type=str, default="", help="filter node name by regex.") ap.add_argument( "-t", "--op_type_filter", dest="op_type_filter", type=str, default="", help="filter op type by regex.") ap.add_argument( "-s", "--sort_by", dest="sort_by", type=str, default=SORT_TENSORS_BY_TIMESTAMP, help=("the field to sort the data by: (%s | %s | %s | %s)" % (SORT_TENSORS_BY_TIMESTAMP, SORT_TENSORS_BY_DUMP_SIZE, SORT_TENSORS_BY_OP_TYPE, SORT_TENSORS_BY_TENSOR_NAME))) ap.add_argument( "-r", "--reverse", dest="reverse", action="store_true", help="sort the data in reverse (descending) order") self._arg_parsers["list_tensors"] = ap # Parser for node_info. ap = argparse.ArgumentParser( description="Show information about a node.", usage=argparse.SUPPRESS) ap.add_argument( "node_name", type=str, help="Name of the node or an associated tensor, e.g., " "hidden1/Wx_plus_b/MatMul, hidden1/Wx_plus_b/MatMul:0") ap.add_argument( "-a", "--attributes", dest="attributes", action="store_true", help="Also list attributes of the node.") ap.add_argument( "-d", "--dumps", dest="dumps", action="store_true", help="Also list dumps available from the node.") ap.add_argument( "-t", "--traceback", dest="traceback", action="store_true", help="Also include the traceback of the node's creation " "(if available in Python).") self._arg_parsers["node_info"] = ap # Parser for list_inputs. ap = argparse.ArgumentParser( description="Show inputs to a node.", usage=argparse.SUPPRESS) ap.add_argument( "node_name", type=str, help="Name of the node or an output tensor from the node, e.g., " "hidden1/Wx_plus_b/MatMul, hidden1/Wx_plus_b/MatMul:0") ap.add_argument( "-c", "--control", action="store_true", help="Include control inputs.") ap.add_argument( "-d", "--depth", dest="depth", type=int, default=config.get("graph_recursion_depth"), help="Maximum depth of recursion used when showing the input tree.") ap.add_argument( "-r", "--recursive", dest="recursive", action="store_true", help="Show inputs to the node recursively, i.e., the input tree.") ap.add_argument( "-t", "--op_type", action="store_true", help="Show op types of input nodes.") self._arg_parsers["list_inputs"] = ap # Parser for list_outputs. ap = argparse.ArgumentParser( description="Show the nodes that receive the outputs of given node.", usage=argparse.SUPPRESS) ap.add_argument( "node_name", type=str, help="Name of the node or an output tensor from the node, e.g., " "hidden1/Wx_plus_b/MatMul, hidden1/Wx_plus_b/MatMul:0") ap.add_argument( "-c", "--control", action="store_true", help="Include control inputs.") ap.add_argument( "-d", "--depth", dest="depth", type=int, default=config.get("graph_recursion_depth"), help="Maximum depth of recursion used when showing the output tree.") ap.add_argument( "-r", "--recursive", dest="recursive", action="store_true", help="Show recipients of the node recursively, i.e., the output " "tree.") ap.add_argument( "-t", "--op_type", action="store_true", help="Show op types of recipient nodes.") self._arg_parsers["list_outputs"] = ap # Parser for print_tensor. self._arg_parsers["print_tensor"] = ( command_parser.get_print_tensor_argparser( "Print the value of a dumped tensor.")) # Parser for print_source. ap = argparse.ArgumentParser( description="Print a Python source file with overlaid debug " "information, including the nodes (ops) or Tensors created at the " "source lines.", usage=argparse.SUPPRESS) ap.add_argument( "source_file_path", type=str, help="Path to the source file.") ap.add_argument( "-t", "--tensors", dest="tensors", action="store_true", help="Label lines with dumped Tensors, instead of ops.") ap.add_argument( "-m", "--max_elements_per_line", type=int, default=10, help="Maximum number of elements (ops or Tensors) to show per source " "line.") ap.add_argument( "-b", "--line_begin", type=int, default=1, help="Print source beginning at line number (1-based.)") self._arg_parsers["print_source"] = ap # Parser for list_source. ap = argparse.ArgumentParser( description="List source files responsible for constructing nodes and " "tensors present in the run().", usage=argparse.SUPPRESS) ap.add_argument( "-p", "--path_filter", type=str, default="", help="Regular expression filter for file path.") ap.add_argument( "-n", "--node_name_filter", type=str, default="", help="Regular expression filter for node name.") self._arg_parsers["list_source"] = ap # Parser for eval. ap = argparse.ArgumentParser( description="""Evaluate an arbitrary expression. Can use tensor values from the current debug dump. The debug tensor names should be enclosed in pairs of backticks. Expressions with spaces should be enclosed in a pair of double quotes or a pair of single quotes. By default, numpy is imported as np and can be used in the expressions. E.g., 1) eval np.argmax(`Softmax:0`), 2) eval 'np.sum(`Softmax:0`, axis=1)', 3) eval "np.matmul((`output/Identity:0`/`Softmax:0`).T, `Softmax:0`)". """, usage=argparse.SUPPRESS) ap.add_argument( "expression", type=str, help="""Expression to be evaluated. 1) in the simplest case, use <node_name>:<output_slot>, e.g., hidden_0/MatMul:0. 2) if the default debug op "DebugIdentity" is to be overridden, use <node_name>:<output_slot>:<debug_op>, e.g., hidden_0/MatMul:0:DebugNumericSummary. 3) if the tensor of the same name exists on more than one device, use <device_name>:<node_name>:<output_slot>[:<debug_op>], e.g., /job:worker/replica:0/task:0/gpu:0:hidden_0/MatMul:0 /job:worker/replica:0/task:2/cpu:0:hidden_0/MatMul:0:DebugNanCount. 4) if the tensor is executed multiple times in a given `Session.run` call, specify the execution index with a 0-based integer enclose in a pair of brackets at the end, e.g., RNN/tanh:0[0] /job:worker/replica:0/task:0/gpu:0:RNN/tanh:0[0].""") ap.add_argument( "-a", "--all", dest="print_all", action="store_true", help="Print the tensor in its entirety, i.e., do not use ellipses " "(may be slow for large results).") ap.add_argument( "-w", "--write_path", default="", help="Path of the numpy file to write the evaluation result to, " "using numpy.save()") self._arg_parsers["eval"] = ap def add_tensor_filter(self, filter_name, filter_callable): """Add a tensor filter. A tensor filter is a named callable of the signature: filter_callable(dump_datum, tensor), wherein dump_datum is an instance of debug_data.DebugTensorDatum carrying metadata about the dumped tensor, including tensor name, timestamps, etc. tensor is the value of the dumped tensor as an numpy.ndarray object. The return value of the function is a bool. This is the same signature as the input argument to debug_data.DebugDumpDir.find(). Args: filter_name: (str) name of the filter. Cannot be empty. filter_callable: (callable) a filter function of the signature described as above. Raises: ValueError: If filter_name is an empty str. TypeError: If filter_name is not a str. Or if filter_callable is not callable. """ if not isinstance(filter_name, str): raise TypeError("Input argument filter_name is expected to be str, " "but is not.") # Check that filter_name is not an empty str. if not filter_name: raise ValueError("Input argument filter_name cannot be empty.") # Check that filter_callable is callable. if not callable(filter_callable): raise TypeError( "Input argument filter_callable is expected to be callable, " "but is not.") self._tensor_filters[filter_name] = filter_callable def get_tensor_filter(self, filter_name): """Retrieve filter function by name. Args: filter_name: Name of the filter set during add_tensor_filter() call. Returns: The callable associated with the filter name. Raises: ValueError: If there is no tensor filter of the specified filter name. """ if filter_name not in self._tensor_filters: raise ValueError("There is no tensor filter named \"%s\"" % filter_name) return self._tensor_filters[filter_name] def get_help(self, handler_name): return self._arg_parsers[handler_name].format_help() def list_tensors(self, args, screen_info=None): """Command handler for list_tensors. List tensors dumped during debugged Session.run() call. Args: args: Command-line arguments, excluding the command prefix, as a list of str. screen_info: Optional dict input containing screen information such as cols. Returns: Output text lines as a RichTextLines object. Raises: ValueError: If `--filter_exclude_node_names` is used without `-f` or `--tensor_filter` being used. """ # TODO(cais): Add annotations of substrings for dumped tensor names, to # facilitate on-screen highlighting/selection of node names. _ = screen_info parsed = self._arg_parsers["list_tensors"].parse_args(args) output = [] filter_strs = [] if parsed.op_type_filter: op_type_regex = re.compile(parsed.op_type_filter) filter_strs.append("Op type regex filter: \"%s\"" % parsed.op_type_filter) else: op_type_regex = None if parsed.node_name_filter: node_name_regex = re.compile(parsed.node_name_filter) filter_strs.append("Node name regex filter: \"%s\"" % parsed.node_name_filter) else: node_name_regex = None output = debugger_cli_common.RichTextLines(filter_strs) output.append("") if parsed.tensor_filter: try: filter_callable = self.get_tensor_filter(parsed.tensor_filter) except ValueError: output = cli_shared.error("There is no tensor filter named \"%s\"." % parsed.tensor_filter) _add_main_menu(output, node_name=None, enable_list_tensors=False) return output data_to_show = self._debug_dump.find( filter_callable, exclude_node_names=parsed.filter_exclude_node_names) else: if parsed.filter_exclude_node_names: raise ValueError( "The flag --filter_exclude_node_names is valid only when " "the flag -f or --tensor_filter is used.") data_to_show = self._debug_dump.dumped_tensor_data # TODO(cais): Implement filter by lambda on tensor value. max_timestamp_width, max_dump_size_width, max_op_type_width = ( self._measure_tensor_list_column_widths(data_to_show)) # Sort the data. data_to_show = self._sort_dump_data_by( data_to_show, parsed.sort_by, parsed.reverse) output.extend( self._tensor_list_column_heads(parsed, max_timestamp_width, max_dump_size_width, max_op_type_width)) dump_count = 0 for dump in data_to_show: if node_name_regex and not node_name_regex.match(dump.node_name): continue if op_type_regex: op_type = self._debug_dump.node_op_type(dump.node_name) if not op_type_regex.match(op_type): continue rel_time = (dump.timestamp - self._debug_dump.t0) / 1000.0 dump_size_str = cli_shared.bytes_to_readable_str(dump.dump_size_bytes) dumped_tensor_name = "%s:%d" % (dump.node_name, dump.output_slot) op_type = self._debug_dump.node_op_type(dump.node_name) line = "[%.3f]" % rel_time line += " " * (max_timestamp_width - len(line)) line += dump_size_str line += " " * (max_timestamp_width + max_dump_size_width - len(line)) line += op_type line += " " * (max_timestamp_width + max_dump_size_width + max_op_type_width - len(line)) line += dumped_tensor_name output.append( line, font_attr_segs=[( len(line) - len(dumped_tensor_name), len(line), debugger_cli_common.MenuItem("", "pt %s" % dumped_tensor_name))]) dump_count += 1 if parsed.tensor_filter: output.prepend([ "%d dumped tensor(s) passing filter \"%s\":" % (dump_count, parsed.tensor_filter) ]) else: output.prepend(["%d dumped tensor(s):" % dump_count]) _add_main_menu(output, node_name=None, enable_list_tensors=False) return output def _measure_tensor_list_column_widths(self, data): """Determine the maximum widths of the timestamp and op-type column. This method assumes that data is sorted in the default order, i.e., by ascending timestamps. Args: data: (list of DebugTensorDaum) the data based on which the maximum column widths will be determined. Returns: (int) maximum width of the timestamp column. 0 if data is empty. (int) maximum width of the dump size column. 0 if data is empty. (int) maximum width of the op type column. 0 if data is empty. """ max_timestamp_width = 0 if data: max_rel_time_ms = (data[-1].timestamp - self._debug_dump.t0) / 1000.0 max_timestamp_width = len("[%.3f] " % max_rel_time_ms) + 1 max_timestamp_width = max(max_timestamp_width, len(self._TIMESTAMP_COLUMN_HEAD) + 1) max_dump_size_width = 0 for dump in data: dump_size_str = cli_shared.bytes_to_readable_str(dump.dump_size_bytes) if len(dump_size_str) + 1 > max_dump_size_width: max_dump_size_width = len(dump_size_str) + 1 max_dump_size_width = max(max_dump_size_width, len(self._DUMP_SIZE_COLUMN_HEAD) + 1) max_op_type_width = 0 for dump in data: op_type = self._debug_dump.node_op_type(dump.node_name) if len(op_type) + 1 > max_op_type_width: max_op_type_width = len(op_type) + 1 max_op_type_width = max(max_op_type_width, len(self._OP_TYPE_COLUMN_HEAD) + 1) return max_timestamp_width, max_dump_size_width, max_op_type_width def _sort_dump_data_by(self, data, sort_by, reverse): """Sort a list of DebugTensorDatum in specified order. Args: data: (list of DebugTensorDatum) the data to be sorted. sort_by: The field to sort data by. reverse: (bool) Whether to use reversed (descending) order. Returns: (list of DebugTensorDatum) in sorted order. Raises: ValueError: given an invalid value of sort_by. """ if sort_by == SORT_TENSORS_BY_TIMESTAMP: return sorted( data, reverse=reverse, key=lambda x: x.timestamp) elif sort_by == SORT_TENSORS_BY_DUMP_SIZE: return sorted(data, reverse=reverse, key=lambda x: x.dump_size_bytes) elif sort_by == SORT_TENSORS_BY_OP_TYPE: return sorted( data, reverse=reverse, key=lambda x: self._debug_dump.node_op_type(x.node_name)) elif sort_by == SORT_TENSORS_BY_TENSOR_NAME: return sorted( data, reverse=reverse, key=lambda x: "%s:%d" % (x.node_name, x.output_slot)) else: raise ValueError("Unsupported key to sort tensors by: %s" % sort_by) def _tensor_list_column_heads(self, parsed, max_timestamp_width, max_dump_size_width, max_op_type_width): """Generate a line containing the column heads of the tensor list. Args: parsed: Parsed arguments (by argparse) of the list_tensors command. max_timestamp_width: (int) maximum width of the timestamp column. max_dump_size_width: (int) maximum width of the dump size column. max_op_type_width: (int) maximum width of the op type column. Returns: A RichTextLines object. """ base_command = "list_tensors" if parsed.tensor_filter: base_command += " -f %s" % parsed.tensor_filter if parsed.op_type_filter: base_command += " -t %s" % parsed.op_type_filter if parsed.node_name_filter: base_command += " -n %s" % parsed.node_name_filter attr_segs = {0: []} row = self._TIMESTAMP_COLUMN_HEAD command = "%s -s %s" % (base_command, SORT_TENSORS_BY_TIMESTAMP) if parsed.sort_by == SORT_TENSORS_BY_TIMESTAMP and not parsed.reverse: command += " -r" attr_segs[0].append( (0, len(row), [debugger_cli_common.MenuItem(None, command), "bold"])) row += " " * (max_timestamp_width - len(row)) prev_len = len(row) row += self._DUMP_SIZE_COLUMN_HEAD command = "%s -s %s" % (base_command, SORT_TENSORS_BY_DUMP_SIZE) if parsed.sort_by == SORT_TENSORS_BY_DUMP_SIZE and not parsed.reverse: command += " -r" attr_segs[0].append((prev_len, len(row), [debugger_cli_common.MenuItem(None, command), "bold"])) row += " " * (max_dump_size_width + max_timestamp_width - len(row)) prev_len = len(row) row += self._OP_TYPE_COLUMN_HEAD command = "%s -s %s" % (base_command, SORT_TENSORS_BY_OP_TYPE) if parsed.sort_by == SORT_TENSORS_BY_OP_TYPE and not parsed.reverse: command += " -r" attr_segs[0].append((prev_len, len(row), [debugger_cli_common.MenuItem(None, command), "bold"])) row += " " * ( max_op_type_width + max_dump_size_width + max_timestamp_width - len(row) ) prev_len = len(row) row += self._TENSOR_NAME_COLUMN_HEAD command = "%s -s %s" % (base_command, SORT_TENSORS_BY_TENSOR_NAME) if parsed.sort_by == SORT_TENSORS_BY_TENSOR_NAME and not parsed.reverse: command += " -r" attr_segs[0].append((prev_len, len(row), [debugger_cli_common.MenuItem("", command), "bold"])) row += " " * ( max_op_type_width + max_dump_size_width + max_timestamp_width - len(row) ) return debugger_cli_common.RichTextLines([row], font_attr_segs=attr_segs) def node_info(self, args, screen_info=None): """Command handler for node_info. Query information about a given node. Args: args: Command-line arguments, excluding the command prefix, as a list of str. screen_info: Optional dict input containing screen information such as cols. Returns: Output text lines as a RichTextLines object. """ # TODO(cais): Add annotation of substrings for node names, to facilitate # on-screen highlighting/selection of node names. _ = screen_info parsed = self._arg_parsers["node_info"].parse_args(args) # Get a node name, regardless of whether the input is a node name (without # output slot attached) or a tensor name (with output slot attached). node_name, unused_slot = debug_graphs.parse_node_or_tensor_name( parsed.node_name) if not self._debug_dump.node_exists(node_name): output = cli_shared.error( "There is no node named \"%s\" in the partition graphs" % node_name) _add_main_menu( output, node_name=None, enable_list_tensors=True, enable_node_info=False, enable_list_inputs=False, enable_list_outputs=False) return output # TODO(cais): Provide UI glossary feature to explain to users what the # term "partition graph" means and how it is related to TF graph objects # in Python. The information can be along the line of: # "A tensorflow graph defined in Python is stripped of unused ops # according to the feeds and fetches and divided into a number of # partition graphs that may be distributed among multiple devices and # hosts. The partition graphs are what's actually executed by the C++ # runtime during a run() call." lines = ["Node %s" % node_name] font_attr_segs = { 0: [(len(lines[-1]) - len(node_name), len(lines[-1]), "bold")] } lines.append("") lines.append(" Op: %s" % self._debug_dump.node_op_type(node_name)) lines.append(" Device: %s" % self._debug_dump.node_device(node_name)) output = debugger_cli_common.RichTextLines( lines, font_attr_segs=font_attr_segs) # List node inputs (non-control and control). inputs = self._exclude_blacklisted_ops( self._debug_dump.node_inputs(node_name)) ctrl_inputs = self._exclude_blacklisted_ops( self._debug_dump.node_inputs(node_name, is_control=True)) output.extend(self._format_neighbors("input", inputs, ctrl_inputs)) # List node output recipients (non-control and control). recs = self._exclude_blacklisted_ops( self._debug_dump.node_recipients(node_name)) ctrl_recs = self._exclude_blacklisted_ops( self._debug_dump.node_recipients(node_name, is_control=True)) output.extend(self._format_neighbors("recipient", recs, ctrl_recs)) # Optional: List attributes of the node. if parsed.attributes: output.extend(self._list_node_attributes(node_name)) # Optional: List dumps available from the node. if parsed.dumps: output.extend(self._list_node_dumps(node_name)) if parsed.traceback: output.extend(self._render_node_traceback(node_name)) _add_main_menu(output, node_name=node_name, enable_node_info=False) return output def _exclude_blacklisted_ops(self, node_names): """Exclude all nodes whose op types are in _GRAPH_STRUCT_OP_TYPE_BLACKLIST. Args: node_names: An iterable of node or graph element names. Returns: A list of node names that are not blacklisted. """ return [node_name for node_name in node_names if self._debug_dump.node_op_type( debug_graphs.get_node_name(node_name)) not in self._GRAPH_STRUCT_OP_TYPE_BLACKLIST] def _render_node_traceback(self, node_name): """Render traceback of a node's creation in Python, if available. Args: node_name: (str) name of the node. Returns: A RichTextLines object containing the stack trace of the node's construction. """ lines = [RL(""), RL(""), RL("Traceback of node construction:", "bold")] try: node_stack = self._debug_dump.node_traceback(node_name) for depth, (file_path, line, function_name, text) in enumerate( node_stack): lines.append("%d: %s" % (depth, file_path)) attribute = debugger_cli_common.MenuItem( "", "ps %s -b %d" % (file_path, line)) if text else None line_number_line = RL(" ") line_number_line += RL("Line: %d" % line, attribute) lines.append(line_number_line) lines.append(" Function: %s" % function_name) lines.append(" Text: " + (("\"%s\"" % text) if text else "None")) lines.append("") except KeyError: lines.append("(Node unavailable in the loaded Python graph)") except LookupError: lines.append("(Unavailable because no Python graph has been loaded)") return debugger_cli_common.rich_text_lines_from_rich_line_list(lines) def list_inputs(self, args, screen_info=None): """Command handler for inputs. Show inputs to a given node. Args: args: Command-line arguments, excluding the command prefix, as a list of str. screen_info: Optional dict input containing screen information such as cols. Returns: Output text lines as a RichTextLines object. """ # Screen info not currently used by this handler. Include this line to # mute pylint. _ = screen_info # TODO(cais): Use screen info to format the output lines more prettily, # e.g., hanging indent of long node names. parsed = self._arg_parsers["list_inputs"].parse_args(args) output = self._list_inputs_or_outputs( parsed.recursive, parsed.node_name, parsed.depth, parsed.control, parsed.op_type, do_outputs=False) node_name = debug_graphs.get_node_name(parsed.node_name) _add_main_menu(output, node_name=node_name, enable_list_inputs=False) return output def print_tensor(self, args, screen_info=None): """Command handler for print_tensor. Print value of a given dumped tensor. Args: args: Command-line arguments, excluding the command prefix, as a list of str. screen_info: Optional dict input containing screen information such as cols. Returns: Output text lines as a RichTextLines object. """ parsed = self._arg_parsers["print_tensor"].parse_args(args) np_printoptions = cli_shared.numpy_printoptions_from_screen_info( screen_info) # Determine if any range-highlighting is required. highlight_options = cli_shared.parse_ranges_highlight(parsed.ranges) tensor_name, tensor_slicing = ( command_parser.parse_tensor_name_with_slicing(parsed.tensor_name)) node_name, output_slot = debug_graphs.parse_node_or_tensor_name(tensor_name) if (self._debug_dump.loaded_partition_graphs() and not self._debug_dump.node_exists(node_name)): output = cli_shared.error( "Node \"%s\" does not exist in partition graphs" % node_name) _add_main_menu( output, node_name=None, enable_list_tensors=True, enable_print_tensor=False) return output watch_keys = self._debug_dump.debug_watch_keys(node_name) if output_slot is None: output_slots = set() for watch_key in watch_keys: output_slots.add(int(watch_key.split(":")[1])) if len(output_slots) == 1: # There is only one dumped tensor from this node, so there is no # ambiguity. Proceed to show the only dumped tensor. output_slot = list(output_slots)[0] else: # There are more than one dumped tensors from this node. Indicate as # such. # TODO(cais): Provide an output screen with command links for # convenience. lines = [ "Node \"%s\" generated debug dumps from %s output slots:" % (node_name, len(output_slots)), "Please specify the output slot: %s:x." % node_name ] output = debugger_cli_common.RichTextLines(lines) _add_main_menu( output, node_name=node_name, enable_list_tensors=True, enable_print_tensor=False) return output # Find debug dump data that match the tensor name (node name + output # slot). matching_data = [] for watch_key in watch_keys: debug_tensor_data = self._debug_dump.watch_key_to_data(watch_key) for datum in debug_tensor_data: if datum.output_slot == output_slot: matching_data.append(datum) if not matching_data: # No dump for this tensor. output = cli_shared.error("Tensor \"%s\" did not generate any dumps." % parsed.tensor_name) elif len(matching_data) == 1: # There is only one dump for this tensor. if parsed.number <= 0: output = cli_shared.format_tensor( matching_data[0].get_tensor(), matching_data[0].watch_key, np_printoptions, print_all=parsed.print_all, tensor_slicing=tensor_slicing, highlight_options=highlight_options, include_numeric_summary=parsed.numeric_summary, write_path=parsed.write_path) else: output = cli_shared.error( "Invalid number (%d) for tensor %s, which generated one dump." % (parsed.number, parsed.tensor_name)) _add_main_menu(output, node_name=node_name, enable_print_tensor=False) else: # There are more than one dumps for this tensor. if parsed.number < 0: lines = [ "Tensor \"%s\" generated %d dumps:" % (parsed.tensor_name, len(matching_data)) ] font_attr_segs = {} for i, datum in enumerate(matching_data): rel_time = (datum.timestamp - self._debug_dump.t0) / 1000.0 lines.append("#%d [%.3f ms] %s" % (i, rel_time, datum.watch_key)) command = "print_tensor %s -n %d" % (parsed.tensor_name, i) font_attr_segs[len(lines) - 1] = [( len(lines[-1]) - len(datum.watch_key), len(lines[-1]), debugger_cli_common.MenuItem(None, command))] lines.append("") lines.append( "You can use the -n (--number) flag to specify which dump to " "print.") lines.append("For example:") lines.append(" print_tensor %s -n 0" % parsed.tensor_name) output = debugger_cli_common.RichTextLines( lines, font_attr_segs=font_attr_segs) elif parsed.number >= len(matching_data): output = cli_shared.error( "Specified number (%d) exceeds the number of available dumps " "(%d) for tensor %s" % (parsed.number, len(matching_data), parsed.tensor_name)) else: output = cli_shared.format_tensor( matching_data[parsed.number].get_tensor(), matching_data[parsed.number].watch_key + " (dump #%d)" % parsed.number, np_printoptions, print_all=parsed.print_all, tensor_slicing=tensor_slicing, highlight_options=highlight_options, write_path=parsed.write_path) _add_main_menu(output, node_name=node_name, enable_print_tensor=False) return output def list_outputs(self, args, screen_info=None): """Command handler for inputs. Show inputs to a given node. Args: args: Command-line arguments, excluding the command prefix, as a list of str. screen_info: Optional dict input containing screen information such as cols. Returns: Output text lines as a RichTextLines object. """ # Screen info not currently used by this handler. Include this line to # mute pylint. _ = screen_info # TODO(cais): Use screen info to format the output lines more prettily, # e.g., hanging indent of long node names. parsed = self._arg_parsers["list_outputs"].parse_args(args) output = self._list_inputs_or_outputs( parsed.recursive, parsed.node_name, parsed.depth, parsed.control, parsed.op_type, do_outputs=True) node_name = debug_graphs.get_node_name(parsed.node_name) _add_main_menu(output, node_name=node_name, enable_list_outputs=False) return output def evaluate_expression(self, args, screen_info=None): parsed = self._arg_parsers["eval"].parse_args(args) eval_res = self._evaluator.evaluate(parsed.expression) np_printoptions = cli_shared.numpy_printoptions_from_screen_info( screen_info) return cli_shared.format_tensor( eval_res, "from eval of expression '%s'" % parsed.expression, np_printoptions, print_all=parsed.print_all, include_numeric_summary=True, write_path=parsed.write_path) def _reconstruct_print_source_command(self, parsed, line_begin, max_elements_per_line_increase=0): return "ps %s %s -b %d -m %d" % ( parsed.source_file_path, "-t" if parsed.tensors else "", line_begin, parsed.max_elements_per_line + max_elements_per_line_increase) def print_source(self, args, screen_info=None): """Print the content of a source file.""" del screen_info # Unused. parsed = self._arg_parsers["print_source"].parse_args(args) source_annotation = source_utils.annotate_source( self._debug_dump, parsed.source_file_path, do_dumped_tensors=parsed.tensors) source_lines, line_num_width = source_utils.load_source( parsed.source_file_path) labeled_source_lines = [] actual_initial_scroll_target = 0 for i, line in enumerate(source_lines): annotated_line = RL("L%d" % (i + 1), cli_shared.COLOR_YELLOW) annotated_line += " " * (line_num_width - len(annotated_line)) annotated_line += line labeled_source_lines.append(annotated_line) if i + 1 == parsed.line_begin: actual_initial_scroll_target = len(labeled_source_lines) - 1 if i + 1 in source_annotation: sorted_elements = sorted(source_annotation[i + 1]) for k, element in enumerate(sorted_elements): if k >= parsed.max_elements_per_line: omitted_info_line = RL(" (... Omitted %d of %d %s ...) " % ( len(sorted_elements) - parsed.max_elements_per_line, len(sorted_elements), "tensor(s)" if parsed.tensors else "op(s)")) omitted_info_line += RL( "+5", debugger_cli_common.MenuItem( None, self._reconstruct_print_source_command( parsed, i + 1, max_elements_per_line_increase=5))) labeled_source_lines.append(omitted_info_line) break label = RL(" " * 4) if self._debug_dump.debug_watch_keys( debug_graphs.get_node_name(element)): attribute = debugger_cli_common.MenuItem("", "pt %s" % element) else: attribute = cli_shared.COLOR_BLUE label += RL(element, attribute) labeled_source_lines.append(label) output = debugger_cli_common.rich_text_lines_from_rich_line_list( labeled_source_lines, annotations={debugger_cli_common.INIT_SCROLL_POS_KEY: actual_initial_scroll_target}) _add_main_menu(output, node_name=None) return output def _make_source_table(self, source_list, is_tf_py_library): """Make a table summarizing the source files that create nodes and tensors. Args: source_list: List of source files and related information as a list of tuples (file_path, is_tf_library, num_nodes, num_tensors, num_dumps, first_line). is_tf_py_library: (`bool`) whether this table is for files that belong to the TensorFlow Python library. Returns: The table as a `debugger_cli_common.RichTextLines` object. """ path_head = "Source file path" num_nodes_head = "#(nodes)" num_tensors_head = "#(tensors)" num_dumps_head = "#(tensor dumps)" if is_tf_py_library: # Use color to mark files that are guessed to belong to TensorFlow Python # library. color = cli_shared.COLOR_GRAY lines = [RL("TensorFlow Python library file(s):", color)] else: color = cli_shared.COLOR_WHITE lines = [RL("File(s) outside TensorFlow Python library:", color)] if not source_list: lines.append(RL("[No files.]")) lines.append(RL()) return debugger_cli_common.rich_text_lines_from_rich_line_list(lines) path_column_width = max( max([len(item[0]) for item in source_list]), len(path_head)) + 1 num_nodes_column_width = max( max([len(str(item[2])) for item in source_list]), len(num_nodes_head)) + 1 num_tensors_column_width = max( max([len(str(item[3])) for item in source_list]), len(num_tensors_head)) + 1 head = RL(path_head + " " * (path_column_width - len(path_head)), color) head += RL(num_nodes_head + " " * ( num_nodes_column_width - len(num_nodes_head)), color) head += RL(num_tensors_head + " " * ( num_tensors_column_width - len(num_tensors_head)), color) head += RL(num_dumps_head, color) lines.append(head) for (file_path, _, num_nodes, num_tensors, num_dumps, first_line_num) in source_list: path_attributes = [color] if source_utils.is_extension_uncompiled_python_source(file_path): path_attributes.append( debugger_cli_common.MenuItem(None, "ps %s -b %d" % (file_path, first_line_num))) line = RL(file_path, path_attributes) line += " " * (path_column_width - len(line)) line += RL( str(num_nodes) + " " * (num_nodes_column_width - len(str(num_nodes))), color) line += RL( str(num_tensors) + " " * (num_tensors_column_width - len(str(num_tensors))), color) line += RL(str(num_dumps), color) lines.append(line) lines.append(RL()) return debugger_cli_common.rich_text_lines_from_rich_line_list(lines) def list_source(self, args, screen_info=None): """List Python source files that constructed nodes and tensors.""" del screen_info # Unused. parsed = self._arg_parsers["list_source"].parse_args(args) source_list = source_utils.list_source_files_against_dump( self._debug_dump, path_regex_whitelist=parsed.path_filter, node_name_regex_whitelist=parsed.node_name_filter) top_lines = [ RL("List of source files that created nodes in this run", "bold")] if parsed.path_filter: top_lines.append( RL("File path regex filter: \"%s\"" % parsed.path_filter)) if parsed.node_name_filter: top_lines.append( RL("Node name regex filter: \"%s\"" % parsed.node_name_filter)) top_lines.append(RL()) output = debugger_cli_common.rich_text_lines_from_rich_line_list(top_lines) if not source_list: output.append("[No source file information.]") return output output.extend(self._make_source_table( [item for item in source_list if not item[1]], False)) output.extend(self._make_source_table( [item for item in source_list if item[1]], True)) _add_main_menu(output, node_name=None) return output def _list_inputs_or_outputs(self, recursive, node_name, depth, control, op_type, do_outputs=False): """Helper function used by list_inputs and list_outputs. Format a list of lines to display the inputs or output recipients of a given node. Args: recursive: Whether the listing is to be done recursively, as a boolean. node_name: The name of the node in question, as a str. depth: Maximum recursion depth, applies only if recursive == True, as an int. control: Whether control inputs or control recipients are included, as a boolean. op_type: Whether the op types of the nodes are to be included, as a boolean. do_outputs: Whether recipients, instead of input nodes are to be listed, as a boolean. Returns: Input or recipient tree formatted as a RichTextLines object. """ if do_outputs: tracker = self._debug_dump.node_recipients type_str = "Recipients of" short_type_str = "recipients" else: tracker = self._debug_dump.node_inputs type_str = "Inputs to" short_type_str = "inputs" lines = [] font_attr_segs = {} # Check if this is a tensor name, instead of a node name. node_name, _ = debug_graphs.parse_node_or_tensor_name(node_name) # Check if node exists. if not self._debug_dump.node_exists(node_name): return cli_shared.error( "There is no node named \"%s\" in the partition graphs" % node_name) if recursive: max_depth = depth else: max_depth = 1 if control: include_ctrls_str = ", control %s included" % short_type_str else: include_ctrls_str = "" line = "%s node \"%s\"" % (type_str, node_name) font_attr_segs[0] = [(len(line) - 1 - len(node_name), len(line) - 1, "bold") ] lines.append(line + " (Depth limit = %d%s):" % (max_depth, include_ctrls_str )) command_template = "lo -c -r %s" if do_outputs else "li -c -r %s" self._dfs_from_node( lines, font_attr_segs, node_name, tracker, max_depth, 1, [], control, op_type, command_template=command_template) # Include legend. lines.append("") lines.append("Legend:") lines.append(" (d): recursion depth = d.") if control: lines.append(" (Ctrl): Control input.") if op_type: lines.append(" [Op]: Input node has op type Op.") # TODO(cais): Consider appending ":0" at the end of 1st outputs of nodes. return debugger_cli_common.RichTextLines( lines, font_attr_segs=font_attr_segs) def _dfs_from_node(self, lines, attr_segs, node_name, tracker, max_depth, depth, unfinished, include_control=False, show_op_type=False, command_template=None): """Perform depth-first search (DFS) traversal of a node's input tree. It recursively tracks the inputs (or output recipients) of the node called node_name, and append these inputs (or output recipients) to a list of text lines (lines) with proper indentation that reflects the recursion depth, together with some formatting attributes (to attr_segs). The formatting attributes can include command shortcuts, for example. Args: lines: Text lines to append to, as a list of str. attr_segs: (dict) Attribute segments dictionary to append to. node_name: Name of the node, as a str. This arg is updated during the recursion. tracker: A callable that takes one str as the node name input and returns a list of str as the inputs/outputs. This makes it this function general enough to be used with both node-input and node-output tracking. max_depth: Maximum recursion depth, as an int. depth: Current recursion depth. This arg is updated during the recursion. unfinished: A stack of unfinished recursion depths, as a list of int. include_control: Whether control dependencies are to be included as inputs (and marked as such). show_op_type: Whether op type of the input nodes are to be displayed alongside the nodes' names. command_template: (str) Template for command shortcut of the node names. """ # Make a shallow copy of the list because it may be extended later. all_inputs = self._exclude_blacklisted_ops( copy.copy(tracker(node_name, is_control=False))) is_ctrl = [False] * len(all_inputs) if include_control: # Sort control inputs or recipients in alphabetical order of the node # names. ctrl_inputs = self._exclude_blacklisted_ops( sorted(tracker(node_name, is_control=True))) all_inputs.extend(ctrl_inputs) is_ctrl.extend([True] * len(ctrl_inputs)) if not all_inputs: if depth == 1: lines.append(" [None]") return unfinished.append(depth) # Create depth-dependent hanging indent for the line. hang = "" for k in xrange(depth): if k < depth - 1: if k + 1 in unfinished: hang += HANG_UNFINISHED else: hang += HANG_FINISHED else: hang += HANG_SUFFIX if all_inputs and depth > max_depth: lines.append(hang + ELLIPSIS) unfinished.pop() return hang += DEPTH_TEMPLATE % depth for i in xrange(len(all_inputs)): inp = all_inputs[i] op_type = self._debug_dump.node_op_type(debug_graphs.get_node_name(inp)) if op_type in self._GRAPH_STRUCT_OP_TYPE_BLACKLIST: continue if is_ctrl[i]: ctrl_str = CTRL_LABEL else: ctrl_str = "" op_type_str = "" if show_op_type: op_type_str = OP_TYPE_TEMPLATE % op_type if i == len(all_inputs) - 1: unfinished.pop() line = hang + ctrl_str + op_type_str + inp lines.append(line) if command_template: attr_segs[len(lines) - 1] = [( len(line) - len(inp), len(line), debugger_cli_common.MenuItem(None, command_template % inp))] # Recursive call. # The input's/output's name can be a tensor name, in the case of node # with >1 output slots. inp_node_name, _ = debug_graphs.parse_node_or_tensor_name(inp) self._dfs_from_node( lines, attr_segs, inp_node_name, tracker, max_depth, depth + 1, unfinished, include_control=include_control, show_op_type=show_op_type, command_template=command_template) def _format_neighbors(self, neighbor_type, non_ctrls, ctrls): """List neighbors (inputs or recipients) of a node. Args: neighbor_type: ("input" | "recipient") non_ctrls: Non-control neighbor node names, as a list of str. ctrls: Control neighbor node names, as a list of str. Returns: A RichTextLines object. """ # TODO(cais): Return RichTextLines instead, to allow annotation of node # names. lines = [] font_attr_segs = {} lines.append("") lines.append(" %d %s(s) + %d control %s(s):" % (len(non_ctrls), neighbor_type, len(ctrls), neighbor_type)) lines.append(" %d %s(s):" % (len(non_ctrls), neighbor_type)) for non_ctrl in non_ctrls: line = " [%s] %s" % (self._debug_dump.node_op_type(non_ctrl), non_ctrl) lines.append(line) font_attr_segs[len(lines) - 1] = [( len(line) - len(non_ctrl), len(line), debugger_cli_common.MenuItem(None, "ni -a -d -t %s" % non_ctrl))] if ctrls: lines.append("") lines.append(" %d control %s(s):" % (len(ctrls), neighbor_type)) for ctrl in ctrls: line = " [%s] %s" % (self._debug_dump.node_op_type(ctrl), ctrl) lines.append(line) font_attr_segs[len(lines) - 1] = [( len(line) - len(ctrl), len(line), debugger_cli_common.MenuItem(None, "ni -a -d -t %s" % ctrl))] return debugger_cli_common.RichTextLines( lines, font_attr_segs=font_attr_segs) def _list_node_attributes(self, node_name): """List neighbors (inputs or recipients) of a node. Args: node_name: Name of the node of which the attributes are to be listed. Returns: A RichTextLines object. """ lines = [] lines.append("") lines.append("Node attributes:") attrs = self._debug_dump.node_attributes(node_name) for attr_key in attrs: lines.append(" %s:" % attr_key) attr_val_str = repr(attrs[attr_key]).strip().replace("\n", " ") lines.append(" %s" % attr_val_str) lines.append("") return debugger_cli_common.RichTextLines(lines) def _list_node_dumps(self, node_name): """List dumped tensor data from a node. Args: node_name: Name of the node of which the attributes are to be listed. Returns: A RichTextLines object. """ lines = [] font_attr_segs = {} watch_keys = self._debug_dump.debug_watch_keys(node_name) dump_count = 0 for watch_key in watch_keys: debug_tensor_data = self._debug_dump.watch_key_to_data(watch_key) for datum in debug_tensor_data: line = " Slot %d @ %s @ %.3f ms" % ( datum.output_slot, datum.debug_op, (datum.timestamp - self._debug_dump.t0) / 1000.0) lines.append(line) command = "pt %s:%d -n %d" % (node_name, datum.output_slot, dump_count) font_attr_segs[len(lines) - 1] = [( 2, len(line), debugger_cli_common.MenuItem(None, command))] dump_count += 1 output = debugger_cli_common.RichTextLines( lines, font_attr_segs=font_attr_segs) output_with_header = debugger_cli_common.RichTextLines( ["%d dumped tensor(s):" % dump_count, ""]) output_with_header.extend(output) return output_with_header def create_analyzer_ui(debug_dump, tensor_filters=None, ui_type="curses", on_ui_exit=None, config=None): """Create an instance of CursesUI based on a DebugDumpDir object. Args: debug_dump: (debug_data.DebugDumpDir) The debug dump to use. tensor_filters: (dict) A dict mapping tensor filter name (str) to tensor filter (Callable). ui_type: (str) requested UI type, e.g., "curses", "readline". on_ui_exit: (`Callable`) the callback to be called when the UI exits. config: A `cli_config.CLIConfig` object. Returns: (base_ui.BaseUI) A BaseUI subtype object with a set of standard analyzer commands and tab-completions registered. """ if config is None: config = cli_config.CLIConfig() analyzer = DebugAnalyzer(debug_dump, config=config) if tensor_filters: for tensor_filter_name in tensor_filters: analyzer.add_tensor_filter( tensor_filter_name, tensor_filters[tensor_filter_name]) cli = ui_factory.get_ui(ui_type, on_ui_exit=on_ui_exit, config=config) cli.register_command_handler( "list_tensors", analyzer.list_tensors, analyzer.get_help("list_tensors"), prefix_aliases=["lt"]) cli.register_command_handler( "node_info", analyzer.node_info, analyzer.get_help("node_info"), prefix_aliases=["ni"]) cli.register_command_handler( "list_inputs", analyzer.list_inputs, analyzer.get_help("list_inputs"), prefix_aliases=["li"]) cli.register_command_handler( "list_outputs", analyzer.list_outputs, analyzer.get_help("list_outputs"), prefix_aliases=["lo"]) cli.register_command_handler( "print_tensor", analyzer.print_tensor, analyzer.get_help("print_tensor"), prefix_aliases=["pt"]) cli.register_command_handler( "print_source", analyzer.print_source, analyzer.get_help("print_source"), prefix_aliases=["ps"]) cli.register_command_handler( "list_source", analyzer.list_source, analyzer.get_help("list_source"), prefix_aliases=["ls"]) cli.register_command_handler( "eval", analyzer.evaluate_expression, analyzer.get_help("eval"), prefix_aliases=["ev"]) dumped_tensor_names = [] for datum in debug_dump.dumped_tensor_data: dumped_tensor_names.append("%s:%d" % (datum.node_name, datum.output_slot)) # Tab completions for command "print_tensors". cli.register_tab_comp_context(["print_tensor", "pt"], dumped_tensor_names) return cli
tensorflow-master
tensorflow/python/debug/cli/analyzer_cli.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Formats and displays profiling information.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import os import re import numpy as np from tensorflow.python.debug.cli import cli_shared from tensorflow.python.debug.cli import command_parser from tensorflow.python.debug.cli import debugger_cli_common from tensorflow.python.debug.cli import ui_factory from tensorflow.python.debug.lib import profiling from tensorflow.python.debug.lib import source_utils RL = debugger_cli_common.RichLine SORT_OPS_BY_OP_NAME = "node" SORT_OPS_BY_OP_TYPE = "op_type" SORT_OPS_BY_OP_TIME = "op_time" SORT_OPS_BY_EXEC_TIME = "exec_time" SORT_OPS_BY_START_TIME = "start_time" SORT_OPS_BY_LINE = "line" _DEVICE_NAME_FILTER_FLAG = "device_name_filter" _NODE_NAME_FILTER_FLAG = "node_name_filter" _OP_TYPE_FILTER_FLAG = "op_type_filter" class ProfileDataTableView(object): """Table View of profiling data.""" def __init__(self, profile_datum_list, time_unit=cli_shared.TIME_UNIT_US): """Constructor. Args: profile_datum_list: List of `ProfileDatum` objects. time_unit: must be in cli_shared.TIME_UNITS. """ self._profile_datum_list = profile_datum_list self.formatted_start_time = [ datum.start_time for datum in profile_datum_list] self.formatted_op_time = [ cli_shared.time_to_readable_str(datum.op_time, force_time_unit=time_unit) for datum in profile_datum_list] self.formatted_exec_time = [ cli_shared.time_to_readable_str( datum.node_exec_stats.all_end_rel_micros, force_time_unit=time_unit) for datum in profile_datum_list] self._column_names = ["Node", "Op Type", "Start Time (us)", "Op Time (%s)" % time_unit, "Exec Time (%s)" % time_unit, "Filename:Lineno(function)"] self._column_sort_ids = [SORT_OPS_BY_OP_NAME, SORT_OPS_BY_OP_TYPE, SORT_OPS_BY_START_TIME, SORT_OPS_BY_OP_TIME, SORT_OPS_BY_EXEC_TIME, SORT_OPS_BY_LINE] def value(self, row, col, device_name_filter=None, node_name_filter=None, op_type_filter=None): """Get the content of a cell of the table. Args: row: (int) row index. col: (int) column index. device_name_filter: Regular expression to filter by device name. node_name_filter: Regular expression to filter by node name. op_type_filter: Regular expression to filter by op type. Returns: A debuggre_cli_common.RichLine object representing the content of the cell, potentially with a clickable MenuItem. Raises: IndexError: if row index is out of range. """ menu_item = None if col == 0: text = self._profile_datum_list[row].node_exec_stats.node_name elif col == 1: text = self._profile_datum_list[row].op_type elif col == 2: text = str(self.formatted_start_time[row]) elif col == 3: text = str(self.formatted_op_time[row]) elif col == 4: text = str(self.formatted_exec_time[row]) elif col == 5: command = "ps" if device_name_filter: command += " --%s %s" % (_DEVICE_NAME_FILTER_FLAG, device_name_filter) if node_name_filter: command += " --%s %s" % (_NODE_NAME_FILTER_FLAG, node_name_filter) if op_type_filter: command += " --%s %s" % (_OP_TYPE_FILTER_FLAG, op_type_filter) command += " %s --init_line %d" % ( self._profile_datum_list[row].file_path, self._profile_datum_list[row].line_number) menu_item = debugger_cli_common.MenuItem(None, command) text = self._profile_datum_list[row].file_line_func else: raise IndexError("Invalid column index %d." % col) return RL(text, font_attr=menu_item) def row_count(self): return len(self._profile_datum_list) def column_count(self): return len(self._column_names) def column_names(self): return self._column_names def column_sort_id(self, col): return self._column_sort_ids[col] def _list_profile_filter( profile_datum, node_name_regex, file_path_regex, op_type_regex, op_time_interval, exec_time_interval, min_lineno=-1, max_lineno=-1): """Filter function for list_profile command. Args: profile_datum: A `ProfileDatum` object. node_name_regex: Regular expression pattern object to filter by name. file_path_regex: Regular expression pattern object to filter by file path. op_type_regex: Regular expression pattern object to filter by op type. op_time_interval: `Interval` for filtering op time. exec_time_interval: `Interval` for filtering exec time. min_lineno: Lower bound for 1-based line number, inclusive. If <= 0, has no effect. max_lineno: Upper bound for 1-based line number, exclusive. If <= 0, has no effect. # TODO(cais): Maybe filter by function name. Returns: True iff profile_datum should be included. """ if node_name_regex and not node_name_regex.match( profile_datum.node_exec_stats.node_name): return False if file_path_regex: if (not profile_datum.file_path or not file_path_regex.match(profile_datum.file_path)): return False if (min_lineno > 0 and profile_datum.line_number and profile_datum.line_number < min_lineno): return False if (max_lineno > 0 and profile_datum.line_number and profile_datum.line_number >= max_lineno): return False if (profile_datum.op_type is not None and op_type_regex and not op_type_regex.match(profile_datum.op_type)): return False if op_time_interval is not None and not op_time_interval.contains( profile_datum.op_time): return False if exec_time_interval and not exec_time_interval.contains( profile_datum.node_exec_stats.all_end_rel_micros): return False return True def _list_profile_sort_key(profile_datum, sort_by): """Get a profile_datum property to sort by in list_profile command. Args: profile_datum: A `ProfileDatum` object. sort_by: (string) indicates a value to sort by. Must be one of SORT_BY* constants. Returns: profile_datum property to sort by. """ if sort_by == SORT_OPS_BY_OP_NAME: return profile_datum.node_exec_stats.node_name elif sort_by == SORT_OPS_BY_OP_TYPE: return profile_datum.op_type elif sort_by == SORT_OPS_BY_LINE: return profile_datum.file_line_func elif sort_by == SORT_OPS_BY_OP_TIME: return profile_datum.op_time elif sort_by == SORT_OPS_BY_EXEC_TIME: return profile_datum.node_exec_stats.all_end_rel_micros else: # sort by start time return profile_datum.node_exec_stats.all_start_micros class ProfileAnalyzer(object): """Analyzer for profiling data.""" def __init__(self, graph, run_metadata): """ProfileAnalyzer constructor. Args: graph: (tf.Graph) Python graph object. run_metadata: A `RunMetadata` protobuf object. Raises: ValueError: If run_metadata is None. """ self._graph = graph if not run_metadata: raise ValueError("No RunMetadata passed for profile analysis.") self._run_metadata = run_metadata self._arg_parsers = {} ap = argparse.ArgumentParser( description="List nodes profile information.", usage=argparse.SUPPRESS) ap.add_argument( "-d", "--%s" % _DEVICE_NAME_FILTER_FLAG, dest=_DEVICE_NAME_FILTER_FLAG, type=str, default="", help="filter device name by regex.") ap.add_argument( "-n", "--%s" % _NODE_NAME_FILTER_FLAG, dest=_NODE_NAME_FILTER_FLAG, type=str, default="", help="filter node name by regex.") ap.add_argument( "-t", "--%s" % _OP_TYPE_FILTER_FLAG, dest=_OP_TYPE_FILTER_FLAG, type=str, default="", help="filter op type by regex.") # TODO(annarev): allow file filtering at non-stack top position. ap.add_argument( "-f", "--file_path_filter", dest="file_path_filter", type=str, default="", help="filter by file name at the top position of node's creation " "stack that does not belong to TensorFlow library.") ap.add_argument( "--min_lineno", dest="min_lineno", type=int, default=-1, help="(Inclusive) lower bound for 1-based line number in source file. " "If <= 0, has no effect.") ap.add_argument( "--max_lineno", dest="max_lineno", type=int, default=-1, help="(Exclusive) upper bound for 1-based line number in source file. " "If <= 0, has no effect.") ap.add_argument( "-e", "--execution_time", dest="execution_time", type=str, default="", help="Filter by execution time interval " "(includes compute plus pre- and post -processing time). " "Supported units are s, ms and us (default). " "E.g. -e >100s, -e <100, -e [100us,1000ms]") ap.add_argument( "-o", "--op_time", dest="op_time", type=str, default="", help="Filter by op time interval (only includes compute time). " "Supported units are s, ms and us (default). " "E.g. -e >100s, -e <100, -e [100us,1000ms]") ap.add_argument( "-s", "--sort_by", dest="sort_by", type=str, default=SORT_OPS_BY_START_TIME, help=("the field to sort the data by: (%s)" % " | ".join([SORT_OPS_BY_OP_NAME, SORT_OPS_BY_OP_TYPE, SORT_OPS_BY_START_TIME, SORT_OPS_BY_OP_TIME, SORT_OPS_BY_EXEC_TIME, SORT_OPS_BY_LINE]))) ap.add_argument( "-r", "--reverse", dest="reverse", action="store_true", help="sort the data in reverse (descending) order") ap.add_argument( "--time_unit", dest="time_unit", type=str, default=cli_shared.TIME_UNIT_US, help="Time unit (" + " | ".join(cli_shared.TIME_UNITS) + ")") self._arg_parsers["list_profile"] = ap ap = argparse.ArgumentParser( description="Print a Python source file with line-level profile " "information", usage=argparse.SUPPRESS) ap.add_argument( "source_file_path", type=str, help="Path to the source_file_path") ap.add_argument( "--cost_type", type=str, choices=["exec_time", "op_time"], default="exec_time", help="Type of cost to display") ap.add_argument( "--time_unit", dest="time_unit", type=str, default=cli_shared.TIME_UNIT_US, help="Time unit (" + " | ".join(cli_shared.TIME_UNITS) + ")") ap.add_argument( "-d", "--%s" % _DEVICE_NAME_FILTER_FLAG, dest=_DEVICE_NAME_FILTER_FLAG, type=str, default="", help="Filter device name by regex.") ap.add_argument( "-n", "--%s" % _NODE_NAME_FILTER_FLAG, dest=_NODE_NAME_FILTER_FLAG, type=str, default="", help="Filter node name by regex.") ap.add_argument( "-t", "--%s" % _OP_TYPE_FILTER_FLAG, dest=_OP_TYPE_FILTER_FLAG, type=str, default="", help="Filter op type by regex.") ap.add_argument( "--init_line", dest="init_line", type=int, default=0, help="The 1-based line number to scroll to initially.") self._arg_parsers["print_source"] = ap def list_profile(self, args, screen_info=None): """Command handler for list_profile. List per-operation profile information. Args: args: Command-line arguments, excluding the command prefix, as a list of str. screen_info: Optional dict input containing screen information such as cols. Returns: Output text lines as a RichTextLines object. """ screen_cols = 80 if screen_info and "cols" in screen_info: screen_cols = screen_info["cols"] parsed = self._arg_parsers["list_profile"].parse_args(args) op_time_interval = (command_parser.parse_time_interval(parsed.op_time) if parsed.op_time else None) exec_time_interval = ( command_parser.parse_time_interval(parsed.execution_time) if parsed.execution_time else None) node_name_regex = (re.compile(parsed.node_name_filter) if parsed.node_name_filter else None) file_path_regex = (re.compile(parsed.file_path_filter) if parsed.file_path_filter else None) op_type_regex = (re.compile(parsed.op_type_filter) if parsed.op_type_filter else None) output = debugger_cli_common.RichTextLines([""]) device_name_regex = (re.compile(parsed.device_name_filter) if parsed.device_name_filter else None) data_generator = self._get_profile_data_generator() device_count = len(self._run_metadata.step_stats.dev_stats) for index in range(device_count): device_stats = self._run_metadata.step_stats.dev_stats[index] if not device_name_regex or device_name_regex.match(device_stats.device): profile_data = [ datum for datum in data_generator(device_stats) if _list_profile_filter( datum, node_name_regex, file_path_regex, op_type_regex, op_time_interval, exec_time_interval, min_lineno=parsed.min_lineno, max_lineno=parsed.max_lineno)] profile_data = sorted( profile_data, key=lambda datum: _list_profile_sort_key(datum, parsed.sort_by), reverse=parsed.reverse) output.extend( self._get_list_profile_lines( device_stats.device, index, device_count, profile_data, parsed.sort_by, parsed.reverse, parsed.time_unit, device_name_filter=parsed.device_name_filter, node_name_filter=parsed.node_name_filter, op_type_filter=parsed.op_type_filter, screen_cols=screen_cols)) return output def _get_profile_data_generator(self): """Get function that generates `ProfileDatum` objects. Returns: A function that generates `ProfileDatum` objects. """ node_to_file_path = {} node_to_line_number = {} node_to_func_name = {} node_to_op_type = {} for op in self._graph.get_operations(): for trace_entry in reversed(op.traceback): file_path = trace_entry[0] line_num = trace_entry[1] func_name = trace_entry[2] if not source_utils.guess_is_tensorflow_py_library(file_path): break node_to_file_path[op.name] = file_path node_to_line_number[op.name] = line_num node_to_func_name[op.name] = func_name node_to_op_type[op.name] = op.type def profile_data_generator(device_step_stats): for node_stats in device_step_stats.node_stats: if node_stats.node_name == "_SOURCE" or node_stats.node_name == "_SINK": continue yield profiling.ProfileDatum( device_step_stats.device, node_stats, node_to_file_path.get(node_stats.node_name, ""), node_to_line_number.get(node_stats.node_name, 0), node_to_func_name.get(node_stats.node_name, ""), node_to_op_type.get(node_stats.node_name, "")) return profile_data_generator def _get_list_profile_lines( self, device_name, device_index, device_count, profile_datum_list, sort_by, sort_reverse, time_unit, device_name_filter=None, node_name_filter=None, op_type_filter=None, screen_cols=80): """Get `RichTextLines` object for list_profile command for a given device. Args: device_name: (string) Device name. device_index: (int) Device index. device_count: (int) Number of devices. profile_datum_list: List of `ProfileDatum` objects. sort_by: (string) Identifier of column to sort. Sort identifier must match value of SORT_OPS_BY_OP_NAME, SORT_OPS_BY_OP_TYPE, SORT_OPS_BY_EXEC_TIME, SORT_OPS_BY_MEMORY or SORT_OPS_BY_LINE. sort_reverse: (bool) Whether to sort in descending instead of default (ascending) order. time_unit: time unit, must be in cli_shared.TIME_UNITS. device_name_filter: Regular expression to filter by device name. node_name_filter: Regular expression to filter by node name. op_type_filter: Regular expression to filter by op type. screen_cols: (int) Number of columns available on the screen (i.e., available screen width). Returns: `RichTextLines` object containing a table that displays profiling information for each op. """ profile_data = ProfileDataTableView(profile_datum_list, time_unit=time_unit) # Calculate total time early to calculate column widths. total_op_time = sum(datum.op_time for datum in profile_datum_list) total_exec_time = sum(datum.node_exec_stats.all_end_rel_micros for datum in profile_datum_list) device_total_row = [ "Device Total", "", cli_shared.time_to_readable_str(total_op_time, force_time_unit=time_unit), cli_shared.time_to_readable_str(total_exec_time, force_time_unit=time_unit)] # Calculate column widths. column_widths = [ len(column_name) for column_name in profile_data.column_names()] for col in range(len(device_total_row)): column_widths[col] = max(column_widths[col], len(device_total_row[col])) for col in range(len(column_widths)): for row in range(profile_data.row_count()): column_widths[col] = max( column_widths[col], len(profile_data.value( row, col, device_name_filter=device_name_filter, node_name_filter=node_name_filter, op_type_filter=op_type_filter))) column_widths[col] += 2 # add margin between columns # Add device name. output = [RL("-" * screen_cols)] device_row = "Device %d of %d: %s" % ( device_index + 1, device_count, device_name) output.append(RL(device_row)) output.append(RL()) # Add headers. base_command = "list_profile" row = RL() for col in range(profile_data.column_count()): column_name = profile_data.column_names()[col] sort_id = profile_data.column_sort_id(col) command = "%s -s %s" % (base_command, sort_id) if sort_by == sort_id and not sort_reverse: command += " -r" head_menu_item = debugger_cli_common.MenuItem(None, command) row += RL(column_name, font_attr=[head_menu_item, "bold"]) row += RL(" " * (column_widths[col] - len(column_name))) output.append(row) # Add data rows. for row in range(profile_data.row_count()): new_row = RL() for col in range(profile_data.column_count()): new_cell = profile_data.value( row, col, device_name_filter=device_name_filter, node_name_filter=node_name_filter, op_type_filter=op_type_filter) new_row += new_cell new_row += RL(" " * (column_widths[col] - len(new_cell))) output.append(new_row) # Add stat totals. row_str = "" for col in range(len(device_total_row)): row_str += ("{:<%d}" % column_widths[col]).format(device_total_row[col]) output.append(RL()) output.append(RL(row_str)) return debugger_cli_common.rich_text_lines_from_rich_line_list(output) def _measure_list_profile_column_widths(self, profile_data): """Determine the maximum column widths for each data list. Args: profile_data: list of ProfileDatum objects. Returns: List of column widths in the same order as columns in data. """ num_columns = len(profile_data.column_names()) widths = [len(column_name) for column_name in profile_data.column_names()] for row in range(profile_data.row_count()): for col in range(num_columns): widths[col] = max( widths[col], len(str(profile_data.row_values(row)[col])) + 2) return widths _LINE_COST_ATTR = cli_shared.COLOR_CYAN _LINE_NUM_ATTR = cli_shared.COLOR_YELLOW _NUM_NODES_HEAD = "#nodes" _NUM_EXECS_SUB_HEAD = "(#execs)" _LINENO_HEAD = "lineno" _SOURCE_HEAD = "source" def print_source(self, args, screen_info=None): """Print a Python source file with line-level profile information. Args: args: Command-line arguments, excluding the command prefix, as a list of str. screen_info: Optional dict input containing screen information such as cols. Returns: Output text lines as a RichTextLines object. """ del screen_info parsed = self._arg_parsers["print_source"].parse_args(args) device_name_regex = (re.compile(parsed.device_name_filter) if parsed.device_name_filter else None) profile_data = [] data_generator = self._get_profile_data_generator() device_count = len(self._run_metadata.step_stats.dev_stats) for index in range(device_count): device_stats = self._run_metadata.step_stats.dev_stats[index] if device_name_regex and not device_name_regex.match(device_stats.device): continue profile_data.extend([datum for datum in data_generator(device_stats)]) source_annotation = source_utils.annotate_source_against_profile( profile_data, os.path.expanduser(parsed.source_file_path), node_name_filter=parsed.node_name_filter, op_type_filter=parsed.op_type_filter) if not source_annotation: return debugger_cli_common.RichTextLines( ["The source file %s does not contain any profile information for " "the previous Session run under the following " "filters:" % parsed.source_file_path, " --%s: %s" % (_DEVICE_NAME_FILTER_FLAG, parsed.device_name_filter), " --%s: %s" % (_NODE_NAME_FILTER_FLAG, parsed.node_name_filter), " --%s: %s" % (_OP_TYPE_FILTER_FLAG, parsed.op_type_filter)]) max_total_cost = 0 for line_index in source_annotation: total_cost = self._get_total_cost(source_annotation[line_index], parsed.cost_type) max_total_cost = max(max_total_cost, total_cost) source_lines, line_num_width = source_utils.load_source( parsed.source_file_path) cost_bar_max_length = 10 total_cost_head = parsed.cost_type column_widths = { "cost_bar": cost_bar_max_length + 3, "total_cost": len(total_cost_head) + 3, "num_nodes_execs": len(self._NUM_EXECS_SUB_HEAD) + 1, "line_number": line_num_width, } head = RL( " " * column_widths["cost_bar"] + total_cost_head + " " * (column_widths["total_cost"] - len(total_cost_head)) + self._NUM_NODES_HEAD + " " * (column_widths["num_nodes_execs"] - len(self._NUM_NODES_HEAD)), font_attr=self._LINE_COST_ATTR) head += RL(self._LINENO_HEAD, font_attr=self._LINE_NUM_ATTR) sub_head = RL( " " * (column_widths["cost_bar"] + column_widths["total_cost"]) + self._NUM_EXECS_SUB_HEAD + " " * (column_widths["num_nodes_execs"] - len(self._NUM_EXECS_SUB_HEAD)) + " " * column_widths["line_number"], font_attr=self._LINE_COST_ATTR) sub_head += RL(self._SOURCE_HEAD, font_attr="bold") lines = [head, sub_head] output_annotations = {} for i, line in enumerate(source_lines): lineno = i + 1 if lineno in source_annotation: annotation = source_annotation[lineno] cost_bar = self._render_normalized_cost_bar( self._get_total_cost(annotation, parsed.cost_type), max_total_cost, cost_bar_max_length) annotated_line = cost_bar annotated_line += " " * (column_widths["cost_bar"] - len(cost_bar)) total_cost = RL(cli_shared.time_to_readable_str( self._get_total_cost(annotation, parsed.cost_type), force_time_unit=parsed.time_unit), font_attr=self._LINE_COST_ATTR) total_cost += " " * (column_widths["total_cost"] - len(total_cost)) annotated_line += total_cost file_path_filter = re.escape(parsed.source_file_path) + "$" command = "lp --file_path_filter %s --min_lineno %d --max_lineno %d" % ( file_path_filter, lineno, lineno + 1) if parsed.device_name_filter: command += " --%s %s" % (_DEVICE_NAME_FILTER_FLAG, parsed.device_name_filter) if parsed.node_name_filter: command += " --%s %s" % (_NODE_NAME_FILTER_FLAG, parsed.node_name_filter) if parsed.op_type_filter: command += " --%s %s" % (_OP_TYPE_FILTER_FLAG, parsed.op_type_filter) menu_item = debugger_cli_common.MenuItem(None, command) num_nodes_execs = RL("%d(%d)" % (annotation.node_count, annotation.node_exec_count), font_attr=[self._LINE_COST_ATTR, menu_item]) num_nodes_execs += " " * ( column_widths["num_nodes_execs"] - len(num_nodes_execs)) annotated_line += num_nodes_execs else: annotated_line = RL( " " * sum(column_widths[col_name] for col_name in column_widths if col_name != "line_number")) line_num_column = RL(" L%d" % (lineno), self._LINE_NUM_ATTR) line_num_column += " " * ( column_widths["line_number"] - len(line_num_column)) annotated_line += line_num_column annotated_line += line lines.append(annotated_line) if parsed.init_line == lineno: output_annotations[ debugger_cli_common.INIT_SCROLL_POS_KEY] = len(lines) - 1 return debugger_cli_common.rich_text_lines_from_rich_line_list( lines, annotations=output_annotations) def _get_total_cost(self, aggregated_profile, cost_type): if cost_type == "exec_time": return aggregated_profile.total_exec_time elif cost_type == "op_time": return aggregated_profile.total_op_time else: raise ValueError("Unsupported cost type: %s" % cost_type) def _render_normalized_cost_bar(self, cost, max_cost, length): """Render a text bar representing a normalized cost. Args: cost: the absolute value of the cost. max_cost: the maximum cost value to normalize the absolute cost with. length: (int) length of the cost bar, in number of characters, excluding the brackets on the two ends. Returns: An instance of debugger_cli_common.RichTextLine. """ num_ticks = int(np.ceil(float(cost) / max_cost * length)) num_ticks = num_ticks or 1 # Minimum is 1 tick. output = RL("[", font_attr=self._LINE_COST_ATTR) output += RL("|" * num_ticks + " " * (length - num_ticks), font_attr=["bold", self._LINE_COST_ATTR]) output += RL("]", font_attr=self._LINE_COST_ATTR) return output def get_help(self, handler_name): return self._arg_parsers[handler_name].format_help() def create_profiler_ui(graph, run_metadata, ui_type="curses", on_ui_exit=None, config=None): """Create an instance of CursesUI based on a `tf.Graph` and `RunMetadata`. Args: graph: Python `Graph` object. run_metadata: A `RunMetadata` protobuf object. ui_type: (str) requested UI type, e.g., "curses", "readline". on_ui_exit: (`Callable`) the callback to be called when the UI exits. config: An instance of `cli_config.CLIConfig`. Returns: (base_ui.BaseUI) A BaseUI subtype object with a set of standard analyzer commands and tab-completions registered. """ del config # Currently unused. analyzer = ProfileAnalyzer(graph, run_metadata) cli = ui_factory.get_ui(ui_type, on_ui_exit=on_ui_exit) cli.register_command_handler( "list_profile", analyzer.list_profile, analyzer.get_help("list_profile"), prefix_aliases=["lp"]) cli.register_command_handler( "print_source", analyzer.print_source, analyzer.get_help("print_source"), prefix_aliases=["ps"]) return cli
tensorflow-master
tensorflow/python/debug/cli/profile_analyzer_cli.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Unit tests for tensor formatter.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import re import numpy as np from tensorflow.core.framework import tensor_pb2 from tensorflow.core.framework import tensor_shape_pb2 from tensorflow.core.framework import types_pb2 from tensorflow.python.debug.cli import cli_test_utils from tensorflow.python.debug.cli import tensor_format from tensorflow.python.debug.lib import debug_data from tensorflow.python.framework import test_util from tensorflow.python.platform import googletest class RichTextLinesTest(test_util.TensorFlowTestCase): def setUp(self): np.set_printoptions( precision=8, threshold=1000, edgeitems=3, linewidth=75) def _checkTensorMetadata(self, tensor, annotations): self.assertEqual( {"dtype": tensor.dtype, "shape": tensor.shape}, annotations["tensor_metadata"]) # Regular expression for text representation of float numbers, possibly in # engineering notation. _ELEMENT_REGEX = re.compile( r"([+-]?(\d+(\.\d*)?|\.\d+)([eE][+-]?\d+)?|nan|inf|-inf)") def _checkBeginIndicesAnnotations(self, out, a): """Check the beginning-index annotations of an ndarray representation. Args: out: An instance of RichTextLines representing a numpy.ndarray. a: The numpy.ndarray being represented. Raises: ValueError: if any ellipses ("...") are found in the lines representing the array. """ begin_line_num = 0 while not out.lines[begin_line_num].startswith("array"): begin_line_num += 1 element_index = 0 for line_num in range(begin_line_num, len(out.lines)): line = out.lines[line_num] if "..." in line: raise ValueError("Unexpected found ellipses in line representing array") matches = re.finditer(self._ELEMENT_REGEX, line) for line_item_index, _ in enumerate(matches): subscripts = list(np.unravel_index(element_index, a.shape)) if line_item_index == 0: self.assertEqual({tensor_format.BEGIN_INDICES_KEY: subscripts}, out.annotations[line_num]) element_index += 1 self.assertEqual(element_index, np.size(a)) def _checkTensorElementLocations(self, out, a): """Check the results of locate_tensor_element on an ndarray representation. that represents a numpy.ndaray. Args: out: An instance of RichTextLines representing a numpy.ndarray. a: The numpy.ndarray being represented. Raises: ValueError: if any ellipses ("...") are found in the lines representing the array. """ # First, locate the beginning of the tensor value section. begin_line_num = 0 while not out.lines[begin_line_num].startswith("array"): begin_line_num += 1 # Second, find all matches to tensor-value regex. element_index = 0 for line_num in range(begin_line_num, len(out.lines)): line = out.lines[line_num] if "..." in line: raise ValueError("Unexpected found ellipses in line representing array") matches = re.finditer(self._ELEMENT_REGEX, line) for match in matches: subscripts = list(np.unravel_index(element_index, a.shape)) is_omitted, row, start_col, end_col = ( tensor_format.locate_tensor_element(out, subscripts)) self.assertFalse(is_omitted) self.assertEqual(line_num, row) self.assertEqual(match.start(), start_col) self.assertEqual(match.end(), end_col) element_index += 1 self.assertEqual(element_index, np.size(a)) def _findFirst(self, lines, string): """Find first occurrence of a string in a list of strings.""" for i, line in enumerate(lines): find_index = line.find(string) if find_index >= 0: return i, find_index def _extractBoldNumbers(self, out, start_line): """Extract all numbers that have the bold font attribute. Args: out: An instance of RichTextLines. start_line: 0-based index to start from. Returns: A list of floats. """ floats = [] for i in range(start_line, len(out.lines)): if i not in out.font_attr_segs: continue line_attrs = out.font_attr_segs[i] for begin, end, attr_value in line_attrs: if attr_value == "bold": floats.append(float(out.lines[i][begin:end])) return floats def testFormatZeroDimensionTensor(self): a = np.array(42, dtype=np.int32) out = tensor_format.format_tensor(a, "a") cli_test_utils.assert_lines_equal_ignoring_whitespace( self, ["Tensor \"a\":", ""], out.lines[:2]) self.assertTrue(out.lines[2].startswith("array(42")) self._checkTensorMetadata(a, out.annotations) def testFormatTensorHighlightsTensorNameWithoutDebugOp(self): tensor_name = "a_tensor:0" a = np.zeros(2) out = tensor_format.format_tensor( a, tensor_name, np_printoptions={"linewidth": 40}) self.assertEqual([(8, 8 + len(tensor_name), "bold")], out.font_attr_segs[0]) def testFormatTensorHighlightsTensorNameWithDebugOp(self): tensor_name = "a_tensor:0" debug_op = "DebugIdentity" a = np.zeros(2) out = tensor_format.format_tensor( a, "%s:%s" % (tensor_name, debug_op), np_printoptions={"linewidth": 40}) self.assertEqual([(8, 8 + len(tensor_name), "bold"), (8 + len(tensor_name) + 1, 8 + len(tensor_name) + 1 + len(debug_op), "yellow")], out.font_attr_segs[0]) def testFormatTensor1DNoEllipsis(self): a = np.zeros(20) out = tensor_format.format_tensor( a, "a", np_printoptions={"linewidth": 40}) cli_test_utils.assert_lines_equal_ignoring_whitespace( self, ["Tensor \"a\":", ""], out.lines[:2]) self.assertEqual(repr(a).split("\n"), out.lines[2:]) self._checkTensorMetadata(a, out.annotations) # Check annotations for beginning indices of the lines. self._checkBeginIndicesAnnotations(out, a) def testFormatTensor2DNoEllipsisNoRowBreak(self): a = np.linspace(0.0, 1.0 - 1.0 / 16.0, 16).reshape([4, 4]) out = tensor_format.format_tensor(a, "a") cli_test_utils.assert_lines_equal_ignoring_whitespace( self, ["Tensor \"a\":", ""], out.lines[:2]) self.assertEqual(repr(a).split("\n"), out.lines[2:]) self._checkTensorMetadata(a, out.annotations) self._checkBeginIndicesAnnotations(out, a) def testFormatTensorSuppressingTensorName(self): a = np.linspace(0.0, 1.0 - 1.0 / 16.0, 16).reshape([4, 4]) out = tensor_format.format_tensor(a, None) self.assertEqual(repr(a).split("\n"), out.lines) self._checkTensorMetadata(a, out.annotations) self._checkBeginIndicesAnnotations(out, a) def testFormatTensorWithMetadata(self): a = np.linspace(0.0, 1.0 - 1.0 / 16.0, 16).reshape([4, 4]) out = tensor_format.format_tensor(a, "a", include_metadata=True) cli_test_utils.assert_lines_equal_ignoring_whitespace( self, ["Tensor \"a\":", " dtype: float64", " shape: (4, 4)", ""], out.lines[:4]) self.assertEqual(repr(a).split("\n"), out.lines[4:]) self._checkTensorMetadata(a, out.annotations) self._checkBeginIndicesAnnotations(out, a) def testFormatTensor2DNoEllipsisWithRowBreak(self): a = np.linspace(0.0, 1.0 - 1.0 / 40.0, 40).reshape([2, 20]) out = tensor_format.format_tensor( a, "a", np_printoptions={"linewidth": 50}) self.assertEqual( {"dtype": a.dtype, "shape": a.shape}, out.annotations["tensor_metadata"]) cli_test_utils.assert_lines_equal_ignoring_whitespace( self, ["Tensor \"a\":", ""], out.lines[:2]) self.assertEqual(repr(a).split("\n"), out.lines[2:]) self._checkTensorMetadata(a, out.annotations) # Check annotations for the beginning indices of the lines. self._checkBeginIndicesAnnotations(out, a) def testFormatTensor3DNoEllipsis(self): a = np.linspace(0.0, 1.0 - 1.0 / 24.0, 24).reshape([2, 3, 4]) out = tensor_format.format_tensor(a, "a") cli_test_utils.assert_lines_equal_ignoring_whitespace( self, ["Tensor \"a\":", ""], out.lines[:2]) self.assertEqual(repr(a).split("\n"), out.lines[2:]) self._checkTensorMetadata(a, out.annotations) self._checkBeginIndicesAnnotations(out, a) def testFormatTensor3DNoEllipsisWithArgwhereHighlightWithMatches(self): a = np.linspace(0.0, 1.0 - 1.0 / 24.0, 24).reshape([2, 3, 4]) lower_bound = 0.26 upper_bound = 0.5 def highlight_filter(x): return np.logical_and(x > lower_bound, x < upper_bound) highlight_options = tensor_format.HighlightOptions( highlight_filter, description="between 0.26 and 0.5") out = tensor_format.format_tensor( a, "a", highlight_options=highlight_options) cli_test_utils.assert_lines_equal_ignoring_whitespace( self, ["Tensor \"a\": " "Highlighted(between 0.26 and 0.5): 5 of 24 element(s) (20.83%)", ""], out.lines[:2]) self.assertEqual(repr(a).split("\n"), out.lines[2:]) self._checkTensorMetadata(a, out.annotations) # Check annotations for beginning indices of the lines. self._checkBeginIndicesAnnotations(out, a) self.assertAllClose( [0.29166667, 0.33333333, 0.375, 0.41666667, 0.45833333], self._extractBoldNumbers(out, 2)) def testFormatTensor3DNoEllipsisWithArgwhereHighlightWithNoMatches(self): a = np.linspace(0.0, 1.0 - 1.0 / 24.0, 24).reshape([2, 3, 4]) def highlight_filter(x): return x > 10.0 highlight_options = tensor_format.HighlightOptions(highlight_filter) out = tensor_format.format_tensor( a, "a", highlight_options=highlight_options) cli_test_utils.assert_lines_equal_ignoring_whitespace( self, ["Tensor \"a\": Highlighted: 0 of 24 element(s) (0.00%)", ""], out.lines[:2]) self.assertEqual(repr(a).split("\n"), out.lines[2:]) self._checkTensorMetadata(a, out.annotations) self._checkBeginIndicesAnnotations(out, a) # Check font attribute segments for highlighted elements. for i in range(2, len(out.lines)): self.assertNotIn(i, out.font_attr_segs) def testFormatTensorWithEllipses(self): a = (np.arange(11 * 11 * 11) + 1000).reshape([11, 11, 11]).astype(np.int32) out = tensor_format.format_tensor( a, "a", False, np_printoptions={"threshold": 100, "edgeitems": 2}) cli_test_utils.assert_lines_equal_ignoring_whitespace( self, ["Tensor \"a\":", ""], out.lines[:2]) self.assertEqual(repr(a).split("\n"), out.lines[2:]) self._checkTensorMetadata(a, out.annotations) # Check annotations for beginning indices of the lines. actual_row_0_0_0, _ = self._findFirst(out.lines, "1000") self.assertEqual({tensor_format.BEGIN_INDICES_KEY: [0, 0, 0]}, out.annotations[actual_row_0_0_0]) actual_row_0_1_0, _ = self._findFirst(out.lines, "1011") self.assertEqual({tensor_format.BEGIN_INDICES_KEY: [0, 1, 0]}, out.annotations[actual_row_0_1_0]) # Find the first line that is completely omitted. omitted_line = 2 while not out.lines[omitted_line].strip().startswith("..."): omitted_line += 1 self.assertEqual({tensor_format.OMITTED_INDICES_KEY: [0, 2, 0]}, out.annotations[omitted_line]) actual_row_10_10_0, _ = self._findFirst(out.lines, "2320") self.assertEqual({tensor_format.BEGIN_INDICES_KEY: [10, 10, 0]}, out.annotations[actual_row_10_10_0]) # Find the last line that is completely omitted. omitted_line = len(out.lines) - 1 while not out.lines[omitted_line].strip().startswith("..."): omitted_line -= 1 self.assertEqual({tensor_format.OMITTED_INDICES_KEY: [10, 2, 0]}, out.annotations[omitted_line]) def testFormatUninitializedTensor(self): tensor_proto = tensor_pb2.TensorProto( dtype=types_pb2.DataType.Value("DT_FLOAT"), tensor_shape=tensor_shape_pb2.TensorShapeProto( dim=[tensor_shape_pb2.TensorShapeProto.Dim(size=1)])) out = tensor_format.format_tensor( debug_data.InconvertibleTensorProto(tensor_proto, False), "a") self.assertEqual(["Tensor \"a\":", "", "Uninitialized tensor:"], out.lines[:3]) self.assertEqual(str(tensor_proto).split("\n"), out.lines[3:]) def testFormatResourceTypeTensor(self): tensor_proto = tensor_pb2.TensorProto( dtype=types_pb2.DataType.Value("DT_RESOURCE"), tensor_shape=tensor_shape_pb2.TensorShapeProto( dim=[tensor_shape_pb2.TensorShapeProto.Dim(size=1)])) out = tensor_format.format_tensor( debug_data.InconvertibleTensorProto(tensor_proto), "a") self.assertEqual(["Tensor \"a\":", ""], out.lines[:2]) self.assertEqual(str(tensor_proto).split("\n"), out.lines[2:]) def testLocateTensorElement1DNoEllipsis(self): a = np.zeros(20) out = tensor_format.format_tensor( a, "a", np_printoptions={"linewidth": 40}) cli_test_utils.assert_lines_equal_ignoring_whitespace( self, ["Tensor \"a\":", ""], out.lines[:2]) self.assertEqual(repr(a).split("\n"), out.lines[2:]) self._checkTensorElementLocations(out, a) with self.assertRaisesRegexp( ValueError, "Indices exceed tensor dimensions"): tensor_format.locate_tensor_element(out, [20]) with self.assertRaisesRegexp( ValueError, "Indices contain negative"): tensor_format.locate_tensor_element(out, [-1]) with self.assertRaisesRegexp( ValueError, "Dimensions mismatch"): tensor_format.locate_tensor_element(out, [0, 0]) def testLocateTensorElement1DNoEllipsisBatchMode(self): a = np.zeros(20) out = tensor_format.format_tensor( a, "a", np_printoptions={"linewidth": 40}) cli_test_utils.assert_lines_equal_ignoring_whitespace( self, ["Tensor \"a\":", ""], out.lines[:2]) self.assertEqual(repr(a).split("\n"), out.lines[2:]) self._checkTensorElementLocations(out, a) def testBatchModeWithErrors(self): a = np.zeros(20) out = tensor_format.format_tensor( a, "a", np_printoptions={"linewidth": 40}) cli_test_utils.assert_lines_equal_ignoring_whitespace( self, ["Tensor \"a\":", ""], out.lines[:2]) self.assertEqual(repr(a).split("\n"), out.lines[2:]) with self.assertRaisesRegexp(ValueError, "Dimensions mismatch"): tensor_format.locate_tensor_element(out, [[0, 0], [0]]) with self.assertRaisesRegexp(ValueError, "Indices exceed tensor dimensions"): tensor_format.locate_tensor_element(out, [[0], [20]]) with self.assertRaisesRegexp(ValueError, r"Indices contain negative value\(s\)"): tensor_format.locate_tensor_element(out, [[0], [-1]]) with self.assertRaisesRegexp( ValueError, "Input indices sets are not in ascending order"): tensor_format.locate_tensor_element(out, [[5], [0]]) def testLocateTensorElement1DTinyAndNanValues(self): a = np.ones([3, 3]) * 1e-8 a[1, 0] = np.nan a[1, 2] = np.inf out = tensor_format.format_tensor( a, "a", np_printoptions={"linewidth": 100}) cli_test_utils.assert_lines_equal_ignoring_whitespace( self, ["Tensor \"a\":", ""], out.lines[:2]) self.assertEqual(repr(a).split("\n"), out.lines[2:]) self._checkTensorElementLocations(out, a) def testLocateTensorElement2DNoEllipsis(self): a = np.linspace(0.0, 1.0 - 1.0 / 16.0, 16).reshape([4, 4]) out = tensor_format.format_tensor(a, "a") cli_test_utils.assert_lines_equal_ignoring_whitespace( self, ["Tensor \"a\":", ""], out.lines[:2]) self.assertEqual(repr(a).split("\n"), out.lines[2:]) self._checkTensorElementLocations(out, a) with self.assertRaisesRegexp( ValueError, "Indices exceed tensor dimensions"): tensor_format.locate_tensor_element(out, [1, 4]) with self.assertRaisesRegexp( ValueError, "Indices contain negative"): tensor_format.locate_tensor_element(out, [-1, 2]) with self.assertRaisesRegexp( ValueError, "Dimensions mismatch"): tensor_format.locate_tensor_element(out, [0]) def testLocateTensorElement2DNoEllipsisWithNumericSummary(self): a = np.linspace(0.0, 1.0 - 1.0 / 16.0, 16).reshape([4, 4]) out = tensor_format.format_tensor(a, "a", include_numeric_summary=True) cli_test_utils.assert_lines_equal_ignoring_whitespace( self, ["Tensor \"a\":", "", "Numeric summary:", "| 0 + | total |", "| 1 15 | 16 |", "| min max mean std |"], out.lines[:6]) cli_test_utils.assert_array_lines_close( self, [0.0, 0.9375, 0.46875, 0.28811076429], out.lines[6:7]) cli_test_utils.assert_array_lines_close(self, a, out.lines[8:]) self._checkTensorElementLocations(out, a) with self.assertRaisesRegexp( ValueError, "Indices exceed tensor dimensions"): tensor_format.locate_tensor_element(out, [1, 4]) with self.assertRaisesRegexp( ValueError, "Indices contain negative"): tensor_format.locate_tensor_element(out, [-1, 2]) with self.assertRaisesRegexp( ValueError, "Dimensions mismatch"): tensor_format.locate_tensor_element(out, [0]) def testLocateTensorElement3DWithEllipses(self): a = (np.arange(11 * 11 * 11) + 1000).reshape([11, 11, 11]).astype(np.int32) out = tensor_format.format_tensor( a, "a", False, np_printoptions={"threshold": 100, "edgeitems": 2}) cli_test_utils.assert_lines_equal_ignoring_whitespace( self, ["Tensor \"a\":", ""], out.lines[:2]) actual_row_0_0_0, actual_col_0_0_0 = self._findFirst(out.lines, "1000") is_omitted, row, start_col, end_col = tensor_format.locate_tensor_element( out, [0, 0, 0]) self.assertFalse(is_omitted) self.assertEqual(actual_row_0_0_0, row) self.assertEqual(actual_col_0_0_0, start_col) self.assertEqual(actual_col_0_0_0 + 4, end_col) actual_row_0_0_10, _ = self._findFirst(out.lines, "1010") is_omitted, row, start_col, end_col = tensor_format.locate_tensor_element( out, [0, 0, 10]) self.assertFalse(is_omitted) self.assertEqual(actual_row_0_0_10, row) self.assertIsNone(start_col) # Passes ellipsis. self.assertIsNone(end_col) actual_row_0_1_0, actual_col_0_1_0 = self._findFirst(out.lines, "1011") is_omitted, row, start_col, end_col = tensor_format.locate_tensor_element( out, [0, 1, 0]) self.assertFalse(is_omitted) self.assertEqual(actual_row_0_1_0, row) self.assertEqual(actual_col_0_1_0, start_col) self.assertEqual(actual_col_0_1_0 + 4, end_col) is_omitted, row, start_col, end_col = tensor_format.locate_tensor_element( out, [0, 2, 0]) self.assertTrue(is_omitted) # In omitted line. self.assertIsNone(start_col) self.assertIsNone(end_col) is_omitted, row, start_col, end_col = tensor_format.locate_tensor_element( out, [0, 2, 10]) self.assertTrue(is_omitted) # In omitted line. self.assertIsNone(start_col) self.assertIsNone(end_col) is_omitted, row, start_col, end_col = tensor_format.locate_tensor_element( out, [0, 8, 10]) self.assertTrue(is_omitted) # In omitted line. self.assertIsNone(start_col) self.assertIsNone(end_col) actual_row_0_10_1, actual_col_0_10_1 = self._findFirst(out.lines, "1111") is_omitted, row, start_col, end_col = tensor_format.locate_tensor_element( out, [0, 10, 1]) self.assertFalse(is_omitted) self.assertEqual(actual_row_0_10_1, row) self.assertEqual(actual_col_0_10_1, start_col) self.assertEqual(actual_col_0_10_1 + 4, end_col) is_omitted, row, start_col, end_col = tensor_format.locate_tensor_element( out, [5, 1, 1]) self.assertTrue(is_omitted) # In omitted line. self.assertIsNone(start_col) self.assertIsNone(end_col) actual_row_10_10_10, _ = self._findFirst(out.lines, "2330") is_omitted, row, start_col, end_col = tensor_format.locate_tensor_element( out, [10, 10, 10]) self.assertFalse(is_omitted) self.assertEqual(actual_row_10_10_10, row) self.assertIsNone(start_col) # Past ellipsis. self.assertIsNone(end_col) with self.assertRaisesRegexp( ValueError, "Indices exceed tensor dimensions"): tensor_format.locate_tensor_element(out, [11, 5, 5]) with self.assertRaisesRegexp( ValueError, "Indices contain negative"): tensor_format.locate_tensor_element(out, [-1, 5, 5]) with self.assertRaisesRegexp( ValueError, "Dimensions mismatch"): tensor_format.locate_tensor_element(out, [5, 5]) def testLocateTensorElement3DWithEllipsesBatchMode(self): a = (np.arange(11 * 11 * 11) + 1000).reshape([11, 11, 11]).astype(np.int32) out = tensor_format.format_tensor( a, "a", False, np_printoptions={"threshold": 100, "edgeitems": 2}) cli_test_utils.assert_lines_equal_ignoring_whitespace( self, ["Tensor \"a\":", ""], out.lines[:2]) self.assertEqual(repr(a).split("\n"), out.lines[2:]) actual_row_0_0_0, actual_col_0_0_0 = self._findFirst(out.lines, "1000") actual_row_0_0_10, _ = self._findFirst(out.lines, "1010") actual_row_10_10_10, _ = self._findFirst(out.lines, "2330") (are_omitted, rows, start_cols, end_cols) = tensor_format.locate_tensor_element(out, [[0, 0, 0]]) self.assertEqual([False], are_omitted) self.assertEqual([actual_row_0_0_0], rows) self.assertEqual([actual_col_0_0_0], start_cols) self.assertEqual([actual_col_0_0_0 + 4], end_cols) (are_omitted, rows, start_cols, end_cols) = tensor_format.locate_tensor_element(out, [[0, 0, 0], [0, 0, 10]]) self.assertEqual([False, False], are_omitted) self.assertEqual([actual_row_0_0_0, actual_row_0_0_10], rows) self.assertEqual([actual_col_0_0_0, None], start_cols) self.assertEqual([actual_col_0_0_0 + 4, None], end_cols) (are_omitted, rows, start_cols, end_cols) = tensor_format.locate_tensor_element(out, [[0, 0, 0], [0, 2, 0]]) self.assertEqual([False, True], are_omitted) self.assertEqual([2, 4], rows) self.assertEqual(2, len(start_cols)) self.assertEqual(2, len(end_cols)) (are_omitted, rows, start_cols, end_cols) = tensor_format.locate_tensor_element(out, [[0, 0, 0], [10, 10, 10]]) self.assertEqual([False, False], are_omitted) self.assertEqual([actual_row_0_0_0, actual_row_10_10_10], rows) self.assertEqual([actual_col_0_0_0, None], start_cols) self.assertEqual([actual_col_0_0_0 + 4, None], end_cols) def testLocateTensorElementAnnotationsUnavailable(self): tensor_proto = tensor_pb2.TensorProto( dtype=types_pb2.DataType.Value("DT_FLOAT"), tensor_shape=tensor_shape_pb2.TensorShapeProto( dim=[tensor_shape_pb2.TensorShapeProto.Dim(size=1)])) out = tensor_format.format_tensor( debug_data.InconvertibleTensorProto(tensor_proto, False), "a") self.assertEqual(["Tensor \"a\":", "", "Uninitialized tensor:"], out.lines[:3]) with self.assertRaisesRegexp( AttributeError, "tensor_metadata is not available in annotations"): tensor_format.locate_tensor_element(out, [0]) class NumericSummaryTest(test_util.TensorFlowTestCase): def testNumericSummaryOnFloatFullHouse(self): x = np.array([np.nan, np.nan, -np.inf, np.inf, np.inf, np.inf, -2, -3, -4, 0, 1, 2, 2, 2, 2, 0, 0, 0, np.inf, np.inf, np.inf]) out = tensor_format.numeric_summary(x) cli_test_utils.assert_lines_equal_ignoring_whitespace( self, ["| nan -inf - 0 + +inf | total |", "| 2 1 3 4 5 6 | 21 |", "| min max mean std |"], out.lines[:3]) cli_test_utils.assert_array_lines_close( self, [-4.0, 2.0, 0.0, 1.95789002075], out.lines[3:4]) def testNumericSummaryOnFloatMissingCategories(self): x = np.array([np.nan, np.nan]) out = tensor_format.numeric_summary(x) self.assertEqual(2, len(out.lines)) cli_test_utils.assert_lines_equal_ignoring_whitespace( self, ["| nan | total |", "| 2 | 2 |"], out.lines[:2]) x = np.array([-np.inf, np.inf, 0, 0, np.inf, np.inf]) out = tensor_format.numeric_summary(x) cli_test_utils.assert_lines_equal_ignoring_whitespace( self, ["| -inf 0 +inf | total |", "| 1 2 3 | 6 |", "| min max mean std |"], out.lines[:3]) cli_test_utils.assert_array_lines_close( self, [0.0, 0.0, 0.0, 0.0], out.lines[3:4]) x = np.array([-120, 120, 130]) out = tensor_format.numeric_summary(x) cli_test_utils.assert_lines_equal_ignoring_whitespace( self, ["| - + | total |", "| 1 2 | 3 |", "| min max mean std |"], out.lines[:3]) cli_test_utils.assert_array_lines_close( self, [-120, 130, 43.3333333333, 115.566238822], out.lines[3:4]) def testNumericSummaryOnEmptyFloat(self): x = np.array([], dtype=np.float32) out = tensor_format.numeric_summary(x) self.assertEqual(["No numeric summary available due to empty tensor."], out.lines) def testNumericSummaryOnInt(self): x = np.array([-3] * 50 + [3] * 200 + [0], dtype=np.int32) out = tensor_format.numeric_summary(x) cli_test_utils.assert_lines_equal_ignoring_whitespace( self, ["| - 0 + | total |", "| 50 1 200 | 251 |", "| min max mean std |"], out.lines[:3]) cli_test_utils.assert_array_lines_close( self, [-3, 3, 1.79282868526, 2.39789673081], out.lines[3:4]) def testNumericSummaryOnBool(self): x = np.array([False, True, True, False], dtype=np.bool) out = tensor_format.numeric_summary(x) cli_test_utils.assert_lines_equal_ignoring_whitespace( self, ["| False True | total |", "| 2 2 | 4 |"], out.lines) x = np.array([True] * 10, dtype=np.bool) out = tensor_format.numeric_summary(x) cli_test_utils.assert_lines_equal_ignoring_whitespace( self, ["| True | total |", "| 10 | 10 |"], out.lines) x = np.array([False] * 10, dtype=np.bool) out = tensor_format.numeric_summary(x) cli_test_utils.assert_lines_equal_ignoring_whitespace( self, ["| False | total |", "| 10 | 10 |"], out.lines) x = np.array([], dtype=np.bool) out = tensor_format.numeric_summary(x) self.assertEqual(["No numeric summary available due to empty tensor."], out.lines) def testNumericSummaryOnStrTensor(self): x = np.array(["spam", "egg"], dtype=np.object) out = tensor_format.numeric_summary(x) self.assertEqual( ["No numeric summary available due to tensor dtype: object."], out.lines) if __name__ == "__main__": googletest.main()
tensorflow-master
tensorflow/python/debug/cli/tensor_format_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Base Class of TensorFlow Debugger (tfdbg) Command-Line Interface.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse from tensorflow.python.debug.cli import cli_config from tensorflow.python.debug.cli import command_parser from tensorflow.python.debug.cli import debugger_cli_common class BaseUI(object): """Base class of tfdbg user interface.""" CLI_PROMPT = "tfdbg> " CLI_EXIT_COMMANDS = ["exit", "quit"] ERROR_MESSAGE_PREFIX = "ERROR: " INFO_MESSAGE_PREFIX = "INFO: " def __init__(self, on_ui_exit=None, config=None): """Constructor of the base class. Args: on_ui_exit: (`Callable`) the callback to be called when the UI exits. config: An instance of `cli_config.CLIConfig()` carrying user-facing configurations. """ self._on_ui_exit = on_ui_exit self._command_handler_registry = ( debugger_cli_common.CommandHandlerRegistry()) self._tab_completion_registry = debugger_cli_common.TabCompletionRegistry() # Create top-level tab-completion context and register the exit and help # commands. self._tab_completion_registry.register_tab_comp_context( [""], self.CLI_EXIT_COMMANDS + [debugger_cli_common.CommandHandlerRegistry.HELP_COMMAND] + debugger_cli_common.CommandHandlerRegistry.HELP_COMMAND_ALIASES) self._config = config or cli_config.CLIConfig() self._config_argparser = argparse.ArgumentParser( description="config command", usage=argparse.SUPPRESS) subparsers = self._config_argparser.add_subparsers() set_parser = subparsers.add_parser("set") set_parser.add_argument("property_name", type=str) set_parser.add_argument("property_value", type=str) set_parser = subparsers.add_parser("show") self.register_command_handler( "config", self._config_command_handler, self._config_argparser.format_help(), prefix_aliases=["cfg"]) def set_help_intro(self, help_intro): """Set an introductory message to the help output of the command registry. Args: help_intro: (RichTextLines) Rich text lines appended to the beginning of the output of the command "help", as introductory information. """ self._command_handler_registry.set_help_intro(help_intro=help_intro) def register_command_handler(self, prefix, handler, help_info, prefix_aliases=None): """A wrapper around CommandHandlerRegistry.register_command_handler(). In addition to calling the wrapped register_command_handler() method, this method also registers the top-level tab-completion context based on the command prefixes and their aliases. See the doc string of the wrapped method for more details on the args. Args: prefix: (str) command prefix. handler: (callable) command handler. help_info: (str) help information. prefix_aliases: (list of str) aliases of the command prefix. """ self._command_handler_registry.register_command_handler( prefix, handler, help_info, prefix_aliases=prefix_aliases) self._tab_completion_registry.extend_comp_items("", [prefix]) if prefix_aliases: self._tab_completion_registry.extend_comp_items("", prefix_aliases) def register_tab_comp_context(self, *args, **kwargs): """Wrapper around TabCompletionRegistry.register_tab_comp_context().""" self._tab_completion_registry.register_tab_comp_context(*args, **kwargs) def run_ui(self, init_command=None, title=None, title_color=None, enable_mouse_on_start=True): """Run the UI until user- or command- triggered exit. Args: init_command: (str) Optional command to run on CLI start up. title: (str) Optional title to display in the CLI. title_color: (str) Optional color of the title, e.g., "yellow". enable_mouse_on_start: (bool) Whether the mouse mode is to be enabled on start-up. Returns: An exit token of arbitrary type. Can be None. """ raise NotImplementedError("run_ui() is not implemented in BaseUI") def _parse_command(self, command): """Parse a command string into prefix and arguments. Args: command: (str) Command string to be parsed. Returns: prefix: (str) The command prefix. args: (list of str) The command arguments (i.e., not including the prefix). output_file_path: (str or None) The path to save the screen output to (if any). """ command = command.strip() if not command: return "", [], None command_items = command_parser.parse_command(command) command_items, output_file_path = command_parser.extract_output_file_path( command_items) return command_items[0], command_items[1:], output_file_path def _analyze_tab_complete_input(self, text): """Analyze raw input to tab-completer. Args: text: (str) the full, raw input text to be tab-completed. Returns: context: (str) the context str. For example, If text == "print_tensor softmax", returns "print_tensor". If text == "print", returns "". If text == "", returns "". prefix: (str) the prefix to be tab-completed, from the last word. For example, if text == "print_tensor softmax", returns "softmax". If text == "print", returns "print". If text == "", returns "". except_last_word: (str) the input text, except the last word. For example, if text == "print_tensor softmax", returns "print_tensor". If text == "print_tensor -a softmax", returns "print_tensor -a". If text == "print", returns "". If text == "", returns "". """ text = text.lstrip() if not text: # Empty (top-level) context. context = "" prefix = "" except_last_word = "" else: items = text.split(" ") if len(items) == 1: # Single word: top-level context. context = "" prefix = items[0] except_last_word = "" else: # Multiple words. context = items[0] prefix = items[-1] except_last_word = " ".join(items[:-1]) + " " return context, prefix, except_last_word @property def config(self): """Obtain the CLIConfig of this `BaseUI` instance.""" return self._config def _config_command_handler(self, args, screen_info=None): """Command handler for the "config" command.""" del screen_info # Currently unused. parsed = self._config_argparser.parse_args(args) if hasattr(parsed, "property_name") and hasattr(parsed, "property_value"): # set. self._config.set(parsed.property_name, parsed.property_value) return self._config.summarize(highlight=parsed.property_name) else: # show. return self._config.summarize()
tensorflow-master
tensorflow/python/debug/cli/base_ui.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Library for arbitrary expression evaluation based on a debugger data dump.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import re import numpy as np # pylint: disable=unused-import from tensorflow.python.debug.lib import debug_data _DUMP_TENSOR_PATTERN = re.compile(r"`.*?`") _DEVICE_NAME_PREFIX_PATTERN = re.compile( r"/job:(\w)+/replica:(\d)+/task:(\d)+/(\w)+:(\d)+:") _EXEC_INDEX_SUFFIX_PATTERN = re.compile(r"\[(\d)*\]$") _DEFAULT_DEBUG_OP = "DebugIdentity" def _parse_debug_tensor_name(debug_tensor_name): # pylint: disable=line-too-long """Parse a debug tensor name in a to-be-evaluated expression. Args: debug_tensor_name: name of the debug tensor, with or without device name as a prefix, with or without debug op, with or without '[<exec_index>]' as a suffix. E.g., without device name prefix, without debug op suffix: "hidden_0/MatMul:0" E.g., with device name prefix: "/job:worker/replica:0/task:1/gpu:0:hidden_0/MatMul:0" E.g., with debug op suffix: "hidden_0/MatMul:0:DebugNumericSummary" E.g., with device name prefix and debug op suffix: "/job:worker/replica:0/task:1/gpu:0:hidden_0/MatMul:0:DebugNumericSummary" E.g., with device name prefix, debug op and an exec index: "/job:worker/replica:0/task:1/gpu:0:hidden_0/MatMul:0:DebugNumericSummary[1]" Returns: device_name: If device name prefix exists, the device name; otherwise, `None`. node_name: Name of the node. output_slot: Output slot index as an `int`. debug_op: If the debug op suffix exists, the debug op name; otheriwse, `None`. exec_index: Execution index (applicable to cases in which a debug tensor is computed multiple times in a `tf.Session.run` call, e.g., due to `tf.while_loop`). If the exec_index suffix does not exist, this value defaults to `0`. Raises: ValueError: If the input `debug_tensor_name` is malformed. """ # pylint: enable=line-too-long device_prefix_match = re.match(_DEVICE_NAME_PREFIX_PATTERN, debug_tensor_name) if device_prefix_match: device_name = debug_tensor_name[ device_prefix_match.start() : device_prefix_match.end() - 1] debug_tensor_name = debug_tensor_name[device_prefix_match.end():] else: device_name = None split_items = debug_tensor_name.split(":") if len(split_items) not in (2, 3): raise ValueError( "The debug tensor name in the to-be-evaluated expression is malformed: " "'%s'" % debug_tensor_name) # TODO(cais): Provide examples of good debug tensor names in the error # message. exec_index_match = re.search(_EXEC_INDEX_SUFFIX_PATTERN, split_items[-1]) if exec_index_match: exec_index = int(split_items[-1][ exec_index_match.start() + 1 : exec_index_match.end() - 1]) split_items[-1] = split_items[-1][:exec_index_match.start()] else: exec_index = 0 if len(split_items) == 2: node_name = split_items[0] output_slot = int(split_items[1]) debug_op = _DEFAULT_DEBUG_OP else: split_items = debug_tensor_name.split(":") node_name = split_items[0] output_slot = int(split_items[1]) debug_op = split_items[2] return device_name, node_name, output_slot, debug_op, exec_index class ExpressionEvaluator(object): """Evaluates Python expressions using debug tensor values from a dump.""" def __init__(self, dump): """Constructor of ExpressionEvaluator. Args: dump: an instance of `DebugDumpDir`. """ self._dump = dump self._cached_tensor_values = {} def evaluate(self, expression): """Parse an expression. Args: expression: the expression to be parsed. Returns: The result of the evaluation. Raises: ValueError: If the value of one or more of the debug tensors in the expression are not available. """ dump_tensors_iter = re.finditer(_DUMP_TENSOR_PATTERN, expression) rewritten_expression = expression for match in reversed(list(dump_tensors_iter)): tensor_name = match.group(0)[1:-1].strip() device_name, node_name, output_slot, debug_op, exec_index = ( _parse_debug_tensor_name(tensor_name)) if tensor_name not in self._cached_tensor_values: try: value = self._dump.get_tensors( node_name, output_slot, debug_op, device_name=device_name)[exec_index] except debug_data.WatchKeyDoesNotExistInDebugDumpDirError: raise ValueError( "Eval failed due to the value of %s:%d:DebugIdentity being " "unavailable" % (node_name, output_slot)) self._cached_tensor_values[tensor_name] = value rewritten_expression = ( rewritten_expression[:match.start(0)] + "self._cached_tensor_values['" + tensor_name + "']" + rewritten_expression[match.end(0):]) return eval(rewritten_expression) # pylint: disable=eval-used
tensorflow-master
tensorflow/python/debug/cli/evaluator.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Widgets for Curses-based CLI.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.debug.cli import debugger_cli_common RL = debugger_cli_common.RichLine class NavigationHistoryItem(object): """Individual item in navigation history.""" def __init__(self, command, screen_output, scroll_position): """Constructor of NavigationHistoryItem. Args: command: (`str`) the command line text. screen_output: the screen output of the command. scroll_position: (`int`) scroll position in the screen output. """ self.command = command self.screen_output = screen_output self.scroll_position = scroll_position class CursesNavigationHistory(object): """Navigation history containing commands, outputs and scroll info.""" BACK_ARROW_TEXT = "<--" FORWARD_ARROW_TEXT = "-->" def __init__(self, capacity): """Constructor of CursesNavigationHistory. Args: capacity: (`int`) How many items this object can hold. Each item consists of a command stirng, an output RichTextLines object and a scroll position. Raises: ValueError: If capacity is not a positive number. """ if capacity <= 0: raise ValueError("In valid capacity value: %d" % capacity) self._capacity = capacity self._items = [] self._pointer = -1 def add_item(self, command, screen_output, scroll_position): """Add an item to the navigation histoyr. Args: command: command line text. screen_output: screen output produced for the command. scroll_position: (`int`) scroll position in the screen output. """ if self._pointer + 1 < len(self._items): self._items = self._items[:self._pointer + 1] self._items.append( NavigationHistoryItem(command, screen_output, scroll_position)) if len(self._items) > self._capacity: self._items = self._items[-self._capacity:] self._pointer = len(self._items) - 1 def update_scroll_position(self, new_scroll_position): """Update the scroll position of the currently-pointed-to history item. Args: new_scroll_position: (`int`) new scroll-position value. Raises: ValueError: If the history is empty. """ if not self._items: raise ValueError("Empty navigation history") self._items[self._pointer].scroll_position = new_scroll_position def size(self): return len(self._items) def pointer(self): return self._pointer def go_back(self): """Go back one place in the history, if possible. Decrease the pointer value by 1, if possible. Otherwise, the pointer value will be unchanged. Returns: The updated pointer value. Raises: ValueError: If history is empty. """ if not self._items: raise ValueError("Empty navigation history") if self.can_go_back(): self._pointer -= 1 return self._items[self._pointer] def go_forward(self): """Go forward one place in the history, if possible. Increase the pointer value by 1, if possible. Otherwise, the pointer value will be unchanged. Returns: The updated pointer value. Raises: ValueError: If history is empty. """ if not self._items: raise ValueError("Empty navigation history") if self.can_go_forward(): self._pointer += 1 return self._items[self._pointer] def can_go_back(self): """Test whether client can go back one place. Returns: (`bool`) Whether going back one place is possible. """ return self._pointer >= 1 def can_go_forward(self): """Test whether client can go forward one place. Returns: (`bool`) Whether going back one place is possible. """ return self._pointer + 1 < len(self._items) def render(self, max_length, backward_command, forward_command, latest_command_attribute="black_on_white", old_command_attribute="magenta_on_white"): """Render the rich text content of the single-line navigation bar. Args: max_length: (`int`) Maximum length of the navigation bar, in characters. backward_command: (`str`) command for going backward. Used to construct the shortcut menu item. forward_command: (`str`) command for going forward. Used to construct the shortcut menu item. latest_command_attribute: font attribute for lastest command. old_command_attribute: font attribute for old (non-latest) command. Returns: (`debugger_cli_common.RichTextLines`) the navigation bar text with attributes. """ output = RL("| ") output += RL( self.BACK_ARROW_TEXT, (debugger_cli_common.MenuItem(None, backward_command) if self.can_go_back() else None)) output += RL(" ") output += RL( self.FORWARD_ARROW_TEXT, (debugger_cli_common.MenuItem(None, forward_command) if self.can_go_forward() else None)) if self._items: command_attribute = (latest_command_attribute if (self._pointer == (len(self._items) - 1)) else old_command_attribute) output += RL(" | ") if self._pointer != len(self._items) - 1: output += RL("(-%d) " % (len(self._items) - 1 - self._pointer), command_attribute) if len(output) < max_length: maybe_truncated_command = self._items[self._pointer].command[ :(max_length - len(output))] output += RL(maybe_truncated_command, command_attribute) return debugger_cli_common.rich_text_lines_from_rich_line_list([output])
tensorflow-master
tensorflow/python/debug/cli/curses_widgets.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Building Blocks of TensorFlow Debugger Command-Line Interface.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import os import re import sre_constants import traceback import numpy as np import six from six.moves import xrange # pylint: disable=redefined-builtin from tensorflow.python import pywrap_tensorflow_internal from tensorflow.python.platform import gfile HELP_INDENT = " " EXPLICIT_USER_EXIT = "explicit_user_exit" REGEX_MATCH_LINES_KEY = "regex_match_lines" INIT_SCROLL_POS_KEY = "init_scroll_pos" MAIN_MENU_KEY = "mm:" class CommandLineExit(Exception): def __init__(self, exit_token=None): Exception.__init__(self) self._exit_token = exit_token @property def exit_token(self): return self._exit_token class RichLine(object): """Rich single-line text. Attributes: text: A plain string, the raw text represented by this object. Should not contain newlines. font_attr_segs: A list of (start, end, font attribute) triples, representing richness information applied to substrings of text. """ def __init__(self, text="", font_attr=None): """Construct a RichLine with no rich attributes or a single attribute. Args: text: Raw text string font_attr: If specified, a single font attribute to be applied to the entire text. Extending this object via concatenation allows creation of text with varying attributes. """ # TODO(ebreck) Make .text and .font_attr protected members when we no # longer need public access. self.text = text if font_attr: self.font_attr_segs = [(0, len(text), font_attr)] else: self.font_attr_segs = [] def __add__(self, other): """Concatenate two chunks of maybe rich text to make a longer rich line. Does not modify self. Args: other: Another piece of text to concatenate with this one. If it is a plain str, it will be appended to this string with no attributes. If it is a RichLine, it will be appended to this string with its attributes preserved. Returns: A new RichLine comprising both chunks of text, with appropriate attributes applied to the corresponding substrings. """ ret = RichLine() if isinstance(other, six.string_types): ret.text = self.text + other ret.font_attr_segs = self.font_attr_segs[:] return ret elif isinstance(other, RichLine): ret.text = self.text + other.text ret.font_attr_segs = self.font_attr_segs[:] old_len = len(self.text) for start, end, font_attr in other.font_attr_segs: ret.font_attr_segs.append((old_len + start, old_len + end, font_attr)) return ret else: raise TypeError("%r cannot be concatenated with a RichLine" % other) def __len__(self): return len(self.text) def rich_text_lines_from_rich_line_list(rich_text_list, annotations=None): """Convert a list of RichLine objects or strings to a RichTextLines object. Args: rich_text_list: a list of RichLine objects or strings annotations: annotatoins for the resultant RichTextLines object. Returns: A corresponding RichTextLines object. """ lines = [] font_attr_segs = {} for i, rl in enumerate(rich_text_list): if isinstance(rl, RichLine): lines.append(rl.text) if rl.font_attr_segs: font_attr_segs[i] = rl.font_attr_segs else: lines.append(rl) return RichTextLines(lines, font_attr_segs, annotations=annotations) def get_tensorflow_version_lines(include_dependency_versions=False): """Generate RichTextLines with TensorFlow version info. Args: include_dependency_versions: Include the version of TensorFlow's key dependencies, such as numpy. Returns: A formatted, multi-line `RichTextLines` object. """ lines = ["TensorFlow version: %s" % pywrap_tensorflow_internal.__version__] lines.append("") if include_dependency_versions: lines.append("Dependency version(s):") lines.append(" numpy: %s" % np.__version__) lines.append("") return RichTextLines(lines) class RichTextLines(object): """Rich multi-line text. Line-by-line text output, with font attributes (e.g., color) and annotations (e.g., indices in a multi-dimensional tensor). Used as the text output of CLI commands. Can be rendered on terminal environments such as curses. This is not to be confused with Rich Text Format (RTF). This class is for text lines only. """ def __init__(self, lines, font_attr_segs=None, annotations=None): """Constructor of RichTextLines. Args: lines: A list of str or a single str, representing text output to screen. The latter case is for convenience when the text output is single-line. font_attr_segs: A map from 0-based row index to a list of 3-tuples. It lists segments in each row that have special font attributes, such as colors, that are not the default attribute. For example: {1: [(0, 3, "red"), (4, 7, "green")], 2: [(10, 20, "yellow")]} In each tuple, the 1st element is the start index of the segment. The 2nd element is the end index, in an "open interval" fashion. The 3rd element is an object or a list of objects that represents the font attribute. Colors are represented as strings as in the examples above. annotations: A map from 0-based row index to any object for annotating the row. A typical use example is annotating rows of the output as indices in a multi-dimensional tensor. For example, consider the following text representation of a 3x2x2 tensor: [[[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]]] The annotation can indicate the indices of the first element shown in each row, i.e., {0: [0, 0, 0], 1: [1, 0, 0], 2: [2, 0, 0]} This information can make display of tensors on screen clearer and can help the user navigate (scroll) to the desired location in a large tensor. Raises: ValueError: If lines is of invalid type. """ if isinstance(lines, list): self._lines = lines elif isinstance(lines, six.string_types): self._lines = [lines] else: raise ValueError("Unexpected type in lines: %s" % type(lines)) self._font_attr_segs = font_attr_segs if not self._font_attr_segs: self._font_attr_segs = {} # TODO(cais): Refactor to collections.defaultdict(list) to simplify code. self._annotations = annotations if not self._annotations: self._annotations = {} # TODO(cais): Refactor to collections.defaultdict(list) to simplify code. @property def lines(self): return self._lines @property def font_attr_segs(self): return self._font_attr_segs @property def annotations(self): return self._annotations def num_lines(self): return len(self._lines) def slice(self, begin, end): """Slice a RichTextLines object. The object itself is not changed. A sliced instance is returned. Args: begin: (int) Beginning line index (inclusive). Must be >= 0. end: (int) Ending line index (exclusive). Must be >= 0. Returns: (RichTextLines) Sliced output instance of RichTextLines. Raises: ValueError: If begin or end is negative. """ if begin < 0 or end < 0: raise ValueError("Encountered negative index.") # Copy lines. lines = self.lines[begin:end] # Slice font attribute segments. font_attr_segs = {} for key in self.font_attr_segs: if key >= begin and key < end: font_attr_segs[key - begin] = self.font_attr_segs[key] # Slice annotations. annotations = {} for key in self.annotations: if not isinstance(key, int): # Annotations can contain keys that are not line numbers. annotations[key] = self.annotations[key] elif key >= begin and key < end: annotations[key - begin] = self.annotations[key] return RichTextLines( lines, font_attr_segs=font_attr_segs, annotations=annotations) def extend(self, other): """Extend this instance of RichTextLines with another instance. The extension takes effect on the text lines, the font attribute segments, as well as the annotations. The line indices in the font attribute segments and the annotations are adjusted to account for the existing lines. If there are duplicate, non-line-index fields in the annotations, the value from the input argument "other" will override that in this instance. Args: other: (RichTextLines) The other RichTextLines instance to be appended at the end of this instance. """ orig_num_lines = self.num_lines() # Record original number of lines. # Merge the lines. self._lines.extend(other.lines) # Merge the font_attr_segs. for line_index in other.font_attr_segs: self._font_attr_segs[orig_num_lines + line_index] = ( other.font_attr_segs[line_index]) # Merge the annotations. for key in other.annotations: if isinstance(key, int): self._annotations[orig_num_lines + key] = (other.annotations[key]) else: self._annotations[key] = other.annotations[key] def _extend_before(self, other): """Add another RichTextLines object to the front. Args: other: (RichTextLines) The other object to add to the front to this object. """ other_num_lines = other.num_lines() # Record original number of lines. # Merge the lines. self._lines = other.lines + self._lines # Merge the font_attr_segs. new_font_attr_segs = {} for line_index in self.font_attr_segs: new_font_attr_segs[other_num_lines + line_index] = ( self.font_attr_segs[line_index]) new_font_attr_segs.update(other.font_attr_segs) self._font_attr_segs = new_font_attr_segs # Merge the annotations. new_annotations = {} for key in self._annotations: if isinstance(key, int): new_annotations[other_num_lines + key] = (self.annotations[key]) else: new_annotations[key] = other.annotations[key] new_annotations.update(other.annotations) self._annotations = new_annotations def append(self, line, font_attr_segs=None): """Append a single line of text. Args: line: (str) The text to be added to the end. font_attr_segs: (list of tuples) Font attribute segments of the appended line. """ self._lines.append(line) if font_attr_segs: self._font_attr_segs[len(self._lines) - 1] = font_attr_segs def append_rich_line(self, rich_line): self.append(rich_line.text, rich_line.font_attr_segs) def prepend(self, line, font_attr_segs=None): """Prepend (i.e., add to the front) a single line of text. Args: line: (str) The text to be added to the front. font_attr_segs: (list of tuples) Font attribute segments of the appended line. """ other = RichTextLines(line) if font_attr_segs: other.font_attr_segs[0] = font_attr_segs self._extend_before(other) def write_to_file(self, file_path): """Write the object itself to file, in a plain format. The font_attr_segs and annotations are ignored. Args: file_path: (str) path of the file to write to. """ with gfile.Open(file_path, "w") as f: for line in self._lines: f.write(line + "\n") # TODO(cais): Add a method to allow appending to a line in RichTextLines with # both text and font_attr_segs. def regex_find(orig_screen_output, regex, font_attr): """Perform regex match in rich text lines. Produces a new RichTextLines object with font_attr_segs containing highlighted regex matches. Example use cases include: 1) search for specific items in a large list of items, and 2) search for specific numerical values in a large tensor. Args: orig_screen_output: The original RichTextLines, in which the regex find is to be performed. regex: The regex used for matching. font_attr: Font attribute used for highlighting the found result. Returns: A modified copy of orig_screen_output. Raises: ValueError: If input str regex is not a valid regular expression. """ new_screen_output = RichTextLines( orig_screen_output.lines, font_attr_segs=copy.deepcopy(orig_screen_output.font_attr_segs), annotations=orig_screen_output.annotations) try: re_prog = re.compile(regex) except sre_constants.error: raise ValueError("Invalid regular expression: \"%s\"" % regex) regex_match_lines = [] for i in xrange(len(new_screen_output.lines)): line = new_screen_output.lines[i] find_it = re_prog.finditer(line) match_segs = [] for match in find_it: match_segs.append((match.start(), match.end(), font_attr)) if match_segs: if i not in new_screen_output.font_attr_segs: new_screen_output.font_attr_segs[i] = match_segs else: new_screen_output.font_attr_segs[i].extend(match_segs) new_screen_output.font_attr_segs[i] = sorted( new_screen_output.font_attr_segs[i], key=lambda x: x[0]) regex_match_lines.append(i) new_screen_output.annotations[REGEX_MATCH_LINES_KEY] = regex_match_lines return new_screen_output def wrap_rich_text_lines(inp, cols): """Wrap RichTextLines according to maximum number of columns. Produces a new RichTextLines object with the text lines, font_attr_segs and annotations properly wrapped. This ought to be used sparingly, as in most cases, command handlers producing RichTextLines outputs should know the screen/panel width via the screen_info kwarg and should produce properly length-limited lines in the output accordingly. Args: inp: Input RichTextLines object. cols: Number of columns, as an int. Returns: 1) A new instance of RichTextLines, with line lengths limited to cols. 2) A list of new (wrapped) line index. For example, if the original input consists of three lines and only the second line is wrapped, and it's wrapped into two lines, this return value will be: [0, 1, 3]. Raises: ValueError: If inputs have invalid types. """ new_line_indices = [] if not isinstance(inp, RichTextLines): raise ValueError("Invalid type of input screen_output") if not isinstance(cols, int): raise ValueError("Invalid type of input cols") out = RichTextLines([]) row_counter = 0 # Counter for new row index for i in xrange(len(inp.lines)): new_line_indices.append(out.num_lines()) line = inp.lines[i] if i in inp.annotations: out.annotations[row_counter] = inp.annotations[i] if len(line) <= cols: # No wrapping. out.lines.append(line) if i in inp.font_attr_segs: out.font_attr_segs[row_counter] = inp.font_attr_segs[i] row_counter += 1 else: # Wrap. wlines = [] # Wrapped lines. osegs = [] if i in inp.font_attr_segs: osegs = inp.font_attr_segs[i] idx = 0 while idx < len(line): if idx + cols > len(line): rlim = len(line) else: rlim = idx + cols wlines.append(line[idx:rlim]) for seg in osegs: if (seg[0] < rlim) and (seg[1] >= idx): # Calculate left bound within wrapped line. if seg[0] >= idx: lb = seg[0] - idx else: lb = 0 # Calculate right bound within wrapped line. if seg[1] < rlim: rb = seg[1] - idx else: rb = rlim - idx if rb > lb: # Omit zero-length segments. wseg = (lb, rb, seg[2]) if row_counter not in out.font_attr_segs: out.font_attr_segs[row_counter] = [wseg] else: out.font_attr_segs[row_counter].append(wseg) idx += cols row_counter += 1 out.lines.extend(wlines) # Copy over keys of annotation that are not row indices. for key in inp.annotations: if not isinstance(key, int): out.annotations[key] = inp.annotations[key] return out, new_line_indices class CommandHandlerRegistry(object): """Registry of command handlers for CLI. Handler methods (callables) for user commands can be registered with this class, which then is able to dispatch commands to the correct handlers and retrieve the RichTextLines output. For example, suppose you have the following handler defined: def echo(argv, screen_info=None): return RichTextLines(["arguments = %s" % " ".join(argv), "screen_info = " + repr(screen_info)]) you can register the handler with the command prefix "echo" and alias "e": registry = CommandHandlerRegistry() registry.register_command_handler("echo", echo, "Echo arguments, along with screen info", prefix_aliases=["e"]) then to invoke this command handler with some arguments and screen_info, do: registry.dispatch_command("echo", ["foo", "bar"], screen_info={"cols": 80}) or with the prefix alias: registry.dispatch_command("e", ["foo", "bar"], screen_info={"cols": 80}) The call will return a RichTextLines object which can be rendered by a CLI. """ HELP_COMMAND = "help" HELP_COMMAND_ALIASES = ["h"] VERSION_COMMAND = "version" VERSION_COMMAND_ALIASES = ["ver"] def __init__(self): # A dictionary from command prefix to handler. self._handlers = {} # A dictionary from prefix alias to prefix. self._alias_to_prefix = {} # A dictionary from prefix to aliases. self._prefix_to_aliases = {} # A dictionary from command prefix to help string. self._prefix_to_help = {} # Introductory text to help information. self._help_intro = None # Register a default handler for the command "help". self.register_command_handler( self.HELP_COMMAND, self._help_handler, "Print this help message.", prefix_aliases=self.HELP_COMMAND_ALIASES) # Register a default handler for the command "version". self.register_command_handler( self.VERSION_COMMAND, self._version_handler, "Print the versions of TensorFlow and its key dependencies.", prefix_aliases=self.VERSION_COMMAND_ALIASES) def register_command_handler(self, prefix, handler, help_info, prefix_aliases=None): """Register a callable as a command handler. Args: prefix: Command prefix, i.e., the first word in a command, e.g., "print" as in "print tensor_1". handler: A callable of the following signature: foo_handler(argv, screen_info=None), where argv is the argument vector (excluding the command prefix) and screen_info is a dictionary containing information about the screen, such as number of columns, e.g., {"cols": 100}. The callable should return: 1) a RichTextLines object representing the screen output. The callable can also raise an exception of the type CommandLineExit, which if caught by the command-line interface, will lead to its exit. The exception can optionally carry an exit token of arbitrary type. help_info: A help string. prefix_aliases: Aliases for the command prefix, as a list of str. E.g., shorthands for the command prefix: ["p", "pr"] Raises: ValueError: If 1) the prefix is empty, or 2) handler is not callable, or 3) a handler is already registered for the prefix, or 4) elements in prefix_aliases clash with existing aliases. 5) help_info is not a str. """ if not prefix: raise ValueError("Empty command prefix") if prefix in self._handlers: raise ValueError( "A handler is already registered for command prefix \"%s\"" % prefix) # Make sure handler is callable. if not callable(handler): raise ValueError("handler is not callable") # Make sure that help info is a string. if not isinstance(help_info, six.string_types): raise ValueError("help_info is not a str") # Process prefix aliases. if prefix_aliases: for alias in prefix_aliases: if self._resolve_prefix(alias): raise ValueError( "The prefix alias \"%s\" clashes with existing prefixes or " "aliases." % alias) self._alias_to_prefix[alias] = prefix self._prefix_to_aliases[prefix] = prefix_aliases # Store handler. self._handlers[prefix] = handler # Store help info. self._prefix_to_help[prefix] = help_info def dispatch_command(self, prefix, argv, screen_info=None): """Handles a command by dispatching it to a registered command handler. Args: prefix: Command prefix, as a str, e.g., "print". argv: Command argument vector, excluding the command prefix, represented as a list of str, e.g., ["tensor_1"] screen_info: A dictionary containing screen info, e.g., {"cols": 100}. Returns: An instance of RichTextLines or None. If any exception is caught during the invocation of the command handler, the RichTextLines will wrap the error type and message. Raises: ValueError: If 1) prefix is empty, or 2) no command handler is registered for the command prefix, or 3) the handler is found for the prefix, but it fails to return a RichTextLines or raise any exception. CommandLineExit: If the command handler raises this type of exception, this method will simply pass it along. """ if not prefix: raise ValueError("Prefix is empty") resolved_prefix = self._resolve_prefix(prefix) if not resolved_prefix: raise ValueError("No handler is registered for command prefix \"%s\"" % prefix) handler = self._handlers[resolved_prefix] try: output = handler(argv, screen_info=screen_info) except CommandLineExit as e: raise e except SystemExit as e: # Special case for syntax errors caught by argparse. lines = ["Syntax error for command: %s" % prefix, "For help, do \"help %s\"" % prefix] output = RichTextLines(lines) except BaseException as e: # pylint: disable=broad-except lines = ["Error occurred during handling of command: %s %s:" % (resolved_prefix, " ".join(argv)), "%s: %s" % (type(e), str(e))] # Include traceback of the exception. lines.append("") lines.extend(traceback.format_exc().split("\n")) output = RichTextLines(lines) if not isinstance(output, RichTextLines) and output is not None: raise ValueError( "Return value from command handler %s is not None or a RichTextLines " "instance" % str(handler)) return output def is_registered(self, prefix): """Test if a command prefix or its alias is has a registered handler. Args: prefix: A prefix or its alias, as a str. Returns: True iff a handler is registered for prefix. """ return self._resolve_prefix(prefix) is not None def get_help(self, cmd_prefix=None): """Compile help information into a RichTextLines object. Args: cmd_prefix: Optional command prefix. As the prefix itself or one of its aliases. Returns: A RichTextLines object containing the help information. If cmd_prefix is None, the return value will be the full command-line help. Otherwise, it will be the help information for the specified command. """ if not cmd_prefix: # Print full help information, in sorted order of the command prefixes. help_info = RichTextLines([]) if self._help_intro: # If help intro is available, show it at the beginning. help_info.extend(self._help_intro) sorted_prefixes = sorted(self._handlers) for cmd_prefix in sorted_prefixes: lines = self._get_help_for_command_prefix(cmd_prefix) lines.append("") lines.append("") help_info.extend(RichTextLines(lines)) return help_info else: return RichTextLines(self._get_help_for_command_prefix(cmd_prefix)) def set_help_intro(self, help_intro): """Set an introductory message to help output. Args: help_intro: (RichTextLines) Rich text lines appended to the beginning of the output of the command "help", as introductory information. """ self._help_intro = help_intro def _help_handler(self, args, screen_info=None): """Command handler for "help". "help" is a common command that merits built-in support from this class. Args: args: Command line arguments to "help" (not including "help" itself). screen_info: (dict) Information regarding the screen, e.g., the screen width in characters: {"cols": 80} Returns: (RichTextLines) Screen text output. """ _ = screen_info # Unused currently. if not args: return self.get_help() elif len(args) == 1: return self.get_help(args[0]) else: return RichTextLines(["ERROR: help takes only 0 or 1 input argument."]) def _version_handler(self, args, screen_info=None): del args # Unused currently. del screen_info # Unused currently. return get_tensorflow_version_lines(include_dependency_versions=True) def _resolve_prefix(self, token): """Resolve command prefix from the prefix itself or its alias. Args: token: a str to be resolved. Returns: If resolvable, the resolved command prefix. If not resolvable, None. """ if token in self._handlers: return token elif token in self._alias_to_prefix: return self._alias_to_prefix[token] else: return None def _get_help_for_command_prefix(self, cmd_prefix): """Compile the help information for a given command prefix. Args: cmd_prefix: Command prefix, as the prefix itself or one of its aliases. Returns: A list of str as the help information fo cmd_prefix. If the cmd_prefix does not exist, the returned list of str will indicate that. """ lines = [] resolved_prefix = self._resolve_prefix(cmd_prefix) if not resolved_prefix: lines.append("Invalid command prefix: \"%s\"" % cmd_prefix) return lines lines.append(resolved_prefix) if resolved_prefix in self._prefix_to_aliases: lines.append(HELP_INDENT + "Aliases: " + ", ".join( self._prefix_to_aliases[resolved_prefix])) lines.append("") help_lines = self._prefix_to_help[resolved_prefix].split("\n") for line in help_lines: lines.append(HELP_INDENT + line) return lines class TabCompletionRegistry(object): """Registry for tab completion responses.""" def __init__(self): self._comp_dict = {} # TODO(cais): Rename method names with "comp" to "*completion*" to avoid # confusion. def register_tab_comp_context(self, context_words, comp_items): """Register a tab-completion context. Register that, for each word in context_words, the potential tab-completions are the words in comp_items. A context word is a pre-existing, completed word in the command line that determines how tab-completion works for another, incomplete word in the same command line. Completion items consist of potential candidates for the incomplete word. To give a general example, a context word can be "drink", and the completion items can be ["coffee", "tea", "water"] Note: A context word can be empty, in which case the context is for the top-level commands. Args: context_words: A list of context words belonging to the context being registered. It is a list of str, instead of a single string, to support synonym words triggering the same tab-completion context, e.g., both "drink" and the short-hand "dr" can trigger the same context. comp_items: A list of completion items, as a list of str. Raises: TypeError: if the input arguments are not all of the correct types. """ if not isinstance(context_words, list): raise TypeError("Incorrect type in context_list: Expected list, got %s" % type(context_words)) if not isinstance(comp_items, list): raise TypeError("Incorrect type in comp_items: Expected list, got %s" % type(comp_items)) # Sort the completion items on registration, so that later during # get_completions calls, no sorting will be necessary. sorted_comp_items = sorted(comp_items) for context_word in context_words: self._comp_dict[context_word] = sorted_comp_items def deregister_context(self, context_words): """Deregister a list of context words. Args: context_words: A list of context words to deregister, as a list of str. Raises: KeyError: if there are word(s) in context_words that do not correspond to any registered contexts. """ for context_word in context_words: if context_word not in self._comp_dict: raise KeyError("Cannot deregister unregistered context word \"%s\"" % context_word) for context_word in context_words: del self._comp_dict[context_word] def extend_comp_items(self, context_word, new_comp_items): """Add a list of completion items to a completion context. Args: context_word: A single completion word as a string. The extension will also apply to all other context words of the same context. new_comp_items: (list of str) New completion items to add. Raises: KeyError: if the context word has not been registered. """ if context_word not in self._comp_dict: raise KeyError("Context word \"%s\" has not been registered" % context_word) self._comp_dict[context_word].extend(new_comp_items) self._comp_dict[context_word] = sorted(self._comp_dict[context_word]) def remove_comp_items(self, context_word, comp_items): """Remove a list of completion items from a completion context. Args: context_word: A single completion word as a string. The removal will also apply to all other context words of the same context. comp_items: Completion items to remove. Raises: KeyError: if the context word has not been registered. """ if context_word not in self._comp_dict: raise KeyError("Context word \"%s\" has not been registered" % context_word) for item in comp_items: self._comp_dict[context_word].remove(item) def get_completions(self, context_word, prefix): """Get the tab completions given a context word and a prefix. Args: context_word: The context word. prefix: The prefix of the incomplete word. Returns: (1) None if no registered context matches the context_word. A list of str for the matching completion items. Can be an empty list of a matching context exists, but no completion item matches the prefix. (2) Common prefix of all the words in the first return value. If the first return value is None, this return value will be None, too. If the first return value is not None, i.e., a list, this return value will be a str, which can be an empty str if there is no common prefix among the items of the list. """ if context_word not in self._comp_dict: return None, None comp_items = self._comp_dict[context_word] comp_items = sorted( [item for item in comp_items if item.startswith(prefix)]) return comp_items, self._common_prefix(comp_items) def _common_prefix(self, m): """Given a list of str, returns the longest common prefix. Args: m: (list of str) A list of strings. Returns: (str) The longest common prefix. """ if not m: return "" s1 = min(m) s2 = max(m) for i, c in enumerate(s1): if c != s2[i]: return s1[:i] return s1 class CommandHistory(object): """Keeps command history and supports lookup.""" _HISTORY_FILE_NAME = ".tfdbg_history" def __init__(self, limit=100, history_file_path=None): """CommandHistory constructor. Args: limit: Maximum number of the most recent commands that this instance keeps track of, as an int. history_file_path: (str) Manually specified path to history file. Used in testing. """ self._commands = [] self._limit = limit self._history_file_path = ( history_file_path or self._get_default_history_file_path()) self._load_history_from_file() def _load_history_from_file(self): if os.path.isfile(self._history_file_path): try: with open(self._history_file_path, "rt") as history_file: commands = history_file.readlines() self._commands = [command.strip() for command in commands if command.strip()] # Limit the size of the history file. if len(self._commands) > self._limit: self._commands = self._commands[-self._limit:] with open(self._history_file_path, "wt") as history_file: for command in self._commands: history_file.write(command + "\n") except IOError: print("WARNING: writing history file failed.") def _add_command_to_history_file(self, command): try: with open(self._history_file_path, "at") as history_file: history_file.write(command + "\n") except IOError: pass @classmethod def _get_default_history_file_path(cls): return os.path.join(os.path.expanduser("~"), cls._HISTORY_FILE_NAME) def add_command(self, command): """Add a command to the command history. Args: command: The history command, as a str. Raises: TypeError: if command is not a str. """ if self._commands and command == self._commands[-1]: # Ignore repeating commands in a row. return if not isinstance(command, six.string_types): raise TypeError("Attempt to enter non-str entry to command history") self._commands.append(command) if len(self._commands) > self._limit: self._commands = self._commands[-self._limit:] self._add_command_to_history_file(command) def most_recent_n(self, n): """Look up the n most recent commands. Args: n: Number of most recent commands to look up. Returns: A list of n most recent commands, or all available most recent commands, if n exceeds size of the command history, in chronological order. """ return self._commands[-n:] def lookup_prefix(self, prefix, n): """Look up the n most recent commands that starts with prefix. Args: prefix: The prefix to lookup. n: Number of most recent commands to look up. Returns: A list of n most recent commands that have the specified prefix, or all available most recent commands that have the prefix, if n exceeds the number of history commands with the prefix. """ commands = [cmd for cmd in self._commands if cmd.startswith(prefix)] return commands[-n:] # TODO(cais): Lookup by regex. class MenuItem(object): """A class for an item in a text-based menu.""" def __init__(self, caption, content, enabled=True): """Menu constructor. TODO(cais): Nested menu is currently not supported. Support it. Args: caption: (str) caption of the menu item. content: Content of the menu item. For a menu item that triggers a command, for example, content is the command string. enabled: (bool) whether this menu item is enabled. """ self._caption = caption self._content = content self._enabled = enabled @property def caption(self): return self._caption @property def type(self): return self._node_type @property def content(self): return self._content def is_enabled(self): return self._enabled def disable(self): self._enabled = False def enable(self): self._enabled = True class Menu(object): """A class for text-based menu.""" def __init__(self, name=None): """Menu constructor. Args: name: (str or None) name of this menu. """ self._name = name self._items = [] def append(self, item): """Append an item to the Menu. Args: item: (MenuItem) the item to be appended. """ self._items.append(item) def insert(self, index, item): self._items.insert(index, item) def num_items(self): return len(self._items) def captions(self): return [item.caption for item in self._items] def caption_to_item(self, caption): """Get a MenuItem from the caption. Args: caption: (str) The caption to look up. Returns: (MenuItem) The first-match menu item with the caption, if any. Raises: LookupError: If a menu item with the caption does not exist. """ captions = self.captions() if caption not in captions: raise LookupError("There is no menu item with the caption \"%s\"" % caption) return self._items[captions.index(caption)] def format_as_single_line(self, prefix=None, divider=" | ", enabled_item_attrs=None, disabled_item_attrs=None): """Format the menu as a single-line RichTextLines object. Args: prefix: (str) String added to the beginning of the line. divider: (str) The dividing string between the menu items. enabled_item_attrs: (list or str) Attributes applied to each enabled menu item, e.g., ["bold", "underline"]. disabled_item_attrs: (list or str) Attributes applied to each disabled menu item, e.g., ["red"]. Returns: (RichTextLines) A single-line output representing the menu, with font_attr_segs marking the individual menu items. """ if (enabled_item_attrs is not None and not isinstance(enabled_item_attrs, list)): enabled_item_attrs = [enabled_item_attrs] if (disabled_item_attrs is not None and not isinstance(disabled_item_attrs, list)): disabled_item_attrs = [disabled_item_attrs] menu_line = prefix if prefix is not None else "" attr_segs = [] for item in self._items: menu_line += item.caption item_name_begin = len(menu_line) - len(item.caption) if item.is_enabled(): final_attrs = [item] if enabled_item_attrs: final_attrs.extend(enabled_item_attrs) attr_segs.append((item_name_begin, len(menu_line), final_attrs)) else: if disabled_item_attrs: attr_segs.append( (item_name_begin, len(menu_line), disabled_item_attrs)) menu_line += divider return RichTextLines(menu_line, font_attr_segs={0: attr_segs})
tensorflow-master
tensorflow/python/debug/cli/debugger_cli_common.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Command parsing module for TensorFlow Debugger (tfdbg).""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import ast import re import sys _BRACKETS_PATTERN = re.compile(r"\[[^\]]*\]") _QUOTES_PATTERN = re.compile(r"(\"[^\"]*\"|\'[^\']*\')") _WHITESPACE_PATTERN = re.compile(r"\s+") _NUMBER_PATTERN = re.compile(r"[-+]?(\d+(\.\d*)?|\.\d+)([eE][-+]?\d+)?") class Interval(object): """Represents an interval between a start and end value.""" def __init__(self, start, start_included, end, end_included): self.start = start self.start_included = start_included self.end = end self.end_included = end_included def contains(self, value): if value < self.start or value == self.start and not self.start_included: return False if value > self.end or value == self.end and not self.end_included: return False return True def __eq__(self, other): return (self.start == other.start and self.start_included == other.start_included and self.end == other.end and self.end_included == other.end_included) def parse_command(command): """Parse command string into a list of arguments. - Disregards whitespace inside double quotes and brackets. - Strips paired leading and trailing double quotes in arguments. - Splits the command at whitespace. Nested double quotes and brackets are not handled. Args: command: (str) Input command. Returns: (list of str) List of arguments. """ command = command.strip() if not command: return [] brackets_intervals = [f.span() for f in _BRACKETS_PATTERN.finditer(command)] quotes_intervals = [f.span() for f in _QUOTES_PATTERN.finditer(command)] whitespaces_intervals = [ f.span() for f in _WHITESPACE_PATTERN.finditer(command) ] if not whitespaces_intervals: return [command] arguments = [] idx0 = 0 for start, end in whitespaces_intervals + [(len(command), None)]: # Skip whitespace stretches enclosed in brackets or double quotes. if not any(interval[0] < start < interval[1] for interval in brackets_intervals + quotes_intervals): argument = command[idx0:start] # Strip leading and trailing double quote if they are paired. if (argument.startswith("\"") and argument.endswith("\"") or argument.startswith("'") and argument.endswith("'")): argument = argument[1:-1] arguments.append(argument) idx0 = end return arguments def extract_output_file_path(args): """Extract output file path from command arguments. Args: args: (list of str) command arguments. Returns: (list of str) Command arguments with the output file path part stripped. (str or None) Output file path (if any). Raises: SyntaxError: If there is no file path after the last ">" character. """ if args and args[-1].endswith(">"): raise SyntaxError("Redirect file path is empty") elif args and args[-1].startswith(">"): try: _parse_interval(args[-1]) if len(args) > 1 and args[-2].startswith("-"): output_file_path = None else: output_file_path = args[-1][1:] args = args[:-1] except ValueError: output_file_path = args[-1][1:] args = args[:-1] elif len(args) > 1 and args[-2] == ">": output_file_path = args[-1] args = args[:-2] elif args and args[-1].count(">") == 1: gt_index = args[-1].index(">") if gt_index > 0 and args[-1][gt_index - 1] == "=": output_file_path = None else: output_file_path = args[-1][gt_index + 1:] args[-1] = args[-1][:gt_index] elif len(args) > 1 and args[-2].endswith(">"): output_file_path = args[-1] args = args[:-1] args[-1] = args[-1][:-1] else: output_file_path = None return args, output_file_path def parse_tensor_name_with_slicing(in_str): """Parse tensor name, potentially suffixed by slicing string. Args: in_str: (str) Input name of the tensor, potentially followed by a slicing string. E.g.: Without slicing string: "hidden/weights/Variable:0", with slicing string: "hidden/weights/Variable:0[1, :]" Returns: (str) name of the tensor (str) slicing string, if any. If no slicing string is present, return "". """ if in_str.count("[") == 1 and in_str.endswith("]"): tensor_name = in_str[:in_str.index("[")] tensor_slicing = in_str[in_str.index("["):] else: tensor_name = in_str tensor_slicing = "" return tensor_name, tensor_slicing def validate_slicing_string(slicing_string): """Validate a slicing string. Check if the input string contains only brackets, digits, commas and colons that are valid characters in numpy-style array slicing. Args: slicing_string: (str) Input slicing string to be validated. Returns: (bool) True if and only if the slicing string is valid. """ return bool(re.search(r"^\[(\d|,|\s|:)+\]$", slicing_string)) def _parse_slices(slicing_string): """Construct a tuple of slices from the slicing string. The string must be a valid slicing string. Args: slicing_string: (str) Input slicing string to be parsed. Returns: tuple(slice1, slice2, ...) Raises: ValueError: If tensor_slicing is not a valid numpy ndarray slicing str. """ parsed = [] for slice_string in slicing_string[1:-1].split(","): indices = slice_string.split(":") if len(indices) == 1: parsed.append(int(indices[0].strip())) elif 2 <= len(indices) <= 3: parsed.append( slice(*[ int(index.strip()) if index.strip() else None for index in indices ])) else: raise ValueError("Invalid tensor-slicing string.") return tuple(parsed) def parse_indices(indices_string): """Parse a string representing indices. For example, if the input is "[1, 2, 3]", the return value will be a list of indices: [1, 2, 3] Args: indices_string: (str) a string representing indices. Can optionally be surrounded by a pair of brackets. Returns: (list of int): Parsed indices. """ # Strip whitespace. indices_string = re.sub(r"\s+", "", indices_string) # Strip any brackets at the two ends. if indices_string.startswith("[") and indices_string.endswith("]"): indices_string = indices_string[1:-1] return [int(element) for element in indices_string.split(",")] def parse_ranges(range_string): """Parse a string representing numerical range(s). Args: range_string: (str) A string representing a numerical range or a list of them. For example: "[-1.0,1.0]", "[-inf, 0]", "[[-inf, -1.0], [1.0, inf]]" Returns: (list of list of float) A list of numerical ranges parsed from the input string. Raises: ValueError: If the input doesn't represent a range or a list of ranges. """ range_string = range_string.strip() if not range_string: return [] if "inf" in range_string: range_string = re.sub(r"inf", repr(sys.float_info.max), range_string) ranges = ast.literal_eval(range_string) if isinstance(ranges, list) and not isinstance(ranges[0], list): ranges = [ranges] # Verify that ranges is a list of list of numbers. for item in ranges: if len(item) != 2: raise ValueError("Incorrect number of elements in range") elif not isinstance(item[0], (int, float)): raise ValueError("Incorrect type in the 1st element of range: %s" % type(item[0])) elif not isinstance(item[1], (int, float)): raise ValueError("Incorrect type in the 2nd element of range: %s" % type(item[0])) return ranges def parse_memory_interval(interval_str): """Convert a human-readable memory interval to a tuple of start and end value. Args: interval_str: (`str`) A human-readable str representing an interval (e.g., "[10kB, 20kB]", "<100M", ">100G"). Only the units "kB", "MB", "GB" are supported. The "B character at the end of the input `str` may be omitted. Returns: `Interval` object where start and end are in bytes. Raises: ValueError: if the input is not valid. """ str_interval = _parse_interval(interval_str) interval_start = 0 interval_end = float("inf") if str_interval.start: interval_start = parse_readable_size_str(str_interval.start) if str_interval.end: interval_end = parse_readable_size_str(str_interval.end) if interval_start > interval_end: raise ValueError( "Invalid interval %s. Start of interval must be less than or equal " "to end of interval." % interval_str) return Interval(interval_start, str_interval.start_included, interval_end, str_interval.end_included) def parse_time_interval(interval_str): """Convert a human-readable time interval to a tuple of start and end value. Args: interval_str: (`str`) A human-readable str representing an interval (e.g., "[10us, 20us]", "<100s", ">100ms"). Supported time suffixes are us, ms, s. Returns: `Interval` object where start and end are in microseconds. Raises: ValueError: if the input is not valid. """ str_interval = _parse_interval(interval_str) interval_start = 0 interval_end = float("inf") if str_interval.start: interval_start = parse_readable_time_str(str_interval.start) if str_interval.end: interval_end = parse_readable_time_str(str_interval.end) if interval_start > interval_end: raise ValueError( "Invalid interval %s. Start must be before end of interval." % interval_str) return Interval(interval_start, str_interval.start_included, interval_end, str_interval.end_included) def _parse_interval(interval_str): """Convert a human-readable interval to a tuple of start and end value. Args: interval_str: (`str`) A human-readable str representing an interval (e.g., "[1M, 2M]", "<100k", ">100ms"). The items following the ">", "<", ">=" and "<=" signs have to start with a number (e.g., 3.0, -2, .98). The same requirement applies to the items in the parentheses or brackets. Returns: Interval object where start or end can be None if the range is specified as "<N" or ">N" respectively. Raises: ValueError: if the input is not valid. """ interval_str = interval_str.strip() if interval_str.startswith("<="): if _NUMBER_PATTERN.match(interval_str[2:].strip()): return Interval(start=None, start_included=False, end=interval_str[2:].strip(), end_included=True) else: raise ValueError("Invalid value string after <= in '%s'" % interval_str) if interval_str.startswith("<"): if _NUMBER_PATTERN.match(interval_str[1:].strip()): return Interval(start=None, start_included=False, end=interval_str[1:].strip(), end_included=False) else: raise ValueError("Invalid value string after < in '%s'" % interval_str) if interval_str.startswith(">="): if _NUMBER_PATTERN.match(interval_str[2:].strip()): return Interval(start=interval_str[2:].strip(), start_included=True, end=None, end_included=False) else: raise ValueError("Invalid value string after >= in '%s'" % interval_str) if interval_str.startswith(">"): if _NUMBER_PATTERN.match(interval_str[1:].strip()): return Interval(start=interval_str[1:].strip(), start_included=False, end=None, end_included=False) else: raise ValueError("Invalid value string after > in '%s'" % interval_str) if (not interval_str.startswith(("[", "(")) or not interval_str.endswith(("]", ")"))): raise ValueError( "Invalid interval format: %s. Valid formats are: [min, max], " "(min, max), <max, >min" % interval_str) interval = interval_str[1:-1].split(",") if len(interval) != 2: raise ValueError( "Incorrect interval format: %s. Interval should specify two values: " "[min, max] or (min, max)." % interval_str) start_item = interval[0].strip() if not _NUMBER_PATTERN.match(start_item): raise ValueError("Invalid first item in interval: '%s'" % start_item) end_item = interval[1].strip() if not _NUMBER_PATTERN.match(end_item): raise ValueError("Invalid second item in interval: '%s'" % end_item) return Interval(start=start_item, start_included=(interval_str[0] == "["), end=end_item, end_included=(interval_str[-1] == "]")) def parse_readable_size_str(size_str): """Convert a human-readable str representation to number of bytes. Only the units "kB", "MB", "GB" are supported. The "B character at the end of the input `str` may be omitted. Args: size_str: (`str`) A human-readable str representing a number of bytes (e.g., "0", "1023", "1.1kB", "24 MB", "23GB", "100 G". Returns: (`int`) The parsed number of bytes. Raises: ValueError: on failure to parse the input `size_str`. """ size_str = size_str.strip() if size_str.endswith("B"): size_str = size_str[:-1] if size_str.isdigit(): return int(size_str) elif size_str.endswith("k"): return int(float(size_str[:-1]) * 1024) elif size_str.endswith("M"): return int(float(size_str[:-1]) * 1048576) elif size_str.endswith("G"): return int(float(size_str[:-1]) * 1073741824) else: raise ValueError("Failed to parsed human-readable byte size str: \"%s\"" % size_str) def parse_readable_time_str(time_str): """Parses a time string in the format N, Nus, Nms, Ns. Args: time_str: (`str`) string consisting of an integer time value optionally followed by 'us', 'ms', or 's' suffix. If suffix is not specified, value is assumed to be in microseconds. (e.g. 100us, 8ms, 5s, 100). Returns: Microseconds value. """ def parse_positive_float(value_str): value = float(value_str) if value < 0: raise ValueError( "Invalid time %s. Time value must be positive." % value_str) return value time_str = time_str.strip() if time_str.endswith("us"): return int(parse_positive_float(time_str[:-2])) elif time_str.endswith("ms"): return int(parse_positive_float(time_str[:-2]) * 1e3) elif time_str.endswith("s"): return int(parse_positive_float(time_str[:-1]) * 1e6) return int(parse_positive_float(time_str)) def evaluate_tensor_slice(tensor, tensor_slicing): """Call eval on the slicing of a tensor, with validation. Args: tensor: (numpy ndarray) The tensor value. tensor_slicing: (str or None) Slicing of the tensor, e.g., "[:, 1]". If None, no slicing will be performed on the tensor. Returns: (numpy ndarray) The sliced tensor. Raises: ValueError: If tensor_slicing is not a valid numpy ndarray slicing str. """ _ = tensor if not validate_slicing_string(tensor_slicing): raise ValueError("Invalid tensor-slicing string.") return tensor[_parse_slices(tensor_slicing)] def get_print_tensor_argparser(description): """Get an ArgumentParser for a command that prints tensor values. Examples of such commands include print_tensor and print_feed. Args: description: Description of the ArgumentParser. Returns: An instance of argparse.ArgumentParser. """ ap = argparse.ArgumentParser( description=description, usage=argparse.SUPPRESS) ap.add_argument( "tensor_name", type=str, help="Name of the tensor, followed by any slicing indices, " "e.g., hidden1/Wx_plus_b/MatMul:0, " "hidden1/Wx_plus_b/MatMul:0[1, :]") ap.add_argument( "-n", "--number", dest="number", type=int, default=-1, help="0-based dump number for the specified tensor. " "Required for tensor with multiple dumps.") ap.add_argument( "-r", "--ranges", dest="ranges", type=str, default="", help="Numerical ranges to highlight tensor elements in. " "Examples: -r 0,1e-8, -r [-0.1,0.1], " "-r \"[[-inf, -0.1], [0.1, inf]]\"") ap.add_argument( "-a", "--all", dest="print_all", action="store_true", help="Print the tensor in its entirety, i.e., do not use ellipses.") ap.add_argument( "-s", "--numeric_summary", action="store_true", help="Include summary for non-empty tensors of numeric (int*, float*, " "complex*) and Boolean types.") ap.add_argument( "-w", "--write_path", type=str, default="", help="Path of the numpy file to write the tensor data to, using " "numpy.save().") return ap
tensorflow-master
tensorflow/python/debug/cli/command_parser.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Readline-Based Command-Line Interface of TensorFlow Debugger (tfdbg).""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import readline import six from tensorflow.python.debug.cli import base_ui from tensorflow.python.debug.cli import debugger_cli_common class ReadlineUI(base_ui.BaseUI): """Readline-based Command-line UI.""" def __init__(self, on_ui_exit=None, config=None): base_ui.BaseUI.__init__(self, on_ui_exit=on_ui_exit, config=config) self._init_input() def _init_input(self): readline.parse_and_bind("set editing-mode emacs") # Disable default readline delimiter in order to receive the full text # (not just the last word) in the completer. readline.set_completer_delims("\n") readline.set_completer(self._readline_complete) readline.parse_and_bind("tab: complete") self._input = six.moves.input def _readline_complete(self, text, state): context, prefix, except_last_word = self._analyze_tab_complete_input(text) candidates, _ = self._tab_completion_registry.get_completions(context, prefix) candidates = [(except_last_word + candidate) for candidate in candidates] return candidates[state] def run_ui(self, init_command=None, title=None, title_color=None, enable_mouse_on_start=True): """Run the CLI: See the doc of base_ui.BaseUI.run_ui for more details.""" print(title) if init_command is not None: self._dispatch_command(init_command) exit_token = self._ui_loop() if self._on_ui_exit: self._on_ui_exit() return exit_token def _ui_loop(self): while True: command = self._get_user_command() exit_token = self._dispatch_command(command) if exit_token is not None: return exit_token def _get_user_command(self): print("") return self._input(self.CLI_PROMPT).strip() def _dispatch_command(self, command): """Dispatch user command. Args: command: (str) Command to dispatch. Returns: An exit token object. None value means that the UI loop should not exit. A non-None value means the UI loop should exit. """ if command in self.CLI_EXIT_COMMANDS: # Explicit user command-triggered exit: EXPLICIT_USER_EXIT as the exit # token. return debugger_cli_common.EXPLICIT_USER_EXIT try: prefix, args, output_file_path = self._parse_command(command) except SyntaxError as e: print(str(e)) return if self._command_handler_registry.is_registered(prefix): try: screen_output = self._command_handler_registry.dispatch_command( prefix, args, screen_info=None) except debugger_cli_common.CommandLineExit as e: return e.exit_token else: screen_output = debugger_cli_common.RichTextLines([ self.ERROR_MESSAGE_PREFIX + "Invalid command prefix \"%s\"" % prefix ]) self._display_output(screen_output) if output_file_path: try: screen_output.write_to_file(output_file_path) print("Wrote output to %s" % output_file_path) except Exception: # pylint: disable=broad-except print("Failed to write output to %s" % output_file_path) def _display_output(self, screen_output): for line in screen_output.lines: print(line)
tensorflow-master
tensorflow/python/debug/cli/readline_ui.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests of the readline-based CLI.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import tempfile from tensorflow.python.debug.cli import cli_config from tensorflow.python.debug.cli import debugger_cli_common from tensorflow.python.debug.cli import readline_ui from tensorflow.python.debug.cli import ui_factory from tensorflow.python.framework import test_util from tensorflow.python.platform import gfile from tensorflow.python.platform import googletest class MockReadlineUI(readline_ui.ReadlineUI): """Test subclass of ReadlineUI that bypasses terminal manipulations.""" def __init__(self, on_ui_exit=None, command_sequence=None): readline_ui.ReadlineUI.__init__( self, on_ui_exit=on_ui_exit, config=cli_config.CLIConfig(config_file_path=tempfile.mktemp())) self._command_sequence = command_sequence self._command_counter = 0 self.observers = {"screen_outputs": []} def _get_user_command(self): command = self._command_sequence[self._command_counter] self._command_counter += 1 return command def _display_output(self, screen_output): self.observers["screen_outputs"].append(screen_output) class CursesTest(test_util.TensorFlowTestCase): def _babble(self, args, screen_info=None): ap = argparse.ArgumentParser( description="Do babble.", usage=argparse.SUPPRESS) ap.add_argument( "-n", "--num_times", dest="num_times", type=int, default=60, help="How many times to babble") parsed = ap.parse_args(args) lines = ["bar"] * parsed.num_times return debugger_cli_common.RichTextLines(lines) def testUIFactoryCreatesReadlineUI(self): ui = ui_factory.get_ui("readline") self.assertIsInstance(ui, readline_ui.ReadlineUI) def testUIFactoryRaisesExceptionOnInvalidUIType(self): with self.assertRaisesRegexp(ValueError, "Invalid ui_type: 'foobar'"): ui_factory.get_ui("foobar") def testUIFactoryRaisesExceptionOnInvalidUITypeGivenAvailable(self): with self.assertRaisesRegexp(ValueError, "Invalid ui_type: 'readline'"): ui_factory.get_ui("readline", available_ui_types=["curses"]) def testRunUIExitImmediately(self): """Make sure that the UI can exit properly after launch.""" ui = MockReadlineUI(command_sequence=["exit"]) ui.run_ui() # No screen output should have happened. self.assertEqual(0, len(ui.observers["screen_outputs"])) def testRunUIEmptyCommand(self): """Issue an empty command then exit.""" ui = MockReadlineUI(command_sequence=["", "exit"]) ui.run_ui() self.assertEqual(1, len(ui.observers["screen_outputs"])) def testRunUIWithInitCmd(self): """Run UI with an initial command specified.""" ui = MockReadlineUI(command_sequence=["exit"]) ui.register_command_handler("babble", self._babble, "") ui.run_ui(init_command="babble") screen_outputs = ui.observers["screen_outputs"] self.assertEqual(1, len(screen_outputs)) self.assertEqual(["bar"] * 60, screen_outputs[0].lines) def testRunUIWithValidUsersCommands(self): """Run UI with an initial command specified.""" ui = MockReadlineUI(command_sequence=["babble -n 3", "babble -n 6", "exit"]) ui.register_command_handler("babble", self._babble, "") ui.run_ui() screen_outputs = ui.observers["screen_outputs"] self.assertEqual(2, len(screen_outputs)) self.assertEqual(["bar"] * 3, screen_outputs[0].lines) self.assertEqual(["bar"] * 6, screen_outputs[1].lines) def testRunUIWithInvalidUsersCommands(self): """Run UI with an initial command specified.""" ui = MockReadlineUI(command_sequence=["babble -n 3", "wobble", "exit"]) ui.register_command_handler("babble", self._babble, "") ui.run_ui() screen_outputs = ui.observers["screen_outputs"] self.assertEqual(2, len(screen_outputs)) self.assertEqual(["bar"] * 3, screen_outputs[0].lines) self.assertEqual(["ERROR: Invalid command prefix \"wobble\""], screen_outputs[1].lines) def testRunUIWithOnUIExitCallback(self): observer = {"callback_invoked": False} def callback_for_test(): observer["callback_invoked"] = True ui = MockReadlineUI(on_ui_exit=callback_for_test, command_sequence=["exit"]) self.assertFalse(observer["callback_invoked"]) ui.run_ui() self.assertEqual(0, len(ui.observers["screen_outputs"])) self.assertTrue(observer["callback_invoked"]) def testIncompleteRedirectWorks(self): output_path = tempfile.mktemp() ui = MockReadlineUI( command_sequence=["babble -n 2 > %s" % output_path, "exit"]) ui.register_command_handler("babble", self._babble, "") ui.run_ui() screen_outputs = ui.observers["screen_outputs"] self.assertEqual(1, len(screen_outputs)) self.assertEqual(["bar"] * 2, screen_outputs[0].lines) with gfile.Open(output_path, "r") as f: self.assertEqual("bar\nbar\n", f.read()) def testConfigSetAndShow(self): """Run UI with an initial command specified.""" ui = MockReadlineUI(command_sequence=[ "config set graph_recursion_depth 5", "config show", "exit"]) ui.run_ui() outputs = ui.observers["screen_outputs"] self.assertEqual( ["Command-line configuration:", "", " graph_recursion_depth: 5"], outputs[1].lines[:3]) if __name__ == "__main__": googletest.main()
tensorflow-master
tensorflow/python/debug/cli/readline_ui_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """tfdbg example: debugging tf.keras models training on tf.data.Dataset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import sys import numpy as np import tensorflow as tf from tensorflow.python import debug as tf_debug def main(_): # Create a dummy dataset. num_examples = 8 steps_per_epoch = 2 input_dims = 3 output_dims = 1 xs = np.zeros([num_examples, input_dims]) ys = np.zeros([num_examples, output_dims]) dataset = tf.data.Dataset.from_tensor_slices( (xs, ys)).repeat(num_examples).batch(int(num_examples / steps_per_epoch)) sess = tf.Session() if FLAGS.debug: # Use the command-line interface (CLI) of tfdbg. sess = tf_debug.LocalCLIDebugWrapperSession(sess, ui_type=FLAGS.ui_type) elif FLAGS.tensorboard_debug_address: # Use the TensorBoard Debugger Plugin (GUI of tfdbg). sess = tf_debug.TensorBoardDebugWrapperSession( sess, FLAGS.tensorboard_debug_address) tf.keras.backend.set_session(sess) # Create a dummy model. model = tf.keras.Sequential([ tf.keras.layers.Dense(1, input_shape=[input_dims])]) model.compile(loss="mse", optimizer="sgd") # Train the model using the dummy dataset created above. model.fit(dataset, epochs=FLAGS.epochs, steps_per_epoch=steps_per_epoch) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.register("type", "bool", lambda v: v.lower() == "true") parser.add_argument( "--debug", type="bool", nargs="?", const=True, default=False, help="Use debugger to track down bad values during training. " "Mutually exclusive with the --tensorboard_debug_address flag.") parser.add_argument( "--ui_type", type=str, default="curses", help="Command-line user interface type (curses | readline).") parser.add_argument( "--tensorboard_debug_address", type=str, default=None, help="Connect to the TensorBoard Debugger Plugin backend specified by " "the gRPC address (e.g., localhost:1234). Mutually exclusive with the " "--debug flag.") parser.add_argument( "--epochs", type=int, default=2, help="Number of epochs to train the model for.") FLAGS, unparsed = parser.parse_known_args() with tf.Graph().as_default(): tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
tensorflow-master
tensorflow/python/debug/examples/debug_keras.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Debug the tf-learn iris example, based on the tf-learn tutorial.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import sys import tempfile import tensorflow as tf from tensorflow.python import debug as tf_debug _IRIS_INPUT_DIM = 4 def main(_): # Generate some fake Iris data. # It is okay for this example because this example is about how to use the # debugger, not how to use machine learning to solve the Iris classification # problem. def training_input_fn(): return ({"features": tf.random_normal([128, 4])}, tf.random_uniform([128], minval=0, maxval=3, dtype=tf.int32)) def test_input_fn(): return ({"features": tf.random_normal([32, 4])}, tf.random_uniform([32], minval=0, maxval=3, dtype=tf.int32)) feature_columns = [ tf.feature_column.numeric_column("features", shape=(4,))] # Build 3 layer DNN with 10, 20, 10 units respectively. model_dir = FLAGS.model_dir or tempfile.mkdtemp(prefix="debug_tflearn_iris_") classifier = tf.estimator.DNNClassifier( feature_columns=feature_columns, hidden_units=[10, 20, 10], n_classes=3, model_dir=model_dir) if FLAGS.debug and FLAGS.tensorboard_debug_address: raise ValueError( "The --debug and --tensorboard_debug_address flags are mutually " "exclusive.") hooks = [] if FLAGS.debug: hooks.append(tf_debug.LocalCLIDebugHook(ui_type=FLAGS.ui_type, dump_root=FLAGS.dump_root)) elif FLAGS.tensorboard_debug_address: hooks.append(tf_debug.TensorBoardDebugHook(FLAGS.tensorboard_debug_address)) # Train model, using tfdbg hook. classifier.train(training_input_fn, steps=FLAGS.train_steps, hooks=hooks) # Evaluate accuracy, using tfdbg hook. accuracy_score = classifier.evaluate(test_input_fn, steps=FLAGS.eval_steps, hooks=hooks)["accuracy"] print("After training %d steps, Accuracy = %f" % (FLAGS.train_steps, accuracy_score)) # Make predictions, using tfdbg hook. predict_results = classifier.predict(test_input_fn, hooks=hooks) print("A prediction result: %s" % next(predict_results)) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.register("type", "bool", lambda v: v.lower() == "true") parser.add_argument( "--data_dir", type=str, default="/tmp/iris_data", help="Directory to save the training and test data in.") parser.add_argument( "--model_dir", type=str, default="", help="Directory to save the trained model in.") parser.add_argument( "--train_steps", type=int, default=10, help="Number of steps to run training for.") parser.add_argument( "--eval_steps", type=int, default=1, help="Number of steps to run evaluation foir.") parser.add_argument( "--ui_type", type=str, default="curses", help="Command-line user interface type (curses | readline)") parser.add_argument( "--debug", type="bool", nargs="?", const=True, default=False, help="Use debugger to track down bad values during training. " "Mutually exclusive with the --tensorboard_debug_address flag.") parser.add_argument( "--dump_root", type=str, default="", help="Optional custom root directory for temporary debug dump data") parser.add_argument( "--tensorboard_debug_address", type=str, default=None, help="Connect to the TensorBoard Debugger Plugin backend specified by " "the gRPC address (e.g., localhost:1234). Mutually exclusive with the " "--debug flag.") FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
tensorflow-master
tensorflow/python/debug/examples/debug_tflearn_iris.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Example of debugging TensorFlow runtime errors using tfdbg.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import sys import numpy as np import tensorflow as tf from tensorflow.python import debug as tf_debug def main(_): sess = tf.Session() # Construct the TensorFlow network. ph_float = tf.placeholder(tf.float32, name="ph_float") x = tf.transpose(ph_float, name="x") v = tf.Variable(np.array([[-2.0], [-3.0], [6.0]], dtype=np.float32), name="v") m = tf.constant( np.array([[0.0, 1.0, 2.0], [-4.0, -1.0, 0.0]]), dtype=tf.float32, name="m") y = tf.matmul(m, x, name="y") z = tf.matmul(m, v, name="z") if FLAGS.debug: sess = tf_debug.LocalCLIDebugWrapperSession(sess, ui_type=FLAGS.ui_type) if FLAGS.error == "shape_mismatch": print(sess.run(y, feed_dict={ph_float: np.array([[0.0], [1.0], [2.0]])})) elif FLAGS.error == "uninitialized_variable": print(sess.run(z)) elif FLAGS.error == "no_error": print(sess.run(y, feed_dict={ph_float: np.array([[0.0, 1.0, 2.0]])})) else: raise ValueError("Unrecognized error type: " + FLAGS.error) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.register("type", "bool", lambda v: v.lower() == "true") parser.add_argument( "--error", type=str, default="shape_mismatch", help="""\ Type of the error to generate (shape_mismatch | uninitialized_variable | no_error).\ """) parser.add_argument( "--ui_type", type=str, default="curses", help="Command-line user interface type (curses | readline)") parser.add_argument( "--debug", type="bool", nargs="?", const=True, default=False, help="Use debugger to track down bad values during training") FLAGS, unparsed = parser.parse_known_args() with tf.Graph().as_default(): tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
tensorflow-master
tensorflow/python/debug/examples/debug_errors.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Demo of the tfdbg curses UI: A TF network computing Fibonacci sequence.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import sys import numpy as np from six.moves import xrange # pylint: disable=redefined-builtin import tensorflow as tf from tensorflow.python import debug as tf_debug FLAGS = None def main(_): sess = tf.Session() # Construct the TensorFlow network. n0 = tf.Variable( np.ones([FLAGS.tensor_size] * 2), dtype=tf.int32, name="node_00") n1 = tf.Variable( np.ones([FLAGS.tensor_size] * 2), dtype=tf.int32, name="node_01") for i in xrange(2, FLAGS.length): n0, n1 = n1, tf.add(n0, n1, name="node_%.2d" % i) sess.run(tf.global_variables_initializer()) # Wrap the TensorFlow Session object for debugging. if FLAGS.debug and FLAGS.tensorboard_debug_address: raise ValueError( "The --debug and --tensorboard_debug_address flags are mutually " "exclusive.") if FLAGS.debug: sess = tf_debug.LocalCLIDebugWrapperSession(sess) def has_negative(_, tensor): return np.any(tensor < 0) sess.add_tensor_filter("has_inf_or_nan", tf_debug.has_inf_or_nan) sess.add_tensor_filter("has_negative", has_negative) elif FLAGS.tensorboard_debug_address: sess = tf_debug.TensorBoardDebugWrapperSession( sess, FLAGS.tensorboard_debug_address) print("Fibonacci number at position %d:\n%s" % (FLAGS.length, sess.run(n1))) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.register("type", "bool", lambda v: v.lower() == "true") parser.add_argument( "--tensor_size", type=int, default=1, help="""\ Size of tensor. E.g., if the value is 30, the tensors will have shape [30, 30].\ """) parser.add_argument( "--length", type=int, default=20, help="Length of the fibonacci sequence to compute.") parser.add_argument( "--ui_type", type=str, default="curses", help="Command-line user interface type (curses | readline)") parser.add_argument( "--debug", dest="debug", action="store_true", help="Use TensorFlow Debugger (tfdbg). Mutually exclusive with the " "--tensorboard_debug_address flag.") parser.add_argument( "--tensorboard_debug_address", type=str, default=None, help="Connect to the TensorBoard Debugger Plugin backend specified by " "the gRPC address (e.g., localhost:1234). Mutually exclusive with the " "--debug flag.") FLAGS, unparsed = parser.parse_known_args() with tf.Graph().as_default(): tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
tensorflow-master
tensorflow/python/debug/examples/debug_fibonacci.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Demo of the tfdbg curses CLI: Locating the source of bad numerical values. The neural network in this demo is larged based on the tutorial at: tensorflow/examples/tutorials/mnist/mnist_with_summaries.py But modifications are made so that problematic numerical values (infs and nans) appear in nodes of the graph during training. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import sys import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data from tensorflow.python import debug as tf_debug IMAGE_SIZE = 28 HIDDEN_SIZE = 500 NUM_LABELS = 10 RAND_SEED = 42 def main(_): # Import data mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True, fake_data=FLAGS.fake_data) def feed_dict(train): if train or FLAGS.fake_data: xs, ys = mnist.train.next_batch(FLAGS.train_batch_size, fake_data=FLAGS.fake_data) else: xs, ys = mnist.test.images, mnist.test.labels return {x: xs, y_: ys} sess = tf.InteractiveSession() # Create the MNIST neural network graph. # Input placeholders. with tf.name_scope("input"): x = tf.placeholder( tf.float32, [None, IMAGE_SIZE * IMAGE_SIZE], name="x-input") y_ = tf.placeholder(tf.float32, [None, NUM_LABELS], name="y-input") def weight_variable(shape): """Create a weight variable with appropriate initialization.""" initial = tf.truncated_normal(shape, stddev=0.1, seed=RAND_SEED) return tf.Variable(initial) def bias_variable(shape): """Create a bias variable with appropriate initialization.""" initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu): """Reusable code for making a simple neural net layer.""" # Adding a name scope ensures logical grouping of the layers in the graph. with tf.name_scope(layer_name): # This Variable will hold the state of the weights for the layer with tf.name_scope("weights"): weights = weight_variable([input_dim, output_dim]) with tf.name_scope("biases"): biases = bias_variable([output_dim]) with tf.name_scope("Wx_plus_b"): preactivate = tf.matmul(input_tensor, weights) + biases activations = act(preactivate) return activations hidden = nn_layer(x, IMAGE_SIZE**2, HIDDEN_SIZE, "hidden") logits = nn_layer(hidden, HIDDEN_SIZE, NUM_LABELS, "output", tf.identity) y = tf.nn.softmax(logits) with tf.name_scope("cross_entropy"): # The following line is the culprit of the bad numerical values that appear # during training of this graph. Log of zero gives inf, which is first seen # in the intermediate tensor "cross_entropy/Log:0" during the 4th run() # call. A multiplication of the inf values with zeros leads to nans, # which is first in "cross_entropy/mul:0". # # You can use the built-in, numerically-stable implementation to fix this # issue: # diff = tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=logits) diff = -(y_ * tf.log(y)) with tf.name_scope("total"): cross_entropy = tf.reduce_mean(diff) with tf.name_scope("train"): train_step = tf.train.AdamOptimizer(FLAGS.learning_rate).minimize( cross_entropy) with tf.name_scope("accuracy"): with tf.name_scope("correct_prediction"): correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) with tf.name_scope("accuracy"): accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) sess.run(tf.global_variables_initializer()) if FLAGS.debug and FLAGS.tensorboard_debug_address: raise ValueError( "The --debug and --tensorboard_debug_address flags are mutually " "exclusive.") if FLAGS.debug: sess = tf_debug.LocalCLIDebugWrapperSession(sess, ui_type=FLAGS.ui_type) elif FLAGS.tensorboard_debug_address: sess = tf_debug.TensorBoardDebugWrapperSession( sess, FLAGS.tensorboard_debug_address) # Add this point, sess is a debug wrapper around the actual Session if # FLAGS.debug is true. In that case, calling run() will launch the CLI. for i in range(FLAGS.max_steps): acc = sess.run(accuracy, feed_dict=feed_dict(False)) print("Accuracy at step %d: %s" % (i, acc)) sess.run(train_step, feed_dict=feed_dict(True)) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.register("type", "bool", lambda v: v.lower() == "true") parser.add_argument( "--max_steps", type=int, default=10, help="Number of steps to run trainer.") parser.add_argument( "--train_batch_size", type=int, default=100, help="Batch size used during training.") parser.add_argument( "--learning_rate", type=float, default=0.025, help="Initial learning rate.") parser.add_argument( "--data_dir", type=str, default="/tmp/mnist_data", help="Directory for storing data") parser.add_argument( "--ui_type", type=str, default="curses", help="Command-line user interface type (curses | readline)") parser.add_argument( "--fake_data", type="bool", nargs="?", const=True, default=False, help="Use fake MNIST data for unit testing") parser.add_argument( "--debug", type="bool", nargs="?", const=True, default=False, help="Use debugger to track down bad values during training. " "Mutually exclusive with the --tensorboard_debug_address flag.") parser.add_argument( "--tensorboard_debug_address", type=str, default=None, help="Connect to the TensorBoard Debugger Plugin backend specified by " "the gRPC address (e.g., localhost:1234). Mutually exclusive with the " "--debug flag.") FLAGS, unparsed = parser.parse_known_args() with tf.Graph().as_default(): tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
tensorflow-master
tensorflow/python/debug/examples/debug_mnist.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tfdbg module debug_data.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import platform import shutil import tempfile import numpy as np from tensorflow.core.framework import graph_pb2 from tensorflow.core.framework import tensor_pb2 from tensorflow.python.debug.lib import debug_data from tensorflow.python.framework import test_util from tensorflow.python.platform import gfile from tensorflow.python.platform import googletest from tensorflow.python.platform import test class DeviceNamePathConversionTest(test_util.TensorFlowTestCase): def testDeviceNameToDevicePath(self): self.assertEqual( debug_data.METADATA_FILE_PREFIX + debug_data.DEVICE_TAG + ",job_ps,replica_1,task_2,cpu_0", debug_data.device_name_to_device_path("/job:ps/replica:1/task:2/cpu:0")) def testDevicePathToDeviceName(self): self.assertEqual( "/job:ps/replica:1/task:2/cpu:0", debug_data.device_path_to_device_name( debug_data.METADATA_FILE_PREFIX + debug_data.DEVICE_TAG + ",job_ps,replica_1,task_2,cpu_0")) class HasNanOrInfTest(test_util.TensorFlowTestCase): def setUp(self): self._dummy_datum = dummy_datum = debug_data.DebugTensorDatum( "/foo", "bar_0_DebugIdentity_42") def testNaN(self): a = np.array([np.nan, np.nan, 7.0]) self.assertTrue(debug_data.has_inf_or_nan(self._dummy_datum, a)) def testInf(self): a = np.array([np.inf, np.inf, 7.0]) self.assertTrue(debug_data.has_inf_or_nan(self._dummy_datum, a)) def testNanAndInf(self): a = np.array([np.inf, np.nan, 7.0]) self.assertTrue(debug_data.has_inf_or_nan(self._dummy_datum, a)) def testNoNanOrInf(self): a = np.array([0.0, 0.0, 7.0]) self.assertFalse(debug_data.has_inf_or_nan(self._dummy_datum, a)) def testEmpty(self): a = np.array([]) self.assertFalse(debug_data.has_inf_or_nan(self._dummy_datum, a)) def testInconvertibleTensorProto(self): self.assertFalse(debug_data.has_inf_or_nan( self._dummy_datum, debug_data.InconvertibleTensorProto(tensor_pb2.TensorProto(), initialized=False))) self.assertFalse(debug_data.has_inf_or_nan( self._dummy_datum, debug_data.InconvertibleTensorProto(tensor_pb2.TensorProto(), initialized=True))) def testDTypeComplexWorks(self): a = np.array([1j, 3j, 3j, 7j], dtype=np.complex128) self.assertFalse(debug_data.has_inf_or_nan(self._dummy_datum, a)) b = np.array([1j, 3j, 3j, 7j, np.nan], dtype=np.complex128) self.assertTrue(debug_data.has_inf_or_nan(self._dummy_datum, b)) def testDTypeIntegerWorks(self): a = np.array([1, 3, 3, 7], dtype=np.int16) self.assertFalse(debug_data.has_inf_or_nan(self._dummy_datum, a)) def testDTypeStringGivesFalse(self): """isnan and isinf are not applicable to strings.""" a = np.array(["s", "p", "a", "m"]) self.assertFalse(debug_data.has_inf_or_nan(self._dummy_datum, a)) def testDTypeObjectGivesFalse(self): dt = np.dtype([("spam", np.str_, 16), ("eggs", np.float64, (2,))]) a = np.array([("spam", (8.0, 7.0)), ("eggs", (6.0, 5.0))], dtype=dt) self.assertFalse(debug_data.has_inf_or_nan(self._dummy_datum, a)) class DebugTensorDatumTest(test_util.TensorFlowTestCase): def testDebugDatum(self): dump_root = "/tmp/tfdbg_1" debug_dump_rel_path = ( debug_data.METADATA_FILE_PREFIX + debug_data.DEVICE_TAG + ",job_localhost,replica_0,task_0,cpu_0" + "/ns1/ns2/node_a_1_2_DebugIdentity_1472563253536385") datum = debug_data.DebugTensorDatum(dump_root, debug_dump_rel_path) self.assertEqual("DebugIdentity", datum.debug_op) self.assertEqual("ns1/ns2/node_a_1", datum.node_name) self.assertEqual(2, datum.output_slot) self.assertEqual("ns1/ns2/node_a_1:2", datum.tensor_name) self.assertEqual(1472563253536385, datum.timestamp) self.assertEqual("ns1/ns2/node_a_1:2:DebugIdentity", datum.watch_key) self.assertEqual( os.path.join(dump_root, debug_dump_rel_path), datum.file_path) self.assertEqual( "{DebugTensorDatum (/job:localhost/replica:0/task:0/cpu:0) " "%s:%d @ %s @ %d}" % (datum.node_name, datum.output_slot, datum.debug_op, datum.timestamp), str(datum)) self.assertEqual( "{DebugTensorDatum (/job:localhost/replica:0/task:0/cpu:0) " "%s:%d @ %s @ %d}" % (datum.node_name, datum.output_slot, datum.debug_op, datum.timestamp), repr(datum)) def testDumpSizeBytesIsNoneForNonexistentFilePath(self): dump_root = "/tmp/tfdbg_1" debug_dump_rel_path = "ns1/ns2/node_foo_1_2_DebugIdentity_1472563253536385" datum = debug_data.DebugTensorDatum(dump_root, debug_dump_rel_path) self.assertIsNone(datum.dump_size_bytes) class DebugDumpDirTest(test_util.TensorFlowTestCase): def setUp(self): self._dump_root = tempfile.mktemp() os.mkdir(self._dump_root) def tearDown(self): # Tear down temporary dump directory. shutil.rmtree(self._dump_root) def _makeDataDirWithMultipleDevicesAndDuplicateNodeNames(self): cpu_0_dir = os.path.join( self._dump_root, debug_data.METADATA_FILE_PREFIX + debug_data.DEVICE_TAG + ",job_localhost,replica_0,task_0,cpu_0") gpu_0_dir = os.path.join( self._dump_root, debug_data.METADATA_FILE_PREFIX + debug_data.DEVICE_TAG + ",job_localhost,replica_0,task_0,device_GPU_0") gpu_1_dir = os.path.join( self._dump_root, debug_data.METADATA_FILE_PREFIX + debug_data.DEVICE_TAG + ",job_localhost,replica_0,task_0,device_GPU_1") os.makedirs(cpu_0_dir) os.makedirs(gpu_0_dir) os.makedirs(gpu_1_dir) open(os.path.join( cpu_0_dir, "node_foo_1_2_DebugIdentity_1472563253536386"), "wb") open(os.path.join( gpu_0_dir, "node_foo_1_2_DebugIdentity_1472563253536385"), "wb") open(os.path.join( gpu_1_dir, "node_foo_1_2_DebugIdentity_1472563253536387"), "wb") def testDebugDumpDir_nonexistentDumpRoot(self): with self.assertRaisesRegexp(IOError, "does not exist"): debug_data.DebugDumpDir(tempfile.mktemp() + "_foo") def testDebugDumpDir_invalidFileNamingPattern(self): # File name with too few underscores should lead to an exception. device_dir = os.path.join( self._dump_root, debug_data.METADATA_FILE_PREFIX + debug_data.DEVICE_TAG + ",job_localhost,replica_0,task_0,cpu_0") os.makedirs(device_dir) open(os.path.join(device_dir, "node1_DebugIdentity_1234"), "wb") with self.assertRaisesRegexp(ValueError, "does not conform to the naming pattern"): debug_data.DebugDumpDir(self._dump_root) def testDebugDumpDir_validDuplicateNodeNamesWithMultipleDevices(self): self._makeDataDirWithMultipleDevicesAndDuplicateNodeNames() graph_cpu_0 = graph_pb2.GraphDef() node = graph_cpu_0.node.add() node.name = "node_foo_1" node.op = "FooOp" node.device = "/job:localhost/replica:0/task:0/cpu:0" graph_gpu_0 = graph_pb2.GraphDef() node = graph_gpu_0.node.add() node.name = "node_foo_1" node.op = "FooOp" node.device = "/job:localhost/replica:0/task:0/device:GPU:0" graph_gpu_1 = graph_pb2.GraphDef() node = graph_gpu_1.node.add() node.name = "node_foo_1" node.op = "FooOp" node.device = "/job:localhost/replica:0/task:0/device:GPU:1" dump_dir = debug_data.DebugDumpDir( self._dump_root, partition_graphs=[graph_cpu_0, graph_gpu_0, graph_gpu_1]) self.assertItemsEqual( ["/job:localhost/replica:0/task:0/cpu:0", "/job:localhost/replica:0/task:0/device:GPU:0", "/job:localhost/replica:0/task:0/device:GPU:1"], dump_dir.devices()) self.assertEqual(1472563253536385, dump_dir.t0) self.assertEqual(3, dump_dir.size) with self.assertRaisesRegexp( ValueError, r"Invalid device name: "): dump_dir.nodes("/job:localhost/replica:0/task:0/device:GPU:2") self.assertItemsEqual(["node_foo_1", "node_foo_1", "node_foo_1"], dump_dir.nodes()) self.assertItemsEqual( ["node_foo_1"], dump_dir.nodes(device_name="/job:localhost/replica:0/task:0/cpu:0")) def testDuplicateNodeNamesInGraphDefOfSingleDeviceRaisesException(self): self._makeDataDirWithMultipleDevicesAndDuplicateNodeNames() graph_cpu_0 = graph_pb2.GraphDef() node = graph_cpu_0.node.add() node.name = "node_foo_1" node.op = "FooOp" node.device = "/job:localhost/replica:0/task:0/cpu:0" graph_gpu_0 = graph_pb2.GraphDef() node = graph_gpu_0.node.add() node.name = "node_foo_1" node.op = "FooOp" node.device = "/job:localhost/replica:0/task:0/device:GPU:0" graph_gpu_1 = graph_pb2.GraphDef() node = graph_gpu_1.node.add() node.name = "node_foo_1" node.op = "FooOp" node.device = "/job:localhost/replica:0/task:0/device:GPU:1" node = graph_gpu_1.node.add() # Here is the duplicate. node.name = "node_foo_1" node.op = "FooOp" node.device = "/job:localhost/replica:0/task:0/device:GPU:1" with self.assertRaisesRegexp( ValueError, r"Duplicate node name on device "): debug_data.DebugDumpDir( self._dump_root, partition_graphs=[graph_cpu_0, graph_gpu_0, graph_gpu_1]) def testDebugDumpDir_emptyDumpDir(self): dump_dir = debug_data.DebugDumpDir(self._dump_root) self.assertIsNone(dump_dir.t0) self.assertEqual([], dump_dir.dumped_tensor_data) def testDebugDumpDir_usesGfileGlob(self): if platform.system() == "Windows": self.skipTest("gfile.Glob is not used on Windows.") self._makeDataDirWithMultipleDevicesAndDuplicateNodeNames() def fake_gfile_glob(glob_pattern): del glob_pattern return [] with test.mock.patch.object( gfile, "Glob", side_effect=fake_gfile_glob, autospec=True) as fake: debug_data.DebugDumpDir(self._dump_root) expected_calls = [ test.mock.call(os.path.join( self._dump_root, (debug_data.METADATA_FILE_PREFIX + debug_data.CORE_METADATA_TAG + "*"))), test.mock.call(os.path.join( self._dump_root, (debug_data.METADATA_FILE_PREFIX + debug_data.FETCHES_INFO_FILE_TAG + "*"))), test.mock.call(os.path.join( self._dump_root, (debug_data.METADATA_FILE_PREFIX + debug_data.FEED_KEYS_INFO_FILE_TAG + "*"))), test.mock.call(os.path.join( self._dump_root, (debug_data.METADATA_FILE_PREFIX + debug_data.DEVICE_TAG + "*")))] fake.assert_has_calls(expected_calls, any_order=True) if __name__ == "__main__": googletest.main()
tensorflow-master
tensorflow/python/debug/lib/debug_data_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """gRPC debug server in Python.""" # pylint: disable=g-bad-import-order from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import json import threading import time from concurrent import futures import grpc from six.moves import queue from tensorflow.core.debug import debug_service_pb2 from tensorflow.core.framework import graph_pb2 from tensorflow.python.debug.lib import debug_graphs from tensorflow.python.debug.lib import debug_service_pb2_grpc from tensorflow.python.platform import tf_logging as logging from tensorflow.python.util import compat DebugWatch = collections.namedtuple("DebugWatch", ["node_name", "output_slot", "debug_op"]) def _state_change(new_state, node_name, output_slot, debug_op): state_change = debug_service_pb2.EventReply.DebugOpStateChange() state_change.state = new_state state_change.node_name = node_name state_change.output_slot = output_slot state_change.debug_op = debug_op return state_change class EventListenerBaseStreamHandler(object): """Per-stream handler of EventListener gRPC streams.""" def __init__(self): """Constructor of EventListenerBaseStreamHandler.""" def on_core_metadata_event(self, event): """Callback for core metadata. Args: event: The Event proto that carries a JSON string in its `log_message.message` field. Returns: `None` or an `EventReply` proto to be sent back to the client. If `None`, an `EventReply` proto construct with the default no-arg constructor will be sent back to the client. """ raise NotImplementedError( "on_core_metadata_event() is not implemented in the base servicer " "class") def on_graph_def(self, graph_def, device_name, wall_time): """Callback for Event proto received through the gRPC stream. This Event proto carries a GraphDef, encoded as bytes, in its graph_def field. Args: graph_def: A GraphDef object. device_name: Name of the device on which the graph was created. wall_time: An epoch timestamp (in microseconds) for the graph. Returns: `None` or an `EventReply` proto to be sent back to the client. If `None`, an `EventReply` proto construct with the default no-arg constructor will be sent back to the client. """ raise NotImplementedError( "on_graph_def() is not implemented in the base servicer class") def on_value_event(self, event): """Callback for Event proto received through the gRPC stream. This Event proto carries a Tensor in its summary.value[0] field. Args: event: The Event proto from the stream to be processed. """ raise NotImplementedError( "on_value_event() is not implemented in the base servicer class") class EventListenerBaseServicer(debug_service_pb2_grpc.EventListenerServicer): """Base Python class for gRPC debug server.""" def __init__(self, server_port, stream_handler_class): """Constructor. Args: server_port: (int) Port number to bind to. stream_handler_class: A class of the base class `EventListenerBaseStreamHandler` that will be used to constructor stream handler objects during `SendEvents` calls. """ self._server_port = server_port self._stream_handler_class = stream_handler_class self._server_lock = threading.Lock() self._server_started = False self._stop_requested = False self._debug_ops_state_change_queue = queue.Queue() self._gated_grpc_debug_watches = set() self._breakpoints = set() def SendEvents(self, request_iterator, context): """Implementation of the SendEvents service method. This method receives streams of Event protos from the client, and processes them in ways specified in the on_event() callback. The stream is bi-directional, but currently only the client-to-server stream (i.e., the stream from the debug ops to the server) is used. Args: request_iterator: The incoming stream of Event protos. context: Server context. Raises: ValueError: If there are more than one core metadata events. Yields: An empty stream of responses. """ core_metadata_count = 0 # A map from GraphDef hash to a list of received chunks. graph_def_chunks = {} tensor_chunks = {} stream_handler = None for event in request_iterator: if not stream_handler: stream_handler = self._stream_handler_class() if event.summary and event.summary.value: # An Event proto carrying a tensor value. maybe_tensor_event = self._process_tensor_event_in_chunks( event, tensor_chunks) if maybe_tensor_event: event_reply = stream_handler.on_value_event(maybe_tensor_event) if event_reply is not None: yield self._process_debug_op_state_changes(event_reply) else: # Non-tensor-value Event. if event.graph_def: # GraphDef-carrying Event. maybe_graph_def, maybe_device_name, maybe_wall_time = ( self._process_encoded_graph_def_in_chunks( event, graph_def_chunks)) if maybe_graph_def: reply = stream_handler.on_graph_def( maybe_graph_def, maybe_device_name, maybe_wall_time) yield self._process_debug_op_state_changes(reply) elif event.log_message.message: # Core metadata-carrying Event. core_metadata_count += 1 if core_metadata_count > 1: raise ValueError( "Expected one core metadata event; received multiple") reply = stream_handler.on_core_metadata_event(event) yield self._process_debug_op_state_changes(reply) def _process_debug_op_state_changes(self, event_reply=None): """Dequeue and process all the queued debug-op state change protos. Include all the debug-op state change protos in a `EventReply` proto. Args: event_reply: An `EventReply` to add the `DebugOpStateChange` protos to, or `None`. Returns: An `EventReply` proto with the dequeued `DebugOpStateChange` protos (if any) added. """ if event_reply is None: event_reply = debug_service_pb2.EventReply() while not self._debug_ops_state_change_queue.empty(): state_change = self._debug_ops_state_change_queue.get() debug_node_key = (state_change.node_name, state_change.output_slot, state_change.debug_op) if (state_change.state == debug_service_pb2.EventReply.DebugOpStateChange.READ_WRITE): logging.info("Adding breakpoint %s:%d:%s", state_change.node_name, state_change.output_slot, state_change.debug_op) self._breakpoints.add(debug_node_key) elif (state_change.state == debug_service_pb2.EventReply.DebugOpStateChange.READ_ONLY): logging.info("Adding watchpoint %s:%d:%s", state_change.node_name, state_change.output_slot, state_change.debug_op) if debug_node_key in self._breakpoints: self._breakpoints.discard(debug_node_key) elif (state_change.state == debug_service_pb2.EventReply.DebugOpStateChange.DISABLED): logging.info("Removing watchpoint or breakpoint: %s:%d:%s", state_change.node_name, state_change.output_slot, state_change.debug_op) if debug_node_key in self._breakpoints: self._breakpoints.discard(debug_node_key) else: logging.warn( "Attempting to remove a non-existent debug node key: %s", debug_node_key) new_state_change = event_reply.debug_op_state_changes.add() new_state_change.CopyFrom(state_change) return event_reply def _process_tensor_event_in_chunks(self, event, tensor_chunks): """Possibly reassemble event chunks. Due to gRPC's message size limit, a large tensor can be encapsulated in multiple Event proto chunks to be sent through the debugger stream. This method keeps track of the chunks that have arrived, reassemble all chunks corresponding to a tensor when they have arrived and return the reassembled Event proto. Args: event: The single Event proto that has arrived. tensor_chunks: A dict used to keep track of the Event protos that have arrived but haven't been reassembled. Returns: If all Event protos corresponding to a tensor have arrived, returns the reassembled Event proto. Otherwise, return None. """ value = event.summary.value[0] debugger_plugin_metadata = json.loads( compat.as_text(value.metadata.plugin_data.content)) device_name = debugger_plugin_metadata["device"] num_chunks = debugger_plugin_metadata["numChunks"] chunk_index = debugger_plugin_metadata["chunkIndex"] if num_chunks <= 1: return event debug_node_name = value.node_name timestamp = int(event.wall_time) tensor_key = "%s_%s_%d" % (device_name, debug_node_name, timestamp) if tensor_key not in tensor_chunks: tensor_chunks[tensor_key] = [None] * num_chunks chunks = tensor_chunks[tensor_key] if value.tensor.tensor_content: chunks[chunk_index] = value.tensor elif value.tensor.string_val: chunks[chunk_index] = event if None not in chunks: if value.tensor.tensor_content: event.summary.value[0].tensor.tensor_content = b"".join( chunk.tensor_content for chunk in chunks) del tensor_chunks[tensor_key] return event elif value.tensor.string_val: merged_event = chunks[0] for chunk in chunks[1:]: merged_event.summary.value[0].tensor.string_val.extend( list(chunk.summary.value[0].tensor.string_val)) return merged_event def _process_encoded_graph_def_in_chunks(self, event, graph_def_chunks): """Process an Event proto containing a chunk of encoded GraphDef. Args: event: the Event proto containing the chunk of encoded GraphDef. graph_def_chunks: A dict mapping keys for GraphDefs (i.e., "<graph_def_hash>,<device_name>,<wall_time>") to a list of chunks of encoded GraphDefs. Returns: If all chunks of the GraphDef have arrived, return decoded GraphDef proto, device name, wall_time. Otherwise, return None, None, None. """ graph_def = graph_pb2.GraphDef() index_bar_0 = event.graph_def.find(b"|") index_bar_1 = event.graph_def.find(b"|", index_bar_0 + 1) index_bar_2 = event.graph_def.find(b"|", index_bar_1 + 1) graph_def_hash_device_timestamp = event.graph_def[:index_bar_0] chunk_index = int(event.graph_def[index_bar_0 + 1 : index_bar_1]) num_chunks = int(event.graph_def[index_bar_1 + 1 : index_bar_2]) if graph_def_hash_device_timestamp not in graph_def_chunks: graph_def_chunks[graph_def_hash_device_timestamp] = [None] * num_chunks graph_def_chunks[graph_def_hash_device_timestamp][ chunk_index] = event.graph_def[index_bar_2 + 1:] if all(graph_def_chunks[graph_def_hash_device_timestamp]): device_name = graph_def_hash_device_timestamp.split(b",")[1] wall_time = int(graph_def_hash_device_timestamp.split(b",")[2]) graph_def.ParseFromString( b"".join(graph_def_chunks[graph_def_hash_device_timestamp])) del graph_def_chunks[graph_def_hash_device_timestamp] self._process_graph_def(graph_def) return graph_def, device_name, wall_time else: return None, None, None def _process_graph_def(self, graph_def): for node_def in graph_def.node: if (debug_graphs.is_debug_node(node_def.name) and node_def.attr["gated_grpc"].b): node_name, output_slot, _, debug_op = ( debug_graphs.parse_debug_node_name(node_def.name)) self._gated_grpc_debug_watches.add( DebugWatch(node_name, output_slot, debug_op)) def run_server(self, blocking=True): """Start running the server. Args: blocking: If `True`, block until `stop_server()` is invoked. Raises: ValueError: If server stop has already been requested, or if the server has already started running. """ self._server_lock.acquire() try: if self._stop_requested: raise ValueError("Server has already stopped") if self._server_started: raise ValueError("Server has already started running") self.server = grpc.server(futures.ThreadPoolExecutor(max_workers=10)) debug_service_pb2_grpc.add_EventListenerServicer_to_server(self, self.server) self.server.add_insecure_port("[::]:%d" % self._server_port) self.server.start() self._server_started = True finally: self._server_lock.release() if blocking: while not self._stop_requested: time.sleep(1.0) def stop_server(self, grace=1.0): """Request server stopping. Once stopped, server cannot be stopped or started again. This method is non-blocking. Call `wait()` on the returned event to block until the server has completely stopped. Args: grace: Grace period in seconds to be used when calling `server.stop()`. Raises: ValueError: If server stop has already been requested, or if the server has not started running yet. Returns: A threading.Event that will be set when the server has completely stopped. """ self._server_lock.acquire() try: if not self._server_started: raise ValueError("Server has not started running") if self._stop_requested: raise ValueError("Server has already stopped") self._stop_requested = True return self.server.stop(grace=grace) finally: self._server_lock.release() def request_watch(self, node_name, output_slot, debug_op, breakpoint=False): """Request enabling a debug tensor watchpoint or breakpoint. This will let the server send a EventReply to the client side (i.e., the debugged TensorFlow runtime process) to request adding a watch key (i.e., <node_name>:<output_slot>:<debug_op>) to the list of enabled watch keys. The list applies only to debug ops with the attribute gated_grpc=True. To disable the watch, use `request_unwatch()`. Args: node_name: (`str`) name of the node that the to-be-watched tensor belongs to, e.g., "hidden/Weights". output_slot: (`int`) output slot index of the tensor to watch. debug_op: (`str`) name of the debug op to enable. This should not include any attribute substrings. breakpoint: (`bool`) Iff `True`, the debug op will block and wait until it receives an `EventReply` response from the server. The `EventReply` proto may carry a TensorProto that modifies the value of the debug op's output tensor. """ self._debug_ops_state_change_queue.put( _state_change( debug_service_pb2.EventReply.DebugOpStateChange.READ_WRITE if breakpoint else debug_service_pb2.EventReply.DebugOpStateChange.READ_ONLY, node_name, output_slot, debug_op)) def request_unwatch(self, node_name, output_slot, debug_op): """Request disabling a debug tensor watchpoint or breakpoint. This is the opposite of `request_watch()`. Args: node_name: (`str`) name of the node that the to-be-watched tensor belongs to, e.g., "hidden/Weights". output_slot: (`int`) output slot index of the tensor to watch. debug_op: (`str`) name of the debug op to enable. This should not include any attribute substrings. """ self._debug_ops_state_change_queue.put( _state_change( debug_service_pb2.EventReply.DebugOpStateChange.DISABLED, node_name, output_slot, debug_op)) @property def breakpoints(self): """Get a set of the currently-activated breakpoints. Returns: A `set` of 3-tuples: (node_name, output_slot, debug_op), e.g., {("MatMul", 0, "DebugIdentity")}. """ return self._breakpoints def gated_grpc_debug_watches(self): """Get the list of debug watches with attribute gated_grpc=True. Since the server receives `GraphDef` from the debugged runtime, it can only return such debug watches that it has received so far. Returns: A `list` of `DebugWatch` `namedtuples` representing the debug watches with gated_grpc=True. Each `namedtuple` element has the attributes: `node_name` as a `str`, `output_slot` as an `int`, `debug_op` as a `str`. """ return list(self._gated_grpc_debug_watches) def SendTracebacks(self, request, context): """Base implementation of the handling of SendTracebacks calls. The base implementation does nothing with the incoming request. Override in an implementation of the server if necessary. Args: request: A `CallTraceback` proto, containing information about the type (e.g., graph vs. eager execution) and source-code traceback of the call and (any) associated `tf.Graph`s. context: Server context. Returns: A `EventReply` proto. """ return debug_service_pb2.EventReply() def SendSourceFiles(self, request, context): """Base implementation of the handling of SendSourceFiles calls. The base implementation does nothing with the incoming request. Override in an implementation of the server if necessary. Args: request: A `DebuggedSourceFiles` proto, containing the path, content, size and last-modified timestamp of source files. context: Server context. Returns: A `EventReply` proto. """ return debug_service_pb2.EventReply()
tensorflow-master
tensorflow/python/debug/lib/grpc_debug_server.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """TensorFlow Debugger: Tools for debugging gradients.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import re import uuid import six from tensorflow.python.debug.lib import debug_data from tensorflow.python.debug.lib import debug_graphs from tensorflow.python.framework import ops from tensorflow.python.ops import gen_array_ops from tensorflow.python.ops import variables _GRADIENT_DEBUG_TAG = "gradient_debug_" _gradient_debuggers = {} def _tensor_to_grad_debug_op_name(tensor, grad_debugger_uuid): op_name, slot = debug_graphs.parse_node_or_tensor_name(tensor.name) return "%s_%d/%s%s" % (op_name, slot, _GRADIENT_DEBUG_TAG, grad_debugger_uuid) def _parse_grad_debug_op_name(op_name): """Parse the name of a debug gradient op. Args: op_name: the name of the debug gradient op. Returns: 1) The UUID of the GradientsDebugger that created the debug gradient op. 2) Name of the original tensor whose gradient is debugged by the debug gradient op. """ name_items = op_name.split("/") assert len(name_items) > 1 assert name_items[-1].startswith(_GRADIENT_DEBUG_TAG) grad_debugger_uuid = name_items[-1][len(_GRADIENT_DEBUG_TAG):] if "_" in grad_debugger_uuid: grad_debugger_uuid = grad_debugger_uuid[:grad_debugger_uuid.index("_")] orig_tensor_slot = int(name_items[-2][name_items[-2].rfind("_") + 1:]) orig_base_op_name = name_items[-2][:name_items[-2].rfind("_")] orig_tensor_name = ("/".join(name_items[:-2] + [orig_base_op_name]) + ":%d" % orig_tensor_slot) return grad_debugger_uuid, orig_tensor_name class GradientsDebugger(object): """Gradients Debugger. Allows retrieval of gradient tensors created by TensorFlow's automatic differentiation algorithm, i.e., `tf.gradients` and optimizer classes that use it. """ # TODO(cais): Add examples code in the doc string? def __init__(self, y_tensor=None): """Constructor of GradientsDebugger. Args: y_tensor: optional: the `tf.Tensor` to be differentiated, i.e., the tensor on the numerator of the differentiation. """ self._uuid = uuid.uuid4().hex _gradient_debuggers[self._uuid] = self # A dict mapping x-tensor names to gradient tensor. x-tensor refers to the # independent tf.Tensor, i.e., the tensor on the denominator of the # differentiation. self._gradient_tensors = {} self._y_tensor = y_tensor self._graph = None if y_tensor: self._graph = y_tensor.graph self._is_active_context = False @property def y_tensor(self): return self._y_tensor @property def graph(self): return self._graph def __enter__(self): self._is_active_context = True def __exit__(self, unused_type, unused_value, unused_traceback): self._is_active_context = False def identify_gradient(self, input_tensor): """Create a debug identity tensor that registers and forwards gradients. The side effect of this method is that when gradient tensor(s) are created with respect to the any paths that include the `input_tensor`, the gradient tensor(s) with repsect to `input_tensor` will be registered with this this `GradientsDebugger` instance and can later be retrieved, with the methods `gradient_tensor` and `gradient_tensors`. Example: ```python x = tf.Variable(1.0) y = tf.add(x, x) grad_debugger = tf_debug.GradientsDebugger() debug_y = grad_debugger.identify_gradient(y) z = tf.square(debug_y) # Create a train op under the grad_debugger context. with grad_debugger: train_op = tf.compat.v1.train.GradientDescentOptimizer(z) # Now we can reflect through grad_debugger to get the gradient tensor # with respect to y. y_grad = grad_debugger.gradient_tensor(y) ``` Args: input_tensor: the input `tf.Tensor` object whose related gradient tensors are to be reigstered with this `GradientsDebugger` instance when they are created, e.g., during `tf.gradients` calls or the construction of optimization (training) op that uses `tf.gradients`. Returns: A forwarded identity of `input_tensor`, as a `tf.Tensor`. Raises: ValueError: If an op with name that duplicates the gradient-debugging op already exists in the graph (highly unlikely). """ # TODO(cais): Allow overriding gradient. # TODO(cais): Implement value_stack. grad_debug_op_name = _tensor_to_grad_debug_op_name(input_tensor, self._uuid) # pylint: disable=protected-access identity_op = ( gen_array_ops.debug_gradient_ref_identity if input_tensor.dtype._is_ref_dtype else gen_array_ops.debug_gradient_identity) # pylint: enable=protected-access debug_grad_identity = identity_op(input_tensor, name=grad_debug_op_name) assert debug_grad_identity.dtype == input_tensor.dtype if debug_grad_identity.op.name != grad_debug_op_name: raise ValueError( "The graph already contains an op named %s" % grad_debug_op_name) return debug_grad_identity def watch_gradients_by_tensors(self, graph, tensors): """Watch gradient tensors by x-tensor(s). The side effect of this method is that when gradient tensor(s) are created with respect to the any paths that include the `x_tensor`s, the gradient tensor(s) with repsect to the tensor will be registered with this this `GradientsDebugger` instance and can later be retrieved, with the methods `gradient_tensor` and `gradient_tensors`. Unlike the method `identify_gradient`, this method is used to retrieve gradient tensors after the construction of the forward subgraph has completed (but before the construction of the backward subgraph). This method is the same as `watch_gradients_by_x_tensor_names` except that the tensors are specified by the Python `tf.Tensor` or `tf.Variable` objects, instead by name patterns. Example: ```python x = tf.Variable(1.0) y = tf.add(x, x, name="y") z = tf.square(debug_y) # Create a train op under the grad_debugger context. grad_debugger = tf_debug.GradientsDebugger() with grad_debugger.watch_gradients_by_tensors(y): train_op = tf.compat.v1.train.GradientDescentOptimizer(z) # Now we can reflect through grad_debugger to get the gradient tensor # with respect to y. y_grad = grad_debugger.gradient_tensor(y) # or y_grad = grad_debugger.gradient_tensor("y:0") ``` Args: graph: the `tf.Graph` to watch the gradients on. tensors: a `tf.Tensor` or `tf.Variable` object, or a list of such objects. Returns: The GradientsDebugger instance itself. """ if not isinstance(tensors, list): tensors = [tensors] tensor_name_regex = [] for tensor in tensors: tensor_name_regex.append(re.escape(tensor.name) + "$") tensor_name_regex = "(" + "|".join(tensor_name_regex) + ")" return self.watch_gradients_by_tensor_names(graph, tensor_name_regex) def watch_gradients_by_tensor_names(self, graph, tensor_name_regex): """Watch gradient tensors by name(s) of the x-tensor(s). The side effect of this method is that when gradient tensor(s) are created with respect to the x-tensors, the gradient tensor(s) will be registered with this `GradientsDebugger` instance and can later be retrieved. Unlike the `identify_gradient` method, this method is used after the construction of the forward graph has completed. Unlike the `watch_gradients_by_tensor` method, this method does not use handles to the tensors of interest; it uses their names. This method is the same as `watch_gradients_by_tensors` except that the x-tensors are specified by name patterns, instead of `tf.Tensor` or `tf.Variable` objects. Example: ```python x = tf.Variable(1.0, name="x") y = tf.add(x, x, name="y") z = tf.square(debug_y) # Create a train op under the grad_debugger context. grad_debugger = tf_debug.GradientsDebugger() with grad_debugger.watch_gradients_by_tensor_names(r"(x|y):0$"): train_op = tf.compat.v1.train.GradientDescentOptimizer(z) # Now we can reflect through grad_debugger to get the gradient tensor # with respect to x and y. x_grad = grad_debugger.gradient_tensor("x:0") y_grad = grad_debugger.gradient_tensor("y:0") ``` Args: graph: the `tf.Graph` to watch the gradients on. tensor_name_regex: the regular-expression pattern of the name(s) of the x-tensor(s) to watch. x-tensor refers to the tensors on the denominator of the differentiation. Returns: The GradientsDebugger instance itself. """ tensor_name_pattern = re.compile(tensor_name_regex) with graph.as_default(): for op in graph.get_operations(): for output in op.outputs: if tensor_name_pattern.match(output.name): debug_op = self.identify_gradient(output) # Make a copy of output.consumers() since we'll modify the consumers # TODO(skyewm): this is unnecessary once the C API is enabled for consumer in list(output.consumers()): if consumer == debug_op.op: continue # Locate the slot index of the original input. for i, consumer_input in enumerate(consumer.inputs): if consumer_input == output: consumer._update_input(i, debug_op) # pylint: disable=protected-access return self def _check_same_graph(self, tensor): if self._graph is None: self._graph = tensor.graph elif self._graph != tensor.graph: raise ValueError( "The graph of the value (%s) is not the same as the graph %s" % (tensor.graph, self._graph)) def register_gradient_tensor(self, x_tensor_name, gradient_tensor): """Register the gradient tensor for an x-tensor. Args: x_tensor_name: (`str`) the name of the independent `tf.Tensor`, i.e., the tensor on the denominator of the differentiation. gradient_tensor: the gradient `tf.Tensor`. """ if len(_gradient_debuggers) == 1 or self._is_active_context: self._check_same_graph(gradient_tensor) self._gradient_tensors[x_tensor_name] = gradient_tensor def gradient_tensor(self, x_tensor): """Get the gradient tensor of an x-tensor. Args: x_tensor: (`tf.Tensor`, `tf.Variable` or `str`) The x-tensor object or its name. x-tensor refers to the independent `tf.Tensor`, i.e., the tensor on the denominator of the differentiation. Returns: If found, the gradient tensor. Raises: TypeError: If `x_tensor` is not a `tf.Tensor`, `tf.Variable` or `str`. LookupError: If the `x_tensor` has not been registered with a gradient tensor. """ x_tensor_name = self._get_tensor_name(x_tensor) if x_tensor_name not in self._gradient_tensors: raise LookupError( "This GradientsDebugger has not received any gradient tensor for " "x-tensor %s" % x_tensor_name) return self._gradient_tensors[x_tensor_name] def gradient_tensors(self): """Get the gradient tensors that this object is aware of. Returns: A dict mapping x-tensor names to gradient tensor objects. x-tensor refers to the tensors on the denominator of the differentation. """ return self._gradient_tensors def _get_tensor_name(self, tensor): if isinstance(tensor, (ops.Tensor, variables.Variable)): return tensor.name elif isinstance(tensor, six.string_types): return tensor else: raise TypeError( "x_tensor must be a str or tf.Tensor or tf.Variable, " "but instead has type %s" % type(tensor)) def clear_gradient_debuggers(): """Clear all globally registered gradient debuggers.""" _gradient_debuggers.clear() @ops.RegisterGradient("DebugGradientIdentity") def _identify_gradient_grad(op, dy): """Gradient function for the DebugIdentity op.""" # TODO(cais): Allow overriding gradient. grad_debugger_uuid, orig_tensor_name = _parse_grad_debug_op_name(op.name) grad_debugger = _gradient_debuggers[grad_debugger_uuid] grad_debugger.register_gradient_tensor(orig_tensor_name, dy) return dy @ops.RegisterGradient("DebugGradientRefIdentity") def _identify_gradient_grad_ref(op, dy): """Gradient function for the DebugIdentity op.""" return _identify_gradient_grad(op, dy) def gradient_values_from_dump(grad_debugger, x_tensor, dump): """Find gradient values from a `DebugDumpDir` object. Args: grad_debugger: the `tf_debug.GradientsDebugger` instance to be used. x_tensor: (`tf.Tensor`, `tf.Variable` or `str`) The x-tensor object or its name. x-tensor refers to the independent `tf.Tensor`, i.e., the tensor on the denominator of the differentiation. dump: A `tfdbg.DebugDumpDir` object. Returns: If this `GradientsDebugger` instance has the gradient tensor of `x_tensor` registered: a list of `numpy.ndarray` representing the value of the gradient tensor from `dump`. The list could be empty, if the gradient tensor is not executed in the `tf.Session.run()` call that generated the `dump`. The list could also contain multiple values of the gradient tensor, e.g., if gradient tensor is computed repeatedly in a `tf.while_loop` during the run that generated the `dump`. Raises: LookupError: If this `GradientsDebugger` instance does not have the gradient tensor of `x_tensor` registered. ValueError: If this `GradientsDebugger` has a `tf.Graph` object that does not match the `tf.Graph` object of the `dump`. TypeError: If `x_tensor` is not a `tf.Tensor`, `tf.Variable` or `str`. """ # TODO(cais): Use this method in LocalCLIDebugWrapperSession to present the # gradient tensors to the TFDBG CLI. # If possible, verify that the Python graph of the dump and that of this # GradientsDebugger match. if (dump.python_graph and grad_debugger.graph and dump.python_graph != grad_debugger.graph): raise ValueError( "This GradientsDebugger instance has a graph (%s) that differs from " "the graph of the DebugDumpDir object (%s)." % (grad_debugger.graph, dump.python_graph)) gradient_tensor = grad_debugger.gradient_tensor(x_tensor) node_name, output_slot = debug_graphs.parse_node_or_tensor_name( gradient_tensor.name) try: return dump.get_tensors(node_name, output_slot, "DebugIdentity") except debug_data.WatchKeyDoesNotExistInDebugDumpDirError: return []
tensorflow-master
tensorflow/python/debug/lib/debug_gradients.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Classes and functions that help to inspect Python source w.r.t. TF graphs.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import os import re import numpy as np from tensorflow.python.debug.lib import profiling _TENSORFLOW_BASEDIR = os.path.dirname( os.path.dirname(os.path.dirname(os.path.dirname( os.path.normpath(os.path.abspath(__file__)))))) UNCOMPILED_SOURCE_SUFFIXES = (".py") COMPILED_SOURCE_SUFFIXES = (".pyc", ".pyo") def _norm_abs_path(file_path): return os.path.normpath(os.path.abspath(file_path)) def is_extension_uncompiled_python_source(file_path): _, extension = os.path.splitext(file_path) return extension.lower() in UNCOMPILED_SOURCE_SUFFIXES def is_extension_compiled_python_source(file_path): _, extension = os.path.splitext(file_path) return extension.lower() in COMPILED_SOURCE_SUFFIXES def _convert_watch_key_to_tensor_name(watch_key): return watch_key[:watch_key.rfind(":")] def guess_is_tensorflow_py_library(py_file_path): """Guess whether a Python source file is a part of the tensorflow library. Special cases: 1) Returns False for unit-test files in the library (*_test.py), 2) Returns False for files under python/debug/examples. Args: py_file_path: full path of the Python source file in question. Returns: (`bool`) Whether the file is a part of the tensorflow library. Raises: ValueError: if the extension name of py_file_path does not indicate a Python source file (compiled or uncomplied). """ if (not is_extension_uncompiled_python_source(py_file_path) and not is_extension_compiled_python_source(py_file_path)): raise ValueError( "Input file path (%s) is not a Python source file." % py_file_path) py_file_path = _norm_abs_path(py_file_path) return (py_file_path.startswith(_TENSORFLOW_BASEDIR) and not py_file_path.endswith("_test.py") and not os.path.dirname(py_file_path).endswith( os.path.normpath("python/debug/examples"))) def load_source(source_file_path): with open(source_file_path, "rU") as f: source_text = f.read() source_lines = source_text.split("\n") line_num_width = int(np.ceil(np.log10(len(source_lines)))) + 3 return source_lines, line_num_width def annotate_source(dump, source_file_path, do_dumped_tensors=False, file_stack_top=False, min_line=None, max_line=None): """Annotate a Python source file with a list of ops created at each line. (The annotation doesn't change the source file itself.) Args: dump: (`DebugDumpDir`) A `DebugDumpDir` object of which the Python graph has been loaded. source_file_path: (`str`) Path to the source file being annotated. do_dumped_tensors: (`str`) Whether dumped Tensors, instead of ops are to be used to annotate the source file. file_stack_top: (`bool`) Whether only the top stack trace in the specified source file is to be annotated. min_line: (`None` or `int`) The 1-based line to start annotate the source file from (inclusive). max_line: (`None` or `int`) The 1-based line number to end the annotation at (exclusive). Returns: A `dict` mapping 1-based line number to a list of op name(s) created at that line, or tensor names if `do_dumped_tensors` is True. Raises: ValueError: If the dump object does not have a Python graph set. """ py_graph = dump.python_graph if not py_graph: raise ValueError("Cannot perform source annotation due to a lack of set " "Python graph in the dump object") source_file_path = _norm_abs_path(source_file_path) line_to_op_names = {} for op in py_graph.get_operations(): for file_path, line_number, _, _ in reversed(dump.node_traceback(op.name)): if (min_line is not None and line_number < min_line or max_line is not None and line_number >= max_line): continue if _norm_abs_path(file_path) != source_file_path: continue if do_dumped_tensors: watch_keys = dump.debug_watch_keys(op.name) # Convert watch keys to unique Tensor names. items_to_append = list( set(map(_convert_watch_key_to_tensor_name, watch_keys))) else: items_to_append = [op.name] if line_number in line_to_op_names: line_to_op_names[line_number].extend(items_to_append) else: line_to_op_names[line_number] = items_to_append if file_stack_top: break return line_to_op_names def list_source_files_against_dump(dump, path_regex_whitelist=None, node_name_regex_whitelist=None): """Generate a list of source files with information regarding ops and tensors. Args: dump: (`DebugDumpDir`) A `DebugDumpDir` object of which the Python graph has been loaded. path_regex_whitelist: A regular-expression filter for source file path. node_name_regex_whitelist: A regular-expression filter for node names. Returns: A list of tuples regarding the Python source files involved in constructing the ops and tensors contained in `dump`. Each tuple is: (source_file_path, is_tf_library, num_nodes, num_tensors, num_dumps, first_line) is_tf_library: (`bool`) A guess of whether the file belongs to the TensorFlow Python library. num_nodes: How many nodes were created by lines of this source file. These include nodes with dumps and those without. num_tensors: How many Tensors were created by lines of this source file. These include Tensors with dumps and those without. num_dumps: How many debug Tensor dumps were from nodes (and Tensors) that were created by this source file. first_line: The first line number (1-based) that created any nodes or Tensors in this source file. The list is sorted by ascending order of source_file_path. Raises: ValueError: If the dump object does not have a Python graph set. """ py_graph = dump.python_graph if not py_graph: raise ValueError("Cannot generate source list due to a lack of set " "Python graph in the dump object") path_to_node_names = collections.defaultdict(set) path_to_tensor_names = collections.defaultdict(set) path_to_first_line = {} tensor_name_to_num_dumps = {} path_regex = (re.compile(path_regex_whitelist) if path_regex_whitelist else None) node_name_regex = (re.compile(node_name_regex_whitelist) if node_name_regex_whitelist else None) to_skip_file_paths = set() for op in py_graph.get_operations(): if node_name_regex and not node_name_regex.match(op.name): continue for file_path, line_number, _, _ in dump.node_traceback(op.name): file_path = _norm_abs_path(file_path) if (file_path in to_skip_file_paths or path_regex and not path_regex.match(file_path) or not os.path.isfile(file_path)): to_skip_file_paths.add(file_path) continue path_to_node_names[file_path].add(op.name) if file_path in path_to_first_line: if path_to_first_line[file_path] > line_number: path_to_first_line[file_path] = line_number else: path_to_first_line[file_path] = line_number for output_tensor in op.outputs: tensor_name = output_tensor.name path_to_tensor_names[file_path].add(tensor_name) watch_keys = dump.debug_watch_keys(op.name) for watch_key in watch_keys: node_name, output_slot, debug_op = watch_key.split(":") tensor_name = "%s:%s" % (node_name, output_slot) if tensor_name not in tensor_name_to_num_dumps: tensor_name_to_num_dumps[tensor_name] = len( dump.get_tensors(node_name, int(output_slot), debug_op)) path_to_num_dumps = {} for path in path_to_tensor_names: path_to_num_dumps[path] = sum( tensor_name_to_num_dumps.get(tensor_name, 0) for tensor_name in path_to_tensor_names[path]) output = [] for file_path in path_to_node_names: output.append(( file_path, guess_is_tensorflow_py_library(file_path), len(path_to_node_names.get(file_path, {})), len(path_to_tensor_names.get(file_path, {})), path_to_num_dumps.get(file_path, 0), path_to_first_line[file_path])) return sorted(output, key=lambda x: x[0]) def annotate_source_against_profile(profile_data, source_file_path, node_name_filter=None, op_type_filter=None, min_line=None, max_line=None): """Annotate a Python source file with profiling information at each line. (The annotation doesn't change the source file itself.) Args: profile_data: (`list` of `ProfileDatum`) A list of `ProfileDatum`. source_file_path: (`str`) Path to the source file being annotated. node_name_filter: Regular expression to filter by node name. op_type_filter: Regular expression to filter by op type. min_line: (`None` or `int`) The 1-based line to start annotate the source file from (inclusive). max_line: (`None` or `int`) The 1-based line number to end the annotation at (exclusive). Returns: A `dict` mapping 1-based line number to a the namedtuple `profiling.LineOrFuncProfileSummary`. """ source_file_path = _norm_abs_path(source_file_path) node_name_regex = re.compile(node_name_filter) if node_name_filter else None op_type_regex = re.compile(op_type_filter) if op_type_filter else None line_to_profile_summary = {} for profile_datum in profile_data: if not profile_datum.file_path: continue if _norm_abs_path(profile_datum.file_path) != source_file_path: continue if (min_line is not None and profile_datum.line_number < min_line or max_line is not None and profile_datum.line_number >= max_line): continue if (node_name_regex and not node_name_regex.match(profile_datum.node_exec_stats.node_name)): continue if op_type_regex and not op_type_regex.match(profile_datum.op_type): continue if profile_datum.line_number not in line_to_profile_summary: line_to_profile_summary[profile_datum.line_number] = ( profiling.AggregateProfile(profile_datum)) else: line_to_profile_summary[profile_datum.line_number].add(profile_datum) return line_to_profile_summary
tensorflow-master
tensorflow/python/debug/lib/source_utils.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Classes and functions to handle debug-dump data of TensorFlow Debugger.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import glob import json import os import platform import re import numpy as np import six from tensorflow.core.framework import graph_pb2 from tensorflow.core.framework import types_pb2 from tensorflow.core.util import event_pb2 from tensorflow.python.debug.lib import debug_graphs from tensorflow.python.framework import tensor_util from tensorflow.python.platform import gfile from tensorflow.python.platform import tf_logging as logging from tensorflow.python.util import compat # TODO(cais): Tie these string constants in with C++? METADATA_FILE_PREFIX = "_tfdbg_" CORE_METADATA_TAG = "core_metadata_" GRAPH_FILE_TAG = "graph_" DEVICE_TAG = "device_" HASH_TAG = "hash" FETCHES_INFO_FILE_TAG = "fetches_info_" FEED_KEYS_INFO_FILE_TAG = "feed_keys_info_" def _glob(glob_pattern): if platform.system() == "Windows": return glob.glob(glob_pattern) else: return gfile.Glob(glob_pattern) class InconvertibleTensorProto(object): """Represents a TensorProto that cannot be converted to np.ndarray.""" def __init__(self, tensor_proto, initialized=True): """Constructor. Args: tensor_proto: the `TensorProto` object that cannot be represented as a `np.ndarray` object. initialized: (`bool`) whether the Tensor is initialized. """ self._tensor_proto = tensor_proto self._initialized = initialized def __str__(self): output = "" if self._initialized else "Uninitialized tensor:\n" output += str(self._tensor_proto) return output @property def initialized(self): return self._initialized def load_tensor_from_event_file(event_file_path): """Load a tensor from an event file. Assumes that the event file contains a `Event` protobuf and the `Event` protobuf contains a `Tensor` value. Args: event_file_path: (`str`) path to the event file. Returns: The tensor value loaded from the event file, as a `numpy.ndarray`. For uninitialized Tensors, returns `None`. For Tensors of data types that cannot be converted to `numpy.ndarray` (e.g., `tf.resource`), return `None`. """ event = event_pb2.Event() with gfile.Open(event_file_path, "rb") as f: event.ParseFromString(f.read()) return load_tensor_from_event(event) def load_tensor_from_event(event): """Load a tensor from an Event proto. Args: event: The Event proto, assumed to hold a tensor value in its summary.value[0] field. Returns: The tensor value loaded from the event file, as a `numpy.ndarray`, if representation of the tensor value by a `numpy.ndarray` is possible. For uninitialized Tensors, returns `None`. For Tensors of data types that cannot be represented as `numpy.ndarray` (e.g., `tf.resource`), return the `TensorProto` protobuf object without converting it to a `numpy.ndarray`. """ tensor_proto = event.summary.value[0].tensor shape = tensor_util.TensorShapeProtoToList(tensor_proto.tensor_shape) num_elements = 1 for shape_dim in shape: num_elements *= shape_dim if tensor_proto.tensor_content or tensor_proto.string_val or not num_elements: # Initialized tensor or empty tensor. if tensor_proto.dtype == types_pb2.DT_RESOURCE: tensor_value = InconvertibleTensorProto(tensor_proto) else: try: tensor_value = tensor_util.MakeNdarray(tensor_proto) except KeyError: tensor_value = InconvertibleTensorProto(tensor_proto) else: # Uninitialized tensor or tensor of unconvertible data type. tensor_value = InconvertibleTensorProto(tensor_proto, False) return tensor_value def _load_graph_def_from_event_file(event_file_path): event = event_pb2.Event() with gfile.Open(event_file_path, "rb") as f: event.ParseFromString(f.read()) return graph_pb2.GraphDef.FromString(event.graph_def) def _load_log_message_from_event_file(event_file_path): event = event_pb2.Event() with gfile.Open(event_file_path, "rb") as f: event.ParseFromString(f.read()) return event.log_message.message def _is_graph_file(file_name): return file_name.startswith(METADATA_FILE_PREFIX + GRAPH_FILE_TAG) def _is_run_fetches_info_file(file_name): return file_name == METADATA_FILE_PREFIX + FETCHES_INFO_FILE_TAG def _is_run_feed_keys_info_file(file_name): return file_name == METADATA_FILE_PREFIX + FEED_KEYS_INFO_FILE_TAG def _get_tensor_name(node_name, output_slot): """Get tensor name given node name and output slot index. Args: node_name: Name of the node that outputs the tensor, as a string. output_slot: Output slot index of the tensor, as an integer. Returns: Name of the tensor, as a string. """ return "%s:%d" % (node_name, output_slot) def _get_tensor_watch_key(node_name, output_slot, debug_op): """Get the string representation of a debug watch on a tensor. Args: node_name: Name of the node by which the watched tensor is produced, as a string. output_slot: Output slot index of the tensor, as an integer. debug_op: Name of the debug op that is used to watch the tensor, as a string. Returns: A string representing the debug watch on the tensor (i.e., the "watch key"). """ return "%s:%s" % (_get_tensor_name(node_name, output_slot), debug_op) def has_inf_or_nan(datum, tensor): """A predicate for whether a tensor consists of any bad numerical values. This predicate is common enough to merit definition in this module. Bad numerical values include `nan`s and `inf`s. The signature of this function follows the requirement of the method `DebugDumpDir.find()`. Args: datum: (`DebugTensorDatum`) Datum metadata. tensor: (`numpy.ndarray` or None) Value of the tensor. None represents an uninitialized tensor. Returns: (`bool`) True if and only if tensor consists of any nan or inf values. """ _ = datum # Datum metadata is unused in this predicate. if isinstance(tensor, InconvertibleTensorProto): # Uninitialized tensor doesn't have bad numerical values. # Also return False for data types that cannot be represented as numpy # arrays. return False elif (np.issubdtype(tensor.dtype, np.floating) or np.issubdtype(tensor.dtype, np.complex) or np.issubdtype(tensor.dtype, np.integer)): return np.any(np.isnan(tensor)) or np.any(np.isinf(tensor)) else: return False _CoreMetadata = collections.namedtuple("CoreMetadata", [ "global_step", "session_run_index", "executor_step_index", "input_names", "output_names", "target_nodes" ]) def extract_core_metadata_from_event_proto(event): json_metadata = json.loads(event.log_message.message) return _CoreMetadata(json_metadata["global_step"], json_metadata["session_run_index"], json_metadata["executor_step_index"], json_metadata["input_names"], json_metadata["output_names"], json_metadata["target_nodes"]) def device_name_to_device_path(device_name): """Convert device name to device path.""" device_name_items = compat.as_text(device_name).split("/") device_name_items = [item.replace(":", "_") for item in device_name_items] return METADATA_FILE_PREFIX + DEVICE_TAG + ",".join(device_name_items) def device_path_to_device_name(device_dir): """Parse device name from device path. Args: device_dir: (str) a directory name for the device. Returns: (str) parsed device name. """ path_items = os.path.basename(device_dir)[ len(METADATA_FILE_PREFIX) + len(DEVICE_TAG):].split(",") return "/".join([ path_item.replace("device_", "device:").replace("_", ":", 1) for path_item in path_items]) class DebugTensorDatum(object): """A single tensor dumped by TensorFlow Debugger (tfdbg). Contains metadata about the dumped tensor, including `timestamp`, `node_name`, `output_slot`, `debug_op`, and path to the dump file (`file_path`). This type does not hold the generally space-expensive tensor value (numpy array). Instead, it points to the file from which the tensor value can be loaded (with the `get_tensor` method) if needed. """ def __init__(self, dump_root, debug_dump_rel_path): """`DebugTensorDatum` constructor. Args: dump_root: (`str`) Debug dump root directory. This path should not include the path component that represents the device name (see also below). debug_dump_rel_path: (`str`) Path to a debug dump file, relative to the `dump_root`. The first item of this relative path is assumed to be a path representing the name of the device that the Tensor belongs to. See `device_path_to_device_name` for more details on the device path. For example, suppose the debug dump root directory is `/tmp/tfdbg_1` and the dump file is at `/tmp/tfdbg_1/<device_path>/>ns_1/node_a_0_DebugIdentity_123456789`, then the value of the debug_dump_rel_path should be `<device_path>/ns_1/node_a_0_DebugIdenity_1234456789`. Raises: ValueError: If the base file name of the dump file does not conform to the dump file naming pattern: `node_name`_`output_slot`_`debug_op`_`timestamp` """ path_components = os.path.normpath(debug_dump_rel_path).split(os.sep) self._device_name = device_path_to_device_name(path_components[0]) base = path_components[-1] if base.count("_") < 3: raise ValueError( "Dump file path does not conform to the naming pattern: %s" % base) self._extended_timestamp = base.split("_")[-1] # It may include an index suffix at the end if file path collision happened # due to identical timestamps. if "-" in self._extended_timestamp: self._timestamp = int( self._extended_timestamp[:self._extended_timestamp.find("-")]) else: self._timestamp = int(self._extended_timestamp) self._debug_op = base.split("_")[-2] self._output_slot = int(base.split("_")[-3]) node_base_name = "_".join(base.split("_")[:-3]) self._node_name = "/".join(path_components[1:-1] + [node_base_name]) self._file_path = os.path.join(dump_root, debug_dump_rel_path) self._dump_size_bytes = (gfile.Stat(self._file_path).length if gfile.Exists(self._file_path) else None) def __str__(self): return "{DebugTensorDatum (%s) %s:%d @ %s @ %d}" % (self.device_name, self.node_name, self.output_slot, self.debug_op, self.timestamp) def __repr__(self): return self.__str__() def get_tensor(self): """Get tensor from the dump (`Event`) file. Returns: The tensor loaded from the dump (`Event`) file. """ return load_tensor_from_event_file(self.file_path) # TODO(cais): Add time unit suffix to timestamp and t0 (us). @property def timestamp(self): """Timestamp of when this tensor value was dumped. Returns: (`int`) The timestamp in microseconds. """ return self._timestamp @property def extended_timestamp(self): """Extended timestamp, possibly with an index suffix. The index suffix, e.g., "-1", is for disambiguating multiple dumps of the same tensor with the same timestamp, which can occur if the dumping events are spaced by shorter than the temporal resolution of the timestamps. Returns: (`str`) The extended timestamp. """ return self._extended_timestamp @property def debug_op(self): """Name of the debug op. Returns: (`str`) debug op name (e.g., `DebugIdentity`). """ return self._debug_op @property def device_name(self): """Name of the device that the tensor belongs to. Returns: (`str`) device name. """ return self._device_name @property def node_name(self): """Name of the node from which the tensor value was dumped. Returns: (`str`) name of the node watched by the debug op. """ return self._node_name @property def output_slot(self): """Output slot index from which the tensor value was dumped. Returns: (`int`) output slot index watched by the debug op. """ return self._output_slot @property def tensor_name(self): """Name of the tensor watched by the debug op. Returns: (`str`) `Tensor` name, in the form of `node_name`:`output_slot` """ return _get_tensor_name(self.node_name, self.output_slot) @property def watch_key(self): """Watch key identities a debug watch on a tensor. Returns: (`str`) A watch key, in the form of `tensor_name`:`debug_op`. """ return _get_tensor_watch_key(self.node_name, self.output_slot, self.debug_op) @property def file_path(self): """Path to the file which stores the value of the dumped tensor.""" return self._file_path @property def dump_size_bytes(self): """Size of the dump file. Unit: byte. Returns: If the dump file exists, size of the dump file, in bytes. If the dump file does not exist, None. """ return self._dump_size_bytes class WatchKeyDoesNotExistInDebugDumpDirError(ValueError): pass class DebugDumpDir(object): """Data set from a debug-dump directory on filesystem. An instance of `DebugDumpDir` contains all `DebugTensorDatum` instances in a tfdbg dump root directory. """ def __init__(self, dump_root, partition_graphs=None, validate=True): """`DebugDumpDir` constructor. Args: dump_root: (`str`) path to the dump root directory. partition_graphs: A repeated field of GraphDefs representing the partition graphs executed by the TensorFlow runtime. validate: (`bool`) whether the dump files are to be validated against the partition graphs. Raises: IOError: If dump_root does not exist as a directory. ValueError: If more than one core metadata file is found under the dump root directory. """ if not gfile.IsDirectory(dump_root): raise IOError("Dump root directory %s does not exist" % dump_root) self._core_metadata = [] # Find the list of devices. self._dump_root = dump_root self._load_core_metadata() self._load_fetches_info() self._load_feeds_info() self._load_all_device_dumps(partition_graphs, validate) self._python_graph = None def _load_all_device_dumps(self, partition_graphs, validate): """Load the dump data for all devices.""" device_dirs = _glob(os.path.join( self._dump_root, METADATA_FILE_PREFIX + DEVICE_TAG + "*")) self._device_names = [] self._t0s = {} self._dump_tensor_data = {} self._dump_graph_file_paths = {} self._debug_watches = {} self._watch_key_to_devices = {} self._watch_key_to_datum = {} self._watch_key_to_rel_time = {} self._watch_key_to_dump_size_bytes = {} for device_dir in device_dirs: device_name = device_path_to_device_name(device_dir) self._device_names.append(device_name) self._load_device_dumps(device_name, device_dir) self._load_partition_graphs(partition_graphs, validate) self._calculate_t0() for device_name in self._device_names: self._create_tensor_watch_maps(device_name) def _load_device_dumps(self, device_name, device_root): """Load `DebugTensorDatum` instances from the dump root of a given device. Populates a map {device_name: a list of `DebugTensorDatum`}, where the list is sorted by ascending timestamp. This sorting order reflects the order in which the TensorFlow executor processed the nodes of the graph. It is (one of many possible) topological sort of the nodes. This is useful for displaying tensors in the debugger frontend as well as for the use case in which the user wants to find a "culprit tensor", i.e., the first tensor in the graph that exhibits certain problematic properties, i.e., all zero values, or bad numerical values such as nan and inf. In addition, creates a map from node name to debug watches. In this Map, the key is the watched node name; the value is a dictionary. Of this dictionary, the key is the watched_output_slot. This method attempts to load the debug watches from the tensor dump files first, before loading the full set of debug watches from the partition graphs as done later. This is necessary because sometimes the partition graphs may not be available, e.g., when the run errors out. Args: device_name: (`str`) name of the device. device_root: (`str`) dump root directory of the given device. Raises: ValueError: If GraphDef for the device is not available. """ self._dump_tensor_data[device_name] = [] self._debug_watches[device_name] = collections.defaultdict( lambda: collections.defaultdict(set)) for root, _, files in gfile.Walk(device_root): for f in files: if _is_graph_file(f): self._dump_graph_file_paths[device_name] = os.path.join(root, f) else: datum = self._dump_file_name_to_datum(root, f) self._dump_tensor_data[device_name].append(datum) self._debug_watches[device_name][datum.node_name][ datum.output_slot].add(datum.debug_op) self._dump_tensor_data[device_name] = sorted( self._dump_tensor_data[device_name], key=lambda x: x.extended_timestamp) if self._dump_tensor_data[device_name]: self._t0s[device_name] = self._dump_tensor_data[device_name][0].timestamp else: self._t0s[device_name] = None def _calculate_t0(self): """Calculate the first timestamp across all devices.""" t0s = [t0 for t0 in six.itervalues(self._t0s) if t0 is not None] self._t0 = min(t0s) if t0s else None def _load_core_metadata(self): core_metadata_files = _glob(os.path.join( self._dump_root, METADATA_FILE_PREFIX + CORE_METADATA_TAG + "*")) for core_metadata_file in core_metadata_files: with gfile.Open(core_metadata_file, "rb") as f: event = event_pb2.Event() event.ParseFromString(f.read()) self._core_metadata.append( extract_core_metadata_from_event_proto(event)) def _load_fetches_info(self): fetches_info_files = _glob(os.path.join( self._dump_root, METADATA_FILE_PREFIX + FETCHES_INFO_FILE_TAG + "*")) self._run_fetches_info = [] for fetches_info_file in fetches_info_files: self._run_fetches_info.append( _load_log_message_from_event_file(fetches_info_file)) def _load_feeds_info(self): feeds_info_files = _glob(os.path.join( self._dump_root, METADATA_FILE_PREFIX + FEED_KEYS_INFO_FILE_TAG + "*")) self._run_feed_keys_info = [] for feeds_info_file in feeds_info_files: self._run_feed_keys_info.append( _load_log_message_from_event_file(feeds_info_file)) def _dump_file_name_to_datum(self, dir_name, file_name): """Obtain a DebugTensorDatum from the directory and file name. Args: dir_name: (`str`) Name of the directory in which the dump file resides. file_name: (`str`) Base name of the dump file. Returns: (`DebugTensorDatum`) The `DebugTensorDatum` loaded from the dump file. """ # Calculate the relative path of the dump file with respect to the root. debug_dump_rel_path = os.path.join( os.path.relpath(dir_name, self._dump_root), file_name) return DebugTensorDatum(self._dump_root, debug_dump_rel_path) def _create_tensor_watch_maps(self, device_name): """Create maps from tensor watch keys to datum and to timestamps. Create a map from watch key (tensor name + debug op) to `DebugTensorDatum` item. Also make a map from watch key to relative timestamp. "relative" means (absolute timestamp - t0). Args: device_name: (str) name of the device. """ self._watch_key_to_datum[device_name] = {} self._watch_key_to_rel_time[device_name] = {} self._watch_key_to_dump_size_bytes[device_name] = {} for datum in self._dump_tensor_data[device_name]: if datum.watch_key not in self._watch_key_to_devices: self._watch_key_to_devices[datum.watch_key] = {device_name} else: self._watch_key_to_devices[datum.watch_key].add(device_name) if datum.watch_key not in self._watch_key_to_datum[device_name]: self._watch_key_to_datum[device_name][datum.watch_key] = [datum] self._watch_key_to_rel_time[device_name][datum.watch_key] = [ datum.timestamp - self._t0] self._watch_key_to_dump_size_bytes[device_name][datum.watch_key] = [ datum.dump_size_bytes] else: self._watch_key_to_datum[device_name][datum.watch_key].append(datum) self._watch_key_to_rel_time[device_name][datum.watch_key].append( datum.timestamp - self._t0) self._watch_key_to_dump_size_bytes[device_name][datum.watch_key].append( datum.dump_size_bytes) def set_python_graph(self, python_graph): """Provide Python `Graph` object to the wrapper. Unlike the partition graphs, which are protobuf `GraphDef` objects, `Graph` is a Python object and carries additional information such as the traceback of the construction of the nodes in the graph. Args: python_graph: (ops.Graph) The Python Graph object. """ self._python_graph = python_graph self._node_traceback = {} if self._python_graph: for op in self._python_graph.get_operations(): self._node_traceback[op.name] = op.traceback @property def python_graph(self): """Get the Python graph. Returns: If the Python graph has been set, returns a `tf.Graph` object. Otherwise, returns None. """ return self._python_graph @property def core_metadata(self): """Metadata about the `Session.run()` call from the core runtime. Of the three counters available in the return value, `global_step` is supplied by the caller of the debugged `Session.run()`, while `session_run_index` and `executor_step_index` are determined by the state of the core runtime, automatically. For the same fetch list, feed keys and debug tensor watch options, the same executor will be used and `executor_step_index` should increase by one at a time. However, runs with different fetch lists, feed keys and debug_tensor watch options that all share the same `Session` object can lead to gaps in `session_run_index`. Returns: If core metadata are loaded, a `namedtuple` with the fields: `global_step`: A global step count supplied by the caller of `Session.run()`. It is optional to the caller. If the caller did not supply this parameter, its value will be -1. `session_run_index`: A sorted index for Run() calls to the underlying TensorFlow `Session` object. `executor_step_index`: A counter for invocations of a given runtime executor. The same executor is re-used for the same fetched tensors, target nodes, input feed keys and debug tensor watch options. `input_names`: Names of the input (feed) Tensors. `output_names`: Names of the output (fetched) Tensors. `target_nodes`: Names of the target nodes. If the core metadata have not been loaded, `None`. If more than one core metadata files exist, return a list of the `nametuple` described above. """ output = self._core_metadata return output[0] if len(output) == 1 else output @property def dumped_tensor_data(self): """Retrieve dumped tensor data.""" if len(self.devices()) == 1: return self._dump_tensor_data[self.devices()[0]] else: all_devices_data = six.itervalues(self._dump_tensor_data) data = [] for device_data in all_devices_data: data.extend(device_data) return sorted(data, key=lambda x: x.extended_timestamp) @property def t0(self): """Absolute timestamp of the first dumped tensor across all devices. Returns: (`int`) absolute timestamp of the first dumped tensor, in microseconds. """ return self._t0 @property def size(self): """Total number of dumped tensors in the dump root directory. Returns: (`int`) The total number of dumped tensors in the dump root directory. """ return sum(len(self._dump_tensor_data[device_name]) for device_name in self._dump_tensor_data) def _load_partition_graphs(self, client_partition_graphs, validate): """Load and process partition graphs. Load the graphs; parse the input and control input structure; obtain the device and op type of each node; remove the Copy and debug ops inserted by the debugger. The gathered information can be used to validate the tensor dumps. Args: client_partition_graphs: A repeated field of GraphDefs representing the partition graphs executed by the TensorFlow runtime, from the Python client. These partition graphs are used only if partition graphs cannot be loaded from the dump directory on the file system. validate: (`bool`) Whether the dump files are to be validated against the partition graphs. Raises: ValueError: If the partition GraphDef of one or more devices fail to be loaded. """ self._debug_graphs = {} self._node_devices = {} partition_graphs_and_device_names = [] for device_name in self._device_names: partition_graph = None if device_name in self._dump_graph_file_paths: partition_graph = _load_graph_def_from_event_file( self._dump_graph_file_paths[device_name]) else: logging.warn( "Failed to load partition graphs for device %s from disk. " "As a fallback, the client graphs will be used. This " "may cause mismatches in device names." % device_name) partition_graph = self._find_partition_graph(client_partition_graphs, device_name) if partition_graph: partition_graphs_and_device_names.append((partition_graph, device_name)) for partition_graph, maybe_device_name in partition_graphs_and_device_names: debug_graph = debug_graphs.DebugGraph(partition_graph, device_name=maybe_device_name) self._debug_graphs[debug_graph.device_name] = debug_graph self._collect_node_devices(debug_graph) if validate and debug_graph.device_name in self._dump_tensor_data: self._validate_dump_with_graphs(debug_graph.device_name) def _find_partition_graph(self, partition_graphs, device_name): if partition_graphs is None: return None else: for graph_def in partition_graphs: for node_def in graph_def.node: if node_def.device == device_name: return graph_def return None def _collect_node_devices(self, debug_graph): for node_name in debug_graph.node_devices: if node_name in self._node_devices: self._node_devices[node_name] = self._node_devices[node_name].union( debug_graph.node_devices[node_name]) else: self._node_devices[node_name] = debug_graph.node_devices[node_name] def _validate_dump_with_graphs(self, device_name): """Validate the dumped tensor data against the partition graphs. Only the watched nodes are validated by this method, because tfdbg allows clients to watch only a subset of the nodes. Args: device_name: (`str`) device name. Raises: LookupError: If the partition graphs have not been loaded yet. ValueError: If dumps contain node names not found in partition graph. Or if the temporal order of the dump's timestamps violate the input relations on the partition graphs. """ if not self._debug_graphs: raise LookupError( "No partition graphs loaded for device %s" % device_name) debug_graph = self._debug_graphs[device_name] # Verify that the node names in the dump data are all present in the # partition graphs. for datum in self._dump_tensor_data[device_name]: if datum.node_name not in debug_graph.node_inputs: raise ValueError("Node name '%s' is not found in partition graphs of " "device %s." % (datum.node_name, device_name)) pending_inputs = {} for node in debug_graph.node_inputs: pending_inputs[node] = [] inputs = debug_graph.node_inputs[node] for inp in inputs: inp_node = debug_graphs.get_node_name(inp) inp_output_slot = debug_graphs.get_output_slot(inp) # Inputs from Enter and NextIteration nodes are not validated because # DebugNodeInserter::InsertNodes() in the debugger core skips creating # control edges from debug ops watching these types of nodes. if (inp_node in self._debug_watches[device_name] and inp_output_slot in self._debug_watches[device_name][inp_node] and debug_graph.node_op_types.get(inp) not in ( "Enter", "NextIteration") and (inp_node, inp_output_slot) not in pending_inputs[node]): pending_inputs[node].append((inp_node, inp_output_slot)) for i, datum in enumerate(self._dump_tensor_data[device_name]): node = datum.node_name slot = datum.output_slot # In some cases (e.g., system clocks with insufficient precision), # the upstream and downstream tensors may have identical timestamps, the # following check examines this possibility and avoids raising an error if # that is the case. if not self._satisfied_at_timestamp( device_name, pending_inputs[node], datum.timestamp, start_i=i + 1): raise ValueError("Causality violated in timing relations of debug " "dumps: %s (%d): " "these input(s) are not satisfied: %s" % (node, datum.timestamp, repr(pending_inputs[node]))) recipients = debug_graph.node_recipients[node] for recipient in recipients: recipient_pending_inputs = pending_inputs[recipient] if (node, slot) in recipient_pending_inputs: if self.node_op_type(recipient) == "Merge": # If this is a Merge op, we automatically clear the list because # a Merge node only requires one of its two inputs. del recipient_pending_inputs[:] else: del recipient_pending_inputs[ recipient_pending_inputs.index((node, slot))] def _satisfied_at_timestamp(self, device_name, pending, timestamp, start_i=0): """Determine whether pending inputs are satisfied at given timestamp. Note: This method mutates the input argument "pending". Args: device_name: (str) device name. pending: A list of 2-tuple (node_name, output_slot): the dependencies to check. timestamp: (int) the timestamp in question. start_i: (int) the index in self._dump_tensor_data to start searching for the timestamp. Returns: (bool) Whether all the dependencies in pending are satisfied at the timestamp. If pending is empty to begin with, return True. """ if not pending: return True for datum in self._dump_tensor_data[device_name][start_i:]: if datum.timestamp > timestamp: break if (datum.timestamp == timestamp and (datum.node_name, datum.output_slot) in pending): pending.remove((datum.node_name, datum.output_slot)) if not pending: return True return not pending def loaded_partition_graphs(self): """Test whether partition graphs have been loaded.""" return bool(self._debug_graphs) def partition_graphs(self): """Get the partition graphs. Returns: Partition graphs as a list of GraphDef. Raises: LookupError: If no partition graphs have been loaded. """ if not self._debug_graphs: raise LookupError("No partition graphs have been loaded.") return [self._debug_graphs[key].debug_graph_def for key in self._debug_graphs] def reconstructed_non_debug_partition_graphs(self): """Reconstruct partition graphs with the debugger-inserted ops stripped. The reconstructed partition graphs are identical to the original (i.e., non-debugger-decorated) partition graphs except in the following respects: 1) The exact names of the runtime-inserted internal nodes may differ. These include _Send, _Recv, _HostSend, _HostRecv, _Retval ops. 2) As a consequence of 1, the nodes that receive input directly from such send- and recv-type ops will have different input names. 3) The parallel_iteration attribute of while-loop Enter ops are set to 1. Returns: A dict mapping device names (`str`s) to reconstructed `tf.compat.v1.GraphDef`s. """ non_debug_graphs = {} for key in self._debug_graphs: non_debug_graphs[key] = self._debug_graphs[key].non_debug_graph_def return non_debug_graphs @property def run_fetches_info(self): """Get a str representation of the fetches used in the Session.run() call. Returns: If the information is available from one `Session.run` call, a `str` obtained from `repr(fetches)`. If the information is available from multiple `Session.run` calls, a `list` of `str` from `repr(fetches)`. If the information is not available, `None`. """ output = self._run_fetches_info return output[0] if len(output) == 1 else output @property def run_feed_keys_info(self): """Get a str representation of the feed_dict used in the Session.run() call. Returns: If the information is available from one `Session.run` call, a `str` obtained from `repr(feed_dict)`. If the information is available from multiple `Session.run` calls, a `list` of `str` obtained from `repr(feed_dict)`. If the information is not available, `None`. """ output = self._run_feed_keys_info return output[0] if len(output) == 1 else output def _infer_device_name(self, device_name, node_name): """Infer the device name given node name. If device_name is provided (i.e., not None), it'll be simply returned right away. Args: device_name: (str or None) name of the device. If None, will try to infer the device name by looking at the available nodes. node_name: (str) name of the node. Returns: (str) Inferred name of the device, if available. Raises: ValueError: If the node name does not exist on any of the available devices or if there are multiple devices that contain the node with the given name. """ if device_name is None: if node_name in self._node_devices: if len(self._node_devices[node_name]) == 1: return list(self._node_devices[node_name])[0] else: raise ValueError( "There are multiple (%d) devices with nodes named '%s' but " "device_name is not specified." % (len(self._node_devices[node_name]), node_name)) else: raise ValueError("None of the %d device(s) has a node named '%s'." % (len(self._device_names), node_name)) else: return device_name def nodes(self, device_name=None): """Get a list of all nodes from the partition graphs. Args: device_name: (`str`) name of device. If None, all nodes from all available devices will be included. Returns: All nodes' names, as a list of str. Raises: LookupError: If no partition graphs have been loaded. ValueError: If specified node name does not exist. """ if not self._debug_graphs: raise LookupError("No partition graphs have been loaded.") if device_name is None: nodes = [] for device_name in self._debug_graphs: nodes.extend(self._debug_graphs[device_name].node_inputs.keys()) return nodes else: if device_name not in self._debug_graphs: raise ValueError("Invalid device name: %s" % device_name) return self._debug_graphs[device_name].node_inputs.keys() def node_attributes(self, node_name, device_name=None): """Get the attributes of a node. Args: node_name: Name of the node in question. device_name: (`str`) name of the device. If there is only one device or if node_name exists on only one device, this argument is optional. Returns: Attributes of the node. Raises: LookupError: If no partition graphs have been loaded. """ if not self._debug_graphs: raise LookupError("No partition graphs have been loaded.") device_name = self._infer_device_name(device_name, node_name) return self._debug_graphs[device_name].node_attributes[node_name] def node_inputs(self, node_name, is_control=False, device_name=None): """Get the inputs of given node according to partition graphs. Args: node_name: Name of the node. is_control: (`bool`) Whether control inputs, rather than non-control inputs, are to be returned. device_name: (`str`) name of the device. If there is only one device or if node_name exists on only one device, this argument is optional. Returns: (`list` of `str`) inputs to the node, as a list of node names. Raises: LookupError: If node inputs and control inputs have not been loaded from partition graphs yet. """ if not self._debug_graphs: raise LookupError( "Node inputs are not loaded from partition graphs yet.") device_name = self._infer_device_name(device_name, node_name) if is_control: return self._debug_graphs[device_name].node_ctrl_inputs[node_name] else: return self._debug_graphs[device_name].node_inputs[node_name] def transitive_inputs(self, node_name, include_control=True, include_reversed_ref=False, device_name=None,): """Get the transitive inputs of given node according to partition graphs. Args: node_name: Name of the node. include_control: Include control inputs (True by default). include_reversed_ref: Whether a ref input, say from A to B, is to be also considered as an input from B to A. The rationale is that ref inputs generally let the recipient (e.g., B in this case) mutate the value of the source (e.g., A in this case). So the reverse direction of the ref edge reflects the direction of information flow. device_name: (`str`) name of the device. If there is only one device or if node_name exists on only one device, this argument is optional. Returns: (`list` of `str`) all transitive inputs to the node, as a list of node names. Raises: LookupError: If node inputs and control inputs have not been loaded from partition graphs yet. """ if not self._debug_graphs: raise LookupError( "Node inputs are not loaded from partition graphs yet.") device_name = self._infer_device_name(device_name, node_name) input_lists = [self._debug_graphs[device_name].node_inputs] if include_control: input_lists.append(self._debug_graphs[device_name].node_ctrl_inputs) if include_reversed_ref: input_lists.append( self._debug_graphs[device_name].node_reversed_ref_inputs) tracer = debug_graphs.DFSGraphTracer( input_lists, skip_node_names=self._get_merge_node_names(device_name)) tracer.trace(node_name) return tracer.inputs() def _get_merge_node_names(self, device_name): """Lazily get a list of Merge nodes on a given device.""" if device_name not in self._device_names: raise ValueError("Invalid device name: %s" % device_name) if not hasattr(self, "_merge_node_names"): self._merge_node_names = {} if device_name not in self._merge_node_names: debug_graph = self._debug_graphs[device_name] self._merge_node_names[device_name] = [ node for node in debug_graph.node_op_types if debug_graph.node_op_types[node] == "Merge"] return self._merge_node_names[device_name] def find_some_path(self, src_node_name, dst_node_name, include_control=True, include_reversed_ref=False, device_name=None): """Find a path between a source node and a destination node. Limitation: the source and destination are required to be on the same device, i.e., this method does not yet take into account Send/Recv nodes across devices. TODO(cais): Make this method work across device edges by tracing Send/Recv nodes. Args: src_node_name: (`str`) name of the source node or name of an output tensor of the node. dst_node_name: (`str`) name of the destination node or name of an output tensor of the node. include_control: (`bool`) whrther control edges are considered in the graph tracing. include_reversed_ref: Whether a ref input, say from A to B, is to be also considered as an input from B to A. The rationale is that ref inputs generally let the recipient (e.g., B in this case) mutate the value of the source (e.g., A in this case). So the reverse direction of the ref edge reflects the direction of information flow. device_name: (`str`) name of the device. If there is only one device or if node_name exists on only one device, this argument is optional. Returns: A path from the src_node_name to dst_node_name, as a `list` of `str`, if it exists. The list includes src_node_name as the first item and dst_node_name as the last. If such a path does not exist, `None`. Raises: ValueError: If the source and destination nodes are not on the same device. """ src_device_name = self._infer_device_name(device_name, src_node_name) dst_device_name = self._infer_device_name(device_name, dst_node_name) if src_device_name != dst_device_name: raise ValueError( "Source (%s) and destination (%s) are not on the same device: " "%s vs. %s" % (src_node_name, dst_node_name, src_device_name, dst_device_name)) input_lists = [self._debug_graphs[dst_device_name].node_inputs] debug_graph = self._debug_graphs[dst_device_name] if include_control: input_lists.append(debug_graph.node_ctrl_inputs) if include_reversed_ref: input_lists.append(debug_graph.node_reversed_ref_inputs) tracer = debug_graphs.DFSGraphTracer( input_lists, skip_node_names=self._get_merge_node_names(dst_device_name), destination_node_name=src_node_name) # Here the value of destination_node_name is src_node_name, because we # are tracing the graph from output to its inputs (i.e., going backwards # on the graph). try: tracer.trace(dst_node_name) except debug_graphs.GraphTracingReachedDestination: # Prune nodes not on the path. inputs = [dst_node_name] + tracer.inputs() depth_list = [0] + tracer.depth_list() path = [] curr_depth = depth_list[-1] for inp, depth in zip(reversed(inputs), reversed(depth_list)): if depth == curr_depth: path.append(inp) curr_depth -= 1 return path def node_recipients(self, node_name, is_control=False, device_name=None): """Get recipient of the given node's output according to partition graphs. Args: node_name: (`str`) name of the node. is_control: (`bool`) whether control outputs, rather than non-control outputs, are to be returned. device_name: (`str`) name of the device. If there is only one device or if node_name exists on only one device, this argument is optional. Returns: (`list` of `str`) all inputs to the node, as a list of node names. Raises: LookupError: If node inputs and control inputs have not been loaded from partition graphs yet. """ if not self._debug_graphs: raise LookupError( "Node recipients are not loaded from partition graphs yet.") device_name = self._infer_device_name(device_name, node_name) debug_graph = self._debug_graphs[device_name] if is_control: return debug_graph.node_ctrl_recipients[node_name] else: return debug_graph.node_recipients[node_name] def devices(self): """Get the list of device names. Returns: (`list` of `str`) names of the devices. """ return self._device_names def node_exists(self, node_name, device_name=None): """Test if a node exists in the partition graphs. Args: node_name: (`str`) name of the node to be checked. device_name: optional device name. If None, will search for the node on all available devices. Otherwise, search for the node only on the given device. Returns: A boolean indicating whether the node exists. Raises: LookupError: If no partition graphs have been loaded yet. ValueError: If device_name is specified but cannot be found. """ if not self._debug_graphs: raise LookupError( "Nodes have not been loaded from partition graphs yet.") if (device_name is not None) and device_name not in self._debug_graphs: raise ValueError( "The specified device_name '%s' cannot be found." % device_name) for _, debug_graph in self._debug_graphs.items(): if node_name in debug_graph.node_inputs: return True return False def node_device(self, node_name): """Get the names of the devices that has nodes of the specified name. Args: node_name: (`str`) name of the node. Returns: (`str` or `list` of `str`) name of the device(s) on which the node of the given name is found. Returns a `str` if there is only one such device, otherwise return a `list` of `str`. Raises: LookupError: If node inputs and control inputs have not been loaded from partition graphs yet. ValueError: If the node does not exist in partition graphs. """ if not self._debug_graphs: raise LookupError( "Node devices are not loaded from partition graphs yet.") if node_name not in self._node_devices: raise ValueError("Node '%s' does not exist in partition graphs." % node_name) output = list(self._node_devices[node_name]) return output[0] if len(output) == 1 else output def node_op_type(self, node_name, device_name=None): """Get the op type of given node. Args: node_name: (`str`) name of the node. device_name: (`str`) name of the device. If there is only one device or if node_name exists on only one device, this argument is optional. Returns: (`str`) op type of the node. Raises: LookupError: If node op types have not been loaded from partition graphs yet. """ if not self._debug_graphs: raise LookupError( "Node op types are not loaded from partition graphs yet.") device_name = self._infer_device_name(device_name, node_name) return self._debug_graphs[device_name].node_op_types[node_name] def debug_watch_keys(self, node_name, device_name=None): """Get all tensor watch keys of given node according to partition graphs. Args: node_name: (`str`) name of the node. device_name: (`str`) name of the device. If there is only one device or if node_name exists on only one device, this argument is optional. Returns: (`list` of `str`) all debug tensor watch keys. Returns an empty list if the node name does not correspond to any debug watch keys. Raises: `LookupError`: If debug watch information has not been loaded from partition graphs yet. """ try: device_name = self._infer_device_name(device_name, node_name) except ValueError: return [] if node_name not in self._debug_watches[device_name]: return [] watch_keys = [] for watched_slot in self._debug_watches[device_name][node_name]: debug_ops = self._debug_watches[device_name][node_name][watched_slot] for debug_op in debug_ops: watch_keys.append( _get_tensor_watch_key(node_name, watched_slot, debug_op)) return watch_keys def watch_key_to_data(self, debug_watch_key, device_name=None): """Get all `DebugTensorDatum` instances corresponding to a debug watch key. Args: debug_watch_key: (`str`) debug watch key. device_name: (`str`) name of the device. If there is only one device or if the specified debug_watch_key exists on only one device, this argument is optional. Returns: A list of `DebugTensorDatum` instances that correspond to the debug watch key. If the watch key does not exist, returns an empty list. Raises: ValueError: If there are multiple devices that have the debug_watch_key, but device_name is not specified. """ if device_name is None: matching_device_names = [ name for name in self._watch_key_to_datum if debug_watch_key in self._watch_key_to_datum[name]] if not matching_device_names: return [] elif len(matching_device_names) == 1: device_name = matching_device_names[0] else: raise ValueError( "The debug watch key '%s' exists on multiple (%d) devices, but " "device name is not specified." % (debug_watch_key, len(matching_device_names))) elif device_name not in self._debug_key_to_datum: raise ValueError( "There is no device named '%s' consisting of debug watch keys." % device_name) return self._watch_key_to_datum[device_name].get(debug_watch_key, []) def find(self, predicate, first_n=0, device_name=None, exclude_node_names=None): """Find dumped tensor data by a certain predicate. Args: predicate: A callable that takes two input arguments: ```python def predicate(debug_tensor_datum, tensor): # returns a bool ``` where `debug_tensor_datum` is an instance of `DebugTensorDatum`, which carries the metadata, such as the `Tensor`'s node name, output slot timestamp, debug op name, etc.; and `tensor` is the dumped tensor value as a `numpy.ndarray`. first_n: (`int`) return only the first n `DebugTensotDatum` instances (in time order) for which the predicate returns True. To return all the `DebugTensotDatum` instances, let first_n be <= 0. device_name: optional device name. exclude_node_names: Optional regular expression to exclude nodes with names matching the regular expression. Returns: A list of all `DebugTensorDatum` objects in this `DebugDumpDir` object for which predicate returns True, sorted in ascending order of the timestamp. """ if exclude_node_names: exclude_node_names = re.compile(exclude_node_names) matched_data = [] for device in (self._dump_tensor_data if device_name is None else (self._dump_tensor_data[device_name],)): for datum in self._dump_tensor_data[device]: if exclude_node_names and exclude_node_names.match(datum.node_name): continue if predicate(datum, datum.get_tensor()): matched_data.append(datum) if first_n > 0 and len(matched_data) >= first_n: return matched_data return matched_data def get_tensor_file_paths(self, node_name, output_slot, debug_op, device_name=None): """Get the file paths from a debug-dumped tensor. Args: node_name: (`str`) name of the node that the tensor is produced by. output_slot: (`int`) output slot index of tensor. debug_op: (`str`) name of the debug op. device_name: (`str`) name of the device. If there is only one device or if the specified debug_watch_key exists on only one device, this argument is optional. Returns: List of file path(s) loaded. This is a list because each debugged tensor may be dumped multiple times. Raises: WatchKeyDoesNotExistInDebugDumpDirError: If the tensor does not exist in the debug-dump data. """ device_name = self._infer_device_name(device_name, node_name) watch_key = _get_tensor_watch_key(node_name, output_slot, debug_op) if watch_key not in self._watch_key_to_datum[device_name]: raise WatchKeyDoesNotExistInDebugDumpDirError( "Watch key \"%s\" does not exist in the debug dump of device %s" % (watch_key, device_name)) return [datum.file_path for datum in self._watch_key_to_datum[device_name][watch_key]] def get_tensors(self, node_name, output_slot, debug_op, device_name=None): """Get the tensor value from for a debug-dumped tensor. The tensor may be dumped multiple times in the dump root directory, so a list of tensors (`numpy.ndarray`) is returned. Args: node_name: (`str`) name of the node that the tensor is produced by. output_slot: (`int`) output slot index of tensor. debug_op: (`str`) name of the debug op. device_name: (`str`) name of the device. If there is only one device or if the specified debug_watch_key exists on only one device, this argument is optional. Returns: List of tensors (`numpy.ndarray`) loaded from the debug-dump file(s). Raises: WatchKeyDoesNotExistInDebugDumpDirError: If the tensor does not exist in the debug-dump data. """ watch_key = _get_tensor_watch_key(node_name, output_slot, debug_op) try: device_name = self._infer_device_name(device_name, node_name) return [datum.get_tensor() for datum in self._watch_key_to_datum[device_name][watch_key]] except (ValueError, KeyError): raise WatchKeyDoesNotExistInDebugDumpDirError( "Watch key \"%s\" does not exist in the debug dump of device %s" % (watch_key, device_name)) def get_rel_timestamps(self, node_name, output_slot, debug_op, device_name=None): """Get the relative timestamp from for a debug-dumped tensor. Relative timestamp means (absolute timestamp - `t0`), where `t0` is the absolute timestamp of the first dumped tensor in the dump root. The tensor may be dumped multiple times in the dump root directory, so a list of relative timestamps (`numpy.ndarray`) is returned. Args: node_name: (`str`) name of the node that the tensor is produced by. output_slot: (`int`) output slot index of tensor. debug_op: (`str`) name of the debug op. device_name: (`str`) name of the device. If there is only one device or if the specified debug_watch_key exists on only one device, this argument is optional. Returns: (`list` of `int`) list of relative timestamps. Raises: WatchKeyDoesNotExistInDebugDumpDirError: If the tensor watch key does not exist in the debug dump data. """ device_name = self._infer_device_name(device_name, node_name) watch_key = _get_tensor_watch_key(node_name, output_slot, debug_op) if watch_key not in self._watch_key_to_datum[device_name]: raise WatchKeyDoesNotExistInDebugDumpDirError( "Watch key \"%s\" does not exist in the debug dump" % watch_key) # TODO(cais): Figure out whether this should be relative to the global t0. return self._watch_key_to_rel_time[device_name][watch_key] def get_dump_sizes_bytes(self, node_name, output_slot, debug_op, device_name=None): """Get the sizes of the dump files for a debug-dumped tensor. Unit of the file size: byte. Args: node_name: (`str`) name of the node that the tensor is produced by. output_slot: (`int`) output slot index of tensor. debug_op: (`str`) name of the debug op. device_name: (`str`) name of the device. If there is only one device or if the specified debug_watch_key exists on only one device, this argument is optional. Returns: (`list` of `int`): list of dump file sizes in bytes. Raises: WatchKeyDoesNotExistInDebugDumpDirError: If the tensor watch key does not exist in the debug dump data. """ device_name = self._infer_device_name(device_name, node_name) watch_key = _get_tensor_watch_key(node_name, output_slot, debug_op) if watch_key not in self._watch_key_to_datum[device_name]: raise WatchKeyDoesNotExistInDebugDumpDirError( "Watch key \"%s\" does not exist in the debug dump of device %s" % (watch_key, device_name)) return self._watch_key_to_dump_size_bytes[device_name][watch_key] def node_traceback(self, element_name): """Try to retrieve the Python traceback of node's construction. Args: element_name: (`str`) Name of a graph element (node or tensor). Returns: (list) The traceback list object as returned by the `extract_trace` method of Python's traceback module. Raises: LookupError: If Python graph is not available for traceback lookup. KeyError: If the node cannot be found in the Python graph loaded. """ if self._python_graph is None: raise LookupError("Python graph is not available for traceback lookup") node_name = debug_graphs.get_node_name(element_name) if node_name not in self._node_traceback: raise KeyError("Cannot find node \"%s\" in Python graph" % node_name) return self._node_traceback[node_name]
tensorflow-master
tensorflow/python/debug/lib/debug_data.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Unit tests for common values and methods of TensorFlow Debugger.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import json from tensorflow.python.debug.lib import common from tensorflow.python.framework import constant_op from tensorflow.python.framework import test_util from tensorflow.python.platform import googletest class CommonTest(test_util.TensorFlowTestCase): @test_util.run_deprecated_v1 def testOnFeedOneFetch(self): a = constant_op.constant(10.0, name="a") b = constant_op.constant(20.0, name="b") run_key = common.get_run_key({"a": a}, [b]) loaded = json.loads(run_key) self.assertItemsEqual(["a:0"], loaded[0]) self.assertItemsEqual(["b:0"], loaded[1]) @test_util.run_deprecated_v1 def testGetRunKeyFlat(self): a = constant_op.constant(10.0, name="a") b = constant_op.constant(20.0, name="b") run_key = common.get_run_key({"a": a}, [a, b]) loaded = json.loads(run_key) self.assertItemsEqual(["a:0"], loaded[0]) self.assertItemsEqual(["a:0", "b:0"], loaded[1]) @test_util.run_deprecated_v1 def testGetRunKeyNestedFetches(self): a = constant_op.constant(10.0, name="a") b = constant_op.constant(20.0, name="b") c = constant_op.constant(30.0, name="c") d = constant_op.constant(30.0, name="d") run_key = common.get_run_key( {}, {"set1": [a, b], "set2": {"c": c, "d": d}}) loaded = json.loads(run_key) self.assertItemsEqual([], loaded[0]) self.assertItemsEqual(["a:0", "b:0", "c:0", "d:0"], loaded[1]) if __name__ == "__main__": googletest.main()
tensorflow-master
tensorflow/python/debug/lib/common_test.py
tensorflow-master
tensorflow/python/debug/lib/__init__.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Classes and methods for processing debugger-decorated graphs.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from six.moves import xrange # pylint: disable=redefined-builtin from tensorflow.core.framework import graph_pb2 from tensorflow.python.framework import op_def_registry from tensorflow.python.platform import tf_logging as logging def parse_node_or_tensor_name(name): """Get the node name from a string that can be node or tensor name. Args: name: An input node name (e.g., "node_a") or tensor name (e.g., "node_a:0"), as a str. Returns: 1) The node name, as a str. If the input name is a tensor name, i.e., consists of a colon, the final colon and the following output slot will be stripped. 2) If the input name is a tensor name, the output slot, as an int. If the input name is not a tensor name, None. """ if ":" in name and not name.endswith(":"): node_name = name[:name.rfind(":")] output_slot = int(name[name.rfind(":") + 1:]) return node_name, output_slot else: return name, None def get_node_name(element_name): node_name, _ = parse_node_or_tensor_name(element_name) return node_name def get_output_slot(element_name): """Get the output slot number from the name of a graph element. If element_name is a node name without output slot at the end, 0 will be assumed. Args: element_name: (`str`) name of the graph element in question. Returns: (`int`) output slot number. """ _, output_slot = parse_node_or_tensor_name(element_name) return output_slot if output_slot is not None else 0 def is_copy_node(node_name): """Determine whether a node name is that of a debug Copy node. Such nodes are inserted by TensorFlow core upon request in RunOptions.debug_options.debug_tensor_watch_opts. Args: node_name: Name of the node. Returns: A bool indicating whether the input argument is the name of a debug Copy node. """ return node_name.startswith("__copy_") def is_debug_node(node_name): """Determine whether a node name is that of a debug node. Such nodes are inserted by TensorFlow core upon request in RunOptions.debug_options.debug_tensor_watch_opts. Args: node_name: Name of the node. Returns: A bool indicating whether the input argument is the name of a debug node. """ return node_name.startswith("__dbg_") def parse_debug_node_name(node_name): """Parse the name of a debug node. Args: node_name: Name of the debug node. Returns: 1. Name of the watched node, as a str. 2. Output slot index of the watched tensor, as an int. 3. Index of the debug node, as an int. 4. Name of the debug op, as a str, e.g, "DebugIdentity". Raises: ValueError: If the input node name is not a valid debug node name. """ prefix = "__dbg_" name = node_name if not name.startswith(prefix): raise ValueError("Invalid prefix in debug node name: '%s'" % node_name) name = name[len(prefix):] if name.count("_") < 2: raise ValueError("Invalid debug node name: '%s'" % node_name) debug_op = name[name.rindex("_") + 1:] name = name[:name.rindex("_")] debug_op_index = int(name[name.rindex("_") + 1:]) name = name[:name.rindex("_")] if name.count(":") != 1: raise ValueError("Invalid tensor name in debug node name: '%s'" % node_name) watched_node_name = name[:name.index(":")] watched_output_slot = int(name[name.index(":") + 1:]) return watched_node_name, watched_output_slot, debug_op_index, debug_op class GraphTracingReachedDestination(Exception): pass class DFSGraphTracer(object): """Graph input tracer using depth-first search.""" def __init__(self, input_lists, skip_node_names=None, destination_node_name=None): """Constructor of _DFSGraphTracer. Args: input_lists: A list of dicts. Each dict is an adjacency (input) map from the recipient node name as the key and the list of input node names as the value. skip_node_names: Optional: a list of node names to skip tracing. destination_node_name: Optional: destination node name. If not `None`, it should be the name of a destination not as a str and the graph tracing will raise GraphTracingReachedDestination as soon as the node has been reached. Raises: GraphTracingReachedDestination: if stop_at_node_name is not None and the specified node is reached. """ self._input_lists = input_lists self._skip_node_names = skip_node_names self._inputs = [] self._visited_nodes = [] self._depth_count = 0 self._depth_list = [] self._destination_node_name = destination_node_name def trace(self, graph_element_name): """Trace inputs. Args: graph_element_name: Name of the node or an output tensor of the node, as a str. Raises: GraphTracingReachedDestination: if destination_node_name of this tracer object is not None and the specified node is reached. """ self._depth_count += 1 node_name = get_node_name(graph_element_name) if node_name == self._destination_node_name: raise GraphTracingReachedDestination() if node_name in self._skip_node_names: return if node_name in self._visited_nodes: return self._visited_nodes.append(node_name) for input_list in self._input_lists: if node_name not in input_list: continue for inp in input_list[node_name]: if get_node_name(inp) in self._visited_nodes: continue self._inputs.append(inp) self._depth_list.append(self._depth_count) self.trace(inp) self._depth_count -= 1 def inputs(self): return self._inputs def depth_list(self): return self._depth_list def _infer_device_name(graph_def): """Infer device name from a partition GraphDef.""" device_name = None for node in graph_def.node: if node.device: device_name = node.device break if device_name is None: logging.warn( "Failed to infer device name from partition GraphDef: none of the " "nodes of the GraphDef has a non-empty device name.") return device_name class DebugGraph(object): """Represents a debugger-decorated graph.""" def __init__(self, debug_graph_def, device_name=None): self._debug_graph_def = debug_graph_def self._non_debug_graph_def = None self._node_attributes = {} self._node_inputs = {} self._node_reversed_ref_inputs = {} self._node_ctrl_inputs = {} self._node_recipients = {} self._node_ctrl_recipients = {} self._node_devices = {} self._node_op_types = {} self._copy_send_nodes = [] self._ref_args = {} self._device_name = device_name if not self._device_name: self._device_name = _infer_device_name(debug_graph_def) for node in debug_graph_def.node: self._process_debug_graph_node(node) self._prune_non_control_edges_of_debug_ops() self._prune_control_edges_of_debug_ops() self._prune_nodes_from_input_and_recipient_maps(self._get_copy_nodes()) self._populate_recipient_maps() def _process_debug_graph_node(self, node): """Process a node from the debug GraphDef. Args: node: (NodeDef) A partition-graph node to be processed. Raises: ValueError: If duplicate node names are encountered. """ if is_debug_node(node.name): # This is a debug node. Parse the node name and retrieve the # information about debug watches on tensors. But do not include # the node in the graph. return if node.name in self._node_inputs: raise ValueError("Duplicate node name on device %s: '%s'" % (self._device_name, node.name)) self._node_attributes[node.name] = node.attr self._node_inputs[node.name] = [] self._node_ctrl_inputs[node.name] = [] self._node_recipients[node.name] = [] self._node_ctrl_recipients[node.name] = [] if node.name not in self._node_devices: self._node_devices[node.name] = set() self._node_devices[node.name].add( node.device if node.device else self._device_name) self._node_op_types[node.name] = node.op self._ref_args[node.name] = self._get_ref_args(node) for inp in node.input: if is_copy_node(inp) and (node.op == "_Send" or node.op == "_Retval"): self._copy_send_nodes.append(node.name) if inp.startswith("^"): cinp = inp[1:] self._node_ctrl_inputs[node.name].append(cinp) else: self._node_inputs[node.name].append(inp) def _get_ref_args(self, node): """Determine whether an input of an op is ref-type. Args: node: A `NodeDef`. Returns: A list of the arg names (as strs) that are ref-type. """ op_def = op_def_registry.get_registered_ops().get(node.op) ref_args = [] if op_def: for i, output_arg in enumerate(op_def.output_arg): if output_arg.is_ref: arg_name = node.name if i == 0 else ("%s:%d" % (node.name, i)) ref_args.append(arg_name) return ref_args def _get_copy_nodes(self): """Find all Copy nodes in the loaded graph.""" copy_nodes = [] for node in self._node_inputs: if is_copy_node(node): copy_nodes.append(node) return copy_nodes def _prune_non_control_edges_of_debug_ops(self): """Prune (non-control) edges related to debug ops. Prune the Copy ops and associated _Send ops inserted by the debugger out from the non-control inputs and output recipients map. Replace the inputs and recipients with original ones. """ for node in self._node_inputs: inputs = self._node_inputs[node] for i in xrange(len(inputs)): inp = inputs[i] if is_copy_node(inp): # Find the input to the Copy node, which should be the original # input to the node. orig_inp = self._node_inputs[inp][0] inputs[i] = orig_inp def _prune_control_edges_of_debug_ops(self): """Prune control edges related to the debug ops.""" for node in self._node_ctrl_inputs: ctrl_inputs = self._node_ctrl_inputs[node] debug_op_inputs = [] for ctrl_inp in ctrl_inputs: if is_debug_node(ctrl_inp): debug_op_inputs.append(ctrl_inp) for debug_op_inp in debug_op_inputs: ctrl_inputs.remove(debug_op_inp) def _populate_recipient_maps(self): """Populate the map from node name to recipient(s) of its output(s). This method also populates the input map based on reversed ref edges. """ for node in self._node_inputs: inputs = self._node_inputs[node] for inp in inputs: inp = get_node_name(inp) if inp not in self._node_recipients: self._node_recipients[inp] = [] self._node_recipients[inp].append(node) if inp in self._ref_args: if inp not in self._node_reversed_ref_inputs: self._node_reversed_ref_inputs[inp] = [] self._node_reversed_ref_inputs[inp].append(node) for node in self._node_ctrl_inputs: ctrl_inputs = self._node_ctrl_inputs[node] for ctrl_inp in ctrl_inputs: if ctrl_inp in self._copy_send_nodes: continue if ctrl_inp not in self._node_ctrl_recipients: self._node_ctrl_recipients[ctrl_inp] = [] self._node_ctrl_recipients[ctrl_inp].append(node) def _prune_nodes_from_input_and_recipient_maps(self, nodes_to_prune): """Prune nodes out of input and recipient maps. Args: nodes_to_prune: (`list` of `str`) Names of the nodes to be pruned. """ for node in nodes_to_prune: del self._node_inputs[node] del self._node_ctrl_inputs[node] del self._node_recipients[node] del self._node_ctrl_recipients[node] def _reconstruct_non_debug_graph_def(self): """Reconstruct non-debug GraphDef. Non-debug GraphDef means the original GraphDef without the Copy* and Debug nodes inserted by the debugger. """ if self._non_debug_graph_def: return self._non_debug_graph_def = graph_pb2.GraphDef() for node in self._debug_graph_def.node: if is_copy_node(node.name) or is_debug_node(node.name): continue new_node = self._non_debug_graph_def.node.add() new_node.CopyFrom(node) # Redo the list of inputs, because in _debug_graph_def, the list can # consist of Copy* and Debug* nodes inserted by the debugger. Those will # be replaced with the original inputs here. del new_node.input[:] for inp in self._node_inputs[node.name]: new_node.input.append(inp) for ctrl_inp in self._node_ctrl_inputs[node.name]: new_node.input.append("^" + ctrl_inp) @property def device_name(self): return self._device_name @property def debug_graph_def(self): """The debugger-decorated GraphDef.""" return self._debug_graph_def @property def non_debug_graph_def(self): """The GraphDef without the Copy* and Debug* nodes added by the debugger.""" self._reconstruct_non_debug_graph_def() return self._non_debug_graph_def @property def node_devices(self): return self._node_devices @property def node_op_types(self): return self._node_op_types @property def node_attributes(self): return self._node_attributes @property def node_inputs(self): return self._node_inputs @property def node_ctrl_inputs(self): return self._node_ctrl_inputs @property def node_reversed_ref_inputs(self): return self._node_reversed_ref_inputs @property def node_recipients(self): return self._node_recipients @property def node_ctrl_recipients(self): return self._node_ctrl_recipients def reconstruct_non_debug_graph_def(debug_graph_def): """Reconstruct original (non-debugger-decorated) partition GraphDef. This method strips the input `tf.compat.v1.GraphDef` of the Copy* and Debug*-type nodes inserted by the debugger. The reconstructed partition graph is identical to the original (i.e., non-debugger-decorated) partition graph except in the following respects: 1) The exact names of the runtime-inserted internal nodes may differ. These include _Send, _Recv, _HostSend, _HostRecv, _Retval ops. 2) As a consequence of 1, the nodes that receive input directly from such send- and recv-type ops will have different input names. 3) The parallel_iteration attribute of while-loop Enter ops are set to 1. Args: debug_graph_def: The debugger-decorated `tf.compat.v1.GraphDef`, with the debugger-inserted Copy* and Debug* nodes. Returns: The reconstructed `tf.compat.v1.GraphDef` stripped of the debugger-inserted nodes. """ return DebugGraph(debug_graph_def).non_debug_graph_def
tensorflow-master
tensorflow/python/debug/lib/debug_graphs.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for sending large-size data through tfdbg grpc channels. "Large-size data" includes large GraphDef protos and large Tensor protos. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from six.moves import xrange # pylint: disable=redefined-builtin from tensorflow.python.debug.lib import grpc_debug_test_server from tensorflow.python.debug.lib import session_debug_testlib from tensorflow.python.debug.wrappers import framework from tensorflow.python.debug.wrappers import grpc_wrapper from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import variables from tensorflow.python.platform import googletest from tensorflow.python.platform import test from tensorflow.python.platform import tf_logging class LargeGraphAndLargeTensorsDebugTest(test_util.TensorFlowTestCase): @classmethod def setUpClass(cls): (cls.debug_server_port, cls.debug_server_url, _, cls.debug_server_thread, cls.debug_server ) = grpc_debug_test_server.start_server_on_separate_thread( dump_to_filesystem=False) tf_logging.info("debug server url: %s", cls.debug_server_url) @classmethod def tearDownClass(cls): cls.debug_server.stop_server().wait() cls.debug_server_thread.join() def tearDown(self): ops.reset_default_graph() self.debug_server.clear_data() @test_util.run_v1_only("currently failing on v2") def testSendingLargeGraphDefsWorks(self): with self.session( use_gpu=True, config=session_debug_testlib.no_rewrite_session_config()) as sess: u = variables.VariableV1(42.0, name="original_u") for _ in xrange(50 * 1000): u = array_ops.identity(u) sess.run(variables.global_variables_initializer()) def watch_fn(fetches, feeds): del fetches, feeds return framework.WatchOptions( debug_ops=["DebugIdentity"], node_name_regex_whitelist=r"original_u") sess = grpc_wrapper.GrpcDebugWrapperSession( sess, "localhost:%d" % self.debug_server_port, watch_fn=watch_fn) self.assertAllClose(42.0, sess.run(u)) self.assertAllClose( [42.0], self.debug_server.debug_tensor_values["original_u:0:DebugIdentity"]) self.assertEqual(2 if test.is_gpu_available() else 1, len(self.debug_server.partition_graph_defs)) max_graph_def_size = max([ len(graph_def.SerializeToString()) for graph_def in self.debug_server.partition_graph_defs]) self.assertGreater(max_graph_def_size, 4 * 1024 * 1024) @test_util.run_v1_only("currently failing on v2") def testSendingLargeFloatTensorWorks(self): with self.session( use_gpu=True, config=session_debug_testlib.no_rewrite_session_config()) as sess: u_init_val_array = list(xrange(1200 * 1024)) # Size: 4 * 1200 * 1024 = 4800k > 4M u_init = constant_op.constant( u_init_val_array, dtype=dtypes.float32, name="u_init") u = variables.VariableV1(u_init, name="u") def watch_fn(fetches, feeds): del fetches, feeds # Unused by this watch_fn. return framework.WatchOptions( debug_ops=["DebugIdentity"], node_name_regex_whitelist=r"u_init") sess = grpc_wrapper.GrpcDebugWrapperSession( sess, "localhost:%d" % self.debug_server_port, watch_fn=watch_fn) sess.run(u.initializer) self.assertAllEqual( u_init_val_array, self.debug_server.debug_tensor_values["u_init:0:DebugIdentity"][0]) @test_util.run_v1_only("currently failing on v2") def testSendingStringTensorWithAlmostTooLargeStringsWorks(self): with self.session( use_gpu=True, config=session_debug_testlib.no_rewrite_session_config()) as sess: u_init_val = [ b"", b"spam", b"A" * 2500 * 1024, b"B" * 2500 * 1024, b"egg", b""] u_init = constant_op.constant( u_init_val, dtype=dtypes.string, name="u_init") u = variables.VariableV1(u_init, name="u") def watch_fn(fetches, feeds): del fetches, feeds return framework.WatchOptions( debug_ops=["DebugIdentity"], node_name_regex_whitelist=r"u_init") sess = grpc_wrapper.GrpcDebugWrapperSession( sess, "localhost:%d" % self.debug_server_port, watch_fn=watch_fn) sess.run(u.initializer) self.assertAllEqual( u_init_val, self.debug_server.debug_tensor_values["u_init:0:DebugIdentity"][0]) @test_util.run_v1_only("currently failing on v2") def testSendingLargeStringTensorWorks(self): with self.session( use_gpu=True, config=session_debug_testlib.no_rewrite_session_config()) as sess: strs_total_size_threshold = 5000 * 1024 cum_size = 0 u_init_val_array = [] while cum_size < strs_total_size_threshold: strlen = np.random.randint(200) u_init_val_array.append(b"A" * strlen) cum_size += strlen u_init = constant_op.constant( u_init_val_array, dtype=dtypes.string, name="u_init") u = variables.VariableV1(u_init, name="u") def watch_fn(fetches, feeds): del fetches, feeds return framework.WatchOptions( debug_ops=["DebugIdentity"], node_name_regex_whitelist=r"u_init") sess = grpc_wrapper.GrpcDebugWrapperSession( sess, "localhost:%d" % self.debug_server_port, watch_fn=watch_fn) sess.run(u.initializer) self.assertAllEqual( u_init_val_array, self.debug_server.debug_tensor_values["u_init:0:DebugIdentity"][0]) @test_util.run_v1_only("currently failing on v2") def testSendingEmptyFloatTensorWorks(self): with self.session( use_gpu=True, config=session_debug_testlib.no_rewrite_session_config()) as sess: u_init = constant_op.constant( [], dtype=dtypes.float32, shape=[0], name="u_init") u = variables.VariableV1(u_init, name="u") def watch_fn(fetches, feeds): del fetches, feeds return framework.WatchOptions( debug_ops=["DebugIdentity"], node_name_regex_whitelist=r"u_init") sess = grpc_wrapper.GrpcDebugWrapperSession( sess, "localhost:%d" % self.debug_server_port, watch_fn=watch_fn) sess.run(u.initializer) u_init_value = self.debug_server.debug_tensor_values[ "u_init:0:DebugIdentity"][0] self.assertEqual(np.float32, u_init_value.dtype) self.assertEqual(0, len(u_init_value)) @test_util.run_v1_only("currently failing on v2") def testSendingEmptyStringTensorWorks(self): with self.session( use_gpu=True, config=session_debug_testlib.no_rewrite_session_config()) as sess: u_init = constant_op.constant( [], dtype=dtypes.string, shape=[0], name="u_init") u = variables.VariableV1(u_init, name="u") def watch_fn(fetches, feeds): del fetches, feeds return framework.WatchOptions( debug_ops=["DebugIdentity"], node_name_regex_whitelist=r"u_init") sess = grpc_wrapper.GrpcDebugWrapperSession( sess, "localhost:%d" % self.debug_server_port, watch_fn=watch_fn) sess.run(u.initializer) u_init_value = self.debug_server.debug_tensor_values[ "u_init:0:DebugIdentity"][0] self.assertEqual(np.object, u_init_value.dtype) self.assertEqual(0, len(u_init_value)) if __name__ == "__main__": googletest.main()
tensorflow-master
tensorflow/python/debug/lib/grpc_large_data_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for debugger functionalities in tf.Session.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import functools import glob import os import shutil import tempfile import threading import numpy as np from six.moves import xrange # pylint: disable=redefined-builtin from tensorflow.core.protobuf import config_pb2 from tensorflow.core.protobuf import rewriter_config_pb2 from tensorflow.core.util import event_pb2 from tensorflow.python.client import session from tensorflow.python.debug.lib import debug_data from tensorflow.python.debug.lib import debug_graphs from tensorflow.python.debug.lib import debug_utils from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import parsing_ops from tensorflow.python.ops import rnn from tensorflow.python.ops import rnn_cell_impl from tensorflow.python.ops import state_ops from tensorflow.python.ops import variables import tensorflow.python.ops.tensor_array_grad # pylint: disable=unused-import from tensorflow.python.platform import googletest from tensorflow.python.platform import test from tensorflow.python.training import gradient_descent def no_rewrite_session_config(): rewriter_config = rewriter_config_pb2.RewriterConfig( disable_model_pruning=True, arithmetic_optimization=rewriter_config_pb2.RewriterConfig.OFF, dependency_optimization=rewriter_config_pb2.RewriterConfig.OFF) graph_options = config_pb2.GraphOptions(rewrite_options=rewriter_config) return config_pb2.ConfigProto(graph_options=graph_options) class _RNNCellForTest(rnn_cell_impl.RNNCell): """RNN cell for testing.""" def __init__(self, input_output_size, state_size): self._input_output_size = input_output_size self._state_size = state_size self._w = variables.VariableV1(1.0, dtype=dtypes.float32, name="w") @property def output_size(self): return self._input_output_size @property def state_size(self): return self._state_size def __call__(self, input_, state, scope=None): return (math_ops.multiply(self._w, input_), state) @test_util.run_v1_only("b/120545219") class SessionDebugTestBase(test_util.TensorFlowTestCase): """Base class for unit tests of tfdbg running with tf.Session.""" @classmethod def setUpClass(cls): if test.is_gpu_available(): cls._expected_partition_graph_count = 2 cls._expected_num_devices = 2 gpu_name = test_util.gpu_device_name() cls._main_device = "/job:localhost/replica:0/task:0" + gpu_name else: cls._expected_partition_graph_count = 1 cls._expected_num_devices = 1 cls._main_device = "/job:localhost/replica:0/task:0/device:CPU:0" @classmethod def tearDownClass(cls): pass def setUp(self): self._dump_root = tempfile.mkdtemp() def tearDown(self): ops.reset_default_graph() # Tear down temporary dump directory. if os.path.isdir(self._dump_root): shutil.rmtree(self._dump_root) def _debug_urls(self, run_number=None): raise NotImplementedError( "_debug_urls() method is not implemented in the base test class.") def _debug_dump_dir(self, run_number=None): raise NotImplementedError( "_debug_dump_dir() method is not implemented in the base test class.") def _debug_run_and_get_dump(self, sess, fetches, feed_dict=None, debug_ops="DebugIdentity", tolerate_debug_op_creation_failures=False, global_step=-1, validate=True, expected_partition_graph_count=None): """Run fetches with debugging and obtain DebugDumpDir. Args: sess: the tf.compat.v1.Session to be used. fetches: fetches of the Session.run(). feed_dict: feed dict for the Session.run(). debug_ops: name(s) of the debug ops to be used. tolerate_debug_op_creation_failures: whether to tolerate debug op creation failures. global_step: Optional global step. validate: whether to validate dumped tensors against graph. expected_partition_graph_count: optional count of partition graphs to assert on. Returns: 1. Return values of the Session.run(). 2. The DebugDumpDir object from the debugged run(). """ run_options = config_pb2.RunOptions(output_partition_graphs=True) debug_utils.watch_graph( run_options, sess.graph, debug_ops=debug_ops, debug_urls=self._debug_urls(), tolerate_debug_op_creation_failures=tolerate_debug_op_creation_failures, global_step=global_step) run_metadata = config_pb2.RunMetadata() run_output = sess.run(fetches, feed_dict=feed_dict, options=run_options, run_metadata=run_metadata) if expected_partition_graph_count is not None: self.assertEqual(expected_partition_graph_count, len(run_metadata.partition_graphs)) return run_output, debug_data.DebugDumpDir( self._dump_root, partition_graphs=run_metadata.partition_graphs, validate=validate) def _generate_dump_from_simple_addition_graph(self): with session.Session(config=no_rewrite_session_config()) as sess: u_init_val = np.array([[5.0, 3.0], [-1.0, 0.0]]) v_init_val = np.array([[2.0], [-1.0]]) # Use node names with overlapping namespace (i.e., parent directory) to # test concurrent, non-racing directory creation. u_name = "u" v_name = "v" w_name = "w" u_init = constant_op.constant(u_init_val, shape=[2, 2]) u = variables.VariableV1(u_init, name=u_name) v_init = constant_op.constant(v_init_val, shape=[2, 1]) v = variables.VariableV1(v_init, name=v_name) w = math_ops.matmul(u, v, name=w_name) u.initializer.run() v.initializer.run() run_options = config_pb2.RunOptions(output_partition_graphs=True) debug_urls = "file://%s" % self._dump_root # Add debug tensor watch for u. debug_utils.add_debug_tensor_watch( run_options, "%s/read" % u_name, 0, debug_urls=debug_urls) # Add debug tensor watch for v. debug_utils.add_debug_tensor_watch( run_options, "%s/read" % v_name, 0, debug_urls=debug_urls) run_metadata = config_pb2.RunMetadata() # Invoke Session.run(). sess.run(w, options=run_options, run_metadata=run_metadata) self.assertEqual(self._expected_partition_graph_count, len(run_metadata.partition_graphs)) dump = debug_data.DebugDumpDir( self._dump_root, partition_graphs=run_metadata.partition_graphs) simple_add_results = collections.namedtuple("SimpleAddResults", [ "u_init_val", "v_init_val", "u", "v", "w", "u_name", "v_name", "w_name", "dump" ]) return simple_add_results(u_init_val, v_init_val, u, v, w, u_name, v_name, w_name, dump) def testCopyNodesHaveCorrectDebugOpsAndURLsAttributeValues(self): with session.Session() as sess: u = variables.VariableV1(2.1, name="u") v = variables.VariableV1(20.0, name="v") w = math_ops.multiply(u, v, name="w") sess.run(variables.global_variables_initializer()) run_options = config_pb2.RunOptions(output_partition_graphs=True) debug_urls = self._debug_urls() debug_utils.add_debug_tensor_watch( run_options, "u", 0, ["DebugNumericSummary(gated_grpc=True)", "DebugIdentity"], debug_urls=debug_urls) debug_utils.add_debug_tensor_watch( run_options, "v", 0, ["DebugNumericSummary"], debug_urls=debug_urls) run_metadata = config_pb2.RunMetadata() r = sess.run(w, options=run_options, run_metadata=run_metadata) self.assertAllClose(42.0, r) u_copy_node_def = None v_copy_node_def = None for partition_graph in run_metadata.partition_graphs: for node_def in partition_graph.node: if debug_graphs.is_copy_node(node_def.name): if node_def.name == "__copy_u_0": u_copy_node_def = node_def elif node_def.name == "__copy_v_0": v_copy_node_def = node_def self.assertIsNotNone(u_copy_node_def) debug_ops_spec = u_copy_node_def.attr["debug_ops_spec"].list.s self.assertEqual(2, len(debug_ops_spec)) self.assertEqual("DebugNumericSummary;%s;1" % debug_urls[0], debug_ops_spec[0].decode("utf-8")) self.assertEqual("DebugIdentity;%s;0" % debug_urls[0], debug_ops_spec[1].decode("utf-8")) self.assertIsNotNone(v_copy_node_def) debug_ops_spec = v_copy_node_def.attr["debug_ops_spec"].list.s self.assertEqual(1, len(debug_ops_spec)) self.assertEqual("DebugNumericSummary;%s;0" % debug_urls[0], debug_ops_spec[0].decode("utf-8")) def testConcurrentDumpingToPathsWithOverlappingParentDirsWorks(self): results = self._generate_dump_from_simple_addition_graph() self.assertTrue(results.dump.loaded_partition_graphs()) # Since global_step is not explicitly specified, it should take its default # value: -1. self.assertEqual(-1, results.dump.core_metadata.global_step) self.assertGreaterEqual(results.dump.core_metadata.session_run_index, 0) self.assertGreaterEqual(results.dump.core_metadata.executor_step_index, 0) self.assertEqual([], results.dump.core_metadata.input_names) self.assertEqual([results.w.name], results.dump.core_metadata.output_names) self.assertEqual([], results.dump.core_metadata.target_nodes) # Verify the dumped tensor values for u and v. self.assertEqual(2, results.dump.size) self.assertAllClose([results.u_init_val], results.dump.get_tensors("%s/read" % results.u_name, 0, "DebugIdentity")) self.assertAllClose([results.v_init_val], results.dump.get_tensors("%s/read" % results.v_name, 0, "DebugIdentity")) self.assertGreaterEqual( results.dump.get_rel_timestamps("%s/read" % results.u_name, 0, "DebugIdentity")[0], 0) self.assertGreaterEqual( results.dump.get_rel_timestamps("%s/read" % results.v_name, 0, "DebugIdentity")[0], 0) self.assertGreater( results.dump.get_dump_sizes_bytes("%s/read" % results.u_name, 0, "DebugIdentity")[0], 0) self.assertGreater( results.dump.get_dump_sizes_bytes("%s/read" % results.v_name, 0, "DebugIdentity")[0], 0) def testGetOpTypeWorks(self): results = self._generate_dump_from_simple_addition_graph() self.assertEqual(results.u.op.type, results.dump.node_op_type(results.u_name)) self.assertIn(results.v.op.type, results.dump.node_op_type(results.v_name)) self.assertIn(results.w.op.type, results.dump.node_op_type(results.w_name)) with self.assertRaisesRegexp( ValueError, r"None of the .* device\(s\) has a node named "): results.dump.node_op_type("foo_bar") def testDumpStringTensorsWorks(self): with session.Session(config=no_rewrite_session_config()) as sess: str1_init_val = np.array(b"abc") str2_init_val = np.array(b"def") str1_init = constant_op.constant(str1_init_val) str2_init = constant_op.constant(str2_init_val) str1_name = "str1" str2_name = "str2" str1 = variables.VariableV1(str1_init, name=str1_name) str2 = variables.VariableV1(str2_init, name=str2_name) # Concatenate str1 and str2 str_concat = math_ops.add(str1, str2, name="str_concat") str1.initializer.run() str2.initializer.run() run_options = config_pb2.RunOptions(output_partition_graphs=True) debug_urls = self._debug_urls() # Add debug tensor watch for u. debug_utils.add_debug_tensor_watch( run_options, "%s/read" % str1_name, 0, debug_urls=debug_urls) # Add debug tensor watch for v. debug_utils.add_debug_tensor_watch( run_options, "%s/read" % str2_name, 0, debug_urls=debug_urls) run_metadata = config_pb2.RunMetadata() sess.run(str_concat, options=run_options, run_metadata=run_metadata) # String ops are located on CPU. self.assertEqual(1, len(run_metadata.partition_graphs)) dump = debug_data.DebugDumpDir( self._dump_root, partition_graphs=run_metadata.partition_graphs) self.assertIn(str1_name, dump.nodes()) self.assertIn(str2_name, dump.nodes()) self.assertEqual(2, dump.size) self.assertEqual([str1_init_val], dump.get_tensors("%s/read" % str1_name, 0, "DebugIdentity")) self.assertEqual([str2_init_val], dump.get_tensors("%s/read" % str2_name, 0, "DebugIdentity")) self.assertGreaterEqual( dump.get_rel_timestamps("%s/read" % str1_name, 0, "DebugIdentity")[0], 0) self.assertGreaterEqual( dump.get_rel_timestamps("%s/read" % str2_name, 0, "DebugIdentity")[0], 0) self.assertGreater( dump.get_dump_sizes_bytes("%s/read" % str1_name, 0, "DebugIdentity")[0], 0) self.assertGreater( dump.get_dump_sizes_bytes("%s/read" % str2_name, 0, "DebugIdentity")[0], 0) def testDumpUninitializedVariable(self): op_namespace = "testDumpUninitializedVariable" with session.Session() as sess: u_init_val = np.array([[5.0, 3.0], [-1.0, 0.0]]) s_init_val = b"str1" u_name = "%s/u" % op_namespace s_name = "%s/s" % op_namespace u_init = constant_op.constant(u_init_val, shape=[2, 2]) u = variables.VariableV1(u_init, name=u_name) s_init = constant_op.constant(s_init_val) s = variables.VariableV1(s_init, name=s_name) run_options = config_pb2.RunOptions(output_partition_graphs=True) debug_urls = self._debug_urls() # Add debug tensor watch for u. debug_utils.add_debug_tensor_watch( run_options, u_name, 0, debug_urls=debug_urls) debug_utils.add_debug_tensor_watch( run_options, s_name, 0, debug_urls=debug_urls) run_metadata = config_pb2.RunMetadata() # Initialize u and s. sess.run(variables.global_variables_initializer(), options=run_options, run_metadata=run_metadata) # Verify the dump file for the uninitialized value of u. dump = debug_data.DebugDumpDir( self._dump_root, partition_graphs=run_metadata.partition_graphs) self.assertEqual(2, dump.size) self.assertEqual(self._expected_partition_graph_count, len(run_metadata.partition_graphs)) # Verify that the variable is properly initialized by the run() call. u_vals = dump.get_tensors(u_name, 0, "DebugIdentity") s_vals = dump.get_tensors(s_name, 0, "DebugIdentity") self.assertEqual(1, len(u_vals)) self.assertIsInstance(u_vals[0], debug_data.InconvertibleTensorProto) self.assertFalse(u_vals[0].initialized) self.assertEqual(1, len(s_vals)) self.assertIsInstance(s_vals[0], debug_data.InconvertibleTensorProto) self.assertFalse(s_vals[0].initialized) # Call run() again, to check that u is initialized properly. self.assertAllClose(u_init_val, sess.run(u)) self.assertEqual(s_init_val, sess.run(s)) def testDebugWhileLoopGeneratesMultipleDumps(self): with session.Session(config=no_rewrite_session_config()) as sess: num_iter = 10 # "u" is the Variable being updated in the loop. u_name = "testDumpToFileWhileLoop/u" u_namespace = u_name.split("/")[0] u_init_val = np.array(11.0) u_init = constant_op.constant(u_init_val) u = variables.VariableV1(u_init, name=u_name) # "v" is the increment. v_name = "testDumpToFileWhileLoop/v" v_namespace = v_name.split("/")[0] v_init_val = np.array(2.0) v_init = constant_op.constant(v_init_val) v = variables.VariableV1(v_init, name=v_name) u.initializer.run() v.initializer.run() i = constant_op.constant(0, name="testDumpToFileWhileLoop/i") def cond(i): return math_ops.less(i, num_iter) def body(i): new_u = state_ops.assign_add(u, v) new_i = math_ops.add(i, 1) op = control_flow_ops.group(new_u) new_i = control_flow_ops.with_dependencies([op], new_i) return [new_i] loop = control_flow_ops.while_loop( cond, body, [i], parallel_iterations=10) # Create RunOptions for debug-watching tensors run_options = config_pb2.RunOptions(output_partition_graphs=True) debug_urls = self._debug_urls() # Add debug tensor watch for u. debug_utils.add_debug_tensor_watch( run_options, u_name, 0, debug_urls=debug_urls) # Add debug tensor watch for v. debug_utils.add_debug_tensor_watch( run_options, "%s/read" % v_name, 0, debug_urls=debug_urls) # Add debug tensor watch for while/Identity. debug_utils.add_debug_tensor_watch( run_options, "while/Identity", 0, debug_urls=debug_urls) # Add debug tensor watch for while/Add/y. debug_utils.add_debug_tensor_watch( run_options, "while/Add/y", 0, debug_urls=debug_urls) run_metadata = config_pb2.RunMetadata() r = sess.run(loop, options=run_options, run_metadata=run_metadata) self.assertEqual(self._expected_partition_graph_count, len(run_metadata.partition_graphs)) self.assertEqual(num_iter, r) u_val_final = sess.run(u) self.assertAllClose(u_init_val + num_iter * v_init_val, u_val_final) # Verify dump files self.assertTrue(os.path.isdir(self._dump_root)) u_glob_out = glob.glob(os.path.join(self._dump_root, "*", u_namespace)) v_glob_out = glob.glob(os.path.join( self._dump_root, "*", v_namespace, "v")) self.assertTrue(os.path.isdir(u_glob_out[0])) self.assertTrue(os.path.isdir(v_glob_out[0])) dump = debug_data.DebugDumpDir( self._dump_root, partition_graphs=run_metadata.partition_graphs) # Expected dumped tensors: u, v/read, 10 iterations of while/Identity, # and 10 iterations of while/Add/y. self.assertEqual(1 + 1 + num_iter + num_iter, dump.size) # Verify tensor values. self.assertAllClose([u_init_val], dump.get_tensors(u_name, 0, "DebugIdentity")) self.assertAllClose([v_init_val], dump.get_tensors("%s/read" % v_name, 0, "DebugIdentity")) while_id_tensors = dump.get_tensors("while/Identity", 0, "DebugIdentity") self.assertEqual(10, len(while_id_tensors)) for k in xrange(len(while_id_tensors)): self.assertAllClose(np.array(k), while_id_tensors[k]) # Verify ascending timestamps from the while loops. while_id_rel_timestamps = dump.get_rel_timestamps("while/Identity", 0, "DebugIdentity") while_id_dump_sizes_bytes = dump.get_dump_sizes_bytes("while/Identity", 0, "DebugIdentity") self.assertEqual(10, len(while_id_rel_timestamps)) prev_rel_time = 0 prev_dump_size_bytes = while_id_dump_sizes_bytes[0] for rel_time, dump_size_bytes in zip(while_id_rel_timestamps, while_id_dump_sizes_bytes): self.assertGreaterEqual(rel_time, prev_rel_time) self.assertEqual(dump_size_bytes, prev_dump_size_bytes) prev_rel_time = rel_time prev_dump_size_bytes = dump_size_bytes # Test querying debug watch keys from node name. watch_keys = dump.debug_watch_keys("while/Identity") self.assertEqual(["while/Identity:0:DebugIdentity"], watch_keys) # Test querying debug datum instances from debug watch key. self.assertEqual(10, len(dump.watch_key_to_data(watch_keys[0]))) self.assertEqual([], dump.watch_key_to_data("foo")) def testDebugWhileLoopWatchingWholeGraphWorks(self): with session.Session() as sess: loop_body = lambda i: math_ops.add(i, 2) loop_cond = lambda i: math_ops.less(i, 16) i = constant_op.constant(10, name="i") loop = control_flow_ops.while_loop(loop_cond, loop_body, [i]) loop_result, dump = self._debug_run_and_get_dump(sess, loop) self.assertEqual(16, loop_result) self.assertEqual( [[10]], dump.get_tensors("while/Enter", 0, "DebugIdentity")) self.assertEqual( [[12], [14], [16]], dump.get_tensors("while/NextIteration", 0, "DebugIdentity")) def testDebugTrainingDynamicRNNWorks(self): with session.Session() as sess: input_size = 3 state_size = 2 time_steps = 4 batch_size = 2 input_values = np.random.randn(time_steps, batch_size, input_size) sequence_length = np.random.randint(0, time_steps, size=batch_size) concat_inputs = array_ops.placeholder( dtypes.float32, shape=(time_steps, batch_size, input_size)) outputs_dynamic, _ = rnn.dynamic_rnn( _RNNCellForTest(input_size, state_size), inputs=concat_inputs, sequence_length=sequence_length, time_major=True, dtype=dtypes.float32) toy_loss = math_ops.reduce_sum(outputs_dynamic * outputs_dynamic) train_op = gradient_descent.GradientDescentOptimizer( learning_rate=0.1).minimize(toy_loss, name="train_op") sess.run(variables.global_variables_initializer()) run_options = config_pb2.RunOptions(output_partition_graphs=True) debug_utils.watch_graph_with_blacklists( run_options, sess.graph, node_name_regex_blacklist="(.*rnn/while/.*|.*TensorArray.*)", debug_urls=self._debug_urls()) # b/36870549: Nodes with these name patterns need to be excluded from # tfdbg in order to prevent MSAN warnings of uninitialized Tensors # under both file:// and grpc:// debug URL schemes. run_metadata = config_pb2.RunMetadata() sess.run(train_op, feed_dict={concat_inputs: input_values}, options=run_options, run_metadata=run_metadata) debug_data.DebugDumpDir( self._dump_root, partition_graphs=run_metadata.partition_graphs) def testDebugCondWatchingWholeGraphWorks(self): with session.Session() as sess: x = variables.VariableV1(10.0, name="x") y = variables.VariableV1(20.0, name="y") cond = control_flow_ops.cond( x > y, lambda: math_ops.add(x, 1), lambda: math_ops.add(y, 1)) sess.run(variables.global_variables_initializer()) cond_result, dump = self._debug_run_and_get_dump(sess, cond) self.assertEqual(21, cond_result) self.assertAllClose( [21.0], dump.get_tensors("cond/Merge", 0, "DebugIdentity")) def testFindNodesWithBadTensorValues(self): with session.Session() as sess: u_name = "testFindNodesWithBadTensorValues/u" v_name = "testFindNodesWithBadTensorValues/v" w_name = "testFindNodesWithBadTensorValues/w" x_name = "testFindNodesWithBadTensorValues/x" y_name = "testFindNodesWithBadTensorValues/y" z_name = "testFindNodesWithBadTensorValues/z" u_init = constant_op.constant([2.0, 4.0]) u = variables.VariableV1(u_init, name=u_name) v_init = constant_op.constant([2.0, 1.0]) v = variables.VariableV1(v_init, name=v_name) # Expected output: [0.0, 3.0] w = math_ops.subtract(u, v, name=w_name) # Expected output: [inf, 1.3333] x = math_ops.div(u, w, name=x_name) # Expected output: [nan, 4.0] y = math_ops.multiply(w, x, name=y_name) z = math_ops.multiply(y, y, name=z_name) u.initializer.run() v.initializer.run() _, dump = self._debug_run_and_get_dump( sess, z, expected_partition_graph_count=self._expected_partition_graph_count) def has_bad_value(_, tensor): return np.any(np.isnan(tensor)) or np.any(np.isinf(tensor)) # Find all "offending tensors". bad_data = dump.find(has_bad_value) # Verify that the nodes with bad values are caught through running find # on the debug dump. self.assertEqual(3, len(bad_data)) self.assertEqual(x_name, bad_data[0].node_name) self.assertEqual(y_name, bad_data[1].node_name) self.assertEqual(z_name, bad_data[2].node_name) # Test first_n kwarg of find(): Find the first offending tensor. first_bad_datum = dump.find(has_bad_value, first_n=1) self.assertEqual(1, len(first_bad_datum)) self.assertEqual(x_name, first_bad_datum[0].node_name) def testFindInfOrNanWithOpNameExclusion(self): with session.Session() as sess: u_name = "testFindInfOrNanWithOpNameExclusion/u" v_name = "testFindInfOrNanWithOpNameExclusion/v" w_name = "testFindInfOrNanWithOpNameExclusion/w" x_name = "testFindInfOrNanWithOpNameExclusion/x" y_name = "testFindInfOrNanWithOpNameExclusion/y" z_name = "testFindInfOrNanWithOpNameExclusion/z" u_init = constant_op.constant([2.0, 4.0]) u = variables.VariableV1(u_init, name=u_name) v_init = constant_op.constant([2.0, 1.0]) v = variables.VariableV1(v_init, name=v_name) # Expected output: [0.0, 3.0] w = math_ops.subtract(u, v, name=w_name) # Expected output: [inf, 1.3333] x = math_ops.div(u, w, name=x_name) # Expected output: [nan, 4.0] y = math_ops.multiply(w, x, name=y_name) z = math_ops.multiply(y, y, name=z_name) u.initializer.run() v.initializer.run() _, dump = self._debug_run_and_get_dump( sess, z, expected_partition_graph_count=self._expected_partition_graph_count) # Find all "offending tensors". bad_data = dump.find(debug_data.has_inf_or_nan, exclude_node_names=".*/x$") # Verify that the nodes with bad values are caught through running find # on the debug dump. self.assertEqual(2, len(bad_data)) # Assert that the node `x` should have been excluded. self.assertEqual(y_name, bad_data[0].node_name) self.assertEqual(z_name, bad_data[1].node_name) first_bad_datum = dump.find( debug_data.has_inf_or_nan, first_n=1, exclude_node_names=".*/x$") self.assertEqual(1, len(first_bad_datum)) self.assertEqual(y_name, first_bad_datum[0].node_name) def _session_run_for_graph_structure_lookup(self): with session.Session(config=no_rewrite_session_config()) as sess: u_name = "testDumpGraphStructureLookup/u" v_name = "testDumpGraphStructureLookup/v" w_name = "testDumpGraphStructureLookup/w" u_init = constant_op.constant([2.0, 4.0]) u = variables.VariableV1(u_init, name=u_name) v = math_ops.add(u, u, name=v_name) w = math_ops.add(v, v, name=w_name) u.initializer.run() _, dump = self._debug_run_and_get_dump( sess, w, expected_partition_graph_count=self._expected_partition_graph_count) return u_name, v_name, w_name, dump def testGraphStructureLookupGivesDevicesAndNodesInfo(self): u_name, _, _, dump = self._session_run_for_graph_structure_lookup() # Test num_devices(). self.assertEqual(self._expected_num_devices, len(dump.devices())) # Test node_device(). self.assertEqual(self._main_device, dump.node_device(u_name)) with self.assertRaisesRegexp(ValueError, "does not exist in partition graphs"): dump.node_device(u_name + "foo") # Test node_exists(). self.assertTrue(dump.node_exists(u_name)) self.assertTrue(dump.node_exists(u_name + "/read")) self.assertFalse(dump.node_exists(u_name + "/read" + "/foo")) def testGraphStructureLookupGivesNodesAndAttributes(self): u_name, _, _, dump = self._session_run_for_graph_structure_lookup() u_read_name = u_name + "/read" # Test node name list lookup of the DebugDumpDir object. if test_util.gpu_device_name(): node_names = dump.nodes( device_name="/job:localhost/replica:0/task:0/device:GPU:0") else: node_names = dump.nodes() self.assertTrue(u_name in node_names) self.assertTrue(u_read_name in node_names) # Test querying node attributes. u_attr = dump.node_attributes(u_name) self.assertEqual(dtypes.float32, u_attr["dtype"].type) self.assertEqual(1, len(u_attr["shape"].shape.dim)) self.assertEqual(2, u_attr["shape"].shape.dim[0].size) with self.assertRaisesRegexp( ValueError, r"None of the .* device\(s\) has a node named "): dump.node_attributes("foo") def testGraphStructureLookupGivesDebugWatchKeys(self): u_name, v_name, w_name, dump = ( self._session_run_for_graph_structure_lookup()) # Test querying the debug watch keys with node names. self.assertEqual(["%s:0:DebugIdentity" % u_name], dump.debug_watch_keys(u_name)) self.assertEqual(["%s:0:DebugIdentity" % v_name], dump.debug_watch_keys(v_name)) self.assertEqual(["%s:0:DebugIdentity" % w_name], dump.debug_watch_keys(w_name)) self.assertEqual([], dump.debug_watch_keys("foo")) # Test querying debug datum instances from debug watch. u_data = dump.watch_key_to_data(dump.debug_watch_keys(u_name)[0]) self.assertEqual(1, len(u_data)) self.assertEqual(u_name, u_data[0].node_name) self.assertEqual(0, u_data[0].output_slot) self.assertEqual("DebugIdentity", u_data[0].debug_op) self.assertGreaterEqual(u_data[0].timestamp, 0) self.assertEqual([], dump.watch_key_to_data("foo")) def testGraphStructureLookupGivesNodeInputsAndRecipients(self): u_name, v_name, w_name, dump = ( self._session_run_for_graph_structure_lookup()) u_read_name = u_name + "/read" # Test the inputs lookup of the DebugDumpDir object. self.assertEqual([], dump.node_inputs(u_name)) self.assertEqual([u_name], dump.node_inputs(u_read_name)) self.assertEqual([u_read_name] * 2, dump.node_inputs(v_name)) self.assertEqual([v_name] * 2, dump.node_inputs(w_name)) self.assertEqual([], dump.node_inputs(u_name, is_control=True)) self.assertEqual([], dump.node_inputs(u_read_name, is_control=True)) self.assertEqual([], dump.node_inputs(v_name, is_control=True)) self.assertEqual([], dump.node_inputs(w_name, is_control=True)) # Test the outputs recipient lookup of the DebugDumpDir object. self.assertTrue(u_read_name in dump.node_recipients(u_name)) self.assertEqual(2, dump.node_recipients(u_read_name).count(v_name)) self.assertEqual(2, dump.node_recipients(v_name).count(w_name)) self.assertEqual([], dump.node_recipients(u_name, is_control=True)) self.assertEqual([], dump.node_recipients(u_read_name, is_control=True)) self.assertEqual([], dump.node_recipients(v_name, is_control=True)) self.assertEqual([], dump.node_recipients(w_name, is_control=True)) # Test errors raised on invalid node names. with self.assertRaisesRegexp( ValueError, r"None of the .* device\(s\) has a node named "): dump.node_inputs(u_name + "foo") with self.assertRaisesRegexp( ValueError, r"None of the .* device\(s\) has a node named "): dump.node_recipients(u_name + "foo") # Test transitive_inputs(). self.assertEqual([], dump.transitive_inputs(u_name)) self.assertEqual([u_name], dump.transitive_inputs(u_read_name)) self.assertEqual( set([u_name, u_read_name]), set(dump.transitive_inputs(v_name))) self.assertEqual( set([u_name, u_read_name, v_name]), set(dump.transitive_inputs(w_name))) with self.assertRaisesRegexp( ValueError, r"None of the .* device\(s\) has a node named "): dump.transitive_inputs(u_name + "foo") def testGraphStructureLookupWithoutPartitionGraphsDoesNotErrorOut(self): _, _, _, dump = self._session_run_for_graph_structure_lookup() # Now load the dump again, without the partition graphs, so we can check # errors are not raised because the partition graphs are loaded from the # dump directory. dump = debug_data.DebugDumpDir(self._dump_root, validate=False) self.assertTrue(dump.loaded_partition_graphs()) def testGraphPathFindingOnControlEdgesWorks(self): with session.Session(config=no_rewrite_session_config()) as sess: v1 = variables.VariableV1(1.0, name="v1") v2 = variables.VariableV1(2.0, name="v2") v3 = variables.VariableV1(3.0, name="v3") a = math_ops.add(v1, v2, name="a") with ops.control_dependencies([a]): c = math_ops.subtract(v3, v3, name="c") sess.run(variables.global_variables_initializer()) _, dump = self._debug_run_and_get_dump(sess, c) self.assertEqual(["v1", "v1/read", "a", "c"], dump.find_some_path("v1", "c")) self.assertIsNone(dump.find_some_path("v1", "c", include_control=False)) def testGraphPathFindingReverseRefEdgeWorks(self): with session.Session(config=no_rewrite_session_config()) as sess: v = variables.VariableV1(10.0, name="v") delta = variables.VariableV1(1.0, name="delta") inc_v = state_ops.assign_add(v, delta, name="inc_v") sess.run(variables.global_variables_initializer()) _, dump = self._debug_run_and_get_dump(sess, inc_v) self.assertEqual( ["delta", "delta/read", "inc_v", "v"], dump.find_some_path("delta", "v", include_reversed_ref=True)) self.assertIsNone(dump.find_some_path("delta", "v")) def testCausalityCheckOnDumpsDetectsWrongTemporalOrder(self): with session.Session(config=no_rewrite_session_config()) as sess: u_name = "testDumpCausalityCheck/u" v_name = "testDumpCausalityCheck/v" w_name = "testDumpCausalityCheck/w" u_init = constant_op.constant([2.0, 4.0]) u = variables.VariableV1(u_init, name=u_name) v = math_ops.add(u, u, name=v_name) w = math_ops.add(v, v, name=w_name) u.initializer.run() run_options = config_pb2.RunOptions(output_partition_graphs=True) debug_utils.watch_graph( run_options, sess.graph, debug_ops=["DebugIdentity"], debug_urls=self._debug_urls()) run_metadata = config_pb2.RunMetadata() sess.run(w, options=run_options, run_metadata=run_metadata) self.assertEqual(self._expected_partition_graph_count, len(run_metadata.partition_graphs)) # First, loading the original dump without supplying the # partition_graphs should not cause a LookupError, validation occurs # only with partition_graphs loaded. debug_data.DebugDumpDir(self._dump_root) # Now, loading the original dump with partition graphs supplied should # succeed. The validation should pass quietly. dump = debug_data.DebugDumpDir( self._dump_root, partition_graphs=run_metadata.partition_graphs) # Get the dump file names and compute their timestamps. self.assertEqual( 1, len(dump.get_tensor_file_paths(v_name, 0, "DebugIdentity"))) v_file_path = dump.get_tensor_file_paths(v_name, 0, "DebugIdentity")[0] self.assertEqual( 1, len(dump.get_tensor_file_paths(w_name, 0, "DebugIdentity"))) w_file_path = dump.get_tensor_file_paths(w_name, 0, "DebugIdentity")[0] v_timestamp = int(v_file_path[v_file_path.rindex("_") + 1:]) w_timestamp = int(w_file_path[w_file_path.rindex("_") + 1:]) # Swap and slightly shift the time stamps of the last two dumped tensors, # to simulate "causality violation", which can happen if the dump # directory contains incomplete data and/or mixes data from different # Session.run() calls. v_file_path_1 = v_file_path[:v_file_path.rindex( "_")] + "_%d" % w_timestamp w_file_path_1 = w_file_path[:w_file_path.rindex("_")] + "_%d" % ( v_timestamp - 1) os.rename(v_file_path, v_file_path_1) os.rename(w_file_path, w_file_path_1) # Load the dump directory again. Now a ValueError is expected to be # raised due to the timestamp swap. with self.assertRaisesRegexp(ValueError, "Causality violated"): dump = debug_data.DebugDumpDir( self._dump_root, partition_graphs=run_metadata.partition_graphs) # Loading the dump directory with kwarg "validate" set explicitly to # False should get rid of the error. dump = debug_data.DebugDumpDir( self._dump_root, partition_graphs=run_metadata.partition_graphs, validate=False) # Next, set the two times stamps to be the same, which should be fine. v_file_path_2 = v_file_path[:v_file_path.rindex( "_")] + "_%d" % w_timestamp w_file_path_2 = w_file_path[:w_file_path.rindex( "_")] + "_%d" % w_timestamp os.rename(v_file_path_1, v_file_path_2) os.rename(w_file_path_1, w_file_path_2) debug_data.DebugDumpDir( self._dump_root, partition_graphs=run_metadata.partition_graphs) def testWatchingOnlyOneOfTwoOutputSlotsDoesNotLeadToCausalityFailure(self): with session.Session() as sess: x_name = "oneOfTwoSlots/x" u_name = "oneOfTwoSlots/u" v_name = "oneOfTwoSlots/v" w_name = "oneOfTwoSlots/w" y_name = "oneOfTwoSlots/y" x = variables.VariableV1([1, 3, 3, 7], dtype=dtypes.int32, name=x_name) sess.run(x.initializer) unique_x, indices, _ = array_ops.unique_with_counts(x, name=u_name) v = math_ops.add(unique_x, unique_x, name=v_name) w = math_ops.add(indices, indices, name=w_name) y = math_ops.add(w, w, name=y_name) run_options = config_pb2.RunOptions(output_partition_graphs=True) # Watch only the first output slot of u, even though it has two output # slots. debug_utils.add_debug_tensor_watch( run_options, u_name, 0, debug_urls=self._debug_urls()) debug_utils.add_debug_tensor_watch( run_options, w_name, 0, debug_urls=self._debug_urls()) debug_utils.add_debug_tensor_watch( run_options, y_name, 0, debug_urls=self._debug_urls()) run_metadata = config_pb2.RunMetadata() sess.run([v, y], options=run_options, run_metadata=run_metadata) dump = debug_data.DebugDumpDir( self._dump_root, partition_graphs=run_metadata.partition_graphs, validate=True) self.assertAllClose([1, 3, 7], dump.get_tensors(u_name, 0, "DebugIdentity")[0]) def testOutputSlotWithoutOutgoingEdgeCanBeWatched(self): """Test watching output slots not attached to any outgoing edges.""" with session.Session(config=no_rewrite_session_config()) as sess: u_init_val = np.array([[5.0, 3.0], [-1.0, 0.0]]) u = constant_op.constant(u_init_val, shape=[2, 2], name="u") # Create a control edge from a node with an output: From u to z. # Node u will get executed only because of the control edge. The output # tensor u:0 is not attached to any outgoing edge in the graph. This test # checks that the debugger can watch such a tensor. with ops.control_dependencies([u]): z = control_flow_ops.no_op(name="z") _, dump = self._debug_run_and_get_dump(sess, z) # Assert that the DebugIdentity watch on u works properly. self.assertEqual(1, len(dump.dumped_tensor_data)) datum = dump.dumped_tensor_data[0] self.assertEqual("u", datum.node_name) self.assertEqual(0, datum.output_slot) self.assertEqual("DebugIdentity", datum.debug_op) self.assertAllClose([[5.0, 3.0], [-1.0, 0.0]], datum.get_tensor()) def testWatchingVariableUpdateOpsSeesUpdatedValues(self): """Watch output slots on Variable-updating ops, with no emitted edges.""" with session.Session(config=no_rewrite_session_config()) as sess: u_init = constant_op.constant(10.0) u = variables.VariableV1(u_init, name="gdo/u") v_init = constant_op.constant(20.0) v = variables.VariableV1(v_init, name="gdo/v") w = math_ops.multiply(u, v, name="gdo/w") # gdo stands for GradientDescentOptimizer. train_op = gradient_descent.GradientDescentOptimizer( learning_rate=0.1).minimize( w, name="gdo/train") u.initializer.run() v.initializer.run() _, dump = self._debug_run_and_get_dump(sess, train_op) update_u_data = dump.watch_key_to_data( "gdo/train/update_gdo/u/ApplyGradientDescent:0:DebugIdentity") self.assertEqual(1, len(update_u_data)) # Gradient descent on u: w = u * v, so dw / du = v. # Updated value of u should be: # 10.0 - learning_rate * v = 10.0 - 0.1 * 20.0 = 8.0 self.assertAllClose(8.0, update_u_data[0].get_tensor()) update_v_data = dump.watch_key_to_data( "gdo/train/update_gdo/v/ApplyGradientDescent:0:DebugIdentity") self.assertEqual(1, len(update_v_data)) # Gradient descent on u: w = u * v, so dw / dv = u. # Updated value of u should be: # 20.0 - learning_rate * u = 20.0 - 0.1 * 10.0 = 19.0 self.assertAllClose(19.0, update_v_data[0].get_tensor()) # Verify that the Variables u and v are updated properly. self.assertAllClose(8.0, sess.run(u)) self.assertAllClose(19.0, sess.run(v)) def testAllowsWatchingUnconnectedOutputTensor(self): """Watch an output slot not emitting any edges. (Not even control edges from the node.) """ with session.Session() as sess: x_init = constant_op.constant([2, 2, 3, 5, 5]) x = variables.VariableV1(x_init, name="unconnected/x") # The UniqueOp (tf.unique) has two output slots. Use only slot 0 in the # graph. Let the debugger watch the unused slot 1. unique_x, _ = array_ops.unique(x, name="unconnected/unique_x") y = math_ops.add(unique_x, [0, 1, 2], name="unconnected/y") x.initializer.run() # Verify that only slot 0 of unique_x has recipients, while slot 1 of the # same node does not have recipients. unique_x_slot_0_recipients = [] unique_x_slot_1_recipients = [] for op in sess.graph.get_operations(): for inp in op.inputs: if inp.name == "unconnected/unique_x:0": unique_x_slot_0_recipients.append(op.name) elif inp.name == "unconnected/unique_x:1": unique_x_slot_1_recipients.append(op.name) self.assertEqual(["unconnected/y"], unique_x_slot_0_recipients) self.assertEqual([], unique_x_slot_1_recipients) y_result, dump = self._debug_run_and_get_dump(sess, y) self.assertAllClose([2, 4, 7], y_result) # Assert that the connected slot (slot 0) is dumped properly. unique_x_slot_0_dumps = dump.watch_key_to_data( "unconnected/unique_x:0:DebugIdentity") self.assertEqual(1, len(unique_x_slot_0_dumps)) self.assertEqual("unconnected/unique_x", unique_x_slot_0_dumps[0].node_name) self.assertEqual(0, unique_x_slot_0_dumps[0].output_slot) self.assertAllClose([2, 3, 5], unique_x_slot_0_dumps[0].get_tensor()) # Assert that the unconnected slot (slot 1) is dumped properly. unique_x_slot_1_dumps = dump.watch_key_to_data( "unconnected/unique_x:1:DebugIdentity") self.assertEqual(1, len(unique_x_slot_1_dumps)) self.assertEqual("unconnected/unique_x", unique_x_slot_1_dumps[0].node_name) self.assertEqual(1, unique_x_slot_1_dumps[0].output_slot) self.assertAllClose([0, 0, 1, 2, 2], unique_x_slot_1_dumps[0].get_tensor()) def testSuccessiveDebuggingRunsIncreasesCounters(self): """Test repeated Session.run() calls with debugger increments counters.""" with session.Session() as sess: ph = array_ops.placeholder(dtypes.float32, name="successive/ph") x = array_ops.transpose(ph, name="mismatch/x") y = array_ops.squeeze(ph, name="mismatch/y") _, dump1 = self._debug_run_and_get_dump( sess, x, feed_dict={ph: np.array([[7.0, 8.0]])}, global_step=1) self.assertEqual(1, dump1.core_metadata.global_step) self.assertGreaterEqual(dump1.core_metadata.session_run_index, 0) self.assertEqual(0, dump1.core_metadata.executor_step_index) self.assertEqual([ph.name], dump1.core_metadata.input_names) self.assertEqual([x.name], dump1.core_metadata.output_names) self.assertEqual([], dump1.core_metadata.target_nodes) shutil.rmtree(self._dump_root) # Calling run() with the same feed, same output and same debug watch # options should increment both session_run_index and # executor_step_index. _, dump2 = self._debug_run_and_get_dump( sess, x, feed_dict={ph: np.array([[7.0, 8.0]])}, global_step=2) self.assertEqual(2, dump2.core_metadata.global_step) self.assertEqual(dump1.core_metadata.session_run_index + 1, dump2.core_metadata.session_run_index) self.assertEqual(dump1.core_metadata.executor_step_index + 1, dump2.core_metadata.executor_step_index) self.assertEqual([ph.name], dump2.core_metadata.input_names) self.assertEqual([x.name], dump2.core_metadata.output_names) self.assertEqual([], dump2.core_metadata.target_nodes) shutil.rmtree(self._dump_root) run_options = config_pb2.RunOptions(output_partition_graphs=True) debug_utils.watch_graph( run_options, sess.graph, debug_urls=self._debug_urls(), global_step=3) # Calling run() with a different output should increment # session_run_index, but not executor_step_index. _, dump3 = self._debug_run_and_get_dump( sess, y, feed_dict={ph: np.array([[7.0, 8.0]])}, global_step=3) self.assertEqual(3, dump3.core_metadata.global_step) self.assertEqual(dump2.core_metadata.session_run_index + 1, dump3.core_metadata.session_run_index) self.assertEqual(0, dump3.core_metadata.executor_step_index) self.assertEqual([ph.name], dump3.core_metadata.input_names) self.assertEqual([y.name], dump3.core_metadata.output_names) self.assertEqual([], dump3.core_metadata.target_nodes) def testDebuggingDuringOpError(self): """Test the debug tensor dumping when error occurs in graph runtime.""" with session.Session() as sess: ph = array_ops.placeholder(dtypes.float32, name="mismatch/ph") x = array_ops.transpose(ph, name="mismatch/x") m = constant_op.constant( np.array( [[1.0, 2.0]], dtype=np.float32), name="mismatch/m") y = math_ops.matmul(m, x, name="mismatch/y") run_options = config_pb2.RunOptions(output_partition_graphs=True) debug_utils.watch_graph( run_options, sess.graph, debug_ops=["DebugIdentity"], debug_urls=self._debug_urls()) with self.assertRaises(errors.OpError): sess.run(y, options=run_options, feed_dict={ph: np.array([[-3.0], [0.0]])}) dump = debug_data.DebugDumpDir(self._dump_root) self.assertGreaterEqual(dump.core_metadata.session_run_index, 0) self.assertGreaterEqual(dump.core_metadata.executor_step_index, 0) self.assertEqual([ph.name], dump.core_metadata.input_names) self.assertEqual([y.name], dump.core_metadata.output_names) self.assertEqual([], dump.core_metadata.target_nodes) # Despite the fact that the run() call errored out and partition_graphs # are not available via run_metadata, the partition graphs should still # have been loaded from the dump directory. self.assertTrue(dump.loaded_partition_graphs()) m_dumps = dump.watch_key_to_data("mismatch/m:0:DebugIdentity") self.assertEqual(1, len(m_dumps)) self.assertAllClose(np.array([[1.0, 2.0]]), m_dumps[0].get_tensor()) x_dumps = dump.watch_key_to_data("mismatch/x:0:DebugIdentity") self.assertEqual(1, len(x_dumps)) self.assertAllClose(np.array([[-3.0, 0.0]]), x_dumps[0].get_tensor()) def testDebugNumericSummaryOnInitializedTensorGivesCorrectResult(self): with session.Session(config=no_rewrite_session_config()) as sess: a = variables.VariableV1( [ np.nan, np.nan, 0.0, 0.0, 0.0, -1.0, -3.0, 3.0, 7.0, -np.inf, -np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.nan, np.nan ], dtype=np.float32, name="numeric_summary/a") b = variables.VariableV1( [0.0] * 18, dtype=np.float32, name="numeric_summary/b") c = math_ops.add(a, b, name="numeric_summary/c") sess.run(variables.global_variables_initializer()) _, dump = self._debug_run_and_get_dump( sess, c, debug_ops=["DebugNumericSummary"]) self.assertTrue(dump.loaded_partition_graphs()) self.assertAllClose([[ 1.0, 18.0, 4.0, 2.0, 2.0, 3.0, 2.0, 5.0, -3.0, 7.0, 0.85714286, 8.97959184, 1.0, 1.0, 18.0 ]], dump.get_tensors("numeric_summary/a/read", 0, "DebugNumericSummary")) def testDebugNumericSummaryOnUninitializedTensorGivesCorrectResult(self): with session.Session() as sess: a = variables.VariableV1( [42], dtype=np.float32, name="numeric_summary_uninit/a") _, dump = self._debug_run_and_get_dump( sess, a.initializer, debug_ops=["DebugNumericSummary"]) self.assertTrue(dump.loaded_partition_graphs()) # DebugNumericSummary output should reflect the uninitialized state of # the watched tensor. numeric_summary = dump.get_tensors("numeric_summary_uninit/a", 0, "DebugNumericSummary")[0] self.assertAllClose([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], numeric_summary[0:8]) # Check dtype (index 12), ndims (index 13) and dimension sizes (index # 14+). self.assertAllClose([1.0, 1.0, 1.0], numeric_summary[12:]) self.assertTrue(np.isinf(numeric_summary[8])) self.assertGreater(numeric_summary[8], 0.0) self.assertTrue(np.isinf(numeric_summary[9])) self.assertLess(numeric_summary[9], 0.0) self.assertTrue(np.isnan(numeric_summary[10])) self.assertTrue(np.isnan(numeric_summary[11])) def testDebugNumericSummaryFailureIsToleratedWhenOrdered(self): with session.Session() as sess: a = variables.VariableV1("1", name="a") b = variables.VariableV1("3", name="b") c = variables.VariableV1("2", name="c") d = math_ops.add(a, b, name="d") e = math_ops.add(d, c, name="e") n = parsing_ops.string_to_number(e, name="n") m = math_ops.add(n, n, name="m") sess.run(variables.global_variables_initializer()) # Using DebugNumericSummary on sess.run(m) with the default # tolerate_debug_op_creation_failures=False should error out due to the # presence of string-dtype Tensors in the graph. run_metadata = config_pb2.RunMetadata() run_options = config_pb2.RunOptions(output_partition_graphs=True) debug_utils.watch_graph( run_options, sess.graph, debug_ops=["DebugNumericSummary"], debug_urls=self._debug_urls()) with self.assertRaises(errors.FailedPreconditionError): sess.run(m, options=run_options, run_metadata=run_metadata) # Using tolerate_debug_op_creation_failures=True should get rid of the # error. m_result, dump = self._debug_run_and_get_dump( sess, m, debug_ops=["DebugNumericSummary"], tolerate_debug_op_creation_failures=True) self.assertEqual(264, m_result) # The integer-dtype Tensors in the graph should have been dumped # properly. self.assertIn("n:0:DebugNumericSummary", dump.debug_watch_keys("n")) self.assertIn("m:0:DebugNumericSummary", dump.debug_watch_keys("m")) def testDebugNumericSummaryInvalidAttributesStringAreCaught(self): with session.Session(config=no_rewrite_session_config()) as sess: a = variables.VariableV1(10.0, name="a") b = variables.VariableV1(0.0, name="b") c = variables.VariableV1(0.0, name="c") x = math_ops.divide(a, b, name="x") y = math_ops.multiply(x, c, name="y") sess.run(variables.global_variables_initializer()) run_metadata = config_pb2.RunMetadata() run_options = config_pb2.RunOptions(output_partition_graphs=True) debug_utils.watch_graph( run_options, sess.graph, debug_ops=["DebugNumericSummary(foo=1.0)"], debug_urls=self._debug_urls()) with self.assertRaisesRegexp( errors.FailedPreconditionError, r"1 attribute key\(s\) were not valid for debug node " r"__dbg_.:0_0_DebugNumericSummary: foo"): sess.run(y, options=run_options, run_metadata=run_metadata) run_options = config_pb2.RunOptions(output_partition_graphs=True) debug_utils.watch_graph( run_options, sess.graph, debug_ops=["DebugNumericSummary(foo=1.0; bar=false)"], debug_urls=self._debug_urls()) with self.assertRaisesRegexp( errors.FailedPreconditionError, r"2 attribute key\(s\) were not valid for debug node " r"__dbg_.:0_0_DebugNumericSummary:"): sess.run(y, options=run_options, run_metadata=run_metadata) run_options = config_pb2.RunOptions(output_partition_graphs=True) debug_utils.watch_graph( run_options, sess.graph, debug_ops=["DebugNumericSummary(foo=1.0; mute_if_healthy=true)"], debug_urls=self._debug_urls()) with self.assertRaisesRegexp( errors.FailedPreconditionError, r"1 attribute key\(s\) were not valid for debug node " r"__dbg_.:0_0_DebugNumericSummary: foo"): sess.run(y, options=run_options, run_metadata=run_metadata) def testDebugNumericSummaryMuteOnHealthyMutesOnlyHealthyTensorDumps(self): with session.Session(config=no_rewrite_session_config()) as sess: a = variables.VariableV1(10.0, name="a") b = variables.VariableV1(0.0, name="b") c = variables.VariableV1(0.0, name="c") x = math_ops.divide(a, b, name="x") y = math_ops.multiply(x, c, name="y") sess.run(variables.global_variables_initializer()) # Here, validate=False is necessary to avoid causality check error. # TODO(cais): Maybe let DebugDumpDir constructor automatically ignore # debug ops with mute_if_healthy=false attribute during validation. _, dump = self._debug_run_and_get_dump( sess, y, debug_ops=["DebugNumericSummary(mute_if_healthy=true)"], validate=False) self.assertEqual(2, dump.size) self.assertAllClose([[ 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, np.inf, -np.inf, np.nan, np.nan, 1.0, 0.0 ]], dump.get_tensors("x", 0, "DebugNumericSummary")) self.assertAllClose([[ 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, np.inf, -np.inf, np.nan, np.nan, 1.0, 0.0 ]], dump.get_tensors("y", 0, "DebugNumericSummary")) # Another run with the default mute_if_healthy (false) value should # dump all the tensors. shutil.rmtree(self._dump_root) _, dump = self._debug_run_and_get_dump( sess, y, debug_ops=["DebugNumericSummary()"]) self.assertEqual(8, dump.size) def testDebugNumericSummaryMuteOnHealthyAndCustomBoundsWork(self): with session.Session() as sess: a = variables.VariableV1([10.0, 10.0], name="a") b = variables.VariableV1([10.0, 2.0], name="b") x = math_ops.add(a, b, name="x") # [20.0, 12.0] y = math_ops.divide(x, b, name="y") # [2.0, 6.0] sess.run(variables.global_variables_initializer()) # Here, validate=False is necessary to avoid causality check error. # TODO(cais): Maybe let DebugDumpDir constructor automatically ignore # debug ops with mute_if_healthy=false attribute during validation. _, dump = self._debug_run_and_get_dump( sess, y, debug_ops=[ "DebugNumericSummary(mute_if_healthy=true; upper_bound=11.0)"], validate=False) self.assertEqual(1, dump.size) self.assertAllClose([[ 1.0, 2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 12.0, 20.0, 16.0, 16.0, 1.0, 1.0, 2.0]], dump.get_tensors("x", 0, "DebugNumericSummary")) def testDebugQueueOpsDoesNotoErrorOut(self): with session.Session() as sess: q = data_flow_ops.FIFOQueue(3, "float", name="fifo_queue") q_init = q.enqueue_many(([101.0, 202.0, 303.0],), name="enqueue_many") _, dump = self._debug_run_and_get_dump(sess, q_init) self.assertTrue(dump.loaded_partition_graphs()) fifo_queue_tensor = dump.get_tensors("fifo_queue", 0, "DebugIdentity")[0] self.assertIsInstance(fifo_queue_tensor, debug_data.InconvertibleTensorProto) self.assertTrue(fifo_queue_tensor.initialized) self.assertAllClose( [101.0, 202.0, 303.0], dump.get_tensors("enqueue_many/component_0", 0, "DebugIdentity")[0]) def testLookUpNodePythonTracebackWorks(self): with session.Session() as sess: u_init = constant_op.constant(10.0) u = variables.VariableV1(u_init, name="traceback/u") v_init = constant_op.constant(20.0) v = variables.VariableV1(v_init, name="traceback/v") w = math_ops.multiply(u, v, name="traceback/w") sess.run(variables.global_variables_initializer()) _, dump = self._debug_run_and_get_dump(sess, w) # Prior to setting the Python graph, attempts to do traceback lookup # should lead to exceptions. with self.assertRaisesRegexp( LookupError, "Python graph is not available for traceback lookup"): dump.node_traceback("traceback/w") dump.set_python_graph(sess.graph) # After setting the Python graph, attempts to look up nonexistent nodes # should lead to exceptions. with self.assertRaisesRegexp(KeyError, r"Cannot find node \"foo\" in Python graph"): dump.node_traceback("foo") # Lookup should work with node name input. traceback = dump.node_traceback("traceback/w") self.assertIsInstance(traceback, list) self.assertGreater(len(traceback), 0) for trace in traceback: self.assertIsInstance(trace, tuple) # Lookup should also work with tensor name input. traceback = dump.node_traceback("traceback/w:0") self.assertIsInstance(traceback, list) self.assertGreater(len(traceback), 0) for trace in traceback: self.assertIsInstance(trace, tuple) class DebugConcurrentRunCallsTest(test_util.TensorFlowTestCase): """Test for debugging concurrent Session.run() calls.""" def _get_concurrent_debug_urls(self): """Abstract method to generate debug URLs for concurrent debugged runs.""" raise NotImplementedError( "_get_concurrent_debug_urls is not implemented in the base test class") def testDebugConcurrentVariableUpdates(self): if test.is_gpu_available(): self.skipTest("No testing concurrent runs on a single GPU.") with session.Session() as sess: v = variables.VariableV1(30.0, name="v") constants = [] for i in xrange(self._num_concurrent_runs): constants.append(constant_op.constant(1.0, name="c%d" % i)) incs = [ state_ops.assign_add( v, c, use_locking=True, name=("inc%d" % i)) for (i, c) in enumerate(constants) ] sess.run(v.initializer) concurrent_debug_urls = self._get_concurrent_debug_urls() def inc_job(index): run_options = config_pb2.RunOptions(output_partition_graphs=True) debug_utils.watch_graph( run_options, sess.graph, debug_urls=concurrent_debug_urls[index]) for _ in xrange(100): sess.run(incs[index], options=run_options) inc_threads = [] for index in xrange(self._num_concurrent_runs): inc_thread = threading.Thread(target=functools.partial(inc_job, index)) inc_thread.start() inc_threads.append(inc_thread) for inc_thread in inc_threads: inc_thread.join() self.assertAllClose(30.0 + 1.0 * self._num_concurrent_runs * 100, sess.run(v)) all_session_run_indices = [] for index in xrange(self._num_concurrent_runs): dump = debug_data.DebugDumpDir(self._dump_roots[index]) self.assertTrue(dump.loaded_partition_graphs()) v_data = dump.get_tensors("v", 0, "DebugIdentity") self.assertEqual(100, len(v_data)) # Examine all the core metadata files core_metadata_files = glob.glob( os.path.join(self._dump_roots[index], "_tfdbg_core*")) timestamps = [] session_run_indices = [] executor_step_indices = [] for core_metadata_file in core_metadata_files: with open(core_metadata_file, "rb") as f: event = event_pb2.Event() event.ParseFromString(f.read()) core_metadata = ( debug_data.extract_core_metadata_from_event_proto(event)) timestamps.append(event.wall_time) session_run_indices.append(core_metadata.session_run_index) executor_step_indices.append(core_metadata.executor_step_index) all_session_run_indices.extend(session_run_indices) # Assert that executor_step_index increases by one at a time. executor_step_indices = zip(timestamps, executor_step_indices) executor_step_indices = sorted( executor_step_indices, key=lambda x: x[0]) for i in xrange(len(executor_step_indices) - 1): self.assertEquals(executor_step_indices[i][1] + 1, executor_step_indices[i + 1][1]) # Assert that session_run_index increase monotonically. session_run_indices = zip(timestamps, session_run_indices) session_run_indices = sorted(session_run_indices, key=lambda x: x[0]) for i in xrange(len(session_run_indices) - 1): self.assertGreater(session_run_indices[i + 1][1], session_run_indices[i][1]) # Assert that the session_run_indices from the concurrent run() calls are # all unique. self.assertEqual(len(all_session_run_indices), len(set(all_session_run_indices))) if __name__ == "__main__": googletest.main()
tensorflow-master
tensorflow/python/debug/lib/session_debug_testlib.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """GRPC debug server for testing.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import errno import functools import hashlib import json import os import re import shutil import tempfile import threading import time import portpicker from tensorflow.core.debug import debug_service_pb2 from tensorflow.core.protobuf import config_pb2 from tensorflow.core.util import event_pb2 from tensorflow.python.client import session from tensorflow.python.debug.lib import debug_data from tensorflow.python.debug.lib import debug_utils from tensorflow.python.debug.lib import grpc_debug_server from tensorflow.python.framework import constant_op from tensorflow.python.framework import errors from tensorflow.python.ops import variables from tensorflow.python.util import compat def _get_dump_file_path(dump_root, device_name, debug_node_name): """Get the file path of the dump file for a debug node. Args: dump_root: (str) Root dump directory. device_name: (str) Name of the device that the debug node resides on. debug_node_name: (str) Name of the debug node, e.g., cross_entropy/Log:0:DebugIdentity. Returns: (str) Full path of the dump file. """ dump_root = os.path.join( dump_root, debug_data.device_name_to_device_path(device_name)) if "/" in debug_node_name: dump_dir = os.path.join(dump_root, os.path.dirname(debug_node_name)) dump_file_name = re.sub(":", "_", os.path.basename(debug_node_name)) else: dump_dir = dump_root dump_file_name = re.sub(":", "_", debug_node_name) now_microsec = int(round(time.time() * 1000 * 1000)) dump_file_name += "_%d" % now_microsec return os.path.join(dump_dir, dump_file_name) class EventListenerTestStreamHandler( grpc_debug_server.EventListenerBaseStreamHandler): """Implementation of EventListenerBaseStreamHandler that dumps to file.""" def __init__(self, dump_dir, event_listener_servicer): super(EventListenerTestStreamHandler, self).__init__() self._dump_dir = dump_dir self._event_listener_servicer = event_listener_servicer if self._dump_dir: self._try_makedirs(self._dump_dir) self._grpc_path = None self._cached_graph_defs = [] self._cached_graph_def_device_names = [] self._cached_graph_def_wall_times = [] def on_core_metadata_event(self, event): self._event_listener_servicer.toggle_watch() core_metadata = json.loads(event.log_message.message) if not self._grpc_path: grpc_path = core_metadata["grpc_path"] if grpc_path: if grpc_path.startswith("/"): grpc_path = grpc_path[1:] if self._dump_dir: self._dump_dir = os.path.join(self._dump_dir, grpc_path) # Write cached graph defs to filesystem. for graph_def, device_name, wall_time in zip( self._cached_graph_defs, self._cached_graph_def_device_names, self._cached_graph_def_wall_times): self._write_graph_def(graph_def, device_name, wall_time) if self._dump_dir: self._write_core_metadata_event(event) else: self._event_listener_servicer.core_metadata_json_strings.append( event.log_message.message) def on_graph_def(self, graph_def, device_name, wall_time): """Implementation of the tensor value-carrying Event proto callback. Args: graph_def: A GraphDef object. device_name: Name of the device on which the graph was created. wall_time: An epoch timestamp (in microseconds) for the graph. """ if self._dump_dir: if self._grpc_path: self._write_graph_def(graph_def, device_name, wall_time) else: self._cached_graph_defs.append(graph_def) self._cached_graph_def_device_names.append(device_name) self._cached_graph_def_wall_times.append(wall_time) else: self._event_listener_servicer.partition_graph_defs.append(graph_def) def on_value_event(self, event): """Implementation of the tensor value-carrying Event proto callback. Writes the Event proto to the file system for testing. The path written to follows the same pattern as the file:// debug URLs of tfdbg, i.e., the name scope of the op becomes the directory structure under the dump root directory. Args: event: The Event proto carrying a tensor value. Returns: If the debug node belongs to the set of currently activated breakpoints, a `EventReply` proto will be returned. """ if self._dump_dir: self._write_value_event(event) else: value = event.summary.value[0] tensor_value = debug_data.load_tensor_from_event(event) self._event_listener_servicer.debug_tensor_values[value.node_name].append( tensor_value) items = event.summary.value[0].node_name.split(":") node_name = items[0] output_slot = int(items[1]) debug_op = items[2] if ((node_name, output_slot, debug_op) in self._event_listener_servicer.breakpoints): return debug_service_pb2.EventReply() def _try_makedirs(self, dir_path): if not os.path.isdir(dir_path): try: os.makedirs(dir_path) except OSError as error: if error.errno != errno.EEXIST: raise def _write_core_metadata_event(self, event): core_metadata_path = os.path.join( self._dump_dir, debug_data.METADATA_FILE_PREFIX + debug_data.CORE_METADATA_TAG + "_%d" % event.wall_time) self._try_makedirs(self._dump_dir) with open(core_metadata_path, "wb") as f: f.write(event.SerializeToString()) def _write_graph_def(self, graph_def, device_name, wall_time): encoded_graph_def = graph_def.SerializeToString() graph_hash = int(hashlib.md5(encoded_graph_def).hexdigest(), 16) event = event_pb2.Event(graph_def=encoded_graph_def, wall_time=wall_time) graph_file_path = os.path.join( self._dump_dir, debug_data.device_name_to_device_path(device_name), debug_data.METADATA_FILE_PREFIX + debug_data.GRAPH_FILE_TAG + debug_data.HASH_TAG + "%d_%d" % (graph_hash, wall_time)) self._try_makedirs(os.path.dirname(graph_file_path)) with open(graph_file_path, "wb") as f: f.write(event.SerializeToString()) def _write_value_event(self, event): value = event.summary.value[0] # Obtain the device name from the metadata. summary_metadata = event.summary.value[0].metadata if not summary_metadata.plugin_data: raise ValueError("The value lacks plugin data.") try: content = json.loads(compat.as_text(summary_metadata.plugin_data.content)) except ValueError as err: raise ValueError("Could not parse content into JSON: %r, %r" % (content, err)) device_name = content["device"] dump_full_path = _get_dump_file_path( self._dump_dir, device_name, value.node_name) self._try_makedirs(os.path.dirname(dump_full_path)) with open(dump_full_path, "wb") as f: f.write(event.SerializeToString()) class EventListenerTestServicer(grpc_debug_server.EventListenerBaseServicer): """An implementation of EventListenerBaseServicer for testing.""" def __init__(self, server_port, dump_dir, toggle_watch_on_core_metadata=None): """Constructor of EventListenerTestServicer. Args: server_port: (int) The server port number. dump_dir: (str) The root directory to which the data files will be dumped. If empty or None, the received debug data will not be dumped to the file system: they will be stored in memory instead. toggle_watch_on_core_metadata: A list of (node_name, output_slot, debug_op) tuples to toggle the watchpoint status during the on_core_metadata calls (optional). """ self.core_metadata_json_strings = [] self.partition_graph_defs = [] self.debug_tensor_values = collections.defaultdict(list) self._initialize_toggle_watch_state(toggle_watch_on_core_metadata) grpc_debug_server.EventListenerBaseServicer.__init__( self, server_port, functools.partial(EventListenerTestStreamHandler, dump_dir, self)) # Members for storing the graph ops traceback and source files. self._call_types = [] self._call_keys = [] self._origin_stacks = [] self._origin_id_to_strings = [] self._graph_tracebacks = [] self._graph_versions = [] self._source_files = [] def _initialize_toggle_watch_state(self, toggle_watches): self._toggle_watches = toggle_watches self._toggle_watch_state = {} if self._toggle_watches: for watch_key in self._toggle_watches: self._toggle_watch_state[watch_key] = False def toggle_watch(self): for watch_key in self._toggle_watch_state: node_name, output_slot, debug_op = watch_key if self._toggle_watch_state[watch_key]: self.request_unwatch(node_name, output_slot, debug_op) else: self.request_watch(node_name, output_slot, debug_op) self._toggle_watch_state[watch_key] = ( not self._toggle_watch_state[watch_key]) def clear_data(self): self.core_metadata_json_strings = [] self.partition_graph_defs = [] self.debug_tensor_values = collections.defaultdict(list) self._call_types = [] self._call_keys = [] self._origin_stacks = [] self._origin_id_to_strings = [] self._graph_tracebacks = [] self._graph_versions = [] self._source_files = [] def SendTracebacks(self, request, context): self._call_types.append(request.call_type) self._call_keys.append(request.call_key) self._origin_stacks.append(request.origin_stack) self._origin_id_to_strings.append(request.origin_id_to_string) self._graph_tracebacks.append(request.graph_traceback) self._graph_versions.append(request.graph_version) return debug_service_pb2.EventReply() def SendSourceFiles(self, request, context): self._source_files.append(request) return debug_service_pb2.EventReply() def query_op_traceback(self, op_name): """Query the traceback of an op. Args: op_name: Name of the op to query. Returns: The traceback of the op, as a list of 3-tuples: (filename, lineno, function_name) Raises: ValueError: If the op cannot be found in the tracebacks received by the server so far. """ for op_log_proto in self._graph_tracebacks: for log_entry in op_log_proto.log_entries: if log_entry.name == op_name: return self._code_def_to_traceback(log_entry.code_def, op_log_proto.id_to_string) raise ValueError( "Op '%s' does not exist in the tracebacks received by the debug " "server." % op_name) def query_origin_stack(self): """Query the stack of the origin of the execution call. Returns: A `list` of all tracebacks. Each item corresponds to an execution call, i.e., a `SendTracebacks` request. Each item is a `list` of 3-tuples: (filename, lineno, function_name). """ ret = [] for stack, id_to_string in zip( self._origin_stacks, self._origin_id_to_strings): ret.append(self._code_def_to_traceback(stack, id_to_string)) return ret def query_call_types(self): return self._call_types def query_call_keys(self): return self._call_keys def query_graph_versions(self): return self._graph_versions def query_source_file_line(self, file_path, lineno): """Query the content of a given line in a source file. Args: file_path: Path to the source file. lineno: Line number as an `int`. Returns: Content of the line as a string. Raises: ValueError: If no source file is found at the given file_path. """ if not self._source_files: raise ValueError( "This debug server has not received any source file contents yet.") for source_files in self._source_files: for source_file_proto in source_files.source_files: if source_file_proto.file_path == file_path: return source_file_proto.lines[lineno - 1] raise ValueError( "Source file at path %s has not been received by the debug server", file_path) def _code_def_to_traceback(self, code_def, id_to_string): return [(id_to_string[trace.file_id], trace.lineno, id_to_string[trace.function_id]) for trace in code_def.traces] def start_server_on_separate_thread(dump_to_filesystem=True, server_start_delay_sec=0.0, poll_server=False, blocking=True, toggle_watch_on_core_metadata=None): """Create a test gRPC debug server and run on a separate thread. Args: dump_to_filesystem: (bool) whether the debug server will dump debug data to the filesystem. server_start_delay_sec: (float) amount of time (in sec) to delay the server start up for. poll_server: (bool) whether the server will be polled till success on startup. blocking: (bool) whether the server should be started in a blocking mode. toggle_watch_on_core_metadata: A list of (node_name, output_slot, debug_op) tuples to toggle the watchpoint status during the on_core_metadata calls (optional). Returns: server_port: (int) Port on which the server runs. debug_server_url: (str) grpc:// URL to the server. server_dump_dir: (str) The debug server's dump directory. server_thread: The server Thread object. server: The `EventListenerTestServicer` object. Raises: ValueError: If polling the server process for ready state is not successful within maximum polling count. """ server_port = portpicker.pick_unused_port() debug_server_url = "grpc://localhost:%d" % server_port server_dump_dir = tempfile.mkdtemp() if dump_to_filesystem else None server = EventListenerTestServicer( server_port=server_port, dump_dir=server_dump_dir, toggle_watch_on_core_metadata=toggle_watch_on_core_metadata) def delay_then_run_server(): time.sleep(server_start_delay_sec) server.run_server(blocking=blocking) server_thread = threading.Thread(target=delay_then_run_server) server_thread.start() if poll_server: if not _poll_server_till_success( 50, 0.2, debug_server_url, server_dump_dir, server, gpu_memory_fraction=0.1): raise ValueError( "Failed to start test gRPC debug server at port %d" % server_port) server.clear_data() return server_port, debug_server_url, server_dump_dir, server_thread, server def _poll_server_till_success(max_attempts, sleep_per_poll_sec, debug_server_url, dump_dir, server, gpu_memory_fraction=1.0): """Poll server until success or exceeding max polling count. Args: max_attempts: (int) How many times to poll at maximum sleep_per_poll_sec: (float) How many seconds to sleep for after each unsuccessful poll. debug_server_url: (str) gRPC URL to the debug server. dump_dir: (str) Dump directory to look for files in. If None, will directly check data from the server object. server: The server object. gpu_memory_fraction: (float) Fraction of GPU memory to be allocated for the Session used in server polling. Returns: (bool) Whether the polling succeeded within max_polls attempts. """ poll_count = 0 config = config_pb2.ConfigProto(gpu_options=config_pb2.GPUOptions( per_process_gpu_memory_fraction=gpu_memory_fraction)) with session.Session(config=config) as sess: for poll_count in range(max_attempts): server.clear_data() print("Polling: poll_count = %d" % poll_count) x_init_name = "x_init_%d" % poll_count x_init = constant_op.constant([42.0], shape=[1], name=x_init_name) x = variables.Variable(x_init, name=x_init_name) run_options = config_pb2.RunOptions() debug_utils.add_debug_tensor_watch( run_options, x_init_name, 0, debug_urls=[debug_server_url]) try: sess.run(x.initializer, options=run_options) except errors.FailedPreconditionError: pass if dump_dir: if os.path.isdir( dump_dir) and debug_data.DebugDumpDir(dump_dir).size > 0: shutil.rmtree(dump_dir) print("Poll succeeded.") return True else: print("Poll failed. Sleeping for %f s" % sleep_per_poll_sec) time.sleep(sleep_per_poll_sec) else: if server.debug_tensor_values: print("Poll succeeded.") return True else: print("Poll failed. Sleeping for %f s" % sleep_per_poll_sec) time.sleep(sleep_per_poll_sec) return False
tensorflow-master
tensorflow/python/debug/lib/grpc_debug_test_server.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Common values and methods for TensorFlow Debugger.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import json GRPC_URL_PREFIX = "grpc://" # A key for a Session.run() call. RunKey = collections.namedtuple("RunKey", ["feed_names", "fetch_names"]) def get_graph_element_name(elem): """Obtain the name or string representation of a graph element. If the graph element has the attribute "name", return name. Otherwise, return a __str__ representation of the graph element. Certain graph elements, such as `SparseTensor`s, do not have the attribute "name". Args: elem: The graph element in question. Returns: If the attribute 'name' is available, return the name. Otherwise, return str(fetch). """ return elem.name if hasattr(elem, "name") else str(elem) def get_flattened_names(feeds_or_fetches): """Get a flattened list of the names in run() call feeds or fetches. Args: feeds_or_fetches: Feeds or fetches of the `Session.run()` call. It maybe a Tensor, an Operation or a Variable. It may also be nested lists, tuples or dicts. See doc of `Session.run()` for more details. Returns: (list of str) A flattened list of fetch names from `feeds_or_fetches`. """ lines = [] if isinstance(feeds_or_fetches, (list, tuple)): for item in feeds_or_fetches: lines.extend(get_flattened_names(item)) elif isinstance(feeds_or_fetches, dict): for key in feeds_or_fetches: lines.extend(get_flattened_names(feeds_or_fetches[key])) else: # This ought to be a Tensor, an Operation or a Variable, for which the name # attribute should be available. (Bottom-out condition of the recursion.) lines.append(get_graph_element_name(feeds_or_fetches)) return lines def get_run_key(feed_dict, fetches): """Summarize the names of feeds and fetches as a RunKey JSON string. Args: feed_dict: The feed_dict given to the `Session.run()` call. fetches: The fetches from the `Session.run()` call. Returns: A JSON Array consisting of two items. They first items is a flattened Array of the names of the feeds. The second item is a flattened Array of the names of the fetches. """ return json.dumps(RunKey(get_flattened_names(feed_dict), get_flattened_names(fetches)))
tensorflow-master
tensorflow/python/debug/lib/common.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for TensorFlow Debugger (tfdbg) Utilities.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.core.protobuf import config_pb2 from tensorflow.python.client import session from tensorflow.python.debug.lib import debug_utils from tensorflow.python.framework import constant_op from tensorflow.python.framework import test_util from tensorflow.python.ops import math_ops # Import resource_variable_ops for the variables-to-tensor implicit conversion. from tensorflow.python.ops import resource_variable_ops # pylint: disable=unused-import from tensorflow.python.ops import variables from tensorflow.python.platform import googletest class DebugUtilsTest(test_util.TensorFlowTestCase): @classmethod def setUpClass(cls): cls._sess = session.Session() with cls._sess: cls._a_init_val = np.array([[5.0, 3.0], [-1.0, 0.0]]) cls._b_init_val = np.array([[2.0], [-1.0]]) cls._c_val = np.array([[-4.0], [np.nan]]) cls._a_init = constant_op.constant( cls._a_init_val, shape=[2, 2], name="a1_init") cls._b_init = constant_op.constant( cls._b_init_val, shape=[2, 1], name="b_init") cls._a = variables.VariableV1(cls._a_init, name="a1") cls._b = variables.VariableV1(cls._b_init, name="b") cls._c = constant_op.constant(cls._c_val, shape=[2, 1], name="c") # Matrix product of a and b. cls._p = math_ops.matmul(cls._a, cls._b, name="p1") # Sum of two vectors. cls._s = math_ops.add(cls._p, cls._c, name="s") cls._graph = cls._sess.graph # These are all the expected nodes in the graph: # Two variables (a, b), each with four nodes (Variable, init, Assign, # read). # One constant (c). # One add operation and one matmul operation. cls._expected_num_nodes = 4 * 2 + 1 + 1 + 1 def setUp(self): self._run_options = config_pb2.RunOptions() def _verify_watches(self, watch_opts, expected_output_slot, expected_debug_ops, expected_debug_urls): """Verify a list of debug tensor watches. This requires all watches in the watch list have exactly the same output_slot, debug_ops and debug_urls. Args: watch_opts: Repeated protobuf field of DebugTensorWatch. expected_output_slot: Expected output slot index, as an integer. expected_debug_ops: Expected debug ops, as a list of strings. expected_debug_urls: Expected debug URLs, as a list of strings. Returns: List of node names from the list of debug tensor watches. """ node_names = [] for watch in watch_opts: node_names.append(watch.node_name) self.assertEqual(expected_output_slot, watch.output_slot) self.assertEqual(expected_debug_ops, watch.debug_ops) self.assertEqual(expected_debug_urls, watch.debug_urls) return node_names def testAddDebugTensorWatches_defaultDebugOp(self): debug_utils.add_debug_tensor_watch( self._run_options, "foo/node_a", 1, debug_urls="file:///tmp/tfdbg_1") debug_utils.add_debug_tensor_watch( self._run_options, "foo/node_b", 0, debug_urls="file:///tmp/tfdbg_2") debug_watch_opts = self._run_options.debug_options.debug_tensor_watch_opts self.assertEqual(2, len(debug_watch_opts)) watch_0 = debug_watch_opts[0] watch_1 = debug_watch_opts[1] self.assertEqual("foo/node_a", watch_0.node_name) self.assertEqual(1, watch_0.output_slot) self.assertEqual("foo/node_b", watch_1.node_name) self.assertEqual(0, watch_1.output_slot) # Verify default debug op name. self.assertEqual(["DebugIdentity"], watch_0.debug_ops) self.assertEqual(["DebugIdentity"], watch_1.debug_ops) # Verify debug URLs. self.assertEqual(["file:///tmp/tfdbg_1"], watch_0.debug_urls) self.assertEqual(["file:///tmp/tfdbg_2"], watch_1.debug_urls) def testAddDebugTensorWatches_explicitDebugOp(self): debug_utils.add_debug_tensor_watch( self._run_options, "foo/node_a", 0, debug_ops="DebugNanCount", debug_urls="file:///tmp/tfdbg_1") debug_watch_opts = self._run_options.debug_options.debug_tensor_watch_opts self.assertEqual(1, len(debug_watch_opts)) watch_0 = debug_watch_opts[0] self.assertEqual("foo/node_a", watch_0.node_name) self.assertEqual(0, watch_0.output_slot) # Verify default debug op name. self.assertEqual(["DebugNanCount"], watch_0.debug_ops) # Verify debug URLs. self.assertEqual(["file:///tmp/tfdbg_1"], watch_0.debug_urls) def testAddDebugTensorWatches_multipleDebugOps(self): debug_utils.add_debug_tensor_watch( self._run_options, "foo/node_a", 0, debug_ops=["DebugNanCount", "DebugIdentity"], debug_urls="file:///tmp/tfdbg_1") debug_watch_opts = self._run_options.debug_options.debug_tensor_watch_opts self.assertEqual(1, len(debug_watch_opts)) watch_0 = debug_watch_opts[0] self.assertEqual("foo/node_a", watch_0.node_name) self.assertEqual(0, watch_0.output_slot) # Verify default debug op name. self.assertEqual(["DebugNanCount", "DebugIdentity"], watch_0.debug_ops) # Verify debug URLs. self.assertEqual(["file:///tmp/tfdbg_1"], watch_0.debug_urls) def testAddDebugTensorWatches_multipleURLs(self): debug_utils.add_debug_tensor_watch( self._run_options, "foo/node_a", 0, debug_ops="DebugNanCount", debug_urls=["file:///tmp/tfdbg_1", "file:///tmp/tfdbg_2"]) debug_watch_opts = self._run_options.debug_options.debug_tensor_watch_opts self.assertEqual(1, len(debug_watch_opts)) watch_0 = debug_watch_opts[0] self.assertEqual("foo/node_a", watch_0.node_name) self.assertEqual(0, watch_0.output_slot) # Verify default debug op name. self.assertEqual(["DebugNanCount"], watch_0.debug_ops) # Verify debug URLs. self.assertEqual(["file:///tmp/tfdbg_1", "file:///tmp/tfdbg_2"], watch_0.debug_urls) @test_util.run_v1_only("b/120545219") def testWatchGraph_allNodes(self): debug_utils.watch_graph( self._run_options, self._graph, debug_ops=["DebugIdentity", "DebugNanCount"], debug_urls="file:///tmp/tfdbg_1") debug_watch_opts = self._run_options.debug_options.debug_tensor_watch_opts self.assertEqual(self._expected_num_nodes, len(debug_watch_opts)) # Verify that each of the nodes in the graph with output tensors in the # graph have debug tensor watch. node_names = self._verify_watches(debug_watch_opts, 0, ["DebugIdentity", "DebugNanCount"], ["file:///tmp/tfdbg_1"]) # Verify the node names. self.assertTrue("a1_init" in node_names) self.assertTrue("a1" in node_names) self.assertTrue("a1/Assign" in node_names) self.assertTrue("a1/read" in node_names) self.assertTrue("b_init" in node_names) self.assertTrue("b" in node_names) self.assertTrue("b/Assign" in node_names) self.assertTrue("b/read" in node_names) self.assertTrue("c" in node_names) self.assertTrue("p1" in node_names) self.assertTrue("s" in node_names) @test_util.run_v1_only("b/120545219") def testWatchGraph_nodeNameWhitelist(self): debug_utils.watch_graph( self._run_options, self._graph, debug_urls="file:///tmp/tfdbg_1", node_name_regex_whitelist="(a1$|a1_init$|a1/.*|p1$)") node_names = self._verify_watches( self._run_options.debug_options.debug_tensor_watch_opts, 0, ["DebugIdentity"], ["file:///tmp/tfdbg_1"]) self.assertEqual( sorted(["a1_init", "a1", "a1/Assign", "a1/read", "p1"]), sorted(node_names)) @test_util.run_v1_only("b/120545219") def testWatchGraph_opTypeWhitelist(self): debug_utils.watch_graph( self._run_options, self._graph, debug_urls="file:///tmp/tfdbg_1", op_type_regex_whitelist="(Variable|MatMul)") node_names = self._verify_watches( self._run_options.debug_options.debug_tensor_watch_opts, 0, ["DebugIdentity"], ["file:///tmp/tfdbg_1"]) self.assertEqual(sorted(["a1", "b", "p1"]), sorted(node_names)) def testWatchGraph_nodeNameAndOpTypeWhitelists(self): debug_utils.watch_graph( self._run_options, self._graph, debug_urls="file:///tmp/tfdbg_1", node_name_regex_whitelist="([a-z]+1$)", op_type_regex_whitelist="(MatMul)") node_names = self._verify_watches( self._run_options.debug_options.debug_tensor_watch_opts, 0, ["DebugIdentity"], ["file:///tmp/tfdbg_1"]) self.assertEqual(["p1"], node_names) @test_util.run_v1_only("b/120545219") def testWatchGraph_tensorDTypeWhitelist(self): debug_utils.watch_graph( self._run_options, self._graph, debug_urls="file:///tmp/tfdbg_1", tensor_dtype_regex_whitelist=".*_ref") node_names = self._verify_watches( self._run_options.debug_options.debug_tensor_watch_opts, 0, ["DebugIdentity"], ["file:///tmp/tfdbg_1"]) self.assertItemsEqual(["a1", "a1/Assign", "b", "b/Assign"], node_names) @test_util.run_v1_only("b/120545219") def testWatchGraph_nodeNameAndTensorDTypeWhitelists(self): debug_utils.watch_graph( self._run_options, self._graph, debug_urls="file:///tmp/tfdbg_1", node_name_regex_whitelist="^a.*", tensor_dtype_regex_whitelist=".*_ref") node_names = self._verify_watches( self._run_options.debug_options.debug_tensor_watch_opts, 0, ["DebugIdentity"], ["file:///tmp/tfdbg_1"]) self.assertItemsEqual(["a1", "a1/Assign"], node_names) @test_util.run_v1_only("b/120545219") def testWatchGraph_nodeNameBlacklist(self): debug_utils.watch_graph_with_blacklists( self._run_options, self._graph, debug_urls="file:///tmp/tfdbg_1", node_name_regex_blacklist="(a1$|a1_init$|a1/.*|p1$)") node_names = self._verify_watches( self._run_options.debug_options.debug_tensor_watch_opts, 0, ["DebugIdentity"], ["file:///tmp/tfdbg_1"]) self.assertEqual( sorted(["b_init", "b", "b/Assign", "b/read", "c", "s"]), sorted(node_names)) @test_util.run_v1_only("b/120545219") def testWatchGraph_opTypeBlacklist(self): debug_utils.watch_graph_with_blacklists( self._run_options, self._graph, debug_urls="file:///tmp/tfdbg_1", op_type_regex_blacklist="(Variable|Identity|Assign|Const)") node_names = self._verify_watches( self._run_options.debug_options.debug_tensor_watch_opts, 0, ["DebugIdentity"], ["file:///tmp/tfdbg_1"]) self.assertEqual(sorted(["p1", "s"]), sorted(node_names)) @test_util.run_v1_only("b/120545219") def testWatchGraph_nodeNameAndOpTypeBlacklists(self): debug_utils.watch_graph_with_blacklists( self._run_options, self._graph, debug_urls="file:///tmp/tfdbg_1", node_name_regex_blacklist="p1$", op_type_regex_blacklist="(Variable|Identity|Assign|Const)") node_names = self._verify_watches( self._run_options.debug_options.debug_tensor_watch_opts, 0, ["DebugIdentity"], ["file:///tmp/tfdbg_1"]) self.assertEqual(["s"], node_names) @test_util.run_v1_only("b/120545219") def testWatchGraph_tensorDTypeBlacklists(self): debug_utils.watch_graph_with_blacklists( self._run_options, self._graph, debug_urls="file:///tmp/tfdbg_1", tensor_dtype_regex_blacklist=".*_ref") node_names = self._verify_watches( self._run_options.debug_options.debug_tensor_watch_opts, 0, ["DebugIdentity"], ["file:///tmp/tfdbg_1"]) self.assertNotIn("a1", node_names) self.assertNotIn("a1/Assign", node_names) self.assertNotIn("b", node_names) self.assertNotIn("b/Assign", node_names) self.assertIn("s", node_names) @test_util.run_v1_only("b/120545219") def testWatchGraph_nodeNameAndTensorDTypeBlacklists(self): debug_utils.watch_graph_with_blacklists( self._run_options, self._graph, debug_urls="file:///tmp/tfdbg_1", node_name_regex_blacklist="^s$", tensor_dtype_regex_blacklist=".*_ref") node_names = self._verify_watches( self._run_options.debug_options.debug_tensor_watch_opts, 0, ["DebugIdentity"], ["file:///tmp/tfdbg_1"]) self.assertNotIn("a1", node_names) self.assertNotIn("a1/Assign", node_names) self.assertNotIn("b", node_names) self.assertNotIn("b/Assign", node_names) self.assertNotIn("s", node_names) if __name__ == "__main__": googletest.main()
tensorflow-master
tensorflow/python/debug/lib/debug_utils_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Unit tests for source_utils.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import shutil import tempfile import numpy as np from tensorflow.core.protobuf import config_pb2 from tensorflow.python.client import session from tensorflow.python.debug.lib import debug_data from tensorflow.python.debug.lib import debug_utils from tensorflow.python.debug.lib import source_utils from tensorflow.python.framework import constant_op from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops # Import resource_variable_ops for the variables-to-tensor implicit conversion. from tensorflow.python.ops import resource_variable_ops # pylint: disable=unused-import from tensorflow.python.ops import variables from tensorflow.python.platform import googletest from tensorflow.python.util import tf_inspect def line_number_above(): return tf_inspect.stack()[1][2] - 1 class GuessIsTensorFlowLibraryTest(test_util.TensorFlowTestCase): def setUp(self): self.curr_file_path = os.path.normpath(os.path.abspath(__file__)) def tearDown(self): ops.reset_default_graph() def testGuessedBaseDirIsProbablyCorrect(self): # In the non-pip world, code resides in "tensorflow/" # In the pip world, after virtual pip, code resides in "tensorflow_core/" # So, we have to check both of them self.assertIn( os.path.basename(source_utils._TENSORFLOW_BASEDIR), ["tensorflow", "tensorflow_core"]) def testUnitTestFileReturnsFalse(self): self.assertFalse( source_utils.guess_is_tensorflow_py_library(self.curr_file_path)) def testSourceUtilModuleReturnsTrue(self): self.assertTrue( source_utils.guess_is_tensorflow_py_library(source_utils.__file__)) @test_util.run_deprecated_v1 def testFileInPythonKernelsPathReturnsTrue(self): x = constant_op.constant(42.0, name="x") self.assertTrue( source_utils.guess_is_tensorflow_py_library(x.op.traceback[-1][0])) def testNonPythonFileRaisesException(self): with self.assertRaisesRegexp(ValueError, r"is not a Python source file"): source_utils.guess_is_tensorflow_py_library( os.path.join(os.path.dirname(self.curr_file_path), "foo.cc")) class SourceHelperTest(test_util.TensorFlowTestCase): def createAndRunGraphHelper(self): """Create and run a TensorFlow Graph to generate debug dumps. This is intentionally done in separate method, to make it easier to test the stack-top mode of source annotation. """ self.dump_root = self.get_temp_dir() self.curr_file_path = os.path.abspath( tf_inspect.getfile(tf_inspect.currentframe())) # Run a simple TF graph to generate some debug dumps that can be used in # source annotation. with session.Session() as sess: self.u_init = constant_op.constant( np.array([[5.0, 3.0], [-1.0, 0.0]]), shape=[2, 2], name="u_init") self.u_init_line_number = line_number_above() self.u = variables.Variable(self.u_init, name="u") self.u_line_number = line_number_above() self.v_init = constant_op.constant( np.array([[2.0], [-1.0]]), shape=[2, 1], name="v_init") self.v_init_line_number = line_number_above() self.v = variables.Variable(self.v_init, name="v") self.v_line_number = line_number_above() self.w = math_ops.matmul(self.u, self.v, name="w") self.w_line_number = line_number_above() self.evaluate(self.u.initializer) self.evaluate(self.v.initializer) run_options = config_pb2.RunOptions(output_partition_graphs=True) debug_utils.watch_graph( run_options, sess.graph, debug_urls=["file://%s" % self.dump_root]) run_metadata = config_pb2.RunMetadata() sess.run(self.w, options=run_options, run_metadata=run_metadata) self.dump = debug_data.DebugDumpDir( self.dump_root, partition_graphs=run_metadata.partition_graphs) self.dump.set_python_graph(sess.graph) def setUp(self): self.createAndRunGraphHelper() self.helper_line_number = line_number_above() def tearDown(self): if os.path.isdir(self.dump_root): shutil.rmtree(self.dump_root) ops.reset_default_graph() def testAnnotateWholeValidSourceFileGivesCorrectResult(self): source_annotation = source_utils.annotate_source(self.dump, self.curr_file_path) self.assertIn(self.u_init.op.name, source_annotation[self.u_init_line_number]) self.assertIn(self.u.op.name, source_annotation[self.u_line_number]) self.assertIn(self.v_init.op.name, source_annotation[self.v_init_line_number]) self.assertIn(self.v.op.name, source_annotation[self.v_line_number]) self.assertIn(self.w.op.name, source_annotation[self.w_line_number]) # In the non-stack-top (default) mode, the helper line should be annotated # with all the ops as well. self.assertIn(self.u_init.op.name, source_annotation[self.helper_line_number]) self.assertIn(self.u.op.name, source_annotation[self.helper_line_number]) self.assertIn(self.v_init.op.name, source_annotation[self.helper_line_number]) self.assertIn(self.v.op.name, source_annotation[self.helper_line_number]) self.assertIn(self.w.op.name, source_annotation[self.helper_line_number]) def testAnnotateWithStackTopGivesCorrectResult(self): source_annotation = source_utils.annotate_source( self.dump, self.curr_file_path, file_stack_top=True) self.assertIn(self.u_init.op.name, source_annotation[self.u_init_line_number]) self.assertIn(self.u.op.name, source_annotation[self.u_line_number]) self.assertIn(self.v_init.op.name, source_annotation[self.v_init_line_number]) self.assertIn(self.v.op.name, source_annotation[self.v_line_number]) self.assertIn(self.w.op.name, source_annotation[self.w_line_number]) # In the stack-top mode, the helper line should not have been annotated. self.assertNotIn(self.helper_line_number, source_annotation) def testAnnotateSubsetOfLinesGivesCorrectResult(self): source_annotation = source_utils.annotate_source( self.dump, self.curr_file_path, min_line=self.u_line_number, max_line=self.u_line_number + 1) self.assertIn(self.u.op.name, source_annotation[self.u_line_number]) self.assertNotIn(self.v_line_number, source_annotation) def testAnnotateDumpedTensorsGivesCorrectResult(self): source_annotation = source_utils.annotate_source( self.dump, self.curr_file_path, do_dumped_tensors=True) # Note: Constant Tensors u_init and v_init may not get dumped due to # constant-folding. self.assertIn(self.u.name, source_annotation[self.u_line_number]) self.assertIn(self.v.name, source_annotation[self.v_line_number]) self.assertIn(self.w.name, source_annotation[self.w_line_number]) self.assertNotIn(self.u.op.name, source_annotation[self.u_line_number]) self.assertNotIn(self.v.op.name, source_annotation[self.v_line_number]) self.assertNotIn(self.w.op.name, source_annotation[self.w_line_number]) self.assertIn(self.u.name, source_annotation[self.helper_line_number]) self.assertIn(self.v.name, source_annotation[self.helper_line_number]) self.assertIn(self.w.name, source_annotation[self.helper_line_number]) def testCallingAnnotateSourceWithoutPythonGraphRaisesException(self): self.dump.set_python_graph(None) with self.assertRaises(ValueError): source_utils.annotate_source(self.dump, self.curr_file_path) def testCallingAnnotateSourceOnUnrelatedSourceFileDoesNotError(self): # Create an unrelated source file. unrelated_source_path = tempfile.mktemp() with open(unrelated_source_path, "wt") as source_file: source_file.write("print('hello, world')\n") self.assertEqual({}, source_utils.annotate_source(self.dump, unrelated_source_path)) # Clean up unrelated source file. os.remove(unrelated_source_path) @test_util.run_v1_only("b/120545219") class ListSourceAgainstDumpTest(test_util.TensorFlowTestCase): def createAndRunGraphWithWhileLoop(self): """Create and run a TensorFlow Graph with a while loop to generate dumps.""" self.dump_root = self.get_temp_dir() self.curr_file_path = os.path.abspath( tf_inspect.getfile(tf_inspect.currentframe())) # Run a simple TF graph to generate some debug dumps that can be used in # source annotation. with session.Session() as sess: loop_body = lambda i: math_ops.add(i, 2) self.traceback_first_line = line_number_above() loop_cond = lambda i: math_ops.less(i, 16) i = constant_op.constant(10, name="i") loop = control_flow_ops.while_loop(loop_cond, loop_body, [i]) run_options = config_pb2.RunOptions(output_partition_graphs=True) debug_utils.watch_graph( run_options, sess.graph, debug_urls=["file://%s" % self.dump_root]) run_metadata = config_pb2.RunMetadata() sess.run(loop, options=run_options, run_metadata=run_metadata) self.dump = debug_data.DebugDumpDir( self.dump_root, partition_graphs=run_metadata.partition_graphs) self.dump.set_python_graph(sess.graph) def setUp(self): self.createAndRunGraphWithWhileLoop() def tearDown(self): if os.path.isdir(self.dump_root): shutil.rmtree(self.dump_root) ops.reset_default_graph() def testGenerateSourceList(self): source_list = source_utils.list_source_files_against_dump(self.dump) # Assert that the file paths are sorted and unique. file_paths = [item[0] for item in source_list] self.assertEqual(sorted(file_paths), file_paths) self.assertEqual(len(set(file_paths)), len(file_paths)) # Assert that each item of source_list has length 6. for item in source_list: self.assertTrue(isinstance(item, tuple)) self.assertEqual(6, len(item)) # The while loop body should have executed 3 times. The following table # lists the tensors and how many times each of them is dumped. # Tensor name # of times dumped: # i:0 1 # while/Enter:0 1 # while/Merge:0 4 # while/Merge:1 4 # while/Less/y:0 4 # while/Less:0 4 # while/LoopCond:0 4 # while/Switch:0 1 # while/Swtich:1 3 # while/Identity:0 3 # while/Add/y:0 3 # while/Add:0 3 # while/NextIteration:0 3 # while/Exit:0 1 # ---------------------------- # (Total) 39 # # The total number of nodes is 12. # The total number of tensors is 14 (2 of the nodes have 2 outputs: # while/Merge, while/Switch). _, is_tf_py_library, num_nodes, num_tensors, num_dumps, first_line = ( source_list[file_paths.index(self.curr_file_path)]) self.assertFalse(is_tf_py_library) self.assertEqual(12, num_nodes) self.assertEqual(14, num_tensors) self.assertEqual(39, num_dumps) self.assertEqual(self.traceback_first_line, first_line) def testGenerateSourceListWithNodeNameFilter(self): source_list = source_utils.list_source_files_against_dump( self.dump, node_name_regex_whitelist=r"while/Add.*") # Assert that the file paths are sorted. file_paths = [item[0] for item in source_list] self.assertEqual(sorted(file_paths), file_paths) self.assertEqual(len(set(file_paths)), len(file_paths)) # Assert that each item of source_list has length 4. for item in source_list: self.assertTrue(isinstance(item, tuple)) self.assertEqual(6, len(item)) # Due to the node-name filtering the result should only contain 2 nodes # and 2 tensors. The total number of dumped tensors should be 6: # while/Add/y:0 3 # while/Add:0 3 _, is_tf_py_library, num_nodes, num_tensors, num_dumps, _ = ( source_list[file_paths.index(self.curr_file_path)]) self.assertFalse(is_tf_py_library) self.assertEqual(2, num_nodes) self.assertEqual(2, num_tensors) self.assertEqual(6, num_dumps) def testGenerateSourceListWithPathRegexFilter(self): curr_file_basename = os.path.basename(self.curr_file_path) source_list = source_utils.list_source_files_against_dump( self.dump, path_regex_whitelist=( ".*" + curr_file_basename.replace(".", "\\.") + "$")) self.assertEqual(1, len(source_list)) (file_path, is_tf_py_library, num_nodes, num_tensors, num_dumps, first_line) = source_list[0] self.assertEqual(self.curr_file_path, file_path) self.assertFalse(is_tf_py_library) self.assertEqual(12, num_nodes) self.assertEqual(14, num_tensors) self.assertEqual(39, num_dumps) self.assertEqual(self.traceback_first_line, first_line) if __name__ == "__main__": googletest.main()
tensorflow-master
tensorflow/python/debug/lib/source_utils_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for the reconstruction of non-debugger-decorated GraphDefs.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import shutil import tempfile from tensorflow.core.framework import graph_pb2 from tensorflow.core.protobuf import config_pb2 from tensorflow.core.protobuf import rewriter_config_pb2 from tensorflow.python.client import session from tensorflow.python.debug.lib import debug_data from tensorflow.python.debug.lib import debug_graphs from tensorflow.python.debug.lib import debug_utils from tensorflow.python.framework import constant_op from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test from tensorflow.python.training import gradient_descent class ReconstructNonDebugGraphTest(test_util.TensorFlowTestCase): _OP_TYPE_BLACKLIST = ( "_Send", "_Recv", "_HostSend", "_HostRecv", "_Retval") def _no_rewrite_session_config(self): rewriter_config = rewriter_config_pb2.RewriterConfig( dependency_optimization=rewriter_config_pb2.RewriterConfig.OFF, pin_to_host_optimization=rewriter_config_pb2.RewriterConfig.OFF, min_graph_nodes=-1) graph_options = config_pb2.GraphOptions(rewrite_options=rewriter_config) return config_pb2.ConfigProto(graph_options=graph_options) def setUp(self): super(ReconstructNonDebugGraphTest, self).setUp() self._dump_dir = tempfile.mkdtemp() self._debug_url = "file://" + self._dump_dir ops.reset_default_graph() def tearDown(self): shutil.rmtree(self._dump_dir) super(ReconstructNonDebugGraphTest, self).tearDown() def _graphDefWithoutBlacklistedNodes(self, graph_def): output_graph_def = graph_pb2.GraphDef() for node in graph_def.node: if node.op not in self._OP_TYPE_BLACKLIST: new_node = output_graph_def.node.add() new_node.CopyFrom(node) if new_node.op == "Enter": # The debugger sets parallel_iterations attribute of while-loop Enter # nodes to 1 for debugging. for attr_key in new_node.attr: if attr_key == "parallel_iterations": new_node.attr[attr_key].i = 1 elif new_node.op == "Switch": # We don't check the inputs to Switch ops as their inputs may be # Send/Recv nodes. del new_node.input[:] return output_graph_def def _compareOriginalAndReconstructedGraphDefs(self, sess, fetches, feed_dict=None, expected_output=None): run_options = config_pb2.RunOptions(output_partition_graphs=True) run_metadata = config_pb2.RunMetadata() output = sess.run(fetches, feed_dict=feed_dict, options=run_options, run_metadata=run_metadata) if expected_output is not None: self.assertAllClose(expected_output, output) non_debug_graph_defs = run_metadata.partition_graphs debug_utils.watch_graph( run_options, sess.graph, debug_urls=self._debug_url) run_metadata = config_pb2.RunMetadata() output = sess.run(fetches, feed_dict=feed_dict, options=run_options, run_metadata=run_metadata) if expected_output is not None: self.assertAllClose(expected_output, output) dump = debug_data.DebugDumpDir( self._dump_dir, partition_graphs=run_metadata.partition_graphs, validate=True) reconstructed = dump.reconstructed_non_debug_partition_graphs() self.assertEqual(len(non_debug_graph_defs), len(reconstructed)) for i, non_debug_graph_def in enumerate(non_debug_graph_defs): device_name = debug_graphs._infer_device_name(non_debug_graph_def) test_util.assert_equal_graph_def( self._graphDefWithoutBlacklistedNodes(reconstructed[device_name]), self._graphDefWithoutBlacklistedNodes(non_debug_graph_def)) # Test debug_graphs.reconstruct_non_debug_graph_def. reconstructed_again = ( debug_graphs.reconstruct_non_debug_graph_def( run_metadata.partition_graphs[i])) test_util.assert_equal_graph_def( self._graphDefWithoutBlacklistedNodes(reconstructed_again), self._graphDefWithoutBlacklistedNodes(non_debug_graph_def)) def testReconstructSimpleGraph(self): with session.Session() as sess: u = variables.Variable([12.0], name="u") v = variables.Variable([30.0], name="v") w = math_ops.add(u, v, name="w") self.evaluate(u.initializer) self.evaluate(v.initializer) self._compareOriginalAndReconstructedGraphDefs( sess, w, expected_output=[42.0]) def testReconstructGraphWithControlEdge(self): with session.Session() as sess: a = variables.Variable(10.0, name="a") with ops.control_dependencies([a]): b = math_ops.add(a, a, name="b") with ops.control_dependencies([a, b]): c = math_ops.multiply(b, b, name="c") self.evaluate(a.initializer) self._compareOriginalAndReconstructedGraphDefs( sess, c, expected_output=400.0) def testReonstructGraphWithCond(self): with session.Session(config=self._no_rewrite_session_config()) as sess: x = variables.Variable(10.0, name="x") y = variables.Variable(20.0, name="y") cond = control_flow_ops.cond( x > y, lambda: math_ops.add(x, 1), lambda: math_ops.add(y, 1)) self.evaluate(x.initializer) self.evaluate(y.initializer) self._compareOriginalAndReconstructedGraphDefs( sess, cond, expected_output=21.0) def testReconstructGraphWithWhileLoop(self): with session.Session(config=self._no_rewrite_session_config()) as sess: loop_body = lambda i: math_ops.add(i, 2) loop_cond = lambda i: math_ops.less(i, 16) i = constant_op.constant(10, name="i") loop = control_flow_ops.while_loop(loop_cond, loop_body, [i]) self._compareOriginalAndReconstructedGraphDefs(sess, loop) def testReconstructGraphWithGradients(self): with session.Session(config=self._no_rewrite_session_config()) as sess: u = variables.Variable(12.0, name="u") v = variables.Variable(30.0, name="v") x = constant_op.constant(1.1, name="x") toy_loss = x * (u - v) train_op = gradient_descent.GradientDescentOptimizer( learning_rate=0.1).minimize(toy_loss, name="train_op") self.evaluate(u.initializer) self.evaluate(v.initializer) self._compareOriginalAndReconstructedGraphDefs(sess, train_op) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/python/debug/lib/debug_graph_reconstruction_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for debugger functionalities in tf.compat.v1.Session with grpc:// URLs. This test file focuses on the grpc:// debugging of local (non-distributed) tf.Sessions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import shutil from six.moves import xrange # pylint: disable=redefined-builtin from tensorflow.core.protobuf import config_pb2 from tensorflow.python.client import session from tensorflow.python.debug.lib import debug_data from tensorflow.python.debug.lib import debug_utils from tensorflow.python.debug.lib import grpc_debug_test_server from tensorflow.python.debug.lib import session_debug_testlib from tensorflow.python.debug.wrappers import framework from tensorflow.python.debug.wrappers import grpc_wrapper from tensorflow.python.debug.wrappers import hooks from tensorflow.python.framework import constant_op from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import math_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops import variables from tensorflow.python.platform import googletest from tensorflow.python.training import monitored_session class GrpcDebugServerTest(test_util.TensorFlowTestCase): def testRepeatedRunServerRaisesException(self): (_, _, _, server_thread, server) = grpc_debug_test_server.start_server_on_separate_thread( poll_server=True) # The server is started asynchronously. It needs to be polled till its state # has become started. with self.assertRaisesRegexp( ValueError, "Server has already started running"): server.run_server() server.stop_server().wait() server_thread.join() def testRepeatedStopServerRaisesException(self): (_, _, _, server_thread, server) = grpc_debug_test_server.start_server_on_separate_thread( poll_server=True) server.stop_server().wait() server_thread.join() with self.assertRaisesRegexp(ValueError, "Server has already stopped"): server.stop_server().wait() def testRunServerAfterStopRaisesException(self): (_, _, _, server_thread, server) = grpc_debug_test_server.start_server_on_separate_thread( poll_server=True) server.stop_server().wait() server_thread.join() with self.assertRaisesRegexp(ValueError, "Server has already stopped"): server.run_server() def testStartServerWithoutBlocking(self): (_, _, _, server_thread, server) = grpc_debug_test_server.start_server_on_separate_thread( poll_server=True, blocking=False) # The thread that starts the server shouldn't block, so we should be able to # join it before stopping the server. server_thread.join() server.stop_server().wait() @test_util.run_v1_only("b/120545219") class SessionDebugGrpcTest(session_debug_testlib.SessionDebugTestBase): @classmethod def setUpClass(cls): session_debug_testlib.SessionDebugTestBase.setUpClass() (cls._server_port, cls._debug_server_url, cls._server_dump_dir, cls._server_thread, cls._server) = grpc_debug_test_server.start_server_on_separate_thread() @classmethod def tearDownClass(cls): # Stop the test server and join the thread. cls._server.stop_server().wait() cls._server_thread.join() session_debug_testlib.SessionDebugTestBase.tearDownClass() def setUp(self): # Override the dump root as the test server's dump directory. self._dump_root = self._server_dump_dir def tearDown(self): if os.path.isdir(self._server_dump_dir): shutil.rmtree(self._server_dump_dir) session_debug_testlib.SessionDebugTestBase.tearDown(self) def _debug_urls(self, run_number=None): return ["grpc://localhost:%d" % self._server_port] def _debug_dump_dir(self, run_number=None): if run_number is None: return self._dump_root else: return os.path.join(self._dump_root, "run_%d" % run_number) def testConstructGrpcDebugWrapperSessionWithInvalidTypeRaisesException(self): sess = session.Session( config=session_debug_testlib.no_rewrite_session_config()) with self.assertRaisesRegexp( TypeError, "Expected type str or list in grpc_debug_server_addresses"): grpc_wrapper.GrpcDebugWrapperSession(sess, 1337) def testConstructGrpcDebugWrapperSessionWithInvalidTypeRaisesException2(self): sess = session.Session( config=session_debug_testlib.no_rewrite_session_config()) with self.assertRaisesRegexp( TypeError, "Expected type str in list grpc_debug_server_addresses"): grpc_wrapper.GrpcDebugWrapperSession(sess, ["localhost:1337", 1338]) def testUseInvalidWatchFnTypeWithGrpcDebugWrapperSessionRaisesException(self): sess = session.Session( config=session_debug_testlib.no_rewrite_session_config()) with self.assertRaises(TypeError): grpc_wrapper.GrpcDebugWrapperSession( sess, "localhost:%d" % self._server_port, watch_fn="foo") def testGrpcDebugWrapperSessionWithoutWatchFnWorks(self): u = variables.VariableV1(2.1, name="u") v = variables.VariableV1(20.0, name="v") w = math_ops.multiply(u, v, name="w") sess = session.Session( config=session_debug_testlib.no_rewrite_session_config()) sess.run(u.initializer) sess.run(v.initializer) sess = grpc_wrapper.GrpcDebugWrapperSession( sess, "localhost:%d" % self._server_port) w_result = sess.run(w) self.assertAllClose(42.0, w_result) dump = debug_data.DebugDumpDir(self._dump_root) self.assertEqual(5, dump.size) self.assertAllClose([2.1], dump.get_tensors("u", 0, "DebugIdentity")) self.assertAllClose([2.1], dump.get_tensors("u/read", 0, "DebugIdentity")) self.assertAllClose([20.0], dump.get_tensors("v", 0, "DebugIdentity")) self.assertAllClose([20.0], dump.get_tensors("v/read", 0, "DebugIdentity")) self.assertAllClose([42.0], dump.get_tensors("w", 0, "DebugIdentity")) def testGrpcDebugWrapperSessionWithWatchFnWorks(self): def watch_fn(feeds, fetch_keys): del feeds, fetch_keys return ["DebugIdentity", "DebugNumericSummary"], r".*/read", None u = variables.VariableV1(2.1, name="u") v = variables.VariableV1(20.0, name="v") w = math_ops.multiply(u, v, name="w") sess = session.Session( config=session_debug_testlib.no_rewrite_session_config()) sess.run(u.initializer) sess.run(v.initializer) sess = grpc_wrapper.GrpcDebugWrapperSession( sess, "localhost:%d" % self._server_port, watch_fn=watch_fn) w_result = sess.run(w) self.assertAllClose(42.0, w_result) dump = debug_data.DebugDumpDir(self._dump_root) self.assertEqual(4, dump.size) self.assertAllClose([2.1], dump.get_tensors("u/read", 0, "DebugIdentity")) self.assertEqual( 14, len(dump.get_tensors("u/read", 0, "DebugNumericSummary")[0])) self.assertAllClose([20.0], dump.get_tensors("v/read", 0, "DebugIdentity")) self.assertEqual( 14, len(dump.get_tensors("v/read", 0, "DebugNumericSummary")[0])) def testGrpcDebugHookWithStatelessWatchFnWorks(self): # Perform some set up. Specifically, construct a simple TensorFlow graph and # create a watch function for certain ops. def watch_fn(feeds, fetch_keys): del feeds, fetch_keys return framework.WatchOptions( debug_ops=["DebugIdentity", "DebugNumericSummary"], node_name_regex_whitelist=r".*/read", op_type_regex_whitelist=None, tolerate_debug_op_creation_failures=True) u = variables.VariableV1(2.1, name="u") v = variables.VariableV1(20.0, name="v") w = math_ops.multiply(u, v, name="w") sess = session.Session( config=session_debug_testlib.no_rewrite_session_config()) sess.run(u.initializer) sess.run(v.initializer) # Create a hook. One could use this hook with say a tflearn Estimator. # However, we use a HookedSession in this test to avoid depending on the # internal implementation of Estimators. grpc_debug_hook = hooks.GrpcDebugHook( ["localhost:%d" % self._server_port], watch_fn=watch_fn) sess = monitored_session._HookedSession(sess, [grpc_debug_hook]) # Run the hooked session. This should stream tensor data to the GRPC # endpoints. w_result = sess.run(w) # Verify that the hook monitored the correct tensors. self.assertAllClose(42.0, w_result) dump = debug_data.DebugDumpDir(self._dump_root) self.assertEqual(4, dump.size) self.assertAllClose([2.1], dump.get_tensors("u/read", 0, "DebugIdentity")) self.assertEqual( 14, len(dump.get_tensors("u/read", 0, "DebugNumericSummary")[0])) self.assertAllClose([20.0], dump.get_tensors("v/read", 0, "DebugIdentity")) self.assertEqual( 14, len(dump.get_tensors("v/read", 0, "DebugNumericSummary")[0])) def testTensorBoardDebugHookWorks(self): u = variables.VariableV1(2.1, name="u") v = variables.VariableV1(20.0, name="v") w = math_ops.multiply(u, v, name="w") sess = session.Session( config=session_debug_testlib.no_rewrite_session_config()) sess.run(u.initializer) sess.run(v.initializer) grpc_debug_hook = hooks.TensorBoardDebugHook( ["localhost:%d" % self._server_port]) sess = monitored_session._HookedSession(sess, [grpc_debug_hook]) # Activate watch point on a tensor before calling sess.run(). self._server.request_watch("u/read", 0, "DebugIdentity") self.assertAllClose(42.0, sess.run(w)) # self.assertAllClose(42.0, sess.run(w)) dump = debug_data.DebugDumpDir(self._dump_root) self.assertAllClose([2.1], dump.get_tensors("u/read", 0, "DebugIdentity")) # Check that the server has received the stack trace. self.assertTrue(self._server.query_op_traceback("u")) self.assertTrue(self._server.query_op_traceback("u/read")) self.assertTrue(self._server.query_op_traceback("v")) self.assertTrue(self._server.query_op_traceback("v/read")) self.assertTrue(self._server.query_op_traceback("w")) # Check that the server has received the python file content. # Query an arbitrary line to make sure that is the case. with open(__file__, "rt") as this_source_file: first_line = this_source_file.readline().strip() self.assertEqual( first_line, self._server.query_source_file_line(__file__, 1)) self._server.clear_data() # Call sess.run() again, and verify that this time the traceback and source # code is not sent, because the graph version is not newer. self.assertAllClose(42.0, sess.run(w)) with self.assertRaises(ValueError): self._server.query_op_traceback("delta_1") with self.assertRaises(ValueError): self._server.query_source_file_line(__file__, 1) def testTensorBoardDebugHookDisablingTracebackSourceCodeSendingWorks(self): u = variables.VariableV1(2.1, name="u") v = variables.VariableV1(20.0, name="v") w = math_ops.multiply(u, v, name="w") sess = session.Session( config=session_debug_testlib.no_rewrite_session_config()) sess.run(variables.global_variables_initializer()) grpc_debug_hook = hooks.TensorBoardDebugHook( ["localhost:%d" % self._server_port], send_traceback_and_source_code=False) sess = monitored_session._HookedSession(sess, [grpc_debug_hook]) # Activate watch point on a tensor before calling sess.run(). self._server.request_watch("u/read", 0, "DebugIdentity") self.assertAllClose(42.0, sess.run(w)) # Check that the server has _not_ received any tracebacks, as a result of # the disabling above. with self.assertRaisesRegexp( ValueError, r"Op .*u/read.* does not exist"): self.assertTrue(self._server.query_op_traceback("u/read")) with self.assertRaisesRegexp( ValueError, r".* has not received any source file"): self._server.query_source_file_line(__file__, 1) def testConstructGrpcDebugHookWithOrWithouGrpcInUrlWorks(self): hooks.GrpcDebugHook(["grpc://foo:42424"]) hooks.GrpcDebugHook(["foo:42424"]) class SessionDebugConcurrentTest( session_debug_testlib.DebugConcurrentRunCallsTest): @classmethod def setUpClass(cls): session_debug_testlib.SessionDebugTestBase.setUpClass() (cls._server_port, cls._debug_server_url, cls._server_dump_dir, cls._server_thread, cls._server) = grpc_debug_test_server.start_server_on_separate_thread() @classmethod def tearDownClass(cls): # Stop the test server and join the thread. cls._server.stop_server().wait() cls._server_thread.join() session_debug_testlib.SessionDebugTestBase.tearDownClass() def setUp(self): self._num_concurrent_runs = 3 self._dump_roots = [] for i in range(self._num_concurrent_runs): self._dump_roots.append( os.path.join(self._server_dump_dir, "thread%d" % i)) def tearDown(self): ops.reset_default_graph() if os.path.isdir(self._server_dump_dir): shutil.rmtree(self._server_dump_dir) def _get_concurrent_debug_urls(self): urls = [] for i in range(self._num_concurrent_runs): urls.append(self._debug_server_url + "/thread%d" % i) return urls @test_util.run_v1_only("b/120545219") class SessionDebugGrpcGatingTest(test_util.TensorFlowTestCase): """Test server gating of debug ops.""" @classmethod def setUpClass(cls): (cls._server_port_1, cls._debug_server_url_1, _, cls._server_thread_1, cls._server_1) = grpc_debug_test_server.start_server_on_separate_thread( dump_to_filesystem=False) (cls._server_port_2, cls._debug_server_url_2, _, cls._server_thread_2, cls._server_2) = grpc_debug_test_server.start_server_on_separate_thread( dump_to_filesystem=False) cls._servers_and_threads = [(cls._server_1, cls._server_thread_1), (cls._server_2, cls._server_thread_2)] @classmethod def tearDownClass(cls): for server, thread in cls._servers_and_threads: server.stop_server().wait() thread.join() def tearDown(self): ops.reset_default_graph() self._server_1.clear_data() self._server_2.clear_data() def testToggleEnableTwoDebugWatchesNoCrosstalkBetweenDebugNodes(self): with session.Session( config=session_debug_testlib.no_rewrite_session_config()) as sess: v_1 = variables.VariableV1(50.0, name="v_1") v_2 = variables.VariableV1(-50.0, name="v_1") delta_1 = constant_op.constant(5.0, name="delta_1") delta_2 = constant_op.constant(-5.0, name="delta_2") inc_v_1 = state_ops.assign_add(v_1, delta_1, name="inc_v_1") inc_v_2 = state_ops.assign_add(v_2, delta_2, name="inc_v_2") sess.run([v_1.initializer, v_2.initializer]) run_metadata = config_pb2.RunMetadata() run_options = config_pb2.RunOptions(output_partition_graphs=True) debug_utils.watch_graph( run_options, sess.graph, debug_ops=["DebugIdentity(gated_grpc=true)", "DebugNumericSummary(gated_grpc=true)"], debug_urls=[self._debug_server_url_1]) for i in xrange(4): self._server_1.clear_data() if i % 2 == 0: self._server_1.request_watch("delta_1", 0, "DebugIdentity") self._server_1.request_watch("delta_2", 0, "DebugIdentity") self._server_1.request_unwatch("delta_1", 0, "DebugNumericSummary") self._server_1.request_unwatch("delta_2", 0, "DebugNumericSummary") else: self._server_1.request_unwatch("delta_1", 0, "DebugIdentity") self._server_1.request_unwatch("delta_2", 0, "DebugIdentity") self._server_1.request_watch("delta_1", 0, "DebugNumericSummary") self._server_1.request_watch("delta_2", 0, "DebugNumericSummary") sess.run([inc_v_1, inc_v_2], options=run_options, run_metadata=run_metadata) # Watched debug tensors are: # Run 0: delta_[1,2]:0:DebugIdentity # Run 1: delta_[1,2]:0:DebugNumericSummary # Run 2: delta_[1,2]:0:DebugIdentity # Run 3: delta_[1,2]:0:DebugNumericSummary self.assertEqual(2, len(self._server_1.debug_tensor_values)) if i % 2 == 0: self.assertAllClose( [5.0], self._server_1.debug_tensor_values["delta_1:0:DebugIdentity"]) self.assertAllClose( [-5.0], self._server_1.debug_tensor_values["delta_2:0:DebugIdentity"]) else: self.assertAllClose( [[1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 5.0, 5.0, 5.0, 0.0, 1.0, 0.0]], self._server_1.debug_tensor_values[ "delta_1:0:DebugNumericSummary"]) self.assertAllClose( [[1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, -5.0, -5.0, -5.0, 0.0, 1.0, 0.0]], self._server_1.debug_tensor_values[ "delta_2:0:DebugNumericSummary"]) def testToggleWatchesOnCoreMetadata(self): (_, debug_server_url, _, server_thread, server) = grpc_debug_test_server.start_server_on_separate_thread( dump_to_filesystem=False, toggle_watch_on_core_metadata=[("toggled_1", 0, "DebugIdentity"), ("toggled_2", 0, "DebugIdentity")]) self._servers_and_threads.append((server, server_thread)) with session.Session( config=session_debug_testlib.no_rewrite_session_config()) as sess: v_1 = variables.VariableV1(50.0, name="v_1") v_2 = variables.VariableV1(-50.0, name="v_1") # These two nodes have names that match those in the # toggle_watch_on_core_metadata argument used when calling # start_server_on_separate_thread(). toggled_1 = constant_op.constant(5.0, name="toggled_1") toggled_2 = constant_op.constant(-5.0, name="toggled_2") inc_v_1 = state_ops.assign_add(v_1, toggled_1, name="inc_v_1") inc_v_2 = state_ops.assign_add(v_2, toggled_2, name="inc_v_2") sess.run([v_1.initializer, v_2.initializer]) run_metadata = config_pb2.RunMetadata() run_options = config_pb2.RunOptions(output_partition_graphs=True) debug_utils.watch_graph( run_options, sess.graph, debug_ops=["DebugIdentity(gated_grpc=true)"], debug_urls=[debug_server_url]) for i in xrange(4): server.clear_data() sess.run([inc_v_1, inc_v_2], options=run_options, run_metadata=run_metadata) if i % 2 == 0: self.assertEqual(2, len(server.debug_tensor_values)) self.assertAllClose( [5.0], server.debug_tensor_values["toggled_1:0:DebugIdentity"]) self.assertAllClose( [-5.0], server.debug_tensor_values["toggled_2:0:DebugIdentity"]) else: self.assertEqual(0, len(server.debug_tensor_values)) def testToggleEnableTwoDebugWatchesNoCrosstalkBetweenServers(self): with session.Session( config=session_debug_testlib.no_rewrite_session_config()) as sess: v = variables.VariableV1(50.0, name="v") delta = constant_op.constant(5.0, name="delta") inc_v = state_ops.assign_add(v, delta, name="inc_v") sess.run(v.initializer) run_metadata = config_pb2.RunMetadata() run_options = config_pb2.RunOptions(output_partition_graphs=True) debug_utils.watch_graph( run_options, sess.graph, debug_ops=["DebugIdentity(gated_grpc=true)"], debug_urls=[self._debug_server_url_1, self._debug_server_url_2]) for i in xrange(4): self._server_1.clear_data() self._server_2.clear_data() if i % 2 == 0: self._server_1.request_watch("delta", 0, "DebugIdentity") self._server_2.request_watch("v", 0, "DebugIdentity") else: self._server_1.request_unwatch("delta", 0, "DebugIdentity") self._server_2.request_unwatch("v", 0, "DebugIdentity") sess.run(inc_v, options=run_options, run_metadata=run_metadata) if i % 2 == 0: self.assertEqual(1, len(self._server_1.debug_tensor_values)) self.assertEqual(1, len(self._server_2.debug_tensor_values)) self.assertAllClose( [5.0], self._server_1.debug_tensor_values["delta:0:DebugIdentity"]) self.assertAllClose( [50 + 5.0 * i], self._server_2.debug_tensor_values["v:0:DebugIdentity"]) else: self.assertEqual(0, len(self._server_1.debug_tensor_values)) self.assertEqual(0, len(self._server_2.debug_tensor_values)) def testToggleBreakpointsWorks(self): with session.Session( config=session_debug_testlib.no_rewrite_session_config()) as sess: v_1 = variables.VariableV1(50.0, name="v_1") v_2 = variables.VariableV1(-50.0, name="v_2") delta_1 = constant_op.constant(5.0, name="delta_1") delta_2 = constant_op.constant(-5.0, name="delta_2") inc_v_1 = state_ops.assign_add(v_1, delta_1, name="inc_v_1") inc_v_2 = state_ops.assign_add(v_2, delta_2, name="inc_v_2") sess.run([v_1.initializer, v_2.initializer]) run_metadata = config_pb2.RunMetadata() run_options = config_pb2.RunOptions(output_partition_graphs=True) debug_utils.watch_graph( run_options, sess.graph, debug_ops=["DebugIdentity(gated_grpc=true)"], debug_urls=[self._debug_server_url_1]) for i in xrange(4): self._server_1.clear_data() if i in (0, 2): # Enable breakpoint at delta_[1,2]:0:DebugIdentity in runs 0 and 2. self._server_1.request_watch( "delta_1", 0, "DebugIdentity", breakpoint=True) self._server_1.request_watch( "delta_2", 0, "DebugIdentity", breakpoint=True) else: # Disable the breakpoint in runs 1 and 3. self._server_1.request_unwatch("delta_1", 0, "DebugIdentity") self._server_1.request_unwatch("delta_2", 0, "DebugIdentity") output = sess.run([inc_v_1, inc_v_2], options=run_options, run_metadata=run_metadata) self.assertAllClose([50.0 + 5.0 * (i + 1), -50 - 5.0 * (i + 1)], output) if i in (0, 2): # During runs 0 and 2, the server should have received the published # debug tensor delta:0:DebugIdentity. The breakpoint should have been # unblocked by EventReply reponses from the server. self.assertAllClose( [5.0], self._server_1.debug_tensor_values["delta_1:0:DebugIdentity"]) self.assertAllClose( [-5.0], self._server_1.debug_tensor_values["delta_2:0:DebugIdentity"]) # After the runs, the server should have properly registered the # breakpoints due to the request_unwatch calls. self.assertSetEqual({("delta_1", 0, "DebugIdentity"), ("delta_2", 0, "DebugIdentity")}, self._server_1.breakpoints) else: # After the end of runs 1 and 3, the server has received the requests # to disable the breakpoint at delta:0:DebugIdentity. self.assertSetEqual(set(), self._server_1.breakpoints) def testTensorBoardDebuggerWrapperToggleBreakpointsWorks(self): with session.Session( config=session_debug_testlib.no_rewrite_session_config()) as sess: v_1 = variables.VariableV1(50.0, name="v_1") v_2 = variables.VariableV1(-50.0, name="v_2") delta_1 = constant_op.constant(5.0, name="delta_1") delta_2 = constant_op.constant(-5.0, name="delta_2") inc_v_1 = state_ops.assign_add(v_1, delta_1, name="inc_v_1") inc_v_2 = state_ops.assign_add(v_2, delta_2, name="inc_v_2") sess.run([v_1.initializer, v_2.initializer]) # The TensorBoardDebugWrapperSession should add a DebugIdentity debug op # with attribute gated_grpc=True for every tensor in the graph. sess = grpc_wrapper.TensorBoardDebugWrapperSession( sess, self._debug_server_url_1) for i in xrange(4): self._server_1.clear_data() if i in (0, 2): # Enable breakpoint at delta_[1,2]:0:DebugIdentity in runs 0 and 2. self._server_1.request_watch( "delta_1", 0, "DebugIdentity", breakpoint=True) self._server_1.request_watch( "delta_2", 0, "DebugIdentity", breakpoint=True) else: # Disable the breakpoint in runs 1 and 3. self._server_1.request_unwatch("delta_1", 0, "DebugIdentity") self._server_1.request_unwatch("delta_2", 0, "DebugIdentity") output = sess.run([inc_v_1, inc_v_2]) self.assertAllClose([50.0 + 5.0 * (i + 1), -50 - 5.0 * (i + 1)], output) if i in (0, 2): # During runs 0 and 2, the server should have received the published # debug tensor delta:0:DebugIdentity. The breakpoint should have been # unblocked by EventReply reponses from the server. self.assertAllClose( [5.0], self._server_1.debug_tensor_values["delta_1:0:DebugIdentity"]) self.assertAllClose( [-5.0], self._server_1.debug_tensor_values["delta_2:0:DebugIdentity"]) # After the runs, the server should have properly registered the # breakpoints. else: # After the end of runs 1 and 3, the server has received the requests # to disable the breakpoint at delta:0:DebugIdentity. self.assertSetEqual(set(), self._server_1.breakpoints) if i == 0: # Check that the server has received the stack trace. self.assertTrue(self._server_1.query_op_traceback("delta_1")) self.assertTrue(self._server_1.query_op_traceback("delta_2")) self.assertTrue(self._server_1.query_op_traceback("inc_v_1")) self.assertTrue(self._server_1.query_op_traceback("inc_v_2")) # Check that the server has received the python file content. # Query an arbitrary line to make sure that is the case. with open(__file__, "rt") as this_source_file: first_line = this_source_file.readline().strip() self.assertEqual( first_line, self._server_1.query_source_file_line(__file__, 1)) else: # In later Session.run() calls, the traceback shouldn't have been sent # because it is already sent in the 1st call. So calling # query_op_traceback() should lead to an exception, because the test # debug server clears the data at the beginning of every iteration. with self.assertRaises(ValueError): self._server_1.query_op_traceback("delta_1") with self.assertRaises(ValueError): self._server_1.query_source_file_line(__file__, 1) def testTensorBoardDebuggerWrapperDisablingTracebackSourceSendingWorks(self): with session.Session( config=session_debug_testlib.no_rewrite_session_config()) as sess: v_1 = variables.VariableV1(50.0, name="v_1") v_2 = variables.VariableV1(-50.0, name="v_2") delta_1 = constant_op.constant(5.0, name="delta_1") delta_2 = constant_op.constant(-5.0, name="delta_2") inc_v_1 = state_ops.assign_add(v_1, delta_1, name="inc_v_1") inc_v_2 = state_ops.assign_add(v_2, delta_2, name="inc_v_2") sess.run(variables.global_variables_initializer()) # Disable the sending of traceback and source code. sess = grpc_wrapper.TensorBoardDebugWrapperSession( sess, self._debug_server_url_1, send_traceback_and_source_code=False) for i in xrange(4): self._server_1.clear_data() if i == 0: self._server_1.request_watch( "delta_1", 0, "DebugIdentity", breakpoint=True) output = sess.run([inc_v_1, inc_v_2]) self.assertAllClose([50.0 + 5.0 * (i + 1), -50 - 5.0 * (i + 1)], output) # No op traceback or source code should have been received by the debug # server due to the disabling above. with self.assertRaisesRegexp( ValueError, r"Op .*delta_1.* does not exist"): self.assertTrue(self._server_1.query_op_traceback("delta_1")) with self.assertRaisesRegexp( ValueError, r".* has not received any source file"): self._server_1.query_source_file_line(__file__, 1) def testGetGrpcDebugWatchesReturnsCorrectAnswer(self): with session.Session() as sess: v = variables.VariableV1(50.0, name="v") delta = constant_op.constant(5.0, name="delta") inc_v = state_ops.assign_add(v, delta, name="inc_v") sess.run(v.initializer) # Before any debugged runs, the server should be aware of no debug # watches. self.assertEqual([], self._server_1.gated_grpc_debug_watches()) run_metadata = config_pb2.RunMetadata() run_options = config_pb2.RunOptions(output_partition_graphs=True) debug_utils.add_debug_tensor_watch( run_options, "delta", output_slot=0, debug_ops=["DebugNumericSummary(gated_grpc=true)"], debug_urls=[self._debug_server_url_1]) debug_utils.add_debug_tensor_watch( run_options, "v", output_slot=0, debug_ops=["DebugIdentity"], debug_urls=[self._debug_server_url_1]) sess.run(inc_v, options=run_options, run_metadata=run_metadata) # After the first run, the server should have noted the debug watches # for which gated_grpc == True, but not the ones with gated_grpc == False. self.assertEqual(1, len(self._server_1.gated_grpc_debug_watches())) debug_watch = self._server_1.gated_grpc_debug_watches()[0] self.assertEqual("delta", debug_watch.node_name) self.assertEqual(0, debug_watch.output_slot) self.assertEqual("DebugNumericSummary", debug_watch.debug_op) @test_util.run_v1_only("b/120545219") class DelayedDebugServerTest(test_util.TensorFlowTestCase): def testDebuggedSessionRunWorksWithDelayedDebugServerStartup(self): """Test debugged Session.run() tolerates delayed debug server startup.""" ops.reset_default_graph() # Start a debug server asynchronously, with a certain amount of delay. (debug_server_port, _, _, server_thread, debug_server) = grpc_debug_test_server.start_server_on_separate_thread( server_start_delay_sec=2.0, dump_to_filesystem=False) with self.cached_session() as sess: a_init = constant_op.constant(42.0, name="a_init") a = variables.VariableV1(a_init, name="a") def watch_fn(fetches, feeds): del fetches, feeds return framework.WatchOptions(debug_ops=["DebugIdentity"]) sess = grpc_wrapper.GrpcDebugWrapperSession( sess, "localhost:%d" % debug_server_port, watch_fn=watch_fn) sess.run(a.initializer) self.assertAllClose( [42.0], debug_server.debug_tensor_values["a_init:0:DebugIdentity"]) debug_server.stop_server().wait() server_thread.join() if __name__ == "__main__": googletest.main()
tensorflow-master
tensorflow/python/debug/lib/session_debug_grpc_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Communicating tracebacks and source code with debug server.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import socket import grpc from tensorflow.core.debug import debug_service_pb2 from tensorflow.core.protobuf import debug_pb2 from tensorflow.python.debug.lib import common from tensorflow.python.debug.lib import debug_service_pb2_grpc from tensorflow.python.debug.lib import source_utils from tensorflow.python.platform import gfile from tensorflow.python.platform import tf_logging from tensorflow.python.profiler import tfprof_logger def _load_debugged_source_file(file_path, source_file_proto): file_stat = gfile.Stat(file_path) source_file_proto.host = socket.gethostname() source_file_proto.file_path = file_path source_file_proto.last_modified = file_stat.mtime_nsec source_file_proto.bytes = file_stat.length try: with gfile.Open(file_path, "r") as f: source_file_proto.lines.extend(f.read().splitlines()) except IOError: pass def _string_to_id(string, string_to_id): if string not in string_to_id: string_to_id[string] = len(string_to_id) return string_to_id[string] def _format_origin_stack(origin_stack, call_traceback_proto): """Format a traceback stack for a `CallTraceback` proto. Args: origin_stack: The stack list as returned by `traceback.extract_stack()`. call_traceback_proto: A `CallTraceback` proto whose fields are to be populated. """ string_to_id = {} string_to_id[None] = 0 for frame in origin_stack: file_path, lineno, func_name, line_text = frame call_traceback_proto.origin_stack.traces.add( file_id=_string_to_id(file_path, string_to_id), lineno=lineno, function_id=_string_to_id(func_name, string_to_id), line_id=_string_to_id(line_text, string_to_id)) id_to_string = call_traceback_proto.origin_id_to_string for key, value in string_to_id.items(): id_to_string[value] = key if key is not None else "" def _source_file_paths_outside_tensorflow_py_library(code_defs, id_to_string): """Extract source file paths outside TensorFlow Python library. Args: code_defs: An iterable of `CodeDef` protos, i.e., an iterable of stack traces. id_to_string: A proto map from integer ids to strings. Returns: An iterable of source file paths outside the TensorFlow Python library. """ file_ids = set() for code_def in code_defs: for trace in code_def.traces: file_ids.add(trace.file_id) non_tf_files = (id_to_string[file_id] for file_id in file_ids) non_tf_files = ( f for f in non_tf_files if not source_utils.guess_is_tensorflow_py_library(f) and gfile.Exists(f)) return non_tf_files def grpc_message_length_bytes(): """Maximum gRPC message length in bytes.""" return 4 * 1024 * 1024 def _send_call_tracebacks(destinations, origin_stack, is_eager_execution=False, call_key=None, graph=None, send_source=True): """Send the tracebacks of a TensorFlow execution call. To gRPC debug server(s). This applies to graph execution (`tf.Session.run()`) calls and eager execution calls. If `send_source`, also sends the underlying source files outside the TensorFlow library. Args: destinations: gRPC destination addresses, a `str` or a `list` of `str`s, e.g., "localhost:4242". If a `list`, gRPC requests containing the same `CallTraceback` proto payload will be sent to all the destinations. origin_stack: The traceback stack for the origin of the execution call. For graph execution, this is the traceback of the `tf.Session.run()` invocation. For eager execution, this is the traceback of the Python line that executes the eager opertion. is_eager_execution: (`bool`) whether an eager execution call (i.e., not a `tf.Session.run` or derived methods) is being sent. call_key: The key of the execution call, as a string. For graph execution, this is a string describing the feeds, fetches (and targets) names of the `tf.Session.run` call. For eager execution, this is ignored. graph: A Python `tf.Graph` object (i.e., *not* a `tf.compat.v1.GraphDef`), which contains op tracebacks, if applicable. send_source: Whether the source files involved in the op tracebacks but outside the TensorFlow library are to be sent. """ if not isinstance(destinations, list): destinations = [destinations] # Strip grpc:// prefix, if any is present. destinations = [ dest[len(common.GRPC_URL_PREFIX):] if dest.startswith(common.GRPC_URL_PREFIX) else dest for dest in destinations] call_type = (debug_service_pb2.CallTraceback.EAGER_EXECUTION if is_eager_execution else debug_service_pb2.CallTraceback.GRAPH_EXECUTION) graph_traceback = tfprof_logger.merge_default_with_oplog( graph, add_trainable_var=False) if graph else None call_traceback = debug_service_pb2.CallTraceback( call_type=call_type, call_key=call_key, graph_traceback=graph_traceback, graph_version=graph.version if graph else None) _format_origin_stack(origin_stack, call_traceback) if send_source: source_file_paths = set() source_file_paths.update(_source_file_paths_outside_tensorflow_py_library( (log_entry.code_def for log_entry in call_traceback.graph_traceback.log_entries), call_traceback.graph_traceback.id_to_string)) source_file_paths.update(_source_file_paths_outside_tensorflow_py_library( [call_traceback.origin_stack], call_traceback.origin_id_to_string)) debugged_source_files = [] for file_path in source_file_paths: source_files = debug_pb2.DebuggedSourceFiles() _load_debugged_source_file( file_path, source_files.source_files.add()) debugged_source_files.append(source_files) for destination in destinations: channel = grpc.insecure_channel(destination) stub = debug_service_pb2_grpc.EventListenerStub(channel) stub.SendTracebacks(call_traceback) if send_source: for path, source_files in zip( source_file_paths, debugged_source_files): if source_files.ByteSize() < grpc_message_length_bytes(): stub.SendSourceFiles(source_files) else: tf_logging.warn( "The content of the source file at %s is not sent to " "gRPC debug server %s, because the message size exceeds " "gRPC message length limit (%d bytes)." % ( path, destination, grpc_message_length_bytes())) def send_graph_tracebacks(destinations, run_key, origin_stack, graph, send_source=True): """Send the tracebacks of a graph execution call to debug server(s). Args: destinations: gRPC destination addresses, a `str` or a `list` of `str`s, e.g., "localhost:4242". If a `list`, gRPC requests containing the same `CallTraceback` proto payload will be sent to all the destinations. run_key: A string describing the feeds, fetches (and targets) names of the `tf.Session.run` call. origin_stack: The traceback of the `tf.Session.run()` invocation. graph: A Python `tf.Graph` object (i.e., *not* a `tf.compat.v1.GraphDef`), which contains op tracebacks. send_source: Whether the source files involved in the op tracebacks but outside the TensorFlow library are to be sent. """ _send_call_tracebacks( destinations, origin_stack, is_eager_execution=False, call_key=run_key, graph=graph, send_source=send_source) def send_eager_tracebacks(destinations, origin_stack, send_source=True): """Send the tracebacks of an eager execution call to debug server(s). Args: destinations: gRPC destination addresses, a `str` or a `list` of `str`s, e.g., "localhost:4242". If a `list`, gRPC requests containing the same origin_stack: The traceback of the eager operation invocation. send_source: Whether the source files involved in the op tracebacks but outside the TensorFlow library are to be sent. """ _send_call_tracebacks( destinations, origin_stack, is_eager_execution=True, send_source=send_source)
tensorflow-master
tensorflow/python/debug/lib/source_remote.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for debugger functionalities in tf.compat.v1.Session with grpc:// URLs. This test focus on grpc:// debugging of distributed (gRPC) sessions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import json import subprocess import sys import time import portpicker from six.moves import xrange # pylint: disable=redefined-builtin from tensorflow.core.protobuf import config_pb2 from tensorflow.python.client import session from tensorflow.python.debug.lib import debug_utils from tensorflow.python.debug.lib import grpc_debug_test_server from tensorflow.python.debug.wrappers import framework from tensorflow.python.debug.wrappers import grpc_wrapper from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import math_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops import variables from tensorflow.python.platform import googletest from tensorflow.python.platform import test from tensorflow.python.platform import tf_logging @test_util.run_v1_only("b/120545219") class DistributedSessionDebugTest(test_util.TensorFlowTestCase): """Test the debugging of distributed sessions.""" PER_PROC_GPU_MEMORY_FRACTION = 0.1 POLLING_INTERVAL_SEC = 0.025 @classmethod def setUpClass(cls): gpu_memory_fraction_opt = ( "--gpu_memory_fraction=%f" % cls.PER_PROC_GPU_MEMORY_FRACTION) worker_port = portpicker.pick_unused_port() cluster_spec = "worker|localhost:%d" % worker_port tf_logging.info("cluster_spec: %s", cluster_spec) server_bin = test.test_src_dir_path( "python/debug/grpc_tensorflow_server.par") cls.server_target = "grpc://localhost:%d" % worker_port cls.server_procs = {} cls.server_procs["worker"] = subprocess.Popen( [ server_bin, "--logtostderr", "--cluster_spec=%s" % cluster_spec, "--job_name=worker", "--task_id=0", gpu_memory_fraction_opt, ], stdout=sys.stdout, stderr=sys.stderr) # Start debug server in-process, on separate thread. (cls.debug_server_port, cls.debug_server_url, _, cls.debug_server_thread, cls.debug_server ) = grpc_debug_test_server.start_server_on_separate_thread( dump_to_filesystem=False) tf_logging.info("debug server url: %s", cls.debug_server_url) cls.session_config = config_pb2.ConfigProto( gpu_options=config_pb2.GPUOptions( per_process_gpu_memory_fraction=cls.PER_PROC_GPU_MEMORY_FRACTION)) @classmethod def tearDownClass(cls): for key in cls.server_procs: cls.server_procs[key].terminate() try: cls.debug_server.stop_server().wait() except ValueError: pass cls.debug_server_thread.join() def setUp(self): pass def tearDown(self): self.debug_server.clear_data() def _pollingAssertDebugTensorValuesAllClose(self, expected_values, debug_tensor_name): """Poll debug_server till tensor appears and matches expected values.""" while (debug_tensor_name not in self.debug_server.debug_tensor_values or len(self.debug_server.debug_tensor_values) < len(expected_values)): time.sleep(self.POLLING_INTERVAL_SEC) self.assertAllClose( expected_values, self.debug_server.debug_tensor_values[debug_tensor_name]) def _createGraph(self): """Create graph for testing. Returns: Python Graph object. """ with ops.Graph().as_default() as graph: with ops.device("/job:worker/task:0/cpu:0"): self.a = variables.VariableV1(10.0, name="a") self.b = variables.VariableV1(100.0, name="b") self.inc_a = state_ops.assign_add(self.a, 2.0, name="inc_a") self.dec_b = state_ops.assign_add(self.b, -5.0, name="dec_b") self.p = math_ops.multiply(self.inc_a, self.dec_b, name="p") self.q = math_ops.negative(self.p, name="q") return graph def testDistributedRunWithGatedGrpcCommunicatesWithDebugServerCorrectly(self): graph = self._createGraph() with session.Session( config=self.session_config, graph=graph, target=self.server_target) as sess: sess.run(self.a.initializer) sess.run(self.b.initializer) run_options = config_pb2.RunOptions() debug_utils.watch_graph( run_options, sess.graph, node_name_regex_whitelist=r"a", debug_ops=["DebugIdentity"], debug_urls=[self.debug_server_url]) # Test gated_grpc for an op located on the worker, i.e., on the same # host as where MasterSession is. # TODO(cais): gRPC gating of debug ops does not work on partition graphs # not located on MasterSession hosts (e.g., parameter servers) yet. Make # it work. debug_utils.watch_graph( run_options, sess.graph, node_name_regex_whitelist=r"p", debug_ops=["DebugIdentity(gated_grpc=True)"], debug_urls=[self.debug_server_url]) for i in xrange(4): if i % 2 == 0: self.debug_server.request_watch("p", 0, "DebugIdentity") else: self.debug_server.request_unwatch("p", 0, "DebugIdentity") expected_p = (10.0 + 2.0 * (i + 1)) * (100.0 - 5.0 * (i + 1)) self.assertAllClose(-expected_p, sess.run(self.q, options=run_options)) self.assertEqual(1, len(self.debug_server.core_metadata_json_strings)) core_metadata = json.loads( self.debug_server.core_metadata_json_strings[0]) self.assertEqual([], core_metadata["input_names"]) self.assertEqual(["q:0"], core_metadata["output_names"]) self.assertEqual(i, core_metadata["executor_step_index"]) if i == 0: self.assertEqual(1, len(self.debug_server.partition_graph_defs)) # Tensor "a" is from a PS. It may take longer to arrive due to the fact # that the stream connection between the PS and the debug server is # persistent and not torn down at the end of each Session.run() self._pollingAssertDebugTensorValuesAllClose([10.0 + 2.0 * i], "a:0:DebugIdentity") # Due to the gRPC gating of the debug op for "p", the debug tensor # should be available on odd-indexed runs. if i % 2 == 0: self.assertAllClose( [expected_p], self.debug_server.debug_tensor_values["p:0:DebugIdentity"]) else: self.assertNotIn("p:0:DebugIdentity", self.debug_server.debug_tensor_values) self.assertNotIn("b:0:DebugIdentity", self.debug_server.debug_tensor_values) self.debug_server.clear_data() def testDistributedRunWithGrpcDebugWrapperWorks(self): graph = self._createGraph() with session.Session( config=self.session_config, graph=graph, target=self.server_target) as sess: sess.run(self.a.initializer) sess.run(self.b.initializer) def watch_fn(feeds, fetch_keys): del feeds, fetch_keys return framework.WatchOptions( debug_ops=["DebugIdentity"], node_name_regex_whitelist=r"p") sess = grpc_wrapper.GrpcDebugWrapperSession( sess, "localhost:%d" % self.debug_server_port, watch_fn=watch_fn) for i in xrange(4): expected_p = (10.0 + 2.0 * (i + 1)) * (100.0 - 5.0 * (i + 1)) self.assertAllClose(-expected_p, sess.run(self.q)) if i == 0: self.assertEqual(1, len(self.debug_server.partition_graph_defs)) self.assertAllClose( [expected_p], self.debug_server.debug_tensor_values["p:0:DebugIdentity"]) self.assertNotIn("b:0:DebugIdentity", self.debug_server.debug_tensor_values) self.debug_server.clear_data() if __name__ == "__main__": googletest.main()
tensorflow-master
tensorflow/python/debug/lib/dist_session_debug_grpc_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for debugger functionalities under multiple (i.e., >1) GPUs.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import shutil import tempfile from tensorflow.core.protobuf import config_pb2 from tensorflow.python.client import device_lib from tensorflow.python.client import session from tensorflow.python.debug.lib import debug_data from tensorflow.python.debug.lib import debug_utils from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import math_ops from tensorflow.python.ops import variables from tensorflow.python.platform import googletest class SessionDebugMultiGPUTest(test_util.TensorFlowTestCase): def setUp(self): self._dump_root = tempfile.mkdtemp() def tearDown(self): ops.reset_default_graph() # Tear down temporary dump directory. if os.path.isdir(self._dump_root): shutil.rmtree(self._dump_root) def testMultiGPUSessionRun(self): local_devices = device_lib.list_local_devices() gpu_device_names = [] for device in local_devices: if device.device_type == "GPU": gpu_device_names.append(device.name) gpu_device_names = sorted(gpu_device_names) if len(gpu_device_names) < 2: self.skipTest( "This test requires at least 2 GPUs, but only %d is available." % len(gpu_device_names)) with session.Session() as sess: v = variables.Variable([10.0, 15.0], dtype=dtypes.float32, name="v") with ops.device(gpu_device_names[0]): u0 = math_ops.add(v, v, name="u0") with ops.device(gpu_device_names[1]): u1 = math_ops.multiply(v, v, name="u1") w = math_ops.subtract(u1, u0, name="w") self.evaluate(v.initializer) run_options = config_pb2.RunOptions(output_partition_graphs=True) debug_utils.watch_graph(run_options, sess.graph, debug_urls="file://" + self._dump_root) run_metadata = config_pb2.RunMetadata() self.assertAllClose( [80.0, 195.0], sess.run(w, options=run_options, run_metadata=run_metadata)) debug_dump_dir = debug_data.DebugDumpDir( self._dump_root, partition_graphs=run_metadata.partition_graphs) self.assertEqual(3, len(debug_dump_dir.devices())) self.assertAllClose( [10.0, 15.0], debug_dump_dir.get_tensors("v", 0, "DebugIdentity")[0]) self.assertAllClose( [20.0, 30.0], debug_dump_dir.get_tensors("u0", 0, "DebugIdentity")[0]) self.assertAllClose( [100.0, 225.0], debug_dump_dir.get_tensors("u1", 0, "DebugIdentity")[0]) if __name__ == "__main__": googletest.main()
tensorflow-master
tensorflow/python/debug/lib/session_debug_multi_gpu_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! # # Do not use pylint on generated code. # pylint: disable=missing-docstring,g-short-docstring-punctuation,g-no-space-after-docstring-summary,invalid-name,line-too-long,unused-argument,g-doc-args from __future__ import absolute_import from __future__ import division from __future__ import print_function import grpc from tensorflow.core.debug import debug_service_pb2 as tensorflow_dot_core_dot_debug_dot_debug__service__pb2 from tensorflow.core.protobuf import debug_pb2 as tensorflow_dot_core_dot_protobuf_dot_debug__pb2 from tensorflow.core.util import event_pb2 as tensorflow_dot_core_dot_util_dot_event__pb2 class EventListenerStub(object): """EventListener: Receives Event protos, e.g., from debugged TensorFlow runtime(s). """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.SendEvents = channel.stream_stream( '/tensorflow.EventListener/SendEvents', request_serializer=tensorflow_dot_core_dot_util_dot_event__pb2.Event.SerializeToString, response_deserializer=tensorflow_dot_core_dot_debug_dot_debug__service__pb2.EventReply.FromString, ) self.SendTracebacks = channel.unary_unary( '/tensorflow.EventListener/SendTracebacks', request_serializer=tensorflow_dot_core_dot_debug_dot_debug__service__pb2.CallTraceback.SerializeToString, response_deserializer=tensorflow_dot_core_dot_debug_dot_debug__service__pb2.EventReply.FromString, ) self.SendSourceFiles = channel.unary_unary( '/tensorflow.EventListener/SendSourceFiles', request_serializer=tensorflow_dot_core_dot_protobuf_dot_debug__pb2.DebuggedSourceFiles.SerializeToString, response_deserializer=tensorflow_dot_core_dot_debug_dot_debug__service__pb2.EventReply.FromString, ) class EventListenerServicer(object): """EventListener: Receives Event protos, e.g., from debugged TensorFlow runtime(s). """ def SendEvents(self, request_iterator, context): """Client(s) can use this RPC method to send the EventListener Event protos. The Event protos can hold information such as: 1) intermediate tensors from a debugged graph being executed, which can be sent from DebugIdentity ops configured with grpc URLs. 2) GraphDefs of partition graphs, which can be sent from special debug ops that get executed immediately after the beginning of the graph execution. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def SendTracebacks(self, request, context): """Send the tracebacks of ops in a Python graph definition. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def SendSourceFiles(self, request, context): """Send a collection of source code files being debugged. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_EventListenerServicer_to_server(servicer, server): rpc_method_handlers = { 'SendEvents': grpc.stream_stream_rpc_method_handler( servicer.SendEvents, request_deserializer=tensorflow_dot_core_dot_util_dot_event__pb2.Event.FromString, response_serializer=tensorflow_dot_core_dot_debug_dot_debug__service__pb2.EventReply.SerializeToString, ), 'SendTracebacks': grpc.unary_unary_rpc_method_handler( servicer.SendTracebacks, request_deserializer=tensorflow_dot_core_dot_debug_dot_debug__service__pb2.CallTraceback.FromString, response_serializer=tensorflow_dot_core_dot_debug_dot_debug__service__pb2.EventReply.SerializeToString, ), 'SendSourceFiles': grpc.unary_unary_rpc_method_handler( servicer.SendSourceFiles, request_deserializer=tensorflow_dot_core_dot_protobuf_dot_debug__pb2.DebuggedSourceFiles.FromString, response_serializer=tensorflow_dot_core_dot_debug_dot_debug__service__pb2.EventReply.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'tensorflow.EventListener', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,))
tensorflow-master
tensorflow/python/debug/lib/debug_service_pb2_grpc.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for debugger functionalities in tf.Session with file:// URLs.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import shutil import tempfile from tensorflow.core.protobuf import config_pb2 from tensorflow.python.client import session from tensorflow.python.debug.lib import debug_data from tensorflow.python.debug.lib import debug_utils from tensorflow.python.debug.lib import session_debug_testlib from tensorflow.python.framework import constant_op from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import math_ops from tensorflow.python.ops import variables from tensorflow.python.platform import googletest @test_util.run_v1_only("b/120545219") class SessionDebugFileTest(session_debug_testlib.SessionDebugTestBase): def _debug_urls(self, run_number=None): return ["file://%s" % self._debug_dump_dir(run_number=run_number)] def _debug_dump_dir(self, run_number=None): if run_number is None: return self._dump_root else: return os.path.join(self._dump_root, "run_%d" % run_number) def testAllowsDifferentWatchesOnDifferentRuns(self): """Test watching different tensors on different runs of the same graph.""" with session.Session( config=session_debug_testlib.no_rewrite_session_config()) as sess: u_init_val = [[5.0, 3.0], [-1.0, 0.0]] v_init_val = [[2.0], [-1.0]] # Use node names with overlapping namespace (i.e., parent directory) to # test concurrent, non-racing directory creation. u_name = "diff_Watch/u" v_name = "diff_Watch/v" u_init = constant_op.constant(u_init_val, shape=[2, 2]) u = variables.VariableV1(u_init, name=u_name) v_init = constant_op.constant(v_init_val, shape=[2, 1]) v = variables.VariableV1(v_init, name=v_name) w = math_ops.matmul(u, v, name="diff_Watch/matmul") u.initializer.run() v.initializer.run() for i in range(2): run_options = config_pb2.RunOptions(output_partition_graphs=True) run_dump_root = self._debug_dump_dir(run_number=i) debug_urls = self._debug_urls(run_number=i) if i == 0: # First debug run: Add debug tensor watch for u. debug_utils.add_debug_tensor_watch( run_options, "%s/read" % u_name, 0, debug_urls=debug_urls) else: # Second debug run: Add debug tensor watch for v. debug_utils.add_debug_tensor_watch( run_options, "%s/read" % v_name, 0, debug_urls=debug_urls) run_metadata = config_pb2.RunMetadata() # Invoke Session.run(). sess.run(w, options=run_options, run_metadata=run_metadata) self.assertEqual(self._expected_partition_graph_count, len(run_metadata.partition_graphs)) dump = debug_data.DebugDumpDir( run_dump_root, partition_graphs=run_metadata.partition_graphs) self.assertTrue(dump.loaded_partition_graphs()) # Each run should have generated only one dumped tensor, not two. self.assertEqual(1, dump.size) if i == 0: self.assertAllClose([u_init_val], dump.get_tensors("%s/read" % u_name, 0, "DebugIdentity")) self.assertGreaterEqual( dump.get_rel_timestamps("%s/read" % u_name, 0, "DebugIdentity")[0], 0) else: self.assertAllClose([v_init_val], dump.get_tensors("%s/read" % v_name, 0, "DebugIdentity")) self.assertGreaterEqual( dump.get_rel_timestamps("%s/read" % v_name, 0, "DebugIdentity")[0], 0) class SessionDebugConcurrentTest( session_debug_testlib.DebugConcurrentRunCallsTest): def setUp(self): self._num_concurrent_runs = 3 self._dump_roots = [] for _ in range(self._num_concurrent_runs): self._dump_roots.append(tempfile.mkdtemp()) def tearDown(self): ops.reset_default_graph() for dump_root in self._dump_roots: if os.path.isdir(dump_root): shutil.rmtree(dump_root) def _get_concurrent_debug_urls(self): return [("file://%s" % dump_root) for dump_root in self._dump_roots] if __name__ == "__main__": googletest.main()
tensorflow-master
tensorflow/python/debug/lib/session_debug_file_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Unit tests for debug_gradients module.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import shutil import tempfile from tensorflow.core.protobuf import config_pb2 from tensorflow.core.protobuf import rewriter_config_pb2 from tensorflow.python.client import session from tensorflow.python.debug.lib import debug_data from tensorflow.python.debug.lib import debug_gradients from tensorflow.python.debug.lib import debug_utils from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import gradients_impl from tensorflow.python.ops import math_ops from tensorflow.python.ops import variables from tensorflow.python.platform import googletest from tensorflow.python.training import gradient_descent @test_util.run_deprecated_v1 class IdentifyGradientTest(test_util.TensorFlowTestCase): def setUp(self): rewriter_config = rewriter_config_pb2.RewriterConfig( disable_model_pruning=True, dependency_optimization=rewriter_config_pb2.RewriterConfig.OFF) graph_options = config_pb2.GraphOptions(rewrite_options=rewriter_config) config = config_pb2.ConfigProto(graph_options=graph_options) self.sess = session.Session(config=config) with self.sess.as_default(): self.u = variables.Variable(2.0, name="u") self.v = variables.Variable(3.0, name="v") self.w = math_ops.multiply(self.u.value(), self.v.value(), name="w") def tearDown(self): ops.reset_default_graph() debug_gradients.clear_gradient_debuggers() def testIdentifyGradientGivesCorrectTensorObjectWithoutContextManager(self): grad_debugger = debug_gradients.GradientsDebugger() id_grad_w = grad_debugger.identify_gradient(self.w) y = math_ops.add(id_grad_w, -1.0, name="y") grads = gradients_impl.gradients(y, [self.u, self.v]) self.assertEqual(2, len(grads)) u_grad = grads[0] v_grad = grads[1] self.sess.run(variables.global_variables_initializer()) self.assertAllClose(5.0, self.sess.run(y)) self.assertAllClose(3.0, self.sess.run(u_grad)) self.assertAllClose(2.0, self.sess.run(v_grad)) # Fetch the gradient tensor with the x-tensor object. w_grad = grad_debugger.gradient_tensor(self.w) self.assertIsInstance(w_grad, ops.Tensor) self.assertAllClose(1.0, self.sess.run(w_grad)) # Fetch the gradient tensor with the x-tensor's name. w_grad = grad_debugger.gradient_tensor(self.w.name) self.assertIsInstance(w_grad, ops.Tensor) self.assertAllClose(1.0, self.sess.run(w_grad)) # Fetch the gradient tensor with the x-tensor name. w_grad = grad_debugger.gradient_tensor(self.w.name) self.assertIsInstance(w_grad, ops.Tensor) self.assertAllClose(1.0, self.sess.run(w_grad)) def testIdentifyGradientGivesCorrectTensorObjectWithTfGradients(self): grad_debugger = debug_gradients.GradientsDebugger() id_grad_w = grad_debugger.identify_gradient(self.w) y = math_ops.add(id_grad_w, -1.0, name="y") with grad_debugger: grads = gradients_impl.gradients(y, [self.u, self.v]) self.assertEqual(2, len(grads)) u_grad = grads[0] v_grad = grads[1] self.sess.run(variables.global_variables_initializer()) self.assertAllClose(5.0, self.sess.run(y)) self.assertAllClose(3.0, self.sess.run(u_grad)) self.assertAllClose(2.0, self.sess.run(v_grad)) # Fetch the gradient tensor with the x-tensor object. w_grad = grad_debugger.gradient_tensor(self.w) self.assertIsInstance(w_grad, ops.Tensor) self.assertAllClose(1.0, self.sess.run(w_grad)) # Fetch the gradient tensor with the x-tensor's name. w_grad = grad_debugger.gradient_tensor(self.w.name) self.assertIsInstance(w_grad, ops.Tensor) self.assertAllClose(1.0, self.sess.run(w_grad)) # Fetch the gradient tensor with the x-tensor name. w_grad = grad_debugger.gradient_tensor(self.w.name) self.assertIsInstance(w_grad, ops.Tensor) self.assertAllClose(1.0, self.sess.run(w_grad)) def testCallingIdentifyGradientTwiceWithTheSameGradientsDebuggerErrors(self): grad_debugger = debug_gradients.GradientsDebugger() grad_debugger.identify_gradient(self.w) with self.assertRaisesRegexp(ValueError, "The graph already contains an op named .*"): grad_debugger.identify_gradient(self.w) def testIdentifyGradientWorksOnMultipleLosses(self): grad_debugger_1 = debug_gradients.GradientsDebugger() grad_debugger_2 = debug_gradients.GradientsDebugger() y = math_ops.add(self.w, -1.0, name="y") debug_y = grad_debugger_1.identify_gradient(y) z1 = math_ops.square(debug_y, name="z1") debug_y = grad_debugger_2.identify_gradient(y) z2 = math_ops.sqrt(debug_y, name="z2") with grad_debugger_1: gradient_descent.GradientDescentOptimizer(0.1).minimize(z1) with grad_debugger_2: gradient_descent.GradientDescentOptimizer(0.1).minimize(z2) dz1_dy = grad_debugger_1.gradient_tensor(y) dz2_dy = grad_debugger_2.gradient_tensor(y) self.assertIsInstance(dz1_dy, ops.Tensor) self.assertIsInstance(dz2_dy, ops.Tensor) self.assertIsNot(dz1_dy, dz2_dy) self.sess.run(variables.global_variables_initializer()) self.assertAllClose(5.0**2, self.sess.run(z1)) self.assertAllClose(5.0**0.5, self.sess.run(z2)) self.assertAllClose(2.0 * 5.0, self.sess.run(dz1_dy)) self.assertAllClose(0.5 * (5.0**-0.5), self.sess.run(dz2_dy)) def testIdentifyGradientRaisesLookupErrorForUnknownXTensor(self): grad_debugger_1 = debug_gradients.GradientsDebugger() grad_debugger_2 = debug_gradients.GradientsDebugger() id_grad_w = grad_debugger_1.identify_gradient(self.w) y = math_ops.add(id_grad_w, -1.0, name="y") # There are >1 gradient debuggers registered, and grad_debugger is not used # as a context manager here, so the gradient w.r.t. self.w will not be # registered. gradients_impl.gradients(y, [self.u, self.v]) with self.assertRaisesRegexp( LookupError, r"This GradientsDebugger has not received any gradient tensor for "): grad_debugger_1.gradient_tensor(self.w) with self.assertRaisesRegexp( LookupError, r"This GradientsDebugger has not received any gradient tensor for "): grad_debugger_2.gradient_tensor(self.w) def testIdentifyGradientRaisesTypeErrorForNonTensorOrTensorNameInput(self): grad_debugger = debug_gradients.GradientsDebugger() with self.assertRaisesRegexp( TypeError, r"x_tensor must be a str or tf\.Tensor or tf\.Variable, but instead " r"has type .*Operation.*"): grad_debugger.gradient_tensor(variables.global_variables_initializer()) def testIdentifyGradientTensorWorksWithGradientDescentOptimizer(self): grad_debugger = debug_gradients.GradientsDebugger() id_grad_w = grad_debugger.identify_gradient(self.w) y = math_ops.add(id_grad_w, -1.0, name="y") with grad_debugger: gradient_descent.GradientDescentOptimizer(0.1).minimize(y) self.sess.run(variables.global_variables_initializer()) # Fetch the gradient tensor with the x-tensor object. w_grad = grad_debugger.gradient_tensor(self.w) self.assertIsInstance(w_grad, ops.Tensor) self.assertAllClose(1.0, self.sess.run(w_grad)) def testWatchGradientsByXTensorNamesWorks(self): y = math_ops.add(self.w, -1.0, name="y") # The constructrion of the forward graph has completed. # But we can still get the gradient tensors by using # watch_gradients_by_tensor_names(). grad_debugger = debug_gradients.GradientsDebugger() with grad_debugger.watch_gradients_by_tensor_names(self.sess.graph, "w:0$"): grads = gradients_impl.gradients(y, [self.u, self.v]) self.assertEqual(2, len(grads)) u_grad = grads[0] v_grad = grads[1] self.sess.run(variables.global_variables_initializer()) self.assertAllClose(5.0, self.sess.run(y)) self.assertAllClose(3.0, self.sess.run(u_grad)) self.assertAllClose(2.0, self.sess.run(v_grad)) w_grad = grad_debugger.gradient_tensor(self.w) self.assertIsInstance(w_grad, ops.Tensor) self.assertAllClose(1.0, self.sess.run(w_grad)) w_grad = grad_debugger.gradient_tensor("w:0") self.assertIsInstance(w_grad, ops.Tensor) self.assertAllClose(1.0, self.sess.run(w_grad)) def testWatchGradientsByXTensorNamesWorksWithoutContextManager(self): y = math_ops.add(self.w, -1.0, name="y") # The constructrion of the forward graph has completed. # But we can still get the gradient tensors by using # watch_gradients_by_tensor_names(). grad_debugger = debug_gradients.GradientsDebugger() grad_debugger.watch_gradients_by_tensor_names(self.sess.graph, "w:0$") grads = gradients_impl.gradients(y, [self.u, self.v]) self.assertEqual(2, len(grads)) u_grad = grads[0] v_grad = grads[1] self.sess.run(variables.global_variables_initializer()) self.assertAllClose(5.0, self.sess.run(y)) self.assertAllClose(3.0, self.sess.run(u_grad)) self.assertAllClose(2.0, self.sess.run(v_grad)) w_grad = grad_debugger.gradient_tensor(self.w) self.assertIsInstance(w_grad, ops.Tensor) self.assertAllClose(1.0, self.sess.run(w_grad)) w_grad = grad_debugger.gradient_tensor("w:0") self.assertIsInstance(w_grad, ops.Tensor) self.assertAllClose(1.0, self.sess.run(w_grad)) def testWatchGradientsWorksOnRefTensor(self): y = math_ops.add(self.w, -1.0, name="y") grad_debugger = debug_gradients.GradientsDebugger() with grad_debugger.watch_gradients_by_tensor_names(self.sess.graph, "u:0$"): grads = gradients_impl.gradients(y, [self.u, self.v]) self.assertEqual(2, len(grads)) u_grad = grads[0] v_grad = grads[1] self.assertIs(u_grad, grad_debugger.gradient_tensor("u:0")) self.sess.run(variables.global_variables_initializer()) self.assertAllClose(3.0, self.sess.run(u_grad)) self.assertAllClose(2.0, self.sess.run(v_grad)) self.assertAllClose(3.0, self.sess.run( grad_debugger.gradient_tensor("u:0"))) def testWatchGradientsWorksOnMultipleTensors(self): y = math_ops.add(self.w, -1.0, name="y") grad_debugger = debug_gradients.GradientsDebugger() with grad_debugger.watch_gradients_by_tensor_names(self.sess.graph, "(u|w):0$"): grads = gradients_impl.gradients(y, [self.u, self.v]) self.assertEqual(2, len(grads)) u_grad = grads[0] self.assertEqual(2, len(grad_debugger.gradient_tensors())) self.assertIs(u_grad, grad_debugger.gradient_tensor("u:0")) self.assertIsInstance(grad_debugger.gradient_tensor("w:0"), ops.Tensor) self.sess.run(variables.global_variables_initializer()) self.assertAllClose(1.0, self.sess.run( grad_debugger.gradient_tensor("w:0"))) self.assertAllClose(3.0, self.sess.run( grad_debugger.gradient_tensor("u:0"))) def testWatchGradientsByXTensorsWorks(self): y = math_ops.add(self.w, -1.0, name="foo/y") z = math_ops.square(y, name="foo/z") # The constructrion of the forward graph has completed. # But we can still get the gradient tensors by using # watch_gradients_by_x_tensors(). grad_debugger = debug_gradients.GradientsDebugger() with grad_debugger.watch_gradients_by_tensors(self.sess.graph, [self.w, self.u, y]): gradient_descent.GradientDescentOptimizer(0.1).minimize(z) self.assertEqual(3, len(grad_debugger.gradient_tensors())) u_grad = grad_debugger.gradient_tensor(self.u) w_grad = grad_debugger.gradient_tensor(self.w) y_grad = grad_debugger.gradient_tensor(y) self.sess.run(variables.global_variables_initializer()) self.assertAllClose(10.0, self.sess.run(y_grad)) self.assertAllClose(10.0, self.sess.run(w_grad)) self.assertAllClose(30.0, self.sess.run(u_grad)) def testWatchGradientsByTensorCanWorkOnMultipleLosses(self): y = math_ops.add(self.w, -1.0, name="y") z1 = math_ops.square(y, name="z1") z2 = math_ops.sqrt(y, name="z2") grad_debugger_1 = debug_gradients.GradientsDebugger() with grad_debugger_1.watch_gradients_by_tensors(self.sess.graph, y): gradient_descent.GradientDescentOptimizer(0.1).minimize(z1) grad_debugger_2 = debug_gradients.GradientsDebugger() with grad_debugger_2.watch_gradients_by_tensors(self.sess.graph, y): gradient_descent.GradientDescentOptimizer(0.1).minimize(z2) dz1_dy = grad_debugger_1.gradient_tensor(y) dz2_dy = grad_debugger_2.gradient_tensor(y) self.assertIsInstance(dz1_dy, ops.Tensor) self.assertIsInstance(dz2_dy, ops.Tensor) self.assertIsNot(dz1_dy, dz2_dy) self.sess.run(variables.global_variables_initializer()) self.assertAllClose(5.0**2, self.sess.run(z1)) self.assertAllClose(5.0**0.5, self.sess.run(z2)) self.assertAllClose(2.0 * 5.0, self.sess.run(dz1_dy)) self.assertAllClose(0.5 * (5.0**-0.5), self.sess.run(dz2_dy)) def testGradientsValuesFromDumpWorks(self): y = math_ops.add(self.w, -1.0, name="y") z = math_ops.square(y, name="z") grad_debugger = debug_gradients.GradientsDebugger() with grad_debugger.watch_gradients_by_tensors(self.sess.graph, [self.w, self.u, y]): train_op = gradient_descent.GradientDescentOptimizer(0.1).minimize(z) self.sess.run(variables.global_variables_initializer()) run_options = config_pb2.RunOptions(output_partition_graphs=True) dump_dir = tempfile.mkdtemp() debug_url = "file://" + dump_dir debug_utils.watch_graph(run_options, self.sess.graph, debug_urls=debug_url) run_metadata = config_pb2.RunMetadata() self.assertAllClose(2.0, self.sess.run(self.u)) self.sess.run(train_op, options=run_options, run_metadata=run_metadata) self.assertAllClose(-1.0, self.sess.run(self.u)) dump = debug_data.DebugDumpDir( dump_dir, partition_graphs=run_metadata.partition_graphs) dump.set_python_graph(self.sess.graph) y_grad_values = debug_gradients.gradient_values_from_dump( grad_debugger, y, dump) self.assertEqual(1, len(y_grad_values)) self.assertAllClose(10.0, y_grad_values[0]) w_grad_values = debug_gradients.gradient_values_from_dump( grad_debugger, self.w, dump) self.assertEqual(1, len(w_grad_values)) self.assertAllClose(10.0, w_grad_values[0]) u_grad_values = debug_gradients.gradient_values_from_dump( grad_debugger, self.u, dump) self.assertEqual(1, len(u_grad_values)) self.assertAllClose(30.0, u_grad_values[0]) with self.assertRaisesRegexp( LookupError, r"This GradientsDebugger has not received any gradient tensor for " r"x-tensor v:0"): debug_gradients.gradient_values_from_dump(grad_debugger, self.v, dump) # Cleanup. shutil.rmtree(dump_dir) if __name__ == "__main__": googletest.main()
tensorflow-master
tensorflow/python/debug/lib/debug_gradients_test.py
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Python-based TensorFlow GRPC server. Takes input arguments cluster_spec, job_name and task_id, and start a blocking TensorFlow GRPC server. Usage: grpc_tensorflow_server.py --cluster_spec=SPEC --job_name=NAME --task_id=ID Where: SPEC is <JOB>(,<JOB>)* JOB is <NAME>|<HOST:PORT>(;<HOST:PORT>)* NAME is a valid job name ([a-z][0-9a-z]*) HOST is a hostname or IP address PORT is a port number """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import sys from tensorflow.core.protobuf import config_pb2 from tensorflow.core.protobuf import tensorflow_server_pb2 from tensorflow.python.platform import app from tensorflow.python.platform import tf_logging as logging from tensorflow.python.training import server_lib def parse_cluster_spec(cluster_spec, cluster, verbose=False): """Parse content of cluster_spec string and inject info into cluster protobuf. Args: cluster_spec: cluster specification string, e.g., "local|localhost:2222;localhost:2223" cluster: cluster protobuf. verbose: If verbose logging is requested. Raises: ValueError: if the cluster_spec string is invalid. """ job_strings = cluster_spec.split(",") if not cluster_spec: raise ValueError("Empty cluster_spec string") for job_string in job_strings: job_def = cluster.job.add() if job_string.count("|") != 1: raise ValueError("Not exactly one instance of '|' in cluster_spec") job_name = job_string.split("|")[0] if not job_name: raise ValueError("Empty job_name in cluster_spec") job_def.name = job_name if verbose: logging.info("Added job named \"%s\"", job_name) job_tasks = job_string.split("|")[1].split(";") for i in range(len(job_tasks)): if not job_tasks[i]: raise ValueError("Empty task string at position %d" % i) job_def.tasks[i] = job_tasks[i] if verbose: logging.info(" Added task \"%s\" to job \"%s\"", job_tasks[i], job_name) def main(unused_args): # Create Protobuf ServerDef server_def = tensorflow_server_pb2.ServerDef(protocol="grpc") # Cluster info parse_cluster_spec(FLAGS.cluster_spec, server_def.cluster, FLAGS.verbose) # Job name if not FLAGS.job_name: raise ValueError("Empty job_name") server_def.job_name = FLAGS.job_name # Task index if FLAGS.task_id < 0: raise ValueError("Invalid task_id: %d" % FLAGS.task_id) server_def.task_index = FLAGS.task_id config = config_pb2.ConfigProto(gpu_options=config_pb2.GPUOptions( per_process_gpu_memory_fraction=FLAGS.gpu_memory_fraction)) # Create GRPC Server instance server = server_lib.Server(server_def, config=config) # join() is blocking, unlike start() server.join() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.register("type", "bool", lambda v: v.lower() == "true") parser.add_argument( "--cluster_spec", type=str, default="", help="""\ Cluster spec: SPEC. SPEC is <JOB>(,<JOB>)*," JOB is <NAME>|<HOST:PORT>(;<HOST:PORT>)*," NAME is a valid job name ([a-z][0-9a-z]*)," HOST is a hostname or IP address," PORT is a port number." E.g., local|localhost:2222;localhost:2223, ps|ps0:2222;ps1:2222\ """ ) parser.add_argument( "--job_name", type=str, default="", help="Job name: e.g., local" ) parser.add_argument( "--task_id", type=int, default=0, help="Task index, e.g., 0" ) parser.add_argument( "--gpu_memory_fraction", type=float, default=1.0, help="Fraction of GPU memory allocated",) parser.add_argument( "--verbose", type="bool", nargs="?", const=True, default=False, help="Verbose mode" ) FLAGS, unparsed = parser.parse_known_args() app.run(main=main, argv=[sys.argv[0]] + unparsed)
tensorflow-master
tensorflow/python/debug/lib/grpc_tensorflow_server.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Data structures and algorithms for profiling information.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os class ProfileDatum(object): """Profile data point.""" def __init__(self, device_name, node_exec_stats, file_path, line_number, func_name, op_type): """Constructor. Args: device_name: (string) name of the device. node_exec_stats: `NodeExecStats` proto. file_path: path to the source file involved in creating the op. line_number: line number in the file involved in creating the op. func_name: name of the function that the line belongs to. op_type: (string) Operation type. """ self.device_name = device_name self.node_exec_stats = node_exec_stats self.file_path = file_path self.line_number = line_number self.func_name = func_name if self.file_path: self.file_line_func = "%s:%d(%s)" % ( os.path.basename(self.file_path), self.line_number, self.func_name) else: self.file_line_func = "" self.op_type = op_type self.start_time = self.node_exec_stats.all_start_micros self.op_time = (self.node_exec_stats.op_end_rel_micros - self.node_exec_stats.op_start_rel_micros) @property def exec_time(self): """Op execution time plus pre- and post-processing.""" return self.node_exec_stats.all_end_rel_micros class AggregateProfile(object): """Profile summary data for aggregating a number of ProfileDatum.""" def __init__(self, profile_datum): """Constructor. Args: profile_datum: (`ProfileDatum`) an instance of `ProfileDatum` to initialize this object with. """ self.total_op_time = profile_datum.op_time self.total_exec_time = profile_datum.exec_time device_and_node = "%s:%s" % (profile_datum.device_name, profile_datum.node_exec_stats.node_name) self._node_to_exec_count = {device_and_node: 1} def add(self, profile_datum): """Accumulate a new instance of ProfileDatum. Args: profile_datum: (`ProfileDatum`) an instance of `ProfileDatum` to accumulate to this object. """ self.total_op_time += profile_datum.op_time self.total_exec_time += profile_datum.exec_time device_and_node = "%s:%s" % (profile_datum.device_name, profile_datum.node_exec_stats.node_name) device_and_node = "%s:%s" % (profile_datum.device_name, profile_datum.node_exec_stats.node_name) if device_and_node in self._node_to_exec_count: self._node_to_exec_count[device_and_node] += 1 else: self._node_to_exec_count[device_and_node] = 1 @property def node_count(self): return len(self._node_to_exec_count) @property def node_exec_count(self): return sum(self._node_to_exec_count.values())
tensorflow-master
tensorflow/python/debug/lib/profiling.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tfdbg module debug_data.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.debug.lib import debug_graphs from tensorflow.python.framework import test_util from tensorflow.python.platform import test class ParseNodeOrTensorNameTest(test_util.TensorFlowTestCase): def testParseNodeName(self): node_name, slot = debug_graphs.parse_node_or_tensor_name( "namespace1/node_1") self.assertEqual("namespace1/node_1", node_name) self.assertIsNone(slot) def testParseTensorName(self): node_name, slot = debug_graphs.parse_node_or_tensor_name( "namespace1/node_2:3") self.assertEqual("namespace1/node_2", node_name) self.assertEqual(3, slot) class GetNodeNameAndOutputSlotTest(test_util.TensorFlowTestCase): def testParseTensorNameInputWorks(self): self.assertEqual("a", debug_graphs.get_node_name("a:0")) self.assertEqual(0, debug_graphs.get_output_slot("a:0")) self.assertEqual("_b", debug_graphs.get_node_name("_b:1")) self.assertEqual(1, debug_graphs.get_output_slot("_b:1")) def testParseNodeNameInputWorks(self): self.assertEqual("a", debug_graphs.get_node_name("a")) self.assertEqual(0, debug_graphs.get_output_slot("a")) class NodeNameChecksTest(test_util.TensorFlowTestCase): def testIsCopyNode(self): self.assertTrue(debug_graphs.is_copy_node("__copy_ns1/ns2/node3_0")) self.assertFalse(debug_graphs.is_copy_node("copy_ns1/ns2/node3_0")) self.assertFalse(debug_graphs.is_copy_node("_copy_ns1/ns2/node3_0")) self.assertFalse(debug_graphs.is_copy_node("_copyns1/ns2/node3_0")) self.assertFalse(debug_graphs.is_copy_node("__dbg_ns1/ns2/node3_0")) def testIsDebugNode(self): self.assertTrue( debug_graphs.is_debug_node("__dbg_ns1/ns2/node3:0_0_DebugIdentity")) self.assertFalse( debug_graphs.is_debug_node("dbg_ns1/ns2/node3:0_0_DebugIdentity")) self.assertFalse( debug_graphs.is_debug_node("_dbg_ns1/ns2/node3:0_0_DebugIdentity")) self.assertFalse( debug_graphs.is_debug_node("_dbgns1/ns2/node3:0_0_DebugIdentity")) self.assertFalse(debug_graphs.is_debug_node("__copy_ns1/ns2/node3_0")) class ParseDebugNodeNameTest(test_util.TensorFlowTestCase): def testParseDebugNodeName_valid(self): debug_node_name_1 = "__dbg_ns_a/ns_b/node_c:1_0_DebugIdentity" (watched_node, watched_output_slot, debug_op_index, debug_op) = debug_graphs.parse_debug_node_name(debug_node_name_1) self.assertEqual("ns_a/ns_b/node_c", watched_node) self.assertEqual(1, watched_output_slot) self.assertEqual(0, debug_op_index) self.assertEqual("DebugIdentity", debug_op) def testParseDebugNodeName_invalidPrefix(self): invalid_debug_node_name_1 = "__copy_ns_a/ns_b/node_c:1_0_DebugIdentity" with self.assertRaisesRegexp(ValueError, "Invalid prefix"): debug_graphs.parse_debug_node_name(invalid_debug_node_name_1) def testParseDebugNodeName_missingDebugOpIndex(self): invalid_debug_node_name_1 = "__dbg_node1:0_DebugIdentity" with self.assertRaisesRegexp(ValueError, "Invalid debug node name"): debug_graphs.parse_debug_node_name(invalid_debug_node_name_1) def testParseDebugNodeName_invalidWatchedTensorName(self): invalid_debug_node_name_1 = "__dbg_node1_0_DebugIdentity" with self.assertRaisesRegexp(ValueError, "Invalid tensor name in debug node name"): debug_graphs.parse_debug_node_name(invalid_debug_node_name_1) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/python/debug/lib/debug_graphs_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """TensorFlow Debugger (tfdbg) Utilities.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import re from six.moves import xrange # pylint: disable=redefined-builtin def add_debug_tensor_watch(run_options, node_name, output_slot=0, debug_ops="DebugIdentity", debug_urls=None, tolerate_debug_op_creation_failures=False, global_step=-1): """Add watch on a `Tensor` to `RunOptions`. N.B.: 1. Under certain circumstances, the `Tensor` may not get actually watched (e.g., if the node of the `Tensor` is constant-folded during runtime). 2. For debugging purposes, the `parallel_iteration` attribute of all `tf.while_loop`s in the graph are set to 1 to prevent any node from being executed multiple times concurrently. This change does not affect subsequent non-debugged runs of the same `tf.while_loop`s. Args: run_options: An instance of `config_pb2.RunOptions` to be modified. node_name: (`str`) name of the node to watch. output_slot: (`int`) output slot index of the tensor from the watched node. debug_ops: (`str` or `list` of `str`) name(s) of the debug op(s). Can be a `list` of `str` or a single `str`. The latter case is equivalent to a `list` of `str` with only one element. For debug op types with customizable attributes, each debug op string can optionally contain a list of attribute names, in the syntax of: debug_op_name(attr_name_1=attr_value_1;attr_name_2=attr_value_2;...) debug_urls: (`str` or `list` of `str`) URL(s) to send debug values to, e.g., `file:///tmp/tfdbg_dump_1`, `grpc://localhost:12345`. tolerate_debug_op_creation_failures: (`bool`) Whether to tolerate debug op creation failures by not throwing exceptions. global_step: (`int`) Optional global_step count for this debug tensor watch. """ watch_opts = run_options.debug_options.debug_tensor_watch_opts run_options.debug_options.global_step = global_step watch = watch_opts.add() watch.tolerate_debug_op_creation_failures = ( tolerate_debug_op_creation_failures) watch.node_name = node_name watch.output_slot = output_slot if isinstance(debug_ops, str): debug_ops = [debug_ops] watch.debug_ops.extend(debug_ops) if debug_urls: if isinstance(debug_urls, str): debug_urls = [debug_urls] watch.debug_urls.extend(debug_urls) def watch_graph(run_options, graph, debug_ops="DebugIdentity", debug_urls=None, node_name_regex_whitelist=None, op_type_regex_whitelist=None, tensor_dtype_regex_whitelist=None, tolerate_debug_op_creation_failures=False, global_step=-1, reset_disk_byte_usage=False): """Add debug watches to `RunOptions` for a TensorFlow graph. To watch all `Tensor`s on the graph, let both `node_name_regex_whitelist` and `op_type_regex_whitelist` be the default (`None`). N.B.: 1. Under certain circumstances, the `Tensor` may not get actually watched (e.g., if the node of the `Tensor` is constant-folded during runtime). 2. For debugging purposes, the `parallel_iteration` attribute of all `tf.while_loop`s in the graph are set to 1 to prevent any node from being executed multiple times concurrently. This change does not affect subsequent non-debugged runs of the same `tf.while_loop`s. Args: run_options: An instance of `config_pb2.RunOptions` to be modified. graph: An instance of `ops.Graph`. debug_ops: (`str` or `list` of `str`) name(s) of the debug op(s) to use. debug_urls: URLs to send debug values to. Can be a list of strings, a single string, or None. The case of a single string is equivalent to a list consisting of a single string, e.g., `file:///tmp/tfdbg_dump_1`, `grpc://localhost:12345`. For debug op types with customizable attributes, each debug op name string can optionally contain a list of attribute names, in the syntax of: debug_op_name(attr_name_1=attr_value_1;attr_name_2=attr_value_2;...) node_name_regex_whitelist: Regular-expression whitelist for node_name, e.g., `"(weight_[0-9]+|bias_.*)"` op_type_regex_whitelist: Regular-expression whitelist for the op type of nodes, e.g., `"(Variable|Add)"`. If both `node_name_regex_whitelist` and `op_type_regex_whitelist` are set, the two filtering operations will occur in a logical `AND` relation. In other words, a node will be included if and only if it hits both whitelists. tensor_dtype_regex_whitelist: Regular-expression whitelist for Tensor data type, e.g., `"^int.*"`. This whitelist operates in logical `AND` relations to the two whitelists above. tolerate_debug_op_creation_failures: (`bool`) whether debug op creation failures (e.g., due to dtype incompatibility) are to be tolerated by not throwing exceptions. global_step: (`int`) Optional global_step count for this debug tensor watch. reset_disk_byte_usage: (`bool`) whether to reset the tracked disk byte usage to zero (default: `False`). """ if isinstance(debug_ops, str): debug_ops = [debug_ops] node_name_pattern = (re.compile(node_name_regex_whitelist) if node_name_regex_whitelist else None) op_type_pattern = (re.compile(op_type_regex_whitelist) if op_type_regex_whitelist else None) tensor_dtype_pattern = (re.compile(tensor_dtype_regex_whitelist) if tensor_dtype_regex_whitelist else None) ops = graph.get_operations() for op in ops: # Skip nodes without any output tensors. if not op.outputs: continue node_name = op.name op_type = op.type if node_name_pattern and not node_name_pattern.match(node_name): continue if op_type_pattern and not op_type_pattern.match(op_type): continue for slot in xrange(len(op.outputs)): if (tensor_dtype_pattern and not tensor_dtype_pattern.match(op.outputs[slot].dtype.name)): continue add_debug_tensor_watch( run_options, node_name, output_slot=slot, debug_ops=debug_ops, debug_urls=debug_urls, tolerate_debug_op_creation_failures=( tolerate_debug_op_creation_failures), global_step=global_step) run_options.debug_options.reset_disk_byte_usage = reset_disk_byte_usage def watch_graph_with_blacklists(run_options, graph, debug_ops="DebugIdentity", debug_urls=None, node_name_regex_blacklist=None, op_type_regex_blacklist=None, tensor_dtype_regex_blacklist=None, tolerate_debug_op_creation_failures=False, global_step=-1, reset_disk_byte_usage=False): """Add debug tensor watches, blacklisting nodes and op types. This is similar to `watch_graph()`, but the node names and op types are blacklisted, instead of whitelisted. N.B.: 1. Under certain circumstances, the `Tensor` may not get actually watched (e.g., if the node of the `Tensor` is constant-folded during runtime). 2. For debugging purposes, the `parallel_iteration` attribute of all `tf.while_loop`s in the graph are set to 1 to prevent any node from being executed multiple times concurrently. This change does not affect subsequent non-debugged runs of the same `tf.while_loop`s. Args: run_options: An instance of `config_pb2.RunOptions` to be modified. graph: An instance of `ops.Graph`. debug_ops: (`str` or `list` of `str`) name(s) of the debug op(s) to use. See the documentation of `watch_graph` for more details. debug_urls: URL(s) to send debug values to, e.g., `file:///tmp/tfdbg_dump_1`, `grpc://localhost:12345`. node_name_regex_blacklist: Regular-expression blacklist for node_name. This should be a string, e.g., `"(weight_[0-9]+|bias_.*)"`. op_type_regex_blacklist: Regular-expression blacklist for the op type of nodes, e.g., `"(Variable|Add)"`. If both node_name_regex_blacklist and op_type_regex_blacklist are set, the two filtering operations will occur in a logical `OR` relation. In other words, a node will be excluded if it hits either of the two blacklists; a node will be included if and only if it hits neither of the blacklists. tensor_dtype_regex_blacklist: Regular-expression blacklist for Tensor data type, e.g., `"^int.*"`. This blacklist operates in logical `OR` relations to the two whitelists above. tolerate_debug_op_creation_failures: (`bool`) whether debug op creation failures (e.g., due to dtype incompatibility) are to be tolerated by not throwing exceptions. global_step: (`int`) Optional global_step count for this debug tensor watch. reset_disk_byte_usage: (`bool`) whether to reset the tracked disk byte usage to zero (default: `False`). """ if isinstance(debug_ops, str): debug_ops = [debug_ops] node_name_pattern = (re.compile(node_name_regex_blacklist) if node_name_regex_blacklist else None) op_type_pattern = (re.compile(op_type_regex_blacklist) if op_type_regex_blacklist else None) tensor_dtype_pattern = (re.compile(tensor_dtype_regex_blacklist) if tensor_dtype_regex_blacklist else None) ops = graph.get_operations() for op in ops: # Skip nodes without any output tensors. if not op.outputs: continue node_name = op.name op_type = op.type if node_name_pattern and node_name_pattern.match(node_name): continue if op_type_pattern and op_type_pattern.match(op_type): continue for slot in xrange(len(op.outputs)): if (tensor_dtype_pattern and tensor_dtype_pattern.match(op.outputs[slot].dtype.name)): continue add_debug_tensor_watch( run_options, node_name, output_slot=slot, debug_ops=debug_ops, debug_urls=debug_urls, tolerate_debug_op_creation_failures=( tolerate_debug_op_creation_failures), global_step=global_step) run_options.debug_options.reset_disk_byte_usage = reset_disk_byte_usage
tensorflow-master
tensorflow/python/debug/lib/debug_utils.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Unit tests for source_remote.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import traceback from tensorflow.core.debug import debug_service_pb2 from tensorflow.python.client import session from tensorflow.python.debug.lib import grpc_debug_test_server from tensorflow.python.debug.lib import source_remote from tensorflow.python.debug.lib import source_utils from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import math_ops # Import resource_variable_ops for the variables-to-tensor implicit conversion. from tensorflow.python.ops import resource_variable_ops # pylint: disable=unused-import from tensorflow.python.ops import variables from tensorflow.python.platform import googletest from tensorflow.python.platform import test from tensorflow.python.util import tf_inspect def line_number_above(): return tf_inspect.stack()[1][2] - 1 class SendTracebacksTest(test_util.TensorFlowTestCase): @classmethod def setUpClass(cls): test_util.TensorFlowTestCase.setUpClass() (cls._server_port, cls._debug_server_url, cls._server_dump_dir, cls._server_thread, cls._server) = grpc_debug_test_server.start_server_on_separate_thread( poll_server=True) cls._server_address = "localhost:%d" % cls._server_port (cls._server_port_2, cls._debug_server_url_2, cls._server_dump_dir_2, cls._server_thread_2, cls._server_2) = grpc_debug_test_server.start_server_on_separate_thread() cls._server_address_2 = "localhost:%d" % cls._server_port_2 cls._curr_file_path = os.path.normpath(os.path.abspath(__file__)) @classmethod def tearDownClass(cls): # Stop the test server and join the thread. cls._server.stop_server().wait() cls._server_thread.join() cls._server_2.stop_server().wait() cls._server_thread_2.join() test_util.TensorFlowTestCase.tearDownClass() def tearDown(self): ops.reset_default_graph() self._server.clear_data() self._server_2.clear_data() super(SendTracebacksTest, self).tearDown() def _findFirstTraceInsideTensorFlowPyLibrary(self, op): """Find the first trace of an op that belongs to the TF Python library.""" for trace in op.traceback: if source_utils.guess_is_tensorflow_py_library(trace[0]): return trace def testSendGraphTracebacksToSingleDebugServer(self): this_func_name = "testSendGraphTracebacksToSingleDebugServer" with session.Session() as sess: a = variables.Variable(21.0, name="a") a_lineno = line_number_above() b = variables.Variable(2.0, name="b") b_lineno = line_number_above() math_ops.add(a, b, name="x") x_lineno = line_number_above() send_stack = traceback.extract_stack() send_lineno = line_number_above() source_remote.send_graph_tracebacks( self._server_address, "dummy_run_key", send_stack, sess.graph) tb = self._server.query_op_traceback("a") self.assertIn((self._curr_file_path, a_lineno, this_func_name), tb) tb = self._server.query_op_traceback("b") self.assertIn((self._curr_file_path, b_lineno, this_func_name), tb) tb = self._server.query_op_traceback("x") self.assertIn((self._curr_file_path, x_lineno, this_func_name), tb) self.assertIn( (self._curr_file_path, send_lineno, this_func_name), self._server.query_origin_stack()[-1]) self.assertEqual( " a = variables.Variable(21.0, name=\"a\")", self._server.query_source_file_line(__file__, a_lineno)) # Files in the TensorFlow code base shouldn not have been sent. tf_trace_file_path = self._findFirstTraceInsideTensorFlowPyLibrary(a.op) with self.assertRaises(ValueError): self._server.query_source_file_line(tf_trace_file_path, 0) self.assertEqual([debug_service_pb2.CallTraceback.GRAPH_EXECUTION], self._server.query_call_types()) self.assertEqual(["dummy_run_key"], self._server.query_call_keys()) self.assertEqual( [sess.graph.version], self._server.query_graph_versions()) def testSendGraphTracebacksToTwoDebugServers(self): this_func_name = "testSendGraphTracebacksToTwoDebugServers" with session.Session() as sess: a = variables.Variable(21.0, name="two/a") a_lineno = line_number_above() b = variables.Variable(2.0, name="two/b") b_lineno = line_number_above() x = math_ops.add(a, b, name="two/x") x_lineno = line_number_above() send_traceback = traceback.extract_stack() send_lineno = line_number_above() source_remote.send_graph_tracebacks( [self._server_address, self._server_address_2], "dummy_run_key", send_traceback, sess.graph) servers = [self._server, self._server_2] for server in servers: tb = server.query_op_traceback("two/a") self.assertIn((self._curr_file_path, a_lineno, this_func_name), tb) tb = server.query_op_traceback("two/b") self.assertIn((self._curr_file_path, b_lineno, this_func_name), tb) tb = server.query_op_traceback("two/x") self.assertIn((self._curr_file_path, x_lineno, this_func_name), tb) self.assertIn( (self._curr_file_path, send_lineno, this_func_name), server.query_origin_stack()[-1]) self.assertEqual( " x = math_ops.add(a, b, name=\"two/x\")", server.query_source_file_line(__file__, x_lineno)) tf_trace_file_path = self._findFirstTraceInsideTensorFlowPyLibrary(x.op) with self.assertRaises(ValueError): server.query_source_file_line(tf_trace_file_path, 0) self.assertEqual([debug_service_pb2.CallTraceback.GRAPH_EXECUTION], server.query_call_types()) self.assertEqual(["dummy_run_key"], server.query_call_keys()) self.assertEqual([sess.graph.version], server.query_graph_versions()) def testSourceFileSizeExceedsGrpcMessageLengthLimit(self): """In case source file size exceeds the grpc message length limit. it ought not to have been sent to the server. """ this_func_name = "testSourceFileSizeExceedsGrpcMessageLengthLimit" # Patch the method to simulate a very small message length limit. with test.mock.patch.object( source_remote, "grpc_message_length_bytes", return_value=2): with session.Session() as sess: a = variables.Variable(21.0, name="two/a") a_lineno = line_number_above() b = variables.Variable(2.0, name="two/b") b_lineno = line_number_above() x = math_ops.add(a, b, name="two/x") x_lineno = line_number_above() send_traceback = traceback.extract_stack() send_lineno = line_number_above() source_remote.send_graph_tracebacks( [self._server_address, self._server_address_2], "dummy_run_key", send_traceback, sess.graph) servers = [self._server, self._server_2] for server in servers: # Even though the source file content is not sent, the traceback # should have been sent. tb = server.query_op_traceback("two/a") self.assertIn((self._curr_file_path, a_lineno, this_func_name), tb) tb = server.query_op_traceback("two/b") self.assertIn((self._curr_file_path, b_lineno, this_func_name), tb) tb = server.query_op_traceback("two/x") self.assertIn((self._curr_file_path, x_lineno, this_func_name), tb) self.assertIn( (self._curr_file_path, send_lineno, this_func_name), server.query_origin_stack()[-1]) tf_trace_file_path = ( self._findFirstTraceInsideTensorFlowPyLibrary(x.op)) # Verify that the source content is not sent to the server. with self.assertRaises(ValueError): self._server.query_source_file_line(tf_trace_file_path, 0) def testSendEagerTracebacksToSingleDebugServer(self): this_func_name = "testSendEagerTracebacksToSingleDebugServer" send_traceback = traceback.extract_stack() send_lineno = line_number_above() source_remote.send_eager_tracebacks(self._server_address, send_traceback) self.assertEqual([debug_service_pb2.CallTraceback.EAGER_EXECUTION], self._server.query_call_types()) self.assertIn((self._curr_file_path, send_lineno, this_func_name), self._server.query_origin_stack()[-1]) if __name__ == "__main__": googletest.main()
tensorflow-master
tensorflow/python/debug/lib/source_remote_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Unit tests for the basic data structures and algorithms for profiling.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.core.framework import step_stats_pb2 from tensorflow.python.debug.lib import profiling from tensorflow.python.framework import test_util from tensorflow.python.platform import googletest class AggregateProfile(test_util.TensorFlowTestCase): def setUp(self): node_1 = step_stats_pb2.NodeExecStats( node_name="Add/123", op_start_rel_micros=3, op_end_rel_micros=5, all_end_rel_micros=4) self.profile_datum_1 = profiling.ProfileDatum( "cpu:0", node_1, "/foo/bar.py", 10, "func1", "Add") node_2 = step_stats_pb2.NodeExecStats( node_name="Mul/456", op_start_rel_micros=13, op_end_rel_micros=16, all_end_rel_micros=17) self.profile_datum_2 = profiling.ProfileDatum( "cpu:0", node_2, "/foo/bar.py", 11, "func1", "Mul") node_3 = step_stats_pb2.NodeExecStats( node_name="Add/123", op_start_rel_micros=103, op_end_rel_micros=105, all_end_rel_micros=4) self.profile_datum_3 = profiling.ProfileDatum( "cpu:0", node_3, "/foo/bar.py", 12, "func1", "Add") node_4 = step_stats_pb2.NodeExecStats( node_name="Add/123", op_start_rel_micros=203, op_end_rel_micros=205, all_end_rel_micros=4) self.profile_datum_4 = profiling.ProfileDatum( "gpu:0", node_4, "/foo/bar.py", 13, "func1", "Add") def testAggregateProfileConstructorWorks(self): aggregate_data = profiling.AggregateProfile(self.profile_datum_1) self.assertEqual(2, aggregate_data.total_op_time) self.assertEqual(4, aggregate_data.total_exec_time) self.assertEqual(1, aggregate_data.node_count) self.assertEqual(1, aggregate_data.node_exec_count) def testAddToAggregateProfileWithDifferentNodeWorks(self): aggregate_data = profiling.AggregateProfile(self.profile_datum_1) aggregate_data.add(self.profile_datum_2) self.assertEqual(5, aggregate_data.total_op_time) self.assertEqual(21, aggregate_data.total_exec_time) self.assertEqual(2, aggregate_data.node_count) self.assertEqual(2, aggregate_data.node_exec_count) def testAddToAggregateProfileWithSameNodeWorks(self): aggregate_data = profiling.AggregateProfile(self.profile_datum_1) aggregate_data.add(self.profile_datum_2) aggregate_data.add(self.profile_datum_3) self.assertEqual(7, aggregate_data.total_op_time) self.assertEqual(25, aggregate_data.total_exec_time) self.assertEqual(2, aggregate_data.node_count) self.assertEqual(3, aggregate_data.node_exec_count) def testAddToAggregateProfileWithDifferentDeviceSameNodeWorks(self): aggregate_data = profiling.AggregateProfile(self.profile_datum_1) aggregate_data.add(self.profile_datum_4) self.assertEqual(4, aggregate_data.total_op_time) self.assertEqual(8, aggregate_data.total_exec_time) self.assertEqual(2, aggregate_data.node_count) self.assertEqual(2, aggregate_data.node_exec_count) if __name__ == "__main__": googletest.main()
tensorflow-master
tensorflow/python/debug/lib/profiling_test.py
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Generates a Keil uVision project file from a template.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import os.path import re def sanitize_xml(unsanitized): """Uses a whitelist to avoid generating bad XML.""" return re.sub(r'[^a-zA-Z0-9+_\-/\\.]', '', unsanitized) def main(unused_args, flags): """Generates a Keil project file from a template source.""" with open(flags.input_template, 'r') as input_template_file: template_file_text = input_template_file.read() template_file_text = re.sub(r'%{EXECUTABLE}%', flags.executable, template_file_text) srcs_list = flags.srcs.split(' ') hdrs_list = flags.hdrs.split(' ') all_srcs_list = srcs_list + hdrs_list all_srcs_list.sort() replace_srcs = '' for src in all_srcs_list: if not src: continue ext = os.path.splitext(src)[1] # These extension indexes are used by uVision to keep track of the type # of files. I determined them by experimentation, since the file format # isn't documented. if ext == '.h': ext_index = '5' elif ext == '.c': ext_index = '1' elif ext == '.cc' or ext == '.cpp': ext_index = '8' else: ext_index = '5' basename = sanitize_xml(os.path.basename(src)) clean_src = sanitize_xml(src) replace_srcs += ' <File>\n' replace_srcs += ' <FileName>' + basename + '</FileName>\n' replace_srcs += ' <FileType>' + ext_index + '</FileType>\n' replace_srcs += ' <FilePath>' + clean_src + '</FilePath>\n' replace_srcs += ' </File>\n' template_file_text = re.sub(r'%{SRCS}%', replace_srcs, template_file_text) include_paths = re.sub(' ', ';', flags.include_paths) template_file_text = re.sub(r'%{INCLUDE_PATHS}%', include_paths, template_file_text) with open(flags.output_file, 'w') as output_file: output_file.write(template_file_text) def parse_args(): """Converts the raw arguments into accessible flags.""" parser = argparse.ArgumentParser() parser.register('type', 'bool', lambda v: v.lower() == 'true') parser.add_argument( '--input_template', type=str, default='', help='Path to template project file to build from.') parser.add_argument( '--output_file', type=str, default='', help='Path to write the completed project file to.') parser.add_argument( '--executable', type=str, default='', help='Name of the executable the project will build.') parser.add_argument( '--hdrs', type=str, default='', help='Space-separated list of C or C++ source files to compile.') parser.add_argument( '--srcs', type=str, default='', help='Space-separated list of C or C++ header files to include.') parser.add_argument( '--include_paths', type=str, default='', help='Space-separated list of paths to look for header files on.') flags, unparsed = parser.parse_known_args() main(unparsed, flags) if __name__ == '__main__': parse_args()
tensorflow-master
tensorflow/lite/experimental/micro/tools/make/generate_keil_project.py
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Resolves non-system C/C++ includes to their full paths to help Arduino.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import re import sys def main(unused_args, flags): """Resolves third party headers to their full paths in source code.""" input_file_lines = sys.stdin.read().split('\n') supplied_headers_list = flags.third_party_headers.split(' ') output_lines = [] for line in input_file_lines: include_match = re.match(r'(.*#include.*")(.*)(")', line) if include_match: path = include_match.group(2) for supplied_header in supplied_headers_list: if supplied_header.endswith(path): path = supplied_header break line = include_match.group(1) + path + include_match.group(3) output_lines.append(line) output_text = '\n'.join(output_lines) sys.stdout.write(output_text) def parse_args(): """Converts the raw arguments into accessible flags.""" parser = argparse.ArgumentParser() parser.register('type', 'bool', lambda v: v.lower() == 'true') parser.add_argument( '--third_party_headers', type=str, default='', help='Space-separated list of headers to resolve.') flags, unparsed = parser.parse_known_args() main(unparsed, flags) if __name__ == '__main__': parse_args()
tensorflow-master
tensorflow/lite/experimental/micro/tools/make/transform_arduino_source.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Debugging script for checking calculation values.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import struct import matplotlib.pyplot as plt import numpy as np # import soundfile as sf def new_data_to_array(fn, datatype='int16'): """Converts file information to an in-memory array.""" vals = [] with open(fn) as f: for n, line in enumerate(f): if n != 0: vals.extend([int(v, 16) for v in line.split()]) b = ''.join(map(chr, vals)) if datatype == 'int8': typestr = 'b' arraylen = int(len(b)) elif datatype == 'int16': typestr = 'h' arraylen = int(len(b) // 2) elif datatype == 'int32': typestr = 'i' arraylen = int(len(b) // 4) if datatype == 'uint8': typestr = 'B' arraylen = int(len(b)) elif datatype == 'uint16': typestr = 'H' arraylen = int(len(b) // 2) elif datatype == 'uint32': typestr = 'I' arraylen = int(len(b) // 4) y = np.array(struct.unpack('<' + typestr * arraylen, b)) return y # x is the fixed-point input in Qm.n format def to_float(x, n): return x.astype(float) * 2**(-n) micro_windowed_input = new_data_to_array( 'micro_windowed_input.txt', datatype='int32') cmsis_windowed_input = new_data_to_array( 'cmsis_windowed_input.txt', datatype='int16') micro_dft = new_data_to_array('micro_dft.txt', datatype='int32') cmsis_dft = new_data_to_array('cmsis_dft.txt', datatype='int16') py_dft = np.fft.rfft(to_float(cmsis_windowed_input, 15), n=512) py_result = np.empty((2 * py_dft.size), dtype=np.float) py_result[0::2] = np.real(py_dft) py_result[1::2] = np.imag(py_dft) micro_power = new_data_to_array('micro_power.txt', datatype='int32') cmsis_power = new_data_to_array('cmsis_power.txt', datatype='int16') py_power = np.square(np.abs(py_dft)) micro_power_avg = new_data_to_array('micro_power_avg.txt', datatype='uint8') cmsis_power_avg = new_data_to_array('cmsis_power_avg.txt', datatype='uint8') plt.figure(1) plt.subplot(311) plt.plot(micro_windowed_input, label='Micro fixed') plt.legend() plt.subplot(312) plt.plot(cmsis_windowed_input, label='CMSIS fixed') plt.legend() plt.subplot(313) plt.plot(to_float(micro_windowed_input, 30), label='Micro to float') plt.plot(to_float(cmsis_windowed_input, 15), label='CMSIS to float') plt.legend() plt.figure(2) plt.subplot(311) plt.plot(micro_dft, label='Micro fixed') plt.legend() plt.subplot(312) plt.plot(cmsis_dft, label='CMSIS fixed') plt.legend() plt.subplot(313) plt.plot(to_float(micro_dft, 22), label='Micro to float') # CMSIS result has 6 fractionanl bits (not 7) due to documentation error (see # README.md) plt.plot(to_float(cmsis_dft, 6), label='CMSIS to float') plt.plot(py_result, label='Python result') plt.legend() plt.figure(3) plt.subplot(311) plt.plot(micro_power, label='Micro fixed') plt.legend() plt.subplot(312) plt.plot(cmsis_power[0:256], label='CMSIS fixed') plt.legend() plt.subplot(313) plt.plot(to_float(micro_power, 22), label='Micro to float') plt.plot(to_float(cmsis_power[0:256], 6), label='CMSIS to float') plt.plot(py_power, label='Python result') plt.legend() plt.figure(4) plt.plot(micro_power_avg, label='Micro fixed') plt.plot(cmsis_power_avg, label='CMSIS fixed') plt.legend() plt.show() # t = np.arange(16000.*0.03)/16000. # # Factor of 10 because micro preprocessing overflows otherwise # sin1k = 0.1*np.sin(2*np.pi*1000*t) # # plt.figure(1) # plt.subplot(511) # plt.plot(sin1k) # plt.title('Input sine') # # plt.subplot(512) # plt.plot(to_float(micro_windowed_input, 30), label='Micro-Lite') # plt.plot(to_float(cmsis_windowed_input, 15), label='CMSIS') # plt.title('Windowed sine') # plt.legend(loc='center right') # # plt.subplot(513) # plt.plot(to_float(micro_dft, 22), label='Micro-Lite') # plt.plot(to_float(cmsis_dft, 6), label='CMSIS') # plt.title('FFT') # plt.legend(loc='center') # # plt.subplot(514) # plt.plot(to_float(micro_power, 22), label='Micro-Lite') # plt.plot(to_float(cmsis_power[0:256], 6), label='CMSIS') # plt.title('|FFT|^2') # plt.legend(loc='center right') # # plt.subplot(515) # plt.plot(micro_power_avg, label='Micro-Lite') # plt.plot(cmsis_power_avg, label='CMSIS') # plt.title('Averaged |FFT|^2') # plt.legend(loc='center right') # # plt.tight_layout(pad=0, w_pad=0.2, h_pad=0.2) # # plt.show() #
tensorflow-master
tensorflow/lite/experimental/micro/examples/micro_speech/apollo3/compare_1k.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Converts values pulled from the microcontroller into audio files.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import struct # import matplotlib.pyplot as plt import numpy as np import soundfile as sf def new_data_to_array(fn): vals = [] with open(fn) as f: for n, line in enumerate(f): if n != 0: vals.extend([int(v, 16) for v in line.split()]) b = ''.join(map(chr, vals)) y = struct.unpack('<' + 'h' * int(len(b) / 2), b) return y data = 'captured_data.txt' values = np.array(new_data_to_array(data)).astype(float) # plt.plot(values, 'o-') # plt.show(block=False) wav = values / np.max(np.abs(values)) sf.write('captured_data.wav', wav, 16000)
tensorflow-master
tensorflow/lite/experimental/micro/examples/micro_speech/apollo3/captured_data_to_wav.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Outputs tables used for fast calculations at runtime.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # import soundfile as sf import numpy as np def to_cc(x, varname, directory='', scale_factor=1): """Writes table values to a C++ source file.""" x = (x / np.max(np.abs(x))) * 32768 * scale_factor x[x > 32767] = 32767 x[x < -32768] = -32768 x = x.astype(int) x = [str(v) if i % 10 != 0 else '\n ' + str(v) for i, v in enumerate(x)] cmsis_path = 'tensorflow/lite/experimental/micro/examples/micro_speech/CMSIS' xstr = '#include "{}/{}.h"\n\n'.format(cmsis_path, varname) xstr += 'const int g_{}_size = {};\n'.format(varname, len(x)) xstr += 'const int16_t g_{}[{}] = {{{}}};\n'.format(varname, len(x), ', '.join(x)) with open(directory + varname + '.cc', 'w') as f: f.write(xstr) def to_h(_, varname, directory=''): """Writes a header file for the table values.""" tf_prepend = 'TENSORFLOW_LITE_EXPERIMENTAL_MICRO_EXAMPLES_MICRO_SPEECH_' xstr = '#ifndef {}{}_H_\n'.format(tf_prepend, varname.upper()) xstr += '#define {}{}_H_\n\n'.format(tf_prepend, varname.upper()) xstr += '#include <cstdint>\n\n' xstr += 'extern const int g_{}_size;\n'.format(varname) xstr += 'extern const int16_t g_{}[];\n\n'.format(varname) xstr += '#endif' with open(directory + varname + '.h', 'w') as f: f.write(xstr) # x = sf.read('yes_f2e59fea_nohash_1.wav')[0] # to_cc(x, 'yes_waveform') # to_h(x, 'yes_waveform') # # x = sf.read('no_f9643d42_nohash_4.wav')[0] # to_cc(x, 'no_waveform') # to_h(x, 'no_waveform') # 30ms of data @ 16 kHz = 480 samples hann = np.hanning(int(16000 * 0.03)) # Window 30ms of data to_cc(hann, 'hanning', directory='./') to_h(hann, 'hanning', directory='./') t = np.arange(16000. * 0.03) / 16000. sin1k = np.sin( 2 * np.pi * 1000 * t) # Factor of 10 because micro preprocessing overflows otherwise to_cc(sin1k, 'sin_1k', directory='./', scale_factor=0.1) to_h(sin1k, 'sin_1k', directory='./')
tensorflow-master
tensorflow/lite/experimental/micro/examples/micro_speech/CMSIS/create_constants.py
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import tempfile import numpy as np import tensorflow as tf from tensorflow import flags from tensorflow.examples.tutorials.mnist import input_data from tensorflow.lite.experimental.examples.lstm.rnn import bidirectional_dynamic_rnn from tensorflow.python.framework import test_util from tensorflow.python.platform import test FLAGS = flags.FLAGS # Number of steps to train model. TRAIN_STEPS = 1 CONFIG = tf.ConfigProto(device_count={"GPU": 0}) class BidirectionalSequenceRnnTest(test_util.TensorFlowTestCase): def __init__(self, *args, **kwargs): super(BidirectionalSequenceRnnTest, self).__init__(*args, **kwargs) # Define constants # Unrolled through 28 time steps self.time_steps = 28 # Rows of 28 pixels self.n_input = 28 # Learning rate for Adam optimizer self.learning_rate = 0.001 # MNIST is meant to be classified in 10 classes(0-9). self.n_classes = 10 # Batch size self.batch_size = 16 # Rnn Units. self.num_units = 16 def setUp(self): super(BidirectionalSequenceRnnTest, self).setUp() # Import MNIST dataset data_dir = tempfile.mkdtemp(dir=FLAGS.test_tmpdir) self.mnist = input_data.read_data_sets(data_dir, one_hot=True) def buildRnnLayer(self): return tf.keras.layers.StackedRNNCells([ tf.lite.experimental.nn.TfLiteRNNCell(self.num_units, name="rnn1"), tf.lite.experimental.nn.TfLiteRNNCell(self.num_units, name="rnn2") ]) def buildModel(self, fw_rnn_layer, bw_rnn_layer, is_dynamic_rnn, is_inference, use_sequence_length=False): """Build Mnist recognition model. Args: fw_rnn_layer: The forward rnn layer either a single rnn cell or a multi rnn cell. bw_rnn_layer: The backward rnn layer either a single rnn cell or a multi rnn cell. is_dynamic_rnn: Use dynamic_rnn or not. use_sequence_length: Whether to use sequence length or not. Default to False. Returns: A tuple containing: - Input tensor of the model. - Prediction tensor of the model. - Output class tensor of the model. """ # Weights and biases for output softmax layer. out_weights = tf.Variable( tf.random_normal([self.num_units * 2, self.n_classes])) out_bias = tf.Variable(tf.random_normal([self.n_classes])) batch_size = self.batch_size if is_inference: batch_size = 1 # input image placeholder x = tf.placeholder( "float", [batch_size, self.time_steps, self.n_input], name="INPUT_IMAGE") sequence_length = None if use_sequence_length: sequence_length = [self.time_steps] * batch_size if is_dynamic_rnn: rnn_inputs = tf.transpose(x, [1, 0, 2]) outputs, _ = bidirectional_dynamic_rnn( fw_rnn_layer, bw_rnn_layer, rnn_inputs, sequence_length, dtype="float32", time_major=True) fw_outputs, bw_outputs = outputs output = tf.concat([fw_outputs, bw_outputs], 2) output = tf.unstack(output, axis=0) output = output[-1] else: rnn_inputs = tf.unstack(x, self.time_steps, 1) # Sequence length is not supported for static since we don't have a # wrapper for it. At training phase, we can still have sequence_length, # but inference phase, we change it to None. if is_inference: sequence_length = None outputs, _, _ = tf.nn.static_bidirectional_rnn( fw_rnn_layer, bw_rnn_layer, rnn_inputs, dtype="float32", sequence_length=sequence_length) output = outputs[-1] # Compute logits by multiplying output of shape [batch_size,num_units*2] # by the softmax layer's out_weight of shape [num_units*2,n_classes] # plus out_bias prediction = tf.matmul(output, out_weights) + out_bias output_class = tf.nn.softmax(prediction, name="OUTPUT_CLASS") return x, prediction, output_class def trainModel(self, x, prediction, output_class, sess): """Train the model. Args: x: The input tensor. prediction: The prediction class tensor. output_class: The output tensor. sess: The graph session. """ # input label placeholder y = tf.placeholder("float", [None, self.n_classes]) # Loss function loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y)) # Optimization opt = tf.train.AdamOptimizer( learning_rate=self.learning_rate).minimize(loss) # Initialize variables init = tf.global_variables_initializer() sess.run(init) for _ in range(TRAIN_STEPS): batch_x, batch_y = self.mnist.train.next_batch( batch_size=self.batch_size, shuffle=False) batch_x = batch_x.reshape((self.batch_size, self.time_steps, self.n_input)) sess.run(opt, feed_dict={x: batch_x, y: batch_y}) def saveAndRestoreModel(self, fw_rnn_layer, bw_rnn_layer, sess, saver, is_dynamic_rnn, use_sequence_length=False): """Saves and restores the model to mimic the most common use case. Args: fw_rnn_layer: The forward rnn layer either a single rnn cell or a multi rnn cell. bw_rnn_layer: The backward rnn layer either a single rnn cell or a multi rnn cell. sess: Old session. saver: Saver created by tf.compat.v1.train.Saver() is_dynamic_rnn: Use dynamic_rnn or not. use_sequence_length: Whether to use sequence length or not. Default to False. Returns: A tuple containing: - Input tensor of the restored model. - Prediction tensor of the restored model. - Output tensor, which is the softwmax result of the prediction tensor. - new session of the restored model. """ model_dir = tempfile.mkdtemp(dir=FLAGS.test_tmpdir) saver.save(sess, model_dir) # Reset the graph. tf.reset_default_graph() x, prediction, output_class = self.buildModel( fw_rnn_layer, bw_rnn_layer, is_dynamic_rnn, True, use_sequence_length) new_sess = tf.Session(config=CONFIG) saver = tf.train.Saver() saver.restore(new_sess, model_dir) return x, prediction, output_class, new_sess def getInferenceResult(self, x, output_class, sess): """Get inference result given input tensor and output tensor. Args: x: The input tensor. output_class: The output tensor. sess: Current session. Returns: A tuple containing: - Input of the next batch, batch size is 1. - Expected output. """ b1, _ = self.mnist.train.next_batch(batch_size=1) sample_input = np.reshape(b1, (1, self.time_steps, self.n_input)) expected_output = sess.run(output_class, feed_dict={x: sample_input}) return sample_input, expected_output def tfliteInvoke(self, sess, test_inputs, input_tensor, output_tensor): """Get tflite inference result. This method will convert tensorflow from session to tflite model then based on the inputs, run tflite inference and return the results. Args: sess: Current tensorflow session. test_inputs: The test inputs for tflite. input_tensor: The input tensor of tensorflow graph. output_tensor: The output tensor of tensorflow graph. Returns: The tflite inference result. """ converter = tf.lite.TFLiteConverter.from_session(sess, [input_tensor], [output_tensor]) tflite = converter.convert() interpreter = tf.lite.Interpreter(model_content=tflite) interpreter.allocate_tensors() input_index = interpreter.get_input_details()[0]["index"] interpreter.set_tensor(input_index, test_inputs) interpreter.invoke() output_index = interpreter.get_output_details()[0]["index"] result = interpreter.get_tensor(output_index) # Reset all variables so it will not pollute other inferences. interpreter.reset_all_variables() return result def testStaticRnnMultiRnnCell(self): sess = tf.Session(config=CONFIG) x, prediction, output_class = self.buildModel( self.buildRnnLayer(), self.buildRnnLayer(), False, is_inference=False) self.trainModel(x, prediction, output_class, sess) saver = tf.train.Saver() x, prediction, output_class, new_sess = self.saveAndRestoreModel( self.buildRnnLayer(), self.buildRnnLayer(), sess, saver, False) test_inputs, expected_output = self.getInferenceResult( x, output_class, new_sess) result = self.tfliteInvoke(new_sess, test_inputs, x, output_class) self.assertTrue(np.allclose(expected_output, result, rtol=1e-6, atol=1e-2)) def testStaticRnnMultiRnnCellWithSequenceLength(self): sess = tf.Session(config=CONFIG) x, prediction, output_class = self.buildModel( self.buildRnnLayer(), self.buildRnnLayer(), False, is_inference=False, use_sequence_length=True) self.trainModel(x, prediction, output_class, sess) saver = tf.train.Saver() x, prediction, output_class, new_sess = self.saveAndRestoreModel( self.buildRnnLayer(), self.buildRnnLayer(), sess, saver, False, use_sequence_length=True) test_inputs, expected_output = self.getInferenceResult( x, output_class, new_sess) result = self.tfliteInvoke(new_sess, test_inputs, x, output_class) self.assertTrue(np.allclose(expected_output, result, rtol=1e-6, atol=1e-2)) @test_util.enable_control_flow_v2 def testDynamicRnnMultiRnnCell(self): sess = tf.Session(config=CONFIG) x, prediction, output_class = self.buildModel( self.buildRnnLayer(), self.buildRnnLayer(), True, is_inference=False) self.trainModel(x, prediction, output_class, sess) saver = tf.train.Saver() x, prediction, output_class, new_sess = self.saveAndRestoreModel( self.buildRnnLayer(), self.buildRnnLayer(), sess, saver, is_dynamic_rnn=True) test_inputs, expected_output = self.getInferenceResult( x, output_class, new_sess) result = self.tfliteInvoke(new_sess, test_inputs, x, output_class) self.assertTrue(np.allclose(expected_output, result, rtol=1e-6, atol=1e-2)) @test_util.enable_control_flow_v2 def testDynamicRnnMultiRnnCellWithSequenceLength(self): sess = tf.Session(config=CONFIG) x, prediction, output_class = self.buildModel( self.buildRnnLayer(), self.buildRnnLayer(), True, is_inference=False, use_sequence_length=True) self.trainModel(x, prediction, output_class, sess) saver = tf.train.Saver() x, prediction, output_class, new_sess = self.saveAndRestoreModel( self.buildRnnLayer(), self.buildRnnLayer(), sess, saver, is_dynamic_rnn=True, use_sequence_length=True) test_inputs, expected_output = self.getInferenceResult( x, output_class, new_sess) result = self.tfliteInvoke(new_sess, test_inputs, x, output_class) self.assertTrue(np.allclose(expected_output, result, rtol=1e-6, atol=1e-2)) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/lite/experimental/examples/lstm/bidirectional_sequence_rnn_test.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """TfLite BasicRnnCell wrapper. TODO(renjieliu): Find a better home for this one. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import itertools from tensorflow.lite.python.op_hint import OpHint from tensorflow.python.keras import activations from tensorflow.python.keras import initializers from tensorflow.python.layers import base as base_layer from tensorflow.python.ops import array_ops from tensorflow.python.ops import clip_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops import partitioned_variables from tensorflow.python.ops import rnn_cell_impl from tensorflow.python.platform import tf_logging as logging from tensorflow.python.util.tf_export import tf_export @tf_export(v1=["lite.experimental.nn.TfLiteRNNCell"]) class TfLiteRNNCell(rnn_cell_impl.LayerRNNCell): """The most basic RNN cell. This is used only for TfLite, it provides hints and it also makes the variables in the desired for the tflite ops. """ def __init__(self, num_units, activation=None, reuse=None, name=None, dtype=None, **kwargs): """Initializes the parameters for an RNN cell. Args: num_units: int, The number of units in the RNN cell. activation: Nonlinearity to use. Default: `tanh`. It could also be string that is within Keras activation function names. reuse: (optional) Python boolean describing whether to reuse variables in an existing scope. Raises an error if not `True` and the existing scope already has the given variables. name: String, the name of the layer. Layers with the same name will share weights, but to avoid mistakes we require reuse=True in such cases. dtype: Default dtype of the layer (default of `None` means use the type of the first input). Required when `build` is called before `call`. **kwargs: Dict, keyword named properties for common layer attributes, like `trainable` etc when constructing the cell from configs of get_config(). Raises: ValueError: If the existing scope already has the given variables. """ super(TfLiteRNNCell, self).__init__( _reuse=reuse, name=name, dtype=dtype, **kwargs) # Inputs must be Rank-2. self.input_spec = base_layer.InputSpec(ndim=2) self._tflite_wrapper = OpHint("UnidirectionalSequenceRnn") self._num_units = num_units if activation: self._activation = activations.get(activation) else: self._activation = math_ops.tanh @property def state_size(self): return self._num_units @property def output_size(self): return self._num_units def build(self, inputs_shape): """Builds the RNN cell. Args: inputs_shape: Rnn input tensor shape. Raises: ValueError: If last dimension of the input shape is not known. """ if inputs_shape[-1] is None: raise ValueError("Expected inputs.shape[-1] to be known, saw shape: %s" % (inputs_shape,)) input_depth = inputs_shape[-1] def add_variable_wrapped(name, shape, initializer, index): var = self.add_weight(name, shape=shape, initializer=initializer) return self._tflite_wrapper.add_input( var, name=name, index_override=index) self._input_weights = add_variable_wrapped( "input_weights", [self._num_units, input_depth], None, 1) self._recurrent_weights = add_variable_wrapped( "recurrent_weights", [self._num_units, self._num_units], None, 2) self._bias = add_variable_wrapped( "bias", shape=[self._num_units], initializer=init_ops.zeros_initializer(dtype=self.dtype), index=3) self.built = True def call(self, inputs, state): """Most basic RNN: output = new_state = act(W * input + U * state + B).""" inputs = self._tflite_wrapper.add_input( inputs, tag="input", name="input", aggregate="stack", index_override=0) state = self._tflite_wrapper.add_input( state, tag="hidden_state", name="hidden_state", aggregate="first", index_override=4) weights = array_ops.transpose( array_ops.concat([self._input_weights, self._recurrent_weights], 1)) gate_inputs = math_ops.matmul(array_ops.concat([inputs, state], 1), weights) gate_inputs = nn_ops.bias_add(gate_inputs, self._bias) output = self._activation(gate_inputs) output = self._tflite_wrapper.add_output( output, tag="output", name="output", index_override=1, aggregate="stack") return output, output def get_config(self): config = { "num_units": self._num_units, "activation": activations.serialize(self._activation), "reuse": self._reuse, } base_config = super(TfLiteRNNCell, self).get_config() return dict(itertools.chain(base_config.items(), config.items())) @tf_export(v1=["lite.experimental.nn.TFLiteLSTMCell"]) class TFLiteLSTMCell(rnn_cell_impl.LayerRNNCell): """Long short-term memory unit (LSTM) recurrent network cell. This is used only for TfLite, it provides hints and it also makes the variables in the desired for the tflite ops (transposed and seaparated). The default non-peephole implementation is based on: https://pdfs.semanticscholar.org/1154/0131eae85b2e11d53df7f1360eeb6476e7f4.pdf Felix Gers, Jurgen Schmidhuber, and Fred Cummins. "Learning to forget: Continual prediction with LSTM." IET, 850-855, 1999. The peephole implementation is based on: https://research.google.com/pubs/archive/43905.pdf Hasim Sak, Andrew Senior, and Francoise Beaufays. "Long short-term memory recurrent neural network architectures for large scale acoustic modeling." INTERSPEECH, 2014. The class uses optional peep-hole connections, optional cell clipping, and an optional projection layer. Note that this cell is not optimized for performance. Please use `tf.contrib.cudnn_rnn.CudnnLSTM` for better performance on GPU, or `tf.contrib.rnn.LSTMBlockCell` and `tf.contrib.rnn.LSTMBlockFusedCell` for better performance on CPU. """ def __init__(self, num_units, use_peepholes=False, cell_clip=None, initializer=None, num_proj=None, proj_clip=None, num_unit_shards=None, num_proj_shards=None, forget_bias=1.0, state_is_tuple=True, activation=None, reuse=None, name=None, dtype=None): """Initialize the parameters for an LSTM cell. Args: num_units: int, The number of units in the LSTM cell. use_peepholes: bool, set True to enable diagonal/peephole connections. cell_clip: (optional) A float value, if provided the cell state is clipped by this value prior to the cell output activation. initializer: (optional) The initializer to use for the weight and projection matrices. num_proj: (optional) int, The output dimensionality for the projection matrices. If None, no projection is performed. proj_clip: (optional) A float value. If `num_proj > 0` and `proj_clip` is provided, then the projected values are clipped elementwise to within `[-proj_clip, proj_clip]`. num_unit_shards: Deprecated, will be removed by Jan. 2017. Use a variable_scope partitioner instead. num_proj_shards: Deprecated, will be removed by Jan. 2017. Use a variable_scope partitioner instead. forget_bias: Biases of the forget gate are initialized by default to 1 in order to reduce the scale of forgetting at the beginning of the training. Must set it manually to `0.0` when restoring from CudnnLSTM trained checkpoints. state_is_tuple: If True, accepted and returned states are 2-tuples of the `c_state` and `m_state`. If False, they are concatenated along the column axis. This latter behavior will soon be deprecated. activation: Activation function of the inner states. Default: `tanh`. reuse: (optional) Python boolean describing whether to reuse variables in an existing scope. If not `True`, and the existing scope already has the given variables, an error is raised. name: String, the name of the layer. Layers with the same name will share weights, but to avoid mistakes we require reuse=True in such cases. dtype: Default dtype of the layer (default of `None` means use the type of the first input). Required when `build` is called before `call`. When restoring from CudnnLSTM-trained checkpoints, use `CudnnCompatibleLSTMCell` instead. """ super(TFLiteLSTMCell, self).__init__(_reuse=reuse, name=name, dtype=dtype) # TODO(raziel): decide if we want to just support tuples (yes please!). if not state_is_tuple: logging.warn( "%s: Using a concatenated state is slower and will soon be " "deprecated. Use state_is_tuple=True.", self) if num_unit_shards is not None or num_proj_shards is not None: logging.warn( "%s: The num_unit_shards and proj_unit_shards parameters are " "deprecated and will be removed in Jan 2017. " "Use a variable scope with a partitioner instead.", self) # Inputs must be 2-dimensional. # TODO(raziel): layers stuff -- chop if un-layerizing Op. self.input_spec = base_layer.InputSpec(ndim=2) self._tflite_wrapper = OpHint("UnidirectionalSequenceLstm") self._num_units = num_units self._use_peepholes = use_peepholes self._cell_clip = cell_clip self._initializer = initializer self._num_proj = num_proj self._proj_clip = proj_clip self._num_unit_shards = num_unit_shards self._num_proj_shards = num_proj_shards self._forget_bias = forget_bias self._state_is_tuple = state_is_tuple self._activation = activation or math_ops.tanh self._output_size = num_proj if num_proj else num_units self._state_size = ( rnn_cell_impl.LSTMStateTuple(num_units, self._output_size) if state_is_tuple else num_units + self._output_size) @property def state_size(self): return self._state_size @property def output_size(self): return self._output_size def build(self, inputs_shape): """Build TfLite LSTM cell graph. Args: inputs_shape: The inputs_shape must be known, and is [batch_size, input_size] shape. Raises: ValueError: if the inputs_shape is invalid. """ if len(inputs_shape) != 2: raise ValueError( "inputs_shape must be 2-dimensional, saw shape: %s" % inputs_shape) input_depth = ( inputs_shape[1] if isinstance(inputs_shape[1], int) else inputs_shape[1].value) if input_depth is None: raise ValueError("Invalid inputs_shape, saw shape: %s" % inputs_shape) maybe_partitioner = ( partitioned_variables.fixed_size_partitioner(self._num_unit_shards) if self._num_unit_shards is not None else None) input_weight_shape = [self._num_units, input_depth] cell_weight_shape = [self._num_units, self._output_size] bias_shape = [self._num_units] def add_variable_wrapped(name, shape, initializer, index, partitioner): var = self.add_weight( name, shape=shape, initializer=initializer, partitioner=partitioner) return self._tflite_wrapper.add_input( var, name=name, index_override=index) weight_initializer = self._initializer if self.dtype is None: bias_initializer = init_ops.zeros_initializer else: bias_initializer = init_ops.zeros_initializer(dtype=self.dtype) forget_bias_initializer = init_ops.constant_initializer(self._forget_bias) self.input_to_input_w = add_variable_wrapped( "input_to_input_w", input_weight_shape, weight_initializer, 1, maybe_partitioner) self.input_to_forget_w = add_variable_wrapped( "input_to_forget_w", input_weight_shape, weight_initializer, 2, maybe_partitioner) self.input_to_cell_w = add_variable_wrapped( "input_to_cell_w", input_weight_shape, weight_initializer, 3, maybe_partitioner) self.input_to_output_w = add_variable_wrapped( "input_to_output_w", input_weight_shape, weight_initializer, 4, maybe_partitioner) self.cell_to_input_w = add_variable_wrapped( "cell_to_input_w", cell_weight_shape, weight_initializer, 5, maybe_partitioner) self.cell_to_forget_w = add_variable_wrapped( "cell_to_forget_w", cell_weight_shape, weight_initializer, 6, maybe_partitioner) self.cell_to_cell_w = add_variable_wrapped( "cell_to_cell_w", cell_weight_shape, weight_initializer, 7, maybe_partitioner) self.cell_to_output_w = add_variable_wrapped( "cell_to_output_w", cell_weight_shape, weight_initializer, 8, maybe_partitioner) self.input_bias = add_variable_wrapped( "input_bias", bias_shape, bias_initializer, 12, maybe_partitioner) self.forget_bias = add_variable_wrapped("forget_bias", bias_shape, forget_bias_initializer, 13, maybe_partitioner) self.cell_bias = add_variable_wrapped( "cell_bias", bias_shape, bias_initializer, 14, maybe_partitioner) self.output_bias = add_variable_wrapped( "output_bias", bias_shape, bias_initializer, 15, maybe_partitioner) # index 9, 10, 11. # f stands for forget, i stands for input and o stands for output. if self._use_peepholes: self._w_f_diag = add_variable_wrapped("w_f_diag", [self._num_units], self._initializer, 10, maybe_partitioner) self._w_i_diag = add_variable_wrapped("w_i_diag", [self._num_units], self._initializer, 9, maybe_partitioner) self._w_o_diag = add_variable_wrapped("w_o_diag", [self._num_units], self._initializer, 11, maybe_partitioner) # index 16 for proj kernel. if self._num_proj is not None: maybe_proj_partitioner = ( partitioned_variables.fixed_size_partitioner(self._num_proj_shards) if self._num_proj_shards is not None else None) self._proj_kernel = add_variable_wrapped( "projection/kernel", [self._num_proj, self._num_units], self._initializer, 16, partitioner=maybe_proj_partitioner) self.built = True def call(self, inputs, state): """Run one step of LSTM. Args: inputs: input Tensor, 2D, `[batch, num_units]`. state: if `state_is_tuple` is False, this must be a state Tensor, `2-D, [batch, state_size]`. If `state_is_tuple` is True, this must be a tuple of state Tensors, both `2-D`, with column sizes `c_state` and `m_state`. Returns: A tuple containing: - A `2-D, [batch, output_dim]`, Tensor representing the output of the LSTM after reading `inputs` when previous state was `state`. Here output_dim is: num_proj if num_proj was set, num_units otherwise. - Tensor(s) representing the new state of LSTM after reading `inputs` when the previous state was `state`. Same type and shape(s) as `state`. Raises: ValueError: If input size cannot be inferred from inputs via static shape inference. """ inputs = self._tflite_wrapper.add_input( inputs, tag="input", name="input", aggregate="stack", index_override=0) # Make sure inputs and bias_initializer has the same type. assert inputs.dtype == self.input_to_input_w.dtype num_proj = self._num_units if self._num_proj is None else self._num_proj sigmoid = math_ops.sigmoid if self._state_is_tuple: (c_prev, m_prev) = state else: c_prev = array_ops.slice(state, [0, 0], [-1, self._num_units]) m_prev = array_ops.slice(state, [0, self._num_units], [-1, num_proj]) # Note: For TfLite, cell_state is at index 19 while activation state at # index 18. c_prev = self._tflite_wrapper.add_input( c_prev, tag="c_prev", name="c_prev", aggregate="first", index_override=19) m_prev = self._tflite_wrapper.add_input( m_prev, tag="m_prev", name="m_prev", aggregate="first", index_override=18) input_size = inputs.shape.with_rank(2)[1] if input_size.value is None: raise ValueError("Could not infer input size from inputs.shape[-1]") inputs_and_m_prev = array_ops.concat([inputs, m_prev], axis=1) # i stands for input gate. # f stands for forget gate activation. # o outputs. # j output of LSTM unit. # c is the final state. # m is the output. i = nn_ops.bias_add( math_ops.matmul( inputs_and_m_prev, array_ops.concat([self.input_to_input_w, self.cell_to_input_w], axis=1), transpose_b=True), self.input_bias) f = nn_ops.bias_add( math_ops.matmul( inputs_and_m_prev, array_ops.concat([self.input_to_forget_w, self.cell_to_forget_w], axis=1), transpose_b=True), self.forget_bias) o = nn_ops.bias_add( math_ops.matmul( inputs_and_m_prev, array_ops.concat([self.input_to_output_w, self.cell_to_output_w], axis=1), transpose_b=True), self.output_bias) j = nn_ops.bias_add( math_ops.matmul( inputs_and_m_prev, array_ops.concat([self.input_to_cell_w, self.cell_to_cell_w], axis=1), transpose_b=True), self.cell_bias) # Diagonal connections if self._use_peepholes: c = ( sigmoid(f + self._w_f_diag * c_prev) * c_prev + sigmoid(i + self._w_i_diag * c_prev) * self._activation(j)) else: c = (sigmoid(f) * c_prev + sigmoid(i) * self._activation(j)) if self._cell_clip is not None: # pylint: disable=invalid-unary-operand-type c = clip_ops.clip_by_value(c, -self._cell_clip, self._cell_clip) # pylint: enable=invalid-unary-operand-type if self._use_peepholes: m = sigmoid(o + self._w_o_diag * c) * self._activation(c) else: m = sigmoid(o) * self._activation(c) if self._num_proj is not None: transposed_proj_kernel = array_ops.transpose(self._proj_kernel) m = math_ops.matmul(m, transposed_proj_kernel) if self._proj_clip is not None: # pylint: disable=invalid-unary-operand-type m = clip_ops.clip_by_value(m, -self._proj_clip, self._proj_clip) # pylint: enable=invalid-unary-operand-type c = self._tflite_wrapper.add_output( c, tag="c", name="c", aggregate="last", index_override=1) m = self._tflite_wrapper.add_output( m, tag="m", name="m", index_override=2, aggregate="stack") new_state = ( rnn_cell_impl.LSTMStateTuple(c, m) if self._state_is_tuple else array_ops.concat([c, m], 1)) return m, new_state def get_config(self): config = { "num_units": self._num_units, "use_peepholes": self._use_peepholes, "cell_clip": self._cell_clip, "initializer": initializers.serialize(self._initializer), "num_proj": self._num_proj, "proj_clip": self._proj_clip, "num_unit_shards": self._num_unit_shards, "num_proj_shards": self._num_proj_shards, "forget_bias": self._forget_bias, "state_is_tuple": self._state_is_tuple, "activation": activations.serialize(self._activation), "reuse": self._reuse, } base_config = super(TFLiteLSTMCell, self).get_config() return dict(list(base_config.items()) + list(config.items()))
tensorflow-master
tensorflow/lite/experimental/examples/lstm/rnn_cell.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import tempfile import numpy as np import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data from tensorflow.lite.experimental.examples.lstm.rnn import bidirectional_dynamic_rnn from tensorflow.python.framework import test_util from tensorflow.python.platform import test # Number of steps to train model. TRAIN_STEPS = 1 CONFIG = tf.ConfigProto(device_count={"GPU": 0}) class BidirectionalSequenceLstmTest(test_util.TensorFlowTestCase): def setUp(self): tf.reset_default_graph() # Import MNIST dataset self.mnist = input_data.read_data_sets("/tmp/data/", one_hot=True) # Define constants # Unrolled through 28 time steps self.time_steps = 28 # Rows of 28 pixels self.n_input = 28 # Learning rate for Adam optimizer self.learning_rate = 0.001 # MNIST is meant to be classified in 10 classes(0-9). self.n_classes = 10 # Batch size self.batch_size = 16 # Lstm Units. self.num_units = 16 def buildLstmLayer(self): return tf.keras.layers.StackedRNNCells([ tf.lite.experimental.nn.TFLiteLSTMCell( self.num_units, use_peepholes=True, forget_bias=0, name="rnn1"), tf.lite.experimental.nn.TFLiteLSTMCell( self.num_units, num_proj=8, forget_bias=0, name="rnn2"), tf.lite.experimental.nn.TFLiteLSTMCell( self.num_units // 2, use_peepholes=True, num_proj=8, forget_bias=0, name="rnn3"), tf.lite.experimental.nn.TFLiteLSTMCell( self.num_units, forget_bias=0, name="rnn4") ]) def buildModel(self, fw_lstm_layer, bw_lstm_layer, is_dynamic_rnn): """Build Mnist recognition model. Args: fw_lstm_layer: The forward lstm layer either a single lstm cell or a multi lstm cell. bw_lstm_layer: The backward lstm layer either a single lstm cell or a multi lstm cell. is_dynamic_rnn: Use dynamic_rnn or not. Returns: A tuple containing: - Input tensor of the model. - Prediction tensor of the model. - Output class tensor of the model. """ # Weights and biases for output softmax layer. out_weights = tf.Variable( tf.random_normal([self.num_units * 2, self.n_classes])) out_bias = tf.Variable(tf.random_normal([self.n_classes])) # input image placeholder x = tf.placeholder( "float", [None, self.time_steps, self.n_input], name="INPUT_IMAGE") if is_dynamic_rnn: lstm_inputs = tf.transpose(x, [1, 0, 2]) outputs, _ = bidirectional_dynamic_rnn( fw_lstm_layer, bw_lstm_layer, lstm_inputs, dtype="float32", time_major=True) fw_outputs, bw_outputs = outputs output = tf.concat([fw_outputs, bw_outputs], 2) output = tf.unstack(output, axis=0) output = output[-1] else: lstm_input = tf.unstack(x, self.time_steps, 1) outputs, _, _ = tf.nn.static_bidirectional_rnn( fw_lstm_layer, bw_lstm_layer, lstm_input, dtype="float32") output = outputs[-1] # Compute logits by multiplying output of shape [batch_size,num_units*2] # by the softmax layer's out_weight of shape [num_units*2,n_classes] # plus out_bias prediction = tf.matmul(output, out_weights) + out_bias output_class = tf.nn.softmax(prediction, name="OUTPUT_CLASS") return x, prediction, output_class def trainModel(self, x, prediction, output_class, sess): """Train the model. Args: x: The input tensor. prediction: The prediction class tensor. output_class: The output tensor. sess: The graph session. """ # input label placeholder y = tf.placeholder("float", [None, self.n_classes]) # Loss function loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y)) # Optimization opt = tf.train.AdamOptimizer( learning_rate=self.learning_rate).minimize(loss) # Initialize variables init = tf.global_variables_initializer() sess.run(init) for _ in range(TRAIN_STEPS): batch_x, batch_y = self.mnist.train.next_batch( batch_size=self.batch_size, shuffle=False) batch_x = batch_x.reshape((self.batch_size, self.time_steps, self.n_input)) sess.run(opt, feed_dict={x: batch_x, y: batch_y}) def saveAndRestoreModel(self, fw_lstm_layer, bw_lstm_layer, sess, saver, is_dynamic_rnn): """Saves and restores the model to mimic the most common use case. Args: fw_lstm_layer: The forward lstm layer either a single lstm cell or a multi lstm cell. bw_lstm_layer: The backward lstm layer either a single lstm cell or a multi lstm cell. sess: Old session. saver: saver created by tf.compat.v1.train.Saver() is_dynamic_rnn: use dynamic_rnn or not. Returns: A tuple containing: - Input tensor of the restored model. - Prediction tensor of the restored model. - Output tensor, which is the softwmax result of the prediction tensor. - new session of the restored model. """ model_dir = tempfile.mkdtemp() saver.save(sess, model_dir) # Reset the graph. tf.reset_default_graph() x, prediction, output_class = self.buildModel(fw_lstm_layer, bw_lstm_layer, is_dynamic_rnn) new_sess = tf.Session(config=CONFIG) saver = tf.train.Saver() saver.restore(new_sess, model_dir) return x, prediction, output_class, new_sess def getInferenceResult(self, x, output_class, sess): """Get inference result given input tensor and output tensor. Args: x: The input tensor. output_class: The output tensor. sess: Current session. Returns: A tuple containing: - Input of the next batch, batch size is 1. - Expected output. """ b1, _ = self.mnist.train.next_batch(batch_size=1) sample_input = np.reshape(b1, (1, self.time_steps, self.n_input)) expected_output = sess.run(output_class, feed_dict={x: sample_input}) return sample_input, expected_output def tfliteInvoke(self, sess, test_inputs, input_tensor, output_tensor): """Get tflite inference result. This method will convert tensorflow from session to tflite model then based on the inputs, run tflite inference and return the results. Args: sess: Current tensorflow session. test_inputs: The test inputs for tflite. input_tensor: The input tensor of tensorflow graph. output_tensor: The output tensor of tensorflow graph. Returns: The tflite inference result. """ converter = tf.lite.TFLiteConverter.from_session(sess, [input_tensor], [output_tensor]) tflite = converter.convert() interpreter = tf.lite.Interpreter(model_content=tflite) try: interpreter.allocate_tensors() except ValueError: assert False input_index = (interpreter.get_input_details()[0]["index"]) interpreter.set_tensor(input_index, test_inputs) interpreter.invoke() output_index = (interpreter.get_output_details()[0]["index"]) result = interpreter.get_tensor(output_index) # Reset all variables so it will not pollute other inferences. interpreter.reset_all_variables() return result def testStaticRnnMultiRnnCell(self): sess = tf.Session(config=CONFIG) x, prediction, output_class = self.buildModel(self.buildLstmLayer(), self.buildLstmLayer(), False) self.trainModel(x, prediction, output_class, sess) saver = tf.train.Saver() x, prediction, output_class, new_sess = self.saveAndRestoreModel( self.buildLstmLayer(), self.buildLstmLayer(), sess, saver, False) test_inputs, expected_output = self.getInferenceResult( x, output_class, new_sess) result = self.tfliteInvoke(new_sess, test_inputs, x, output_class) self.assertTrue(np.allclose(expected_output, result, rtol=1e-6, atol=1e-2)) @test_util.enable_control_flow_v2 def testDynamicRnnMultiRnnCell(self): sess = tf.Session(config=CONFIG) x, prediction, output_class = self.buildModel(self.buildLstmLayer(), self.buildLstmLayer(), True) self.trainModel(x, prediction, output_class, sess) saver = tf.train.Saver() x, prediction, output_class, new_sess = self.saveAndRestoreModel( self.buildLstmLayer(), self.buildLstmLayer(), sess, saver, is_dynamic_rnn=True) test_inputs, expected_output = self.getInferenceResult( x, output_class, new_sess) result = self.tfliteInvoke(new_sess, test_inputs, x, output_class) self.assertTrue(np.allclose(expected_output, result, rtol=1e-6, atol=1e-2)) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/lite/experimental/examples/lstm/bidirectional_sequence_lstm_test.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import tempfile import numpy as np import tensorflow as tf from tensorflow import flags from tensorflow.examples.tutorials.mnist import input_data from tensorflow.python.framework import test_util from tensorflow.python.platform import test FLAGS = flags.FLAGS # Number of steps to train model. TRAIN_STEPS = 1 CONFIG = tf.ConfigProto(device_count={"GPU": 0}) class UnidirectionalSequenceRnnTest(test_util.TensorFlowTestCase): def __init__(self, *args, **kwargs): super(UnidirectionalSequenceRnnTest, self).__init__(*args, **kwargs) # Define constants # Unrolled through 28 time steps self.time_steps = 28 # Rows of 28 pixels self.n_input = 28 # Learning rate for Adam optimizer self.learning_rate = 0.001 # MNIST is meant to be classified in 10 classes(0-9). self.n_classes = 10 # Batch size self.batch_size = 16 # Rnn Units. self.num_units = 16 def setUp(self): super(UnidirectionalSequenceRnnTest, self).setUp() # Import MNIST dataset data_dir = tempfile.mkdtemp(dir=FLAGS.test_tmpdir) self.mnist = input_data.read_data_sets(data_dir, one_hot=True) def buildRnnLayer(self): return tf.keras.layers.StackedRNNCells([ tf.lite.experimental.nn.TfLiteRNNCell(self.num_units, name="rnn1"), tf.lite.experimental.nn.TfLiteRNNCell(self.num_units, name="rnn2") ]) def buildModel(self, rnn_layer, is_dynamic_rnn): """Build Mnist recognition model. Args: rnn_layer: The rnn layer either a single rnn cell or a multi rnn cell. is_dynamic_rnn: Use dynamic_rnn or not. Returns: A tuple containing: - Input tensor of the model. - Prediction tensor of the model. - Output class tensor of the model. """ # Weights and biases for output softmax layer. out_weights = tf.Variable( tf.random_normal([self.num_units, self.n_classes])) out_bias = tf.Variable(tf.random_normal([self.n_classes])) # input image placeholder x = tf.placeholder( "float", [None, self.time_steps, self.n_input], name="INPUT_IMAGE") # x is shaped [batch_size,time_steps,num_inputs] if is_dynamic_rnn: rnn_input = tf.transpose(x, perm=[1, 0, 2]) outputs, _ = tf.lite.experimental.nn.dynamic_rnn( rnn_layer, rnn_input, dtype="float32") outputs = tf.unstack(outputs, axis=0) else: rnn_input = tf.unstack(x, self.time_steps, 1) outputs, _ = tf.nn.static_rnn(rnn_layer, rnn_input, dtype="float32") # Compute logits by multiplying outputs[-1] of shape [batch_size,num_units] # by the softmax layer's out_weight of shape [num_units,n_classes] # plus out_bias prediction = tf.matmul(outputs[-1], out_weights) + out_bias output_class = tf.nn.softmax(prediction, name="OUTPUT_CLASS") return x, prediction, output_class def trainModel(self, x, prediction, output_class, sess): """Train the model. Args: x: The input tensor. prediction: The prediction class tensor. output_class: The output tensor. sess: The graph session. """ # input label placeholder y = tf.placeholder("float", [None, self.n_classes]) # Loss function loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y)) # Optimization opt = tf.train.AdamOptimizer( learning_rate=self.learning_rate).minimize(loss) # Initialize variables sess.run(tf.global_variables_initializer()) for _ in range(TRAIN_STEPS): batch_x, batch_y = self.mnist.train.next_batch( batch_size=self.batch_size, shuffle=False) batch_x = batch_x.reshape((self.batch_size, self.time_steps, self.n_input)) sess.run(opt, feed_dict={x: batch_x, y: batch_y}) def saveAndRestoreModel(self, rnn_layer, sess, saver, is_dynamic_rnn): """Saves and restores the model to mimic the most common use case. Args: rnn_layer: The rnn layer either a single rnn cell or a multi rnn cell. sess: Old session. saver: saver created by tf.compat.v1.train.Saver() is_dynamic_rnn: use dynamic_rnn or not. Returns: A tuple containing: - Input tensor of the restored model. - Prediction tensor of the restored model. - Output tensor, which is the softwmax result of the prediction tensor. - new session of the restored model. """ model_dir = tempfile.mkdtemp(dir=FLAGS.test_tmpdir) saver.save(sess, model_dir) # Reset the graph. tf.reset_default_graph() x, prediction, output_class = self.buildModel(rnn_layer, is_dynamic_rnn) new_sess = tf.Session(config=CONFIG) saver = tf.train.Saver() saver.restore(new_sess, model_dir) return x, prediction, output_class, new_sess def getInferenceResult(self, x, output_class, sess): """Get inference result given input tensor and output tensor. Args: x: The input tensor. output_class: The output tensor. sess: Current session. Returns: A tuple containing: - Input of the next batch, batch size is 1. - Expected output. """ b1, _ = self.mnist.train.next_batch(batch_size=1) sample_input = np.reshape(b1, (1, self.time_steps, self.n_input)) expected_output = sess.run(output_class, feed_dict={x: sample_input}) return sample_input, expected_output def tfliteInvoke(self, sess, test_inputs, input_tensor, output_tensor): """Get tflite inference result. This method will convert tensorflow from session to tflite model then based on the inputs, run tflite inference and return the results. Args: sess: Current tensorflow session. test_inputs: The test inputs for tflite. input_tensor: The input tensor of tensorflow graph. output_tensor: The output tensor of tensorflow graph. Returns: The tflite inference result. """ converter = tf.lite.TFLiteConverter.from_session(sess, [input_tensor], [output_tensor]) tflite = converter.convert() interpreter = tf.lite.Interpreter(model_content=tflite) interpreter.allocate_tensors() input_index = interpreter.get_input_details()[0]["index"] interpreter.set_tensor(input_index, test_inputs) interpreter.invoke() output_index = interpreter.get_output_details()[0]["index"] result = interpreter.get_tensor(output_index) # Reset all variables so it will not pollute other inferences. interpreter.reset_all_variables() return result def testStaticRnnMultiRnnCell(self): sess = tf.Session(config=CONFIG) x, prediction, output_class = self.buildModel( self.buildRnnLayer(), is_dynamic_rnn=False) self.trainModel(x, prediction, output_class, sess) saver = tf.train.Saver() x, prediction, output_class, new_sess = self.saveAndRestoreModel( self.buildRnnLayer(), sess, saver, is_dynamic_rnn=False) test_inputs, expected_output = self.getInferenceResult( x, output_class, new_sess) result = self.tfliteInvoke(new_sess, test_inputs, x, output_class) self.assertTrue(np.allclose(expected_output, result, rtol=1e-6, atol=1e-2)) @test_util.enable_control_flow_v2 def testDynamicRnnMultiRnnCell(self): sess = tf.Session(config=CONFIG) x, prediction, output_class = self.buildModel( self.buildRnnLayer(), is_dynamic_rnn=True) self.trainModel(x, prediction, output_class, sess) saver = tf.train.Saver() x, prediction, output_class, new_sess = self.saveAndRestoreModel( self.buildRnnLayer(), sess, saver, is_dynamic_rnn=True) test_inputs, expected_output = self.getInferenceResult( x, output_class, new_sess) result = self.tfliteInvoke(new_sess, test_inputs, x, output_class) self.assertTrue(np.allclose(expected_output, result, rtol=1e-6, atol=1e-2)) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/lite/experimental/examples/lstm/unidirectional_sequence_rnn_test.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import tempfile import numpy as np import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data from tensorflow.python.framework import test_util from tensorflow.python.platform import test # Number of steps to train model. TRAIN_STEPS = 1 CONFIG = tf.ConfigProto(device_count={"GPU": 0}) class UnidirectionalSequenceLstmTest(test_util.TensorFlowTestCase): def setUp(self): tf.reset_default_graph() # Import MNIST dataset self.mnist = input_data.read_data_sets("/tmp/data/", one_hot=True) # Define constants # Unrolled through 28 time steps self.time_steps = 28 # Rows of 28 pixels self.n_input = 28 # Learning rate for Adam optimizer self.learning_rate = 0.001 # MNIST is meant to be classified in 10 classes(0-9). self.n_classes = 10 # Batch size self.batch_size = 16 # Lstm Units. self.num_units = 16 def buildLstmLayer(self): return tf.keras.layers.StackedRNNCells([ tf.lite.experimental.nn.TFLiteLSTMCell( self.num_units, use_peepholes=True, forget_bias=1.0, name="rnn1"), tf.lite.experimental.nn.TFLiteLSTMCell( self.num_units, num_proj=8, forget_bias=1.0, name="rnn2"), tf.lite.experimental.nn.TFLiteLSTMCell( self.num_units // 2, use_peepholes=True, num_proj=8, forget_bias=0, name="rnn3"), tf.lite.experimental.nn.TFLiteLSTMCell( self.num_units, forget_bias=1.0, name="rnn4") ]) def buildModel(self, lstm_layer, is_dynamic_rnn): """Build Mnist recognition model. Args: lstm_layer: The lstm layer either a single lstm cell or a multi lstm cell. is_dynamic_rnn: Use dynamic_rnn or not. Returns: A tuple containing: - Input tensor of the model. - Prediction tensor of the model. - Output class tensor of the model. """ # Weights and biases for output softmax layer. out_weights = tf.Variable( tf.random_normal([self.num_units, self.n_classes])) out_bias = tf.Variable(tf.random_normal([self.n_classes])) # input image placeholder x = tf.placeholder( "float", [None, self.time_steps, self.n_input], name="INPUT_IMAGE") # x is shaped [batch_size,time_steps,num_inputs] if is_dynamic_rnn: lstm_input = tf.transpose(x, perm=[1, 0, 2]) outputs, _ = tf.lite.experimental.nn.dynamic_rnn( lstm_layer, lstm_input, dtype="float32") outputs = tf.unstack(outputs, axis=0) else: lstm_input = tf.unstack(x, self.time_steps, 1) outputs, _ = tf.nn.static_rnn(lstm_layer, lstm_input, dtype="float32") # Compute logits by multiplying outputs[-1] of shape [batch_size,num_units] # by the softmax layer's out_weight of shape [num_units,n_classes] # plus out_bias prediction = tf.matmul(outputs[-1], out_weights) + out_bias output_class = tf.nn.softmax(prediction, name="OUTPUT_CLASS") return x, prediction, output_class def trainModel(self, x, prediction, output_class, sess): """Train the model. Args: x: The input tensor. prediction: The prediction class tensor. output_class: The output tensor. sess: The graph session. """ # input label placeholder y = tf.placeholder("float", [None, self.n_classes]) # Loss function loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y)) # Optimization opt = tf.train.AdamOptimizer( learning_rate=self.learning_rate).minimize(loss) # Initialize variables init = tf.global_variables_initializer() sess.run(init) for _ in range(TRAIN_STEPS): batch_x, batch_y = self.mnist.train.next_batch( batch_size=self.batch_size, shuffle=False) batch_x = batch_x.reshape((self.batch_size, self.time_steps, self.n_input)) sess.run(opt, feed_dict={x: batch_x, y: batch_y}) def saveAndRestoreModel(self, lstm_layer, sess, saver, is_dynamic_rnn): """Saves and restores the model to mimic the most common use case. Args: lstm_layer: The lstm layer either a single lstm cell or a multi lstm cell. sess: Old session. saver: Saver created by tf.compat.v1.train.Saver() is_dynamic_rnn: Use dynamic_rnn or not. Returns: A tuple containing: - Input tensor of the restored model. - Prediction tensor of the restored model. - Output tensor, which is the softwmax result of the prediction tensor. - new session of the restored model. """ model_dir = tempfile.mkdtemp() saver.save(sess, model_dir) # Reset the graph. tf.reset_default_graph() x, prediction, output_class = self.buildModel(lstm_layer, is_dynamic_rnn) new_sess = tf.Session(config=CONFIG) saver = tf.train.Saver() saver.restore(new_sess, model_dir) return x, prediction, output_class, new_sess def getInferenceResult(self, x, output_class, sess): """Get inference result given input tensor and output tensor. Args: x: The input tensor. output_class: The output tensor. sess: Current session. Returns: A tuple containing: - Input of the next batch, batch size is 1. - Expected output. """ b1, _ = self.mnist.train.next_batch(batch_size=1) sample_input = np.reshape(b1, (1, self.time_steps, self.n_input)) expected_output = sess.run(output_class, feed_dict={x: sample_input}) return sample_input, expected_output def tfliteInvoke(self, sess, test_inputs, input_tensor, output_tensor): """Get tflite inference result. This method will convert tensorflow from session to tflite model then based on the inputs, run tflite inference and return the results. Args: sess: Current tensorflow session. test_inputs: The test inputs for tflite. input_tensor: The input tensor of tensorflow graph. output_tensor: The output tensor of tensorflow graph. Returns: The tflite inference result. """ converter = tf.lite.TFLiteConverter.from_session(sess, [input_tensor], [output_tensor]) tflite = converter.convert() interpreter = tf.lite.Interpreter(model_content=tflite) try: interpreter.allocate_tensors() except ValueError: assert False input_index = (interpreter.get_input_details()[0]["index"]) interpreter.set_tensor(input_index, test_inputs) interpreter.invoke() output_index = (interpreter.get_output_details()[0]["index"]) result = interpreter.get_tensor(output_index) # Reset all variables so it will not pollute other inferences. interpreter.reset_all_variables() return result def testStaticRnnMultiRnnCell(self): sess = tf.Session(config=CONFIG) x, prediction, output_class = self.buildModel( self.buildLstmLayer(), is_dynamic_rnn=False) self.trainModel(x, prediction, output_class, sess) saver = tf.train.Saver() x, prediction, output_class, new_sess = self.saveAndRestoreModel( self.buildLstmLayer(), sess, saver, is_dynamic_rnn=False) test_inputs, expected_output = self.getInferenceResult( x, output_class, new_sess) result = self.tfliteInvoke(new_sess, test_inputs, x, output_class) self.assertTrue(np.allclose(expected_output, result, rtol=1e-6, atol=1e-2)) @test_util.enable_control_flow_v2 def testDynamicRnnMultiRnnCell(self): sess = tf.Session(config=CONFIG) x, prediction, output_class = self.buildModel( self.buildLstmLayer(), is_dynamic_rnn=True) self.trainModel(x, prediction, output_class, sess) saver = tf.train.Saver() x, prediction, output_class, new_sess = self.saveAndRestoreModel( self.buildLstmLayer(), sess, saver, is_dynamic_rnn=True) test_inputs, expected_output = self.getInferenceResult( x, output_class, new_sess) result = self.tfliteInvoke(new_sess, test_inputs, x, output_class) self.assertTrue(np.allclose(expected_output, result, rtol=1e-6, atol=1e-2)) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/lite/experimental/examples/lstm/unidirectional_sequence_lstm_test.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """TfLite LSTMCell wrapper. TODO(renjieliu): Find a better home for this one. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.lite.python.op_hint import OpHint from tensorflow.python.eager import context from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import control_flow_util from tensorflow.python.ops import math_ops from tensorflow.python.ops import rnn_cell_impl from tensorflow.python.ops import variable_scope as vs from tensorflow.python.ops.rnn import _best_effort_input_batch_size from tensorflow.python.ops.rnn import _dynamic_rnn_loop from tensorflow.python.ops.rnn import _should_cache from tensorflow.python.ops.rnn import _transpose_batch_time from tensorflow.python.util import nest from tensorflow.python.util.tf_export import tf_export @tf_export(v1=["lite.experimental.nn.dynamic_rnn"]) def dynamic_rnn(cell, inputs, sequence_length=None, initial_state=None, dtype=None, parallel_iterations=None, swap_memory=False, time_major=True, scope=None): """Creates a recurrent neural network specified by RNNCell `cell`. Performs fully dynamic unrolling of `inputs`. Example: ```python # create a BasicRNNCell rnn_cell = tf.compat.v1.nn.rnn_cell.BasicRNNCell(hidden_size) # 'outputs' is a tensor of shape [batch_size, max_time, cell_state_size] # defining initial state initial_state = rnn_cell.zero_state(batch_size, dtype=tf.float32) # 'state' is a tensor of shape [batch_size, cell_state_size] outputs, state = tf.compat.v1.nn.dynamic_rnn(rnn_cell, input_data, initial_state=initial_state, dtype=tf.float32) ``` ```python # create 2 LSTMCells rnn_layers = [tf.compat.v1.nn.rnn_cell.LSTMCell(size) for size in [128, 256]] # create a RNN cell composed sequentially of a number of RNNCells multi_rnn_cell = tf.compat.v1.nn.rnn_cell.MultiRNNCell(rnn_layers) # 'outputs' is a tensor of shape [batch_size, max_time, 256] # 'state' is a N-tuple where N is the number of LSTMCells containing a # tf.nn.rnn_cell.LSTMStateTuple for each cell outputs, state = tf.compat.v1.nn.dynamic_rnn(cell=multi_rnn_cell, inputs=data, dtype=tf.float32) ``` Args: cell: An instance of RNNCell. inputs: The RNN inputs. If `time_major == False` (default), this must be a `Tensor` of shape: `[batch_size, max_time, ...]`, or a nested tuple of such elements. If `time_major == True`, this must be a `Tensor` of shape: `[max_time, batch_size, ...]`, or a nested tuple of such elements. This may also be a (possibly nested) tuple of Tensors satisfying this property. The first two dimensions must match across all the inputs, but otherwise the ranks and other shape components may differ. In this case, input to `cell` at each time-step will replicate the structure of these tuples, except for the time dimension (from which the time is taken). The input to `cell` at each time step will be a `Tensor` or (possibly nested) tuple of Tensors each with dimensions `[batch_size, ...]`. sequence_length: (optional) An int32/int64 vector sized `[batch_size]`. Used to copy-through state and zero-out outputs when past a batch element's sequence length. So it's more for performance than correctness. initial_state: (optional) An initial state for the RNN. If `cell.state_size` is an integer, this must be a `Tensor` of appropriate type and shape `[batch_size, cell.state_size]`. If `cell.state_size` is a tuple, this should be a tuple of tensors having shapes `[batch_size, s] for s in cell.state_size`. dtype: (optional) The data type for the initial state and expected output. Required if initial_state is not provided or RNN state has a heterogeneous dtype. parallel_iterations: (Default: 32). The number of iterations to run in parallel. Those operations which do not have any temporal dependency and can be run in parallel, will be. This parameter trades off time for space. Values >> 1 use more memory but take less time, while smaller values use less memory but computations take longer. swap_memory: Transparently swap the tensors produced in forward inference but needed for back prop from GPU to CPU. This allows training RNNs which would typically not fit on a single GPU, with very minimal (or no) performance penalty. time_major: The shape format of the `inputs` and `outputs` Tensors. If true, these `Tensors` must be shaped `[max_time, batch_size, depth]`. If false, these `Tensors` must be shaped `[batch_size, max_time, depth]`. Using `time_major = True` is a bit more efficient because it avoids transposes at the beginning and end of the RNN calculation. However, most TensorFlow data is batch-major, so by default this function accepts input and emits output in batch-major form. scope: VariableScope for the created subgraph; defaults to "rnn". Returns: A pair (outputs, state) where: outputs: The RNN output `Tensor`. If time_major == False (default), this will be a `Tensor` shaped: `[batch_size, max_time, cell.output_size]`. If time_major == True, this will be a `Tensor` shaped: `[max_time, batch_size, cell.output_size]`. Note, if `cell.output_size` is a (possibly nested) tuple of integers or `TensorShape` objects, then `outputs` will be a tuple having the same structure as `cell.output_size`, containing Tensors having shapes corresponding to the shape data in `cell.output_size`. state: The final state. If `cell.state_size` is an int, this will be shaped `[batch_size, cell.state_size]`. If it is a `TensorShape`, this will be shaped `[batch_size] + cell.state_size`. If it is a (possibly nested) tuple of ints or `TensorShape`, this will be a tuple having the corresponding shapes. If cells are `LSTMCells` `state` will be a tuple containing a `LSTMStateTuple` for each cell. Raises: TypeError: If `cell` is not an instance of RNNCell. ValueError: If inputs is None or an empty list. RuntimeError: If not using control flow v2. """ # Currently only support time_major == True case. assert time_major # TODO(b/123051275): We need to check if the cells are TfLiteLSTMCells or # TfLiteRNNCells. rnn_cell_impl.assert_like_rnncell("cell", cell) if not control_flow_util.ENABLE_CONTROL_FLOW_V2: raise RuntimeError("OpHint dynamic rnn only supports control flow v2.") parent_first_child_input = [{ "parent_ophint_input_index": 0, "first_child_ophint_input_index": 0 }] parent_last_child_output = [{ "parent_output_index": 0, # For LstmCell, the index is 2. # For RnnCell, the index is 1. # So we use -1 meaning it's the last one. "child_output_index": -1 }] internal_children_input_output = [{ "child_input_index": 0, # For LstmCell, the index is 2. # For RnnCell, the index is 1. # So we use -1 meaning it's the last one. "child_output_index": -1 }] inputs_outputs_mappings = { "parent_first_child_input": parent_first_child_input, "parent_last_child_output": parent_last_child_output, "internal_children_input_output": internal_children_input_output } tflite_wrapper = OpHint( "TfLiteDynamicRnn", level=2, children_inputs_mappings=inputs_outputs_mappings) with vs.variable_scope(scope or "rnn") as varscope: # Create a new scope in which the caching device is either # determined by the parent scope, or is set to place the cached # Variable using the same placement as for the rest of the RNN. if _should_cache(): if varscope.caching_device is None: varscope.set_caching_device(lambda op: op.device) inputs = tflite_wrapper.add_input(inputs, name="input", index_override=0) # By default, time_major==False and inputs are batch-major: shaped # [batch, time, depth] # For internal calculations, we transpose to [time, batch, depth] flat_input = nest.flatten(inputs) if not time_major: # (batch, time, depth) => (time, batch, depth) flat_input = [ops.convert_to_tensor(input_) for input_ in flat_input] flat_input = tuple(_transpose_batch_time(input_) for input_ in flat_input) parallel_iterations = parallel_iterations or 32 if sequence_length is not None: sequence_length = math_ops.cast(sequence_length, dtypes.int32) if sequence_length.shape.rank not in (None, 1): raise ValueError( "sequence_length must be a vector of length batch_size, " "but saw shape: %s" % sequence_length.shape) sequence_length = array_ops.identity( # Just to find it in the graph. sequence_length, name="sequence_length") batch_size = _best_effort_input_batch_size(flat_input) if initial_state is not None: state = initial_state else: if not dtype: raise ValueError("If there is no initial_state, you must give a dtype.") if getattr(cell, "get_initial_state", None) is not None: state = cell.get_initial_state( inputs=None, batch_size=batch_size, dtype=dtype) else: state = cell.zero_state(batch_size, dtype) def _assert_has_shape(x, shape): x_shape = array_ops.shape(x) packed_shape = array_ops.stack(shape) return control_flow_ops.Assert( math_ops.reduce_all(math_ops.equal(x_shape, packed_shape)), [ "Expected shape for Tensor %s is " % x.name, packed_shape, " but saw shape: ", x_shape ]) if not context.executing_eagerly() and sequence_length is not None: # Perform some shape validation with ops.control_dependencies( [_assert_has_shape(sequence_length, [batch_size])]): sequence_length = array_ops.identity( sequence_length, name="CheckSeqLen") inputs = nest.pack_sequence_as(structure=inputs, flat_sequence=flat_input) outputs, final_state = _dynamic_rnn_loop( cell, inputs, state, parallel_iterations=parallel_iterations, swap_memory=swap_memory, sequence_length=sequence_length, dtype=dtype) # Outputs of _dynamic_rnn_loop are always shaped [time, batch, depth]. # If we are performing batch-major calculations, transpose output back # to shape [batch, time, depth] if not time_major: # (time, batch, depth) => (batch, time, depth) outputs = nest.map_structure(_transpose_batch_time, outputs) outputs = tflite_wrapper.add_output(outputs, name="outputs") return outputs, final_state def bidirectional_dynamic_rnn(cell_fw, cell_bw, inputs, sequence_length=None, initial_state_fw=None, initial_state_bw=None, dtype=None, parallel_iterations=None, swap_memory=False, time_major=False, scope=None): """Creates a dynamic version of bidirectional recurrent neural network. Takes input and builds independent forward and backward RNNs. The input_size of forward and backward cell must match. The initial state for both directions is zero by default (but can be set optionally) and no intermediate states are ever returned -- the network is fully unrolled for the given (passed in) length(s) of the sequence(s) or completely unrolled if length(s) is not given. Args: cell_fw: An instance of RNNCell, to be used for forward direction. cell_bw: An instance of RNNCell, to be used for backward direction. inputs: The RNN inputs. If time_major == False (default), this must be a tensor of shape: `[batch_size, max_time, ...]`, or a nested tuple of such elements. If time_major == True, this must be a tensor of shape: `[max_time, batch_size, ...]`, or a nested tuple of such elements. sequence_length: (optional) An int32/int64 vector, size `[batch_size]`, containing the actual lengths for each of the sequences in the batch. If not provided, all batch entries are assumed to be full sequences; and time reversal is applied from time `0` to `max_time` for each sequence. initial_state_fw: (optional) An initial state for the forward RNN. This must be a tensor of appropriate type and shape `[batch_size, cell_fw.state_size]`. If `cell_fw.state_size` is a tuple, this should be a tuple of tensors having shapes `[batch_size, s] for s in cell_fw.state_size`. initial_state_bw: (optional) Same as for `initial_state_fw`, but using the corresponding properties of `cell_bw`. dtype: (optional) The data type for the initial states and expected output. Required if initial_states are not provided or RNN states have a heterogeneous dtype. parallel_iterations: (Default: 32). The number of iterations to run in parallel. Those operations which do not have any temporal dependency and can be run in parallel, will be. This parameter trades off time for space. Values >> 1 use more memory but take less time, while smaller values use less memory but computations take longer. swap_memory: Transparently swap the tensors produced in forward inference but needed for back prop from GPU to CPU. This allows training RNNs which would typically not fit on a single GPU, with very minimal (or no) performance penalty. time_major: The shape format of the `inputs` and `outputs` Tensors. If true, these `Tensors` must be shaped `[max_time, batch_size, depth]`. If false, these `Tensors` must be shaped `[batch_size, max_time, depth]`. Using `time_major = True` is a bit more efficient because it avoids transposes at the beginning and end of the RNN calculation. However, most TensorFlow data is batch-major, so by default this function accepts input and emits output in batch-major form. scope: VariableScope for the created subgraph; defaults to "bidirectional_rnn" Returns: A tuple (outputs, output_states) where: outputs: A tuple (output_fw, output_bw) containing the forward and the backward rnn output `Tensor`. If time_major == False (default), output_fw will be a `Tensor` shaped: `[batch_size, max_time, cell_fw.output_size]` and output_bw will be a `Tensor` shaped: `[batch_size, max_time, cell_bw.output_size]`. If time_major == True, output_fw will be a `Tensor` shaped: `[max_time, batch_size, cell_fw.output_size]` and output_bw will be a `Tensor` shaped: `[max_time, batch_size, cell_bw.output_size]`. It returns a tuple instead of a single concatenated `Tensor`, unlike in the `bidirectional_rnn`. If the concatenated one is preferred, the forward and backward outputs can be concatenated as `tf.concat(outputs, 2)`. output_states: A tuple (output_state_fw, output_state_bw) containing the forward and the backward final states of bidirectional rnn. Raises: TypeError: If `cell_fw` or `cell_bw` is not an instance of `RNNCell`. """ rnn_cell_impl.assert_like_rnncell("cell_fw", cell_fw) rnn_cell_impl.assert_like_rnncell("cell_bw", cell_bw) with vs.variable_scope(scope or "bidirectional_rnn"): # Forward direction with vs.variable_scope("fw") as fw_scope: output_fw, output_state_fw = dynamic_rnn( cell=cell_fw, inputs=inputs, sequence_length=sequence_length, initial_state=initial_state_fw, dtype=dtype, parallel_iterations=parallel_iterations, swap_memory=swap_memory, time_major=time_major, scope=fw_scope) # Backward direction if not time_major: time_axis = 1 batch_axis = 0 else: time_axis = 0 batch_axis = 1 def _reverse(input_, seq_lengths, seq_axis, batch_axis): if seq_lengths is not None: return array_ops.reverse_sequence( input=input_, seq_lengths=seq_lengths, seq_axis=seq_axis, batch_axis=batch_axis) else: return array_ops.reverse(input_, axis=[seq_axis]) with vs.variable_scope("bw") as bw_scope: def _map_reverse(inp): return _reverse( inp, seq_lengths=sequence_length, seq_axis=time_axis, batch_axis=batch_axis) inputs_reverse = nest.map_structure(_map_reverse, inputs) tmp, output_state_bw = dynamic_rnn( cell=cell_bw, inputs=inputs_reverse, sequence_length=sequence_length, initial_state=initial_state_bw, dtype=dtype, parallel_iterations=parallel_iterations, swap_memory=swap_memory, time_major=time_major, scope=bw_scope) output_bw = _reverse( tmp, seq_lengths=sequence_length, seq_axis=time_axis, batch_axis=batch_axis) outputs = (output_fw, output_bw) output_states = (output_state_fw, output_state_bw) return (outputs, output_states)
tensorflow-master
tensorflow/lite/experimental/examples/lstm/rnn.py
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Ops util to handle ops for Lite.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections from tensorflow.lite.python import wrap_toco from tensorflow.python.util.tf_export import tf_export class SupportedOp(collections.namedtuple("SupportedOp", ["op"])): """Spec of supported ops. Args: op: string of op name. """ @tf_export(v1=["lite.experimental.get_potentially_supported_ops"]) def get_potentially_supported_ops(): """Returns operations potentially supported by TensorFlow Lite. The potentially support list contains a list of ops that are partially or fully supported, which is derived by simply scanning op names to check whether they can be handled without real conversion and specific parameters. Given that some ops may be partially supported, the optimal way to determine if a model's operations are supported is by converting using the TensorFlow Lite converter. Returns: A list of SupportedOp. """ ops = wrap_toco.wrapped_get_potentially_supported_ops() return [SupportedOp(o["op"]) for o in ops]
tensorflow-master
tensorflow/lite/experimental/tensorboard/ops_util.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for backend.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.lite.experimental.tensorboard import ops_util from tensorflow.python.platform import test class OpsUtilTest(test.TestCase): def testGetPotentiallySupportedOps(self): ops = ops_util.get_potentially_supported_ops() # See GetTensorFlowNodeConverterMap() in # tensorflow/lite/toco/import_tensorflow.cc self.assertIsInstance(ops, list) # Test partial ops that surely exist in the list. self.assertIn(ops_util.SupportedOp("Add"), ops) self.assertIn(ops_util.SupportedOp("Log"), ops) self.assertIn(ops_util.SupportedOp("Sigmoid"), ops) self.assertIn(ops_util.SupportedOp("Softmax"), ops) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/lite/experimental/tensorboard/ops_util_test.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for AudioMicrofrontend.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from tensorflow.lite.experimental.microfrontend.python.ops import audio_microfrontend_op as frontend_op from tensorflow.python.framework import test_util SAMPLE_RATE = 1000 WINDOW_SIZE = 25 WINDOW_STEP = 10 NUM_CHANNELS = 2 UPPER_BAND_LIMIT = 450.0 LOWER_BAND_LIMIT = 8.0 SMOOTHING_BITS = 10 class AudioFeatureGenerationTest(tf.test.TestCase): @test_util.run_v1_only("b/120545219") def testSimple(self): with self.test_session(): audio = tf.constant( [0, 32767, 0, -32768] * ((WINDOW_SIZE + 4 * WINDOW_STEP) // 4), tf.int16) filterbanks = frontend_op.audio_microfrontend( audio, sample_rate=SAMPLE_RATE, window_size=WINDOW_SIZE, window_step=WINDOW_STEP, num_channels=NUM_CHANNELS, upper_band_limit=UPPER_BAND_LIMIT, lower_band_limit=LOWER_BAND_LIMIT, smoothing_bits=SMOOTHING_BITS, enable_pcan=True) self.assertAllEqual(filterbanks.eval(), [[479, 425], [436, 378], [410, 350], [391, 325]]) @test_util.run_v1_only("b/120545219") def testSimpleFloatScaled(self): with self.test_session(): audio = tf.constant( [0, 32767, 0, -32768] * ((WINDOW_SIZE + 4 * WINDOW_STEP) // 4), tf.int16) filterbanks = frontend_op.audio_microfrontend( audio, sample_rate=SAMPLE_RATE, window_size=WINDOW_SIZE, window_step=WINDOW_STEP, num_channels=NUM_CHANNELS, upper_band_limit=UPPER_BAND_LIMIT, lower_band_limit=LOWER_BAND_LIMIT, smoothing_bits=SMOOTHING_BITS, enable_pcan=True, out_scale=64, out_type=tf.float32) self.assertAllEqual(filterbanks.eval(), [[7.484375, 6.640625], [6.8125, 5.90625], [6.40625, 5.46875], [6.109375, 5.078125]]) @test_util.run_v1_only("b/120545219") def testStacking(self): with self.test_session(): audio = tf.constant( [0, 32767, 0, -32768] * ((WINDOW_SIZE + 4 * WINDOW_STEP) // 4), tf.int16) filterbanks = frontend_op.audio_microfrontend( audio, sample_rate=SAMPLE_RATE, window_size=WINDOW_SIZE, window_step=WINDOW_STEP, num_channels=NUM_CHANNELS, upper_band_limit=UPPER_BAND_LIMIT, lower_band_limit=LOWER_BAND_LIMIT, smoothing_bits=SMOOTHING_BITS, enable_pcan=True, right_context=1, frame_stride=2) self.assertAllEqual(filterbanks.eval(), [[479, 425, 436, 378], [410, 350, 391, 325]]) def testStackingWithOverlap(self): with self.test_session(): audio = tf.constant( [0, 32767, 0, -32768] * ((WINDOW_SIZE + 4 * WINDOW_STEP) // 4), tf.int16) filterbanks = frontend_op.audio_microfrontend( audio, sample_rate=SAMPLE_RATE, window_size=WINDOW_SIZE, window_step=WINDOW_STEP, num_channels=NUM_CHANNELS, upper_band_limit=UPPER_BAND_LIMIT, lower_band_limit=LOWER_BAND_LIMIT, smoothing_bits=SMOOTHING_BITS, enable_pcan=True, left_context=1, right_context=1) self.assertAllEqual( self.evaluate(filterbanks), [[479, 425, 479, 425, 436, 378], [479, 425, 436, 378, 410, 350], [436, 378, 410, 350, 391, 325], [410, 350, 391, 325, 391, 325]]) @test_util.run_v1_only("b/120545219") def testStackingDropFrame(self): with self.test_session(): audio = tf.constant( [0, 32767, 0, -32768] * ((WINDOW_SIZE + 4 * WINDOW_STEP) // 4), tf.int16) filterbanks = frontend_op.audio_microfrontend( audio, sample_rate=SAMPLE_RATE, window_size=WINDOW_SIZE, window_step=WINDOW_STEP, num_channels=NUM_CHANNELS, upper_band_limit=UPPER_BAND_LIMIT, lower_band_limit=LOWER_BAND_LIMIT, smoothing_bits=SMOOTHING_BITS, enable_pcan=True, left_context=1, frame_stride=2) self.assertAllEqual(filterbanks.eval(), [[479, 425, 479, 425], [436, 378, 410, 350]]) def testZeroPadding(self): with self.test_session(): audio = tf.constant( [0, 32767, 0, -32768] * ((WINDOW_SIZE + 7 * WINDOW_STEP) // 4), tf.int16) filterbanks = frontend_op.audio_microfrontend( audio, sample_rate=SAMPLE_RATE, window_size=WINDOW_SIZE, window_step=WINDOW_STEP, num_channels=NUM_CHANNELS, upper_band_limit=UPPER_BAND_LIMIT, lower_band_limit=LOWER_BAND_LIMIT, smoothing_bits=SMOOTHING_BITS, enable_pcan=True, left_context=2, frame_stride=3, zero_padding=True) self.assertAllEqual( self.evaluate(filterbanks), [[0, 0, 0, 0, 479, 425], [436, 378, 410, 350, 391, 325], [374, 308, 362, 292, 352, 275]]) if __name__ == '__main__': tf.test.main()
tensorflow-master
tensorflow/lite/experimental/microfrontend/python/kernel_tests/audio_microfrontend_op_test.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """AudioMicrofrontend Op creates filterbanks from audio data.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from tensorflow.lite.experimental.microfrontend.ops import gen_audio_microfrontend_op from tensorflow.contrib.util import loader from tensorflow.python.platform import resource_loader _audio_microfrontend_op = loader.load_op_library( resource_loader.get_path_to_datafile("_audio_microfrontend_op.so")) def audio_microfrontend(audio, sample_rate=16000, window_size=25, window_step=10, num_channels=32, upper_band_limit=7500.0, lower_band_limit=125.0, smoothing_bits=10, even_smoothing=0.025, odd_smoothing=0.06, min_signal_remaining=0.05, enable_pcan=True, pcan_strength=0.95, pcan_offset=80.0, gain_bits=21, enable_log=True, scale_shift=6, left_context=0, right_context=0, frame_stride=1, zero_padding=False, out_scale=1, out_type=tf.uint16): """Audio Microfrontend Op. This Op converts a sequence of audio data into one or more feature vectors containing filterbanks of the input. The conversion process uses a lightweight library to perform: 1. A slicing window function 2. Short-time FFTs 3. Filterbank calculations 4. Noise reduction 5. PCAN Auto Gain Control 6. Logarithmic scaling Args: audio: 1D Tensor, int16 audio data in temporal ordering. sample_rate: Integer, the sample rate of the audio in Hz. window_size: Integer, length of desired time frames in ms. window_step: Integer, length of step size for the next frame in ms. num_channels: Integer, the number of filterbank channels to use. upper_band_limit: Float, the highest frequency included in the filterbanks. lower_band_limit: Float, the lowest frequency included in the filterbanks. smoothing_bits: Int, scale up signal by 2^(smoothing_bits) before reduction. even_smoothing: Float, smoothing coefficient for even-numbered channels. odd_smoothing: Float, smoothing coefficient for odd-numbered channels. min_signal_remaining: Float, fraction of signal to preserve in smoothing. enable_pcan: Bool, enable PCAN auto gain control. pcan_strength: Float, gain normalization exponent. pcan_offset: Float, positive value added in the normalization denominator. gain_bits: Int, number of fractional bits in the gain. enable_log: Bool, enable logarithmic scaling of filterbanks. scale_shift: Integer, scale filterbanks by 2^(scale_shift). left_context: Integer, number of preceding frames to attach to each frame. right_context: Integer, number of preceding frames to attach to each frame. frame_stride: Integer, M frames to skip over, where output[n] = frame[n*M]. zero_padding: Bool, if left/right context is out-of-bounds, attach frame of zeroes. Otherwise, frame[0] or frame[size-1] will be copied. out_scale: Integer, divide all filterbanks by this number. out_type: DType, type of the output Tensor, defaults to UINT16. Returns: filterbanks: 2D Tensor, each row is a time frame, each column is a channel. Raises: ValueError: If the audio tensor is not explicitly a vector. """ audio_shape = audio.shape if audio_shape.ndims is None: raise ValueError("Input to `AudioMicrofrontend` should have known rank.") if len(audio_shape) > 1: audio = tf.reshape(audio, [-1]) return gen_audio_microfrontend_op.audio_microfrontend( audio, sample_rate, window_size, window_step, num_channels, upper_band_limit, lower_band_limit, smoothing_bits, even_smoothing, odd_smoothing, min_signal_remaining, enable_pcan, pcan_strength, pcan_offset, gain_bits, enable_log, scale_shift, left_context, right_context, frame_stride, zero_padding, out_scale, out_type) tf.NotDifferentiable("AudioMicrofrontend")
tensorflow-master
tensorflow/lite/experimental/microfrontend/python/ops/audio_microfrontend_op.py
#!/usr/bin/env python # Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """This tool creates an html visualization of a TensorFlow Lite graph. Example usage: python visualize.py foo.tflite foo.html """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import json import os import sys from tensorflow.python.platform import resource_loader # Schema to use for flatbuffers _SCHEMA = "third_party/tensorflow/lite/schema/schema.fbs" # TODO(angerson): fix later when rules are simplified.. _SCHEMA = resource_loader.get_path_to_datafile("../schema/schema.fbs") _BINARY = resource_loader.get_path_to_datafile("../../../flatbuffers/flatc") # Account for different package positioning internal vs. external. if not os.path.exists(_BINARY): _BINARY = resource_loader.get_path_to_datafile( "../../../../flatbuffers/flatc") if not os.path.exists(_SCHEMA): raise RuntimeError("Sorry, schema file cannot be found at %r" % _SCHEMA) if not os.path.exists(_BINARY): raise RuntimeError("Sorry, flatc is not available at %r" % _BINARY) # A CSS description for making the visualizer _CSS = """ <html> <head> <style> body {font-family: sans-serif; background-color: #ffaa00;} table {background-color: #eeccaa;} th {background-color: black; color: white;} h1 { background-color: ffaa00; padding:5px; color: black; } div { border-radius: 5px; background-color: #ffeecc; padding:5px; margin:5px; } .tooltip {color: blue;} .tooltip .tooltipcontent { visibility: hidden; color: black; background-color: yellow; padding: 5px; border-radius: 4px; position: absolute; z-index: 1; } .tooltip:hover .tooltipcontent { visibility: visible; } .edges line { stroke: #333333; } .nodes text { color: black; pointer-events: none; font-family: sans-serif; font-size: 11px; } </style> <script src="https://d3js.org/d3.v4.min.js"></script> </head> <body> """ _D3_HTML_TEMPLATE = """ <script> // Build graph data var graph = %s; var svg = d3.select("#subgraph%d"); var width = svg.attr("width"); var height = svg.attr("height"); var color = d3.scaleOrdinal(d3.schemeCategory20); var simulation = d3.forceSimulation() .force("link", d3.forceLink().id(function(d) {return d.id;})) .force("charge", d3.forceManyBody()) .force("center", d3.forceCenter(0.5 * width, 0.5 * height)); function buildGraph() { var edge = svg.append("g").attr("class", "edges").selectAll("line") .data(graph.edges).enter().append("line") // Make the node group var node = svg.selectAll(".nodes") .data(graph.nodes) .enter().append("g") .attr("class", "nodes") .call(d3.drag() .on("start", function(d) { if(!d3.event.active) simulation.alphaTarget(1.0).restart(); d.fx = d.x;d.fy = d.y; }) .on("drag", function(d) { d.fx = d3.event.x; d.fy = d3.event.y; }) .on("end", function(d) { if (!d3.event.active) simulation.alphaTarget(0); d.fx = d.fy = null; })); // Within the group, draw a circle for the node position and text // on the side. node.append("circle") .attr("r", "5px") .attr("fill", function(d) { return color(d.group); }) node.append("text") .attr("dx", 8).attr("dy", 5).text(function(d) { return d.name; }); // Setup force parameters and update position callback simulation.nodes(graph.nodes).on("tick", forceSimulationUpdated); simulation.force("link").links(graph.edges); function forceSimulationUpdated() { // Update edges. edge.attr("x1", function(d) {return d.source.x;}) .attr("y1", function(d) {return d.source.y;}) .attr("x2", function(d) {return d.target.x;}) .attr("y2", function(d) {return d.target.y;}); // Update node positions node.attr("transform", function(d) { return "translate(" + d.x + "," + d.y + ")"; }); } } buildGraph() </script> """ class OpCodeMapper(object): """Maps an opcode index to an op name.""" def __init__(self, data): self.code_to_name = {} for idx, d in enumerate(data["operator_codes"]): self.code_to_name[idx] = d["builtin_code"] def __call__(self, x): if x not in self.code_to_name: s = "<UNKNOWN>" else: s = self.code_to_name[x] return "%s (opcode=%d)" % (s, x) class DataSizeMapper(object): """For buffers, report the number of bytes.""" def __call__(self, x): if x is not None: return "%d bytes" % len(x) else: return "--" class TensorMapper(object): """Maps a list of tensor indices to a tooltip hoverable indicator of more.""" def __init__(self, subgraph_data): self.data = subgraph_data def __call__(self, x): html = "" html += "<span class='tooltip'><span class='tooltipcontent'>" for i in x: tensor = self.data["tensors"][i] html += str(i) + " " html += tensor["name"] + " " html += str(tensor["type"]) + " " html += (repr(tensor["shape"]) if "shape" in tensor else "[]") + "<br>" html += "</span>" html += repr(x) html += "</span>" return html def GenerateGraph(subgraph_idx, g, opcode_mapper): """Produces the HTML required to have a d3 visualization of the dag.""" def TensorName(idx): return "t%d" % idx def OpName(idx): return "o%d" % idx edges = [] nodes = [] first = {} pixel_mult = 50 # TODO(aselle): multiplier for initial placement for op_index, op in enumerate(g["operators"]): for tensor_input_position, tensor_index in enumerate(op["inputs"]): if tensor_index not in first: first[tensor_index] = ( op_index * pixel_mult, tensor_input_position * pixel_mult - pixel_mult / 2) edges.append({ "source": TensorName(tensor_index), "target": OpName(op_index) }) for tensor_index in op["outputs"]: edges.append({ "target": TensorName(tensor_index), "source": OpName(op_index) }) nodes.append({ "id": OpName(op_index), "name": opcode_mapper(op["opcode_index"]), "group": 2, "x": pixel_mult, "y": op_index * pixel_mult }) for tensor_index, tensor in enumerate(g["tensors"]): initial_y = ( first[tensor_index] if tensor_index in first else len(g["operators"])) nodes.append({ "id": TensorName(tensor_index), "name": "%s (%d)" % (tensor["name"], tensor_index), "group": 1, "x": 2, "y": initial_y }) graph_str = json.dumps({"nodes": nodes, "edges": edges}) html = _D3_HTML_TEMPLATE % (graph_str, subgraph_idx) return html def GenerateTableHtml(items, keys_to_print, display_index=True): """Given a list of object values and keys to print, make an HTML table. Args: items: Items to print an array of dicts. keys_to_print: (key, display_fn). `key` is a key in the object. i.e. items[0][key] should exist. display_fn is the mapping function on display. i.e. the displayed html cell will have the string returned by `mapping_fn(items[0][key])`. display_index: add a column which is the index of each row in `items`. Returns: An html table. """ html = "" # Print the list of items html += "<table><tr>\n" html += "<tr>\n" if display_index: html += "<th>index</th>" for h, mapper in keys_to_print: html += "<th>%s</th>" % h html += "</tr>\n" for idx, tensor in enumerate(items): html += "<tr>\n" if display_index: html += "<td>%d</td>" % idx # print tensor.keys() for h, mapper in keys_to_print: val = tensor[h] if h in tensor else None val = val if mapper is None else mapper(val) html += "<td>%s</td>\n" % val html += "</tr>\n" html += "</table>\n" return html def CreateHtmlFile(tflite_input, html_output): """Given a tflite model in `tflite_input` file, produce html description.""" # Convert the model into a JSON flatbuffer using flatc (build if doesn't # exist. if not os.path.exists(tflite_input): raise RuntimeError("Invalid filename %r" % tflite_input) if tflite_input.endswith(".tflite") or tflite_input.endswith(".bin"): # Run convert cmd = ( _BINARY + " -t " "--strict-json --defaults-json -o /tmp {schema} -- {input}".format( input=tflite_input, schema=_SCHEMA)) print(cmd) os.system(cmd) real_output = ("/tmp/" + os.path.splitext( os.path.split(tflite_input)[-1])[0] + ".json") data = json.load(open(real_output)) elif tflite_input.endswith(".json"): data = json.load(open(tflite_input)) else: raise RuntimeError("Input file was not .tflite or .json") html = "" html += _CSS html += "<h1>TensorFlow Lite Model</h2>" data["filename"] = tflite_input # Avoid special case toplevel_stuff = [("filename", None), ("version", None), ("description", None)] html += "<table>\n" for key, mapping in toplevel_stuff: if not mapping: mapping = lambda x: x html += "<tr><th>%s</th><td>%s</td></tr>\n" % (key, mapping(data.get(key))) html += "</table>\n" # Spec on what keys to display buffer_keys_to_display = [("data", DataSizeMapper())] operator_keys_to_display = [("builtin_code", None), ("custom_code", None), ("version", None)] for subgraph_idx, g in enumerate(data["subgraphs"]): # Subgraph local specs on what to display html += "<div class='subgraph'>" tensor_mapper = TensorMapper(g) opcode_mapper = OpCodeMapper(data) op_keys_to_display = [("inputs", tensor_mapper), ("outputs", tensor_mapper), ("builtin_options", None), ("opcode_index", opcode_mapper)] tensor_keys_to_display = [("name", None), ("type", None), ("shape", None), ("buffer", None), ("quantization", None)] html += "<h2>Subgraph %d</h2>\n" % subgraph_idx # Inputs and outputs. html += "<h3>Inputs/Outputs</h3>\n" html += GenerateTableHtml( [{ "inputs": g["inputs"], "outputs": g["outputs"] }], [("inputs", tensor_mapper), ("outputs", tensor_mapper)], display_index=False) # Print the tensors. html += "<h3>Tensors</h3>\n" html += GenerateTableHtml(g["tensors"], tensor_keys_to_display) # Print the ops. html += "<h3>Ops</h3>\n" html += GenerateTableHtml(g["operators"], op_keys_to_display) # Visual graph. html += "<svg id='subgraph%d' width='960' height='1600'></svg>\n" % ( subgraph_idx,) html += GenerateGraph(subgraph_idx, g, opcode_mapper) html += "</div>" # Buffers have no data, but maybe in the future they will html += "<h2>Buffers</h2>\n" html += GenerateTableHtml(data["buffers"], buffer_keys_to_display) # Operator codes html += "<h2>Operator Codes</h2>\n" html += GenerateTableHtml(data["operator_codes"], operator_keys_to_display) html += "</body></html>\n" open(html_output, "w").write(html) def main(argv): try: tflite_input = argv[1] html_output = argv[2] except IndexError: print("Usage: %s <input tflite> <output html>" % (argv[0])) else: CreateHtmlFile(tflite_input, html_output) if __name__ == "__main__": main(sys.argv)
tensorflow-master
tensorflow/lite/tools/visualize.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """TensorFlow Lite is for mobile and embedded devices. TensorFlow Lite is the official solution for running machine learning models on mobile and embedded devices. It enables on-device machine learning inference with low latency and a small binary size on Android, iOS, and other operating systems. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import multiprocessing import os import subprocess from distutils.command.build_ext import build_ext import numpy from setuptools import Extension from setuptools import find_packages from setuptools import setup from setuptools.command.build_py import build_py PACKAGE_NAME = 'tflite-runtime' PACKAGE_VERSION = os.environ['TENSORFLOW_VERSION'] DOCLINES = __doc__.split('\n') PACKAGE = 'tflite_runtime.lite.python' TENSORFLOW_DIR = os.environ['TENSORFLOW_SRC_ROOT'] # Setup cross compiling TARGET = ( os.environ['TENSORFLOW_TARGET'] if 'TENSORFLOW_TARGET' in os.environ else None) if TARGET == 'rpi': os.environ['CXX'] = 'arm-linux-gnueabihf-g++' os.environ['CC'] = 'arm-linux-gnueabihf-g++' MAKE_CROSS_OPTIONS = ['TARGET=%s' % TARGET] if TARGET else [] RELATIVE_MAKE_DIR = os.path.join('tensorflow', 'lite', 'tools', 'make') MAKE_DIR = os.path.join(TENSORFLOW_DIR, RELATIVE_MAKE_DIR) DOWNLOADS_DIR = os.path.join(MAKE_DIR, 'downloads') RELATIVE_MAKEFILE_PATH = os.path.join(RELATIVE_MAKE_DIR, 'Makefile') DOWNLOAD_SCRIPT_PATH = os.path.join(MAKE_DIR, 'download_dependencies.sh') # Check physical memory and if we are on a reasonable non small SOC machine # with more than 4GB, use all the CPUs, otherwisxe only 1. def get_build_cpus(): physical_bytes = os.sysconf('SC_PAGESIZE') * os.sysconf('SC_PHYS_PAGES') if physical_bytes < (1<<30) * 4: return 1 else: return multiprocessing.cpu_count() def make_args(target='', quiet=True): """Construct make command line.""" args = (['make', 'SHELL=/bin/bash', '-C', TENSORFLOW_DIR] + MAKE_CROSS_OPTIONS + ['-f', RELATIVE_MAKEFILE_PATH, '-j', str(get_build_cpus())]) if quiet: args.append('--quiet') if target: args.append(target) return args def make_output(target): """Invoke make on the target and return output.""" return subprocess.check_output(make_args(target)).decode('utf-8').strip() def make(): """Invoke make to build tflite C++ sources. Build dependencies: apt-get install swig libjpeg-dev zlib1g-dev python3-dev python3-nump """ subprocess.check_call(make_args(quiet=False)) def download_dependencies(): """Download build dependencies if haven't done yet.""" if not os.path.isdir(DOWNLOADS_DIR) or not os.listdir(DOWNLOADS_DIR): subprocess.check_call(DOWNLOAD_SCRIPT_PATH) class CustomBuildExt(build_ext, object): def run(self): download_dependencies() make() return super(CustomBuildExt, self).run() class CustomBuildPy(build_py, object): def run(self): self.run_command('build_ext') return super(CustomBuildPy, self).run() LIB_TFLITE = 'tensorflow-lite' LIB_TFLITE_DIR = make_output('libdir') ext = Extension( name='%s._interpreter_wrapper' % PACKAGE, language='c++', sources=['interpreter_wrapper/interpreter_wrapper.i', 'interpreter_wrapper/interpreter_wrapper.cc'], swig_opts=['-c++', '-I%s' % TENSORFLOW_DIR, '-module', 'interpreter_wrapper', '-outdir', '.'], extra_compile_args=['-std=c++11'], include_dirs=[TENSORFLOW_DIR, os.path.join(TENSORFLOW_DIR, 'tensorflow', 'lite', 'tools', 'pip_package'), numpy.get_include(), os.path.join(DOWNLOADS_DIR, 'flatbuffers', 'include'), os.path.join(DOWNLOADS_DIR, 'absl')], libraries=[LIB_TFLITE], library_dirs=[LIB_TFLITE_DIR]) setup( name=PACKAGE_NAME, version=PACKAGE_VERSION, description=DOCLINES[0], long_description='\n'.join(DOCLINES[2:]), url='https://www.tensorflow.org/lite/', author='Google Inc.', author_email='[email protected]', license='Apache 2.0', include_package_data=True, keywords='tflite tensorflow tensor machine learning', packages=find_packages(exclude=[]), ext_modules=[ext], package_dir={PACKAGE: '.'}, cmdclass={ 'build_ext': CustomBuildExt, 'build_py': CustomBuildPy, } )
tensorflow-master
tensorflow/lite/tools/pip_package/setup.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tool to convert ILSVRC devkit validation ground truth to synset labels.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse from os import path import sys import scipy.io _SYNSET_ARRAYS_RELATIVE_PATH = 'data/meta.mat' _VALIDATION_FILE_RELATIVE_PATH = 'data/ILSVRC2012_validation_ground_truth.txt' def _synset_to_word(filepath): """Returns synset to word dictionary by reading sysnset arrays.""" mat = scipy.io.loadmat(filepath) entries = mat['synsets'] # These fields are listed in devkit readme.txt fields = [ 'synset_id', 'WNID', 'words', 'gloss', 'num_children', 'children', 'wordnet_height', 'num_train_images' ] synset_index = fields.index('synset_id') words_index = fields.index('words') synset_to_word = {} for entry in entries: entry = entry[0] synset_id = int(entry[synset_index][0]) first_word = entry[words_index][0].split(',')[0] synset_to_word[synset_id] = first_word return synset_to_word def _validation_file_path(ilsvrc_dir): return path.join(ilsvrc_dir, _VALIDATION_FILE_RELATIVE_PATH) def _synset_array_path(ilsvrc_dir): return path.join(ilsvrc_dir, _SYNSET_ARRAYS_RELATIVE_PATH) def _generate_validation_labels(ilsvrc_dir, output_file): synset_to_word = _synset_to_word(_synset_array_path(ilsvrc_dir)) with open(_validation_file_path(ilsvrc_dir), 'r') as synset_id_file, open( output_file, 'w') as output: for synset_id in synset_id_file: synset_id = int(synset_id) output.write('%s\n' % synset_to_word[synset_id]) def _check_arguments(args): if not args.validation_labels_output: raise ValueError('Invalid path to output file.') ilsvrc_dir = args.ilsvrc_devkit_dir if not ilsvrc_dir or not path.isdir(ilsvrc_dir): raise ValueError('Invalid path to ilsvrc_dir') if not path.exists(_validation_file_path(ilsvrc_dir)): raise ValueError('Invalid path to ilsvrc_dir, cannot find validation file.') if not path.exists(_synset_array_path(ilsvrc_dir)): raise ValueError( 'Invalid path to ilsvrc_dir, cannot find synset arrays file.') def main(): parser = argparse.ArgumentParser( description='Converts ILSVRC devkit validation_ground_truth.txt to synset' ' labels file that can be used by the accuracy script.') parser.add_argument( '--validation_labels_output', type=str, help='Full path for outputting validation labels.') parser.add_argument( '--ilsvrc_devkit_dir', type=str, help='Full path to ILSVRC 2012 devikit directory.') args = parser.parse_args() try: _check_arguments(args) except ValueError as e: parser.print_usage() file_name = path.basename(sys.argv[0]) sys.stderr.write('{0}: error: {1}\n'.format(file_name, str(e))) sys.exit(1) _generate_validation_labels(args.ilsvrc_devkit_dir, args.validation_labels_output) if __name__ == '__main__': main()
tensorflow-master
tensorflow/lite/tools/accuracy/ilsvrc/generate_validation_labels.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functions to convert SavedModel to frozen GraphDefs.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.lite.python import util from tensorflow.core.framework import types_pb2 from tensorflow.python.client import session from tensorflow.python.framework import ops from tensorflow.python.platform import tf_logging as logging from tensorflow.python.saved_model import constants from tensorflow.python.saved_model import loader def _log_tensor_details(tensor_info): """Log tensor details: name, shape, and type.""" for key in tensor_info: val = tensor_info[key] dtype = types_pb2.DataType.Name(val.dtype) if val.tensor_shape.unknown_rank: shape = "unknown_rank" else: dims = [str(dim.size) for dim in val.tensor_shape.dim] shape = "({})".format(", ".join(dims)) logging.info("Tensor's key in saved_model's tensor_map: %s", key) logging.info(" tensor name: %s, shape: %s, type: %s", val.name, shape, dtype) def get_meta_graph_def(saved_model_dir, tag_set): """Validate saved_model and extract MetaGraphDef. Args: saved_model_dir: saved_model path to convert. tag_set: Set of tag(s) of the MetaGraphDef to load. Returns: The meta_graph_def used for tflite conversion. Raises: ValueError: No valid MetaGraphDef for given tag_set. """ with session.Session(graph=ops.Graph()) as sess: return loader.load(sess, tag_set, saved_model_dir) def get_signature_def(meta_graph, signature_key): """Get the signature def from meta_graph with given signature_key. Args: meta_graph: meta_graph_def. signature_key: signature_def in the meta_graph_def. Returns: The signature_def used for tflite conversion. Raises: ValueError: Given signature_key is not valid for this meta_graph. """ signature_def_map = meta_graph.signature_def signature_def_keys = set(signature_def_map.keys()) logging.info( "The given SavedModel MetaGraphDef contains SignatureDefs with the " "following keys: %s", signature_def_keys) if signature_key not in signature_def_keys: raise ValueError("No '{}' in the SavedModel\'s SignatureDefs. Possible " "values are '{}'.".format(signature_key, ",".join(signature_def_keys))) return signature_def_map[signature_key] def get_inputs_outputs(signature_def): """Get inputs and outputs from SignatureDef. Args: signature_def: SignatureDef in the meta_graph_def for conversion. Returns: The inputs and outputs in the graph for conversion. """ inputs_tensor_info = signature_def.inputs outputs_tensor_info = signature_def.outputs logging.info("input tensors info: ") _log_tensor_details(inputs_tensor_info) logging.info("output tensors info: ") _log_tensor_details(outputs_tensor_info) def gather_names(tensor_info): return [tensor_info[key].name for key in tensor_info] inputs = gather_names(inputs_tensor_info) outputs = gather_names(outputs_tensor_info) return inputs, outputs def _get_tensors(graph, signature_def_tensor_names=None, user_tensor_names=None): """Gets the tensors associated with the tensor names. Either signature_def_tensor_names or user_tensor_names should be provided. If the user provides tensors, the tensors associated with the user provided tensor names are provided. Otherwise, the tensors associated with the names in the SignatureDef are provided. Args: graph: GraphDef representing graph. signature_def_tensor_names: Tensor names stored in either the inputs or outputs of a SignatureDef. (default None) user_tensor_names: Tensor names provided by the user. (default None) Returns: List of tensors. Raises: ValueError: signature_def_tensors and user_tensor_names are undefined or empty. user_tensor_names are not valid. """ tensors = [] if user_tensor_names: # Sort the tensor names. user_tensor_names = sorted(user_tensor_names) tensors = util.get_tensors_from_tensor_names(graph, user_tensor_names) elif signature_def_tensor_names: tensors = [ graph.get_tensor_by_name(name) for name in sorted(signature_def_tensor_names) ] else: # Throw ValueError if signature_def_tensors and user_tensor_names are both # either undefined or empty. raise ValueError( "Specify either signature_def_tensor_names or user_tensor_names") return tensors def freeze_saved_model(saved_model_dir, input_arrays, input_shapes, output_arrays, tag_set, signature_key): """Converts a SavedModel to a frozen graph. Args: saved_model_dir: SavedModel directory to convert. input_arrays: List of input tensors to freeze graph with. Uses input arrays from SignatureDef when none are provided. input_shapes: Dict of strings representing input tensor names to list of integers representing input shapes (e.g., {"foo": : [1, 16, 16, 3]}). Automatically determined when input shapes is None (e.g., {"foo" : None}). output_arrays: List of output tensors to freeze graph with. Uses output arrays from SignatureDef when none are provided. tag_set: Set of tags identifying the MetaGraphDef within the SavedModel to analyze. All tags in the tag set must be present. signature_key: Key identifying SignatureDef containing inputs and outputs. Returns: frozen_graph_def: Frozen GraphDef. in_tensors: List of input tensors for the graph. out_tensors: List of output tensors for the graph. Raises: ValueError: SavedModel doesn't contain a MetaGraphDef identified by tag_set. signature_key is not in the MetaGraphDef. assets/ directory is in the MetaGraphDef. input_shapes does not match the length of input_arrays. input_arrays or output_arrays are not valid. """ # Read SignatureDef. meta_graph = get_meta_graph_def(saved_model_dir, tag_set) signature_def = get_signature_def(meta_graph, signature_key) inputs, outputs = get_inputs_outputs(signature_def) # Check SavedModel for assets directory. collection_def = meta_graph.collection_def if constants.ASSETS_KEY in collection_def: raise ValueError("SavedModels with assets/ directory are not supported.") graph = ops.Graph() with session.Session(graph=graph) as sess: loader.load(sess, meta_graph.meta_info_def.tags, saved_model_dir) # Gets input and output tensors. # TODO(zhixianyan): Use TFLite supported Op list to filter outputs. in_tensors = _get_tensors(graph, inputs, input_arrays) out_tensors = _get_tensors(graph, outputs, output_arrays) util.set_tensor_shapes(in_tensors, input_shapes) frozen_graph_def = util.freeze_graph(sess, in_tensors, out_tensors) return frozen_graph_def, in_tensors, out_tensors
tensorflow-master
tensorflow/lite/python/convert_saved_model.py
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Wraps toco interface with python lazy loader.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.util.lazy_loader import LazyLoader # TODO(b/131123224): Lazy load since some of the performance benchmark skylark # rules and monolithic build break dependencies. _toco_python = LazyLoader( "tensorflow_wrap_toco", globals(), "tensorflow.lite.toco.python." "tensorflow_wrap_toco") del LazyLoader def wrapped_toco_convert(model_flags_str, toco_flags_str, input_data_str): """Wraps TocoConvert with lazy loader.""" return _toco_python.TocoConvert(model_flags_str, toco_flags_str, input_data_str) def wrapped_get_potentially_supported_ops(): """Wraps TocoGetPotentiallySupportedOps with lazy loader.""" return _toco_python.TocoGetPotentiallySupportedOps()
tensorflow-master
tensorflow/lite/python/wrap_toco.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """TFLite SavedModel conversion test cases. - Tests converting simple SavedModel graph to TFLite FlatBuffer. - Tests converting simple SavedModel graph to frozen graph. - Tests converting MNIST SavedModel to TFLite FlatBuffer. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from tensorflow.lite.python import convert_saved_model from tensorflow.python.client import session from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.platform import test from tensorflow.python.saved_model import saved_model from tensorflow.python.saved_model import signature_constants from tensorflow.python.saved_model import tag_constants class FreezeSavedModelTest(test_util.TensorFlowTestCase): def _createSimpleSavedModel(self, shape): """Create a simple SavedModel on the fly.""" saved_model_dir = os.path.join(self.get_temp_dir(), "simple_savedmodel") with session.Session() as sess: in_tensor = array_ops.placeholder(shape=shape, dtype=dtypes.float32) out_tensor = in_tensor + in_tensor inputs = {"x": in_tensor} outputs = {"y": out_tensor} saved_model.simple_save(sess, saved_model_dir, inputs, outputs) return saved_model_dir def _createSavedModelTwoInputArrays(self, shape): """Create a simple SavedModel.""" saved_model_dir = os.path.join(self.get_temp_dir(), "simple_savedmodel") with session.Session() as sess: in_tensor_1 = array_ops.placeholder( shape=shape, dtype=dtypes.float32, name="inputB") in_tensor_2 = array_ops.placeholder( shape=shape, dtype=dtypes.float32, name="inputA") out_tensor = in_tensor_1 + in_tensor_2 inputs = {"x": in_tensor_1, "y": in_tensor_2} outputs = {"z": out_tensor} saved_model.simple_save(sess, saved_model_dir, inputs, outputs) return saved_model_dir def _getArrayNames(self, tensors): return [tensor.name for tensor in tensors] def _getArrayShapes(self, tensors): dims = [] for tensor in tensors: dim_tensor = [] for dim in tensor.shape: if isinstance(dim, tensor_shape.Dimension): dim_tensor.append(dim.value) else: dim_tensor.append(dim) dims.append(dim_tensor) return dims def _convertSavedModel(self, saved_model_dir, input_arrays=None, input_shapes=None, output_arrays=None, tag_set=None, signature_key=None): if tag_set is None: tag_set = set([tag_constants.SERVING]) if signature_key is None: signature_key = signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY graph_def, in_tensors, out_tensors = convert_saved_model.freeze_saved_model( saved_model_dir=saved_model_dir, input_arrays=input_arrays, input_shapes=input_shapes, output_arrays=output_arrays, tag_set=tag_set, signature_key=signature_key) return graph_def, in_tensors, out_tensors def testSimpleSavedModel(self): """Test a SavedModel.""" saved_model_dir = self._createSimpleSavedModel(shape=[1, 16, 16, 3]) _, in_tensors, out_tensors = self._convertSavedModel(saved_model_dir) self.assertEqual(self._getArrayNames(out_tensors), ["add:0"]) self.assertEqual(self._getArrayNames(in_tensors), ["Placeholder:0"]) self.assertEqual(self._getArrayShapes(in_tensors), [[1, 16, 16, 3]]) def testSimpleSavedModelWithNoneBatchSizeInShape(self): """Test a SavedModel with None in input tensor's shape.""" saved_model_dir = self._createSimpleSavedModel(shape=[None, 16, 16, 3]) _, in_tensors, out_tensors = self._convertSavedModel(saved_model_dir) self.assertEqual(self._getArrayNames(out_tensors), ["add:0"]) self.assertEqual(self._getArrayNames(in_tensors), ["Placeholder:0"]) self.assertEqual(self._getArrayShapes(in_tensors), [[None, 16, 16, 3]]) def testSimpleSavedModelWithInvalidSignatureKey(self): """Test a SavedModel that fails due to an invalid signature_key.""" saved_model_dir = self._createSimpleSavedModel(shape=[1, 16, 16, 3]) with self.assertRaises(ValueError) as error: self._convertSavedModel(saved_model_dir, signature_key="invalid-key") self.assertEqual( "No 'invalid-key' in the SavedModel's SignatureDefs. " "Possible values are 'serving_default'.", str(error.exception)) def testSimpleSavedModelWithInvalidOutputArray(self): """Test a SavedModel that fails due to invalid output arrays.""" saved_model_dir = self._createSimpleSavedModel(shape=[1, 16, 16, 3]) with self.assertRaises(ValueError) as error: self._convertSavedModel(saved_model_dir, output_arrays=["invalid-output"]) self.assertEqual("Invalid tensors 'invalid-output' were found.", str(error.exception)) def testSimpleSavedModelWithWrongInputArrays(self): """Test a SavedModel that fails due to invalid input arrays.""" saved_model_dir = self._createSimpleSavedModel(shape=[1, 16, 16, 3]) # Check invalid input_arrays. with self.assertRaises(ValueError) as error: self._convertSavedModel(saved_model_dir, input_arrays=["invalid-input"]) self.assertEqual("Invalid tensors 'invalid-input' were found.", str(error.exception)) # Check valid and invalid input_arrays. with self.assertRaises(ValueError) as error: self._convertSavedModel( saved_model_dir, input_arrays=["Placeholder", "invalid-input"]) self.assertEqual("Invalid tensors 'invalid-input' were found.", str(error.exception)) def testSimpleSavedModelWithCorrectArrays(self): """Test a SavedModel with correct input_arrays and output_arrays.""" saved_model_dir = self._createSimpleSavedModel(shape=[None, 16, 16, 3]) _, in_tensors, out_tensors = self._convertSavedModel( saved_model_dir=saved_model_dir, input_arrays=["Placeholder"], output_arrays=["add"]) self.assertEqual(self._getArrayNames(out_tensors), ["add:0"]) self.assertEqual(self._getArrayNames(in_tensors), ["Placeholder:0"]) self.assertEqual(self._getArrayShapes(in_tensors), [[None, 16, 16, 3]]) def testSimpleSavedModelWithCorrectInputArrays(self): """Test a SavedModel with correct input_arrays and input_shapes.""" saved_model_dir = self._createSimpleSavedModel(shape=[1, 16, 16, 3]) _, in_tensors, out_tensors = self._convertSavedModel( saved_model_dir=saved_model_dir, input_arrays=["Placeholder"], input_shapes={"Placeholder": [1, 16, 16, 3]}) self.assertEqual(self._getArrayNames(out_tensors), ["add:0"]) self.assertEqual(self._getArrayNames(in_tensors), ["Placeholder:0"]) self.assertEqual(self._getArrayShapes(in_tensors), [[1, 16, 16, 3]]) def testTwoInputArrays(self): """Test a simple SavedModel.""" saved_model_dir = self._createSavedModelTwoInputArrays(shape=[1, 16, 16, 3]) _, in_tensors, out_tensors = self._convertSavedModel( saved_model_dir=saved_model_dir, input_arrays=["inputB", "inputA"]) self.assertEqual(self._getArrayNames(out_tensors), ["add:0"]) self.assertEqual(self._getArrayNames(in_tensors), ["inputA:0", "inputB:0"]) self.assertEqual( self._getArrayShapes(in_tensors), [[1, 16, 16, 3], [1, 16, 16, 3]]) def testSubsetInputArrays(self): """Test a SavedModel with a subset of the input array names of the model.""" saved_model_dir = self._createSavedModelTwoInputArrays(shape=[1, 16, 16, 3]) # Check case where input shape is given. _, in_tensors, out_tensors = self._convertSavedModel( saved_model_dir=saved_model_dir, input_arrays=["inputA"], input_shapes={"inputA": [1, 16, 16, 3]}) self.assertEqual(self._getArrayNames(out_tensors), ["add:0"]) self.assertEqual(self._getArrayNames(in_tensors), ["inputA:0"]) self.assertEqual(self._getArrayShapes(in_tensors), [[1, 16, 16, 3]]) # Check case where input shape is None. _, in_tensors, out_tensors = self._convertSavedModel( saved_model_dir=saved_model_dir, input_arrays=["inputA"]) self.assertEqual(self._getArrayNames(out_tensors), ["add:0"]) self.assertEqual(self._getArrayNames(in_tensors), ["inputA:0"]) self.assertEqual(self._getArrayShapes(in_tensors), [[1, 16, 16, 3]]) def testMultipleMetaGraphDef(self): """Test saved model with multiple MetaGraphDefs.""" saved_model_dir = os.path.join(self.get_temp_dir(), "savedmodel_two_mgd") builder = saved_model.builder.SavedModelBuilder(saved_model_dir) with session.Session(graph=ops.Graph()) as sess: # MetaGraphDef 1 in_tensor = array_ops.placeholder(shape=[1, 28, 28], dtype=dtypes.float32) out_tensor = in_tensor + in_tensor sig_input_tensor = saved_model.utils.build_tensor_info(in_tensor) sig_input_tensor_signature = {"x": sig_input_tensor} sig_output_tensor = saved_model.utils.build_tensor_info(out_tensor) sig_output_tensor_signature = {"y": sig_output_tensor} predict_signature_def = ( saved_model.signature_def_utils.build_signature_def( sig_input_tensor_signature, sig_output_tensor_signature, saved_model.signature_constants.PREDICT_METHOD_NAME)) signature_def_map = { saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: predict_signature_def } builder.add_meta_graph_and_variables( sess, tags=[saved_model.tag_constants.SERVING, "additional_test_tag"], signature_def_map=signature_def_map) # MetaGraphDef 2 builder.add_meta_graph(tags=["tflite"]) builder.save(True) # Convert to tflite _, in_tensors, out_tensors = self._convertSavedModel( saved_model_dir=saved_model_dir, tag_set=set([saved_model.tag_constants.SERVING, "additional_test_tag"])) self.assertEqual(self._getArrayNames(out_tensors), ["add:0"]) self.assertEqual(self._getArrayNames(in_tensors), ["Placeholder:0"]) self.assertEqual(self._getArrayShapes(in_tensors), [[1, 28, 28]]) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/lite/python/convert_saved_model_test.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functions used by multiple converter files.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy from tensorflow.core.framework import graph_pb2 as _graph_pb2 from tensorflow.core.protobuf import config_pb2 as _config_pb2 from tensorflow.core.protobuf import meta_graph_pb2 as _meta_graph_pb2 from tensorflow.lite.python.op_hint import convert_op_hints_to_stubs from tensorflow.lite.python.op_hint import find_all_hinted_output_nodes from tensorflow.lite.toco import types_pb2 as _types_pb2 from tensorflow.python.framework import dtypes from tensorflow.python.framework import graph_util as tf_graph_util from tensorflow.python.grappler import tf_optimizer from tensorflow.python.training.saver import export_meta_graph as _export_meta_graph # Map of tf.dtypes to TFLite types_flag_pb2. _MAP_TF_TO_TFLITE_TYPES = { dtypes.float32: _types_pb2.FLOAT, dtypes.float16: _types_pb2.FLOAT16, dtypes.int32: _types_pb2.INT32, dtypes.int64: _types_pb2.INT64, dtypes.string: _types_pb2.STRING, dtypes.uint8: _types_pb2.QUANTIZED_UINT8, dtypes.int8: _types_pb2.INT8, dtypes.complex64: _types_pb2.COMPLEX64 } _LOWER_USING_SWITCH_MERGE = "_lower_using_switch_merge" def convert_dtype_to_tflite_type(tf_dtype): """Converts tf.dtype to TFLite proto type. Args: tf_dtype: tf.dtype Raises: ValueError: Unsupported tf.dtype. Returns: types_flag_pb2. """ result = _MAP_TF_TO_TFLITE_TYPES.get(tf_dtype) if result is None: raise ValueError("Unsupported tf.dtype {0}".format(tf_dtype)) return result def get_tensor_name(tensor): """Returns name of the input tensor. Args: tensor: tf.Tensor Returns: str """ parts = tensor.name.split(":") if len(parts) > 2: raise ValueError("Tensor name invalid. Expect 0 or 1 colon, got {0}".format( len(parts) - 1)) # To be consistent with the tensor naming scheme in tensorflow, we need # drop the ':0' suffix for the first tensor. if len(parts) > 1 and parts[1] != "0": return tensor.name return parts[0] def get_tensors_from_tensor_names(graph, tensor_names): """Gets the Tensors associated with the `tensor_names` in the provided graph. Args: graph: TensorFlow Graph. tensor_names: List of strings that represent names of tensors in the graph. Returns: A list of Tensor objects in the same order the names are provided. Raises: ValueError: tensor_names contains an invalid tensor name. """ # Get the list of all of the tensors. tensor_name_to_tensor = {} for op in graph.get_operations(): for tensor in op.values(): tensor_name_to_tensor[get_tensor_name(tensor)] = tensor # Get the tensors associated with tensor_names. tensors = [] invalid_tensors = [] for name in tensor_names: tensor = tensor_name_to_tensor.get(name) if tensor is None: invalid_tensors.append(name) else: tensors.append(tensor) # Throw ValueError if any user input names are not valid tensors. if invalid_tensors: raise ValueError("Invalid tensors '{}' were found.".format( ",".join(invalid_tensors))) return tensors def set_tensor_shapes(tensors, shapes): """Sets Tensor shape for each tensor if the shape is defined. Args: tensors: TensorFlow ops.Tensor. shapes: Dict of strings representing input tensor names to list of integers representing input shapes (e.g., {"foo": : [1, 16, 16, 3]}). Raises: ValueError: `shapes` contains an invalid tensor. `shapes` contains an invalid shape for a valid tensor. """ if shapes: tensor_names_to_tensor = { get_tensor_name(tensor): tensor for tensor in tensors } for name, shape in shapes.items(): if name not in tensor_names_to_tensor: raise ValueError("Invalid tensor \'{}\' found in tensor shapes " "map.".format(name)) if shape is not None: tensor = tensor_names_to_tensor[name] try: tensor.set_shape(shape) except ValueError as error: message = ("The shape of tensor '{0}' cannot be changed from {1} to " "{2}. {3}".format(name, tensor.shape, shape, str(error))) raise ValueError(message) def get_grappler_config(optimizers_list): """Creates a tf.compat.v1.ConfigProto for configuring Grappler. Args: optimizers_list: List of strings that represents the list of optimizers. Returns: tf.ConfigProto. """ config = _config_pb2.ConfigProto() rewrite_options = config.graph_options.rewrite_options for optimizer in optimizers_list: rewrite_options.optimizers.append(optimizer) return config def run_graph_optimizations(graph_def, input_arrays, output_arrays, config, graph=None): """Apply standard TensorFlow optimizations to the graph_def. Args: graph_def: Frozen GraphDef to be optimized. input_arrays: List of arrays that are considered inputs of the graph. output_arrays: List of arrays that are considered outputs of the graph. config: tf.ConfigProto. graph: TensorFlow Graph. Required when Eager mode is enabled. (default None) Returns: A new, optimized GraphDef. """ meta_graph = _export_meta_graph(graph_def=graph_def, graph=graph) # We need to add a collection called 'train_op' so that grappler # knows what the outputs are. fetch_collection = _meta_graph_pb2.CollectionDef() for array in input_arrays + output_arrays: fetch_collection.node_list.value.append(array.name) meta_graph.collection_def["train_op"].CopyFrom(fetch_collection) return tf_optimizer.OptimizeGraph(config, meta_graph) def _remove_lower_using_switch_merge(graph_def): """Remove '_lower_using_switch_merge' attributes from the given graph. Args: graph_def: GraphDef to be optimized. Returns: A new GraphDef that with no '_lower_using_switch_merge' attribute. """ out = _graph_pb2.GraphDef() out.library.CopyFrom(graph_def.library) out.versions.CopyFrom(graph_def.versions) for node in graph_def.node: new_node = copy.deepcopy(node) if new_node.op == "While": new_node.attr[_LOWER_USING_SWITCH_MERGE].b = False out.node.extend([new_node]) return out def _convert_op_hints_if_present(sess, graph_def, output_tensors, hinted_outputs_nodes): if is_frozen_graph(sess): raise ValueError("Try to convert op hints, needs unfrozen graph.") output_arrays = [get_tensor_name(tensor) for tensor in output_tensors] graph_def = tf_graph_util.convert_variables_to_constants( sess, graph_def, output_arrays + hinted_outputs_nodes) graph_def = convert_op_hints_to_stubs(graph_def=graph_def) graph_def = tf_graph_util.remove_training_nodes(graph_def) return graph_def def freeze_graph(sess, input_tensors, output_tensors): """Returns a frozen GraphDef. Runs a Grappler pass and freezes a graph with Variables in it. Otherwise the existing GraphDef is returned. The Grappler pass is only run on models that are frozen in order to inline the functions in the graph. If OpHints is present, it will try to convert the OpHint graph. Args: sess: TensorFlow Session. input_tensors: List of input tensors. output_tensors: List of output tensors (only .name is used from this). Returns: Frozen GraphDef. """ # Runs a Grappler pass in order to inline any functions in the graph. # Asides from inlining any simple function, Grappler will also try to lower # while loop into switch merge representation which is undesired for Ophints, # so we simply remove those attributes to prevent Grappler from doing so. graph_def = _remove_lower_using_switch_merge(sess.graph_def) config = get_grappler_config(["function"]) graph_def = run_graph_optimizations( graph_def, input_tensors, output_tensors, config, graph=sess.graph) # If ophints are present, just convert them. hinted_outputs_nodes = find_all_hinted_output_nodes(sess) if hinted_outputs_nodes: return _convert_op_hints_if_present(sess, graph_def, output_tensors, hinted_outputs_nodes) if not is_frozen_graph(sess): output_arrays = [get_tensor_name(tensor) for tensor in output_tensors] return tf_graph_util.convert_variables_to_constants(sess, graph_def, output_arrays) else: return sess.graph_def def is_frozen_graph(sess): """Determines if the graph is frozen. Determines if a graph has previously been frozen by checking for any operations of type Variable*. If variables are found, the graph is not frozen. Args: sess: TensorFlow Session. Returns: Bool. """ for op in sess.graph.get_operations(): if op.type.startswith("Variable") or op.type.endswith("VariableOp"): return False return True
tensorflow-master
tensorflow/lite/python/util.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Define tflite op hints (intrinsic operations). This essentially allows defining a TensorFlow API for tflite operations in Python with hints on how they are represented in TensorFlow Lite. This basically is a form of tflite intrinsic. It wraps a subpart of a TensorFlow execution graph and is useful for LSTMs and other complicated TensorFlow constructions that are difficult to pattern match in TOCO, but are represented by a single accelerated tflite op. Example: def tflite_cool_activation(input): # A cool activation function. custom = tf.lite.OpHint("cool_activation") input, = custom.add_inputs(input) output = tf.sigmoid(input) * input output, = custom.add_outputs(output) return output image = tf.compat.v1.placeholder(tf.float32, (1, 16, 16, 1)) output = tf.identity(tflite_cool_activation(image)) session = tf.compat.v1.Session() graphdef_to_convert = tf.lite.convert_op_hints_to_stubs(session) tflite_graph = tf.compat.v1.lite.toco_convert( graphdef_to_convert, [image], [output]) with open("/tmp/graph.fb", "wb") as fp: fp.write(tflite_graph) How does it work?: OpHint is a helper that you use when defining a vanilla python function. It allows you to wrap arguments with tf.identities with some custom attributes. These attributes allow you to find the original block of ops that was created. For example, if you use cool_activation above you essentially get: a_input = tf.identity() result = tf.multiply(tf.sigmoid(a_input), a_input) output = tf.identity() a_input, output are identities that have parameters representing what argument they are, what the name of the function they should turn into in tf lite as well as a guid that uniquely identifies a particular invocation. Once you have built your whole tensorflow graph, you can run it and train it as usual, but after you have done that, you need to convert the graph into a form that replaces these subgraphs wrapped in identities to stub ops. These ops don't actually exist in the normal TensorFlow runtime, but will be understood by toco later. """ # TODO(aselle): Make this use generic graph transformations. # TODO(aselle): _tensor_name_base should be called _tensor_name_to_op_name. from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections as _collections import copy as _copy import json as _json import uuid as _uuid import six as _six from tensorflow.core.framework import attr_value_pb2 as _attr_value_pb2 from tensorflow.core.framework import graph_pb2 as _graph_pb2 from tensorflow.core.framework import node_def_pb2 as _node_def_pb2 from tensorflow.python.framework import ops as _ops # TODO(aselle): publicize these apis if we continue to use these. from tensorflow.python.framework.graph_util_impl import _bfs_for_reachable_nodes from tensorflow.python.framework.graph_util_impl import _extract_graph_summary from tensorflow.python.ops import array_ops as _array_ops from tensorflow.python.util import compat as _compat from tensorflow.python.util.all_util import remove_undocumented from tensorflow.python.util.tf_export import tf_export as _tf_export @_tf_export(v1=["lite.OpHint"]) class OpHint(object): """A class that helps build tflite function invocations. It allows you to take a bunch of TensorFlow ops and annotate the construction such that toco knows how to convert it to tflite. This embeds a pseudo function in a TensorFlow graph. This allows embedding high-level API usage information in a lower level TensorFlow implementation so that an alternative implementation can be substituted later. Essentially, any "input" into this pseudo op is fed into an identity, and attributes are added to that input before being used by the constituent ops that make up the pseudo op. A similar process is done to any output that is to be exported from the current op. """ # TODO(aselle): When TensorFlow functions functionality works for arbitrary # constructs, this mechanism can be retired and changed to use python defun's. # Attr constants that are used for representation in the GraphDef. These # will be used on every Identity op that is involved in a total OpHint. # Name of the OpHint function (cosmetic). FUNCTION_NAME_ATTR = "_tflite_function_name" # UUID of the function (each OpHint gets a new uuid). FUNCTION_UUID_ATTR = "_tflite_function_uuid" # The input index of the input (or nothing if it is an output). FUNCTION_INPUT_INDEX_ATTR = "_tflite_function_input_index" # The output index of the output (or nothing if it is an input). FUNCTION_OUTPUT_INDEX_ATTR = "_tflite_function_output_index" # An index that orders aggregate arguments. Aggregate arguments are ones # that are separate but will be fused horizontally. For example a static LSTM # has a lstm cell for each time step. Each one has a separate opHint, but a # fused SequentialLSTM will treat this as a single tensor. FUNCTION_SORT_INDEX_ATTR = "_tflite_function_sort_index" # The way in which multiple parts of the aggregate argument will be joined # into a fused operand. Valid options are OpHint.AGGREGATE_FIRST, # OpHint.AGGREGATE_LAST, OpHint.AGGREGATE_STACK. FUNCTION_AGGREGATE_ATTR = "_tflite_function_aggregate" # On fused OpHint stub, the order of inputs that the final LSTM call will # have. What this means is that the TensorFlow order might be # "foo", "bar", "stuff" and you might want the TF lite op order to be # "stuff", "foo", "bar", -1 (where -1 is unused). So you would set this # attribute to [2, 0, 1, -1]. TFLITE_INPUT_INDICES = "_tflite_input_indices" # OpHint level. FUNCTION_LEVEL_ATTR = "_tflite_ophint_level" # Ophint internal mapping, this is for high level Ophint only. # This basically contains three kinds of mapping: # 1) How parental ophinted inputs map to the first child ophinted inputs; # 2) How internal children nodes are connected; # 3) How parental ophinted outputs map to the last child ophinted outputs. CHILDREN_INPUTS_MAPPINGS = "_tflite_children_ophint_inputs_mapping" # Types of aggregations # stack: stacks all ophints with matching tags. i.e. for a static rnn. # specifically, this is good for an input or output to a static rnn cell. AGGREGATE_STACK = "stack" # first: only takes the first output (one with lowest sort index) # of matching tags. This is good for the input state to an RNN. AGGREGATE_FIRST = "first" # aggregation last takes only the last tag (one with highest sort index). # This is good for an output value on the last stack item of a # static rnn. AGGREGATE_LAST = "last" class OpHintArgumentTracker(object): """Conceptually tracks indices of arguments of "OpHint functions". The inputs and arguments of these functions both use an instance of the class so they can have independent numbering. """ def __init__(self, function_name, unique_function_id, node_name_prefix, attr_name, level=1, children_inputs_mappings=None): """Initialize ophint argument. Args: function_name: Name of the function that this tracks arguments for. unique_function_id: UUID of function that this tracks arguments for. node_name_prefix: How identities that are created are named. attr_name: Name of attribute to use to store the index for this hint. i.e. FUNCTION_INPUT_INDEX or FUNCTION_OUTPUT_INDEX level: Hierarchical level of the Ophint node, a number. children_inputs_mappings: Inputs/Outputs mapping for children hints. """ # The global index is the argument index of the op. This is in contrast # to the sort index which is the sequence number of a particular instance # of a given global index. For example, you may have called add hint # twice with the tag "foo". Then the global index will be 0 for both # and the sort index will be 0 for the first added and 1 for the second. self._function_name = function_name self._unique_function_id = unique_function_id self._next_global_index = 0 # The absolute global index self._used_global_indices = set() self._tag_to_global_index = {} # The argument index a given tag maps to self._tag_to_next_sort_index = {} # The current index for each tag self._node_name_prefix = node_name_prefix self._attr_name = attr_name self._level = level self._children_inputs_mappings = children_inputs_mappings def _get_new_global_index(self, index_override): """Return the next unused argument index in order or use an override. Args: index_override: An index to use instead of the next available or None to use the next available. Returns: A valid global_index to use for the next hint argument. Raises: ValueError: If the index_override is already used by another hint. """ if index_override is None: global_index = self._next_global_index else: if index_override in self._used_global_indices: raise ValueError("Index %d was already used by another call to add") global_index = index_override # Make next_global_index valid self._used_global_indices.add(global_index) while self._next_global_index in self._used_global_indices: self._next_global_index += 1 return global_index def add(self, arg, tag=None, name=None, aggregate=None, index_override=None): """Return a wrapped tensor of an input tensor as an argument. Args: arg: A TensorFlow tensor that should be considered an argument. tag: String tag to identify arguments that should be packed. name: Name of argument. This is included in the Identity hint op names. aggregate: Strategy to aggregate. Acceptable values are OpHint.AGGREGATE_FIRST, OpHint.AGGREGATE_LAST, and OpHint.AGGREGATE_STACK. Note, aggregate is only valid if tag is specified. index_override: Specify what input/output index should this be in the final stub. i.e. add(arg0, index=1); add(arg1, index=0) will make the final stub be as stub_func(inputs[arg1, arg0], outputs=[]) rather than the default call order based ordering. Returns: A tensor representing the wrapped argument. Raises: ValueError: When indices are not consistent. """ # Find the appropriate index if tag is None: if aggregate is not None: raise ValueError("You must specify `tag` if using aggregate.") global_index = self._get_new_global_index(index_override) sort_index = None else: if aggregate is None: raise ValueError("You must specify `aggregate` if using tag.") if tag not in self._tag_to_global_index: self._tag_to_global_index[tag] = ( self._get_new_global_index(index_override)) self._tag_to_next_sort_index[tag] = 0 elif (index_override and index_override != self._tag_to_global_index[tag]): raise ValueError( "Tag %r was called with two indices %r and %r" % (tag, index_override, self._tag_to_global_index[tag])) global_index = self._tag_to_global_index[tag] sort_index = self._tag_to_next_sort_index[tag] self._tag_to_next_sort_index[tag] += 1 uuid = self._unique_function_id name = "%s-%s-%s-%r-%r-%s" % (self._node_name_prefix, self._function_name, uuid, global_index, sort_index, name) identity_op = _array_ops.identity(arg, name=name) # pylint: disable=protected-access identity_op.op._set_attr( OpHint.FUNCTION_NAME_ATTR, _attr_value_pb2.AttrValue( s=_compat.as_bytes(self._function_name))) identity_op.op._set_attr( OpHint.FUNCTION_UUID_ATTR, _attr_value_pb2.AttrValue( s=_compat.as_bytes(self._unique_function_id))) identity_op.op._set_attr( self._attr_name, _attr_value_pb2.AttrValue(i=global_index)) identity_op.op._set_attr(OpHint.FUNCTION_LEVEL_ATTR, _attr_value_pb2.AttrValue(i=self._level)) if self._children_inputs_mappings: identity_op.op._set_attr( OpHint.CHILDREN_INPUTS_MAPPINGS, _attr_value_pb2.AttrValue( s=_compat.as_bytes(_json.dumps( self._children_inputs_mappings)))) if sort_index is not None: identity_op.op._set_attr( OpHint.FUNCTION_SORT_INDEX_ATTR, _attr_value_pb2.AttrValue(i=sort_index)) if aggregate is not None: identity_op.op._set_attr( OpHint.FUNCTION_AGGREGATE_ATTR, _attr_value_pb2.AttrValue(s=_compat.as_bytes((aggregate)))) # pylint: enable=protected-access return identity_op def __init__(self, function_name, level=1, children_inputs_mappings=None, **kwargs): """Create a OpHint. Args: function_name: Name of the function (the custom op name in tflite) level: OpHint level. children_inputs_mappings: Children OpHint inputs/outputs mapping. children_inputs_mappings should like below: "parent_first_child_input": [{"parent_input_index": num, "child_input_index": num}, ...] "parent_last_child_output": [{"parent_output_index": num, "child_output_index": num}, ...] "internal_children_input_output": [{"child_input_index": num, "child_output_index": num}, ...] **kwargs: Keyword arguments of any constant attributes for the function. """ self._function_name = function_name self._level = level if self._level == 1: assert children_inputs_mappings is None else: assert isinstance(children_inputs_mappings, dict) self._children_inputs_mappings = children_inputs_mappings if self._children_inputs_mappings is not None: self._validate_children_inputs_mappings(self._children_inputs_mappings) self._unique_function_id = _uuid.uuid1().hex # TODO(aselle): Unique enough? self._attrs_to_store_later = kwargs self._stored_attrs = False self._inputs = OpHint.OpHintArgumentTracker( self._function_name, self._unique_function_id, "InputHint", OpHint.FUNCTION_INPUT_INDEX_ATTR, level, self._children_inputs_mappings) self._outputs = OpHint.OpHintArgumentTracker( self._function_name, self._unique_function_id, "OutputHint", OpHint.FUNCTION_OUTPUT_INDEX_ATTR, level, self._children_inputs_mappings) def _validate_children_inputs_mappings(self, children_inputs_mappings): """Validate children inputs mappings is in the right format. Args: children_inputs_mappings: the Children ophint inputs/outputs mapping. """ assert isinstance(children_inputs_mappings, dict) assert "parent_first_child_input" in children_inputs_mappings assert "parent_last_child_output" in children_inputs_mappings assert "internal_children_input_output" in children_inputs_mappings # validate parent_first_child_input. def assert_dictlist_has_keys(dictlist, keys): for dikt in dictlist: assert isinstance(dikt, dict) for key in keys: assert key in dikt assert_dictlist_has_keys( children_inputs_mappings["parent_first_child_input"], ["parent_ophint_input_index", "first_child_ophint_input_index"]) assert_dictlist_has_keys( children_inputs_mappings["parent_last_child_output"], ["parent_output_index", "child_output_index"]) assert_dictlist_has_keys( children_inputs_mappings["internal_children_input_output"], ["child_input_index", "child_output_index"]) def _setattr(self, dest_op, name, value): tensor_value = _ops.convert_to_tensor(value) # pylint: disable=protected-access dest_op.op._set_attr(name, _attr_value_pb2.AttrValue( tensor=tensor_value.op.node_def.attr["value"].tensor)) # pylint: enable=protected-access def add_input(self, *args, **kwargs): """Add a wrapped input argument to the hint. Args: *args: The input tensor. **kwargs: "name" label "tag" a tag to group multiple arguments that will be aggregated. I.e. a string like 'cool_input'. Basically multiple inputs can be added to the same hint for parallel operations that will eventually be combined. An example would be static_rnn which creates multiple copies of state or inputs. "aggregate" aggregation strategy that is valid only for tag non None. Acceptable values are OpHint.AGGREGATE_FIRST, OpHint.AGGREGATE_LAST, and OpHint.AGGREGATE_STACK. "index_override" The global index to use. This corresponds to the argument order in the final stub that will be generated. Returns: The wrapped input tensor. """ return self._inputs.add(*args, **kwargs) def add_output(self, *args, **kwargs): """Add a wrapped output argument to the hint. Args: *args: The output tensor. **kwargs: "name" label "tag" a tag to group multiple arguments that will be aggregated. I.e. a string like 'cool_input'. Basically multiple inputs can be added to the same hint for parallel operations that will eventually be combined. An example would be static_rnn which creates multiple copies of state or inputs. "aggregate" aggregation strategy that is valid only for tag non None. Acceptable values are OpHint.AGGREGATE_FIRST, OpHint.AGGREGATE_LAST, and OpHint.AGGREGATE_STACK. "index_override" The global index to use. This corresponds to the argument order in the final stub that will be generated. Returns: The wrapped output tensor. """ return self._outputs.add(*args, **kwargs) def add_inputs(self, *args, **kwargs): """Add a sequence of inputs to the function invocation. Args: *args: List of inputs to be converted (should be Tf.Tensor). **kwargs: This allows 'names' which should be a list of names. Returns: Wrapped inputs (identity standins that have additional metadata). These are also are also tf.Tensor's. """ if "names" in kwargs: return [ self._inputs.add(arg, name=name) for arg, name in zip(args, kwargs["names"]) ] else: return [self._inputs.add(arg) for arg in args] def add_outputs(self, *args, **kwargs): """Add a sequence of outputs to the function invocation. Args: *args: List of outputs to be converted (should be tf.Tensor). **kwargs: See Returns: Wrapped outputs (identity standins that have additional metadata). These are also tf.Tensor's. """ if "names" in kwargs: return [ self._outputs.add(arg, name=name) for arg, name in zip(args, kwargs["names"]) ] else: return [self._outputs.add(arg) for arg in args] class _LiteOperand(object): """Abstract operand for a tflite hint function._dynamic_rnn_loop. This is a base class that handles representing arguments to an OpHint. It also is able to serialize operands to the stubbed graph_def. Child classes are responsible for being able to store information about the hint identity operators. They are also responsible for knowing how to serialize to output graphdefs. Typically this will be implemented by holding one or more identity nodes that were previously discovered as hints. """ def aggregate_and_return_name_for_input(self, out_graphdef): """This adds the node(s) to out_graphdef and returns the input node name. Args: out_graphdef: A graphdef that is ready to have this input added. Returns: The output that the stub should use as an input for this operand. Raises: RuntimeError: if the method is not implemented. """ del out_graphdef raise RuntimeError("Unimplemented abstract method.") def aggregate_and_return_name_for_output(self, fused_op_name, output_index, out_graphdef): """Add node(s) to graph representing output operands and returns type. Args: fused_op_name: name of the fused op stub name. output_index: Output index that we are currently processing from stub. out_graphdef: The destination graphdef we are currently building up. Returns: The datatype of this identity. Raises: RuntimeError: if the method is not implemented. """ del fused_op_name, output_index, out_graphdef raise RuntimeError("Unimplemented abstract method.") class _LiteSingleOperand(_LiteOperand): """A simple operand that is non-aggregated (i.e. most hints).""" def __init__(self, node): _LiteOperand.__init__(self) self.node = node self.name = _tensor_name_base(node.name) def flatten(self): return [self.name] def aggregate_and_return_name_for_input(self, out_graphdef): return self.name def aggregate_and_return_name_for_output(self, fused_op_name, index, out_graphdef): output_node = _copy.deepcopy(self.node) del output_node.input[:] output_node.input.append(_tensorflow_output_name(fused_op_name, index)) out_graphdef.node.extend([output_node]) return self.node.attr["type"].i def __str__(self): return str(self.name) class _LiteAggregateOperand(_LiteOperand): """An operand for a tflite hint function that is aggregated from many. For example, an LSTM is a grid of operators that are all related. Inputs going into them may need to be fused, so they should all be tracked as related arguments. """ def __init__(self, aggregation): _LiteOperand.__init__(self) self.aggregation = aggregation self.names = {} self.nodes = {} self.flattened = None def add(self, sort, node): self.names[sort] = _tensor_name_base(node.name) self.nodes[sort] = node def flatten_nodes(self): """Return a list of all the node protos in aggregation sorted order.""" if not self.flattened: self.flattened = [None] * len(self.nodes) for idx, node in _six.iteritems(self.nodes): self.flattened[idx] = node for n in self.nodes: if n is None: raise RuntimeError("Aggregate was missing argument.") if self.aggregation == OpHint.AGGREGATE_FIRST: self.flattened = self.flattened[:1] elif self.aggregation == OpHint.AGGREGATE_LAST: self.flattened = self.flattened[-1:] elif self.aggregation == OpHint.AGGREGATE_STACK: pass else: raise ValueError( "Invalid aggregation type %r specified" % self.aggregation) return self.flattened def flatten(self): """Return a list of all node names in aggregation sorted sorter.""" return [_tensor_name_base(x.name) for x in self.flatten_nodes()] def aggregate_and_return_name_for_input(self, out_graphdef): """This adds the nodes to out_graphdef and returns an aggregated output. In particular, if you have 4 inputs to a hint stub, this will be the node that you can use as an output. I.e. you have 4 timesteps from a static rnn, then a fused UnidriecitonalLSTM will expect 1 input with all 4 time steps. So here we make a pack and return the output name of that pack. Args: out_graphdef: A graphdef that is ready to have this input added. Returns: The name of a pack that aggregates this node. """ flattened = self.flatten_nodes() if (self.aggregation == OpHint.AGGREGATE_FIRST) or ( self.aggregation == OpHint.AGGREGATE_LAST): assert len(flattened) == 1 if len(flattened) == 1 and self.aggregation != OpHint.AGGREGATE_STACK: return _tensor_name_base(flattened[0].name) else: new_node = _node_def_pb2.NodeDef() new_node.op = "Pack" new_node.name = "OpHintStack-%s" % flattened[0].name new_node.attr["N"].i = len(flattened) new_node.attr["T"].type = flattened[0].attr["T"].type for discrete in flattened: new_node.input.append(_tensor_name_base(discrete.name)) out_graphdef.node.extend([new_node]) return new_node.name def aggregate_and_return_name_for_output(self, fused_op_name, output_index, out_graphdef): """This adds to `out_graphdef` all the unaggregated outputs. I.e. we are outputting from a fused stub, but we need to make it compatible with the unfused original graph so we insert an unpack. Ideally in a later stage the unpack -> pack sequences will be removed. Args: fused_op_name: The name of the stub we are in the process of fusing. output_index: The output output_index this object represents. out_graphdef: The graphdef we are in the process of buildings Returns: The type of the aggregated output (so we can finish building the stub op). """ flattened = self.flatten_nodes() if (self.aggregation == OpHint.AGGREGATE_FIRST) or ( self.aggregation == OpHint.AGGREGATE_LAST): assert len(flattened) == 1 if len(flattened) == 1 and self.aggregation != OpHint.AGGREGATE_STACK: temp_op = _LiteSingleOperand(flattened[0]) return temp_op.aggregate_and_return_name_for_output( fused_op_name, output_index, out_graphdef) else: stack_node = _node_def_pb2.NodeDef() stack_node.op = "Unpack" stack_node.name = "OpHintUnstack-%s" % flattened[0].name stack_node.attr["num"].i = len(flattened) output_type = flattened[0].attr["T"].type stack_node.attr["T"].type = output_type stack_node.input.append(_tensorflow_output_name( fused_op_name, output_index)) out_graphdef.node.extend([stack_node]) for idx, discrete in enumerate(flattened): output_node = _copy.deepcopy(discrete) del output_node.input[:] output_node.input.append(_tensorflow_output_name(stack_node.name, idx)) out_graphdef.node.extend([output_node]) return output_type def __str__(self): s = "\t\t\tAGGREGATE %s\n" % self.aggregation for sort, val in self.names.iteritems(): s += "\t\t\t%d: %s\n" % (sort, val) return s class _LiteFuncCall(object): """Represent a TensorFlow Lite custom function. This is uses to accumulate found hints in the graphdef into a single conceptual unit. Attributes: inputs: inputs to the op (hash from index # to argument) outputs: outputs to the op (hash from index # to argument) function_name: the tflite custom op name to use uuid: a unique call id for this particular call (i.e. multiple function calls would have the same function_name but different uuids. params: A param name to key value for op constant data. I.e. for axis on a reduction, strides on a convolution, etc. level: Level of the OpHint. children_inputs_mappings: If the Ophint has children, children inputs mappings indicate how their inputs & outputs are mapped. """ def __init__(self): self.inputs = {} self.outputs = {} self.function_name = None self.uuid = None self.params = {} self.level = -1 self.children_inputs_mappings = {} def flattened_inputs_and_outputs(self): """Return a list of inputs and outputs in a flattened format. Returns: Tuple of (inputs, outputs). where input and output i a list of names. """ def _flatten(input_or_output_dict): flattened_items = [] for item in input_or_output_dict.values(): flattened_items.extend(item.flatten()) return flattened_items return _flatten(self.inputs), _flatten(self.outputs) def __str__(self): def format_args(items): s = "" for idx, item in items.iteritems(): s += ("\t\t%d:\n" % idx) + str(item) return s inputs_str = "\tInputs\n" + format_args(self.inputs) outputs_str = "\tOutputs\n" + format_args(self.outputs) return ( "tflite function %s call %s level %d " "\n\tinputs:\n\t\t%s\n\toutputs:\n\t\t%s" % (self.function_name, self.uuid, self.level, inputs_str, outputs_str)) def _find_all_hints_in_nodes(nodes): """Look at the all the input nodes and return a list of LiteFuncCall objs. Args: nodes: A TensorFlow graph_def to look for LiteFuncCalls. Returns: a list of `LifeFuncCall` objects in the form """ func_calls = _collections.defaultdict(_LiteFuncCall) for node in nodes: attr = node.attr # This is an op hint if it has a FUNCTION_UUID_ATTR, otherwise skip if (OpHint.FUNCTION_UUID_ATTR not in attr or not attr[OpHint.FUNCTION_UUID_ATTR].s): continue uuid = attr[OpHint.FUNCTION_UUID_ATTR].s # Start building function call_def = func_calls[uuid] call_def.uuid = uuid call_def.function_name = attr[OpHint.FUNCTION_NAME_ATTR].s call_def.level = attr[OpHint.FUNCTION_LEVEL_ATTR].i # Get sorting and aggregation information sort = (attr[OpHint.FUNCTION_SORT_INDEX_ATTR].i if OpHint.FUNCTION_SORT_INDEX_ATTR in attr else None) if sort == -1: sort = None aggregation = None if OpHint.FUNCTION_AGGREGATE_ATTR in attr: aggregation = _compat.as_text(attr[OpHint.FUNCTION_AGGREGATE_ATTR].s) if OpHint.CHILDREN_INPUTS_MAPPINGS in attr: call_def.children_inputs_mappings = _json.loads( _compat.as_text(attr[OpHint.CHILDREN_INPUTS_MAPPINGS].s)) # Add the input or output def put_operand(stuff, index, sort, operand, aggregation): """Add a given index into the function structure.""" if sort is None: stuff[index] = _LiteSingleOperand(operand) else: if index not in stuff: stuff[index] = _LiteAggregateOperand(aggregation) stuff[index].add(sort, operand) if OpHint.FUNCTION_INPUT_INDEX_ATTR in attr: put_operand(call_def.inputs, attr[OpHint.FUNCTION_INPUT_INDEX_ATTR].i, sort, node, aggregation) if OpHint.FUNCTION_OUTPUT_INDEX_ATTR in attr: put_operand(call_def.outputs, attr[OpHint.FUNCTION_OUTPUT_INDEX_ATTR].i, sort, node, aggregation) # Remember attributes for a in attr: if a.startswith("_tflite_attr_"): call_def.params[a.replace("_tflite_attr_,", "")] = attr[a].tensor return func_calls def _extract_topology_sequence_mapping(nodes): return dict( (_tensor_name_base(node.name), idx) for idx, node in enumerate(nodes)) def _find_children_hints_in_while_loop(function_def, nodes_mapping): """Find children hints and all nodes inside the while loop. Args: function_def: Function def of the while loop. nodes_mapping: While loop input_arg : real node name. Returns: Ordered children hints and all re-mapped nodes inside the while loop. """ new_nodes = [] # Make nodes inside function def inputs point to the real nodes. for node in function_def.node_def: for i, _ in enumerate(node.input): if node.input[i] in nodes_mapping: node.input[i] = nodes_mapping[node.input[i]] new_nodes.append(_copy.deepcopy(node)) name_to_seq_num = _extract_topology_sequence_mapping(function_def.node_def) children_hints = _find_all_hints_in_nodes(new_nodes) children_hints_q = [] # Ordered by the outputs. for hint in _six.itervalues(children_hints): _, output_names = hint.flattened_inputs_and_outputs() seq = name_to_seq_num[output_names[0]] for output_name in output_names: seq = min(seq, name_to_seq_num[output_name]) children_hints_q.append((seq, hint)) children_hints_q.sort(key=lambda tup: tup[0]) ordered_children_hints = [x[1] for x in children_hints_q] return ordered_children_hints, new_nodes def _find_children_hints(call, graph_def): """Find all children hints. For a given OpHint, we find all children hints inside it, we also copy all the nodes inside function defs (if applicable) to the original graph_def, they are returned in a list as well. Args: call: Parent OpHint that contains children ophints. graph_def: Original graph def. Returns: Ordered children hints inside the parent ophint; new graph def that contains nodes inside function defs (if applicable); nodes inside function defs. """ name_to_input_name, _, _ = _extract_graph_summary(graph_def) input_names, output_names = call.flattened_inputs_and_outputs() reachable_by_input = _bfs_for_reachable_nodes(input_names, name_to_input_name) reachable_by_output = _bfs_for_reachable_nodes(output_names, name_to_input_name) output_nodes_set = set(output_names) children_hints = [] out = _graph_pb2.GraphDef() out.library.CopyFrom(graph_def.library) out.versions.CopyFrom(graph_def.versions) function_def_nodes = set() for node in graph_def.node: out.node.extend([_copy.deepcopy(node)]) n = _tensor_name_base(node.name) if n in reachable_by_output: if n not in reachable_by_input and n not in output_nodes_set: # special handle for while loop function def. if node.op == "While": body_name = node.attr["body"].func.name inputs_outside_loop = node.input for function_def in graph_def.library.function: if function_def.signature.name == body_name: function_inputs = function_def.signature.input_arg assert len(inputs_outside_loop) == len(function_inputs) nodes_mapping = {} for i, function_input in enumerate(function_inputs): nodes_mapping[function_input.name] = inputs_outside_loop[i] # TODO(b/123050804): Consider use grappler. (children_hints_in_loop, new_nodes) = _find_children_hints_in_while_loop( function_def, nodes_mapping) function_def_nodes.update([x.name for x in new_nodes]) children_hints.extend(children_hints_in_loop) out.node.extend(new_nodes) return children_hints, out, function_def_nodes def _tensor_name_base(full_tensor_name): """Removes the device assignment code from a tensor. e.g. _tensor_name_base("foo:3") => "foo" Args: full_tensor_name: A tensor name that is annotated with a device placement (this is what tensor flow introspection gives). Returns: A name without any device assignment. """ if full_tensor_name.startswith("^"): return full_tensor_name[1:] return full_tensor_name.split(":")[0] def _tensorflow_output_name(tensor_name, output_index): return tensor_name if output_index == 0 else "%s:%d" % (tensor_name, output_index) # TODO(aselle): This should be converted to grappler in the future. def _check_subgraph_closed(n, reachable_by_input, input_nodes_set, name_to_input_name): """Checks to make sure node only connects to predecessor graph through inputs. Args: n: Node to check reachable_by_input: Nodes that are reachable by all inputs of subgraph input_nodes_set: The set of nodes that are "inputs". name_to_input_name: Maps from name to the list of inputs. Raises: TypeError: If the given node uses items past inputs directly. """ next_to_visit = [n] visited = set() while next_to_visit: current_node = next_to_visit.pop() visited.add(current_node) if (current_node in reachable_by_input and current_node not in input_nodes_set): raise TypeError( "Node %s uses input %s not in input_nodes." % (n, current_node)) if current_node not in input_nodes_set: next_to_visit += [ input_node for input_node in name_to_input_name[current_node] if input_node not in visited ] # TODO(aselle): This should be converted to grappler in the future. def _convert_single_op_hint_to_stub(call, graph_def, function_def_nodes=None, is_last_run=True): """Given a graph_def, converts `call` into a stub and returns a new graph_def. Args: call: A single function call to be converted. graph_def: A graph_def to use as input (that has call obviously). function_def_nodes: Nodes inside the function def those are not connected to the graph. is_last_run: Whether it is the last run for a given pass (for OpHint has children). Returns: A new transformed graph-def that has call as a stub (single op). Note: after this process, the graph_def can no longer be loaded into the tensorflow runtime, so all future manipulations are done in graph_def level. """ if function_def_nodes is None: function_def_nodes = set() name_to_input_name, name_to_node, name_to_seq_num = _extract_graph_summary( graph_def) input_names, output_names = call.flattened_inputs_and_outputs() reachable_by_input = _bfs_for_reachable_nodes(input_names, name_to_input_name) reachable_by_output = _bfs_for_reachable_nodes(output_names, name_to_input_name) output_nodes_set = set(output_names) nodes_after_fuse = [] nodes_deleted_by_fuse = set() # Classify each node. We want to keep everything reachable by input, but # we don't know if things that are not reachable by output or input (things # after fusing). for node in graph_def.node: n = _tensor_name_base(node.name) if n in reachable_by_output: if n not in reachable_by_input and n not in output_nodes_set: nodes_deleted_by_fuse.add(n) elif n not in reachable_by_input and n not in function_def_nodes: # n is a node that after all the fusings, so keep it. nodes_after_fuse.append(n) else: # In the last run, n is a node that is randomly in the graph but not # connected to the chain of dependencies, we will delete n, otherwise # we keep them. if not is_last_run: nodes_after_fuse.append(n) # Make a new graphdef with all the pre-input and input nodes out = _graph_pb2.GraphDef() reachable_by_input_sorted = sorted( list(reachable_by_input), key=lambda n: name_to_seq_num[n]) for node in reachable_by_input_sorted: out.node.extend([_copy.deepcopy(name_to_node[node])]) # Create any stacks to aggregate arguments into to a single input # i.e. for static_rnn's. # TODO(aselle): Check that the inputs are complete i.e. 0 to n-1 sorted_input_indices = list(call.inputs.keys()) sorted_input_indices.sort() sorted_output_indices = list(call.outputs.keys()) sorted_output_indices.sort() new_node = _node_def_pb2.NodeDef() # Delegate to each operand to produce the proper new input for this stub node. # In particular, an aggregate input will now be a Pack of some previously # non-fused things. for input_index in sorted_input_indices: inputs = call.inputs[input_index] input_name = inputs.aggregate_and_return_name_for_input(out) new_node.input.append(input_name) new_node.attr[OpHint.TFLITE_INPUT_INDICES].list.i.extend(sorted_input_indices) # Create the function new_node.op = call.function_name new_node.name = call.uuid out.node.extend([new_node]) # Now call each output argument to give them a chance to make the proper # output type and add it to our new_node. output_dtypes = [] for output_index in sorted_output_indices: output = call.outputs[output_index] output_dtype = ( output.aggregate_and_return_name_for_output(new_node.name, output_index, out)) output_dtypes.append(output_dtype) new_node.attr["_output_types"].list.type[:] = output_dtypes # TODO(aselle): what is right here? new_node.attr["_output_quantized"].b = False # Add post output nodes that do not depend on the outputs for n in nodes_after_fuse: should_keep = True for input_name in name_to_input_name[n]: if input_name in nodes_deleted_by_fuse: should_keep = False if should_keep: out.node.extend([_copy.deepcopy(name_to_node[n])]) # Misc. graph_def data that needs copying. out.library.CopyFrom(graph_def.library) out.versions.CopyFrom(graph_def.versions) return out # TODO(aselle): This should be converted to grappler in the future. def _remove_one_redundant_stack_unstack(in_graph_def): """Removes a stack->unstack pattern from in_graph_def in a returned graph. Args: in_graph_def: Graph def to use as input. Returns: Simplified tuple (graph_def, changed_something) where changed_something is true if anything was done. """ name_to_input_name, name_to_node, name_to_seq_num = _extract_graph_summary( in_graph_def) del name_to_seq_num # TODO(aselle): Make this not hardcoded. do_generic_pack_unpack = True out = _graph_pb2.GraphDef() out.library.CopyFrom(in_graph_def.library) out.versions.CopyFrom(in_graph_def.versions) for n in in_graph_def.node: node_name = _tensor_name_base(n.name) if not node_name.startswith("OpHintStack") and not n.op.startswith("Pack"): continue next_to_visit = [node_name] visited = set() unpack_nodes = set() pack_node = node_name # Find a pattern of unstack connected to a stack (with identities # in between. matches_pattern = True is_hint_created_stack = False while next_to_visit: current_node_name = next_to_visit[0] visited.add(current_node_name) del next_to_visit[0] node = name_to_node[current_node_name] is_op_hint_stack = node.name.startswith("OpHintStack") is_op_hint_unstack = node.name.startswith("OpHintUnstack") if (node.op == "Identity" or is_op_hint_stack or (do_generic_pack_unpack and node.op == "Pack")): is_hint_created_stack |= is_op_hint_stack next_to_visit += [ input_node for input_node in name_to_input_name[current_node_name] if input_node not in visited ] elif (is_op_hint_unstack or (do_generic_pack_unpack and node.op == "Unpack")): unpack_nodes.add(node.name) is_hint_created_stack &= is_op_hint_unstack else: matches_pattern = False break visited.add(node.name) if matches_pattern and len(unpack_nodes) == 1: pack_node = node_name # Check to see if anyone depends on the intermediate identity or the # Unstacked form no_external_dependency = True for other_n in in_graph_def.node: if other_n.name in visited: continue for input_tensor in name_to_input_name[other_n.name]: input_op = _tensor_name_base(input_tensor) if input_op in visited and input_op != pack_node: no_external_dependency = False # Proceed with the substitution if the stack/unstack pair was created # through hints, or that it was not, but nobody is consuming things # between the stack and unstack. if is_hint_created_stack or no_external_dependency: end = unpack_nodes.pop() end_input = name_to_node[end].input[0] # All nodes that depend on the final stack need to be redone to use for other_n in in_graph_def.node: node_name = _tensor_name_base(other_n.name) if node_name not in visited: new_node = _copy.deepcopy(other_n) new_node.input[:] = [ (end_input if stripped == pack_node else non_stripped) for stripped, non_stripped in zip( name_to_input_name[node_name], new_node.input[:]) ] out.node.extend([new_node]) return out, True return in_graph_def, False def _remove_redundant_stack_unstack(graph_def): curr = graph_def del graph_def changed_stuff = True while changed_stuff: curr, changed_stuff = _remove_one_redundant_stack_unstack(curr) return curr def _get_correct_mapping(original_index, nodes): # Special handle for the index is -1 case. # If it is -1, return the last index. if original_index == -1: node_indices = nodes.keys() node_indices = sorted(node_indices) return node_indices[-1] else: return original_index return original_index def _convert_op_hints_to_stubs_helper( graph_def, write_callback=lambda sess, graph_def: None): """Converts a graph_def to a new graph_def where all op hints are stubbed. Args: graph_def: A graph def that we should convert. write_callback: A function pointer that can be used to write intermediate steps of graph transformation (optional). Returns: A new stubbed graph_def. """ hints = _find_all_hints_in_nodes(graph_def.node) hints_q = [] for hint in _six.itervalues(hints): hints_q.append((hint.level, hint.uuid)) hints_q.sort(key=lambda tup: tup[0]) for i in range(len(hints_q) - 1, -1, -1): level, hint_uuid = hints_q[i] curr_graph_def = graph_def del graph_def # prevent using graph_def again (common source of error) for i in range(len(hints_q) - 1, -1, -1): level, hint_uuid = hints_q[i] if level >= 2: children_hints, curr_graph_def, function_def_nodes = _find_children_hints( hints[hint_uuid], curr_graph_def) # pylint: disable=superfluous-parens assert (len(children_hints) > 0) # pylint: disable=g-explicit-length-test # pylint: enable=superfluous-parens # Re-wire the children hints inputs/outputs, so latter child's inputs # connect to previous child node's outputs. children_inputs_mappings = hints[hint_uuid].children_inputs_mappings for j, child_hint in enumerate(children_hints): if j == 0: for mapping in children_inputs_mappings["parent_first_child_input"]: parent_input_index = _get_correct_mapping( mapping["parent_ophint_input_index"], hints[hint_uuid].inputs) child_input_index = _get_correct_mapping( mapping["first_child_ophint_input_index"], child_hint.inputs) child_hint.inputs[child_input_index] = hints[hint_uuid].inputs[ parent_input_index] else: for mapping in children_inputs_mappings[ "internal_children_input_output"]: input_index = _get_correct_mapping(mapping["child_input_index"], child_hint.inputs) output_index = _get_correct_mapping(mapping["child_output_index"], children_hints[j - 1].outputs) child_hint.inputs[input_index] = children_hints[ j - 1].outputs[output_index] if j == len(children_hints) - 1: for mapping in children_inputs_mappings["parent_last_child_output"]: parent_output_index = _get_correct_mapping( mapping["parent_output_index"], hints[hint_uuid].outputs) child_output_index = _get_correct_mapping( mapping["child_output_index"], child_hint.outputs) child_hint.outputs[child_output_index] = hints[hint_uuid].outputs[ parent_output_index] for j, child_hint in enumerate(children_hints): curr_graph_def = _convert_single_op_hint_to_stub( child_hint, curr_graph_def, function_def_nodes, j == len(children_hints) - 1) else: curr_graph_def = _convert_single_op_hint_to_stub(hints[hint_uuid], curr_graph_def) write_callback(curr_graph_def, "initial") # The stubbing process can create stacks/unstacks in the case of LSTMs # remove them. curr_graph_def = _remove_redundant_stack_unstack(curr_graph_def) return curr_graph_def def find_all_hinted_output_nodes(session=None, graph_def=None): """Find all Ophints output nodes in the graph. This is used to get all the output nodes those are ophinted, it is important for operation like convert_variables_to_constants keep all ophints structure. Note: only one of session or graph_def should be used, not both. Why this can be useful? Some TensorFlow ops (e.g. bidirectional rnn), can generate multiple outputs for unfused subgraph. If not all output nodes are consumed, graph optimization can potentially drop the unused nodes and cause ophints in an invalid states (due to missing ophinted output nodes). So it's important for us to find all those hinted output nodes and make sure they're not discarded away. Args: session: A TensorFlow session that contains the graph to convert. graph_def: A graph def that we should convert. Returns: A list of OpHints output nodes. Raises: ValueError: If both session and graph_def are provided. """ if session is not None and graph_def is not None: raise ValueError("Provide only one of session and graph_def.") hinted_outputs_nodes = [] if session is not None: hints = _find_all_hints_in_nodes(session.graph_def.node) elif graph_def is not None: hints = _find_all_hints_in_nodes(graph_def.node) for hint in _six.itervalues(hints): _, output_nodes = hint.flattened_inputs_and_outputs() hinted_outputs_nodes.extend(output_nodes) return hinted_outputs_nodes @_tf_export(v1=["lite.experimental.convert_op_hints_to_stubs"]) def convert_op_hints_to_stubs(session=None, graph_def=None, write_callback=lambda graph_def, comments: None): """Converts a graphdef with LiteOp hints into stub operations. This is used to prepare for toco conversion of complex intrinsic usages. Note: only one of session or graph_def should be used, not both. Args: session: A TensorFlow session that contains the graph to convert. graph_def: A graph def that we should convert. write_callback: A function pointer that can be used to write intermediate steps of graph transformation (optional). Returns: A new graphdef with all ops contained in OpHints being replaced by a single op call with the right parameters. Raises: ValueError: If both session and graph_def are provided. """ if session is not None and graph_def is not None: raise ValueError("Provide only one of session and graph_def.") if session is not None: return _convert_op_hints_to_stubs_helper(session.graph_def, write_callback) elif graph_def is not None: return _convert_op_hints_to_stubs_helper(graph_def, write_callback) else: raise ValueError("Must specify session or graph_def as input.") _allowed_symbols = [ "OpHint", "convert_op_hints_to_stubs", "convert_op_hints_to_stubs_new", "find_all_hinted_output_nodes" ] remove_undocumented(__name__, _allowed_symbols)
tensorflow-master
tensorflow/lite/python/op_hint.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Converts a frozen graph into a TFLite FlatBuffer.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import enum # pylint: disable=g-bad-import-order import os as _os import platform as _platform import subprocess as _subprocess import tempfile as _tempfile from tensorflow.lite.python import lite_constants from tensorflow.lite.python import util from tensorflow.lite.python import wrap_toco from tensorflow.lite.toco import model_flags_pb2 as _model_flags_pb2 from tensorflow.lite.toco import toco_flags_pb2 as _toco_flags_pb2 from tensorflow.lite.toco import types_pb2 as _types_pb2 from tensorflow.python.platform import resource_loader as _resource_loader from tensorflow.python.util import deprecation from tensorflow.python.util.tf_export import tf_export as _tf_export # Find the toco_from_protos binary using the resource loader if using from # bazel, otherwise we are in a pip where console_scripts already has # the toco_from_protos tool. if lite_constants.EXPERIMENTAL_USE_TOCO_API_DIRECTLY: _toco_from_proto_bin = "" else: _toco_from_proto_bin = _resource_loader.get_path_to_datafile( "../toco/python/toco_from_protos") if _toco_from_proto_bin and not _os.path.exists(_toco_from_proto_bin): _toco_from_proto_bin = "toco_from_protos" def _try_convert_to_unicode(output): if output is None: return u"" if isinstance(output, bytes): try: return output.decode() except UnicodeDecodeError: pass return output @_tf_export("lite.OpsSet") class OpsSet(enum.Enum): """Enum class defining the sets of ops available to generate TFLite models. WARNING: Experimental interface, subject to change. """ # Convert model using TensorFlow Lite builtin ops. TFLITE_BUILTINS = "TFLITE_BUILTINS" # Convert model using TensorFlow ops. Not all TensorFlow ops are available. # WARNING: Experimental interface, subject to change. SELECT_TF_OPS = "SELECT_TF_OPS" # Convert model using only TensorFlow Lite quantized int8 operations. # Specifying this will throw an error for operations that do not yet have # quantized implementations. TFLITE_BUILTINS_INT8 = "TFLITE_BUILTINS_INT8" def __str__(self): return self.value @staticmethod def get_options(): """Returns a list of OpsSet options as a list of strings.""" return [str(option) for option in list(OpsSet)] class ConverterError(Exception): """Raised when an error occurs during model conversion.""" pass def toco_convert_protos(model_flags_str, toco_flags_str, input_data_str): """Convert `input_data_str` according to model and toco parameters. Unless you know what you are doing consider using the more friendly `tf.compat.v1.lite.toco_convert`. Args: model_flags_str: Serialized proto describing model properties, see `toco/model_flags.proto`. toco_flags_str: Serialized proto describing conversion properties, see `toco/toco_flags.proto`. input_data_str: Input data in serialized form (e.g. a graphdef is common) Returns: Converted model in serialized form (e.g. a TFLITE model is common). Raises: ConverterError: When conversion fails in TFLiteConverter, usually due to ops not being supported. RuntimeError: When conversion fails, an exception is raised with the error message embedded. """ # TODO(aselle): When toco does not use fatal errors for failure, we can # switch this on. if not _toco_from_proto_bin: try: model_str = wrap_toco.wrapped_toco_convert(model_flags_str, toco_flags_str, input_data_str) return model_str except Exception as e: raise ConverterError("TOCO failed: %s" % e) # Windows and TemporaryFile are not that useful together, # since you cannot have two readers/writers. So we have to # make the temporaries and close and delete them explicitly. toco_filename, model_filename, input_filename, output_filename = ( None, None, None, None) try: # Build all input files with _tempfile.NamedTemporaryFile(delete=False) as fp_toco, \ _tempfile.NamedTemporaryFile(delete=False) as fp_model, \ _tempfile.NamedTemporaryFile(delete=False) as fp_input: toco_filename = fp_toco.name input_filename = fp_input.name model_filename = fp_model.name fp_model.write(model_flags_str) fp_toco.write(toco_flags_str) fp_input.write(input_data_str) fp_model.flush() fp_toco.flush() fp_input.flush() # Reserve an output file with _tempfile.NamedTemporaryFile(delete=False) as fp: output_filename = fp.name # Run cmd = [ _toco_from_proto_bin, model_filename, toco_filename, input_filename, output_filename ] cmdline = " ".join(cmd) is_windows = _platform.system() == "Windows" proc = _subprocess.Popen( cmdline, shell=True, stdout=_subprocess.PIPE, stderr=_subprocess.STDOUT, close_fds=not is_windows) stdout, stderr = proc.communicate() exitcode = proc.returncode if exitcode == 0: with open(output_filename, "rb") as fp: return fp.read() else: stdout = _try_convert_to_unicode(stdout) stderr = _try_convert_to_unicode(stderr) raise ConverterError( "TOCO failed. See console for info.\n%s\n%s\n" % (stdout, stderr)) finally: # Must manually cleanup files. for filename in [ toco_filename, input_filename, model_filename, output_filename]: try: _os.unlink(filename) except (OSError, TypeError): pass def build_toco_convert_protos(input_tensors, output_tensors, inference_type=lite_constants.FLOAT, inference_input_type=None, input_format=lite_constants.TENSORFLOW_GRAPHDEF, input_shapes=None, output_format=lite_constants.TFLITE, quantized_input_stats=None, default_ranges_stats=None, drop_control_dependency=True, reorder_across_fake_quant=False, allow_custom_ops=False, change_concat_input_ranges=False, post_training_quantize=False, dump_graphviz_dir=None, dump_graphviz_video=False, target_ops=None, allow_nonexistent_arrays=False): """Builds protocol buffers describing a conversion of a model using TOCO. Typically this is to convert from TensorFlow GraphDef to TFLite, in which case the default `input_format` and `output_format` are sufficient. Args: input_tensors: List of input tensors. Type and shape are computed using `foo.shape` and `foo.dtype`. output_tensors: List of output tensors (only .name is used from this). inference_type: Target data type of real-number arrays in the output file. Must be `{tf.float32, tf.uint8}`. (default tf.float32) inference_input_type: Target data type of real-number input arrays. Allows for a different type for input arrays in the case of quantization. Must be `{tf.float32, tf.uint8}`. (default `inference_type`) input_format: Type of data to read Currently must be `{TENSORFLOW_GRAPHDEF}`. (default TENSORFLOW_GRAPHDEF) input_shapes: Input array shape. It needs to be a list of the same length as `input_tensors`, or None. (default None) output_format: Output file format. Currently must be `{TFLITE, GRAPHVIZ_DOT}`. (default TFLITE) quantized_input_stats: List of tuples of floats representing the mean and standard deviation. Each tuple maps to the corresponding input tensor. Only need if `inference_input_type` is `QUANTIZED_UINT8`. real_input_value = (quantized_input_value - mean_value) / std_dev_value. (default None) default_ranges_stats: Tuple of integers representing (min, max) range values for all arrays without a specified range. Intended for experimenting with quantization via "dummy quantization". (default None) drop_control_dependency: Boolean indicating whether to drop control dependencies silently. This is due to TFLite not supporting control dependencies. (default True) reorder_across_fake_quant: Boolean indicating whether to reorder FakeQuant nodes in unexpected locations. Used when the location of the FakeQuant nodes is preventing graph transformations necessary to convert the graph. Results in a graph that differs from the quantized training graph, potentially causing differing arithmetic behavior. (default False) allow_custom_ops: Boolean indicating whether to allow custom operations. When false any unknown operation is an error. When true, custom ops are created for any op that is unknown. The developer will need to provide these to the TensorFlow Lite runtime with a custom resolver. (default False) change_concat_input_ranges: Boolean to change behavior of min/max ranges for inputs and outputs of the concat operator for quantized models. Changes the ranges of concat operator overlap when true. (default False) post_training_quantize: Boolean indicating whether to quantize the weights of the converted float model. Model size will be reduced and there will be latency improvements (at the cost of accuracy). (default False) dump_graphviz_dir: Full filepath of folder to dump the graphs at various stages of processing GraphViz .dot files. Preferred over --output_format=GRAPHVIZ_DOT in order to keep the requirements of the output file. (default None) dump_graphviz_video: Boolean indicating whether to dump the graph after every graph transformation. (default False) target_ops: Experimental flag, subject to change. Set of OpsSet options indicating which converter to use. (default set([OpsSet.TFLITE_BUILTINS])) allow_nonexistent_arrays: Allow specifying array names that don't exist or are unused in the final graph. (default False) Returns: model_flags, toco_flags: two protocol buffers describing the conversion process. Raises: ValueError: If the input tensor type is unknown Missing mean_values or std_dev_values RuntimeError: If TOCO fails to convert (in which case the runtime error's error text will contain the TOCO error log) """ toco = _toco_flags_pb2.TocoFlags() toco.input_format = input_format toco.output_format = output_format toco.inference_type = util.convert_dtype_to_tflite_type(inference_type) if inference_input_type: toco.inference_input_type = util.convert_dtype_to_tflite_type( inference_input_type) else: toco.inference_input_type = toco.inference_type toco.drop_control_dependency = drop_control_dependency toco.reorder_across_fake_quant = reorder_across_fake_quant toco.allow_custom_ops = allow_custom_ops toco.post_training_quantize = post_training_quantize if default_ranges_stats: toco.default_ranges_min = default_ranges_stats[0] toco.default_ranges_max = default_ranges_stats[1] if dump_graphviz_dir: toco.dump_graphviz_dir = dump_graphviz_dir toco.dump_graphviz_include_video = dump_graphviz_video if target_ops: if set(target_ops) == set([OpsSet.TFLITE_BUILTINS, OpsSet.SELECT_TF_OPS]): toco.enable_select_tf_ops = True elif set(target_ops) == set([OpsSet.SELECT_TF_OPS]): toco.enable_select_tf_ops = True toco.force_select_tf_ops = True model = _model_flags_pb2.ModelFlags() model.change_concat_input_ranges = change_concat_input_ranges for idx, input_tensor in enumerate(input_tensors): input_array = model.input_arrays.add() input_array.name = util.get_tensor_name(input_tensor) input_array.data_type = util.convert_dtype_to_tflite_type( input_tensor.dtype) if toco.inference_input_type == _types_pb2.QUANTIZED_UINT8: if not quantized_input_stats: raise ValueError("std_dev and mean must be defined when " "inference_input_type is QUANTIZED_UINT8.") input_array.mean_value, input_array.std_value = quantized_input_stats[idx] if input_shapes is None: shape = input_tensor.shape else: shape = input_shapes[idx] input_array.shape.dims.extend(map(int, shape)) for output_tensor in output_tensors: model.output_arrays.append(util.get_tensor_name(output_tensor)) model.allow_nonexistent_arrays = allow_nonexistent_arrays return model, toco def toco_convert_graph_def(input_data, input_arrays_with_shape, output_arrays, *args, **kwargs): """"Convert a model using TOCO. This function is used to convert GraphDefs that cannot be loaded into TensorFlow to TFLite. Conversion can be customized by providing arguments that are forwarded to `build_toco_convert_protos` (see documentation for details). Args: input_data: Input data (i.e. often `sess.graph_def`), input_arrays_with_shape: Tuple of strings representing input tensor names and list of integers representing input shapes (e.g., [("foo" : [1, 16, 16, 3])]). Use only when graph cannot be loaded into TensorFlow and when `input_tensors` is None. (default None) output_arrays: List of output tensors to freeze graph with. Use only when graph cannot be loaded into TensorFlow and when `output_tensors` is None. (default None) *args: See `build_toco_convert_protos`, **kwargs: See `build_toco_convert_protos`. Returns: The converted data. For example if TFLite was the destination, then this will be a tflite flatbuffer in a bytes array. Raises: Defined in `build_toco_convert_protos`. """ model_flags, toco_flags = build_toco_convert_protos( input_tensors=[], output_tensors=[], *args, **kwargs) for idx, (name, shape) in enumerate(input_arrays_with_shape): input_array = model_flags.input_arrays.add() if toco_flags.inference_input_type == _types_pb2.QUANTIZED_UINT8: if (("quantized_input_stats" not in kwargs) or (not kwargs["quantized_input_stats"])): raise ValueError("std_dev and mean must be defined when " "inference_input_type is QUANTIZED_UINT8.") input_array.mean_value, input_array.std_value = kwargs[ "quantized_input_stats"][idx] input_array.name = name input_array.shape.dims.extend(map(int, shape)) for name in output_arrays: model_flags.output_arrays.append(name) data = toco_convert_protos(model_flags.SerializeToString(), toco_flags.SerializeToString(), input_data.SerializeToString()) return data def toco_convert_impl(input_data, input_tensors, output_tensors, *args, **kwargs): """"Convert a model using TOCO. Typically this function is used to convert from TensorFlow GraphDef to TFLite. Conversion can be customized by providing arguments that are forwarded to `build_toco_convert_protos` (see documentation for details). Args: input_data: Input data (i.e. often `sess.graph_def`), input_tensors: List of input tensors. Type and shape are computed using `foo.shape` and `foo.dtype`. output_tensors: List of output tensors (only .name is used from this). *args: See `build_toco_convert_protos`, **kwargs: See `build_toco_convert_protos`. Returns: The converted data. For example if TFLite was the destination, then this will be a tflite flatbuffer in a bytes array. Raises: Defined in `build_toco_convert_protos`. """ model_flags, toco_flags = build_toco_convert_protos( input_tensors, output_tensors, *args, **kwargs) data = toco_convert_protos(model_flags.SerializeToString(), toco_flags.SerializeToString(), input_data.SerializeToString()) return data @_tf_export(v1=["lite.toco_convert"]) @deprecation.deprecated(None, "Use `lite.TFLiteConverter` instead.") def toco_convert(input_data, input_tensors, output_tensors, *args, **kwargs): """Convert a model using TOCO. Typically this function is used to convert from TensorFlow GraphDef to TFLite. Conversion can be customized by providing arguments that are forwarded to `build_toco_convert_protos` (see documentation for details). This function has been deprecated. Please use `lite.TFLiteConverter` instead. Args: input_data: Input data (i.e. often `sess.graph_def`), input_tensors: List of input tensors. Type and shape are computed using `foo.shape` and `foo.dtype`. output_tensors: List of output tensors (only .name is used from this). *args: See `build_toco_convert_protos`, **kwargs: See `build_toco_convert_protos`. Returns: The converted data. For example if TFLite was the destination, then this will be a tflite flatbuffer in a bytes array. Raises: Defined in `build_toco_convert_protos`. """ return toco_convert_impl(input_data, input_tensors, output_tensors, *args, **kwargs)
tensorflow-master
tensorflow/lite/python/convert.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for lite.py.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import tempfile from absl.testing import parameterized import numpy as np from tensorflow.lite.python import lite from tensorflow.lite.python import lite_constants from tensorflow.lite.python.convert import ConverterError from tensorflow.lite.python.interpreter import Interpreter from tensorflow.python import keras from tensorflow.python.client import session from tensorflow.python.eager import context from tensorflow.python.eager import def_function from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import gen_array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables from tensorflow.python.ops.variables import global_variables_initializer as _global_variables_initializer from tensorflow.python.platform import gfile from tensorflow.python.platform import resource_loader from tensorflow.python.platform import test from tensorflow.python.saved_model import saved_model from tensorflow.python.training.training_util import write_graph class FromConstructor(test_util.TensorFlowTestCase): # Tests invalid constructors using a dummy value for the GraphDef. def testInvalidConstructor(self): message = ('If input_tensors and output_tensors are None, both ' 'input_arrays_with_shape and output_arrays must be defined.') # `output_arrays` is not defined. with self.assertRaises(ValueError) as error: lite.TFLiteConverter( None, None, [], input_arrays_with_shape=[('input', [3, 9])]) self.assertEqual(message, str(error.exception)) # `input_arrays_with_shape` is not defined. with self.assertRaises(ValueError) as error: lite.TFLiteConverter(None, [], None, output_arrays=['output']) self.assertEqual(message, str(error.exception)) # Tests valid constructors using a dummy value for the GraphDef. def testValidConstructor(self): converter = lite.TFLiteConverter( None, None, None, input_arrays_with_shape=[('input', [3, 9])], output_arrays=['output']) self.assertFalse(converter._has_valid_tensors()) self.assertEqual(converter.get_input_arrays(), ['input']) with self.assertRaises(ValueError) as error: converter._set_batch_size(1) self.assertEqual( 'The batch size cannot be set for this model. Please use ' 'input_shapes parameter.', str(error.exception)) converter = lite.TFLiteConverter(None, ['input_tensor'], ['output_tensor']) self.assertTrue(converter._has_valid_tensors()) @test_util.run_v1_only('Incompatible with 2.0.') class FromSessionTest(test_util.TensorFlowTestCase): def testFloat(self): in_tensor = array_ops.placeholder( shape=[1, 16, 16, 3], dtype=dtypes.float32) out_tensor = in_tensor + in_tensor sess = session.Session() # Convert model and ensure model is not None. converter = lite.TFLiteConverter.from_session(sess, [in_tensor], [out_tensor]) tflite_model = converter.convert() self.assertTrue(tflite_model) # Check values from converted model. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(1, len(input_details)) self.assertEqual('Placeholder', input_details[0]['name']) self.assertEqual(np.float32, input_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == input_details[0]['shape']).all()) self.assertEqual((0., 0.), input_details[0]['quantization']) output_details = interpreter.get_output_details() self.assertEqual(1, len(output_details)) self.assertEqual('add', output_details[0]['name']) self.assertEqual(np.float32, output_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == output_details[0]['shape']).all()) self.assertEqual((0., 0.), output_details[0]['quantization']) def testString(self): in_tensor = array_ops.placeholder(shape=[4], dtype=dtypes.string) out_tensor = array_ops.reshape(in_tensor, shape=[2, 2]) sess = session.Session() # Convert model and ensure model is not None. converter = lite.TFLiteConverter.from_session(sess, [in_tensor], [out_tensor]) tflite_model = converter.convert() self.assertTrue(tflite_model) # Check values from converted model. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(1, len(input_details)) self.assertEqual('Placeholder', input_details[0]['name']) self.assertEqual(np.string_, input_details[0]['dtype']) self.assertTrue(([4] == input_details[0]['shape']).all()) output_details = interpreter.get_output_details() self.assertEqual(1, len(output_details)) self.assertEqual('Reshape', output_details[0]['name']) self.assertEqual(np.string_, output_details[0]['dtype']) self.assertTrue(([2, 2] == output_details[0]['shape']).all()) # TODO(b/122659643): Test setting/getting string data via the python # interpreter API after support has been added. def testQuantization(self): in_tensor_1 = array_ops.placeholder( shape=[1, 16, 16, 3], dtype=dtypes.float32, name='inputA') in_tensor_2 = array_ops.placeholder( shape=[1, 16, 16, 3], dtype=dtypes.float32, name='inputB') out_tensor = array_ops.fake_quant_with_min_max_args( in_tensor_1 + in_tensor_2, min=0., max=1., name='output') sess = session.Session() # Convert model and ensure model is not None. converter = lite.TFLiteConverter.from_session( sess, [in_tensor_1, in_tensor_2], [out_tensor]) converter.inference_type = lite_constants.QUANTIZED_UINT8 converter.quantized_input_stats = { 'inputA': (0., 1.), 'inputB': (0., 1.) } # mean, std_dev tflite_model = converter.convert() self.assertTrue(tflite_model) # Check values from converted model. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(2, len(input_details)) self.assertEqual('inputA', input_details[0]['name']) self.assertEqual(np.uint8, input_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == input_details[0]['shape']).all()) self.assertEqual((1., 0.), input_details[0]['quantization']) # scale, zero_point self.assertEqual('inputB', input_details[1]['name']) self.assertEqual(np.uint8, input_details[1]['dtype']) self.assertTrue(([1, 16, 16, 3] == input_details[1]['shape']).all()) self.assertEqual((1., 0.), input_details[1]['quantization']) # scale, zero_point output_details = interpreter.get_output_details() self.assertEqual(1, len(output_details)) self.assertEqual('output', output_details[0]['name']) self.assertEqual(np.uint8, output_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == output_details[0]['shape']).all()) self.assertTrue(output_details[0]['quantization'][0] > 0) # scale def testQuantizationInvalid(self): in_tensor_1 = array_ops.placeholder( shape=[1, 16, 16, 3], dtype=dtypes.float32, name='inputA') in_tensor_2 = array_ops.placeholder( shape=[1, 16, 16, 3], dtype=dtypes.float32, name='inputB') out_tensor = array_ops.fake_quant_with_min_max_args( in_tensor_1 + in_tensor_2, min=0., max=1., name='output') sess = session.Session() # Convert model and ensure model is not None. converter = lite.TFLiteConverter.from_session( sess, [in_tensor_1, in_tensor_2], [out_tensor]) converter.inference_type = lite_constants.QUANTIZED_UINT8 converter.quantized_input_stats = {'inputA': (0., 1.)} # mean, std_dev with self.assertRaises(ValueError) as error: converter.convert() self.assertEqual( 'Quantization input stats are not available for input tensors ' '\'inputB\'.', str(error.exception)) def testIntermediateInputArray(self): """Convert a model from an intermediate input array.""" in_tensor_init = array_ops.placeholder( shape=[1, 16, 16, 3], dtype=dtypes.float32) in_tensor_final = in_tensor_init + in_tensor_init out_tensor = in_tensor_final + in_tensor_final sess = session.Session() # Convert model and ensure model is not None. converter = lite.TFLiteConverter.from_session(sess, [in_tensor_final], [out_tensor]) tflite_model = converter.convert() self.assertTrue(tflite_model) # Check values from converted model. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(1, len(input_details)) self.assertEqual('add', input_details[0]['name']) self.assertEqual(np.float32, input_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == input_details[0]['shape']).all()) self.assertEqual((0., 0.), input_details[0]['quantization']) output_details = interpreter.get_output_details() self.assertEqual(1, len(output_details)) self.assertEqual('add_1', output_details[0]['name']) self.assertEqual(np.float32, output_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == output_details[0]['shape']).all()) self.assertEqual((0., 0.), output_details[0]['quantization']) def testSizeNoneInvalid(self): in_tensor = array_ops.placeholder(dtype=dtypes.float32) out_tensor = in_tensor + in_tensor sess = session.Session() # Test None as shape. converter = lite.TFLiteConverter.from_session(sess, [in_tensor], [out_tensor]) with self.assertRaises(ValueError) as error: converter.convert() self.assertEqual('Provide an input shape for input array \'Placeholder\'.', str(error.exception)) def testScalarValid(self): # Construct a graph using a scalar (empty shape) input. in_tensor = array_ops.placeholder(dtype=dtypes.float32, shape=[]) out_tensor = in_tensor + in_tensor sess = session.Session() # Test conversion with the scalar input shape. converter = lite.TFLiteConverter.from_session(sess, [in_tensor], [out_tensor]) tflite_model = converter.convert() self.assertTrue(tflite_model) # Check values from converted model. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(1, len(input_details)) self.assertEqual('Placeholder', input_details[0]['name']) self.assertEqual(np.float32, input_details[0]['dtype']) self.assertTrue(([] == input_details[0]['shape']).all()) output_details = interpreter.get_output_details() self.assertEqual(1, len(output_details)) self.assertEqual('add', output_details[0]['name']) self.assertEqual(np.float32, output_details[0]['dtype']) self.assertTrue(([] == input_details[0]['shape']).all()) # Validate inference using the scalar inputs/outputs. test_input = np.array(4.0, dtype=np.float32) expected_output = np.array(8.0, dtype=np.float32) interpreter.set_tensor(input_details[0]['index'], test_input) interpreter.invoke() output_data = interpreter.get_tensor(output_details[0]['index']) self.assertTrue((expected_output == output_data).all()) def testSizeInvalid(self): in_tensor = array_ops.placeholder( shape=[1, None, 16, 3], dtype=dtypes.float32) out_tensor = in_tensor + in_tensor sess = session.Session() # Test invalid shape. None after 1st dimension. converter = lite.TFLiteConverter.from_session(sess, [in_tensor], [out_tensor]) with self.assertRaises(ValueError) as error: converter.convert() self.assertEqual( 'None is only supported in the 1st dimension. Tensor ' '\'Placeholder\' has invalid shape \'[1, None, 16, 3]\'.', str(error.exception)) def testBatchSizeValid(self): in_tensor = array_ops.placeholder( shape=[None, 16, 16, 3], dtype=dtypes.float32) out_tensor = in_tensor + in_tensor sess = session.Session() # Convert model and ensure model is not None. converter = lite.TFLiteConverter.from_session(sess, [in_tensor], [out_tensor]) tflite_model = converter.convert() self.assertTrue(tflite_model) # Check values from converted model. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(1, len(input_details)) self.assertEqual('Placeholder', input_details[0]['name']) self.assertEqual(np.float32, input_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == input_details[0]['shape']).all()) self.assertEqual((0., 0.), input_details[0]['quantization']) output_details = interpreter.get_output_details() self.assertEqual(1, len(output_details)) self.assertEqual('add', output_details[0]['name']) self.assertEqual(np.float32, output_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == output_details[0]['shape']).all()) self.assertEqual((0., 0.), output_details[0]['quantization']) def testFreezeGraph(self): in_tensor = array_ops.placeholder( shape=[1, 16, 16, 3], dtype=dtypes.float32) var = variable_scope.get_variable( 'weights', shape=[1, 16, 16, 3], dtype=dtypes.float32) out_tensor = in_tensor + var sess = session.Session() sess.run(_global_variables_initializer()) # Convert model and ensure model is not None. converter = lite.TFLiteConverter.from_session(sess, [in_tensor], [out_tensor]) tflite_model = converter.convert() self.assertTrue(tflite_model) # Check values from converted model. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(1, len(input_details)) self.assertEqual('Placeholder', input_details[0]['name']) self.assertEqual(np.float32, input_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == input_details[0]['shape']).all()) self.assertEqual((0., 0.), input_details[0]['quantization']) output_details = interpreter.get_output_details() self.assertEqual(1, len(output_details)) self.assertEqual('add', output_details[0]['name']) self.assertEqual(np.float32, output_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == output_details[0]['shape']).all()) self.assertEqual((0., 0.), output_details[0]['quantization']) # TODO(nupurgarg): Verify value of contents in GraphViz. def testGraphviz(self): in_tensor = array_ops.placeholder( shape=[1, 16, 16, 3], dtype=dtypes.float32) out_tensor = in_tensor + in_tensor sess = session.Session() # Convert model and ensure model is not None. converter = lite.TFLiteConverter.from_session(sess, [in_tensor], [out_tensor]) converter.output_format = lite_constants.GRAPHVIZ_DOT graphviz_output = converter.convert() self.assertTrue(graphviz_output) # TODO(nupurgarg): Verify value of contents in GraphViz. def testDumpGraphviz(self): in_tensor = array_ops.placeholder( shape=[1, 16, 16, 3], dtype=dtypes.float32) out_tensor = in_tensor + in_tensor sess = session.Session() # Convert model and ensure model is not None. converter = lite.TFLiteConverter.from_session(sess, [in_tensor], [out_tensor]) graphviz_dir = self.get_temp_dir() converter.dump_graphviz_dir = graphviz_dir tflite_model = converter.convert() self.assertTrue(tflite_model) # Ensure interpreter is able to allocate and check graphviz data. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() num_items_graphviz = len(os.listdir(graphviz_dir)) self.assertTrue(num_items_graphviz) # Convert model and ensure model is not None. converter = lite.TFLiteConverter.from_session(sess, [in_tensor], [out_tensor]) graphviz_dir = self.get_temp_dir() converter.dump_graphviz_dir = graphviz_dir converter.dump_graphviz_video = True tflite_model = converter.convert() self.assertTrue(tflite_model) # Ensure graphviz folder has more data after using video flag. num_items_graphviz_video = len(os.listdir(graphviz_dir)) self.assertTrue(num_items_graphviz_video > num_items_graphviz) def testInferenceInputType(self): in_tensor = array_ops.placeholder( shape=[1, 16, 16, 3], dtype=dtypes.float32) out_tensor = in_tensor + in_tensor sess = session.Session() # Convert model and ensure model is not None. converter = lite.TFLiteConverter.from_session(sess, [in_tensor], [out_tensor]) converter.inference_input_type = lite_constants.QUANTIZED_UINT8 converter.quantized_input_stats = {'Placeholder': (0., 1.)} # mean, std_dev tflite_model = converter.convert() self.assertTrue(tflite_model) # Check values from converted model. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(1, len(input_details)) self.assertEqual('Placeholder', input_details[0]['name']) self.assertEqual(np.uint8, input_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == input_details[0]['shape']).all()) self.assertEqual((1., 0.), input_details[0]['quantization']) output_details = interpreter.get_output_details() self.assertEqual(1, len(output_details)) self.assertEqual('add', output_details[0]['name']) self.assertEqual(np.float32, output_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == output_details[0]['shape']).all()) def testDefaultRangesStats(self): in_tensor = array_ops.placeholder( shape=[1, 16, 16, 3], dtype=dtypes.float32) out_tensor = in_tensor + in_tensor sess = session.Session() # Convert model and ensure model is not None. converter = lite.TFLiteConverter.from_session(sess, [in_tensor], [out_tensor]) converter.inference_type = lite_constants.QUANTIZED_UINT8 converter.quantized_input_stats = {'Placeholder': (0., 1.)} # mean, std_dev converter.default_ranges_stats = (0, 6) # min, max tflite_model = converter.convert() self.assertTrue(tflite_model) # Check values from converted model. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(1, len(input_details)) self.assertEqual('Placeholder', input_details[0]['name']) self.assertEqual(np.uint8, input_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == input_details[0]['shape']).all()) self.assertEqual((1., 0.), input_details[0]['quantization']) output_details = interpreter.get_output_details() self.assertEqual(1, len(output_details)) self.assertEqual('add', output_details[0]['name']) self.assertEqual(np.uint8, output_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == output_details[0]['shape']).all()) self.assertTrue(output_details[0]['quantization'][0] > 0) # scale def testPostTrainingQuantizeDeprecatedAttribute(self): in_tensor_1 = array_ops.placeholder( shape=[33, 33], dtype=dtypes.float32, name='inputA') in_tensor_2 = constant_op.constant( np.random.uniform(low=-10., high=10., size=(33, 33)), shape=[33, 33], dtype=dtypes.float32, name='inputB') out_tensor = math_ops.matmul(in_tensor_1, in_tensor_2, name='output') sess = session.Session() quantized_converter = lite.TFLiteConverter.from_session( sess, [in_tensor_1], [out_tensor]) self.assertFalse(quantized_converter.post_training_quantize) quantized_converter.post_training_quantize = True self.assertTrue(quantized_converter.post_training_quantize) self.assertEqual(quantized_converter.optimizations, [lite.Optimize.DEFAULT]) quantized_tflite = quantized_converter.convert() self.assertTrue(quantized_tflite) def testPostTrainingQuantize(self): np.random.seed(0) # We need the tensor to have more than 1024 elements for quantize_weights # to kick in. Thus, the [33, 33] shape. in_tensor_1 = array_ops.placeholder( shape=[33, 33], dtype=dtypes.float32, name='inputA') in_tensor_2 = constant_op.constant( np.random.uniform(low=-10., high=10., size=(33, 33)), shape=[33, 33], dtype=dtypes.float32, name='inputB') out_tensor = math_ops.matmul(in_tensor_1, in_tensor_2, name='output') sess = session.Session() # Convert float model. float_converter = lite.TFLiteConverter.from_session(sess, [in_tensor_1], [out_tensor]) float_tflite = float_converter.convert() self.assertTrue(float_tflite) # Convert quantized weights model. quantized_converter = lite.TFLiteConverter.from_session( sess, [in_tensor_1], [out_tensor]) quantized_converter.optimizations = [lite.Optimize.DEFAULT] quantized_tflite = quantized_converter.convert() self.assertTrue(quantized_tflite) # Ensure that the quantized weights tflite model is smaller. self.assertTrue(len(quantized_tflite) < len(float_tflite)) def _getCalibrationQuantizeModel(self): np.random.seed(0) inp = array_ops.placeholder( dtype=dtypes.float32, shape=(1, 5, 5, 3), name='input') conv = nn_ops.conv2d( inp, filter=array_ops.ones([3, 3, 3, 16]), strides=[1, 1, 1, 1], padding='SAME') output = nn_ops.relu(conv, name='output') def calibration_gen(): for _ in range(5): yield [np.random.uniform(-1, 1, size=(1, 5, 5, 3)).astype(np.float32)] return (inp, output, calibration_gen) def testPostTrainingCalibrateAndQuantize(self): inp, output, calibration_gen = self._getCalibrationQuantizeModel() sess = session.Session() # Convert float model. float_converter = lite.TFLiteConverter.from_session(sess, [inp], [output]) float_tflite = float_converter.convert() self.assertTrue(float_tflite) # Convert quantized model. quantized_converter = lite.TFLiteConverter.from_session( sess, [inp], [output]) quantized_converter.optimizations = [lite.Optimize.DEFAULT] quantized_converter.representative_dataset = calibration_gen quantized_tflite = quantized_converter.convert() self.assertTrue(quantized_tflite) # The default input and output types should be float. interpreter = Interpreter(model_content=quantized_tflite) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(1, len(input_details)) self.assertEqual(np.float32, input_details[0]['dtype']) output_details = interpreter.get_output_details() self.assertEqual(1, len(output_details)) self.assertEqual(np.float32, output_details[0]['dtype']) # Ensure that the quantized weights tflite model is smaller. self.assertLess(len(quantized_tflite), len(float_tflite)) def testCalibrateAndQuantizeBuiltinInt8(self): inp, output, calibration_gen = self._getCalibrationQuantizeModel() sess = session.Session() # Convert float model. float_converter = lite.TFLiteConverter.from_session(sess, [inp], [output]) float_tflite = float_converter.convert() self.assertTrue(float_tflite) # Convert model by specifying target spec (instead of optimizations), since # when targeting an integer only backend, quantization is mandatory. quantized_converter = lite.TFLiteConverter.from_session( sess, [inp], [output]) quantized_converter.target_spec.supported_ops = [ lite.OpsSet.TFLITE_BUILTINS_INT8 ] quantized_converter.representative_dataset = calibration_gen quantized_tflite = quantized_converter.convert() self.assertTrue(quantized_tflite) # The default input and output types should be float. interpreter = Interpreter(model_content=quantized_tflite) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(1, len(input_details)) self.assertEqual(np.float32, input_details[0]['dtype']) output_details = interpreter.get_output_details() self.assertEqual(1, len(output_details)) self.assertEqual(np.float32, output_details[0]['dtype']) # Ensure that the quantized weights tflite model is smaller. self.assertLess(len(quantized_tflite), len(float_tflite)) def testPostTrainingCalibrateAndQuantizeInt8Inputs(self): inp, output, calibration_gen = self._getCalibrationQuantizeModel() sess = session.Session() # Convert float model. float_converter = lite.TFLiteConverter.from_session(sess, [inp], [output]) float_tflite = float_converter.convert() self.assertTrue(float_tflite) # Convert quantized weights model. quantized_converter = lite.TFLiteConverter.from_session( sess, [inp], [output]) quantized_converter.inference_input_type = lite_constants.INT8 quantized_converter.inference_output_type = lite_constants.INT8 quantized_converter.optimizations = [lite.Optimize.DEFAULT] quantized_converter.representative_dataset = calibration_gen quantized_tflite = quantized_converter.convert() self.assertTrue(quantized_tflite) # The input and output types should be int8. interpreter = Interpreter(model_content=quantized_tflite) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(1, len(input_details)) self.assertEqual(np.int8, input_details[0]['dtype']) output_details = interpreter.get_output_details() self.assertEqual(1, len(output_details)) self.assertEqual(np.int8, output_details[0]['dtype']) # Ensure that the quantized weights tflite model is smaller. self.assertTrue(len(quantized_tflite) < len(float_tflite)) def testFloatTocoConverter(self): """Tests deprecated test TocoConverter.""" in_tensor = array_ops.placeholder( shape=[1, 16, 16, 3], dtype=dtypes.float32) out_tensor = in_tensor + in_tensor sess = session.Session() # Convert model and ensure model is not None. converter = lite.TocoConverter.from_session(sess, [in_tensor], [out_tensor]) tflite_model = converter.convert() self.assertTrue(tflite_model) # Ensure the interpreter is able to load. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() def testMultipleOutputNodeNames(self): """Tests converting a graph with an op that have multiple outputs.""" input_tensor = array_ops.placeholder(shape=[4], dtype=dtypes.float32) out0, out1, out2, out3 = array_ops.split(input_tensor, [1, 1, 1, 1], axis=0) sess = session.Session() # Convert model and ensure model is not None. converter = lite.TFLiteConverter.from_session(sess, [input_tensor], [out0, out1, out2, out3]) tflite_model = converter.convert() self.assertTrue(tflite_model) # Check values from converted model. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(1, len(input_details)) interpreter.set_tensor(input_details[0]['index'], np.asarray([1.0, 2.0, 3.0, 4.0], dtype=np.float32)) interpreter.invoke() output_details = interpreter.get_output_details() self.assertEqual(4, len(output_details)) self.assertEqual(1.0, interpreter.get_tensor(output_details[0]['index'])) self.assertEqual(2.0, interpreter.get_tensor(output_details[1]['index'])) self.assertEqual(3.0, interpreter.get_tensor(output_details[2]['index'])) self.assertEqual(4.0, interpreter.get_tensor(output_details[3]['index'])) @test_util.run_in_graph_and_eager_modes def testFunctions(self): """Tests tf.function in 1.X.""" @def_function.function def plus_placeholder(x, placeholder): return x + placeholder with ops.Graph().as_default(): placeholder = array_ops.placeholder( dtype=dtypes.float32, shape=[1], name='input') variable_node = variables.Variable(1.0, name='variable_node') defun_node = plus_placeholder(variable_node, placeholder) output_node = math_ops.multiply(defun_node, 2.0, name='output_node') # Initialize variables in the model. sess = session.Session() sess.run(variables.variables_initializer([variable_node])) # Convert model and ensure model is not None. converter = lite.TFLiteConverter.from_session(sess, [placeholder], [output_node]) tflite_model = converter.convert() self.assertTrue(tflite_model) # Check values from converted model. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(1, len(input_details)) self.assertEqual('input', input_details[0]['name']) self.assertEqual(np.float32, input_details[0]['dtype']) self.assertTrue(([1] == input_details[0]['shape']).all()) self.assertEqual((0., 0.), input_details[0]['quantization']) output_details = interpreter.get_output_details() self.assertEqual(1, len(output_details)) self.assertEqual('output_node', output_details[0]['name']) self.assertEqual(np.float32, output_details[0]['dtype']) self.assertTrue(([1] == output_details[0]['shape']).all()) self.assertEqual((0., 0.), output_details[0]['quantization']) def testInferenceInputOutputTypeFloatDefault(self): in_tensor = array_ops.placeholder( shape=[1, 16, 16, 3], dtype=dtypes.float32) out_tensor = in_tensor + in_tensor sess = session.Session() # Convert model and ensure model is not None. converter = lite.TFLiteConverter.from_session(sess, [in_tensor], [out_tensor]) tflite_model = converter.convert() self.assertTrue(tflite_model) # Check values from converted model. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(1, len(input_details)) self.assertEqual('Placeholder', input_details[0]['name']) self.assertEqual(np.float32, input_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == input_details[0]['shape']).all()) output_details = interpreter.get_output_details() self.assertEqual(1, len(output_details)) self.assertEqual('add', output_details[0]['name']) self.assertEqual(np.float32, output_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == output_details[0]['shape']).all()) def testInferenceInputOutputTypeQuantizedUint8Default(self): in_tensor = array_ops.placeholder( shape=[1, 16, 16, 3], dtype=dtypes.float32) out_tensor = array_ops.fake_quant_with_min_max_args( in_tensor + in_tensor, min=0., max=1., name='output') sess = session.Session() # Convert model and ensure model is not None. converter = lite.TFLiteConverter.from_session(sess, [in_tensor], [out_tensor]) converter.inference_type = lite_constants.QUANTIZED_UINT8 converter.quantized_input_stats = {'Placeholder': (0., 1.)} # mean, std_dev tflite_model = converter.convert() self.assertTrue(tflite_model) # Check values from converted model. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(1, len(input_details)) self.assertEqual('Placeholder', input_details[0]['name']) self.assertEqual(np.uint8, input_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == input_details[0]['shape']).all()) output_details = interpreter.get_output_details() self.assertEqual(1, len(output_details)) self.assertEqual('output', output_details[0]['name']) self.assertEqual(np.uint8, output_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == output_details[0]['shape']).all()) def testReusingConverterWithDifferentPostTrainingQuantization(self): in_tensor = array_ops.placeholder( shape=[1, 16, 16, 3], dtype=dtypes.float32) out_tensor = array_ops.fake_quant_with_min_max_args( in_tensor + in_tensor, min=0., max=1., name='output') sess = session.Session() # Convert model and ensure model is not None. converter = lite.TFLiteConverter.from_session(sess, [in_tensor], [out_tensor]) converter.post_training_quantize = True tflite_model = converter.convert() self.assertTrue(tflite_model) converter.post_training_quantize = False tflite_model = converter.convert() self.assertTrue(tflite_model) def testResizingIntermediateDynamicTensor(self): # This is a regression test for the case where shape of dynamic output # tensors changes between invocations. # See also https://github.com/tensorflow/tensorflow/issues/26549 input_tensor = array_ops.placeholder(shape=[1, 1], dtype=dtypes.float32) input2_tensor = array_ops.placeholder(shape=[1], dtype=dtypes.float32) # The bug is triggered only when dynamic tensor is intermediate. Putting # some other ops around it. neg = math_ops.negative(input2_tensor) padding = array_ops.placeholder(shape=[2, 2], dtype=dtypes.int32) output_tensor = array_ops.pad(input_tensor, padding) + neg sess = session.Session() converter = lite.TFLiteConverter.from_session( sess, [input_tensor, padding, input2_tensor], [output_tensor]) tflite_model = converter.convert() interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() interpreter.set_tensor(input_details[1]['index'], np.array([[1, 1], [1, 1]], dtype=np.int32)) interpreter.invoke() # Without the fix, invocation will fail when changing the shape of # intermediate dynamic tensors. interpreter.set_tensor(input_details[1]['index'], np.array([[2, 2], [2, 2]], dtype=np.int32)) interpreter.invoke() @test_util.run_v1_only('Incompatible with 2.0.') class FromFrozenGraphFile(test_util.TensorFlowTestCase): def testFloat(self): in_tensor = array_ops.placeholder( shape=[1, 16, 16, 3], dtype=dtypes.float32) _ = in_tensor + in_tensor sess = session.Session() # Write graph to file. graph_def_file = os.path.join(self.get_temp_dir(), 'model.pb') write_graph(sess.graph_def, '', graph_def_file, False) sess.close() # Convert model and ensure model is not None. converter = lite.TFLiteConverter.from_frozen_graph(graph_def_file, ['Placeholder'], ['add']) tflite_model = converter.convert() self.assertTrue(tflite_model) # Check values from converted model. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(1, len(input_details)) self.assertEqual('Placeholder', input_details[0]['name']) self.assertEqual(np.float32, input_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == input_details[0]['shape']).all()) self.assertEqual((0., 0.), input_details[0]['quantization']) output_details = interpreter.get_output_details() self.assertEqual(1, len(output_details)) self.assertEqual('add', output_details[0]['name']) self.assertEqual(np.float32, output_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == output_details[0]['shape']).all()) self.assertEqual((0., 0.), output_details[0]['quantization']) def testFloatWithShapesArray(self): in_tensor = array_ops.placeholder( shape=[1, 16, 16, 3], dtype=dtypes.float32) _ = in_tensor + in_tensor sess = session.Session() # Write graph to file. graph_def_file = os.path.join(self.get_temp_dir(), 'model.pb') write_graph(sess.graph_def, '', graph_def_file, False) sess.close() # Convert model and ensure model is not None. converter = lite.TFLiteConverter.from_frozen_graph( graph_def_file, ['Placeholder'], ['add'], input_shapes={'Placeholder': [1, 16, 16, 3]}) tflite_model = converter.convert() self.assertTrue(tflite_model) # Check values from converted model. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(1, len(input_details)) self.assertTrue(([1, 16, 16, 3] == input_details[0]['shape']).all()) def testFreezeGraph(self): in_tensor = array_ops.placeholder( shape=[1, 16, 16, 3], dtype=dtypes.float32) var = variable_scope.get_variable( 'weights', shape=[1, 16, 16, 3], dtype=dtypes.float32) _ = in_tensor + var sess = session.Session() # Write graph to file. graph_def_file = os.path.join(self.get_temp_dir(), 'model.pb') write_graph(sess.graph_def, '', graph_def_file, False) sess.close() # Ensure the graph with variables cannot be converted. with self.assertRaises(ValueError) as error: lite.TFLiteConverter.from_frozen_graph(graph_def_file, ['Placeholder'], ['add']) self.assertEqual('Please freeze the graph using freeze_graph.py.', str(error.exception)) def testPbtxt(self): in_tensor = array_ops.placeholder( shape=[1, 16, 16, 3], dtype=dtypes.float32) _ = in_tensor + in_tensor sess = session.Session() # Write graph to file. graph_def_file = os.path.join(self.get_temp_dir(), 'model.pbtxt') write_graph(sess.graph_def, '', graph_def_file, True) sess.close() # Convert model and ensure model is not None. converter = lite.TFLiteConverter.from_frozen_graph(graph_def_file, ['Placeholder'], ['add']) tflite_model = converter.convert() self.assertTrue(tflite_model) # Check values from converted model. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(1, len(input_details)) self.assertEqual('Placeholder', input_details[0]['name']) self.assertEqual(np.float32, input_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == input_details[0]['shape']).all()) self.assertEqual((0., 0.), input_details[0]['quantization']) output_details = interpreter.get_output_details() self.assertEqual(1, len(output_details)) self.assertEqual('add', output_details[0]['name']) self.assertEqual(np.float32, output_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == output_details[0]['shape']).all()) self.assertEqual((0., 0.), output_details[0]['quantization']) def testInvalidFileNotFound(self): with self.assertRaises(IOError) as error: lite.TFLiteConverter.from_frozen_graph('invalid_file', ['Placeholder'], ['add']) self.assertEqual('File \'invalid_file\' does not exist.', str(error.exception)) def testInvalidFileBadData(self): graph_def_file = os.path.join(self.get_temp_dir(), 'invalid_file') with gfile.Open(graph_def_file, 'wb') as temp_file: temp_file.write('bad data') temp_file.flush() # Attempts to convert the invalid model. with self.assertRaises(IOError) as error: lite.TFLiteConverter.from_frozen_graph(graph_def_file, ['Placeholder'], ['add']) self.assertEqual( 'Unable to parse input file \'{}\'.'.format(graph_def_file), str(error.exception)) def testFloatTocoConverter(self): in_tensor = array_ops.placeholder( shape=[1, 16, 16, 3], dtype=dtypes.float32) _ = in_tensor + in_tensor sess = session.Session() # Write graph to file. graph_def_file = os.path.join(self.get_temp_dir(), 'model.pb') write_graph(sess.graph_def, '', graph_def_file, False) sess.close() # Convert model and ensure model is not None. converter = lite.TocoConverter.from_frozen_graph(graph_def_file, ['Placeholder'], ['add']) tflite_model = converter.convert() self.assertTrue(tflite_model) # Ensure the model is able to load. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() class FromFrozenGraphObjectDetection(test_util.TensorFlowTestCase): def _initObjectDetectionArgs(self): # Initializes the arguments required for the object detection model. # Looks for the model file which is saved in a different location internally # and externally. filename = resource_loader.get_path_to_datafile('testdata/tflite_graph.pb') if not os.path.exists(filename): filename = os.path.join( resource_loader.get_root_dir_with_all_resources(), '../tflite_mobilenet_ssd_quant_protobuf/tflite_graph.pb') if not os.path.exists(filename): raise IOError("File '{0}' does not exist.".format(filename)) self._graph_def_file = filename self._input_arrays = ['normalized_input_image_tensor'] self._output_arrays = [ 'TFLite_Detection_PostProcess', 'TFLite_Detection_PostProcess:1', 'TFLite_Detection_PostProcess:2', 'TFLite_Detection_PostProcess:3' ] self._input_shapes = {'normalized_input_image_tensor': [1, 300, 300, 3]} def testTFLiteGraphDef(self): # Tests the object detection model that cannot be loaded in TensorFlow. self._initObjectDetectionArgs() converter = lite.TFLiteConverter.from_frozen_graph( self._graph_def_file, self._input_arrays, self._output_arrays, self._input_shapes) converter.allow_custom_ops = True tflite_model = converter.convert() self.assertTrue(tflite_model) # Check values from converted model. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(1, len(input_details)) self.assertEqual('normalized_input_image_tensor', input_details[0]['name']) self.assertEqual(np.float32, input_details[0]['dtype']) self.assertTrue(([1, 300, 300, 3] == input_details[0]['shape']).all()) self.assertEqual((0., 0.), input_details[0]['quantization']) output_details = interpreter.get_output_details() self.assertEqual(4, len(output_details)) self.assertEqual('TFLite_Detection_PostProcess', output_details[0]['name']) self.assertEqual(np.float32, output_details[0]['dtype']) self.assertTrue(([1, 10, 4] == output_details[0]['shape']).all()) self.assertEqual((0., 0.), output_details[0]['quantization']) self.assertEqual('TFLite_Detection_PostProcess:1', output_details[1]['name']) self.assertTrue(([1, 10] == output_details[1]['shape']).all()) self.assertEqual('TFLite_Detection_PostProcess:2', output_details[2]['name']) self.assertTrue(([1, 10] == output_details[2]['shape']).all()) self.assertEqual('TFLite_Detection_PostProcess:3', output_details[3]['name']) self.assertTrue(([1] == output_details[3]['shape']).all()) def testTFLiteGraphDefMissingShape(self): # Tests invalid cases for the model that cannot be loaded in TensorFlow. self._initObjectDetectionArgs() # Missing `input_shapes`. with self.assertRaises(ValueError) as error: lite.TFLiteConverter.from_frozen_graph( self._graph_def_file, self._input_arrays, self._output_arrays) self.assertEqual('input_shapes must be defined for this model.', str(error.exception)) def testTFLiteGraphDefInvalidShape(self): # Tests invalid cases for the model that cannot be loaded in TensorFlow. self._initObjectDetectionArgs() # `input_shapes` does not contain the names in `input_arrays`. with self.assertRaises(ValueError) as error: lite.TFLiteConverter.from_frozen_graph( self._graph_def_file, self._input_arrays, self._output_arrays, input_shapes={'invalid-value': [1, 19]}) self.assertEqual( 'input_shapes must contain a value for each item in input_array.', str(error.exception)) @test_util.run_v1_only('Incompatible with 2.0.') class FromSavedModelTest(test_util.TensorFlowTestCase): def _createSavedModel(self, shape): """Create a simple SavedModel.""" saved_model_dir = os.path.join(self.get_temp_dir(), 'simple_savedmodel') with session.Session() as sess: in_tensor_1 = array_ops.placeholder( shape=shape, dtype=dtypes.float32, name='inputB') in_tensor_2 = array_ops.placeholder( shape=shape, dtype=dtypes.float32, name='inputA') out_tensor = in_tensor_1 + in_tensor_2 inputs = {'x': in_tensor_1, 'y': in_tensor_2} outputs = {'z': out_tensor} saved_model.simple_save(sess, saved_model_dir, inputs, outputs) return saved_model_dir def testSimpleModel(self): """Test a SavedModel.""" saved_model_dir = self._createSavedModel(shape=[1, 16, 16, 3]) # Convert model and ensure model is not None. converter = lite.TFLiteConverter.from_saved_model(saved_model_dir) tflite_model = converter.convert() self.assertTrue(tflite_model) interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(2, len(input_details)) self.assertEqual('inputA', input_details[0]['name']) self.assertEqual(np.float32, input_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == input_details[0]['shape']).all()) self.assertEqual((0., 0.), input_details[0]['quantization']) self.assertEqual('inputB', input_details[1]['name']) self.assertEqual(np.float32, input_details[1]['dtype']) self.assertTrue(([1, 16, 16, 3] == input_details[1]['shape']).all()) self.assertEqual((0., 0.), input_details[1]['quantization']) output_details = interpreter.get_output_details() self.assertEqual(1, len(output_details)) self.assertEqual('add', output_details[0]['name']) self.assertEqual(np.float32, output_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == output_details[0]['shape']).all()) self.assertEqual((0., 0.), output_details[0]['quantization']) def testNoneBatchSize(self): """Test a SavedModel, with None in input tensor's shape.""" saved_model_dir = self._createSavedModel(shape=[None, 16, 16, 3]) converter = lite.TFLiteConverter.from_saved_model(saved_model_dir) tflite_model = converter.convert() self.assertTrue(tflite_model) # Check values from converted model. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(2, len(input_details)) self.assertEqual('inputA', input_details[0]['name']) self.assertEqual(np.float32, input_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == input_details[0]['shape']).all()) self.assertEqual((0., 0.), input_details[0]['quantization']) self.assertEqual('inputB', input_details[1]['name']) self.assertEqual(np.float32, input_details[1]['dtype']) self.assertTrue(([1, 16, 16, 3] == input_details[1]['shape']).all()) self.assertEqual((0., 0.), input_details[1]['quantization']) output_details = interpreter.get_output_details() self.assertEqual(1, len(output_details)) self.assertEqual('add', output_details[0]['name']) self.assertEqual(np.float32, output_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == output_details[0]['shape']).all()) self.assertEqual((0., 0.), output_details[0]['quantization']) def testOrderInputArrays(self): """Test a SavedModel ordering of input arrays.""" saved_model_dir = self._createSavedModel(shape=[1, 16, 16, 3]) converter = lite.TFLiteConverter.from_saved_model( saved_model_dir, input_arrays=['inputB', 'inputA']) tflite_model = converter.convert() self.assertTrue(tflite_model) # Check values from converted model. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(2, len(input_details)) self.assertEqual('inputA', input_details[0]['name']) self.assertEqual(np.float32, input_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == input_details[0]['shape']).all()) self.assertEqual((0., 0.), input_details[0]['quantization']) self.assertEqual('inputB', input_details[1]['name']) self.assertEqual(np.float32, input_details[1]['dtype']) self.assertTrue(([1, 16, 16, 3] == input_details[1]['shape']).all()) self.assertEqual((0., 0.), input_details[1]['quantization']) output_details = interpreter.get_output_details() self.assertEqual(1, len(output_details)) self.assertEqual('add', output_details[0]['name']) self.assertEqual(np.float32, output_details[0]['dtype']) self.assertTrue(([1, 16, 16, 3] == output_details[0]['shape']).all()) self.assertEqual((0., 0.), output_details[0]['quantization']) def testSubsetInputArrays(self): """Test a SavedModel with a subset of the input array names of the model.""" saved_model_dir = self._createSavedModel(shape=[1, 16, 16, 3]) # Check case where input shape is given. converter = lite.TFLiteConverter.from_saved_model( saved_model_dir, input_arrays=['inputA'], input_shapes={'inputA': [1, 16, 16, 3]}) # Since we only partially specify the input, this is not allowed. with self.assertRaises(ConverterError): _ = converter.convert() # Check case where input shape is None. converter = lite.TFLiteConverter.from_saved_model( saved_model_dir, input_arrays=['inputA'], input_shapes={'inputA': None}) # Since we only partially specify the input, this is not allowed. with self.assertRaises(ConverterError): _ = converter.convert() def testSimpleModelTocoConverter(self): """Test a SavedModel with deprecated TocoConverter.""" saved_model_dir = self._createSavedModel(shape=[1, 16, 16, 3]) # Convert model and ensure model is not None. converter = lite.TocoConverter.from_saved_model(saved_model_dir) tflite_model = converter.convert() self.assertTrue(tflite_model) # Ensure the model is able to load. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() class MyAddLayer(keras.layers.Layer): def __init__(self, increment, **kwargs): super(MyAddLayer, self).__init__(**kwargs) self._increment = increment def call(self, inputs): return inputs + self._increment def get_config(self): config = super(MyAddLayer, self).get_config() config['increment'] = self._increment return config @test_util.run_v1_only('Incompatible with 2.0.') class FromKerasFile(test_util.TensorFlowTestCase, parameterized.TestCase): def setUp(self): super(FromKerasFile, self).setUp() self._keras_file = None self._custom_objects = None if not context.executing_eagerly(): keras.backend.clear_session() def tearDown(self): if self._keras_file: os.remove(self._keras_file) super(FromKerasFile, self).tearDown() def _getSequentialModel(self, include_custom_layer=False): model = keras.models.Sequential() model.add(keras.layers.Dense(2, input_shape=(3,))) if include_custom_layer: model.add(MyAddLayer(1.0)) model.add(keras.layers.RepeatVector(3)) model.add(keras.layers.TimeDistributed(keras.layers.Dense(3))) model.compile( loss=keras.losses.MSE, optimizer='sgd', metrics=[keras.metrics.categorical_accuracy], sample_weight_mode='temporal') x = np.random.random((1, 3)) y = np.random.random((1, 3, 3)) model.train_on_batch(x, y) model.predict(x) try: fd, self._keras_file = tempfile.mkstemp('.h5') keras.models.save_model(model, self._keras_file) finally: os.close(fd) if include_custom_layer: self._custom_objects = {'MyAddLayer': MyAddLayer} @parameterized.named_parameters(('_graph', context.graph_mode), ('_eager', context.eager_mode)) def testSequentialModel(self, test_context): """Test a Sequential tf.keras model with default inputs.""" with test_context(): self._getSequentialModel() converter = lite.TFLiteConverter.from_keras_model_file(self._keras_file) tflite_model = converter.convert() self.assertTrue(tflite_model) # Check tensor details of converted model. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertLen(input_details, 1) self.assertEqual('dense_input', input_details[0]['name']) self.assertEqual(np.float32, input_details[0]['dtype']) self.assertTrue(([1, 3] == input_details[0]['shape']).all()) self.assertEqual((0., 0.), input_details[0]['quantization']) output_details = interpreter.get_output_details() self.assertLen(output_details, 1) self.assertEqual(np.float32, output_details[0]['dtype']) self.assertTrue(([1, 3, 3] == output_details[0]['shape']).all()) self.assertEqual((0., 0.), output_details[0]['quantization']) # Check inference of converted model. input_data = np.array([[1, 2, 3]], dtype=np.float32) interpreter.set_tensor(input_details[0]['index'], input_data) interpreter.invoke() tflite_result = interpreter.get_tensor(output_details[0]['index']) keras_model = keras.models.load_model(self._keras_file) keras_result = keras_model.predict(input_data) np.testing.assert_almost_equal(tflite_result, keras_result, 5) @parameterized.named_parameters(('_graph', context.graph_mode), ('_eager', context.eager_mode)) def testCustomLayer(self, test_context): """Test a Sequential tf.keras model with default inputs.""" with test_context(): self._getSequentialModel(include_custom_layer=True) converter = lite.TFLiteConverter.from_keras_model_file( self._keras_file, custom_objects=self._custom_objects) tflite_model = converter.convert() self.assertTrue(tflite_model) # Check tensor details of converted model. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() # Check inference of converted model. input_data = np.array([[1, 2, 3]], dtype=np.float32) interpreter.set_tensor(input_details[0]['index'], input_data) interpreter.invoke() tflite_result = interpreter.get_tensor(output_details[0]['index']) keras_model = keras.models.load_model( self._keras_file, custom_objects=self._custom_objects) keras_result = keras_model.predict(input_data) np.testing.assert_almost_equal(tflite_result, keras_result, 5) def testSequentialModelInputArray(self): """Test a Sequential tf.keras model testing input arrays argument.""" self._getSequentialModel() # Invalid input array raises error. with self.assertRaises(ValueError) as error: lite.TFLiteConverter.from_keras_model_file( self._keras_file, input_arrays=['invalid-input']) self.assertEqual("Invalid tensors 'invalid-input' were found.", str(error.exception)) # Valid input array. converter = lite.TFLiteConverter.from_keras_model_file( self._keras_file, input_arrays=['dense_input']) tflite_model = converter.convert() self.assertTrue(tflite_model) def testSequentialModelInputShape(self): """Test a Sequential tf.keras model testing input shapes argument.""" self._getSequentialModel() # Passing in shape of invalid input array raises error. with self.assertRaises(ValueError) as error: converter = lite.TFLiteConverter.from_keras_model_file( self._keras_file, input_shapes={'invalid-input': [2, 3]}) self.assertEqual( "Invalid tensor 'invalid-input' found in tensor shapes map.", str(error.exception)) # Passing in shape of valid input array. converter = lite.TFLiteConverter.from_keras_model_file( self._keras_file, input_shapes={'dense_input': [2, 3]}) tflite_model = converter.convert() self.assertTrue(tflite_model) # Check input shape from converted model. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertLen(input_details, 1) self.assertEqual('dense_input', input_details[0]['name']) self.assertTrue(([2, 3] == input_details[0]['shape']).all()) def testSequentialModelOutputArray(self): """Test a Sequential tf.keras model testing output arrays argument.""" self._getSequentialModel() # Invalid output array raises error. with self.assertRaises(ValueError) as error: lite.TFLiteConverter.from_keras_model_file( self._keras_file, output_arrays=['invalid-output']) self.assertEqual("Invalid tensors 'invalid-output' were found.", str(error.exception)) # Valid output array. converter = lite.TFLiteConverter.from_keras_model_file( self._keras_file, output_arrays=['time_distributed/Reshape_1']) tflite_model = converter.convert() self.assertTrue(tflite_model) @parameterized.named_parameters(('_graph', context.graph_mode), ('_eager', context.eager_mode)) def testFunctionalModel(self, test_context): """Test a Functional tf.keras model with default inputs.""" with test_context(): inputs = keras.layers.Input(shape=(3,), name='input') x = keras.layers.Dense(2)(inputs) output = keras.layers.Dense(3)(x) model = keras.models.Model(inputs, output) model.compile( loss=keras.losses.MSE, optimizer='sgd', metrics=[keras.metrics.categorical_accuracy]) x = np.random.random((1, 3)) y = np.random.random((1, 3)) model.train_on_batch(x, y) model.predict(x) fd, self._keras_file = tempfile.mkstemp('.h5') try: keras.models.save_model(model, self._keras_file) finally: os.close(fd) # Convert to TFLite model. converter = lite.TFLiteConverter.from_keras_model_file(self._keras_file) tflite_model = converter.convert() self.assertTrue(tflite_model) # Check tensor details of converted model. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertLen(input_details, 1) self.assertEqual('input', input_details[0]['name']) self.assertEqual(np.float32, input_details[0]['dtype']) self.assertTrue(([1, 3] == input_details[0]['shape']).all()) self.assertEqual((0., 0.), input_details[0]['quantization']) output_details = interpreter.get_output_details() self.assertLen(output_details, 1) self.assertEqual(np.float32, output_details[0]['dtype']) self.assertTrue(([1, 3] == output_details[0]['shape']).all()) self.assertEqual((0., 0.), output_details[0]['quantization']) # Check inference of converted model. input_data = np.array([[1, 2, 3]], dtype=np.float32) interpreter.set_tensor(input_details[0]['index'], input_data) interpreter.invoke() tflite_result = interpreter.get_tensor(output_details[0]['index']) keras_model = keras.models.load_model(self._keras_file) keras_result = keras_model.predict(input_data) np.testing.assert_almost_equal(tflite_result, keras_result, 5) def testFunctionalModelMultipleInputs(self): """Test a Functional tf.keras model with multiple inputs and outputs.""" a = keras.layers.Input(shape=(3,), name='input_a') b = keras.layers.Input(shape=(3,), name='input_b') dense = keras.layers.Dense(4, name='dense') c = dense(a) d = dense(b) e = keras.layers.Dropout(0.5, name='dropout')(c) model = keras.models.Model([a, b], [d, e]) model.compile( loss=keras.losses.MSE, optimizer='sgd', metrics=[keras.metrics.mae], loss_weights=[1., 0.5]) input_a_np = np.random.random((10, 3)) input_b_np = np.random.random((10, 3)) output_d_np = np.random.random((10, 4)) output_e_np = np.random.random((10, 4)) model.train_on_batch([input_a_np, input_b_np], [output_d_np, output_e_np]) model.predict([input_a_np, input_b_np], batch_size=5) fd, self._keras_file = tempfile.mkstemp('.h5') try: keras.models.save_model(model, self._keras_file) finally: os.close(fd) # Convert to TFLite model. converter = lite.TFLiteConverter.from_keras_model_file(self._keras_file) tflite_model = converter.convert() self.assertTrue(tflite_model) # Check values from converted model. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertLen(input_details, 2) self.assertEqual('input_a', input_details[0]['name']) self.assertEqual(np.float32, input_details[0]['dtype']) self.assertTrue(([1, 3] == input_details[0]['shape']).all()) self.assertEqual((0., 0.), input_details[0]['quantization']) self.assertEqual('input_b', input_details[1]['name']) self.assertEqual(np.float32, input_details[1]['dtype']) self.assertTrue(([1, 3] == input_details[1]['shape']).all()) self.assertEqual((0., 0.), input_details[1]['quantization']) output_details = interpreter.get_output_details() self.assertLen(output_details, 2) self.assertEqual('dense_1/BiasAdd', output_details[0]['name']) self.assertEqual(np.float32, output_details[0]['dtype']) self.assertTrue(([1, 4] == output_details[0]['shape']).all()) self.assertEqual((0., 0.), output_details[0]['quantization']) self.assertEqual('dropout/Identity', output_details[1]['name']) self.assertEqual(np.float32, output_details[1]['dtype']) self.assertTrue(([1, 4] == output_details[1]['shape']).all()) self.assertEqual((0., 0.), output_details[1]['quantization']) def testFunctionalSequentialModel(self): """Test a Functional tf.keras model containing a Sequential model.""" model = keras.models.Sequential() model.add(keras.layers.Dense(2, input_shape=(3,))) model.add(keras.layers.RepeatVector(3)) model.add(keras.layers.TimeDistributed(keras.layers.Dense(3))) model = keras.models.Model(model.input, model.output) model.compile( loss=keras.losses.MSE, optimizer='sgd', metrics=[keras.metrics.categorical_accuracy], sample_weight_mode='temporal') x = np.random.random((1, 3)) y = np.random.random((1, 3, 3)) model.train_on_batch(x, y) model.predict(x) model.predict(x) fd, self._keras_file = tempfile.mkstemp('.h5') try: keras.models.save_model(model, self._keras_file) finally: os.close(fd) # Convert to TFLite model. converter = lite.TFLiteConverter.from_keras_model_file(self._keras_file) tflite_model = converter.convert() self.assertTrue(tflite_model) # Check tensor details of converted model. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertLen(input_details, 1) self.assertEqual('dense_input', input_details[0]['name']) self.assertEqual(np.float32, input_details[0]['dtype']) self.assertTrue(([1, 3] == input_details[0]['shape']).all()) self.assertEqual((0., 0.), input_details[0]['quantization']) output_details = interpreter.get_output_details() self.assertLen(output_details, 1) self.assertEqual('time_distributed/Reshape_1', output_details[0]['name']) self.assertEqual(np.float32, output_details[0]['dtype']) self.assertTrue(([1, 3, 3] == output_details[0]['shape']).all()) self.assertEqual((0., 0.), output_details[0]['quantization']) # Check inference of converted model. input_data = np.array([[1, 2, 3]], dtype=np.float32) interpreter.set_tensor(input_details[0]['index'], input_data) interpreter.invoke() tflite_result = interpreter.get_tensor(output_details[0]['index']) keras_model = keras.models.load_model(self._keras_file) keras_result = keras_model.predict(input_data) np.testing.assert_almost_equal(tflite_result, keras_result, 5) def testSequentialModelTocoConverter(self): """Test a Sequential tf.keras model with deprecated TocoConverter.""" self._getSequentialModel() converter = lite.TocoConverter.from_keras_model_file(self._keras_file) tflite_model = converter.convert() self.assertTrue(tflite_model) # Ensure the model is able to load. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() @test_util.run_v1_only('Incompatible with 2.0.') class GrapplerTest(test_util.TensorFlowTestCase): def testConstantFolding(self): # Constant folding handles the tf.broadcast_to operation which was not # supported by the TFLite at the time this test was added. in_tensor = array_ops.placeholder(shape=[3, 3], dtype=dtypes.float32) y_const = constant_op.constant([1., 2., 3.]) y_broadcast = gen_array_ops.broadcast_to(y_const, [3, 3]) out_tensor = math_ops.matmul(in_tensor, y_broadcast, name='output') sess = session.Session() # Convert model. converter = lite.TFLiteConverter.from_session(sess, [in_tensor], [out_tensor]) tflite_model = converter.convert() # Check values from converted model. interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(1, len(input_details)) self.assertEqual('Placeholder', input_details[0]['name']) self.assertEqual(np.float32, input_details[0]['dtype']) self.assertTrue(([3, 3] == input_details[0]['shape']).all()) output_details = interpreter.get_output_details() self.assertEqual(1, len(output_details)) self.assertEqual('output', output_details[0]['name']) self.assertEqual(np.float32, output_details[0]['dtype']) self.assertTrue(([3, 3] == output_details[0]['shape']).all()) class ImportOpsUtilTest(test_util.TensorFlowTestCase): def testGetPotentiallySupportedOps(self): self.assertIsNotNone(lite.get_potentially_supported_ops()) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/lite/python/lite_test.py
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for util.py.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.lite.python import lite_constants from tensorflow.lite.python import util from tensorflow.lite.toco import types_pb2 as _types_pb2 from tensorflow.python.client import session from tensorflow.python.framework import dtypes from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.platform import test # TODO(nupurgarg): Add test for Grappler and frozen graph related functions. @test_util.run_v1_only("Incompatible with 2.0.") class UtilTest(test_util.TensorFlowTestCase): def testConvertDtype(self): self.assertEqual( util.convert_dtype_to_tflite_type(lite_constants.FLOAT), _types_pb2.FLOAT) self.assertEqual( util.convert_dtype_to_tflite_type(dtypes.float32), _types_pb2.FLOAT) self.assertEqual( util.convert_dtype_to_tflite_type(dtypes.int32), _types_pb2.INT32) self.assertEqual( util.convert_dtype_to_tflite_type(dtypes.int64), _types_pb2.INT64) self.assertEqual( util.convert_dtype_to_tflite_type(dtypes.string), _types_pb2.STRING) self.assertEqual( util.convert_dtype_to_tflite_type(dtypes.uint8), _types_pb2.QUANTIZED_UINT8) self.assertEqual( util.convert_dtype_to_tflite_type(dtypes.complex64), _types_pb2.COMPLEX64) self.assertEqual( util.convert_dtype_to_tflite_type(dtypes.half), _types_pb2.FLOAT16) with self.assertRaises(ValueError): util.convert_dtype_to_tflite_type(dtypes.bool) def testTensorName(self): in_tensor = array_ops.placeholder(shape=[4], dtype=dtypes.float32) # out_tensors should have names: "split:0", "split:1", "split:2", "split:3". out_tensors = array_ops.split( value=in_tensor, num_or_size_splits=[1, 1, 1, 1], axis=0) expect_names = ["split", "split:1", "split:2", "split:3"] for i in range(len(expect_names)): got_name = util.get_tensor_name(out_tensors[i]) self.assertEqual(got_name, expect_names[i]) @test_util.enable_control_flow_v2 def testRemoveLowerUsingSwitchMerge(self): i = array_ops.placeholder(shape=(), dtype=dtypes.int32) c = lambda i: math_ops.less(i, 10) b = lambda i: math_ops.add(i, 1) control_flow_ops.while_loop(c, b, [i]) sess = session.Session() new_graph_def = util._remove_lower_using_switch_merge(sess.graph_def) lower_using_switch_merge_is_removed = False for node in new_graph_def.node: if node.op == "While": if not node.attr["_lower_using_switch_merge"].b: lower_using_switch_merge_is_removed = True self.assertEqual(lower_using_switch_merge_is_removed, True) @test_util.run_v1_only("Incompatible with 2.0.") class TensorFunctionsTest(test_util.TensorFlowTestCase): def testGetTensorsValid(self): in_tensor = array_ops.placeholder( shape=[1, 16, 16, 3], dtype=dtypes.float32) _ = in_tensor + in_tensor sess = session.Session() tensors = util.get_tensors_from_tensor_names(sess.graph, ["Placeholder"]) self.assertEqual("Placeholder:0", tensors[0].name) def testGetTensorsInvalid(self): in_tensor = array_ops.placeholder( shape=[1, 16, 16, 3], dtype=dtypes.float32) _ = in_tensor + in_tensor sess = session.Session() with self.assertRaises(ValueError) as error: util.get_tensors_from_tensor_names(sess.graph, ["invalid-input"]) self.assertEqual("Invalid tensors 'invalid-input' were found.", str(error.exception)) def testSetTensorShapeValid(self): tensor = array_ops.placeholder(shape=[None, 3, 5], dtype=dtypes.float32) self.assertEqual([None, 3, 5], tensor.shape.as_list()) util.set_tensor_shapes([tensor], {"Placeholder": [5, 3, 5]}) self.assertEqual([5, 3, 5], tensor.shape.as_list()) def testSetTensorShapeNoneValid(self): tensor = array_ops.placeholder(dtype=dtypes.float32) self.assertEqual(None, tensor.shape) util.set_tensor_shapes([tensor], {"Placeholder": [1, 3, 5]}) self.assertEqual([1, 3, 5], tensor.shape.as_list()) def testSetTensorShapeArrayInvalid(self): # Tests set_tensor_shape where the tensor name passed in doesn't exist. tensor = array_ops.placeholder(shape=[None, 3, 5], dtype=dtypes.float32) self.assertEqual([None, 3, 5], tensor.shape.as_list()) with self.assertRaises(ValueError) as error: util.set_tensor_shapes([tensor], {"invalid-input": [5, 3, 5]}) self.assertEqual( "Invalid tensor 'invalid-input' found in tensor shapes map.", str(error.exception)) self.assertEqual([None, 3, 5], tensor.shape.as_list()) @test_util.run_deprecated_v1 def testSetTensorShapeDimensionInvalid(self): # Tests set_tensor_shape where the shape passed in is incompatiable. tensor = array_ops.placeholder(shape=[None, 3, 5], dtype=dtypes.float32) self.assertEqual([None, 3, 5], tensor.shape.as_list()) with self.assertRaises(ValueError) as error: util.set_tensor_shapes([tensor], {"Placeholder": [1, 5, 5]}) self.assertIn("The shape of tensor 'Placeholder' cannot be changed", str(error.exception)) self.assertEqual([None, 3, 5], tensor.shape.as_list()) def testSetTensorShapeEmpty(self): tensor = array_ops.placeholder(shape=[None, 3, 5], dtype=dtypes.float32) self.assertEqual([None, 3, 5], tensor.shape.as_list()) util.set_tensor_shapes([tensor], {}) self.assertEqual([None, 3, 5], tensor.shape.as_list()) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/lite/python/util_test.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Python TF-Lite interpreter.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import ctypes import sys import numpy as np # pylint: disable=g-import-not-at-top try: from tensorflow.python.util.lazy_loader import LazyLoader from tensorflow.python.util.tf_export import tf_export as _tf_export # Lazy load since some of the performance benchmark skylark rules # break dependencies. Must use double quotes to match code internal rewrite # rule. # pylint: disable=g-inconsistent-quotes _interpreter_wrapper = LazyLoader( "_interpreter_wrapper", globals(), "tensorflow.lite.python.interpreter_wrapper." "tensorflow_wrap_interpreter_wrapper") # pylint: enable=g-inconsistent-quotes del LazyLoader except ImportError: # When full Tensorflow Python PIP is not available do not use lazy load # and instead of the tflite_runtime path. from tflite_runtime.lite.python import interpreter_wrapper as _interpreter_wrapper def tf_export_dummy(*x, **kwargs): del x, kwargs return lambda x: x _tf_export = tf_export_dummy class Delegate(object): """Python wrapper class to manage TfLiteDelegate objects. The shared library is expected to have two functions: TfLiteDelegate* tflite_plugin_create_delegate(char**, char**, size_t) void tflite_plugin_destroy_delegate(TfLiteDelegate*) The first one creates a delegate object. It may return NULL to indicate an error. The second one destroys delegate object and must be called for every created delegate object. Passing NULL as argument value is allowed, i.e. tflite_plugin_destroy_delegate(tflite_plugin_create_delegate(...)) always works. """ def __init__(self, library, options=None): """Loads delegate from the shared library. Args: library: Shared library name. options: Dictionary of options that are required to load the delegate. All keys and values in the dictionary should be serializable. Consult the documentation of the specific delegate for required and legal options. (default None) """ self._library = ctypes.pydll.LoadLibrary(library) self._library.tflite_plugin_create_delegate.argtypes = [ ctypes.POINTER(ctypes.c_char_p), ctypes.POINTER(ctypes.c_char_p), ctypes.c_int ] self._library.tflite_plugin_create_delegate.restype = ctypes.c_void_p # Convert the options from a dictionary to lists of char pointers. options = options or {} options_keys = (ctypes.c_char_p * len(options))() options_values = (ctypes.c_char_p * len(options))() for idx, (key, value) in enumerate(options.items()): options_keys[idx] = str(key) options_values[idx] = str(value) # Do not make a copy of _delegate_ptr. It is freed by Delegate's finalizer. self._delegate_ptr = self._library.tflite_plugin_create_delegate( options_keys, options_values, len(options)) def __del__(self): self._library.tflite_plugin_destroy_delegate.argtypes = [ctypes.c_void_p] self._library.tflite_plugin_destroy_delegate(self._delegate_ptr) def _get_native_delegate_pointer(self): """Returns the native TfLiteDelegate pointer. It is not safe to copy this pointer because it needs to be freed. Returns: TfLiteDelegate * """ return self._delegate_ptr @_tf_export('lite.experimental.load_delegate') def load_delegate(library, options=None): """Returns loaded Delegate object. Args: library: Name of shared library containing the [TfLiteDelegate](https://www.tensorflow.org/lite/performance/delegates). options: Dictionary of options that are required to load the delegate. All keys and values in the dictionary should be convertible to str. Consult the documentation of the specific delegate for required and legal options. (default None) Returns: Delegate object. Raises: ValueError: Delegate failed to load. """ delegate = Delegate(library, options) if not delegate._get_native_delegate_pointer(): # pylint: disable=protected-access raise ValueError('Failed to load delegate from {}'.format(library)) return delegate @_tf_export('lite.Interpreter') class Interpreter(object): """Interpreter interface for TensorFlow Lite Models. This makes the TensorFlow Lite interpreter accessible in Python. It is possible to use this interpreter in a multithreaded Python environment, but you must be sure to call functions of a particular instance from only one thread at a time. So if you want to have 4 threads running different inferences simultaneously, create an interpreter for each one as thread-local data. Similarly, if you are calling invoke() in one thread on a single interpreter but you want to use tensor() on another thread once it is done, you must use a synchronization primitive between the threads to ensure invoke has returned before calling tensor(). """ def __init__(self, model_path=None, model_content=None, experimental_delegates=None): """Constructor. Args: model_path: Path to TF-Lite Flatbuffer file. model_content: Content of model. experimental_delegates: Experimental. Subject to change. List of [TfLiteDelegate](https://www.tensorflow.org/lite/performance/delegates) objects returned by lite.load_delegate(). Raises: ValueError: If the interpreter was unable to create. """ if model_path and not model_content: self._interpreter = ( _interpreter_wrapper.InterpreterWrapper_CreateWrapperCPPFromFile( model_path)) if not self._interpreter: raise ValueError('Failed to open {}'.format(model_path)) elif model_content and not model_path: # Take a reference, so the pointer remains valid. # Since python strings are immutable then PyString_XX functions # will always return the same pointer. self._model_content = model_content self._interpreter = ( _interpreter_wrapper.InterpreterWrapper_CreateWrapperCPPFromBuffer( model_content)) elif not model_path and not model_path: raise ValueError('`model_path` or `model_content` must be specified.') else: raise ValueError('Can\'t both provide `model_path` and `model_content`') # Each delegate is a wrapper that owns the delegates that have been loaded # as plugins. The interpreter wrapper will be using them, but we need to # hold them in a list so that the lifetime is preserved at least as long as # the interpreter wrapper. self._delegates = [] if experimental_delegates: self._delegates = experimental_delegates for delegate in self._delegates: self._interpreter.ModifyGraphWithDelegate( delegate._get_native_delegate_pointer()) # pylint: disable=protected-access def allocate_tensors(self): self._ensure_safe() return self._interpreter.AllocateTensors() def _safe_to_run(self): """Returns true if there exist no numpy array buffers. This means it is safe to run tflite calls that may destroy internally allocated memory. This works, because in the wrapper.cc we have made the numpy base be the self._interpreter. """ # NOTE, our tensor() call in cpp will use _interpreter as a base pointer. # If this environment is the only _interpreter, then the ref count should be # 2 (1 in self and 1 in temporary of sys.getrefcount). return sys.getrefcount(self._interpreter) == 2 def _ensure_safe(self): """Makes sure no numpy arrays pointing to internal buffers are active. This should be called from any function that will call a function on _interpreter that may reallocate memory e.g. invoke(), ... Raises: RuntimeError: If there exist numpy objects pointing to internal memory then we throw. """ if not self._safe_to_run(): raise RuntimeError("""There is at least 1 reference to internal data in the interpreter in the form of a numpy array or slice. Be sure to only hold the function returned from tensor() if you are using raw data access.""") def _get_tensor_details(self, tensor_index): """Gets tensor details. Args: tensor_index: Tensor index of tensor to query. Returns: a dictionary containing the name, index, shape and type of the tensor. Raises: ValueError: If tensor_index is invalid. """ tensor_index = int(tensor_index) tensor_name = self._interpreter.TensorName(tensor_index) tensor_size = self._interpreter.TensorSize(tensor_index) tensor_type = self._interpreter.TensorType(tensor_index) tensor_quantization = self._interpreter.TensorQuantization(tensor_index) if not tensor_name or not tensor_type: raise ValueError('Could not get tensor details') details = { 'name': tensor_name, 'index': tensor_index, 'shape': tensor_size, 'dtype': tensor_type, 'quantization': tensor_quantization, } return details def get_tensor_details(self): """Gets tensor details for every tensor with valid tensor details. Tensors where required information about the tensor is not found are not added to the list. This includes temporary tensors without a name. Returns: A list of dictionaries containing tensor information. """ tensor_details = [] for idx in range(self._interpreter.NumTensors()): try: tensor_details.append(self._get_tensor_details(idx)) except ValueError: pass return tensor_details def get_input_details(self): """Gets model input details. Returns: A list of input details. """ return [ self._get_tensor_details(i) for i in self._interpreter.InputIndices() ] def set_tensor(self, tensor_index, value): """Sets the value of the input tensor. Note this copies data in `value`. If you want to avoid copying, you can use the `tensor()` function to get a numpy buffer pointing to the input buffer in the tflite interpreter. Args: tensor_index: Tensor index of tensor to set. This value can be gotten from the 'index' field in get_input_details. value: Value of tensor to set. Raises: ValueError: If the interpreter could not set the tensor. """ self._interpreter.SetTensor(tensor_index, value) def resize_tensor_input(self, input_index, tensor_size): """Resizes an input tensor. Args: input_index: Tensor index of input to set. This value can be gotten from the 'index' field in get_input_details. tensor_size: The tensor_shape to resize the input to. Raises: ValueError: If the interpreter could not resize the input tensor. """ self._ensure_safe() # `ResizeInputTensor` now only accepts int32 numpy array as `tensor_size # parameter. tensor_size = np.array(tensor_size, dtype=np.int32) self._interpreter.ResizeInputTensor(input_index, tensor_size) def get_output_details(self): """Gets model output details. Returns: A list of output details. """ return [ self._get_tensor_details(i) for i in self._interpreter.OutputIndices() ] def get_tensor(self, tensor_index): """Gets the value of the input tensor (get a copy). If you wish to avoid the copy, use `tensor()`. This function cannot be used to read intermediate results. Args: tensor_index: Tensor index of tensor to get. This value can be gotten from the 'index' field in get_output_details. Returns: a numpy array. """ return self._interpreter.GetTensor(tensor_index) def tensor(self, tensor_index): """Returns function that gives a numpy view of the current tensor buffer. This allows reading and writing to this tensors w/o copies. This more closely mirrors the C++ Interpreter class interface's tensor() member, hence the name. Be careful to not hold these output references through calls to `allocate_tensors()` and `invoke()`. This function cannot be used to read intermediate results. Usage: ``` interpreter.allocate_tensors() input = interpreter.tensor(interpreter.get_input_details()[0]["index"]) output = interpreter.tensor(interpreter.get_output_details()[0]["index"]) for i in range(10): input().fill(3.) interpreter.invoke() print("inference %s" % output()) ``` Notice how this function avoids making a numpy array directly. This is because it is important to not hold actual numpy views to the data longer than necessary. If you do, then the interpreter can no longer be invoked, because it is possible the interpreter would resize and invalidate the referenced tensors. The NumPy API doesn't allow any mutability of the the underlying buffers. WRONG: ``` input = interpreter.tensor(interpreter.get_input_details()[0]["index"])() output = interpreter.tensor(interpreter.get_output_details()[0]["index"])() interpreter.allocate_tensors() # This will throw RuntimeError for i in range(10): input.fill(3.) interpreter.invoke() # this will throw RuntimeError since input,output ``` Args: tensor_index: Tensor index of tensor to get. This value can be gotten from the 'index' field in get_output_details. Returns: A function that can return a new numpy array pointing to the internal TFLite tensor state at any point. It is safe to hold the function forever, but it is not safe to hold the numpy array forever. """ return lambda: self._interpreter.tensor(self._interpreter, tensor_index) def invoke(self): """Invoke the interpreter. Be sure to set the input sizes, allocate tensors and fill values before calling this. Also, note that this function releases the GIL so heavy computation can be done in the background while the Python interpreter continues. No other function on this object should be called while the invoke() call has not finished. Raises: ValueError: When the underlying interpreter fails raise ValueError. """ self._ensure_safe() self._interpreter.Invoke() def reset_all_variables(self): return self._interpreter.ResetVariableTensors()
tensorflow-master
tensorflow/lite/python/interpreter.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """TensorFlow Lite Python Interface: Sanity check.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import ctypes import io import numpy as np import six from tensorflow.lite.python import interpreter as interpreter_wrapper from tensorflow.python.framework import test_util from tensorflow.python.platform import resource_loader from tensorflow.python.platform import test class InterpreterTest(test_util.TensorFlowTestCase): def testFloat(self): interpreter = interpreter_wrapper.Interpreter( model_path=resource_loader.get_path_to_datafile( 'testdata/permute_float.tflite')) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(1, len(input_details)) self.assertEqual('input', input_details[0]['name']) self.assertEqual(np.float32, input_details[0]['dtype']) self.assertTrue(([1, 4] == input_details[0]['shape']).all()) self.assertEqual((0.0, 0), input_details[0]['quantization']) output_details = interpreter.get_output_details() self.assertEqual(1, len(output_details)) self.assertEqual('output', output_details[0]['name']) self.assertEqual(np.float32, output_details[0]['dtype']) self.assertTrue(([1, 4] == output_details[0]['shape']).all()) self.assertEqual((0.0, 0), output_details[0]['quantization']) test_input = np.array([[1.0, 2.0, 3.0, 4.0]], dtype=np.float32) expected_output = np.array([[4.0, 3.0, 2.0, 1.0]], dtype=np.float32) interpreter.set_tensor(input_details[0]['index'], test_input) interpreter.invoke() output_data = interpreter.get_tensor(output_details[0]['index']) self.assertTrue((expected_output == output_data).all()) def testUint8(self): model_path = resource_loader.get_path_to_datafile( 'testdata/permute_uint8.tflite') with io.open(model_path, 'rb') as model_file: data = model_file.read() interpreter = interpreter_wrapper.Interpreter(model_content=data) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(1, len(input_details)) self.assertEqual('input', input_details[0]['name']) self.assertEqual(np.uint8, input_details[0]['dtype']) self.assertTrue(([1, 4] == input_details[0]['shape']).all()) self.assertEqual((1.0, 0), input_details[0]['quantization']) output_details = interpreter.get_output_details() self.assertEqual(1, len(output_details)) self.assertEqual('output', output_details[0]['name']) self.assertEqual(np.uint8, output_details[0]['dtype']) self.assertTrue(([1, 4] == output_details[0]['shape']).all()) self.assertEqual((1.0, 0), output_details[0]['quantization']) test_input = np.array([[1, 2, 3, 4]], dtype=np.uint8) expected_output = np.array([[4, 3, 2, 1]], dtype=np.uint8) interpreter.resize_tensor_input(input_details[0]['index'], test_input.shape) interpreter.allocate_tensors() interpreter.set_tensor(input_details[0]['index'], test_input) interpreter.invoke() output_data = interpreter.get_tensor(output_details[0]['index']) self.assertTrue((expected_output == output_data).all()) def testString(self): interpreter = interpreter_wrapper.Interpreter( model_path=resource_loader.get_path_to_datafile( 'testdata/gather_string.tflite')) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(2, len(input_details)) self.assertEqual('input', input_details[0]['name']) self.assertEqual(np.string_, input_details[0]['dtype']) self.assertTrue(([10] == input_details[0]['shape']).all()) self.assertEqual((0.0, 0), input_details[0]['quantization']) self.assertEqual('indices', input_details[1]['name']) self.assertEqual(np.int64, input_details[1]['dtype']) self.assertTrue(([3] == input_details[1]['shape']).all()) self.assertEqual((0.0, 0), input_details[1]['quantization']) output_details = interpreter.get_output_details() self.assertEqual(1, len(output_details)) self.assertEqual('output', output_details[0]['name']) self.assertEqual(np.string_, output_details[0]['dtype']) self.assertTrue(([3] == output_details[0]['shape']).all()) self.assertEqual((0.0, 0), output_details[0]['quantization']) test_input = np.array([1, 2, 3], dtype=np.int64) interpreter.set_tensor(input_details[1]['index'], test_input) test_input = np.array(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']) expected_output = np.array([b'b', b'c', b'd']) interpreter.set_tensor(input_details[0]['index'], test_input) interpreter.invoke() output_data = interpreter.get_tensor(output_details[0]['index']) self.assertTrue((expected_output == output_data).all()) class InterpreterTestErrorPropagation(test_util.TensorFlowTestCase): def testInvalidModelContent(self): with self.assertRaisesRegexp(ValueError, 'Model provided has model identifier \''): interpreter_wrapper.Interpreter(model_content=six.b('garbage')) def testInvalidModelFile(self): with self.assertRaisesRegexp( ValueError, 'Could not open \'totally_invalid_file_name\''): interpreter_wrapper.Interpreter( model_path='totally_invalid_file_name') def testInvokeBeforeReady(self): interpreter = interpreter_wrapper.Interpreter( model_path=resource_loader.get_path_to_datafile( 'testdata/permute_float.tflite')) with self.assertRaisesRegexp(RuntimeError, 'Invoke called on model that is not ready'): interpreter.invoke() def testInvalidModelFileContent(self): with self.assertRaisesRegexp( ValueError, '`model_path` or `model_content` must be specified.'): interpreter_wrapper.Interpreter(model_path=None, model_content=None) def testInvalidIndex(self): interpreter = interpreter_wrapper.Interpreter( model_path=resource_loader.get_path_to_datafile( 'testdata/permute_float.tflite')) interpreter.allocate_tensors() # Invalid tensor index passed. with self.assertRaisesRegexp(ValueError, 'Tensor with no shape found.'): interpreter._get_tensor_details(4) class InterpreterTensorAccessorTest(test_util.TensorFlowTestCase): def setUp(self): self.interpreter = interpreter_wrapper.Interpreter( model_path=resource_loader.get_path_to_datafile( 'testdata/permute_float.tflite')) self.interpreter.allocate_tensors() self.input0 = self.interpreter.get_input_details()[0]['index'] self.initial_data = np.array([[-1., -2., -3., -4.]], np.float32) def testTensorAccessor(self): """Check that tensor returns a reference.""" array_ref = self.interpreter.tensor(self.input0) np.copyto(array_ref(), self.initial_data) self.assertAllEqual(array_ref(), self.initial_data) self.assertAllEqual( self.interpreter.get_tensor(self.input0), self.initial_data) def testGetTensorAccessor(self): """Check that get_tensor returns a copy.""" self.interpreter.set_tensor(self.input0, self.initial_data) array_initial_copy = self.interpreter.get_tensor(self.input0) new_value = np.add(1., array_initial_copy) self.interpreter.set_tensor(self.input0, new_value) self.assertAllEqual(array_initial_copy, self.initial_data) self.assertAllEqual(self.interpreter.get_tensor(self.input0), new_value) def testBase(self): self.assertTrue(self.interpreter._safe_to_run()) _ = self.interpreter.tensor(self.input0) self.assertTrue(self.interpreter._safe_to_run()) in0 = self.interpreter.tensor(self.input0)() self.assertFalse(self.interpreter._safe_to_run()) in0b = self.interpreter.tensor(self.input0)() self.assertFalse(self.interpreter._safe_to_run()) # Now get rid of the buffers so that we can evaluate. del in0 del in0b self.assertTrue(self.interpreter._safe_to_run()) def testBaseProtectsFunctions(self): in0 = self.interpreter.tensor(self.input0)() # Make sure we get an exception if we try to run an unsafe operation with self.assertRaisesRegexp( RuntimeError, 'There is at least 1 reference'): _ = self.interpreter.allocate_tensors() # Make sure we get an exception if we try to run an unsafe operation with self.assertRaisesRegexp( RuntimeError, 'There is at least 1 reference'): _ = self.interpreter.invoke() # Now test that we can run del in0 # this is our only buffer reference, so now it is safe to change in0safe = self.interpreter.tensor(self.input0) _ = self.interpreter.allocate_tensors() del in0safe # make sure in0Safe is held but lint doesn't complain class InterpreterDelegateTest(test_util.TensorFlowTestCase): def setUp(self): self._delegate_file = resource_loader.get_path_to_datafile( 'testdata/test_delegate.so') self._model_file = resource_loader.get_path_to_datafile( 'testdata/permute_float.tflite') # Load the library to reset the counters. library = ctypes.pydll.LoadLibrary(self._delegate_file) library.initialize_counters() def _TestInterpreter(self, model_path, options=None): """Test wrapper function that creates an interpreter with the delegate.""" delegate = interpreter_wrapper.load_delegate(self._delegate_file, options) return interpreter_wrapper.Interpreter( model_path=model_path, experimental_delegates=[delegate]) def testDelegate(self): """Tests the delegate creation and destruction.""" interpreter = self._TestInterpreter(model_path=self._model_file) lib = interpreter._delegates[0]._library self.assertEqual(lib.get_num_delegates_created(), 1) self.assertEqual(lib.get_num_delegates_destroyed(), 0) self.assertEqual(lib.get_num_delegates_invoked(), 1) del interpreter self.assertEqual(lib.get_num_delegates_created(), 1) self.assertEqual(lib.get_num_delegates_destroyed(), 1) self.assertEqual(lib.get_num_delegates_invoked(), 1) def testMultipleInterpreters(self): delegate = interpreter_wrapper.load_delegate(self._delegate_file) lib = delegate._library self.assertEqual(lib.get_num_delegates_created(), 1) self.assertEqual(lib.get_num_delegates_destroyed(), 0) self.assertEqual(lib.get_num_delegates_invoked(), 0) interpreter_a = interpreter_wrapper.Interpreter( model_path=self._model_file, experimental_delegates=[delegate]) self.assertEqual(lib.get_num_delegates_created(), 1) self.assertEqual(lib.get_num_delegates_destroyed(), 0) self.assertEqual(lib.get_num_delegates_invoked(), 1) interpreter_b = interpreter_wrapper.Interpreter( model_path=self._model_file, experimental_delegates=[delegate]) self.assertEqual(lib.get_num_delegates_created(), 1) self.assertEqual(lib.get_num_delegates_destroyed(), 0) self.assertEqual(lib.get_num_delegates_invoked(), 2) del delegate del interpreter_a self.assertEqual(lib.get_num_delegates_created(), 1) self.assertEqual(lib.get_num_delegates_destroyed(), 0) self.assertEqual(lib.get_num_delegates_invoked(), 2) del interpreter_b self.assertEqual(lib.get_num_delegates_created(), 1) self.assertEqual(lib.get_num_delegates_destroyed(), 1) self.assertEqual(lib.get_num_delegates_invoked(), 2) def testOptions(self): delegate_a = interpreter_wrapper.load_delegate(self._delegate_file) lib = delegate_a._library self.assertEqual(lib.get_num_delegates_created(), 1) self.assertEqual(lib.get_num_delegates_destroyed(), 0) self.assertEqual(lib.get_num_delegates_invoked(), 0) self.assertEqual(lib.get_options_counter(), 0) delegate_b = interpreter_wrapper.load_delegate( self._delegate_file, options={ 'unused': False, 'options_counter': 2 }) lib = delegate_b._library self.assertEqual(lib.get_num_delegates_created(), 2) self.assertEqual(lib.get_num_delegates_destroyed(), 0) self.assertEqual(lib.get_num_delegates_invoked(), 0) self.assertEqual(lib.get_options_counter(), 2) del delegate_a del delegate_b self.assertEqual(lib.get_num_delegates_created(), 2) self.assertEqual(lib.get_num_delegates_destroyed(), 2) self.assertEqual(lib.get_num_delegates_invoked(), 0) self.assertEqual(lib.get_options_counter(), 2) def testFail(self): with self.assertRaisesRegexp(ValueError, 'Failed to load delegate from .*'): interpreter_wrapper.load_delegate( self._delegate_file, options={'fail': 'fail'}) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/lite/python/interpreter_test.py
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for lite.py functionality related to select TF op usage.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.lite.python import lite from tensorflow.lite.python.interpreter import Interpreter from tensorflow.python.client import session from tensorflow.python.eager import def_function from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test from tensorflow.python.training.tracking import tracking @test_util.run_v1_only('Incompatible with 2.0.') class FromSessionTest(test_util.TensorFlowTestCase): def testFlexMode(self): in_tensor = array_ops.placeholder( shape=[1, 16, 16, 3], dtype=dtypes.float32) out_tensor = in_tensor + in_tensor sess = session.Session() # Convert model and ensure model is not None. converter = lite.TFLiteConverter.from_session(sess, [in_tensor], [out_tensor]) converter.target_spec.supported_ops = set([lite.OpsSet.SELECT_TF_OPS]) tflite_model = converter.convert() self.assertTrue(tflite_model) # Ensures the model contains TensorFlow ops. # TODO(nupurgarg): Check values once there is a Python delegate interface. interpreter = Interpreter(model_content=tflite_model) with self.assertRaises(RuntimeError) as error: interpreter.allocate_tensors() self.assertIn( 'Regular TensorFlow ops are not supported by this interpreter. Make ' 'sure you invoke the Flex delegate before inference.', str(error.exception)) def testDeprecatedFlags(self): in_tensor = array_ops.placeholder( shape=[1, 16, 16, 3], dtype=dtypes.float32) out_tensor = in_tensor + in_tensor sess = session.Session() # Convert model and ensure model is not None. converter = lite.TFLiteConverter.from_session(sess, [in_tensor], [out_tensor]) converter.target_ops = set([lite.OpsSet.SELECT_TF_OPS]) # Ensure `target_ops` is set to the correct value after flag deprecation. self.assertEqual(converter.target_ops, set([lite.OpsSet.SELECT_TF_OPS])) self.assertEqual(converter.target_spec.supported_ops, set([lite.OpsSet.SELECT_TF_OPS])) tflite_model = converter.convert() self.assertTrue(tflite_model) # Ensures the model contains TensorFlow ops. # TODO(nupurgarg): Check values once there is a Python delegate interface. interpreter = Interpreter(model_content=tflite_model) with self.assertRaises(RuntimeError) as error: interpreter.allocate_tensors() self.assertIn( 'Regular TensorFlow ops are not supported by this interpreter. Make ' 'sure you invoke the Flex delegate before inference.', str(error.exception)) class FromConcreteFunctionTest(test_util.TensorFlowTestCase): @test_util.run_v2_only def testFloat(self): input_data = constant_op.constant(1., shape=[1]) root = tracking.AutoTrackable() root.v1 = variables.Variable(3.) root.v2 = variables.Variable(2.) root.f = def_function.function(lambda x: root.v1 * root.v2 * x) concrete_func = root.f.get_concrete_function(input_data) # Convert model. converter = lite.TFLiteConverterV2.from_concrete_functions([concrete_func]) converter.target_spec.supported_ops = set([lite.OpsSet.SELECT_TF_OPS]) tflite_model = converter.convert() # Ensures the model contains TensorFlow ops. # TODO(nupurgarg): Check values once there is a Python delegate interface. interpreter = Interpreter(model_content=tflite_model) with self.assertRaises(RuntimeError) as error: interpreter.allocate_tensors() self.assertIn( 'Regular TensorFlow ops are not supported by this interpreter. Make ' 'sure you invoke the Flex delegate before inference.', str(error.exception)) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/lite/python/lite_flex_test.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Python command line interface for running TOCO.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import os import sys from tensorflow.lite.python import lite from tensorflow.lite.python import lite_constants from tensorflow.lite.toco import toco_flags_pb2 as _toco_flags_pb2 from tensorflow.python import keras from tensorflow.python import tf2 from tensorflow.python.platform import app def _parse_array(values, type_fn=str): if values is not None: return [type_fn(val) for val in values.split(",") if val] return None def _parse_set(values): if values is not None: return set([item for item in values.split(",") if item]) return None def _parse_inference_type(value, flag): """Converts the inference type to the value of the constant. Args: value: str representing the inference type. flag: str representing the flag name. Returns: tf.dtype. Raises: ValueError: Unsupported value. """ if value == "FLOAT": return lite_constants.FLOAT if value == "QUANTIZED_UINT8": return lite_constants.QUANTIZED_UINT8 raise ValueError("Unsupported value for --{0}. Only FLOAT and " "QUANTIZED_UINT8 are supported.".format(flag)) def _get_toco_converter(flags): """Makes a TFLiteConverter object based on the flags provided. Args: flags: argparse.Namespace object containing TFLite flags. Returns: TFLiteConverter object. Raises: ValueError: Invalid flags. """ # Parse input and output arrays. input_arrays = _parse_array(flags.input_arrays) input_shapes = None if flags.input_shapes: input_shapes_list = [ _parse_array(shape, type_fn=int) for shape in flags.input_shapes.split(":") ] input_shapes = dict(zip(input_arrays, input_shapes_list)) output_arrays = _parse_array(flags.output_arrays) converter_kwargs = { "input_arrays": input_arrays, "input_shapes": input_shapes, "output_arrays": output_arrays } # Create TFLiteConverter. if flags.graph_def_file: converter_fn = lite.TFLiteConverter.from_frozen_graph converter_kwargs["graph_def_file"] = flags.graph_def_file elif flags.saved_model_dir: converter_fn = lite.TFLiteConverter.from_saved_model converter_kwargs["saved_model_dir"] = flags.saved_model_dir converter_kwargs["tag_set"] = _parse_set(flags.saved_model_tag_set) converter_kwargs["signature_key"] = flags.saved_model_signature_key elif flags.keras_model_file: converter_fn = lite.TFLiteConverter.from_keras_model_file converter_kwargs["model_file"] = flags.keras_model_file else: raise ValueError("--graph_def_file, --saved_model_dir, or " "--keras_model_file must be specified.") return converter_fn(**converter_kwargs) def _convert_tf1_model(flags): """Calls function to convert the TensorFlow 1.X model into a TFLite model. Args: flags: argparse.Namespace object. Raises: ValueError: Invalid flags. """ # Create converter. converter = _get_toco_converter(flags) if flags.inference_type: converter.inference_type = _parse_inference_type(flags.inference_type, "inference_type") if flags.inference_input_type: converter.inference_input_type = _parse_inference_type( flags.inference_input_type, "inference_input_type") if flags.output_format: converter.output_format = _toco_flags_pb2.FileFormat.Value( flags.output_format) if flags.mean_values and flags.std_dev_values: input_arrays = converter.get_input_arrays() std_dev_values = _parse_array(flags.std_dev_values, type_fn=float) # In quantized inference, mean_value has to be integer so that the real # value 0.0 is exactly representable. if converter.inference_type == lite_constants.QUANTIZED_UINT8: mean_values = _parse_array(flags.mean_values, type_fn=int) else: mean_values = _parse_array(flags.mean_values, type_fn=float) quant_stats = list(zip(mean_values, std_dev_values)) if ((not flags.input_arrays and len(input_arrays) > 1) or (len(input_arrays) != len(quant_stats))): raise ValueError("Mismatching --input_arrays, --std_dev_values, and " "--mean_values. The flags must have the same number of " "items. The current input arrays are '{0}'. " "--input_arrays must be present when specifying " "--std_dev_values and --mean_values with multiple input " "tensors in order to map between names and " "values.".format(",".join(input_arrays))) converter.quantized_input_stats = dict(zip(input_arrays, quant_stats)) if (flags.default_ranges_min is not None) and (flags.default_ranges_max is not None): converter.default_ranges_stats = (flags.default_ranges_min, flags.default_ranges_max) if flags.drop_control_dependency: converter.drop_control_dependency = flags.drop_control_dependency if flags.reorder_across_fake_quant: converter.reorder_across_fake_quant = flags.reorder_across_fake_quant if flags.change_concat_input_ranges: converter.change_concat_input_ranges = ( flags.change_concat_input_ranges == "TRUE") if flags.allow_custom_ops: converter.allow_custom_ops = flags.allow_custom_ops if flags.target_ops: ops_set_options = lite.OpsSet.get_options() converter.target_ops = set() for option in flags.target_ops.split(","): if option not in ops_set_options: raise ValueError("Invalid value for --target_ops. Options: " "{0}".format(",".join(ops_set_options))) converter.target_spec.supported_ops.add(lite.OpsSet(option)) if flags.post_training_quantize: converter.post_training_quantize = flags.post_training_quantize if converter.inference_type == lite_constants.QUANTIZED_UINT8: print("--post_training_quantize quantizes a graph of inference_type " "FLOAT. Overriding inference type QUANTIZED_UINT8 to FLOAT.") converter.inference_type = lite_constants.FLOAT if flags.dump_graphviz_dir: converter.dump_graphviz_dir = flags.dump_graphviz_dir if flags.dump_graphviz_video: converter.dump_graphviz_vode = flags.dump_graphviz_video # Convert model. output_data = converter.convert() with open(flags.output_file, "wb") as f: f.write(output_data) def _convert_tf2_model(flags): """Calls function to convert the TensorFlow 2.0 model into a TFLite model. Args: flags: argparse.Namespace object. Raises: ValueError: Unsupported file format. """ # Load the model. if flags.saved_model_dir: converter = lite.TFLiteConverterV2.from_saved_model(flags.saved_model_dir) elif flags.keras_model_file: model = keras.models.load_model(flags.keras_model_file) converter = lite.TFLiteConverterV2.from_keras_model(model) # Convert the model. tflite_model = converter.convert() with open(flags.output_file, "wb") as f: f.write(tflite_model) def _check_tf1_flags(flags, unparsed): """Checks the parsed and unparsed flags to ensure they are valid in 1.X. Raises an error if previously support unparsed flags are found. Raises an error for parsed flags that don't meet the required conditions. Args: flags: argparse.Namespace object containing TFLite flags. unparsed: List of unparsed flags. Raises: ValueError: Invalid flags. """ # Check unparsed flags for common mistakes based on previous TOCO. def _get_message_unparsed(flag, orig_flag, new_flag): if flag.startswith(orig_flag): return "\n Use {0} instead of {1}".format(new_flag, orig_flag) return "" if unparsed: output = "" for flag in unparsed: output += _get_message_unparsed(flag, "--input_file", "--graph_def_file") output += _get_message_unparsed(flag, "--savedmodel_directory", "--saved_model_dir") output += _get_message_unparsed(flag, "--std_value", "--std_dev_values") output += _get_message_unparsed(flag, "--batch_size", "--input_shapes") output += _get_message_unparsed(flag, "--dump_graphviz", "--dump_graphviz_dir") if output: raise ValueError(output) # Check that flags are valid. if flags.graph_def_file and (not flags.input_arrays or not flags.output_arrays): raise ValueError("--input_arrays and --output_arrays are required with " "--graph_def_file") if flags.input_shapes: if not flags.input_arrays: raise ValueError("--input_shapes must be used with --input_arrays") if flags.input_shapes.count(":") != flags.input_arrays.count(","): raise ValueError("--input_shapes and --input_arrays must have the same " "number of items") if flags.std_dev_values or flags.mean_values: if bool(flags.std_dev_values) != bool(flags.mean_values): raise ValueError("--std_dev_values and --mean_values must be used " "together") if flags.std_dev_values.count(",") != flags.mean_values.count(","): raise ValueError("--std_dev_values, --mean_values must have the same " "number of items") if (flags.default_ranges_min is None) != (flags.default_ranges_max is None): raise ValueError("--default_ranges_min and --default_ranges_max must be " "used together") if flags.dump_graphviz_video and not flags.dump_graphviz_dir: raise ValueError("--dump_graphviz_video must be used with " "--dump_graphviz_dir") def _get_tf1_parser(): """Returns ArgumentParser for tflite_convert for TensorFlow 1.X.""" parser = argparse.ArgumentParser( description=("Command line tool to run TensorFlow Lite Converter.")) # Output file flag. parser.add_argument( "--output_file", type=str, help="Full filepath of the output file.", required=True) # Input file flags. input_file_group = parser.add_mutually_exclusive_group(required=True) input_file_group.add_argument( "--graph_def_file", type=str, help="Full filepath of file containing frozen TensorFlow GraphDef.") input_file_group.add_argument( "--saved_model_dir", type=str, help="Full filepath of directory containing the SavedModel.") input_file_group.add_argument( "--keras_model_file", type=str, help="Full filepath of HDF5 file containing tf.Keras model.") # Model format flags. parser.add_argument( "--output_format", type=str.upper, choices=["TFLITE", "GRAPHVIZ_DOT"], help="Output file format.") parser.add_argument( "--inference_type", type=str.upper, choices=["FLOAT", "QUANTIZED_UINT8"], help="Target data type of real-number arrays in the output file.") parser.add_argument( "--inference_input_type", type=str.upper, choices=["FLOAT", "QUANTIZED_UINT8"], help=("Target data type of real-number input arrays. Allows for a " "different type for input arrays in the case of quantization.")) # Input and output arrays flags. parser.add_argument( "--input_arrays", type=str, help="Names of the input arrays, comma-separated.") parser.add_argument( "--input_shapes", type=str, help="Shapes corresponding to --input_arrays, colon-separated.") parser.add_argument( "--output_arrays", type=str, help="Names of the output arrays, comma-separated.") # SavedModel related flags. parser.add_argument( "--saved_model_tag_set", type=str, help=("Comma-separated set of tags identifying the MetaGraphDef within " "the SavedModel to analyze. All tags must be present. In order to " "pass in an empty tag set, pass in \"\". (default \"serve\")")) parser.add_argument( "--saved_model_signature_key", type=str, help=("Key identifying the SignatureDef containing inputs and outputs. " "(default DEFAULT_SERVING_SIGNATURE_DEF_KEY)")) # Quantization flags. parser.add_argument( "--std_dev_values", type=str, help=("Standard deviation of training data for each input tensor, " "comma-separated floats. Used for quantized input tensors. " "(default None)")) parser.add_argument( "--mean_values", type=str, help=("Mean of training data for each input tensor, comma-separated " "floats. Used for quantized input tensors. (default None)")) parser.add_argument( "--default_ranges_min", type=float, help=("Default value for min bound of min/max range values used for all " "arrays without a specified range, Intended for experimenting with " "quantization via \"dummy quantization\". (default None)")) parser.add_argument( "--default_ranges_max", type=float, help=("Default value for max bound of min/max range values used for all " "arrays without a specified range, Intended for experimenting with " "quantization via \"dummy quantization\". (default None)")) # quantize_weights is DEPRECATED. parser.add_argument( "--quantize_weights", dest="post_training_quantize", action="store_true", help=argparse.SUPPRESS) parser.add_argument( "--post_training_quantize", dest="post_training_quantize", action="store_true", help=( "Boolean indicating whether to quantize the weights of the " "converted float model. Model size will be reduced and there will " "be latency improvements (at the cost of accuracy). (default False)")) # Graph manipulation flags. parser.add_argument( "--drop_control_dependency", action="store_true", help=("Boolean indicating whether to drop control dependencies silently. " "This is due to TensorFlow not supporting control dependencies. " "(default True)")) parser.add_argument( "--reorder_across_fake_quant", action="store_true", help=("Boolean indicating whether to reorder FakeQuant nodes in " "unexpected locations. Used when the location of the FakeQuant " "nodes is preventing graph transformations necessary to convert " "the graph. Results in a graph that differs from the quantized " "training graph, potentially causing differing arithmetic " "behavior. (default False)")) # Usage for this flag is --change_concat_input_ranges=true or # --change_concat_input_ranges=false in order to make it clear what the flag # is set to. This keeps the usage consistent with other usages of the flag # where the default is different. The default value here is False. parser.add_argument( "--change_concat_input_ranges", type=str.upper, choices=["TRUE", "FALSE"], help=("Boolean to change behavior of min/max ranges for inputs and " "outputs of the concat operator for quantized models. Changes the " "ranges of concat operator overlap when true. (default False)")) # Permitted ops flags. parser.add_argument( "--allow_custom_ops", action="store_true", help=("Boolean indicating whether to allow custom operations. When false " "any unknown operation is an error. When true, custom ops are " "created for any op that is unknown. The developer will need to " "provide these to the TensorFlow Lite runtime with a custom " "resolver. (default False)")) parser.add_argument( "--target_ops", type=str, help=("Experimental flag, subject to change. Set of OpsSet options " "indicating which converter to use. Options: {0}. One or more " "option may be specified. (default set([OpsSet.TFLITE_BUILTINS]))" "".format(",".join(lite.OpsSet.get_options())))) # Logging flags. parser.add_argument( "--dump_graphviz_dir", type=str, help=("Full filepath of folder to dump the graphs at various stages of " "processing GraphViz .dot files. Preferred over --output_format=" "GRAPHVIZ_DOT in order to keep the requirements of the output " "file.")) parser.add_argument( "--dump_graphviz_video", action="store_true", help=("Boolean indicating whether to dump the graph after every graph " "transformation")) return parser def _get_tf2_parser(): """Returns ArgumentParser for tflite_convert for TensorFlow 2.0.""" parser = argparse.ArgumentParser( description=("Command line tool to run TensorFlow Lite Converter.")) # Output file flag. parser.add_argument( "--output_file", type=str, help="Full filepath of the output file.", required=True) # Input file flags. input_file_group = parser.add_mutually_exclusive_group(required=True) input_file_group.add_argument( "--saved_model_dir", type=str, help="Full path of the directory containing the SavedModel.") input_file_group.add_argument( "--keras_model_file", type=str, help="Full filepath of HDF5 file containing tf.Keras model.") return parser def run_main(_): """Main in toco_convert.py.""" if tf2.enabled(): parser = _get_tf2_parser() else: parser = _get_tf1_parser() tflite_flags, unparsed = parser.parse_known_args(args=sys.argv[1:]) if tf2.enabled(): _convert_tf2_model(tflite_flags) else: try: _check_tf1_flags(tflite_flags, unparsed) except ValueError as e: parser.print_usage() file_name = os.path.basename(sys.argv[0]) sys.stderr.write("{0}: error: {1}\n".format(file_name, str(e))) sys.exit(1) _convert_tf1_model(tflite_flags) def main(): app.run(main=run_main, argv=sys.argv[:1]) if __name__ == "__main__": main()
tensorflow-master
tensorflow/lite/python/tflite_convert.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """TensorFlow Lite tooling helper functionality.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import warnings import enum from six import PY3 from google.protobuf import text_format as _text_format from google.protobuf.message import DecodeError from tensorflow.core.framework import graph_pb2 as _graph_pb2 from tensorflow.lite.experimental.examples.lstm.rnn import dynamic_rnn # pylint: disable=unused-import from tensorflow.lite.experimental.examples.lstm.rnn_cell import TFLiteLSTMCell # pylint: disable=unused-import from tensorflow.lite.experimental.examples.lstm.rnn_cell import TfLiteRNNCell # pylint: disable=unused-import from tensorflow.lite.experimental.tensorboard.ops_util import get_potentially_supported_ops # pylint: disable=unused-import from tensorflow.lite.python import lite_constants as constants from tensorflow.lite.python.convert import build_toco_convert_protos # pylint: disable=unused-import from tensorflow.lite.python.convert import ConverterError # pylint: disable=unused-import from tensorflow.lite.python.convert import OpsSet from tensorflow.lite.python.convert import toco_convert # pylint: disable=unused-import from tensorflow.lite.python.convert import toco_convert_graph_def as _toco_convert_graph_def from tensorflow.lite.python.convert import toco_convert_impl as _toco_convert_impl from tensorflow.lite.python.convert import toco_convert_protos # pylint: disable=unused-import from tensorflow.lite.python.convert_saved_model import freeze_saved_model as _freeze_saved_model from tensorflow.lite.python.interpreter import Interpreter # pylint: disable=unused-import from tensorflow.lite.python.interpreter import load_delegate # pylint: disable=unused-import from tensorflow.lite.python.op_hint import convert_op_hints_to_stubs # pylint: disable=unused-import from tensorflow.lite.python.op_hint import OpHint # pylint: disable=unused-import from tensorflow.lite.python.optimize import calibrator as _calibrator from tensorflow.lite.python.util import freeze_graph as _freeze_graph from tensorflow.lite.python.util import get_grappler_config as _get_grappler_config from tensorflow.lite.python.util import get_tensor_name as _get_tensor_name from tensorflow.lite.python.util import get_tensors_from_tensor_names as _get_tensors_from_tensor_names from tensorflow.lite.python.util import is_frozen_graph as _is_frozen_graph from tensorflow.lite.python.util import run_graph_optimizations as _run_graph_optimizations from tensorflow.lite.python.util import set_tensor_shapes as _set_tensor_shapes from tensorflow.python import keras as _keras from tensorflow.python.client import session as _session from tensorflow.python.eager import context from tensorflow.python.eager import def_function as _def_function from tensorflow.python.eager import function as _function from tensorflow.python.framework import convert_to_constants as _convert_to_constants from tensorflow.python.framework import dtypes as _dtypes from tensorflow.python.framework import ops as _ops from tensorflow.python.framework.errors_impl import NotFoundError as _NotFoundError from tensorflow.python.framework.importer import import_graph_def as _import_graph_def from tensorflow.python.keras.saving import saving_utils as _saving_utils from tensorflow.python.lib.io import file_io as _file_io from tensorflow.python.saved_model import signature_constants as _signature_constants from tensorflow.python.saved_model import tag_constants as _tag_constants from tensorflow.python.saved_model.load import load as _load from tensorflow.python.util import deprecation as _deprecation from tensorflow.python.util.tf_export import tf_export as _tf_export @_tf_export("lite.Optimize") class Optimize(enum.Enum): """Enum defining the optimizations to apply when generating tflite graphs. Some optimizations may come at the cost of accuracy. """ # Default optimization strategy. # # Converter will do its best to improve size and latency based on the # information provided. # Enhanced optimizations can be gained by providing a representative_dataset. # This is recommended, and is currently equivalent to the modes below. # Currently, weights will be quantized and if representative_dataset is # provided, activations for quantizable operations will also be quantized. DEFAULT = "DEFAULT" # Optimize for size. # # Optimizations that reduce the size of the model. # The model size will be reduced. # Currently, weights will be quantized and if representative_dataset is # provided, activations for quantizable operations will also be quantized. OPTIMIZE_FOR_SIZE = "OPTIMIZE_FOR_SIZE" # Optimize for latency. # # Optimizations that reduce the latency of the model. # Currently, weights will be quantized and if representative_dataset is # provided, activations for quantizable operations will also be quantized. OPTIMIZE_FOR_LATENCY = "OPTIMIZE_FOR_LATENCY" def __str__(self): return self.value @_tf_export("lite.RepresentativeDataset") class RepresentativeDataset(object): """Representative dataset to evaluate optimizations. A representative dataset that can be used to evaluate optimizations by the converter. E.g. converter can use these examples to estimate (min, max) ranges by calibrating the model on inputs. This can allow converter to quantize a converted floating point model. """ def __init__(self, input_gen): """Creates a representative dataset. Args: input_gen: an input generator that can be used to generate input samples for the model. This must be a callable object that returns an object that supports the `iter()` protocol (e.g. a generator function). The elements generated must have same type and shape as inputs to the model. """ self.input_gen = input_gen @_tf_export("lite.TargetSpec") class TargetSpec(object): """Specification of target device. Details about target device. Converter optimizes the generated model for specific device. Attributes: supported_ops: Experimental flag, subject to change. Set of OpsSet options supported by the device. (default set([OpsSet.TFLITE_BUILTINS])) """ def __init__(self, supported_ops=None): if supported_ops is None: supported_ops = set([OpsSet.TFLITE_BUILTINS]) self.supported_ops = supported_ops class TFLiteConverterBase(object): """Converter subclass to share functionality between V1 and V2 converters.""" def __init__(self): self.representative_dataset = None self.optimizations = [] self._target_ops = set([OpsSet.TFLITE_BUILTINS]) def _grappler_config(self): is_only_flex_enabled = set([OpsSet.SELECT_TF_OPS]) == set(self._target_ops) optimizers = ["constfold"] if is_only_flex_enabled: # The layout optimizer turns NHCW to NCHW. This provides performance # optimizations when Flex mode is enabled. However, this is not compatible # with builtin ops. optimizers.append("layout") return _get_grappler_config(optimizers) def _validate_representative_dataset(self): if self.representative_dataset: if not isinstance(self.representative_dataset, RepresentativeDataset): self.representative_dataset = RepresentativeDataset( self.representative_dataset) if self.representative_dataset.input_gen is None: raise ValueError( "Provide an input generator for representative_dataset") elif self._int8_target_required(): raise ValueError("representative_dataset is required when specifying " "TFLITE_BUILTINS_INT8 target.") def _int8_target_required(self): return set([OpsSet.TFLITE_BUILTINS_INT8]) == set(self._target_ops) def _is_post_training_optimize(self): return (self._int8_target_required() or bool( set(self.optimizations).intersection([ Optimize.OPTIMIZE_FOR_LATENCY, Optimize.OPTIMIZE_FOR_SIZE, Optimize.DEFAULT ]))) def _is_weight_only_quantize(self): return (self._is_post_training_optimize() and (self.representative_dataset is None)) def _is_calibration_quantize(self): return self._is_post_training_optimize() and self.representative_dataset def _calibrate_quantize_model(self, result, inference_input_type, inference_output_type): allow_float = not self._int8_target_required() calibrate_quantize = _calibrator.Calibrator(result) return calibrate_quantize.calibrate_and_quantize( self.representative_dataset.input_gen, inference_input_type, inference_output_type, allow_float) @_tf_export("lite.TFLiteConverter", v1=[]) class TFLiteConverterV2(TFLiteConverterBase): """Converts a TensorFlow model into TensorFlow Lite model. Attributes: allow_custom_ops: Boolean indicating whether to allow custom operations. When false any unknown operation is an error. When true, custom ops are created for any op that is unknown. The developer will need to provide these to the TensorFlow Lite runtime with a custom resolver. (default False) target_spec: Experimental flag, subject to change. Specification of target device. optimizations: Experimental flag, subject to change. A list of optimizations to apply when converting the model. E.g. `[Optimize.DEFAULT] representative_dataset: A representative dataset that can be used to generate input and output samples for the model. The converter can use the dataset to evaluate different optimizations. Example usage: ```python # Converting a SavedModel to a TensorFlow Lite model. converter = lite.TFLiteConverter.from_saved_model(saved_model_dir) tflite_model = converter.convert() # Converting a tf.Keras model to a TensorFlow Lite model. converter = lite.TFLiteConverter.from_keras_model(model) tflite_model = converter.convert() # Converting ConcreteFunctions to a TensorFlow Lite model. converter = lite.TFLiteConverter.from_concrete_functions([func]) tflite_model = converter.convert() ``` """ def __init__(self, funcs, trackable_obj=None): """Constructor for TFLiteConverter. Args: funcs: List of TensorFlow ConcreteFunctions. The list should not contain duplicate elements. trackable_obj: tf.AutoTrackable object associated with `funcs`. A reference to this object needs to be maintained so that Variables do not get garbage collected since functions have a weak reference to Variables. This is only required when the tf.AutoTrackable object is not maintained by the user (e.g. `from_saved_model`). """ super(TFLiteConverterV2, self).__init__() self._funcs = funcs self._trackable_obj = trackable_obj self.allow_custom_ops = False self.target_spec = TargetSpec() @classmethod def from_concrete_functions(cls, funcs): """Creates a TFLiteConverter object from ConcreteFunctions. Args: funcs: List of TensorFlow ConcreteFunctions. The list should not contain duplicate elements. Returns: TFLiteConverter object. Raises: Invalid input type. """ for func in funcs: if not isinstance(func, _function.ConcreteFunction): message = "This function takes in a list of ConcreteFunction." if isinstance(func, _def_function.Function): message += (" To get the ConcreteFunction from a Function," " call from_concrete_function.") raise ValueError(message) return cls(funcs) @classmethod def from_saved_model(cls, saved_model_dir, signature_keys=None, tags=None): """Creates a TFLiteConverter object from a SavedModel directory. Args: saved_model_dir: SavedModel directory to convert. signature_keys: List of keys identifying SignatureDef containing inputs and outputs. Elements should not be duplicated. By default the `signatures` attribute of the MetaGraphdef is used. (default saved_model.signatures) tags: Set of tags identifying the MetaGraphDef within the SavedModel to analyze. All tags in the tag set must be present. (default set(SERVING)) Returns: TFLiteConverter object. Raises: Invalid signature keys. """ # Ensures any graphs created in Eager mode are able to run. This is required # in order to create a tf.estimator.Exporter that exports a TFLite model. with context.eager_mode(): saved_model = _load(saved_model_dir, tags) if not signature_keys: signature_keys = saved_model.signatures funcs = [] for key in signature_keys: if key not in saved_model.signatures: raise ValueError("Invalid signature key '{}' found. Valid keys are " "'{}'.".format(key, ",".join(saved_model.signatures))) funcs.append(saved_model.signatures[key]) return cls(funcs, saved_model) @classmethod def from_keras_model(cls, model): """Creates a TFLiteConverter object from a Keras model. Args: model: tf.Keras.Model Returns: TFLiteConverter object. """ func = _saving_utils.trace_model_call(model) concrete_func = func.get_concrete_function() return cls([concrete_func]) def convert(self): """Converts a TensorFlow GraphDef based on instance variables. Returns: The converted data in serialized format. Raises: ValueError: Multiple concrete functions are specified. Input shape is not specified. Invalid quantization parameters. """ # TODO(b/130297984): Add support for converting multiple function. self._target_ops = self.target_spec.supported_ops if len(self._funcs) != 1: raise ValueError("This converter can only convert a single " "ConcreteFunction. Converting multiple functions is " "under development.") frozen_func = _convert_to_constants.convert_variables_to_constants_v2( self._funcs[0]) input_tensors = [ tensor for tensor in frozen_func.inputs if tensor.dtype != _dtypes.resource ] output_tensors = frozen_func.outputs # Run a Grappler pass. graph_def = frozen_func.graph.as_graph_def() graph_def = _run_graph_optimizations( graph_def, input_tensors, output_tensors, config=self._grappler_config(), graph=frozen_func.graph) # Checks dimensions in input tensor. for tensor in input_tensors: # Note that shape_list might be empty for scalar shapes. shape_list = tensor.shape.as_list() if None in shape_list[1:]: raise ValueError( "None is only supported in the 1st dimension. Tensor '{0}' has " "invalid shape '{1}'.".format(_get_tensor_name(tensor), shape_list)) elif shape_list and shape_list[0] is None: # Set the batch size to 1 if undefined. shape = tensor.shape.as_list() shape[0] = 1 tensor.set_shape(shape) self._validate_representative_dataset() converter_kwargs = { "input_format": constants.TENSORFLOW_GRAPHDEF, "allow_custom_ops": self.allow_custom_ops, "post_training_quantize": self._is_weight_only_quantize(), "target_ops": self.target_spec.supported_ops, } # Converts model. result = _toco_convert_impl( input_data=graph_def, input_tensors=input_tensors, output_tensors=output_tensors, **converter_kwargs) if self._is_calibration_quantize(): result = self._calibrate_quantize_model(result, constants.FLOAT, constants.FLOAT) return result @_tf_export(v1=["lite.TFLiteConverter"]) class TFLiteConverter(TFLiteConverterBase): """Convert a TensorFlow model into `output_format`. This is used to convert from a TensorFlow GraphDef, SavedModel or tf.keras model into either a TFLite FlatBuffer or graph visualization. Attributes: inference_type: Target data type of real-number arrays in the output file. Must be `{tf.float32, tf.uint8}`. If `optimzations` are provided, this parameter is ignored. (default tf.float32) inference_input_type: Target data type of real-number input arrays. Allows for a different type for input arrays. If an integer type is provided and `optimizations` are not used, `quantized_inputs_stats` must be provided. If `inference_type` is tf.uint8, signaling conversion to a fully quantized model from a quantization-aware trained input model, then `inference_input_type` defaults to tf.uint8. In all other cases, `inference_input_type` defaults to tf.float32. Must be `{tf.float32, tf.uint8, tf.int8}` inference_output_type: Target data type of real-number output arrays. Allows for a different type for output arrays. If `inference_type` is tf.uint8, signaling conversion to a fully quantized model from a quantization-aware trained output model, then `inference_output_type` defaults to tf.uint8. In all other cases, `inference_output_type` must be tf.float32, an error will be thrown otherwise. Must be `{tf.float32, tf.uint8, tf.int8}` output_format: Output file format. Currently must be `{TFLITE, GRAPHVIZ_DOT}`. (default TFLITE) quantized_input_stats: Dict of strings representing input tensor names mapped to tuple of floats representing the mean and standard deviation of the training data (e.g., {"foo" : (0., 1.)}). Only need if `inference_input_type` is `QUANTIZED_UINT8`. real_input_value = (quantized_input_value - mean_value) / std_dev_value. (default {}) default_ranges_stats: Tuple of integers representing (min, max) range values for all arrays without a specified range. Intended for experimenting with quantization via "dummy quantization". (default None) drop_control_dependency: Boolean indicating whether to drop control dependencies silently. This is due to TFLite not supporting control dependencies. (default True) reorder_across_fake_quant: Boolean indicating whether to reorder FakeQuant nodes in unexpected locations. Used when the location of the FakeQuant nodes is preventing graph transformations necessary to convert the graph. Results in a graph that differs from the quantized training graph, potentially causing differing arithmetic behavior. (default False) change_concat_input_ranges: Boolean to change behavior of min/max ranges for inputs and outputs of the concat operator for quantized models. Changes the ranges of concat operator overlap when true. (default False) allow_custom_ops: Boolean indicating whether to allow custom operations. When false any unknown operation is an error. When true, custom ops are created for any op that is unknown. The developer will need to provide these to the TensorFlow Lite runtime with a custom resolver. (default False) post_training_quantize: Deprecated. Please specify `[Optimize.DEFAULT]` for `optimizations` instead. Boolean indicating whether to quantize the weights of the converted float model. Model size will be reduced and there will be latency improvements (at the cost of accuracy). (default False) dump_graphviz_dir: Full filepath of folder to dump the graphs at various stages of processing GraphViz .dot files. Preferred over --output_format=GRAPHVIZ_DOT in order to keep the requirements of the output file. (default None) dump_graphviz_video: Boolean indicating whether to dump the graph after every graph transformation. (default False) target_ops: Deprecated. Please specify `target_spec.supported_ops` instead. Set of OpsSet options indicating which converter to use. (default set([OpsSet.TFLITE_BUILTINS])) target_spec: Experimental flag, subject to change. Specification of target device. optimizations: Experimental flag, subject to change. A list of optimizations to apply when converting the model. E.g. `[Optimize.DEFAULT]` representative_dataset: A representative dataset that can be used to generate input and output samples for the model. The converter can use the dataset to evaluate different optimizations. Example usage: ```python # Converting a GraphDef from session. converter = lite.TFLiteConverter.from_session(sess, in_tensors, out_tensors) tflite_model = converter.convert() open("converted_model.tflite", "wb").write(tflite_model) # Converting a GraphDef from file. converter = lite.TFLiteConverter.from_frozen_graph( graph_def_file, input_arrays, output_arrays) tflite_model = converter.convert() open("converted_model.tflite", "wb").write(tflite_model) # Converting a SavedModel. converter = lite.TFLiteConverter.from_saved_model(saved_model_dir) tflite_model = converter.convert() open("converted_model.tflite", "wb").write(tflite_model) # Converting a tf.keras model. converter = lite.TFLiteConverter.from_keras_model_file(keras_model) tflite_model = converter.convert() open("converted_model.tflite", "wb").write(tflite_model) ``` """ def __init__(self, graph_def, input_tensors, output_tensors, input_arrays_with_shape=None, output_arrays=None): """Constructor for TFLiteConverter. Args: graph_def: Frozen TensorFlow GraphDef. input_tensors: List of input tensors. Type and shape are computed using `foo.shape` and `foo.dtype`. output_tensors: List of output tensors (only .name is used from this). input_arrays_with_shape: Tuple of strings representing input tensor names and list of integers representing input shapes (e.g., [("foo" : [1, 16, 16, 3])]). Use only when graph cannot be loaded into TensorFlow and when `input_tensors` and `output_tensors` are None. (default None) output_arrays: List of output tensors to freeze graph with. Use only when graph cannot be loaded into TensorFlow and when `input_tensors` and `output_tensors` are None. (default None) Raises: ValueError: Invalid arguments. """ super(TFLiteConverter, self).__init__() self._graph_def = graph_def self._input_tensors = input_tensors self._output_tensors = output_tensors self.inference_type = constants.FLOAT self.inference_input_type = None self.inference_output_type = None self.output_format = constants.TFLITE self.quantized_input_stats = {} self.default_ranges_stats = None self.drop_control_dependency = True self.reorder_across_fake_quant = False self.change_concat_input_ranges = False self.allow_custom_ops = False self._post_training_quantize = False self.dump_graphviz_dir = None self.dump_graphviz_video = False self.target_spec = TargetSpec() # Attributes are used by models that cannot be loaded into TensorFlow. if not self._has_valid_tensors(): if not input_arrays_with_shape or not output_arrays: raise ValueError( "If input_tensors and output_tensors are None, both " "input_arrays_with_shape and output_arrays must be defined.") self._input_arrays_with_shape = input_arrays_with_shape self._output_arrays = output_arrays @classmethod def from_session(cls, sess, input_tensors, output_tensors): """Creates a TFLiteConverter class from a TensorFlow Session. Args: sess: TensorFlow Session. input_tensors: List of input tensors. Type and shape are computed using `foo.shape` and `foo.dtype`. output_tensors: List of output tensors (only .name is used from this). Returns: TFLiteConverter class. """ graph_def = _freeze_graph(sess, input_tensors, output_tensors) return cls(graph_def, input_tensors, output_tensors) @classmethod def from_frozen_graph(cls, graph_def_file, input_arrays, output_arrays, input_shapes=None): """Creates a TFLiteConverter class from a file containing a frozen GraphDef. Args: graph_def_file: Full filepath of file containing frozen GraphDef. input_arrays: List of input tensors to freeze graph with. output_arrays: List of output tensors to freeze graph with. input_shapes: Dict of strings representing input tensor names to list of integers representing input shapes (e.g., {"foo" : [1, 16, 16, 3]}). Automatically determined when input shapes is None (e.g., {"foo" : None}). (default None) Returns: TFLiteConverter class. Raises: IOError: File not found. Unable to parse input file. ValueError: The graph is not frozen. input_arrays or output_arrays contains an invalid tensor name. input_shapes is not correctly defined when required """ with _ops.Graph().as_default(): with _session.Session() as sess: # Read GraphDef from file. if not _file_io.file_exists(graph_def_file): raise IOError("File '{0}' does not exist.".format(graph_def_file)) with _file_io.FileIO(graph_def_file, "rb") as f: file_content = f.read() try: graph_def = _graph_pb2.GraphDef() graph_def.ParseFromString(file_content) except (_text_format.ParseError, DecodeError): try: print("Ignore 'tcmalloc: large alloc' warnings.") if not isinstance(file_content, str): if PY3: file_content = file_content.decode("utf-8") else: file_content = file_content.encode("utf-8") graph_def = _graph_pb2.GraphDef() _text_format.Merge(file_content, graph_def) except (_text_format.ParseError, DecodeError): raise IOError( "Unable to parse input file '{}'.".format(graph_def_file)) # Handles models with custom TFLite ops that cannot be resolved in # TensorFlow. load_model_in_session = True try: _import_graph_def(graph_def, name="") except _NotFoundError: load_model_in_session = False if load_model_in_session: # Check if graph is frozen. if not _is_frozen_graph(sess): raise ValueError("Please freeze the graph using freeze_graph.py.") # Get input and output tensors. input_tensors = _get_tensors_from_tensor_names( sess.graph, input_arrays) output_tensors = _get_tensors_from_tensor_names( sess.graph, output_arrays) _set_tensor_shapes(input_tensors, input_shapes) return cls(sess.graph_def, input_tensors, output_tensors) else: if not input_shapes: raise ValueError("input_shapes must be defined for this model.") if set(input_arrays) != set(input_shapes.keys()): raise ValueError("input_shapes must contain a value for each item " "in input_array.") input_arrays_with_shape = [ (name, input_shapes[name]) for name in input_arrays ] return cls( graph_def, input_tensors=None, output_tensors=None, input_arrays_with_shape=input_arrays_with_shape, output_arrays=output_arrays) @classmethod def from_saved_model(cls, saved_model_dir, input_arrays=None, input_shapes=None, output_arrays=None, tag_set=None, signature_key=None): """Creates a TFLiteConverter class from a SavedModel. Args: saved_model_dir: SavedModel directory to convert. input_arrays: List of input tensors to freeze graph with. Uses input arrays from SignatureDef when none are provided. (default None) input_shapes: Dict of strings representing input tensor names to list of integers representing input shapes (e.g., {"foo" : [1, 16, 16, 3]}). Automatically determined when input shapes is None (e.g., {"foo" : None}). (default None) output_arrays: List of output tensors to freeze graph with. Uses output arrays from SignatureDef when none are provided. (default None) tag_set: Set of tags identifying the MetaGraphDef within the SavedModel to analyze. All tags in the tag set must be present. (default set("serve")) signature_key: Key identifying SignatureDef containing inputs and outputs. (default DEFAULT_SERVING_SIGNATURE_DEF_KEY) Returns: TFLiteConverter class. """ if tag_set is None: tag_set = set([_tag_constants.SERVING]) if signature_key is None: signature_key = _signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY result = _freeze_saved_model(saved_model_dir, input_arrays, input_shapes, output_arrays, tag_set, signature_key) return cls( graph_def=result[0], input_tensors=result[1], output_tensors=result[2]) @classmethod def from_keras_model_file(cls, model_file, input_arrays=None, input_shapes=None, output_arrays=None, custom_objects=None): """Creates a TFLiteConverter class from a tf.keras model file. Args: model_file: Full filepath of HDF5 file containing the tf.keras model. input_arrays: List of input tensors to freeze graph with. Uses input arrays from SignatureDef when none are provided. (default None) input_shapes: Dict of strings representing input tensor names to list of integers representing input shapes (e.g., {"foo" : [1, 16, 16, 3]}). Automatically determined when input shapes is None (e.g., {"foo" : None}). (default None) output_arrays: List of output tensors to freeze graph with. Uses output arrays from SignatureDef when none are provided. (default None) custom_objects: Dict mapping names (strings) to custom classes or functions to be considered during model deserialization. (default None) Returns: TFLiteConverter class. """ # Handles Keras when Eager mode is enabled. if context.executing_eagerly(): if input_arrays or output_arrays: raise ValueError("`input_arrays` and `output_arrays` are unsupported " "with Eager mode. If your model requires any of these " "parameters, please use disable_eager_execution().") _keras.backend.set_learning_phase(False) keras_model = _keras.models.load_model(model_file, custom_objects) function = _saving_utils.trace_model_call(keras_model) concrete_func = function.get_concrete_function() frozen_func = _convert_to_constants.convert_variables_to_constants_v2( concrete_func) _set_tensor_shapes(frozen_func.inputs, input_shapes) return cls(frozen_func.graph.as_graph_def(), frozen_func.inputs, frozen_func.outputs) # Handles Keras when Eager mode is disabled. _keras.backend.clear_session() _keras.backend.set_learning_phase(False) keras_model = _keras.models.load_model(model_file, custom_objects) sess = _keras.backend.get_session() # Get input and output tensors. if input_arrays: input_tensors = _get_tensors_from_tensor_names(sess.graph, input_arrays) else: input_tensors = keras_model.inputs if output_arrays: output_tensors = _get_tensors_from_tensor_names(sess.graph, output_arrays) else: output_tensors = keras_model.outputs _set_tensor_shapes(input_tensors, input_shapes) graph_def = _freeze_graph(sess, input_tensors, output_tensors) return cls(graph_def, input_tensors, output_tensors) def __setattr__(self, name, value): if name == "post_training_quantize": warnings.warn("Property %s is deprecated, " "please use optimizations=[Optimize.DEFAULT]" " instead." % name) if value: self.optimizations = [Optimize.DEFAULT] else: self.optimizations = [] return if name == "target_ops": warnings.warn("Property %s is deprecated, please use " "target_spec.supported_ops instead." % name) self.target_spec.supported_ops = value return object.__setattr__(self, name, value) def __getattribute__(self, name): if name == "post_training_quantize": warnings.warn("Property %s is deprecated, " "please use optimizations=[Optimize.DEFAULT]" " instead." % name) return Optimize.DEFAULT in set(self.optimizations) if name == "target_ops": warnings.warn("Property %s is deprecated, please use " "target_spec.supported_ops instead." % name) return self.target_spec.supported_ops return object.__getattribute__(self, name) def convert(self): """Converts a TensorFlow GraphDef based on instance variables. Returns: The converted data in serialized format. Either a TFLite Flatbuffer or a Graphviz graph depending on value in `output_format`. Raises: ValueError: Input shape is not specified. None value for dimension in input_tensor. """ self._target_ops = self.target_spec.supported_ops # Checks dimensions in input tensor. if self._has_valid_tensors(): for tensor in self._input_tensors: shape = tensor.shape if not shape: raise ValueError("Provide an input shape for input array " "'{0}'.".format(_get_tensor_name(tensor))) # Note that shape_list might be empty for scalar shapes. shape_list = shape.as_list() if None in shape_list[1:]: raise ValueError( "None is only supported in the 1st dimension. Tensor '{0}' has " "invalid shape '{1}'.".format( _get_tensor_name(tensor), shape_list)) elif shape_list and shape_list[0] is None: self._set_batch_size(batch_size=1) # Get quantization stats. Ensures there is one stat per name if the stats # are specified. if self.quantized_input_stats: quantized_stats = [] invalid_stats = [] for name in self.get_input_arrays(): if name in self.quantized_input_stats: quantized_stats.append(self.quantized_input_stats[name]) else: invalid_stats.append(name) if invalid_stats: raise ValueError("Quantization input stats are not available for input " "tensors '{0}'.".format(",".join(invalid_stats))) else: quantized_stats = None self._validate_representative_dataset() toco_inference_input_type = self.inference_input_type inference_input_type = self.inference_input_type inference_output_type = self.inference_output_type post_training_optimize = self._is_post_training_optimize() if post_training_optimize: # Post training optimizations require that TOCO outputs a float model. if self.inference_type != constants.FLOAT: raise ValueError( "`optimizations` require that `inference_type` is set to float.") toco_inference_input_type = constants.FLOAT # Set up default values. if inference_input_type is None: inference_input_type = constants.FLOAT if inference_output_type is None: inference_output_type = constants.FLOAT weight_only_quantize = self._is_weight_only_quantize() if weight_only_quantize: # Currently, weight only quantization requires float inputs and outputs. if (inference_input_type != constants.FLOAT or inference_output_type != constants.FLOAT): raise ValueError( "Provide an inference_input_type and inference_output_type of type " "tf.float32.") if not post_training_optimize and self.inference_output_type is not None: raise ValueError( "inference_output_type is currently not supported if optimizations " "are not enabled.") converter_kwargs = { "inference_type": self.inference_type, "inference_input_type": toco_inference_input_type, "input_format": constants.TENSORFLOW_GRAPHDEF, "output_format": self.output_format, "quantized_input_stats": quantized_stats, "default_ranges_stats": self.default_ranges_stats, "drop_control_dependency": self.drop_control_dependency, "reorder_across_fake_quant": self.reorder_across_fake_quant, "change_concat_input_ranges": self.change_concat_input_ranges, "allow_custom_ops": self.allow_custom_ops, "post_training_quantize": weight_only_quantize, "target_ops": self._target_ops, "dump_graphviz_dir": self.dump_graphviz_dir, "dump_graphviz_video": self.dump_graphviz_video } optimized_graph = self._graph_def if self.inference_type != constants.QUANTIZED_UINT8: try: optimized_graph = _run_graph_optimizations( self._graph_def, self._input_tensors, self._output_tensors, config=self._grappler_config()) except Exception: optimized_graph = self._graph_def # Converts model. if self._has_valid_tensors(): result = _toco_convert_impl( input_data=optimized_graph, input_tensors=self._input_tensors, output_tensors=self._output_tensors, **converter_kwargs) else: result = _toco_convert_graph_def( input_data=optimized_graph, input_arrays_with_shape=self._input_arrays_with_shape, output_arrays=self._output_arrays, **converter_kwargs) if self._is_calibration_quantize(): result = self._calibrate_quantize_model(result, inference_input_type, inference_output_type) return result def get_input_arrays(self): """Returns a list of the names of the input tensors. Returns: List of strings. """ if self._has_valid_tensors(): return [_get_tensor_name(tensor) for tensor in self._input_tensors] else: return [name for name, _ in self._input_arrays_with_shape] def _has_valid_tensors(self): """Checks if the input and output tensors have been initialized. Returns: Bool. """ return self._input_tensors and self._output_tensors def _set_batch_size(self, batch_size): """Sets the first dimension of the input tensor to `batch_size`. Args: batch_size: Batch size for the model. Replaces the first dimension of an input size array if undefined. (default 1) Raises: ValueError: input_tensor is not defined. """ if not self._has_valid_tensors(): raise ValueError("The batch size cannot be set for this model. Please " "use input_shapes parameter.") for tensor in self._input_tensors: shape = tensor.shape.as_list() shape[0] = batch_size tensor.set_shape(shape) @_tf_export(v1=["lite.TocoConverter"]) class TocoConverter(object): """Convert a TensorFlow model into `output_format` using TOCO. This class has been deprecated. Please use `lite.TFLiteConverter` instead. """ @classmethod @_deprecation.deprecated(None, "Use `lite.TFLiteConverter.from_session` instead.") def from_session(cls, sess, input_tensors, output_tensors): """Creates a TocoConverter class from a TensorFlow Session.""" return TFLiteConverter.from_session(sess, input_tensors, output_tensors) @classmethod @_deprecation.deprecated( None, "Use `lite.TFLiteConverter.from_frozen_graph` instead.") def from_frozen_graph(cls, graph_def_file, input_arrays, output_arrays, input_shapes=None): """Creates a TocoConverter class from a file containing a frozen graph.""" return TFLiteConverter.from_frozen_graph(graph_def_file, input_arrays, output_arrays, input_shapes) @classmethod @_deprecation.deprecated( None, "Use `lite.TFLiteConverter.from_saved_model` instead.") def from_saved_model(cls, saved_model_dir, input_arrays=None, input_shapes=None, output_arrays=None, tag_set=None, signature_key=None): """Creates a TocoConverter class from a SavedModel.""" return TFLiteConverter.from_saved_model(saved_model_dir, input_arrays, input_shapes, output_arrays, tag_set, signature_key) @classmethod @_deprecation.deprecated( None, "Use `lite.TFLiteConverter.from_keras_model_file` instead.") def from_keras_model_file(cls, model_file, input_arrays=None, input_shapes=None, output_arrays=None): """Creates a TocoConverter class from a tf.keras model file.""" return TFLiteConverter.from_keras_model_file(model_file, input_arrays, input_shapes, output_arrays)
tensorflow-master
tensorflow/lite/python/lite.py
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for lite.py functionality related to TensorFlow 2.0.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import numpy as np from tensorflow.lite.python import lite from tensorflow.lite.python.interpreter import Interpreter from tensorflow.python import keras from tensorflow.python.eager import def_function from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import tensor_spec from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import gen_array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test from tensorflow.python.saved_model.save import save from tensorflow.python.training.tracking import tracking class TestModels(test_util.TensorFlowTestCase): def _evaluateTFLiteModel(self, tflite_model, input_data): """Evaluates the model on the `input_data`.""" interpreter = Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() for input_tensor, tensor_data in zip(input_details, input_data): interpreter.set_tensor(input_tensor['index'], tensor_data.numpy()) interpreter.invoke() return interpreter.get_tensor(output_details[0]['index']) def _getSimpleVariableModel(self): root = tracking.AutoTrackable() root.v1 = variables.Variable(3.) root.v2 = variables.Variable(2.) root.f = def_function.function(lambda x: root.v1 * root.v2 * x) return root def _getMultiFunctionModel(self): class BasicModel(tracking.AutoTrackable): def __init__(self): self.y = None self.z = None @def_function.function def add(self, x): if self.y is None: self.y = variables.Variable(2.) return x + self.y @def_function.function def sub(self, x): if self.z is None: self.z = variables.Variable(3.) return x - self.z return BasicModel() class FromConcreteFunctionTest(TestModels): @test_util.run_v2_only def testTypeInvalid(self): root = self._getSimpleVariableModel() with self.assertRaises(ValueError) as error: _ = lite.TFLiteConverterV2.from_concrete_functions([root.f]) self.assertIn('call from_concrete_function', str(error.exception)) @test_util.run_v2_only def testFloat(self): root = self._getSimpleVariableModel() input_data = constant_op.constant(1., shape=[1]) concrete_func = root.f.get_concrete_function(input_data) # Convert model. converter = lite.TFLiteConverterV2.from_concrete_functions([concrete_func]) tflite_model = converter.convert() # Check values from converted model. expected_value = root.f(input_data) actual_value = self._evaluateTFLiteModel(tflite_model, [input_data]) self.assertEqual(expected_value.numpy(), actual_value) @test_util.run_v2_only def testScalarInput(self): root = self._getSimpleVariableModel() input_data = constant_op.constant(1., shape=[]) concrete_func = root.f.get_concrete_function(input_data) # Convert model. converter = lite.TFLiteConverterV2.from_concrete_functions([concrete_func]) tflite_model = converter.convert() # Check values from converted model. expected_value = root.f(input_data) actual_value = self._evaluateTFLiteModel(tflite_model, [input_data]) self.assertEqual(expected_value.numpy(), actual_value) @test_util.run_v2_only def testMultiFunctionModel(self): """Convert a single model in a multi-functional model.""" root = self._getMultiFunctionModel() input_data = constant_op.constant(1., shape=[1]) concrete_func = root.add.get_concrete_function(input_data) # Convert model and ensure model is not None. converter = lite.TFLiteConverterV2.from_concrete_functions([concrete_func]) tflite_model = converter.convert() # Check values from converted model. expected_value = root.add(input_data) actual_value = self._evaluateTFLiteModel(tflite_model, [input_data]) self.assertEqual(expected_value.numpy(), actual_value) @test_util.run_v2_only def testConvertMultipleFunctions(self): """Convert multiple functions in a multi-functional model.""" root = self._getMultiFunctionModel() input_data = constant_op.constant(1., shape=[1]) add_func = root.add.get_concrete_function(input_data) sub_func = root.sub.get_concrete_function(input_data) # Try converting multiple functions. converter = lite.TFLiteConverterV2.from_concrete_functions( [add_func, sub_func]) with self.assertRaises(ValueError) as error: _ = converter.convert() self.assertIn('can only convert a single ConcreteFunction', str(error.exception)) def _getCalibrationQuantizeModel(self): np.random.seed(0) root = tracking.AutoTrackable() @def_function.function(input_signature=[ tensor_spec.TensorSpec(shape=[1, 5, 5, 3], dtype=dtypes.float32) ]) def func(inp): conv = nn_ops.conv2d( inp, filter=array_ops.ones([3, 3, 3, 16]), strides=[1, 1, 1, 1], padding='SAME') output = nn_ops.relu(conv, name='output') return output def calibration_gen(): for _ in range(5): yield [np.random.uniform(-1, 1, size=(1, 5, 5, 3)).astype(np.float32)] root.f = func to_save = root.f.get_concrete_function() return (to_save, calibration_gen) def testPostTrainingCalibrateAndQuantize(self): func, calibration_gen = self._getCalibrationQuantizeModel() # Convert float model. float_converter = lite.TFLiteConverterV2.from_concrete_functions([func]) float_tflite = float_converter.convert() self.assertTrue(float_tflite) # Convert quantized model. quantized_converter = lite.TFLiteConverterV2.from_concrete_functions([func]) quantized_converter.optimizations = [lite.Optimize.DEFAULT] quantized_converter.representative_dataset = calibration_gen quantized_tflite = quantized_converter.convert() self.assertTrue(quantized_tflite) # The default input and output types should be float. interpreter = Interpreter(model_content=quantized_tflite) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(1, len(input_details)) self.assertEqual(np.float32, input_details[0]['dtype']) output_details = interpreter.get_output_details() self.assertEqual(1, len(output_details)) self.assertEqual(np.float32, output_details[0]['dtype']) # Ensure that the quantized weights tflite model is smaller. self.assertLess(len(quantized_tflite), len(float_tflite)) def testCalibrateAndQuantizeBuiltinInt8(self): func, calibration_gen = self._getCalibrationQuantizeModel() # Convert float model. float_converter = lite.TFLiteConverterV2.from_concrete_functions([func]) float_tflite = float_converter.convert() self.assertTrue(float_tflite) # Convert model by specifying target spec (instead of optimizations), since # when targeting an integer only backend, quantization is mandatory. quantized_converter = lite.TFLiteConverterV2.from_concrete_functions([func]) quantized_converter.target_spec.supported_ops = [ lite.OpsSet.TFLITE_BUILTINS_INT8 ] quantized_converter.representative_dataset = calibration_gen quantized_tflite = quantized_converter.convert() self.assertTrue(quantized_tflite) # The default input and output types should be float. interpreter = Interpreter(model_content=quantized_tflite) interpreter.allocate_tensors() input_details = interpreter.get_input_details() self.assertEqual(1, len(input_details)) self.assertEqual(np.float32, input_details[0]['dtype']) output_details = interpreter.get_output_details() self.assertEqual(1, len(output_details)) self.assertEqual(np.float32, output_details[0]['dtype']) # Ensure that the quantized weights tflite model is smaller. self.assertLess(len(quantized_tflite), len(float_tflite)) class FromSavedModelTest(TestModels): @test_util.run_v2_only def testConstModel(self): """Test a basic model with functions to make sure functions are inlined.""" input_data = constant_op.constant(1., shape=[1]) root = tracking.AutoTrackable() root.f = def_function.function(lambda x: 2. * x) to_save = root.f.get_concrete_function(input_data) save_dir = os.path.join(self.get_temp_dir(), 'saved_model') save(root, save_dir, to_save) # Convert model and ensure model is not None. converter = lite.TFLiteConverterV2.from_saved_model(save_dir) tflite_model = converter.convert() # Check values from converted model. expected_value = root.f(input_data) actual_value = self._evaluateTFLiteModel(tflite_model, [input_data]) self.assertEqual(expected_value.numpy(), actual_value) @test_util.run_v2_only def testVariableModel(self): """Test a basic model with Variables with saving/loading the SavedModel.""" root = self._getSimpleVariableModel() input_data = constant_op.constant(1., shape=[1]) to_save = root.f.get_concrete_function(input_data) save_dir = os.path.join(self.get_temp_dir(), 'saved_model') save(root, save_dir, to_save) # Convert model and ensure model is not None. converter = lite.TFLiteConverterV2.from_saved_model(save_dir) tflite_model = converter.convert() # Check values from converted model. expected_value = root.f(input_data) actual_value = self._evaluateTFLiteModel(tflite_model, [input_data]) self.assertEqual(expected_value.numpy(), actual_value) @test_util.run_v2_only def testSignatures(self): """Test values for `signature_keys` argument.""" root = self._getSimpleVariableModel() input_data = constant_op.constant(1., shape=[1]) to_save = root.f.get_concrete_function(input_data) save_dir = os.path.join(self.get_temp_dir(), 'saved_model') save(root, save_dir, to_save) # Convert model with invalid `signature_keys`. with self.assertRaises(ValueError) as error: _ = lite.TFLiteConverterV2.from_saved_model( save_dir, signature_keys=['INVALID']) self.assertIn("Invalid signature key 'INVALID'", str(error.exception)) # Convert model with empty `signature_keys`. converter = lite.TFLiteConverterV2.from_saved_model( save_dir, signature_keys=[]) tflite_model = converter.convert() # Check values from converted model. expected_value = root.f(input_data) actual_value = self._evaluateTFLiteModel(tflite_model, [input_data]) self.assertEqual(expected_value.numpy(), actual_value) @test_util.run_v2_only def testMultipleFunctionModel(self): """Convert multiple functions in a multi-functional model.""" root = self._getMultiFunctionModel() input_data = constant_op.constant(1., shape=[1]) add_func = root.add.get_concrete_function(input_data) sub_func = root.sub.get_concrete_function(input_data) save_dir = os.path.join(self.get_temp_dir(), 'saved_model') save(root, save_dir, {'add': add_func, 'sub': sub_func}) # Ensure the converter generates. converter = lite.TFLiteConverterV2.from_saved_model(save_dir) self.assertEqual(len(converter._funcs), 2) # Try converting multiple functions. with self.assertRaises(ValueError) as error: _ = converter.convert() self.assertIn('This converter can only convert a single ConcreteFunction', str(error.exception)) @test_util.run_v2_only def testKerasSequentialModel(self): """Test a simple sequential tf.Keras model.""" input_data = constant_op.constant(1., shape=[1, 1]) x = np.array([[1.], [2.]]) y = np.array([[2.], [4.]]) model = keras.models.Sequential([ keras.layers.Dropout(0.2), keras.layers.Dense(1), ]) model.compile(optimizer='sgd', loss='mean_squared_error') model.fit(x, y, epochs=1) save_dir = os.path.join(self.get_temp_dir(), 'saved_model') save(model, save_dir) # Convert model and ensure model is not None. converter = lite.TFLiteConverterV2.from_saved_model(save_dir) tflite_model = converter.convert() # Check values from converted model. expected_value = model.predict(input_data) actual_value = self._evaluateTFLiteModel(tflite_model, [input_data]) self.assertEqual(expected_value, actual_value) class FromKerasModelTest(TestModels): @test_util.run_v2_only def testSequentialModel(self): """Test a simple sequential tf.Keras model.""" input_data = constant_op.constant(1., shape=[1, 1]) # Create a simple Keras model. x = np.array([[1.], [2.]]) y = np.array([[2.], [4.]]) model = keras.models.Sequential([ keras.layers.Dropout(0.2), keras.layers.Dense(units=1, input_shape=[1]) ]) model.compile(optimizer='sgd', loss='mean_squared_error') model.fit(x, y, epochs=1) # Convert model and ensure model is not None. converter = lite.TFLiteConverterV2.from_keras_model(model) tflite_model = converter.convert() # Check values from converted model. expected_value = model.predict(input_data) actual_value = self._evaluateTFLiteModel(tflite_model, [input_data]) self.assertEqual(expected_value, actual_value) @test_util.run_v2_only def testSequentialMultiInputOutputModel(self): """Test a tf.Keras model with multiple inputs and outputs.""" left_input_data = constant_op.constant(1., shape=[1, 3]) right_input_data = constant_op.constant(1., shape=[1, 3]) # Create a simple Keras model. input_a_np = np.random.random((10, 3)) input_b_np = np.random.random((10, 3)) output_c_np = np.random.random((10, 3)) output_d_np = np.random.random((10, 2)) input_a = keras.layers.Input(shape=(3,), name='input_a') input_b = keras.layers.Input(shape=(3,), name='input_b') dense = keras.layers.Dense(8, name='dense_1') interm_a = dense(input_a) interm_b = dense(input_b) merged = keras.layers.concatenate([interm_a, interm_b], name='merge') output_c = keras.layers.Dense( 3, activation='softmax', name='dense_2')( merged) output_d = keras.layers.Dense( 2, activation='softmax', name='dense_3')( merged) model = keras.models.Model( inputs=[input_a, input_b], outputs=[output_c, output_d]) model.compile(optimizer='sgd', loss='mean_squared_error') model.fit([input_a_np, input_b_np], [output_c_np, output_d_np], epochs=1) # Convert model and ensure model is not None. converter = lite.TFLiteConverterV2.from_keras_model(model) tflite_model = converter.convert() # Check values from converted model. input_data = [left_input_data, right_input_data] expected_value = model.predict(input_data) actual_value = self._evaluateTFLiteModel(tflite_model, input_data) for tf_result, tflite_result in zip(expected_value, actual_value): np.testing.assert_almost_equal(tf_result[0], tflite_result, 5) class GrapplerTest(TestModels): @test_util.run_v2_only def testConstantFolding(self): # Constant folding handles the tf.broadcast_to operation which was not # supported by the TFLite at the time this test was added. input_data = constant_op.constant([1., 2., 3., 4., 5., 6., 7., 8., 9.], shape=[3, 3]) @def_function.function def func(x): y_const = constant_op.constant([1., 2., 3.]) y_broadcast = gen_array_ops.broadcast_to(y_const, [3, 3]) return math_ops.matmul(x, y_broadcast) root = tracking.AutoTrackable() root.f = func concrete_func = root.f.get_concrete_function(input_data) # Convert model. converter = lite.TFLiteConverterV2.from_concrete_functions([concrete_func]) tflite_model = converter.convert() # Check values from converted model. expected_value = root.f(input_data) actual_value = self._evaluateTFLiteModel(tflite_model, [input_data]) np.testing.assert_array_equal(expected_value.numpy(), actual_value) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/lite/python/lite_v2_test.py